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Introduction

Drug discovery is one of the most important research fields for the future of

health  care  and  the  advancement  of  most  biological  sciences.  The

computational advances during the last decades have  enabled the emergence of

cheminformatics (or  chemoinformatics1,2) as a new discipline essential to the

drug discovery process. Even though cheminformatics has expanded beyond its

original drug discovery scope, that is still the main focus of cheminformatics,

with packages and tools available for all the parts of the drug discovery process

that can be performed  in silico.

However, there is always room for improvement, and, as a relatively young

discipline, there are still plenty of gaps that need to be filled and problems that

need to be solved.  The aim of this thesis was to identify some of those gaps and

to fill them by developing new tools that could prove useful for others and to

make easier and improve the overall quality of reasearch with cheminformatics.

Virtual  screening  is  a  cheminformatics  method  that  consists  of  screening

large  small-molecule  databases  for  bioactive  molecules3,4.  This  enables  the

researcher to avoid the cost of experimentally testing hundreds or thousands of

compounds  by  reducing the  number  of  candidate  molecules  to  be  tested  to

manageable numbers. There are several different approaches to it, but they are

ultimately all based on either the biological target of the prospective drug, or its

known bioactive molecules3,4. However, in order to assess the reliability of each

these methods, regardless of their approach, they all need to be validated. This

can be done by putting together known bioactive molecules and known inactive

3
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molecules4, and seeing how well does the virtual screening method identify the

bioactive molecules from within the inactive molecules. There is a problem,

though:  in most cases, there is not enough available data of inactive molecules,

as negative results are less likely to be reported.  So a solution is to build a

library of  decoy molecules,  that  is,  molecules  that  are  not  trivially  different

from the bioactive compounds, but not too similar to them, either, as that could

lead to the inclusion of unknown actually bioactive molecules (false negatives).

In order to minimize the impact of false negatives, decoy libraries are most

often built to be much bigger than known bioactive molecule libraries, with a

ratio of several decoy molecules for each biactive compound. This way, if the

virtual screening method manages to successfully pick the bioactive molecules

out of the majority of decoy molecules (high enrichment), its reliability gets

validated5.  At the time when this  thesis  was started,  there were some decoy

library databases available, like the Directory of Useful Decoys5, which only

covered a certain set of targets.  There weren’t any tools available for building

decoy libraries for any arbitrary set of bioactive compounds, and in order to

provide that and fill the gap, DecoyFinder, an easy to use graphical application,

was developed.   It  was later updated after  some research into decoy library

building and their performance when used for 2D similarity approaches.

Cheminformatics  relies  a  lot  on  the  data  available  in  publicly  accessible

repositories like ChEMBL or the Protein Data Bank (PDB)6. The PDB is very

useful  because  it  provides  the  3D structures  of  thousands  of  protein-ligand

complexes and, therefore, provides information on how certain ligands bind and

interact with their targets, which is very valuable for some widely used virtual

screening  approaches.  One  such  approach  is  molecular  docking,  where  the

binding position and energy of a molecule with a target is simulated and used to
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predict whether it will bind as a ligand or not7. Another approach consist in

using the spatial location of the intermolecular interactions between a ligand

and its target (what is called a  pharmacophore) to find other small molecules

that  can  make  the  same  kind  of  interactions  with  the  target8.  For  such

approaches, it is of the utmost importance that the data available on the PDB for

the 3D structure of the ligand and its binding site are reliable. However, this is

not  the  case  for  all  PDB entries,  as  can be seen  by inspecting  the  electron

density maps of the relevant residues and atoms for each structure,  in some

cases  even  revealing  ligands  with  little  evidence  of  actually  being  there  or

residues that may be completely wrong. However, this is far from intuitive or

easy to do for non-crystallographers, and thus, VHELIBS was developed as a

tool to easily and intuitively inspect and identify reliable PDB structures based

on  the  goodness  of  fitting  between  ligands  and  binding  sites  and  their

corresponding electron density map, also leveraging the often more accurate

structures from PDB_REDO9.

While  virtual  screening  aims  to  find  new bioactive  molecules  for  certain

targets, the opposite approach is also used: starting from a given molecule, to

search for a biological target for which it presents previously undocumented

bioactivity. This reverse screening is known as in silico or computational target

fishing10 or  reverse  pharmacognosy11,  and  it  is  specially  useful  for  drug

repurposing  or  repositioning12.  Drug  repurposing  consists  on  finding  new

biological  targets  for  already  approved  drugs.  This  can  potentially  save

hundreds  of  millions  of  dollars  and  more  than  a  decade  of  research  when

compared to a novel drug for the same target, since its safety and suitability will

have  already  been  studied13.  Target  fishing  approaches  can  also  uncover

polypharmacology for a given molecule (when it presents bioactivity for several
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targets),  which  is  important  since  known  drugs  have  an  average  of  six

molecular targets on which they exhibit activity14. They can also help detect

potentially toxic side effects and thus help develop less toxic drugs15. When this

thesis began, there were no freely available target fishing platforms, but some

have been developed during the years, as can be seen in  Tools for in silico

target  fishing review.  However,  they  are  qualitative  in  the  nature  of  their

activity prediction, and thus we developed a freely accessible target fishing web

service  implementing  a  novel  method  which  provides  the  first quantitative

activity prediction: Anglerfish.

(1) Gasteiger, J.; Engel, T. Chemoinformatics; Gasteiger, J., Engel, T., Eds.;
Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, FRG, 2003.

(2) Brown, F. K. In Annual Reports in Medicinal Chemistry; 1998; Vol. 33,
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Objectives

I. To create a freely available tool with a graphical interface to facilitate

the  validation  of  virtual  screening  approaches  by  making  decoy

molecule library building easier and more accessible.

II. To  develop  a  freely  available  software  to  enable  non-experts  to

intuitively  and  visually  assess  the  quality  and  reliability  of  the  3D

crystallographic structures of ligands and binding sites  in the Protein

Data Bank

III.To develop a publicly available target fishing service with quantitative

bioactivity prediction.
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Abstract

Molecular fingerprints have been used for a long time now in drug discovery

and virtual screening. Their ease of use (requiring little to no configuration) and

the speed at which substructure and similarity searches can be performed with

them  –paired  with  a  virtual  screening  performance  similar  to  other  more

complex methods– is the reason for their popularity. However, there are many

types  of  fingerprints,  each  representing  a  different  aspect  of  the  molecule,

which can greatly affect search performance. This review focuses on commonly

used fingerprint algorithms, their usage in virtual screening, and the software

packages and online tools that provide these algorithms.

Keywords:  Fingerprints,  virtual  screening,  similarity  search,  data  fusion,

comparison
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1. Introduction

Computational  advances  during  the  past  two  decades  have  enabled  the

extensive use of virtual screening for drug discovery [1]. Virtual screening is an

in silico method that consists of screening large small-molecule databases for

bioactive  molecules.  This  enables  the  researcher  to  avoid  the  cost  of

experimentally testing hundreds or thousands of compounds by reducing the

number of candidate molecules to be tested to manageable numbers.

The screening can be conducted using several methods or their combination,

which  can  be  classified  as  structure-based  methods  (which  are  based  on

matching the compounds to a target binding site, the most common of these

approaches  being  protein-ligand  docking)  or  ligand-based  methods  (which

involves retrieving those compounds from the database that are similar in some

ways to known active molecules and vary greatly depending on the molecular

features taken into account for similarity assessment). The main ligand-based

approaches  involve  the  use  of  pharmacophores  (abstractions  of  the  features

needed for the molecule to be active) [2], shape-based similarity [3], fingerprint

similarity, and also machine learning using molecular properties and data from

any of the former approaches [4].

Fingerprint-based similarity searching also sees some use in other fields besides

virtual screening and drug discovery, such as flavor chemistry [5].

2. Methods for Molecular Fingerprints

Similarity  in  itself  is  subjective  and  can  be  measured  and  their  results

interpreted  in  several  ways [6–8].  One  of  the  most  important  problems

encountered when trying to measure the similarity between two compounds is
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the complexity of the task, which depends on the complexity of the molecular

representation  used.  In  order  to  make  the  comparison  between  molecular

representations  computationally  easier,  some  level  of  simplification  or

abstraction  is  required.  The  most  commonly  used  of  these  abstractions  are

molecular fingerprints, which involve turning the molecule into a sequence of

bits that can then be easily compared between molecules.

This comparison must then be expressed in a way that can be quantified. There

are many ways to assess the similarity between two vectors, the most common

overall being Euclidean distance. But for molecular fingerprints, the industry

standard is the Tanimoto coefficient, which consists of the number of common

bits set to 1 in both fingerprints divided by the total number of bits set to 1

between both fingerprints. This means that it will always have a value between

1  and  0,  regardless  of  length  of  the  fingerprint,  which  causes  it  to  loose

representativity  the  longer  the  fingerprints  are.  This  also  means  that  how

actually similar two fingerprints are with a given Tanimoto coefficient value

will greatly depend on the type of fingerprint used, which makes impossible the

selection of an universal cutoff criterion from which two fingerprints could be

deemed  similar  or  dissimilar.  However,  the  performance  of  molecular

fingerprints could be improved by combining it with the use of other similarity

coefficients [9]. Several similarity and distance metrics which have been used

with fingerprints can be seen in Table 1.

2.1 Types of Molecular Fingerprint

There are several types of molecular fingerprints depending on the method by

which the molecular  representation is  transformed into a bit  string.  Most of

them use only the 2D molecular graph and are thus called 2D fingerprints, but
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some  are  capable  of  storing  3D  information,  most  notably  pharmacophore

fingerprints.  The  main  approaches  are  substructure  keys-based  fingerprints,

topological or path-based fingerprints, and circular fingerprints.

• Substructure  keys-based  fingerprints set  the  bits  of  the  bit  string

depending on the presence in the compound of certain substructures or

features from a given list  of structural keys.  This usually means that

these fingerprints are most useful when used with molecules that are

likely to be mostly covered by the given structural keys, but not so much

when the molecules are unlikely to contain the structural keys, as their

features would not be represented. Their number of bits is determined

by the number of structural keys, and each bit  relates to presence or

absence of a single given feature in the molecule (Figure 1), which does

not happen with other (hashed) types of fingerprints. Some of the most

commonly used substructure keys-based fingerprints are:

◦ MACCS  [10,11]:  It comes in two variants,  one with 960 and the

other  with  166  structural  keys  based  on  SMARTS patterns.  The

shorter one is the most commonly used, as it is relatively small in

length (only 166 bits) but covers most of the interesting chemical

features  for  drug  discovery  and  virtual  screening.  Additionally

several software packages are able to calculate it, which is not true

for the longer version.

◦ PubChem fingerprint [12]: this fingerprint, with 881 structural keys

covers a wide range of different substructures and features. It is the

fingerprint  used  by  PubChem  for  similarity  searching  and

neighboring.  Other  than  PubChem's  own  code,  it  is  also
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implemented  in  ChemFP  [13] (although  deemed  “experimental”)

and in CDK [14,15].

◦ BCI  fingerprints  [16]:  BCI  fingerprints  can  be  generated  using

different amounts of bits and can be modified by the user in several

ways, but the standard substructure dictionary includes 1052 keys

[17]. BCI fingerprints are only available in BCI toolkits.

◦ TGD  [18] and  TGT fingerprints:  These  are  two-point  and  three-

point pharmacophoric fingerprints calculated from a 2D molecular

graph, consisting, respectively of 735 and 13824 bits. TGD encodes

atom-pair descriptors using seven-atom features and distances up to

15 bonds [17,18]. TGT encodes triplets of four-atom features using

three graph distances divided into six distance ranges [17]. They are

both available in MOE software package [19].

• Topological  or  path-based  fingerprints work  by  analyzing  all  the

fragments  of  the  molecule  following  a  (usually  linear)  path  up  to  a

certain number of bonds, and then hashing every one of these paths to

create  the  fingerprint  (Figure  2).  This  means  that  any  molecule  can

produce a meaningful fingerprint, and its length can be adjusted. They

can also be used for fast substructure searching and filtering. These are

hashed fingerprints, which means that a single bit cannot be traced back

to a given feature. A given bit may be set by more than one different

feature, which is called “bit collision”. The Daylight fingerprint [20]: is

the most prominent of these types of fingerprints. They consist of up to

2048  bits  and  encode  all  possible  connectivity  pathways  through  a

molecule up to a given length. Most software packages implement these

fingerprints or fingerprints based on them, which can sometimes reach
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higher  number  of  bits  or  use  non-linear  connectivity  paths,  such  as

OpenEye's Tree fingerprints [21]

• Circular fingerprints are also hashed topological fingerprints, but they

are different in that instead of looking for paths in the molecule, the

environment of each atom up to a determined radius is recorded. They

are therefore not suitable for substructure queries (as the same fragment

may have different environments) but are widely used for full structure

similarity searching.

◦ Molprint2D [22,23]: Molprint2D encodes the atom environments of

each atom of the molecular connectivity table, which are represented

by strings of varying size.  This fingerprint is  available in several

software packages, such as OpenBabel [24] and jCompoundMapper

[25].

◦ ECFP: The de facto standard circular fingerprints are the Extended-

Connectivity Fingerprints (ECFPs), based on the Morgan algorithm

[26],  which  were  specifically  designed for  their  use  in  structure-

activity modeling [27]. They represent circular atom neighborhoods

and  produce  fingerprints  of  variable  length.  They  are  most

commonly used with a diameter of 4 and referred to as ECFP4. A

diameter  of  6  (ECFP6)  is  also  commonly  used,  although  some

benchmarks have shown small performance differences between the

two  [28]. Additionally, there is a variation that keeps track of the

frequency counts of the ECFP features, recording each identifier as

many times as it appears in the molecule instead of only once. This

variation is often denoted as ECFC. Notable software programs that

provide  these  fingerprints  are  Pipeline  Pilot  [29],  Chemaxon's
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JChem  [30],  the  CDK  [14] and  the  RDKit  [31] (referred  to  as

“Morgan fingerprints”).

◦ FCFP  (Functional-Class  Fingerprints):  FCFP  are  a  variation  of

ECFP,  which  are  further  abstracted  in  that  instead  of  indexing a

particular atom in the environment, they index that atom's role. So,

different atoms or groups with the same or similar function are not

distinguished by the fingerprint.  This enables  them to be used as

pharmacophoric fingerprints. There is also a FCFC variation, akin to

the  ECFC  variation  to  the  ECFP.  All  major  software  packages

supporting ECFP fingerprints also support these variations.

• There  are  also  some  hybrid  fingerprints  that  combine  the  same  bits

string  bits  set  using  different  approaches.  Some  commonly  used

fingerprints that fall into this category are the following: 

◦ UNITY 2D [32]:  This is a 988-bit long fingerprint based both on

structural keys and connectivity path fragments.

◦ MP-MFP [33]:  MP-MFP is a 171-bit fingerprint with 110 bits set

from structural keys and 61 bits set from property descriptors.

• Pharmacophore fingerprints are also commonly used. A pharmacophore

represents the relevant features and interactions needed for a molecule

to be active against a given target. Pharmacophoric fingerprints usually

encode  the  information  for  the  features  from a  list  that  a  molecule

presents,  in  a  similar  way to substructure-key based fingerprints,  but

taking  into  account  the  distance  between  these  features,  usually
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classifying it using a list of distance ranges. This way 3D information

can be encoded into the fingerprint [34].

• Lastly, there are also other types of fingerprints that try totally different

approaches. For example, LINGO [35] and SMIfp [36] are fingerprints

that are text-based and are calculated based on the canonical SMILES

[37] of the molecule. Protein-ligand interaction fingerprints (PLIF), as

their name suggests, encode information on protein-ligand interactions,

such a hydrogen bonds, ionic interactions and surface contacts with their

residue of origin  [19]. Structural Interaction Fingerprint (SIFt) is also

one of these fingerprints [38]. 

In  general,  fingerprints  with  longer  bit  strings  have  been  found  to  perform

better  at  similarity  searching,  because  of  increased  amount  of  stored

information (due to a reduction of bit collision for hashed fingerprints) [39]. 

