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Abstract

IDE adoption of parallel processing hardware in mainstream computing
W as well as the interest for efficient parallel programming in developer
communities increase the demand for programming models that offer support
for common algorithmic patterns.

An algorithmic pattern of particular interest are reductions. Reductions
are iterative memory updates of a program variable and appear in many
applications. While their definition is simple, their variety of implementations
including the use of different loop constructs and calling patterns makes their
support in parallel programming models difficult and requires a careful design
for programmability, transparency and performance. Further, their charac-
teristic update operation over arbitrary data types that requires atomicity
makes their execution computationally expensive and scalable execution chal-
lenging. These challenges and their relevance makes reductions a benchmark
for compilers, runtime systems and hardware architectures today.

Driven by our own demand for their efficient support in the OmpSs parallel
programming model, we have developed new ideas and features that we
present in this work. Our contributions are as follows: first, we add support
for task-parallel reductions (for while-loops and generally recursive functions)
in the OmpSs programming model and develop a proposal for their inclusion
in the OpenMP specification. Second, we develop new software techniques to
accelerate irregular and near-regular array-type reductions and evaluate their
impact with different applications on different hardware architectures. Third,
we show how these techniques can be supported in OmpSs and OpenMP; and
fourth, we show that reductions benefit from smart runtimes implementing
an inspector-executor and that this execution model can be integrated into a
task-parallel programming model. Our proposal for task-parallel reductions
has been recently accepted into the OpenMP standard.
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Resumen

A amplia adopcién de hardware de procesamiento paralelo para la com-
L putacién de propésito general, asi como el interés por una programacion
paralela eficiente en la comunidad de desarrolladores, han aumentado la
demanda de modelos de programacién que ofrezcan soporte para patrones
algoritmicos comunes.

Un patrén algoritmico de particular interés son las reducciones. Las reduc-
ciones son actualizaciones iterativas de memoria de una variable del programa
y aparecen en muchas aplicaciones. Aunque su definicién es simple, su var-
iedad de implementaciones, incluyendo el uso de diferentes construcciones de
bucle y patrones de llamada, hace que su soporte en los modelos de progra-
macion paralelos sea dificil y requiera un cuidadoso diseno en lo que respecta
a programabilidad, transparencia y rendimiento. Ademads, la necesidad de
atomicidad en la ejecucién de estas operaciones hace que sean costosas desde
el punto de vista computacional y dificilmente escalables. Estos desafios y
su relevancia convierten a esta clase de operaciones en una referencia para
medir el rendimiento de compiladores, sistemas en tiempo de ejecuciéon y
arquitecturas de hardware actuales.

Impulsados por la necesidad de disponer de una implementacion eficiente en
nuestro modelo de programacién paralelo, hemos desarrollado nuevas ideas
que presentamos en este trabajo. Nuestras contribuciones son las siguientes:
en primer lugar, anadimos soporte para reducciones de tareas paralelas (para
bucles while y funciones recursivas) en el modelo de programacién OmpSs y
desarrollamos una propuesta para su inclusién en la especificacién de OpenMP.

En segundo lugar, desarrollamos nuevas técnicas para acelerar las reducciones
irregulares y casi-regulares de tipo array y evaluamos su impacto mediante
diferentes aplicaciones en varias arquitecturas.
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En tercer lugar, mostramos cémo estas técnicas pueden ser soportadas en
OmpSs y OpenMP. Asimismo, mostramos que las reducciones se benefician
de sistemas en tiempo de ejecucién inteligentes implementando un esquema
inspector-ejecutor.

Nuestra propuesta de reduccion de tareas paralelas ha sido aceptada reciente-
mente en el estandar OpenMP.






Acknowledgements

We thankfully acknowledge the support of the European Commission through
the ENCORE project (FP7-248647), the TERAFLUX project (FP7-249013),
the TEXT project (FP7- 261580), and the HIPEAC-3 Network of Excellence
(FP7/ICT 217068), further the support of Intel-BSC Exascale Center, the
Spanish Ministry of Education (TIN2007-60625, TIN2012-34557, TIN2015-

65316-P and CSD2007- 00050) and the Generalitat de Catalunya (2009-SGR-
980).

