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Summary 

 

 

 

 

 
Genomic diversity of microorganisms is the result of the combined 

effects of past evolutionary roads and ecological events. Thus, the 

specific genome structure in a bacterium is consequence of the selective 

pressure by the interactions between microorganisms and environment 

along evolution. Therefore, DNA is predicted to contain more structural 

information than would be expected from nucleotide bases composition 

alone. 

 

The general aim of this PhD thesis was to develop a theoretical 

framework based on genometric, statistic and mathematic modelling to 

study the relationship between genome structure, lifestyle and 

metabolism of prokaryotic microorganisms. To unveil the relationship 

between genome structure and lifestyle, a large set of genomes were 

analyzed by means of a statistical physics methodology which reduces 

the prokaryotic genomic complexity to a single parameter —the intrinsic 

long-range correlation that is related directly to the fractal structure of the 

DNA sequence— which can be further used for comparative genomics 

and ecological purposes. 

 

DNA walk and Detrended Fluctuation Analysis (DFA) were the methods 

used for the study of long-range correlations in genomes. DNA walking 

is a genometric method based on a derivative function of the sequential 

position for each nucleotide along a DNA sequence. The resulting ―walk‖ 

is representative of the DNA ―landscape‖ and enables the simultaneous 

comparison among different genomes. DFA method provides a single 

quantitative parameter —the scaling exponent α— to represent 

correlation properties of a sequence. The sequential approach DNA 

walk–DFA was combined with a functional approach (distribution of 

clusters of orthologous genes, COG) showing that both, correlations and 

COG distribution in genomes may be originated by similar factors such 

as expansions and contractions in the genomic repertoire or adaptation to 

extreme habitats. 
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Relationships between lifestyle and metabolism were examined by means 

of a comprehensive comparative genomics study of two marine bacteria 

that exclusively use hydrocarbons as carbon and energy sources in 

different environmental scenarios, Alcanivorax borkumensis and 

Oleispira antarctica. The genomic bases of the unusual ecophysiological 

features of these microorganisms were studied to help for a better 

understanding of the influence of temperature on the oil-degrading based 

bacterial growth. 

 

Finally, a functional genomics approach using mathematical modelling 

for the whole metabolism network codified in the genome of Alcanivorax 

borkumensis was carried out in order to look into the relationship 

between genome composition and metabolic phenotype. The whole set of 

genes, proteins, reactions and metabolites that participated in the 

metabolic activity were identified, categorized and interconnected to 

form a network through in silico metabolic reconstruction. This 

metabolic network allowed, by means of constraint-based methods and 

Flux Balance Analysis (FBA), to characterize the peculiar ecophysiologic 

features of this microorganism and to predict mutant cellular phenotypes. 

The modelling of carbon versus nitrogen fluxes allowed the discovery of 

conditions in which the excess carbon available in hydrocarbons was not 

directly translated into bacterial biomass but carbon overflow was 

diverted to the production of polyhydroxyalkanoates (bioplastics). The 

predictions showed a potential in the use of the model as a high-

throughput analysis in silico tool for detailed studies on the growth of A. 

borkumensis. 
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Resum 

 

 

 

 

 
La diversitat genòmica dels microorganismes és resultat de la combinació 

de processos evolutius i d’esdeveniments ecològics. Així, l'estructura 

específica dels genomes en bacteris és conseqüència de la pressió 

selectiva deguda a interaccions entre microorganismes i ambient al llarg 

de l’evolució. Aquestes evidències fan intuir que el DNA conté més 

informació estructural del que s’esperaria si només es mirés la seva 

composició de bases nucleotídiques. 

 

El propòsit general d'aquesta tesi doctoral és desenvolupar un marc teòric 

basat en la genometria, l’estadística i el modelatge matemàtic per tal 

d’estudiar la relació entre estructura del genoma, estil de vida i 

metabolisme de microorganismes procariòtics. Per a desvelar la relació 

entre l’estructura del genoma i l’estil de vida, s’han analitzat un gran 

nombre de genomes mitjançant un mètode de física estadística, el qual 

aconsegueix reduir la complexitat genòmica procariota a un únic 

paràmetre —la correlació intrínseca de llarg abast, que es relaciona 

directament amb l'estructura fractal de la seqüència del DNA— que pot 

ser utilitzat en genòmica comparativa i anàlisis ecològiques. 

 

Els mètodes utilitzats per a l'estudi de correlacions de llarg abast en 

genomes han sigut els ―passejos‖ de DNA i Detrended Fluctuation 

Analysis (DFA). Els ―passejos‖ de DNA és un mètode de genometria 

basat en una funció derivada de la posició seqüencial de cada nucleòtid al 

llarg d'una seqüència de DNA. El "passeig" resultant és representatiu del 

"paisatge" del DNA i permet la comparació simultània entre diferents 

genomes. El DFA proporciona un senzill paràmetre quantitatiu              

—l’exponent d’escala α— que representa les propietats de correlació 

d'una seqüència. La combinació de l'enfocament seqüencial ―passejos‖ de 

DNA–DFA amb una aproximació funcional (distribució de gens ortòlegs, 

COG) mostra que tant les correlacions com la distribució de COGs del 

genoma poden tenir el seu origen en factors similars com expansions i 

contraccions en el repertori genòmic o adaptació a hàbitats extrems. 
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La relació entre l’estil de vida i el metabolisme s'ha examinat mitjançant 

un estudi de genòmica comparativa de dos bacteris marins que utilitzen 

exclusivament hidrocarburs com a fonts de carboni i d'energia en hàbitats 

diferents, Alcanivorax borkumensis i Oleispira antarctica. S'han estudiat 

les bases genòmiques dels seus inusuals trets ecofisiològics per tal de 

millorar la comprenssió de la influència de la temperatura en el 

creixement bacterià basat en la degradació d'hidrocarburs. 

 

Finalment, s’ha portat a terme una aproximació de genòmica funcional 

utilitzant el modelatge matemàtic de la xarxa metabòlica codificada al 

genoma d’Alcanivorax borkumensis per tal d’aprofundir en la relació 

entre la composició del genoma i el fenotip metabòlic. El conjunt de 

gens, proteïnes, reaccions i metabòlits que participen a l'activitat 

metabòlica s'ha identificat, classificat i interconnectat per a reconstruir 

una xarxa metabòlica in silico. Aquesta reconstrucció metabòlica ha 

permès, mitjançant la utilització de mètodes basats en la restricció de 

fluxos i en l’Anàlisi d’Equilibri de Flux (FBA), caracteritzar el peculiar 

tret ecofisiològic d'aquest microorganisme i pronosticar fenotips mutants 

viables de la cèl·lula. El modelatge dels fluxos de carboni envers els de 

nitrogen ha permès el descobriment de condicions específiques en les 

quals l’excedent de carboni disponible en els hidrocarburs no es traduïa 

directament a biomassa sinó que es desviava cap a la producció de                   

polyhydroxyalkanoates (bioplàstics). Les prediccions van mostrar un 

potencial en l'ús del model com a eina d’anàlisi in silico per a estudis 

detallats del creixement de A. borkumensis. 
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Resumen 

 

 

 

 

 
La diversidad genómica de los microorganismos es resultado de la 

combinación de procesos evolutivos y de acontecimientos ecológicos. 

Así, la estructura específica de los genomas de bacterias es una 

consecuencia de la presión selectiva debida a interacciones entre 

microorganismos y ambiente a lo largo de la evolución. Estas evidencias 

hacen intuir que el DNA contiene más información estructural de lo que 

se esperaría mirando sólo la composición de las bases nucleotídicas. 

 

El objetivo general de esta tesis doctoral es desarrollar un marco teórico 

basado en la genometria, la estadística y el modelado matemático para 

estudiar la relación entre estructura del genoma, estilo de vida y 

metabolismo de microorganismos procariotas. Para desvelar la relación 

entre la estructura del genoma y el estilo de vida, se han analizado un 

gran número de genomas mediante un método de física estadística que 

consigue reducir la complejidad genómica procariota a un solo parámetro 

—la correlación intrínseca de largo alcance, que está relacionada 

directamente con la estructura fractal de la secuencia de DNA— que 

puede ser utilizado en genómica comparativa y en estudios ecológicos. 

 

Los métodos escogidos para el estudio de las correlaciones de largo 

alcance en genomas han sido el ―paseo‖ de DNA y el Detrended 

Fluctuation Analysis (DFA). El ―paseo‖ de DNA es un método de 

genometria basado en una función derivada de la posición secuencial de 

cada nucleótido a lo largo de una secuencia de DNA. El "paseo" 

resultante es representativo del "paisaje" del DNA y permite la 

comparación simultánea entre diferentes genomas. El DFA proporciona 

un sencillo parámetro cuantitativo —el exponente de escala α— que 

representa las propiedades de correlación de una secuencia. La 

combinación del enfoque secuencial ―paseos‖ de DNA–DFA con una 

aproximación funcional (distribución de genes ortólogos, COG) muestra 

que tanto las correlaciones como la distribución de COGs del genoma 

pueden estar originadas por factores similares como extensiones y 
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contracciones en el repertorio genómico o la adaptación a hábitats 

extremos. 

 

La relación entre el estilo de vida y el metabolismo se ha examinado 

mediante un estudio de genómica comparativa de dos bacterias marinas 

que utilizan exclusivamente hidrocarburos como fuentes de carbono y 

energía en hábitats diferentes, Alcanivorax borkumensis y Oleispira 

antárctica. Se han estudiado las bases genómicas de sus inusuales rasgos 

ecofisiológicos para mejorar la comprensión de la influencia de 

temperatura sobre el crecimiento bacteriano basado en la degradación de 

hidrocarburos. 

 

Finalmente, se ha realizado una aproximación de genómica funcional 

utilizando el modelado matemático de la red metabólica codificada en el 

genoma de Alcanivorax borkumensis con el fin de profundizar en la 

relación entre la composición del genoma y el fenotipo metabólico. El 

conjunto de genes, proteínas, reacciones y metabolitos que participan en 

la actividad metabólica se ha identificado, clasificado e interconectado 

para reconstruir una red metabólica in silico. Dicha reconstrucción 

metabólica ha permitido, mediante el uso de métodos basados en la 

restricción de flujos y en el Análisis de Equilibrio de Flujo (FBA), 

caracterizar el peculiar rasgo ecofisiológico de este microorganismo y 

pronosticar fenotipos mutantes viables de la célula. El modelado de los 

flujos de carbono y de nitrógeno permitió el descubrimiento de 

condiciones específicas en las cuales el excedente de carbono disponible 

en los hidrocarburos no se traducía directamente a biomasa sino que se 

desviaba hacia la producción de polyhydroxyalkanoates (bioplásticos). 

Las predicciones mostraron un potencial en el empleo del modelo como 

un instrumento de análisis in silico para estudios detallados sobre el 

crecimiento de A. borkumensis. 
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There have been many important recent developments in the knowledge 

of the breadth of prokaryote diversity, the understanding of the driving 

forces behind that diversity, and its significance for fundamental 

biogeochemical processes on earth. It has become clear that the 

microorganims we know are actually just the minority. In fact, the 

majority of microbes are unculturable on laboratory at present. However, 

there is a growing appreciation that without microbes fundamental 

ecological processes would not be balanced and understood.  

 

A major advance to understand the extent and nature of microbial 

diversity has been the development of in vitro genome sequencing. In 

parallel, there has been the development of in silico tools to allow whole-

genome comparisons. This has facilitated the study of microbial diversity 

and evolution, such as allowing the tracking of unculturable 

microorganisms or the study of organisms from extreme environments. 

Genomic comparison has helped to identify core genes, horizontal 

transfer of genomic islands, phenotypic innovation and metabolic 

pathway evolution. Undoubtedly, genomics has influenced key concepts 

in microbiology and will place microbial systematics on a much more 

sound footing (Ward and Fraser, 2005). 

 

 

I     Introduction 
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1.1 A general perspective of prokaryotes 
 
The first living things on earth are thought to be single cell prokaryotes. 

The oldest ancient fossil microbe-like objects are dated to be 3.5 billion 

years old, just a few hundred million years younger than earth itself 

(Wilde et al., 2001; Schopf et al., 2002). By 2.4 billion years, the ratio of 

stable isotopes of carbon, iron and sulfur shows the action of living 

things on inorganic minerals and sediments (Hayes and Waldbauer, 

2006; Archer and Vance, 2006) and molecular biomarkers indicate 

photosynthesis, demonstrating that life on earth was widespread by this 

time (Cavalier-Smith et al., 2006; Summons et al., 2006).  

 

Prokaryotes became the dominant force of life on the planet for a long 

time. They grew and diversified at a relatively fast rate and quickly 

adapted new ways of obtaining energy. The most important group was 

the cyanobacteria which was able to harness the power of the sun to 

derive energy resulting in a net oxygen release into the atmosphere. This 

gradual release of oxygen, over several billion years, into the atmosphere 

was a key factor in altering the earth's atmosphere into one where oxygen 

was a major element. This change laid the groundwork for the world we 

know today. It changed the environment in which life could evolve and 

introduced a new range of selection pressures that forced life to adapt to 

an oxygen-rich atmosphere. This was perhaps the most important change 

in climate in the history of the planet (Olson, 2006; Herrero and Flores, 

2008). 

 

The prokaryotes are generally a group of unicellular microorganisms 

which lack a cell nucleous that encloses the genetic material, or any other 

membrane-bound organelles. The genetic material of a prokaryote cell 

consists of one or more DNA chromosomes sometimes accompanied by 

plasmids and compacted in the cytoplasm and protected by a cell 

membrane and usually by a cell wall. Prokaryotes include the Archaea 

and Bacteria domains (Woese et al., 1990) on the basis of differences in 

16S rRNA genes. These two groups and the eukaryotes each arose 

separately from an ancestor with poorly developed genetic machinery, 

often called a progenote (Fig. 1.1).  
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Figure 1.1. Schematic representation of the phylogeny of fully sequenced organisms. 

The phylogenetic tree covers 191 species whose genomes have been fully sequenced. 

Green section, Archaea; red, Eukaryota; blue, Bacteria. Labels and color shadings 

indicate various frequently used subdivisions. Adapted from Ciccarelli et al., 2006. 
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The exact relationships of the three domains are still being debated, as is 

the position of the root of the tree. It has also been suggested that due to 

lateral gene transfer, a tree may not be the best representation of the 

genetic relationships of all organisms. For instance some genetic 

evidence suggests that eukaryotes evolved from the union of some 

bacteria and archaea (one becoming an organelle and the other the main 

cell) (Blanchard and Lynch, 2000; Alberts et al., 2002). Undoubtedly, 

knowledge of prokaryotes contributes greatly to the studies of genetics 

and evolution. 

 

Archaea are extensively similar to Bacteria. Most of the metabolic 

pathways, which comprise the vast majority of any organism’s gene 

repertoire, are common between them (Koonin et al., 1997). However, 

Archaea differ from Bacteria in some translation initiation factors and in 

their cell membrane and cell wall composition (Woese et al., 1990; 

Woese, 1987; Kandler and König, 1998). Moreover, Archaea tend to 

adapt quickly to extreme environments, such as high temperatures, high 

acids or high sulfur. This includes adapting to use a wide variety of food 

sources. 
 

 

 

1.1.1 Importance of prokaryotes 
 
The prokaryotes are ubiquitous in virtually every habitat on earth, 

including thermal vents, ice sheets, soil, acidic hot springs, radioactive 

waste, water and deep in the earth's crust, as well as in organic matter and 

the live bodies of plants and animals. There are approximately 5×10
30

 

bacteria on earth (Whitman et al., 1998), forming much of the world's 

biomass. 

 

The accumulated knowledge of prokaryotes indicates that they play a 

major role in global biogeochemical cycles, including CO2 respiration 

and decomposition (McGrady-Steed et al., 1997) and nitrogen cycling 

(Horz et al., 2004). Prokaryotes help produce CO2, which plants take 

from the atmosphere. The carbon cycle continues when Bacteria help 

convert the material of which those organisms are made back into CO2. 

Bacteria secrete enzymes that partially break down dead matter. Final 

digestion of this matter takes place within cells by the processes of 

fermentation and respiration. The CO2 released by this action escapes 
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back into the atmosphere to renew the cycle. Some bacteria convert 

nitrogen in earth’s atmosphere into the nitrogen compound ammonia, 

which plants take up to grow. Bacteria are the only organisms able to 

carry out this biochemical process known as nitrogen fixation.  

 

From an anthropological point of view, knowledge of prokaryotes greatly 

contributes to its application in fields as bioremediation, food, mineral 

extraction or bioengineering. Bioremediation refers to the use of 

microorganisms to return toxic chemical elements to their natural cycles 

in nature. It may provide an effective method of environmental cleanup, 

which is one of the major challenges facing human society today. 

Bacteria contribute to the fermentation of many products as yogurt or 

cheese which are produced by bacterial fermentation of milk by the 

production of lactic acid. An interesting industrial process carried out by 

bacteria is the recovery of valuable minerals such as copper from ores. 

Microorganisms of the genera Thiobacillus and Sulfolobus are able to 

oxidize sulfides —that is, cause a chemical reaction of sulfides with 

oxygen— yielding sulfuric acid. This action produces the acid conditions 

necessary to remove the copper from the ores. Prokaryotes have been 

also at the center of recent advances in biotechnology thanks to the 

recombinant DNA technology. Microorganisms became factories for 

producing multiple copies of proteins in a short time. Bacteria play a role 

in the environmentally friendly production of industrial components such 

as polyhydroxyalkanoates or bioplastics, many bulk chemicals, including 

ethanol, a form of alcohol made from fermented corn and others enzymes 

used in detergents. They also produce many antibiotics, such as 

streptomycin and tetracycline. 
 

 

 

1.1.2 Prokaryotic diversity 
 
The true extent of prokaryote diversity, encompassing the spectrum of 

variability among bacteria and archaea, remains unknown. Current 

research efforts focus on understanding why prokaryote diversification 

occurs, its underlying mechanisms and its likely impact. The dynamic 

nature of the prokaryotic world and continuing advances in the 

technological tools available make this an important area.  
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Traditionally, microbial identification required both, the isolation of pure 

cultures and multiple physiological and biochemical tests. This approach 

used to explore the diversity of microbial communities was biased 

because of the limitations of the culture methods used. Moreover, the 

methodology was cumbersome and, as a result, only about 5000 species 

have been described. The vast majority of prokaryotic microorganisms 

cannot yet be successfully cultured (Amann et al., 1995). In fact, most 

microbial species in the environment have yet to be described and, 

therefore, global microbial diversity is only beginning to be mapped. 

Comparison of the cultivable bacteria with total cell counts from 

different habitats showed enormous discrepancies (Amann et al., 1995). 

Thus, alternative approaches have been developed to complement 

traditional microbiology. The most common of these approaches involve 

using information from genetic markers to make inferences regarding 

diversity. Usually, the rRNA gene sequences are used as indicators of 

microbial diversity. The use of these molecular techniques and their 

drawbacks and biases has been reviewed in detail elsewhere (von 

Wintzingerode et al., 1997). These molecular approaches have enabled 

the detection of non-culturable species and allowed a more complete and 

detailed picture of prokaryotic communities (Head et al., 1998; Mlot, 

2004). 

 

Additionally, modern genomic techniques as metagenomics have 

emerged as a powerful tool for analyzing microbial communities, 

regardless of the ability of member microorganisms to be cultured in the 

laboratory. Metagenomics is based on the genomic analysis of microbial 

DNA extracted directly from communities in environmental samples. 

Essentially, metagenomics provides genomics on a huge scale and 

enables surveys of various microorganisms present in a specific 

environment. Thus, the massive uncultured microbial diversity present in 

the environment can be investigated in detail that was not possible 

previously. 

 

Genetic methods have shown clearly that culture-based studies of the 

past almost completely overlooked the vast majority of microbial 

diversity (Ward et al., 1990; Øvreås, 2000; Floyd et al., 2005). As 

microbial diversity is sampled more deeply and widely, a far greater 

appreciation of microbial diversity has been gained (Schloss and 

Handelsman, 2004; Venter et al., 2004). Thanks to these technological 

advances, genomics research provides a continuously increasing amount 



 General perspective of prokaryotes 

 

 

17 

of information from sequencing experimental data. Thus, the number of 

analyzed genomes in the public databases has grown steadily over the 

past eight years (Fig. 1.2). The complete list of sequenced genomes in 

public databases includes 1126 bacteria and 73 archaea at the time of 

writing. 

 

 

 

 

 
 

 

 Figure 1.2. Growth of the released sequences in the public database  

 Genbank during the 1982–2008 period. 

 

 

 

It becomes clear that due to the constantly increasing rate of raw genomic 

data, further biological discovery will be limited not by the availability of 

biological data but by the lack of available tools to analyze and interpret 

these data. Thus, new tools and ways of thinking for a sequence-based 

approach to microbial systematic will be required. 
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The study of microbial biodiversity patterns is still in its infancy. We do 

not yet know how widespread such patterns are. Ultimately, the study of 

patterns in microbial biodiversity will shed light on the relative 

importance of the processes that generate and maintain diversity, such as 

diversification, extinction, dispersal and species interactions, as well as 

the potential importance of these processes for maintaining ecosystem 

functions. 
 

 

 

 

1.2 Genotype – phenotype relationship 
 
Genomic diversity of microorganisms is the result of effects of past 

evolutionary and ecological events. Thus, the specific genome structure 

for each strain is a consequence of the selective pressure by the 

interactions between microorganisms and environment during evolution. 

Therefore, DNA is predicted to contain more structural information than 

would be expected from base composition alone. Consequently, the 

analysis of the relationship between the organization and repeated 

patterns of prokaryotic genomes structure with their lifestyles and 

metabolisms would provide valuable information about prokaryotic 

genome complexity and microbial diversity. 

 

The diversity of genomic structures in prokaryotes is the base of the 

observed diversity of lifestyles and metabolism, since the genotype and 

the phenotype are related and inseparable concepts. The genotype is 

defined like the genetic constitution of a cell and becomes a major 

influencing factor in the development of its phenotype. Genotypic 

variation is a fundamental prerequisite for evolution, since natural 

selection affects the genetic structure of microorganisms. The phenotype 

is any observable characteristic or trait of the microorganism, such as its 

morphology, lifestyle, biochemical or metabolical properties. Phenotypes 

result from the expression of an organism's genes as well as the influence 

of environmental factors and possible interactions between the two.  

 

Despite its seemingly straightforward definition, the concept of the 

phenotype has some hidden subtleties. First, most of the molecules and 

structures coded by the genetic material are not visible in the appearance 

of an organism, and are thus part of the phenotype. Second, the 
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phenotype is not simply a product of the genotype, but is influenced by 

the environment to a greater or lesser extent. Thus, the concept of 

phenotypic plasticity describes the degree to which an organism's 

phenotype is determined by its genotype. A high level of plasticity means 

that environmental factors have a strong influence on the particular 

phenotype that develops. If there is little plasticity, the phenotype of an 

organism can be reliably predicted from knowledge of the genotype, 

regardless of environmental peculiarities during development. Third, the 

interaction between genotype and phenotype has often the influence of 

not only environment but also random variation. Therefore, the 

relationship between the genotype and the phenotype is complex, highly 

non-linear and cannot be predicted from simply cataloguing and 

assigning functions to genes found in a genome.  

 

Comprehensive understanding of the relationship between the genome 

with the cellular lifestyle and metabolism requires integrated 

consideration of many interacting components. Mathematics, 

genometrics, statistics or bioinformatics provides a powerful way of 

handling such information and allows to effectively develop appropriate 

frameworks that account for these complexities. 

 

 

 

 

1.3 Genometry and statistics analysis 
 
Genometrics encompasses biometric analyses of chromosomes in order 

to identify features inherent to chromosome functioning and organization 

at the level of the whole genome. The word "genometrics" stresses the 

application of statistical methods to the study of genomic data. 

Genometric methods allow the study of stochastic properties of 

nucleotide sequences and provide a quantitative measure that can be used 

as genomic signature for characterizing and classifying strains. The 

prokaryotic chromosome could be considered a stochastic process 

because its sequence of nucleotides is in general non-deterministic since 

the subsequent nucleotide is rather determined by random elements than 

by any specific process. 

