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ABSTRACT

The Role of Learning in Asset Pricing

Tongbin Zhang

There exists many interesting facts or anomalies in asset markets, and this

thesis uses "Internal Rationality" learning approach to explain these facts. The

�rst chapter �rst �nds that the co-movement between US stock market and short-

term bond market is weak, and the weak co-movement is inconsistent with several

rational expectation asset pricing models. Then, we relax rational expectation hy-

pothesis by introducing "Internally Rational" learning agents, so agents�subjec-

tive expectations dominantly drive stock price volatility relative to risk-free rate.

Quantitative analysis shows the our model can generate data-like co-movement.

The second chapter proposes that the high, volatile and persistent AH premium

in China stock market is a big challenge for present-value asset pricing models.

We show that "Internally Rational" model in which agents have di¤erent expec-

tations for capital gains between A-share and H-share is the key to produce AH
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premium. The third chapter focuses on using "Internal Rationality" approach to

explain exchange market puzzles

Abstracte: Hi ha algunes dades interessants o anomalies en els mercats

d�actius, i aquesta tesi utilitza enfocament d�aprenentatge "racionalitat interna"

per explicar aquests fets. El primer capitol primer determina que el moviment

conjunt de la borsa d�Estats Units i el mercat de bons a curt termini es feble, i el

feble moviment conjunt es incompatible amb diversos models de valoracio d�actius

expectativa racional. Llavors, ens relaxem hipotesi d�expectatives racionals mit-

jancant la introduccio d�agents d�aprenentatge "Internament racionals", de manera

que les expectatives subjectives dels agents dominantment en cotxe preu de les ac-

cions volatilitat relativa a la taxa lliure de risc. L�analisi quantitativa mostra el

nostre model pot generar co-moviment de dades similar. El segon capitol proposa

que la prima d�alta, volatil i persistent AH en el mercat de valors de la Xina es un

gran repte per als models de valoraccio d�actius de valor present. Es demostra que

el model "Internament racional" en que els agents tenen diferents expectatives per

als guanys de capital entre una quota i H-accio la clau per produir prima AH. El

tercer capitol se centra en l�us d�enfocament de "racionalitat interna" per explicar

els puzles del mercat de canvis.

iv



Acknowledgements

Five-years Ph.D. study at Universitat Autonoma de Barcelona is a wonderful

journey in my life. I have learned a lot from the people I met, and deeply fall in

love to this beautiful city-Barcelona.

First of all, words are powerless to express my gratitude to my advisor Professor

Albert Marcet. I still remember that when I began to work with you on my master

thesis, I was wandering among several topics. Your words that "Research is like

hiking, you should keep the direction until the end" woke me up. During these

years, it is your guidance, your patience and your encourage like a father which

make me become a well-trained economic researcher. But the most important

thing you let me know is how to become an open-minded man. Open mind is not

only the valuable attitude in the professional research, but also in my personal life.

In addition, I thank Professors Klaus Adam, Jordi Caballe, Michael Creel,

Davide Debortoli, Luca Gambetti, Jordi Gali, Nezih Guner, Juan Pablo Nicolini

and Francesc Obiols for your help in developing my thesis. And my thanks also go

to the professors who taught me my �rst and second courses. I also need to thank

Prof. Kevin Huang and Jian Wang, working together with you makes me learn a

v



lot. I am also grateful to our helpful secretaries Angels Lopez, Marta Vallejo and

Merce Vincent.

Still my thanks should arrive at my colleagues at UAB including Matt Del-

venthal, Alex Filatov, Yifei Lu, Andrii Parkhomenko, Alberto Ramirez, Alejandra

Ramos, Tingting Wu and Renbin Zhang, and my friends at UPF including Erqi

Ge, Rui Guan, Shangyu Liu, Shengliang Ou, Yucheng Sun, Haozhou Tang, Guo-

hao Yang and Donghai Zhang. All of you make me a colorful and happy life in

Barcelona. My close friends in China should also be thanked, all of you are my

wealth.

Here I must say something to Na Li that six-year�s time together is the unfor-

gettable experience for me which makes me grow up. I know your sacri�ce, your

persistence and your e¤ort, especially your support to my �rst four-year Ph.D.

study. I sincerely want to say "thank you!". Even though unfortunately we cannot

be together forever, I wish you the life full of happiness.

Finally, needless to say, I owe too much to my parents. According to Chinese

traditional culture, it is best for me to stay with you. But you give me all of your

support to let me chase for my desirable life. You are great parents, I love you!

Hopefully now I can have more chance to stay with you.

vi



Preface

In the �eld of asset pricing, there exists many interesting asset market facts

in addition to the well-known equity premium and stock prices volatility. This

thesis has grounded on reconciling empirical facts in asset market and asset pricing

models, especially the models with the agents who don�t have rational expectations.

The �rst chapter is my job market paper Stock Price, Risk-free Rate and Learn-

ing. We study the co-movement between stock price and risk-free rate. The wide-

spread viewpoint or the classical Gordon model with risk-neutral agents predicts

that stock price-dividend ratio should negatively correlated with risk-free rate, and

risk-free rate should be an important factor in driving stock price volatility. In the

consumption-based asset pricing models with rational expectation, risk-free rate

is determined by stochastic discount factor (SDF) and the stock price is the dis-

counted sum of future dividend by SDF. When two assets are priced by the same

SDF, the model-implied co-movement between stock price and risk-free rate should

be strong.

This chapter raises the question "Is the co-movement strong in the data?".

This question is often ignored in the literature even though lots of works contribute

to explain equity premium and volatility. This question, however, in the �rst is
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important for the asset markets participants since both stock and risk-free bond

are two typical assets in their portfolios. Understanding the co-movement helps

them e¢ ciently invest their wealth. Second, policy makers also concerns about

this question. Since the �nancial crisis, should and how central bank designs

monetary policy to stabilize stock market �uctuation has been the subject of a

heated debate. The co-movement should be well studied considering the risk-free

rate is the channel for conducting monetary policy.

The paper �rst documents empirical evidences regarding the co-movement be-

tween stock price and risk-free rate. It �nds a weak correlation between stock

price-dividend ratio and risk-free rate. Also using Campbell and Ammer variance

decomposition approach the variance of the news about future risk-free rate only

contributes a little to the variance of unexpected stock excess return. I then in-

vestigate if two rational expectation (RE) asset pricing models�Habit model and

Long-run Risk model�can imply the weak co-movement. The reason for choosing

these two models is that both them are successful in generating important stock

market facts including equity premium, volatility and the mean-reversion. The

paper �nds that the model-implied correlations between price-dividend ratio and

risk-free rate are much stronger than observed empirically primarily because prices

of both assets (stock and bond) are in�uenced by the same set of fundamental vari-

ables. Furthermore, both models�variance decomposition results cannot match the

data.
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Considering the di¢ culties of RE models in matching data, I propose a sim-

ple model by relaxing the RE assumption and allow the existence of "Internally

Rational" agents. I extend Adam, Marcet and Nicolini (2016) to introduce an ex-

ogenous time-varying risk-free rate. When each agent doesn�t know other agents�

preferences and information, they don�t know the mapping from fundamentals to

stock price and stock can no longer be priced as the discounted sum of future

dividends. "Internally Rational" agents still optimize their behaviors based on

their subjective beliefs about all variables that are beyond their control. Given the

subjective beliefs I specify, agents optimally update their expectations about stock

price behavior using Kalman �lter. Agents�subjective expectations in turn in�u-

ence equilibrium stock price, and the realized stock price feeds back into agents�

beliefs. This self-referential aspect of the model implies that even though risk-free

rate is still in the SDF, stock price is dominantly determined by agents�expecta-

tions instead of SDF.

Quantitative evaluation of all models utilized in this paper relies on the method

of simulated moments (MSM) to test them. The simulation results con�rm that

my "Internal Rational" model outperforms the above-mentioned RE models in

simultaneously matching basic stock market moments and the moments measuring

the weak co-movement between stock and short-term bond markets. To explore

model�s dynamics, I estimate the impulse response of stock price to risk-free rate

shock using vector-autoregression analysis. The large con�dence band of data
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impulse response covering from positive to negative territories implies the weak co-

movement between stock and short-term bond markets. And our learning model�s

impulse response is quite close to the data one.

The second chapter jointly with Renbin Zhang, Understanding AH Premium

in China Stock Market studies AH premium in China stock market. There are

88 companies (AH share) dual-listed in China mainland stock market (A-share)

and Hong Kong market (H-share). The market value of AH-share accounts for

20% of total A-share. The stocks of AH-share pay the same dividends to investors

holding A-share or H-share. The price di¤erence of AH-share between mainland

and Hong Kong markets is called AH premium. Since November 2014, the starting

of Shanghai-Hong Kong Stock Connect program makes two previously segmented

markets�Shanghai and Hong Kong�connected. According to standard theory, AH

premium should be expected to converge. Contrast to theory�s prediction, AH

premium measured by Hang Seng AH Premium Index continually increased and

reached at 150 as the peak, which means price of AH share in Shanghai market is

50% higher than it in Hong Kong.

There exists a lot of works on the price di¤erences of the same stock in di¤er-

ent segmented markets (Fernald and Rogers, 2002). But the AH premium problem

is an interesting anomaly because two markets now are connected. We then in-

vestigate if heterogenous agents asset pricing model can generate AH premium.

Agents could have di¤erent risk-aversions, di¤erent dividend taxes, transaction

costs and diverse beliefs on the fundamentals. We arrive at the conclusion that in
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the complete market or incomplete market risk-aversions and diverse beliefs can-

not generate any AH premium, transaction cost is too small to be ignored, and

dividend taxes can generate 5%-6% almost constant AH premium.

Given the failure of these asset pricing models, we propose an "Internal Ra-

tionality" learning model, in which agents don�t know the pricing functions from

fundamentals to stock prices and have di¤erent subjective beliefs about tomorrow�s

capital gains between Shanghai and Hong Kong markets. We show that these dif-

ferent beliefs can come from di¤erent initial beliefs or di¤erent learning speeds,

both of them can be supported by the data. This model is able to successfully

generate data-like weekly AH premium due to the more optimistic belief in Shang-

hai market than it in Hong Kong. We also investigate whether the convergence

trader can make money with the strategy short-selling in Shanghai and long-buying

in Hong Kong. By Monte-Carlo simulation we �nd that convergence trader will

be asked for liquidation with probability from 40% to 90% if not adding secu-

rity deposit. Even without forced liquidation convergence trader has about 35%

probability to lose money in 3, 6, 9 or 12 months.

The third chapter jointly with Prof. Jian Wang and Prof. Jianfeng Yu, Puzzles

in Exchange Market and "Internal Rationality" Approach is trying to explain two

most well-known puzzles in exchange rate market: UIP puzzle and exchange rate

disconnect puzzle. These two puzzles are long-standing challenges for exchange

rate models, and there are many theories advanced for them. Here we also propose

the novel "Internal Rationality" learning approach, in which agents don�t know the
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mapping from economic fundamentals to equilibrium exchange rate. And agents

will have their own subjective expectations on future exchange rate change, and

update their expectations based on the model they believe. We �nally show that

this simple exchange rate model, a small deviation from rational expectation, can

address UIP puzzle and disconnect puzzle simultaneously.

Engel (2016) �nds that there still exists an exchange rate level puzzle, which

imposes much more di¢ culty for matching. We also check whether our model can

match this puzzle, but unfortunately quantitatively not enough.
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Introduction

Anomalies in asset markets are always regarded as the great challenges for

rational expectation asset pricing models. In this thesis, we focus on these anom-

alies. The �rst chapter is about the weak co-movement between US stock and

short-term bond markets. The second chapter introduces the AH premium puz-

zle in China stock market. And the third one concerns on long-standing exchange

market puzzles. Towards these anomalies, we make a small deviation from rational

expectation hypothesis, and introduce "Internal Rationality" learning agents who

don�t know the pricing mapping from fundamentals to asset price and have their

own subjective beliefs on asset price behavior.

Chapter 1 �rst shows that the co-movement between stock and short-term

bond markets in US data appears weak in terms of the correlation between stock

price-dividend ratio and risk-free rate and the variance decomposition of stock

excess returns. It is essential to market participants and policy makers to have

an asset pricing model consistent with the weak empirical co-movement, especially

in light of the fact that several rational expectation asset pricing models that

match stock market volatility actually imply a much stronger co-movemnet than

empirically observed as shown in our paper. To improve this inconsistency, this
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2

chapter presents a small open economy model with "Internally Rational" agents,

who optimally update their subjective beliefs on stock prices given their own model.

Compared with risk-free rate�s variation, agents�subjective beliefs are essential in

generating stock price volatility. When testing our model using the method of

simulated moments, quantitatively it can simultaneously match moments of the

stock and bond markets as well as the weak co-movement between two markets.

Chapter 2 is about China stock market. There are 88 companies (AH-share)

dual-listed in both China mainland stock market (A-share) and Hong Kong stock

market (H-share) accounted for 20% of total A-share. The �Shanghai-Hong Kong

Stock Connect�program starting at November, 2014 makes previously two seg-

mented markets�Shanghai and Hong Kong stock markets�connected. The price

di¤erence of AH-share in Shanghai and Hong Kong stock markets, measured by

Hang Seng China AH Premium Index, instead of converging persistently diver-

gences, and even reaches 50% higher in Shanghai market. We have shown that

present-value asset pricing models with heterogeneous agents cannot generate any

price di¤erence. Transaction cost and di¤erent dividend taxes between Shanghai

and Hong Kong markets also quantitatively fails to explain such high and volatile

AH premium. We, hence, propose an �Internal Rationality� learning model, in

which agents don�t know the pricing function from fundamentals to the stock prices

and have di¤erent subjective beliefs about tomorrow�s capital gains in Shanghai

and Hong Kong markets. Our learning model can successfully generate data-like
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weekly AH premium. We also show that convergence traders with strategy short

in Shanghai and long in Hong Kong will lose money with 33% probability.

In Chapter 3, we study two old but well-known exchange market puzzles: UIP

puzzle and exchange rate disconnect puzzle. There are many theories explain-

ing these two puzzle, but we provide "Internal Rationality" as a novel approach.

When agents don�t know the pricing mapping from fundamentals to exchange rate,

agents�expectation in driving exchange rate volatility plays the key role in match-

ing disconnect puzzle. And the deviation from rational expectation also produces

UIP puzzle. But our model quantitatively cannot match a new puzzle called level

puzzle proposed in Engel (2016).



CHAPTER 1

Stock Price, Risk-free Rate and Learning

"There was no historical evidence for a link between interest rates and share

prices. You would think that when interest rates are higher people would sell stocks,

but the �nancial world just isn�t that simple.�

�Robert Shiller, Financial Times, 13, September, 2015

1.1. Introduction

This chapter studies the co-movement in prices between stock and short-term

bond markets. A variety of basic stock market facts have been extensively studied

over the last thirty years, such as the equity premium, the volatility of stock

prices and the predictability of long-horizon excess return. There are, however, few

studies on the co-movement. Understanding such co-movement is in the �rst place

important for both institutional and individual investors�asset allocation decision

when they collect stock and short-term bond into their portfolios. Additionally,

after 2007-2009 global �nancial crisis caused by asset market collapse policy makers

concerning the role of policy tools, such as monetary policy and macro-prudential

policy, in governing stock market �uctuation would also like to understand this

co-movement. In the aspect of monetary policy, having a model that is able to
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well capture the co-movement should be the �rst step research before asking what

the optimal policy is. And in the aspect of macro-prudential policy, regulatory

stress testing for �nancial stability also requires a framework for modeling the

co-movement well.

Then, what should that co-movement be? One popular argument has been that

there should be a simple negative co-movement. By the present value models an

increase in expected future discount rate should, other things being equal, cause

both stock prices to fall and short-term rate to rise; a fall in expected discount rates

should have the opposite e¤ect on both. This negative co-movement, however, has

not been carefully checked.

This chapter �rst uses US data to show that co-movement between stock and

short-term bond markets is weak along two dimensions. First, the correlation be-

tween stock price-dividend ratio and risk-free rate is statistically insigni�cant from

zero. Second, using the variance decomposition approach introduced by Campbell

(1991) and Campbell and Ammer (1993) show that the variance of news about fu-

ture risk-free rate contributes little to the variance of the unexpected excess stock

return. In fact and unsurprisingly, the two top components are news about future

excess return and news about future dividend growth.

This chapter then investigates whether two rational expectation (RE) asset

pricing models is consistent with the weak co-movement: the external habit model

(Campbell and Cochrane 1995, Wachter, 2006) and the long-run risk model (Bansal,

Kiku and Yaron, 2012). These two models are chosen because both of them are
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consistent with long-standing empirical puzzles of stock price, such volatility and

equity premium. But, we demonstrate that the model-implied correlations between

price-dividend ratio and risk-free rate are much stronger than observed empirically

primarily because both assets (stock and bond) in two models are priced by the

same stochastic discount factors (SDF) as the function of the same set of fun-

damental variables. Furthermore, both models� variance decomposition results

cannot match the data.

The failure of these RE models in matching the co-movement facts motivates

the deviation from rational expectation hypothesis that agents have perfect knowl-

edge about how to map from economic fundamentals to equilibrium asset price.

We extend Adam, Marcet and Nicolini (2016) into a small open economy model

(exogenous risk-free rate process), which introduces "Internally Rational" agents

who do not know the fundamental to price mapping and optimize their behaviors

based on their subjective beliefs about all variables that are beyond their control.

In such circumstance, stock price is no longer the discounted sum of future div-

idend stream. Given the subjective beliefs we specify, agents optimally update

their expectations about stock price behavior using Kalman �lter. Agents�subjec-

tive expectations in turn in�uence equilibrium stock price, and the realized stock

price feeds back into agents�beliefs. This self-referential aspect of the model im-

plies that agents�endogenous expectations are dominant in generating stock price

�uctuation as there is no feedback channel between stock price and risk-free rate.
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Our learning model therefore provides a possible resolution to match the weak

co-movement between stock and short-term bond markets.

Quantitative evaluation of all models utilized in this chapter relies on the

method of simulated moments (MSM) to estimate and test them. The simula-

tion results con�rm that our learning model outperforms the above-mentioned RE

models in simultaneously matching well-documented stock market moments and

the moments measuring the weak co-movement between stock and short-term bond

markets. Using t-statistics derived from asymptotic theory we cannot reject the

null hypothesis that any of the individual data moments are the same as the mo-

ments in the estimated learning model. But, the large t-statistics of co-movement

moments in two RE models imply that they are inconsistent with empirical obser-

vations.

As an additional measure of the co-movement between stock and short-term

bond markets for robustness check, we estimate the impulse response of stock price

to risk-free rate shock using vector-autoregression (VAR) analysis following Gali

and Gambetti (2015). The VAR analysis also helps us understand the dynamic

of stock price to risk-free rate shock. We �nd that the large con�dence band of

data impulse response covering from positive to negative territories implies the

weak co-movement between stock and short-term bond markets. And our learning

model�s impulse response is quite close to the data one.

The chapter is organized in the following manner. Section 1.2 discusses related

literature. Section 1.3 presents our empirical �ndings about the co-movement
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between stock and short-term bond markets. The theoretical model is outlined

in the section 1.4. Section 1.5 derives explicit expression for rational expectation

equilibrium. The dynamic analysis of the model with "Internally Rational" agents

is conducted in section 1.6. Section 1.7 presents the quantitative performance of

our model. Section 8 tests the implication of the external habit model and the

long-run risk model. Section 1.9 focuses on the impulse response analysis. Finally,

section 1.10 concludes.