2.2 Software for fingerprint-based virtual screening

There are many software packages that can be used for fingerprint-based virtual

screening, from whole drug discovery suites including fingerprint functionality

to software libraries or tools centered specifically in dealing with fingerprints

and  similarity  searching.  Each  software  package  supports  a  different  set  of

fingerprints, and most of them implement fingerprints not present in any other

package. However, the most commonly used fingerprinting algorithms can be

found in most software packages. Here is a list of the main software packages

used when doing ligand-based virtual screening with fingerprint similarity, in

no specific order:
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• OEChem TK:  This  OpenEye  toolkit [21] is  able  to  produce  166-bit

MACCS, LINGO, Circular, Path (Daylight-like) and Tree (Daylight-like

with non-linear, “tree” fragments) fingerprints. It has interfaces to C++,

Java, Python, and C#.

• JChem from ChemAxon [30]:This is a java library that provides access

to several hashed fingerprints, ECFP fingerprints with all their variants

(ECFC,  FCFP,  FCFC),  and  pharmacophoric  fingerprints.  ChemAxon

also  provides  packages  for  .NET  and  is  usable  in  Python  through

cinfony [40].

• OpenBabel  [24,41] This  is  a  free  and  open-source  cheminformatics

toolkit,  which  implements  MOLPRINT2D,  166-bit  MACCS,  a

Daylight-like fingerprint (FP2), and 2 structural key fingerprints with 55

(FP3) and 307 bits. It can be used from C++, Java, Python, C#, and Perl.

• RDKit [31] RDKit  is  also  a  free  and  open-source  cheminformatics

toolkit  that  provides  access  to  several  fingerprints:  166-bit  MACCS,

“Topological”  (Daylight-like),  “Atom  pairs”  (based  on  the  atomic

environments and shortest  path separations of every atom pair  in the

molecule [42]),“Morgan” (ECFP and its variations), “Torsion” (based

on  the  topological  torsion  descriptor [43]),  and  “Layered”  (an

experimental  topological  fingerprint  intended  to  make  fingerprinting

queries more straightforward). It is usable from C++, Python, Java, and

C#.

• CDK [14,15,44],  CDK is another free and open-source toolkit, which

features  several  fingerprints,  the  most  notable  being  ECFP,  LINGO,

Daylight-like fingerprint, 166-MACCS, PubChem, and other structural
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keys fingerprints such as E-State [45] and Klekota-Roth [46]. It is a Java

library but can be used in regular Python through cinfony [40].

• Indigo:  Indigo,  yet  another  free  and  open-source  cheminformatics

toolkit, offers several hashed fingerprints and their combination [47]. It

can be used from C++, Java, Python and C#.

• Cinfony  [40,48]:  Cinfony  is  not  a  toolkit  in  itself  and  does  not

implement any fingerprint, but it gives the user access to several toolkits

(OpenBabel, RDKit, CDK, JChem, and Indigo) through a common API

in Python and to some extent in Jython (JVM) and IronPython (.NET).

• ChemFP [13]: ChemFP is a tool that can be used as a back-end database

with  either  OpenBabel,  RDKit  or  OEChem,  thus  supporting  most  of

their fingerprints, and implementing on top of that a 166-bit MACCS

and a PubChem-like fingerprint. But what is special about Chemfp is its

ability to store the fingerprints in a standard file format (FPS) and then

to  perform  high-speed  Tanimoto  similarity  searches.  It  provides  a

Python library and command-line tools.

• Canvas:  Canvas  from  Schrödinger  offers  MACCS,  customizable

SMARTS-based  keys  fingerprints,  and  seven  types  of  hashed

fingerprints,  including  MOLPRINT2D,  ECFP,  and  linear  (Daylight-

like),  as  well  as  fingerprints  derived  from  pharmacophore  models

[39,49,50].

• Molecular Operating Environment (MOE): MOE implements 2 (TGD),

3 (TGT), and 4-point pharmacophore fingerprints in 2D/3D, MACCS

keys, and EigenSpectrum shape fingerprints among others [19].
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• jCompoundMapper [25,51]:  This is an open-source command-line tool

and  a  library  for  chemical  fingerprints,  featuring  support  for  many

fingerprint  types,  including  MOLPRINT2D,  atom  pairs,  and

pharmacophore  fingerprints  among  others.  It  also  provides  several

machine learning tools and uses CDK.

• Pipeline Pilot from Accelrys [29]: This is an authoring tool with a visual

and  dataflow  authoring  language.  It  can  calculate  a  wide  variety  of

fingerprints, including both MACCS versions, ECFP, and its variants.

• SYBYL-X Suite from Tripos [32]: SYBYL-X is a molecular modeling

suite that includes the UNITY 2D fingerprints for similarity searches.

• DecoyFinder  [52,53]:  DecoyFinder is  a graphical tool that helps find

decoy sets for virtual screening validation. It uses MACCS fingerprints

and molecular descriptors to find the decoy molecules.

• FLAP [54] (Fingerprints for Ligands and Proteins): FLAP is a tool that 
provides a common reference framework for comparing molecules 
using GRID Molecular Interaction Fields (MIFs). The fingerprints are 
characterized by quadruplets of pharmacophoric features and can be 
used for ligand-ligand, ligand-receptor, and receptor-receptor 
comparison.

• MayaChemTools is a free collection of Perl scripts, modules and classes

to  support  day-to-day  computational  discovery  needs  [55].  It  can

compute  several,  molecular  fingerprints,  including  ECFP,  MACCS,

path-based fingerprints and many more. It can also be directly used for

similarity searching with fingerprints.
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2.3 Online tools for fingerprint-based virtual screening

In comparison to the large number of software packages offering fingerprint

functionality,  the  number  of  online  services  doing  so  is  far  lower,  mostly

consisting of databases that include a similarity searching option using some

fingerprint. A brief enumeration of the most interesting services is as follows:

• PubChem [56]: PubChem provides a fast chemical structure similarity

search tool. Any small molecule may be used as query, and a Tanimoto

coefficient  threshold  can  be  chosen  above  which  molecules  will  be

deemed similar enough. The fingerprint used for this similarity searches

is the PubChem fingerprint [12].

• ChemSpider  [57–59]: ChemSpider  also  supports  similarity  searching

with  Tanimoto  (and  other  metrics)  thresholds.  It  uses  a  fingerprint

calculated by GGA's BINGO database cartridge, which uses the Indigo

toolkit [49].

• The  ZINC  database  [60–62]:  This  database  also  supports  similarity

search.  The fingerprint  used is  the path-based ChemAxon fingerprint

from JChem [30,61].  It uses the same fingerprint for the generation of

clusters  with  molecules  of  up  to  a  given  similarity  cutoff,  which

produces  clusters  with  guaranteed  molecular  diversity  and  chemical

space coverage.

• Multi-Fingerprint Browser for ZINC [63,64]: This is a tool that enables

rapid  identification  of  close  analogs  among  commercially  available

compounds in the ZINC database  [60].  The browser retrieves nearest

neighbors  in  multi-dimensional  chemical  spaces  defined  by  four

different  fingerprints  (fingerprint  =  a  vector  composed  of  several
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numerical  descriptors  of  molecular  structure  and properties),  each  of

which represents relevant structural and pharmacophoric features in a

different  way:  sFP  (substructure  fingerprint),  ECFP4  (Extended

connectivity  fingerprint),  MQN  (Molecular  Quantum  Numbers),  and

SMIfp (SMILES fingerprint).  Distances are calculated using the city-

block  distance  (CBD;  see  Table  1),  a  similarity  measure  which,

according to Awale et al. [63], performs as well as Tanimoto similarity.
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3. Usual fingerprint-based virtual screening scenarios

To conduct a virtual screening based on fingerprint similarity, the following

things are needed:

• At  least  one  known  active  molecule,  which  will  be  the  reference

molecule(s).

• A molecular database with potential actives.

• Software capable of generating and comparing fingerprints.

Once the reference molecules are chosen, the next step would be to choose the

most  appropriate  fingerprint.  The choice  is  usually  limited  by  the  available

options in the software being used.  The most appropriate option would also

depend mostly on the reference molecules, as a fingerprint should be able to

properly represent the reference molecules (which is generally not a concern for

hashed fingerprints). It should also be taken into account whether the database

and the available fingerprints  account for stereochemistry,  tautomeric  forms,

and conformation of  both the  reference molecules  and the molecules  in  the

database to be screened. Stereochemistry-aware methods should be preferably

used  to  screen  equally  stereochemistry-aware  databases.  The  presence  of

conformations  enables  the  use  of  fingerprints  depending  on  them[34].

Tautomerism  of  the  studied  molecules  should  also  be  taken  into  account

because  different  tautomers  of  the  same  molecule  could  have  substantially

different fingerprints.

With the chosen algorithm, fingerprints would be calculated for every molecule

and reference in the database, and then the similarity coefficient is calculated

between  the  reference  molecule  and  every  other  molecule.  After  this,  the
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molecules can be ranked in descending order using the similarity coefficient.

The top molecules of the rank would be expected to exhibit a similar activity as

the reference molecule.

4. Comparing Fingerprint Similarity Search with other Virtual 

Screening Methods

In a comparison by Tresadern et al [65], ECFP6 fingerprints were compared to

several other virtual screening methods: feature trees, topomers, ROCS shape

Tanimoto, EON electrostatic Tanimoto, OpenEye ComboScore (a combination

of shape Tanimoto and color-score), and Cresset-Fieldscreen. All of these, other

than those that feature trees,  are 3D methods and require substantially more

computation time than fingerprints. The results were as expected: the ECFP6

fingerprint was the weakest performing method with 3 out of the 4 queries,

although it exhibited one of the highest performances with the remaining query.

However, the 3 queries, where the fingerprint was outperformed, all showed

very  similar  performances  for  all  the  methods,  which  may  imply  that  the

performance of the methods depends on the selected queries.

In a different comparison, by McGaughey et al [66], the Daylight fingerprint

was put to test against many other virtual screening methods, including protein-

ligand  docking.  The  Daylight  fingerprint  outperformed  most  of  the  other

methods.  The authors  conclude  that  “as  measured  by EF,  the  2D similarity

methods (TOPOSIM, Daylight) perform well at lead-hopping when applied to a

diverse database.[...] One may ask how it is possible for 2D similarity methods

to perform nearly as well as 3D methods at lead hopping.” They also noted how

sensitive the performance is in Daylight fingerprints regarding path length, and
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that the default settings (minimum path length of 0 and maximum of 7) is too

easy to outperform making them poor standards for 2D similarity.

In  yet  another  comparison  [67],  several  fingerprints  (OpenBabel  FP2,  BCI,

MACCS, Daylight and MOLPRINT2D) were compared against 3D molecular

shape-based  methods  (ESHAPE3D,  ROCS,  PARAFIT,  SHAEP  and  USR).

Given  the  results,  the  authors  state  that  “Overall,  we  find  that  the  2D

fingerprint-based methods give better Virtual Screening performance than the

3D shape-based approaches for many of the DUD targets”. This shows how 3D

methods do not always outperform simple fingerprint similarity search.

However,  when  comparing  fingerprint  similarity  searching  to  other  virtual

screening approaches, the use of fingerprints has several advantages:

• It requires minimal setup and configuration. Some fingerprints can be

fine-tuned in several ways, but it will still require a lot less work than

creating pharmacophores or selecting and preparing a binding site for a

protein-ligand docking.

• Most of  the commonly used fingerprints  are  calculated based on 2D

structures.  Therefore,  for  these,  conformations  do  not  need  to  be

generated as opposed to shape-similarity or docking approaches. This

also  means  that  3D  information  will  be  mostly  missing  from  the

screening, although that may not impact the performance at all [67].

• It is less CPU-intensive than other methods. This means that it can be

carried out in a regular computer, and with the same hardware, it will be

a lot faster than other methods, especially protein-ligand docking.
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Nonetheless, fingerprint-based similarity searching also has some pitfalls to be

aware of:

• Activity cliffs: Activity cliffs are defined as pairs of compounds with

very  high  similarity  yet  highly  different  activity,  and  therefore  their

presence  can  negatively  impact  the  performance  of  the  similarity

searching. They are dependent on the dataset and the descriptors used to

calculate similarity, so different approaches will show different activity

cliffs in the same dataset, and finding the best solution can be tricky

[68].

• Choice of descriptors: Similarity search performance depends greatly on

the  descriptors  used  to  calculate  the  similarity,  and  in  the  case  of

fingerprints, different fingerprints can yield very different performance

results  [69].  The  obtained  results  can  also  vary  depending  on  the

algorithm implementation.

• Reference molecules: For similarity searching, at least one known active

molecule  is  needed  to  be  sued  as  a  reference  molecule.  However,

usually not all the parts of the reference molecules are equally relevant

towards  their  activity,  which  if  not  taken into  account  may result  in

inactive  molecules  similar  in  irrelevant  aspects  to  the  reference

molecules  ranked  similarly  or  even  higher  than  actually  active

molecules  which  are  only  similar  to  the  reference  molecules  in  the

activity-relevant  aspects.  A  proper  fingerprint  choice  based  on  the

knowledge of the reference compounds may help alleviate this problem.

• Conformation coverage: When using 3D fingerprints, the conformations

for  each molecule  should  adequately  cover  its  conformational  space,

which requires the testing and optimization of several parameters [70].
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In addition, there are also many other pitfalls that are not specific to similarity

searching but common for almost all virtual screening methods, as thoroughly

explained by Scior et al. [70]. 

5. Conclusion

There are many types of fingerprints, and thus there is also interest in knowing

which  fingerprints  perform  better.  There  are  open-source  platforms  to

benchmark fingerprints for ligand-based virtual screening that have been tested

with 14 2D fingerprints [28].  Studies have found that the overall performance

of  all  the  fingerprints  was  similar,  though,  the  inter-target  difference  in

performance was greater than the intra-target difference between fingerprints.

After ranking the fingerprints by performance, these studies found that ECFP0

(with a diameter of 0 when only taking the single atom as the environment) and

166-bit  MACCS  were  the  worst  when  using  early  recognition  evaluation

methods. Using the same methods, circular fingerprints were ranked higher, and

the topological torsions fingerprint was always highly ranked regardless of the

evaluation methods.

The  current  trend regarding similarity  searching  with  molecular  fingerprints

seems to be to combine different approaches through data fusion [71] (either by

combining different fingerprints  [63,72,73] or by combining fingerprints with

other  virtual  screening  methods  [73,74],  specially  structure-based  methods

[75]).  The  advantage  of  this  approach  is  that,  by  combining  methods  that

capture different chemical information, the highest ranked hits will be those that

are  highly  ranked  by  several  approaches,  making  them  more  relevant  and

reducing the amount of artifacts a single approach could introduce. This could
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possibly lead to the optimal search and combination of methods in data fusion,

with increased virtual screening performance.
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8. Appendix

Table 1

Some similarity coefficients and distances used with fingerprints.

Measure Expression Range

Tanimoto/Jaccard coefficient c
a+b−c

0 to 1

Euclidean distance √a+b−2c 0 to N

City-Block/Manhattan/Hamming 
distance

a+b−2c 0 to N

Dice coefficient 2 c
a+b

0 to 1

Cosine similarity c

√ab
0 to 1

Russell-Rao coefficient c
m

0 to 1

Forbes coefficient cm
ab

0 to 1

Soergel distance a+b−2 c
a+b−c

0 to 1

Where, given the fingerprints of two compounds, A and B, m equals the total 

amount of bits present in the fingerprints, a equals the amount of bit set to 1 in 

A, b equals the amount of bits set to 1 in B and c equals the amount of bits set to

1 in both A and B. 
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Figures:

Figure 1: A representation of an hypothetical 10-bit substructure fingerprint, 

with three bits set because the substructures they represent are present in the 

molecule (circled).

Figure 2: A representation of an hypothetical 10-bit topological fingerprint, in

this case a linear path-based fingerprint with fragments up to a length of 5. All 

fragments which can be found from the starting atom (circled) are shown 

indicating the fragment length and the corresponding bit in the fingerprint. 