 

One of the most interesting approaches to the stochastic properties of 

DNA molecules is the quantitative measure of its intrinsic long-range 
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correlation, one of the main features related to the whole genome 

structural composition. The long-range correlation is related directly to 

the fractal structure of the DNA sequence or self-similarity. The concept 

of self-similar processes (Kolmogorov, 1961) was introduced into 

mathematics through the influential work on fractals (Mandelbrot, 1982). 

A sequence is defined as self-similar if its fragments can be rescaled to 

resemble the original sequence itself. A scaling exponent —also called 

the self-similarity parameter— can be defined by this rescaling process. 

A stationary sequence with long-range correlations can be integrated to 

form a self-similar process. Therefore, measurement of the self-similarity 

scaling exponent of the integrated series can tell us the long-range 

correlation properties of the original sequence. Thus, a long-range 

correlated sequence suggests the existence of repetitive patterns inside it. 

The search for intrinsic patterns, correlations and parameters measuring 

self-similarity by scaling exponents has been carried out in past years by 

statistical methods (Bernaola-Galvan et al., 2002; Peng et al., 1992 and 

1995; Chatzidimitriou-Dreismann and Larhammar, 1993).  

 

One of the most appropriated methods proposed in recent years for the 

study of long-range correlations in genomes is the combination of DNA 

walk model (Peng et al., 1992) and Detrended Fluctuation Analysis 

(DFA) (Peng et al., 1994). DNA walking is a genometric method based 

on a derivative function of the sequential position for each nucleotide 

along a DNA sequence. The resulting ―walk‖ can be projected on a two-

dimensional plot representative of the DNA ―landscape‖ (see examples in 

Fig. 1.3) and enables the simultaneous comparison among different 

genome landscapes (Lobry, 1999). The defining feature of such a 

landscape is the statistical self-similarity. On the other hand, the basic 

idea underlying the DFA method is to provide a single quantitative 

parameter —the scaling exponent α— to represent correlation properties 

of a sequence and the characteristic length scale of repetitive patterns. 

The main DFA advantage over other methods is that it detects long-range 

correlations embedded in seemingly nonstationary series (conventional 

methods such as spectral analysis or root mean square fluctuation can be 

applied reliably only to stationary sequences). 

 

Why statistical approach to genomics? The applied statistics methods 

explains a number of statistical properties of genomic DNA sequences 

such as the distribution of strand-biased regions —those with an excess 

of one type of nucleotide— as well as local changes in the slope of the 



 Genometry and statistics analysis 

 

 

21 

correlation exponent α. The generalized DNA walk model together with 

DFA simultaneously accounts for the long-range correlations in DNA 

sequences. Moreover, statistical methods offer theoretical and technical 

frameworks which allow the study of the biological significance of long-

range correlations in genomic DNA sequences. 
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Figure 1.3. Examples of DNA walks of the archaea Methanopyrus 

kandleri and the bacteria Staphylococcus aureus. 
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1.4 Modelling a genome-scale metabolism 
 
The genome–metabolism relationship in prokaryotes has lately become 

an active area of research (Edwards et al., 2002). The fields of 

bioinformatics and theoretical biology are now moving to the forefront of 

biological discovery from the flood of information now readily available, 

through fields as metabolic network reconstruction. Thus, genomic 

information, associated with biochemical knowledge, has been used to 

reconstruct whole-cell metabolic networks for sequenced 

microorganisms (Edwards and Palsson, 1999; Schilling and Palsson, 

2000). Metabolic reconstruction is a process through which the genes, 

proteins, reactions and metabolites that participate in the metabolic 

activity of a biological system are identified, categorized and 

interconnected to form a network. Metabolic phenotypes can be defined 

in terms of flux distributions through a metabolic network with the help 

of mathematical modelling and computer simulation. Most often, the 

system is a single cell of interest and, by using the genomic sequence as a 

scaffold, reconstructions can incorporate hundreds of reactions that 

approximate the entire metabolic activity of a cell. Currently, several 

mathematical approaches exist for the dynamic analysis of cellular 

metabolism and its regulation (Shuler and Domach, 1983; Liao, 1993; 

Palsson and Lee, 1993; Barkai and Leibler, 1997; Bailey, 1998; Tomita 

et al., 1999; Varner and Ramkrishna, 1999).  

 

With the growing availability of genome sequences, genome-scale 

metabolic reconstructions have been performed for organisms across all 

three of these domains (Reed et al., 2006). However, even though 

biological information is growing rapidly, there is not still enough 

information to describe mathematically the whole cellular metabolism for 

a single prokaryotic cell (Bailey, 2001). 
 

 

 

Flux Balance Analysis 
 
To overcome the lack of biological information, rather than attempting to 

calculate and predict exactly what a metabolic network does, the range of 

possible phenotypes that a metabolic systems can display based on the 

successive imposition of governing physicochemical constraints should 

be narrow (Palsson, 2000).  
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Within the prokaryotic domains in particular, metabolic reconstructions 

have been analyzed using constraint-based methods, which simulate our 

current understanding of the structure and function of metabolic reaction 

networks in microorganisms (Covert et al., 2004). Constraint-based 

methods enforce cellular limitations on biological networks such as 

thermodynamics (e.g., effective reversibility or irreversibility of 

reactions), physico–chemical constraints, spatial or topological 

constraints, environmental constraints or gene regulatory constraints 

(Price et al., 2004). The addition of these constraints results in the 

definition of a bounded solution space wherein every possible flux 

distribution, or every possible metabolic phenotype of the cell, must lie. 

Although the exact flux distribution cannot be calculated, the properties 

of the constraint-defined solution spaces can be studied. Experimental 

measurements can be incorporated as constraints to aid in the calculation 

of the entire metabolic flux distribution (Vallino and Stephanopoulos, 

1993; Wiechert and de Graaf, 1996; Sauer et al., 1997). 

 

The effectiveness of metabolic modelling using constraint-based methods 

has been demonstrated in predicting the outcomes of gene deletions 

(Duarte et al., 2004), identifying potential drug targets (Yeh et al., 2004), 

engineering optimal production strains for bioprocessing (Burgard et al., 

2003) and elucidating cellular regulatory networks (Covert et al., 2004). 

By calculating and examining optimal flux distributions under various 

conditions, it is possible to generate quantitative hypotheses in silico that 

may be tested experimentally. 

 

One specific example of metabolic modelling using a constraint-based 

approach is Flux Balance Analysis (FBA). FBA uses linear optimization 

to determine the steady state reaction flux distribution in a metabolic 

network based on the systemic stoichiometric, thermodynamic and 

reaction capacity constraints by maximizing an objective function, such 

as growth rate (Kauffman et al., 2003; Varma and Palsson, 1994a; 

Bonarius et al., 1997; Edwards, 1999; Edwards et al., 1999; Feist et al., 

2006). FBA has been used in many different applications for over 15 

years, mainly to study cellular metabolism extensively, most thoroughly 

for bacterial genomes. 
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1.5 Objectives and structure  
 
The general aim of this PhD thesis is to develop a theoretical framework 

based on genometrics, statistics and mathematic modelling to study the 

relationship between genome structure, lifestyle and metabolism of 

prokaryotic microorganisms. The novelty of our approach is the 

application of a statistical physics methodology to reduce the prokaryotic 

genomic complexity to a single parameter which will be used for 

comparative genomics and ecological purposes. The methodology was 

applied to the whole completed sequenced prokaryotic genomes for 

looking into general relationships between genome, lifestyle and 

metabolism. 

 

Regarding the relationship between lifestyle and metabolism, we carried 

out a comprehensive study of comparative genomics between two marine 

bacteria, Alcanivorax borkumensis and Oleispira antarctica which share 

similar metabolism but growth under different environmental conditions. 

 

Finally, a functional genomics approach using a mathematical model of 

the whole metabolism network of Alcanivorax borkumensis based on its 

complete set of genes was performed in order to look into the 

relationship between genome composition and metabolic phenotype. To 

achieve these objectives we carried out four main studies, which define 

the main parts of the work presented here. 
 

 

 

1.5.1  Ecophysiological significance of scale-dependent  
          patterns in prokaryotic genomes 
 
We combined genometric (DNA walks) and statistical (Detrended 

Fluctuation Analysis) methods on 456 prokaryotic chromosomes from 

309 different bacterial and archaeal species to look for specific patterns 

and long-range correlations along the genome and relate them to 

ecological lifestyles.  

 

DNA walking and DFA are genometric methods based on a derivative 

function of the sequential position for each nucleotide along a DNA 

sequence. DNA walks provides a two-dimensional plot representative of 

the DNA ―landscape‖ whereas DFA is a scaling analysis method 
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providing a single quantitative parameter —the scaling exponent α— to 

represent correlation properties of a sequence and the characteristic 

length scale of repetitive patterns.  

 

These techniques allow us to infer statistical properties of the genomes 

and give a view on the mechanisms that are behind the structure of the 

microbial DNA, as well as the relationship between these structures and 

the specificity of habitat or metabolism. Thus, conclusions about the 

adaptation of the genotype to its natural habitat and the evolutionary 

process from an ecological perspective can emerge. Different features in 

the DNA landscapes among genomes from different ecological and 

metabolic groups of prokaryotes appeared with the combined analysis. 

Transition from hyperthermophilic to psychrophilic environments could 

have been related to more complex structural adaptations in microbial 

genomes, whereas for other environmental factors such as pH and 

salinity this effect would have been smaller. Prokaryotes with domain-

specific metabolisms, such as photoautotrophy in Bacteria and 

methanogenesis in Archaea, showed consistent differences in genome 

correlation structure. Overall, we show that, beyond the relative 

proportion of nucleotides, correlation properties derived from their 

sequential position within the genome hide relevant phylogenetic and 

ecological information. This can be studied by combining genometric 

and statistical physics methods, leading to a reduction of genome 

complexity to a few useful descriptors. 

 

 

 

1.5.2  Genome-scale proteins functions shape the   
          genome of prokaryotes 
 
We examined the links between DNA structure and phylogenetic, 

genometric, ecological and functional genomic information in microbial 

genomes analyzing 372 prokaryotic chromosomes from 260 different 

bacterial and archaeal species by means of a combination of Detrended 

Fluctuation Analysis (DFA) and canonical analysis.  

 

DFA reduces the complexity of a DNA sequence to a simple integrative 

parameter representing the correlation properties of the sequence, the 

named long-range correlation. This correlation value is directly related to 

the DNA structure and reflects evolutionary footprints left in prokaryotic 
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genomes. Canonical correspondence and redundancy analysis were 

applied to study the relationships between long-range correlations with 

phylogenetic and lifestyle factors.  

 

Thereby, the analyzed chromosomes showed a significant correlation 

between DNA structure and functional genomic level, besides others 

correlations between structure and ecology and phylogeny. That feature 

highlighted a significant relationship between functionality and primary 

nucleotidic sequence. Functional genomic information was referred to the 

distribution of individual genes in functional categories according to the 

data extracted from NCBI Clusters of Orthologous Groups (COG) 

database.  
 

 

 

1.5.3  Whole genome comparison of two hydrocarbon  
          degrading bacteria 
 
An extensive work of comparative genomics of hydrocarbon-degrading 

microorganisms Alcanivorax borkumensis and Oleospira antarctica was 

carried out using both, genometric methods such as GC skew, DNA walk 

or Detrended Fluctuation Analysis (DFA) and comparisons of the genes 

contained in each genome. The information given by these methods 

enabled the simultaneous comparison among the different genomes. 

Moreover, genes contained in genomes provided essential information 

for understanding evolutionary relationships and ecological adaptations 

in these microorganisms.  

 

Alcanivorax borkumensis is a rod-shape mesophilic γ-proteobacterium 

that uses exclusively hydrocarbons as sources of carbon and energy. This 

bacterium is found in many marine habitats worldwide and play a 

globally important role in bioremediation of petroleum oil contamination 

in marine ecosystems. It is present in low numbers in unpolluted 

environments, but becomes the dominant microbe in oil-polluted waters 

(Yakimov et al., 1998; Harayama et al., 1999; Kasai et al., 2001). 

Alcanivorax borkumensis is thus a paradigm of cosmopolitan 

hydrocarbonoclastic bacterium. 

 

Oleospira antarctica is an aerobic psychrotrophic γ-proteobacterium that 

uses petroleum oil hydrocarbons as sources of carbon and energy. It is 
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found in low numbers in marine systems of all geographical areas and in 

high numbers in oil-polluted waters. Two strains, RB-8T and RB-9, were 

isolated from hydrocarbon-degrading enrichment cultures obtained from 

Antarctic coastal marine environments (Rod Bay, Ross Sea) (Yakimov et 

al., 2003). The isolates share many traits with the recently described 

genera of marine hydrocarbonoclastic bacteria Alcanivorax, 

Marinobacter and Oleiphilus, including isolation from a marine 

environment, purely respiratory metabolism (i.e., lack of fermentative 

metabolism), relatively restricted nutritional profiles, with a strong 

preference for aliphatic hydrocarbons. 

 

The goal of this comparative and functional genomics project is to 

characterize the genomic basis of the unusual ecophysiological features 

and environmentally significant properties of these microorganisms, and 

to establish a knowledge base that could help to a better understanding of 

the influence of temperature on the oil-degrading bacterium grown. 

 

 

 

1.5.4 A Genome-scale metabolic model of Alcanivorax 
borkumensis 

 
The last part of the thesis is focused on central questions for 

understanding microbial diversity as the ecophysiological mechanisms 

related with the specificity of habitat or the study of the underlying bases 

of the metabolic diversity. Thus, the interrelation between microbial 

genomes and environmental parameters is believed to determine the 

specificity of habitat and the microbial diversity.  

 

A genome-scale metabolic model of Alcanivorax borkumensis SK2 was 

constructed from genome sequence annotation, biochemical and 

physiological data. The reconstructed network represents the first 

metabolic model from a marine petroleum oil-degrading bacterium. 

Framework based on constraint-based modelling and FBA were used to 

explore the metabolic capabilities, under different environmental and 

genetic conditions, of the in silico model. Model predictions were 

validated by comparison to experimental measurements of A. 

borkumensis growing on different substrates. The predicted growth 

parameters were in reasonable agreement with experimental findings. 

The modelling of carbon fluxes versus those of nitrogen allowed the 
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discovery of conditions in which the excess carbon available in 

hydrocarbons is not directly translated into bacterial biomass but carbon 

overflow is diverted to the production of polyhydroxyalkanoates 

(bioplastics). This reconstructed metabolic network can help to a better 

understanding of oil-degrading bacterium grown, to predict cellular 

phenotypes and further uncover the metabolic characteristics of 

bioplastics formation. 

 

The goal of the project of functional genomics is to characterize the 

genomics bases of the peculiar ecophysiology feature and of the 

environmental significance of this microorganism, and to establish a 

basis of knowledge that can be explored by the development of 

applications to accelerate the degradation of hydrocarbons in polluted 

coastal environments. 
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2.1 Introduction 
 
Prokaryotes constitute, by far, the largest reservoir of life and encompass 

the major part of physiological and phylogenetic diversity. A large 

number of studies have been devoted to exploring microbial biodiversity 

by 16S rRNA analyses (e.g., Casamayor et al., 2002 and references 

therein) and, recently, with genomic tools (e.g., De Long, 2004). The 

present capacity to produce genomic information from both laboratory 

cultures and complex microbial field assemblages widely surpasses the 

available technical and intellectual skills to analyze and interpret such 

huge amounts of data into an ecological and evolutionary context. Due to 

the present size and constantly increasing rate of new raw data, 

microbiologists and microbial ecologists need new and integrative ways 

of thinking about microbial genomes to check quickly for similarities and 

differences among them and to explore and track interactions among 

genotypes, phenotypes and the environment. Several authors have 

recently highlighted the need for new computational tools to analyze and 

interpret the large amount of nucleotide sequences available in databases 

(De Long, 2004; Nelson, 2003; Streit and Schmitz, 2004). Genes 

contained in genomes provide essential information for understanding 

evolutionary relationships and ecological adaptations in microorganisms 

and, although there is a wide repertoire of bioinformatics tools, both 

II 

Ecophysiological significance of scale-
dependent patterns in prokaryotic 
genomes unveiled by a combination of 
statistic and genometric analyses 
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further manual checking and lack of close relatives in databases are the 

main limitations. Conversely, genome size and GC content are two 

integrative parameters that have been explored by comparative analyses 

offering interesting information (Muto and Osawa, 1987; Hurst and 

Merchant, 2001; Marashi and Ghalanbor, 2004; Foerstner et al., 2005; 

Musto et al., 2006). However, DNA is predicted to contain more 

structural information than would be expected from base composition 

alone (Pedersen et al., 2000). 

 

One of the main features of a DNA sequence related to the whole 

genome structural composition is the long-range correlation, a scale 

invariant property of DNA. In a correlated sequence, occurrence of a 

nucleotide in a specific position depends on the previous nucleotides     

(memory). The long-range correlation is related directly to the fractal 

structure of the DNA sequence or self-similarity. A sequence is defined 

as self-similar if its fragments can be rescaled to resemble the original 

sequence itself. Thus, a long-range correlated sequence suggests the 

existence of repetitive patterns inside it. The search for intrinsic patterns, 

correlations and parameters measuring self-similarity by scaling 

exponents has been carried out in past years by statistical methods (Roten 

et al., 2002; Bernaola-Galvan et al., 2002; Peng et al., 1992 and 1995; 

Chatzidimitriou-Dreismann and Larhammar, 1993; Stanley et al., 1996). 

Peng et al. (1992) studied correlation properties in DNA sequences using 

a fractal landscape or DNA walk model. DNA walking is a genometric 

method based on a derivative function of the sequential position for each 

nucleotide along a DNA sequence. The resulting ―walk‖ can be projected 

on a two-dimensional plot representative of the DNA ―landscape‖ and 

enables the simultaneous comparison among different genome 

landscapes (Elston and Wilson, 1990; Lobry, 1999). From a different 

perspective, spectral and fractal analyses have been used to unveil long-

range correlations in DNA sequences. Li and Kaneko (1992) found long-

range correlation by means of spectral analysis in the DNA sequence. 

Fractal analysis has proven useful for revealing complex patterns in 

natural objects (Berthelsen et al., 1992; Vieira, 1999), and genome 

fragments have been classified according to their fractal properties (Anh 

et al., 2002). Finally, a prokaryotic phylogenetic tree based on fractal 

analyses has been proposed (Yu et al., 2003). 

 

One of the most appropriated methods proposed in recent years for the 

study of long-range correlations in genomes is the Detrended Fluctuation 
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Analysis (DFA) (Peng et al., 1992 and 1994). DFA is a scaling analysis 

method providing a single quantitative parameter —the scaling exponent 

α— to represent correlation properties of a sequence and the 

characteristic length scale of repetitive patterns. It is a method 

specifically adapted to handle problems associated with nonstationary 

sequences. DFA takes into account differences in local nucleotide 

content (heterogeneity) and can be applied to the entire sequence. It 

shows linear behavior in log–log plots for all length scales, and the long-

range correlation property is characterized by the scaling exponent (α), 

i.e., the log–log slope. DFA has two clear advantages over other 

methods. First, it detects long-range correlations embedded in seemingly 

nonstationary series (conventional methods such as spectral analysis or 

root mean square fluctuation can be applied reliably only to stationary 

sequences). Second, it also avoids the spurious detection of apparent 

long-range correlations that are an artifact of nonstationary sequences 

and differentiates local patchiness —excess of one type of nucleotide in a 

specific region— from long-range correlations. Conventional methods 

such as Markov models have limitations in coping with dependencies at 

multiple scales, although they are more appropriate for analyzing short-

range nucleotide correlations. The case of the Fast Fourier Transform 

(FFT) method is strongly affected at high frequencies analysis by short-

range correlations related to codon structure, whereas at low frequencies 

the signal is distorted by artifacts of the method. The scaling exponent 

values performed by FFT at midfrequency, however, are close to the 

values reported by DFA (Buldyrev et al., 1995). 

 

DFA may help characterize different complex systems according to its 

different scaling behavior. One of the already shown potentials of DFA is 

a change in the quantification of genome complexity with evolution 

(Peng et al., 1995). Thus, an increase in the self-similarity —fractal 

structure— of DNA sequences with evolution has been reported (Voss, 

1992), and links between long-range correlations and higher order 

structure of the DNA molecule have been suggested (Grosberg et al., 

1993). It has been shown that scale-independent correlations offer the 

best compromise between efficient information transfer and immunity to 

errors on all scales (Voss, 1992), whereas the information theory 

suggests that one can package the largest amount of information into 

characters of constant length when a sequence is self-similar (Nagai et 

al., 2001). 
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In this work, we propose a combination of DNA walking and DFA 

methods to help decipher the biological significance of long-range 

correlations in microbial genomes and the influence of lifestyle in the 

DNA structure. First, we computed a DNA walk for 456 prokaryotic 

genome sequences to translate the DNA base sequence into a numerical 

sequence of Euclidean distances. Next, we used DFA to represent and 

characterize the correlation properties of the numerical sequence. The 

specific patterns and long-range correlations were related to 

phylogenetic, ecological and metabolic information, providing a 

combined window to look into prokaryotic genome complexity and 

microbial biodiversity. 

 

 

 

 

2.2 Material and methods 
 
Four hundred fifty-six completely sequenced closed genomes from      

309 different species of prokaryotes were downloaded from               

GenBank (National Center for Biotechnology Information, 

http://www.ncbi.nlm.nih.gov/Genbank) in May 2007. The prospected 

genomes belonged to three archaeal kingdoms (28 chromosomes) and 20 

bacterial classes (for more details see Tables 2.1 and 2.2). The run for 

DNA walks started at position 0 of the annotated sequence. For 

comparative purposes, we constructed three artificial genomes as controls 

by randomly mixing the order of bases from original genomes. The 

following conditions of length and GC percentage were chosen: control 1 

had the 1,197,687 bases of Anaplasma marginale in random order and 

50% GC content. Control 2 was the randomly ordered strain of 

Mycoplasma mycoides (1,211,703 bases in length and 24% GC content). 

Finally, control 3 had the same length (1,849,735 bases) and GC 

percentage (70%) as the Thermus thermophilus chromosome. 
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DNA walks 
 
We analyzed the sequential distribution of individual nucleotides along 

the genomes by the DNA walk method (Appendix A). Here, we have 

used two types of representations. First, we translate the original 

nucleotide sequence onto a one-dimensional numerical series grouping 

the bases in pairs following the hydrogen bond energy rule (SW). Then, 

the resulting SW DNA walk series were mapped onto an orthogonal 

plane and fitted by linear regression. The slopes of the regression lines 

were used as variables for subsequent analysis (SW DNA walk slope). 

For the second representation, we performed a two-dimensional (2D 

DNA walk) map where each nucleotide defines one direction in a plane 

formed by two orthogonal axes (i.e., C versus G and T versus A).  

 

 

 

Detrended Fluctuation Analysis (DFA) 
 
Detrended Fluctuation Analysis (Appendix B) was used to calculate the 

scaling exponents from the two types of DNA walks. On the one hand, 

scaling exponents were calculated directly from SW DNA walks as they 

consist of one-dimensional numerical series. On the other hand, the two-

dimensional series of 2D DNA walks were transformed into one-

dimensional ones by replacing every original x–y point, representing a 

step of the walk, with its Euclidean distances from the origin of the 

graph. The resulting one-dimensional series were then used to calculate 

the scaling exponents.  

 

Discriminant analysis (Afifi et al., 2004) was used to construct the Fisher 

discriminant function —a linear combination of the variables whose 

coefficients make maximum the distance between the populations— for 

species classification into one of two or more groups on the basis of the 

2D DFA slope and SW DNA walk slope variables. Computations were 

carried out with SAS/STAT release 9.1 statistical package (SAS Institute, 

Inc., Cary, NC, USA). 
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2.3 Results and discussion 
 
Within the 456 microbial strains analyzed we covered a wide range of 

both genome lengths and GC content from several phylogenetic lineages. 