1.2. Literature Review

Some papers have studied the joint behavior of stock and short-term bond

markets. Grossman and Shiller (1981) argues that the stochastic discount factor

represented by risk-free rate in the certain economy is not an important driver

of stock market volatility since 1950�s. Based on the variance decomposition ap-

proach, Campbell and Ammer (1993) and Holli�eld, Koop and Li (2003) all �nd

that the news on future risk-free rate displays no power in explaining stock mar-

ket volatility. More recently, Gali and Gambetti (2015) use the impulse response

functions from a time-varying VAR model to explore the response of stock price

to exogenous monetary policy shock. The most recent theoretical paper in the

�eld is Gali (2014), which challenges the traditional "lean against wind" monetary

policy on asset price when allowing the existence of rational bubble. The bubble

component in the equilibrium has to grow at the level of risk-free rate.
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There are several general equilibrium models containing time-varying risk-free

rate which aim at matching stock market facts. Jermann (1998) shows that a

model with habit formation and capital adjustment costs can match the historical

equity premium and stock market volatility with low dividend growth volatility.

Boldrin, Christiano and Fisher (2001) have a model with habit formation and a

two-sector technology that can explain the equity premium puzzle and volatility

puzzle. It can also generate the low contemporaneous correlation between stock

price and output, and the low contemporaneous correlation between risk-free rate

and output. Danthine and Donaldson (2002) show that with operating leverage,

the incomplete market model also achieves a satisfactory replication of the ma-

jor stock market stylized facts. However, as mentioned by Guvenen (2009), one

drawback of above three models is that all of them generate too high volatility of

risk-free rate. Hence, most of stock market volatility is due to extremely volatile

risk-free rate in Jermann (1998) and Boldrin, Christiano and Fisher (2001) men-

tioned in Favilukis and Lin (2015). Guvenen (2009) present a model with two

features: limited stock market participation and heterogeneity in the elasticity of

intertemporal substitution. His model can have both stock market facts and low

volatility of risk-free rate. Even though these dynamic general equilibrium models

can match stock market facts and have time-varying risk-free rate, none of them

talks about the co-movement between stock and short-term bond markets.

Our paper is also related to the papers studying the correlation between stock

price and other variables. Shiller and Beltratti (1992) maintain that the high
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correlation between real stock return and nominal long-term bond return is a

puzzle. Ermolov (2015) reproduces this stock-bond return correlation through a

consumption-based asset pricing model with habit utility. Albuquerque, Eichen-

baum and Rebelo (2014) present a valuation risk model to replicate the correlation

puzzle that is the weak correlation between stock returns and measurable funda-

mentals.

This paper adds to existing literature by formally studying the weak co-movement

between stock and short-term bond markets. We �rst show that two asset pricing

models with rational expectations do not �t the empirical co-movement. Then, we

present a learning model that can match basic stock and short-term bond markets

facts and the co-movement facts together.

1.3. Stylized Facts

1.3.1. An Illustrative Model

This subsection presents a discreet time partial equilibrium Gordon model to shed

some light on the co-movement between stock price and risk-free rate. Consider the

economy with risk-neutral agents with rational expectation and an exogenous time-

varying risk-free rate Rt. Let Pt denote stock price in period t of an in�nite-lived

asset, yielding a dividend stream Dt. In the equilibrium the following di¤erence

equation must hold

PtRt = Et(Pt+1 +Dt+1)
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Rational expectation implies that stock price Pt equals with present value of

future dividends discounted by risk-free rate as

Pt = Et

1X
j=1

Dt+j

jY
k=0

Rt+k

If we model dividend Dt and risk-free rate Rt processes as

Dt+1=Dt = a�dt

Rt = Rt�1 + �Rt

where �dt has mean at 1, and �Rt has mean at 0. Then, stock price Pt can be

expressed as

Pt =
a

Rt � a
Dt

This expression obviously tells that there is a strong co-movement between stock

price and risk-free rate.

1.3.2. Data

This section reports the stylized facts regarding the stock and short-term bond

markets, and the co-movement between them. The quanti�able measures are the

correlation between stock price-dividend ratio and risk-free rate, and the variance

decomposition statistics introduced by Campbell (1991) and Campbell and Ammer
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Statistics Estimate SE
Quarterly mean stock return Ers 2.25 0.39
Mean PD ratio EPD 123.91 21.25
Std.dev. stock return �rs 11.44 2.69
Std.dev. PD ratio �PD 62.42 17.54
Autocorrel. PD ratio �PD;�1 0.97 0.02
Excess return reg. coe¢ cient c25 -0.0038 0.0013
R2 of excess return regression R25 0.1772 0.0828
Mean risk-free rate ER 0.15 0.19
Std.dev. risk-free rate �R 1.27 0.27
Mean dividend growth E�D=D 0.41 0.18
Std. dev. dividend growth ��D=D 2.88 0.80

Table 1.1. The Statistics Regarding the Stock and Short-term Bond Markets

(1993). The data sample period is from 1927:2 to 2012:2 in quarterly frequency.

All of the variables here are in real term, de�ated using US CPI.

Table 1.1 contains some of the well-known stock and short-term bond markets

facts including the mean and standard deviation of stock return, price-dividend

ratio, dividend growth rate, and risk-free rate, the persistence of price-dividend

ratio, and the predictability of price-dividend ratio on future �ve-year�s stock excess

return. The second column shows the point estimates of these statistics, and the

third column has the standard errors of point estimates. These stylized facts are

denoted as Fact 0. It is well-known that a simple RE asset pricing model has

di¢ culty in matching Fact 0. And, both Campbell and Cochrane (1999) and

Adam, Marcet and Nicolini (2016) can match most of the statistics here. But

because both models contain constant risk-free rate, they fail in matching the

standard deviation of the risk-free rate.
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Statistics Estimate SE
corr(PD;R) 0.069 0.12

Table 1.2. The Correlation between Price-dividend Ratio and Risk-
free Rate

According to the illustrative mode in section 1.3.1, stock price-dividend ratio

should be highly negatively correlated with risk-free rate. The correlation observed

in the data, however, is rather weak as displayed in the table 1.2. The point

estimate of quarterly correlation between price-dividend ratio and risk-free rate is

insigni�cant. The weak correlation between price-dividend ratio and risk-free rate

is de�ned as Fact 1.

In addition to the correlation, the statistics of variance decomposition can be

an alternative way to measure the co-movement. The variables eed in the table 1.3
represents the news about future dividend growth, eer represents the news about
future risk-free rate, and eee represents the news about future excess return. The
three statistics in the �rst column of table 1.3 are the ratios of the variances of the

above three variables to the variance of ee, where ee is the unexpected excess stock
return. Appendix 1.11.2 contains the details of variance decomposition approach.

As in Campbell (1991) and Campbell and Ammer (1993), one can interpret the

values in the second column of table 1.3 as: variance of news about future dividend

growth eed accounts for 21% of the variance of unexpected excess stock return ee.
In comparison, the news about future risk-free rate eer only accounts for 4%, while
more than half of the variance of unexpected excess return ee can be explained by
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Statistics Estimate SE
V ar(eed) 21.1% 0.242
V ar(eer) 4.4% 0.026
V ar(eee) 50.8% 0.257

Table 1.3. Variance Decomposition of Excess Stock Return

the news of future excess return eee as value in the fourth row, second column.
These point estimates are similar to the ones in the Campbell (1991), but the

standard deviations are larger in this sample due to a smaller sample size1. The

variance decomposition results are de�ned as Fact 2. Again, it is also di¢ cult for

a simple RE model such as the model in section 1.3.1 to match Fact 2 because this

sort of model imply that most of the variance of ee should be explained by eed and
eer instead of eee.
To summarize, Fact 1 and 2 indicate that co-movement between stock and

short-term bond markets is weak.2

1.4. The Model

To understand our Fact 0, Fact 1 and Fact 2, we extend Adam, Marcet and

Nicolini (2016) asset pricing model with "Internally Rational" agents who hold

subjective beliefs about stock price behavior and will be completely rational given

their beliefs (Adam and Marcet, 2011). As shown in Adam, Marcet and Nicolini

(2016), the presence of such beliefs can generate stock price �uctuation around its

1Bernanke and Kuttner (2005) and Balke, Ma and Wohar (2015) also �nd very large standard
errors for the stock price decomposition estimation.
2The Appendix 1.11.3 shows the robustness of our Fact 1 and Fact 2.
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fundamental value. There are two di¤erences in our model from their model. Our

model �rst is a small open economy with exogenous risk-free rate, then it has one

collateral constraint. The exogenous risk-free rate allows us to have time-varying

risk-free rate process instead of constant one in Adam, Marcet and Nicolini (2016).

And the collateral constraint is important for us to obtain analytical solution for

equilibrium stock price.

1.4.1. Model Environment

A unit of stock with dividend claim Dt can be traded in the competitive stock

market. In addition to Dt, each agent receives an endowment Yt of perishable con-

sumption goods. Following traditional setting in asset pricing literature, dividend

and endowment growth rates follow i.i.d. lognormal processes

Dt

Dt�1
= a�dt ; log �

d
t � iiN(�s

2
d

2
; s2d)

Yt
Yt�1

= a�yt ; log �
y
t � iiN(�

s2y
2
; s2y)

where endowment and dividend growth rates share the same mean a, and (log �dt ; log �
y
t )

are joint-normally distributed with correlation between them equaling to �y;d = 0:2

(Campbell and Cochrane,1999). Since consumption process is considerably less

volatile than the dividend process, the parameters�values of standard deviations

are chosen as sy = 1
7
sd.
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The economy is populated by a unit mass of in�nite-horizon agents. We model

each agent i 2 [0; 1] to have the same standard time-separable CRRA utility func-

tion and the same subjective beliefs. This fact, however, is not the common knowl-

edge among agents.

The speci�cation of agent i�s expected life-time utility function is

(1.1) EP0

1X
t=0

�t
(Cit)

1�


1� 


where Cit is the consumption pro�le of agent i, � denotes the time discount factor,

and 
 is the risk-aversion parameter. Instead of the objective probability measure,

expectation is formed using the subjective probability measure P that describes

probability distributions for all external variables.

Agent�s choices are subjected to standard budget constraint as following

(1.2) Cit +Rt�1b
i
t�1 + PtS

i
t = (Pt +Dt)S

i
t�1 + bit + Yt

where bit is the amount of borrowing at time t, S
i
t the new units of stock agent i

buys in period t, and Rt�1 as exogenous real risk-free rate on maturing loans bit�1.
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One collateral constraint is imposed. The amount of borrowing is subjected to

the collateral constraint as Kiyotaki and Moore (1997) in the form 3

(1.3) bit 5 �
EPt (Pt+1 +Dt+1)

Rt
Sit

Besides transferring income across time, the stock Sit plays the role of collateral.

The collateral constraint implies that new loans bit should be smaller than a �xed

share of expected discounted value of tomorrow�s stock. The parameter � measures

the share of stock value that can serve as collateral.

To close the small open economy model, risk-free rate process is speci�ed similar

to that of Bianchi (2013) to capture its mean, variance and persistence.

(1.4) Rt =

8><>: (1� �R)R + �RRt�1 + �Rt if Rt < 1
'

1
'

otherwise

where ' � �EPt (
Cit+1
Cit
)�
, �Rt � N(0; �2R) and is orthogonal to dividend and con-

sumption shocks. The upper limit for the risk-free rate can guarantee the binding

of collateral constraint to avoid the di¢ culty of occasionally binding problem, and

it matters little for altering the moments of risk-free rate because quantitative

analysis con�rms that risk-free rate seldom hits the limit in this model.

3Following Adam, Pei and Marcet (2011), this speci�cation implicitly assumes that risk-neutral
foreigners have the same beliefs as domestic agents
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Now we explicitly describes the general joint probability space of the external

variables. In the competitive economy, each agent considers the joint process of

endowment, dividend, risk-free rate, and stock price fYt; Dt; Rt; Ptg as exogenous

to his decision problem. Rational expectations imply that agents exactly know the

mapping from a history of endowment Yt, dividend Dt, and risk-free rate Rt to

equilibrium stock price Pt. Stock price hence just carries redundant information.

But if the rational expectation assumption is relaxed, as shown in Adam and

Marcet (2011) such that agents do not know such mapping because of the non-

existence of common knowledge on agents�identical preferences and beliefs, then

equilibrium stock price Pt should be included in the underlying state space. We

then de�ne the probability space as (P;B;
) with B denoting the corresponding

��Algebra of Borel subsets of 
 and P denoting the agent�s subjective probability

measure over (B;
). The state space 
 of realized exogenous variables is


 = 
Y � 
D � 
R � 
P

where 
X is the space of all possible in�nite sequences for the variable X 2

[Y;D;R; P ]. Thereby, a speci�c element in the set 
 is an in�nite sequence

! = fYt; Dt; Rt; Ptg1t=0. The expected utility with probability measure P is de-

�ned as

(1.5) EP0

1X
t=0

�t
(Cit)

1�


1� 

�
Z



1X
t=0

�t
Cit(!)

1�


1� 

dP(!)
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Agent i makes contingent plans for endogenous variables Cit ; S
i
t ; b

i
t according

to the policy function mapping in the following

(Cit ; S
i
t ; b

i
t) : 


t ! R3

where 
t represents the set of histories from period zero up to period t.

1.4.2. Optimality Conditions

Optimal conditions characterizing agent i�s decisions from his maximization prob-

lem are derived in this subsection. First order conditions are su¢ cient and nec-

essary for agent�s optimality because of the concavity of objective function and

convexity of feasible set.

Agent i should maximize his expected lifetime utility (1.1) subject to the bud-

get constraint (1.2) and collateral constraint (1.3). The Lagrangian of agent�s

problem can be explicitly written as

max
fCt;St;btg

EP0

1X
t=0

�t(
(Cit)

1�


1� 

� �t(C

i
t +Rt�1b

i
t�1 + PtS

i
t � (Pt +Dt)S

i
t�1 � bit � Yt)

+�t(�E
z
t (Pt+1 +Dt+1)S

i
t �Rtb

i
t))

where �t and �t are two Lagrangian multipliers, S�1, b�1 as given initial conditions,

and agent i is a price-taker for Pt.
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The agent i�s �rst order conditions can be expressed as

(1.6) Cit : (C
i
t)
�
 � �t = 0

(1.7) Sit : ��tPt + �EPt (�t+1(Pt+1 +Dt+1)) + �E
P
t �t(Pt+1 +Dt+1) = 0

(1.8) bit : �t = �RtE
P
t �t+1 + �tRt & �t(�E

P
t (Pt+1 +Dt+1)S

i
t �Rtb

i
t) = 0

After substituting �t in equation (1.8) using the expression in equation (1.6),

one obtains

(1.9) (Cit)
�
 = �RtE

P
t (C

i
t+1)

�
 + �tRt

The binding collateral constraint can lead us to have the non-zero multiplier �t

for all t as

(1.10) �t =
(Cit)

�
 � �RtE
P
t (C

i
t+1)

�


Rt

Substitute �t in equation (1.10) back into equation (1.9), one obtains

(1.11)

�(Cit)�
Pt+�EPt ((Cit+1)�
(Pt+1+Dt+1))+�
(Cit)

�
 � �RtE
P
t (C

i
t+1)

�


Rt
EPt (Pt+1+Dt+1) = 0
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Finally, the feasibility condition of the economy is

(1.12) Ct = Yt +Dt + bt �Rt�1bt�1

where Ct and bt are aggregate consumption and loan.

1.4.3. Approximation

In order to generate an analytical solution for equilibrium stock price Pt, we rely

on several approximations and one assumption. First, aggregate consumption

Ct is not necessarily equal to aggregate endowment Yt according to the feasibil-

ity condition (1.12). Second, with agent�s subjective beliefs we may not have

EPt (C
i
t+1) 6= EPt (Ct+1) even though in the equilibrium Cit+1 = Ct+1 holds ex-post.

To understand the reason, let us consider that EPt (Ct+1) depends on expected stock

price only through the channel of bt. At the same time, apart from the channel

of loan bit future stock price can also a¤ect E
P
t (C

i
t+1) through capital gains from

holding stock. One hence cannot routinely substitute individual consumption Cit

by aggregate one Ct. We, however, can rely on the approximations as

(1.13) Ct ' Yt

(1.14) EPt [(
Cit+1
Cit

)�
(Pt+1 +Dt+1)] ' EPt [(
Ct+1
Ct

)�
(Pt+1 +Dt+1)]
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(1.15) EPt [(
Cit+1
Cit

)�
] ' EPt [(
Ct+1
Ct

)�
]

To make these approximations reasonable, the following assumption is made

similar to Assumption 1 in Adam, Marcet and Nicolini (2016):

ASSUMPTION 1: We assume that Yt is su¢ ciently large and that EPt (Pt+i +

Dt+i) < M for someM <1 for i = 1; 2. Then, expected value from holding stock

should be su¢ ciently small compared to Yt given �nite asset bounds S; S.

The gap between subjective and objective consumption growth can be ex-

pressed as

EPt [(
Cit+1
Cit

)]� Et[(
Cit+1
Ct

)]

= EPt [(
Cit+1
Cit

)]� Et[(
Ct+1
Ct

)]

= EPt [
Pt+1(1� Sit+1) + (bt+1 � bit+1)

Yt +Dt + bt �Rt�1bt�1
]

Because of the collateral constraint bit is smaller than the expected tomorrow�s

stock value EPt (Pt+1 +Dt+1)S
i
t . Assumption 1 implies that individual loan b

i
t and

aggregate loan bt are also small enough compared to Yt. According to equation

(1.12), when bt and Dt are small the approximation (1.13) holds with su¢ cient

accuracy. Also under this assumption, the approximation (1.14) and (1.15) hold

with su¢ cient accuracy as the above gap between subjective and objective con-

sumption growth is approximately zero.
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After rearranging terms in equation (1.11) and substituting related terms using

three approximations from equation (1.13) to (1.15), one obtains the key pricing

equation as

(1.16) Pt = EPt �t(Pt+1 +Dt+1)

where �t � �(Yt+1
Yt
)�
 + �( 1

Rt
� ') is the stochastic discount factor (SDF).

1.5. Rational Expectation Equilibrium

This section presents the rational expectation equilibrium of our model and

shows that its implications cannot match Fact 1 and 2. This is useful because it

con�rms that the role of exogenous risk-free rate and collateral constraint cannot

contribute to match the weak co-movement, and motivates us to show that how

a small departure from RE contributes to it in Section 6. Rational expectation

implies that agent�s subjective beliefs coincides with the objective ones. Following

the routine calculation and imposing the non-bubble condition, we can express the

equilibrium stock price in rational expectation from equation (??) as

(1.17) PREt = [
�a1�
��

1� �a1�
��
+ Et

1X
j=1

�jaj
j�1Y
k=0

(
1

Rt+k
� ')]Dt
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Statistics US Data RE
Estimate SE Statistics

corr(PD;R) 0.069 0.12 -1.000
V ar(eed) 21.2% 0.242 96.2%
V ar(eer) 4.4% 0.026 17.0%
V ar(eee) 50.8% 0.257 5.0%

Table 1.4. Simulated Statistics of Rational Expectation Equilibrium

where

�� = E[(�yt+1)
�
�dt+1]

= e
(1+
)
s2y
2 e�
�y;dsysd

The rational expectation equilibrium �rst is inconsistent with Fact 0 including

equity premium, stock market volatility even though not reported here. Then given

the risk-free rate process, we have Et[Rt+k] = (1 � �kr)R + �krRt for any k. The

analytical solution of price-dividend ratio as equation (1.17) directly displays that

PREt
Dt

is highly correlated with Rt since
PREt
Dt

is a function only of the risk-free rate. It

is not surprising because stock price is discounted sum of future dividends by SDF

�t, which contains Rt and i.i.d. endowment growth. Hence, the RE equilibrium is

likely to miss Fact 1. And the volatility of stock return here mainly comes from the

variation of dividend growth and risk-free rate such that the model is also likely

to miss Fact 2.

In order to con�rm the above shortcomings of the rational expectation equi-

librium in matching stylized facts, the model is simulated and the corresponding



25

moments relating to Fact 1 and Fact 2 are calculated. The parameters values here

are the same as the ones from the learning model estimation, which are contained

in table 1.5 and 1.7. Table 1.4 presents the simulation results. Column 4 of

table 1.4 shows that the rational expectation equilibrium generates the strong co-

movement between stock and short-term bond markets. The correlation between

price-dividend ratio and risk-free rate is -1, and the news of future dividend growth

and risk-free rate instead of excess return contribute too much to the �uctuation

of unexpected excess return. The reason of the failure is that stock prices here are

only driven by exogenous state variables dividend Dt and risk-free rate Rt.

