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Abstract

This thesis consists of three chapters on topics in macroeconometrics. Chapter 1
provides a novel estimator of combination weights which delivers well-calibrated
density forecasts. In an empirical example of forecasting US industrial production,
I show that my proposed methodology outperforms several benchmark combina-
tion schemes, and the weights indicate that financial variables proved to be useful
predictors during the Great Recession. Chapter 2 investigates time-variation in the
forecasting performance of structural Dynamic Stochastic General Equilibrium
models and reduced-form statistical models. I show that the models” in-sample
forecasting ability was strongly related to their out-of-sample performance before
the recent financial crisis, but this link considerably weakened at the onset of the
crisis. In Chapter 3 we propose a methodology to construct confidence intervals
for the strength of identification in both instrumental variable models and Struc-
tural Vector Autoregressive models identified with an external instrument. We
illustrate the proposed method using three leading empirical examples: the New
Keynesian Phillips Curve, a linearized Euler equation, and a Structural Vector

Autoregressive model describing the dynamic effects of oil shocks.

Resum

La present tesi es composa de tres capitols sobre temes de macroeconometria.
El capitol 1 introdueix un nou estimador de combinacions de pesos que déna
prediccions de densitat ben calibrades. En un exemple empiric de prediccié de la
producci6 industrial dels EUA, demostro que l'aplicacié d’aquesta metodologia
millora molts dels esquemes de combinaci6é de referéncia i els pesos indiquen
que les variables financeres sén predictors ttils de la Gran Recessié. El capitol 2
investiga la variaci6é temporal en la capacitat de prediccié dels models dinamics
estocastics d’equilibri general i dels models estadistics de forma reduida. Demos-
tro que la capacitat de predicci6é del model dins de la mostra estava fortament
relacionada amb el seu rendiment fora de la mostra abans de la recent crisi finan-
cera, per0 aquest vincle es fa feble amb 1'inici de la crisi. En el capitol 3 proposem
una metodologia per construir intervals de confianga per la forga d’identificacié
tan en models de variables instrumentals com en models estructurals de vectors
autoregressius identificats amb un instrument extern. Il-lustrem la metodologia
proposada utilitzant tres exemples empirics importants: La Corba de Phillips Ne-
okeynesiana, una equacié d’Euler linealitzada i un model estructural de vectors

autoregressius que descriu les dinamiques dels efectes dels xocs del petroli.

vii



viii



Preface

This thesis consists of three self-contained chapters on topics in macroeconome-
trics, both theoretical and empirical. In particular, density forecast combination,
point forecast evaluation, and weak identification are the main themes of the
papers.

Chapter 1, “Optimal Density Forecast Combinations”, studies how resear-
chers should combine predictive densities to improve their forecasts. I propose
consistent estimators of weights which deliver density forecast combinations
approximating the true predictive density, conditional on the researcher’s infor-
mation set. Monte Carlo simulations confirm that the proposed methods work
well for sample sizes of practical interest. In an empirical example of forecasting
monthly US industrial production, I demonstrate that the estimator delivers
density forecasts which are superior to well-known benchmarks, such as the
equal weights scheme. Specifically, I show that housing permits had valuable
predictive power before and after the Great Recession. Furthermore, stock returns
and corporate bond spreads proved to be useful predictors during the recent
crisis, suggesting that financial variables help with density forecasting in a highly

leveraged economy.

In Chapter 2, “Forecasting with DSGE versus Reduced-Form Models: A Time-
Variation Perspective”, the out-of-sample forecasting performance of a leading
Dynamic Stochastic General Equilibrium (DSGE) model is investigated. First, I
demonstrate that, while the model delivers competitive forecasts against a number
of statistical models, its predictive ability displays time-variation. Generally, in
turbulent times, such as the recent financial crisis, simpler statistical models
forecast better. Second, I show that swings in the model’s absolute and relative
out-of-sample performance are strongly related to its in-sample performance.
Specifically, I find that the DSGE model’s in-sample fit is highly informative in
the early 2000s but the financial crisis deteriorated this link. Third, I find that
extending a DSGE model with financial frictions results in better forecasting

performance in times of financial distress but not in other times.

In Chapter 3, “Confidence Intervals for the Strength of Identification” (joint
with Atsushi Inoue and Barbara Rossi), we propose a novel methodology to con-
struct confidence intervals for the strength of identification in both instrumental
variable models as well as Structural Vector Autoregressive models identified with
an external instrument. Unlike tests for weak instruments, whose distributions

are non-standard and depend on nuisance parameters that cannot be consistently
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estimated, the confidence intervals are straightforward and computationally easy
to calculate, as they are obtained from inverting chi-squared distributions. Anot-
her appealing feature of our methodology is that it is valid in the presence of
heteroskedasticity and serial correlation. Monte Carlo simulations show that the
confidence intervals have good small sample coverage. We illustrate the propo-
sed method to measure the strength of identification in three leading empirical
situations: the New Keynesian Phillips Curve, a linearized Euler equation, and
a Structural Vector Autoregressive model describing the dynamic effects of oil
shocks.
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Chapter

Optimal Density Forecast

Combinations

1.1 Introduction

Density or distribution forecasts have become increasingly popular both in the
academic literature and among professional forecasters. This success is due to
their ability to provide a summary of uncertainty surrounding point forecasts,
which facilitates communication between researchers, decision makers and the
wider public. As Alan Greenspan stated, “a central bank needs to consider
not only the most likely future path for the economy, but also the distribution
of possible outcomes about that path” (Greenspan, 2004, p. 37). Well-known
examples of forecasts produced in this spirit include the fan charts of the Bank of
England and the Surveys of Professional Forecasters (SPF) of the Federal Reserve
Bank of Philadelphia and the European Central Bank.!

Just as combinations of individual point forecasts have been found to be
superior against a single point forecast in many settings, density combinations
have been shown to outperform the density forecast of individual models (Elliott
and Timmermann, 2016; Timmermann, 2006). The reasons for both are largely
the same: model misspecification, structural breaks and parameter estimation
uncertainty complicate the task of producing reliable forecasts. Practitioners
often combine point forecasts based on simple rules or expert judgment. Convex

combinations of densities can take shapes that are dissimilar to their individual

IElder et al. (2005) provide an assessment of the Bank of England’s fan charts. For a re-
cent overview of the ECB’s SPF, see European Central Bank (2014). A list of papers using
the Philadelphia Fed’s SPF can be found at https://www.phil.frb.org/research-and-data/
real-time-center/survey-of-professional-forecasters/academic-bibliography.


https://www.phil.frb.org/research-and-data/real-time-center/survey-of-professional-forecasters/academic-bibliography
https://www.phil.frb.org/research-and-data/real-time-center/survey-of-professional-forecasters/academic-bibliography

components, resulting in considerably different predictions. This makes density
forecast combination a more challenging task than the combination of point
forecasts. While assigning equal weights to predictive densities often results
in improvements (Rossi and Sekhposyan, 2014), this scheme does not offer
insights into the individual models’ performance, hence researchers cannot
exploit information on models” predictive ability. However, the data-driven
weighting scheme proposed in this study can help researchers understand and

improve their forecasting methods.

In the present paper, I focus on estimators of density combination weights
based on the Probability Integral Transform or PIT (Rosenblatt, 1952; Diebold
etal., 1998), which is defined as the researcher’s predictive cumulative distribution
function (CDF) evaluated at the actual realization. The underlying idea of the PIT
is remarkably simple yet powerful: the PIT is uniformly distributed if and only if
the predictive density used by the researcher coincides with the true predictive
density conditional on the researcher’s information set, which is the notion of
optimality in this paper. Discrepancies between the true, unknown predictive
distribution and the researcher’s density forecast show up in the distribution of
the PIT, which can be used to design tests. The present paper builds on this idea,
but instead of using it for testing purposes, I invert the problem and estimate the
combination weights by minimizing the distance between the uniform distribution
and the empirical distribution of the convex combination of PITs using either the
Kolmogorov-Smirnov, the Cramer-von Mises or the Anderson-Darling statistic.
I show that this method leads to consistent weight estimators that generate either

an optimal forecast density combination or one closest to it.

This paper’s contributions are summarized as follows. First, building on the
PIT, I develop consistent weight estimators delivering density forecasts which
either correspond to the true predictive density conditional on the researcher’s
information set, or are closest to it when measured in the Kolmogorov-Smirnov,
Cramer—von Mises or Anderson-Darling sense. This result holds even if the
true predictive density is not included in the pool of models used by the resear-
cher. “Model” is understood in a wide sense, including survey and judgmental
forecasts, and no knowledge of the underlying model generating the density
forecast is required. Second, I provide a formal theory to estimate density fo-
recast combination weights using the Kullback-Leibler Information Criterion
(KLIC) and I compare the PIT-based and KLIC-based estimators in Monte Carlo
simulations covering a wide range of DGPs and sample sizes, providing valuable

assistance to researchers. The simulation results suggest that the PIT-based esti-
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mator using the Anderson-Darling distance and the KLIC-based estimator yield
precise weight estimates even for moderate sample sizes. Third, I demonstrate
that the novel PIT-based forecast combination method delivers one-month-ahead
forecasts of US industrial production growth which are superior to the widely
used equal weights benchmark. The weight estimates show that housing permits
were a useful predictor in the years preceding and following the Great Recession.
Furthermore, financial variables, especially corporate bond spreads received

considerable weight during and after the recent financial crisis.

The literature on combining point forecasts according to an optimality cri-
terion, such as minimizing the expected mean squared forecast error, started
with the celebrated paper by Bates and Granger (1969) and includes numerous
contributions, both empirical, such as Stock and Watson (2004), and theoretical,
for example Cheng and Hansen (2015) and Claeskens et al. (2016).> While density
forecast evaluation has been widely studied (Diebold et al., 1998; Corradi and
Swanson, 2006a,c; Rossi and Sekhposyan, 2014, 2016), the estimation of density
combination weights with respect to an optimality criterion has received less

attention.

My theoretical contribution is related to several strands of the literature on
density forecast combinations. Using logarithmic predictive scores, Hall and
Mitchell (2007) propose optimal weights with respect to the KLIC. In contrast, I
focus on estimators based on the PIT, although for completeness I also discuss
their KLIC-based estimator and provide theoretical results for it, complementing
the empirical analysis in Hall and Mitchell (2007). In a related paper, Geweke and
Amisano (2011) provide theoretical results on linear prediction pools based on the
KLIC. In the present study I show strong consistency of the PIT-based estimators
and also provide an alternative proof of the consistency of the KLIC-based
estimator. Pauwels and Vasnev (2016) deal with the practical implementation
of estimating combination weights and provide a comparison of alternative
weighting schemes through a number of Monte Carlo simulations, with a specific
focus on small samples. In contrast, my simulations cover a wide range of Data
Generating Processes (DGPs) and investigate both the PIT- and the KLIC-based
estimators’ properties in small and large samples, thereby I can offer advice
to practitioners. The estimators proposed in the present paper are justified on
frequentist grounds. For a recent treatment of Bayesian estimation of predictive
density combination weights, see Billio et al. (2013) and Del Negro et al. (2016).

2For a comprehensive overview on the combination of point forecasts, see Elliott and Timmer-
mann (2016) and Timmermann (2006).



While those papers use computationally intensive non-linear filtering methods,
the estimators proposed in this study can be implemented using a standard
optimization algorithm and do not rely on priors. Furthermore, my approach
does not require knowledge of the model that generated the density forecast,

therefore it can be applied to survey or judgmental forecasts as well.

From an empirical perspective, since the onset of the Great Recession, several
papers have focused on exploiting non-Gaussian features of macroeconomic data,
along with time-varying volatility. Ctrdia et al. (2014), using a Dynamic Stochastic
General Equilibrium (DSGE) model, show that incorporating stochastic volatility
and using a fat-tailed shock distribution substantially improves the model’s fit.
In contrast, my empirical application uses an ensemble of simple, non-structural
univariate Autoregressive Distributed Lag (ARDL) models, and combines their
predictive densities to achieve calibrated one-month-ahead density forecasts
of US industrial production. In a recent paper, Rossi and Sekhposyan (2014)
demonstrated that convex combinations of ARDL models” predictive densities
deliver well-calibrated density forecasts. In terms of point forecasts, Giirkaynak
et al. (2013) showed that univariate autoregressive models often outperform
multivariate DSGE and Vector Autoregressive (VAR) models. Clark and Ravazzolo
(2015) provide an extensive comparison of both point and density forecasts
generated by univariate and multivariate Bayesian (Vector) Autoregressive (BVAR)
models with a number of volatility specifications, using quarterly real-time US
data. They conclude that stochastic volatility materially improves density forecasts
of output growth, especially in the short-run. In the present study, I let a rolling
window estimation scheme account for possible time-variation in volatility.

In their recent study, Chiu et al. (2015), using BVAR models demonstrate that
in an out-of-sample forecasting exercise, it is mainly fat tailed shocks and not
stochastic volatility that considerably improves density forecasts of industrial
production. In a related paper, Chiu et al. (2016) investigate the mixture of normal
distributions as predictive density, using a regime switching model, where the
parameters of the normal distributions depend on the current, hidden state
of the economy. The authors show that such a flexible specification delivers
sizable gains in terms of density forecasts of industrial production relative to
a Gaussian BVAR. Waggoner and Zha (2012) demonstrate how a DSGE and
a BVAR model can be integrated into a common framework, using a Markov-
switching structure that drives the weights associated with the models. However,
their paper focuses on improving the models” in-sample fit rather than their
forecasting performance. Related to the previous papers, I also allow for non-
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Gaussian predictive distributions, but instead of specifying a regime switching
model, I estimate the weights generating non-normal predictive distributions
either through the KLIC or the PIT. This procedure allows me to focus on fine-
tuning the forecasts without having to posit an underlying model for the regimes.
Moreover, by taking the predictive densities as given, I can avoid the pitfalls
associated with the joint estimation of the predictive densities and the mixture
weights.® As I will demonstrate, the estimated weights are informative of the
state of the US economy. Specifically, I show that data on housing permits was
the best predictor of US industrial production growth in the years leading to the
Great Recession. Furthermore, financial variables (corporate bond spreads and
stock returns) proved to be useful predictors during the recent financial crisis.
While Ng and Wright (2013) presented similar results about financial variables
for point forecasts, to my best knowledge, this is the first paper that demonstrates
these findings for density forecasts.

The remainder of the paper is organized as follows. Section 1.2 introduces
the notation and the definitions used throughout the paper. Section 1.3 describes
the forecasting environment and the proposed density forecast combination
method, while Section 1.4 provides the results of Monte Carlo exercises. An
empirical application of forecasting US industrial production is presented in
Section 1.5, then Section 1.6 concludes. The proofs are collected in Appendix A,
while additional technical details and results can be found in Appendices B to F.

1.2 Notation and definitions

In this section, I introduce the notation and definitions used in the present paper
and discuss the assumptions of the estimation procedure.

Consider the stochastic process {Z; : Q) — ]Rk+1}'f:+1h defined on a complete
probability space (), F, P). The observed vector Z, is partitioned as Z;, = (y;, X})/,
where y; : QO — R is the variable of interest and X; : Q — R* is a vector of
predictors. Let F; denote the filtration associated with the stochastic process {Z,}
and let Z, C F; denote the information at time ¢ that is relevant to the determina-
tion of the outcome y;.j,. Furthermore, let ¢/, (y|Z;) be the corresponding true
conditional density.* In what follows, the abbreviation iid. stands for independent

3For an overview of this problem, see Chapter 1 of Rossi (2014).

“Throughout the present paper, ¢(:|-) and ®(-|-) stand for any conditional probability density
function and cumulative distribution function, respectively, not necessarily those of the normal
distribution. I also assume that all random variables possess probability density functions. With
a slight abuse of notation, I do not make a distinction between the random variable and its
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and identically distributed, and N (u, V) is the normal distribution with mean
vector u and covariance matrix V. Convergence in probability and almost sure
convergence are denoted by L5 and 2%, respectively.

The available sample of size T + h is utilized as follows. At forecast origin
f, the researcher has M models at hand, which are indexed by m =1, ..., M5
These models are estimated in rolling windows of size R, where each estimation
is based on the truncated information set J f_ R1, CONtaining information between
t —R+1and t. The time index t runs fromt = f —G—h+1tot = f —h, where
G is the total number of rolling windows, as it will be explained later. At each ¢,
each of the models imply an h-step-ahead density forecast of v, ,, with typical
element ¢;" , (7t & +1)- The forecaster uses the convex combination of the M

predictive densities (highlighted by the C superscript), denoted by
C t - t
GronWlT-rs1) = Y Wndlin(WIT_gia) s (1.1)
m=1

where the m superscript indexes the densities. The corresponding cumulative

predictive distributions are then given by

y

M
CDtih@W—RH) = Z wm‘P;’ih(mji—R—s—l) dy (1.2)
—oo m=1
M
= ) (T ria) - (1.3)
m=1

By requiring that the weights w,, satisfy w,, > 0 for allm = 1,..., M and
YM  w,, = 1,itis guaranteed that the combination of the individual densities
(respectively, CDFs) is a density (respectively, CDF) itself. The weights are
collected in a vector w = (wy, ..., w,,)". Equivalently, w € AM~1, where AM~1
is the M — 1 unit simplex.

The estimation procedure is repeated in a similar way for all forecast origins
f=G+h+R—-1,...,T. This scheme yields a total number of P = T —
G — h — R out-of-sample density forecasts with the corresponding realizations,
which could be used to assess the performance of the forecast combinations.
Figure 1.1 provides a graphical illustration of the proposed estimation scheme.

By using a rolling window scheme, researchers can potentially alleviate problems

realization, as it should be clear from the context which is meant.

>The model set M is allowed to vary across forecast origins (M f in notation), thereby allowing
researchers to tailor the pool of forecasting models according to their past performance. However,
evaluating the gains from this extension is left for future research.
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related to structural instabilities. Furthermore, for reasons explained later, it is
necessary to keep the density estimation window size R finite (ie. “small”) and

the combination window size G “large”.

Figure 1.1: Proposed estimation scheme
1
/N2
f~G—h—R+2  f—G—h+1 ) > /N

f=G—h—R+3  f—G—h+2 A
| l | l - : l | |
I | I I | I | |
R
- -~ ~ |
R .......................... = R .
|
G

Note: f and f + h denote the forecast origin and the target date, respectively. The researcher
estimates each model in rolling windows of size R, which are indicated by curly (blue) braces and
collects the h-period-ahead predictive distributions and the corresponding realizations, indicated
by curved (purple) arrows, forming a sequence of size G, which is used to estimate combination
weights.

i—R+1 is denoted by @; (y|J§_R+1).

1w (79, _g ) coincides with @, (7]J}_r_ ), then the

forecast is said to satisfy probabilistic calibration. If, in addition, for a given w the

The true distribution of y, , j, conditional on J
If for a given w, Zé\{l:l w,, P

conditional distribution used by the researcher is the same as the true predictive
distribution of v, given Z,, that is YoM W, @, (1 _g1) = ©f,, (W] T,), then
the forecast is said to satisfy complete calibration.® It is important to note that
neither notion of calibration requires that the true predictive density ¢; , (v|Z;)
belong to the set of M densities. In practice, researchers often do not know the
true predictive density of y;,,, and the most they can aspire to is producing the
best forecast conditional on the specific information set — that is, producing a
probabilistically calibrated forecast.

The following stylized example, inspired by Corradi and Swanson (2006b,c),
illustrates the difference between probabilistic and complete calibration and
features dynamic misspecification. For simplicity, I abstract from parameter

estimation error.

®For an overview of different modes of calibration, see Gneiting et al. (2007) or Mitchell and
Wallis (2011).



Example 1. Let us assume that the true DGP for y, ., is a stationary normal
AR(2) process, given by v, 1 = a1y, + &y, 1 +€;,1 where ¢, ¢ irifll'/\/(O, 0?); that
is, the density of y;, 1 conditional on Z; = {y;, y; 1} is ¢, 1 (y;1|Z;) = N (aqy; +
a1;_1,0°). Therefore the joint distribution of (y;,1,¥;,¥;_1) is a multivariate
normal with covariance matrix X. Furthermore, by properties of the normal
distribution, the distribution of y;,; conditional on y,; alone is also normal,
formally ¢}, (y;41|y;) = N (@y,,7?), where & and ¢ can be computed from X.
Suppose that the researcher conditions his or her one-step-ahead forecast
on only one lag of the dependent variable, (R = 1,7} ., = y;) but main-
tains the normality assumption, which amounts to using the predictive density
Gri1 (il _riq) = N(@y;,?), corresponding to a dynamically misspecified
AR(1) model. In this case, it is easy to see that while the forecast is not comple-
tely calibrated due to the omission of y,_;, it is still probabilistically calibrated,
as given the researcher’s information set (now consisting of y,), the predictive
density is correct, ¢y, 1(Viy11Tt_giq) = ¢f11(Ve117;_g4q). For more details on
this example, see Appendix B. A

It is important to emphasize that the researcher does not need to know the
true DGP in order to produce probabilistically calibrated forecasts, as Example 1
illustrates. Therefore this is a weak notion of calibration, making it attractive for

practitioners.

1.2.1 The Probability Integral Transform
The Probability Integral Transform (PIT) is defined as

Yitn
Zip = b5 n (Y19} _ri1) dy = @, (11Tt _giq) (1.4)

—00

C
t+h

predictive density 4’tc+h("')' It is easy to see that if and only if the forecast is

where @}, (-|-) denotes the conditional CDF corresponding to the conditional
probabilistically calibrated, then z,,;, ~ U(0,1), that is z, ;, has the standard
uniform distribution. For a proof of this well-known result, see Corradi and
Swanson (2006a, pp. 784-785).”

The following example shows how the lack of probabilistic calibration can
be detected through the investigation of the PITs. It also demonstrates how the
PDFs (probability density functions) and the CDFs of the PITs can provide useful

"The original result is usually attributed to Rosenblatt (1952), while in the econometrics
literature it was introduced by Diebold et al. (1998). The discussion in Corradi and Swanson
(2006a) and Gneiting et al. (2007) is the closest to the framework of the present study.
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information on which region of the true predictive distribution the researcher’s

forecast is unable to match.

Example 2. Let us assume that the true forecast density of v, | is a mixture of a
normal density with mean zero and variance 0.5? and a Student’s t-density with
4 degrees of freedom (denoted by t,) with mixture weights (w;, w,)" = (0.5,0.5)".
That is, we have ¢}, (y,,1|Z;) = 0.5N(0,0.5%) + 0.5¢,. The forecaster uses three
predictive densities. Assume that the first incorrect predictive density is the
normal component of the mixture density, ¢}, (y;,1|7_g.;) = N(0,0.5%) and
the second one is the Student’s t component, ¢? ' 1(Vi4117i_giq) = ts. Furthermore,
the third density is the correct mixture density.

Figure 1.2 displays the three PDFs. We can see that while the means of the
incorrectly calibrated densities are the same as the true forecast density’s mean,
their tails are markedly different, with the normal density featuring thinner and
Student’s t-density displaying thicker tails than the true mixture density.

Figure 1.2: Probability density functions of candidate forecast densities

087 — .True mixture
— M1 N(0,0.5%)
0.6 M2 t4
04
0.2
\
- ~ ~— )
0 S L L e e
5 4 -3 -2 1 0 1 2 3 4 5

I calculated the PITs using each of the three models above. The PDFs of each
of the PITs in Figure 1.3 immediately reveal that using the true density delivers
uniformly distributed PITs, while the t (normal) density would imply many more
(much less) extreme observations in both tails, therefore the densities of the PITs
show a typical hump (regular U) shape. In Figure 1.4, we can see that the CDF of
the PITs obtained by using the true mixture density coincides with the 45 degree
line corresponding to the CDF of the uniform distribution. On the other hand,
the incorrect densities deliver PITs whose CDFs display S-shaped and inverted
S-shaped patterns, which are typical in situations when the tail behaviors of the
assumed and the true distributions differ. A



Figure 1.3: Probability density functions of PITs
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Note: Horizontal dashed (red) line corresponds to uniform density.

Figure 1.4: Cumulative distribution functions of PITs of candidate densities
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If the forecast is completely calibrated, then as Diebold et al. (1998) showed,
the PITs are at most & — 1 dependent. In practice, it is rather unreasonable
to assume that the researcher has completely calibrated forecasts at hand (e.g.
because of omitted variables, such as in Example 1) and instead I investigate how
to ensure that the combined forecast is going to be as close as possible to being
probabilistically calibrated given the information available at the forecast origin.
That is, this paper takes the estimated predictive densities as given. This leads to
the question of estimating the weight vector w.

Let us define
Gron(r,0) = 1[0,y aldfper) 7| —r =1 <r=r (15
at a given quantile denoted by r € [0,1] where 1[-] stands for the indicator
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function. Consider ¥(r,w) = P(z,,), < r) —r and its sample counterpart:

f—h
Yo(rrw)=G 1t Y &au(rw), (1.6)
t=f—G—h+1

which measures the vertical distance between the empirical CDF of the PIT and
the CDF of the uniform distribution (the 45 degree line) at quantile r, where G
is the number of observations used to evaluate the PITs up to and including the
forecast origin f. Recall that over the full sample, the forecast origin f ranges
fromG+R+h—-1toT.

Three widely known test statistics that measure the discrepancy between CDFs
are the Kolmogorov-Smirnov, the Cramer—von Mises and the Anderson-Darling
statistics (Anderson and Darling, 1952), which have been used in recent studies to
test the uniformity of PITs (see, for example Corradi and Swanson (2006¢); Rossi
and Sekhposyan (2013, 2014, 2016)). Let p C [0, 1] denote a finite union of neither
empty nor singleton, closed intervals on the unit interval, which depends on the
researcher’s interests. The choice of p is discussed below.

I use the Kolmogorov—Smirnov, the Cramer—von Mises and the Anderson-
Darling statistics as objective functions® in the following forms:

Ko () = sup [¥(r, )], 1)
rep
Ce(w) = /‘Pé(r,w) dr, (1.8)
0
YE(r,
Ag(w) = /% dr. (1.9)
p

The Kolmogorov-Smirnov statistic measures the largest absolute deviation of the
empirical CDF from the 45 degree line. On the other hand, the Cramer-von Mises
statistic takes into account all the deviations from the 45 degree line by measuring
the total deviation. Furthermore, the Anderson-Darling statistic weighs the
deviations by the inverse of the variance of the CDF, making it more sensitive
to deviations in the tails than in the central region. These features of the CvM
and the AD objective functions potentially lead to more precise estimators, as the
Monte Carlo simulations will demonstrate.

In some situations, practitioners may be interested in obtaining probabi-

8Sometimes I refer to the Kolmogorov-Smirnov-, the Cramer-von Mises- and the Anderson-—
Darling-type objective functions using the abbreviations KS, CvM and AD, respectively.
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listically calibrated forecasts focusing only on specific parts of the predictive
distribution. For example, finance researchers often forecast one-day-ahead Value
at Risk (VaR) at the 5% level, that is, they want to obtain the threshold loss value
I, 11 such that the ex-ante probability that their loss I, ; will exceed the threshold
is 5%. As they are interested in forecasting the 5% quantile of the distribution
of [, 1, they might want to focus on the left tail of the predictive distribution,
corresponding to p = [0,0.05]. On the other hand, if a researcher is interested in
the full predictive distribution, then p = [0, 1], while if he or she wants to focus
attention on the lower and upper 5 percentiles, then p = [0,0.05] U [0.95,1] is
appropriate.

1.2.2 The Kullback-Leibler Information Criterion

While the Kolmogorov-Smirnov, the Cramer—von Mises and the Anderson—
Darling distances (collectively, PIT-based measures) provide one way to measure
discrepancies between distributions, they are not the only ones. Another example
is the Kullback-Leibler Information Criterion (KLIC), which was proposed as an
objective function for density forecast combinations by Hall and Mitchell (2007).”

Similarly to the PIT-based objective functions, let ¢ denote a finite union of
closed, non-empty, non-singleton intervals on the support of the true conditional
distribution @}, (v 4|J}_g,1)- As before, the researcher can set g, for example
focusing on discrepancies in the [—3%, 0%] range when forecasting recessions. If
the whole distribution is of interest, then ¢ can be set as the whole real line. The
KLIC between the distributions @, (y; 47 _p,;) and ®¢ , (v,,5|70 . ;) with
corresponding densities ¢/, (v, |7}, q) and ‘Pguh (Yt+117;_goq1), over the region
of interest ¢ is defined as

KLIC, (Prin Ysn ‘ji—R-i-l ), q)grh (Y1l ji—R+1) ) (1.10)

‘Pf+h (Yetn |J§—R+1)
4’tc+h (Yezn |j§—R+1)

= Ey {<log4>f+h(yt+h\ﬂf_R+1) - 10%4’tc+h(yt+h‘ji—1z+1)> Uy € Q]} (1.12)
= Ey- {log O on Vel g1 ein € 0]} —
Egb* {log(l)tc—kh(yﬂrh‘ji—R+1)1[}/t+h S Q]} ,

= /‘Pf+h(yt+h|JfR+1)log 1y € ol dy, iy, (1.11)

(1.13)

where the subscripts in Equations (1.12) and (1.13) remind us that the expectations

9The KLIC has been used extensively in the econometrics literature, see for example the
seminal paper by White (1982) on Quasi Maximum Likelihood Estimators (QMLE).
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are taken with respect to the true predictive density. It is well known that
KLIC > 0, and KLIC = 0 if and only if ®},, (v;14|7t_g,q) = 5, (vesnlTh_giq)
almost surely, and larger values of the KLIC correspond to larger discrepancy
between the true and the combined densities. The KLIC can be interpreted as
the surprise experienced on average when we believe that ¢C , (v;,5|7} ;) is
the true predictive density but then we are informed that it is ¢, j, (v;4|7} g 1)
instead (White, 1994, Chapter 2, p.9). The first term in Equation (1.13) does not
depend on the weights, hence the minimizer of the KLIC with respect to the
weights is the minimizer of the second term alone and therefore the first term can
be treated as a constant. Based on the above definition of the KLIC, the average

KLIC (leaving out the constant term) is given by

f—h

KLIC, = G™! ; ; " —Ey {log ¢t(j+h(]/t+h|j§—R+1)1[yt+h < Q]} ;o (114
t=f—-G—h+

where the average is taken over the G time periods preceding the forecast origin
f. Hall and Mitchell (2007) proposed the sample counterpart of the KLIC as
objective function to estimate the combination weights:

f—h

KLICG(w) =G~ ) {— 10g ¢F 1, (Visnl It o)1 Y1sn € Q]} . (113
t=f-G—h+1

As we can see, the KLIC is fully operational without specifying the true
predictive distribution, which is clearly a desirable property, also enjoyed by
the PIT-based measures. Similarly to the PIT-based estimators, the KLIC-type
estimator can also target specific regions of the predictive density.

Some remarks are in order. Imagine a forecaster who wants to answer the
question: what is the range of values that will contain next month’s inflation
with, say 90% probability? Clearly, if the researcher matches the whole predictive
distribution, then he or she is going to be able to answer this question. Restricting
p or ¢ can potentially lead to more precise density forecasts, as Diks et al.
(2011) demonstrated for the KLIC-type estimator. However, there is a trade-off.
Focusing on a specific part of the distribution means that the sample size must
be considerably larger than when using an unrestricted estimator. Alternatively,
the estimator should be able to minimize the discrepancy between the true and
the combined distributions much “better” in the subset of interest than over
the whole distribution. The evaluation of potential gains resulting from such
restrictions is outside the scope of the present paper.
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1.3 Estimators and assumptions

In this section I will discuss how the aforementioned statistics defined in Equa-
tions (1.7) to (1.9) and (1.15) can be used as objective functions to estimate the
weights and I outline the assumptions that render the estimators consistent.

As discussed in Section 1.2, obtaining probabilistically calibrated combined
forecasts amounts to using a forecast density combination that delivers uniform
PITs. We can invert this problem and say the following: let us estimate the
combination weights by minimizing the distance between the empirical CDF
of the PITs and the CDF of the uniform distribution. Formally, the “optimal”
estimated weights are defined as

W = argmin T (w), (1.16)

weAM-1

where T (w) is either K (w), Co(w) or Ag(w).1? Similarly, the estimated KLIC

weights are defined as

w = argmin KLIC; (w) . (1.17)

weAM-1

Before stating and discussing the assumptions that guarantee consistency of
the estimators defined in Equations (1.16) and (1.17), it is worth understanding
why consistency has a direct appeal to forecasters in this framework. Suppose
that a researcher wants to combine models” point forecasts. Based on the past
performance of the respective models and possibly some expert information, the
researcher might be able to discard a number of models whose forecasts are
considered implausible and then weigh the remaining models” point forecasts
using either some data-driven procedure or expert judgment. On the other hand,
when combining density forecasts, the forecaster is in a more difficult situation,
as density forecasts are high-dimensional objects, and depending on the weights,
the shape of the combined density could differ largely from the shape of its
components, as the Monte Carlo simulations of Section 1.4 will demonstrate.
Therefore it is of both theoretical and practical importance that the estimator
proposed in this paper is consistent for the weight vector that in population
either delivers probabilistically calibrated forecasts or minimizes the discrepancy
between the combined density and the true predictive density (or their PITs).

19The definition reflects that weights are re-estimated at forecast origins f = G+ R +h —
1,...,T, allowing for time-variation over different forecast origins. This also applies to the
KLIC-based estimator.
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1.3.1 PIT-based estimators

In what follows, I state and discuss the assumptions that render the PIT-based
estimators consistent. Statements involving “for all ¢” are understood as t ranges
fromt=f —-G—h+1to f —h, which is the sample period used to estimate the

combination weights.

Assumption 1 (Dependence). {Z,} is ¢-mixing of size —k/(2k — 1),k > 1 or a-
mixing of size —k/(k —1),k > 1.

Assumption 2 (Region of interest). p C [0,1] is a finite union of neither empty
nor singleton, closed intervals on the unit interval, which depends on the researcher’s

interests.

Assumption 3 (Continuity). The combined CDF is continuously distributed, formally
p [Cbﬁh(thUi_RH) = r} = 0 for all (w,r) € AM~1 x p and for all t.

Assumption 4 (Estimation scheme). R < c0as G, T — oo, 1 < h < oo and fixed.
The number of models M is finite.

Assumption 5 (Identification). There exists a unique w* € AM=1 such that w* €
AM=Y minimizes Ky(w) = sup,.,, |¥o(r,w)|, Co(w) = fp‘I’%(r,w) dr or Ap(w) =
Mdr, which are the population counterparts of K~(w), C~(w) and A-~(w),
p7(1-7) pop p G G G
respectively, and where ¥o(w,r) = G~ Z{:—;l,(;,h 1 E[Gtn(w, )] is the population

counterpart of ¥ (w, r).

Assumption 6 (Anderson-Darling assumption). There exists 0 < § < 0.5 such that

) 1}!2 5 _IIIZ ’ B . 11;2 , _\Yz ’ N
sup ; G(wrr()1—r)0(w r) drl 2550 and sup f1_5 G(wrr()1_r)0(w r) arl 250,

wEAM*1 WEAM71

Assumption 1 is a dependence assumption frequently used in the forecasting
literature (Giacomini and White, 2006; Corradi and Swanson, 2006a; Rossi and
Sekhposyan, 2013). It allows the DGP to be fairly heterogeneous, but limits
its memory and rules out unit-root processes, for example. This assumption is
not restrictive in the sense that it is possible to replace it by an alternative one,
provided that also leads to a strong or weak law of large numbers. In the latter
case, consistency weakens to convergence in probability.

Assumption 2 lets the researcher focus on a specific part of the predictive
distribution. For example, p = [0,0.05] is appropriate when performing VaR
analysis at the 5% level.

Assumption 3 is a mild assumption on the continuity of the combined CDF,

which is satisfied in most applications in macroeconometrics and finance.
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Assumption 4 sets the estimation scheme, using finite (rolling) windows to
estimate the parameters of the predictive densities and a “large” sample period
used to estimate the combination weights. The former is necessary as the mixing
property of the observables is only guaranteed to carry over to functions — in this
case the predictive densities — of a finite number of observables. The latter part

(G — o0) is required to invoke a law of large numbers.

Assumption 5 is an identification condition. It covers the case of correct
specification, that is, if the true predictive distribution can be expressed as the
convex combination of the individual predictive distributions, corresponding
to YoM, Wi PP el gi1) = Pr,WenlIi_gyq) for all t. Tt also allows for
misspecification, provided there is a unique minimizer of the population objective
function.!! In the former case, the population objective function is zero at the
true weight vector w*, that is Ky(w*) = Cy(w*) = Ap(w*) = 0, as the population
CDF of the PIT is the 45 degree line. In the case of misspecification, the different
population objective functions might yield different minimizers, therefore the

pseudo-true weight vector w* might differ across estimators.!?

Assumption 6 is a technical condition, which is only required for the Anderson—
Darling-type objective function A;(w) and only if p contains 0 or 1. This as-
sumption ensures that the discrepancy between the objective function and its
population counterpart remains asymptotically negligible uniformly in w in a
neighborhood of the endpoints of [0, 1]. This difficulty arises in the case of the
Anderson-Darling objective function because the weighting function [r(1 —r)] 1
is not integrable over [0, 1], with singularities occurring at the endpoints. To
avoid introducing additional technical details, Assumption 6 is stated directly,
rather than as a result that follows from low-level assumptions. In a wide range
of Monte Carlo exercises (see Section 1.4) I never encountered a situation when
the Anderson-Darling-type estimator failed to converge.