The range of lengths was between 0.16 Mb in Candidatus carsonella 

ruddii and 9.97 Mb in Solibacter usitatus. The percentage of GC content 

ranged between 16.56% in Candidatus carsonella ruddii and 74.90% in 

Anaeromyxobacter dehalogenans. Genome length and percentage of GC 

content were also heterogeneous within each phylogenetic group. For 

example, the 33 strains analyzed for Actinobacteria differed by up to one 

order of magnitude in length, whereas the largest difference in GC 

content was found within the γ-Proteobacteria (up to fourfold difference). 

We also covered microorganisms with different ecophysiological 

lifestyles related with optimal growth temperature, pH, salinity and 

metabolism, according to information from the taxonomy database at 

NCBI (www.ncbi.nlm.nih.gov) and Bergey’s Manual of Systematic 

Bacteriology (Garrity et al., 2001). For more details see Tables 2.1 and 

2.2. 
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 Number 
of 

genomes 

Genome length  
(Mb) 

GC content 
(%) 

min max range min max range 

Archaea        

  Crenarchaeota 5 1.67 2.99 1.32 32.79 56.31 23.52 
  Euryarchaeota 22 1.54 5.75 4.21 31.43 67.91 36.48 
  Nanoarchaeota 1 0.49 - 31.56 - 

Bacteria        

  Actinobacteridae 33 0.92 9.97 9.05 46.31 72.83 26.52 
  Aquificales 1 1.55 - 43.48 - 
  Bacteroides 7 2.34 6.26 3.92 36.61 66.22 29.61 
  Chlamydiales 11 1.04 2.41 1.37 34.72 41.31 6.59 
  Chlorobia 4 2.15 3.13 0.98 44.28 57.33 13.05 
  Dehalococcoides 2 1.40 1.47 0.07 47.03 48.85 1.82 
  Cyanobacteria 19 1.66 7.75 6.09 30.80 62 31.20 
  Deinococci 5 1.85 4.12 2.27 66.64 69.52 2.88 
  Bacilli 69 1.78 5.41 3.63 32.09 52.09 20 
  Clostridia 10 2.55 5.73 3.18 28.25 55.80 27.55 
  Mollicutes 16 0.58 1.36 0.78 23.77 40.01 16.24 
  Fusobacterales 1 2.17 - 27.15 - 
  Planctomycetacia 1 7.14 - 55.40 - 

  -Proteobacteria 60 0.86 9.10 8.24 27.48 69.01 41.53 

  -Proteobacteria 46 1.06 5.34 4.28 48.49 68.99 20.50 

  -Proteobacteria 13 1.46 9.14 7.68 33.28 74.90 41.62 

  -Proteobacteria 10 1.55 2.20 0.65 30.31 48.46 18.15 

  -Proteobacteria 105 0.16 7.22 7.06 16.56 67.53 50.97 

  Spirochaetales 13 0.30 4.33 4.03 28.30 52.77 24.47 
  Thermotogales 1 1.86 - 46.25 - 

 

 
Table 2.1. Archaeal kingdoms and bacterial classes prospected in this work. The number of 

genomes, length and percentage of GC content within groups is shown. The minimum and 

maximal values, as well as the amplitude between these two values are also indicated. 
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 Bacteria 

Hyperthermophiles 

Aquifex aeolicus 

Thermoanaerobacter tengcongensis 

Thermotoga maritima 

Thermophiles 

Acidothermus cellulolyticus 

Chlorobium tepidum 

Geobacillus kaustophilus 

Moorella thermoacetica 

Rubrobacter xylanophilus 

Symbiobacterium thermophilum 

Synechococcus sp 

Thermobifida fusca 

Thermosynechococcus elongatus 

Thermus thermophilus 

Psychrophiles 
Colwellia psychrerythraea 

Desulfotalea psychrophila 

Photobacterium profundum 

Pseudoalteromonas haloplanktis 

Psychrobacter arcticus 

Psychrobacter cryohalolentis 

Halophiles 
Alkalilimnicola ehrlichei 

Synechococcus elongatus 

Synechococcus sp 

Synechocystis sp 

Thermus thermophilus 

Salinibacter ruber 

Acidophiles 
Acidobacteria bacterium 

Acidothermus cellulolyticus 

Solibacter usitatus 

Alkalophiles 
Alkalilimnicola ehrlichei 

Bacillus clausii 

Bacillus halodurans 

Bacillus licheniformis 

Oceanobacillus iheyensis 

 
Phototrophs 

Anabaena variabilis 

Bradyrhizobium japonicum 

Chlorobium chlorochromatii 

Chlorobium phaeobacteroides 

Chlorobium tepidum 

Erythrobacter litoralis 

Gloeobacter violaceus 

Nostoc sp 

Pelodictyon luteolum 

Prochlorococcus marinus 

Rhodobacter sphaeroides 

Rhodospirillum rubrum 

Rhodopseudomonas palustris 

Roseobacter denitrificans 

Synechococcus sp 

Synechococcus elongatus 

Synechocystis sp 

Thermosynechococcus elongatus 

Methanogens Syntrophomonas wolfei 

Nitrogen fixers 

Agrobacterium tumefaciens 

Azoarcus sp 

Bradyrhizobium japonicum 

Mesorhizobium loti 

Mesorhizobium sp 

Nostoc sp 

Rhizobium etli 

Rhizobium leguminosarum 

Rhodopseudomonas palustris 

Rhodospirillum rubrum 

Sinorhizobium meliloti 

Sulfur oxidizers Thiomicrospira crunogena 

Iron reducers 
Magnetococcus sp 

Pelobacter carbinolicus 

Pelobacter propionicus 

Rhodoferax ferrireducens 

Shewanella frigidimarina 
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Table 2.2. Prokaryotes analyzed in the present work that matched relevant metabolic 

and ecological grouping. 

 
 
 
 
 
 
 
 

 Archaea 

Hyperthermophiles 

Aeropyrum pernix 

Archaeoglobus fulgidus 

Methanococcus jannaschii 

Methanopyrus kandleri 

Methanosaeta thermophila 

Methanothermobacter thermautotrophicus 

Nanoarchaeum equitans 

Pyrobaculum aerophilum 

Pyrococcus abyssi 

Pyrococcus furiosus 

Pyrococcus horikoshii 

Sulfolobus acidocaldarius 

Sulfolobus solfataricus 

Sulfolobus tokodaii 

Thermococcus kodakaraensis 

Thermophiles 
Picrophilus torridus 

Thermoplasma acidophilum 

Thermoplasma volcanium 

Halophiles 
Halobacterium 

Haloarcula marismortui 

Acidophiles 

Methanococcus jannaschii 

Methanococcus maripaludis 

Thermoplasma acidophilum 

Thermoplasma volcanium 

Sulfolobus acidocaldarius 

Sulfolobus tokodaii 

Sulfolobus solfataricus 

Picrophilus torridus 

Alkalophiles Natronomonas pharaonis 

Methanogens 

Methanococcus jannaschii 

Methanococcus maripaludis 

Methanopyrus kandleri 

Methanococcoides burtonii 

Methanosarcina acetivorans 

Methanosarcina mazei 

Methanosphaera stadtmanae 

Methanosaeta thermophila 

Methanothermobacter thermautotrophicus 

Sulfur Oxidizers 
Pyrococcus abyssi 

Pyrococcus furiosus 

Pyrococcus horikoshii 

Sulfolobus solfataricus 

Sulfolobus tokodaii 

Sulfolobus acidocaldarius 
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DNA walk architecture 
 
For each genome we run an SW (strong–weak pairing) DNA walk and a 

2D DNA walk (see Appendix A and Fig. 2.1) as reported in previous 

works (Roten et al., 2002; Lobry, 1999).  

 

Because a direct relationship exists between %GC and slope in the SW 

plot (correlation coefficient 0.998), SW slopes were used as the 

equivalent variable for the percentage of G+C bases: positive slopes 

indicated dominance of GC, whereas negative slopes reflected 

dominance of AT. The complete set of genomes fit the previously 

reported assumption that large genomes have a tendency to be richer in 

GC (Heddi et al., 1998; Moran, 2002; Rocha and Danchin, 2002) and 

therefore they showed higher SW slopes (Tables 2.3 and 2.4). This has 

been related to the fact that random mutations are mainly from C to T 

and from G to A and to the lack of repair mechanisms in reduced 

genomes that would lead to a TA enrichment (Heddi et al., 1998; Moran, 

2002). 
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Figure 2.1. SW one-dimensional space (A) and two-

dimensional space (B) DNA walk representations of the 

Halobacterium genome. Note the positive slope of the SW 

DNA walk indicating the dominance of GC along the genome. 

The run origin starts at the coordinates 0,0.  
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 SW DNA walk slope 2D DFA slope 

  min    max   range    min     max    range           

Archaea     

  Crenarchaeota –0.34 0.14 0.48 0.67  0.69 0.02 

  Euryarchaeota –0.45  0.36 0.81 0.62  0.77 0.15 

  Nanoarchaeota –0.37 - 0.74 - 

Bacteria     

  Actinobacteridae –0.08  0.46 0.54 0.56   0.68 0.12 

  Aquificales –0.13 - 0.72 - 

  Bacteroides –0.27  0.32 0.59 0.58   0.62 0.04 

  Chlamydiales –0.30  –0.17 0.13 0.57   0.60 0.03 

  Chlorobia –0.12   0.14 0.26 0.61   0.63 0.02 

  Dehalococcoides –0.06  –0.02 0.04 0.56   0.58 0.02 

  Cyanobacteria –0.39   0.24 0.63 0.57   0.67 0.10 

  Deinococci 0.33    0.39 0.06 0.58   0.62 0.04 

  Bacilli –0.36   0.04 0.40 0.55   0.66 0.11 

  Clostridia –0.44   0.12 0.56 0.58   0.71 0.13 

  Mollicutes –0.53   –0.20 0.33 0.64   0.73 0.09 

  Fusobacterales –0.46 - 0.74 - 

  Planctomycetacia 0.10 - 0.59 - 

  -Proteobacteria –0.45   0.39 0.84 0.54   0.73 0.19 

  -Proteobacteria –0.04   0.38 0.42 0.56   0.69 0.13 

  -Proteobacteria –0.33   0.50 0.83 0.56   0.61 0.05 

  -Proteobacteria –0.40   –0.03 0.37 0.58   0.72 0.14 

  -Proteobacteria –0.66   0.35 1.01 0.55   0.72 0.17 

  Spirochaetales –0.43   0.06 0.49 0.57   0.67 0.10 

  Thermotogales –0.07 - 0.70 - 

 

 
Table 2.3. SW DNA walk slope and DFA scaling exponent values for the 

different phylogenetic groups. The minimum and maximal values for each 

variable are indicated, as well as the range of values within the groups. 
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Table 2.4. DNA walk and DFA ranges found for some ecologic and metabolic groups 

of microorganisms. Values found for each group and the range between the maximum 

and minimum value for each variable are indicated. 

 

 

 

The 2D DNA walk for the complete set of genomes was also within the 

expected results (Roten et al., 2002; Grigoriev, 1998). These plots are 

characterized by the so-called mutational strand bias (Lobry, 1999). 

Many microorganisms show a preference for G over C and T over A in 

the leading strand and C over G in the lagging strand because of several 

factors including proofreading efficiencies for the different types of DNA 

polymerases (Rocha 2002; Worning et al., 2006 and references therein). 

A simple model for explanation is based on the spontaneous deamination 

of cytosine that induces mutations from C to T. The rate of this 

deamination is highly increased in single-stranded DNA, such as the 

leading strand during DNA replication. This causes prevalence of G over 

C in the leading strand relative to the lagging strand (Lobry, 1999). Most 

of the chromosomes analyzed (~80% of total) showed strong strand bias 

that resulted in a symmetric chromosomal inversion in the 2D DNA 

walks, in which one-half on the genomic sequence was persistently 

enriched in two of the bases and the other half was enriched in the 

complementary ones. Both halves commonly split after an inversion 

point at which the walk changed direction to return back to the run origin 

 Genomes 
SW DNA walk slope             
  min    max    range  

2D DFA slope 
  min     max   range 

Hyperthermophiles 19 –0.44      0.23 0.67 0.65  0.77 0.12 

Thermophiles 15 –0.27 0.41 0.68 0.58 0.72 0.14 

Psychrophiles 8 –0.24 –0.06 0.18 0.58 0.61 0.03 

Acidophiles 12 –0.44    0.35 0.79 0.59      0.77 0.18 

Halophiles 15 –0.06      0.39 0.45 0.57      0.64 0.07 

Alkalophiles 7 –0.29 0.35 0.64 0.57 0.66 0.09 

Phototrophs 33 –0.39      0.39 0.78 0.55      0.63 0.08 

Methanogens 11 –0.45      0.23 0.68 0.64     0.77 0.13 

Nitrogen fixers 18 –0.17 0.19 0.36 0.55 0.61 0.06 

Sulfur oxidizers 7 –0.34 –0.10 0.24 0.59 0.70 0.11 

Iron reducers 5 –0.17 0.19 0.36 0.58 0.65 0.07 
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(see an example in Fig. 2.2A). The remaining chromosomes (~20%) 

showed weak strand asymmetry (Fig. 2.2B). Artificial controls run for 

the different genomes lost the observed architecture and fit a single linear 

path (see inner plots in Fig. 2.2). 

 

 

 

Biological significance of long-range correlations 
 
The 2D DNA landscapes were translated to a numerical series of 

Euclidean distances (see methods) for running the DFA. The resulting 

curves showed scaling exponents within α = 0.5417 (Brucella 

melitensis), the lowest, and α = 0.7714 (Methanococcus jannaschii), the 

highest, (Fig. 2.3). We found for each prokaryotic genome a specific 

scaling exponent with small variations among them. In all the cases, DFA 

scaling exponents were higher than 0.5, indicating persistent long-range 

correlations. DFA run for artificial control genomes always had scaling 

exponents up to 0.50 as expected for uncorrelated sequences (Fig. 2.3). 

Therefore, long-range correlations in the genome landscape indicate the 

existence of selective pressures modelling the architecture along the 

whole prokaryotic genomes (Stanley et al., 1996; Yu et al., 2003 and 

references therein). 
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Figure 2.2. DNA walk representations in two-dimensional space (A vs. T 

and C vs. G in each direction, respectively). Plot A shows a strong strand-

biased genome exemplified by Oceanobacillus iheyensis, whereas plot B 

is an example of weak strand-biased genome by Deinococcus 

radiodurans. For each genome a control sequence with the same length 

and percentage of bases was made.  
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Figure 2.3. DFA run on two-dimensional DNA walks for three selected genomes 

and controls. The scaling exponents found for the genomes ranged from 0.5417 of 

Brucella melitensis to 0.7714 of Methanococcus jannaschii. The three controls 

were close to 0.5 as expected for random sequences. 

 

 

 

The observed long-range correlations in all the DNA sequences may be 

due to two factors. On the one hand the elongation of the molecule by 

repetitive structures added inside the genomes (Li and Kaneko, 1992). 

The fact that long-range correlations were persistent —independent of 

the scale— means that repetitive structures with different lengths along 

the genome were present. These repetitive structures may be generated 

possibly by two important biological mechanisms for evolution: first, 

elongation of sequences by gene duplication (Li and Kaneko, 1992) and 

second, elongation and repetition in the genomes by massive lateral 

transfer of genes from other genomes. On the other hand, long-range 

correlation can also be related to asymmetric DNA replication along the 

whole microbial genome, as discussed earlier (Li et al., 1994; 

Mackiewicz et al., 2002). 
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We found significant differences in scaling exponents (α) between 

prokaryotes with weak and strong strand bias (t-student, p < 0.0001) for 

the complete set of genomes analyzed (i.e., genomes with weak strand 

bias consistently had a higher scaling exponent than strong strand-biased 

genomes).We also found a significant negative correlation between α 

value and GC content (R = −0.474, p < 0.005) (Fig. 2.4). Weak strand 

asymmetry has been related to the presence of multiple origins of 

replication (Mrázek and Karlin, 1998) in both Archaea and Bacteria 

(Worning et al. 2006; Kelman and Kelman, 2004). However, along the 

complete set of genomes we found weak strand asymmetry in archaeal 

species with single (e.g., Methanobacterium thermoautotrophicum and 

Archaeoglobus fulgidus) as well as multiple origins of replication (e.g., 

Methanocaldococcus jannaschii and Sulfolobus solfataricus). 

Conversely, strong strand biases were observed in Archaea with single 

(Methanosarcina mazei) and multiple origins of replication 

(Halobacterium NCR-1). This suggests that processes acting in genomes 

with weak strand asymmetry are somehow different from those that 

occur in the other genomes. Weak mutational bias appeared mainly in the 

genomes from hyperthermophiles and acidophiles. It is possible that 

adaptations to environmental stresses in extremophiles may minimize 

strand asymmetries. The rates of spontaneous mutation —hydrolytic 

depurination or hydrolytic deamination— are greatly accelerated at 

extremely high temperatures (Lindahl, 1993). In consequence, 

hyperthermophiles should have very efficient molecular strategies for 

repairing DNA under these conditions of chemical instability, since 

mutation rates in hyperthermophiles are not significantly different from 

those observed in mesophiles (Jacobs and Grogan, 1997). 
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Figure 2.4. Significant correlation (p < 0.05) of scaling exponent with GC 

content for all the tested genomes (99% confidence).  

 

 

 

Grouping genomes by phylogeny and lifestyle 
 
It has been previously described that the raw genome sequence harbors a 

phylogenetic signal (Yu et al., 2003). On the one hand, over- and under-

representation of oligonucleotide frequencies have been used by Pride et 

al. (2003) and Teeling et al. (2004), and more recently by McHardy et al. 

(2007) for whole genome phylogeny and classification of genomic 

fragments. On the other hand, the genomic GC content may change faster 

than previously thought and seems to be globally and actively influenced 

by environmental conditions (Foerstner et al., 2005 and references 

therein). Therefore, the combination of DFA and SW slopes should 

capture these phylogenetic, ecological and metabolic signals. 

 

 



Results and discussion 

 

51 

First, we looked for differences at the phylogenetic level. We plotted the 

combined graph between the DFA scaling exponent and the SW DNA 

walk slope (Fig. 2.5B) against the single percentage of each of the four 

bases (A, T, C and G) obtained by a PCA (Principal Components 

Analysis) using the covariance matrix (Fig. 2.5A). The combination of 

DFA values —a quantification of the self-similarity or presence of 

repetitive patterns over all the length scales contained in the genomes— 

and SW slopes —directly proportional to the GC content— clearly split 

prokaryotic chromosomes and controls into two different clusters and 

showed differences between bacterial and archaeal genomes (Fig. 2.5B). 

Controls clearly were on the left part with the lowest slopes, close to 0.5, 

as expected for randomly ordered sequences —the position of one 

nucleotide was completely uncorrelated with any previous nucleotide—, 

and separated along the y-axis (SW DNA slope) in agreement with their 

GC content. On average, Archaea had the highest scaling exponents 

(DFA slopes > 0.62) and were located on the right part of the plot. 

Bacteria appeared mainly in the middle zone of the plot (DFA slopes 

between 0.54 and 0.74). Discriminant analysis showed a correct 

prediction in 96% of archaea and 85% of bacteria. Conversely, Archaea 

and Bacteria, as well as the control genomes, were mixed in the 

quantitative PCA (Fig. 2.5A). 
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Figure 2.5. Results for the whole set of genomes and controls. Plot A 

shows Principal Component Analysis (PCA) using percentage of bases. 

The first principal component (prin1) is represented in the y-axis, whereas 

the x-axis represents the second principal component (prin2). Plot B 

shows data combination after genometric (SW DNA walk slope) and 

statistic (DFA scaling exponents) analyses on the sequential position of 

nucleotides. 
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Second, when we focused on ecological lifestyle, some of the groups 

clustered separately according to DFA and SW slope values (Fig. 2.6). 

For instance, looking at the optimal growth temperature (Topt), 

hyperthermophiles showed higher scaling exponents than thermophiles 

and psychrophiles. The three thermophiles placed within the 

hyperthermophiles were microorganisms with the highest Topt within 

their group (close to 60 °C). Psychrophiles were discriminated according 

to GC content in the low scaling exponent values region (Fig. 2.6A). The 

discriminant analysis correct prediction was 79% for hyperthermophiles, 

80% for thermophiles and 100% for psychrophiles. Correlation between 

Topt and GC content in prokaryotes has been the focus of a recent 

controversy. Musto et al. (2004 and 2006) found in a limited number of 

genomes (ca. 20 genomes) that GC content increased at higher Topt. 

Conversely, several authors (Hurst and Merchant, 2001; Marashi and 

Ghalanbor, 2004; Galtier and Lobry, 1997; Wang et al., 2006) concluded 

that high GC content is not an adaptation to high temperatures and 

argued that the correlation between both variables is not robust. The data 

calculated in our survey (456 microbial genomes) indicate that a 

tendency to the low GC content exists in hyperthermophiles, but 

examples of genomes with high GC content are present as well. The 

decrement of GC content in parallel with Topt is very clear between 

thermophiles and psychrophiles. Thus, it appears that the transition from 

a hyperthermophilic to a psychrophilic environment would imply a 

structural adaptation in microbial genomes both in the GC content and in 

the sequential position of the nucleotides along the genome. 

 

We also observed various clusters related to salinity and pH (Fig. 2.6B). 

Halophiles showed low scaling exponents (< 0.65) and high GC content. 

In opposition, most acidophiles presented high scaling exponents and low 

GC content, although examples of lower DFA values and higher GC 

contents were also detected. Alkalophiles showed intermediate values of 

both DFA slopes and GC contents. Therefore pH itself does not seem to 

have enough separation power. The true prediction calculated using 

discriminant analysis was 75% for acidophiles, 83% for alkalophiles and 

87% for halophiles. Most of the acidophiles were hyperthermophilic 

archaea and a biased effect with temperature and phylogeny may be 

present in these cases. In fact, the acidophilic thermophilic bacterium 

Acidothermus cellulolyticus showed low scaling exponent (0.58) and 

high GC content, in agreement with moderate thermophiles. This 

example illustrates that temperature is an environmental factor that might 
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have stronger influence in the microbial genomic structure than pH. 

Another outlier was the genome of the alkalophilic and moderate 

halophilic bacterium Natronomonas pharaonis. This genome showed 

higher GC content than the remaining alkalophiles and again pH would 

have smaller influence on the genomic structure than another 

environmental factor such as salinity. Finally, photoautotrophs and 

methanogens were classified into two distinct groups with no overlap in 

their respective DFA slopes (Fig. 2.6C). Discriminant analysis showed a 

correct prediction in 91% of methanogens and 100% of phototrophs. 

Photoautotrophy is an exclusive bacterial metabolism that implies 

complex enzymatic pathways and no representatives with similar 

photosystem equipment have been described within archaea. On the other 

hand, methanogenesis is a feature present only in the archaeal world. 

 

Similarly, nitrogen fixers and sulfur oxidizers showed opposite behavior 

in both DFA and SW DNA slopes (Fig. 2.6D), although both Bacteria 

and Archaea are able to carry out both processes. Discriminant analysis 

showed correct prediction of 94% for nitrogen fixers, 80% for iron 

reducers and 86% for sulfur oxidizers. In fact, we detected two outliers 

from the general trend shown by both clusters, one from each: first, the 

cyanobacterium Nostoc, which located away from the remaining nitrogen 

fixers at the center bottom of the graph —higher DFA slope and lower 

GC content than the remaining bacteria, mostly from soils—, and second, 

the mesophilic bacterium Thiomicrospira crunogena, which separated 

from the remaining sulfur oxidizers (all of them were archaea and 

thermophilic). Therefore, these conclusions could be biased for the 

limited number of nitrogen-fixer and sulfur-oxidizer genomes still 

available, but it seems that phylogeny and Topt have stronger influence 

than these metabolic features in the genomic properties detected. 