There are two bit collisions, which are bits that are set by more than one 

fragment, which are likely in fingerprints with a reduced amount of bits. Only 

fragments and bits for a single starting atom are shown, for the full fingerprint 

this process would be carried for every atom in the molecule. Circular 

fingerprints use a similar approach, but building fragments within a radius of 

the starting atom instead of linear fragments.
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DecoyFinder: an easy-to-use python GUI application for 
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Abstract

Summary: Decoys are molecules that are presumed to be inactive against a 

target (i.e., will not likely bind to the target) and are used to validate the 

performance of molecular docking or a virtual screening workflow. The DUD 

database (http://dud.docking.org/) provides a free directory of decoys for use in 

virtual screening, though it only contains a limited set of decoys for 40 targets.

To overcome this limitation, we have developed an application called 

DecoyFinder that selects, for a given collection of active ligands of a target, a 

set of decoys from a database of compounds. Decoys are selected if they are 

similar to active ligands according to five physical descriptors (molecular 

weight, number of rotational bonds, total hydrogen bond donors, total hydrogen

bond acceptors and the octanol-water partition coefficient) without being 

chemically similar to any of the active ligands used as an input (according to 

the Tanimoto coefficient between MACCS fingerprints). To the best of our 

knowledge, DecoyFinder is the first application designed to build target-

specific decoy sets.

Availability: DecoyFinder is freely available at http://URVnutrigenomica-

CTNS.github.com/DecoyFinder

Contact: santi.garcia-vallve@urv.cat
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Supplementary information: A complete description of the software is 

included on the application home page. Validation of DecoyFinder on 10 DUD 

targets is provided as supplementary table 1

Introduction 

Ligand enrichment is a key metric for assessing the performance of molecular

docking or virtual screening workflows. It involves measuring the ability of a 

method or procedure to discriminate between active and inactive compounds. 

However, sufficient amounts of inactive compounds are generally not available 

for such testing; thus, decoys (i.e., molecules that are presumed to be inactive 

against the examined target) are commonly used for this purpose (Kirchmair et 

al., 2008). To avoid bias and to ensure that the enrichment is not simply due to 

physical differences between active and decoy compounds, decoys should 

exhibit physical properties (e.g., molecular weight and calculated LogP values) 

that are similar to active compounds, while still being chemically distinct from 

them (Huang et al., 2006). The largest publicly accessible database of decoys is 

the Directory of Useful Decoys (DUD) (Huang et al., 2006; Irwin, 2008), which

is available at http://dud.docking.org/. The DUD contains known active and 

decoy compounds for 40 target proteins and is currently the gold standard for 

benchmarking virtual screening and molecular docking algorithms. However, 

the DUD only contains decoys for a small set of protein targets and has several 

limitations, such as the possibility of identifying a larger decoy set and the risk 

of overfitting (i.e., inadvertently tuning algorithms and score functions to 

perform well on a single benchmark) (Irwing, 2008; Wallach and Lilien, 2011). 

To overcome these limitations, we have created an application called 

DecoyFinder that selects, for a collection of active ligands of a protein target, a 

set of decoys from a database of compounds. To the best of our knowledge, 
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DecoyFinder is the first application that is designed to build target-specific 

decoy sets.

Program overview

Input Files: The input files that are used by DecoyFinder contain a set of active

molecules (called queries) for a particular target and additional files containing 

a set of molecules (called potential decoys) from which decoys will be selected.

These files can be in sdf, mol or any other format that is recognized by 

OpenBabel (http://openbabel.org) (O'Boyle et al., 2011), including compressed 

files. For the potential decoy set, the program is able to directly use subsets of 

the ZINC database (Irwin and Shoichet, 2005) and provides the option, if 

enabled, to store these subsets as cache files and use them several times. This 

database, available at http://zinc.docking.org, is free and contains over 14 

million commercially available compounds for virtual screening. To avoid bias 

when reading the potential decoy files and to enable the acquisition of different 

decoy sets when DecoyFinder is re-run, potential decoy files are read in a 

different random order each time. In addition, it is possible to use a third file 

input option to submit files containing a set of known decoy molecules or 

decoys that have been previously selected (called known decoys) using the "add

new decoys" function. These known decoy compounds will not be re-evaluated 

to determine whether they are decoys, but will be considered when searching 

for new decoys and will be included in the resulting decoy set.

Algorithm for decoy selection: The algorithm for decoy selection implemented in 

DecoyFinder is similar to that used to construct the DUD database (Huang et 

al., 2006; Irwin, 2008) and other benchmarks (Wallach and Lilien, 2011). 

MACCS fingerprints (Durant, 2002) and five physical descriptors are calculated
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for each active and potential decoy molecule using the OpenBabel toolbox 

(O'Boyle et al., 2011). The Tanimoto coefficients between the MACCS 

fingerprints of each potential decoy and active molecule and between the 

potential decoys are then calculated. For each active molecule included in the 

query, DecoyFinder selects a set of decoys (36 when the default program 

options are used) from either the ZINC database or any set of molecules that is 

used as an input. Molecules are considered to be decoys if the following 

conditions are met:

They are similar to the active molecule according to five physical descriptors:

molecular weight, the number of rotational bonds, total hydrogen bond donors 

(HBD), total hydrogen bond acceptors (HBA) and the octanol-water partition 

coefficient (LogP). Thus, the decoy compounds exhibit physical properties that 

are similar to active compounds, which prevents bias and ensures that the 

enrichment is not simply due to physical differences between the active and 

decoy compounds. Using the default program options, the physical descriptors 

of a decoy are considered to be similar to those of an active ligand if the 

following conditions are met: (i) the molecular weight is within 25 Da of the 

active ligand; (ii) they contain the same number ± 1 of rotational bonds and 

HBDs, and the same number ± 2 of HBAs; and (iii) the LogP value is within 

1.0 of the active ligand. These constraint values can be relaxed in cases where a 

full decoy set cannot be generated or would take too much time to complete.

The Tanimoto coefficients between a potential decoy and each of the active 

molecules are not greater than a defined threshold (with the default set to 0.75). 

Thus, decoys are chemically different from any of the active molecules of the 

query.

The Tanimoto coefficients between a potential decoy and previously selected 

decoys are not greater than a defined threshold (with the default set to 0.9). This
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reduces the incidence of analogous structures between decoys and the bias of 

analogue or trivial enrichment when decoys are used in a virtual screening 

workflow validation (Irwin, 2008).

As a validation, an analysis of the performance of the decoys obtained with 

DecoyFinder when using GlideSP to score actives and decoys for 10 DUD 

targets can be found as supplementary table 1.

Output: The output of DecoyFinder is an sdf file containing the decoy 

molecules for a specific target and a CSV file that contains information 

regarding the sdf file and the decoy search options. When a full decoy set 

cannot be generated, the program displays a warning message and redirects the 

output to the input screen of the “add new decoys" option. Thus, the user can 

attempt to complete the decoy set by either using a different library of potential 

decoy compounds or relaxing the constraints used.

Implementation and system requirements

DecoyFinder has been developed as a python GUI application. It has the 

following dependences:

 Version 4.6 or higher of Nokia’s Qt framework (http://qt.nokia.com). 

DecoyFinder uses this framework for its graphical user interface.

 OpenBabel (http://openbabel.org) version 2.3.0 or higher with python 

bindings (O'Boyle et al., 2008; O'Boyle et al., 2011). Prior versions 

contained a bug that prevented DecoyFinder from working. OpenBabel 

is a powerful cheminformatics toolkit that we use to parse molecule files

and calculate molecular properties.

 Python version 2.6 or higher (but lower than version 3.0). 

 Python Qt bindings: either PySide 1.0 or higher, or PyQt4.
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A version of DecoyFinder for Ubuntu 10.10 (and newer versions), another 

one for Fedora 16 and a Windows version that includes all the dependencies, as 

well as the source code and several tools (e.g., a Wiki, documentation and a bug

tracking system), are available at http://URVnutrigenomica-

CTNS.github.com/DecoyFinder. Contextual help is provided to guide users 

through the set up of a DecoyFinder search run.
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Abstract

Decoys are molecules that are presumed to be inactive against a target (i.e. are 

not likely to bind to the target) and are used to validate the performance of 

virtual screening workflows. Current methodologies for building decoy sets for 

one specific target ensure that these are not chemically similar to the target's 

known active molecules, but are physically similar. Moreover, most decoy sets 

are currently built with docking in mind, and thus use some molecular 

fingerprints to control the similarity between actives and decoys. This could 

introduce an important bias if using those decoy sets in validating a virtual 

screening workflow which uses molecular fingerprints.  In this paper, the 

targets in the DUD-E and DEKOIS 2.0 databases were used to analyze whether 

randomly selecting molecules for a decoy set with a molecular weight similar to

that of the corresponding active molecules can provide useful decoy sets for 

molecular fingerprint virtual screening, and how do these compare to the decoy 

sets in DUD-E and DEKOIS 2.0, which used fingerprints for their generation.  

Also, using the molecular weight relative to the target's active molecules as the 

only criterion for selecting the molecules for the corresponding decoy set is 
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very fast and, therefore, makes it possible to obtain decoys for almost any drug 

target with known active molecules. Consequently, we have adapted our 

DecoyFinder software so that this criterion can be used as the default when 

obtaining decoy data sets.

Introduction

Virtual screening (VS) is a computational method used to search large libraries 

of molecules and identify those structures that are most likely to bind a specific 

target and modulate its bioactivity in a pre-defined way.1 Validation is a key 

aspect of a VS workflow, as any new protocol needs to prove that it can 

actually discern between active compounds and inactive molecules.2 The best 

validation method, of course, is to subject every VS hit to in vitro testing and 

then compare the method's predictions and the actual laboratory results. 

However, this is impractical and extremely expensive when there are hundreds 

or even thousands of compounds to assay, so in silico validation methods are 

used instead.2 The minimum requirement of in silico validation methods is that 

one or more active molecules be known, and that some inactive molecules be 

known, suspected or assumed. If the VS method can successfully identify the 

already known active molecules from the rest, it is regarded as validated. 

However, this approach has some problems: on one hand, if the inactive (or 

assumed inactive) molecules are too different from the active molecules, telling 

them apart would be trivial and therefore not indicative of the potential of the 

method for actual VS in molecular databases (where active and inactive 

molecules can be quite similar).3,4 One way to minimize this problem is to use 

‘decoy’ molecules, which are physically similar to active molecules, yet 
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chemically different, but are unlikely to be active.3–5 On the other hand, a 

molecule that is assumed to be inactive could unknowingly be active, and 

wrongly decrease the apparent performance of the method being validated 

because it is a false positive. One way to minimize the effect of a possible 

unknown active among the decoys is to use so many decoys – the most 

common ratio is 30-100 decoys for every active molecule – that false negatives 

become irrelevant.3–5 These decoy molecules are usually selected on the basis of

physicochemical molecular descriptors of the known actives such as similar 

molecular weight (MW), number of rotatable bonds, octanol-water partition 

coefficient, charges, and hydrogen bond donors and acceptors. Dissimilarity to 

the actives, however, is guaranteed through the use of some sort of molecular 

fingerprint3–5 . Unfortunately, this could be a source of bias when planning to 

use such decoys to validate a molecular fingerprint-based VS protocol.

Some databases3,4,6 have active and decoy sets for several targets, and there are 

also tools for generating custom decoy sets for custom active sets.5,7 Because of 

the constraints by which they are built, however, these decoy sets may not be 

representative of a real-world case of VS because molecular databases also 

contain inactive molecules that are chemically similar to active compounds. 

Therefore, we tested the performance of these decoy sets3,4 derived from 

complex constraints and processes, including similarity restrictions through 

molecular fingerprints, compared to same-size sets of ‘decoy’ molecules, whose

only constraint is the MW (as a radically different MW between active and 

decoy would make discarding the decoys trivial, thus leading to artificial 

enrichment) and deliberately avoiding the use of fingerprints to limit the 

potential active-decoy similarities. The comparison was between the 

52

UNIVERSITAT ROVIRA I VIRGILI 
Development of tools for in silico drug discovery 
Adrià Cereto-Massagué 



performances of a VS process by using different molecular fingerprint methods 

and metrics.

Computational methods

Two decoy databases were taken as references and their active and original 

decoy sets used: DUD-E3 (101 different targets) and DEKOIS 2.04 (74 different 

targets). For each target in DUD-E and DEKOIS 2.0 a new set of decoys was 

obtained with molecules from the ZINC8 database. The only constraint for 

selecting one ZINC molecule to be part of this new set of decoys is that their 

MW must be within one standard deviation of the MW of all the actives of the 

corresponding target. This method is much simpler than those used by DUD-E, 

DEKOIS 2.0 and others9,10 for generating decoy sets. The decoy sets were 

generated so they had the same active to decoy ratio as the original database, 

which was 50 decoys per active for DUD-E and 30 decoys per active for 

DEKOIS 2.0.

For each target from DUD-E and DEKOIS 2.0, a set of active ligands was 

selected from PDB models in which the ligand was co-crystallized with the 

target. The reliability of these ligand coordinates at the different models was 

validated using VHELIBS.11 These ligand sets were used as references during 

fingerprint comparisons with actives and decoys from the corresponding target. 

All actives from the original active sets that had the same InChI12 as any of the 

reference ligands for the same target were removed from their sets. The original

decoy sets were left untouched. 
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In parallel, for each target several molecular fingerprints were used to calculate 

the Tanimoto coefficient between the reference ligands and: (1) the actives; (2) 

the original decoy set; and (3) our MW-based decoy set. During this 

comparison, the score assigned to each active or decoy was its highest 

Tanimoto value with any of the reference ligands. On the basis of this value, a 

ROC curve was calculated and the performance was measured using several 

metrics: AUROC (area under the ROC curve), BEDROC13 (α = 20) and 

enrichment factors at 1% and 10% of the decoys (as used by DUD-E3). 

Performance of the decoy sets was tested using several different molecular 

fingerprints available in ChemFP14: MACCS16615 (OpenEye16, OpenBabel17 and

RDKit18 implementations), OpenEye Path, Circular and Tree; RDKit's path-

based, Morgan (ECFP4-like),18,19 Torsion, and AtomPair; OpenBabel's FP2, 

FP3 and FP4; and ChemFP's implementations of the Pubchem fingerprint on 

top of OpenBabel, RDKit and OpenEye toolkits.

The performance results of the original and the MW-based decoys were then 

statistically compared for each database by means of a linear regression for 

each fingerprint type and their differences were assessed. For each of the linear 

regressions performed, the correlation coefficient, mean performances of both 

sets, mean difference, slope, intersect and P-value are provided in the 

supplementary information. BEDROC and EF10% results are shown in Tables 

1-2 and 3-4, respectively.
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Results and discussion

Original  DUD-E  decoy  sets  were  generated  by  property  matching  ZINC

molecules to the active ligands using MW, estimated octanol-water partition

coefficient,  number of rotatable bonds,  hydrogen bond donors and acceptors

and their net charge. The representative states of each ligand were in the pH

range 6-8, and the most dissimilar of these was chosen according to an ECFP4

fingerprint.3  Original  DEKOIS  2.0  decoy  sets  were  generated  from  ZINC

database molecules taking into account their similarity to the actives in terms of

MW, estimated octanol-water partition coefficient, hydrogen bond donors and

acceptors, number of rotatable bonds, positive charges, negative charges and

aromatic rings, all of which were calculated at pH 7.4. The presence of latent

actives in the decoy sets of DEKOIS 2.0 was minimized by using a custom

score based on FCFP6 fingerprints to avoid potentially bioactive structures.4

Therefore, when their performance is compared to a set of decoys that has been

generated without incorporating any specific measure against analogue bias or

artificial  enrichment  (apart  from the  MW restriction),  the  DEKOIS 2.0  and

DUD-E decoy sets would be expected to yield a much higher VS performance

because of the artificial enrichment and other effects. However, the results show

that the decoys generated by only taking the MW into account  have a  very

similar fingerprint-based VS performance to those generated by the two more

complex methods, regardless of the metric (see Figure 1). Thus, the slope of a

linear  regression between the results  obtained using the original  decoys and

those obtained using our approach is significantly close to 1 (see Figure 1). As

can be seen in Tables from 1 to 4 for BEDROC and EF10, the mean difference

is in most cases in favor of the original decoys but just by a small margin. More

detailed  tables  for  every  metric  used  and  linear  regression  plots  for  every
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fingerprint type used can be found in the Supporting Information. Interestingly,

performance differences were quite consistent across all the fingerprint types

used, even when the algorithm of the fingerprints was very similar to those used

in  the  original  process  for  generating  the  decoy set  and choosing  the  most

dissimilar  decoys  (for  example,  Morgan  and  OpenEye  Circular  fingerprints

provide similar  results  to  ECFP4 and FCFP6 fingerprints,  respectively).  For

comparison,  the  distribution  of  hydrogen  bond  donors,  hydrogen  bond

acceptors and calculated log P across actives, original decoys and  MW-based

decoys  were  plotted  for  each  target  and  can be  found  in  the  Supporting

Information. As a summary, the log P overall distribution plots for all actives,

original decoys and MW-based decoys for all DUD-E and DEKOIS targets are

shown in Figures 2 and 3, respectively. There, it can be seen that  MW-based

decoys lie well within the values of both the actives and the original decoys,

while deviating less from the average. This means that MW-based decoys may

be even harder to tell  apart  from “average” actives than the original decoys

based on calculated log P alone.