1.6. Equilibrium Analysis with Learning

1.6.1. Agent�s Subjective Beliefs

Now we allow a small deviation from rational expectation assumption such that

agents with uncertainty formulate their own joint probability distribution P dif-

ferent from the objective one. And Adam and Marcet (2011) shows that the joint

distribution P of any agent without common knowledge about other agents�beliefs

and preferences could delink stock price from the expected discounted sum of fu-

ture dividends. The present-value expression of stock price Pt in equation (1.17)

ceases to hold, leaving only the �rst-order condition for stock price in equation

(1.16) intact. Then, agents should have their own beliefs on the behavior of stock

price based on subjective distribution P. Speci�cally, the subjective expectation



26

of risk-adjusted stock price growth �t can be de�ned as

(1.18) �t � EPt [(
Yt+1
Yt
)�


Pt+1
Pt
]

and subjective expectation of non-adjusted stock price growth mt as

(1.19) mt � EPt [
Pt+1
Pt
]

Then, equation (1.16) together and these two de�nitions imply equation (1.20)

which maps from subjective price beliefs �t and mt to realized one Pt4

(1.20) Pt =
�a1�
�� + �a( 1

Rt
� ')

1� ��t � �( 1
Rt
� ')mt

Dt

Equation (1.20) analytically suggests that learning equilibrium provides a po-

tential resolution to match Fact 1 and Fact 2. Price-dividend ratio in learning

equilibrium, in addition to risk-free rate Rt, also depends on agents�s subjective

beliefs �t and mt. If agents have a high subjective expectation on stock price

growth, say high �t and mt, their increasing holding of stock drives up stock price

Pt today. Conversely, Pt will decrease if agents are pessimistic and have low �t

and mt.

4Following Adam, Marcet and Nicolini (2016), we assume that agents know the true process for
dividend growth and endowment growth.
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1.6.2. Beliefs Updating Rule

This section fully speci�es the subjective probability distribution P and derive

the optimal belief updating rule for subjective beliefs �t and mt. Similar to the

arguments in Adam, Marcet and Nicolini (2016), the true process for risk-adjusted

stock price growth can be modeled as the sum of a persistent component and of a

transitory component

(
Yt+1
Yt
)�


Pt+1
Pt

= e�t + ��t ; �
�
t � iiN(0; �2�;�)

e�t = e�t�1 + ��t ; �
�
t � iiN(0; �2�;�)

One way to justify this process is that it is compatible with RE. Accord-

ing to equation (1.17), the rational expectation of risk-adjusted price growth is

Et[(
Yt+1
Y t
)�
 Pt+1

Pt
] = a1�
�� when risk-free rate Rt is at its unconditional mean R:

Hence, the previous setup encompasses the rational expectation equilibrium as a

special case when agents believe �2�;� = 0 and assign probability one to e
�
0 = a1�
��.

Then, we allow for a non-zero variance �2�;�: Agents can only observe the real-

izations of risk-adjusted growth (the sum of persistent and transitory components),

hence the requirement to forecast the persistent components e�t calls for a �ltering

problem. The priors of agents�beliefs can be centered at their rational expectation

values and given by

e�0 � N(a1�
��; �
2
0;�)
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and the variances of prior distributions should be set up to equal with steady state

Kalman �lter uncertainty about e�t

�20;� =
��2�;� +

q
�4�;� + 4�

2
�;��

2
�;�

2

Then agents�posterior beliefs will be

e�t � N(�t; �
2
0;�)

And the optimal updating rule implies that the evolution of �t is taking the form

just as constant gain learning5

(1.21) �t = �t�1 +
1

�
((
Yt�1
Yt�2

)�

Pt�1
Pt�2

� �t�1)

where � =
�2�;�+

p
�4�;�+4�

2
�;��

2
�;�

2�2�;�
given by optimal (Kalman) gain. And agents think

that non-adjusted stock price growth mt is uncorrelated with endowment growth.

Hence, under agents� knowledge of true endowment growth and subjective ex-

pectation of risk-adjusted stock price growth �t their subjective expectation of

non-adjusted stock price growth mt is pinned down as

(1.22) mt = �t=(a
�
�)

5In the appendix 1.11.9 we prove the convergence of least square learning to rational expectation
equilibrium.
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where � = exp(
s2y=2 + 

2s2y=2).

6

The adaptive learning scheme as equation (1.21) and (1.22) as well as pricing

equation (1.20) can generate a high stock markets volatility coming from the

feedback channel between stock price Pt and subjective beliefs �t, mt. According

to equation (1.20), a high (low) �t and mt will lead to a high (low) realized stock

price. This will reinforce the subjective beliefs to induce a even higher (lower) �t+1

andmt+1 through equation (1.21) and (1.22) leading to much higher (lower) stock

price so on. The self-referential aspect of the model is the key for producing stock

market volatility. But there is no feedback channel between stock price Pt and

risk-free rate Rt. Even though risk-free rate Rt is still in the stochastic discount

factor, stock price having no present value expression and mostly being in�uenced

by agents�beliefs makes the learning model here has the ability to produce the

weak co-movement between stock price and risk-free rate as found in the data

Finally, in order to avoid the explosion of stock price Pt agents�subjective belief

�t is replaced by !(�t), the projection facilities.
7

1.7. Quantitative Analysis

This section evaluates the quantitative performance of the learning model. Fact

0, Fact 1 and Fact 2 give the target moments that should be matched. We formally

6In the appendix 1.11.4 we consider the case that agents use Kalman �lter to update their
subjective beliefs of non-adjusted price growth mt and pin down �t.
7We present the details of projection facilities in appendix 1.11.5.
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estimate and test the model using the method of simulated moments (MSM) that

provides a natural test on individually matching moments.

1.7.1. MSM Estimation and Statistical Test

In this subsection we outline the MSM approach. Appendix 1.11.6 discusses about

the details of it. We �rst give value to the coe¢ cient of relative risk-aversion 
,

and calibrate the collateral ratio �, the mean and the persistence of risk-free rate

R, �R
8. Table 1.5 contains the values for these four parameters. Apart from these,

there are �ve free parameters remaining, comprising the discount factor �, the gain

parameter �, the mean and standard deviation of dividend growth a and ��D=D,

and the standard deviation of risk-free rate �R. They can be summarized into

parameter vector as

� � (�; �; a; ��D=D; �R)

8Following Adam, Kuang and Marcet (2011), � is calibrated as the averaged ratio of US current
account de�cit to the change of US stock market value. � equals 0.1 using this method. As
a robustness check, � is also calibrated following Bianchi (2013), which relies on the average
liabilities-to-asset ratio of US households. The data is from Table B.101, the �ow of funds
database. The sample is from 1945 to 2006. In this second method, � = 0:115. R, �R are
calibrated as the sample mean and sample autocorrelation of risk-free rate. The sample is the
one in section 1.3.
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These �ve free parameters will be chosen to match all the sample moments

describing Fact 0, Fact 1, and Fact 2. The moments are

[Ers; EPD; �rs; �PD; �PD;�1; c
2
5; R

2
5; ER; �R; ED=D; �D=D,

cov(R;PD); var(eed;t+1)=var(eet+1);
var(eer;t+1)=var(eet+1); var(eee;t+1)=var(eet+1)](1.23)

The �rst eleven moments are Fact 0 moments widely studied in the literature,

and the last four moments are Fact 1 and Fact 2 moments. The MSM parameter

estimate b�T is de�ned as
(1.24) b�T � argmin



[bST � eS(�)]0 b��1S;T [bST � eS(�)]

where bST denotes all of the sample moments in (1.23) that will be matched in the
estimation, with T the sample size. Furthermore, let eS(�) denote the moments
implied by the model for some parameter value �. The MSM estimate b�T chooses
the model parameters such that the model implied moments eS(�) �t the observed
moments bST as close as possible in terms of a quadratic form with weighting

matrix b��1S;T . The optimal weight matrix b�S;T could be estimated from the data in
a standard way. According to the standard results of MSM approach (Du¢ e and

Singleton, 1993), the estimate b�T is consistent and e¢ cient.
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The MSM estimation approach provides an overall test of the model. Under

the null hypothesis that the model is correct, we have

(1.25) cWT � T [bST � eS(�)]0 b��1S;T [bST � eS(�)] � �2s�5 as T !1

where s is the number of moments in bST and the convergence is in distribution.
We can also obtain the asymptotic distribution for t-statistics that indicate which

moment is matched.

1.7.2. Estimation and Simulation Results

Table 1.6 and 1.7 present the estimation outcomes when the value of risk-aversion

coe¢ cient is given at 
 = 10. Table 1.6 contains the well-known Fact 0 moments

for matching, and table 1.7 displays the results of matching Fact 1 and Fact

2 co-movement moments. In both tables, column 2 and 3 report the values of

the moments from US data and the estimated standard errors for each of these

moments. Columns 4 and 5 then show the model moments and the t-statistics

when estimating the model using all the moments in (23).

The estimated model in the �rst can quantitatively replicate Fact 0 moments:

the volatility of stock return �rs, the volatility, persistence, and the predictability

of price-dividend ratio �PD; �PD;�1, c
2
5, and R

2
5, the high stock return Ers, and

the low mean and volatility of risk-free rate ER and �R as well as the mean and

standard deviation of dividend growth E�D=D and ��D=D. All of the t-statistics



33

Parameters Value

 10
� 0.1
�R 0.5
R 1.0015

Table 1.5. Some Parameters Values for Learning Model

in table 1.6 have an absolute value below or close to two. Therefore, this model

is consistent with Fact 0 moments and better than Adam, Marcet and Nicolini

(2016) in matching the equity premium.

In addition to match Fact 0 moments, this learning model has the ability to

generate simultaneously the low co-movement between stock valuations and short-

term bond yields. The model correlation between price-dividend ratio and risk-free

rate corr(PD;R) is much closer to empirical data compared to those from rational

expectation models, and the t-statistics of it is around two. This re�ects a match

of Fact 1. Furthermore, the three t-statistics, all of which are around 1 in absolute

value, for variance decomposition moments con�rm the replication of Fact 2. The

t-statistics show desirable individual matching of all moments

The p-value for the statistics cWT as the measure for the overall goodness of �t

is reported in the last row of table 1.7. The statistics is computed using equation

(1.25). The zero p-value implies that the overall �t of the model is rejected, even

if all individual moments are matched. Therefore, the overall goodness of �t test

is considerably more stringent.
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US data Model
Moment SE Moment t-stat

Ers 2.25 0.39 2.08 0.44
EPD 123.91 21.25 88.94 1.65
�rs 11.44 2.69 12.30 -0.32
�PD 62.42 17.54 62.64 -0.01
�PD;�1 0.97 0.02 0.93 1.72
c25 -0.0038 0.0013 -0.0060 1.72
R25 0.1772 0.0828 0.1108 0.80
ER 0.15 0.19 0.12 0.15
�R 1.27 0.27 0.71 2.04
E�D=D 0.41 0.18 0.03 2.10
��D=D 2.88 0.80 2.22 0.82

Table 1.6. Basic Stock and Short-term Bond Market Moments from MSM

US Data Model
Moment SE Moment t-stat

corr(PD;R) 0.069 0.12 -0.170 1.92
V ar(eed) 21.1% 0.242 39.7% -0.77
V ar(eer) 4.4% 0.026 1.7% 1.01
V ar(eee) 50.8% 0.257 56.1% -0.21
Discount factor b�T 0.9886
Gain coe¢ cient 1=b�T 0.0085
p-value of cWT 0.000%
Table 1.7. Co-movement Moments from MSM

1.8. Two Asset Pricing Models with Rational Expectations

In this section we replicate two asset pricing models with rational expectations:

a variation of the external habit model of Campbell and Cochrane (1999) 9and the

long-run risk model of Bansal, Kiku and Yaron (2012). Their implications on

9The risk-free rate is chosen as a constant in Campbell and Cochrane (1999). A time-varying
risk-free rate is introduced here according to the same method as their NBER Working paper
version (1995) and Wachter (2006).
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the joint behavior between stock price and risk-free rate are examined. Section 5

have illustrated that the rational expectation equilibrium of a simple asset pricing

model missing Fact 0 is inconsistent with Fact 1 and Fact 2. But two RE models

considered here have ability to match Fact 0.

1.8.1. The external habit model

The representative agent maximizes his life-time utility as

U = E
1X
t=0

�t
(Ct �Xt)

1�
 � 1
1� 


where Ct is consumption at period t and Xt denotes external habit. Instead of

modeling the exogenous process for Xt, we can de�ne surplus consumption ratio

as

St =
Ct �Xt

Ct

The log surplus consumption ratio st � log(St) evolves according to a het-

eroskedastic AR(1) process

st+1 = (1� �)s+ �st + �(st)[�ct+1 � E(�ct+1)]

The sensitivity function �(st) is speci�ed as

�(st) =

8><>: (1=S)
p
1� 2(st � s)� 1, st � smax

0 , st � smax

9>=>;
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where S is set to be

S = �

r



1� ��B=


and

smax = s+
1

2
(1� S

2
)

The growth of consumption and dividend follow lognormal process

�ct+1 = g + �t+1

�dt+1 = g + !t+1

where �t+1 and !t+1 are two i.i.d. normally distributed variables with mean zero

and variances �2 and �2!.

Then, the equilibrium price-dividend ratio as the function of state variable st

satis�es
Pt
Dt

(st) = Et[Mt+1
Dt+1

Dt

[1 +
Pt
Dt

(st+1)]]

And the risk-free rate can be calculated as

Rt = Rf �B(st � s)

where Mt+1 is stochastic discount factor, Rf and B are parameters.
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1.8.2. The long-run risk model

The representative agent with recursive preference maximizes his life-time utility

given by

Vt = [(1� �)C
1�

�

t + �(Et[V
1�

t+1 ])

1
� ]

�
1�


The variable � is de�ned as

� � 1� 


1� 1= 

where the parameters 
 and  represent relative risk aversion and the elasticity

of intertemporal substitution. The consumption and dividend have the following

joint dynamics

�ct+1 = �c + xt + �t�t+1

xt+1 = �xt + 'e�tet+1

�2t+1 = �2 + �(�2t � �2) + �wwt+1

�dt+1 = �d + �xt + ��2t�t+1 + '�tud;t+1

The solutions for price-dividend ratio and risk-free rate are

log(
Pt
Dt

) = A0;d + A1;dxt + A2;d�
2
t
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Rft = A0;f + A1;fxt + A2;f�
2
t

where A0;d, A1;d, A0;f , A1;f , A2;d, A2;f are all the constants as the functions of

only deep parameters.

1.8.3. Evaluating the models

To evaluate the quantitative performance of these two RE models and to be con-

sistent with the estimation method of the learning model, the MSM approach is

again adopted to estimate models�parameters. The moments chosen for matching

are the same as the ones in section 1.7.1. The estimated parameters vector for the

external habit model is

�EH � (�;�; g; �)

where � is the discount factor, � is the persistency of surplus consumption, g and �

are the mean and standard deviation of consumption growth. And the risk aversion

coe¢ cient 
 is �xed at 2 following Campbell and Cochrane (1999). Analogously,

the estimated parameters vector for the long-run risk model is

�LRR � (�; ; �d; 'd)

where � is the discount factor,  is the intertemporal elasticity of substitution, �d

is the mean of dividend growth, and 'd governs the most of standard deviation of

dividend growth. We �x other parameters at values set by Bansal, Kiku and Yaron
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(2012). Table 1.8 contains the parameter values for the external habit model, and

table 1.9 for the long-run risk model .

Both models are simulated at monthly frequency and then aggregated to quar-

terly frequency. Table 1.10 displays the estimation outcomes for the external habit

model, and table 1.11 for the long-run risk model. The fourteenth row in both

tables present our Fact 1. The correlations between price-dividend ratio and the

risk-free rate in two models are unrealistically high because both of them are the

functions of the same exogenous fundamental variables such as st in the external

habit model and xt as well as �t in the long-run risk model. In contrast, price-

dividend ratio in the learning model, in addition to the fundamental variables, is

also driven by agent�s endogenous subjective beliefs. So the correlation there is

weak.

The last three rows in table 1.10 and 1.11 demonstrate that the implications

of both models�variance decompositions are inconsistent with the real-life obser-

vations. The variance of news about future risk-free rate indeed contributes little

to the variance of unexpected excess return in both models. However, the channel

is not correct. In the external habit model the variance of news about future ex-

cess return contributes considerably larger than that implied by real data, as the

risk-aversion there is very volatile and persistent. And in the long-run risk model

the variance of news about future�s dividend growth can explain about 100% of

the variance of unexpected excess return because of the high sensitivity of agent

to the long-run risk of fundamentals. However, in the actual data dividend news
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Preference � 
 �
0.9914 2 0.9844

Consumption g � �w
0.0016 0.0023 0.0161

Table 1.8. Parameters Choices for the External Habit Model

Preference � 
  
0.9997 10 1.4980

Consumption � � �e
0.0015 0.975 0.038

Dividend �d � � 'd
0.0050 2.5 2.6 2.9553

Volatility � � �w
0.0072 0.999 0.0000028

Table 1.9. Parameters Choices for the Long-Run Risk Model

can only account for 20 percent of the variance of excess return. In summary, both

models miss our Fact 1 and Fact 2.

1.9. Vector-Autoregression Analysis

Gali and Gambetti (2015) provide evidence about the response of real stock

price to exogenous monetary policy shock using vector-autoregression (VAR) model.

Here we use this impulse response from VAR analysis as an additional measure

of the co-movement between stock and short-term bond markets. Being di¤erent

from Gali and Gambetti (2015) we estimate the response of stock price to real

risk-free shock instead of nominal risk-free rate shock. If money is neutral, nomi-

nal risk-free rate can only in�uence real stock price through real risk-free rate. As

Gali and Gambetti (2015), the state space of our VAR model includes (log) output
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US data External Habit
Moment SE Moment t-stat

Ers 2.25 0.39 3.05 -2.06
EPD 123.91 21.25 74.66 2.32
�rs 11.44 2.69 12.07 -0.23
�PD 62.42 17.54 26.17 2.07
�PD;�1 0.97 0.02 0.95 0.85
c25 -0.0038 0.0013 -0.0032 -0.46
R25 0.1772 0.0828 0.4639 -3.46*
ER 0.15 0.19 0.32 -0.84
�R 1.27 0.27 0.26 3.68*
E�D=D 0.41 0.18 0.47 -0.32
��D=D 2.88 0.80 2.79 0.11
corr(PD;R) 0.069 0.12 -0.956 8.27*
V ar(eed) 21.1% 0.242 18.8% 0.10
V ar(eer) 4.4% 0.026 1.1% 1.25
V ar(eee) 50.8% 0.257 154.5% -3.99*
Table 1.10. The External Habit Moments from MSM

yt, (log) dividend dt, (log) the risk-free rate rt, and (log) stock price pt. We de�ne

the state space

xV ARt � [�yt;�dt; rt;�pt]0

where � means �rst di¤erence. The VAR model is

xV ARt = A1x
V AR
t�1 + A2x

V AR
t�2 + A3x

V AR
t�3 + A4x

V AR
t�4 + ut

The identi�cation strategy is that risk-free shock doesn�t a¤ect output and dividend

contemporaneously, and risk-free rate doesn�t respond contemporaneously to the

innovations in stock prices. To facilitate implementation we just use Cholesky

decomposition. Figure 1.1 displays the impulse response of stock price to risk-free
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US data LRR
Moment SE Moment t-stat

Ers 2.25 0.39 2.45 -0.52
EPD 123.91 21.25 158.09 -1.61
�rs 11.44 2.69 7.24 1.56
�PD 62.42 17.54 36.81 1.46
�PD;�1 0.97 0.02 0.96 0.35
c25 -0.0038 0.0013 -0.0059 1.64
R25 0.1772 0.0828 0.1705 0.08
ER 0.15 0.19 -0.11 1.36
�R 1.27 0.27 0.26 3.68*
E�D=D 0.41 0.18 1.57 -6.35*
��D=D 2.88 0.80 3.71 -1.03
corr(PD;R) 0.069 0.12 0.608 -4.35*
V ar(eed) 21.1% 0.242 96.6% -3.12*
V ar(eer) 4.4% 0.026 3.5% 0.33
V ar(eee) 50.8% 0.257 52.7% -0.08

Table 1.11. The Long-Run Risk Moments from MSM Estimation

rate shock. The red line represents the point estimated response of stock price,

and the two blue lines represents 95% con�dence bands. The positive risk-free rate

shock leads to a slightly increase of stock price in the short-run, and ends up with

permanent increase. But the con�dence bands are too large to reject the absence

of risk-free rate�s e¤ect on stock price. The impulse response of stock price to real

risk-free rate shock is quite similar to the one to nominal risk-free rate shock in

Gali and Gambetti (2015), and con�rms the weak co-movement between stock and

short-term bond markets.
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Figure 1.1. The Impulse Response of Stock Prices to Risk-free Rate
Shock Using Realized Data.