vii






Contents

|[List of Figures| xiii
[List of Publications| xxiii
(1 __Introductionl 1
1.1  Challenges for scalability and correctness| . . . ... ... .. 2
[1.2  Current and future software techniques|. . . . . . . . ... .. 6
1.3 Challenges to support irregular access patterns| . . . . . . .. 7
[1.4  Challenges to support near-regular access patterns| . . . . . . 8
[1.5 Language support and programmability] . . . . ... ... .. 10
(.6 Contributions| . . . . . . . ... ... o o 12
[1.7  Thesis organization|. . . . . . . .. ... ... ... 14
|2 Background and Related work| 15
2.1  On Atomics and Data Replication| . . . ... ... ... ... 17
2.2 Related Workl . . . .. ... ..o 21
2.3 The OmpSs Programming Model| . . . . . . .. ... ... .. 25

ix



|13 Task-parallel Reductions in OmpSs and OpenMP)| 29
[3.1 Introduction to Task-parallel Reductions|. . . . . . . ... .. 30
13.2  Specification for OmpSs and OpenMP| . . . . . . ... .. .. 31
[3.3  Implementation in OmpSs| . . . . . . ... ... ... ..... 37
8.4 Evaluation|. . . . . ... ... 41
BS Related Workl . . . . ... ..o o 45
8.6 Conclusions . . . . ... .. ... ..o o 46

4 Towards Task-parallel Reductions in the OpenMP Specifica- |

[_tion| 47
4.1 Introduction to Task-parallel Reductions in |
| OpenMP|. . . . .00 o 48
4.2 Discussion of Concernsl . . . . . . . .. .. .. ... .. 50
4.3 Specification for OpenMP| . . . . . .. ... ..o, 56
44 Bvaluationl. . . . .. ..o oo 57
45 Conclusions . . . . .. .. ... 61

[6Supporting Irregular Array-type Reductions on Distributed |

|  Memory Systems with CachedPrivate) 65
[b.1 Introduction to CachedPrivatel . . . . ... .. ... ... .. 66
9.2 Language Support in Ompds| . . . . . . . ... . ... .... 69
b3  CachedPrivatel . . ... ... .. ..o 75
b4 Evaluationl. . . . .. .. ... oo 80
B Results. . . ... ... ... .. 82




xi

6 Supporting Irregular Array-type Reductions on Shared Mem- |

|  ory Systems with PIBOR|

|7 Towards Unified Support for Array-type Reductions|

|Bibliography|

87

103
104
106
111
113
117
119

121
122
124
141
143
144

147

151






List of Figures

M1

A commonly occurring reduction kernel performing iterative

updates in a for-loop over a scalar data type]. . . . . . . . ..

2

IntegrateStressForElems(), a reduction kernel from the LULESH

hydrodynamics application defined over array-type variables

with an irregular access pattern, representing a challenging

USE-CASEl . . v v ot e e e e e e e e e e e

3

Representative memory access patterns ot scalar and array-type

reductions showing conflicting accesses resulting trom parallel

execution by multiple processors| . . . ... ... ... ...

4

Common occurrences that require the support of task-parallel

reductions to express CONCurrencyl. . . . . . . . . . . . . . ..

2.1

Different ISAs implement atomics difterently. While the x86

ISA issues a global barrier, the POWERS ISA (on the right)

implements a conditional write.| . . . . . .. .. ..o L.

18

P2

Reduction support through replication redirects original mem-

ory accesses to the reduction variable r into thread-private data

copies 1 and ro. T'his operation is preceded by a concurrent

initialization and followed by a serial reduction ot private copies

mto the original reduction variable|. . . . . .. ... ... ..

xiii

19



xXiv

P3

Concurrent executions of LULESH and SmartJumper on dif-

ferent systems show the degree at which atomic updates and

privatization affect performance. While for LULESH, privati-

zation results in significant performance degradation due large

overheads, 1t 1s the technique of choice for SmartJumper and

small data sets (2.3(a)).| . . . . . ... ... oL

20

P4

Schematic overview of LocalWrite, a techniques that imple-

ments an ”owner computes” execution model by replicating the

iteration space and selectively executing only those iterations

that result in updates of owned memory.|. . . . . . .. .. ..

25

Landscape of algorithms, support strategies and techniques| .

22
24

PG

A complete application shows the use of different OmpSs prag-

mas to implement a parallel array-sum. Reduction support

1s based on the functionality implemented for the concurrent

clausel . . ..o

27

B

A dependency graph generated for the application shown in

Figure [2.6] shows three different node types representing pro-

gram methods and directed edges representing dependencies

among them. . . ... ... ... ... ... ...