By looking at the performance figures, such as Figure 1, it can be seen that 

there are some outlier cases. 

One such a case is the one of the Urokinase Plasminogen activator (uPA, from

the  DEKOIS  2.0  dataset)  with  OpenEye's  circular  fingerprint,  where  its

performance is much higher for the molecular-weight based decoys than for its

original decoys.  By looking at the comparison between in physical properties

between the actives and the decoy sets (Figures 4,5 and 6), one could conclude

that this may be caused by the fact that the MW-based decoys, in this case, tend

to have a higher calculated log P when compared both to the actives and the

56

UNIVERSITAT ROVIRA I VIRGILI 
Development of tools for in silico drug discovery 
Adrià Cereto-Massagué 



original decoys. However, such a big difference in performance is not found

when performing the analysis using any other of the fingerprints tested.

A case in the opposite side of the plot, showing a much lower performance with

the MW-based decoy sets, would be that of the Cytochrome P450 2A6 

(CYP2A6) with RDKit's AtomPair fingerprint (see Figure 1). Looking at 

Figures 7, 8 and 9, we can see that this time there is also a slight discrepancy in 

calculated log P, but in the opposite direction. Here, again, choosing a different 

fingerprint also negates this difference in performance.
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Conclusion

The  results  of  this  study  indicate  that  artificial  enrichment  due  to  trivial

differences in physicochemical properties between actives and decoys does not

play a very important role, as most of the decoy sets ignoring them perform just

slightly worse instead than better than those avoiding artificial enrichment. One

explanation for this  could be a high percentage of  latent  actives among the

decoy molecules in all targets, but this is highly unlikely because they were

selected only on the basis of their MW and there were none other measures that

could make the selected decoys more similar to the actives.

Overall, the results show that, for fingerprint-based VS, decoys that are selected

using the MW relative to the target's active molecules as the only criterion for 

selecting the molecules, perform similarly to decoys that are selected taking 

many other criteria into account. The DUD-E and DEKOIS 2.0 are regarded as 

the maximal-unbiased benchmarking sets20, and our results show that they are 

viable for their use in validation of fingerprint-based VS protocols without 

fearing for biases introduced by the use of similar molecular fingerprints in the 

VS and in the decoy-building procedure. However, it still remains very useful 

to be able to easily build decoy sets of any size for targets outside of those 

covered by the DUD-E and DEKOIS 2.0, or even to complement them. Another

possible applicability of such decoy sets would be to test which molecular 

fingerprints perform better for a certain set of active molecules, with no fear of 

fingerprint bias, in order to select the best-suited algortihm for each case. 

Therefore, we have updated our decoy set building software, DecoyFinder,21 to 

take advantage of this and it is now able to find decoy sets with less 

computational burden.
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In this study, we used the same decoy/active ratio as the databases we were 

comparing against, but increasing the amount of decoys for each active would 

most likely increase the VS perfomance in most cases.

 

Docking performance falls outside the scope and intent of this study, but further

research could be done to test whether such MW-based decoys perform 

similarly to traditional decoys in docking VS workflows.
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Tables

Table 1. Statistical analysis of the BEDROC results obtained with the MW-

based decoys in comparison with the original DUD-E decoys

BEDROC
DUD-E

Correlation
coefficient

Mean
(Original
decoys)

Mean (MW
decoys)

Mean
difference P-value

Slope Intersect

ChemFP-Substruct-OpenBabel 0.952 0.543 0.473 0.070 < 0.0001 0.973 -0.055

ChemFP-Substruct-OpenEye 0.953 0.543 0.474 0.069 < 0.0001 0.971 -0.053

ChemFP-Substruct-RDKit 0.954 0.543 0.474 0.069 < 0.0001 0.972 -0.054

OpenBabel-FP2 0.949 0.529 0.520 0.009 < 0.0001 1.019 -0.019

OpenBabel-FP3 0.932 0.196 0.121 0.075 < 0.0001 0.841 -0.044

OpenBabel-FP4 0.942 0.426 0.349 0.077 < 0.0001 0.954 -0.058

OpenBabel-MACCS 0.936 0.503 0.446 0.057 < 0.0001 0.978 -0.047

OpenEye-Circular 0.911 0.601 0.545 0.055 < 0.0001 0.963 -0.033

OpenEye-MACCS166 0.929 0.494 0.424 0.070 < 0.0001 0.975 -0.058

OpenEye-Path 0.851 0.540 0.564 -0.023 < 0.0001 0.990 0.029

OpenEye-Tree 0.938 0.658 0.574 0.084 < 0.0001 0.997 -0.082

RDKit-AtomPair 0.940 0.536 0.585 -0.049 < 0.0001 1.019 0.039

RDKit-Fingerprint 0.959 0.244 0.297 -0.053 < 0.0001 0.988 0.056

RDKit-MACCS166 0.932 0.504 0.446 0.058 < 0.0001 0.981 -0.048

RDKit-Morgan 0.920 0.668 0.560 0.108 < 0.0001 0.963 -0.083

RDKit-Torsion 0.948 0.646 0.591 0.055 < 0.0001 1.001 -0.056
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Table 2. Statistical analysis of the BEDROC results obtained with the MW-

based decoys in comparison with the original DEKOIS 2.0 decoys

BEDROC
DEKOIS

Correlation
coefficient

Mean
(Original
decoys)

Mean (MW
decoys)

Mean
difference P-value SlopeIntersect

ChemFP-Substruct-
OpenBabel 0.924 0.470 0.452 0.018 < 0.0001 0.905 0.026

ChemFP-Substruct-
OpenEye 0.953 0.470 0.457 0.013 < 0.0001 0.968 0.003

ChemFP-Substruct-
RDKit 0.954 0.471 0.458 0.012 < 0.0001 0.967 0.003

OpenBabel-FP2 0.961 0.529 0.505 0.024 < 0.0001 0.949 0.003

OpenBabel-FP3 0.857 0.176 0.126 0.050 < 0.0001 0.856 -0.024

OpenBabel-FP4 0.859 0.400 0.344 0.056 < 0.0001 0.883 -0.010

OpenBabel-MACCS 0.940 0.412 0.527 -0.115 < 0.0001 0.968 0.128

OpenEye-Circular 0.917 0.557 0.495 0.062 < 0.0001 0.976 -0.049

OpenEye-MACCS166 0.949 0.411 0.396 0.015 < 0.0001 0.975 -0.005

OpenEye-Path 0.917 0.570 0.539 0.031 < 0.0001 0.951 -0.004

OpenEye-Tree 0.961 0.578 0.556 0.022 < 0.0001 1.006 -0.025

RDKit-AtomPair 0.949 0.517 0.563 -0.046 < 0.0001 0.943 0.075

RDKit-Fingerprint 0.861 0.230 0.320 -0.090 < 0.0001 0.963 0.098

RDKit-MACCS166 0.950 0.413 0.411 0.002 < 0.0001 1.007 -0.005

RDKit-Morgan 0.959 0.568 0.531 0.037 < 0.0001 0.989 -0.031

RDKit-Torsion 0.960 0.575 0.601 -0.025 < 0.0001 0.962 0.047
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Table 3. Statistical analysis of the Enrichment Factor 10% results obtained with

the MW-based decoys in comparison with the original DUD-E decoys

EF10
DUD-E

Correlation 
coefficient

Mean 
(Original 
decoys)

Mean (MW 
decoys)

Mean 
difference P-value Slope Intersect

ChemFP-Substruct-
OpenBabel 0.95 62.88 55.35 7.53 < 0.00010.97 -5.75

ChemFP-Substruct-
OpenEye 0.95 63.01 55.52 7.49 < 0.00010.96 -5.28

ChemFP-Substruct-
RDKit 0.95 62.83 55.51 7.32 < 0.00010.96 -4.57

OpenBabel-FP2 0.96 62.50 58.54 3.96 < 0.00010.98 -2.98

OpenBabel-FP3 0.88 26.55 17.79 8.76 < 0.00010.88 -5.53

OpenBabel-FP4 0.92 54.02 42.71 11.31 < 0.00010.92 -7.16

OpenBabel-MACCS 0.94 56.51 51.15 5.36 < 0.00010.99 -4.87

OpenEye-Circular 0.97 66.86 60.28 6.58 < 0.00011.02 -7.71

OpenEye-MACCS166 0.93 56.24 49.15 7.09 < 0.00010.97 -5.47

OpenEye-Path 0.95 69.07 63.21 5.86 < 0.00010.99 -5.24

OpenEye-Tree 0.95 72.47 63.58 8.89 < 0.00011.04 -11.54

RDKit-AtomPair 0.94 64.33 65.97 -1.64 < 0.00010.96 4.47

RDKit-Fingerprint 0.93 27.54 35.23 -7.69 < 0.00010.97 8.45

RDKit-MACCS166 0.94 56.77 51.29 5.48 < 0.00010.99 -4.72

RDKit-Morgan 0.94 71.51 61.00 10.51 < 0.00011.00 -10.67

RDKit-Torsion 0.96 70.76 66.21 4.55 < 0.00011.00 -4.72
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Table 4. Statistical analysis of the Enrichment Factor 10% results obtained with

the MW-based decoys in comparison with the original DEKOIS decoys

EF10
DEKOIS

Correlation 
coefficient

Mean 
(Original 
decoys)

Mean (MW 
decoys)

Mean 
difference P-value Slope Intersect

ChemFP-Substruct-
OpenBabel 0.89 55.28 52.43 2.85 < 0.00010.85 5.20

ChemFP-Substruct-
OpenEye 0.92 55.35 53.37 1.98 < 0.00010.90 3.41

ChemFP-Substruct-
RDKit 0.92 55.45 53.11 2.34 < 0.00010.90 3.06

OpenBabel-FP2 0.97 60.55 56.14 4.42 < 0.00010.92 0.13

OpenBabel-FP3 0.82 24.87 17.76 7.11 < 0.00010.77 -1.43

OpenBabel-FP4 0.85 46.35 38.91 7.44 < 0.00010.85 -0.39

OpenBabel-MACCS 0.93 46.63 57.76 -11.13 < 0.00010.89 16.31

OpenEye-Circular 0.90 61.63 52.01 9.61 < 0.00010.96 -7.44

OpenEye-MACCS166 0.92 47.16 43.85 3.30 < 0.00010.92 0.27

OpenEye-Path 0.92 64.22 59.45 4.77 < 0.00010.95 -1.28

OpenEye-Tree 0.97 65.54 60.97 4.57 < 0.00011.01 -5.52

RDKit-AtomPair 0.94 56.62 60.73 -4.11 < 0.00010.92 8.73

RDKit-Fingerprint 0.85 24.37 36.35 -11.98 < 0.00010.98 12.43

RDKit-MACCS166 0.96 46.80 45.75 1.06 < 0.00011.00 -0.85

RDKit-Morgan 0.94 62.74 56.53 6.21 < 0.00011.00 -6.46

RDKit-Torsion 0.96 64.77 66.37 -1.61 < 0.00010.95 4.99

63

UNIVERSITAT ROVIRA I VIRGILI 
Development of tools for in silico drug discovery 
Adrià Cereto-Massagué 



ASSOCIATED CONTENT

The  following  supporting  information  for  this  article  is  provided:  detailed

statistical analysis tables for the results of each metric (AUC, BEDROC, EF1

and  EF10);  linear  regression  plots  for  every  target,  fingerprint  and  metric

combination; and two files with a list  of the PDB ligands used as reference

structures and the targets for which they were used.

This material will be available free of charge via the Internet at 

http://pubs.acs.org.

Author information

Corresponding author

Santiago Garcia-Vallve: santi.garcia-vallve@urv.cat

Author contributions

AC-M, GP and SG-V conceived the study and wrote the manuscript. AC-M and

MJO performed the calculations.  JMM-S provided the statistics.  All  authors

analyzed the data, discussed the results and approved the final version of the

manuscript. 

Funding sources

64

UNIVERSITAT ROVIRA I VIRGILI 
Development of tools for in silico drug discovery 
Adrià Cereto-Massagué 



This study was supported by the Government of Catalonia (ACC1Ó program,

and grants XRQTC and 2014 SGR 537) and the Spanish Government (project

TIN2011-27076-C03-01 "CO-PRIVACY").

Acknowledgements

We would like to thank Dr Mark Mackey, Cresset’s Chief Scientific Officer, for

inspiration on the subject of this article and also OpenEye Scientific Software

(Santa Fe, NM) for providing free access to its software through their Academic

Licensing  program.  The  language  of  the  manuscript  was  checked  by  the

Language Service of the Universitat Rovira i Virgili (URV). 

References

(1) Rester, U. Curr. Opin. Drug Discov. Devel. 2008, 11, 559–568.

(2) Cummings, M. D.; DesJarlais, R. L.; Gibbs, A. C.; Mohan, V.; Jaeger, E. P. 

J. Med. Chem. 2005, 48, 962–976.

(3) Mysinger, M. M.; Carchia, M.; Irwin, J. J.; Shoichet, B. K. J. Med. Chem. 

2012, 55, 6582–6594.

(4) Bauer, M.; Ibrahim, T. J. Chem. … 2013.

(5) Cereto-Massagué, A.; Guasch, L.; Valls, C.; Mulero, M.; Pujadas, G.; 

Garcia-Vallvé, S. Bioinformatics 2012, 28, 1661–1662.

65

UNIVERSITAT ROVIRA I VIRGILI 
Development of tools for in silico drug discovery 
Adrià Cereto-Massagué 



(6) Venkatraman, V.; Pérez-Nueno, V. I.; Mavridis, L.; Ritchie, D. W. J. Chem. 

Inf. Model. 2010, 50, 2079–2093.

(7) Irwin, J. J.; Sterling, T.; Mysinger, M. M.; Bolstad, E. S.; Coleman, R. G. J. 

Chem. Inf. Model. 2012, 52, 1757–1768.

(8) Irwin, J. J.; Shoichet, B. K. J. Chem. Inf. Model. 45, 177–182.

(9) Wallach, I.; Lilien, R. J. Chem. Inf. Model. 2011, 51, 196–202.

(10) Gatica, E. A.; Cavasotto, C. N. J. Chem. Inf. Model. 2012, 52, 1–6.

(11) Cereto-Massagué, A.; Ojeda, M. J.; Joosten, R. P.; Valls, C.; Mulero, M.; 
Salvado, M. J.; Arola-Arnal, A.; Arola, L.; Garcia-Vallvé, S.; Pujadas, G. 

J. Cheminform. 2013, 5, 36.

(12) IUPAC - International Union of Pure and Applied Chemistry: The IUPAC 
International Chemical Identifier (InChI) 
http://www.iupac.org/home/publications/e-resources/inchi.html (accessed
Oct 15, 2014).

(13) Truchon, J.-F.; Bayly, C. I. J. Chem. Inf. Model. 47, 488–508.

(14) Dalke, A. ChemFP http://chemfp.com (accessed Jun 20, 2014).

(15) Accelrys. MACCS Structural Keys.

(16) OpenEye Scientific Software. Santa Fe, NM. http://www.eyesopen.com. 
GraphSim TK version 2.1.1, 2013.

(17) O’Boyle, N. M.; Banck, M.; James, C. A.; Morley, C.; Vandermeersch, T.; 

Hutchison, G. R. J. Cheminform. 2011, 3, 33.