Then, we replicate the same VAR analysis with simulated data from learning

model, habit model and long-run risk model. Figure 1.2 to 1.4 displays the im-

pulse responses of simulated stock price to risk-free rate shock in these models

respectively. We can �nd that the impulse response in �gure 1.2 matches the one

in �gure 1.1 well even quantitatively though we don�t choose parameter values

to match it. The point estimate of impulse response in habit model is negative

consistent with model�s negative correlation between PD ratio and risk-free rate.

The impulse response in long-run risk model looks like �gure 1.1, but the upper

bound is too high compared with data.

1.10. Conclusion

This chapter is an e¤ort to enhance existing understanding on the co-movement

between stock and short-term bond markets. Understanding this co-movement is
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Figure 1.2. The Impulse Response of Stock Prices to Risk-free Rate
Shock Using Simulated Data in Learning Model
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Figure 1.3. The Impulse Response of Stock Prices to Risk-free Rate
Shock Using Simulated Data in Habit Model

important for both investors and policy makers. Empirical evidences suggest that

the co-movement between these two markets is weak along two dimensions: the

weak correlation between stock price-dividend ratio and risk-free rate and the

low explanatory power (in terms of variance decomposition) of short-term interest
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Figure 1.4. The Impulse Response of Stock Prices to Risk-free Rate
Shock Using Simulated Data in Long-run Risk Model

rate on unexpected excess stock return. Although the weak co-movement has been

observed for a long time, there has been a lack of attempt to �nd a model explaining

this phenomenon. This paper shows that two asset pricing models with rational

expectation cannot account for the weak co-movement because stock prices in

these models are only driven by fundamental variables. Instead, this paper relaxes

the assumption of rational expectation by allowing "Internally Rational" agents,

who do not know the mapping from the fundamentals to equilibrium stock price.

Agents learn about the stock price from realized outcomes. The self-referential

property of this learning model generates the high volatility of stock price without

the need for the large risk-free rate variation. The quantitative performance of

the learning model based on the method of simulated moments con�rms that it
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can simultaneously match the basic stock market facts and the weak co-movement

between stock and short-term bond markets.

The �nding that large stock price �uctuation can result from agents�subjective

beliefs in addition to risk-free rate is valuable from a policy perspective. It is nat-

ural to challenge the e¤ect of monetary policy on governing asset price volatility

given that the channel for conducting monetary policy is through altering or in-

�uencing risk-free rate, but a detailed discussion of this paper�s policy implication

are reserved for future research.

1.11. Appendix

1.11.1. Data Sources

The data sample period is from 1927:2 to 2012:2. Since we choose to match the

predictability of price-dividend ratio on �ve-year excess return, the e¤ective sam-

ple size is up to 2007:2. The data about stock market behavior is downloaded from

Robert Shiller�s webpage (http://www.econ.yale.edu/~shiller/data.htm). Stock

price is represented by "S&P 500 Composite Price Index". We directly take use

of real stock index and real dividend calculated by Shiller and you can also �nd

the details about calculation in the same webpage. The monthly data of stock

index are transformed into quarterly by taking the value of the last month of the

corresponding quarter. But quarterly dividend is computed as aggregating the

dividends of three months of the considered quarter since the dividend is �ow

variable.
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The risk-free rate is using 3-month Treasury Bill de�ated by U.S. Consumer

Price Index. The method of transforming monthly data into quarterly one is the

same as stock index. These data is downloaded from the dataset of Federal Reserve

Bank St. Louis.

At the same time, in order to calibrate collateral ratio U.S. current account

data is also downloaded from FRB St. Louis. And for the total value of U.S. stock

market we use "market capitalization of listed companies", which can be found in

database of World Bank (http://data.worldbank.org/). Here we use the annual

data and the sample is from 1988 to 2012.

1.11.2. Variance Decomposition

We introduce the approach of variance decomposition adopted in Campbell (1991)

and Campbell and Ammer (1993). Theoretically the excess return et+1 of the stock

holding from the end of period t to period t + 1 relative to the return on short

bond can be expressed as

(1.26) et+1�Etet+1 = (Et+1�Et)
( 1X
j=0

�j�dt+1+j �
1X
j=0

�jrt+1+j �
1X
j=1

�jet+1+j

)

where et is excess return, dt is dividend and rt is risk-free rate.

To simplify the notation, equation (1.26) can be written as

(1.27) eet+1 = eed;t+1 � eer;t+1 � eee;t+1
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where eet+1 is the unexpected excess return, eed;t+1 the news about future dividend
growth , eer;t+1 news about future risk-free rate and eee;t+1 to be the term representing
news about future excess return.

Therefore, the variance of unexpected excess return can be decomposed as

V ar(eet+1) = V ar(eed;t+1) + V ar(eer;t+1)
+V ar(eee;t+1)� 2Cov(eed;t+1; eer;t+1)
�2Cov(eed;t+1; eee;t+1) + 2Cov(eer;t+1; eee;t+1)(1.28)

These variables are directly unobservable but can be discovered from Vector-

Autoregression. Write zt as the state vector containing excess return et, risk-free

rate rt and price-dividend ratio Pt
Dt
10

zt = [et; rt;
Pt
Dt

]
0

The �rst-order VAR model is

(1.29) zt+1 = Azt + wt+1

10Being di¤erent from six variables in state vector in Campbell (1991) and Campbell and Ammer
(1993), only three variables here could be another reason for the high standard errors of statistics
in Table 2.
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With the VAR system we can compute eet+1, eer;t+1 and eee;t+1
(1.30) eet+1 � et+1 � Etet+1 = e10wt+1

(1.31) eee;t+1 � (Et+1 �Et) 1X
j=1

�jet+1+j = e10
1X
j=1

�jAj�t+1 = e1
0
�A(I � �A)�1�t+1

(1.32) eer;t+1 � (Et+1 � Et)
1X
j=0

�jrt+1+j = e20
1X
j=0

�jAj�t+1 = e2
0
(I � �A)�1�t+1

where e1 and e2 are the �rst and second column of 3�3 identity matrix respectively.

Then, eed;t+1 can be treated as residual:
(1.33) eed;t+1 = eet+1 + eer;t+1 + eee;t+1
After recovering these unobservable variables, equation (1.28) is used to compute

results on variance decomposition.

1.11.3. The Robustness of Fact 1 and Fact 2

Table 1.12 shows the statistical results of Fact 1 and Fact 2 using the post-war

sample (1953:1 to 2012:2). Table 1.13 shows the results of Fact 1 and Fact 2

using ex-ante risk-free rate. The ex-ante risk-free is computed as subtracting the
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Statistics Data SE
corr(PD;R) 0.026 0.110
V ar(eed) 33.4% 0.266
V ar(eer) 1.5% 0.007
V ar(eee) 61.1% 0.291

Table 1.12. The Fact 1 and Fact 2 using Post-war Sample

Statistics Data SE
corr(PD;R) -0.104 0.19
V ar(eed) 14.8% 0.21
V ar(eer) 3.2% 0.01
V ar(eee) 51.2% 0.29

Table 1.13. The Fact 1 and Fact 2 using Ex-ante Risk-free Rate

forecast of in�ation (data named "INFPGDP1YR" from the Survey of Professional

Forecasts) from nominal rate of 3-month T-Bill. The sample size here is from 1970:2

to 2012:2 due to the availability of survey data. We can �nd that the results in

table 1.12 and 1.13 are similar to the ones in table 1.2 and 1.3.

1.11.4. The Robustness of Agents�Information

The true process for non-adjusted stock price growth is also modeled as the sum

of a persistent component and of a transitory component

Pt+1
Pt

= emt+1 + �mt+1; �
m
t+1 � iiN(0; �2�;m)

emt+1 = emt + �mt+1; �
m
t+1 � iiN(0; �2�;m)
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Agents can only observe the realizations of non-adjusted growth (the sum of persis-

tent and transitory components), hence the requirement to forecast the persistent

components emt calls for a �ltering problem. The priors of agents�beliefs can be

centered at their rational expectation values and given by

em0 � N(a; �20;m)

and the variances of prior distributions should be set up to equal to the steady

state Kalman �lter uncertainty about emt

�20;m =
��2�;m +

q
�4�;m + 4�

2
�;m�

2
�;m

2

Then agents�posterior beliefs will be

emt � N(mt; �
2
0;m)

And the optimal updating rule implies that the evolution of mt is taking the form

of

(1.34) mt = mt�1 +
1

�m
(
Pt�1
Pt�2

�mt�1)

where �m =
�2�;m+

p
�4�;m+4�

2
�;m�

2
�;m

2�2�;m
given by optimal (Kalman) gain. And agents

think that non-adjusted price growth is uncorrelated with endowment growth.
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US data Model
Moment SE Moment t-stat

Ers 2.25 0.39 1.70 1.42
EPD 123.91 21.25 117.89 0.28
�rs 11.44 2.69 10.69 0.29
�PD 62.42 17.54 84.65 -1.27
�PD;�1 0.97 0.02 0.97 -0.18
c25 -0.0038 0.0013 -0.0056 1.41
R25 0.1772 0.0828 0.1301 0.57
ER 0.15 0.19 0.11 0.19
�R 1.27 0.27 0.77 1.87
E�D=D 0.41 0.18 0.03 2.09
��D=D 2.88 0.80 2.90 -0.03
corr(PD;R) 0.069 0.12 -0.177 1.99
V ar(eed) 21.1% 0.242 38.9% -0.74
V ar(eer) 4.4% 0.026 2.2% 0.82
V ar(eee) 50.8% 0.257 63.8% -0.51b� 0.9883

1=b� 0.0071

 10

Table 1.14. Robustness: Di¤erent Learning Model Moments from MSM

Hence, under agents� knowledge of true endowment growth and subjective ex-

pectation of non-adjusted stock price growth mt their subjective expectation of

risk-adjusted stock price growth �t is pinned down as

�t = a�
�mt

Simulation results are presented using such information set in table 1.14. Com-

paring the results to those in table 1.6 and 1.7, this model�s quantitative perfor-

mance is robust to the agents�information.
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1.11.5. Projection Facilities

The projection facilities of agents�subjective beliefs � are

(1.35) !(�) =

8><>: � if x � �L

�L + ���L
�+�U�2�L (�

U � �L) if �L < x � �U

9>=>;
And we calculate the thresholds �L and �U via similar methods utilized by Adam,

Marcet and Nicolini (2016). However, the presence of time-varying risk-free rate Rt

cannot surely guarantee that the price-dividend ratio will fall within the interval

between 0 and 400. Yet, to avoid the rare event that price-dividend ratio jumps

out the interval by construction, some constraints are imposed on simulated stock

prices.

(1.36) Pt =

8><>: Pt if Pt
Dt
< 400

400 �Dt if PtDt � 400

9>=>;
1.11.6. Simulation Method

We compute simulated model moments following Monte-Carlo procedure. The

number of samples is set to K = 1000 and each sample has N = 321 observations

matching stock market data sample from 1927:Q2 to 2007 Q2. In each sample, we

�rst simulate the model to generate arti�cial data and calculate considered mo-

ments. Then, �nal values of these moments are taking the average of K samples�.
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1.11.7. Details of MSM Estimation

1.11.7.1. Optimal Weight Matrix. Let T be the sample size, (y1; y2; :::; yT )

the observed data sample, with yt containing several variables. De�ne the sample

moments as cMT � 1
T
�Tt=1h(yt) for a given moment function h. The sample statisticsbST as in (1.23) can be written as the function of cMT

bST � S(cMT )

The optimal weighting matrix should be the variance-covariance matrix of bST .
The variance-covariance matrix of cMT can be estimated using standard Newey-

West method. That is

(1.37) bSw;T = b	0 + �msj=1w(j;ms)[b	j + b	0

j]; w(j;m) = 1� j=(ms+ 1)

where the sample j-th autocovariance b	j � �Tt=j+1[h(yt) � cMT ][h(yt�j) � cMT ]
0
.

And the Delta-Method implies that the sample variance-covariance matrix of bSN
can be calculated as following

(1.38) b�S;T � @S(M)

@M 0
bSw;T @S(M)0

@M

1.11.8. The Statistics, Moment Functions and Their Derivatives

1.11.8.1. The �rst twelve statistics. Here we �rst talk about all the statistics

except variance decomposition.
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The explicit function h1 for calculating �rst twelve statistics in (1.23) is

h1(yt) �

26666666666666666666666666666666666666664

rst

PDt

(rst)
2

(PDt)
2

PDtPDt�1

rs;20t�20

(rs;20t�20)
2

rs;20t�20PDt�20

Rt

(Rt)
2

Dt=Dt�1

(Dt=Dt�1)
2

RtPDt

37777777777777777777777777777777777777775
The �rst twelves statistics can be expressed as follows
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S(M) �

26666666666666666666666666666666666664

E(rst)

E(PDt)

�rs

�PD

�PD;�1

c25

R25

E(R)

�R

ED=D

�D=D

cov(R;PD)

37777777777777777777777777777777777775

=

26666666666666666666666666666666666664

M1

M2p
M3 � (M1)2p
M4 � (M2)2

M5�(M2)2

M4�(M2)2

c52(M)

R25(M)

M9p
M10 � (M9)2

M11p
M12 � (M11)2

M13�M2M9p
M4�(M2)2

p
M10�(M9)2

37777777777777777777777777777777777775
whereMi denotes the i-th elements ofM . The function c52(M) and R

2
5(M) have

the explicit expressions as

c5(M) �

264 1 M2

M2 M4

375
�1 264M6

M8

375

R25(M) � 1�
M7 � [M6, M8]c

5(M)

M7 � (M6)2

Then, the derivatives of statistics function S(M) with data moments M are

@S1
@M1

= 1

@S2
@M2

= 1
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@S3
@M1

= �M1

S3(M)
@S3
@M3

= 1
2S3(M)

@S4
@M2

= �M2

S4(M)
@S4
@M4

= 1
2S4(M)

@S5
@M2

= 2M2(M5�M4)

(M4�M2
2 )
2

@S5
@M4

= � M5�M2
2

(M4�M2
2 )
2
@S5
@M5

= 1
M4�M2

2

@S6
@Mj

=
@c52(M)

@Mj
for j = 2; 4; 6; 8

@S7
@M2

=
[M6 M8]

@c52(M)

@M2

M7�M2
6

@S7
@M4

=
[M6 M8]

@c52(M)

@M4

M7�M2
6

@S7
@M6

=
[c51(M)+[M6;M8]

@C5(M)
@M6

](M7�M2
6 )+2M6[M6;M8]c5(M)�2M6M7

(M7�M2
6 )
2

@S7
@M7

=
M2
6�[M6 M8]c5(M)

(M7�M2
6 )
2

@S7
@M8

=
c52(M)+[M6 M8]

@c52(M)

@M8

M7�M2
6

@S8
@M9

= 1

@S9
@M9

= �M9

S9(M)
@S9
@M10

= 1
2S9(M)

@S10
@M11

= 1

@S11
@M11

= �M11

S11(M)
@S11
@M12

= 1
2S11(M)

@S12
@M2

=
�M9S4S9+(M13�M2M9)S9

M2
S4

(S4S9)2
@S12
@M4

=
(M2M9�M13)S9

1
2S4

(S4S9)2

@S12
@M9

=
�M2S4S9+(M13�M2M9)S4

M9
S9

(S4S9)2
@S12
@M10

=
(M2M9�M13)S4

1
2S9

(S4S9)2

@S12
@M13

= 1p
M4�(M2)2

p
M10�(M9)2

1.11.8.2. The statistics for variance decomposition. The three interested

statistics are var(eed;t+1)=var(eet+1), var(eer;t+1)=var(eet+1), var(eee;t+1)=var(eet+1).
The unobservable variables eet+1; eed;t+1,eer;t+1; eee;t+1 de�ned in Campbell and

Ammer (1993) are computed from VAR model.

The state vector in VAR is xt =[et; Rt; PDt]0. These variables are demeaned.
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The VAR(1) process is expressed as

xt+1 = Axt + �t+1

The SUR representation of this VAR(1) can be stacked as

Y = X� + u

where X =

2666666666664

x
0
1

x
0
2

:

:

x
0
T�1

3777777777775
, Y =

2666666666664

x
0
2

x
0
3

:

:

x
0
T

3777777777775
, u =

2666666666664

�
0
2

�
0
3

:

:

�
0
T

3777777777775
;� = A

0
. Hence, we can estimate �

using OLS method as

� = (
1

T � 1

T�1X
t=1

xtx
0

t)
�1(

1

T � 1

T�1X
t=1

xtx
0

t+1)

Here in the vector of h2(yt) we need the vector data xtx
0
t and xtx

0
t+1. Then,

A(N) = �
0
= [N�1

1 N2]
0

where N1; N2 are the sample mean of xtx
0
t and xtx

0
t+1.

Then, the error term �t+1 can be expressed as

�t+1 = xt+1 � A(N)xt
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According to the expression of eet+1; eed;t+1; eer;t+1 and eee;t+1,
eet+1 = e10�t+1

= H1�t+1

eer;t+1 = e20(I � �A(N))�1�t+1

= H2�t+1

eee;t+1 = e10�A(N)(I � �A(N))�1�t+1

= H3�t+1

eed;t+1 = (e10 + e20(I � �A(N))�1 + e10�A(N)(I � �A(N))�1)�t+1

= H4�t+1

then unconditional var(�t+1)

= E((xt+1�A(N)xt)(xt+1�A(N)xt)
0
)�[E(xt+1�A(N)xt)][E(xt+1�A(N)xt)]

0

= E(xt+1x
0
t+1�xt+1x

0
tA(N)

0�A(N)xtx0t+1+A(N)xtx
0
tA(N)

0)�((Ext+1)(Ext+1)
0�

(Ext+1)(Ext)
0A(N)

0 � A(N)(Ext)(Ext+1)
0
+ A(N)(Ext)(Ext)

0
A(N)

0
)

Since xt is stationary demeaned variables, the above expression can be simpli-

�ed into



60

var(�t+1) = E(xt+1x
0
t+1 � xt+1x

0
tA(N)

0 � A(N)xtx
0
t+1 + A(N)xtx

0
tA(N)

0)

Then, the sample variance should be

var(�t+1) = N1 �N
0

2A(N)
0 � A(N)N2 + A(N)N1A(N)

0

Therefore,

(1.39) var(eet+1) = H1var(�t+1)H
0

1

(1.40) var(eer;t+1) = H2var(�t+1)H
0

2

(1.41) var(eer;t+1) = H3var(�t+1)H
0

3

(1.42) var(eee;t+1) = H4var(�t+1)H
0

4

Write down each element in the vector.
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h2(yt) �

266666666666666666666666666666666666666666666664

e2t�1

R2t�1

PD2
t�1

Rt�1et�1

PDt�1et�1

PDt�1Rt�1

et�1et

Rt�1Rt

PDt�1PDt

Rt�1et

Rtet�1

PDt�1et

PDtet�1

PDt�1Rt

PDtRt�1

377777777777777777777777777777777777777777777775
And [M14 M15 M16; ::: M28] are the sample mean of the each element in h2(yt).