BI

A concurrent reduction using a taskwasit to ensure data consis-

tency so a function would return a correct value of red| . . . .

B2

A concurrent reduction within the taskgroup performs a wait

on all children and their descendant tasks (this is often referred

to as "deep wait”)| . . ... Lo

[3.3

The reduction domain over the variable red 1s ended by a task

dependency| . . . . . ... ... o

B4

A multi-level domain reduction i1s computed over the same

variable by tasks participating at different nesting levels| . . .

[3.5

Element-wise matrix sum implemented as a nested-domain

reduction, where each dimension is processed in a different

nesting level over a different variable] . . . . . . ... ... ..




XV

13.6  Nested task-parallel reduction in a worksharing construct per-

[ forms a reduction over the shared variable red/. . . . . . . .. 36
[3.7 A concurrent implementation of N-Queens as a multi-level (a) |
and nested-level domain (b) reduction over the variable count| 37
[3.8 Static (a) and dynamic (b) allocation differs in when and where
thread-private memory is requested (req), allocated (alloc) and
reduced (red)[ . . . . . ... Lo 38
13.9  'Transtformations applied by the compiler redirecting accesses |
to a thread-private reduction storel . . . . . .. ... ... .. 42
[3.10 An execution trace for the n-Queens application (n=15 and
creating tasks in two nesting levels) shows tasks (a) and alloca-
tion (1), reuse (2) and reduction (3) of thread-private reduction
storages over a task-local (b) and global variable (c) as shown
i Figure 3.7 . . . . ..o 43
|3.11 Application speed-up over serial execution implemented with |
(a) nested-domain and (b) multi-level domain reductions as |
well as with regular tasking using atomics| . . . . . . ... .. 44
4.1 Difterent versions ot a while-loop reduction over a linked list|. 49
4.2 Examples of our proposal| . . . .. ... .. 0000 51
4.3 Array Sum UDR benchmark results| . . . ... ... ... .. 53
4.4 Nested taskgroup reduction scenarios|. . . . . . . .. ... .. 54
4.5 Array Sum and Dot Product benchmarks results . . . . . .. 59
4.6 NQueens benchmark results| . . . . ... ... ... ... ... 60
4.7 _Unbalance Tree Search benchmark resultsl . . . . .. .. ... 62
4.8 NQueens benchmark results on Xeon Phi . . . ... ... .. 63
5.1 Sequential histogram code| . . . . . . .. ..o 67



XVi

5.2 Example of regular, irregular and cached reductions running |
| in parallel on processors P1, P2 and P3| . . .. .. ... ... 68
|5.3  Parallel histogram with locks| . . . . ... ... ... ... .. 71
|5.4  Parallel histogram with privatization . . . . . . . ... .. .. 72
5.5 Reduction support in task and work-sharing language con- |
| structs In OmpSs| . . . . . . . ... 72
5.6 User-defined reductions in OmpSs| . . . . ... ... ... .. 73
[5.7 Histogram with CachedPrivate and explicit tasking| . . . . . . 74
[5.8  Histogram with CachedPrivate and implicit tasking|. . . . . . 75
5.9 Parallel histogram, as shown in Figure [5.7] after compiler |
[ translation to CachedPrivatel . . . . . .. ... ... .. ... 77
[5.10 Reading from reduction cache| . . . . . . . . .. ... ... .. 78
[5.11 Initialization tasks defining CachedPrivate reduction topologyl 80
[5.12 Task dependency graph with initialization and reduction tasks| 80
[5.13 Node- and SMP scalability on dense, loosely connected input |
data (2GB input, 512MB output, 256 KB cache and eviction
buffer sizes) with CachedPrivate (CP) and ReplicateBufs (RB)
| with one worker thread per node and atomics| . . . . . . . .. 83
[5.14 Worker thread scalability of CachedPrivate (CP) and Repli- |
| cateBufs (RB)|. . . . . . . ... ... .. ... 84
6.1 Speed-up of the RandomAccess benchmark on the Intel Xeon |
| E5 processor with 16 threads implemented with different par- |
| allelization techniques.| . . . . . . . ... ... .00 88
6.2  Concurrent RandomAccess kernel benchmark showing two |
| common parallelization schemes.| . . . . . . ... ... .. .. 89




xvii

6.3 Schematic view of PIBOR showing access redirection into |
buffers (scatter 1) and regions of configurable size (scatter |