(18) Landrum, G. RDKit: Open-source cheminformatics http://www.rdkit.org.

(19) Morgan, H. L. J. Chem. Doc. 1965, 5, 107–113.

66

UNIVERSITAT ROVIRA I VIRGILI 
Development of tools for in silico drug discovery 
Adrià Cereto-Massagué 



(20) Xia, J.; Tilahun, E. L.; Reid, T.-E.; Zhang, L.; Wang, X. S. Methods 2014.

(21) DecoyFinder http://urvnutrigenomica-ctns.github.io/DecoyFinder/ 
(accessed Jun 20, 2014). 

67

UNIVERSITAT ROVIRA I VIRGILI 
Development of tools for in silico drug discovery 
Adrià Cereto-Massagué 



Figures 

Figure 1 Comparison of calculated LogP value distribution across DEKOIS2

.0 actives and decoys,  and molecular-weight based decoys for all targets
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Figure 2: Hydrogen bond acceptors of actives, original decoys and MW-

based decoys for target uPA
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Figure 3: Hydrogen bond donors of actives, original decoys and MW-based 

decoys for target uPA
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Figure 4: Calculated log P for actives, original decoys and MW-based 

decoys for target uPA
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Figure 5: Hydrogen bond acceptors of actives, original decoys and MW-

based decoys for target CYP2A6
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Figure 6: Hydrogen bond donors of actives, original decoys and MW-

based decoys for target CYP2A6
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Figure 7: Calculated log P for actives, original decoys and MW-based 

decoys for target CYP2A6
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Abstract

Background: Many Protein Data Bank (PDB) users assume high quality for the
deposited structural models, but forget they are derived from the interpretation 
of experimental data. The accuracy of model coordinates is not homogeneous 
between models or throughout the same model. To avoid basing a research 
project on a flawed model, we present a tool for assessing the quality of ligands 
and binding sites in crystallographic models in the PDB. 
Results: The Validation HElper for LIgands and Binding Sites (VHELIBS) is 
a software that aims to ease the validation of binding site and ligand coordinates
for non-crystallographers (i.e. users with little or no crystallography 
knowledge). Using a convenient graphical user interface, it allows checking 
how ligand and binding site coordinates fit to the electron density map. 
VHELIBS can use models from either the PDB or the PDB_REDO databank of
re-refined and re-built crystallographic models. The user can specify threshold 
values for a series of properties related to the fit of coordinates to electron 
density (Real Space R, Real Space Correlation Coefficient and average 
occupancy are used by default). VHELIBS will automatically classify residues 
and ligands as good, dubious or bad based on the specified limits. The user is 
able to also visually check the quality of the fit of residues and ligands to the 
electron density map, and reclassify them if needed.
Conclusions:
Using VHELIBS allows inexperienced users to examine the binding site and 
the ligand coordinates in relationship with the experimental data. This is an 
important step to evaluate models for their fitness for drug discovery purposes 
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such as structure-based pharmacophore development and protein-ligand 
docking experiments.

Keywords

Electron density map, binding site structure validation, ligand structure 
validation, protein structure validation, PDB, PDB_REDO

Background

The 3D structure of proteins depends on their amino acid sequence [1], but 
cannot be predicted based solely on that sequence, except for relatively small 
proteins [2]. As the structure of a molecule cannot be observed directly, a model
of the structure must be constructed using experimental data. These data can be 
obtained through different methods, such as X-ray crystallography, NMR 
spectroscopy or electron microscopy. However, none of these methods allows 
direct calculation of the structure from the data. In X-ray crystallography, the 
most applied method, the crystallographic diffraction data are used to construct 
a three-dimensional grid that represents the probability of electrons to be 
present in specific positions in space, the so-called electron density (ED) map. 
The ED shows an average between many (typically 10¹³ and 10¹⁵) molecules 
arranged in a periodic fashion in crystals, and is also an average over the time 
of the X-ray experiment [3]. This ED is then interpreted to construct an atomic 
model of the structure. The model is just a representation of the crystallographic
data and other known information about the structure, like the sequence, bond 
lengths and angles. Different models, such as the thousands of models in the 
Protein Data Bank (PDB) [4], represent the experimental data within varying 
degrees of reliability, and the quality of quantity of experimental data (for 
example the resolution limit of the diffracted X-rays) varies also a lot.

Due to the interpretation step during modelling, which is inevitably subjective 
[5, 6], it is very important to see if a model fits reasonably to the ED that was 
used to construct it, to ensure its reliable. For drug discovery and design 
purposes, the model quality of the protein binding sites and of the ligands 
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bound to them are of particular interest, while the overall model quality or the 
quality of part of the model outside the binding site, are not directly relevant.

A good way to assess how well a subset of atomic coordinates fits the 
experimental electron density, is the Real Space R-value (RSR) [7], which has 
been recommended by the X-ray Validation Task Force of the Worldwide PDB 

[8, 9]. The RSR measures a similarity score between the 2mFo-DFc and the 
DFc maps. The real-space correlation coefficient (RSCC) [6] is another well-

established measure of model fit to the experimental data. The use of the ED to 
validate the model will not catch all possible problems in the model [10], but 
they can show whether the model fits the data it was created from.

VHELIBS aims to enable non-crystallographers and users with little or no 
crystallographic knowledge, to easily validate protein structures, before using 
them in drug discovery and development. To that end, it features a Graphical 
User Interface (GUI) with carefully chosen default values, valid for most 
situations, but also allowing easy tuning of parameters for more advanced users.
A tool named Twilight [11, 12] has been recently published to evaluate ligand 
density. However, while VHELIBS focuses on assessing both the ligands and 
binding sites to aid model evaluation for drug discovery purposes, Twilight is 
ligand-centric and focuses on highlighting poorly modelled ligands. VHELIBS 
also enables the user to choose between the models from either the PDB [4, 13] 
or the PDB_REDO [14] databanks. Using PDB_REDO as the data source can 
have substantial benefits over using the PDB. PDB_REDO changes models 
both by re-refinement, incorporating advances in crystallographic methods 
since the original structure model (the PDB entry) was constructed and with 

limited rebuilding, mainly of residue side chains [15], improving the fit of 

models to the ED [16].
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Implementation

VHELIBS validates the binding site and ligand against the ED, in a semi-
automatic way, classifying them based on a scoring schema as 'good', 'bad' or 
'dubious'. This score is calculated taking several parameters into account (RSR, 
RSCC, and average occupancy by default, but more can be used). After 
performing the automatic analysis and classification of a target's binding site 
and ligand, it then enables the user to graphically review and compare them 
with their ED in order to make it easier to properly classify any 'dubious'-
labelled structure or re-classify any other structure based on actual visual 
inspection of the ED with the model. 

VHELIBS is mainly implemented using Python under Jython [17], with some 
critical parts implemented in Java. It uses Jmol [18] for the 3D visualization of 
models and EDs. Electron density maps are retrieved from the EDS [19, 20] or 
from the PDB_REDO databank, which are updated weekly with new data from 
the PDB. Models are downloaded from either the PDB or PDB_REDO 
according to the user settings. 
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Description of the algorithm

VHELIBS takes as input a user-provided list of either PDB [13] or UniProtKB 
[21] codes. The codes in these lists can be entered directly from the GUI or be 
provided in a text file. UniProtKB codes are mapped to their corresponding 
PDB codes, so what is parsed in the end is a list of PDB codes.

For each of these PDB codes, statistical data are retrieved from the EDS or 
from the PDB_REDO, depending on the source of the models being analysed 
(i.e. EDS data for models downloaded from the PDB and PDB_REDO data for 
models downloaded from the PDB_REDO). Ligands bound with residues or 
molecules included in the 'blacklist' exclusion list (see below) with a bond 
length < 2.1 Å are rejected. Those bound to molecules in the 'non-propagating' 
exclusion list (which can be modified by the user and by default contains 
mainly metal ions) are not rejected. The exclusion lists are composed of the 
most common solvent molecules and other non-ligand hetero compounds often 
found in PDB files, as well as some less common solvents and molecules which
were found to have very simple binding sites (e.g. a binding site consisting of 
just 1-2 residues). We also incorporated the buffer molecules from Twilight's 
list [11, 12]. The exclusion list from BioLip [22] was also considered, but 
deemed too restrictive. 

Once the ligands are determined, all the residues nearer than a specified 
distance (4.5 Å by default) are considered part of the binding site of that ligand. 
Then, every ligand and binding site residue is given a score and classified by 
that score based on the following algorithm (see also Figure 1):

 For each residue and component of each ligand and each binding site, 
the initial score is defined to be 0.

 For each unmet user-specified condition, the score is increased by 1. 
The user specified conditions are the value thresholds for several 
different properties of the model and the data (i.e. RSR, RSCC, 
occupancy-weighted B factor, R-free, resolution and residue average 
occupancy; the user may use only some of these properties).

 If the score remains 0, the ligand/residue is labelled as Good.
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 If the score is greater than the user-defined tolerance value, the 
ligand/residue is labelled as Bad.

 If the score is between 0 and the user-defined tolerance value, the 
ligand/residue is labelled as Dubious.

 At the end of all evaluations, the binding site and the ligand (for ligands 
with more than 1 'residue', i.e. those composed by more than one hetero 
compound in the PDB file) are labelled according to the highest score of
their components (i.e. a binding site with a Bad residue will be labelled 
as Bad regardless of how the rest of the residues are labelled, and a 
binding site can only be labelled as Good when all its residues are 
labelled as Good).

The results from this classification are saved to a CSV file (the results file) 
which can be opened by any major spreadsheet software and from there they 
can be filtered as desired (for good ligands, for good binding sites or for both). 
A file with a list of all the rejected PDB structures and ligands and the reason 
for the rejection is also generated next to the results file.

Up to this point, the automatic classification of ligands and binding sites is 
complete. Now the user can visually inspect the results in order to see whether a
binding or ligand labelled as Dubious can actually be marked as Good or not. 
When doing so, the user is presented with an interface like the one showed in 
Figures 2 and 3. The visualization of the binding site, the ligand and 
coordinates to examine (dubious or bad residues and ligands) and their 
respective EDs, can be customised in several ways through the GUI, being able 
to change colours, styles and even the contour level and radius of the EDs. 
Thus, the default visualization settings provide VHELIBS' users with the 
appropriate frame to easily reclassify dubious residues and ligands either as 
good or bad:

 good binding site residues are showed by default in white and with a 
wireframe. style in order to show the context where the possible 
reclassification is evaluated.
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 coordinates to exam for correctness are shown in ball and stick style and
coloured according to their B-factor.

 ligand coordinates are shown in ball and stick style and coloured in 
magenta (but can be coloured according to their B-factor if they need to 
be examined).

 ED for coordinates to exam is shown in yellow.

 ED for the complete binding site can be added to the visualization (in 
cyan) if necessary.

 ED for the ligand can be added to the visualization (in red) if necessary.

Hence, with this visualization frame, the user has all the information he/she 
needs in order to decide, for instance, whether: (a) binding site dubious 
coordinates could be relevant or not for protein-ligand docking results (if the 
dubious coordinates face opposite to the ligand, it is reasonable to think that 
their correctness does not affect protein-ligand docking results); and (b) ligand 
coordinates that were classified as bad or dubious by the automatic analysis can 
be changed to good because its experimental pose is the only possible for its 
corresponding ED (this usually happens with non flexible rings that have only 
ED for some of their atoms). In the online documentation 
(https://github.com/URVnutrigenomica-CTNS/VHELIBS/wiki) [23] there is 
more information on this and some practical rules for guiding such evaluation. 

VHELIBS can be used with different running conditions (i.e. with different 
profiles). The values of the default profiles [i.e. Default (PDB) and Default 
(PDB_REDO)] where chosen after careful visualization and comparison of 
models with their EDs, giving a default minimum RSCC of 0.9, a minimum 
average occupancy of 1.0, a maximum RSR of 0.4 and a maximum good RSR 
of 0.24 for PDB and 0.165 for PDB_REDO. The different RSR cut-offs for the 
PDB and PDB_REDO are the result of RSR being calculated using different 
software in the EDS (which uses MAPMAN [24]) and in PDB_REDO (which 
uses EDSTATS [25]). The third provided profile, Iridium, is based on the values
used in the construction of the Iridium set [26]. This profile is only provided as 
an example of how easy it is to adapt VHELIBS to use other values found in 

81

UNIVERSITAT ROVIRA I VIRGILI 
Development of tools for in silico drug discovery 
Adrià Cereto-Massagué 



literature. Note however that VHELIBS will yield slightly different results to 
those in the Iridium set, because VHELIBS uses the EDs and statistical data 
from EDS or PDB_REDO, while the authors of the Iridium set calculate all the 
data using different software and different EDs.

Key features of VHELIBS

 Many different parameters can be used to filter good models, and their 
threshold values can be adjusted by the user. Contextual help informs 
the user about the meaning of the different parameters.

 VHELIBS comes with three “profiles”, and the user can create custom 
profiles and export them for further use or sharing. 

 Ability to work with an unlimited amount of PDB codes (which can be 
read from a list).

 Ability to choose between models from PDB_REDO or from the PDB.

 Ability to work with an unlimited amount of UniProtKB [27] accession 
numbers and names (which can be read from a list). In that situation, all 
the PDB codes included at each UniProtKB entry in the list are analysed
by VHELIBS.

 VHELIBS runs in the Java Virtual Machine, and thus can run on any 
system with a recent version of a Java Runtime Environment, which is 
very likely already installed in user machines.

 VHELIBS consists of a single jar file, needing no installation. There are 
no dependencies other than Java.

 The user can load a results file from previous analysis and review the 
structures to see the ED fitting and then reclassify the model if needed. 
The resulting file from this can be opened again to resume, correct or 
just review the model with its ED, so the user can let a huge analysis run
over lunch or overnight and then review the results later at any time.
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 A user does not need to be familiar with any other software (although 
familiarity with Jmol [18] will help the user to make custom 
sophisticated views).

PDB_REDO changes to support VHELIBS

The PDB_REDO databank was upgraded to have per-residue RSR and RSCC 
values and downloadable EDs in the CCP4 [28] format for each entry. These 
ready-made maps not only make electron density visualisation possible in 
VHELIBS, but also in PyMOL [29] (a new plugin is available via the 
PDB_REDO website).

To assess how much of the previously observed model improvement in 
PDB_REDO is applicable to ligands and their binding pocket, we implemented 
two new ligand validation routines in the PDB_REDO pipeline: (1) EDSTATS 
[25] calculates the fit of the ligand with the ED; and (2) YASARA [30] 
calculates the heat of formation of the ligand (which is used as a measure of 
geometric quality) and interactions of the ligand with the binding pocket. The 
interactions measured in YASARA include the number of atomic clashes 
(bumps), number and total energy of hydrogen bonds, and the number and 
strength of hydrophobic contacts, π-π interactions, and cation-π interactions. 
The strengths of hydrophobic contacts, π-π interactions, and cation-π 
interactions are based on knowledge-based potentials [31] in which each 
individual interaction has a score between 0 and 1.

Results and Discussion

We performed an analysis of the ligand quality scores in the PDB and 
PDB_REDO, for more than 16,500 ligands (compounds described by the PDB 
as ‘non-polymer’; not chemically linked to the protein; with common 
crystallisation additives, such as sulphate and glycerol, excluded) in more than 
5900 structures and the results are summarised in Table 1. The results show that
ligands in PDB_REDO are better in terms of fit to the ED (better RSR and 
RSCC) and have more favourable geometry (lower heat of formation). 
Although the interactions with binding sites improve, the changes are very 
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small, except for the reduction in atomic clashes. This is to be expected, as 
ligand binding sites are typically the most important part of a structure model 
and much attention is paid to ensure the model is correct in that area. 
Nevertheless, in individual cases the improvement can be big enough to change 
a dubious ligand in a bad binding site to a good ligand in a good binding site 
(Figure 4).