N1 �

266664
M14 M17 M18

M17 M15 M19

M18 M19 M16

377775 N2 �

266664
M20 M24 M26

M23 M21 M28

M25 M27 M22

377775

According to (1.39) to (1.42), though the exact analytical expression is avail-

able the partial derivatives of three variance decomposition statistics with respect
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to sample moments should be extremely complicated. Hence, we use numerical

method to approximate these derivatives. The method is called centered di¤erenc-

ing and the principle is

f
0
(x) � f(x+ h)� f(x� h)

2h

Take an example to describe this method.

@
var(eed;t+1)
var(eet+1)
@M14

�
var(eed;t+1)
var(eet+1) (M14 + h;M15; :::;M28)� var(eed;t+1)

var(eet+1) (M14 � h;M15; :::;M28)

2h

1.11.9. Robustness of Parameter Estimation

This section shows that the quantitative performances of the learning model and

two RE models are robust to the parameter estimation. Here dividend parameters

are calibrated instead of estimated. In particular, it means that we calibrate a,

��D=D in the learning model, g, � in the external habit model and �d, 'd in the

long-run risk model. Then, we estimate the rest of parameters in the parameter

vectors 
, 
EH and 
LRR. Table 1.15 contains the quantitative outcomes for

the learning model, table 1.16 for the external habit model and table 1.17 the

long-run risk model. The results here that are close to the ones in section 1.7 and

1.8, supporting the notion that models�performances are robust to the parameter

variations.
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US data Model (� � 1)
Moment SE Moment t-stat

Ers 2.25 0.39 2.41 -0.43
EPD 123.91 21.25 92.61 1.47
�rs 11.44 2.69 12.41 -0.36
�PD 62.42 17.54 67.64 -0.30
�PD;�1 0.97 0.02 0.94 1.20
c25 -0.0038 0.0013 -0.0065 -2.05
R25 0.1772 0.0828 0.0991 0.94
ER 0.15 0.19 0.15 0.04
�R 1.27 0.27 0.74 1.95
E�D=D 0.41 0.18 0.41 0
��D=D 2.88 0.80 2.88 0
corr(PD;R) 0.069 0.12 -0.172 1.95
V ar(eed) 21.1% 0.242 42.4% -0.88
V ar(eer) 4.4% 0.026 1.8% 0.98
V ar(eee) 50.8% 0.257 55.5% -0.18b� 1

1=b� 0.0086

 4.5

Table 1.15. Learning Model Moments from MSM

1.11.10. The Convergence of Least Square Learning to RE

In section 1.6, agents update their beliefs of risk-adjusted stock price growth �t

using constant gain learning. Well known, constant gain learning doesn�t converge

to RE since E-stability condition isn�t satis�ed. We here consider that agents use

least square learning to update their beliefs and check the convergence of least

square learning. Hence, instead of (1.21) the belief updating process become

(1.43) �t = �t�1 +
1

�t
((
Yt�1
Yt�2

)�

Pt�1
Pt�2

� �t�1)
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US data External Habit
Moment SE Moment t-stat

Ers 2.25 0.39 2.88 -1.63
EPD 123.91 21.25 77.06 2.20
�rs 11.44 2.69 9.88 0.58
�PD 62.42 17.54 25.91 2.08
�PD;�1 0.97 0.02 0.96 0.38
c25 -0.0038 0.0013 -0.0025 -1.00
R25 0.1772 0.0828 0.4961 -3.85*
ER 0.15 0.19 0.34 -0.94
�R 1.27 0.27 0.28 3.62*
E�D=D 0.41 0.18 0.41 0
��D=D 2.88 0.80 2.88 0
corr(PD;R) 0.069 0.12 -0.96 8.30*
V ar(eed) 21.1% 0.242 21.2% -0.004
V ar(eer) 4.4% 0.026 2.2% 0.85
V ar(eee) 50.8% 0.257 153.9% -4.00*bg 0.0014b� 0.0024b� 0.9881b� 0.9929
Table 1.16. The External Habit Moments from MSM

�t = �t�1 + 1 t � 2(1.44)

�1 � 1 given

Since both �yt and �
d
t follow log-normal distributions, �

y
t , �

d
t � 0. Then, con-

sumption Yt � 0 and dividend Dt � 0 with probability one. We assume the
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US data LRR
Moment SE Moment t-stat

Ers 2.25 0.39 1.69 1.44
EPD 123.91 21.25 93.91 1.41
�rs 11.44 2.69 5.68 2.14
�PD 62.42 17.54 15.80 2.66*
�PD;�1 0.97 0.02 0.95 0.68
c25 -0.0038 0.0013 -0.0084 3.56*
R25 0.1772 0.0828 0.1499 0.33
ER 0.15 0.19 -0.27 2.18
�R 1.27 0.27 0.24 3.77*
E�D=D 0.41 0.18 0.41 0
��D=D 2.88 0.80 2.89 -0.01
corr(PD;R) 0.069 0.12 0.767 -5.63*
V ar(eed) 21.1% 0.242 114.5% -3.86*
V ar(eer) 4.4% 0.026 4.98% -0.23
V ar(eee) 50.8% 0.257 47.9% 0.11b� 1b 1.7111b�d 0.0014b'd 2.2800

Table 1.17. The Long-Run Risk Moments from MSM Estimation

existence of some positive bounds for �yt , �
d
t such that

Pr((�yt )
1�
 < Uy) = 1

Pr(�dt < Ud) = 1
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We �rst show that the projection facility in Appendix A.5 will almost surely

cease to be binding after some �nite time. The projection facility implies that

(1.45)

��t =

8><>: ��1t [(a(�
y
t )
1�
 Pt�1

Pt�2
� �t�1] if �t�1 + ��1t [(a(�

y
t )
1�
 Pt�1

Pt�2
� �t�1] < �U

0 otherwise

We can have that

(1.46) �t � �t�1 + ��1t [(a(�
y
t )
1�
Pt�1

Pt�2
� �t�1]

(1.47) j�t � �t�1j � ��1t j(a(�
y
t )
1�
Pt�1

Pt�2
� �t�1j

hold for all t a.s. because if �t < �U this holds with equality and if �t�1 +

��1t [(a(�
y
t )
1�
 Pt�1

Pt�2
� �t�1] � �U then j�t � �t�1j = 0.

Substituting � recursively backwards in (1.46) delivers the following expression

�t � 1

t� 1 + �1
[(�1 � 1)�0 +

t�1X
j=0

(a�yt )
�
 Pj
Pj�1

](1.48)

=
t

t� 1 + �1
[
(�1 � 1)�0

t
+
1

t

t�1X
j=0

a1�
(�yj )
�
�dj ]| {z }

=T1

+

1

t� 1 + �1
[
t�1X
j=0

���j
1� ��j

a1�
(�yj )
�
�dj ]| {z }

=T2
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where � � � + �( 1
R
� ')=(a�
�) and the second line follows from equation (1.20)

and (1.22) when Rt holds at unconditional mean R. Clearly, T1 ! 1 � (0 +

E(a1�
(�yj )
�
�dj ) = a1�
�� = �RE as t ! 0. Then, we will establish that jT2j ! 0

as t! 0.

jT2j � 1

t� 1 + �1

t�1X
j=0

�a1�
(�yj )
�
�dj

1� ��j
j��jj(1.49)

� UyUd

t� 1 + �1
�a1�


1� ��U
t�1X
j=0

j��jj

where the �rst inequality comes from the triangle inequality and the second in-

equality follows from the bounds for �yj , �
d
j and �j. Next, observe that

(a�yt )
�
 Pt
Pt�1

=
1� ��t�1
1� ��t

a1�
(�yj )
�
�dj(1.50)

<
1

1� ��t
a1�
(�yj )

�
�dj

<
a1�
UyUd

1� ��U

Combining equation (1.47) and (1.50), we have that

1

t� 1 + �1

t�1X
j=0

j��jj � 1

t� 1 + �1

t�1X
j=0

��1j
a1�
UyUd

1� ��U

=
a1�
UyUd

1� ��U
1

t� 1 + �1

t�1X
j=0

1

j � 1 + �1
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The convergence of the over-harmonic series implies that

1

t� 1 + �1

t�1X
j=0

j��jj ! 0 for all t a.s.

Then, (1.49) implies that jT2j ! 0 as t ! 0. Taking the lim sup on both side of

(1.48), it follows from T1 ! �RE and jT2j ! 0 that

lim sup
t!1

�t � �RE < �U

Therefore, the projection facility is binding �nitely many periods with probability

one.

We now proceed to prove that �t converges to �
RE from that time onwards.

Consider for a given realization a �nite period t where the projection facility is not

binding for all t > t. The simple algebra gives

�t =
1

t� t+ �t
[�t�t +

t�1X
j=t

(a�yj )
�
 Pj
Pj�1

]

=
t� t

t� t+ �t
[
1

t� t

t�1X
j=t

a1�
(�yj )
�
�dj

+
1

t� t

t�1X
j=t

a1�
(�yj )
�
�dj

���j
1� ��j

+
1

t� t
�t�t](1.51)

for all t > t: Similar operations as before then deliver

1

t� t

t�1X
j=t

a1�
(�yj )
�
�dj

���j
1� ��j

! 0



69

a.s. for t!1. Finally, taking the limit on both sides of (1.51) establishes

�t ! E(a1�
(�yt )
�
�dt ) = a1�
�� = �RE

a.s. as t!1. The least square learning thus globally converges to the RE.



CHAPTER 2

Understanding AH Premium in China Stock Market

2.1. Introduction

This chapter studies the stock prices di¤erence named AH premium in the

connected China A- and H-share markets, which is an interesting anomaly in asset

markets. The stocks listed in China mainland stock exchanges (Shanghai and

Shenzhen) are called A-share, and the one listed in Hong Kong exchange are called

H-share. There are 88 companies dual-listed in A-share and H-share markets called

AH-share, which are identical with respect to shareholder rights, such as voting

and pro�t-sharing. Most of AH-share companies are big ones, especially state-

owned enterprises, accounting for 20% of total market value in A-share market.

Hang Seng China AH Premium Index plotted in �gure 2.1 measures the weighted

averaged price di¤erence of AH-share. Index equaling 100 means that A-share are

trading at par with H-share, larger than 100 for A-share trading at a premium

versus H-share, smaller than 100 for A-share trading at a discount versus H-share.

Figure 2.1 shows that AH-share prices are always di¤erent even though they

have the same fundamentals in Shanghai and Hong Kong markets. Before No-

vember 2014, Shanghai and Hong Kong markets were segmented that mainland

investors are not allowed to invest in Hong Kong market and so for foreign investors

70
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in Shanghai market. The price di¤erence of dual-listed stocks in the segmented

markets is widely studied in the literature. Fernald and Rogers (2002) attribute

the discount of China B-share stock (only for foreigners) to A-share stock (only

for the domestic) to the fact that Chinese investors have a higher discount rate

than foreigners. Chan, Menkveld and Yang (2008) show the evidence that AB-

share premium is caused by the fact that foreign investors, who trade B-share,

have an informational disadvantage relative to domestic investors, who trade A-

share. While, Mei, Scheinkman and Xiong (2009) propose that trading caused by

investors�speculative motives can help explain a signi�cant fraction of the price

di¤erence between the perfect segmented dual-class AB-share.

The previously segmented Shanghai and Hong Kong markets, however, become

connected since the starting of Shanghai-Hong Kong stock connect program in

November, 2014. The AH premium index should converge to 100 according to

the standard present-value asset pricing theory, but it divergences dramatically to

arrive at almost 150 and then �uctuates between 120 and 150. There are very few

works on the price di¤erence in the connected markets except Froot and Dabora

(1999) focusing on only three twin stocks. This paper studies the price di¤erence

in the sample with 88 dual-listed stocks.

This paper �rst investigates whether the present-value heterogeneous asset pric-

ing models can generate su¢ ciently high, volatile and persistent AH premium. The

heterogeneity could be re�ected in agents�di¤erent discount factors (Fernald and

Rogers, 2002), diverse beliefs caused by asymmetric information (Chan, Menkveld
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and Yang, 2008), and di¤erent transaction costs and dividend taxes (Froot and

Dabora, 1999). The model environment could be complete market or incomplete

market, and stock prices equalling with the discounted sum of expected future

dividends makes agents like fundamental investors. We �nd that di¤erent risk

aversions, discount factors, and diverse beliefs cannot produce any AH premium,

transaction costs are so small that could be ignored, and dividend taxes are possible

to generate constant 6% premium. The generalized model we show in section 2.4

illuminates that prices for A-share and H-share in the connected markets are the

same in each period when we only have variations across agents without variations

across two shares.

The failure of present-value models in producing AH premium motivates us to

propose an �Internal Rationality� learning model as Adam, Marcet and Nicolini

(2016), in which agents who do not know the mapping from the fundamentals to

price and optimize their behaviors based on their subjective beliefs about all vari-

ables that are beyond their control. Given the subjective beliefs we specify, agents

behave as speculators and optimally update their expectations about capital gains

using Kalman �lter. Agents�subjective expectations in turn in�uence equilibrium

stock prices, and the realized stock prices feed back into agents�beliefs. If agents

have initial di¤erent beliefs or di¤erent learning speeds between A-share and H-

share, agents can have di¤erent subjective beliefs on them which generate di¤erent

stock prices.
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Figure 2.1. Hang Seng China AH Premium Index

Finally we study the convergence traders�strategy, which relies on the price

convergence of similar or identical assets. A typical convergence trade would short

sell in AH-share in Shanghai market, and long buy it in the Hong Kong market.

But the learning model shows that prices cannot converge in the short-run. Since

the longest duration of short-selling tool is one-year, we calculate the distribution

of money-making for 3, 6, 9 months and one year. We �nd that convergence traders

have a large probability to lose money.

2.2. Overview of China Stock Market

China mainland stock market is relatively young and started in 1990 with

the establishment of two exchanges: the Shanghai Stock Exchange (SSE) and

Shenzhen Stock Exchange (SZSE). The number of listed companies was just 13 in
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the starting time. During the period from 1990 to 2015, the Chinese economy has

performed well with averaged annual 10% GDP growth rate. The extraordinary

economic growth undoubtedly leads to the rapid growth of �nancial markets. The

market value of China stock market (excluding Hong Kong and Taiwan) reaches

$8.4 trillion at the end of 2015 which makes it the second largest one in the world,

even though the ratio of market capitalization to GDP is relatively low at about

60%. The number of listed companies also rises to 2827. The main boards of

the Shanghai and Shenzhen Stock Exchanges list larger and more mature stocks,

like the NYSE in the US. The Shenzhen Stock Exchange also includes two other

boards, the Small and Medium Enterprise Board and the ChiNext Board, also

known as the Growth Enterprise Board, which provide capital for smaller and

high-technology stocks, like the NASDAQ in the US. Mainland stock market has

a dual-share system. Before the starting of Shanghai-Hong Kong Stock connect,

mainland investors can invest only in A-share, while foreign investors can invest

only in B-share.

Figure 2.2 shows the dynamics of stock prices indexes in mainland Shanghai

and Shenzhen markets from 1995 to 2015 respectively. Mainland stock price ex-

periences two episodes of obvious boom and bust, one is 2006-2007 and the other

is 2014-2015. Stock prices reached the historical peak in 2007 from the bottom in

2005, then quickly busted. Then, from 2008 to 2014 the market generally trended

down. Therefore, Allen et al. (2015) thinks that the performance of China stock

market has been disappointing, especially compared with the growth of GDP. The
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Figure 2.2. China Stock Price Indexes

Statistics SSE SZSE S&P500 CRSP
Std.dev. stock return �rs 17.06% 22.32% 8.17% 8.69%
Std.dev. stock return �PD 277.83 167.07 47.26 54.94

Table 2.1. China and US Stock Market Volatility

market price boomed again in the second half of 2014, and almost doubled in the

middle of 2015. One distinguished characteristic in China stock market is that

stock trading is new to most of participants, 80% of them are individual investors

(Mei, Scheinkman and Xiong, 2009). Given the typical Chinese investor�s lack of

experience, it is reasonable to hypothesize that these investors would often disagree

about stock valuation and as a result would behave more like the speculators. The

larger volatility in Chinese stock markets than US shown in table 2.1 support

this.
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2.3. Present-Value Models

In this section, we build present-value models and explore on the potential

factors driving the price di¤erence. We consider variations of discount factor, risk

aversion, beliefs on fundamental, dividend tax and transaction cost across agents

in the complete market and incomplete markets.

2.3.1. Models in Complete Market

Let�s describe the economy in the complete market. Basically it is a Lucas tree

model with two type of agents.

2.3.1.1. Rational Expectation. In the beginning we endow the agents with

objective beliefs i.e. rational expectation. The type i investors in the economy

account for a fraction of �i > 0 of population i 2 f1; 2g respectively, where �1 +

�2 = 1. Type 1 agent stands for mainland investor and 2 for Hong Kong investor.

The two types may di¤er with respect to their degree of risk aversion, discount

factor.

Investors�portfolio includes A-share, H-share and contingent bonds. Agents

trade A-share and H-share with each other in this economy. S1;At ; S1;Ht ; S2;At ; S2;Ht

are denoted as A-and H-share stocks that agent 1 and agent 2 buy respectively on

period t. One unit of A-share and H-share pay investors the same dividend as

DA
t = DH

t = Dt
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For convenience and without loss of generality we assume the exogenous divi-

dend process in the complete market economy is i:i:d taking two values of Dh and

Dl at each period, where Prob(Dl) = �; Prob(Dh) = 1 � �. We start exploring

on complete market with Arrow securities Bt(Dh) and Bt(Dl) that pays 1 unit of

consumption if dividend payment on t+ 1 is high and low respectively.

Commodity goods market clearing condition is

2Dt = �1C1t + �2C2t

Arrow securities markets clear conditions are

�1B1
t (Dj) + �2B2

t (Dj) = 0 8j = h; l

A- and H-share market clearing are

�1S1;Zt + �2S2;Zt = 1 8Z = A;H

We assume utility function is increasing, concave and continuously di¤erentiable.

The investors�maximization problem is

max
fCit ;S

i;A
t ;Si;Ht ;Bg

E0

1X
t=0

(�i)tui(C
i
t)
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s:t: Si;At PAt + Si;Ht PHt + Cit +Bi
t(Dh)Qt(Dh) +Bi

t(Dl)Qt(Dl)

= Si;At�1(P
A
t +DA

t ) + Si;Ht�1(P
H
t +DH

t ) +Bi
t�1

And we can impose no-short-selling constraints as

0 � Si;At

0 � Si;Ht

F.O.Cs lead to

(2.1) �1Et
u1c(C

1
t+1)

u1c(C
1
t )

= �2Et
u2c(C

2
t+1)

u2c(C
2
t )

where uic is marginal utility of type i agent.

This result of full insurance features complete market. Although agents could

have di¤erent discount factors and risk aversions, the property of full insurance

gives rise to the same stochastic discount factor (SDF) as equation (2.1). Given

the stock prices having the present-value expression, the same dividends and SDFs

produce no price di¤erence between A-share and H-share. Therefore discount

factors and di¤erent relative risk aversions across two agents are not able to drive

any price di¤erence in the connected markets.
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ch cl bh bl
Agent 1 0.8736 0.5514 -0.0036 0.0988
Agent 2 1.1264 0.4486 0.0036 -0.0988
Table 2.2. Contingent Bond Holding

Now we are exploring the black box that how agents arrive at full insurance

through trading contingent bonds. This is not studied in the literature to our

best knowledge. For illustration, we fully solve an exercise where both agents have

CRRA utility with same discount factor but agent 1 is more risk averse than agent

2 by approximating expectations in Euler equations with log linear polynomials.