2) avoiding scatter-updates over large memory| . . . . . . .. 91

6.4 Execution diagram of PIBOR.. . . . ... ... ... ... .. 91
6.5 Language support for array-type reductions in Ompds.|. . . . 92
6.6 Unsupported use-cases with reductions pertformed over aliased |
[ variable names and in external functions. . . ... ... ... 92
6.7  PIBOR parameter exploration on a single thread of the IBM |
POWERS system shows difterent speed-ups over original code.| 94

6.8 Execution speed-ups with PIBOR for single-threaded execution |
on three different system architectures.|. . . . . . . . ... .. 96

6.7 Scalability of RandomAccess with PIBOR, atomic and privati- |
zation on different socket configurations on the IBM POWERS |
system. . ... 98

6.8  RandomAccess scalability on the Intel Xeon E5 processor.| . . 99
6.9  RandomAccess scalability on Intel Xeon Phif . . . . ... .. 99
[6.10 Access hot-spots are supported by reducing region size which |
results in an increased number of regions and less contention |
onregion locks| . . . . ... o oL 100

[7.1 Structure of a typical scientific application with an array re- |
duction in a global simulation loop| . . . . . ... ... .. .. 105

7.2 Representative kernel trom SPECFEM3D application imple- |
menting an irregular array-type reduction over an array that |

1s called iteratively within a global simulation loop| . . . . . . 105

[7.3  Landscape of algorithms, parallelization strategies and techniques|106
[7.4  Redirecting accesses into thread-private data containers gives |

implementors the freedom to implement any arbitrary data |

placement strategyl . . . . . ... .. oo 107




xViil

[7.5

Interface to an AML object that implements binning with

selective privatization| . . . . . . .. .. ... ... ... ...

[7.6

The OmpSs Reductions Model includes a set of header files

that implement different techniques, a header file that imple-

ment generic data types and a runtime components handling

reduction scopes and inspector-executor data.| . . . . . . . ..

[7.7

Ordering through Scheduling is a strategy that implements

an alternative iteration space through dependency-aware task

scheduling. ComRed is a technique relying on commutative

execution of tasks that share overlapping region(s). . . . . . .

[7.8

Dependency stride defines an offset in task creation order at

which any two tasks can be scheduled for execution in parallel.

In case of a scattered updated over the entire reduction array,

the entire execution 1s serialized . . . . . . . . ... ... ..

7.9

A simplified, intermediate code shows the support of AMLs

and inspector-executors in Ompos| . . . . . . . . . ... ...

710 RBedirechs T Selechine Prinaiizali bines ] Fsol l

an 1spector-executor approach with access redirection into

thread-private data containers. This allows to bypass access

redirection for accesses into owned memory thus effectively

reducing the overhead of access redirections.|. . . . . . . . ..

711

OmpSs implementation of a reduction kernel showing the pro-

posed language extensions| . . . . . . ... .. ...

BRI

Element-centric computation over a staggered mesh results

in scatter-updates to nodal variables once the computation

of values finishes. This represents the irregular array-type

reduction in the LULESH hydrodynamics code which simulates

a wave blast propagation in a compressible medium (b)|

123



Xix

82

IntegrateStressForElems() with explicit tasking and the pro-

posed language extensions. This method shows how node values

are gathered, processed and distributed back, thus creating the

scattered update access pattern typical for array-type reductions.|]125

B3

SmartJumper is a modern implementation of the popular Ran-

domAccess benchmark| . . . . .. .. oL,

126

R

Pertormance scalability of both LULESH reduction kernels

obtained on a 2-way Intel Xeon E5 processor with 16 cores

shows that Commutative Reductions achieves a four times

higher speedup compared to other techniques and is en par

with the unprotected version marked as RACE| . . . . . . ..

127

[8.9

Pertormance scalability of both LULESH reduction kernels

reaches a plateau with 96 threads and 4 SMT threads per

core. Also in this case, Commutative Reductions produces the

highest speedups compared to other techniques.|. . . . . . ..

128

BG E - rTUTESH il C o Redich l

shows the first four iterations of the global global simulation

loop. The augmented view B (b) of the marked region shows

three taskified methods including the two reduction kernels (1

and 2) with the associated dependencies (lines).| . . ... ..

130

[8.7

Execution traces show differences in execution speeds and time

gains after the fourth iteration of the LULESH simulation loop

with both reduction kernels 7 and 2 implemented with ditterent

techniques.| . . . . . . . . .. ...