All ligands and binding sites present in both the EDS and the PDB_REDO 
databanks were  analysed, using the appropriate default profiles [Default (PDB)
and Default (PDB_REDO)]. The results are summarised in Table 2 (for the 
binding sites) and Table 3 (for the ligands). In the case of the binding sites, the 
Good binding sites in the EDS are the 19.26%, while in the PDB_REDO they 
are the 35.92%, although only the 67% of the Good binding sites in the EDS are
classified as Good for the PDB_REDO, even having some of them classified as 
Bad. In the case of the ligands, however, the improvement in classification from
the PDB_REDO is far more significant: Good ligands go from 31.19 % from 
the EDS to a 63.66% from the PDB_REDO, having most of the Good ligands 
from EDS still classified as Good from PDB_REDO (94.54 %), and 
dramatically reducing Bad ligands from a 43% from EDS to a 3.64% from 
PDB_REDO, having most of these Bad ligands from EDS classified as Good 
from the PDB_REDO. Interestingly, our results suggest that, by default, a 
typical VHELIBS user should choose the Default (PDB_REDO) profile instead 
of the Default (PDB) one. From the 16830 binding sites that are labelled as 
Good by either of the default profiles, 85% of them are identified by the 
Default (PDB_REDO) profile [in contrast with only 45.58% being identified by
the Default (PDB) profile]. This is even more remarkable when the ligands are 
considered: from the 26028 ligands labelled as Good by either of the default 
profiles, 97.4% of them are identified by the Default (PDB_REDO) profile and 
only 47.7% are identified by the Default (PDB).

To demonstrate how VHELIBS can be used, we chose as a test case the human 
Dipeptidyl peptidase 4 (DPP-IV). We first used the corresponding UniProtKB 
name, DPP4_HUMAN, with the Default (PDB_REDO) profile. There are 74 
different PDB structures listed in the UniProtKB entry for this protein. The 
automatic analysis of all of these structures took an average of 2 min. and 0.43 
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s. on an AMD FX-8150 machine running Ubuntu 12.04.1 LTS amd64 and Java 
(OpenJDK) 1.6.0_24, with some of the time being spent downloading data from
the PDB_REDO (with cached PDB_REDO data, and thus without downloading
it, the average is 1 min. 15.78 s.). 

Out of the original 74 PDB structures, 10 were rejected because there was no 
PDB_REDO data available for them (1J2E, 1NU6, 1NU8, 1R9M, 1R9N, 
1RWQ, 1WCY, 2BUB, 2JID and 2QKY). This mostly happens when a PDB 
entry lacks experimental X-ray reflection data, which is the case for the ten 
structures listed. From the remaining 64 structures, 44 had no ligands, resulting 
to 20 structures. These 20 PDB_REDO models showed 450 possible ligand-
binding site pairs, of which 9 were rejected because the ligand was covalently 
bound to a residue, and 366 were rejected because the ligand was either 
blacklisted or covalently bound to a blacklisted ligand. Most of these rejected 
ligand-binding sites include molecules such as SO4 that are marked as hetero 
compounds by the PDB, covalently bound ligands (e.g. mannose/MAN in 
2BGN), or metal ions (e.g. sodium or mercury) that are not usually used for 
drug discovery purposes. The valid ligand-binding site pairs were 75. Of these, 
55 were labelled as good ligands, 57 as good binding sites and 43 as good 
ligand and binding site (Table 4). 

With 55 good ligands and 57 good binding sites (43 of them being good binding
sites with good ligands) there should be enough good structures for most use 
cases, so it would not be necessary to review the dubious ones. However, if that 
were not the case, the user can review dubious cases to see if they could be 
good enough for the specific purposes. Figure 2 show one example of a good 
ligand with a dubious binding site whereas Figure 3 shows a dubious ligand 
with a bad binding site. The user can also review the good structures if looking 
for false positives, or review the bad ones in the hope of finding good enough 
structures there (which is very unlikely using the default profiles).
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Conclusions

Currently there is no other tool to easily check model to ED fitting for binding 
sites and ligands, and available alternatives need a lot of scripting or console 
commands for each structure.

There are several use cases where VHELIBS can prove very helpful:

 When choosing structures to use for a protein-ligand docking: with 
VHELIBS the user can choose the structures with the best modelled 
binding sites.

 For choosing structures where both the binding site and the ligand are 
well modelled, in order to validate the performance of different docking 
results. This could make it possible to obtain a new gold standard for 
protein/ligand complexes that can be used for the validation of docking 
software and that could be significantly larger and more diverse than 
those being currently used (i.e. the Astex Diverse Set [32] and the 
Iridium set [26]).

 For choosing structures where both the binding site and the ligand are 
well modelled, in order to obtain reliable structure-based 
pharmacophores that pick the intermolecular interactions that are 
relevant for modulating the target bioactivity. This is important in drug-
discovery workflows for finding new molecules with similar activity to 
the co-crystallised ligand.

 To obtain well modelled ligand coordinates in order to evaluate the 
performance of 3D conformation generator software that claims to be 
able to generate bioactive conformations.

Our study allows to conclude also that, in general, binding site and ligand 
coordinates derived from PDB_REDO structures are more reliable than those 
obtained directly from the PDB and, therefore, highlights the contribution of the
PDB_REDO database to the drug-discovery and development community.
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Availability and Requirements

 Project name: VHELIBS (Validations Helper for Ligands and Binding 
Sites)

 Project home page: http://urvnutrigenomica-
ctns.github.com/VHELIBS/

 Operating System(s): Platform independent
 Programming language: Python, Java
 Other requirements: Java 6.0 or newer, internet connection.
 License: GNU AGPL v3
 Any restrictions to use by non-academics: None other than those 

specified by the license (same as for academics).

List of abbreviations

ED: Electron Density

PDB: Protein Data Bank

GUI: Graphical User Interface

RSR: Real Space Residual

RSCC: Real Space Correlation Coefficient

DPP-IV: Dipeptidyl peptidase 4
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Figures

Figure 1: Automatic ligand and binding site classification; This diagram shows
the process by which the ligands and binding sites of each PDB/PDB_REDO 
model are classified based on how well does the model fit the ED.
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Figure 2: Example of a good ligand with a dubious binding site; Here we can 
see a ligand (S14 B1002 in PDB entry 2FJP [33]) and its binding site, from the 
results from the analysis of DPP4_HUMAN using the Default (PDB) profile. 
The only dubious residue from the binding site is the one with the yellow ED 
and represented by ball and stick, coloured by temperature factor.
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Figure 3: Example of a dubious ligand with a bad binding site; Here we can see
a ligand (AZV A 1 in PDB entry 3Q8W [34]) and its binding site, from the 
same analysis as in Figure 2. As can be seen, some residues from this binding 
site hardly fit their ED (in yellow). The ligand mostly fits its ED, but it still has 
some discrepancies.
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Figure 4: The guanosine-5’-monophosphate binding site in chain C of PDB
entry 1A97 [35] is an example of a ligand and binding site flagged respectively
as dubious and bad in the PDB (left panel: upper with cyan ED for the binding
site and red ED for the ligand; lower with default view: yellow ED for dubious
and bad residues), but as good in PDB_REDO (right panel: upper with cyan ED
for the binding site and red ED for the ligand;  lower with previously bad or
dubious residues with orange ED). The RSR and RSCC of the ligand improve
from 0.154 to 0.065 and from 0.86 to 0.97, respectively. Two extra hydrogen
bonds are introduced, improving the total hydrogen bonding energy from -157
kJ/mol to -199 kJ/mol. The all atom root mean square deviation of the ligand is
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0.6 Å. Of the residues in the binding site, arginine 69 and the boric acid

molecule improve most significantly in terms of fit to the ED.

Tables

Table 1: Average validation scores for ligands in PDB and 

PDB_REDO

Validation score a PDB average b PDB_REDO average b

RSR c 0.120 0.104

RSCC c 0.90 0.92

Heat of formation (kJ/mol) d -1011 -1067

Hydrogen bonding energy 

(kJ/mol) d

-57.7 -58.8

Hydrophobic contact strength d,e 16.20 16.43

π-π interaction strength d,e 1.26 1.28

cation-π interaction strength d,e 1.17 1.19

Number of atomic clashes d 9.1 7.9
a Lower is better for RSR, heat of formation, hydrogen bonding energy 

and number of atomic clashes. Higher is better for RSCC, hydrophobic 

contact strength, π-π interaction strength and cation-π interaction 

strength. 

b Overage over 16904 ligands (13703 for heat of formation) in 5932 

structure models. 

c Calculated using EDSTATS [25]

d Calculated using YASARA [30] using the atomic coordinates as-is. 
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Strained ligand conformations give high values.

e The average reported is the average sum of all interactions for a single ligand.
Table 2. All binding sites present in both PDB and PDB_REDO were

analysed. In this table it can be seen how were they classified

when coming from the EDS or from the PDB_REDO databank .

PDB_REDO

good bad dubious

EDS good 5145 1600 926 7671

bad 5500 3727 8395 17622

dubious 3659 2953 7915 14527

14304 8280 17236 39820
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Table 3. All ligands present in both PDB and PDB_REDO were analysed.
In this table it can be seen how were they classified when coming from the
EDS or from the PDB_REDO databank.

PDB_REDO

good bad dubious

EDS good 11741 16 662 12419

bad 9819 1206 6098 17123

dubious 3790 229 6259 10278

25350 1451 17236 39820

98

UNIVERSITAT ROVIRA I VIRGILI 
Development of tools for in silico drug discovery 
Adrià Cereto-Massagué 



Table 4. Number of complexes classified as good, bad or dubious after
applying VHELIBS to 75 ligand/DPP-IV binding site complexes using the
Default (PDB_REDO) profile.

binding site

good bad dubious

ligand good 43 0 12 55

bad 0 0 0 0

dubious 14 0 6 20

57 0 18 75
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Abstract

Computational  target  fishing  methods  are  designed  to  identify  the  most

probable target of a query molecule. This process may allow the prediction of

the  bioactivity  of  a  compound,  the  identification  of  the  mode  of  action  of

known drugs, the detection of drug polypharmacology, drug repositioning or the

prediction  of  the  adverse  effects  of  a  compound.  The  large  amount  of

information  regarding  the  bioactivity  of  thousands  of  small  molecules  now

allows the development of these types of methods. In recent years, we have

witnessed the emergence of many methods for in silico target fishing. Most of

these methods are based on the similarity principle, i.e., that similar molecules

might  bind  to  the  same targets  and have similar  bioactivities.  However,  the

difficult  validation  of  target  fishing  methods  hinders  comparisons  of  the
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performance of each method. In this review, we describe the different methods

developed for target prediction, the bioactivity databases most frequently used

by these methods, and the publicly available programs and servers that enable

non-specialist  users  to  obtain  these  types  of  predictions.  It  is  expected  that

target  prediction  will  have  a  large  impact  on drug development  and on the

functional food industry.
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Highlights

• In recent years, a great number of methods for target prediction or drug

repositioning have been developed.

• Most methods rely upon similarity with molecules whose bioactivity is

known and other information for target prediction.

• The  difficulties  in  validating  predictions  hinder  comparisons  of  the

performance of different methods.

• Target fishing methods could have a large impact on drug research and

functional food industry.

Keywords

Computational  Target  Fishing,  Reverse  Screening,  Drug  Repositioning,

Polypharmacology, Drug Research, Functional Foods
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1. Introduction

In  contrast  to  virtual  screening,  which  is  used  to  search  large  libraries  of

compounds for molecules that are most likely to bind a specific target, the aim

of reverse screening, also known as  in silico  or computational target fishing

[1,2] or reverse pharmacognosy  [3], is to identify the most likely targets of a

query molecule. This approach allows the prediction of the bioactivity of the

query molecule or its mechanism of action. In addition, these techniques can be

used  to  predict  the  adverse  effects  of  a  compound  [4,5],  to  detect  drug

polypharmacology [6–8], or to reposition drugs [7,9–13].

Known drugs have,  on average,  six molecular targets on which they exhibit

activity [14]. Polypharmacology, the ability of small molecules to interact with

multiple proteins, is of particular interest for rationally designing more effective

and less toxic drugs. Drug repositioning, the process of finding new uses for

known drugs, is a promising way to explore alternative indications for existing

drugs [13]. Because the successful launch of a single new drug is estimated to

cost  approximately  U.S.  $800 million  and takes  a  staggering  15 years,  and

because very few compounds that start  a clinical trial  emerge to the market

[10], finding new uses for old drugs could be economically advantageous.

Taking into account that several databases, such as ChEMBL, contain millions

of  molecules  and  information  about  their  bioactivity,  it  is  now  becoming

feasible  to  merge  the  known “chemical  space”  and  “biological  space”  into

models  that  will  enable  us  to  generate  biological  “spectra”  to  predict  the

phenotypic activity of new molecules based on their chemical structures and the

known  bioactivities  of  structurally  similar  compounds  [15].  Although  the

current methods of virtual screening could be successfully adopted for target
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fishing,  the  differences  in  the  general  tasks  of  these  methods  justify  the

independent development of new in silico techniques for target fishing.

2. Computational methods for target fishing

Various computational methods have been developed to predict the molecular

targets of a compound [1,16]. These methods were initially classified into four

groups:  chemical  similarity  searching,  data  mining/machine  learning,  panel

docking, and the analysis of bioactivity spectra [16,17]. Recently, other classes,

such as protein-structure-based methods, have been proposed [18]. Below, we

summarize the main characteristics of some of these methods.

2.1 Molecular similarity methods

This section describes chemical similarity methods and shape-based similarity

methods.  The simplest  methods for  target  prediction  are  based  on chemical

similarity and the use of current knowledge about the bioactivity of millions of

small  molecules.  These  methods  are  based  on  the  “chemical  similarity

principle,”  which  states  that  similar  molecules  are  likely  to  have  similar

properties  [19,20].  Thus,  the  targets  of  a  molecule  can  be  predicted  by

identifying proteins with known ligands that  are highly similar to  the query

molecule  [16]. The advantage of these methods is that they only require the

computation  of  the  similarity  between  compounds  [19,21].  An  outline  of  a

chemical  similarity  method  is  shown  in  Figure  1.  In  this  method,  a  small

molecule is represented as a chemical fingerprint.  Fingerprints  are a way of

encoding the structure of a molecule. The most common type of fingerprint is a

series of binary digits (bits) that represent the presence or absence of particular

substructures in the molecule.  The interested reader is referred to  [22] for a

review about fingerprints. To compare the fingerprints of two molecules, the
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Tanimoto coefficient or any other similarity criterion can be used. The more

similar two compounds are,  the closer the Tanimoto coefficient will be to 1.

Several databases describing the bioactivities of thousands or millions of small

molecules or the activities of known drugs can be used for target prediction (see

Table 1 and reference [1]).

Keiser et  al.  [23] used a similarity ensemble approach to compare protein

targets by the 2D similarity of the ligands that they are known to bind. The

authors  screened a  dataset  of  3,665 drugs,  including drugs  approved by the

FDA and investigational drugs, against a database of 65,241 ligands organized

into 246 protein targets taken from the MDL Drug Data Report database. Their

study  revealed  unanticipated  associations  between  thousands  of  drugs  and

ligand sets  [23]. Of the 30 most promising drug-target associations that were

tested experimentally, 23 were confirmed, and 5 of the 23 were shown to be

potent (<100nM) modulators of their predicted target  [23]. Thus, their  study

demonstrated the power of using simple ligand-based similarity searches.

Because they can be calculated quickly, 2D fingerprints have been widely used

for similarity searching in target fishing. However, 3D chemical descriptors can

also  be  used  [17],  although  calculating  them  is  computationally  more

expensive. Because they contain more information, the predictions based on 3D

fingerprints would be expected to be better than those based on 2D fingerprints.

However,  in some cases, methods that use 2D fingerprints outperform those

methods  that  use  3D  fingerprints  in  correct  target  prediction  [24].  3D

descriptors work better in cases of low structural similarity [24]. 

A  known  limitation  of  chemical  similarity  approaches  is  that  inactive

compounds can sometimes exhibit good similarity with active molecules if they

have been obtained by modifying an active compound at some key position that
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was crucial  for its  interactions  [25].  These inactive compounds can be false

positive predictions of  target  fishing methods.  In  addition,  in  some cases,  a

large group of false negatives is also expected, because not all types of active

compounds for a specific target have been identified.