 

Overall, the combination of genometrics and physical statistic methods 

captured intrinsic ecological and phylogenetic patterns present in the 

likelihood that one nucleotide will be followed by the same nucleotide 

along the entire prokaryotic genome, offering clues to deciphering their 

biological significance. Although the application of fractal and time 

series analyses (e.g., self-similarity and fractional dimensionality) to 

genome data has been carried out for several years already, these 

techniques have not seen broad usage in genomics. The application of 

self-similarity parameters as a measure of persistent, long-range 

correlations in the DNA sequence relative to different ecophysiological 
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lifestyles and other biological parameters would help to link physicists 

and statisticians’ approaches with genomic microbiology aims. This work 

and other recent approaches (e.g., Foerstner et al., 2005; McHardy et al., 

2007) will provide microbial ecologists new tools for a better 

understanding of the naturally occurring genomic structure and variation 

and, together with detailed studies of the gene content, may help them to 

follow and understand the genetic adaptations to specific environments 

and the magnitude of the genetic reservoir present in the microbial world. 
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Figure 2.6. Some ecologic and metabolic clusters formation when the GC content (y-

axis) and long-range correlation (x-axis) are plotted in a graph. 

 



 

 

 



 

 

 

 

 

 III. 
 

 

 

 

 

 

 

Genome-scale proteins functions 

shape genometric structure in the 

genome of prokaryotes 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

61 

 

 

 

 

 

 

 

 

 

 

3.1 Introduction 
 
With the accelerating discovery rate of new genomic information from 

diverse species and environmental sources, comparative genetic analyses 

have become common practice to obtain clues on the links between 

functional genomics, evolution and lifestyle. In the case of 

microorganisms, an increasing number of studies explore microbial 

biodiversity with genomic tools (e.g., De Long, 2004) since prokaryotes 

encompass the major part of physiological and phylogenetic diversity. 

Genes contained in genomes provide essential information for 

understanding evolutionary relationships, ecological and functional 

adaptations in microorganisms. Many studies have classified sets of
 

ortholog sequences among different species, and therefore
 

many 

databases of ortholog groups are available.
 
NCBI Clusters of Orthologous 

Groups (COG) database for unicellular
 
organisms (Tatusov et al., 2003) 

contains putative ortholog groups, mostly of prokaryotes. Consistent 

information about orthology provides
 
the basis for inferring phylogenetic 

relationships (Tatusov et al., 1997). 

 

Each COG consists of individual ortholog proteins which delineation is 

achieved by comparison of proteins encoded in different complete 

genomes from major phylogenetic lineages and elucidation of consistent 

patterns of sequence similarities. In order to extract the maximum 

III 
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amount of information from the large set of prokaryotic genomic 

sequences, COGs allow us to classify conserved genes according to their 

homologous relationships. Orthologs typically have the same function, 

allowing the transference of functional information from one member to 

an entire COG. This relation automatically yields a number of functional 

predictions for poorly characterized genomes. Each COG represents a 

functional pathway and changes in COGs content will actually determine 

changes in the ecological lifestyle. Thus, from the inception of the COG 

methodology, COGs have the potential for straightforward evolutionary 

genomic applications in prokaryotes. One of these is the construction of 

gene-content trees whereby the phyletic patterns of COGs are converted 

into a distance matrix between the analyzed genomes (Makarova et al., 

2007). Moreover, the differences in expression between the COGs from 

different prokaryotes provide some insight on the lifestyles and habitat, 

as recently reported for three Frankia strains (Sen et al., 2008). 

 

Recently we have shown that correlation properties derived from the 

position of each single nucleotide within the genome hide relevant 

ecological information (García et al., 2008). These properties were 

extracted using Detrended Fluctuation Analysis (DFA) (Peng et al., 1992 

and 1994) on the sequential distribution of individual nucleotides along 

the genomes. DFA is a scaling analysis method providing a single 

quantitative parameter —the scaling exponent α— to represent long-

range correlation properties of a sequence and the characteristic length 

scale of repetitive patterns connected with self-similarity —fractal 

structure. An increase in the self-similarity of DNA sequences with 

evolution has been reported (Voss, 1992), and links between long-range 

correlations and higher order structure of the DNA molecule have been 

suggested (Grosberg et al., 1993).  

 

In the present work, we extracted structural (DFA analyses) and 

functional (COGs analyses) information from 372 prokaryotic 

chromosomes that were combined with phylogenetic and ecological 

information by means of canonical analysis. Previous to DFA application 

we analyzed the sequential distribution of individual nucleotides along 

the genomes by the DNA walk method (Lobry, 1996a). DNA walks are 

graphical representations of the fluctuations in nucleotide series and 

provide quantification on internal deviations of individual nucleotides 

along the genome. Every genome produces a specific DNA walk which 

graphical representation can be achieved by several rules for plotting 
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genomic landscapes (Grigoriev, 1998). Here, we applied the complete set 

of rules for plotting genomic landscapes and for each of them we ran a 

DFA. Significant correlations were found between DNA structure (i.e., 

sequential distribution of individual nucleotides) and its functionality 

(i.e., the distribution of individual genes in functional categories) with 

close links to microbial lifestyle. 

 

 

 

 

3.2 Material and methods 
 
We downloaded 460 complete chromosomes from 304 different 

prokaryotic species available in GenBank (National Center for 

Biotechnology Information, http://www.ncbi.nlm.nih.gov/Genbank) in 

November 2007. Within the prospected prokaryotic genomes, we 

analyzed 30 archaea from 3 main archaeal phyla and 417 bacteria from 

17 bacterial phyla. Overall, we covered a wide range of phylogenies, 

different ecophysiological lifestyles related with optimal growth 

temperature, pH, respiration and metabolism, according to information 

obtained from the taxonomy database at NCBI (www.ncbi.nlm.nih.gov) 

and Bergey’s Manual of Systematic Bacteriology (Garrity et al., 2001). 

For more details see supplementary file 3.1. 

 

 

 

Clusters of orthologous genes derived information 
 
For 372 of the total number of chromosomes, we obtained the 

distribution of encoded proteins within functional categories according to 

the implemented clusters of orthologous genes (COGs) database 

(http://www.ncbi.nlm.nih.gov/COG/). For the remaining species this 

information was not available in COG database. COG, is a systematic 

grouping of gene families where each COG contains individual ortholog 

proteins or ortholog sets of paralogs from at least three different lineages 

and therefore matching an ancient conserved domain. Thus, COGs are 

grouped according to cell functionality characters. The main functional 

groups are divided in 4 categories: (i) information storage and processing 

genes, (ii) cellular processes coding genes, (iii) metabolic genes and (iv) 

genes of poorly characterized proteins. Each category contains different 

http://www.ncbi.nlm.nih.gov/COG/old/palox.cgi?fun=all
http://www.ncbi.nlm.nih.gov/COG/
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subgroups such as genes associated to translation, transcription and DNA 

replication within the information storage and processing group, or genes 

related with cell division, post-translational modification, cell envelope 

biogenesis, cell motility, ion transport and signal transduction 

mechanisms for the cellular processes category. The metabolism category 

includes genes associated with energy production, carbohydrate, amino 

acid, nucleotide, coenzyme and lipid metabolism, and the poorly 

characterized category includes genes with unknown functions. These 

groups are formulated by comparing protein sequences of known source 

to those proteins coded in the genomes which have been extensively 

studied, have a phylogenetic lineage and have properly been annotated. 

 

 

 

DNA walks and Detrended Fluctuation Analysis (DFA) 
 
The original nucleotide sequences of the 460 downloaded genomes were 

translated onto numerical series using three types of one-dimensional 

DNA walks: The hybrid rule (KM) where the nucleotides were grouped 

according to their amino (A or C) or keto forms (G or T); the purine–

pyrimidine rule (RY) that groups separately the pyrimidine (C or T) and 

the purine (A or G) and the hydrogen bond energy rule (SW) that groups 

the nucleotides in strongly bonded pair (G or C) and weakly bonded pair 

(A or T). Being ni the i nucleotide of the genomic sequence and yi the 

DNA walk value for the nucleotide ni, if ni is a keto forms, pyrimidine or 

a strongly bonded pair then yi = +1 and if ni is an amino forms, purine or 

a weakly bonded pair then yi = –1. Once the numerical series were 

calculated, their sequential distributions were plotted. See Appendix A 

for more details. 

 

The three scaling exponents, corresponding with the three types of DNA 

walk, were calculated for each genome by the Detrended Fluctuation 

Analysis (Appendix B). In addition, we added to each genome three new 

variables as controls (KMc, RYc and SWc) which were assigned with 

random values comprised between the lowest and the highest scaling 

exponent values calculated by DFA using KM, RY and SW rules, 

respectively. Thus, controls were used to emphasize the influence of 

factors as phylogeny, ecology or functional genomics in the chromosome 

structure. 
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Fig. 3.1 represents an example of the plots generated by the three types of 

DNA walks (KM, RY, SW) for the genome of the bacteria 

Oceanobacillus iheyensis, as well as the corresponding scaling exponents 

associated to each walk. 
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Figure 3.1. DNA walk and DFA graphical representation of the bacteria Oceanobacillus 

iheyensis. The plots A, C and E represent the KM, RY and SW DNA walks, respectively, 

while the corresponding DFAs are plotted in B, D and F. 
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Multivariate analysis 
 
For each of the 372 genomes with available COG information we defined 

up to 58 variables grouped in six different categories: phylogeny, 

ecology, genometry, genome, COG and DFA (Table 3.1). Within the 

variables, we included taxonomy hierarchy from domain to specie, 

oxygen requirement, optimal growth temperature (Topt), pH, salinity, 

COGs, genome length, percentage of each nucleotide, number of 

chromosomes, proteins and RNAs, coding and non-coding length mean 

and the three types of DFAs. Using the whole data set we created a 

multivariate dataset (see supplementary file 3.2). Two canonical 

analyses, Canonical Correlation Analysis (CCA) and Redundancy 

Analysis (RDA), were carried out to explore the relationships between 

the three types of scaling exponents and the remaining variables. 

 

 

 

 
Taxonomy Genometry Genome 

superkingdom, 
phylum, class, 
order, family, 
genus, gram, 

species 

length, A, T, G, C, 
G+C, slope SW, 
1stGC, 2ndGC, 

3rdGC 

chromosomes, 
plasmids, total prot, 
total RNA, perc53, 

coding mean, 
non coding mean, 
gen density, CDS 

   

Ecology COG DFA 

salinity, oxygen, 
habitat, Topt, 

metabolism, pH, 
biofilm 

J, K, L, D, V, T, M, 
N, U, O, C, G, E, F, 
H, I, P, Q, R, S, not 

KM, RY, SW 

 

 
Table 3.1. Parameters prospected in this work classified in six categories or 

tables. 
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CCA measures the linear relationship between two multidimensional 

variables (i.e., DFA versus COG tables). It finds two vectors, one for 

each set of variable, in such a way that the correlation between the set of 

variables is optimized (Hotelling, 1936). The CCA was performed using 

the procedure cancorr from SAS/STAT release 9.1 statistical package 

(SAS Institute, Inc., Cary, NC, USA). 

 

RDA explains the variance of a table of response variables —in our case 

the three DFA variables— based on a table of explanatory variables      

—each of the tables corresponding to the other five categories—, (Rao, 

1964). RDA seeks the combinations of explanatory variables that best 

explain the variation of the response variables. It is therefore a 

constrained ordination process. A constrained ordination produces as 

many canonical axes as there are explanatory variables, but each of these 

axes is a linear combination —a multiple regression model— of all 

explanatory variables. The RDA was carried out using the CANOCO 

software package, version 4.5 (Ter Braak, 1988). The reported p-values 

are based on 999 Monte Carlo permutations under the null model.  

 

Finally, discriminant analysis was used to construct the Fisher 

discriminant function —a linear combination of the variables whose 

coefficients make maximum the distance between the populations— for 

species classification into one of two or more groups on the basis of its 

canonical variables (Afifi et al., 2004). Computations were carried out 

with SAS/STAT release 9.1 statistical package (SAS Institute, Inc., Cary, 

NC, USA). 
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3.3 Results 
 

Scaling exponents by Detrended Fluctuation Analysis 
 
We run three types of DNA walks according to the KM, RY and SW 

genometric rules (see methods) for each of the 460 bacterial and archaeal 

downloaded genomes. The walks were translated to a numerical series in 

order to calculate the scaling exponents for each DNA walk series using 

the previously reported DFA method (García et al., 2008). DFA values 

for each genome are shown in supplementary file 3.2. In all the cases, 

DFA scaling exponents were higher than 0.5 independently of the used 

rule, indicating persistent long-range correlations for each prokaryotic 

genome (García et al., 2008). For instance, the resulting DFA curves after 

applying the RY rule ranged between scaling exponents 0.54, the lowest, 

in Mycobacterium leprae TN and 0.78, the highest, in Methanococcus 

jannaschii.  

 

 

 

Relating scaling exponents with phylogenetic, genomic and 
ecological patterns 
 
The RY rule clearly split the DFA values for Archaea and Bacteria 

domains whereas the KM and SW rules did not offer enough resolution 

power (Fig. 3.2A). Furthermore, the RY was the best rule for 

discriminating ecological groups according to the optimal growth 

temperature, i.e., the hyperthermophilic species showed higher RY DFA 

values than the remaining microbial species (Fig. 3.2B). Therefore, we 

used the RY rule to explore further differences within each domain. Fig. 

3.2C shows the scaling exponent averages for 17 archaeal and bacterial 

phyla. Most of the bacterial DFA were within the range 0.60 – 0.65 

whereas Archaea showed values > 0.70. Three bacterial phyla 

(Aquificae, Fusobacteria and Thermotogae) showed, however, scaling 

exponents closer to those of archaea. 
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Figure 3.2. Mean and standard deviation of DFAs for the three different rules (KM, RY 

and SW). Panel A shows the mean and standard deviation of the Archaea and Bacteria 

separately. Note that RY DFA is the best rule to accentuate the differences between the 

two domains. Panel B shows the mean and standard deviation of groups formed 

according temperature. RY DFA is again the best rule to differentiate the groups. In 

general, the three classes belonging to Archaea own higher RY DFAs than bacterial 

classes (panel C). 

 

 

 

The results of the CCA and RDA calculations between DFA and the 

whole set of variables shown in Table 3.1 (i.e., taxonomy, genometry, 

genome, ecology, COGs) are summarized in Table 3.2. We centered the 

CCA on the first canonical correlation —the correlation between the first 

pair of canonical variables— because this value represents the highest 

possible correlation between any linear combination of the two variables. 

The highest correlation value was with genometry (0.83), closely 

followed by functional genes composition (COGs, 0.78), and genome 

traits and taxonomy (0.60 and 0.58 respectively). The complete set of 

ecological parameters showed the lowest correlation value (0.33), 

although individual ecological variables had high correlation with DFA 

(see below). This indicated a close link not only between DFA value and 

genometry (as expected) but surprisingly also between DFA and 

functional genes composition.  
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 CCA RDA 

 DFA 
Random 

DFA 
(control) 

DFA 
Random 

DFA 
(control) 

Taxonomy 0.58 0.23 19.2% 2.7% 

Genometry 0.83 0.23 42.7% 2.6% 

Genome 0.60 0.23 22.6% 3.4% 

Ecology 0.33 0.21 6.6% 2.5% 

COGs 0.78 0.30 43.6% 6.5% 

All   69.5% 17.2% 

 

 
Table 3.2. Relationship, obtained by CCA and RDA, between 

both, DFA and random DFA (control) and the variables included 

in the five categories. All the first canonical correlations obtained 

by CCA involving DFAs were statistically significantly different 

from zero, while, all the canonical correlations involving random 

DFAs were not statistically significantly different from zero. The 

total DFA and random DFA variance explained by each of the five 

categories and by the sum of all the variables obtained by RDA is 

also shown. All the RDA results for DFA presented statistically 

significant      p-values (< 0.05), while the p-values for controls 

(random DFAs) were not statistically significant (> 0.05). 

 

 

 

The canonical variables for each genome were represented in canonical 

axes. The original variables were weighted through canonical 

coefficients. As expected, the random DFA variables used as controls 

showed low canonical correlation with all the variables (Table 3.2). The 

F-test output from SAS tested the hypothesis that the first canonical 

correlation was equal to zero. The F statistic was less than 0.0001 

indicating that first canonical correlations were statistically significantly 

different from zero for all genomic DFA analysis. Conversely, all the F-

test from random DFAs showed values higher than 0.05 indicating that 

first canonical correlations were not statistically significantly different 

from zero. 
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RDA showed similar results as CCA but the relationship found between 

DFAs and COGs was even stronger. Thus, COG was the category that 

explained most of DFAs variance (up to 43.6%). Genometry also 

explained a high percentage of DFA variance (42.7%), as expected. 

Genome traits, taxonomy and ecology accounted for a lower percentage 

of DFA variance (22.6%, 19.2% and 6.6% respectively). Altogether, the 

variance of DFA explained by the whole set of variables was close to 

70%. Furthermore, all the RDA results for DFA variable presented 

significant p-values. Conversely, non-significant p-values were achieved 

when the RDA was run for random DFA variables. 

 

 

 

COG analysis 
 
Looking into the main functional categories of COGs, the correlation 

between DFA and the percentage of genes belonging to each functional 

category (information storage, cellular processes and metabolism) were 

similar (Table 3.3). Only the ―poorly characterized genes‖ category 

showed low correlation with DFAs . Moreover, each of the three main 

cited categories explained a high percentage of the DFA variance 

according to the RDA results (Table 3.3). 

 

Canonical correlation between DFA and COG is represented in Fig. 3.3 

together with the first canonical correlation analysis between random 

DFA values and COGs. Consistent differences between DFA and COG 

canonical variables between Archaea and Bacteria were detected (Fig. 

3.3A). In general, Archaea showed higher canonical variables than 

Bacteria. The plots showing the clusters related with temperature and pH 

(Fig. 3.3C and 3.3E respectively) were, logically, nearly equivalent than 

the plot regarding the canonical correlation between DFA and genometry 

(data not shown) since its canonical correlations were similar. The 

discriminant analysis correct prediction was 94% for hyperthermophiles, 

61% for thermophiles and 89% for psychrophiles. The true prediction 

calculated using discriminant analysis was 75% for acidophiles and 

100% for alkalophiles. The three controls did not show canonical 

correlation either with the genometric values or with ecology (Fig. 3.3B, 

3.3D and 3.3F). 
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 CCA RDA 

 DFA 
Random 

DFA 
(control) 

DFA 
Random 

DFA 
(control) 

Information 

storage 
0.54 0.14 15.5% 1.1% 

Cellular 

processes 
0.64 0.16 26.3% 1.5% 

Metabolism 0.61 0.18 25% 1.7% 

Poorly 

characterized 
0.36 0.19 3.9% 1,7% 

 

 
Table 3.3. Relationship, obtained by CCA and RDA, between DFA 

and random DFA (control) and the percentage of individual cogs 

belonging to the four main functional categories. The first canonical 

correlations of all the DFAs were statistically significantly different 

from zero, while, the canonical correlations of all the random DFAs 

were not statistically significantly different from zero. The total 

DFA and random DFA variance explained by each of the four 

categories of COGs obtained by RDA is also shown. All p-values 

for DFA results presented statistically significant values        (< 

0.05), while the p-values for controls (random DFAs) were not 

statistically significant (> 0.05). 
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Figure 3.3. Graphical representation of the correlation between the first canonical 

variables concerning the DFA and COG variables calculated by Canonical Correlation 

Analysis. CCA was also run with random DFAs values used as a control. Panels A and 

B show the distribution of Bacteria and Archaea domains running CCA with DFA and 

random DFA variables, respectively. Panels C and D represent the canonical variables, 

using DFA and random DFA, respectively, with the groups highlighted according to 

their Topt. Panels E and F represent canonical variables using DFA and random DFA, 

respectively. The groups are highlighted according to their pH. 

 

 

 

Fig. 3.4 showed that the standard deviation of the percentage of COGs 

for each genome increases with the DFA average of the three rules. 

Briefly, the more heterogeneous distribution of genes in each functional 

category, the higher the scaling exponent of the genome. Contrarily, the 

random DFA average did not present any relation with the heterogeneity 

of COGs. 

 

Furthermore, Table 3.4 shows that the groups with higher scaling 

exponents exhibited higher standard deviation in COG percentage than 

the groups with low scaling exponent. Thereby, Archaea presented more 

standard deviation than Bacteria, and hyperthermophiles and acidophiles 

the highest standard deviation within the group according temperature 

and pH, respectively. 

 

 

 
Std 

COG 

Archaea 5.09 
Bacteria 4.73 

Hyperthermophiles 4.89 
Thermophiles 4.53 
Mesophiles 4.78 
Psychrophiles 4.15 

Acidophiles 4.97 
Mesophiles 4.76 
Alkalophiles 4.26 

 
Table 3.4. Standard deviation of 

percentage of COG for the chromosomes 

analyzed. The differences between 

microorganisms grouped according to 

their domain, Topt and pH are indicated. 
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Figure 3.4. Relationship between DFA values and standard 

deviation of COG for all the chromosomes analyzed. Panel A shows 

the DFA average of the three values (KM, RY and SW) while panel 

B is used as a control since it shows the average of the three random 

DFAs.  
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3.4 Discussion 
 

DFA – COG relationship  
 
The most outstanding result obtained by canonical analysis was the high 

canonical correlation between DFA and COG, as well as the high DFA 

variance explained by COGs indicating that the distribution of the 

nucleotidic sequence along the genome is somehow related with the 

genome functionality (COG). As the heterogeneity of percentage of 

COGs is directly correlated with the canonical variable COG1, it is 

suggested from Fig. 3.3 that heterogeneity is also related with high DFA1 

values and, in consequence, with high scaling exponents. 

 

It has been proposed that the genomic properties of bacteria are greatly 

conditioned by their specialist or generalist lifestyle (Pushker et al., 

2004). Thus, each prokaryotic genome has a specific distribution of its 

genes grouped into functional COGs as a result of different factors like 

its evolutionary story and lifestyle; examples of deletion of genes no 

longer required in a specialized environment have been recently reported 

(Toh et al., 2006). The emergence of new families of genes in individual 

lineages, the clade-specific gene loss and the horizontal gene transfer 

have been recognized as the major evolutionary factors of prokaryotic 

evolution (Koonin et al., 1997; Aravind et al., 1998; Doolittle, 1999a; 

Doolittle, 1999b; Logsdon and Faguy, 1999; Nelson et al., 1999; 

Makarova et al., 2007). It has been also suggested that the inferred 

frequencies of deletions, duplications and horizontal gene transfers 

depend on bacterial lifestyle features (Boussau et al., 2004). One of the 

main features of the COG —its evolutionary plasticity— has been 

previously reported (Koonin, 2000). This plasticity may be also due to 

the mentioned forces involved in prokaryotic evolution. Furthermore, 

gene duplication and gene lateral transfer were proposed to be the 

responsible to high scaling exponents in prokaryotic genomes (García et 

al., 2008). In consequence, both genomic features, COG distribution and 

scaling exponent, may be caused by equivalent factors and this fact could 

explain the high correlation between DFAs and COGs. 

 

Functional categories associated with environmental interactions (e.g., 

energy metabolism, transport and regulation) were found to be the most 

variable among bacteria with different lifestyles. Thus, expansions and 

contractions in the genomic repertoire have mostly affected genes 
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involved in environmental interactions. In turn, basic information 

processes such as transcription and translation were distributed more 

homogeneously (Boussau et al., 2004).  

 

An example of a selective advantage for survival in a specific habitat by 

means of the variation on the percentage of COG categories in three 

strains of Frankia has been recently detailed (Sen et al., 2008). Thus, the 

increase in number of predicted highly expressed genes in several COG 

groups may increase the ability of some strains to compete and survive in 

new habitats. For instance, the high levels of predicted highly expressed 

genes in transcription (K) and signal transduction mechanisms (T) would 

be advantageous by increasing its ability to respond to signals and 

regulate gene expression. Regarding the relationship between COG and 

lifestyle, comparative analysis of the genomes of Archaea and Bacteria 

have revealed that some ecological groups presented specific COGs that 

were absent in the rest of the groups. Some of these groups included 

thermophiles (Koonin et al., 2000) and hyperthermophiles (Makarova et 

al., 2003; Omelchenko et al., 2005). Another example of expansion-

contraction of specific gene families with depth was previously reported: 

the shallow bathytypes were enriched in genes for energy production and 

conversion, while the deep bathytypes had a higher percentage of genes 

involved in cell motility and secretion, intracellular trafficking, secretion, 

translation, ribosomal structure and DNA replication and repair 

(Simonato et al., 2006). 