Theorem 1 (Consistency). Under Assumptions 1 to 6, the estimator defined in Equa-
tion (1.16) is strongly consistent, that is @ ~—» w*, where w* is the weight vector that
minimizes the population objective function Ky(w), Co(w) or Ay(w).

Proof. See Appendix A. [

HFor an overview of the estimation of misspecified models, see White (1994).
12 A5 a side-note, I mention that in some cases the identification assumption does not hold, as
we saw in Example 1, where w = (0,1)" # (1,0)" = @ both deliver uniform PITs.
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1.3.2 KLIC-based estimator

In this subsection I state and discuss some additional assumptions guaranteeing
that the KLIC-based estimator defined in Equation (1.17) is strongly consistent.
Assumptions involving “for all ¢” are understood as t ranges from t = f — G —
h+1to f—h.

Assumption 7 (Region of interest). ¢ is the finite union of closed, non-empty, non-
singleton intervals on the support of the true conditional distribution @, (y4117i_g1)-

Assumption 8 (Existence). Ey+ {10g ¢}, ), (Ven|T}_gy1)1[Yein € 0]} exists for all t.

Assumption 9 (Continuity). Over o, log qbgrh (Yenldi_gq) is continuous in w for
all t.

Assumption 10 (Dominance). Over ¢, [log ¢, (i 4Tt g 1)l < b(yiy) for all
w € MM and b(y,, ) is integrable with respect to the distribution of y,., for all t.

Assumption 11 (Moment condition). Over o, E|(logc,thJrh(thUf_RH))|k+T <
A < oo for some T > 0 for all t and for all w € AM~1,

Assumption 12 (Identification). There exists a unique w* € AM~1 such that w* €
AM=1 minimizes KLIC, defined in Equation (1.14).

Assumption 7 lets the researcher focus on a specific part of the predictive dis-
tribution. Assumption 8 allows separation of the terms in the expectation operator
and proceed from Equation (1.12) to Equation (1.13). Assumption 9 is a continuity
assumption which is satisfied in most relevant applications. Assumption 10 is re-
quired to convert a pointwise strong law of large numbers into a uniform one. The
moment condition imposed by Assumption 11 is necessary to invoke the same
strong law of large numbers for mixing processes as in the case of the PIT-based
estimators, but while in that case |, (w,7)| < 1 implies that all of its moments
are uniformly bounded, in the case of the KLIC estimator this assumption needs
to be stated. Assumption 12 is an identification condition, either assuming correct
specification, corresponding to Y | W PP Wl gi1) = Prn WenlT)_giq)
for all t, and also allowing for misspecification, similarly to Assumption 5.

Theorem 2 (Consistency). Under Assumptions 1, 4 and 7 to 12, the estimator defined
in Equation (1.17) is strongly consistent, that is @ s w*, where w* is the weight vector

that minimizes the population objective function KLIC,.
Proof. See Appendix A. [
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Remark. Both Theorems 1 and 2 show consistency of the respective estimators
but do not establish their asymptotic distribution. Asymptotic normality can be
proved following Newey and McFadden (1994) if the all the entries of w* are
strictly greater than zero. However, from an empirical perspective this seems to
be a rather demanding condition. Alternatively, the results of Andrews (1999)
suggest that the asymptotic distribution of the PIT- and KLIC-based estimators are
more complicated if some elements of w* are on the boundary of the parameter

space. The investigation of this topic is left for future research. A

1.4 Monte Carlo study

To investigate the finite sample behavior of the proposed forecast density com-
bination estimator, I performed a number of Monte Carlo simulations using a
variety of DGPs.

Before presenting the results, a few remarks are in order. All simulations were
repeated 2000 times. Without loss of generality I used the true parameters of
the individual predictive densities. Clearly, if the models” parameters entering
the predictive densities were estimated, then the true combined density would
likely be a different convex combination of the densities. However, Appendix D
contains results for a DGP where the parameters of the predictive densities
were estimated. The sample sizes used to estimate the weight vector w vary as
G = {80,200, 500, 1000,2000}, offering guidance to practitioners using long time
series (in finance, for example) and relatively smaller samples (in macroeconomics,
for example).

To preserve space, this section shows the distribution of the estimators for
G = {80,500,2000}, while the remaining cases of G = {200,1000} can be found
in Appendix D. The likelihood functions of the models are listed in Appendix F.
In what follows, I first describe each DGP in the Monte Carlo exercise, then I
discuss the simulation results.

1.4.1 Monte Carlo set-up - DGP 1

Both DGP 1a and DGP 1b feature three AR(1) models with iid. normal error
terms. The models labeled as M1, M2 and M3 are given by
~ ' iid.
Yoon =D + oy, + ey, e SN(O,0P),  (118)
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where the superscript j € {1,2,3} corresponds to models M1, M2 and M3, re-
spectively. DGP 1a demonstrates the estimators” performance in a one-step-ahead
forecasting scenario (h = 1), while DGP 1b mimics a two-step-ahead forecasting
exercise (h = 2). I consider direct and not iterated density forecasts as the former
offer the advantage of closed-form expressions of predictive densities, which
implies no additional simulation burden.!> However, this paper’s framework
allows for both direct and iterated forecasts.

In both cases, the true DGP is the mixture of models M1 and M2, with weights
(wq,w,y)" = (0.4,0.6)". M3 is added to demonstrate how the different estimators
compare in eliminating this irrelevant density (w3 = 0). Furthermore, M3 is
specified such that its predictive density’s first three moments match those of
the true mixture density. The parameters are shown in Table 1.1 and Figure 1.5
displays the predictive densities.

Figure 1.5: DGPs 1a and 1b — Comparison of predictive densities

0.4r Normal component (M1)
= = Normal component (M2)
03k == True density (M1, M2)
' —*— Irrelevant density (M3)
0.2
0.1
Os

-8 -6 -4 -2 0 2 4 6 8 10 12

Note: The figure shows the predictive density of v, | (that of y,, , in the case of DGP 1b), according
to each model (M1, M2, M3) in the model set, and according to the true, mixture density. The
values of y, are set to the unconditional expected value of v;.

1.4.2 Monte Carlo set-up - DGP 2

In this experiment, I investigate the estimators’ performance when the true
DGP implies a bimodal predictive density. This could be relevant in a number
of empirical applications, such as when forecasting output. In this case, the
probability mass around the lower mode corresponds to periods of weak economic

13Based on a wide range of models estimated using 170 US macroeconomic time series,
Marcellino et al. (2006) suggested that iterated point forecasts often outperform their direct
counterparts in the mean squared forecast error sense. Whether this holds in the case of density
forecasts is certainly an interesting question but it is outside of the scope of the present study.
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activity, while the majority of the mass is around a higher mode, corresponding to
normal times. All three models M1, M2 and M3 share the common autoregressive
structure as in the case of DGP 1 with h = 1, specified in Equation (1.18). The
mixture weights are (w;, w,, w;)" = (0.25,0.75,0)’. Table 1.1 contains the models’

parameters, while Figure 1.6 shows the corresponding predictive densities.

Figure 1.6: DGP 2 — Comparison of predictive densities
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Note: The figure shows the predictive density of y, , 1, according to each model (M1, M2, M3) in the
model set, and according to the true, mixture density. The value of y; is set to the unconditional
expected value of v;.

1.4.3 Monte Carlo set-up - DGP 3

In order to demonstrate that the estimators perform well in a real-world scenario
and to anticipate the empirical application, the parameters of DGP 3 are based
on estimates of US industrial production.'* Using monthly data on US industrial
production growth between January 2008 and February 2016, I estimated two
AR(2) models, specified as

1 1 iid.
MLy =0 +P§ )yt + Pg )ytfl + oV Ve ~ N(0,1), (1.19)

2 2 iid.
M2:y, . =0c+ Pg )yt + Pg )yt—l + 028141 e ~ (1.20)

where #; stands for the standardized Student’s t-distribution, with v > 2 degrees
of freedom. The mixture weights are (w;, w,)" = (0.4,0.6)’, and I added a normal
AR(2) process to the model set, specified as

) iid.

(2 Yio1 T 0311 N1 ~N(0,1), (1.21)

M3:ypq = c5+ 0y, +of

14More details on the data can be found in Section 1.5.
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where the parameterization c; = cywy + c,wy, p§3) = wlpgl) + wzp(z) 3 —

1/ P2 =
wlpgl) + wngz) and 07 = w,0? + w,035 guarantees that the first two moments of
the predictive distribution of y, | are the same for the mixture and the irrelevant
models. Table 1.1 contains the parameters of the models and Figure 1.7 presents

the predictive densities.

Figure 1.7: DGP 3 — Comparison of predictive densities
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Note: The figure shows the predictive density of y,, 1, according to each model (M1, M2, M3) in
the model set, and according to the true, mixture density. The values of y, and y,_; are set to the
unconditional expected value of y;,.

Table 1.1: Simulation design

Model c 01 05 o2 v w;
M1 1 0.5 0 1 — 0.4
DGP1 M2 1 0.5 0 9 — 0.6
M3 1 0.5 0 5.8 — 0
M1 -2 0.9 0 1 — 0.25
DGP2 M2 1.5 0.9 0 0.25 — 0.75
M3 0.63 09 0 0.44 — 0
M1 —-0.02 031 0.21 76.87 — 0.4
DGP3 M2 -011 024 032 35032 210 0.6
M3 —-0.07 027 027 24094 — 0

Note: For each DGP and each forecasting model (M1 — M3) the table lists the constant
(c), the autoregressive parameters (p;,0,), and the variance parameter (¢2) of the
predictive distribution. M2 in DGP 3 is specified using a Student’s t predictive
distribution, with degrees of freedom parameter v. For each DGP, the predictive

distributions of M1 and M2 are weighted using the weights in the last column, w;.
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G=280

G =500

G = 2000

1.4.4 Monte Carlo results

Considering DGPs 1a and 1b first, in Figures 1.8 and 1.9 we can see that as the
sample size increases from G = 80 to G = 2000, all the estimators deliver more
precise estimates of the true parameter vector w = (0.4,0.6,0)’, demonstrating
consistency. However, it is also apparent that the Anderson-Darling- and the
KLIC-based estimators dominate the other two, both in terms of location and
dispersion, at all sample sizes considered. This ranking holds in all the Monte

Carlo experiments.

Figure 1.8: Monte Carlo results for DGP 1a, true parameter vector w = (0.4,0.6,0)’

KS CvM AD KLIC

weights of normal density (M1) [l weights of normal density (M2) [l weights of irrelevant density (M3)

Note: G denotes the sample size. KS, CvM, AD and KLIC stand for the Kolmogorov-Smirnov-,
the Cramer—von Mises-, the Anderson-Darling- and the KLIC-based estimators, respectively.
Histograms and kernel density estimates are based on 2000 Monte Carlo replications.

Also, it is worth mentioning that while the AD and the KLIC estimators
perform well at eliminating the irrelevant density (M3) even at sample size
G = 80, the KS estimator still gives considerable weight to this model with large
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G =500

G = 2000

probability, and this improves rather slowly as G increases. Moreover, we can see
that increasing the forecast horizon from h = 1 to & = 2 has no impact on the

estimators” performance.

Figure 1.9: Monte Carlo results for DGP 1b, true parameter vector w = (0.4,0.6,0)’

KLIC

KS

CvM AD

[ weights of normal density (M1) Il weights of normal density (M2) [l weights of irrelevant density (M3)

Note: G denotes the sample size. KS, CvM, AD and KLIC stand for the Kolmogorov-Smirnov-,
the Cramer—von Mises-, the Anderson-Darling- and the KLIC-based estimators, respectively.
Histograms and kernel density estimates are based on 2000 Monte Carlo replications.

Tables 1.2 and 1.3 display the bias, variance and mean squared error for all
sample sizes and objective functions. The figures support that the Kolmogorov-
Smirnov objective function performs considerably worse than its competitors.
As the KS-estimator is based on the largest deviation of the PIT from the 45
degree line, this estimator is unable to distinguish between the densities in such

a nuanced way as the rest of the estimators.
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Table 1.2: DGP 1a, Monte Carlo summary statistics for different sample sizes G

and objective functions K (w), Cs(w), Ag(w) and KLIC (w)

Sample size Statistic KS CvM AD KLIC
Bias —0.05-0.26 0.31 —0.06 —0.16 0.21 —0.06 —0.10 0.15 —0.04 —0.15 0.20
G =280 Var 0.03 0.08 0.13 0.00 000 0.00 0.02 0.06 0.08 0.01 005 0.07
MSE 003 014 023 0.02 0.08 0.13 002 006 0.08 0.02 0.07 0.11
Bias —0.05-0.22 0.27 —0.04 —0.12 0.16 —0.03 —0.08 0.11 —0.03 —0.11 0.13
G =200 Var 0.02 0.07 0.1 0.00 000 0.00 0.01 0.03 0.05 001 003 0.04
MSE 002 012 019 0.01 0.05 0.08 0.01 003 004 001 0.04 0.05
Bias —0.04 —0.20 0.24 —0.02 —-0.08 0.10 —0.02 —0.05 0.07 —0.02 —0.07 0.09
G =500 Var 0.01 0.06 0.09 0.00 000 000 0.00 0.02 0.02 0.00 001 0.01
MSE 001 010 015 0.00 0.02 0.03 0.00 0.01 0.02 0.00 0.02 0.02
Bias —0.03 —0.15 0.18 —0.02 —-0.06 0.07 —0.02 —0.04 0.06 —0.01 —0.05 0.06
G =1000 Var 0.00 0.04 0.06 0.00 000 000 0.00 0.01 0.01 0.00 001 0.01
MSE 001 006 0.09 0.00 0.01 0.02 000 001 0.01 0.00 0.01 0.01
Bias —0.02 -0.12 0.15-0.01 —0.04 0.05 —-0.01 —0.03 0.04 —0.01 —0.03 0.04
G =2000 Var 0.00 0.03 0.04 000 000 0.00 0.00 0.00 0.01 0.00 0.00 0.00
MSE  0.00 0.04 007 000 0.01 0.01 0.00 0.00 001 0.00 0.00 0.00

Note: In the four main columns with headers KS, CvM, AD and KLIC, the table shows the estimates
of the bias, variance (Var) and mean squared error (MSE) for each of the components of the weight
vector w. True weights: w = (0.4,0.6,0)’. Statistics are based on 2000 Monte Carlo replications.

Table 1.3: DGP 1b, Monte Carlo summary statistics for different sample sizes G

and objective functions K;(w), Cs(w), Ag(w) and KLIC;(w)

Sample size Statistic KS CvM AD KLIC
Bias —0.06 —0.25 0.31 —0.06 —0.15 0.21 —0.06 —0.10 0.15 —0.04 —0.15 0.19
G =280 Var 0.03 0.08 0.13 0.02 006 0.08 0.01 0.05 0.06 0.01 0.05 0.07
MSE 0.03 0.14 023 002 008 012 0.02 0.06 0.08 0.02 0.07 0.10
Bias —0.05 -0.24 0.29 —0.04 —0.12 0.16 —0.03 —0.07 0.11 —0.03 —0.10 0.13
G =200 Var 0.01 0.07 0.12 001 004 0.05 0.01 0.02 0.03 0.01 0.03 0.03
MSE 0.02 0.12 020 001 005 0.08 0.01 0.03 0.04 0.01 0.04 0.05
Bias —0.04 —0.20 0.24 —0.02 —0.08 0.10 —0.02 —0.05 0.07 —0.02 —0.07 0.08
G =500 Var 0.01 0.05 0.09 000 0.02 0.02 0.00 0.01 0.01 0.00 001 0.01
MSE 0.01 0.09 0.14 000 0.02 0.03 0.00 0.01 0.02 0.00 0.01 0.02
Bias —0.03 —0.16 0.19 —0.02 —0.05 0.07 —0.02 —0.04 0.06 —0.01 —0.04 0.05
G =1000 Var 0.00 0.04 0.07 000 001 0.01 0.00 0.01 0.01 0.00 001 0.01
MSE 0.01 0.07 0.10 0.00 0.01 0.02 0.00 0.01 0.01 0.00 0.01 0.01
Bias —0.02 —0.12 0.14 —0.01 —0.04 0.05 —0.01 —0.03 0.04 —0.01 —0.03 0.04
G =2000 Var 0.00 0.03 0.04 000 000 0.01 0.00 0.00 0.00 0.00 0.00 0.00
MSE 0.00 0.04 0.06 000 001 0.01 0.00 0.00 0.00 0.00 0.00 0.00

Note: In the four main columns with headers KS, CvM, AD and KLIC, the table shows the estimates
of the bias, variance (Var) and mean squared error (MSE) for each of the components of the weight
vector w. True weights: w = (0.4,0.6,0)". Statistics are based on 2000 Monte Carlo replications.
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G =280

G =500
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Next, in the case of DGP 2, Figure 1.10 clearly demonstrates that in an em-
pirically potentially relevant scenario, even the Kolmogorov-Smirnov estimator
delivers excellent results, on par with the CvM, AD and KLIC estimators, even
for such small samples as G = 80. It is also worth noting that in this case, the
difference between the estimators is visually indistinguishable both in terms of
location and dispersion of the estimates. The individual forecasting models M1
and M2 concentrate mass in different areas of the real line, which considerably

improves the performance of all estimators.

Figure 1.10: Monte Carlo results for DGP 2, true parameter vector w
(0.25,0.75,0)’
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Note: G denotes the sample size. KS, CvM, AD and KLIC stand for the Kolmogorov-Smirnov-,

the Cramer—von Mises-, the Anderson-Darling- and the KLIC-based estimators, respectively.
Histograms and kernel density estimates are based on 2000 Monte Carlo replications.
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As Table 1.4 shows, all the estimators perform excellently when the individual
models assign most of the probability mass to fairly remote regions. Compared
to the previous DGPs, the Kolmogorov—Smirnov estimator’s performance is
remarkable, as the column labeled KS reveals.

Table 1.4: DGP 2, Monte Carlo summary statistics for different sample sizes G
and objective functions K;(w), Co(w), Ag(w) and KLIC; (w)

Sample size Statistic KS CvM AD KLIC
Bias —0.04 —0.02 0.05 —-0.02 —0.01 0.04 —0.02 —0.02 0.04 —0.00 —0.02 0.02
G =80 Var 0.00 0.01 0.01 0.00 0.01 0.00 0.0 0.01 0.00 0.00 0.00 0.00
MSE  0.01 0.01 0.01 0.0 0.01 0.00 0.00 0.01 0.00 0.0 0.00 0.00
Bias —0.02 —0.01 0.04 —0.01 —0.01 0.02 —0.01 —0.01 0.02 —0.00 —0.01 0.01
G =200 Var 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
MSE  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Bias —0.01 —0.01 0.02 —0.01 —0.01 0.01 —0.01 —0.01 0.01 —0.00 —0.01 0.01
G =500 Var 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
MSE  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Bias —0.01 —0.01 0.02 —0.00 —0.01 0.01 —0.00 —0.01 0.01 —0.00 —0.00 0.01
G =1000  Var 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
MSE  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Bias —0.01 —0.00 0.01 —0.00 —0.00 0.01 —0.00 —0.00 0.01 —0.00 —0.00 0.00
G =2000 Var 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
MSE  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Note: In the four main columns with headers KS, CvM, AD and KLIC, the table shows the estimates
of the bias, variance (Var) and mean squared error (MSE) for each of the components of the weight
vector w. True weights: w = (0.25,0.75,0)’. Statistics are based on 2000 Monte Carlo replications.

In the case of DGP 3, which is based on empirically relevant models, we
can see again in Figure 1.11 that the AD and KLIC estimators dominate the
other two, with the latter delivering slightly less dispersed estimates. Table 1.5
shows that the relative ranking of the estimators is similar to the case of DGPs 1a
and 1b, with the KLIC and the Anderson-Darling estimators clearly delivering
more precise estimates in the mean squared error sense. Intuitively, this result
is due to the similar means implied by the individual models, in which case the
Kolmogorov-Smirnov estimator performs poorly.

In addition to these four DGPs, Appendix D reports additional simulation
results, covering: (i) more persistent time series, (i7) the mixture of three predictive
densities, resulting in a trimodal true density, (ii7) the mixture of autoregressive
conditionally heteroskedastic and AR(1) models, and (iv) predictive densities with
estimated parameters. All the additional simulations confirm the conclusions,

which are as follows.
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Figure 1.11: Monte Carlo results for DGP 3, true parameter vector w = (0.4, 0.6, 0)’

CvM AD KLIC

70 weights of normal density (M1) Il weights of Student's t-density (M2) [l weights of irrelevant density (M3)

Note: G denotes the sample size. KS, CvM, AD and KLIC stand for the Kolmogorov—Smirnov-,
the Cramer—von Mises-, the Anderson-Darling- and the KLIC-based estimators, respectively.
Histograms and kernel density estimates are based on 2000 Monte Carlo replications.

The estimators based on the Anderson-Darling statistic and the KLIC typically
outperform the Kolmogorov—Smirnov and Cramer—von Mises estimators in the
mean squared error sense. Furthermore, a sample size as low as G = 200 observa-
tions is often sufficient for fairly precise weight estimates, with no economically
meaningful differences between the CvM, AD and KLIC-based estimators. These
numerical results confirm the consistency of the proposed estimators and suggest
that in empirical applications, the Anderson-Darling- or the KLIC-type estimator
should be preferred.
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Table 1.5: DGP 3, Monte Carlo summary statistics for different sample sizes G
and objective functions K;(w), Cq(w), Ag(w) and KLIC (w)

Sample size Statistic KS CvM AD KLIC

Bias —-0.15 0.04 0.11 -0.14 0.05 0.09 -0.13 0.06 0.07 —0.03 —0.01 0.04
G =80 Var 0.06 0.05 0.02 006 0.05 001 005 004 0.01 0.04 0.04 0.00
MSE 0.08 0.06 0.03 008 005 0.02 0.06 004 001 004 0.04 0.00

Bias —-0.14 0.05 0.09 -0.11 0.05 0.06 —0.08 0.03 0.04 —0.02 —0.00 0.02
G =200 Var 0.04 0.03 0.01 004 002 001 0.02 0.02 000 0.02 0.02 0.00
MSE 0.06 0.03 0.02 005 003 0.01 0.03 0.02 000 0.02 0.02 0.00

Bias —0.12 0.05 0.07 -0.06 0.03 0.03 -0.04 0.02 0.02 -0.01 —0.00 0.02
G =500 Var 0.03 0.01 0.00 002 001 0.00 0.01 0.01 000 001 0.01 0.00
MSE 0.04 0.02 0.01 002 001 0.00 0.01 001 000 001 0.01 0.00

Bias —0.09 0.04 0.05-0.04 0.02 0.02-0.03 0.02 0.01-0.01 0.00 0.01
G =1000  Var 0.02 0.01 0.00 0.01 001 0.00 0.00 0.00 0.00 0.00 0.00 0.00
MSE 0.03 0.01 0.1 001 001 0.00 0.01 0.00 0.00 0.00 0.00 0.00

Bias —0.07 0.03 0.04 -0.03 0.01 0.02-0.02 0.01 0.01 -0.01 0.00 0.01
G =2000 Var 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
MSE 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Note: In the four main columns with headers KS, CvM, AD and KLIC, the table shows the estimates
of the bias, variance (Var) and mean squared error (MSE) for each of the components of the weight
vector w. True weights: w = (0.4,0.6,0)’. Statistics are based on 2000 Monte Carlo replications.

1.5 Empirical application

In this section I apply the proposed methodology to obtain one-month-ahead
(h = 1) density forecast combinations of annualized US industrial production (IP)
growth. Consider the time series and the unconditional distribution of annualized
US IP growth between March 1960 and February 2016, shown in Figures 1.12
and 1.13, respectively. As we can see in Figure 1.13, the unconditional distribution
shows more kurtosis (x = 7.47) and is more negatively skewed (s = —0.93) than
the normal distribution with the same mean (y = 2.60) and standard deviation
(c = 9.03), whose PDF is also plotted for ease of comparison, along with the

kernel density estimate of IP growth.

While the non-Gaussian unconditional distribution does not necessarily imply
non-Gaussian conditional distribution, it is worth investigating how the proposed
data-dependent density forecast combination procedures — which are capable of

generating a variety of forecast densities — perform in an empirical exercise.
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Figure 1.12: Annualized US IP growth between March 1960 and February 2016
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Note: Shaded areas are NBER recession periods.

Figure 1.13: Normalized histogram of annualized US IP growth between March
1960 and February 2016
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1.5.1 Models and data

Based on their empirical success documented by Stock and Watson (2003), Gran-
ger and Jeon (2004), and more recently by Rossi and Sekhposyan (2014), I consider
linear Autoregressive Distributed Lag (ARDL) models of the following form:

1 1
iid.

Yes1 = CF Y Bileoj+ Y ViXej+ V0P g ~N(0,1),  (1.22)

j=0 =0

where y, is annualized US IP growth in month 7, that is y, = 1200Alog(IP,)
where A is the first difference operator, ¢ is a constant term, 3 js are coefficients of
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the autoregressive terms while ;s are coefficients of the additional explanatory
variables and v/ 2 scales the error term g41-° The lag length was specified follo-
wing Granger and Jeon (2004), who demonstrated that on average, approximately
two lags provide the best (in terms of Root Mean Squared Error) forecasts for
output series. All the data were obtained from the March 2016 vintage of the
FRED-MD database (McCracken and Ng, 2016).

Some explanation regarding the y,. and x, variables is in order. First, the
chosen measure of industrial production is the INDPRO series (ID: 3), which
measures total industrial production. Second, the possible elements of x.. are the
following variables, with the identifiers in the original database in parentheses:
New Private Housing Permits SAAR (ID: 55), ISM : New Orders Index (ID: 61),
S&P’s Common Stock Price Index: Composite (ID: 80) and Moody’s Seasoned Baa
Corporate Bond Yield minus FEDFUNDS (ID: 100). Out of these four variables, I
included them one by one, obtaining four different specifications. Furthermore, I
estimated the pure AR(2) model, without additional regressors. The error term
€, 1 is specified as iid. standard normal. In total, the model set M contains five
models. To obtain stationary series, I took the log difference of the S&P index (and
multiplied it by 100 to convert it into percents) and the log of the housing permits
series, while the other variables were left untransformed, following McCracken
and Ng (2016) and Carriero et al. (2015).1¢ The resulting series are shown in
Figure 1.14.

A salient feature of the housing data series is the almost uninterrupted
increase since the early 1990s, which went into free fall during the recent financial
crisis and recovered after the Great Recession, as Figure 1.14a shows. It is also
remarkable that unlike in earlier recessions, housing permits did not plummet
during the 2001 recession. Figure 1.14d reveals the sudden surge in corporate
bond spreads at the onset of the financial crisis, which will turn out to be of great
importance in this forecasting exercise.

All models are estimated using Maximum Likelihood in rolling windows of
R = 120 months, with forecast origins f and target dates f 4 h ranging from
February 1985 to January 2016 and March 1985 to February 2016, respectively.

To illustrate the estimation procedure, consider the first forecast origin f,
corresponding to February 1985. The first window to estimate the models of
Equation (1.22) contains data indexed by T = {February 1960, ..., January 1970},

which delivers out-of-sample (with respect to this estimation sample) predictive

15 Appendix F contains a detailed description of the models.
16For each series, the Augmented Dickey-Fuller test (Dickey and Fuller, 1979) with drift and 12
lags indicates rejection of the null hypothesis of unit root at the 5% level.
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Figure 1.14: Time series of all predictors between February 1960 and January 2016

|
\

7o | WN\ ‘ (f‘*ﬁ%w \‘w
M

WU Ly o A ) M |
AL \(v M ZEJ"M%““\W” ! | fi V¥ W’\ /VW M ly

AN R A

M\

V

',ﬂ 30
19‘65 19‘70 19‘75 19;80 19;85 19‘90 19‘95 2060 2065 20I10 20‘15 20 19‘65 19‘70 19‘75 19‘80 19‘85 19I90 19‘95 20‘00 2065 20‘10 20‘15
(a) Housing (b) NOI
10
101 * |
| \ n“ il ﬂ I = HV\
0 N«»('MWM L‘M MMM M“WW‘ JMJ AM %W WVN W'MJ ° i \, M\ A /\ " . /\f V\f M
K N
"l % \ 0 N/\Wu/ \‘ \J‘P /
-20 [ ‘
19l65 19l70 19‘75 19‘80 19;85 19‘90 19‘95 20l00 20l05 20‘10 20‘15 ® 19‘65 19‘70 1575 19‘80 1585 15;90 19‘95 20‘00 2065 20‘10 20‘15
(c) S&P 500 (d) Spreads

Note: Housing stands for New Private Housing Permits, New Order Index stands for ISM: New
Orders Index, S&P 500 is the S&P 500 stock index returns while Spread is Moody’s Baa Corporate
Bond Yield minus Fed funds rate. The series were transformed as described in the main text.

distributions for March 1970, by plugging in the observed values of the expla-
natory variables corresponding to February 1970. These predictive distributions
are evaluated at the realized value of industrial production growth in March
1970, yielding the corresponding PITs. Then the window is moved one month
forward. Given the results of the Monte Carlo experiments in Section 1.4, this
procedure is repeated G = 180 times, until the last model estimation window
reaches T = {January 1975, ..., December 1984} and the last out-of-sample pre-
dictive distributions and PITs correspond to February 1985. This sequence of PITs
form the input of the Anderson-Darling-type objective function A (w) and the
KLIC objective function KLIC;(w), resulting in weight estimates @Wiygsp, and
WXL o, respectively. Then, the actual realized values of the right hand side vari-
ables corresponding to T = February 1985 are substituted in the estimated last
regressions and the previously obtained weights are used to construct either the
Anderson-Darling- or the KLIC-based density forecasts corresponding to March
1985 and the corresponding out-of-sample value of the PIT is recorded. The above
procedure is repeated for the remaining forecast origins, until f reaches January
2016. As a result, we will have P = 372 observations of truly out-of-sample PITs,
whose values were obtained using only preceding observations, both for model
and weight estimation. This sequence of PITs spans March 1985 and February
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2016, which is the out-of-sample evaluation period used to evaluate different

combination schemes, as explained later.

To compare the PIT- and KLIC-based estimators to existing methods, the
forecasting exercise was also performed using (i) equal weights, (ii) the AR(2),
(iii) a single model selected by the Bayesian Information Criterion (BIC) (Schwarz,
1978), and (iv) Bayesian Model Averaging (BMA). All of these benchmarks have

been demonstrated to perform well in empirical exercises.

Kascha and Ravazzolo (2010) and Rossi and Sekhposyan (2014) found that the
equal weights combination scheme performs well when forecasting inflation with
a large number of simple models. The AR(2) model with normal error terms,
denoted by AR(2)-N, was shown to be a tough benchmark in point forecasting
exercises, see for example Del Negro and Schorfheide (2013). Note that this
benchmark could be interpreted as assigning a weight of 1 to the AR(2) model
and a weight of 0 to all the other models.

The BIC of model m at forecast origin f is defined as

f-1 R
BIC,, = -2 log €, (vi411256,,) + Kk, log(R), (1.23)
t=f—R

where /,,(-|-) is the conditional likelihood function, z}" is the vector of explana-
tory variables, and 8,, = (¢, By, By, 7o, 71,02)’ is the k,, x 1 vector of parameter
estimates (the index m emphasizes that all these objects depend on the actual
model). In words, at each forecast origin and for each model m € {1,...,5}, 1
evaluate the likelihood function at the estimated parameters and compute the
BIC. According to Kass and Raftery (1995) and Hoeting et al. (1999), model
selection based on the BIC is a reliable approximation to model selection based
on the highest posterior model probability. Granger and Jeon (2004) found the
BIC to perform well in a forecast comparison including a large number of US
macroeconomic series. In a recent empirical study on point forecasts, Giirkaynak
et al. (2013) showed that simple, univariate autoregressive models, whose lag
length is selected using the BIC, often outperform VAR and DSGE models when

forecasting output growth at short horizons and inflation at long horizons.!”

Kass and Raftery (1995) and Hoeting et al. (1999) demonstrated that the
Bayesian Model Averaging approach can be approximated by combining the BIC

7For theoretical and simulation results demonstrating the virtues of the BIC in a time series
forecasting framework, I refer to Inoue and Kilian (2006) and the studies cited therein.
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values, where model m’s weight is given by

o — exp(—0.5BIC,,)
" Y2 exp(—0.5BIC;)

(1.24)

Rossi and Sekhposyan (2014) reported that in a density forecasting framework,
BMA (BMA-OLS in their terminology) delivered mixed results when forecasting
US GDP growth and inflation. More precisely, equal weights dominated BMA
when forecasting output growth one quarter ahead or predicting inflation one
and four quarters ahead. However, they both delivered well-calibrated predictive

densities for GDP growth four quarters ahead.

1.5.2 Results: point forecasts

Figure 1.15 shows the point forecasts (conditional means) of all the forecast
combination schemes between March 1985 and February 2016.

Figure 1.15: Point forecasts of US industrial production growth
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Note: Shaded areas are NBER recession periods.

We can see that while all models seem to capture the “slow-moving” com-
ponent of the conditional mean of IP growth, high-frequency movements in
the data remain largely unexplained. A formal comparison of Mean Squared
Forecast Errors (MSFEs) can be found in Table 1.6, using the Diebold-Mariano test
(Diebold and Mariano, 1995) and following the methodology of Giacomini and
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White (2006). Specifically, the null hypothesis is that the conditional forecasting
performance of each alternative model (Anderson-Darling weights, KLIC weights,
equal weights, BIC and BMA) measured by their respective squared forecast error
is the same as the benchmark AR(2)-N model, while the alternative hypothesis
is that the given alternative model has lower expected squared forecast error.
Therefore the MSFE loss difference series were calculated as the squared forecast
errors of the AR(2)-N model minus the given competitor’s squared forecast errors.
The critical values were obtained using the standard normal approximation of
the distribution of the test statistic under the null, with rejection region in the
right tail. This setting corresponds to the view that it is interesting to investi-
gate whether model combinations deliver significantly superior point forecasting
performance compared to the simplest benchmark.

Table 1.6: Mean Squared Forecast Errors and Diebold-Mariano tests

Model MSFE DM statistic ~ p-value
AR(2)-N 3.64 — —
AD weights 1.00 —0.10 0.54
KLIC weights 0.93 2.86 0.00
Equal weights 0.96 1.36 0.09
BIC 0.97 0.75 0.23
BMA 0.96 1.17 0.12

Note: The rows correspond to the six forecasting methods, while
the columns correspond to the Mean Squared Forecast Error (ac-
tual, non-annualized value in the first row, MSFE ratios as fractions
of the AR(2)-N benchmark in the remaining rows), the Diebold-
Mariano test statistic and its p-value. The DM statistic was calcula-
ted using the HAC estimator by Newey and West (1987), using a
bandwidth of [0.75P!/3] = 5.

As Table 1.6 shows, the KLIC weights combination significantly outperforms
the benchmark AR(2)-N model at the usual significance levels, while the equal
weights scheme delivers a p-value of 0.09. This is somewhat surprising, as the
superior point forecasting performance of the equal weights model combination
has been demonstrated in the literature in a variety of settings, see for example
Granger and Jeon (2004), Timmermann (2006) or Elliott and Timmermann (2016).
While the Anderson-Darling weight combination scheme fails to deliver signifi-
cantly better point forecasts than the benchmark, it is remarkable that it performs
on par with such a tough benchmark. Recall that the PIT-based weighting scheme
is designed to deliver probabilistically calibrated density forecasts. Whether it
lives up to this expectation is investigated in the next section.
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1.5.3 Results: density forecasts

Next, let us consider the density forecasts obtained by the six competing methods.
First, in Figure 1.16 we can see central, equal tailed 90%, 70% and 50% bands
of the one-step-ahead combined predictive densities at each forecast target date,
ranging from March 1985 to February 2016. Visual inspection suggests that it is
not easy to discriminate between the density forecasting schemes. On average,
they seem to perform similarly, and not surprisingly they all miss the lowest
point of the Great Recession, when in September 2008, US industrial production
decreased by 4.36% compared to the previous month (the annualized figure is a
striking 52.3%).

In Figure 1.17 we can see the histograms of the PITs associated with the six
forecasting methods. By comparing Figure 1.17a and Figure 1.17b, we can see
that the Anderson-Darling weight combination slightly misses periods of low
growth or even contractions and puts somewhat more mass in the central part of
the density than ideal, while the KLIC-based combination fails to capture extreme
events in both tails. As Figure 1.17c and Figure 1.17d show, the equal weights
scheme and the AR(2)-N model display this behavior in a more pronounced way.
Figure 1.17e and Figure 1.17f suggest that BIC-based model selection and BMA
weights provide better density forecasts than the previous two competitors.