131

8.8

Histograms over IPC and total instructions show that the use

of atomics in the LULESH reduction kernel causes a drop in

IPC by a factor of 2.8 and increases the total instructions

count by 18 %. This results in a performance degradation by

a factor of approximately 4 compared to the implementation

using ComRed.| . . . . . . ... oo

132

[8.9

LULESH with replication does not scale due to large over-

heads associated with the initialization (A), reduction (B) and

deallocation (C') of thread-private array copies| . . . . . . ..

133



XX

’.10

Execution traces of LULESH showing only reduction tasks and

the dependency stride length of 2 (b) computed during the

mspection phase.| . . . ... ... oL

BT

A dependency stride length of 2 requires at least twice as

many tasks as available threads in order to generate enough

independent work to keep all threads busy.| . ... ... ...

B12

ComRed relies on an efficient implementation of commutative

task scheduling or on a suitable task creation order that allows

to generate independent task sufficiently fast. The opposite

case leads to performance degradation for larger thread count

which is shown in the graph as COMRED-NoOffset| . . . . .

R13

Creating tasks in a sequence where the immediate successor

has a commutative dependency on the previous task results in

a high lock contention, slows down task creation and degrades

the number of ready tasks.|. . . . .. . ... ... ... ....

RBI4 Cortam Thzead 0 T TS FSMT l

threads over available cores. The resulting execution speed

mmbalance reduces the efficiency ot task creation offsetting

especially towards the end of the execution of the reduction

kernel. This effect 1s visible 1n the execution traces of the

IntegrateStressforElems method on the IBM POWERS system

when comparing different thread configurations.|. . . . . . . .

140

R.15

Unevenly distributed SM'T threads shown in Figure [8.14] result

in execution speed differences and manifest as lower IPC rates

on the affected processor cores (lower picture). Differences in

execution speed affect the efficiency of the ComRed technique. 141

8.16

Selective Privatization with PIBOR results in imbalanced hard-

ware utilization as some tasks can avoid up to 94% of redirec-

tions while others cannot. . . . . . . . . . . .. ... ... ..




poel

[8.17 Execution traces of both reduction kernels of LULESH on |

the MareNostrum supercomputer in an 8x8 configuration of

MPI processes and threads shows the performance benefit ot

commutative reductions in OmpSs that avoids the reduction

phase (A) and freeing of memory (B).| . . . ... ... .. ..

R

Pertormance scalability of the SPECFEM3D reduction ker-

nel shows speedup relative to the serial execution time with

difterent support techniques including ComRed.| . . . . . . ..

B.19

Achieved memory bandwidths obtained from different imple-

mentations of the SmartJumper reduction kernel show that

array replication is a viable technique for small data sizes. PlI-

BOR achieves the highest memory bandwidth for array sizes

larger than 4 MB.| . . ... .. ... ... ... ... .....







List of Publications

[P1] Jan Ciesko, Sergi Mateo, Xavier Teruel, Xavier Martorell, Eduard
Ayguadé, and Jesus Labarta. Supporting Adaptive Privatization
Techniques for Irregular Array Reductions in Task-parallel Pro-
gramming Models. 12th International Workshop on OpenMP (IWOMP
2016), Nara, Japan: Springer, p. 336-349, 2016.

[P2] Jan Ciesko, Sergi Mateo, Xavier Teruel, Viceng Beltran, Xavier Mar-
torell, and Jesis Labarta. Boosting Irregular Array Reductions
through In-lined Block-ordering on Fast Processors. 19th IEEFE
High Performance Extreme Computing Conference (HPEC15) , Waltham,
USA, IEEE Explore, 2015. (Best Paper Candidate)

[P3] Jan Ciesko, Sergi Mateo, Xavier Teruel, Xavier Martorell, Eduard
Ayguadé, Jests Labarta, Alex Duran, Bronis R. de Supinski, Stephen
Olivier, Kelvin Li, and Alexandre E. Eichenberger. Towards Task-
parallel Reductions in OpenMP. 11th International Workshop on
OpenMP (IWOMP 2015), Aachen, Germany: Springer, p. 189-201, 2015.

[P4] Jan Ciesko, Sergi Mateo, Xavier Teruel, Viceng Beltran, Xavier Martorell,
Rosa M. Badia, Eduard Ayguadé, and Jestis Labarta. Task-parallel
Reductions in OpenMP and OmpSs. 10th International Workshop
on OpenMP (IWOMP 2014), Salvador, Brazil: Springer, pp 1-15, 2014.