 

Since we observed that microorganisms living in extreme habitats own 

high scaling exponents and heterogeneity in the percentage of functional 

genes, these two features could be essential requirements for genetic 

adaptation to extreme habitats. On the contrary, the microorganisms 

adapted to non-extreme environments seemed to share homogenously its 

genes into different functional groups. This fact seems to be in 

concordance with the relation between the gene family size and the 

heterogeneity of the habitat that has been previously pointed out (Pushker 

et al., 2004). It was suggested that bacteria with reduced gene family size 

might be adapted to homogeneous and non-extremophile habitat like the 

marine environment, in contrast to other extended gene family size of 

bacteria which have the ability to survive in much more heterogeneous 

habitats, such as soil. Moreover, the correlation between extremophiles 

and high scaling exponents was shown to be consistent (García et al., 

2008). 
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Regarding the relationship between COGs composition and phylogeny, 

two different clusters were formed in Fig. 3.3A belonging to Archaea and 

Bacteria. Archaea appeared to have a higher genomic portion devoted to 

energy production and conversion, coenzyme metabolism, and poorly 

characterized categories than Bacteria. Nevertheless, Archaea also had 

relatively fewer genes involved in carbohydrate transport and 

metabolism, cell envelope and membrane biogenesis, and inorganic ion 

transport and metabolism (Konstantinidis et al., 2004). 

 

 

 

Canonical analysis  
 
The highest first canonical variable achieved by CCA was, logically, the 

corresponded to the correlation between DFA and genometry, since DFA 

depends directly on the percentage of the different nucleotides forming 

the DNA sequence. Moreover, DFA also showed high canonical 

correlation with genomic and phylogenic factors. This can be explained 

by the fact that DFAs value are related with the structure of the sequence 

and the genomic category includes some variables related also with the 

structure of the genome as number of proteins, coding sequence mean or 

gene density. The canonical correlation between phylogeny and DFA 

could be related by the capacity of DFA to capture phylogenetic signals 

(García et al., 2008).  

 

The poor correlation between DFA and ecology is probably due to the 

heterogeneous nature of the variables included in the ecology category. 

This result could be explained by the fact that we added to the ecological 

category some factors that were not correlated with scaling exponents 

(e.g., biofilm formation or aerobic/anaerobic respiration). Nevertheless, 

the rest of factors (salinity, habitat, temperature, metabolism and pH) 

were somehow related with scaling exponents as discussed previously 

(García et al., 2008). Note the high values, reported in results section, 

achieved by discriminant analysis for all the ecologic clusters analyzed in 

the different canonical axes.  

 

The variance of DFAs explained by the different categories, obtained by 

the RDA method, was in concordance with the canonical correlations. 

Furthermore, all the variables together accounted for a high variance of 

DFAs, contributing new information to demonstrate that the scaling 
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exponent feature of prokaryotic genomes is related with the genometry, 

the phylogeny and the ecology of the microorganism. 

 

 

 

RY DFA 
 
As showed in Fig. 3.2A and 3.2B, scaling exponent was more efficient 

discriminating phylogenetic and ecologic clusters when grouping the 

nucleotides that constitute the chromosomes in purine and pyrimidine 

(RY) than when grouping the nucleotides by its number of hydrogen 

bonds used to bind the base pairs or when grouping the bases by its keto 

or amino forms. This data highlights the importance of the heterocyclic 

aromatic structure to find phylogenetic and ecological signals inside the 

genome. From the biochemical point of view purine and pyrimidine are 

connected with most important properties of nucleotides (Akberova and 

Yu, 1996). Furthermore, RY has been detailed as a precise rule both, to 

reveal the replication origins of the prokaryotic chromosome and to study 

the evolution of DNA sequences as a distance measure (Akberova and 

Yu, 1996). Additionally, RY rule are more likely than the SW to be 

consistent with evolution under stationary, reversible and homogeneous 

conditions (Ho et al., 2006). 

 

The exceptional RY DFA values presented by the bacterial phyla 

Aquificae, Fusobacteria and Thermotogae in Fig. 3.2C, similar to those 

from Archaea, can be explained by the fact that the three phyla form a 

monophyletic clade closely rooted to Archaea. Moreover, Aquificae 

phylum is a diverse collection of bacteria that live in harsh environmental 

settings like hot springs, sulfur pools and thermal oceanic vents sharing 

habitat with some archaea. Some of its members have an OGT between 

85 to 95 °C. Thermotoga are also found in extreme environments, they 

are thermophiles and hyperthermophiles bacteria and some species 

present salt and oxygen tolerance. Fusobacteria contains only the genus 

Fusobacterium and its high scaling exponent could be a consequence of 

its unusual low GC content (26 – 34%), since both parameters are highly 

correlated as showed in Fig. 2.4. See Chapter II for more details.  

 

Overall, the canonical analysis highlighted the intrinsic correlation 

between the structure of the prokaryotic genomes and its functionality 

summarized by the scaling exponent captured by the DFA and the 

http://en.wikipedia.org/wiki/Fusobacterium
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percentage of COGs, respectively. This work aims at helping for a better 

understanding the genetic adaptations to specific environments by means 

of the variation of COG percentages relative to the adaptation to a 

specific habitat and lifestyle. Nevertheless, the translation of the obtained 

results by this approach to their biological significance was not 

straightforward. 
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4.1 Introduction 
 
Several millions of tons of oil are discharged into oceans every year. 

Some of it seeps from natural oil fields, but the bulk of the discharge 

comes as a result of anthropogenic activities. Maintenance of sustainable 

marine and coastal ecosystems requires the development of effective 

measures to reduce oil pollution and mitigate its environmental impact. 

 

Hydrocarbon-degrading microorganisms usually exist in very low 

abundance in the absence of oil pollution. A pollution event is rapidly 

followed by a bloom of these microorganisms, the populations of which 

expand to nearly complete dominance of the viable microbial community 

during the period of contamination (Margesin and Schinner, 1999; 

Harayama et al., 1999). The properties of hydrocarbon compounds 

depend on the ambient temperature. Short-chain alkanes become less 

volatile and more water-soluble at low temperatures, whereas longer-

chain compounds precipitate under cold conditions as waxes rendering 

them bioavailable and inaccessible to microbes, respectively. Such 

behaviour obviously reflects the establishment of specific oil-based 

marine microbial communities at low temperatures that are somehow 

different from those observed in a temperate climate. The most important 

permanently cold habitat is the ocean, since the temperature of more than 

90% of the seawater volume is below 5 ºC. Recently several genera and 
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families of hydrocarbonoclastic microorganisms have been described 

within the γ-proteobacteria such as Alcanivorax (Yakimov et al., 1998), 

Cycloclasticus (Dyksterhouse et al., 1995), Marinobacter (Gauthier et al., 

1992), Oleiphilus (Golyshin et al., 2002) and Oleispira (Yakimov et al., 

2003). The first hydrocarbonoclastic genomes completely sequenced and 

annotated were the 3,120,143 bp of Alcanivorax borkumensis (Schneiker 

et al., 2006) and the 4,406,383 bp of Oleospira antarctica (unpublished 

data). 

 

Alcanivorax borkumensis is a rod-shaped marine mesophilic gram-

negative γ-proteobacterium that uses exclusively hydrocarbons as sources 

of carbon and energy. Its ubiquity and unusual physiology indicate that it 

is pivotal in the removal of hydrocarbons from polluted marine systems. 

It is found in low numbers in all oceans of the world and in high numbers 

in oil-contaminated waters community (Harayama et al., 1999; Kasai et 

al., 2002). Alcanivorax borkumensis is thus a paradigm of cosmopolitan 

hydrocarbonoclastic bacterium. 

 

Oleospira antarctica is a marine psychrotrophic γ-proteobacterium that 

uses petroleum oil hydrocarbons as sources of carbon and energy. It is 

found in marine systems of all geographical areas and at all depths. The 

presence in unpolluted environments is poor, but becomes the dominant 

microbe in oil-polluted waters. Two strains, RB-8T and RB-9, were 

isolated from hydrocarbon degrading enrichment cultures obtained from 

Antarctic coastal marine environments (Rod Bay, Ross Sea). These 

bacteria, which form a monophyletic line within the γ-proteobacteria, are 

aerobic, gram-negative, have polar flagella and an optimal growth 

temperature (Topt) between 2–4 ºC. The isolates share many traits with 

the recently described genera of marine hydrocarbonoclastic bacteria 

Alcanivorax, Marinobacter and Oleiphilus, including isolation from a 

marine environment, purely respiratory metabolism (i.e. lack of 

fermentative metabolism), and relatively restricted nutritional profiles 

with a strong preference for aliphatic hydrocarbons. 

 

In this paper an extensive work of comparative genomics between 

Alcanivorax borkumensis and Oleospira antarctica is presented to gain 

insight into the basis of its hydrocarbonoclastic metabolisms, marine 

lifestyle, its genomic responses to environmental stresses, the ability to 

degrade a range of oil hydrocarbons and its competitive advantage in oil-

polluted environments. The comparison was carried out by means of 
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both, genometric methods such as GC skew, DNA walk or Detrended 

Fluctuation Analysis (DFA) and comparative analysis of the genes 

contained in each genome.  

 

Genome GC content is an integrative parameter that has been explored 

by comparative analyses offering interesting information (Muto and 

Osawa, 1987; Hurst and Merchant, 2001; Marashi and Ghalanbor, 2004; 

Foerstner et al., 2005; Musto et al., 2006). However, DNA is predicted to 

contain more structural information than would be expected from base 

composition alone (Pedersen et al., 2000). One of the main features of a 

DNA sequence related to the whole genome structural composition is the 

long-range correlation, a scale invariant property of DNA. In a correlated 

sequence, occurrence of a nucleotide in a specific position depends on 

the previous nucleotides (memory). The long-range correlation is related 

directly to the fractal structure of the DNA sequence or self-similarity. 

Peng et al. (1992) studied correlation properties in DNA sequences using 

a fractal landscape or DNA walk model. DNA walking is a genometric 

method based on a derivative function of the sequential position for each 

nucleotide along a DNA sequence. The resulting ―walk‖ can be projected 

on a two-dimensional plot representative of the DNA ―landscape‖ and 

enables the simultaneous comparison among different genome 

landscapes (Lobry, 1999). Additionally, one of the most appropriated 

methods proposed in recent years for the study of long-range correlations 

in genomes is the DFA (Peng et al., 1992 and 1994). DFA is a scaling 

analysis method providing a single quantitative parameter —the scaling 

exponent α— to represent correlation properties of a sequence and the 

characteristic length scale of repetitive patterns. DFA takes into account 

differences in local nucleotide content (heterogeneity) and can be applied 

to the entire sequence. It shows linear behavior in log–log plots for all 

length scales, and the long-range correlation property is characterized by 

the scaling exponent (α), i.e., the log–log slope. One of the already 

shown potentials of DFA is a change in the quantification of genome 

complexity with evolution (Peng et al., 1995). Thus, links between long-

range correlations and higher order structure of the DNA molecule have 

been suggested (Grosberg et al., 1993). Combination of DNA walk and 

DFA methods has been demonstrated to help to decipher the biological 

significance of long-range correlations in microbial genomes and the 

influence of lifestyle in the DNA structure. The specific patterns and 

long-range correlations were related to phylogenetic, ecological and 

metabolic information (García et al., 2008). Furthermore, genes 
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contained in genomes provide essential information for understanding 

evolutionary relationships and ecological adaptations in microorganisms.  

 

The goal of this comparative and functional genomics project is hence to 

characterize the genomic basis of the unusual ecophysiological features 

and environmentally significant properties of these two microorganisms, 

and to establish a knowledge base that may help to a better understanding 

of the influence of temperature on the growth of oil-degrading bacteria 

and predicting cellular phenotypes. 

 

 

 

 

4.2 Methods 
 
Complete sequenced genome and genomic annotation from A. 

borkumensis were downloaded from GenBank (National Center for 

Biotechnology Information, www.ncbi.nlm.nih.gov/Genbank), while the 

sequenced and annotated genome from O. antarctica were provided by 

the Environmental Microbiology department from the Helmholtz Centre 

for Infection Research for comparative purposes. The information was 

complemented with biochemical information and cell physiology data in 

order to complete the knowledge of the whole metabolism of the 

microorganism.  

 

 

 

GC skew and DNA walk  
 
The GC skew (Lobry, 1996b) gives a measure of the deviations from the 

base frequencies A = T and G = C. It is usually stronger than the AT 

skew, so we will focus on the GC skew from both genomes calculated as 

the ratio (C – G)/(C + G), which gives the percentage of excess of C over 

G. 

 

We also analyzed the distribution of individual nucleotides along the 

genomes by the DNA walk method (Appendix A). Here, we have used 

four types of representations. First, we translate the original nucleotide 

sequence into a one-dimensional numerical series grouping the bases in 

pairs following the three types of rules (KM, RY and SW). Then, the 

http://www.ncbi.nlm.nih.gov/Genbank
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resulting DNA walk series for each rule were mapped onto an orthogonal 

plane. The slopes of the regression lines from the SW DNA walk were 

used as variables for subsequent analysis. For the last representation, we 

performed a two-dimensional (2D) map where each nucleotide defines 

one direction in a plane formed by two orthogonal axes (i.e., C versus G 

and T versus A). (see Chapters II and III for more details). 

 

 

 

Detrended Fluctuation Analysis (DFA) 
 
Detrended Fluctuation Analysis (Appendix B) was used to calculate the 

scaling exponents from the four types of DNA walks. On the one hand, 

scaling exponents were calculated directly from one-dimensional DNA 

walks (KM, RY and SW). On the other hand, the two-dimensional (2D) 

series of DNA walks were transformed into one-dimensional ones by 

replacing every original x–y point, representing a step of the walk, with 

its Euclidean distances from the origin of the graph. The resulting one-

dimensional series were then used to calculate the scaling exponents.  

 

 

 

Genome alignment  
 
A whole-genome alignment was performed using MUMmer, a software 

developed at the Institute for Genomic Research (Delcher et al., 1999; 

Kurtz et al., 2004).  

 

 

 

Genome visualization 
 
Dot-plotting is the best way to see all of the structures in common 

between two sequences. Dot plot was calculated using the software 

Gepard (GEnome PAir Rapid Dotter) (Krumsiek et al., 2007), which 

allows the calculation of dot plots even for large sequences like bacterial 

genomes. 
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Visualization of inter-chromosomal relationship was performed using the 

software Circos (www.bcgsc.ca) which is open-source Perl application 

particularly suited for visualizing alignments, conservation and intra- and 

inter-chromosomal relationships. 

 

 

 

 

4.3 Results 
 

Genomic features 
 
The general features of the A. borkumensis and O. antarctica genomes 

are listed in Table 4.1. The A. borkumensis genome is composed of one 

circular chromosome of 3.12 Mb harboring 3073 annotated genes, 513 of 

them with predicted metabolic functions, while the remaining genes 

(2560) were either non-metabolic genes or designated as hypothetical 

proteins or proteins of unknown function. In turn, the O. antarctica 

consists of one single chromosome of 4.41 Mb and encodes 3986 

annotated genes, 687 of which were predicted as metabolic genes. The 

rest of the genes (3299) were either non-metabolic genes or designated as 

hypothetical proteins or proteins of unknown function. The G+C content 

is higher in A. borkumensis (54.73%) than in O. antarctica (42.16%). 

 

For each genome we run the GC skew, the keto–amino (KM), purine–

pyrimidine (RY) and strong–weak (SW) pairing DNA walk, and a two-

dimensional (2D) DNA walk (see methods). The GC skew showed strong 

strand bias that resulted in symmetric plots (Fig. 4.1, panels A and B) 

which are characterized by a preference for G and C over T and A in the 

leading strand and vice versa in the lagging strand in both 

microorganisms. The inflection point of the GC skew coincides with the 

terminus of replication. A. borkumensis is likely to be more persistent in 

the enrichment of its respective bases in both strands since its plot seems 

to be smoother than the plot of O. antarctica. The RY (Fig. 4.1, panels C 

and D) and KM (data not shown) DNA walks also resulted in symmetric 

plots with preference for G over C in the leading strand and C over G in 

the lagging strand. The inflection point of both DNA walks also 

coincides with the terminus of replication. In agreement with the GC 

skew, O. antarctica DNA walks are rougher than A. borkumensis walks, 

indicating a greater persistence in the bases of the last microorganism. 
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The SW walks for both microorganisms were well fitted by a linear 

regression with positive and negative slopes for A. borkumensis and O. 

Antarctica, respectively. The strong strand bias and the persistence of the 

bases on both genomes were also showed by the 2D DNA walk (Fig. 4.1, 

panels E and F). Thus, A. borkumensis presented an enrichment of Gs in 

the leading strand and Cs in the lagging strand while O. antarctica 

showed a preference of Ts in the leading strand and As in the lagging 

strand. The complete set of DNA walk plots are attached in the 

supplementary file 4.1. 

 

 
 

 

 A. borkumensis O. antarctica 

Size (bp) 3120143 4406383 
Annotated genes 3073 3986 
Metabolic genes 513 687 
Non-metabolic genes 2560 3299 
Metabolic processes 490 667 
ORF 365 399 
G+C (%) 54,73 42,16 

(G – C)/(G + C) 0,00103 –0,00041 

SW DNA walk slope 0.093 –0.159 

A (%) 22,63 28,90 
T (%) 22,64 28,94 
G (%) 27,39 21,07 
C (%) 27,34 21,09 
α  KM 0,660 0,691 
α  RY 0,610 0,644 
α  SW 0,661 0,667 
α  2D 0.5779 0.6132 

Opt. Temp. (ºC) 20–30 2–4 

NaCl (%) 3–10 3–5 

 

 
Table 4.1. General genomic features and optima of temperature and 

sodium chloride concentrations for A. borkumensis and O. antarctica. 
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The four different DNA walks were translated into a numerical series 

(see methods) for running the DFA. The resulting curves showed scaling 

exponents within α = 0.58 (2D DFA A. borkumensis) and α = 0.69 (KM 

DFA O. antarctica) (Table 4.1). In all the cases, DFA scaling exponents 

were higher than 0.5, indicating persistent long-range correlations. We 

found that the genome of O. antarctica had, on average, higher DFA 

scaling exponents than the strong strand-biased genome of A. 

borkumensis. Moreover, we also noticed a negative correlation between 

scaling exponents and GC content. The complete set of DFA plots is 

included in the supplementary file 4.2. 
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          Alcanivorax borkumensis         Oleispira antarctica 

  

  

 
 

 

Figure 4.1. GC skew calculated as the ratio [(G – C)/(G + C)] (panels A,B), DNA walk 

samples using the purine–pyrimidine (RY) rule (panels C,D) and 2D DNA walks 

(panels E,F) for the genomes of A. borkumensis (left) and O. antarctica (right), 

respectively. In GC skew and RY DNA walks, abscissa represents the genomic 

sequence position from the beginning to the end of the genome. Not only base 

composition is not randomly distributed in the genomes but strong strand bias resulted 

in symmetric plots which are characterized by a preference for G and C over T and A in 

the leading strand and vice versa in the lagging strand. Note the O. antarctica skew and 
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RY walks are rougher than A. borkumensis ones. The inflection point of the GC skew 

and DNA walks coincides approximately with the terminus of replication. 2D DNA 

walks showed an enrichment of Gs in the leading strand and Cs in the lagging strand of 

A. borkumensis while O. antarctica showed a preference of Ts in the leading strand and 

As in the lagging strand. 

 

 

 

Regarding the ecological lifestyle, we plotted both genomes into a 

previous published set of data (Chapter II) were some microbial groups 

with a wide range of temperature optima clustered separately according 

to the values of 2D DFA and SW slope (Fig. 4.2). For instance, looking 

at the Topt, O. antarctica joined, as expected, to the psychrophiles cluster 

while A. borkumensis was closer to moderate thermophiles than to 

psychrophiles. 

 

 

 

 
 

Figure 4.2. Ecological clusters formed after the SW DNA walk slope and the 2D 

DFA scaling exponent analyses were plotted in combination. O. antarctica was 

located within the psychrophiles whereas A. borkumensis was closer to the 

thermophiles than the psychrophiles. 
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Direct visual comparison of the whole genomes was performed by a 

DNA dot plot (Fig. 4.3), which shows the regions of close similarity 

between both genomes. Two discontinuous diagonals can be 

distinguished. The main diagonal starting at origin represents the direct 

matches between both sequences, whereas the reverse diagonal indicates 

partially palindromic areas, due to transposition of fragments from a 

specific location in genome to another in such a way that both locations 

are equidistant from the origin of replication. The remaining points off 

the main diagonals represent partial deletions, insertions or repetitive 

patterns between the sequences. 
 

 

 

 

 

 

 
Figure 4.3. Dot plot of A. borkumensis plotted against O. antarctica 

generated with Gepard software. 
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Metabolic and functional comparative genomics 
 
The distribution and arrangement of the metabolic genes along the whole 

genomes were analyzed by means of the annotation data. For instance, 

Fig. 4.4 shows the location of the genes involved in amino acids, 

nucleotides, cofactors and vitamins metabolisms. In agreement with the 

dot plot pattern, most of the genes were located over the two diagonals of 

the plot. The same distribution pattern was found for the rest metabolic 

genes (alkane degradation, carbohydrates, lipids, glycans and energy 

metabolism) (data not shown). The diagrams in Fig. 4.5 were generated 

by Circos software and compare the localization of genes involved in six 

different metabolic pathways (amino acids, carbohydrates, cofactors and 

vitamins, glycans, lipids and nucleotides metabolism) from both 

genomes. It can be appreciated not only the genes that have conserved a 

similar localization in both genomes but also the genes that have suffered 

a rearrangement due to translocations, duplications, deletions or lateral 

transfers. All the diagrams clearly show that rearrangements have 

happened in genes from all the metabolic pathways. 
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Figure 4.4. Dot plot of several metabolic genes of A. borkumensis plotted against 

the same genes of O. antarctica. Most of amino acid, cofactors, vitamins and 

nucleotide metabolisms are placed in the direct or reverse diagonal. 
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Figure 4.5. Circos representation of A. borkumensis (green) and O. antarctica (red) 

chromosomes and the position of their genes involved in several metabolic pathways. 

The pathways represented are amino acid metabolism and biosynthesis (A); 

carbohydrate metabolism, which includes central metabolism (B); metabolism of 

cofactors and vitamins (C); glycan biosynthesis and metabolism (D); lipid metabolism 

(E) and nucleotide metabolism (F). 

 

 

 

Furthermore, classification of the metabolic genes into various pathways 

reveals that the genomes of these two bacteria were highly conserved 

with respect to the percentage of genes dedicated to the basic metabolic 

functions (Fig. 4.6). The highest percentages of metabolic genes in both 

bacteria were the devoted to amino acid biosynthesis and metabolism, 

metabolism of cofactors and vitamins, nucleotide, carbohydrate and lipid 

metabolism. The major difference in percentages between bacteria was 

the related with the nucleotide metabolism (12% in A. borkumensis and 

18% in O. antarctica) followed by metabolism of cofactors and vitamins 

(17% versus 21%), lipid metabolism (13% versus 9%) and transport (6% 

versus 3%). Regarding the unique and shared metabolic ORFs, Table 4.2 

and Fig. 4.7 show their distribution into the functional metabolic 

pathways. In general, O. antarctica appears to have more quantity of 

unique ORFs than A. borkumensis in concordance with its longer size. 

On the one hand, the pathways with the higher percentages of shared 

genes were the amino acid metabolism (71.34%), metabolism of 

cofactors and vitamins (66.67%), carbohydrate metabolism (62.26%), 

energy metabolism (100%), and alkane degradation (75%). On the other 

hand, the smaller percentages of shared genes were found in the 

nucleotide metabolism (47.15%), lipid metabolism (49.48%), glycan 

metabolism (34.38%) and transport (37.78%). Some remarkable values 

regarding A. borkumensis were the low percentage of unique genes in the 

amino acid and nucleotide metabolisms (2.55% and 2.44% respectively), 

as well as the inexistence of unique genes in metabolism of cofactors and 

vitamins. Moreover, significant scores were the 50.41% of unique 

nucleotide metabolic related genes in O. antarctica and the complete 

coincidence of genes involved in the energy metabolism between both 

genomes. 
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Figure 4.6. Distribution of the metabolic genes involved in the principal 

pathways of A. borkumensis and O. antarctica. 
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Metabolic pathway A. borkumensis Shared O. antarctica 

Amino acid metabolism 4 112 41 

Cofactors and vitamins 0 94 47 

Nucleotide metabolism 3 58 62 

Carbohydrate metabolism 8 66 32 

Lipid metabolism 19 48 30 

Glycan biosynthesis 14 22 28 

Energy metabolism 0 31 0 

Transport 13 17 15 

Alkane degradation 1 3 0 

Unassigned 1 4 2 

 
Table 4.2. Distribution of specific genes of A. borkumensis (first column), metabolic 

genes shared by A. borkumensis and O. Antarctica (second column) and specific 

genes of O. Antarctica (third column). The genes were classified according to its 

metabolic pathway. 