Figure 1.18 shows the empirical CDFs of the PITs and the ideal, uniform CDF
corresponding to the 45 degree line. As we can see, Figure 1.18 confirms the
earlier assertions, as the empirical CDF of the AR(2)-N model and the equal
weights combination are below the 45 degree line until approximately 0.5 and
then run well above the diagonal. On the other hand, the Anderson-Darling and
KLIC weights deliver more uniformly distributed PITs. It is also clear that the
empirical CDF of the AD weighting scheme runs closest to the uniform CDF, and
the BIC slightly outperforms BMA weights.

To formally evaluate whether each density forecasting scheme delivers pro-
babilistically calibrated forecasts, I test the uniformity of the PITs using the test
developed by Rossi and Sekhposyan (2016). Under the null hypothesis of uni-
formity, their test allows for dynamic misspecification and maintains parameter
estimation uncertainty, in line with this paper’s framework, as the proposed
optimal weighting scheme allows for both as well. Table 1.7 shows the results of
the test of correct specification of each density combination method. As we can
see, the Anderson-Darling weights, the BIC, and BMA deliver probabilistically ca-
librated forecasts of industrial production according to the Kolmogorov—-Smirnov
and the Cramer—von Mises-type test statistics, by not being able to reject the null
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Figure 1.16: Equal-tailed forecast bands of one-month-ahead US IP growth
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even at the 10% level. Furthermore, the KLIC and the AR(2)-N also generate
calibrated forecasts at the 5% level. It is reassuring that the proposed optimal
weighting scheme is able to produce probabilistically calibrated forecasts in a
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Figure 1.17: Normalized histograms of PITs
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setting where equal weighting surprisingly fails. Therefore we can conclude that
the Anderson—Darling-based estimator, and to a lesser extent, the KLIC-based
estimator are capable of delivering well-calibrated density forecasts.

37



Figure 1.18: Empirical CDF of PITs
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Table 1.7: Rossi and Sekhposyan (2016) test on correct specification of conditional
predictive densities

Models Kolmogorov-Smirnov Cramer—von Mises
AD weights 0.90 (0.38) 0.24 (0.22)
KLIC weights 1.28 (0.08) 0.42 (0.06)
Equal weights 1.39 (0.05) 0.50 (0.04)
AR(2)-N 1.31 (0.08) 0.40 (0.09)
BIC 1.16 (0.17) 0.32 (0.16)
BMA 1.28 (0.10) 0.38 (0.11)

Note: The rows correspond to the six forecasting methods, while the
columns correspond to the two test statistics. In each cell, the first entry
is the test statistic, the second one, in parentheses is the p-value. The
p-values were calculated using the HAC estimator by Newey and West
(1987) using a bandwidth of [0.75P'/3| = 5. The number of Monte Carlo
simulations to obtain asymptotic critical values was 200,000.

This discussion has so far focused on evaluating the various density forecasts
of US industrial production. However, it is also interesting how the combination
weights of each model evolved over the out-of-sample period (March 1985 to
February 2016), which is shown in Figures 1.19 to 1.21.

In Figure 1.19a, we can see that using the Anderson-Darling weights, apart
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Figure 1.19: Time-variation of estimated AD and KLIC weights, area plots
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from the beginning of the sample period, until the early 2000s, the model with
the New Orders Index dominated the model pool. From the early 2000s, new
housing permits proved to be by far the best predictor of industrial production,
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Figure 1.20: Time-variation of estimated BIC and BMA weights, area plots
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which highlights the importance of the housing sector as one of the drivers of the
bubble leading to the financial crisis. During and after the Great Recession, the
models featuring the corporate bond yield spread and the S&P 500 received large
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Figure 1.21: Time-variation of estimated density forecast weights, line plots
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weight. It is remarkable that the optimal combination scheme using Anderson—
Darling weights was able to capture the predictive power of the spread variable
at the beginning of the financial crisis, as highlighted in the “Spread” panel of
Figure 1.21. These findings are similar to the conclusions of Ng and Wright (2013),
who suggest that the predictive content of individual variables displays rather
large variations over time and financial data proved to be useful predictors of
output in the wake of the Great Recession. As they explain, in a more leveraged
economy, interest rate spreads have stronger effect on output through channels
affecting firms” finances. However, to my knowledge, the present paper is the
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tirst showing in an out-of-sample forecasting exercise that during and after the
Great Recession, density forecasts of models that feature a spread variable also
perform better in predicting industrial production. Interestingly, since around

2009, housing permits have again emerged as a powerful predictor.

Figure 1.19b shows that the weights based on the KLIC do not show such
pronounced patterns as the AD weights, although we can see that new housing
permits appear to contain predictive power sporadically, and spread data received
considerable weight only until 1995. KLIC weights also suggest that the New
Orders Index has gradually lost its predictive power. However, this weighting
scheme increasingly favors the S&P 500 index since 1995, which is in contrast to

the earlier results using Anderson-Darling weights.!8

An explanation of this difference is that at each forecast origin, the individual
models” Anderson-Darling statistics displayed more dispersion than their KLIC
values, and the PIT-based estimator was able to exploit this variation across

models. For a more detailed analysis and supporting evidence, see Appendix E.

Figure 1.20a and Figure 1.20b show that both the BIC and BMA overwhel-
mingly favored the model featuring the New Orders Index variable, and other
models received some weight only sporadically, without a clear and interpretable

pattern.

Figure 1.21 displays the same information as discussed above, partitioning by
forecasting model rather than weight estimation method.

Based on the empirical results, several conclusions arise. First, model combi-
nations can help density forecasting if the weights are carefully estimated, using
either the Anderson-Darling-type objective function, or to a lesser extent, the
KLIC objective function. Second, the variables with most information content
change over time and the PIT-based optimal weights provide valuable insights
into what was driving industrial production. Specifically, housing permits and
financial variables stand out as economically meaningful explanatory variables,
the former since the early 2000s and the latter since the recent financial crisis and
the recession that followed. Related to the previous points, non-Gaussian density

forecasts perform considerably better than Gaussian ones.

18Figure E.1 in Appendix E displays the ratio of the inverse in-sample residual variances of
each model relative to the sum of the inverse residual variances. Bates and Granger (1969) recom-
mended this ratio as an estimator of the optimal weights, minimizing the expected Root Mean
Squared Forecast Error. The figure displays very stable weights, all around 1/5, corresponding to
equal weights. This confirms that the PIT- and KLIC-based weight estimates are not driven by the
models’ in-sample fit.
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1.6 Conclusion

This paper’s contributions are summarized as follows. First, I proposed consistent
estimators of convex combination weights to approximate the true predictive
density. The framework of this study uses a weak notion of forecast calibration
that takes into account the information set (the models) that the researcher uses
in a given forecasting scenario. Most of the existing literature discusses testing
whether density forecasts are correctly calibrated, but estimating the combination
weights has received considerably less attention, which is the topic of the present
paper.

Second, Monte Carlo experiments confirmed that the proposed asymptotic
theory performs well for sample sizes which are relevant in macroeconometrics
and finance.

Third, an empirical exercise demonstrated that this paper’s methodology
improves on individual models” density forecasts of US industrial production and
delivers probabilistically calibrated forecast densities. Furthermore, the estimated
weights highlight the importance of non-Gaussian predictive densities, and they
are also intuitively interpretable. They demonstrate that the housing market was
one of the drivers of output growth before and after the recent financial crisis.
Moreover, corporate bond yield spreads contain considerable predictive content,
especially during the Great Recession. To my best knowledge, these findings are
novel in the literature on density forecasts.

The present paper offers several avenues for further research. The empirical
exercise suggests that weight estimates display persistence. Therefore, a potential
theoretical extension would be incorporating the information contained in past
weights to improve the estimators. Furthermore, the time-variation of the weight
estimates implies that structural breaks might be present in the data. Hence,
another direction for further study would be to develop a testing procedure to
detect breaks. This would allow researchers to make statistically well-founded
statements about break dates, which could improve their forecasting strategies.
Another possibility is the inclusion of a penalty term to shrink the weights
towards zero, focusing on the most relevant models. This would allow forecasters
to considerably extend the model set and control the estimators’ mean squared
error at the same time through a bias-variance trade-off. From an empirical
perspective, it would be interesting to see how the proposed weight estimation
method compares to recent, Bayesian approaches, suggested by Waggoner and
Zha (2012), Billio et al. (2013), and Del Negro et al. (2016). Moreover, this paper’s
framework is general enough to include structural DSGE models or survey
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forecasts in the model set. This could enhance our understanding of the relative
merits of these approaches in terms of density forecasts. Practitioners in the fields
of finance and risk management could also take advantage of the estimators
proposed in this paper by constructing more precise Value at Risk estimates using
combinations of density forecasts, and focusing on a specific part of the predictive
distribution.
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Appendices

A Proofs

Proof of Theorem 1. In the first part of the proof, I show almost sure uniform
convergence of the sample average of ¢, (w, ) to its expected value, following
Lemma 1 presented in Tauchen (1985). In the second part, I tailor the remainder
of the proof by considering the objective functions K;(w), Cg(w) and Ag(w)
separately. To save on notation and avoid clutter, the time index of the variable
of interest runs from 1 to G in the proof. The extension to the general rolling
window case is straightforward by replacing the time indicesby t = f — G — h +
1,...,f —hwhere f=G+R+h—-1,...,T.

Let us fix ¢ > 0 for a given (w,r). As |{; ,(w,r)] < 1, it follows that
Appn(w,r) = E[& p(w,r)] is finite. Note that AM~1 is compact with the Eu-
clidean metric d%Mfl on RM for example, and so is p C [0,1], again with the
Euclidean metric d7 on R, for instance (the latter is ensured by Assumption 2).
Therefore, it follows that the Cartesian product of these sets, AM~1 x p is also
compact with the metric d- = max(d%Mfl,d%) on RM*1, for example. By de-
finition, ¢; (-, -) is almost surely continuous at (w,r), discontinuity occurring
when @, (v;,,/9t_g.1) = r, which happens only on a set of probability zero by
Assumption 3. Therefore, by the dominated convergence theorem, we have that
Aty (w, 1) is continuous at (w,r), for all (w,r). Next, let us define

uppp(w,r,d) = sup  [Gpyn(@,F) = Gppp(w, 1)l (A.1)
de((w,7),(w,r))<d

Recall that ¢, j,(w,r) is almost surely continuous at (w, r), where the null set
depends on (w, r), by Assumption 3. Note that 1, ,(w, ,d) is measurable, as the
separability of ¢, ;,(w,r) can be shown along the lines of Section 38 of Billings-
ley (1995) and therefore we can equivalently take the supremum over (@, 7) €
AM=1 x o NQM*L, that is de ((@,7), (w,r)) < d, as the rationals constitute a
countable, dense subset of AM~1 x p. Therefore, lim;_, u; ;(w,r,d) = 0, almost
surely. Then by the dominated convergence theorem, there exists a d(w, r) such
that if d < d-(w, ), then we have that E[u;(w,r,d)] < . Let B((w,r),dc(w,7))
denote an open ball of AM~1 x p of radius dc(w,r) centered at (w,r). Cle-
arly, Up yeam—1,B((w, r),dc(w,r)) cover AM~1 x p and by the compactness of
AM=1 x p, there is a finite cover such that AM~1 x p € UK B((wy, 1), dc(wy, 7y ).
For notational convenience, let us define p;,p,, = Eluyp,(wy, i, de(wy, ry))].
Note that if (w,7) € B((wy, i), dc(wy, i), then Hipje < €and A (w,r) —
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Aipn(we, re)| < e Let (w,r) € B((wy, 1), de(wy, 7)) and consider

Z, Crn(w,r) Z)‘Hh w,7) (A.2)
<|= th—f—h w,r) Z§t+h Wi, 7)) | +
Z§t+h Wy, Tg) Z/\t+h wy, 1) | + (A.3)
ZAH-PL Wi, ) ZAH-h w,r)
ff =
SE Z Cein(w, 1) = Cppp(wp, )| + = Z |Cen(Wr, 1) — Apyn(wp, 1) | +
) o (A.4)
G Z |/\t+h(wkr k) — )\t+h(w/7)|
=1
1 & _
c Y up o (wy i de (Wi, 1)) — Hegni | +
=1
1 & 1 &
el Y Heingt c Y 18w ) — App(wy, )|+ (A.5)
t=1 t=1
1 G
G Z Mt+h(wkz x) — )\t+h(w,r)| ’

i
I,

where Equation (A.3) follows from adding and subtracting the four terms in
the middle and then I took absolute values by pairs. In Equation (A.4), I used
the triangle inequality. In Equation (A.5) I used Equation (A.1) and added and
subtracted G~1YC | u, +nk- Note that by Assumption 4, R is finite, therefore
Cron(w, r) is mixing of the same size as Z; by Theorem 3.49 of White (2001), thus
we can apply a strong law of large numbers (Corollary 3.48 of White (2001)) on
the first and the third terms of the above expression. That is, there is a G (¢) such
that if G > Gi(e), then these terms are less than or equal to € almost surely, thus
the whole expression is less than or equal to 4¢ almost surely (the second and the
fourth terms each are less than or equal to € by construction).!® Furthermore, if
G > maxy_y g Gi(e), then we have

sup ZCHh w, ) Z)‘Hh w,r)| < 4e (A.6)

(w,r)eAM- 1><p t

Note that no additional moment assumption concerning ¢ ,(w,r) is necessary, as
|G n(w,r)| <1, thus the moment condition of the cited law of large numbers is satisfied.

46



almost surely, therefore as G — co, we have

sup c Z€t+h w, ) Z/\H-h w,r)| 230. (A7)

(w,r)eAM-1xp t=1

Let us define ¥y(w,7) = G~! Zle Aton(w, ), which is the population counterpart
of ¥o(w,r) = G Y | & (w, ). Therefore, we have that:

sup ¥o(w,r) —Fo(w,r)] =50, (A.8)
(w,r)eAM=1xp

Next, we tailor the remainder of the proof considering each objective function
separately.

» Case 1: Kolmogorov—-Smirnov objective function K (w). I want to show that

sup

weAMfl rep Tep

sup |¥Y¢(w,r)| — sup |‘I’O(w,r)|‘ 2%0. (A9)
Consider the following inequalities:

sup
weAM-1

sup [¥¢(w, 1) —sup [¥o(w, )|
rep rep

< sup sup|[¥g(w,7)| = [¥o(w,1)l|
weAM—l rep

< sup sup|¥g(w,r) —Yo(w,7)]|

weAM-1TEP

< sup  [Yg(w,r) —Yo(w,r)l,

(w,r)eAM-1xp
where I applied basic properties of the supremum and the reverse triangle

inequality. Therefore we have

sup
weAM-1

sup [¥(w,r)| — sup |¥o(w,7)|| 22 0. (A.10)
rep rep

» Case 2: Cramer—von Mises objective function C(w). I want to show that

sup /‘Fé(w,r) dr — /‘I’%(w,r) dr| £%0. (A.11)

weAM1 rEp rep

47



Consider the following inequalities:

/‘ch(w,r) dr — /‘I’%(w,r) dr

rep rep

= /‘Y%(w,r) — ¥3(w,r)dr

rep
< /“Fé(w,r) —‘I’%(w,r)) dr
rép

< sup )‘I’é(w,r) — ‘I’%(w,r)’
rep

= Srl;})? [[Ye(w,r) —¥o(w,r)| - [¥g(w,r) +¥o(w,7)]]

<sup|¥Ye(w,r) —¥o(w,r)|-2.

rep

Therefore, given that ¢ > 0 was arbitrary, it follows that

sup 2%0. (A.12)

weAM-1

/‘I%(w,r) dr — /‘I’%(w,r) dr

rep rep

» Case 3: Anderson-Darling objective function A;(w). I want to show that

Y2 (w,r) Y2 (w,r)
/ r(Gl—r) dr = / r(ol—r) d

rep rep

sup r| £50. (A.13)

weAM-1

For clarity of exposition, I only discuss the case when p = [0, 1], given that
the proof can be easily tailored to other cases, as it is shown below. Consider
the following inequality:

/“I%(w,r)d _/“I%(w,r) dr
0 0

W2 (w,r) — Y2 (w,7) 1 ¥2 (w,r) — Y3(w,r)
= /o : r(1—r)0 dr) + /1_5 : r(1—r)0 dr

n /1—5 Y2 (w,r) — ¥3(w,7) dr
5 r(l—r)

Next, consider the following inequalities related to the last term in the

48



previous inequality:

/1—5 ‘I’ZG(w,r) — ‘P%(w,r) d
»
)

r(l1—r)
— /1_5 [Yo(w,r) +¥o(w, )] [¥g(w,r) = Fo(w,r)] dr
5 r(l—r)
18 ¥ (w, 1) + Yo (w, )| [¥6 (w,r) — ¥o(w, )]
S/(s G 0 A —r(); 0 dr
1=6 |9 o (w, 1) — ¥o(w, 7))
§2/5 . r(l— r)o dr
1=0 sup,c (o) | Yo (w,r) = ¥o(w,7)|
SZ/(; r(l—r) dr
1-5 1
<2 sup ¥o(wr) = Yo(wr) ||y

2 Sl[lp} |TG(w/ 7’) - IIIO(w’ 1’)| [108(1’) - log(l - 1’)](15_(5 :
rel0,1

Using Assumption 6, we have that

TZ 7 2 7
sup /Mdr— /‘I’O(w 7) dr| £30. (A.14)
weah-1 |2 r(l—r) 2 r(l—r)

The results obtained above, coupled with Assumption 5 allow us to invoke Theo-
rem 2.1 in Newey and McFadden (1994), therefore we conclude that @ 22w,

Remark: we can also define our extremum estimator as

We MM st To(@) < inf Tg(w)+h, (A.15)
weAM-1

where & is either 0, 5 (1) or 0,,(1) which would deliver exactly the same consistency
result as above, using the definition in Equation (1.16), as (Newey and McFadden,
1994, Section 2.1, pp. 2121-2122) noted (clearly, if 1 is only 0,(1) but not 0, (1),
then our estimator would be weakly but not strongly consistent). Informally, the
difference lies in the fact that unlike Equation (1.16), Equation (A.15) allows for
an asymptotically vanishing discrepancy between the true minimizer of T (w)
and the actual estimator that the researcher uses. |

Proof of Theorem 2. The proof is analogous to the first part of the proof of Theo-
rem 1, hence for the sake of brevity I only highlight the differences. First, note that
Assumptions 8 and 10 let us separate the terms in Equation (1.13). Let us define
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Ct+h(w> = —log ¢,5C+h(yt+h|j§—1<+1)1[]/t+h € g| and )‘t+h(w) = Ecp*@t+h(w) where
the finiteness of A, (w) follows from Assumption 10. Then using Assumption 9,

we have that A, ;,(w) is continuous in w by the dominated convergence theorem.
uyyp,(w,d) is defined similarly as in Equation (A.1) and its measurability follows
from the continuity of {;,,(w). The remainder of the proof follows the same logic
as in the first part of the proof of Theorem 1 and is therefore omitted. However,
note that in this case we require the moment condition of Assumption 11 to
invoke the strong law of large numbers (Corollary 3.48 of White (2001)). Having

arrived at
1 & 1 &
sup c Z Cron(w) — c Z App(w)| =0, (A.16)
weAM-1 t=1 t=1

by using Assumption 12, we can invoke Theorem 2.1 in Newey and McFadden
(1994), therefore we conclude that @ = w*.

The same remark applies as in the proof of Theorem 1. u

B Differences between probabilistic and complete calibration

To illustrate the difference between probabilistic and complete calibration, consi-
der the following stylized example, inspired by Corradi and Swanson (2006b,c).
For simplicity I abstract from parameter estimation error. Let us assume that the

true DGP for y, ,; is a stationary normal AR(2) process, given by

-
Yip1 = 0 + a0l 1+ €4 g1~ N(0,0%), (B.1)

that is the density of v, ; conditional on Z, = {y;, y;_1} is

O (W1l Zy) = N (aqy; + agy, 1,07 . (B.2)

It can be shown either by recursive backward substitution or using the Wold de-
composition theorem that the joint distribution of (v, ¥, ¥;_1)’ is a multivariate

normal, formally

Vi1 Yo Y1) ~ N X)), (B.3)

where the mean vector u is a 3 x 1 vector of zeros and the (i, j)th element of
the covariance matrix X is given by %;; = 7),_j, where ;_; is the |i —j|th
order autocovariance of the process. Furthermore, by properties of the normal
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distribution, it is true that the distribution of y,,; conditional on y, alone is also
normal, formally

Gra(Wralye) = N(ay,, 02), (B.4)

where & and 0 can be found from %, specifically & = 7,/ and 6% = (1 — &2) 7.
Suppose that the researcher conditions his or her forecast on only one lag of

the dependent variable, (R =1, Ji_ R4l = y;) but still maintains the normality
assumption, implying the predictive density

Ot (Visa1Ttri1) = N (@y,, 72). (B.5)

In this case, it is easy to see that while this forecast is not completely calibra-
ted, as it misses y,_1, it is still probabilistically calibrated, as given the resear-
cher’s information set (now consisting of y;), the predictive density is correct,
Pr1 (Ve |j§_R+1) = ¢ (Ye41 |j§_R+1)-

I repeated the exercise outlined in Example 2 using the models in Example 1,
setting &y = 04,4, = 0.3,0%> = 1. As the histograms in Figure B.1 show, the
resulting CDFs of both the correctly specified AR(2) and the dynamically mis-
specified AR(1) are uniformly distributed. In Figure B.2 we see the CDFs of
the PITs of both models, which are indistinguishable from the 45 degree line,
corresponding to the uniform distribution, confirming the earlier theoretical
result.

Figure B.1: Normalized histograms of PITs
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(a) True AR(2) forecast density (b) AR(1) forecast density

Note: Horizontal (red) dashed line corresponds to uniform density.
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Figure B.2: Cumulative distribution functions of PITs of candidate densities
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C Optimization algorithm

Given that the non-linear extremum estimators proposed in the present paper
do not have closed form solutions, I need to use a numerical optimizer. The
optimizer that operates on the unit simplex is MATLAB’s built-in fminsearch
algorithm. This is an unconstrained derivative-free optimizer, and I transformed
each element of the unconstrained weight vector using the hyperbolic tangent
function. The reason why I could not use derivative-based optimizers is that the
empirical CDFs are step functions. Also, in practical applications, even with a
moderate (5-10) number of models, grid search methods are computationally
infeasible for any reasonably fine grid (100-200 points along each dimension). As
the fminsearch algorithm is not a global optimizer, I used multiple starting points,
uniformly distributed on the unit simplex (25 and 50 points in the Monte Carlo
simulations and the empirical exercise, respectively) and chose the parameter

vector that resulted in the smallest value of the objective function.

D Monte Carlo — additional figures and DGPs

Figures D.1 to D.4 display the histograms and kernel density estimates for all
DGPs and objective functions, for G = {200,1000}, which were omitted from
Section 1.4.4 to preserve space. Furthermore, a number of additional DGPs are
used to illustrate the estimators” performance.
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Additional figures — DGPs 1a, 1b, 2 and 3

Figure D.1: Additional Monte Carlo results for DGP 1a, true parameter vector

w = (0.4,0.6,0)"
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Note: G denotes the sample size. KS, CvM, AD and KLIC stand for the Kolmogorov-Smirnov-,
the Cramer—von Mises-, the Anderson—Darling- and the KLIC-based estimators, respectively.
Histograms and kernel density estimates based on 2000 Monte Carlo replications.

Figure D.2: Additional Monte Carlo results for DGP 1b, true parameter vector

w = (0.4,0.6,0)'
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Note: G denotes the sample size. KS, CvM, AD and KLIC stand for the Kolmogorov-Smirnov-,
the Cramer—von Mises-, the Anderson—Darling- and the KLIC-based estimators, respectively.
Histograms and kernel density estimates are based on 2000 Monte Carlo replications.
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Figure D.3: Additional Monte Carlo results for DGP 2, true parameter vector
w = (0.25,0.75,0)’
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Note: G denotes the sample size. KS, CvM, AD and KLIC stand for the Kolmogorov-Smirnov-,
the Cramer—von Mises-, the Anderson-Darling- and the KLIC-based estimators, respectively.
Histograms and kernel density estimates are based on 2000 Monte Carlo replications.

Figure D.4: Additional Monte Carlo results for DGP 3, true parameter vector
= (0.4,0.6,0)’
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Note: G denotes the sample size. KS, CvM, AD and KLIC stand for the Kolmogorov-Smirnov-,
the Cramer—von Mises-, the Anderson—Darling- and the KLIC-based estimators, respectively.
Histograms and kernel density estimates are based on 2000 Monte Carlo replications.
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Monte Carlo set-up - DGP 1c

This Monte Carlo experiment builds on DGP 1a. The only modification is that the
autoregressive coefficient is increased from p = 0.5 to p = 0.9 to see if it affects
the estimators’ performance when the time series are more persistent. Figure D.5

displays the predictive densities.

Figure D.5: DGP 1c — Comparison of densities
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Note: Models M1 — M3 are defined as in Section 1.4.1, with the difference of a higher autoregressive
parameter of p = 0.9. The value of y; is set to the unconditional expected value of y;.

Monte Carlo set-up - DGP 4

In this experiment, I investigate the estimators’” performance when the true DGP
implies a trimodal predictive density, which has a rather “unusual” shape. This
example demonstrates that the proposed estimators perform well even in such
complicated cases. The DGP is specified as a mixture of the following models:

id
M1y =1 +09y + v Vi ~ N(0,01), (D.1)
iid.
M2:y, g =0 +09y; + €4 g1~ N(0,03), (D.2)
iid.
M3y =c3+09y, + Ay A1 ~N(0,03), (D.3)
with intercepts ¢; = —3,¢, = 0,c3 = 4, variances (712 = 0.52,(722 =22 (732 =12 and

mixture weights (w;, w,, w3)" = (0.2,0.5,0.3)’. A fourth model was added to the

pool, specified as

i
M4y =c4+09y + 17444 N1 ~N(0,03), (D.4)
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where the parameterization ¢, = w;c; + w,c, + w53 and 02 = w07 + w,05 +
w307 guarantees that the first two moments of the predictive distribution of v,
are the same for the mixture and the irrelevant models. Figure D.6 displays the
predictive densities.

Figure D.6: DGP 4- Comparison of densities
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Note: Normal components (M1), (M2) and (M3) refer to the predictive density of y;,, according
to models M1, M2 and M3, respectively. True density (M1, M2, M3) is the mixture of the above
densities with the correct weights (wy, w,, w3)" = (0.2,0.5,0.3)’. Irrelevant density (M4) specified
as a normal density with the same mean and variance as the true density. The value of y;, is set to
the unconditional expected value of y;,.

Monte Carlo set-up - DGP 5

In this experiment, the true DGP is the mixture of an AR(1) process with iid.
innovations (M1) and an AR(1) process where the innovations follow an autore-
gressive conditionally heteroskedastic (ARCH, Engle (1982)) process (M2). The
DGP is specified as the mixture of the following models:

M1y =c1+ 01 + Vi Vi1 S N(0,07),
(D.5)
2 2 2 iid.
M2y =+ Y+ /051841, Onppq = o+ ager €41 ~N(0,1),
(D.6)

with intercepts ¢; = ¢, = 1, autoregressive coefficients p; = 0.4, p, = 0.6 variance
0? = 1, ARCH coefficients ¢y = 2,a; = 0.5 and mixture weights (w;, w,)" =
(0.4,0.6)". In the case of M2, the ARCH specification implies that the expected
value of ‘722,t isk = E(‘Tzz,t) = ay/(1 — aq). Once again, a third model was added
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to the pool, specified as

. iid. )

M3 Y1 = 3+ 3y + 141 M1 ~ N(0,03), (D.7)

where the parameterization c3 = wjc; + wyocy, p3 = WP + Wyp, and (732 =
w,0% + wyk guarantees that the first two moments of the predictive distribution
of y,,, are the same for the mixture and the irrelevant models. Figure D.7

displays the predictive densities.

Figure D.7: DGP 5 — Comparison of densities
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Note: Normal component (M1) and ARCH component (M2) refer to the predictive density of v, ¢,
according to models M1 and M2, respectively. True density (M1, M2) is the mixture of the above
densities with the correct weights (w;, w,)" = (0.4,0.6)". Irrelevant density (M3) specified as a
normal density with the same mean and variance as the true density. The value of y; is set to the
unconditional expected value of y;.

Monte Carlo set-up - DGP 6

This Monte Carlo set-up demonstrates the estimators” performance when the
parameters of the predictive densities are estimated. The DGP is specified as the
mixture of the following models:
iid.
M1y =0+ Viiq WN(0,0%), (D.8)
iid.

M2:ypq =+ /02, (€1, Ogp = dg+ae; g ~N(0,1), (D)
with intercepts ¢; = ¢, = 1, variance 07 = 0.3, ARCH coefficients ay = 0.2, a; =
0.2, and weights (w;, w;)" = (0.4,0.6)". In order to keep the problem tractable, the
observations are generated sequentially (after an initial sample of size R = 100),
based on the rolling window parameter estimates with window size R = 100,
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therefore the parameters listed above only correspond to the initial sample period.
Once again, a third, irrelevant model was added to the pool, specified as

iid.

i1 ~ N (0,03), (D.10)

M3y = c3+ 1

where the parameterization ¢; = w¢; + w,¢, and 03 = w07 + wzfrg’t 41 gua-
rantees that the first two moments of the predictive distribution of vy, are the
same for the mixture and the irrelevant models (note the “hats”, emphasizing
the estimated nature of the parameters). The Monte Carlo simulations were

performed with G = {200,500, 1000,2000}, to keep G > R.

Monte Carlo results - DGPs 1¢, 4, 5 and 6

As Table D.1 and Figure D.8 show, increasing the autoregressive coefficient from
p = 05to p = 0.9 in DGP 1c does not affect the performance of any of the

estimators.

Table D.1: DGP 1c, Monte Carlo summary statistics for different sample sizes G
and objective functions K;(w), Cs(w), Ag(w) and KLIC;(w)

Sample size Statistic KS CvM AD KLIC
Bias —0.06 —0.26 0.32 —0.06 —0.15 0.21 —0.06 —0.09 0.15 -0.04 —0.16 0.20
G =280 Var 0.03 0.08 0.13 0.02 006 0.08 0.02 0.04 005 0.01 005 0.07
MSE 003 015 024 0.02 0.08 0.13 0.02 005 0.07 0.02 0.08 0.11
Bias —0.04 —0.23 0.27 —0.04 —0.13 0.16 —0.03 —0.07 0.10 —0.02 —0.10 0.13
G =200 Var 0.02 0.07 0.1 001 003 005 0.01 0.02 0.03 001 002 0.03
MSE 002 012 019 0.01 0.05 0.08 0.01 003 004 001 0.03 0.05
Bias —0.03 —0.20 0.23 —0.02 —0.08 0.10 —0.02 —0.05 0.07 —0.02 —0.07 0.08
G =500 Var 0.01 0.05 0.09 000 001 002 0.00 0.01 0.01 0.00 001 0.01
MSE 001 0.09 014 0.00 0.02 0.03 0.00 001 002 0.00 0.01 0.02
Bias —0.03 -0.16 0.19 —0.01 —0.06 0.07 —0.01 —0.04 0.05 —0.01 —0.05 0.06
G =1000  Var 0.00 0.04 0.06 000 001 001 0.00 0.01 0.01 0.00 0.01 0.01
MSE 000 0.07 010 0.00 0.01 0.2 000 001 001 0.00 0.01 0.01
Bias —0.02 -0.12 0.14 —0.01 —0.04 0.05 —0.01 —0.03 0.04 —0.01 —0.03 0.04
G =2000 Var 0.00 0.03 0.04 000 000 001 0.00 0.00 0.00 0.00 0.00 0.00
MSE 000 004 006 0.00 0.01 0.01 000 000 001 0.00 0.00 0.01

Note: In the four main columns with headers KS, CvM, AD and KLIC, the table shows the estimates
of the bias, variance (Var) and mean squared error (MSE) for each of the components of the weight
vector w. True weights: w = (0.4,0.6,0)’". Statistics are based on 2000 Monte Carlo replications.
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Figure D.8: Monte Carlo results for DGP 1c, true parameter vector w =
(0.4,0.6,0)'
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Note: G denotes the sample size. KS, CvM, AD and KLIC stand for the Kolmogorov-Smirnov-,
the Cramer—von Mises-, the Anderson-Darling- and the KLIC-based estimators, respectively.
Histograms and kernel density estimates are based on 2000 Monte Carlo replications.
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In the case of DGP 4, Figure D.9 and Table D.2 show that when increasing the
number of potential models to four, all estimators still deliver satisfactory results

and consistency is clearly demonstrated.

Figure D.9: Monte Carlo results for DGP 4, true parameter vector w =

(0.2,0.5,0.3,0)’
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Note: G denotes the sample size. KS, CvM, AD and KLIC stand for the Kolmogorov-Smirnov-,
the Cramer—von Mises-, the Anderson-Darling- and the KLIC-based estimators, respectively.
Histograms and kernel density estimates are based on 2000 Monte Carlo replications.
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Table D.2: DGP 4, Monte Carlo summary statistics for different sample sizes G and objective functions K (w), Co(w), Ag(w)
and KLIC;(w)

Sample size Statistic KS CvM AD KLIC

Bias 0.03—-0.16-0.00 0.13 0.02—-0.14 0.00 0.12 0.02—0.11-0.00 0.09 0.01—-0.12—-0.00 0.11
G =180 Var 0.00 0.04 0.00 0.03 0.00 0.04 0.00 0.03 0.00 0.03 0.00 0.02 0.00 0.03 0.00 0.02
MSE 0.00 0.07 0.00 0.056 0.00 0.06 0.00 0.04 0.00 0.04 0.00 0.03 0.00 0.05 0.00 0.03

Bias 0.02-0.12—-0.00 0.10 0.01-0.09—-0.00 0.08 0.01-0.07-0.00 0.06 0.01-0.08 0.00 0.07
G =200 Var 0.00 0.03 0.00 0.02 0.00 0.02 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.02 0.00 0.01
MSE 0.00 0.04 0.00 0.03 0.00 0.03 0.00 0.02 0.00 0.02 0.00 0.01 0.00 0.02 0.00 0.02

Bias 0.01-0.08—-0.00 0.07 0.01-0.07—0.00 0.06 0.01-0.05 0.00 0.04 0.00—0.05—0.00 0.04
G =500 Var 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.01 0.00 0.00
MSE 0.00 0.02 0.00 0.02 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01

Bias 0.01-0.06—-0.00 0.05 0.01-0.04—0.00 0.04 0.01-0.04 0.00 0.03 0.00—0.04 0.00 0.03
G =1000 Var 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
MSE 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Bias 0.01-0.04—0.00 0.04 0.00-0.03 0.00 0.03 0.00—-0.03 0.00 0.02 0.00—0.02—0.00 0.02
G =2000 Var 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
MSE 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Note: In the four main columns with headers KS, CvM, AD and KLIC, the table shows the estimates of the bias,
variance (Var) and mean squared error (MSE) for each of the components of the weight vector w. True weights:
w = (0.2,0.5,0.3,0)’. Statistics are based on 2000 Monte Carlo replications.



Inspecting Figure D.10 and Table D.3, we can see that in the case of DGP 5,
the AD estimator seems to slightly dominate the KLIC estimator, and the KS and
CvM estimators perform the worst.

Figure D.10: Monte Carlo results for DGP 5, true parameter vector w =
(0.4,0.6,0)
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Note: G denotes the sample size. KS, CvM, AD and KLIC stand for the Kolmogorov-Smirnov-,
the Cramer—von Mises-, the Anderson-Darling- and the KLIC-based estimators, respectively.
Histograms and kernel density estimates are based on 2000 Monte Carlo replications.
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Table D.3: DGP 5, Monte Carlo summary statistics for different sample sizes G

and objective functions K (w), Cs(w), Ag(w) and KLIC (w)

Sample size Statistic KS CvM AD KLIC
Bias —0.05-0.26 0.31—-0.06 —0.16 0.21 —0.06 —0.10 0.15 —0.04 —0.15 0.20
G =280 Var 0.00 0.00 0.00 003 0.08 013 001 0.05 006 0.01 0.05 0.07
MSE 003 014 023 0.02 0.08 013 0.02 006 0.08 0.02 007 0.11
Bias —0.05-0.22 0.27 -0.04 -0.12 0.16 —0.03 —0.08 0.11 —0.03 —0.11 0.13
G =200 Var 0.00 0.00 0.00 002 0.07 011 0.01 0.02 003 0.01 003 0.04
MSE 002 012 019 0.01 0.05 008 0.01 003 0.04 001 004 0.05
Bias —0.04 —0.20 0.24 —0.02 —0.08 0.10 —0.02 —0.05 0.07 —0.02 —0.07 0.09
G = 500 Var 0.00 0.00 0.00 0.01 0.06 0.09 000 0.01 001 0.00 0.01 0.01
MSE 001 010 015 0.00 0.02 0.03 0.00 001 0.02 0.00 0.02 0.02
Bias 0.16 -0.31 0.16 0.18 -0.24 0.06 0.18 -0.22 0.04 0.19 —-0.22 0.04
G =1000 Var 0.00 0.00 0.00 001 0.02 0.04 0.00 0.00 000 0.00 0.00 0.00
MSE 003 012 007 0.03 0.06 001 0.04 005 0.00 0.04 0.05 0.00
Bias 0.17 -0.29 0.12 0.19 -0.23 0.04 0.19 -0.22 0.03 0.19 —-0.22 0.03
G =2000 Var 0.00 0.00 0.00 000 0.01 0.03 0.00 0.00 0.00 0.00 0.00 0.00
MSE 003 0.09 004 0.04 005 0.00 0.04 005 0.00 0.04 0.05 0.00

Note: In the four main columns with headers KS, CvM, AD and KLIC, the table shows the estimates
of the bias, variance (Var) and mean squared error (MSE) for each of the components of the weight
vector w. True weights: w = (0.4,0.6,0)’. Statistics are based on 2000 Monte Carlo replications.
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Figure D.11 and Table D.4 show that, in line with the theoretical results
of the paper, all estimators are consistent for the true weight vector. These
results confirm that the Anderson-Darling and the KLIC estimators are slightly
better than the Cramer—von Mises-type estimator, which in turn outperforms the

Kolmogorov-Smirnov-type estimator.