With state contingent bonds, stock A and stock H are indeterminate �redun-

dant�assets. So we can keep agents�holding of the two assets �xed over time.

Intuitively agent 1 prefer smoother consumption than agent 2 does because agent

1 is more relative risk averse. The full insurance is achieved through agent 1 al-

ways buying low contingent bond and selling high contingent bond. We con�rm

this by numerically solving the quantity of bond holdings, and �nd that agent 1�s

consumption are relatively smoother across nature states than agent 2�s while their

consumption varies with endowment. These observations are shown in table 2.2.

The algorithm in detail is in appendix 2.8.1.

Di¤erent dividend taxes are suspected to be eligible in driving the price di¤er-

ence. We then investigate whether dividends taxes could generate quantitatively
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su¢ cient AH premium. Hence we now add tax into the model.

Si;At PAt + Si;Ht PHt + Cit +Bi
t(Dh)Qt(Dh) +Bi

t(Dl)Qt(Dl)

= Si;At�1(P
A
t + (1� � i;A)DA

t ) + Si;Ht�1(P
H
t + (1� � i;H)DH

t ) +Bi
t�18i

In data, � 1;A is 5%, � 1;H is 20%, � 2;A is 10% and � 2;H is 10%. The agent o¤ering

higher price will be the marginal one for the security. Hence type 1 is marginal

in Shanghai and type 2 is marginal in Hong Kong as can be seen in the F.O.Cs

below. Without loss of generality, we assume that two agents have log utility in

the following.

The F.O.Cs in this case become

PAt = Et�
1 C

1
t

C1t+1
[PAt+1 + (1� � 1;A)Dt+1] 0 � S1t

PAt > Et�
2 C

2
t

C2t+1
[PAt+1 + (1� � 2;A)Dt+1] S

2
t = 0

Similarly for H share, we have

PHt > Et�
1 C

1
t

C1t+1
[PHt+1 + (1� � 1;H)Dt+1] S

1
t = 0

PHt = Et�
2 C

2
t

C2t+1
[PHt+1 + (1� � 2;H)Dt+1] 0 � S2t
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A-share price is the discounted sum of future dividend by type 1�s SDF, so for

H-share by type 2�s SDF. Hence we obtain

(2.2) PAt = Et[

1X
j=1

(�1)j
jY
k=1

C1t+k�1
C1t+k

(1� � 1;A)Dt+j]

(2.3) PHt = Et[
1X
j=1

(�2)j
jY
k=1

C2t+k�1
C2t+k

(1� � 2;A)Dt+j]

And since the tax is constant and can be factored out. Dividing (2.2) by (2.3)

leads to

PAt
PHt

=
1� � 1;A

1� � 2;H

Hence price ratio is constant over time with approximate ratio of 1.056, which

contradicts with the observation that standard deviation of AH premium �uctuates

between 1.2 and 1.5. Furthermore it�s worthwhile to notice that if � 1;A = � 1;H and

� 2;A = � 2;H , then one would notice same price of A and H shares after a quick look

at the F.O.Cs. Hence if mainland investors face the same dividend tax of A share

and H share and so do the foreign investors, there would be no price di¤erence in

this complete market framework even if dividends taxes are not the same across

agents.
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2.3.2. Diverse Belief

Furthermore, there is popular narrative in the market that says foreign investors

are pessimistic about Chinese economy but mainland people have optimistic views

on the contrary. These diverse beliefs may be due to imperfect information or other

reasons. Dealers and market analysts tend to tell this kind of story to rationalize

the AH premium. So let�s see what happens when two agents have diverse beliefs

on fundamental in this environment while setting the market frictions discussed

above aside. Towards this end, we depart a bit from rational expectation model

in the way that two agents are endowed with diverse beliefs on fundamental.

Let�s assume agent 1 is optimistic while agent 2 is pessimistic. More important

let�s assume agent 1 is relatively right compared to agent 2. We will see that in

the complete market agent 1 will take advantage of his information superiority so

that he accumulates assets and consume more goods. Formally let i 2 fo; pg where

o stands for optimistic agent and p stands for pessimistic agent. Optimistic agent

perceives Prob(Dh) = u while pessimistic agent perceives Prob(Dl) = v where

u > v. And the true objective probability follows

Prob(Dl) = �; Prob(Dh) = 1� �

Let 1(Dh) and 1(Dl) be the indicator function that take value 1 if Dh and Dl

happen respectively. F.O.Cs lead to
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Cpt+1
Cot+1

=
Cpt
Cot

�p

�o
v

u
1(Dh

t+1) +
Cpt
Cot

�p

�o
1� v

1� u
1(Dl

t+1)(2.4)

= [
v

u
1(Dh

t+1) +
1� v

1� u
1(Dl

t+1)]
�p

�o
Cpt
Cot

where [ v
u
1(Dh

t+1) +
1�v
1�u1(D

l
t+1)] is denoted as At+1 for simplicity.

The assumption that agent 1 is relatively right leads to ( v
u
)�( 1�v

1�u)
1�� > 1, which

implies that agent 1 will gradually consume the total dividends in the economy

consistent with the conclusion in Bloom and Easley (2006). Rearranging (2.4)

gives

�o
Cot
Cot+1

= At+1�
p C

p
t

Cpt+1

which links SDF of optimistic agent with that of pessimistic agent.

P o;At = Eot [
1X
j=1

(�o)j
jY
k=1

Cot+k�1
Cot+k

Dt+j]

= Eot [
1X
j=1

(�o)j
jY
k=1

Cpt+k�1
Cpt+k

At+jDt+j]

=
1X
j=1

[v(�p)j
jY
k=1

Cpt+k�1
Cpt+k

Dh + (1� v(�p)j)

jY
k=1

Cpt+k�1
Cpt+k

Dl]

= Ept [

1X
j=1

(�p)j
jY
k=1

Cpt+k�1
Cpt+k

Dt+j]

= P p;At
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Above equation shows that there is an unique pricing SDF in the complete market,

hence both optimistic and pessimistic are marginal investors. Due to the fact that

A-share and H-share release the same amount of dividend at each period, there is

no price di¤erence in each period i.e P o;At = P p;At = P o;Ht = P o;Ht . Although the

SDFs of the two agents are di¤erent and linked by At+1, the subjectively expected

SDFs are still the same. Hence the diverse beliefs on dividends can�t give rise to

any price di¤erence.

In addition to analytical solution we can also solve this model by approximat-

ing expectation in Euler equations with exponentiated log linear polynomial, and

�nd that agents achieve full insurance through contingent bond exchange. The

algorithm for this case is on appendix 2.8.2. Agent 1 is more right with respect to

the true probability, and so he accumulates assets and consume more while agent

2 accumulates debt and consume less. In the long run agent 1 consumes the to-

tal dividend while agent 2 get nothing. This is consistent with Bloom and Easly

(2006).

The bond holding converges to steady state value, which is 100 in our setting.

The bond holdings are shown on �gure 2.3. However, even if the two agents have

diverse beliefs about the economy situation, price di¤erence still remains in silence.

Hence the diverse belief for the dividend or economy only leads the two agents to

hold opposite amount of bonds but not to regard the stock price di¤erently. We

also �nd that it is the relative rightness of the perceived beliefs that drive the more

right agent accumulate bonds and the other agent accumulate debt rather than
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Figure 2.3. Agents�Holding of Contigent Bonds

their degree of optimism. For example, even if agent 1 is relatively optimistic, he

will also holding bond because of his information advantage. We also try di¤erent

degree of risk aversion in order to maintain consistency with rational expectation

cases. We �nd that the results of no price di¤erence remain true, and the bond

holdings in the long run converge to another steady state level. If we add dividend

tax in this context, the price di¤erence occurs but are not quantitatively desirable

in the same way that the rational expectation case does.

2.3.3. Models in Incomplete Market

2.3.3.1. Rational Expectation. Through out the previous section, the assump-

tion of complete market plays a key role in producing one unique SDFwhich enables

us to derive analytical price ratio formula. Under the circumstance of incomplete
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market, agents can�t trade Arrow securities freely to adjust SDF, which seems to

be a problem at the �rst glance. So we suspect that incomplete market perhaps

make some di¤erence. Hence in the current section, we turn to investigate on

incomplete market.

We then consider an environment without state contingent bond. The simple

discrete dividend process is no longer appropriate for incomplete market. We

follows the literature and assume a standard dividend process as

Dt

Dt�1
= a�dt

where log�dt � i:i:N(� s2d
2
; s2d) and a � 1. And budget constraint in this case for

i = 1; 2 becomes

Si;At PAt + Si;Ht PHt + Cit = Si;At�1(P
A
t + (1� � i;A)DA

t ) + Si;Ht�1(P
H
t + (1� � i;H)DH

t )

To avoid Ponzi scheme, the standard no-short-selling constraint is assumed

Si;jt � 0;8i = 1; 2 8j = A;H

Typically we don�t obtain analytical solutions for price ratio when it comes to

incomplete market because we are not equipped with the equation that links the

two agents�SDFs. Here to keep parsimonious we assume that two types of agents

have the same risk aversions and discount factors, but have di¤erent dividend

taxes. In the later, we will argue that di¤erent risk aversions and discount factors
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cannot generate any AH premium in the incomplete market. However dividend

taxes have to be kept in this economy.

We solve the model numerically using Parameterized Expectation Algorithm

(PEA) as Marcet and Singleton (1999). We �nd that during the dynamics, agent

1 holds more and more A shares and less and less H shares while agent 2 does the

opposite. This is attributed to the dividend tax structure with � 1;A < � 2;A and

� 2;H < � 1;H . However PAt and P
H
t are the same during a long period because the

four F.O.Cs all hold with equality and the lower bound is reached only after a long

time. Hence the two agents are both marginal agent for a long time.

This observation is illustrated in �gure 2.4. Once the asset holding reaches to

the lower bound, as is in the complete market the price di¤erence quantitatively

de�cient occurs again as a result of dividend tax structure and this case is degen-

erated to a �autarky�world in the sense that mainland investors only hold A-share

and foreign investors H-share.

2.3.3.2. Diverse Belief. As in the complete market, we also turn to the case

with diverse beliefs. Then agents may have subjective beliefs on dividend process.

Dt

Dt�1
= ai�

d
t ;8i = 1; 2

where larger ai is associated with optimism and smaller ai with pessimism. We

solve the two agents two assets incomplete market model with PEA method. We
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Figure 2.4. Agents�Stock Holding in the Incomplete Market

�nd that the result in 2.3.2 remains. Hence the diverse belief has nothing to do

with price di¤erence even in the incomplete market.

2.4. A General Discussion on Sources of Price Di¤erence under

Present-Value Model

We of course have not covered every possible model and it is also impossible

to do it. However we give a general discussion here on the criteria determining

whether a given factor has the potential to drive AH premium in the connected

markets. In this section we will discuss the necessary conditions to generate price

di¤erence in a general way nesting all the cases we have showed in the above

analysis and other cases we have not covered yet.
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2.4.1. Variations across Agents

Proposition 1: Variations across agents has nothing to do with price

di¤erence. This proposition means that prices of the two shares with same divi-

dend stream are same in each period if there are only variations across agents but

not variations across two shares. If type i agent is marginal investor in A-share

market, then from F.O.C we have

PAt = Eitf(SDF
i
t ; P

A
t+1; Dt+1; zi;A)

where f is a generic function and zi;A represents all possible market speci�c factors

such as transaction cost and market liquidity. Eit can capture agent i
0s expectation

on fundamentals. SDF i could be of any type such as the habit type in Campbell

and Cochrane (1999) and the long run risk type in Bansal and Yaron (2004). Func-

tional form of f should be the same for a given agent across shares in equilibrium.

Furthermore the functional form could vary with di¤erent models so we denote

as abstract function f . Therefore f accommodates to any model with variation

across agents that we have mentioned or those have not come up with yet.

When we only have variations across agents, then z1;A = z1;H = z1 and z2;A =

z2;H = z2 even though z1 6= z2. Then agent i is also the marginal investor in

H-share market. The above F.O.C also applies to H-share. That is

PHt = Eitf(SDF
i
t ; P

H
t+1; Dt+1; zi;H ]
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Then A-share and H-share entertain exact the same F.O.Cs in this case. We

use mt to denote the marginal investor pricing the asset in period t in equilibrium:

mt = arg maxi2f1;2gE
i
tf(SDF

i
t ; Pt+1; Dt+1; zi)

By mapping from fundamentals to stock price and assuming no bubbles we obtain

PAt = Emt
t g(fSDFmt+j�1

t+j�1 g1j=1; fDt+jg1j=1; fzmt+j�1g1j=1)

PHt = Emt
t g(fSDFmt+j�1

t+j�1 g1j=1; fDt+jg1j=1; fzmt+j�1g1j=1)

Hence prices for A-share and H-share are the same for each period when we only

have variations across agents without variations across two shares. Intuitively if

there is nothing di¤erent across shares, they are the same goods. Then no matter

how equilibrium prices are determined in the present-value model, there should not

be any price di¤erence. Thus diverse belief, di¤erent discount factors and di¤erent

risk aversions among the two agents do not give rise to the price di¤erence.

2.4.2. Variations across Shares leading to Price Di¤erence

We have to make a given agent regard the A-share and H-share di¤erently even

though the same dividend rather than make something di¤erent across the two

agents, since connection enables two types agents to join into one trading group.



91

Transaction cost is one of the variations across shares. Generally, the transac-

tion cost here includes �nancial tax, cost of changing currency and exchange rate

change. The �nancial tax in Hong Kong stock market is 0.118%, in Shanghai

is 0.169%. Currency change cost is less than 0.5% through Shanghai-Hong Kong

Connect Program. And Hong Kong Dollar is expected to appreciate at mean 1.64%

against RMB measured by exchange rate future. So such small transaction cost is

impossible to produce desirable quantitative results. Government control can be

another variation. Some people hold the long-standing view that Chinese govern-

ment directly control Shanghai stock market frequently. But this is not true. Since

2000 it only happens one time that when Shanghai stock price bubble burst at the

end of June 2015, Chinese government required state-owned investment banks to

support stock price by taking long positions to avoid severe �nancial crisis in the

worry of the high leverage held by many Chinese investors. When stock prices was

stabilized in August, Chinese governments intervention quickly stepped away.

Another point is about liquidity. The higher liquidity of the stock, the higher

price of it. One popular measure of the liquidity is the proportion of no-price-

change days of a stock over the sample period (Mei, Scheinkman and Xiong, 2009).

Based on daily data for the period 2006-2016, A-share averaged 0.65% of trading

days with no price changes, while the corresponding H-share averaged 1.05%. This

suggests that A-share is just a little bit more liquid than H-share. We doubt the

small di¤erence of liquidities can produce such high and volatile AH premium.
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We want to provide a parsimonious way to understand AH premium. When

agents don�t know the pricing mapping from fundamentals to stock prices and be-

have like speculators, agents can have di¤erent beliefs about capital gains between

A-share and H-share markets. Agent�s di¤erent beliefs could make the agent think

A-share and H-share not the same stock, which matches bankers, traders and nor-

mal Chinese people�s view on the stock market. We are not claiming that we know

exactly what are going on in their mind but this sort of story is a dominant view

in Chinese market. Hence in the following section we turn to a simple learning

model.

2.5. An "Internal Rationality" Learning Model

Section 2.3 and 2.4 have shown that heterogeneous agents present-value asset

pricing models in either complete or incomplete markets are not able to generate

su¢ cient AH premium. This section, hence, presents an "Internal Rationality"

learning model based on Adam, Marcet and Nicolini (2016) to explain such high

and volatile AH premium.

2.5.1. Model Environment

A unit of AH-share stock with dividend claim Dt can be traded in both Shanghai

and Hong Kong markets. In addition to Dt, each agent receives an endowment Yt

of perishable consumption goods. So the total supply of the consumption goods

in the economy is then given by the feasibility condition Ct = Yt + 2Dt. Following



93

traditional setting in asset pricing literature, dividend and endowment growth rates

follow i.i.d. lognormal processes

Dt

Dt�1
= a�dt ; log �

d
t � iiN(�s

2
d

2
; s2d)

Ct
Ct�1

= a�ct ; log �
c
t � iiN(�s

2
c

2
; s2c)

where endowment and dividend growth rates share the same mean a, and (log �dt ; log �
y
t )

are joint-normally distributed with correlation �y;d, and sd and sc are standard de-

viations of this joint normal distribution.

The economy is populated by a unit mass of in�nite-horizon agents. We model

each agent i 2 [0; 1] to have the same standard time-separable CRRA utility func-

tion and the same subjective beliefs. This fact, however, is not the common knowl-

edge among agents.

The speci�cation of agent i�s expected life-time utility function is

EP0

1X
t=0

�t
(Cit)

1�


1� 


where Cit is the consumption pro�le of agent i, � denotes the time discount factor,

and 
 is the risk-aversion parameter. Instead of the objective probability measure,

expectation is formed using the subjective probability measure P that describes

probability distributions for all external variables. Section 2.5.2 contains more

details.

Agent�s choices are subjected to standard budget constraint as following
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Cit + PAt S
A;i
t + PHt S

H;i
t = (PAt +Dt)S

A;i
t�1 + (P

H
t +Dt)S

H;i
t�1 + Yt

where SA;it , SH;it , PAt and PHt are de�ned as section 2.3. To avoid Ponzi schemes

and to insure existence of a maximum the following bounds are assumed to hold

S � SA;it � S

S � SH;it � S

We only assume the bounds S and S are �nite.

2.5.2. Probability Space

This subsection explicitly describes the general joint probability space of the exter-

nal variables. In the competitive economy, each agent considers the joint process of

endowment, dividend and stock prices fYt; Dt; P
A
t ; P

H
t g as exogenous to his deci-

sion problem. Rational expectations imply that agents exactly know the mapping

from a history of endowment Yt and dividend Dt to equilibrium stock price PAt

and PHt . Stock prices hence just carry redundant information. But if the ratio-

nal expectation assumption is relaxed, as shown in Adam and Marcet (2011) such

that agents do not know such mapping because of the non-existence of common

knowledge on agents�identical preferences and beliefs, then equilibrium stock price

PAt and P
H
t should be included in the underlying state space. We then de�ne the

probability space as (P;B;
) with B denoting the corresponding ��Algebra of
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Borel subsets of 
 and P denoting the agent�s subjective probability measure over

(B;
). The state space 
 of realized exogenous variables is


 = 
Y � 
D � 
PA � 
PH

where 
X is the space of all possible in�nite sequences for the variable X 2

[Y;D; PA; PH ]. Thereby, a speci�c element in the set 
 is an in�nite sequence

! = fYt; Dt; P
A
t ; P

H
t g1t=0. The expected utility with probability measure P is de-

�ned as

EP0

1X
t=0

�t
(Cit)

1�


1� 

�
Z



1X
t=0

�t
Cit(!)

1�


1� 

dP(!)

Agent i makes contingent plans for endogenous variables Cit ; S
A;i
t ; SH;it accord-

ing to the policy function mapping in the following

(Cit ; S
A;i
t ; SH;it ) : 
t ! R3

where 
t represents the set of histories from period zero up to period t.

2.5.3. Optimality Conditions

Since the objective function is concave and the feasible set is convex, the agent�s

optimal plan is characterized by the �rst order conditions

(2.5) (Cit)
�
PAt = �EPt ((C

i
t+1)

�
(PAt+1 +Dt+1))
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(2.6) (Cit)
�
PHt = �EPt ((C

i
t+1)

�
(PHt+1 +Dt+1))

Before exploring why subjective beliefs can explain AH premium, we �rst brie�y

review the unique RE solution given by

(2.7) PA:REt =
�a1�
��

1� �a1�
��
Dt

(2.8) PH:REt =
�a1�
��

1� �a1�
��
Dt

where �� = EPt [(�
c
t+1)

1�
�dt+1] = e
(1+
)
s2c
2 e�
�c;dscsd . Obviously, RE solutions always

generate PA:REt = PH:REt .