 

 

 

 

 

 

Figure 4.7. Distribution and percentage of specific genes of A. borkumensis 

(red), metabolic genes shared by A. borkumensis and O. antarctica (blue) and 

specific genes of O. Antarctica (green) over the principal pathways. 
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In addition, the distribution of the whole genes in various functional 

categories was also highly conserved in both bacteria (Fig. 4.8). In 

general, percentages of functionally assigned genes showed high 

identities. The largest functional categories corresponded to the 

oxidoreductases, transferases, hydrolases and transport. Furthermore, the 

greater difference in percentages between both bacteria was the related 

with the oxidoreductases and transport. Concerning the unique and 

shared functional ORFs, Table 4.3 and Fig. 4.9 show their distribution in 

both genomes. As expected, O. antarctica had more unique genes than A. 

borkumensis. Furthermore, the percentage of shared genes was low in all 

the categories. This was accentuated in the ORFs devoted to transport 

(7%). However, ribosomal RNAs and ligases presented significant more 

shared genes than the average (73.3% and 49.5% respectively). Another 

remarkable percentage was the low unique ribosomal RNAs found in A. 

borkumensis (2.7%). On the contrary, its ORFs related with the 

membrane proteins with no counterparts in O. antarctica were 

significantly high (61.5%). Finally, O. antarctica had a great number of 

unique sensors (83.9%) and transcriptional regulators (65.1%). 
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Figure 4.8. Functional classification and distribution of genes with 

known function in A. borkumensis and O. antarctica. 
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 A. borkumensis Shared O. antarctica 

Oxidoreductases 166 77 207 
Transferases  166 118 264 
Hydrolases  142 84 227 
Lyases  22 36 49 
Isomerases  22 24 25 
Ligases 38 107 71 
Ribosomal RNA 2 55 18 
Transport  137 23 167 
Regulators  32 12 63 
Binding proteins 18 11 52 
Membrane  40 4 21 
Transcription 72 3 140 
Lipoproteins  15 3 20 
Redox  11 2 21 
Cytochromes 11 2 18 
Receptors  13 1 18 
Sensors  9 1 52 
Resistance  5 1 20 
Transfer RNA  1 1 51 
Secretion  15 0 17 
Flagel 1 0 41 

 

 
Table 4.3. Distribution of unique or shared functional genes of A. 

borkumensis and O. antarctica. The genes were classified by functional 

pathways. 
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Figure 4.9. Distribution and percentage of unique and shared genes with known 

functions in A. borkumensis and O. antarctica. 
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4.4 Discussion 
 

Genomic features 
 
DNA walks and GC skews are characterized by the so-called mutational 

strand bias (Lobry, 1999). Many microorganisms show a preference for 

G over C and T over A in the leading strand and C over G in the lagging 

strand because of several factors including proofreading efficiencies for 

the different types of DNA polymerases (Rocha, 2002; Worning et al., 

2006) or the differential mutation in both strands as the result of 

asymmetry inherent
 
to the DNA replication mechanism. A simple model 

for explanation is based on the spontaneous deamination of cytosine that 

induces mutations from C to T. The rate of this deamination is highly 

increased in single leading strand during DNA replication. This, 

combined with natural
 
selection, leads to an observed base distribution 

that depends
 
in part on the mutational pattern and in part on selection. It 

has been reported that the rates of spontaneous mutation are greatly 

accelerated and the strand asymmetries are minimized as a consequence 

of adaptations to extreme environments like low temperatures (Lindahl, 

1993). This could be a possible explanation for the weaker strand bias 

and the consequent higher scaling exponents or long-range correlation in 

O. antarctica compared with A. borkumensis. Moreover, the difference in 

genome size between both genomes may be due to processes, such as 

gene duplication and gene lateral transfer. Both events add repetitive 

structures with different lengths inside the genomes. The consequence of 

these processes in the genome may be both, an increase of the genome 

size and a decrease of the strand bias according to previous published 

results (García et al., 2008). Thus, it seems like O. antarctica was more 

affected by spontaneous mutation, duplication and insertion events than 

A. borkumensis. Additionally, A. borkumensis harbored a smaller number 

of mobile genetic elements such as transposons and insertions elements 

(Schneiker et al., 2006) which might also explain the differences in 

strand bias and genome size. This paucity of mobile elements may be a 

consequence of the counter selection against variants with increased 

numbers of mobile elements. 

 

The GC contents of A. borkumensis (54.73%) and O. antarctica 

(42.16%) reached a considerable variation. Nevertheless, both genomes 

did not fit the reported assumption that large genomes have a tendency to 

be richer in GC due to the fact that random mutations are mainly from C 
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to T and from G to A and the lack of repair mechanism in reduced 

genomes (Heddi et al., 1998; Moran, 2002). This disagreement could be 

explained by some different causes. On the one hand, an unbalanced 

supply of the essential external precursors for nucleic acid synthesis and 

repair since both bacteria grow in different environment. While A. 

borkumensis is ubiquitous in marine environments, O. antarctica mainly 

grows in a specific habitat such as Antarctic Ocean. On the other hand, a 

nucleotide bias in the mutational mechanism caused by a stressed 

psychrophilic lifestyle of O. antarctica might be the cause of the GC 

variation. However, the relation between GC content and Topt was in 

agreement with the previous reported tendency of GC content to decrease 

with the temperature when comparing thermophilic and psychrophilic 

microorganisms (García et al., 2008). Furthermore, O. antarctica fell into 

the previously reported cluster of psychrophiles when GC content and 

scaling exponent values were taken into account (Fig. 4.2), whereas A. 

borkumensis was placed in a GC content transition area between 

thermophiles and psychrophiles. Thus, adaptation to low temperatures 

would imply a structural modification in microbial genomes concerning 

the GC content. 

 

The phylogenetic relationship between both bacteria is summarized in 

Fig. 4.10 and in the dot plot from Fig. 4.3. Despite the relative 

phylogenetic proximity between both bacteria, O. antarctica forms a 

distinct phyletic line within the γ-proteobacteria, with less than 89.6% 

sequence identity in the 16S rRNA gene sequence to their closest 

relatives (Yakimov et al., 2003). The homologous sequences arose in a 

discontinuous diagonal in the dot plot from the origin of replication. This 

pattern indicates that both bacteria shared a common ancestor, although 

the high number of interruptions on the diagonal is consequence of a long 

time of independent evolution with continued rearrangements occurring 

after their divergence. The reverse diagonal refers to fragments that were 

located in opposite places inside each of the two genomes with the 

peculiarity that the distance from the origin of replication to each 

fragment was the same. This distribution may be possible thanks to 

arrangement events occurred during evolution.  
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Figure 4.10. Estimated phylogenetic position of A. borkumensis and O. antarctica 

among the most closely related γ-proteobacteria, derived from 16S rRNA gene 

sequence comparisons. The three was constructed by the neighbour-joining method 

and nucleotide substitution rates and computed by Kimura’s two-parameter model.  

 

 

 

We concluded therefore that although the order of these fragments and its 

genes were not conserved in both bacteria, the quantity of proteins 

produced from the genes involved in these transpositions is similar due to 

its equidistant position from the origin. Although an important number of 

genes may be implicated in arrangement events, the quantity of proteins 

produced from them was highly conserved because the significant high 

number of points in the reverse diagonal as showed in Fig. 4.4 and 4.5. 

 

 

 

 

 



Discussion 

 

109 

Metabolic and functional comparative genomics 
 
In concordance with its higher genome size, O. antarctica presented, in 

general, significant higher number of unique genes than A. borkumensis, 

many of which probably arose either via gene duplication or lateral 

transfer in order to adapt to extreme environmental conditions and may 

account for some of the observed physiological differences between the 

two strains. These unique genes might be excellent candidates to analyze 

the adaptation of bacteria to low temperatures. Furthermore, this result 

was also in agreement with the supposed higher genomic diversity of 

extremophilic microorganisms. The exceptions were the genes coding for 

membrane proteins, which were more abundant in A. borkumensis and 

the genes involved in energy metabolism that were equivalent in both 

microorganisms.  

 

Regarding the distribution of metabolic genes in individual pathways, we 

found similar percentages between both bacteria (Fig. 4.6) and some 

differences in the shared and unique metabolic genes (Fig. 4.7). Thus, 

they appeared to have similar percentages of orthologs devoted to the 

carbohydrate metabolism and, as consequence, to the central metabolism 

as corresponded to related microorganisms. The amino acid metabolism 

was also conserved since both bacteria presented all of the de novo 

pathways to synthesize the 20 essential amino acids (Schneiker et al., 

2006; Yakimov et al., 2003). Moreover, glycan and energy metabolism 

harbored similar percentages of genes in both genomes. In the case of 

glycan metabolism, the small amount of shared genes suggests a marked 

difference of lipopolysaccharides and pepdidoglycans in the composition 

of the cell envelope, whereas the entire energy metabolism pathways 

were shared by both bacteria, indicating a high level of conservation in 

the genes involved in pathways as oxidative phosphorilation and nitrogen 

metabolism. A. borkumensis and O. antarctica mainly differ from one 

another with respect to the metabolism of cofactors and vitamins, 

nucleotide and lipid metabolism and transport. Surprisingly, A. 

borkumensis lacked unique genes involved in cofactors and vitamins 

metabolism suggesting that these pathways were highly conserved in the 

strains. Furthermore, one third of the genes were unique in O. antarctica 

indicating that a psychrophilic environment is more exigent with respect 

to these components.  
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The nucleotide metabolism also showed a significant difference between 

genomes. Thus, less than a half of the genes were shared and most of 

them were unique in O. antarctica. The evident lack of genes of A. 

borkumensis involved in nucleotide metabolism could be compensated 

by its identified transporters of a wide variety of substrates which were 

suggested to be involved in the import of nucleic acid precursors, 

including ATP-Binding Cassette (ABC) and Major Facilitator 

Superfamily (MFS) primary active transporter (Pollack, 2002). 

Moreover, pyrimidine nucleotides may be produced by alternate routes 

from the corresponding nucleosides using a bifunctional enzyme —the 

cytidine/uridine kinase— and therefore, several genes could be removed 

without having loss of functionality. 

 

As expected, lipid metabolism presented some differences between 

bacteria. The number of shared genes was less than a half and both 

genomes owned an important part of unique genes. Some explanations 

for this distribution could be that the genetic organization of the 

glucolipid biosynthesis still remains unclear in both bacteria. Moreover, 

psychrophilic marine bacteria modify their membrane lipids in order to 

adapt to low temperatures. Thus, psychrophiles are characterized by lipid 

cell membranes chemically resistant to the stiffening caused by extreme 

cold which protect their DNA even in temperatures below water's 

freezing point. It has been reported that the ratio of total unsaturated 

versus saturated fatty acids in the membrane lipids of some psychrophilic 

marine bacterial increased when the microorganism was grown at 

decreasing temperatures. This regulatory capacity appears to be 

functional in maintaining membrane fluidity at typical low sea 

temperatures. Particularly, O. antarctica modified the level of 

unsaturated fatty acids in order to achieve a homeostatic adaptation of the 

membrane in terms of its viscosity (Yakimov et al., 2003). Additionally, 

the modification of the phospholipid content in psychrophilic bacteria in 

response to a decreasing growth temperature has been described (Takada 

et al., 1991). For instance, phosphatidylethanolamine was replaced 

completely by a phosphoglycolipid and phosphatidylserine at low 

temperatures, neither of which was present at higher temperatures. In 

summary, the principal fatty acid in A. borkumensis were 16:0 and 18:0 

(Yakimov et al., 1998), whereas in O. antarctica the most abundant were 

16:0, 16:1 and 18:1 (Yakimov et al., 2003). 

 

http://en.wikipedia.org/wiki/DNA
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Both bacteria degrade a large range of alkanes. Presumably, the gene 

clusters that confer the assimilation of aliphatic hydrocarbons at A. 

borkumensis, are localized in two genome islands which were probably 

acquired from an ancestor of the Yersinia lineage (Reva et al., 2007). The 

alkane degradation pathway of A. borkumensis includes hydroxylases, 

oxidoreductases and dehydrogenases. However, the key enzymes of 

alkane catabolism, alkane hydroxylase and alkane monooxygenase were 

not detected in O. antarctica, which suggests a certain novelty in the 

structure
 
of those enzymes (Yakimov et al., 2003). The significance of 

lacks will require further functional analyses. 

 

Despite the lack of carbohydrate transporters in both strains, the genes 

devoted to transport showed a high specificity since the great number of 

unique genes. This result highlighted the important role played by 

transporters in the habitat adaptation. The differences were not only the 

quantity of transporters found in each genome, but also the substrate 

specificity. For instance, A. borkumensis encodes genes for a broad range 

of transport proteins, within them a high number of permeases. Many of 

the transport systems found in both bacteria were consistent with their 

marine lifestyle, like Na
+ 

pumps, sodium/protons antiporters as well as 

several Na
+
 dependent symporters (Schneiker et al., 2006). Moreover, A. 

borkumensis presented transport systems that were not detected in O. 

antarctica like the system for the uptake of N and P mediated by a high-

affinity ABC system or specific transport system for various 

oligoelements such as molybdenum, zinc, magnesium or cobalt. 

 

Regarding the classification of all the genes according to its functionality, 

we found similar distribution of percentages between both bacteria (Fig. 

4.8). Looking in more detail the distribution of genes, we appreciated, in 

general, a poor pool of conserved genes (Fig. 4.9). This might be due in 

part, to the great quantity of hypothetical genes included in the analysis. 

The genes devoted to lyases, isomerases, ligases and ribosomal RNA 

activities were the most conserved within the whole proteins. Lyase and 

ligase enzymes catalyze the joining and breaking, respectively, of various 

chemical bonds like carbon–oxygen, carbon–sulfur or carbon–nitrogen, 

therefore they should be expected to be conserved. Likewise, isomerases 

were supposed to be conserved as they catalyse only intramolecular 

structural rearrangement of isomers. In the case of ribosomal rRNAs, 

most of them were shared by both genomes since they are the central 

components of the ribosome and its function is to provide a mechanism 

http://www.biology-online.org/dictionary/Structural
http://www.answers.com/topic/isomer
http://en.wikipedia.org/wiki/Ribosome
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for decoding mRNA into amino acids and to interact with the tRNAs 

during translation. Furthermore, bacterial ribosomal rRNAs includes 16S, 

23S and 5S rRNA genes which are typically organized as operon and the 

phylogenetic relatedness of both bacteria was usually deduced after 16S 

rRNA gene similarity. 

 

Genes devoted to oxidoreductases, transferases and hydrolases were 

poorly conserved. With regard to oxidoreductases —which play 

important roles in hydrocarbon catabolism, among others—, some 

differences have been noticed between both genomes. For instance, A. 

borkumensis harbors various oxidoreductase genes clustered together or 

in operon-like structures (Schneiker et al., 2006), whereas in O. 

antarctica such operons were not described. Moreover, as discussed 

above, two key oxidoreductases like alkane hydroxylase and alkane 

monooxygenase were not detected in O. antarctica. However, they are 

likely to exist in a novelty structure,
 
which agrees with the great number 

of unique oxidoreductases. In turn, several transferases seemed to take 

part on specific functions in each bacterium. Thus, transferases of A. 

borkumensis were reported to participate, amongst others, in 

biosurfactant production as well as formation of biofilms. On the 

contrary, neither the formation of biofilms nor the production 

biosurfactant by O. antarctica have been still published. The high unique 

hydrolases found could be related with the great variety of subclasses 

within this group of enzymes. No additional information about these 

enzymes for both bacteria has been reported before.  

 

Finally, the discrepancy showed in the distribution of the remaining 

functional genes might be a consequence of the differences in the 

adaptation to specific habitats, the resistance factors or the physiological 

features. For instance, A. borkumensis, that thrives mostly in the upper 

layers of the ocean, hold a relatively low number of cold-shock proteins 

as well as several systems for detoxification of compounds like arsenate, 

mercury and other heavy metals (Schneiker et al., 2006), whereas O. 

antarctica is supposed to harbor far more cold-shock proteins as 

psychrophilic microorganism and any detoxification system has been 

described. Moreover, flagella is only present in A. borkumensis. 

 

In summary, the differences in the optimal growth temperature between 

both bacteria lead to several genomic discrepancies. Adaptation to low 

temperatures implies lower strand asymmetries and higher scaling 

http://en.wikipedia.org/wiki/MRNA
http://en.wikipedia.org/wiki/Amino_acid
http://en.wikipedia.org/wiki/TRNA
http://en.wikipedia.org/wiki/Translation_(genetics)
http://en.wikipedia.org/wiki/16S_ribosomal_RNA
http://en.wikipedia.org/wiki/23S_ribosomal_RNA
http://en.wikipedia.org/wiki/Operon
http://forum.wordreference.com/showthread.php?t=486607
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exponents as showed by the DFA. The variation of GC contents could be 

explained by an unbalanced supply of the essential external precursors 

for nucleic acid synthesis and repair since both bacteria grow in different 

environment. Furthermore, a nucleotide bias in the mutational 

mechanism caused by a psychrophilic lifestyle might cause a GC 

decrease. The higher genomic diversity of extremophilic microorganisms 

was reflected by the higher size and the significant higher number of 

unique genes of O. antarctica. Some of these genes probably arose via 

gene duplication or lateral transfer in order to adapt to extreme 

environmental conditions. As expected, lipid metabolism presented some 

differences since psychrophilic marine bacteria modify their membrane 

lipids in order to adapt to low temperatures. For instance, the ratio of 

total unsaturated versus saturated fatty acids in the membrane lipids 

increases when the microorganism growths at low temperatures.  
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5.1 Introduction 
 
Alcanivorax borkumensis SK2 is a gram-negative rod-shaped marine     

γ-proteobacterium that uses hydrocarbons as sole or principal sources of 

carbon and energy (Yakimov et al., 1998). It belongs to the genus 

Alcanivorax, a group of slow-growing marine hydrocarbonoclastic        

—hydrocarbons breaker— bacteria that preferentially use petroleum-

derived aliphatic and aromatic hydrocarbons as carbon and energy 

sources. This bacterium is found in many marine habitats worldwide 

including the Mediterranean Sea, the Pacific Ocean, the Japanese and 

Chinese Seas and the Arctic Ocean (Golyshin et al., 2003; Harayama et 

al., 1999; Kasai et al., 2001; Röling et al., 2004; Syutsubo et al., 2001; 

Yakimov et al., 2005). It is present in low numbers in unpolluted 

environments, but becomes the dominant microbe in oil-polluted waters 

(Hara et al., 2003; Harayama et al., 1999; Kasai et al., 2001; Yakimov et 

al., 2005). The ubiquity and unusual physiology of A. borkumensis 

strongly suggest a pivotal role for hydrocarbons removal from polluted 

marine systems. A. borkumensis has been the first marine petroleum oil-

degrading bacterium to be sequenced (Schneiker et al., 2006). 

 

The relationship between the genotype and the phenotype is complex, 

highly non-linear and cannot be predicted from simply cataloguing and 

assigning gene functions to genes found in a genome. Comprehensive 

V 

A genome-scale metabolic model 
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understanding of cellular metabolism requires placing the function of 

every gene in the context of its role in attaining the set goals of a cellular 

function. This demands the integrated consideration of many interacting 

components. Mathematical modelling provides us a powerful way of 

handling such information and allows us to effectively develop 

appropriate frameworks that account for these complexities. Constraint-

based metabolic models have been constructed for many 

microorganisms, including Haemophilus influenzae (Schilling and 

Palsson, 2000), Methylobacterium extorquens (Van Dien and Lidstrom, 

2002), Helicobacter pylori (Schilling et al., 2002), Escherichia coli 

(Reed and Palsson, 2003; Feist et al., 2007), Mannheimia 

succiniciproducens (Hong et al., 2004), Staphylococcus aureus (Becker 

and Palsson, 2005; Heinemann et al., 2005), Lactococcus lactis (Oliveira 

et al., 2005), Methanosarcina barkeri (Feist et al., 2006), Bacillus subtilis 

(Oh et al., 2007), Pseudomonas aeruginosa (Oberhardt et al., 2008) and 

Pseudomonas putida (Nogales et al., 2008). In an attempt to capture 

some of the cellular metabolism complexities in Alcanivorax 

borkumensis, we present here a development of a genome-wide 

quantitative framework based on constraint-based modelling of its 

metabolic and transport network using one specific metabolic modelling 

approach named Flux Balance Analysis (FBA) (Kauffman et al., 2003). 

Drawing on annotated genome sequence data, biochemical information 

and strain-specific knowledge, we have made a reconstruction of this 

network, which currently comprises a total of 487 reactions, of which 30 

are transport related. 

 

The construction of comprehensive metabolic maps describes the 

metabolic capacities of A. borkumensis within the scope of given 

environmental constraints and provides a framework both, to study the 

consequences of alterations in the genotype and to gain insight into the 

phenotype–genotype relationship. Moreover, this analysis defines the 

entire metabolic space of the possible flux distributions and metabolic 

interactions within the network. A direct comparison of phenotypic 

spaces under different conditions will help in identifying evolutionary 

features and genetic plasticity. Such in silico models can be used as well 

to choose the most informative knockouts and to rationally design 

experiments relevant for the elucidation of the behavior of this 

environmentally important marine bacterium. For instance, the modelling 

of carbon fluxes versus those of nitrogen and phosphorus through a 

virtual metabolic network based on the genome sequence allowed us the 



Introduction 

 

119 

discovery of conditions in which the excess of carbon available in 

hydrocarbons was not directly translated into bacterial biomass. In fact, 

the optimal environmental agent would be the one that expresses a 

maximum of catalytic activity with a minimum buildup of biomass. 

Thus, carbon overflow is rationally diverted to the production of 

components like triacylglycerol, wax esters (Kalscheuer et al., 2007) or 

polyhydroxyalkanoates (bioplastics), an activity for which A. 

borkumensis SK2 is genetically well endowed (Sabirova et al., 2006a). 

The metabolic model paves the way to optimize such carbon conversion 

processes. We present here the results and implications of this work for 

biotechnological and environmental applications, as well as for the 

metabolomic comparison of hydrocarbonoclastic bacteria. 

 

 

 

 

5.2 Material and methods 
 

Reconstruction of the metabolic network 
 
The genomic sequence and annotation data of A. borkumensis strain SK2 

(Schneiker et al., 2006) was used to assist in reconstructing its metabolic 

network. This information was complemented with biochemical 

information and cell physiology data in order to construct the set of all 

the specific reactions of the microorganism. The detailed process of 

metabolic reconstruction and model development has been previously 

reviewed (Covert et al., 2001). Briefly, the annotation of all the open 

reading frames (ORFs) of A. borkumensis pertaining to metabolic 

enzymes or membrane transporters were used as a framework on which 

translated metabolic proteins were assigned to form gen–protein–reaction 

(GPR) assignments. Most GPR assignments were made from the genome 

annotation and the model was manually constructed on a pathway basis. 

GPR associations were also directly made from biochemical evidence 

presented in journal publications and reviews. Next, biochemical 

database KEGG (Kanehisa et al., 2002), the previous constraint-based 

model constructed for the related microorganism E. coli (Reed and 

Palsson, 2003) and additional information from the literature pertaining 

to the phylogenetic related Pseudomonas putida were used as general 

guides for pathways reconstructions. The functionality of each gene in 

the genome of A. borkumensis was examined manually to find additional 
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reactions that were not present in the KEGG database. The fact that a 

reaction was present in any related microorganism or genomic data 

suggested that the reaction also occurs in A. borkumensis and, 

consequently, it was included in the model. 