Figure D.11: Monte Carlo results for DGP 6, true parameter vector w =
(0.4,0.6,0)

KS CvM AD KLIC
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Note: G denotes the sample size. KS, CvM, AD and KLIC stand for the Kolmogorov-Smirnov-,
the Cramer—von Mises-, the Anderson-Darling- and the KLIC-based estimators, respectively.
Histograms and kernel density estimates are based on 2000 Monte Carlo replications.
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Table D.4: DGP 6, Monte Carlo summary statistics for different sample sizes G

and objective functions K;(w), Cq(w), Ag(w) and KLIC (w)

Sample size Statistic KS CvM AD KLIC
Bias —0.13 —0.04 0.17 —0.06 —0.03 0.09 —0.03 —0.03 0.06 —0.04 —0.02 0.05
G =200 Var 0.02 0.01 004 0.01 0.01 002 0.01 0.00 001 0.00 0.00 0.00
MSE  0.04 0.01 006 0.01 0.01 002 0.01 0.1 001 001 0.00 0.01
Bias —0.10 —0.01 0.11 —0.03 —0.01 0.04 —0.02 —0.01 0.03 —0.03 —0.00 0.03
G =500 Var 0.01 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
MSE  0.02 0.00 0.03 0.00 0.00 0.0 0.00 0.00 0.00 0.00 0.00 0.00
Bias —0.07 —0.01 0.08 —0.02 —0.01 0.03 —0.01 —0.01 0.02 —0.02 —0.00 0.02
G =1000  Var 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
MSE  0.01 0.00 0.02 0.00 0.00 0.0 0.00 0.00 0.00 0.00 0.00 0.00
Bias —0.10 —0.01 0.11 —0.03 —0.01 0.04 —0.02 —0.01 0.03 —0.02 —0.00 0.02
G =2000 Var 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
MSE  0.02 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Note: In the four main columns with headers KS, CvM, AD and KLIC, the table shows the estimates
of the bias, variance (Var) and mean squared error (MSE) for each of the components of the weight
vector w. True weights: w = (0.4,0.6,0)’. Statistics are based on 2000 Monte Carlo replications.

E Empirical exercise — additional results

Figure E.1 shows the ratio of the inverse of the in-sample residual variances
of each model, relative to the sum of the inverses, calculated in the last rolling
window at each forecast origin. Bates and Granger (1969) recommended this
ratio as an estimator of the optimal weights, minimizing the expected Root Mean
Squared Forecast Error. The figure displays very stable weights, all around 1/5,
corresponding to equal weights.

Figure E.2 shows the values of the Anderson-Darling and the KLIC objective
functions for each model at each forecast origin.

As Figure E.2a confirms, the model including the New Orders Index produced
the best in-sample density forecasts until around 2002. From about 2002 to 2009,
the values of the Anderson-Darling objective function corresponding to all the
other models were lower than those of the model with the New Orders Index.
Furthermore, they moved closely together until around 2010, when corporate
bond spreads gained considerable predictive power. Moreover, housing permits
have delivered the best density forecasts since 2013. When considering the KLIC
estimator, Figure E.2b shows that corporate bond spreads featured prominently
until around 1996, along with the New Orders Index.

The individual models” KLIC values do not show such dispersion as in the
case of the Anderson-Darling estimator. This suggests that the AD estimator
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Figure E.1: Ratios of inverse in-sample residual variances
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Note: The sample period (end of the last rolling window of size R = 120) starts in February 1985
and ends in January 2016, with a total number of P = 372 months. Housing stands for Housing
Permits, NOI stands for ISM: New Orders Index, S&P 500 is the S&P 500 stock index returns
while Spread is Moody’s Baa Corporate Bond Yield minus Fed funds rate.

was able to exploit the differences between the individual models” predictive
densities more successfully than the KLIC estimator. As Table 1.7 showed, this
gain resulted in superior out-of-sample density forecasts.

A visual comparison of Figure E.2a and Figure E.2b reveals that both the
Anderson-Darling and the KLIC statistics imply that US industrial production
growth was the most predictable from around 1999 until shortly before the Great
Recession. However, while the individual models” Anderson—-Darling statistics
in Figure E.2a show an upward trend (corresponding to less predictive power)
until approximately 1998, the KLIC displays an uninterrupted downward trend
(corresponding to more predictive power) in Figure E.2b. The Great Recession
reversed this improvement in predictability.
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Figure E.2: Time-variation of the values of the Anderson-Darling and the KLIC
objective functions
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Note: The forecast origins range from February 1985 to January 2016, with a total number of
P = 372 months. Housing stands for Housing Permits, NOI stands for ISM: New Orders Index,
S&P 500 is the S&P 500 stock index returns while Spread is Moody’s Baa Corporate Bond Yield
minus Fed funds rate. Shaded areas are NBER recession periods. AD; (@) and KLIC; (@) are
the values of the AD and KLIC objective functions using the model combinations, respectively,
evaluated at the corresponding weight estimates.
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F Likelihoods

This section lists the likelihoods used in the Monte Carlo simulations (Section 1.4
and Appendix D) and the empirical exercise (Section 1.5). To simplify notation,
consider the model y,,; = z| + Vo2, 11, where ¢, is either iid. standard
normal, iid. standardized Student’s ¢, or its variance follows an ARCH(1) process
(Engle, 1982) with iid. standard normal innovations.

The conditional likelihoods are denoted by £(y;. 1|z B,02), £(y;41|zs; B, 0%, V)
and €(y;1|z;; B, g, 1), respectively.

1. Standard normal:

1 1 (Y41 — 21B)?
. 2\ t+1 t
g(yt+1|xtl ,3,0' ) - (271_0.2)_0.5 exp <_§ o2 . (Fl)
2. Standardized Student’s t:
+1 2 _Vzil
I'(%) (Yes1 — ziB)
14 x,;B,02,v) = 2 14 T 2 , (E2

where v is the degrees of freedom parameter, restricted to be greater than 2

so that the variance is finite, and I'(-) is the gamma function.

3. ARCH(1) model with normal innovations: similar to the standard normal
case above, replacing o2 by

atzﬂ = g+ aq€7, (E3)
where (a(, a;) are additional parameters entering the likelihood function.

The sample log-likelihoods and the scores follow in a straightforward way.
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Chapter 2

Forecasting with DSGE versus
Reduced-Form Models:

A Time-Variation Perspective

2.1 Introduction

Nowadays a considerable fraction of economic forecasts are produced using Dyna-
mic Stochastic General Equilibrium (DSGE) models, both in academia and at other
organizations. In this paper I focus on evaluating the forecasting performance
of the widely known DSGE model by Smets and Wouters (2007), henceforth
SW model, and its version extended with financial frictions (SW-FF, following
Del Negro and Schortheide (2013)) against a number of statistical models. The
SW model’s in-sample and out-of-sample forecasting ability has made it an
attractive benchmark in the forecasting literature. However, the literature has
primarily focused on evaluating this model’s forecasting performance (in both
absolute and relative terms) and documenting its time-varying nature, rather
than understanding the driving forces behind this behavior.

This paper’s main contribution is investigating when DSGE models forecast
better than their reduced-form competitors. Moreover, I explain how the time-
variation in the models” out-of-sample forecasting performance can be linked to
their in-sample performance. My results demonstrate that in-sample relative per-
formance is informative about out-of-sample performance, but this relationship
varies over time. In particular, before the recent Great Recession, this relationship
strengthened, but the crisis considerably weakened this correlation. That is, in
periods of economic stability, researchers can rely on models’ relative in-sample

performance when selecting forecasting models.
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My paper is related to several contributions in the literature. First of all, in
their original paper, Smets and Wouters (2007) briefly discussed their model’s
forecasting performance against a VAR(1) and a BVAR(4) model (VAR stands for
Vector Autoregressive, BVAR stands for Bayesian VAR), concluding that at short
horizons (1 quarter ahead) their model and the BVAR(4) are both competitive
against the VAR(1), while at longer horizons (4 to 12 quarters ahead), the DSGE
model delivers more precise forecasts than its competitors (more or less uniformly
for all observable variables, including GDP growth, inflation, and interest rate).
However, they did not perform a rigorous statistical analysis of the SW model’s
out-of-sample forecasting performance, which is the main goal of the present
study. Del Negro and Schorfheide (2013) perform an analysis using variants of
the SW model and compare them to a Bayesian AR(2) and judgmental forecasts
(Greenbook, Blue Chip). They conclude that the SW model is competitive in
forecasting GDP growth, inflation, and interest rate, especially in the medium
run (4 quarters ahead) but they do not investigate whether the differences in
forecasting performance are statistically significant. They consider an interesting
extension of the baseline SW model by incorporating financial frictions, which I
also use in this paper. The authors show that in the recent crisis, this extension
considerably improves the DSGE model’s forecasting ability. In addition, they
discuss this model’s performance from the early 1990s but not earlier — my paper
also contributes on that front. In a related paper, Kolasa and Rubaszek (2015)
show extending a baseline DSGE model with financial frictions in an explicitly
modeled housing market significantly improves both point and density forecasts

during episodes of financial turmoil, but not in tranquil times.

Edge et al. (2010) showed that while the SW model produces forecasts for
GDP growth and inflation that are at least as good as Greenbook and BVAR
forecasts — except for 1-3-quarter-ahead inflation forecasts, where the Greenbook
dominates —, all the methods in their exercise delivered very poor quality fore-
casts, according to Mincer and Zarnowitz (1969) type regressions. However, they
did not publish the details of a formal statistical comparison of the competing
models, which is an objective of my study.

In a recent paper, Giirkaynak et al. (2013) revisit the findings in the literature
on the forecasting performance of the SW model against reduced form models
(AR, VAR, BVAR, random walk) and reach a number of conclusions. First, they
confirm that no forecasting method is efficient, in line with the findings of Edge
et al. (2010). Second, they demonstrate that relative forecasting performance
shows much variability in terms of variables and forecast horizons: GDP growth
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is better forecast by a simple AR model at short horizons, while the SW model
performs better at longer horizons, whereas the findings are reversed in the
case of inflation. Third, they suggest that the Bayesian VAR should not be
used as the benchmark reduced form forecasting model, as simpler AR or VAR
models are often superior. However, to my best knowledge, the literature has
not tried to explain why in some periods the Smets and Wouters model performs
better than its reduced form competitors. Furthermore, it is of both theoretical
and practical interest to understand where the changes in the out-of-sample
forecasting performance originate from. Can we say something about the expected
(relative or absolute) performance of the models based on their in-sample fit?
Answering these questions is in the focus of this paper.

To summarize, the forecasting performance of the Smets and Wouters model
has been intensively investigated, and the literature seems to agree on a number
of “stylized” facts. First, while the model does not deliver optimal forecasts,
neither do its competitors. Second, its relative forecasting performance depends
on the variable of interest as well as on the forecast horizon. Third, statistical
models often outperform the structural DSGE model. However, there is no clear
answer to the question if DSGE models should be preferred to reduced-form
models purely on forecasting grounds. A possible explanation of the conflicting
results in the literature is that all the papers mentioned earlier differ along a
number of dimensions: the estimation periods and schemes, the evaluation
periods and whether they use real-time or fully revised data. Table 2.1 provides a
brief summary of these differences.

In this paper, I demonstrate the time-variation of the relative forecasting perfor-
mance of the Smets and Wouters model against statistical models. Furthermore, I
show that swings in the model’s absolute and relative out-of-sample performance
are strongly related to its in-sample performance. I find that the DSGE model’s
in-sample fit was highly informative in the early 2000s until the recent financial
crisis. Moreover, I demonstrate that extending a DSGE model with financial
frictions results in better forecasting performance in times of financial distress
but not in other times, similarly to the findings of Kolasa and Rubaszek (2015).

The remainder of the paper is organized as follows. Section 2.2 introduces the
models and data used in the paper, while Section 2.3 describes the forecasting
framework. In Section 2.4 I discuss my main findings, and Section 2.5 conclu-
des. Additional empirical results can be found in Appendices A and B, and
Appendix C contains a detailed description of the data used in this paper.
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Table 2.1: Overview of forecasting exercises with the SW model

Paper Forecast period Estimation Real-Time
Smets and Wouters (2007) 90:Q1-04:Q4  Rec., 66:Q1-89:04 No
Edge et al. (2010) 92:Q1-04:Q4  Rec., 65:Q1-91:Q3 Yes
Del Negro and Schorfheide (2013)  92:Q1-11:Q1  Rec., 64:Q1-91:Q3 Yes
Giirkaynak et al. (2013) 92:Q1-05:Q4 Roll., 72:Q1-91:Q4 Yes

Note: Forecast periods always refer to one-quarter-ahead forecasts. Real-Time is whether the
authors used real-time or revised data. “Rec.” and “Roll.” stand for recursive and rolling
window estimation, respectively. Giirkaynak et al. (2013) used w = 80 quarters of data.

2.2 Models, data and estimation

In this section I briefly summarize the main features of the models used in the
forecasting exercise, along with the estimation procedures.

The Smets and Wouters (2007) model is a benchmark New-Keynesian rational
expectations DSGE model. It features a representative household maximizing
its expected utility (over consumption with external habit and labor) on an
infinite horizon, an exogenously modeled government, and a monetary authority
that follows a Taylor rule (reacting to inflation and the output gap). The labor
and goods markets are differentiated, guaranteeing some monopoly power over
wages/prices. Price and wage setting are staggered, following Calvo (1983),
and they feature indexation. In addition, capital adjustment costs and variable
capital utilization are included. The seven exogenous disturbances that drive the
stochastic behavior of the SW model are: total factor productivity, investment-
specific technology, risk premium, exogenous spending, price mark-up, wage
mark-up, and monetary policy shocks. The model is log-linearized around its
balanced growth path.

In addition, I also used an extension of the original SW model, following
Del Negro and Schorfheide (2013), who add financial frictions to the baseline
model along the lines of Bernanke et al. (1999). They document that after the
onset of the recent financial crisis, the DSGE model that explicitly accounts for
financial factors, forecasts considerably better than the baseline model. In this
paper I will refer to that model as SW-FE.

The SW model utilizes data on seven key US macroeconomic variables: the
log difference of per capita real GDP, real consumption, real investment and the
real wage, log hours worked, the log difference of the GDP deflator, and the Fed
funds rate. In addition, the SW-FF model uses an interest rate spread. Quarterly
data on observables are obtained from the St. Louis Fed’s FRED database and the
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U.S. Bureau of Labor Statistics. The full sample spans 1966:Q1 — 2013:Q3. Further
details on the data can be found in Appendix C.

In what follows, iid. means independent and identically distributed, and
N (u, V) is the normal distribution with mean vector i and covariance matrix V.

The statistical models are the following;:
1. Vector Autoregressive model of order p, VAR(p) given by

p ..
d.

Vi=c+ ) Ayt u,u~ N (0L, (2.1)

=1

where y; = (yy4,...,Y7;)  is the vector of the seven observables (or eight in
the case of the SW-FF model by appending yg;),

2. Bayesian VAR(p), which has the same structure as VAR(p) but assuming a
prior distribution on the parameters, which shrinks the parameters towards
univariate random walks,!

3. Autoregressive model of order p, AR(p), which follows from VAR(p) by
including only the variable of interest in y, and y;_1,

4. Random Walk and Random Walk with Drift, RW and RWD, respectively,
given by y;, = ¢ +y;,_ + 1, where the j subscript refer to the variable of
interest, and the restriction ¢ = 0 corresponds to the Random Walk.

The AR, VAR and BVAR models are estimated using both fixed and variable lag
length. The fixed lag length equals 1 in the case of the AR and VAR models, and
4 in the case of the BVAR, in line with Smets and Wouters (2007). The variable lag
length is selected at each estimation window based on the Bayesian Information
Criterion (Schwarz, 1978) with maximum lag length p,,, = 3.2

The statistical models (except the BVARs) are estimated by OLS. The BVAR
models are estimated using the MATLAB code on Christopher Sims’s website.3
Bayesian estimation of the SW model is performed using Dynare (Adjemian et al.,
2011), implementing the Random Walk Metropolis-Hastings (RWMH) method

lPrecisely for this reason, four variables (real GDP, consumption, investment and the real
wage) enter the model in log levels. However, forecasts are still produced for the stationary
variables. The parameters characterizing the prior distribution and the likelihood are the same as
used by Smets and Wouters (2007).

2In the present paper, I do not consider models with time-varying parameters or stochastic
volatility. First, the sample size is rather small to incorporate these features. Second, the models
are re-estimated in rolling windows, which at least partly accounts for time-variation in the
parameters.

SMATLAB code available at http://www.princeton.edu/~sims/.
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(see An and Schorfheide (2007), for example). The resulting draws from the
posterior distribution of the parameters are used to generate the h-period in-
sample and out-of-sample posterior distribution of forecasts of real GDP growth,
inflation and the Federal funds rate. Then, according to the squared forecast error
loss function, the sample mean (at the given quarter, for each horizon) is used to
estimate the conditional expected value of the forecasts.

2.3 Forecasting

This section outlines how the forecasts are generated. My main objective is to
identify the factors that determine the DSGE and the statistical models’ forecasting
performance over time. For this purpose, I perform a pseudo out-of-sample
forecasting exercise. First, following the literature (Smets and Wouters (2007) and
Giirkaynak et al. (2013), among others), I choose the quadratic loss function, and
focus on the squared forecast error for variable of interest j at time ¢, y; ;, which
](,T) )2, where yA](T)
for time t. The forecast horizon is i, where i = {1,4,8}.# Each model is estimated

corresponds to (y;; —§ is the h-period-ahead forecast of model m

in a rolling window fashion with window size R = 60, explained in what follows
for the 1 = 1 case.”® The first estimation sample consists of R = 60 observations,
from 1966:Q1 to 1980:Q4, resulting in a sequence of in-sample and out-of-sample

point forecasts for the three key variables at the given horizon.” For variable
of interest j, let Z](T)
(m)

jit+h
the “hat” notation is used to emphasize that the loss functions are evaluated

denote the last in-sample loss of model m estimated up to

period t and L the corresponding h-period-ahead out-of-sample loss, where
at the parameter estimates. For each model and for each variable of interest I
calculate the last in-sample forecast error loss corresponding to 1980:Q4, that
is E](,T9)80:Q4 = (Yj1980:04 — ?](,1119)80:Q4)2 and the 1 = 1 period ahead out-of-sample
loss, that is E](',Tg)gl;Ql = (Vj1981:Q1 — 9](',”119)81@1)2- The next estimation sample again
consists of R = 60 observations, from 1966:Q2 to 1981:Q1, which are used to
generate forecasts of the variables of interest and the corresponding forecast

v

4Throughout the paper, the terms “horizon”, “time” and “period” mean quarters, as all the
models are estimated on quarterly data. Forecasts are obtained in an iterated manner.

5T selected the window size to balance between producing precise forecasts and to obtain a
relatively long out-of-sample period. According to Castelnuovo (2012), my choice is around the
average window size used in the literature.

®The h = {4,8} cases are handled analogously, keeping in mind that the full sample spans
1966:Q1 - 2013:Q3.

"Note that all the models considered in this paper produce predictive densities. Corresponding
to the squared forecast error loss function, I use the mean of each predictive density.
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losses. I continue this procedure until reaching R+P —1=R+130=190 =T,
corresponding to in-sample data up to 1998:Q3 — 2013:Q2 and last out-of-sample
observation in 2013:Q3. This results in a total number of P = 131 in-sample and
out-of-sample forecast losses for each variable of interest and for each model.

2.4 Results

24.1 A preliminary comparison

A preliminary comparison of the predictive ability of the models is displayed in
Table 2.2. First, I calculated the root mean squared forecast error (RMSFE) of each
model m over the full out-of-sample period, where RMSFE is defined as

T
RMSFE" = | P-1 Y I"). (2.2)
t=R

In the table, for each forecast horizon & = {1,4,8} and each variable, the RMSFE
column displays the following: the first row (labeled SW) is the RMSFE of the
SW model, while the other rows contain the gains(+)/losses(-) relative to the SW
model, that is 100 x (1 - I%—FISE%C\,), and dagger shows the model with lowest
RMSEFE (that is, the best forecast method). In addition, column SWP tells us in
what fraction of periods the SW model produced more precise forecasts than a
given competitor.

Some interesting patterns emerge. The SW and SW-FF models dominate the
statistical models when forecasting inflation and interest rate 4 and 8 quarters
ahead. Note the particularly sizable differences in the inflation column for h = 4
and in the inflation and interest rate columns for 1 = 8. The SW and SW-FF
models forecast GDP the most precisely in the short run, while the AR(p) model
performs slightly better in the long run.

We can therefore conclude that there is no consistently "best" forecasting
model, as the forecasting methods’ relative performance depends on both the
variable of interest and the forecast horizon. My findings are not completely
in line with those of Giirkaynak et al. (2013), but they do not contradict them
either. The reasons behind the different ranking of the forecasting approaches
might originate from several sources. In terms of data, we used different sample
periods, for both estimation and forecast evaluation. Furthermore, they used
real-time data, while my data are fully revised, available as of November, 2013
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(see Table 2.1). Moreover, their paper uses the direct forecasting method, whereas
I used the iterated approach. These differences highlight that care must be taken

when making general statements about these models’ forecasting performance.

Table 2.2: Root mean squared forecast errors and comparisons relative to
the SW model

GDP growth inflation interest rate
RMSFE SWP RMSFE SWP RMSFE SWP

SW 0.664 — 0221 — 0178 —
SW-FF 2.2t 5.3 7.3 8.4 0.0 56.5
VAR(4)  —56.5 954  —18.1 50.4 —1.1 52.7
VAR(p)  —56.8 954  —17.6 50.4 -1.1 52.7
=1 BVAR(1) —0.6 58.0 —4.1 48.9 341 17.6
BVAR(p) —3.6 58.8 —4.1 48.9 1.1 37.4
AR(1) —42 89.3 3.2% 34.4 —2.8 64.9
AR(p) -39 80.2 2.7 31.3 —185 57.3
RW  —185 97.7 —0.5 40.5 0.0 43.5
RWD  —19.7 97.7 -23 443 —34 63.4

( SW 0739 — 0264 — 0.435" —
SW-FF 0.0 57.8 8.7t 25.0 ~16 55.5
VAR(4) —8.4 69.5  —74.2 65.6 -23 49.2
VAR(p) -83 69.5 —75.0 66.4 -23 49.2
L —4 ) BVARQ) 6.0 63  —462 85.2 —-55 64.8
BVAR(p) 5.5 15.6  —49.2 90.6 -28 54.7
AR(1) 22 359  —269 92.2 —6.0 65.6
AR(p) 1.5 445 235 85.9 —1.6 39.8
RW  —31.8 1000 —12.9 52.3 —5.7 50.8
RWD  —344 1000 —16.3 56.3  —10.8 57.0

SW 0.680 — 0272t  — 0559t —
SW-FF -3.7 71.0 —52 62.1 -32 94.4
VAR(4) —16.0 78.2 —130.1 80.6  —24.9 77 4
VAR(p) —16.0 78.2 —131.3 80.6  —25.6 77 .4
L _g ) BVAR(D) —43 75.8 —109.9 99.2  —32.6 100.0
BVAR(p) -3.2 71.0 —114.3 99.2  —31.3 100.0
AR(1) 0.0 468  —61.0 99.2 256 76.6
AR(p) 0.3* 395  —55.9 97.6  —29.0 58.9
RW  —50.1 91.1  —485 76.6 ~ —27.4 68.5
{ RWD  —54.6 92.7  —529 750  —33.3 70.2

Note: root mean squared forecast errors of the SW model (row SW) and gains(+)/losses(-)
in percentage terms relative to the SW model (all other rows). Dagger () shows model
with lowest RMSFE. SWP is the proportion of out-of-sample periods when the SW model
had lower squared forecast error than a given competitor.

Next, after confirming that there is no uniformly "best" model measured by
relative RMSFEs, let us see if we observe statistically significant differences over
the full out-of-sample period.

76



2.4.2 Tests of predictive ability

In this section, I seek to answer the following question: which model forecast
significantly® better throughout the full out-of-sample period both unconditionally
and conditionally? I use the methodology developed by Giacomini and White
(2006), which is a generalization and extension of the well-known papers by
Diebold and Mariano (1995) and West (1996). The main idea is to compare two
forecasting methods, and see if their performance differed significantly over
time, conditional on some information available to the forecaster. If so, then this
information can be exploited by a researcher when selecting a forecasting method.
To formalize the idea, consider the following null hypothesis:

Hy: B Lin(een fi(Bro) = LeonWeen 8i(Ba)) G| = 0

almost surely, t =1,2,...,

(2.3)

where L, (V5 ft(gl,t)) denotes the forecast losses of the first forecasting met-
hod (now always the SW model), characterized by the t-measurable function f,(.)
and parameter estimates Bl,t (and the second term is analogous for the second
forecasting method), and G, is some information set. In words, we are interested
in testing whether the losses incurred by using the two forecasting methods
differ in expected value. When comparing the unconditional performance of
the competing forecasting methods, G, is the trivial o-field. However, when
we are interested in the conditional forecasting performance, we want to find
information not contained in past average forecasting performance that can be
used to predict which model is going to perform better at a given future date.
In this case we have G, = F;, that is the time t-information set. Giacomini and

White (2006) propose the following Wald-type test statistic:

T ! T
TS, =P (Pl Y kAL, +h) Q! (Pl Y kAL, +h) , (2.4)

t=R t=R

where AL, = L&)h( :Bl,t) — Lgh(BZ,t)r that is the difference of the forecast loss
series evaluated at the estimated parameters’ of each model, k; is any (g x 1)

8Throughout the paper, I always consider significance at the 5% level.

Note that this is a favorable feature of the Giacomini-White approach for two reasons. First,
the rolling window estimation scheme naturally entails parameter estimation uncertainty, even as
the sample size T — oo. Second, the Bayesian estimation of the BVAR and SW models inherently
implies parameter uncertainty, as in the Bayesian framework the sample of a given size is treated
as fixed, and the parameters are random variables characterized by their distributions, implied by
the prior and the likelihood.
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F,-measurable function, and Qp is a suitable (possibly heteroskedasticity and
autocorrelation consistent, HAC) g x g estimator of the asymptotic variance of
p-12yT o kAL, +n- As Giacomini and White (2006) showed, under the null
hypothesis the test statistic converges in distribution to a x? distributed random
variable with g degrees of freedom, formally le,/h LN X%- It is easy to see that the

evaluation of unconditional?

predictive ability is a special case of the conditional
one, by setting k, = 1.

Table 2.3 summarizes the findings. In terms of unconditional predictive
ability, the DMW columns show that the SW and SW-FF models did not forecast
significantly worse than any of their competitors for any variables at any horizons,
but actually the improvements are statistically significant in a number of cases,
particularly when forecasting GDP growth and inflation 8 quarters ahead. I
consider this as a quite strong argument in favor of the SW and SW-FF models,
along the lines of Del Negro and Schorfheide (2013): DSGE modeling offers an
all-round “package” to perform policy experiments and evaluate counterfactual
scenarios in addition to forecasting, and all these along with a natural way to
quantify uncertainty surrounding estimates and forecasts. Given that all the other
modeling approaches are rather limited in such ways, it is reassuring that when
it comes to forecasting, the SW model on average never does a worse job but in
fact dominates its competitors, especially at long horizons. It is also remarkable
that the SW-FF model significantly outperformed the SW model when forecasting
GDP growth and inflation one quarter ahead but not in the case of interest rate or
at longer horizons, which suggests that incorporating financial frictions mainly
improves short-horizon forecasting ability.

Second, the GW column shows the Giacomini—White test statistics, when
the conditioning set for forecasting variable y;, ., is k; = (1,yj,t_1,yj’t_2)’ . As
we can see, it can not be rejected that conditionally the SW model and any
of its competitors forecast equally well. Of course, this result depends on the
conditioning set k,. However, including the first two lags of all three variables of
interest does not change the conclusions. To see if we can gain insight into how
the models performed over the business cycle, I included recession probabilities!!

in the conditioning set k;. However, this did not help forecasting which method

19When calculating the test statistic in the unconditional case, I use the form advocated by
Diebold-Mariano-West, which is informative about which model performs better — the test statistic
suggested by Giacomini and White is the square of the former.

The recession probabilities were calculated by Jeremy Piger. Data are available on Piger’s
website at http://pages.uoregon.edu/jpiger/us_recession_probs.htm/. However, it must
be noted that these are smoothed and not filtered recession probabilities, that is they use the full
sample of data available.
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produces more precise forecasts. For each variable, the third column labeled CP
contains the fraction of cases (in percents), when the regression of AL, on k,
correctly predicted the better forecasting model — we can see that unfortunately
the numbers are not much different from 50% (which is the benchmark case,

corresponding to a coin flip).

To sum up, while unconditionally there seems to be significant evidence in
favor of the SW model, especially when forecasting at the long horizon, we appa-
rently cannot (yet) exploit this difference by conditioning on information available
at time t. A valid concern that arises when analyzing the results of Table 2.3
is the problem of multiple comparisons. In order to address these complicati-
ons, Table 2.3 also contains the results using Hochberg’s (1988) Bonferroni-type
correction method, as suggested by Giacomini and White (2006) — significant
differences are in bold.

A relevant question is whether the SW model is outperformed by any of the
alternatives, at any horizon and for any variable. A positive answer would be a
very strong warning sign against the baseline DSGE model’s forecasting ability.
The Superior Predictive Ability (SPA) test by Hansen (2005) seeks to answer
precisely this question. The null hypothesis considered by the SPA test is that the
benchmark model — in our case, the SW model — is not inferior to any of the
alternatives. The results shown in Table 2.4 confirm the previous finding, namely
that the SW model has the best performance when forecasting inflation or interest
rate at longer horizons (4 and 8 quarters ahead), and while its performance is
somewhat worse at the 1 quarter ahead horizon and when forecasting GDP, it
is not significantly worse than any of the statistical models or the DSGE model

with financial frictions.12

In Figures 2.1 to 2.5, we can see a number of selected forecast comparisons,
plotting the realizations and predictions, along with forecast error losses and
marking the periods when the SW model produced lower loss. After inspecting
the figures, it becomes apparent that even in cases when one model dominates
the other on average over the full out-of-sample period (the SW model has almost
50% lower RMSFE than the RW for inflation 8 quarters ahead, and the DSGE
model dominates the VAR(4) by 25% when forecasting interest rate 8 quarters
ahead!), there is time variation in the relative predictive ability of even the best

12Tn order to identify the "best" forecasting model, I also calculated Model Confidence Sets
for each horizon and for each variable of interest, following Hansen et al. (2011). The results in
Table A.1 in Appendix A indicate that the SW model is always inside the Model Confidence Set,
but so are many other statistical models. This confirms that the data are not informative enough
to shrink the pool of candidate models to a much smaller set.
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Table 2.3: Tests of predictive ability

GDP growth inflation interest rate
DMW GW CP DMW GW CP DMW GW CP

SW-FF 216" 0.05 588 261" 0.07 588 —0.09 0.06 55.7
VAR4) —2.73* 013 62.6 —-1.32 0.05 595 —-0.09 0.01 519
VAR(p) —2.75* 0.14 634 —-129 0.05 59.5 —0.08 0.01 49.6

BVAR(1) —-0.07 0.00 527 —-0.71 0.06 565 035 0.01 527
h=1 < BVAR(p) —036 0.01 519 -0.72 0.06 565 014 0.01 504
AR(1) —-0.61 0.01 420 068 0.06 603 —0.27 0.00 60.3
AR(p) —-059 0.01 458 057 0.03 641 -1.01 0.02 534
RW —-1.65 0.03 557 —-0.15 0.08 634 0.02 0.00 618
RWD -172 0.03 550 —-045 0.07 626 —-0.28 0.00 60.3

SW-FF 0.00 036 523 157 6.06 555 —026 151 594
VAR#4) —-096 6.17 602 —1.71 434 531 —-021 200 44.5
VAR(p) —095 618 602 —-173 456 539 —-022 204 445

BVAR(1) 078 125 570 -1.88 327 578 —-044 244 508
h=4 < BVAR(p) 072 148 50.8 —-195 349 570 —-024 196 484
AR(1) 029 091 453 —-158 460 523 —-045 207 43.0
AR(p) 020 1.04 453 —-138 428 547 —-013 175 594
RW -185 348 531 —-0.88 230 578 —-040 177 516
RWD -195 378 531 -1.04 214 570 —-0.67 155 523

SW-FF —-0.89 153 51.6 —053 466 669 —0.85 073 452
VAR#4) —-197* 452 685 -—-2.12* 744 613 —-174 521 56.5
VAR(p) —-197* 452 685 -—-213* 770 613 —-1.81 563 581

BVAR(1) —0.64 079 51.6 —2.65* 492 71.0 —2.11* 537 64.5
BVAR(p) —052 073 47.6 —2.65* 4.88 71.0 —2.08* 5.62 62.1
AR(1) 0.02 0.10 492 —253* 338 605 —144 213 5438
AR(p) 0.05 0.09 51.6 —230* 3.00 540 —144 281 54.0
RW —248* 526 59.7 —-193 341 653 —-153 202 556
RWD —2.55* 561 605 —-1.89 332 605 —-1.65 232 589

Note: DMW is the Diebold-Mariano-West test statistic of equal unconditional predictive
ability (negative values showing lower average losses of the SW model), and GW is the
Giacomini-White test statistic for testing equal conditional predictive ability. CP is the
proportion of cases (in %) when the Giacomini-White procedure correctly predicted the
better forecasting model. Asymptotic variances estimated by the Newey and West (1987)
HAC estimator: truncation lag is & — 1 for the conditional GW test, while | P1/4| = 3 for
the unconditional DMW test. Asterisks (*) show significance at the 5% level. Statistics in
bold mean significant differences after the Hochberg (1988) correction was applied.

(measured by their RMSFEs) models. It is remarkable that the Smets and Wouters
model extended by financial frictions dominates the benchmark SW model after
the onset of the financial crisis (note the spike in Figure 2.5), but the baseline
SW model performed better during earlier recessions, similarly to the results of
Kolasa and Rubaszek (2015). Furthermore, this is in line with the findings of Ng
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Table 2.4: Test of Superior Predictive Ability, p-values

GDP growth  inflation interest rate

h=1 0.42 0.44 0.72
h=4 0.54 1.00 1.00
h=8 0.62 1.00 1.00

Note: p-values of test of Superior Predictive Ability of the SW
model as benchmark, following Hansen (2005). Results based on
10,000 bootstrap replications, with block bootstrap length of 20
quarters of data. The results are robust to block length (15 and
30) and to using the stationary bootstrap.

and Wright (2013), who note that the recent Great Recession was different from
other post—World War II economic downturns. They offer explanations as to
why forecasting during the crisis was different than before. One is that in a highly
leveraged economy, credit spreads are more informative about the future paths
of macroeconomic variables. Another possible explanation is that the origins of
the crisis were not monetary/fiscal policy shocks or other exogenous demand or

supply shifters but rather a housing/credit bubble.

Figure 2.1: SW vs. BVAR(1) 1-quarter-ahead GDP growth forecasts

PR

1
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_6 | | | | | |
85Q1 90Q1 95Q1 00Q1 05Q1 10Q1

GDP growth * BVAR(1) SW esranres AL

Note: Solid black line: GDP growth data. Blue asterisks: BVAR(1) forecasts. Dashed green
line: SW model’s forecasts. Dotted red line: forecast loss (squared forecast error) differences
(SW-BVAR), positive (negative) values indicate SW (BVAR(1)) model forecasts worse. Shaded
areas are NBER recession dates.

81



Figure 2.2: SW vs. AR(p) 8-quarter-ahead GDP growth forecasts
2 —
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Note: Solid black line: GDP growth data. Blue asterisks: AR(p) forecasts. Dashed green line: SW
model’s forecasts. Dotted red line: forecast loss (squared forecast error) differences (SW — AR(p)),
positive (negative) values indicate SW (AR(p)) model forecasts worse. Shaded areas are NBER
recession dates.