We now characterize the equilibrium outcome under learning. According to the

arguments in Adam, Marcet and Nicolini (2016), out of strict rational expectations

we may have EPt [C
i
t+1] 6= EPt [Ct+1] even if in the equilibrium Cit+1 = Ct+1 holds

ex-post. But we can make the same approximations in the following as they do

(2.9) EPt [(
Cit+1
Cit

)�
(PAt+1 +Dt+1)] ' EPt [(
Ct+1
Ct

)�
(PAt+1 +Dt+1)]

(2.10) EPt [(
Cit+1
Cit

)�
(PHt+1 +Dt+1)] ' EPt [(
Ct+1
Ct

)�
(PHt+1 +Dt+1)]
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The following assumption provides su¢ cient conditions for this to be the case:

Assumption 1We assume that Yt is su¢ ciently large and the EPt P
A(H)
t+1 =Dt <

M for someM <1 so that, given �nite asset bounds S and S, the approximations

(2.9) and (2.10) hold with su¢ cient accuracy.

We then can de�ne the subjective expectations of risk-adjusted stock price

growths as

(2.11) �At � EPt [(
Cit+1
Cit

)�
(PAt+1)]

(2.12) �Ht � EPt [(
Cit+1
Cit

)�
(PHt+1)]

We also assume that agents know the true processes of consumption and dividend

growths. The de�nitions of �At and �
H
t together with two �rst order conditions

(2.5) and (2.6) give rise to the asset pricing equations

(2.13) PAt =
�a1�
��
1� ��At

Dt

(2.14) PHt =
�a1�
��
1� ��Ht

Dt

From equation (2.13) and (2.14), our learning model is possible to generate AH

premium if �At 6= �Ht .
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2.5.4. Beliefs Updating Rule

This section fully speci�es the subjective probability distribution P, and derives

the optimal belief updating rule for subjective beliefs �At and �Ht . Similar to

the arguments in Adam, Marcet and Nicolini (2016), in agents�beliefs the true

processes for risk-adjusted stock price growths in both Shanghai and Hong Kong

markets can be modeled as the sum of a persistent component and of a transitory

component

(
Ct+1
Ct

)�

PAt+1
PAt

= eAt + �At ; �
A
t � iiN(0; �2�;A)(2.15)

eAt = eAt�1 + �At ; �
A
t � iiN(0; �2�;A)

(
Ct+1
Ct

)�

PHt+1
PHt

= eHt + �Ht ; �
H
t � iiN(0; �2�;A)(2.16)

eHt = eHt�1 + �Ht ; �
H
t � iiN(0; �2�;A)

where eAt and e
H
t are persistent components, �

A
t and �

H
t are transitory components.

One way to justify these processes is that they are compatible with RE. According

to equation (2.7) and (2.8), the rational expectation of risk-adjusted price growth

is Et[(
Ct+1
Ct
)�


PAt+1
PAt
] = Et[(

Ct+1
Ct
)�


PHt+1
PHt
] = a1�
��. Hence, the previous setup encom-

passes the rational expectation equilibrium as a special case when agents believe

�2�;A = �2�;H = 0 and assign probability one to e
A
0 = eH0 = a1�
��.
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Then, we allow for a non-zero variance �2�;A and �
2
�;H . Agents can only observe

the realizations of risk-adjusted growths (the sum of persistent and transitory

components), hence the requirement to forecast the persistent components eAt and

eHt calls for a �ltering problem. The priors of agents�beliefs can be centered at

some initial values and given by

eA0 � N(�A0 ; �
2
0;A)

eH0 � N(�Ht ; �
2
0;H)

and the variances of prior distributions should be set up to equal with steady state

Kalman �lter uncertainty about eAt and e
H
t

�20;A =
��2�;A +

q
�4�;A + 4�

2
�;A�

2
�;A

2

�20;H =
��2�;H +

q
�4�;H + 4�

2
�;H�

2
�;H

2

Then agents�posterior beliefs will be

eAt � N(�At ; �
2
0;A)

eHt � N(�Ht ; �
2
0;H)
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And the optimal updating rule implies that the evolution of �At and �
H
t is taking

the form just as constant gain adaptive learning

(2.17) �At = �At�1 +
1

�A
((
Ct�1
Ct�2

)�

PAt�1
PAt�2

� �At�1)

(2.18) �Ht = �Ht�1 +
1

�H
((
Ct�1
Ct�2

)�

PHt�1
PHt�2

� �Ht�1)

where �A =
�2�;A+

p
�2�;A+4�

2
�;A�

2
�;A

2�2�;A
and �H =

�2�;H+
p
�2�;H+4�

2
�;H�

2
�;H

2�2�;H
given by optimal

(Kalman) gain.

The adaptive learning schemes as equation (2.17) and (2.18) as well as pricing

equation (2.13) and (2.14) can generate a high stock markets volatility coming

from the feedback channel between stock price PA(H)t and subjective beliefs �A(H)t .

According to equation (2.13) or (2.14), a high (low) �A(H)t will lead to a high (low)

realized stock price. This will reinforce the subjective beliefs to induce a even higher

(lower) �A(H)t+1 through equation (2.17) or (2.18) leading to much higher (lower)

stock price so on. The self-referential aspect of the model is the key for producing

stock market dynamics. Therefore, a di¤erence of initial beliefs between �A and

�H or of learning speeds �A and �H is promising to generate persistently di¤erent

prices between A-share and H-share.

Finally, in order to avoid the explosion of stock price PA(H)t agents�subjective

belief �A(H)t is replaced by !(�A(H)t ), the projection facilities as appendix 2.8.4.
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2.5.5. Testing for the Rationality of Price Expectation

In this section we use a set of testable restrictions implied by agents�beliefs system

developed in Adam, Marcet and Nocolini (2016). These restrictions are listed as

follows: Denote xt = (et; Dt=Dt�1; Ct=Ct�1), where et � �( Ct
Ct�1

)�
 Pt
Pt�1

with �

denoting the �rst di¤erence operator.

Restriction 1: E(xt�iet) = 0 for all i > 2;

Restriction 2: E(( Dt
Dt�1

+ Dt�1
Dt�2

; Ct
Ct�1

+ Ct�1
Ct�2

)et) = 0;

Restriction 3: b
0
DC

P
DC bDC + E(etet�1) < 0;

Restriction 4: E(et) = 0;

where
P

DC � var( Dt
Dt�1

; Ct
Ct�1

) and bDC �
P�1

DC E((
Dt
Dt�1

; Ct
Ct�1

)
0
et)

These four restrictions are necessary and su¢ cient conditions for the agents�

belief compatible with fxtg in terms of second order moments. Adam, Marcet and

Nicolini (2016) proves that under standard assumptions, any process satisfying

these testable restrictions can - in terms of its autocovariance function - be gener-

ated by the postulated system of beliefs as (2.15) and (2.16). The set of derived

restrictions thus fully characterizes the second-moment implications of the beliefs

system. Here we test the derived restrictions against the data to see if the agent�s

belief system is compatible with the actual data. Table 2.3 reports the test sta-

tistics when testing Restrictions 1-4 using actual data. We compute risk-adjusted

consumption growth in the data at 
 = 5.
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Test Statistics A (H) 5% Critical Value
Restriction 1 using Dt

Dt�i�1
2.81 (0.76) 9.48

Restriction 1 using Ct
Ct�i�1

4.02 (4.77) 9.48

Restriction 1 using �( Ct�i
Ct�i�1

)�
 Pt�i
Pt�i�1

2.13 (2.55) 9.48
Restriction 2 0.04 (0.15) 5.99
Restriction 3 -3.55 (-3.60) 3.84
Restriction 4 0.002 (0.001) 1.64

Table 2.3. Testing Subjective Beliefs against Actual Data

The 5% critical value of the test statistic is reported in the last column of

table 2.3. The table shows that the test statistic is in all cases below its critical

value and often so by a wide margin. It then follows that agents �nd the observed

asset pricing data, in terms of second moments, to be compatible with their belief

system. Based on this, we can conclude that the agents�belief system is reasonable:

given the behavior of actual data, the belief system is one that agents could have

entertained.

2.5.6. Quantitative Performance

This subsection presents the simulation outcomes of our learning model. We simu-

late our model at weekly frequency. We �rst give value to the coe¢ cient of relative

risk-aversion 
 at 5 following Adam, Marcet and Nicolini (2016), then calibrate the

mean and standard deviation of dividend growth a, ��D=D, the standard deviation

of consumption growth ��C=C ; the correlation between consumption growth and

dividend growth �c;d using Shanghai stock market data and Chinese consumption
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Parameters Value

 5
��D=D 0.0204
��C=C 0.0025
a 1.0014
�c;d -0.03
� 0.999
1=�A 0.0030
1=�H 0.0015

Table 2.4. Parameters Values for Learning Model

per capita data. We also calibrate � to match annual 4% interest rate. Meanwhile,

we give values to �A and �H such that �A < �H , which can come from agents�

subjective beliefs that ��;A
��;A

>
��;H
��;H

. Intuitively, if agents believe that the ratio of

standard deviation of persistent component shock to that of transitory component

is relative larger in A-share price than H-share price, agents prefer to learn faster

for A-share price since only persistent component provides useful information for

forecasting. This is not arbitrary setting because the realized data of PAt and P
H
t

can support this inequality if we use MLE method to estimate related parameters

given the data following the processes (2.15) and (2.16). Table 2.4 contains the

parameter values.

We Monte-Carlo simulate the learning model for K = 10; 000 samples with

each sample having T = 100 periods to match almost 2 years� sample period

since November 2014. Table 2.5 contains the simulation results. Column 2 shows

the data moments of AH premium, and column 3 has the 95% interval of model

simulated moments. We �nd that the mean and standard deviation of data locate
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Moments Data Model
E(

PAt
PHt
� 100) 130.39 [119.58 197.01]

�(
PAt
PHt
� 100) 9.53 [7.75 48.69]

�(
PAt
PHt
� 100) 0.78 [0.87 0.98]

Table 2.5. Model Simulated Moments

in the interval, but model generates a little more persistent price di¤erence than

data. And �gure 2.5 also presents one simulated dynamics of A-share price PAt

and H-share price PHt , and �gure 2.6 presents the corresponding simulated AH

premium. We set initial conditions �A1 = �H1 and �
A
2 a little larger than �

H
2 , which

are consistent with data observations. Then, a higher learning speed in A-share

leads PAt to �uctuate more strongly than P
H
t even if two prices dynamics keep the

similar shape. Comparing with �gure, the model simulated prices display the close

shape as data. More importantly, the shape of simulated AH premium captures

several important factors of data: 1. starting from around 100; 2. persistently

increasing to about 150; and 3. decreasing to about 120 after 2 years. Hence, our

learning model does a much better job in generating data-like AH premium than

the models in section 2.3.

2.6. Convergence Traders�Strategy

A typical convergence trader is to bet that price di¤erence between two assets

with identical, or similar fundamentals will narrow in the future. The convergence

trade would hold long positions in one asset he considers undervalues and short
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Figure 2.5. Simulated Stock Prices of A-Share and H-Share
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Figure 2.6. Simulated AH Premium

positions in the other asset he considers overvalued. A famous example is that the

hedge fund Long-Term Capital Management (LTCM) expected the convergence

of bond yields in the emerging market countries and US (Edwards, 1999). They
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bought emerging markets�bonds and sold short US government bonds. The spread

of bond yields, however, widened because of the deterioration of Asian �nancial

crisis and the default of Russian Sovereign debt. The unexpected widening leads

to the near-collapse of LTCM. Besides the case of LTCM, Wall Street Journal

reported in June 2015 that many convergence traders participated in AH-share

market by short selling A-share and long buying H-share, but �nally encountered

a huge loss.

Xiong (2001) studies the convergence trading strategy in the model which has

three types of traders: noise traders, convergence traders and long-term traders.

He �nds that convergence traders reduces asset price volatility in general, but when

an unfavorable shock causes them to su¤er substantial capital losses, they liquidate

their positions, thereby amplifying the original shock. This section considers the

convergence traders di¤erently with zero measure who take the stock prices set by

learning agents as given, and studies the probability distribution of pro�ts when

they hold convergence trader strategy.

The convergence traders at period 100 expect that AH premium should narrow

in the future, hence they short sells 1 unit of A-share stock and use the money from

selling to buy H-share stock. To implement short selling in China stock market,

convergence traders should have as much money as 50% of short selling value in

their account as security deposit. In every period, the guarantee ratio grt should
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mt Mean Std Pr(mt < 0)
3m 0.817 10.657 0.384
6m 0.662 17.345 0.365
9m 0.713 23.231 0.338
1y 0.887 26.659 0.323

Table 2.6. The Distribution of Pro�ts from Convergence Trading Strategy

be calculated as

grt =
0:5 � PA100 + PHt �

PA100
PH100

PAt

If grt < 130%, convergence traders will be asked to add more security deposit

to avoid forced liquidation. The maximum duration of short selling is 1 year.

We now Monte-Carlo simulate the learning model 10,000 paths with each path

representing from 100th period to 152th period. The probability of grt < 130%

in every period can reach as high as 13%. We can also calculate the distribution

of pro�ts mt = PHt �
PA100
PH100

� PAt when t = 113; 126; 139 or 152 corresponding to 3

months, 6 months, 9 months and 1 year. Table ?? shows the results. We �nd the

mean of mt much smaller than the standard deviation of it and a large probability

of losing money. Being di¤erent from Xiong (2001), our learning model cannot

guarantee the convergence of AH premium. Therefore, it is not surprising that

convergence traders have large probability to lose money.

2.7. Conclusion

This chapter studies the AH premium, which is an interesting anomaly in asset

markets. We have shown that asset pricing models with heterogeneity agents with



108

di¤erent risk aversions or diverse beliefs in the complete market and incomplete

markets cannot generate any data-like AH premium. Transaction cost and di¤erent

dividend taxes between Shanghai and Hong Kong markets also fails to explain such

high and volatile AH premium. We propose an "Internal Rationality" model, in

which agents don�t know the pricing function from fundamentals to the stock prices

and have di¤erent subjective beliefs about tomorrow�s capital gains in Shanghai

and Hong Kong markets. Our learning model can successfully generate data-like

weekly AH premium. Finally we show that convergence traders with strategy short

in Shanghai and long in Hong Kong will lose money with 33% probability.

This maybe an evidence that Chinese investors are more speculative, which

seems to be related to the higher stock price volatility in China than that in

U.S. and the fact that stock price is highly negative correlated with PMI index

for economy prospect in China during the year 2015. These topics worth to be

explored in the future research.

2.8. Appendix

2.8.1. Algorithm for two agents two shares with rational expectation in

complete market

Step 1: Simulate fDtg for a long time. Solve for u
0
(C10 )

u0 (C20 )
by simulating the economy

especially ffC1;nt ; C2;nt gTt=0gNn=1 given initial bond holding B�1, since we have one

equation of present value budget constraint for B�1 and one unknown. Hence we

got the equilibrium �. It could be solved by iterating on � or for example just use
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solve the equation directly. The equation is as follows:

1

N

NX
n=1

TX
t=0

�1;t
u�(C1t )

u0(C10)
(C1t+j �Dt+j) = B�1

Here we simulate N times for T period economy. T could be small for example

100.

Step 2: Find fC1t ; C2t gTt=0 by simulating a very long sequence of D ie. At time

t, given u
0
(C1t )

u0 (C2t )
= � and market clear condition, C1t and C

2
t can be solved. Here

we are facing a convex problem. Thus theoretically we should get unique solution

though the two conditions lead to a polynomial of C.

Step 3: Solve for the realized present value of primary de�cit fDd1tg. It is useful

because the bond holdings are just conditional expectation of Dd

De�ne Dd1t =
P1

j=0 �
1;j u

0
(C1t+1)

u0 (Ct)
(C1t+j � D1

t+j) as realized present value of primary

de�cit. Then we have

Dd1t = �1
u
0
(C1t+1)

u0(C1t )
Dd1t+1 + C1t �D1

t :

We impose Dd at the end of the day is 0 to make these two equations equivalent

namely Dd1T = 0, and we can solve for Dd backwards from Dd1T = 0 given that we

have got sequence of consumption and dividends in the above steps.

Step 4 : We solve for fB1
t�1(D)g in this step by using the equation:

B1
t�1(Dl) = E(DdtjDt = Dl)
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where bond holds are just function of state D. To implement it we use

B1
t�1(Dl) =

1

T

TX
t=1

Dd1t I(Dt)

where I(Dt) is the indicator function. This could also be regarded as run the

regression of Dd to indicator functions, which is the core idea of PEA. Notice that

conditional expectation is actually the average over states. However due to the

face that we have an i.i.d world which is de�nitely ergodic, we just use the average

over time to estimate the conditional expectation by the property of ergodicity.

Technically speaking we are not using PEA because we are not iterating on

parameters, which is not necessary in our case. We are not relying on the approx-

imation of the right hand side of Euler equations as the typical steps do in PEA

thanks to the complete market thing gives us the formula to solve for debt and

Bd.

2.8.2. Algorithm for two agents two shares with diverse belief in com-

plete market

In this case every steps are same except that � is not constant any more. We will

have a sequence f�tg because of the diverse probability, which follows

�t�1(Dt)�t�1 = �t
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where �t�1(Dt) =
prob2t�1(Dt)

prob1t�1(Dt)
. Another di¤erence lies in step 4 because in this case

bond holding is not only the function ofD but also a function of �t�1. For example,

B1
t�1(Dl) = E(DdtjDt = Dl; �t�1)

So we need to run the regression of Dd on both D and �t�1. Actually for the case

in 2.8.1 you can also think of � as a state. But it is neglected in the regression

because it is a just constant and has been taken care of by the constant in the

regression. Explicitly the best way to write Dd as the function of the two states

are as follows:

Dd1t = (�
h
0 + �h1�t�1)IDh(Dt) + (�

l
0 + �l1�t�1)IDl(Dt)

Clearly this regression could be run separately both for high and low.

2.8.3. A Learning Model with Diverse Beliefs and Dividend Taxes

This section extends the benchmark learning model with diverse beliefs and divi-

dend taxes. The dividend and consumption growths still follow the same processes

as section 2.5. There are two types of agents, one is relative optimistic about

fundamental growth and the other is relative pessimistic. Agent i�s maximization
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problem for i = o or p is

max EP
i

0

1X
t=0

�t
(Cit)

1�


1� 


s.t. Cit + PAt S
A;i
t + PHt S

H;i
t = (PAt + (1� � i;A)Dt)S

A;i
t�1 + (P

H
t + (1� � i;H)Dt)S

H;i
t�1 + Yt

0 � SA;it & 0 � SH;it

The subjective belief P i is the same as P in section except that agent i believes

fundamental growth at rate of ai instead of a. The �rst order conditions are

(Cit)
�
PAt = �EP

i

t ((C
i
t+1)

�
(PAt+1 + (1� � i;A)Dt+1)) with equality if S
A;i
t > 0

(Cit)
�
PHt = �EP

i

t ((C
i
t+1)

�
(PHt+1 + (1� � i;H)Dt+1)) with equality if S
H;i
t > 0

We then can de�ne the subjective expectations of risk-adjusted stock price growth

as

�i;At � EP
i

t [(
Cit+1
Cit

)�
(PAt+1)]

�i;Ht � EP
i

t [(
Cit+1
Cit

)�
(PHt+1)]

And agent i updates �i;At and �i;Ht according to the same adaptive learning schemes

as (2.17) and (2.18). The consumption good market clearing condition is

Ct = Cot + Cpt = 2Yt + 2Dt
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Parameters Value
ao 1.0024
ap 1.0004
� o;A 0.05
� p;A 0.10
� o;H 0.20
� p;H 0.10

Table 2.7. Parameters Values for Learning Model

Assumption 1 allows us to have the following approximations

EPt [(
Cit+1
Cit

)�
] = EPt [(
Ct+1
Ct

)�
] for i = o; p

The pricing equations according to Adam and Marcet (2011) are

PAt = max
i2O;P

�(ai)1�
��

1� ��i;At
(1� � i;A)Dt;

PHt = max
i2o;p

�(ai)1�
��

1� ��i;At
(1� � i;A)Dt;

The new parameter values are given in table 2.7. The simulated stock prices of

A-share and H-share is in �gure 2.7, and the simulate AH premium in �gure 2.8.