 

After assembling the network based on genomic data, missing functions 

were noted using two approaches. On the one hand, likely reactions were 

added to the model based on the research of information from the 

literature concerning the characterization of precise biochemical 

functions and the physiological data regarding A. borkumensis and 

related microorganisms. On the other hand, the BLAST algorithm 

(Altschul et al., 1997) was implemented to infer gene function for 

enzymes needed to complete pathways where no gene could be found in 

the A. borkumensis annotation. In order to determine if a not found gene 

exists in A. borkumensis for a given function, BLAST analysis was run 

against its genome annotation with the information of the missing 

enzyme from E.coli and P. putida. A reaction was putatively associated 

with a gene based on homology searches provided by BLAST and the 

annotation information for that gene from KEGG database. Only gene 

assignments with a high level of sequence similarity were selected for 

inclusion in the metabolic genotype. A BLAST e-value of 1e–04 was 

considered sufficient criterion to make an association when there were no 

close homologs. Each reaction included in the model represents the best 

determination of the biochemical reactions that the microorganism is 

believed to be capable of carrying out based on available data.  

 

All of the reactions of the network were elementally balanced and were 

assigned either reversible or irreversible. Reversibility was determined 

from literature when the enzyme was characterized whereas reversibility 

of not characterized enzymes was assigned from thermodynamic 

considerations.  

 

The model was created and maintained using ToBiN (Toolbox for 

Biochemical Networks, http://www.lifewizz.com). 

 

 

 

 

 

http://www.lifewizz.com/
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Constraint-based modelling and FBA 
 
Forty-nine metabolites were selected as required biomass constituents 

(supplementary file 5.1). Because no thorough biomass composition has 

been published for A. borkumensis, the relative production of metabolites 

required for growth was taken to be similar to that published for the 

related gram-negative γ-proteobacterium E. coli (Reed and Palsson, 

2003). An output biomass reaction —exchange flux— was created that 

utilized these constituents in equal stoichiometric ratios to be used as a 

means to assess the ability of the network to produce all of the required 

demands based on particular substrate availability conditions. The 

complete ability of the network to produce all of the biomass constituents 

led to a positive flux value for this objective reaction. Biomass 

components were added to the objective function individually. Thus, 

when a simulation resulted in a positive net flux through the biomass, a 

subsequent component was added to the biomass and the simulation was 

run. When a biomass component added resulted in no flux, the network 

was manually updated. This process was continued until all of the 

biomass constituents in supplementary file 5.1 were included.  

 

The reconstructed metabolic network and the defined biomass function 

allowed the calculation of network properties (including stoichiometry, 

thermodynamics and enzyme capacity) and optimal growth phenotypes 

through the use of Flux Balance Analysis (Appendix C).  

 

 

 

Minimal medium determination 
 
Each of the extracellular metabolites available to the metabolic network 

(alkane, NO3, SO4, O2, Pi) was individually removed to determine if they 

were required for producing all of the biomass constituents. This 

determination was accomplished by constraining the exchange flux or 

uptake reaction of the metabolite to zero and optimizing for the biomass 

objective reaction. After thorough examination a set of metabolites was 

arrived at for which the removal of any of them would render the 

network unable to produce the biomass demands. This set of metabolites 

constitutes a defined minimal medium required for the in silico model to 

support growth of A. borkumensis. 
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Deletion studies 
 
All the reactions in metabolic network were examined to determine 

whether they were essential to the model. The constraints on the 

particular reaction were set to zero in order to assess the consequences of 

deleting a reaction from the S matrix (see Appendix C). A simulation was 

then run to see if the network could support growth by optimizing for the 

biomass objective reaction without such reaction. If the network could 

not support growth, then the deleted reaction was deemed essential under 

the particular environment and medium conditions used in the 

simulation. 

 

 

 

 

5.3 Results and discussion 
 

Basic network properties 
 
The metabolic reconstruction of A. borkumensis SK2 was generated 

using the procedure described in materials and methods. The model 

contains 462 metabolic genes associated with 487 reactions and 478 

distinct metabolites. Basic properties of the reconstructed network are 

summarized in Table 5.1. The entire reaction and metabolite list were 

included in the supplementary files 5.2 and 5.3, respectively. Up to 52 

reactions were included because either they have been reported in prior 

biochemical and physiological literature, or they were required to fill a 

gap in the reconstructed network (see materials and methods and 

supplementary file 5.4). These reactions were consequently unassociated 

with any gene product in the genome annotation. The reactions in A. 

borkumensis were subdivided into 10 functional categories based on the 

major metabolic roles of the cell. These subsystems included alkane 

(hydrocarbons) degradation, amino acid biosynthesis and degradation, 

carbohydrate metabolism, energy metabolism, glycan biosynthesis, lipid 

and cell envelope biosynthesis, vitamin and cofactor biosynthesis, 

nucleotide biosynthesis and degradation, transport and xenobiotics 

degradation (see Table 5.2). The largest number of reactions (120) 

involved amino acid metabolism and biosynthesis, probably because A. 

borkumensis contains all of the pathways required to synthesize de novo 



Results and discussion 

 

123 

the 20 common amino acids. A total of five reactions were not assigned 

to any subsystem because no clear information about them was found. 

Detailed information about subsystems can be consulted in 

supplementary file 5.2. 

 

 

 
 

Annotated genes 3073 
Metabolic processes 487 

Irreversible 354 
Reversible 136 

Metabolites 478 
Enzymes 462 

ORF 410 
added genes 52 
 

Table 5.1. Main characteristics of the 

reconstructed metabolic network of A. 

borkumensis. 
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Metabolism Reactions 

Alkane degradation                  4 

Amino acid metabolism 
Alanine and aspartate metabolism 
Arginine and proline metabolism 
Arginine, putriscine and spermidine biosynthesis 
Cysteine metabolism 
Glutamate metabolism 
Glutathione biosynthesis 
Glycine and serine metabolism 
Histidine metabolism 
Methionine metabolism 
Tyrosine, tryptophan and phenylalanine metabolism 
Threonine and lysine metabolism 
Valine, leucine and isoleucine metabolism 

             120 
                4 

20 
1 
9 
5 
1 
8 

10 
6 

20 
12 
24 

Carbohydrate metabolism 
Glyoxylate and decarboxylate metabolism 
Butanoate metabolism 
Propanoate metabolism 
Glycolysis 
Alternate carbon metabolism 
Anaplerotic reactions 
Citrate Cycle (TCA) 
Methylglyoxal metabolism 
Pentose Phosphate Cycle 
Pyruvate metabolism 
Inositol metabolism 

              73 
6 
3 
1 

16 
17 
6 

10 
2 
7 
4 
1 

Energy metabolism 
Nitrogen metabolism 
Methane  metabolism 
Oxidative phosphorylation 

            25 
4 
2 

19 

Glycan Biosynthesis 
Cell envelope biosynthesis 
Lipopolysaccharide biosynthesis 

            36 
33 
3 

Lipid metabolism 
Biosynthesis of steroids 
Fatty acid metabolism 
Isoprenoid biosynthesis 
Membrane lipid metabolism 
Synthesis and degradation of ketone bodies 

            63 
7 

21 
1 

32 
2 
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Metabolism Reactions 

Metabolism of cofactors and vitamins 
Cofactor and prosthetic group biosynthesis 
Folate biosynthesis 
NAD biosynthesis 
Nicotinate and nicotinamide metabolism 
Porphyrin and chlorophyll metabolism 
Quinone biosynthesis 
Riboflavin biosynthesis 
Tetrapyrrole biosynthesis 
Thiamin (vitamin B1) biosynthesis 
Vitamin B6 (pyridoxine) biosynthesis 

            88 
53 
12 
3 
1 
5 
6 
2 
1 
2 
3 

Nucleotide metabolism  
Nucleotide salvage pathways 
Purine and pyrimidine biosynthesis 

            61 
37 
24 

Transport 
ABC transporters 
Membrane transport 
PTS 

            30 
1 

15 
14 

Xenobiotics degradation               2 

Unassigned               5 

 

 
Table 5.2. Distribution of reactions in the network of A. borkumensis. The network was 

divided into 10 basic submetabolisms, each of them with a variable number of 

pathways.  

 

 

 

In agreement with the fact that A. borkumensis uses hydrocarbons as 

carbon and energy sources, neither glucose nor monomeric sugar 

membrane transports systems were identified within the genomic 

annotation. Moreover, there were no hexokinase enzymes to introduce 

the glucose into the glycolysis through glucose-6-P. Alkanes were used 

as hydrocarbon components for simulation purposes. The results 

presented here were achieved using octadecane as specific alkane, similar 

results were obtained when using other alkanes (data not shown). 

 

The network has a significant number of dead-end metabolites. These 

dead-ends are compounds that were either only produced or only 

consumed by reactions in the network. The hypotheses regarding the 
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presence of a dead-end metabolite in a reconstructed network have been 

reviewed previously (Becker and Palsson, 2005) and may be mainly 

motivated for missing enzymes or reactions. Taking into account the fact 

that FBA analysis must be done under steady state conditions, the 

accumulation or depletion of any compound cannot occur in the network. 

Thus, any reaction involving dead-end metabolites cannot be used in a 

computed network state. The total number of dead-end compounds in the 

network is 129 (see supplementary file 5.5), being 101 the reactions 

involved in these dead-end metabolites (see supplementary file 5.6). This 

number of reactions is similar to reconstructions previously done [e.g., 

Staphylococcus aureus, (Becker and Palsson, 2005)]. All of these 

reactions have an associated gene and were included because of genetic 

evidence that they are present in A. borkumensis. Such number of dead-

end metabolites may be due in part because this is the first approach of A. 

borkumensis reconstruction. New additions to the model will likely close 

some of these gaps. 

 

A reaction representing biomass formation, consisting of 49 metabolites 

required for cellular growth, has been defined (supplementary file 5.1). 

Key components of this reaction include amino acids, nucleotides, lipids, 

vitamins, cofactors, solutes and cell wall constituents. Because data 

describing the biomass composition of A. borkumensis could not be 

located in the literature, data from the phylogenetic related                      

γ-proteobacterium E. coli was used where necessary. 

 

 

 

Validation of the model 
 
In order to validate the reconstructed metabolic network of A. 

borkumensis, computational predictions were compared with the 

available experimental results (Sabirova et al., 2006a and 2006b). Thus, 

comparisons between in silico predicted results and experimental data 

concerning biomass and polyhydroxybutyrate (PHB, the four carbon 

units polyhydroxyalkanoate) formation of A. borkumensis growing on 

both, pyruvate and octadecane carbon sources are showed in Table 5.3. 

Experimental biomass was calculated plotting optical density 

measurements under 600 nm wavelength versus time (Sabirova, 2006). 

Te considered time of reference for the biomass formation was 24 hours. 

The correlation factor k was then used to convert optical density units 
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into biomass units (gDW/l). The correlation factor, which is an intrinsic 

parameter of each prokaryotic string, was determined by dividing the cell 

dry weight by the optical density. Since the correlation factor in A. 

borkumensis has not been previously determined, we used the average 

from 6 different prokaryotic species: Escherichia coli (Nanchen et al., 

2006; Sauer et al., 1999), Bacillus subtilis (Fischer and Sauer, 2005; 

Nijland et al., 2007; Tännler et al., 2008), Corynebacterium glutamicum 

(Lindner et al., 2007), Bacillus licheniformis, Bacillus pumilus and 

Bacillus amyloliquefaciens (Tännler et al., 2008). The resulted 

correlation factor averaged 0.4283. Because the PHB biosynthesis 

implies less biomass formation as PHB is a dead-end component and is 

not a biomass metabolite, optimizing the network for biomass formation 

causes null PHB formation. Thus, we set the network for non-zero PHB 

production rate; first, by fixing the biomass to the maximum value given 

by experimental data (i.e. 4.283 gDW/l) and then optimizing for PHB 

formation (i.e. 0.043 M PHB), and second, by fixing the PHB to 

experimental value (i.e. 0.0234 µM PHB) and then optimizing for 

biomass formation (i.e. 0.64 gDW/l). Regarding the biomass formation, 

the results were quite similar when A. borkumensis grew on pyruvate (the 

model predicted 0.64 gDW/l and the experimental value was 0.4283 

gDW/l), whereas the growth under octadecane showed some differences 

(1.52 gDW/l versus 0.2142 gDW/l). This discrepancy could be caused by 

both, the specific high C/N ratio conditions used to growth the samples in 

the laboratory and experimental measurements errors in the optical 

density of the samples at a wavelength of 600 nm. Moreover, the 

predicted biomass of A. borkumensis was based on an averaged 

correlation factor from different bacteria. Thus, the knowledge of the 

specific correlation factor of A. borkumensis would allow a more 

accurate prediction of the biomass formation. The direct comparison of 

the PHB formation was not possible because experiment data referred to 

the polymer of PHB ([C4H6O2]n), whereas the in silico calculated PHB 

formation values referred to the monomer of PHB, the hydroxybutyrate. 

Logically, polymer molar concentration value was lower than the molar 

concentration of the monomer. Thus, the molar concentration of the PHB 

polymer was within the micromolar magnitude whereas the monomer 

concentration was within the molar range. Comparison between the 

model and experimental PHB formation was possible taking into account 

the percentage of PHB increment when growing with octadecane versus 

pyruvate as carbon source. Thus, the increment ratio of the polymer PHB 

for experimental data was 2.76 (0.0647/0.0234) while the predicted ratio 
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increment for the monomer PHB had a similar value, 2.35 (0.101/0.043). 

This discrepancy might be due to the difficulty to experimentally 

quantify the PHB bacterial production. 

 

 

 

Substrate 
Biomass 

 model (gDW/l) 
Biomass  

exp. (gDW/l) 
PHB yield 
model (M) 

PHB yield 
exp. (μM) 

0.23 M pyr 
0.06 M oct 

0.64 
1.52 

0.4283 
0.2142 

0.043 
0.101 

0.0234 
0.0647 

 
Table 5.3. Comparison between computational predictions and experimental data for 

biomass and PHB production grown on pyruvate and octadecane as carbon sources. 

 

 

 

Further comparisons between computational predictions and 

experimental data were carried out using more experimental results 

(Sabirova et al., 2006b). The experimental results presented some 

different expressed genes in A. borkumensis growing on pyruvate and 

octadecane as carbon sources. We run the network with the carbon 

concentration indicated in the published results and highlighted the 

differences in gene expression. The optimized objective function for 

calculating the predicted fluxes was, in this case, the biomass formation. 

Similar trends regarding the up- and down-expression were shown 

between computed and experimental results (Table 5.4). The only 

exception was the acetyl-CoA carboxylate which showed slight 

differences between prediction (2.38 times up-expressed in alkanes) and 

experimental result (1.9 times down-expressed in alkanes). As expected, 

the model predicted that oxidation of alkanes pathway and fatty acid 

oxidation complex were only expressed in alkanes in agreement with 

experimental results. Moreover, prediction of fatty acid biosynthesis 

genes up-expression in alkanes presented close values to that of 

experimental data. One specific and worth pathway for comparison 

purposes between bacterial grown on pyruvate and alkane was the 

glyoxylate bypass (Sabirova et al., 2006b). Briefly, during growth on 

alkanes as the sole carbon source, bacteria must generate all cellular 

precursor metabolites from acetyl-CoA. One mechanism to do this is the 

short-circuiting of the citric acid cycle through activation of the 

glyoxylate bypass, which routes acetyl-CoA to phosphoenolpyruvate via 
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isocitrate, glyoxylate and malate, by means of isocitrate lyase and malate 

synthase. Succinate produced via glyoxylate bypass is converted to 

malate by succinate dehydrogenase. Malate is converted to oxaloacetate 

by malate dehydrogenase or is used by malic enzyme in gluconeogenesis 

to produce pyruvate. Pyruvate is then converted by phosphoenolpyruvate 

synthase to produce phosphoenolpyruvate. The incomplete TCA cycle is 

associated with the alkane-induced down-regulation of isocitrate 

dehydrogenase, 2-oxoglutarate dehydrogenase and succinyl-CoA 

synthetase. The glyoxylate bypass route, induced by alkanes, adapts the 

cell to produce key cellular precursor metabolites directly from the fatty 

acids produced by alkane oxidation. The predicted data, regarding the 

enzymes involved in the glyoxylate bypass, were also in agreement with 

the experimental results.  

 

These results reflected the potential of the reconstructed network to 

simulate different growth conditions and helped to validate the metabolic 

model. 

 

 

 

Metabolism Gene 
Differential 

model 
Differential 
experiment 

Terminal oxidation of 
alkanes 

Alcohol dehydrogenase 
Aldehyde dehydrogenase 
Alkane hydroxylase 

A 
A 
A 

A 
A 
A 

Fatty acid oxidation Fatty acid oxidation complex A A 

Fatty acid and 
phospholipid 
biosynthesis 

Acetyl-CoA carboxylate 
Fatty acid biosynthesis 
Cardiolipin Synthase 

2.38 up 
2.38 up 

A 

1.9 down 
6.4 up 

A 

Amino acid biosynthesis Dihydroxy-acid dehydratase 2,38 up A 

TCA, glyoxylate bypass 
and gluconeogenesis 

Isocitrate dehydrogenase 
2-oxoglutarate dehydrogenase 
Isocitrate lyase 
Malate synthase 
Malic enzyme 
Succinate oxidoreductase 

1.22 down 
P 
A 
A 

3.44 up 
2.33 up 

2 down 
P 

36 up 
6.1 up 
3.1 up 

A 

 

 
Table 5.4. Comparison between in silico and experimental differentially expressed 

enzymes grown on either alkane or pyruvate as carbon source. ―A‖ means that the 

enzyme is solely expressed on alkane; ―P‖ means that the enzyme is solely expressed on 

pyruvate; ―down‖ means that the enzyme is down expressed on alkane; ―up‖ means that 

the enzyme is up expressed on alkane. 
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Minimal media and growth requirements 
 
We used FBA to determine fluxes leading to both, optimal growth and 

optimal PHB formation subject to constraints on the usage of each 

reaction. This principle allowed us to systematically predict a minimal 

media composition capable of supporting growth and PHB formation in 

A. borkumensis.  

 

A. borkumensis was capable of synthesizing all amino acids since the 

complete set of reactions corresponding to the biosynthesis pathway were 

included in the model. Computationally predicted set of required 

substrates for growing includes oxygen, a phosphate source —inorganic 

phosphate—, sulfate as sulfur source, nitrate as nitrogen source and 

alkane as the only carbon source. Once the carbon from alkane was fed 

into central metabolism as pyruvate, the formation of the necessary 

precursor metabolites for widespread biosynthesis can be accomplished. 

 

 

 

Deletion Study 
 
In order to determine the effects of the deletion of a reaction from the 

network, as would occur in a gene knockout experiment, FBA was used 

with the additional constraint of the flux through a particular reaction 

reset to zero. This allowed for the rapid prediction of both, gene and 

reaction deletions. We calculated the effects of all single reaction 

deletions in the minimal media described above. We found that 259 

reaction deletions were computationally predicted to be lethal. This 

number was close to the 230 lethal reaction deletions in Staphylococcus 

aureus (Becker and Palsson, 2005).  

 

The number of predicted essential reactions in relation to the total 

number of reactions in each submetabolism allowed classifying them into 

flexible or rigid parts. Logically, all the alkane pathway’s reactions were 

essential for A. borkumensis. Moreover, metabolism of amino acids, 

lipids and nucleotides seemed to be quite rigid and deletions could poorly 

be compensated. On the contrary, energy and glycan metabolisms 

presented a better compensation of deletions by means of alternative 

enzymes or pathways. Carbohydrate, cofactors and vitamins metabolisms 

showed intermediate compensation values. There does not exist a 
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comprehensive resource regarding gene essentiality in A. borkumensis for 

a comparison between experimental data and the predictions detailed 

herein. However, there is a comprehensive gene essentiality study for the 

microorganism Staphylococcus aureus (Heinemann et al., 2005). Our 

predictions presented some similarities to the S. aureus values, but there 

was a significant difference in the amino acid, nucleotide and glycan 

metabolisms probably caused by the different lifestyle of the two bacteria 

and the comparison between gram-negative and gram-positive bacteria. 

The predictions are detailed in Table 5.5 and supplementary file 5.7. 

 

 

 

 

 

Submetabolism  
Essential 
reactions  

Total 
reactions  

Percentage  Classification  

Alkane degradation  4 4 100.00 Rigid  
Amino acid metabolism  90 120 75.00 Rigid  
Carbohydrate metabolism  33 72 45.83 Flexible  
Energy metabolism  6 25 24.00 Flexible  
Glycan biosynthesis  3 13 23.08 Flexible  
Lipid metabolism  47 63 74.60 Rigid  
Cofactors and vitamins 36 88 40.91 Flexible  
Nucleotide metabolism  37 61 60.66 Rigid  
Xenobiotics degradation  0 2 0.00 Not used for growth  
Unassigned  0 5 0.00 Not used for growth  

 

 
Table 5.5. Number and percentage of essential reactions in the submetabolisms, 

excluding transport reactions. 
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Polyhydroxyalkanoate biosynthesis  
 
Under carbon-limited conditions, an increase in carbon allows an 

increase in bacterial growth rate until another growth limitation is 

reached. The appearance of alkanes in oligotrophic environments like 

most marine habitats allows A. borkumensis to grow until nitrogen or 

phosphorus limitation is experienced. Oil pollution constitutes a 

temporary condition of carbon excess coupled with limiting nitrogen. 

Under such conditions of high C/N ratios, many microbes synthesize 

carbon storage materials, like polyhydroxyalkanoates, triacylglycerol, 

wax esters or other cellular storage substances (Kalscheuer et al., 2007; 

Steinbüchel, 1991). The predicted quantitative influence of carbon, 

nitrogen and phosphorus limitation over the growth and 

polyhydroxyalkanoates synthesis of A. borkumensis is showed in Tables 

5.6 and 5.7. Biomass and PHB formation were clearly more affected than 

respiration process by the limitation of either nitrogen or phosphorus 

sources. Thus, in an environment with excess of alkanes, these two 

compounds seem to be critical for A. borkumensis to grow. On the 

contrary, the aerobic respiration process was clearly more affected by the 

carbon limitation since the oxygen consumption and the carbon dioxide 

formation showed significantly lower values in comparison with the 

other two limited conditions. Similar conditions were imposed to E. coli 

to experimentally study its growth parameters under carbon and nitrogen 

limited conditions (Sauer et al., 1999). The reported results were in 

agreement with those presented in Tables 5.6 and 5.7 regarding the 

biomass formation and the respiration process. 
 

 

 

 

Limitation 
Biomass 

(gDW) 

Biomass yield on 
Octadecane        NO3                Pi 
(g g of oct.)    (g g of NO3)   (g g of Pi) 

Alkane 0.83 13.91 4.7145 8.1962 
NO3 0.71 0.97 4.7142 8.1958 
Pi 0.66 1.64 4.7143 8.1959 

 

 
Table 5.6. Predicted biomass formation and biomass yield on octadecane, nitrate 

and phosphate under limited conditions in A. borkumensis. 
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Limitation Octadecane 
consum. 

(M) 

NO3 

consum. 
(M) 

Pi  
consum. 

(M) 

PHB 
form. 
(M) 

O2 

consum. 
(M) 

CO2 

form. 
(M) 

Alkane 0.06 0.1770 0.1018 0.1428 0.3965 0.1394 
NO3 0.06 0.15 0.0863 0.1347 0.5306 0.2280 
Pi 0.06 0.1391 0.08 0.1315 0.5848 0.2639 

 

 
Table 5.7. Predicted growth parameters under alkane, nitrate and phosphate limited 

conditions in A. borkumensis. (consum - consumption; form - formation). 