Figure 2.3: SW vs. RW, 8-quarter-ahead inflation forecasts

0f _.-_’ st
-1 -:'
2F
-3 L ! ! I I !
85Q1 20Q1 95Q1 00Q1 05Q1 10Q1
inflation + RW SW srasssss ALy g

Note: Solid black line: Inflation data. Blue asterisks: RW forecasts. Dashed green line: SW model’s
forecasts. Dotted red line: forecast loss (squared forecast error) differences (SW — RW), positive
(negative) values indicate SW (RW) model forecasts worse. Shaded areas are NBER recession
dates.
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Figure 2.4: SW vs. VAR(4), 8-quarter-ahead interest rate forecasts
5 —
Ca

_5 1 | | | 1 |
85Q1 90Q1 95Q1 0oQ1 05Q1 10Q1

interest rate %  VAR(4) SW sassnnes ALy.g

Note: Solid black line: Interest rate data. Blue asterisks: VAR(4) forecasts. Dashed green line:
SW model’s forecasts. Dotted red line: forecast loss (squared forecast error) differences (SW —
VAR(4)), positive (negative) values indicate SW (VAR(4)) model forecasts worse. Shaded areas are
NBER recession dates.

Figure 2.5: SW vs. SW-FF, 1-quarter-ahead GDP-growth forecasts
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Note: Solid black line: GDP growth data. Blue asterisks: SW-FF forecasts. Dashed green line: SW
model’s forecasts. Dotted red line: forecast loss (squared forecast error) differences (SW — SW-FF),
positive (negative) values indicate SW (SW-FF) model forecasts worse. Shaded areas are NBER
recession dates.
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The figures suggest that there is considerable time-variation in the relative
performance of the models considered, and investigating the sources of this
instability is the topic of the next section.

2.4.3 A decomposition approach

As we have concluded that there seems to be time-variation in the models’ relative
forecasting performance but it cannot be easily exploited, now I turn to a different
approach to shed light on understanding why in some periods the DSGE models
forecast better than in other periods.

Rossi and Sekhposyan (2011) propose decomposing the difference between
models’ forecast losses and the average expected loss into three components,
measuring (1): time-variation relative to the average full out-of-sample loss, (2):
average expected out-of-sample loss based on the in-sample performance, and

(3): a term capturing average unexpected forecast error loss.

To fix ideas, let us see their decomposition:!3
1 R+4+1-1 . - _ o
- )3 [Lt—i-h —E (Lt—i-h)] = (Arp—Ap) + (Bp — Bp) + (Up — Up) , (25)
t=R+1—m
where
1 R+7-1 1 T
Acp=m Y Ly —P ') Ly (2.6)
t=R+1—m t=R

measures instabilities in the relative forecasting performance over a rolling win-

dow of size m, T is a running index from m to P, and A, p = E(A, p),

T ~ ~
Bp = <P—1 Y LH,Z) B (2.7)

t=R

with Bbeing the OLS estimate of 8 in th = 52; + 1y, (t=R,...,T), reflecting
how much of the average out-of-sample forecasting ability was predictable based
on the in-sample fit, Bp = BE(L,), and finally

T
Up=P 'Y iy (2.8)
t=R

measures the average unexpected loss, with Up = E(L,,;, — BE(L,)).

B3Their framework can accommodate both relative and absolute measures of forecast losses. In
what follows, with a slight abuse of notation, I will not use the A symbol as before, but it should
be used whenever necessary. Furthermore, while the decomposition is applied to each variable of
interest j and model m, I omitted these indices to simplify notation.
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I am interested in testing the following hypotheses: first, was there time-
variation in the models’ relative forecasting performance, where the null hypot-
hesis is Hy 4 : A p =0,V T =m,...,P. Second, is out-of-sample performance
predictable on the basis of in-sample performance, where the null is Hy p : Bp = 0.
Third, is the unexplained component significantly different from zero, which is
an indication of over-fitting, where we test the null Hy;; : Up = 0. The respective
test statistics are denoted by I'4, I'g, and I';.

Table 2.5 shows the results of the decomposition of the forecast error losses
(window size m = 25), both in absolute terms (row labeled Null) and in relative

terms (SW model versus SW-FF or a statistical model).'*

The general patterns
are the following: time-variation in the average performance (I'4) does not seem
to explain much of the relative forecasting performance in most of the cases.
However, the correlation between the in-sample and out-of-sample performance
(I'g column) is statistically significant in an overwhelming majority of cases, and
in most of those cases the model which was better in-sample was also better out-
of-sample (+ signs in the Bp column). Furthermore, the over-fitting component is
significant when analyzing the absolute forecasting performance of the SW model,
suggesting that the SW model is over-parameterized.

To sum it up, we can see that there is predictive content in the models” in-
sample performance over the full out-of-sample period. However, instabilities
relative to the average full out-of-sample performance do not contribute signifi-
cantly to the fluctuation of average forecast losses around their expected value.
This raises the question whether this time-variation comes from a time-varying B,
that is whether the correlation between the in- and out-of-sample losses is not
stable over time. Figures 2.6 to 2.8 present evidence supporting this conjecture. It
is interesting to see that the § linking the out-of-sample and in-sample relative
performances of the models is higher in the early 2000s until the onset of the
crisis, than in other time periods. It is particularly striking how the in-sample
and out-of-sample forecasting link broke down around the Great Recession, as
shown in Figure 2.7. This confirms that in tranquil times, models’ (relative)
in-sample performance is more positively related to their (relative) out-of-sample
performance. In other words, a researcher facing the decision which model to
use can select a forecasting model based on its relative in-sample fit, carefully

taking into account the time-varying nature of this relationship.

12 As a robustness check, I also performed the tests using a window size m = 40. The results in
Appendix B indicate that the main conclusions are largely unchanged.
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Table 2.5:

Decomposition of out-of-sample forecast error losses

h=1
h=4
h=38

Null
SW-FF
VAR(4)
VAR(p)
BVAR(1)
BVAR(p)
AR(1)
AR(p)
RW
RWD

Null
SW-FF
VAR(4)
VAR(p)
BVAR(1)
BVAR(p)
AR(1)
AR(p)
RW
RWD

Null
SW-FF
VAR(4)
VAR(p)
BVAR(1)
BVAR(p)
AR(1)
AR(p)
RW
RWD

GDP growth inflation interest rate
Iy Ty Bp Ty Ty Ty Bp Ty Ty Ty Bp Ty
357 6.09" + 3.12* 431 14.33* + 133 8.16* 20.87* + —0.27
428 242 + 191 424 270" 4+ 243*581 2.70* ——-0.30
6.40 —2.65* + —2.88* 6.39-13.11* + —0.31 5.27-20.78* + 0.10
6.40 —2.65* + —2.92* 6.41-13.13* +-0.30 5.26—-20.79* + 0.11
328 277 ——-0.15 591-1358* + 0.75 3.25-20.87* — 0.60
3.44 —2.68" +-0.34 6.10-13.65* + 091 3.23-20.83* — 0.35
407 130 —-0.84 351-13.60* — 1.84 3.27-20.94" + 0.66
418 159 —-0.69 341-13.76* — 1.72 4.05-21.11* 4+ —-0.25
400 071 —-171 3.64—13.40* 4+ 0.64 2.95-20.97* — 0.68
392 064 —-178 3.53-1340" + 043 3.44-21.02* + 0.71
484 651" + 295* 3.68 10.02* 4 2.51* 4.02 9.58* + 0.69
648 059 +-0.07 631 183 + 1.03 346 291* ——-0.54
6.62 —1.48 +—-0.87 6.28 —6.45" +—-093 4.04 9.62* ——-1.05
6.62 —147 +-0.86 6.27 —6.44* +—-094 4.03 9.61* ——1.06
398 —2.80* — 1.01 8.30*—8.03* +—0.44 3.30 —9.66* + 0.10
391 —2.56* — 1.00 8.49*-7.80* +—0.66 3.24 —9.71* + —0.01
405 141 + 014 843*-742* +-0.85 3.86 —9.15* + 0.34
361 177 +-0.03 8.69*-7.54* +—-0.79 3.53 —9.36* + 0.52
522 -1.70 +-1.64 532 -7.17* +-021 3.15 —9.07* + 0.56
519 —-1.62 +-1.80 543 -7.13" +-0.34 3.07 —9.02* + 0.56
429 674" + 3.08* 279 756" + 1.06 490 6.59* 4 2.54*
7.20*—1.72 +-0.68 477 099 ——055 581 221* ——1.11
6.70'—148 +—-191 5.53 —3.83" +—-0.51 3.56 —597* + 042
6.71"—1.48 +-1.92 5.52 —3.83* +—-0.53 3.64 —5.97* + 0.36
462 -3.49" +—-041 836"—539" +—-1.62 4.41 —6.30" + 0.21
476 —3.47* +-028 837*-5.05* 4 —2.04* 3.97 —6.31* + 0.08
238 —1.88 — 0.08 8.81*—4.82* 4 —2.17* 2.83 —5.73* 4+ 1.87
243 -2.19* — 0.08 9.04*—4.99* + —2.04* 3.60 —5.86" + 1.77
430 —2.41" +-2.51* 6.29 —3.31" +—-0.59 4.01 -5.09* 4+ 1.91
434 —2.23" +-2.68* 622 —3.37* +—-0.50 4.18 —5.08* + 1.82

Note: T’ 4 is the time variation component, I'y measures predictability of out-of-sample losses based
on in-sample losses, and I';; is the unpredictable (over-fitting) component. The +/— signs in the
Bp column show whether the model that performed better in sample was also better /worse out
of sample. “Null” means absolute forecast error losses of the SW model, while the rest of the
rows display the given model’s forecasting ability compared to the SW model. Asterisks (*) show
significance at the 5% level.
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Figure 2.6: SW model, GDP growth forecast 1 quarter ahead, time variation in j
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Note: Horizontal (red) line: regression of out-of-sample losses on in-sample losses over the
full out-of-sample period. Dark (blue) line: regression , estimated in rolling windows of 25
observations, where the timing is according to the end of the window. Light (green) line: time-
variation in f, that is 8. — B. Dots are the lower and upper bounds of 95% confidence intervals
for B , calculated in each window. Shaded areas are NBER recession dates.

Figure 2.7: SW vs. SW-FF model, inflation forecast 1 quarter ahead, time variation

in B
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Note: Horizontal (red) line: regression of out-of-sample losses on in-sample losses over the
full out-of-sample period. Dark (blue) line: regression 8, estimated in rolling windows of 25
observations, where the timing is according to the end of the window. Light (green) line: time-
variation in f, that is 8. — B. Dots are the lower and upper bounds of 95% confidence intervals
for B, , calculated in each window. Shaded areas are NBER recession dates.
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Figure 2.8: SW model, interest rate forecast 8 quarters ahead, time variation in j
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Note: Horizontal (red) line: regression of out-of-sample losses on in-sample losses over the full out-
of-sample period. Dark (blue) line: regression . estimated in rolling windows of 25 observations,
where the timing is according to the end of the window. Light (green) line: time-variation in j,
that is B, — B. Dots are the lower and upper bounds of 95% confidence intervals for ., calculated
in each window. Shaded areas are NBER recession dates.

2.5 Conclusion

The existing literature has found that the Smets and Wouters model delivers
competitive forecasts for three main variables of interest (GDP growth, inflation,
and interest rate) when compared against a number of benchmark reduced-form
models. However, while the previous statement is valid when considering the
full out-of-sample forecast period (1981Q1:2013Q3), I present evidence of time-
variation in the model’s relative performance. I find that there is no consistently
"best" forecasting method, rather it depends on the variable of interest and
the forecast horizon. Furthermore, this paper also shows that models” out-of-
sample forecasting performance is significantly correlated with their in-sample
performance and this information can potentially be exploited by a researcher to
select a forecasting method. However, this relationship is time-varying, which
makes it difficult to use the information content of in-sample performance in
order to improve forecasts.

This study could be extended in several directions. One common concern
regarding studies that use rolling windows is whether the results are robust
against different window sizes. Another possibility is using real-time vintages of

data to more closely mimic the actual forecasting scenario a researcher faces in
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practice. Re-estimating the models using the data collected by Edge et al. (2010)
(also used by (Giirkaynak et al., 2013)) would certainly be interesting, but as
Giirkaynak et al. (2013) and Edge et al. (2010) emphasize, the prior distributions
of the DGSE models (and the Bayesian VARs) inherently carry present-day beliefs
about the parameter values and the very structure of the model.

As we could see, time-variation is present between models” in-sample and
out-of-sample performance. This suggests that decomposing the Bp component
further could provide relevant insights into how models” in-sample and out-of-
sample forecasts are related over time — if the relationship between the losses or
the changes in losses themselves contribute more to the time-variation.

One could estimate the DSGE models in their non-linear form, as there
is considerable evidence that taking into account the nonlinearities both in the
solution (non-linear approximation of policy rules as opposed to log-linearization)
and the estimation (particle filter against the Kalman filter) considerably increases
the in-sample fit of this class of models (Fernandez-Villaverde and Rubio-Ramirez,
2005). Moreover, in light of the recent crisis, taking into account the zero lower
bound might improve a model’s fit. Whether this translates into more precise

forecasts is an open question, outside the scope of the present paper.
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Appendices

A Model Confidence Sets

Table A.1: Model Confidence Sets

h=1
h=4
h=28
h=1
h=4
h=28
h=1
h=4
h=28

GDP growth

AR(1), AR(p), BVAR(1), BVAR(p), RW, SW, SW-FF
AR(1), AR(p), BVAR(1), BVAR(p), RW, VAR(4), VAR(p), SW, SW-FF
AR(1), AR(p), BVAR(1), BVAR(p), VAR(4), VAR(p), SW, SW-FF

inflation

AR(1), AR(p), BVAR(1), BVAR(p), RW, RWD, VAR(4), VAR(p), SW, SW-FF
AR(1), AR(p), BVAR(1), BVAR(p), RW, RWD, VAR(4), VAR(p), SW
AR(1), AR(p), BVAR(1), BVAR(p), RW, RWD, VAR(4), VAR(p), SW, SW-FF

interest rate

AR(1), AR(p), BVAR(1), BVAR(p), RW, RWD, VAR(4), VAR(p), SW
AR(1), AR(p), BVAR(1), BVAR(p), RW, RWD, VAR(4), VAR(p), SW
AR(1), AR(p), BVAR(1), BVAR(p), RW, RWD, VAR(4), VAR(p), SW, SW-FF

Note: Model Confidence Sets, following Hansen et al. (2011). Results based on threshold p-value=0.05,
10000 bootstrap replications, with block bootstrap length of 20 quarters of data. The results are robust

to block length (15 and 30) and to using the stationary bootstrap.
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B Robustness checks

Table B.1 evaluates the robustness of the decomposition in the main text (cfr.

Table 2.5) using a window size m = 40 and discarding the first 2 years of data.

As we can see, the main conclusions are unchanged.

Table B.1: Decomposition of out-of-sample forecast error losses
I'y Tg Bp Iy Tp Ty Bp Iy Iy Ty Bp Iy
( Null 247 6.09" + 3.12* 396 14.33* + 1.33 4.39 20.87* 4 —0.27
SW-FF 193 242* + 191 280 270* + 243*223 270* —-0.30
VAR(4) 3.80 —2.65* + —2.88* 3.43—-13.11" + —0.31 2.61-20.78" + 0.10
VAR(p) 3.79 —2.65* + —2.92* 3.46—13.13* +—0.30 2.59-20.79* + 0.11
h—1 BVAR(1) 3.09 277 —-0.15 3.15-13.58" + 0.75 2.22-20.87* — 0.60
BVAR(p) 2.56 —2.68* +—0.34 3.25-13.65* + 0.91 2.54-20.83* — 0.35
AR(1) 297 130 —-0.84 243-13.60* — 1.84 2.22-20.94* + 0.66
AR(p) 3.04 159 —-0.69 274-1376" — 1.72 2.18-21.11" +—-0.25
RW 271 071 —-171 3.44-13.40" + 0.64 231-20.97* — 0.68
RWD 267 0.64 —-1.78 3.44-13.40" + 043 254-21.02* + 0.71
Null 285 6.51* + 295* 295 10.02* + 2.51* 229 9.58* + 0.69
SW-FF 345 059 +-0.07 198 183 + 1.03 241 291" ——-0.54
VAR(4) 370 —1.48 + —-0.87 3.26 —6.45" +—-093 320 9.62* ——1.05
VAR(p) 3.71 —1.47 +—-0.86 324 —6.44" +-094 3.19 9.61" ——-1.06
h—4 BVAR(1) 299 —2.80* — 1.01 4.21 —8.03" +—-0.44 1.74 —9.66* + 0.10
BVAR(p) 293 —-2.56* — 1.00 4.37 —7.80" +—-0.66 1.62 —9.71* + —0.01
AR(1) 237 141 + 014 453 —742* +-0.85 143 —-9.15* + 0.34
AR(p) 229 177 +-0.03 450 —7.54* +-0.79 1.75 —-9.36* + 0.52
RW 256 —-1.70 +-1.64 293 —7.17* +-0.21 221 —-9.07* + 0.56
RWD 257 —-1.62 +-1.80 293 —-7.13" +-0.34 222 —9.02* + 0.56
Null 2.07 6.74* + 3.08* 239 7.56* + 1.06 3.27 6.59* + 2.54*
SW-FF 427 -1.72 +-0.68 228 099 —-055 4.04 221" —-1.11
VAR4) 392 —-148 +-191 3.20 -3.83* +—-0.51 178 —-597* + 042
VAR(p) 391 —148 +-1.92 3.18 —3.83* +—0.53 1.84 —5.97* + 0.36
h—8 BVAR(1) 2.76 —3.49* + —041 4.87*-5.39* + —-1.62 255 —6.30* + 0.21
BVAR(p) 2.78 —3.47* +—0.28 4.94*-5.05* + —2.04* 240 —6.31* + 0.08
AR(1) 2.89 —-1.88 — 0.08 5.67*—4.82" +—-217* 2.19 =573 + 1.87
AR(p) 290 —2.19* — 0.08 5.50"—4.99* +—-2.04* 2.36 —5.86* + 1.77
RW 250 —2.41" +-2.51* 344 -3.31" +-0.59 277 -5.09* + 191
RWD 262 —223* +-2.68" 331 -3.37" +-050 274 —5.08" + 1.82

Note: T’ 4 is the time variation component, I'y measures predictability of out-of-sample losses based
on in-sample losses, and I';; is the unpredictable (over-fitting) component. The +/— signs in the
Bp column show whether the model that performed better in sample was also better /worse out
of sample. “Null” means absolute forecast error losses of the SW model, while the rest of the
rows display the given model’s forecasting ability compared to the SW model. Asterisks (*) show

significance at the 5% level.
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C Data appendix

This section contains a description of the data used for the estimation exercises,
following Smets and Wouters (2007) and Del Negro and Schorfheide (2013). The
full sample spans 1966:Q1 — 2013:Q3. The eight observables with the required
transformations of the DSGE models are:

consumption, = log((PCEC,/GDPDEF,)/LNSindex;) x 100,
investment, = log((FPI,/GDPDEF,)/LNSindex;) x 100,

output, = log(GDPC96,/LNSindex;) x 100,

hours; = log((PRS85006023, x CE160V,/100)/LNSindex;) x 100,
inflation, = log(GDPDEF,/GDPDEEF, _) x 100,

real wage, = log(PRS85006103,/ GDPDEEF,) x 100,

interest rate, = Federal Funds Rate, /4,

spread, = BAA10Y, (only used by the SW-FF model).

The original data are the following:

GDPC96 : Real Gross Domestic Product - Billions of Chained 1996 Dollars,
Seasonally Adjusted Annual Rate.

GDPDEEF : Gross Domestic Product - Implicit Price Deflator - 1996=100,
Seasonally Adjusted.

PCEC : Personal Consumption Expenditures - Billions of Dollars, Seasonally
Adjusted Annual Rate.

FPI : Fixed Private Investment - Billions of Dollars, Seasonally Adjusted
Annual Rate.

CE160V : Civilian Employment: Sixteen Years & Over, Thousands, Seaso-
nally Adjusted. (CE160V index: CE160V normalized such that (1992:Q3)=1.)

Federal Funds Rate : Averages of Daily Figures - Percent. Before 1954:
3-Month Treasury Bill Rate, Secondary Market Averages of Business Days,
Discount Basis.

LFU800000000 : Population level - 16 Years and Older - Not Seasonally
Adjusted.
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e LINS10000000 : Labor Force Status : Civilian noninstitutional population -
Age : 16 years and over - Seasonally Adjusted - Number in thousands. Be-
fore 1976: LFU800000000 : Population level - 16 Years and Older. LNSindex:
LNS10000000 normalized such that (1992:Q3)=1.

e PRS85006023 - Nonfarm Business, All Persons, Average Weekly Hours
Duration: index, 1992 = 100, Seasonally Adjusted.

e PRS85006103 - Nonfarm Business, All Persons, Hourly Compensation Dura-
tion: index, 1992 = 100, Seasonally Adjusted.

e BAA10Y - Moody’s Seasoned Baa Corporate Bond Yield Relative to Yield

on 10-Year Treasury Constant Maturity.

Except for the population and labor force data (series LFU800000000 and
LINS10000000), all series were downloaded from the St. Louis Fed’s FRED
database (http://research.stlouisfed.org/fred2/). The two aforementioned
series were downloaded from the website of the U.S. Bureau of Labor Statistics
(http://www.bls.gov/). All data series are the latest, fully revised vintages
available as of November, 2013.
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Chapter 3

Confidence Intervals for the Strength

of Identification

(joint with Atsushi Inoue and Barbara Rossi)

3.1 Introduction

In this paper, we propose a novel methodology to construct confidence intervals
for the strength of identification in linear instrumental variables (IV) models. The
methodology has several advantages. A first advantage is that it is robust to
the presence of weak instruments. It is well-known that the presence of weak
instruments invalidates standard inference (Stock et al., 2002). Our methodology
provides guidance on the strength of instruments to applied researchers.

A second advantage is that the confidence intervals are straightforward and
computationally easy to calculate, as they are obtained from inverting asymptotic
chi-squared distributions. The simplicity of our confidence intervals distinguishes
our methodology from weak instrument tests, whose distributions are typically
non-standard and depend on nuisance parameters that cannot be consistently
estimated. For example, Stock and Yogo (2005) suggested an approach to evaluate
the severity of the weak instrument problem in specific empirical applications
based on the first-stage F-statistic. The first-stage F-statistic is the F-statistic on the
strength of the instrument identification. Our complementary approach is instead
based on constructing a confidence interval for the strength of identification. It
might be surprising that the confidence intervals can be obtained by inverting
limiting chi-squared distributions while the test statistics have non-standard
limiting distributions. The intuition is that the test statistics are based on the
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difference between the estimate of the strength of identification and its value
under the null hypothesis, where the null hypothesis is that of weak identification.
Hence, the difference between the two contains information on the true strength of
identification and how close to zero that is, which cannot be consistently estimated
and results in a limiting distribution that is non-standard. Confidence intervals,
instead, are based on the difference between the estimate and the true strength
of identification, rather than its value under the null hypothesis, whose limiting
distribution does not depend on how close to zero the strength of identification
is. Interestingly, this is a rather peculiar feature of the weak instrument problem,
which cannot be applied to other non-standard situations resulting from the fact
that the parameter is local to the null hypothesis, such as confidence intervals
for highly persistent (local-to-unity) autoregressive processes. The reason is that,
in the local-to-unity framework, the difference between the estimated largest
root and its true value is still a function of the local-to-unity parameter in the
Ornstein—Uhlenbeck process that approximates the autoregressive process itself.
In our weak instrument case, instead, the local-to-zero parameter does not affect

the limiting distribution of the variables themselves.

A third advantage of our methodology is that it is general enough to be
applied to both IV as well as Structural Vector Autoregressive (SVAR) models with
external instruments.! It can also be applied in the presence of heteroskedasticity
and serial correlation. In fact, with the exception of Montiel Olea and Pflueger
(2013), tests for weak instruments in IV regressions assume homoskedasticity
and no serial correlation. Since the construction of confidence intervals for the
strength of identification is based on inverting a limiting chi-squared distribution,
the methodology can be easily applied no matter whether the disturbances are
homoskedastic and serially uncorrelated or not — in the latter case, one will
simply use a Heteroskedasticity and Autocorrelation Consistent (HAC) estimator

to take into account heteroskedasticity and/or serial correlation.

We show in Monte Carlo simulations that our method results in good coverage
in finite samples in the homoskedastic IV model, the heteroskedastic and serially
correlated IV model and the external instrument SVAR model.

We illustrate the usefulness of our methodology in several empirical applica-
tions. The first empirical analysis involves the New Keynesian Phillips Curve.
We find that the identification of the parameters is somewhat weak, consistently
with several results in the literature (see e.g. Mavroeidis et al. (2014), and Klei-

IExternal instruments are also called proxy variables. In this paper we use the terminology
“external instrument”.
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bergen and Mavroeidis (2009)), although, interestingly, it changed over time. In
particular, it has become weaker over time. In the second exercise, we estimate
the elasticity of intertemporal substitution using linearized Euler equations. Our
confidence intervals confirm that weak identification is indeed a serious problem
in this case as well, preventing reliable estimation of the elasticity of intertemporal
substitution. In the third empirical example, we analyze the identification of a
SVAR model with external instruments, where the instruments are oil shocks.
We show that using Hamilton’s (2003) oil shocks leads to more precise estimates
of the dynamic effects of oil shocks than Kilian’s (2008) oil shock series.

Our paper is related to the literature on testing for the strength of instruments
in linear IV models. Stock and Yogo (2005) provided critical values for the first-
stage F-statistics to test whether instruments are weak in the homoskedastic and
serially uncorrelated IV model, while Montiel Olea and Pflueger (2013), derived
the limiting distribution of an appropriate first-stage F-statistic under hetero-
skedasticity and serial correlation when there is only one included endogenous
variable. Our paper is also related to the literature on weak identification in
SVAR models, in particular Montiel Olea et al. (2016), who construct confidence
sets for impulse-response functions which are robust to weak identification, and
Lunsford (2016), who formalizes the problem of a weak instrumental variable
in an external instrument SVAR model and provides an F-statistic to test if the
external instrument is weak. Differently from the papers above, we propose
asymptotic confidence intervals for the strength of instruments, which can be
used in each of the models discussed earlier.

The remainder of this paper is organized as follows. Section 3.2 describes the
econometric frameworks and models we consider, while Section 3.3 provides the
results of Monte Carlo simulations. Section 3.4 presents empirical applications
illustrating our proposed methodology, and Section 3.5 concludes. The proofs
are collected in Appendix A, Appendices B and C contain additional results,
and Appendix D provides the description of the data we use in the empirical

exercises.

3.2 Econometric frameworks

In this section, we describe the three econometric frameworks we consider, and

the corresponding confidence intervals that we propose. Throughout the paper, T
denotes the sample size, ., and -% stand for convergence in probability and in
distribution, respectively. The Euclidean norm of vector a is denoted by ||a||, tr (+)
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is the trace operator, while vec (-) is the vectorization operator. The abbreviation
iid. stands for independent and identically distributed, N (3, V) is the normal
distribution with mean vector y and covariance matrix V, and for any matrix A,
Py=A(A'A)"1A"and My =1 — P,.

3.2.1 The homoskedastic IV model

Consider the model of Staiger and Stock (1997) and Stock and Yogo (2005)

(henceforth SSY), whose notation we follow:

y=YB+Xy+u, (3.1)
Y = ZI1+ X+ V, (3.2)

where y is a (T x 1) vector and Y is a (T x n) matrix of included endogenous
variables. X is a (T x K;) matrix of included exogenous variables (including a
column of ones if there is a constant in Equation (3.1)), and Z is a (T x K,) matrix
of excluded exogenous variables. B is an (n x 1), while y is a (K; x 1) vector
of coefficients. IT is a matrix of coefficients of dimension (K, x n), and ® is a
(K; x n) matrix of coefficients. Furthermore, u is a (T x 1) vector of errors, and
Vis a (T x n) matrix of errors. Equation (3.1) is the structural equation of interest
to the researcher and Equation (3.2) is the first stage equation relating the matrix
of endogenous regressor(s) Y to the matrix of instrument(s) Z.2

We also define X, = (Xy;,..., Xg 1), Zi = (Zgs -1 Ziye) + Vi = (Vigso o, Vi)
Z, = (X}, Z{)" as the vectors of the tth observations of the respective variables.
Fort =1,...,T, the population second moment matrices . and Q are as follows :

o Uy / Tuu Z‘uV
=t ( Vi ) < el ) | Zw Zwv | &)
/ QXX QXZ
—E(Z,7) = , 3.4
< (Z:z:) [ Qzx Qzz ] G4

which are assumed to be positive definite.

In this section we make the same assumptions as SSY.

Assumption Ly. IT = IT; = C/+/T, where C is a fixed K, x n matrix.

ZNote that if one uses the lagged dependent variables as exogenous variables in Equation (3.2),
then one needs to include those in Equation (3.1) as well.
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Assumption M. The following limits hold jointly for fixed K, as T — oo:
@) (T~Y'u, T-WV'u, T-V'V) (0, S Svv),
b 17222 Q,

() (T~V2X'u, T-127'u, T-12X'V, T-22'V) “ (¥ s, ¥ 10 Txcv 1),
where ¥ = [Py, ¥, vec(Fxy) ,vec(¥Fzy) ] ~ N(0,Z@ Q).

Assumption L models IT as local to zero, leading to weak instruments, while
Assumption M ensures that the appropriately scaled moments of the errors and
the variables obey a weak law of large numbers and a central limit theorem.
Part (c) of Assumption M corresponds most naturally to serially uncorrelated
and conditionally homoskedastic errors, which is restrictive in a number of
applications. This assumption will be substantially relaxed in Section 3.2.2.

When there is only one endogenous regressor in Equation (3.1), thatis, n =1,
then X, is a scalar 02, and in the absence of included exogenous regressors X,
the concentration parameter is defined as:

> =11'7'711/02, (3.5)

which plays a role similar to that of the sample size when deriving the asymptotic
distribution of the two-stage least squares (TSLS) estimator with fixed instruments
and iid. normal errors, as Rothenberg (1984) demonstrated.

As Stock and Yogo (2005) showed, the asymptotic maximum bias (relative to
the OLS estimator) of a number of k-class instrumental variables estimators (TSLS,
limited information maximum likelihood, Fuller-k and bias-adjusted TSLS) and
the asymptotic maximum size distortion of Wald-tests on 8 can be characterized
in terms of the minimum eigenvalue of the matrix A = A'A/K,, where A =
01/2CZ;‘1,/2 and Q = Q,, — QZXQ;&QXZ. They also note that this matrix is the
weak instrument limit of the concentration matrix, the multivariate analog of 2
defined in Equation (3.5):

1

— K—zz;‘l/ iz’ znz 2 L A (3.6)

[zl

When n > 1, the matrix analog of the first-stage F-statistic testing the null

hypothesis IT = 0 is
1 -1V a1
GT — K—ZV‘Z/ YL PzLYJ_ZVXZ/ ’
2
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where £y = Y'M,Y/(T — Ky — K;), Z = [XZ], Y* = MyY and Z*+ = MyZ.
The Cragg and Donald (1993) and Stock and Yogo (2005) test statistic is the
= mineval(Gr). As Stock and Yogo (2005)
showed, the asymptotic distributions of G and g,.;,, are

minimum eigenvalue of Gt, $min

GT i) 141 /K2 ’ (37)

Smin LN mineval(v; /K,), (3.8)

respectively, where v; has a non-central Wishart distribution with noncentrality
matrix A'A = K,A. While formally Gy is the usual F-statistic testing IT = 0,
its asymptotic distribution is derived under Assumption Ly, yielding this non-
standard result. In contrast, our procedure circumvents this problem by building
on an appropriate distance between the OLS estimate of Il and its true value.

Building on the asymptotic distribution of g.,;,, Stock and Yogo’s (2005)
procedure tests whether the instruments are strong enough either in terms of
being less biased than a pre-specified tolerance, or if the Wald-test on B does
not display higher size distortion than a threshold. While their method cannot
provide a confidence set for mineval(A), our method is specifically designed to
do so, offering guidance on how weak or strong the instruments are.

For the asymptotic theory to be developed, it is convenient to project out
the exogenous regressors X. That is, let us define V- = MyV, yt = Myy
and ut = Myu in addition to Y+ and Z* defined earlier. Using this notation,
Equation (3.2) reads as

Yt =Z'T14V*E. (3.9)

Let Z' and V;*' be the tth row of Z+ and V', respectively. By the exogeneity of
X, E(X,V/) =0, hence .. = E (V*V;!') = Zyy,. Furthermore, simple algebra
shows that O = Q,, — QZXQ)_(%(QXZ =Qy1,1,where Q,1,1 =E (Z}Ztﬂ).

Our proposed confidence interval builds on the asymptotic distribution of the
OLS estimator of I1; in Equation (3.9), denoted by Il;:

VT (T~ 11y = (1712424) Tpvagliyl (3.10)
VT vec (ﬁT _ HT> LY, (O,ZVLVL ® Q;ZJ , (3.11)
vec (6— C> N (O,Zvle ® Q;Zl> p (3.12)

where Equation (3.11) follows from Assumption M, and in Equation (3.12) we
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used that IT; = C/+/T, and C = I1;v/T.3 Next, consider the Wald statistic

/ —

[Vec <é— C)] [Zval ® QZJ-ZJ-} [Vec <C C)] —>an , (3.13)

where x2 k, stands for a chi-squared random variable with #K; degrees of freedom.
Using flv Lyl = vivi,r AN Xy 1yL, where V1 is the matrix of OLS residuals,
and QZ Lyl = zZ+'zt/T LN Q1,1 (both follow from Assumption M), Slutsky’s
theorem and the continuous mapping theorem imply

W(Q) = [vee (€~ )] [Evive © Q515 ]  [vee (€-C)] iy, @19

By taking the (1 — a) quantile of the X% K, distribution (denoted by Xfl Ky 1— ), the
Wald statistic W(C) can be inverted to obtain an asymptotically valid (1 — «) level
confidence set for C, which is formally defined as

CIl , = {VC c IRK2><I’I : W (E) S X%Kz,l—zx} . (3].5)
Recall that A = Zvﬂi C'Q i1 CZvaL/Kz Let us define
AC) =212 C'0,1,1CE 12 /Ky, (3.16)

which is a continuous function of C, and the consistent estimates of YyiyL and
Q1,1 have replaced their population counterparts. Our proposed (1 — «) level
asymptotic confidence interval for mineval(A) is

CI) , = | min mineval(A(C)), max mineval(A(C))]| . (3.17)
CeCi§, CeCi§_,

We summarize our results in the following proposition.

Proposition 1 (Confidence Interval Validity Under Homoskedasticity and Uncor-
relatedness). Under Assumptions Ly and M, CIY*_ is an asymptotically valid confidence
interval for mineval (A), that is limp_, ., P <mineval (A) € CI{\_[X> >1—a.

Proof. See Appendix A. [

We note that as A (6) is not a one-to-one function of C in general, our
proposed confidence interval is conservative.

3Note that C is an inconsistent estimator of C. However, for our purposes the asymptotic
normality result of Equation (3.12) is sufficient.
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Example 1. To illustrate the validity and accuracy of the asymptotic normal
approximation, consider a small Monte Carlo study. Let us specify Y = ZI1 +
X® + V such that (2, V,)" "¢ N (0, 1), TI; = C/+/T with C = 0.5 and T = 100,
and X; = 1 with ® = 1. Hansen’s (1999) grid bootstrap is asymptotically valid in
the presence of a weak instrument. Using the grid bootstrap, we can simulate
the distribution of the usual t-statistic testing the null hypothesis of I = I at
each point on a fine grid Ag, which we specify as ranging from —0.1 to 0.1, with
increments of 0.01. At each point on Ag, we simulate the distribution of the ¢-
statistic B = 999 times (by resampling the estimated residuals with replacement),
and estimate the 5th and 95th percentiles (4" and g!) of the simulated distribution.
We repeated the above exercise 200 times, and calculated the means of g~ and gY
at each point on A across the 200 replications. The results shown in Figure 3.1
confirm that the simulated quantiles of the t-statistic are constant and virtually

indistinguishable from their asymptotic counterparts (£1.64). A

Figure 3.1: The grid bootstrap and asymptotic quantiles of the t-statistic
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Having obtained a (1 — «) level confidence interval for mineval (A), resear-
chers can summarize the strength of identification by calculating the values of
lower and upper maximum bias and size distortion corresponding to the upper
and lower endpoints of the confidence interval. In Appendix B we provide
the boundary values of mineval (A) for n = {1,2,3} endogenous variables and
Ky =n+2,...,20 (bias) and K, = n, ..., 20 (size distortion) for a fine grid of max-
imum bias and size distortion for the TSLS estimator, extending the simulation
results of Stock and Yogo (2005).*

4PFollowing Stock and Yogo (2005), we calculated the size distortion assuming the Wald test on
B has a nominal level 5%.
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Example 2. Figure 3.2 illustrates the proposed procedure. Let us assume that
at the (1 —a) = 0.90 level we obtain the confidence interval Cl}y, = [3,15]
when using n = 2 endogenous regressors and K, = 7 instruments. Based on
the simulation results, we looked up the corresponding bias and size distortion
values, and plotted the resulting intervals (dashed vertical lines), along with
the boundary values of mineval(A) that would lead to the same amount of bias
and size distortion. We obtained the interval [0.04,0.19] for maximum bias, and
[0.11, 0.34] for size distortion. A

Figure 3.2: An example of using CI{‘? N
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Note: In the left (right) panel, we calculated the maximum bias (size distortion) corresponding to
CI® , = [3,15] (dashed vertical lines) for n = 2 endogenous regressors and K, = 7 instruments.
The diamond and the asterisk markers show the resulting intervals, while the curves serve
illustrative purpose only, showing the confidence interval for mineval(A) while keeping the bias
and size distortion at the same value.