Shape-based similarity methods use 3D shape comparisons between molecules,

usually comparing the shape of the molecular volume, but other “shapes” can

be compared, like the electrochemical surface. This can be done with software

such  as  ROCS  [26],  Phase  Shape  [27],  ESHAPE3D  [28],  PARAFIT  [29],

ShaEP  [30] and USR  [31] as some examples. Shape-based methods have the

potential  of  detecting  similarities  between  molecules  with  different  atomic

structures,  thus  making  them  specially  useful  for  scaffold-hopping.

Pharmacophores and some molecular fingerprints (like Spectrophores [32] and

many pharmacophore-based fingerprints [33]) can also include 3D information

[22,33].  All  these 3D methods require  ligand conformations.  In  many cases

(where there is no known biologically active conformation for the molecule), a

single low-energy conformer is used, although it can be biologically irrelevant.

Another approach is to get the conformation of the molecules by aligning them

to  a  known  bioactive  conformation  of  a  known  ligand.  However,  2D

fingerprint-based  methods  give  better  performance  than  3D  shape-based

methods in virtual screenings  [34].  In other cases, combining  chemical and

shape similarity measures significantly increases the target prediction accuracy

[35].

After obtaining the highest  similarity coefficient between a query compound

and  the  compounds  in  an  annotated  database,  it  is  important  to  assess  the

statistical significance of the similarity. Two structures are usually considered

similar if the Tanimoto coefficient between them is higher than 0.85. However,

107

UNIVERSITAT ROVIRA I VIRGILI 
Development of tools for in silico drug discovery 
Adrià Cereto-Massagué 



this  value  is  not  always  reliable  [36].  Keiser  et  al.  [37] used  an  E-value

computed from the 2D similarity with the set of ligands of a target. This E-

value is derived from the statistics of similarity values with all ligands (above a

certain threshold), and it indicates how likely it would be to find a molecule

with  a  given  average  similarity  to  the  set  of  ligands  of  a  target.  The

SwissTargetPrediction server uses a probability derived from a cross-validation

analysis to rank the targets and estimate the accuracy of the predictions [25].

2.2 Data mining and machine learning methods

One of the major challenges of an in silico target fishing method is to identify

the  biological  consequences  of  the  query  molecule  binding  to  its  predicted

targets.  For  this  reason,  more  complex methods have  been developed.  Data

mining and machine  learning-based methods,  also  known as  chemogenomic

approaches, usually combine fingerprints and some type of machine learning

approach,  such  as  self-organizing  maps  [38],  Bayesian  classifiers  [4],  or

network  classification  [39],  to  develop  predictive  models.  These  methods

usually  require  the  use  of  systematic  nomenclature  in  the  training  set

(normalized target names) [16,17] and depend on reliable training data sets [2].

Associations  between  target  names  and  chemical  sub-structures  can  be

extracted automatically across target class sets with inductive machine learning.

Chemical features correlated with specific target binding are then stored in the

form  of  multiple-target  models.  The  target  fishing  problem  is  thus  one  of

compound classification  on a  grand scale  involving thousands of  individual

target class models [17].

Bender et al.  [4] used normalized side-effect annotations in the World Drug

Index and a multicategory Bayes Model that employed ECFP4 fingerprints to
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build a model for adverse drug reactions. On average, 90% of the adverse drug

reactions observed with known, clinically used compounds were detected [4].

2.3 Protein structure-based methods

Other  computational  target  fishing  methods  use  the  protein  structure  of  the

targets to predict novel bioactivities. Protein docking [40–42], pharmacophore

searching  [43],  or  protein−ligand  interaction  fingerprints  can  be  used  [18].

These methods are limited to targets with resolved structures. Docking a query

molecule  to  a  large  group  of  x-ray  resolved  structures  demands  large

computational power or an extraordinary amount of time. In addition, docking

is  not  a  very  reliable  way  to  investigate  ligand-target  interactions,  as  no

statistically significant relationship exists between docking scores and ligand

affinity  [16].  Despite these limitations, specific docking programs and servers

for target fishing, called inverse docking methods,have been developed (Table

2), in some cases reducing the computing time required and developing special

scoring measures [18].

2.4 Methods based on analysis of bioactivity spectra

The activities of a compound across a series of biological readouts,  such as

gene  expression  profiles  or  protein  microarrays,  can  also  be  viewed  as

molecular descriptors and used for target prediction [16,44,45]. These methods

use  experimental  values  of  the  query  molecules  and  require  a  reference

collection, such as the Connectivity Map [46], of gene expression profiles from

cultured human cells treated with bioactive small molecules. Wang et al.  [47]

demonstrated  that  the  on-target  and  off-target  effects  of  a  drug  could  be

characterized  by  drug-induced  in  vitro genomic  expression  changes.  The

Mantra  2.0  web  server  [48] (Table  2)  explores  similarities  between  drug-
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induced transcriptional profiles and represents this information as a network.

Visual  inspection of the neighboring drugs and communities helps to  reveal

modes of action and suggests new applications of known drugs [48].

A similar approach uses a disease gene expression signature, derived from the

set of differentially expressed genes between a disease and a healthy control

sample, that is compared to gene expression profiles of drugs. Drugs with gene

expression patterns that are oppositional to the disease gene expression pattern

represent putative novel therapeutic indications [11].

3. Validation of the methods

A  fundamental  issue  when  developing  a  novel  method  for  predicting  or

classifying is validating the method. Validation allows  the comparison of the

performance of different methods. However, most of the articles describing a

novel computational method for target fishing do not validate their results or

compare their  method with existing ones.  Ideally,  to compare the predictive

capacity of different methods, the same dataset must be applied to all of the

methods  being  compared.  This  dataset,  used  to  test  the  performance of  the

predictive methods as a community standard,  is  usually  called a  benchmark

dataset. For predicting drug–protein interactions, a benchmark dataset manually

constructed by Yamanishi et al. [49] has frequently been used [42]. Recently, a

benchmark dataset consisting of more than 155,000 ligand-protein pairs from

894  human  protein  targets  has  been  proposed  for  future  target  prediction

methods  [15].  Although there are  several  web servers publicly available  for

target fishing (see Table 2), most of the developed methods are not available

on-line or as stand-alone programs. This lack of availability is an important

difficulty for comparing different methods.
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One possible way of validating a target fishing method would be to check how

often known targets fall within the best-scoring predicted ones in the output of a

method  [25]. Ideally, however, the known target-compound information must

not  be  used  by  the  predictive  method;  otherwise,  the  validation  would  be

obvious. To obtain a more balanced dataset that better reflects the much larger

number of non-interacting protein–ligand pairs, additional negative interactions

must be included [25]. This requirement can be met by linking the molecules of

the test set to randomly chosen targets  [25]. Machine learning-based methods

usually  use  cross-validation  [50,51].  Cross-validation  consists  of  defining  a

training set, which is used for training the method, and a test set (a group of

compounds with known targets) that it is used to validate the method. However,

cross-validation often overestimates model performance. Overfitting is another

problem, which occurs when a model performs well on a training set and much

worse on subsequent data.

Retrospective  analysis  has  been used to  validate  some of  the  computational

target  fishing  methods  [25].  An example of  retrospective analysis  would  be

using an initial version of a database to train or create a method and then using

molecules that have been added to a newer version of the same database to test

the  method.  This  strategy  cannot  be  used  to  compare  the  performance  of

different methods. Gottlieb and coworkers [52] used 2,552 unique drug–disease

associations  that  were  being  investigated  in  clinical  trials  to  validate  their

method.  Twenty-seven  percent  of  the  associations  were  predicted  by  their

method  [52]. This approach is an interesting way to validate a target fishing

method, although not all of the associations that are being investigated are true.

The best way to validate a predictive method is experimentally. Lounkine et al.

[5] performed a large-scale prediction and testing of drug activity on side-effect
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targets. More than 600 marketed drugs were computationally screened against a

set of 73 protein targets, and approximately half of the positive predictions were

subsequently confirmed experimentally [5]. Cheng et al. [39] used a supervised

inference  method  to  predict  new  drug-target  interactions  for  12,483  FDA-

approved and experimental drug-target binary links.  In vitro assays confirmed

the novel targets of five old drugs [39]. Campillos et al.  [53] used phenotypic

side-effect similarities to infer whether two drugs shared a target. When their

method  was  applied  to  marketed  drugs,  unexpected  drug-drug  relationships

were  discovered.  Using  in  vitro binding  assays,  the  authors  experimentally

validated 12 out of 20 of the unexpected drug-drug relationships [53].

4. Examples of target predictions

Although a lot of methods of target fishing have been developed, only a few of

them have confirmed their predictions in vitro or in vivo and have showed their

capacity  for predicting unexpected new cross-target  binding events.  Most of

these  unexpected  relationships  have  been  found  in  the  field  of  drug

repositioning.  Because the safety profiles of approved drugs  are  known,  the

development of alternative indications are cheaper and potentially faster  [13].

Below we summarize some examples in this field: 

Using an electrostatic and shape 3D similarity search of a database of approved

drugs to a previously identified inhibitor of DNA methyltransferase, Olsalazine,

an approved anti-inflammatory drug was predicted, and further characterized, as

a novel DNA hypomethylating agent [54]. 

From  gene expression measurements from 100 diseases and gene expression

measurements on 164 drug compounds, Sirota and coworkers [55]  developed a
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computational approach to predict novel therapeutic indications on the basis of

comprehensive testing of molecular signatures in drug-disease pairs. From their

predictions, these authors experimentally validated the use of the antiulcer drug

cimetidine as a candidate therapeutic in the treatment of lung adenocarcinoma,

demonstrating its efficacy both in vitro and in vivo [55]. In a similar approach,

from the comparison between data measuring gene expression in Inflammatory

Bowel Disease (IBD) samples and gene expression from 164 small-molecule

drug  compounds,  Dudley  and  coworkers  [56] found  that  topiramate,  an

anticonvulsant drug not previously described to demonstrate efficacy for IBD or

any related disorders of inflammation or the gastrointestinal tract, might serve

as a therapeutic option for IBD in humans. 

Using side-effect similarities and a network analysis, Campillos and coworkers

[53] identified new unexpected drug targets. Rabeprazole,  an antiulcer drug,

and the nervous system drugs paroxetine and fluoxetine were found to inhibit

the dopamine receptor DRD3 and to bind the serotonin receptor HTR1D [53]. 

Using a network-based inference method, Cheng et al. [39] predicted, and then

confirmed  in  vitro,  that  montelukast,  an  agonist  of  cysteinyl  leukotriene  1

receptor,  is  a  also  a  DPP-IV  inhibitor,  and  that  diclofenac,  simvastatin,

ketoconazole, and itraconazole show polypharmacological features on estrogen

receptors.

Based on a structural similarity with pharmacophores of a known prostanoid TP

recpetor, Ting and Khasawneh [57] showed that glybenclamine, an antidiabetic

drug, has antithrombotic activity in mouse models. 

Using the MANTRA web-server, based on network theory and non-parametric

statistics on gene expression data, Iorio et al. [44] correctly predicted the mode
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of action for nine anticancer compounds. In addition, they were able to discover

the  unexpected  similarity  between  cyclin-dependent  kinase  2  inhibitors  and

Topoisomerase inhibitors [44]. 

Based on the chemical similarity between ligands, Keiser et al.  [37] found the

unexpected  relationships  between  methadone,  emetine  and  ioperamide  with

muscarinic M3, alpha2 adregergic and neurokinin NK2 receptors, respectively. 

Using the one-dimensional drug profile matching Kovacs et al. [58] found that

nitazoxanide, an antiprotozoal agent that interfere with the electron transfer, is

also  a  peroxisome  proliferator-activated  receptor  agonist,  showing  that

nitazoxanide lower fasting blood glucose levels and improve insulin sensitivity

in type diabetic rats.

5. Conclusions

In recent years, a large number of computational target fishing methods have

been developed. This abundance has been made possible by the availability of

large  libraries  of  information  about  the  bioactivity  of  compounds  and  by

advances in methodology. Understanding the biological mechanisms of current

drugs and integrating this information with additional resources are essential

steps  for  making  more  reliable  predictions.  However,  efforts  are  needed  to

validate  the  results  of  different  prediction  methods.  The  creation  of  a

benchmark dataset will enable a proper comparison of the performance of  in

silico target prediction methodologies. Identification of new targets for novel

compounds or existing drugs and the prediction of adverse effects will facilitate

drug discovery and the development of new ingredients for functional foods.
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Figures

Figure 1. Chemical similarity through the comparison of fingerprints can be

used to predict novel targets or functions of a query molecule.
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Table 1. Databases and web resources useful for in silico target fishing.

Database URL Description Reference

BindingDB http://www.bindingdb.org/bind/

Database of measured binding
affinities, focusing primarily on the

interactions of proteins considered to be
drug-targets with small, drug-like

molecules

[63]

ChEMBL http://www.ebi.ac.uk/chembl
Contains 2D structures, calculated

properties, and abstracted bioactivities
of drug-like small molecules

[64]

DrugBank http://www.drugbank.ca/
Contains information about drugs and

drug targets
[65]

DrugPort
http://www.ebi.ac.uk/thornton-

srv/databases/drugport/

Provides an analysis of the structural
information available in the PDB

relating to drug molecules and their
protein targets

[66]

HumanCyc http://humancyc.org/
Provides an encyclopedic reference and
computer-queryable database of human

metabolic pathways
[67]

Human
Metabolom
e Database

http://www.hmdb.ca/
Contains detailed information about
small-molecule metabolites found in

the human body
[68]

KEGG http://www.genome.jp/kegg/
Integrated database resource containing

information about pathway maps,
metabolites, small molecules, and drugs

[69]

MDL Drug
Data Report

http://accelrys.com/products/dat
abases/bioactivity/mddr.html

Contains over 150,000 biologically
relevant compounds and well-defined

derivatives
[70]

PubChem
http://pubchem.ncbi.nlm.nih.gov

/

Open repository for experimental data
identifying the biological activities of

small molecules
[59]

SuperTarget
http://bioinf-

apache.charite.de/supertarget_v2
/

Extensive web resource for analyzing
drug-target interactions

[60]

WOMBAT
http://www.sunsetmolecular.com

/
Contains chemical series from

published literature
[61]

ZINC https://zinc.docking.org

Free database of commercially
available compounds for virtual

screening. It provides subsets with
actives for many ChEMBL targets.

[62]
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Table  2.  Web  servers  that  can  be  employed  for  in  silico target

fishing

Server Method URL
Referenc

e

ChemMapper
3D similarity (molecular shape and
chemotype features) computation

http://lilab.ecust.edu.cn/chemmapper/ [73]

ChemProt 2.0 Fingerprint based
http://www.cbs.dtu.dk/services/ChemProt-

2.0/
[74]

DRAR-CPI Docking based http://cpi.bio-x.cn/drar/ [41]

HitPick

Combines 2D fingerprints and a
machine learning method based on a
Laplacian-modified naive Bayesian

model

http://mips.helmholtz-
muenchen.de/proj/hitpick

[51]

idTarget
Divide-and-conquer docking

approach
http://idtarget.rcas.sinica.edu.tw/ [75]

Mantra 2.0
Network theory and non-parametric

statistics on gene expression data
http://mantra.tigem.it/ [48]

PASS ONLINE

Fingerprint based Bayesian
approach based on the knowledge

base about structure-activity
relationships for more than 260,000

compounds

http://www.pharmaexpert.ru/passonline/ [76]

PharmMapper Pharmacophore based
http://59.78.96.61/pharmmapper/index.ph

p
[43]

Similarity
ensemble
approach

(SEA)

Fingerprint based http://sea.bkslab.org/ [37]

SPiDER
Self-organizing map-based

prediction
http://modlab-

cadd.ethz.ch/software/spider/
[38]

SuperPred
A combination of 2D, 3D, and

fragment similarity values
http://prediction.charite.de/ [71]

SwissTargetPre
diction

A combination of 2D and 3D
similarity values

http://www.swisstargetprediction.ch/ [25]

TarFisDock Docking based http://www.dddc.ac.cn/tarfisdock/ [40]
TargetHunter Fingerprint based http://www.cbligand.org/TargetHunter/ [72]
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Anglerfish is a new freely available web server that does fast target prediction

for  small  molecules.  It  does  so  by  combining  several  different  molecular

fingerprints  (which can be chosen by the user)  and by leveraging ChEMBL

activity  data  to  predict  potential  new  targets  for  the  query  molecule  and

quantifying its potential bioactivity value towards those targets (measured as a

standardized  pX  value).  The  method  has  been  validated  using  data  from

different ChEMBL versions, by being able to reliably predict activities from a

newer ChEMBL version by using exclusively data from an older version and a

combination  of  three  fingerprints  (i.e.,  RDKit  Fingerprint  and  FP3  and

MACCS166  from  OpenBabel).  Anglerfish  can  be  used  for  free  at

http://anglerfish.urv.cat.