The similar share of AH premium compared with it in �gure 2.6 con�rms that

di¤erent beliefs about capital gains are dominate factor in generating AH premium

relative to diverse beliefs on fundamentals and dividend taxes.
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Figure 2.7. Simulated Stock Prices of A-Share and H-Share

0 10 20 30 40 50 60 70 80 90 100
100

105

110

115

120

125

130

135

140

145

150

time

D
if

AH Premium

Figure 2.8. Simulated AH Premium

2.8.4. Di¤erentiable Projection Facility

The function ! used in the di¤erentiable projection facility is
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!(�) =

8><>: � if x � �L

�L + ���L
�+�U�2�L (�

U � �L) if �L < x � �U

9>=>;
In our numerical applications, we choose �U so that the implied PD ratio never

exceeds UPD = 600 and �L = ��1 � 2(��1 � �U):

2.8.5. Data Sources

Our data set for China stock market price, dividend, Heng Seng China AH premium

index, Heng Seng China A index and Heng Seng China H index are downloaded

from Wind Financial Database (http://www.wind.com.cn). The daily price series

has been transformed into a weekly series by taking the index value of the last day

of the considered week.

Our data set for Chinese macro data like consumption and CPI are downloaded

from Chung, Chen, Waggoner and Zha (2015) (http://www.tzha.net/code).



CHAPTER 3

Puzzles in Exchange Market and "Internal Rationality"

Approach

3.1. Introduction

There are many interesting anomalies in foreign exchange market, similar to

other asset markets. The two most well-known ones are uncovered interest parity

(UIP) puzzle and exchange rate disconnect puzzle. The UIP puzzle �nds that over

short time horizons (from a week to a quarter) when the interest rate di¤eren-

tial (home country relative to foreign country) is higher than average, the home

currency tends to appreciate. This puzzle can be shown clearly using "Fama re-

gression" (Fama, 1984). It is usually reported as a regression of the change of log

exchange rate s between time t+ 1 and t on the time t interest di¤erential i� i�

(3.1) st+1 � st = &s + �s(it � i�t ) + us;t+1

Under rational expectation and risk neutrality, �s should equal with 1. Table 3.1

reports the 90% con�dence interval for the regression coe¢ cients of six developed

countries against US. For all of the countries except Italy, the point estimates of �s
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are negative. The 90% con�dence interval lies below 1 for four (Italy and France

being the exceptions). The regression results show that UIP puzzle widely exists.

Regarding the exchange rate disconnect puzzle as one of six major puzzles in

international macroeconomics (Obstfeld and Rogo¤, 2001), we can directly borrow

table 3.2 from Engel and West (2005). m is money supply, y is real output and i

is nominal short-term interest rate and variables with a �*�denoting corresponding

foreign country ones. We take US as home country. One noteworthy feature is

that except Canada the standard deviations of �s are around twice as large as

the standard deviation of fundamentals. And Engel and West (2005) suggests

that we always cannot reject the null hypothesis that fundamentals fail to Granger

cause �s. In addition, Djeutem and Kasa (2013) apply traditional volatility tests

including Shiller (1981) test, Campbell and Shiller (1987) test, West (1988) test

and Engel (2005) test to arrive at the conclusion that exchange rate displays excess

volatility unrelated to economic fundamentals.

This chapter proposes a novel approach to explain these two puzzles. We

deviate from rational expectation hypothesis by introducing "Internally Rational"

agents who don�t know the mapping from economic fundamentals to equilibrium

exchange rate because of incomplete information (Adam and Marcet, 2011), and

optimize their behaviors based on their subjective beliefs about all variables that

are beyond their control. In such circumstance, exchange rate is no longer the

discounted sum of future economic fundamentals. Given the exchange rate process

they believe, agents optimally update their expectations about future exchange rate



118

Country b&s 90% c.i. b�s 90% c.i.
Canada -0.045 (-0.250, 0.160) -1.171 (-2.355, -0.186)
France -0.028 (-0.346, 0.290) -0.216 (-1.603, 1.171)
Germany 0.192 (-0.136, 0.520) -1.091 (-2.583, 0.401)
Italy 0.032 (-0.325, 0.389) 0.661 (-0.359, 1.680)
Japan 0.924 (0.504, 1.343) -2.713 (-4.036, -1.390)
UK -0.410 (-0.768, -0.051) -2.198 (-4.225, -0.170)

Table 3.1. Fama Regression Sample Size: 1979-2009

Canada France Germany Italy Japan UK
�s
Mean -0.44 -0.35 0.15 -1.11 0.76 -0.44
Std 2.20 5.83 6.06 5.79 6.22 5.26
�(m�m�)
Mean -0.56 0.03 -0.55 -1.19 -0.39 -1.34
Std 2.59 2.41 2.38 2.24 2.18 1.94
�(y � y�)
Mean 0.04 0.21 0.21 0.20 0.04 0.19
Std 0.79 0.88 0.88 1.01 1.21 1.06
i� i�

Mean -0.92 -1.89 2.02 -4.23 3.64 -2.40
Std 1.72 3.70 3.21 4.25 2.78 2.88

Table 3.2. Summary Statistics

using Kalman �lter. Agents�subjective expectations in turn in�uence equilibrium

exchange rate, and the realized one feeds back into agents� beliefs. This self-

referential aspect of the model implies that agents�endogenous expectations are

dominant in generating exchange rate volatility relative to economic fundamentals.

And the mean reversion of realized exchange rate generated from the self-referential

property is also the key to produce UIP puzzle.
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3.2. Related Literature

There are a large body of literature studying the anomalies in exchange market.

We can review the literature into two strands. The �rst is about UIP puzzle, the

second is for exchange rate disconnect puzzle.

Classic early references includes Bilson (1981) and Fama (1984) discover the

existence of UIP puzzle. Engel (1996, 2014) surveys the empirical work that estab-

lishes this puzzle, and discusses the problem faced by the literature that tries to

account for the regularity. Then, recent advances have found that the UIP puzzle

can be explained using a risk-based model with non-standard preferences that have

been used to account for other asset pricing anomalies. These studies model the

ex-ante excess return as a risk premium related to the variances of consumption in

the home and foreign country. Verdelhan (2010) builds on the model of external

habits of Campbell and Cochrane (1999), and Colacito and Croce (2011, 2013) and

Bansal and Shaliastovich (2007, 2013) develop the model of preferences in Epstein

and Zin (1989) and Weil (1990) to account for this anomaly. Those studies show

how the foreign exchange rate risk premium can be related to the di¤erence in the

conditional variance of consumption in the foreign country relative to the home

country. A di¤erent approach to explain the interest parity puzzle advances an

explanation akin to the model of information friction, such as rational inatten-

tion model Bacchetta and van Wincoop (2010) and learning model Chakraborty
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and Evans (2008). Finally, Yu (2013) provides a behavioral model with agents�

sentiments on fundamentals to explain UIP puzzle.

In the second strand, Mussa (1986) and Baxter and Stockman (1989) are early

studies showing that the transition to �oating exchange rate regimes leads to

sharp increase in nominal and real exchange rate variability with no corresponding

changes in the distributions of fundamental macroeconomic variables. Betts and

Devereux (1996, 2000) introduce local currency pricing into the baseline model pre-

venting the exchange rate volatility transferring to macroeconomic fundamentals.

Evans and Lyons (2002) show that most of the short-run exchange rate volatility

is related to order �ow, which also re�ects the heterogeneity in investors�expecta-

tions. Xu (2010) proposes an exchange rate pricing model to generate this anomaly

by introducing noise traders with errorneous stochastic beliefs. Another approach

to account for exchange rate disconnect puzzle focuses on deviations from rational

expectation including Markiewicz (2012)�s model uncertainty story and Djeutem

and Kasa (2013)�s robustness story.

Our paper contributes to the literature by studying the UIP puzzle and dis-

connect puzzle together, and providing an "Internal Rationality" model as a new

perspective.

3.3. The Model

This section presents a simple monetary exchange rate model with agents who

hold subjective beliefs about exchange rate behavior. We show that the presence of
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subjective uncertainty implies that utility-maximizing agents update their beliefs

about exchange rate behavior using observed exchange rate realizations. Using

a generic updating mechanism, we show that such learning scheme can generate

uncovered interest rate puzzle and exchange rate volatility puzzle.

3.3.1. Model Environment

The model is a two-country open economy model following Obstfeld and Rogo¤

(1996). Domestic variables are denoted without " * ", and the corresponding

foreign variables are denoted with a superscript " * ". The (log-linear) domestic

money demand equation, which can be derived from money-in-utility model, is

(3.2) mt � pt = �yt � �it

where mt is the log of money supply, pt is the log price level, yt is the log of real

output, and it is nominal interest rate. One of the key building blocks of this

�exible-price monetary model is the assumption of purchasing power parity, which

implies that

(3.3) pt = st + p�t

where st is nominal exchange rate, home country price of foreign currency. The

second building block of this monetary model is the uncovered interest rate parity
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(UIP) expressed as

(3.4) it = i�t + EPt st+1 � st

where P denotes agents�subjective beliefs perhaps being di¤erent from objective

beliefs.

Deriving from equation (3.2), (3.3) and (3.4), the exchange rate st is a convex

combination of the fundamental variable ft and the expected future exchange rate

EPt st+1 as

(3.5) st = (1� 
)ft + 
EPt st+1

where ft � (mt �m�
t )� �(yt � y�t ), and 
 � �

1+�
is the weight on the expectation.

Following Markiewcz (2012), the fundamental variable ft follow an AR(1) process

as

ft = �fft�1 + �ft ; �
f
t � N(0; �2ef )

where �f is the AR(1) coe¢ cient.

3.3.2. Rational Expectation Equilibrium

Under rational expectation EPt = Et, agents can forward equation (3.5) to yield

(3.6) sREt = (1� 
)Et

TX
j=0


jft+j + 
TEts
RE
t+T
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Letting T !1 and imposing the no-bubbles condition limT!1 

TEts

RE
t+T = 0, the

present-value expression is

sREt = (1� 
)Et

1X
j=0


jft+j(3.7)

=
1� 


1� 
�
ft

This rational expectation equilibrium in the �rst place is well-known at odds with

UIP puzzle. Let us show the failure in the following

st+1 � st =
1� 


1� 
�
[(�� 1)ft + �ft+1]

And according to UIP equation, we have

it � i�t =
1� 


1� 
�
(�� 1)ft

If we run the regression like

st+1 � st = �s + �s(it � i�t ) + us;t+1

the model implied �s must be 1. And also from equation (3.7), the fact that

the volatility of sREt is completely driven by fundamental ft misses exchange rate

disconnect puzzle.
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3.3.3. Equilibrium Analysis with Learning

3.3.3.1. Probability Space. This section explicitly describes the general joint

probability space of the external variables. In the competitive economy, each

agent as price-taker considers the joint process of fundamental and exchange rate

fft; stg as exogenous to his decision problem. Rational expectations imply that

agents exactly know the mapping from a history of fundamental ft to equilibrium

exchange rate st as section 3.3.2. Exchange rate hence just carries redundant

information. But if the rational expectation assumption is relaxed, as shown in

Adam and Marcet (2011) such that agents do not know such mapping because

of the non-existence of common knowledge on agents� identical preferences and

beliefs, then equilibrium exchange rate st should be included in the underlying

state space. We then de�ne the probability space as (P;B;
) with B denoting

the corresponding ��Algebra of Borel subsets of 
 and P denoting the agent�s

subjective probability measure over (B;
). The state space 
 of realized exogenous

variables is


 = 
f � 
s

where 
X is the space of all possible in�nite sequences for the variable X 2 [s; f ].

Thereby, a speci�c element in the set 
 is an in�nite sequence ! = fst; ftg1t=0.

3.3.3.2. Agent�s Subjective Beliefs. Now we allow a small deviation from ra-

tional expectation assumption such that agents with uncertainty formulate their
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own joint probability distribution P di¤erent from the objective one. In such en-

vironment, rational expectation equilibrium (3.7) doesn�t hold any more leaving

only the �rst-order condition for stock price in equation (3.5) intact. Without

knowing the mapping from fundamental ft to exchange rate st, agents should have

their own beliefs on the behavior of exchange rate based on subjective distribu-

tion P. Speci�cally, the subjective expectation of exchange rate growth �st can be

de�ned as

(3.8) �st � EPt st+1 � st

Then, de�nition as equation (3.8) together with equation (3.5) implies the map-

ping from agents�subjective beliefs �st to realized exchange rate st

(3.9) st = ft +



1� 

�st

Equation (3.9) analytically suggests that learning equilibrium provides possible

resolution to generate exchange rate disconnect puzzle since in addition to funda-

mental ft subjective expectation �
s
t can also drive the volatility of st. If agents

expect foreign currency to appreciate (depreciate), that is a high (low) st, ceteris

paribus, an increasing (decreasing) demand in foreign currency drive current st up

(down).

3.3.3.3. Belief Updating System. Nowwe can fully specify agents�information

set P to show how they form their expectation �st optimally given the model
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they believe. Agents think that exchange rate growth is the sum of a persistent

component xt and of a transitory component �st

st � st�1 = xt + �st ; �
s
t � N(0; �2�)(3.10)

xt = xt�1 + �st ; �
s
t � N(0; �2�)

According to equation (3.7), rational expectation equilibriummeans that Et(st+1�

st) = 0 when ft is at its unconditional mean 0. Hence, the previous setup encom-

passes the rational expectation equilibrium as a special case when agents believe

�2�;s = 0 and assign probability one to x0 = 0.

If �2� is allowed to be non-zero, the setup then gives rise to a �ltering problem

because agents observe only the realizations of exchange rate growth, but not the

persistent and transitory component separately. Agents optimally use Kalman

�lter to �lter out the persistent component xt. The priors of agents�beliefs can be

centered at their rational expectation values and given by

x0 � N(0; �20)

and the variances of prior distributions should be set up to equal with steady state

Kalman �lter uncertainty about e�t

�20 =
��2� +

q
�4� + 4�

2
��
2
�

2
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Then agents�posterior beliefs will be

xt � N(�st ; �
2
0)

And the optimal updating rule implies that the evolution of �st is taking the form

just as constant gain learning

(3.11) �st = �st�1 +
1

�s
(st�1 � st�2 � �t�1)

where �s =
�2�+
p
�4�+4�

2
��

2
�

2�2�
given by optimal (Kalman) gain.

3.3.3.4. Model�s Implication. Equation (3.9) and (3.11) provide us intuition

why this model can generate exchange rate disconnect puzzle. An the low �st

(optimistic on home currency) will produce a low st (home currency appreciate)

as equation (3.9), and the realized st will feedback into equation (3.11) to in-

duce an even lower �st+1. This kind of feedback channel is possible to dominate

fundamental�s e¤ect in driving the volatility of st.

In addition, the learning model is also possible to match UIP puzzle. According

to (3.4) and (3.8), it � i�t is determined by �st . And as shown in Adam, Marcet

and Nicolini (2016), learning scheme as (3.11) produces a mean-reverting �st , that

is the higher �st , the lower ��
s
t . Then, considering that realized st+1� st is mainly

driven by �st+1��st , this channel produces the negative relationship between interest

di¤erential it � i�t and exchange rate change st+1 � st.
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Parameter Value
�f 0.98
��ft

0.1990

 0.984
1=� 0.0072

Table 3.3. Parameter Values

3.4. Quantitative Analysis

This section evaluates the quantitative performance of our model. We summa-

rize our model�s parameter values in table 3.3 . The persistence of fundamentals

is chosen very close to but smaller than 1 to keep stationarity even though it is a

little bit larger than 1 as found in Engel and West (2004). The parameter 
 is set

at 0.98 to capture quarterly interest rate response�s to real money supply � = 60.

The constant gain parameter � has value at 140 as Adam, Marcet and Nicolini

(2016).

We simulate our model following Monte-Carlo procedure. The number of sam-

ples is set to K = 10; 000 and each sample has N = 150 matching the data sample

from Engel (2016). In each sample, we �rst simulate the model to run the regres-

sion (3.1). Then, the �nal values of estimate b�s are taking the average of K samples
at value -1.7410. This negative number con�rms that our learning model is able

to produce UIP puzzle. The model correlation between st and ft is 0.278, and the

standard deviations of st and ft are 1.83 and 1.01 respectively. Figure 3.1 shows

one simulated dynamics of exchange rate st and fundamental ft. Our model has

the ability to generate excess exchange rate volatility unrelated to fundamentals.



129

0 20 40 60 80 100 120 140 160
­0.5

0

0.5

1

1.5

2

2.5
e
f

Figure 3.1. The Dynamics of Simulated st and ft

3.5. Engel�s Level Puzzle

3.5.1. What is level puzzle?

Engel (2016) �rst puts forward that the puzzle concerning the level of the exchange

rate is particularly di¢ cult to be explained�the explanations advanced for UIP

puzzle are completely inadequate for explaining the level puzzle. Let �t+1 be the

di¤erence between the return between period t and t + 1 on a foreign short-term

deposit and the home short-term deposit, inclusive of the return from currency

appreciation as

(3.12) �t+1 � st+1 � st + i�t � it
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UIP puzzle implies that cov(Et�t+1; i
�
t � it) > 0. The ex-ante excess return on the

foreign deposit is positively correlated with the foreign less U.S. interest di¤eren-

tial. To measure the relation between the interest di¤erential and the level of the

exchange rate, begin by rearranging (3.12), substracting o¤ unconditional means,

and iterating forward to get

(3.13) sTt = sIPt � Et

1X
j=0

(�t+j+1 � �)

where sTt � st � limk!1(Etst+k � k(s+1 � s)) and sIPt � Et
P1

j=0(i
�
t+j � it+j �

(i� � i)). sIPt is the level of exchange rate equaling to the in�nite sum of the

expected nominal interest di¤erentials, and sTt as the transitory component should

be the same as sIPt if Et�t+j+1 = 0 for all j � 0. And Engel (2016) empirically

shows that cov(Et
P1

j=0 �t+j+1; i
�
t � it) < 0. From (3.13), it follows that there is

excess co-movement in the level of the stationary component of the exchange rate,

that is

cov(sTt ; i
�
t � it)� cov(sIPt ; i�t � it) = �cov(Et

1X
j=0

�t+j+1; i
�
t � it) > 0

It must be the case that while UIP puzzle has cov(Et�t+1; i
�
t � it) > 0, for some

period in the future cov(Et�t+j+1; i
�
t � it) < 0, the reverse sign. This can be

recovered from the regression as

(3.14) �t+j = &s;j + �s;j(i
�
t � it) + ujt
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We repeat �gure 4 in Engel (2016) as �gure 3.2 here plotting the slope coef-

�cient estimates. The dependent variable here is ex-post excess return instead of

ex-ante one. For small values of j, we �nd cov(�t+j; i
�
t � it) > 0, but as the horizon

increases, the sign of the covariance reverses at around period 50. Most of models

addressing UIP puzzle fail on the level puzzle (Engel, 2016).

3.5.2. Learning Model�s Implication on Level Puzzle

Being similar to section 3.4, we Monte-Carlo simulate our model and run the

regression (3.14). In each sample, we simulate 1500 periods. To weaken the e¤ect

of initial condition, we drop �rst 200 periods. Figure 3.3 plots the regression

results. There is an initially positive slope, and then slope gradually becomes

negative, but quantitatively not enough to generate cov(Et
P1

j=0 �t+j+1; i
�
t�it) < 0.
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Figure 3.2. Slope Coe¢ cients and Con�dence Intervals Using Actual Data
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Figure 3.3. Slope Coe¢ cients and Con�dence Intervals Using Simu-
lated Data
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