3.2.2 The heteroskedastic/autocorrelated linear IV model

The assumption of homoskedastic errors used in the previous section is restrictive
in a number of applications. In those cases, following the Stock and Yogo (2005)
testing method or applying our proposed confidence interval could lead to in-
correct inference on the strength of instruments. As a solution to this problem,
Montiel Olea and Pflueger (2013) proposed a measure of the strength of instru-
ments which applies to general (heteroskedastic, autocorrelated or clustered)
errors, but assumes there is only one endogenous regressor (n = 1).

Following Montiel Olea and Pflueger (2013), consider the linear IV model in
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its reduced form, where the exogenous regressors X have been projected out:

yt =Z1 1B+ vy, (3.18)
Yt =271+ 0,, (3.19)

where Equation (3.18) is the structural equation of interest in reduced form, while
Equation (3.19) is the first stage equation linking the endogenous regressor Y=+
with the instruments Z+. Both y- and Y= are (T x 1) vectors, Z+ is a (T x K,)
matrix of instruments, B is a scalar coefficient, ITis a (K, x 1) vector of coefficients,
while v; = VB +ut and v, = V* are (T x 1) vectors of errors. Furthermore,
7+ is orthogonalized such that ZrzL/T =1 K,

Montiel Olea and Pflueger (2013) adopt Assumption L of SSY to model weak

instruments, but considerably weaken their moment assumptions as follows:

Assumption HL. The following limits hold as T — oo:

T—l/ZzJ_/,U d W. W.
(2) L) 55 NV(0, W) for some positive definite W = R
< T—l/ZzJ_Iv2 ( )f P ﬁ le W2

2
K12 K3

. 2
(b) [v,0,] [0y 0,] /T K for some positive definite K = ( I ),
(c) There exists a sequence of positive definite estimates W, measurable with respect to
{vi, Y, Zf}thl, such that W 5 W.

As we can see, unlike Assumption M of SSY, these high level assumptions
do not restrict W to take the form of K ® Iy , and therefore they can encompass
a wide range of error structures, including heteroskedastic, autocorrelated or
clustered (in panel data settings) error terms.

Montiel Olea and Pflueger (2013) focus on the TSLS and the Limited Infor-
mation Maximum Likelihood (LIML) estimators, and their testing procedure is
designed to decide if the instruments Z+ are such that the Nagar (1959) bias of
the TSLS or the LIML estimators exceeds a given fraction 7 relative to a worst-case
benchmark. Formally, their Theorem 1 shows that the Nagar (1959) bias of the
estimators e € {TSLS, LIML} is given by

N,(8,C,W,K) = u*n,(B,C,W,K), (3.20)
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where

—= _tr(Slz) B E/.Slzé
nTSLS(ﬁ/CIWIK)——SZ 1 2tr(512) , (3.21)

= 1 012 = %V =
nim(B, C, W, K) = (S, (tf(slz) — U—lz’ff(51) - (2512 — 0—1251 Cl,
(

3.22)
and where C is written as C = ||C||C,
W= [CIP/ (W), (323)

Sy = Wy —2BWip + BPWy, S1p = Wiy — BW,, Sy = Wy, 0f = i§ — 2Py, + B215,
015 = Kyp — PK5, and 07 = x3. The benchmark bias is defined as BM(B, W) =
V1 (Sq)/ tr(S,).

Their null and alternative hypotheses are formulated for a given threshold

T € [0,1], long-run covariance matrix W, covariance matrix K, and estimator
e € {TSLS, LIML} as

HY: u? € H,(W,K) versus H! : u> ¢ H,(W,K), (3.24)

where H,(W, K) is the set of u? for which the absolute value of the relative Nagar
(1959) bias exceeds the threshold T set by the researcher, formally:

HWEK) =2 eR, . sup |NelPrvIEW KL L 5o
BER,Ceska! BM(B, W)

where S¥271 is the K, — 1 dimensional unit sphere.
Montiel Olea and Pflueger (2013) propose the so-called effective first-stage

F-statistic defined as
_— YJ./(zJ.zJ_//T)YJ_

F.= —
eff tr(Wz)

and provide a method to test the null hypothesis of weak instruments. However,

, (3.26)

their procedure cannot guide researchers on how weak or strong their instruments
are. On the other hand, our proposed methodology allows researchers to go
beyond hypothesis testing by providing an asymptotic confidence interval for the
parameter u?, which determines the strength of the instruments.

Our proposed confidence interval for u? is constructed similarly to that of
Section 3.2.1. In particular, consider the asymptotic distribution of the OLS
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estimator of Il in Equation (3.19):

(HT - HT> =T 1V2740, (3.27)
( )—>N 0, W,) (3.28)
C—C-LHN(OW,), (3.29)

where we used the normalization Z'Z1 /T = Iy,, the central limit theorem
of Assumption HL, and Assumption L;;. Moreover, by Slutsky’s theorem, the
continuous mapping theorem and part (c) of Assumption HL, the Wald statistic
is asymptotically chi-squared distributed with K, degrees of freedom, formally

w(e) = (€-c) Wy (E—c) Lo, 3:30)

where W, is the lower right (K, x K,) block of the consistent estimator W. Ana-
logously to the procedure in Section 3.2.1, by taking the (1 — &) quantile of the
X%(z distribution (denoted by X%<z’1— ), inverting the Wald statistic YW (C) yields
an asymptotically valid (1 — «) level confidence set for C, which is defined as

I, = {vCe R W(C) < xk,1u} - (3.31)
Recall that 12 = ||C||?/ tr(W,). Let us define
2(C) = [IC12/ tr(Wy), (3:32)

which is a function of C, and the consistent estimator W, has replaced its popula-
tion counterpart W,. Our proposed (1 — «) level asymptotic confidence interval

for p? is

ai’, = L;’i‘éﬁ‘ 7€), mox (a)] . 63
1-«a

We summarize our results in the following proposition.

Proposition 2 (Confidence Interval Validity Under Heteroskedasticity and Au-
2
tocorrelation). Under Assumptions Ly and HL, Clia is an asymptotically valid

2
confidence interval for y?, that is limy_, ., P <y2 € CI?_ w) >1—a.
Proof. See Appendix A. n

We note that as 72 (5) is not a one-to-one function of C in general, our

proposed confidence interval is conservative.
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Montiel Olea and Pflueger (2013) note that the weak instrument set for y?
takes the form H,(W,K) = [0, B, (W, K) /T), where

7. (B,C, W, K)|
BM (B, W)

B, (W,K) = sup
BER,CesK!

(3.34)

Using W and K = [9, @2]/ [019,] /T, where [0; 9,] is the matrix of OLS residuals
calculated from Equations (3.18) and (3.19), we propose that researchers could
summarize the strength of instruments by calculating the endpoints of the interval

T = [?LI?U] , (3.35)

where®
T; =min | 1, :érer(lzell%(aﬁz (6): B B, (W, I?) , (3.36)
2, =min [ 1, éen’éllllg_ aﬁz (6) N B, (W 12) . (3.37)

3.2.3 The external instrument SVAR model

Since the papers of Stock and Watson (2012) and Mertens and Ravn (2013), the
macroeconomics literature has frequently used the external instrument identifi-
cation approach to estimate dynamic effects of various macroeconomic shocks
of interest (tax, monetary, oil price shocks, etc.) in SVARs as an alternative to
more traditional identification schemes, such as Cholesky or sign restrictions.
In a simplified way, this identification approach relies on finding an observable
variable z, not contained in the VAR which satisfies two conditions: it is correlated
with the (unobserved) shock of interest (relevance), and it is uncorrelated with
all the other structural shocks (exogeneity). This choice of vocabulary parallels
that of the IV literature, already suggesting that the estimators proposed in the
aforementioned papers can be written as IV estimators.

Recently Lunsford (2016) proposed a test of instrument strength in this frame-
work, although using a slightly different estimator than Montiel Olea et al. (2012).
However, similarly to the tests of Stock and Yogo (2005) and Montiel Olea and
Pflueger (2013), his methodology is not suited either to inform researchers on

how weak or strong their external instruments are. In this section, we first des-

>Clearly, the proposed interval 7 is meaningful only when the ratios are well-defined.
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cribe Montiel Olea et al.’s (2012) approach, and then propose a valid confidence
interval for the parameter that determines the strength of identification in their
framework.

In this section we use a notation that is specific to the SVAR literature with

!/ !/
external instruments. Let uj = (ujll,...,u]-,T) p E]. = (ejll,...,e]-/T> p N]. =

!/
(Vj,l,...,vj,T> , E = (eq,-. .,eT)’, Table 3.1 summarizes how the notation in
this section differs from the notation in Sections 3.2.1 and 3.2.2.

Table 3.1: Correspondence between the variables used in the external instrument
SVAR, the homoskedastic and the heteroskedastic/autocorrelated IV models

External instrument SVAR Homoskedastic IV  Heteroskedastic/autocorrelated IV

u] yJ_ yJ_
U, YL YL
b]l :B :B

Ej ut ut
Ttr HT HT
Z Z+ zZ+
N] VJ_‘B + ML Ul

E %4 ()

Note: The objects with subscript j in the first column correspond to the objects in the second and
third columns for a given j = 2,.. k.

Consider the VAR(p)

p
Y, =Ag+ Y AY,  +u, (3.38)

I=1
where Y; is an (k x 1) vector of variables and u; is an (k x 1) vector of VAR
innovations. The coefficients are collected in Y = vec (AO,Al, .. .,Ap>. The

(k x 1) vector of structural shocks v, is given by
u, = By, (3.39)

where B is an invertible (k x k) matrix.

The external instrument SVAR literature focuses on estimating the column
of B corresponding to the structural shock, and without loss of generality we
assume this is the first column, denoted by B;.
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Before introducing the SVAR assumptions, it is helpful to rewrite Equa-
tion (3.39) as

Uyt by b U1t
(I1x1) _ (1x1) 1x(k—1) (1x1) (3.40)
Uyt by by Uo

(k—1)x1 (k—=1)x1 (k—=1)x(k—1) (k—1)x1

where vy ; is the structural shock of interest, v, ; contains all the other k — 1 struc-
tural shocks, and B; = (by, bél)/ is the first column of B. Following Montiel Olea
et al. (2012), we normalize b;; = 1. The external instrument SVAR identifies
B, by finding a variable z; not in Y; such that the relevance E(v,z;) = 1 # 0

and the exogeneity conditions E(v,,z,) = 0 hold. Let us define Z = (zy,...,z7)’,

/
Y, = (1,1/;_1,. . .,Y;_p> cand Y = V..., V).
We make the following set of assumptions regarding the SVAR in Equati-
ons (3.38) and (3.39).

Assumption SVAR.

(a) The VAR(p) given in Equation (3.38) is stationary, and there exists a consistent and
asymptotically normal estimator of the coefficients, denoted by Y, that is Y -1 Y,
and /T (\A{ — Y) N (0,©), where © is positive definite,

(b) B is a fixed, invertible k x k matrix,

(c) E(v;) =0,E (v,0}) = X, where ¥, is positive definite, and the structural shock of
interest vy ; is uncorrelated with the remaining structural shocks, B (Ulltvj,t> =0
forj=2,...,k,

d T-1(V'z) -0,
(e) E(z7) = 1.

Part (a) is a standard assumption in the VAR literature, for a set of primitive
conditions we refer to Hamilton (1994, Chapter 11, pp. 298-299). The matrix
B in part (b) links the structural shocks v; to the VAR innovations u,. Part (c)
contains moment conditions which shocks are expected to fulfill to label them as
structural. Part (d) (along with part (a)) allows using consistent estimates i, in
place of the unobserved VAR innovations u; without changing the asymptotic
properties of the estimator described below, while part (e) serves as a convenient

normalization in the asymptotic theory to be developed.

Assumption E-SVAR. z, is exogenous with respect to v, ;, that is E(v,,z;) = 0.
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Assumption R-SVAR. z, is relevant for vy, that is E(vy ;z;) = 1 # 0.

Assumptions E-SVAR and R-SVAR are crucial exogeneity and relevance con-
ditions for the estimator introduced below.

Under similar assumptions, Montiel Olea et al. (2012) and Lunsford (2016) pro-
vided consistent estimators of by; and By, respectively.® In particular, Montiel Olea

et al.’s (2012) estimator is

1vT A
~ T Y Uz
21 — 7
—1vT 5
T=5 ) g 142

(3.41)

where 7, and i, are the estimates of the VAR residuals in Equation (3.38).
Montiel Olea et al. (2012) showed that if a consistent and asymptotically normal
estimator is used to estimate the VAR innovations, and part (d) of Assumption
SVAR holds, then using the estimated residuals instead of the unobserved VAR
innovations does not change the asymptotic properties of the estimator in Equa-
tion (3.41). This condition can be ensured by regressing z, on );, and using the
residuals Z; in place of z,. Furthermore, part (e) of Assumption SVAR can be
ensured by standardizing the residuals, which does not affect the asymptotic
properties of b,;. For simplicity of notation, we will continue using z; to denote
the standardized residuals, and use u, in place of ;.

Note that Equation (3.41) has the form of an IV estimator, where the structural

and the first stage equations are given by

Uip = bjl”l,t e, forallj=2,...,k (3.42)
Upp = 72p + Vg, (3.43)

where the same first stage equation is used for each structural equation. It is
important to realize that using the estimator in Equation (3.41) is equivalent to
using the k — 1 TSLS estimators given by Equations (3.42) and (3.43).

When the correlation between z; and v, ; is modeled as local to zero (similarly
to the approach taken by Staiger and Stock (1997) and Stock and Yogo (2005)), both
Montiel Olea et al.’s (2012) and Lunsford’s (2016) estimators become inconsistent.
Following the method of Stock and Yogo (2005), Lunsford (2016) provides a
characterization of the weak instrument set in terms of the bias of the estimator
of B; and proposes a test for a weak external instrument. In this paper, we model
a weak external instrument as Montiel Olea et al. (2012) and Lunsford (2016), but
by using the proposed estimator of the former authors, we are able to link the

®Lunsford (2016) did not use the normalization b;; = 1.
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external instrument SVAR framework with the familiar linear IV frameworks of
Sections 3.2.1 and 3.2.2, and therefore show how our previous results carry over
to this case.

A weakly relevant external instrument is modeled by replacing Assumption
R-SVAR by the following assumption:

Assumption 7ty. E (vy,2;) = iy = C/ VT, where C is a fixed, nonzero scalar.

Note that this assumption, together with the exogeneity condition Assumption
E-SVAR imply that

E (ulltzt) =E [(bllvl,t + blzvzlt) Zt] (344:)
= bll E (Z)l,tzt) + blz E (Uz/tzt) (345)
— (3.46)

Consider the coefficient in the population regression of u; ; on z,

[E (z%)} "B (zu1,) = 77, (3.47)

which implies that using z, as the best linear predictor (E(-|-)) of uy s, we have
that

E (u14lz,) = 7072, (3.48)
which yields
Uy = 7z + € (3.49)

which is exactly the first stage in Equation (3.43).

Therefore, the estimator of by, in the weak external instrument SVAR can be
obtained as the solution to the IV problem given by the structural, reduced form,
and first stage equations, respectively:

Uiy = bjlul,t +ej forallj=2,...,k (3.50)

uj, = bjy (mrzy + €;) + ;4 = by (70724) + v forallj=2,...,k  (3.51)

it
Uy = 7072 + €. (3.52)

This also implies that our results on the confidence intervals for the strength of

identification in Sections 3.2.1 and 3.2.2 carry over to the weak external instrument
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SVAR model. In practice, it depends on the particular problem whether the
homoskedastic or the heteroskedastic/autocorrelated IV model’s assumptions
should be applied in addition to Assumptions SVAR, E-SVAR and 7. In either
case, it is important to note that when constructing the confidence sets, the
number of endogenous regressors is n = 1, and the number of instruments is
K, = 1. Furthermore, given that our discussion builds on applying the TSLS
(IV) estimator k — 1 times to estimate the k — 1 elements of b,;, our confidence
sets should not be interpreted as joint ones applying to the “joint” estimator in
Equation (3.41).

3.3 Monte Carlo results

In this section, we investigate the performance of the methodologies that we
proposed in three leading examples. The first is the homoskedastic IV model
that is a typical reference in the weak instrument literature; the second is the
heteroskedastic/autocorrelated IV model. The final example is the SVAR with
external instruments. The simulations are inspired by the empirical analyses that
we undertake in Section 3.4. In the present section we focus on the empirical
coverage rates of our proposed confidence intervals, while Appendix C contains
the mean and median lengths of the confidence intervals. Furthermore, as
without loss of generality we do not include exogenous regressors (X) in the Data
Generating Processes (DGPs), Y = Y',Z = Z+ and V = V+. The numerical
optimization was performed using MATLAB’s built-in fmincon algorithm.

3.3.1 Homoskedastic IV model

Recall that the first stage equation (in the absence of X) is given by
Y=ZII+V, (3.53)

where Y is the (T x n) matrix of endogenous variables, Z is the (T x K,) matrix of
instruments, and V is the (T x n) matrix of errors. We specified V; 9N (0,1,,) and
Z, i;g'./\/'(O, Ix,), and considered n = {1,2}, with K, = {n,...,n+3}. For each
pair (1, K,), we considered four values of mineval(A) as follows: mineval(A) = 0
corresponds to irrelevant instruments, mineval(A) = {1,10} correspond to weak
instruments, while strong instruments are modeled by setting mineval(A) =
25. To investigate the performance of our proposed confidence interval, we

considered sample sizes of T = {100, 250,500, 1000}. The number of Monte Carlo

112



replications was 2000. The results presented in Tables 3.2 and 3.3 confirm that
our proposed confidence interval performs well across different specifications,
even for relatively small samples. The simulations also show that our method is

conservative when C is not a scalar.

3.3.2 Heteroskedastic/autocorrelated IV model

We considered two DGPs, labeled as DGP 1 and DGP 2, and constructed confi-

dence intervals for u? = ||C||/ tr(W,) with nominal coverage of 90%. DGP 1 is

based on the DGP suggested by Montiel Olea and Pflueger (2013). In particular, let
/.. ..

Z, = (let,. . .,sz,t) i (0, IKZ) and 7, = (3,,,05,) S N (0,K), where K =

1 05

05 1
for j = {1,2} results in W = 3(K ® Ig, ). We performed Monte Carlo simulations

for sample sizes of T = {100,250,500, 1000}, with K, = {1,2,3,4} instruments,
and for various levels of the strength of identification u?> = {0,1,10,25}. W,

.. ~ . K ~
, and Z, is independent of v;. Then constructing v;, = [T 2, Z ,0;

was estimated using White’s (1980) heteroskedasticity consistent estimator. The
number of Monte Carlo replications was 2000. The results in Table 3.4 confirm
that our proposed methodology delivers confidence intervals of correct coverage
across a wide range of specifications.

DGP 2 is specified as follows. Let Z, = (ZU,...,ZK%)/, €; < (0, Ix,)
and Z! = ZLUOIKZ + €;, where p controls the persistence of the independent
autoregressive processes in Z;,. We set p = 0.5. Then we orthogonalized Z,

such that Z'Z/T = Iy . Next, we specified a moving average process u; =

q; +0g,_1, where g, N (0,1), and 6 = 0.4. Finally, conditional heteroskedasticity
is introduced by v, ; = Z;yu;, where v, , is the tth element of v,, and the K, x 1
coefficient vector v is specified as y = (0.5,0,...,0)". This specification introduces
both heteroskedasticity and autocorrelation in the process Z;v,,;. As the long-
run variance estimator by Newey and West (1987) delivered rather imprecise
estimates of W,, we used the moving blocks bootstrap, following Gongalves and
White (2005), with block size b = | T'/3| (where |m | is the integer part of m), as
suggested by Hall et al. (1995). As before, the number of Monte Carlo replications
was 2000. The results in Table 3.5 confirm that our proposed confidence interval
has correct coverage at the nominal level (1 — a) = 0.90 across different sample
sizes T, strength of identification x2, and number of instruments K,.
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Table 3.2: Homoskedastic IV model, coverage rates for mineval(A), n = 1 endogenous regressor, nominal level (1 —a) = 0.90

K2:1 K2:2 K2:3 K2:4
mineval(A)= 0 1 10 25| 0 1 10 25| 0 1 10 25| 0 1 10 25
T =100 089 095 0.89 0.89]090 097 094 092|088 098 096 094089 098 097 0.94
T =250 091 094 089 088|088 096 096 094|090 098 097 098|089 099 099 098
T = 500 090 095 0.89 089|090 097 097 096|089 098 097 098|090 098 099 0.99
T = 1000 089 096 090 090|090 097 097 097|090 099 099 099|090 098 099 0.99

Note: The table shows the empirical coverage rates of the proposed confidence interval for mineval(A) for different sample sizes T,
instrument strength mineval(A), and number of instruments K,. The number of Monte Carlo simulations was 2000.

Table 3.3: Homoskedastic IV model, coverage rates for mineval(A), n = 2 endogenous regressors, nominal level (1 —a) = 0.90

K2:2 K2:3 K2:4 K2:5
mineval(A)= 0 1 10 25| 0 1 10 25| 0 1 10 25| 0 1 10 25
T =100 1.00 1.00 098 096|100 1.00 099 099|100 1.00 1.00 099 |1.00 1.00 1.00 0.99
T =250 1.00 1.00 099 099|100 1.00 1.00 1.00 | 1.00 1.00 1.00 1.00 | 1.00 1.00 1.00 1.00
T = 500 1.00 1.00 1.00 1.00 | .00 1.00 1.00 1.00 | 1.00 1.00 1.00 1.00 | 1.00 1.00 1.00 1.00
T = 1000 1.00 1.00 1.00 1.00 [ 1.00 1.00 1.00 1.00 | 1.00 1.00 1.00 1.00 | 1.00 1.00 1.00 1.00

Note: The table shows the empirical coverage rates of the proposed confidence interval for mineval(A) for different sample sizes T,
instrument strength mineval(A), and number of instruments K,. The number of Monte Carlo simulations was 2000.
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Table 3.4: Heteroskedastic IV model (DGP 1), coverage rates for #2, nominal level (1 —a) = 0.90

K2:1 K2:2 K2:3 K2:4
ur = o 1 10 2|0 1 10 2|0 1 10 25| 0 1 10 25
T=100 088 094 093 091]090 096 097 086|091 096 097 083|094 088 099 0.79
T=250 089 094 093 094|090 096 094 0.89 089 096 094 091|095 094 090 091

T=500 091 094 092 093|089 099 09 094|094 099 092 094|093 097 087 0.87
T=1000 092 095 0.89 092|089 098 094 094|094 098 097 085|089 098 0.87 0.82

Note: The table shows the empirical coverage rates of the proposed confidence interval for y? for different sample sizes T, instru-
ment strength %2, and number of instruments K,. Asymptotic variance W, estimated using White’s (1980) heteroskedasticity
consistent estimator. The number of Monte Carlo simulations was 2000.

Table 3.5: Heteroskedastic and autocorrelated IV model (DGP 2), coverage rates for 42, nominal level (1 —a) = 0.90

K2:1 K2:2 K2:3 K2:4:
pr = o 1 10 2|0 1 10 2|0 1 10 2|0 1 10 25
T=100 084 089 089 095[087 094 099 096|087 097 100 091|082 099 100 0.76
T=250 088 091 085 090|087 095 097 099|089 098 099 099|086 098 1.00 0.99

T=500 087 091 083 080|088 095 094 098 | 0.85 098 098 1.00|0.87 098 1.00 1.00
T=1000 0.88 090 082 076|089 095 092 092|090 098 097 098|087 099 098 0.99

Note: The table shows the empirical coverage rates of the proposed confidence interval for u? for different sample sizes T,
instrument strength y?, and number of instruments K,. Asymptotic variance W, estimated with the moving blocks bootstrap,
following Gongalves and White (2005), with block size b = | T1/3], as suggested by Hall et al. (1995). The number of Monte
Carlo simulations was 2000.



3.3.3 External instrument SVAR model

We specified three DGPs. In the first two, labeled as DGP 1 and DGP 2, the
proxy variable is modeled as an iid. process: z; Y (0,1). We considered a
homoskedastic and a heteroskedastic process for €;. In the former (DGP 1),
€; N (0,1). In the latter (DGP 2), €, = |tz,|é;, €, N (0,1) and we set T = 0.5,
which implies W, = 372 = 0.75. In DGP 3, we introduced serial correlation by
specifying the autoregressive process z; = pz;_; + #; for the instrument, with
4 s (0,1 —p?), p = 0.2, and specifying a moving average process for €, such
that €, = {, + 6, 1, {; "= N (0,1), 6 = 0.3, implying W, = 1.21.

Naturally, for the homoskedastic DGP we constructed the confidence intervals
based on our results in Section 3.2.1, while in the heteroskedastic and autocorre-
lated DGPs we used the confidence interval proposed in Section 3.2.2.

In order to investigate the coverage rate of our proposed confidence interval
at different strengths of the external instrument, we performed simulations
using different values of the local-to-zero parameter C. In the homoskedastic
case, note that A = C2. The four values of A we used are A = {0.1,1,10,25},
with corresponding values of C = {\/0_1, 1, \/1_0,5}. In the heteroskedastic
and autocorrelated cases, we considered the same values for u?> = C?/W, as
for A, resulting in C = \/Wz X {\/0_1, 1, \/E,5}. The sample sizes are T =
{100, 150,200,500}, which are typical in the macroeconomics literature using
quarterly or monthly data. The simulations were performed at the nominal
(1 —a) = 90% confidence level, and we conducted 2000 Monte Carlo replications.

The results reported in Tables 3.6 and 3.7 confirm that our proposed confidence
interval delivers coverage rates close to the nominal level, with minor coverage

distortions in most cases.

Table 3.6: Homoskedastic external instrument SVAR (DGP 1), coverage rates for
mineval(A), nominal level (1 —a) = 0.90

mineval(A) = 0.01 1 10 25

T =100 093 095 0.89 0.90
T =150 094 095 09 091
T =200 093 095 091 0.90
T =500 094 096 090 0.89

Note: The table shows the empirical coverage rates
of the proposed confidence interval for mineval(A)
for different sample sizes T, and external instrument
strength mineval(A). The number of Monte Carlo
simulations was 2000.
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Table 3.7: Heteroskedastic and autocorrelated external instrument SVAR coverage
rates for 12, nominal level (1 —a) = 0.90

DGP 2, Heteroskedastic DGP 3, Autocorrelated
pwr= 001 1 10 25 [001 1 10 25

T=100 092 093 08 083|092 092 087 0.84
T=150 092 093 08 084 | 092 093 086 0.85
T=200 094 094 088 085|092 093 0.87 0.86
T=500 094 09 08 088|093 094 089 0.88

Note: The table shows the empirical coverage rates of the proposed confidence
interval for u? for different sample sizes T, and external instrument strength 2.
Asymptotic variance W, estimated by Gongalves and White’s (2005) bootstrap
with 2999 bootstrap samples, with block length equal to one in the case of DGP
2, and block length equal to | T'/3| in the case of DGP 3. The number of Monte
Carlo simulations was 2000.

3.4 Empirical Analysis

3.4.1 Linear homoskedastic IV model

New Keynesian macroeconomic models predict that inflation dynamics can be
described by some form of the New Keynesian Phillips Curve (NKPC). In this
paper, we follow Gali and Gertler’s (1999) “hybrid” specification:

T = ¢+ As; + r)/fEt(nt—l—l) + Y1 €y, (3.54)

where 71, denotes inflation in period t, s, is the natural log of the labor income
share, and E, is the conditional expectation operator. After replacing E,(7t, 1) by
7,1, the model can be written as y, = 7;, Y; = (s;, 71,141)’, and X, = (1,71,_;)" in
the notation of Section 3.2.1.

To handle the endogeneity of s; and 7, 1, we used the TSLS estimator. We
specified the first stage equation as:

where Z, is a vector of instruments. More specifically, Z,, contains the first
three lags of labor share, the Baxter-King (Baxter and King, 1999) filtered output
gap (retaining cyclical fluctuations of real GDP between 6 and 32 quarters),
wage inflation, interest rate spread (defined as the difference between the 10-
year Treasury at constant maturity rate and the 3-month Treasury bill rate) and
commodity price inflation, and the second to third lags of inflation. The quarterly
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US data were downloaded from the St. Louis Fed’s FRED Database. The full
sample ranges from 1960:Q1 to 2017:Q1. For more information on the series and
the transformations, see Appendix D. In our analysis, we focus on constructing a
90% confidence interval for the mineval(A) parameter.

We consider two samples. The first is 1960:Q1 to 1997:Q4, which is the same
sample used in Gali and Gertler (1999). The second is the full sample, 1960:Q1
to 2017:Q1. The results are shown in Table 3.8. Thus, while considering the full
sample period, the instruments are somewhat weak based on the size distortion,
in the first subsample the NKPC is stronger identified.

Table 3.8: Confidence intervals for the strength of identification of the NKPC

Sample period CI5g0 max. bias  max. size distortion
1960:Q1 — 1997:Q4  [45.32,64.78]  [0.01,0.02] [0.08,0.09]
1960:Q1 - 2017:Q1  [31.84,78.97]  [0.01,0.03] [0.07,0.11]

Note: The table shows the proposed (1 — a) = 0.90 level confidence interval for mineval(A),
and the corresponding maximum bias and size distortion (assuming 5% nominal level for
the Wald-test). The results in the first row are based on the same subsample as Gali and
Gertler (1999), while the second row presents the results based on the full sample.

In the presence of heteroskedasticity or serial correlation, the concentration
parameter does not have the same meaning as in the uncorrelated, homoskedastic
case. However, as shown in Figure 3.3, the serial correlation of the residuals is
very mild at most. White’s (1980) test for conditional heteroskedasticity yielded
p-values of 0.01 and 0.28 for the first and the second first-stage regressions,

respectively, which might warrant some caution about our results.

Figure 3.3: Autocorrelation of residuals in the NKPC
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Note: The left panel shows the correlogram of the residuals in the first column of V along with
the 95% confidence bands, while the right panel displays the same for the second column of V.
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Figure 3.4 reports empirical evidence on the strength of identification based
on a rolling window size with 120 observations, corresponding to 30 years of
data. The pictures show some time variation, in particular they point to weaker
identification around the end of the sample, suggesting that the NKPC has
become flatter during the Great Moderation, echoing the results of Kleibergen
and Mavroeidis (2009). Overall, our analysis confirms the findings of Mavroeidis
et al. (2014), who similarly found empirical evidence of weak identification in the
New Keynesian Phillips Curve.

Figure 3.4: Evolution of the strength of identification of the NKPC
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Note: The upper subfigure shows the 90% confidence interval for mineval(A) over time, calculated
in rolling windows with 120 observations (corresponding to 30 years). The middle and bottom
subfigures show the corresponding worst case maximum bias and size distortion, respectively.
The timing corresponds to the end of the rolling windows.
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3.4.2 Heteroskedastic/autocorrelated IV model

The elasticity of intertemporal substitution (EIS) is often estimated using a line-
arized Euler equation, which is commonly derived as an optimality condition
of the household’s problem in modern macroeconomic models. We illustrate
our proposed methodology by using the same specifications of the consumption
Euler equation as Yogo (2004) and Montiel Olea and Pflueger (2013). In particular,

the model specification is the following;:

Act+1 =V + l/)i’t+1 + ”t+1 ’ (356)
el =C+P Ac + 140, (3.57)

where Ac,, 4 is consumption growth, and r, ,; is a real asset return, ¢ is the EIS
parameter, v and ¢ are constants, while u,;,; and 7, are stochastic disturbances.
Note that Equation (3.57) (EIS ph expresses the same relationship between con-
sumption growth and returns as Equation (3.56) (EIS ¢), but often the estimates
of ¢ are vastly different between these two specifications. Yogo (2004) argued

that weak identification can explain these contradicting results.

In the empirical analysis we construct the data set following Yogo (2004)
and Montiel Olea and Pflueger (2013) for the sample period 1960:Q1 to 2017:Q1,
using US data. We used real per capita consumption growth for Ac;,, and
the real return on the 3-month T-bill for 7, ;. As Yogo (2004) noted, by using
instruments dated t — 1, ¥ or its reciprocal ¢! can be still identified even
if asset returns or consumption are conditionally heteroskedastic. We used
the same set of instruments as Montiel Olea and Pflueger (2013), with Z, | =
(3-month T-bill rate;_;, Alog CPI,_y, Ac;_;,log (Div/Price), ,)’, where CPIis the
consumer price index, and Div/Price is a dividend over price ratio, calculated

over a large number of assets. Appendix D contains further details of the data.

Table 3.9 summarizes the results. First, the TSLS point estimates suggest con-
tradicting values for 1, which was also found by Yogo (2004) and Montiel Olea
and Pflueger (2013). Moreover, comparing the results in the top and the bottom
of the table shows that the robust confidence intervals clearly signal weak iden-
tification with very wide confidence intervals for y? and correspondingly large
intervals for the bias T, while the confidence intervals based on the homoske-
dastic IV model show no evidence of identification deficiency. This confirms
Montiel Olea and Pflueger’s (2013) finding that the asymptotic theory developed
for the homoskedastic IV model can be highly misleading when judging the
strength of identification.
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Table 3.9: EIS: Full sample results for the strength of identification

Specification EIS ¢ EIS ¢!
point estimate 0.24 0.93

2
CI o, 0.83,17.74] [0.66,14.20]
maximum bias T/ [0.04,0.92] [0.05, 1.00]
CIoog [112.20, 179.06] [122.99,192.64]
maximum bias [0.00,0.00] [0.00,0.00]
max. size distortion [0.00,0.02] [0.00,0.01]

Note: The table displays the estimation results of the consumption Euler equations
with Ac;,; regressed on r, 1 (specification EIS ¢ of Equation (3.56)), and r,, | regressed
on Ac;,q (specification EIS ! of Equation (3.57)) using the TSLS estimator. The
upper panel shows the (1 —a) = 0.90 level confidence interval for u? (heteroske-
dastic/autocorrelated IV model) and the corresponding maximum bias. Asymptotic
variance W, estimated by Gongalves and White’s (2005) bootstrap with 2999 boot-
strap samples, with block length equal to [T!/3| = 6. The lower panel displays the
(1 —a) = 0.90 level confidence interval for mineval(A) (homoskedastic IV model)
and the corresponding maximum bias and size distortion (assuming a nominal 5%
Wald-test).

We also estimated Equations (3.56) and (3.57) in rolling windows of 80 quarters
(corresponding to 20 years), and as Figure 3.5 shows, the conclusions are largely
unchanged.

Figure 3.5: Maximum bias 7! over time, rolling windows of w = 80 quarters
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3.4.3 External instrument SVAR model

We illustrate the usefulness of our confidence interval with an empirical example
investigating the dynamic effects of oil price shocks. Inspired by Montiel Olea
et al. (2016), we specify a VAR(1) in the following k = 4 quarterly US variables:
log difference of oil price, first difference of the Fed funds rate, log difference
of CPI, and log difference of real GDP. The lag length was selected using the
Bayesian Information Criterion (Schwarz, 1978), with possible lag length between
one and six. In the literature, two prominent oil shock series are often used:
Hamilton’s (2003) twelve-month maximum deviation series (z?’lz) and Kilian’s
(2008) shorttall in OPEC’s oil production (zf). In the analysis, we use these shocks
one at a time and provide evidence on the strength of these external instruments.
Due to data availability, the sample period starts in 1971:Q1 and ends in 2004:Q3.
For a detailed description of the data, see Appendix D.

Given that we cannot exclude the possibility of heteroskedasticity or autocor-
relation, we used the methodology of both Sections 3.2.1 and 3.2.2 to construct
confidence intervals for the strength of identification.

In Table 3.10 we can see that our confidence interval for the heteroskedas-
tic/autocorrelated IV model signals that Hamilton’s (2003) oil shock series is
a strong external instrument, while Kilian’s (2008) series is a rather weak one.
Furthermore, as the confidence interval based on the homoskedastic IV model
indicates the same, we conjecture that heteroskedasticity /autocorrelation is not
of primary concern in this application. Lunsford’s (2016) F-statistic also confirms
our findings about the relative strength of these instruments, which is in line
with Montiel Olea et al.’s (2016) results.