 

 

 

Regarding the relation between the carbon–nitrogen ratio consumption 

and the biomass and PHB formation, Table 5.8 shows that an increment 

in the C/N ratio caused both, biomass and PHB increment. However, the 

PHB increment was proportional to the C/N ratio increment over all the 

scale of values, whereas biomass grew proportionally to the C/N ratio 

solely for small values. When ratio was close to 25:1 or higher, there was 

an excess of carbon available for A. borkumensis which was not directly 

transformed into bacterial biomass, but derived into carbon storage 

materials, like PHB, triacylglycerol or wax esters. These trends can be 

also noticed in Fig. 5.1. Respiration process increased proportionally 

with the C/N ratio, as showed in Table 5.8, in agreement with the results 

discussed in Tables 5.6 and 5.7.  
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C/N 
ratio 

Pi 

consum. 
(mmol g-1h-1) 

Biomass 
(gDW) 

PHB 
form. 

(mmol g-1h-1) 

O2 

consum. 
(mmol g-1h-1) 

CO2 

form. 
(mmol g-1h-1) 

1:3 0.0017 0.0141 0.0023 0.0082 0.0038 
1:2 0.0046 0.0377 0.0084 0.0651 0.0393 
1:1 0.0057 0.0471 0.0180 0.1988 0.1191 
2:1 0.1438 1.1786 0.8246 9.38 5.18 
5:1 0.2301 1.8857 3.11 40.51 22.68 

10:1 0.2876 2.3571 7.64 69.34 27.76 
15:1 0.3451 2.8285 13.67 126.71 51.31 
20:1 0.4026 3.2999 21.20 198.58 80.86 
25:1 0.4314 3.5358 28.34 267.14 109.14 
30:1 0.4371 3.5828 34.42 325.80 133.40 
40:1 0.4429 3.6300 46.42 441.74 181.35 

 

 
Table 5.8. Growth condition and PHB formation analysis under different C/N ratios 

using octadecane as carbon source.  
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Figure 5.1. Plots A and B show the predicted relation between 

the carbon–nitrogen ratio consumption of A. borkumensis and 

its biomass and PHB formation, respectively when octadecane 

was used as carbon source. As observed, biomass grows 

proportionally to the C/N ratio for small values, whereas for 

C/N ratios of approximately 25:1 or higher, there is an excess 

of carbon available for A. borkumensis which is not directly 

translated into bacterial biomass. A fraction of the excess of 

carbon is directly transformed into PHB, whose growth is 

proportional to the C/N ratio increment for all the scales of 

values. 
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Moreover, large differences in PHB formation have been noticed 

between bacteria growing on pyruvate and octadecane. Thus, Fig. 5.2 

shows that the amount of PHB produced from alkane (i.e., under 

conditions of a high C/N ratio) was three times higher than the amount of 

PHB produced during growth on pyruvate. This significant difference 

was produced by the specific pathways used to synthesize PHB 

depending on the carbon source. During growth on pyruvate as carbon 

source (Fig. 5.2A), PHB was formed from acetyl-CoA that was further 

converted to acetoacetyl-CoA and (S)-3-hydroxybutyryl-CoA, as 

precursor of PHB formation by the enzymes acetyl-CoA acyltransferase 

and (S)-3-hydroxybutyryl-CoA dehydrogenase, respectively. When A. 

borkumensis grew on alkane, like octadecane, as carbon source (Fig. 

5.2B), the PHB was generated from octadecane which was converted, via 

alkane oxidation and fatty acid metabolism in the PHB precursor,        

(S)-3-hydroxybutyryl-CoA. Finally, the model confirmed the notable 

increment in PHB formation that was achieved when the enzyme tesB 

was constrained to 0 simulating an A. borkumensis tesB-like mutant (Fig. 

5.2C). PHB formation in the tesB-like mutant growing on alkane was 20 

times higher than in the WT strain under the same growth conditions. 

Thus, the lack of tesB gene implies higher PHB formation due to the fact 

that the enzyme tesB-like acyl-CoA thioesterase also uses                    

(S)-3-hydroxybutyryl-CoA as substrate to produce 3-hydroxyalkanoic 

acid (Sabirova et al., 2006a).  

 
In summary, the metabolic model allowed to gain insight into the basis of 

hydrocarbonoclastic, marine lifestyle, its genomic responses to 

environmental stresses, the ability to degrade a range of hydrocarbons 

and to dominate oil-degrading microbial communities, as well as the 

mechanisms that provide it with its remarkable oil-degrading abilities and 

its competitive advantage in oil-polluted environments. The modelling of 

alkane fluxes versus those of nitrogen and phosphorus through the 

metabolic network also allowed the discovery of conditions in which the 

excess carbon available in hydrocarbons was not directly translated into 

bacterial biomass. Instead of that, carbon overflow was diverted to the 

production of polyhydroxyalkanoates, an activity for which A. 

borkumensis SK2 showed to be genetically well endowed. However, it 

has been described that A. borkumensis probably also employs other 

types of storage compounds to serve as carbon/energy source storage 

during periods of carbon/energy limitation like triacylglycerol or wax 
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esters (Kalscheuer et al., 2007). Further refinement is necessary in order 

to analyze these storage compounds. 
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Figure 5.2. Simulation of TCA cycle and fatty acid metabolism used by A. borkumensis 

to convert alkanes via terminal oxidation to fatty acids, acetyl-CoA and PHB. Schemes 

show PHB production in the WT (wild type) and tesB-like mutant strains of A. 

borkumensis under different sources of carbon. The arrows pointing down from 

octadecane mean fatty acid metabolism (beta-oxidation) and those pointing up from 

acetyl-CoA mean fatty acid biosynthesis and synthesis of (S)-3-hydroxybutyryl-CoA 

from acetyl-CoA. The thick arrow from octadecane shows total acetyl-CoA production 

in the 7 rounds of beta-oxidation between octadecane and (S)-3-hydroxybutyryl-CoA. 

The thin arrow shows production of (S)-3-hydroxybutyryl-CoA from octadecane. The 

former arrow is 7 times thicker than the latter due to the 7 rounds of beta-oxidation. Fig. 

5.2A shows the basic metabolic fluxes of A. borkumensis WT strain when growing on 

pyruvate as carbon source. The PHB formation is possible, under this condition, thanks 

to the reversibility property of the first two enzymes of the fatty acid biosynthesis 

represented by the arrow pointing from acetyl-CoA to (S)-3-hydroxybutyryl-CoA. First, 

the enzyme acetyl-CoA acyltransferase converts acetyl-CoA to acetoacetyl-CoA and 

second, (S)-3-hydroxybutyryl-CoA dehydrogenase converts acetoacetyl-CoA to                     

(S)-3-hydroxybutyryl-CoA which is the precursor of the PHB formation. Fig. 5.2B 

shows the metabolic flux in A. borkumensis WT from alkane to PHB and the TCA 

cycle. In this case, the PHB is generated from octadecane which is transformed, via 

alkane oxidation, in the corresponding alcohol, aldehyde and acid. Then, the acid is 

processed by the fatty acid metabolism, first until the PHB precursor                           

(S)-3-hydroxybutyryl-CoA and later until acetyl-CoA and the TCA cycle. The PHB 

formation when the carbon source is an alkane is 3 times higher than the simulation 

when pyruvate is chosen. Fig. 5.2C shows the metabolic flux in A. borkumensis      

tesB-like mutant growing on alkane. The PHB formation in the mutant is 20 times 

higher than in WT strain under the same growth conditions. Note the change in the 

direction of acetyl-CoA acyltransferase and (S)-3-hydroxybutyryl-CoA dehydrogenase 

(arrow pointing from acetyl-CoA to (S)-3-hydroxybutyryl-CoA) in contrast with Fig. 

5.2B. This change allowed the (S)-3-hydroxybutyryl-CoA formation from both,    

acetyl-CoA and octadecane (via fatty acid metabolism) and, in consequence, more PHB 

formation. 
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5.4 Conclusion 
 
We have reconstructed the metabolic network of the poorly known 

microorganism A. borkumensis integrating genomic, biochemical and 

physiological data together in the context of an in silico model with the 

aim of generating a practical tool in the quest to understand the 

physiology of this microorganism. The generated functional information 

was possible thanks to genome sequencing efforts and it provides 

additional justification for new contributions in genome sequencing. 

 

The model predictions, using constraint-based analysis, were in 

agreement with the experimental data, especially the related with growth 

phenotypes and PHB formation. It shows a potential in the use of the 

model as a high-throughput analysis tool for studying growth of A. 

borkumensis. Moreover, the overall modelling process can assist in 

accelerating the pace of biological discovery by generating 

experimentally testable hypotheses. It can also determine the redundancy 

or robustness of reactions in the network and predict the formation of 

products by WT and mutants under different media. Although the A. 

borkumensis metabolic model is a useful tool, frequent refinement and 

updating with new experimental data is necessary to improve its accuracy 

to predict cellular phenotypes and to provide the most concise 

representation of the microorganism’s known functional capabilities. The 

generated model can serve as a starting point for additional 

hydrocarbonoclastic bacteria reconstructions and as an analysis platform 

for the study of natural oil-degrading bacteria. 
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Interactions between genomes of prokaryotic microorganisms and 

environment during evolution have been analyzed in different contexts. 

The study of the relationship between the prokaryotic genomic patterns 

with lifestyles and metabolisms provide valuable information about 

microbial diversity. Genometric and mathematical techniques have 

demonstrated to be suitable tools for deciphering genomic patterns and 

for analysing genotypic adaptations to specific environments. Next, an 

outline of the main conclusions reached is provided. 

 

 

 

 

Chapter II 
 

 The combination of DNA walk and Detrended Fluctuation Analysis 

(DFA) is a suitable method for capturing intrinsic phylogenetic, 

ecological, and metabolic signals in prokaryotic genomes. 

 

 All the analyzed genomes presented persistent long-range 

correlations (i.e., DFA scaling exponents higher than 0.5). This 

specific feature in the prokaryotic genome landscape indicates the 

existence of selective pressures modelling the architecture along the 

whole genome. 

VI     Conclusions 
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 The observed long-range correlations may be related to two 

biological factors: 

 

1. Elongation of the molecule by repetitive structures added inside 

the genomes generated by both, gene duplication and massive 

lateral transfer of genes from other genomes. 

2. The asymmetric DNA replication along the whole microbial 

genome. 

 

 There was a consistent correlation between extremophiles and high 

scaling exponents. 

 

 The rates of spontaneous mutation are greatly accelerated at extreme 

environments. However, extremophiles should have very efficient 

molecular strategies for repairing DNA under these conditions of 

chemical instability since they presented weak mutational bias in 

their genomes.  

 

 The decrement of GC content in parallel with Topt in thermophiles 

and psychrophiles suggest that the transition from a 

hyperthermophilic to a psychrophilic environment would imply a 

structural adaptation in microbial genomes both in the GC content 

and in the sequential position of the nucleotides along the genome. 

 

 

 

 

Chapter III 
 

 The distribution of the nucleotidic sequence along the genome 

appeared to be related with the genome functionality, as deduced 

from the high canonical correlation between DFA and COG, as well 

as the high DFA variance explained by COGs. In consequence, COG 

distribution and DFA scaling exponent are two closely related 

genomic features that may be originated by similar factors. 
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 Expansions and contractions in the genomic repertoire have affected 

genes mostly involved in environmental interactions (e.g., energy 

metabolism, transport and regulation). In turn, basic information 

processes such as transcription and translation are distributed more 

homogeneously. 

 

 High scaling exponents and heterogeneity in the percentage of 

functional genes seem to be essential requirements for genetic 

adaptation to extreme habitats. 

 

 

 

 

Chapter IV 
 

 A. borkumensis and O. antarctica seem to have evolved during long 

time as independent evolutionary lines as deduced from their 

comparative dot plot, DNA walks and suite of genes. 

 

 O. antarctica had higher DFA scaling exponents than A. 

borkumensis, suggesting that a large number of genes from this 

psychrophilic bacterium may have been implicated in arrangement 

events, such as lateral transfer and gene duplication, in order to 

better adapt to extreme low temperatures.  

 

 A negative correlation between scaling exponents and GC content 

exists in both bacteria. A. borkumensis has a significantly higher GC 

content (54.73%) than O. antarctica (42.16%). A nucleotide bias 

probably caused by a stressed psychrophilic lifestyle might explain 

the GC variation. 

 

 The genometric analyses suggested that O. antarctica was more 

affected by spontaneous mutation, duplication and insertion events 

than A. borkumensis, which harbored a small number of mobile 

genetic elements such as transposons and insertions elements. This 

factor might also explain the differences in scaling exponents and 

genome size. 
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Chapter V 
 

 The reconstruction of the metabolic network of the marine 

microorganism A. borkumensis was possible thanks to the integration 

of genomic, biochemical and physiological data that were put 

together in the context of an in silico model. The A. borkumensis 

metabolic model allowed us to gain insight into the basis of 

hydrocarbonoclastic and marine lifestyle. 

 

 The modelling of alkane versus nitrogen and phosphorus fluxes 

through the metabolic network unveiled conditions in which the 

excess of carbon available in hydrocarbons was not directly 

translated into bacterial biomass. Carbon overflow, instead, was 

diverted to the production of polyhydroxyalkanoates, triacylglycerol 

and wax esters. 

 

 The constraint-based model predictions showed the large potential of 

the model to be used as a high-throughput analysis tool to study 

growth strategies of A. borkumensis. 
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A.  DNA walk 
 
The DNA walk method (Lobry, 1996a and 1999; Grigoriev, 1998; Cebrat 

and Dudek, 1998) is a graphical representations of the fluctuations in 

nucleotide series which provide quantification on internal deviations of 

individual nucleotides along the genome. The run of DNA walks starts at 

position 0 of each sequence and every genome produces a specific DNA 

walk. There are several possibilities and rules to plot genomic landscapes 

(Buldyrev et al., 1995).  

 

First, the original nucleotide sequence can be translated onto a one-

dimensional numerical series. Since there are four different residues in a 

DNA sequence and the random walk has two possible directions, one 

needs to group the bases in pairs following three mapping rules; i) the 

hybrid rule (KM): being ni the i nucleotide of the genomic sequence and 

yi the DNA walk value for the nucleotide ni, if ni is a keto forms (G or T) 

then yi = +1 and if ni is an amino forms (A or C) then yi = –1; ii) the 

purine–pyrimidine rule (RY): if ni is a pyrimidine (C or T) then yi = +1 

and if ni is a purine (A or G) then yi = –1; iii) the hydrogen bond energy 

rule (SW): if ni is a strongly bonded pair (G or C) then yi = +1 and if ni is 

a weakly bonded pair (A or T) then yi = –1. These DNA walks generate 

an irregular graph resembling a fractal landscape. The defining feature 

for the landscape is the statistical self-similarity of the plots obtained at 
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various magnifications calculated with the Detrended Fluctuation 

Analysis (DFA) method (see Appendix B for details). The resulting DNA 

walk series can be mapped onto an orthogonal plane. Fig. A1 represents 

an example of the plots generated by the three types of DNA walks (KM, 

RY, SW) for three microbial (bacteria and archaea) genomes. 

 
Another possible DNA walk representation is the named two-

dimensional (2D) map, in which each nucleotide defines one direction in 

a plane formed by two orthogonal axes (i.e., C versus G and T versus A). 

In this walk, the walker moves 1 unit onto the plane according to the four 

senses defined by the nucleotide read. This 2D DNA walk generates an 

irregular graph resembling a fractal landscape (see example in Fig. A2). 
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Figure A1. Typical DNA walk representations in one-dimensional 

space of three different genomes. Plot A illustrates the 

Bdellovibrio bacteriovorus DNA walk using the KM mapping 

rule. This is a typical symmetric representation in which one-half 

on the genomic sequence is persistently enriched in two of the 

bases and the other half is enriched in the complementary ones. 

Plot B represents the Nanoarchaeum equitans DNA walk using 

the RY rule. The resulted topography is an example of random 

DNA walk with no persistence along the genome. Finally, plot C 

shows the Prochlorococcus marinus DNA walk grouping the 

bases according to SW rule. In this case, the resulted walk shows 

persistence along the whole genome and it can be fitted by linear 

regression. The abscissa axes represent the genomic sequence 

position from the begining to the end of the genome in all the 

plots. The run of DNA walks starts at position 0 of each sequence. 

Note that the scales are different in each graph. 
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Figure A2. DNA walks representations in two-dimensional 

space. The positive and negative abscissa values are defined by 

thymine and adenine, respectivelly, whereas the positive and 

negative ordinate values represent cytosine and guanine, 

respectivelly. Plot A illustrates the Propionibacterium acnes 

DNA walk as an example of walk with a strong strand-biased 

genome. Deinococcus radiodurans DNA walk (B) is an example 

of weak strand-biased genome with different topography along 

the genome. The run of DNA walks starts at position 0 of each 

sequence. Note that the scales are different in each graph. 
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B. Detrended Fluctuation Analysis (DFA) 
 
DFA is a scaling analysis method providing a simple integrative 

parameter —the scaling exponent α— to represent the correlation 

properties of numerical series. The scaling exponent is also called the 

self-similarity parameter. An object is self-similar if its subsets can be 

rescaled to resemble statistically the original object itself. A numerical 

sequence is considered stationary if the mean, standard deviation and 

correlation functions are invariant under space translation (Peng et al., 

1992, 1994 and 1995). Sequences that do not fit these conditions are 

nonstationary. DFA allows detection of long-range correlations 

embedded in seemingly nonstationary series, and it avoids the spurious 

detection of apparent long-range correlations that are an artifact of 

nonstationarity (Hu et al., 2001). The scaling exponent quantifies the 

amount and range of the correlations. In a given sequence, a change in 

the scaling exponent indicates changes in the correlations through 

different scales. 

 

Scaling exponents were calculated from the one- and two-dimensional 

DNA walks. In the case of one-dimensional DNA walk, the numerical 

series, obtained by each of the three mapping rules, were the direct input 

of the DFA method. On the other hand, the scaling exponents were 

calculated from the two-dimensional DNA walks using Euclidean 

distances from the origin of the graph to every x–y point representing a 
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step of the walk. Thus, the entire sequence of length N, understood as the 

numerical series obtained by each of the three mapping rules (one-

dimensional walk) and the Euclidean distances for each step of the walk 

(two-dimensional walk), was then used to run the DFA method as 

follows: First, the entire sequence was divided into boxes of equal length, 

n, each containing l steps of the walk. We defined the ―local trend‖ in 

each box by fitting a least squares linear model (proportional to the 

compositional bias in the box) to the data. Second, we defined the 

―detrended walk‖ as the difference between the original walk y(n) and 

the local trend. Next, we calculated both the variance of the detrended 

walk for each box and the average of these variances over all the boxes 

of size l, denoted F(n). Such computation was repeated over all scales 

(box sizes) to provide a relationship between F(n) and the box size n. 

Typically, F(n) increases with box size n (see example in Fig. B1). A 

linear relationship on a log–log graph indicates the presence of long-

range correlations. Obtaining linear log–log plots of the integrated and 

detrended series versus ―box size‖ (F(n) vs n) can help to establish the 

appropriateness of the DFA method to all nonstationary data 

encountered. Under these conditions, fluctuations can be characterized by 

the scaling exponent (α), i.e., the slope of the line relating log F(n) to log 

n. The minimum box size (nmin) does not depend on N. On the contrary, 

the maximum box size (nmax) scales as nmax = N/10 (Hu et al., 2001). 
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Figure B1. DFA representation calculated on the gram-negative bacterium 

Chlamydia muridarum DNA walk. The intregrated and detrended series 

versus ―box size‖ (F(n) vs n) yield in a linear log–log plot whose slope is the 

scaling exponent α. 

 

 

 
For an ideal sequence of infinite length, α = 0.5 indicates the absence of 

long-range correlation (random walk), where the value of one nucleotide 

is completely uncorrelated with any previous values; whereas α different 

from 0.5 indicates long-range correlation. For a sample of finite length, 

statistical fluctuations due to finite size should be taken into account. 

Therefore, we considered a DNA sequence to exhibit long-range 

correlation only if a value was significantly different from the α value of 

the random finite control sequences. The α values in the range 0.5 < α < 1 

indicate persistent long-range power-law correlations, suggesting the 

existence of repetitive patterns in the sequence and that finding a 

particular nucleotide on a sequential position depends on the previous 

nucleotides (memory). 
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C. Constraint-based modelling and Flux Balance Analysis 
 
Flux Balance Analysis (FBA) is a useful mathematical technique for 

analysis of metabolic capabilities of cellular systems. Living organisms 

transform the nutrients into molecules they can use through a complex set 

of chemical reactions. When the whole metabolism is approximately 

known, one can use the FBA to find out which set of metabolic fluxes 

maximizes the growth rate of the organism given some known available 

nutrients. 

 

The metabolic reconstruction of well-known microorganism can be 

generated and refined using an iterative model building procedure (see 

Fig. C1). The metabolic network can be expressed in a stoichiometric 

matrix, S (m x n), where m is the number of metabolites in the reaction 

network and n is the number of reactions. The corresponding entry in the 

stoichiometric matrix, Sij, represents the stoichiometric coefficient for the 

participation of the ith metabolite in the jth reaction. A particular flux 

distribution of the network, ע, indicates the flux levels through each of 

the reactions. Based on principles of conservation of mass and the 

assumption of a steady state, the flux distribution through a reaction 

network can be represented by the following equation: 
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                 S · (1)             0 = ע  

 

where ע (n x 1) is the vector of reaction fluxes. Additionally, constraints 

are imposed on individual reactions that state the upper and lower bounds 

on the range of flux values that each of the reactions can have. This 

constraint is described in the following form: 

 

                                               αi ≤ עi ≤ βi          (2) 

 

where αi and βi are the lower and upper limits placed on each reaction 

flux עi, respectively. For reversible reactions, –  ≤ עi ≤ , and for 

irreversible reactions,  0 ≤ עi ≤ .  

 

The genome-scale metabolic models are normally underdetermined 

systems; in consequence, there are multiple solutions for ע that satisfy 

equation 1. To find an optimal flux distribution for ע, an objective 

function must be defined as a linear equation and should be optimized in 

the linear system. Then, a solution that satisfies all the constraints of 

equations 1 and 2 is calculated. The result is the optimal flux distribution 

that will allow the highest flux through the chosen objective reaction. 

The ability to produce the required components of cellular biomass (e.g., 

amino acids, nucleotides, phospholipids, etc.) that enable the organism to 

grow and survive has been defined as the objective function. This growth 

objective is mathematically defined as an output flux using each biomass 

precursor metabolite as a substrate. The ability of the network to produce 

all of the biomass constituents led to a positive flux value for this 

objective reaction.  

 

The reconstructed metabolic network and the defined biomass function 

allow the calculation of network properties and optimal growth 

phenotypes through the use of Flux Balance Analysis. FBA allows for 

computation of feasible steady state fluxes through a reaction network 

that maximizes a particular objective and satisfies various constraints, 

including stoichiometry, thermodynamics and enzyme capacity. The 

fundamentals of FBA have been previously reviewed (Bonarius et al., 

1997; Edwards et al., 2002; Edwards et al., 1999; Schilling et al., 1999; 

Varma and Palsson, 1994a). Specifically, FBA uses the principles of 

linear programming (LP), which is a subset of convex analysis. FBA was 

then used to solve the linear programming problem for biomass 
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optimization under steady state criteria (Kauffman et al., 2003; Price et 

al., 2004; Varma and Palsson, 1994b).  
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Figure C1. Integrated process of the microbial metabolic model construction. Such 

construction requires a comprehensive knowledge of the metabolism of an organism. 

High-throughput sequencing technology and automated genome annotation tools enable 

identification and functional assignment of most of the metabolic genes in an organism. 

From the annotated genome sequence and the experimentally determined biochemical 

and physiological characteristics of a cell, the metabolic reaction network can be 

reconstructed. Then, it can be subjected to methods such as FBA to quantitatively 

analyze, interpret and predict cellular behavior. Linear programming is used to 

determine optimal flux distributions based on objectives such as cell growth and 

metabolic by-product secretion. This network can be modified in the context of other 

physiological constraints or environmental factors to produce a mathematical model, 

which can be used to generate quantitatively testable hypotheses in silico. Modelling 

simulations were run under steady state conditions to determine the reaction flux 

distribution in the network. 
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D.  Supplementary data 
 

 
Supplementary data associated with this thesis can be found at 

http://nodens.ceab.csic.es/ecogenomics/docs/index.html.  

 

 

http://nodens.ceab.csic.es/ecogenomics/docs/index.html
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