Introduction
The fast growth of freely available bioactivity data resources like PubChem1–

3,  BindingDB4,5 or  ChEMBL6 during  the  last  decade  has  enabled  the

development  of  approaches  that  leverage  all  these  data  in  order  to  predict

bioactivities.

One  of  such  approaches  is  Target  Fishing,  also  known  as  reverse

pharmacognosy,  reverse  screening, polypharmacology  prediction,  drug

repurposing,  drug  reprofiling or  target  prediction7, which  is  the  opposite

approach  to  that  of  Virtual  Screening8,9:  in  Virtual  Screening,  bioactive

compounds for a given target are sought; in Target Fishing the starting point is

the small  molecule,  for which a target is sought. It  is thus a very appealing
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approach for drug repurposing (with the associated benefits when compared to

developing a new drug10) and in order to study known or prospective drugs'

potential adverse effects or polypharmacology (which is likely, given that, on

average, each known drug has 6 different molecular targets11). Current Target

Fishing methods can be broadly classified in two categories, pretty much like

Virtual Screening: target-centric methods, which often rely on machine learning

models built on top of known activity data for a set of targets, with some that

take the structural models of the targets into account or even dock the query

compounds to a wide range of targets; and ligand-centric methods, which rely

on  some similarity  metric  between  the  query  molecule(s)  and  some known

bioactive molecule7. Ligand-centric Target Fishing methods have the advantage

of requiring much less known information about the targets, being that a single

known active compound can be enough to identify a new putative target for a

query molecule, while for target-centric methods either the structural model of

the  target  or  a  sizeable  amount  of  actives  and  inactives  (in  order  to  build

prediction models) need to be known7. 

Among the molecular similarity metrics used for ligand-centric approaches

both  in  Target  Fishing  and  in  Virtual  Screening,  molecular  fingerprint

Tanimoto  similarity  index12 is  a  common  choice  that  enables  the  easy

comparison of compounds by taking into account different sets of their features

(depending on the fingerprinting algorithm chosen13).  There are some freely

accessible  Target  Fishing  that  implement  molecular  fingerprint  similarity

search7, with some even enabling the user to choose which fingerprint to use14.

The combination,  or data fusion,  of the similarities from different molecular

fingerprints has proven to increase Virtual Screening performance15, but this has

not yet been leveraged by any freely available Target Fishing tool or service.

Thus,  we  provide  a  novel  Target  Fishing  approach  leveraging  several
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simultaneous  molecular  fingerprint  similarities  and  ChEMBL6 activity  data

fusion, with a fast and freely accessible online implementation: Anglerfish.

Implementation and Methods

Molecule Database

The  molecule  database  used  in  Anglerfish  was  derived  from  a  subset  of

ChEMBL version 22.  This subset consists of all  compounds with Pubchem

Bioassays  of  type  B  (data  measuring  binding  of  compound  to  a  molecular

target)  whose target  was a  protein or protein complex,  its  activity  could be

expressed in nM (as “standard unit” in ChEMBL) and whose standard type was

either of AC50, EC50, ED50, IC50, ID50, Ka, Kb, Kd, Ke, Ki, LC50, LD50,

Potency or XC50. All these different activity measures were normalized into a

pX  value  equivalent  to  ChEMBL’s  pChEMBL6,  calculated  as

9−log(standard _value) , where standard_value is the representation of the

activity in nM. When more than one activity was found for a single compound-

target pair, all values were averaged. 

Molecular  fingerprints  of  each  of  the  supported  types  (9  at  present)  are

calculated for each molecule in the database and stored for similarity searches.

Algorithm
Provided a query molecule and a given set of molecular fingerprints (which are

discussed  below),  each  fingerprint  is  calculated  for  the  query  and  then  a

similarity search against the Anglerfish database is performed.  The results of

these similarity searches are then combined, and for each active hit an average
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similarity  measure  between  the  used  fingerprints  is  calculated.  Using  these

similarities and the ChEMBL activites of these molecules, a pX activity value

for the query molecule is predicted for each target. 

The available fingerprints are:

• Key-based fingerprints:

◦ MACCS16616  (OpenBabel and RDKit implementations)

◦ OpenBabel FP317

◦ OpenBabel FP417

• Topological (path-based) fingerprints:

◦ RDKit topological fingerprint (daylight-like)18

◦ RDKit Torsion19

◦ RDKit Atom Pairs20

◦ OpenBabel FP2 (daylight-like)17

• Circular fingerprints

◦ RDKit Morgan (ECFP)21

Similarity searches are performed through the ChempFP22 library.  Cinfony23,

pybel24 and Indigo25 are used internally too.
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Interface

Anglerfish provides a simple and an easy to use web-based front-end. On the

landing site (see Figure 1), the user can provide a query molecule by 3 possible

means: providing a SDF file containing a single molecule, writing its SMILES,

or  writing  its  InChI26 code.  Following  this,  the  user  can  also  select  which

molecular fingerprints to use for the similarity search. 
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Figure 8. Anglerfish landing page, from where a new search can be 

launched
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After submitting this form, a confirmation screen (see Figure 2) will be shown

to make sure everything is correct.  Once confirmed, the activity search will

start, and the user will be redirected to a waiting page showing the status of the

search. The user will be provided with a unique URL pointing to that page,

which will show the search results once they are available (usually in a couple

of minutes). This URL can be saved for future reference to the search results.
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Once the results are ready, they will automatically load and they will be shown

as a table (see Figure 3) with the following fields: target name, predicted pX,

highest average similarity, lowest average similary and hits (number of similar

active compounds for that target). This table is interactive and can be sorted by

any of the columns and it also allows for complex search criteria in its search

box. By default it is sorted by descending average similarity and then by the

predicted pX in descending order, meaning the targets for which the predicted

activity is most likely will show at the top of the results. The results table can

be downloaded as a CSV spreadsheet.

Clicking  on  the  “Hits”  column  leads  to  a  detailed  view  of  the  similarities

between the query and each active compound for that target (see Figure 4).
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Figure 10. View of the results page
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Figure 11.Detailed results view, showing each activity match and their 

individual similarities
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Validation

For the validation of the method, a new database was built,  using the same

procedure, with the previous version of ChEMBL (version 21). A set of 217

molecules were selected from the database built from the latest ChEMBL, such

as:

• They  were  different  enough  between  them  according  to  all  tested

fingerprints (Tanimoto < 0.7)

• They were not present in ChEMBL 21

• Their  targets  were  present  in  ChEMBL  21,  and  they  had  active

compounds that could be included in the Anglerfish database

This  way,  the  predicted  activities  of  these  compounds  against  the

ChEMBL21-based  database  could  be  compared  against  their  known  actual

activities from ChEMBL22.

For the predicted activity, we tested 3 different formulas:

1. The  first  one  was  the  average  activity  weighted  with  the  average

similarities:

 
∑ pX i×avg_tanimotoi

∑ avg_tanimotoi

Where avg_tanimoto is the average of the Tanimoto similarity between

the query and the active molecule for all the fingerprints chosen.

This formula comes from the assumption that the average Tanimoto similarity

to an active will show how much of that activity can we expect on the query
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molecule. With this formula, a molecule that shows the highest similarity to

known actives  will  have the average of the activities of those actives as its

predicted activity. Lower similarities will lower the predicted activity value, but

will also contribute less to it. However, it can still be the case that a lot of low-

similarity and low-activity known actives can affect negatively the predicted

activity. There is also the added problem that whenever there are more than one

known active, the predicted activity cannot be as high as the highest known

activity,  even if  it  is  the  only  one  from a  very  similar  known active.  This

formula  is  also  sensitive  to  the  number  of  known actives:  the  more  known

actives a target has, the more the predicted activity tends to a lower value. For

this  reason,  we  also  tried  the  next  formula,  in  an  attempt  to  avoid  these

problems.

2. The highest product of activity and average similarity:

max( pX i×avg_tanimotoi)

In this case, the predicted activity is the highest product of the similarity with

the query and the activity value (pX) of a known active. This takes into account

both  the  activity  and the  similarity  to  the  query,  but  is  insensitive  to  noise

caused by too many known actives or too many dissimilar actives. This formula

however has the problem of being potentially too optimistic for the predicted

activity,  since  a  very  potent  known  active  could  hide  many  actually  more

similar but not so active results. This, again, prompted us to develop yet another

formula to predict the activity.

3. The weighted  activity  scaled by the average similarity that produces
the highest product of activity and average similarity:

 
∑ pX i×avg_tanimotoi

∑ avg_tanimotoi

×avg_tanimoto j ;
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for avg_tanimoto j×pX j=max (pX i×avg_tanimotoi)

In this last formula, we tried to combine the prior two methods, basically by

multiplying the result of the first formula by the Tanimoto similarity that yield

the highest product with its activity (the second formula).

The  validation  was  tested  for  all  fingerprints  and  all  possible  fingerprint

combinations of up to 3 different fingerprints, yielding a total of 129 different

combinations.   Performance  of  the  predictions  was  assessed  with  both

Kendall’s tau-b coefficient and the % of predictions within 1 pX of the known

value.
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Results and Discussion

The predicted activities were plotted against their known counterparts in scatter

plots, like those on Figure 5. The differences between the predicted values and

the  known  values  were  plotted  as  Gaussian  distributions,  such  as  those  in

Figure 6. The plots for every fingerprint combination and formula can be found

in the supplementary data.

Comparing the validation set predicted activities to their known activities, we

can see in figure 5 that both the first and third formulas tend to predict activities

within  a  certain  range  regardless  of  the  known  activity,  yielding  a  low

correlation  between  them.  The  second  formula,  however,  shows  higher

correlation between predicted and known activities across different fingerprint

combinations.  It is with the second formula too that we find the 2 fingerprint

combinations  with the  µ closest  to  0 (≈-0.04),  that  is,  those whose average

difference  between  predicted  and  known  values  are  closer  to  0.  These  2

combinations are  essentially  the same: the RDKit’s daylight-like fingerprint,

OpenBabel’s  key-based  FP3 and either  of  the  MACCS166 implementations

(OpenBabel or RDKit). With either of these combinations, 50% of the predicted

activities are within 1 pX unit of their known values, which is increased to an

80% within 2 pX units of the known activities, as can be seen in Figures 5 and

6.  

Based  on  these  results,  Anglerfish  uses  the  second  formula  for  activity

prediction, and those fingerprints are enabled by default.
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Figure 12. Predicted
activity pX vs known
activity for the
combination of
RDKit, FP3, and
(OpenBabel) MACCS
fingerprints, from top
to bottom using the
formulas 1
(“weighted”), 2
(“scaled”) and 3
(“expected”) for the
predicted pX value.
The green and red
lines delimit the
intervals within 1 and
2 pX of the known
value, respectively.
The blue line
intersects the exact
matches.
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Figure 13. Distribution of the deviation of the predicted activities from 

their known using the second formula (“scaled”) values for the same 

fingerprints as in figure 5. Plots for the rest of formulas and fingerprint 

combinations cna be found in the supplementary data.

An  example  target  search  was  done  borrowing  chlorotrianisene  from

SwissTargetPrediction27 as the example molecule, since it has some described

activities  not  present  in  ChEMBL6 for  some  target  which  are  present  in

ChEMBL: Cyclooxygenase-1 (COX-1)28 and Estrogen Receptor alpha (ER)29.  

As we can see from the results in Figure 3,  besides the match against itself that

gives the Ferritin light chain activity,  we can find among the first  predicted

targets  both  COX-1  and  ER.  The  second  listed  predicted  target,  Androgen

145

UNIVERSITAT ROVIRA I VIRGILI 
Development of tools for in silico drug discovery 
Adrià Cereto-Massagué 



Receptor,  has  described  activity  within  ChEMBL  for  this  molecule  (from

PubChem bioassay30),  though  as  a  functional  assay  (type  “F”)  and  without

activity  values  usable  by  Anglerfish.  This  leaves  at  the  very  least  3  true

positives (without counting the self-match) among the first results.

Conclusions

Most  target  fishing  software  solutions  and  on-line  tools  make  use  of  2D

similarity methods7, specially molecular fingerprints. While others combine a

single  2D  fingerprint  with  other  different  approaches  for  target  fishing,

Anglerfish  is  the  only  one  to  combine  several  different  2D  molecular

fingerprints, which provides it with very fast similarity searching and thus fast

output results (usually available after just a couple of minutes). The novelty in

Anglerfish  is  also  in  not  just  predicting  potential  new  targets  for  a  given

molecule, but also in estimating its activity value; this can help prioritize targets

with  a  potentially  higher  activity  or  avoid  those  with  a  very  low predicted

activity. 

Supporting Information. 

A zip archive is provided containing the detailed results from the validation

process, for each of the activity prediction methods and the set of molecules

used. Prediction scatter plots and deviation distribution plots are also provided. 
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Conclusions

The literature reviews that are part of this thesis have been extensively cited

in  all  kinds  of  papers  in  the  field,  both  for  molecular  fingerprint  similarity

search in virtual screening1–35 and for   in silico   target fishing15,36–56. But most

interesting is the fact that the published tools developed as part of this thesis

have been proven useful by the cheminformatics community: 

The first objective of this thesis (“To create a freely available tool with a

graphical interface to facilitate the validation of virtual screening approaches

by making decoy molecule library building easier and more accessible.”) was

tackled by developing DecoyFinder, which has been widely downloaded and

used throughout the world for the validation of virtual screenings57–89, and it has

also  been  an  inspiration  for  others  to  implement  their  own  in-house

algorithms90–97, improve available resources98 and even its code has been used as

the  foundation  for  a  decoy  library  building  web  service99.  It  has  also  been

featured in a number of reviews of the field100–107 and books89,108. Of note is its

use  in  furthering  research  against  diseases  such  as  malaria61,65,78,82,

cancer58,67,68,80,81,88,  visceral  leishmaniasis60,63,69,  HIV83,  hepatitis  C62,

Alzheimer’s85,86,  Parkinson’s57,86,  and diabetes74,77,79,89,  among others and other

health-related research, such as on novel antibacterial agents64,66,73. 

The results of from the  Molecular weight-based decoys: a simple decoy set

finding alternative for fingerprint similarity approaches manuscript have been

integrated into DecoyFinder. However, since it has not yet been published, its

future impact cannot be assessed, but it has the potential to further spread the
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usage  of  DecoyFinder  by  turning  it  more  suitable  for  ligand-based  virtual

screening approaches.

The development of VHELIBS was the answer to the second objective (“To

develop a publicly available target fishing service with quantitative bioactivity

prediction.”), which was dealt with with the collaboration of the creators of the

PDB_REDO. It has also been widely downloaded, and although this has not

translated yet in  such a wide range of publications as DecoyFinder, besides

being directly used for the selection of appropriate structure models89,109, it has

also  been used to  validate  the  development  of  a  new virtual  screening web

service110 and to assess the overall reliability in general of the available protein-

ligand crystallography models111. It has also been positively featured into many

reviews of the field107,108,112–122. In addition to this, VHELIBS has been used  to

teach  undergraduate  students  about  the  quality  features  of  crystallographic

Protein Data Bank structures and how to assess them.

Both  tools  have  clearly  filled  a  need  in  their  respective  niches,  having  a

significant impact too, and thus, can be considered a success. 

The  last  objective  of  this  thesis  (“To develop  a  publicly  available  target

fishing service with quantitative bioactivity prediction”) led to the development

of Anglerfish, which was just recently made publicly available and does not

have yet a published paper, which means that at the moment of this writing it

still has not had the chance to have a meaningful impact in the field. However,

given its characteristics, hopefully it will be seen as a valuable resource in the

cheminformatics ecosystem in the near future.
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