Table 3.10: Oil shocks: confidence intervals for the strength of identification

Oil shock CIg;O maximum bias T CIfqp max. size distortion F-statistic
72 [15.40,52.04]  [0.02,0.07]  [75.16,143.30] 0.00,0.00] 27.11
zK [0.00,4.48] 0.22,1.00] [0.00,4.77] 0.11,0.62] 2.49

Note: The table shows the estimation results using either Hamilton’s (2003) or Kilian’s (2008) oil
shock series as external instruments (th’12 and zX, respectively). The first two main columns
display the (1 — «) = 0.90 level confidence interval for 2 and the corresponding maximum bias
(heteroskedastic/autocorrelated IV model). Asymptotic variance W, estimated by Gongalves and
White’s (2005) bootstrap with 2999 bootstrap samples, with block length equal to |T'/3] = 5.
The third and fourth main columns contain the (1 —a) = 0.90 level confidence interval for
mineval(A) and the corresponding maximum size distortion (assuming a 5% Wald-test) in the
homoskedastic IV model. The last column contains Lunsford’s (2016) F-statistic testing for a
weak external instrument, whose critical values at the 10% level, leading to a maximum bias of

{0.01,0.05,0.1,0.2} are {46.42,12.03,7.24,4.58}, respectively.
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3.5 Conclusion

In this paper we proposed confidence intervals for the strength of identification
in the most well-known homoskedastic and heteroskedastic/autocorrelated li-
near IV models, and in Structural VARs identified with an external instrument.
Therefore our proposed methodology can inform researchers working with either
microeconomic or macroeconomic data on how strong their instruments are.
Monte Carlo simulations demonstrated that the proposed confidence intervals
have correct coverage even for moderate sample sizes. Furthermore, the practical
implementation is easy and computationally not intensive.

In an empirical application, we showed that the New Keynesian Phillips Curve
has become more weakly identified after the Great Moderation. Furthermore,
our analysis of consumption Euler equations confirmed that weak identification
of the model poses a serious challenge to estimate the elasticity of intertemporal
substitution parameter. Finally, in a Structural VAR framework we demonstrated
that Hamilton’s (2003) oil shock series can be used as a strong instrument when
analyzing the dynamic effects of oil shocks.

Our results suggest that the methods could be applied to construct confidence
intervals for the structural parameters as well, although we do not specifically
investigate it given the variety of methods to construct robust confidence intervals
available in the literature (see, for example Kleibergen and Mavroeidis (2009) or
Montiel Olea et al. (2016)) .

The present study could be extended in a number of directions. First, de-
veloping the asymptotic theory for the strength of identification with general
error structures and multiple endogenous regressors would be of great practical
use. Furthermore, it would be useful to extend our methodology to IV models in
which not all the instruments are weak. Another possible avenue for future work
is the generalization of our confidence interval for the strength of identification in
the Structural VAR framework with multiple instruments and multiple identified
shocks. These extensions are left for future research.
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Appendices

A Proofs

Proof of Proposition 1. First, let us introduce some additional notation. Let us
define the lower and upper endpoints of the confidence interval CI#* , as

Ar = Cn2:11rc1 mmeval(ZVK/zLC Qziz1 CZvLVL/Kz) (A.1)
eCli,

Br = Cﬁgé( mmeval(ZvleC QZLZLCZ‘Vj_Vj_/KZ) (A.2)
el

and consider their semi-population counterparts given by

A= min mineval(, 172 C'Q,. 51 CE 112 /K,), (A.3)
CeCIf,

B= _max mineval (X V}_</2LCIQ2J_ZJ_CVZ;}_</2L /Ky) . (A4)
CecCI§_,

Using this new notation, we need to prove that

lim P (mineval(A) € [Ar,By]) >1—«a. (A.5)

T—o0

Note that by construction, limy_, ., P (C € CI?_ a) = 1 — a, therefore it follows
that limy_,, P (mineval(A) € [A, B]) > 1 —a.” Consequently, we need to prove
that

71520 [P(mineval(A) € [Ar, By]) — P(mineval(A) € [A,B])] =0. (A.6)
To show this, it suffices to prove that for any € > 0, limy_,., P(|By — B| > ¢€) =0
(the argument for A and A is analogous, and therefore omitted).

Let us define ® = P"*" x IP{%XKZ x RK2%" where PX*! is the set of (k x )
positive definite matrices. Observe that 6 = (iv LyL, @Z Ly1, 6) € ©. Note that
f: RKX" x ® — R given by f(C,6) = mineval(Z VleC QZiZicvavl/KZ)
is continuous on (RK2*" x @), and D : ® — CI{_, is a compact-valued,
continuous correspondence. Therefore by the maximum theorem (Sundaram,

1996, page 235), max mineval(Z ViViC QZLZLCZvle/KZ) is continuous on
CeCIS

"We used the compactness of CI& , and the continuity of the mineval(-) function. The latter
follows from the fact that the eigenvalues of a matrix are continuous functions of the entries of
the matrix (Theorem 2.11 on page 68 in Zhang (2011)).
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©®. Hence, using that ivLVl N YyLyL and QZiZi SN Q1,1 (both follow from
Assumption M) and applying the continuous mapping theorem, we have esta-
blished that for any € > 0, limy_,, P(|Br — B| > €) = 0, which concludes the
proof. |

Proof of Proposition 2. The proof is analogous to that of Proposition 1, and there-

fore omitted. |

B Boundary values of mineval(A)

This appendix contains the simulated boundary values of mineval(A) for n =
{1,2,3} endogenous variables and K, = n +2,...,20 (maximum bias, Tables B.1
toB.3) and K, = n,...,20 (maximum size distortion, Tables B.4 to B.6) instruments
for a fine grid of maximum bias and maximum size distortion for the TSLS
estimator. The simulation procedure follows Stock and Yogo (2005). Following
Stock and Yogo (2005), we calculated the maximum size distortion assuming the
Wald test on B in the structural equation has a nominal level 5%.
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9Cl

Table B.1: Simulated boundary values of mineval(A) for n = 1 endogenous regressor, for different values of maximum bias (in
columns) and number of instruments K, (in rows)

K, 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.2 0.21 0.22 0.23 0.24 0.25 0.26 0.27 0.28 0.29 0.3 0.31 0.32 0.33 0.34 0.35 0.36 0.37 0.38 0.39 0.4 0.41 0.42 0.43 0.44 0.45 0.46 0.47 0.48 0.49 0.5

© ® N U R W

1
1
13
14
1
16
17
1
19
20

N o=

ol

®

33.2317.21 11.42 8.62 6.95 597 5.16
49.69 25.18 16.66 12.48 9.97 837 7.18
59.56 29.96 19.80 14.79 11.77 9.82 8.40
66.15 33.15 21.89 16.33 12.98 10.78 9.21
70.85 35.43 23.39 17.43 13.84 11.46 9.78
74.38 37.14 24.51 18.26 14.48 11.98 10.22
77.12 38.47 25.39 18.90 14.99 12.38 10.56
79.32 39.53 26.09 19.42 15.39 12.70 10.83
81.11 40.40 26.66 19.84 15.72 12.96 11.05
82.61 41.12 27.13 20.19 15.99 13.18 11.23
83.88 41.74 27.54 20.48 16.22 13.36 11.39
84.96 42.26 27.88 20.74 16.42 13.52 11.52

4.56
6.28
7.32
8.01
8.50
8.87
9.16
9.39
9.58
9.73
9.87
9.98

4.09 3.70 3.42 3.18 2.96 2.79 2.60 2.47 2.35 2.23 2.13 2.04 1.95 1.87 1.79 1.72 1.65 1.60 1.55 1.49 1.44 1.39 1.34 1.29 1.25 1.22 1.18 1.14 1.11 1.07 1.04 1.01 0.98 0.95 0.92 0.89 0.86 0.84 0.81 0.79 0.76 0.74
5.59 5.02 4.58 4.20 3.88 3.61 3.36 3.15 2.97 2.80 2.65 2.52 2.39 2.28 2.17 2.07 1.98 1.90 1.82 1.75 1.68 1.61 1.55 1.49 1.44 1.39 1.34 1.29 1.25 1.20 1.16 1.12 1.08 1.05 1.01 0.98 0.95 0.92 0.89 0.86 0.83 0.80
6.49 5.81 5.27 4.82 4.43 4.11 3.81 3.56 3.34 3.14 2.96 2.80 2.65 2.52 2.39 2.28 2.17 2.08 1.99 1.90 1.83 1.75 1.68 1.61 1.55 1.49 1.44 1.38 1.33 1.28 1.24 1.19 1.15 1.11 1.07 1.03 1.00 0.96 0.93 0.90 0.87 0.84
7.09 6.34 5.73 5.23 4.80 4.44 4.11 3.84 3.59 3.37 3.17 2.99 2.83 2.68 2.54 2.42 2.31 2.20 2.10 2.01 1.92 1.84 1.76 1.69 1.62 1.56 1.50 1.44 1.39 1.34 1.29 1.24 1.19 1.15 1.11 1.07 1.03 1.00 0.96 0.93 0.89 0.86
7.52 6.71 6.07 5.53 5.07 4.67 4.33 4.03 3.77 3.53 3.32 3.13 2.95 2.80 2.65 2.52 2.40 2.28 2.18 2.08 1.99 1.90 1.82 1.75 1.68 1.61 1.55 1.49 1.43 1.37 1.32 1.27 1.23 1.18 1.14 1.10 1.06 1.02 0.98 0.95 0.91 0.88
7.84 6.99 6.31 5.75 5.26 4.85 4.49 4.18 3.90 3.65 3.43 3.23 3.05 2.89 2.73 2.60 2.47 2.35 2.24 2.14 2.04 1.95 1.87 1.79 1.72 1.65 1.58 1.52 1.46 1.40 1.35 1.30 1.25 1.20 1.16 1.11 1.07 1.03 1.00 0.96 0.93 0.89
8.09 7.21 6.51 5.92 5.42 4.98 4.61 4.29 4.00 3.75 3.52 3.31 3.12 2.95 2.80 2.65 2.52 2.40 2.29 2.18 2.08 1.99 1.90 1.82 1.75 1.68 1.61 1.54 1.48 1.42 1.37 1.32 1.27 1.22 1.17 1.13 1.09 1.05 1.01 0.97 0.94 0.90
8.29 7.39 6.66 6.06 5.54 5.09 4.71 4.38 4.09 3.82 3.59 3.37 3.18 3.01 2.85 2.70 2.57 2.44 2.33 2.21 2.11 2.02 1.93 1.85 1.77 1.70 1.63 1.56 1.50 1.44 1.39 1.33 1.28 1.23 1.19 1.14 1.10 1.06 1.02 0.98 0.94 0.91
8.457.53 6.79 6.17 5.64 5.18 4.80 4.46 4.15 3.88 3.64 3.43 3.23 3.05 2.89 2.74 2.60 2.47 2.36 2.24 2.14 2.05 1.96 1.87 1.79 1.72 1.65 1.58 1.52 1.46 1.40 1.34 1.29 1.24 1.20 1.15 1.11 1.07 1.03 0.99 0.95 0.92
8.58 7.65 6.89 6.26 5.72 5.26 4.86 4.52 4.21 3.94 3.69 3.47 3.27 3.09 2.92 2.77 2.63 2.50 2.38 2.27 2.16 2.07 1.97 1.89 1.81 1.73 1.66 1.59 1.53 1.47 1.41 1.36 1.30 1.25 1.20 1.16 1.12 1.07 1.03 0.99 0.96 0.92
8.70 7.75 6.98 6.34 5.80 5.32 4.92 4.57 4.26 3.98 3.73 3.50 3.30 3.12 2.95 2.80 2.66 2.52 2.40 2.29 2.18 2.08 1.99 1.90 1.82 1.75 1.67 1.60 1.54 1.48 1.42 1.36 1.31 1.26 1.21 1.17 1.12 1.08 1.04 1.00 0.96 0.93
8.80 7.84 7.06 6.41 5.86 5.38 4.97 4.62 4.30 4.02 3.76 3.54 3.33 3.15 2.98 2.82 2.68 2.54 2.42 2.30 2.20 2.10 2.01 1.92 1.84 1.76 1.68 1.61 1.55 1.49 1.43 1.37 1.32 1.27 1.22 1.17 1.13 1.08 1.04 1.00 0.97 0.93

85.90 42.72 28.18 20.96 16.59 13.66 11.64 10.08 8.88 7.92 7.12 6.47 5.91 5.42 5.02 4.66 4.33 4.05 3.79 3.56 3.36 3.17 3.00 2.84 2.70 2.56 2.44 2.32 2.21 2.11 2.02 1.93 1.85 1.77 1.69 1.62 1.56 1.50 1.44 1.38 1.33 1.27 1.22 1.18 1.13 1.09 1.05 1.01 0.97 0.93
86.72 43.12 28.44 21.15 16.74 13.78 11.74 10.17 8.96 7.98 7.18 6.52 5.96 5.47 5.05 4.69 4.36 4.08 3.82 3.59 3.38 3.19 3.02 2.86 2.71 2.57 2.45 2.33 2.22 2.12 2.03 1.94 1.86 1.78 1.70 1.63 1.56 1.50 1.44 1.38 1.33 1.28 1.23 1.18 1.14 1.09 1.05 1.01 0.97 0.94
87.45 43.47 28.67 21.32 16.88 13.88 11.83 10.24 9.03 8.04 7.23 6.56 6.00 5.50 5.09 4.72 4.39 4.10 3.84 3.61 3.40 3.21 3.03 2.87 2.73 2.59 2.46 2.34 2.23 2.13 2.04 1.95 1.86 1.78 1.71 1.64 1.57 1.51 1.45 1.39 1.34 1.28 1.23 1.19 1.14 1.10 1.06 1.02 0.98 0.94
88.10 43.78 28.88 21.47 16.99 13.98 11.91 10.31 9.08 8.09 7.28 6.60 6.03 5.53 5.12 4.75 4.42 4.13 3.86 3.63 3.42 3.23 3.05 2.89 2.74 2.60 2.47 2.35 2.24 2.14 2.05 1.95 1.87 1.79 1.71 1.64 1.58 1.51 1.45 1.39 1.34 1.29 1.24 1.19 1.14 1.10 1.06 1.02 0.98 0.94
88.67 44.06 29.06 21.61 17.10 14.06 11.98 10.37 9.14 8.14 7.32 6.64 6.06 5.56 5.14 4.77 4.44 4.15 3.88 3.64 3.43 3.24 3.06 2.90 2.75 2.61 2.48 2.36 2.25 2.15 2.05 1.96 1.88 1.80 1.72 1.65 1.58 1.52 1.46 1.40 1.34 1.29 1.24 1.19 1.15 1.10 1.06 1.02 0.98 0.94
89.19 44.31 29.23 21.73 17.19 14.14 12.04 10.42 9.18 8.18 7.36 6.67 6.09 5.59 5.17 4.79 4.46 4.16 3.90 3.66 3.45 3.25 3.07 2.91 2.76 2.62 2.49 2.37 2.26 2.16 2.06 1.97 1.88 1.80 1.72 1.65 1.59 1.52 1.46 1.40 1.35 1.29 1.24 1.20 1.15 1.10 1.06 1.02 0.98 0.95

Note: The table shows the simulated boundary values of mineval(A) for different values of maximum bias (in columns) and number of instruments
K, (in rows). The simulations are based on 100,000 Monte Carlo replications, and follow Stock and Yogo (2005).
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Table B.2: Simulated boundary values of mineval(A) for n = 2 endogenous regressors, for different values of maximum bias (in
columns) and number of instruments K, (in rows)

K, 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.2 0.21 0.22 0.23 0.24 0.25 0.26 0.27 0.28 0.29 0.3 0.31 0.32 0.33 0.34 0.35 0.36 0.37 0.38 0.39 0.4 0.41 0.42 0.43 0.44 0.45 0.46 0.47 0.48 0.49 0.5

© ® 9 o G e

1
12
13
14
15
16
17
18
19
20

jary

26.20 13.27 8.86 6.80 5.65 4.78 4.14 3.70 3.34 3.06 2.84 2.64 2.48 2.33 2.22 2.12 2.01 1.91 1.84 1.75 1.69 1.63 1.57 1.51 1.45 1.41 1.36 1.32 1.28 1.24 1.20 1.16 1.13 1.09 1.06 1.03 1.00 0.97 0.94 0.92 0.89 0.87 0.84 0.82 0.80 0.77 0.75 0.73 0.71 0.69
40.94 20.47 13.61 10.25 8.32 6.96 5.97 5.25 4.69 4.24 3.88 3.57 3.31 3.08 2.90 2.73 2.57 2.43 2.31 2.19 2.09 2.00 1.91 1.83 1.75 1.68 1.62 1.56 1.50 1.45 1.40 1.35 1.30 1.26 1.21 1.17 1.13 1.10 1.06 1.03 1.00 0.97 0.93 0.90 0.88 0.85 0.82 0.80 0.77 0.75
50.78 25.27 16.77 12.55 10.10 8.41 7.19 6.29 5.59 5.03 4.58 4.19 3.87 3.59 3.35 3.14 2.94 2.78 2.62 2.48 2.36 2.25 2.14 2.04 1.95 1.87 1.79 1.72 1.65 1.59 1.53 1.47 1.42 1.36 1.31 1.27 1.22 1.18 1.14 1.10 1.07 1.03 1.00 0.96 0.93 0.90 0.87 0.84 0.81 0.79
57.80 28.69 19.03 14.20 11.37 9.44 8.06 7.03 6.23 5.60 5.07 4.64 4.26 3.94 3.67 3.43 3.21 3.02 2.85 2.69 2.55 2.43 2.31 2.20 2.10 2.00 1.91 1.83 1.76 1.69 1.62 1.56 1.50 1.44 1.39 1.34 1.29 1.24 1.20 1.15 1.11 1.08 1.04 1.00 0.97 0.94 0.90 0.87 0.84 0.81
63.07 31.26 20.72 15.43 12.32 10.22 8.72 7.59 6.72 6.02 5.44 4.97 4.56 4.21 3.92 3.65 3.41 3.21 3.02 2.85 2.70 2.56 2.43 2.31 2.20 2.10 2.01 1.92 1.84 1.76 1.69 1.62 1.56 1.50 1.44 1.39 1.33 1.29 1.24 1.19 1.15 1.11 1.07 1.03 1.00 0.96 0.93 0.90 0.86 0.83
67.16 33.26 22.04 16.39 13.06 10.83 9.23 8.02 7.09 6.35 5.73 5.23 4.79 4.42 4.10 3.82 3.57 3.35 3.15 2.97 2.81 2.66 2.53 2.40 2.29 2.18 2.08 1.99 1.90 1.82 1.75 1.67 1.61 1.54 1.48 1.43 1.37 1.32 1.27 1.23 1.18 1.14 1.10 1.06 1.02 0.98 0.95 0.91 0.88 0.85
70.44 34.86 23.09 17.16 13.65 11.31 9.63 8.36 7.39 6.61 5.96 5.43 4.98 4.59 4.25 3.96 3.70 3.46 3.25 3.07 2.90 2.74 2.60 2.47 2.35 2.24 2.14 2.04 1.95 1.87 1.79 1.71 1.65 1.58 1.52 1.46 1.40 1.35 1.30 1.25 1.20 1.16 1.12 1.08 1.04 1.00 0.96 0.93 0.90 0.86
73.12 36.17 23.95 17.79 14.14 11.70 9.97 8.65 7.63 6.82 6.15 5.60 5.13 4.72 4.38 4.07 3.80 3.56 3.34 3.14 2.97 2.81 2.66 2.53 2.41 2.29 2.18 2.09 1.99 1.91 1.82 1.75 1.68 1.61 1.54 1.48 1.43 1.37 1.32 1.27 1.22 1.18 1.13 1.09 1.05 1.01 0.98 0.94 0.91 0.87
75.36 37.26 24.67 18.31 14.54 12.03 10.24 8.88 7.84 7.00 6.31 5.74 5.25 4.84 4.48 4.16 3.88 3.64 3.41 3.21 3.03 2.87 2.72 2.58 2.45 2.33 2.22 2.12 2.03 1.94 1.85 1.78 1.70 1.63 1.57 1.51 1.45 1.39 1.34 1.29 1.24 1.19 1.15 1.10 1.06 1.03 0.99 0.95 0.92 0.88
77.25 38.18 25.28 18.75 14.89 12.31 10.48 9.08 8.01 7.15 6.44 5.86 5.36 4.93 4.57 4.24 3.96 3.70 3.47 3.27 3.08 2.92 2.76 2.62 2.49 2.37 2.26 2.15 2.05 1.96 1.88 1.80 1.72 1.65 1.59 1.52 1.46 1.41 1.35 1.30 1.25 1.20 1.16 1.12 1.07 1.04 1.00 0.96 0.93 0.89
78.87 38.97 25.80 19.13 15.18 12.55 10.68 9.25 8.16 7.28 6.56 5.96 5.45 5.02 4.64 4.31 4.02 3.76 3.52 3.32 3.13 2.96 2.80 2.66 2.52 2.40 2.29 2.18 2.08 1.99 1.90 1.82 1.74 1.67 1.60 1.54 1.48 1.42 1.36 1.31 1.26 1.21 1.17 1.12 1.08 1.04 1.00 0.97 0.93 0.90
80.27 39.66 26.25 19.46 15.43 12.76 10.86 9.40 8.29 7.40 6.66 6.05 5.53 5.09 4.71 4.37 4.07 3.81 3.57 3.36 3.17 2.99 2.83 2.69 2.55 2.43 2.31 2.20 2.10 2.01 1.92 1.84 1.76 1.69 1.62 1.55 1.49 1.43 1.38 1.32 1.27 1.22 1.18 1.13 1.09 1.05 1.01 0.97 0.94 0.90
81.50 40.26 26.65 19.75 15.66 12.94 11.01 9.53 8.40 7.50 6.74 6.13 5.60 5.15 4.76 4.42 4.12 3.85 3.61 3.39 3.20 3.02 2.86 2.71 2.58 2.45 2.33 2.22 2.12 2.02 1.94 1.85 1.77 1.70 1.63 1.56 1.50 1.44 1.39 1.33 1.28 1.23 1.18 1.14 1.10 1.06 1.02 0.98 0.94 0.91
82.58 40.79 27.00 20.00 15.85 13.10 11.14 9.64 8.50 7.58 6.82 6.20 5.66 5.21 4.81 4.46 4.16 3.89 3.64 3.43 3.23 3.05 2.89 2.74 2.60 2.47 2.35 2.24 2.14 2.04 1.95 1.87 1.79 1.71 1.64 1.58 1.51 1.45 1.39 1.34 1.29 1.24 1.19 1.15 1.10 1.06 1.02 0.98 0.95 0.91
83.55 41.26 27.31 20.23 16.03 13.24 11.26 9.74 8.59 7.66 6.89 6.26 5.72 5.26 4.86 4.50 4.20 3.92 3.67 3.46 3.26 3.08 2.91 2.76 2.62 2.49 2.37 2.26 2.15 2.05 1.96 1.88 1.80 1.72 1.65 1.58 1.52 1.46 1.40 1.35 1.30 1.25 1.20 1.15 1.11 1.07 1.03 0.99 0.95 0.92
84.41 41.68 27.58 20.43 16.18 13.37 11.37 9.84 8.67 7.73 6.95 6.31 5.77 5.30 4.90 4.54 4.23 3.95 3.70 3.48 3.28 3.10 2.93 2.78 2.64 2.50 2.38 2.27 2.16 2.07 1.98 1.89 1.81 1.73 1.66 1.59 1.53 1.47 1.41 1.35 1.30 1.25 1.20 1.16 1.11 1.07 1.03 0.99 0.96 0.92
85.19 42.06 27.83 20.61 16.32 13.48 11.47 9.92 8.74 7.79 7.00 6.36 5.81 5.34 4.93 4.57 4.26 3.98 3.73 3.50 3.30 3.12 2.95 2.79 2.65 2.52 2.40 2.28 2.18 2.08 1.99 1.90 1.82 1.74 1.67 1.60 1.54 1.47 1.42 1.36 1.31 1.26 1.21 1.16 1.12 1.08 1.04 1.00 0.96 0.92

Note: The table shows the simulated boundary values of mineval(A) for different values of maximum bias (in columns) and number of instruments
K, (in rows). The simulations are based on 100,000 Monte Carlo replications, and follow Stock and Yogo (2005).
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Table B.3: Simulated boundary values of mineval(A) for n = 3 endogenous regressors, for different values of maximum bias (in
columns) and number of instruments K, (in rows)

K, 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.2 0.21 0.22 0.23 0.24 0.25 0.26 0.27 0.28 0.29 0.3 0.31 0.32 0.33 0.34 0.35 0.36 0.37 0.38 0.39 0.4 0.41 0.42 0.43 0.44 0.45 0.46 0.47 0.48 0.49 0.5
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21.4110.94 7.44 580 476 4.02
3455 17.33 11.63 8.84 7.14 5.97
43.93 21.90 14.62 11.01 8.84 7.36
50.97 25.32 16.87 12.64 10.11 8.40
56.44 27.98 18.61 13.90 11.10 9.21
60.82 30.11 20.01 14.91 11.89 9.86
64.40 31.86 21.15 15.74 12.54 10.39
67.39 33.31 22.11 16.43 13.08 10.83
69.92 34.54 22.91 17.02 13.54 11.20
72.08 35.59 23.60 17.52 13.93 11.53

3.54
5.16
6.32
7.19
7.87
8.41
8.85
9.22
9.53
9.80

3.18 2.90 2.65 2.47 2.31 2.17 2.06 1.97 1.87 1.79 1.71 1.64 1.58 1.53 1.47 1.42 1.37 1.33 1.29 1.25 1.21 1.18 1.14 1.11 1.08 1.05 1.02 0.99 0.96 0.94 0.91 0.88 0.86 0.84 0.82 0.79 0.77 0.75 0.73 0.71 0.69 0.67 0.66
4.56 4.10 3.71 3.40 3.14 2.92 2.73 2.57 2.43 2.30 2.18 2.07 1.97 1.89 1.81 1.73 1.66 1.60 1.54 1.48 1.43 1.38 1.33 1.29 1.25 1.20 1.17 1.13 1.09 1.06 1.02 0.99 0.96 0.93 0.90 0.88 0.85 0.83 0.80 0.78 0.75 0.73 0.71
5.55 4.95 4.46 4.06 3.73 3.45 3.21 3.01 2.82 2.66 2.51 2.37 2.26 2.15 2.05 1.96 1.87 1.79 1.72 1.65 1.59 1.53 1.47 1.42 1.37 1.32 1.27 1.23 1.18 1.14 1.11 1.07 1.03 1.00 0.97 0.94 0.91 0.88 0.85 0.82 0.80 0.77 0.75
6.29 5.60 5.02 4.56 4.18 3.85 3.57 3.33 3.12 2.93 2.76 2.60 2.47 2.34 2.23 2.12 2.02 1.94 1.85 1.78 1.70 1.63 1.57 1.51 1.45 1.40 1.35 1.30 1.25 1.21 1.17 1.13 1.09 1.05 1.02 0.98 0.95 0.92 0.89 0.86 0.83 0.80 0.78
6.87 6.10 5.46 4.95 4.52 4.16 3.85 3.58 3.35 3.14 2.95 2.78 2.63 2.49 2.37 2.25 2.15 2.05 1.96 1.87 1.79 1.72 1.65 1.58 1.52 1.47 1.41 1.36 1.31 1.26 1.22 1.17 1.13 1.09 1.05 1.02 0.98 0.95 0.92 0.89 0.86 0.83 0.80
7.33 6.49 5.81 5.26 4.80 4.41 4.08 3.79 3.53 3.31 3.10 2.92 2.76 2.61 2.48 2.36 2.24 2.14 2.04 1.95 1.87 1.79 1.71 1.64 1.58 1.52 1.46 1.40 1.35 1.30 1.25 1.21 1.16 1.12 1.08 1.05 1.01 0.98 0.94 0.91 0.88 0.85 0.82
7.71 6.82 6.10 5.51 5.02 4.61 4.26 3.95 3.68 3.45 3.23 3.04 2.87 2.71 2.57 2.44 2.32 2.21 2.11 2.01 1.93 1.84 1.77 1.69 1.62 1.56 1.50 1.44 1.39 1.33 1.28 1.24 1.19 1.15 1.11 1.07 1.03 1.00 0.96 0.93 0.89 0.86 0.83
8.02 7.09 6.34 5.72 5.21 4.78 4.41 4.09 3.81 3.56 3.33 3.14 2.96 2.80 2.65 2.51 2.39 2.27 2.17 2.07 1.98 1.89 1.81 1.73 1.66 1.60 1.53 1.47 1.42 1.36 1.31 1.26 1.22 1.17 1.13 1.09 1.05 1.01 0.98 0.94 0.91 0.88 0.85
8.29 7.33 6.54 5.90 5.37 4.92 4.54 4.21 3.91 3.66 3.42 3.22 3.03 2.87 2.71 2.57 2.44 2.32 2.21 2.11 2.02 1.93 1.85 1.77 1.69 1.63 1.56 1.50 1.44 1.39 1.33 1.28 1.23 1.19 1.15 1.10 1.06 1.03 0.99 0.95 0.92 0.89 0.86
8.51 7.52 6.72 6.05 5.51 5.05 4.65 4.31 4.00 3.74 3.50 3.29 3.10 2.92 2.77 2.62 2.49 2.37 2.25 2.15 2.05 1.96 1.88 1.80 1.72 1.65 1.58 1.52 1.46 1.41 1.35 1.30 1.25 1.21 1.16 1.12 1.08 1.04 1.00 0.97 0.93 0.90 0.86

73.96 36.50 24.20 17.95 14.27 11.80 10.03 8.71 7.69 6.87 6.18 5.63 5.15 4.75 4.39 4.08 3.81 3.57 3.35 3.15 2.98 2.82 2.67 2.53 2.41 2.29 2.18 2.08 1.99 1.90 1.82 1.75 1.67 1.61 1.54 1.48 1.42 1.37 1.32 1.27 1.22 1.17 1.13 1.09 1.05 1.01 0.97 0.94 0.91 0.87
75.60 37.30 24.73 18.33 14.57 12.05 10.23 8.88 7.84 7.00 6.30 5.73 5.25 4.83 4.47 4.15 3.88 3.62 3.40 3.20 3.02 2.86 2.71 2.57 2.44 2.32 2.21 2.11 2.02 1.93 1.84 1.77 1.69 1.62 1.56 1.50 1.44 1.38 1.33 1.28 1.23 1.18 1.14 1.10 1.06 1.02 0.98 0.95 0.91 0.88
77.05 38.01 25.19 18.67 14.83 12.26 10.41 9.04 7.98 7.12 6.40 5.82 5.33 4.91 4.54 4.21 3.93 3.68 3.45 3.25 3.06 2.89 2.74 2.60 2.47 2.35 2.24 2.14 2.04 1.95 1.86 1.79 1.71 1.64 1.57 1.51 1.45 1.40 1.34 1.29 1.24 1.19 1.15 1.11 1.07 1.03 0.99 0.95 0.92 0.89
78.34 38.64 25.60 18.97 15.06 12.45 10.57 9.17 8.09 7.22 6.49 5.90 5.40 4.97 4.60 4.27 3.98 3.72 3.49 3.28 3.10 2.93 2.77 2.63 2.50 2.37 2.26 2.16 2.06 1.97 1.88 1.80 1.73 1.65 1.59 1.52 1.46 1.41 1.35 1.30 1.25 1.20 1.16 1.12 1.07 1.03 1.00 0.96 0.92 0.89
79.49 39.20 25.97 19.23 15.27 12.62 10.71 9.29 8.20 7.31 6.58 5.97 5.47 5.03 4.65 4.31 4.03 3.76 3.53 3.32 3.13 2.96 2.80 2.65 2.52 2.40 2.28 2.18 2.08 1.98 1.90 1.82 1.74 1.67 1.60 1.54 1.47 1.42 1.36 1.31 1.26 1.21 1.17 1.12 1.08 1.04 1.00 0.97 0.93 0.90
80.53 39.70 26.30 19.47 15.46 12.78 10.84 9.40 8.29 7.39 6.65 6.04 5.53 5.09 4.70 4.36 4.07 3.80 3.56 3.35 3.16 2.98 2.82 2.68 2.54 2.41 2.30 2.19 2.09 2.00 1.91 1.83 1.75 1.68 1.61 1.55 1.48 1.43 1.37 1.32 1.27 1.22 1.17 1.13 1.09 1.05 1.01 0.97 0.93 0.90

Note: The table shows the simulated boundary values of mineval(A) for different values of maximum bias (in columns) and number of instruments
K, (in rows). The simulations are based on 100,000 Monte Carlo replications, and follow Stock and Yogo (2005).



6Cl

Table B.4: Simulated boundary values of mineval(A) for n = 1 endogenous regressor, for different values of maximum size
distortion (in columns) and number of instruments K, (in rows)

0.07 0.08 0.09 01 011 012 013 014 0.15 0.16 0.17 0.18 0.19 0.2 021 022 0.23 024 0.25 0.26 0.27 0.28 0.29 0.3 0.31 0.32 0.33 0.34 0.35 0.36 0.37 0.38 0.39 0.4 0.41 0.42 0.43 0.44 0.45 0.46 0.47 0.48 0.49 0.5

e

19.28 11.52 896 5.87 4.42 345 279 231 189 1.65 1.36 1.10 096 0.89 0.82 0.75 0.67 0.59 0.51 0.47 0.44 041 037 0.34 0.30 0.27 0.24 0.23 0.21 0.19 0.18 0.16 0.15 0.13 0.12 0.11 0.10 0.10 0.09 0.08 0.07 0.06 0.06 0.05
26.85 18.18 13.67 10.61 838 7.06 6.02 523 4.66 4.02 3.71 3.38 3.03 277 257 238 221 207 194 183 173 1.65 157 149 1.41 1.341.281.221.17 1.12 1.06 1.02 0.97 0.94 0.90 0.86 0.82 0.79 0.75 0.72 0.68 0.65 0.62 0.60
33.84 23.1417.29 13.81 11.06 9.45 8.11 7.13 6.38 556 516 4.76 430 3.94 3.67 341 3.19 299 283 267 253 242 230 2.20 2.09 2.00 1.91 1.83 1.76 1.68 1.61 1.54 1.48 1.43 1.38 1.32 1.27 1.22 1.17 1.12 1.07 1.03 0.99 0.95
40.68 27.67 20.66 16.63 13.43 11.53 9.91 8.77 7.84 690 6.39 592 537 494 4.60 429 4.01 3.78 3.58 3.39 3.22 3.07 293 2.79 2.66 2.552.44 2.34 2.252.16 2.07 1.98 1.91 1.85 1.78 1.71 1.65 1.59 1.53 1.47 1.41 1.36 1.31 1.26
47.45 32.03 23.91 19.29 15.66 13.49 11.59 10.31 9.20 8.15 7.54 6.99 6.36 5.87 547 511 478 451 427 405 3.85 3.67 3.50 3.35 3.20 3.06 2.93 2.81 2.70 2.59 2.49 2.39 2.31 2.23 2.15 2.07 2.00 1.93 1.86 1.79 1.73 1.67 1.61 1.56
54.20 36.31 27.11 21.88 17.83 15.38 13.22 11.79 10.51 9.36 8.64 8.01 7.30 6.76 6.31 590 553 521 494 4.69 446 425 4.06 3.88 3.71 3.54 3.40 3.26 3.14 3.01 2.90 2.79 2.69 2.60 2.51 2.42 2.34 2.26 2.18 2.11 2.03 1.97 1.90 1.84
60.93 40.53 30.28 24.42 19.96 17.24 14.81 13.25 11.78 10.55 9.71 9.00 8.23 7.64 7.13 6.67 6.25 589 559 532 506 4.81 4.60 4.40 4.20 4.02 3.86 3.70 3.56 3.42 3.29 3.17 3.06 2.96 2.86 2.76 2.67 2.58 2.50 2.41 2.33 2.26 2.19 2.12
67.65 44.73 33.43 26.94 22.07 19.08 16.38 14.69 13.04 11.72 10.77 9.98 9.14 850 7.94 743 6.97 6.57 624 594 565 537 513 491 4.69 449 4.31 4.14 3.98 3.83 3.68 3.55 3.43 3.31 3.20 3.09 2.99 2.90 2.81 2.71 2.63 2.55 2.47 2.39
74.37 48.91 36.57 29.43 24.17 20.91 17.94 16.11 14.28 12.89 11.82 10.95 10.04 9.36 8.75 8.19 7.68 7.24 6.87 6.55 6.23 592 566 542 5.18 4.954.76 4.57 4.39 4.22 4.07 3.92 3.79 3.66 3.54 3.42 3.32 3.21 3.11 3.01 2.92 2.83 2.75 2.66
81.08 53.07 39.70 31.92 26.25 22.72 19.49 17.53 15.52 14.04 12.86 11.91 10.94 10.21 9.54 8.94 838 7.90 751 7.15 6.81 6.47 6.19 5.92 5.66 5.42 520 4.99 4.80 4.62 4.45 4.30 4.15 4.01 3.88 3.75 3.64 3.52 3.42 3.31 3.21 3.12 3.02 2.94
87.78 57.22 42.82 34.39 28.33 24.53 21.03 18.94 16.75 15.19 13.90 12.87 11.83 11.05 10.33 9.68 9.08 8.56 8.14 7.76 7.39 7.02 6.71 6.42 6.14 5.87 5.64 542 5.21 5.01 4.83 4.67 4.51 4.36 4.22 4.08 3.95 3.83 3.72 3.61 3.50 3.40 3.30 3.21
94.49 61.37 45.94 36.86 30.40 26.33 22.57 20.35 17.97 16.34 14.93 13.82 12.72 11.89 11.12 10.43 9.78 9.22 876 836 7.96 7.56 7.23 6.92 6.62 6.33 6.08 5.84 5.61 5.41 5.21 5.03 4.87 4.70 4.55 4.40 4.27 4.14 4.02 3.90 3.79 3.68 3.58 3.47
101.19 65.51 49.05 39.32 32.47 28.13 24.11 21.75 19.19 17.49 15.96 14.77 13.60 12.73 11.91 11.17 10.48 9.87 9.39 896 853 8.10 7.74 7.42 7.09 6.78 6.51 6.26 6.02 5.80 5.59 5.40 5.22 5.05 4.88 4.73 4.59 4.45 4.32 4.20 4.08 3.96 3.85 3.74
107.89 69.64 52.16 41.78 34.53 29.93 25.64 23.15 20.41 18.63 16.99 15.72 14.49 13.57 12.70 11.91 11.17 10.53 10.01 9.56 9.11 8.64 826 7.91 7.57 7.24 6.95 6.68 6.42 6.19 5.97 5.77 5.58 5.39 5.22 5.05 4.90 4.76 4.62 4.49 4.36 4.24 4.13 4.01
114.59 73.77 55.27 44.23 36.59 31.72 27.16 24.55 21.63 19.77 18.01 16.66 15.37 14.40 13.48 12.65 11.86 11.18 10.63 10.15 9.68 9.18 8.78 8.41 8.04 7.69 7.38 7.09 6.82 6.58 6.35 6.13 5.93 5.73 5.55 5.37 5.22 5.06 4.92 4.78 4.65 4.52 4.40 4.28
121.28 77.90 58.38 46.68 38.65 33.51 28.69 25.94 22.84 20.91 19.03 17.61 16.25 15.24 14.26 13.39 12.55 11.83 11.25 10.75 10.25 9.72 9.29 890 8.51 8.14 7.82 7.51 7.23 6.97 6.72 6.50 6.28 6.08 5.88 5.70 5.53 5.37 5.22 5.07 4.94 4.80 4.67 4.55
127.98 82.02 61.48 49.13 40.70 35.30 30.21 27.34 24.05 22.05 20.06 18.55 17.12 16.07 15.04 14.12 13.25 12.48 11.87 11.34 10.81 10.25 9.80 9.40 8.98 8.59 8.25 7.93 7.63 7.35 7.10 6.86 6.63 6.42 6.21 6.02 5.85 5.68 5.52 5.37 5.22 5.08 4.95 4.81
134.68 86.15 64.58 51.58 42.76 37.08 31.74 28.73 25.27 23.18 21.08 19.49 18.00 16.90 15.82 14.86 13.94 13.13 12.49 11.94 11.38 10.79 10.32 9.89 9.46 9.04 8.68 8.34 8.03 7.74 7.48 7.23 6.99 6.76 6.54 6.34 6.16 5.98 5.81 5.66 5.51 5.36 5.22 5.08
141.37 90.27 67.69 54.02 44.81 38.87 33.26 30.12 26.48 24.32 22.09 20.43 18.88 17.73 16.60 15.59 14.63 13.78 13.11 12.53 11.95 11.33 10.83 10.38 9.93 9.49 9.12 8.76 8.43 8.13 7.85 7.59 7.34 7.10 6.87 6.66 6.47 6.29 6.11 5.95 5.79 5.64 5.49 5.34
148.07 94.39 70.79 56.47 46.86 40.65 34.78 31.51 27.69 25.46 23.11 21.37 19.75 18.57 17.38 16.33 15.32 14.43 13.73 13.13 12.52 11.86 11.34 10.87 10.40 9.94 9.55 9.18 8.83 8.51 8.23 7.95 7.69 7.44 7.20 6.98 6.79 6.59 6.41 6.24 6.08 5.92 5.76 5.61
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Note: The table shows the simulated boundary values of mineval(A) for different values of maximum size distortion (in columns) and number of
instruments K, (in rows). The nominal size of the Wald-test on the structural parameter g is 5%. The simulations are based on 100,000 Monte
Carlo replications, and follow Stock and Yogo (2005).
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Table B.5: Simulated boundary values of mineval(A) for n = 2 endogenous regressors, for different values of maximum size

distortion (in columns) and number of instruments K, (in rows)

&

0.06

0.07

0.08 0.09 01 011 012 0.13 0.14

0.15 0.16 0.17 0.18 0.19 0.2

0.21 0.22 0.23 0.24 0.25

0.26 0.27 0.28 0.29 0.3 0.31 0.32 0.33 0.34 0.35 0.36 0.37 0.38 0.39 0.4 0.41 0.42 0.43 0.44 0.45 0.46 0.47 0.48 0.49 0.5

© ® N U R W N

=
N R ©

13
14
15
16
17
18
19
20

14.76
3891
55.17
68.28
79.82
90.46
100.54
110.24
119.67
128.92
138.02
147.02
155.93
164.76
173.55
182.28
190.98
199.64

9.46
19.31
26.37
32.31
37.69
42.74
47.60
5233
56.96
61.52
66.04
70.51
74.95
79.37
83.77
88.15
92.52
96.88

471 272 189 143 097
1191 849 647 517 4.50
16.90 12.45 9.65 7.79 6.87
21.01 15.68 12.26 9.96 8.78
24.68 18.56 14.58 11.91 10.45

0.86
3.81
5.83
7.49
8.95

28.10 21.22 16.75 13.73 11.99 10.31
31.37 23.76 18.81 15.47 13.44 11.61 10.16
34.52 26.21 20.81 17.16 14.84 12.86 11.30 10.15
37.61 28.59 22.76 18.81 16.20 14.08 12.41 11.15 10.20
40.64 30.94 24.67 20.43 17.53 15.27 13.50 12.14 11.12 10.15
43.63 33.25 26.56 22.04 18.84 16.45 14.58 13.12 12.02 10.98 10.09
46.59 35.54 28.43 23.63 20.14 17.62 15.65 14.09 12.92 11.79 10.83 10.02
49.52 37.80 30.29 25.20 21.42 18.77 16.71 15.05 13.81 12.60 11.57 10.70 10.05
52.44 40.05 32.13 26.77 22.69 19.92 17.76 16.01 14.70 13.40 12.31 11.39 10.69 10.07
55.34 42.29 33.96 28.33 23.95 21.06 18.81 16.96 15.58 14.20 13.04 12.06 11.33 10.68 10.02
58.22 44.52 35.79 29.88 25.21 22.20 19.86 17.91 16.45 14.99 13.77 12.74 11.96 11.28 10.58
61.10 46.74 37.60 31.43 26.46 23.33 20.90 18.85 17.33 15.78 14.50 13.41 12.59 11.88 11.14 10.50
63.97 48.95 39.41 32.97 27.70 24.46 21.94 19.79 18.20 16.57 15.22 14.08 13.22 12.48 11.70 11.02 10.47
208.28 101.22 66.83 51.15 41.22 34.50 28.95 25.58 22.97 20.73 19.07 17.36 15.94 14.75 13.85 13.07 12.26 11.55 10.98 10.44 9.95 9.43 8.97 8.58 8.26 7.97 7.67 7.39 7.11 6.88 6.66 6.46 6.26 6.09 5.92 5.75 5.58 5.42 5.26 5.11 4.98 4.85 4.72 4.60 4.49

0.77
3.26
5.01
6.46
7.77
8.99

0.66
2.89
4.46
5.78
6.96
8.06
9.12

0.56
2.59
4.03
5.24
6.32
7.35
8.32
9.27

0.49
2.37
3.70
4.80
5.80
6.73
7.62
8.48
9.32

0.45
2.19
3.41
4.42
5.34
6.19
7.01
7.80
8.57
9.33

0.41
2.02
3.15
4.09
4.94
5.73
6.48
7.21
7.93
8.63
9.33

0.38
1.89
2.96
3.84
4.63
5.37
6.08
6.77
7.44
8.11
8.76
9.41

0.36
176
2.76
3.58
4.33
5.03
5.70
6.36
6.99
7.62
8.24
8.86
9.47

0.33
1.65
2.58
3.36
4.06
4.72
5.35
5.96
6.56
7.15
7.73
8.31
8.88
9.45

0.29
1.55
243
3.16
3.83
4.45
5.04
5.62
6.18
6.74
7.28
7.83
8.37
8.90
9.44
9.97

0.26
1.44
227
297
3.60
4.19
4.76
531
5.85
6.37
6.90
7.42
7.93
8.44
8.95
9.46
9.97

0.25
1.35
2.14
2.80
3.40
3.96
4.50
5.02
5.54
6.04
6.54
7.04
7.53
8.02
8.51
8.99
9.48
9.96

0.23 0.22 0.20 0.18 0.17 0.16 0.15 0.14 0.12 0.12 0.11 0.10 0.09 0.09 0.08 0.07 0.07 0.06 0.06 0.05 0.05 0.05 0.04 0.04 0.04
1.27 1.21 1.16 1.10 1.04 0.99 0.95 0.91 0.87 0.83 0.79 0.75 0.72 0.68 0.65 0.62 0.60 0.58 0.56 0.54 0.52 0.50 0.48 0.46 0.44
2.01 1.92 1.84 1.75 1.67 1.59 1.52 1.46 1.40 1.34 1.28 1.23 1.18 1.13 1.07 1.03 1.00 0.97 0.94 0.90 0.87 0.84 0.81 0.78 0.75
2.64 2.51 2.41 2.29 2.19 2.09 2.00 1.93 1.85 1.78 1.70 1.63 1.57 1.51 1.44 1.38 1.34 1.30 1.26 1.22 1.18 1.14 1.10 1.07 1.03
3.21 3.05 2.92 2.79 2.67 2.55 2.44 2.35 2.26 2.17 2.08 2.00 1.93 1.86 1.78 1.71 1.66 1.61 1.56 1.52 1.47 1.42 1.37 1.33 1.28
3.75 3.56 3.40 3.25 3.11 2.98 2.86 2.75 2.65 2.54 2.44 2.35 2.27 2.19 2.10 2.03 1.97 1.91 1.85 1.79 1.74 1.69 1.63 1.58 1.53
4.26 4.05 3.87 3.69 3.54 3.39 3.26 3.13 3.02 2.90 2.79 2.69 2.60 2.51 2.41 2.33 2.26 2.19 2.13 2.07 2.00 1.94 1.88 1.83 1.77
4.76 4.52 4.32 4.12 3.96 3.80 3.65 3.51 3.38 3.25 3.13 3.02 2.92 2.82 2.72 2.63 2.55 2.48 2.40 2.33 2.26 2.20 2.13 2.07 2.00
5.25 4.99 4.76 4.55 4.36 4.19 4.03 3.88 3.73 3.60 3.47 3.35 3.23 3.13 3.02 2.92 2.83 2.75 2.67 2.59 2.52 2.44 2.37 2.30 2.24
5.74 5.45 5.19 4.96 4.77 4.58 4.40 4.24 4.08 3.93 3.79 3.67 3.55 3.43 3.32 3.21 3.12 3.02 2.94 2.85 2.77 2.69 2.61 2.54 2.47
6.21 5.90 5.62 5.38 5.16 4.97 4.77 4.59 4.42 4.27 412 3.98 3.85 3.73 3.61 3.50 3.39 3.29 3.20 3.11 3.02 2.93 2.85 2.77 2.69
6.69 6.35 6.05 5.78 5.56 5.35 5.14 4.95 4.76 4.60 4.44 4.30 4.16 4.03 3.90 3.78 3.67 3.56 3.46 3.36 3.27 3.18 3.09 3.00 2.92
7.16 6.80 6.47 6.19 5.95 5.73 5.51 5.30 5.10 4.93 4.76 4.61 4.46 4.33 4.19 4.07 3.95 3.83 3.72 3.61 3.51 3.42 3.32 3.23 3.15
7.63 7.24 6.89 6.59 6.34 6.10 5.87 5.65 5.44 5.26 5.08 4.92 4.77 4.62 4.48 4.35 4.22 4.10 3.98 3.87 3.76 3.66 3.56 3.46 3.37
8.10 7.68 7.31 6.99 6.72 6.48 6.23 6.00 5.78 5.59 5.40 5.23 5.07 4.92 4.77 4.63 4.49 4.36 4.24 4.12 4.00 3.90 3.79 3.69 3.60
8.56 8.127.72 7.39 7.11 6.85 6.60 6.35 6.11 5.91 5.72 5.54 5.37 5.21 5.06 4.91 4.77 4.63 4.49 4.37 4.25 4.14 4.03 3.92 3.82
9.02 8.56 8.14 7.79 7.49 7.23 6.96 6.70 6.45 6.24 6.03 5.85 5.67 5.50 5.34 5.19 5.04 4.89 4.75 4.62 4.49 4.38 4.26 4.15 4.04
9.49 9.00 8.55 8.18 7.88 7.60 7.31 7.04 6.78 6.56 6.35 6.15 5.97 5.79 5.63 5.47 5.31 5.15 5.01 4.87 4.74 4.61 4.49 4.38 4.27

Note: The table shows the simulated boundary values of mineval(A) for different values of maximum size distortion (in columns) and number of
instruments K, (in rows). The nominal size of the Wald-test on the structural parameter j is 5%. The simulations are based on 100,000 Monte
Carlo replications, and follow Stock and Yogo (2005).
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Table B.6: Simulated boundary values of mineval(A) for n = 3 endogenous regressors, for different values of maximum size

distortion (in columns) and number of instruments K, (in rows)

K, 0.06 0.07 0.08 0.09 0.1 011 0.12 0.13

0.14 0.15 0.16

0.17

0.18

0.19

0.2 0.21 0.22 0.23 0.24 0.25 0.26 0.27 0.28 0.29 0.3 0.31 0.32 0.33 0.34 0.35 0.36 0.37 0.38 0.39 0.4 0.41 0.42 0.43 0.44 0.45 0.46 0.47 0.48 0.49 0.5

© ® N U R W

10
11
12
13
14
15
16
17
18
19
20

11.62
32.12
46.51
57.84
67.42
75.92
83.69
90.94
97.83

291 137 096 0.77 0.63 047 045
1243 8.07 598 4.61 3.68 3.14 272
19.61 1298 9.67 7.47 6.01 5.17 4.45
25.62 17.00 12.70 9.85 7.97 6.87 5.92
30.96 20.50 15.34 11.94 9.73 8.39 7.23
35.88 23.69 17.75 13.87 11.36 9.80 8.46
40.52 26.66 20.00 15.68 12.90 11.12 9.61
44.97 29.48 22.14 17.41 14.38 12.40 10.73

0.42
2.39
3.92
523
6.41
7.52
8.57
9.59

49.27 32.20 24.20 19.08 15.81 13.64 11.81 10.58
104.44 53.47 34.83 26.20 20.71 17.22 14.84 12.87 11.55 10.28
110.84 57.59 37.40 28.15 22.30 18.60 16.03 13.91 12.50 11.12 10.16
117.07 61.64 39.93 30.07 23.86 19.96 17.19 14.93 13.44 11.94 10.93 10.08
123.16 65.64 42.41 31.96 25.41 21.30 18.34 15.94 14.37 12.75 11.69 10.78 10.03
129.14 69.60 44.86 33.82 26.93 22.63 19.48 16.95 15.30 13.56 12.44 11.48 10.68
135.04 73.53 47.29 35.66 28.45 23.95 20.62 17.94 16.22 14.35 13.19 12.17 11.33 10.55
140.86 77.42 49.69 37.49 29.95 25.26 21.74 18.93 17.13 15.15 13.94 12.86 11.97 11.15 10.45
146.62 81.29 52.07 39.30 31.44 26.56 22.85 19.92 18.04 15.94 14.68 13.54 12.60 11.75 11.02 10.33
152.32 85.14 54.44 41.11 32.92 27.86 23.97 20.90 18.94 16.72 15.41 14.22 13.24 12.34 11.58 10.86 10.25 9.69 9.20 8.74 8.33 7.95 7.63 7.32 7.04 6.78 6.55 6.32 6.11 5.92 5.73 5.55 5.38 5.22 5.07 4.93 4.80 4.67 4.54 4.43 4.31 4.21 4.10 4.00 3.91

0.38
217
3.55
4.72
5.77
6.75
7.67
8.57
9.43

0.35
1.95
3.18
425
5.21
6.11
6.96
7.79
8.60
9.39

0.32
1.79
293
391
4.80
5.63
6.42
7.18
7.93
8.65
9.37

0.29
1.66
2.72
3.63
4.46
5.23
5.97
6.68
7.37
8.05
8.72
9.38

0.26
1.52
2.51
3.35
412
4.85
5.53
6.20
6.85
7.48
8.11
8.73
9.34
9.95

0.24
1.39
230
3.09
3.81
4.48
513
5.76
6.37
6.97
7.56
8.15
8.73
9.31
9.88

0.22
1.30
2.15
2.88
3.56
4.19
4.80
5.39
5.96
6.53
7.08
7.63
8.18
8.72
9.26
9.79

0.20
1.21
2.01
2.70
3.34
3.93
4.51
5.07
5.61
6.14
6.67
7.19
7.71
8.22
8.73
9.24
9.75

0.19 0.18 0.17 0.16 0.15 0.14 0.13 0.11 0.11 0.10 0.09 0.09 0.08 0.08 0.07 0.07 0.06 0.06 0.05 0.05 0.05 0.04 0.04 0.04 0.03 0.03 0.03 0.03
1.14 1.08 1.03 0.98 0.92 0.88 0.83 0.79 0.75 0.71 0.68 0.65 0.62 0.60 0.58 0.56 0.54 0.52 0.50 0.47 0.46 0.44 0.42 0.40 0.38 0.37 0.36 0.34
1.891.79 1.71 1.63 1.54 1.47 1.40 1.33 1.27 1.21 1.15 1.11 1.06 1.02 0.99 0.96 0.92 0.89 0.86 0.83 0.80 0.77 0.74 0.71 0.68 0.66 0.64 0.61
2.552.422.302.19 2.08 1.98 1.89 1.81 1.73 1.65 1.57 1.51 1.45 1.40 1.36 1.31 1.27 1.23 1.19 1.14 1.10 1.06 1.03 0.99 0.95 0.92 0.89 0.86
3.152.99 2.85 2.71 2.57 2.46 2.35 2.24 2.15 2.05 1.96 1.89 1.82 1.76 1.70 1.64 1.59 1.54 1.49 1.44 1.39 1.34 1.30 1.25 1.21 1.17 1.14 1.10
3.72 3.52 3.36 3.19 3.03 2.90 2.78 2.66 2.54 2.44 2.33 2.25 2.17 2.09 2.02 1.96 1.90 1.84 1.78 1.72 1.66 1.61 1.56 1.50 1.46 1.41 1.37 1.33
4.26 4.04 3.85 3.66 3.48 3.33 3.19 3.05 2.93 2.81 2.69 2.59 2.50 2.42 2.34 2.26 2.19 2.13 2.06 1.99 1.93 1.87 1.81 1.75 1.70 1.65 1.60 1.55
4.79 4.54 432 4.11 3.91 3.75 3.59 3.44 3.30 3.17 3.04 2.93 2.83 2.73 2.65 2.56 2.48 2.41 2.33 2.26 2.19 2.12 2.06 1.99 1.93 1.88 1.83 1.77
5.30 5.03 4.78 4.55 4.34 4.15 3.98 3.81 3.66 3.52 3.38 3.26 3.15 3.05 2.95 2.85 2.77 2.68 2.60 2.52 2.45 2.37 2.30 2.23 2.17 2.11 2.05 1.99
5.81 5.51 5.24 4.99 4.75 4.55 4.36 4.18 4.02 3.87 3.72 3.59 3.47 3.35 3.24 3.14 3.05 2.96 2.87 2.78 2.70 2.62 2.54 2.47 2.40 2.33 2.27 2.21
6.30 5.98 5.69 5.42 5.16 4.95 4.74 4.55 4.37 4.21 4.05 3.91 3.78 3.66 3.54 3.43 3.32 3.23 3.13 3.04 2.95 2.87 2.78 2.70 2.63 2.56 2.49 2.42
6.80 6.45 6.13 5.84 5.57 5.34 5.12 4.91 4.72 4.55 4.38 4.23 4.09 3.96 3.83 3.71 3.60 3.49 3.39 3.29 3.20 3.11 3.02 2.93 2.86 2.78 2.71 2.64
7.29 6.92 6.57 6.26 5.97 5.72 5.49 5.27 5.07 4.89 4.71 4.54 4.40 4.26 4.12 3.99 3.87 3.76 3.65 3.55 3.45 3.35 3.26 3.17 3.08 3.00 2.93 2.85
7.77 7.38 7.01 6.68 6.37 6.11 5.86 5.63 5.41 5.22 5.03 4.86 4.70 4.55 4.41 4.27 4.14 4.02 3.91 3.80 3.69 3.59 3.49 3.40 3.31 3.22 3.14 3.06
8.26 7.84 7.44 7.09 6.77 6.49 6.23 5.98 5.76 5.55 5.36 5.17 5.01 4.85 4.69 4.55 4.41 4.29 4.17 4.05 3.94 3.83 3.73 3.63 3.53 3.45 3.36 3.28
8.74 8.29 7.88 7.51 7.17 6.87 6.59 6.33 6.10 5.89 5.68 5.49 5.31 5.14 4.98 4.83 4.68 4.55 4.42 4.30 4.18 4.07 3.96 3.86 3.76 3.66 3.58 3.49
9.22 8.75 8.31 7.92 7.56 7.25 6.96 6.69 6.44 6.22 6.00 5.80 5.62 5.44 5.26 5.10 4.95 4.81 4.68 4.55 4.43 4.31 4.19 4.08 3.98 3.88 3.79 3.70

Note: The table shows the simulated boundary values of mineval(A) for different values of maximum size distortion (in columns) and number
of instruments K, (in rows). The nominal size of the Wald-test on the structural parameter § is 5%. The simulations are based on 100,000
Monte Carlo replications, and follow Stock and Yogo (2005).



C Additional Monte Carlo results

This appendix contains the mean and median lengths of the proposed confidence
intervals for each of the Monte Carlo DGPs in Section 3.3. The number of Monte

Carlo replications was 2000 in each case.
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Table C.1: Homoskedastic IV model, mean lengths of confidence intervals for mineval(A), n =1 endogenous regressor, nominal
level (1 —a) = 0.90

K2:1 K2:2 K2:3 K2:4
mineval(A) = 0 1 10 25 0 1 10 25 0 1 10 25 0 1 10 25
T =100 6.37 8.59 2098 33.14 | 6.07 810 1980 30.75|590 790 19.01 29.65|559 776 1827 28.70
T =250 6.31 8.69 20.66 33.07|597 817 1954 30.79 | 573 784 19.04 2933|564 7.70 1844 28.17
T =500 6.38 8.27 2058 3272|579 822 1981 3084|577 774 1892 2929 | 553 765 1816 28.33
T = 1000 6.39 851 20.64 3286 | 6.07 792 19.66 30.66 | 5.72 7.74 1899 2924 |554 7.67 1826 28.37

Note: The table shows the mean lengths of the proposed confidence interval for mineval(A) across 2000 Monte Carlo simulations for different
sample sizes T, instrument strength mineval(A ), and number of instruments K.

Table C.2: Homoskedastic IV model, median lengths of confidence intervals for mineval(A), n = 1 endogenous regressor,
nominal level (1 —a) = 0.90

K2:1 K2:2 K2:3 K2:4
mineval(A) = 0 1 10 25 0 1 10 25 0 1 10 25 0 1 10 25
T =100 543 739 2091 3281|565 770 1948 3047 |5.62 7.58 1861 29.50 | 532 753 18.03 2858
T =250 528 750 20.73 3296 | 538 758 1949 3064|534 745 1892 29.09 | 537 748 18.47 28.19
T =500 550 7.07 2055 3285|533 779 1976 30.75| 544 740 1893 29.29 | 532 743 18.18 2831
T = 1000 539 740 2096 3272|559 746 19.58 3059 | 543 746 19.01 29.27 | 532 735 18.19 2840

Note: The table shows the median lengths of the proposed confidence interval for mineval(A) across 2000 Monte Carlo simulations for different
sample sizes T, instrument strength mineval(A ), and number of instruments K,.
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Table C.3: Homoskedastic IV model, mean lengths of confidence intervals for mineval(A), n = 2 endogenous regressors,
nominal level (1 —a) = 0.90

K2:2 K2:3 K2:4 K2:5
mineval(A) = 0 1 10 25 0 1 10 25 0 1 10 25 0 1 10 25
T =100 444 746 2468 3944 | 471 993 2424 3782|464 9.68 2382 36.61 | 457 936 23.10 3599
T =250 443 7.68 2489 3941|458 970 2433 3777|458 9.61 2378 36.68 | 464 936 2332 36.16
T =500 436 754 2490 39.79 | 455 990 2414 3783|455 9.60 23.62 36.70 | 457 9.57 2323 36.01
T = 1000 437 755 2461 39.78 | 455 9.60 2449 3791 | 453 958 23.64 36.79 | 4.60 948 23.07 36.12

Note: The table shows the mean lengths of the proposed confidence interval formineval(A) across 2000 Monte Carlo simulations for different
sample sizes T, instrument strength mineval(A ), and number of instruments K.

Table C.4: Homoskedastic IV model, median lengths of confidence intervals for mineval(A), n = 2 endogenous regressors,
nominal level (1 —a) = 0.90

K2:2 K2:3 K2:4: K2:5
mineval(A) = 0 1 10 25 0 1 10 25 0 1 10 25 0 1 10 25
T =100 419 6.89 2470 3941 | 453 954 2386 3749|454 949 2372 36.26 | 446 9.15 2297 35.69
T =250 422 732 2487 3959 | 445 926 2421 3765|443 933 2383 3646 | 455 9.10 2324 36.10
T =500 413 7.06 25.01 39.88 |430 936 24.02 3794 | 443 934 2375 36.66 | 450 9.16 23.30 36.04
T = 1000 413 714 2457 39.83 | 438 9.10 2436 3794|443 932 2368 3690 | 448 934 23.02 36.02

Note: The table shows the median lengths of the proposed confidence interval for mineval(A) across 2000 Monte Carlo simulations for different
sample sizes T, instrument strength mineval(A ), and number of instruments K,.
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Table C.5: Heteroskedastic IV model (DGP 1), mean lengths of confidence intervals for 42, nominal level (1 — &) = 0.90

K2:1 KZZZ K2:3 K2:4
u? = o 1 10 25 |0 1 10 25 |0 1 0 25 |0 1 10 25
T=100 619 858 2052 2897|681 978 2008 2717|815 1062 20.10 2581|912 1232 20.95 24.99
T=250 650 899 2085 30.72|6.67 9.05 2002 2948|760 997 2076 2926|853 11.33 2201 29.76

T=500 628 863 2123 3234|623 829 2081 29.80|6.71 9.60 2062 2976|778 1044 21.54 30.75
T=1000 6.53 855 19.80 32.04 | 6.22 821 19.65 3137|654 875 2057 2879|729 9.60 20.68 29.46

Note: The table shows the mean lengths of confidence intervals for 2 across 2000 Monte Carlo simulations for different sample sizes T,
instrument strength 2, and number of instruments K.

Table C.6: Heteroskedastic IV model (DGP 1), median lengths of confidence intervals for 42, nominal level (1 — ) = 0.90

K2:1 KZZZ K2:3 K2:4
ur = o 1 10 25 |0 1 10 25 |0 1 10 25 |0 1 10 25
T=100 520 722 2045 2922|631 9.05 2053 2762|803 1025 20.09 2641|871 11.81 21.35 2555
T=250 558 7.69 2090 3037|631 855 1957 29.96 726 978 2070 29.99 | 8.09 11.02 2213 30.70

T=500 521 770 20.77 3254|586 744 2042 3009|647 923 2037 2980|753 10.05 2139 30.32
T=1000 545 744 1966 3246|573 789 1940 3150|613 850 2007 2931|716 913 2053 29.17

Note: The table shows the median lengths of confidence intervals for u? across 2000 Monte Carlo simulations for different sample sizes T,
instrument strength #2, and number of instruments K,.
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Table C.7: Heteroskedastic and autocorrelated IV model (DGP 2), mean lengths of confidence intervals for 12, nominal level
(1—a)=0.90

K2:1 K2:2 K2:3 K2:4
pr = 0 1 10 25 0 1 10 25 0 1 10 25 0 1 10 25
T=100 7.03 1049 2441 3251|735 1040 21.86 2802|850 10.83 19.89 2531|878 10.81 1925 23.15
T=250 6.66 9.82 2459 3595|758 10.08 2218 3249 |7.86 1046 2096 29.10 | 8.16 10.16 2050 27.43

T=500 653 952 2466 3811|751 1055 2339 3437|765 987 2192 31.69|790 1045 21.16 30.25
T=1000 6.69 974 2538 3886|726 1037 2256 3496|771 994 2207 33.01 794 10.01 21.04 31.44

Note: The table shows the mean lengths of confidence intervals for 2 across 2000 Monte Carlo simulations for different sample sizes T,
instrument strength 12, and number of instruments K.

Table C.8: Heteroskedastic and autocorrelated IV model (DGP 2), median lengths of confidence intervals for 42, nominal level
(1—a)=0.90

K2:1 K2:2 K2:3 K2:4
u? = o 1 10 25 |0 1 10 25 |0 1 10 25 |0 1 10 25
T=100 582 9.83 2499 3236|671 9.62 2155 2832|767 1014 1970 2553|825 1043 19.08 2323
T=250 533 894 2413 3595|650 889 21.89 3217|738 9.84 2076 29.05|779 933 20.06 27.69

T=500 551 862 2548 3824|659 968 2330 3420|715 922 2192 3125|727 989 2143 3045
T=1000 549 877 2539 3895|643 957 2299 3535|723 896 2202 3334|735 949 2078 31.39

Note: The table shows the median lengths of confidence intervals for ],12 across 2000 Monte Carlo simulations for different sample sizes T,
instrument strength #2, and number of instruments K,.



Table C.9: Homoskedastic external instrument SVAR (DGP 1), mean lengths of
confidence intervals for mineval(A), nominal level (1 — a) = 0.90

A = 0.01 1 10 25

T=100 640 832 2082 3287
T=150 6.61 814 20.66 32.56
T=200 669 840 21.10 3279
T=500 664 830 2084 3259

Note: The table shows the mean lengths of the pro-
posed confidence interval for mineval(A) across
2000 Monte Carlo simulations for different sam-
ple sizes T, and external instrument strength
mineval(A).

Table C.10: Homoskedastic external instrument SVAR (DGP 1), median lengths
of confidence intervals for mineval(A), nominal level (1 — «) = 0.90

A= 0.01 1 10 25

T=100 545 715 2079 32.89
T=150 569 7.07 20.64 3255
T=200 571 722 2113 3274
T=500 568 700 2092 3253

Note: The table shows the median lengths of
the proposed confidence interval for mineval(A)
across 2000 Monte Carlo simulations for different
sample sizes T, and external instrument strength
mineval(A).

Table C.11: Heteroskedastic and autocorrelated external instrument SVAR, mean
lengths of confidence intervals for x?, nominal level (1 — &) = 0.90

DGP 2, Heteroskedastic DGP 3, Autocorrelated
wr= 001 1 10 25 | 001 1 10 25

T=100 693 9.00 2251 34.09 | 690 9.11 2224 33.78
T=150 684 877 2174 3404 | 7.04 9.02 2197 33.26
T=200 680 882 2152 3371 | 673 873 2156 33.79
T=500 652 847 2111 3335 | 673 843 2131 33.65

Note: The table shows the mean lengths of confidence intervals for 2 across 2000
Monte Carlo simulations for different sample sizes T, and external instrument strength
2. Asymptotic variance W, estimated by Gongalves and White’s (2005) bootstrap with
2999 bootstrap samples, with block length equal to one in the case of DGP 2, and block
length equal to | T'/3] in the case of DGP 3.
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Table C.12: Heteroskedastic and autocorrelated external instrument SVAR, mean
lengths of confidence intervals for u?, nominal level (1 — &) = 0.90

D

DGP 2, Heteroskedastic DGP 3, Autocorrelated
wr= 001 1 10 25 001 1 10 25

T=100 590 784 2246 33.65 | 577 7.78 21.88 33.25
T=150 577 758 2145 3405 | 588 776 21.81 32.93
T=200 572 766 2158 33.63 |571 742 2130 33.44
T=500 563 727 2090 3313|564 729 21.00 33.51

Note: The table shows the median lengths of confidence intervals for u? across 2000
Monte Carlo simulations for different sample sizes T, and external instrument strength
#2. Asymptotic variance W, estimated by Gongalves and White’s (2005) bootstrap with
2999 bootstrap samples, with block length equal to one in the case of DGP 2, and block
length equal to | T!/3] in the case of DGP 3.

Data appendix

New Keynesian Phillips Curve

All US data series were downloaded from the St. Louis Fed’s FRED database

and

cover the period 1960:Q1 to 2017:Q1. Most series are readily available at the

quarterly frequency and the ones on the monthly frequency were transformed

by taking quarterly averages. Our choice of the series is motivated by Gali and
Gertler (1999).

The series, their mnemonics and the transformations applied as follows:

inflation 7t;: Gross Domestic Product: Implicit Price Deflator, logarithmic
difference,

labor share s;: nonfarm business sector labor share, PRS85006173, log

difference from sample average,

wage inflation: nonfarm compensation per hour, COMPNEFB, in logarithmic
difference,

output gap: real GDP, GDPC1, cyclical component (retaining fluctuations
between 6 and 32 quarters) of the Baxter-King (1999) filtered logarithmic
real GDP,

interest rate spread: difference of 10-Year Treasury Constant Maturity Rate
(GS10) and 3-month Treasury Bill: Secondary Market Rate (TB3MS),

commodity price inflation: Producer Price Index for All Commodities,
PPIACO, logarithmic difference.
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Consumption Euler equation

The choice of the data series follows Yogo (2004) and Montiel Olea and Pflueger
(2013). In particular, we used quarterly US data covering the period 1960:Q1 to

2017:Q1. We adopt the beginning of the period timing convention for consumption.
All the data were downloaded from the St. Louis Fed’s FRED database, except
the data required to compute the Dividend/Price ratio, which were obtained
from the Center for Research in Security Prices (CRSP) via the CRSPSift interface.

The series, their mnemonics and the transformations applied are as follows:

consumption growth Ac;: percentage growth rate of the sum of Real perso-
nal consumption expenditures per capita: Services (A797RX0Q048SBEA)
and Real personal consumption expenditures per capita: Goods: Nondura-
ble goods (A796RX0Q048SBEA),

asset return r,: 100 times the logarithm of the real return on the 3-month
Treasury Bill: Secondary Market Rate (TB3MS), which was calculated as one
plus the 3-month Treasury Bill rate divided by 400 minus the logarithmic
difference of the Consumer Price Index for All Urban Consumers: All Items
(CPIAUCSL),

3-month T-bill rate: 3-month Treasury Bill: Secondary Market Rate (TB3MS,
divided by four)),

inflation Alog CPI;: 100 times the logarithmic difference of the Consumer
Price Index for All Urban Consumers: All Items (CPIAUCSL),

log(Div /Price),;: logarithm of the Dividend/Price ratio in quarter f, where
the dividends are cumulated over the 11 months preceding and the last
month of quarter ¢ (12 months in total), and the resulting sum is divided by
the Index Level Associated with VWRETX. The dividends in each month are
calculated as the product of the Index Level Associated with VWRETX and
the dividend yield. The dividend yield is calculated as (1+Value-Weighted
Return-incl. dividends)/(1+Value-Weighted Return-excl. dividends)-1.

Structural VAR identified with oil shocks

The choice of the data series follows Montiel Olea et al. (2016). Due to data
availability, the sample period covers 1971:Q1 to 2004:Q3. All quarterly US data
were downloaded from the St. Louis Fed’s FRED database, except Kilian’s (2008)
OPEC shortfall series, which was obtained from the author’s website.

139



The series, their mnemonics and the transformations applied are as follows:

inflation Alog CPI;: logarithmic difference of the Consumer Price Index for
All Urban Consumers: All Items (CPIAUCSL),

first difference of the Fed funds rate (FEDFUNDS),
real GDP growth: logarithmic difference of real GDP (GDPC1),

oil price growth: logarithmic difference of oil price (Producer Price Index by
Commodity for Fuels and Related Products and Power: Crude Petroleum
(Domestic Production), WPU0561),

Hamilton’s (2003) twelve-month maximum deviation series th'lzz if in

quarter t the oil price (WPU0561 series) was higher than the highest oil
price in the preceding 4 quarters (t — 1,t — 2,t — 3,t — 4), then z}"'? is
equal to the price of oil in quarter + minus the highest value in quarters

(t—1,t—2,t —3,t —4), otherwise z?’u takes the value zero.

Kilian’s (2008) OPEC shortfall series was obtained from the author’s website.

For a detailed description of the series, we refer to Kilian (2008).
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