[P5] Jan Ciesko, Javier Bueno, Nikola Puzovic, Alex Ramirez, Rosa M. Badia,
and Jesiis Labarta. Programmable and Scalable Reductions on
Clusters. 27th IEEFE International Parallel and Distributed Processing
Symposium (IPDPS 2013), Boston, United States, IEEE Explore, 2013.

xxiii






CHAPTER

Introduction

Reductions are iterative updates of a program variable, a simple algorithmic
pattern with significant impact keeping computer scientists busy for over two
decades. Looking back it turns out that the majority of research conducted on
this matter coincides with the advent of parallel architectures in mainstream
computing and the rising demand for programming productivity on these
systems. It corresponds to the time where energy constraints shifted ad-
vancements to increase processor performance from frequency scaling towards
parallel hardware and where programmers were becoming ready to dedicate
some of the processor’s cycles to run more advanced programming models.
Their use promises higher development efficiency and performance portability.

As a result, concurrent algorithms and parallel programming models gained
attention and also moved reductions into the spotlight. Unfortunately, soon
it became clear that reductions do not achieve a satisfactory efficiency on
parallel hardware. While the update loops can be parallelized easily, data is
shared among processors. This results in caching effects that impact scalabil-
ity. Further, data races may occur during parallel execution compromising
correctness.

Consequently, reduction support in software and hardware is desired with
the common objective of delivering scalable performance while maintaining
correctness of code. In case of software implementations, support in parallel
programming models alleviates the programmer of implementing optimization
techniques manually. Hardware support accelerates software implementations



lvar r = 0;

2 for (var i=0; i<8; i++)
34

4 r++

5}

Figure 1.1: A commonly occurring reduction kernel performing iterative
updates in a for-loop over a scalar data type

at the cost of additional hardware complexity. The extent of complexity is to
be determined in future work.

In software, designing language support and integrating advanced runtime
techniques into parallel programming models are the two key challenges that
are being faced in academia and industry today. Approaching these challenges
in the context of task-parallel programming models is the objective of our
work. Figure shows a simple case where the reduction variable r of a
scalar type is iteratively updated in a for-loop - the only reduction pattern
supported in OpenMP [I] at the time we started work on this topic.

While researching programming model support for reductions we identified
five particular areas of interest:

e Challenges for scalability and correctness

Current and future software techniques

Challenges to support irregular access patterns

Challenges to support near-regular access patterns

Language support and programmability
The following sections provide more context for each area.

1.1 Challenges for scalability and correctness

Maintaining correctness is a fundamental property, therefore approaches are
needed that are race condition free while offering scalable performance on
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for ( Index_t k=0 ; k<numElements ; ++k )
{
const Index_t* const elemToNode = domain.nodelist (k);
Real_t fx_local [8] ;
Real_t fy_local [8] ;
Real_t fz_local [8] ;
CollectDomainNodesToElemNodes (fx_local ,fy_local ,\
fz_local ,...);
Computationl (fx_local ,fy_local ,fz_local ,...);
ComputationN (fx_local ,fy_local ,fz_local ,...);
for ( Index_-t lnode=0 ; Ilnode<8 ; 4++lnode ) {
Index_t gnode = elemToNode[lnode |;
domain. fx [gnode| += fx_local[lnode];
domain. fy [gnode] += fy_local[lnode];
domain . fz [gnode] += fz_local [lnode];
}
}

Figure 1.2: IntegrateStressForElems(), a reduction kernel from the LULESH
hydrodynamics application defined over array-type variables with an irregular
access pattern, representing a challenging use-case

current parallel architectures. To eliminate race conditions, two fall-back
strategies exist: atomic updates and privatization.

Atomic updates guarantee atomicity of the read-modify-write cycle and are
generally well suited for low-contention situations where the atomic update is
invoked infrequently. Unfortunately for the opposite case, execution perfor-
mance depends on the underlying architectural support. This results in low
performance portability between systems. Further, sharing of data between
processors results in coherence traffic and higher access latencies. Together
with the fact that only a subset of common data types is supported, requiring
mutexes for the generic case, their use turns out to be less favorable in parallel
programming models.

To avoid overheads associated with atomic accesses, the popular approach of
privatization can be applied. Privatization, also called replication, describes
the idea of redirecting memory access into thread-private copies of the original



variable. The redirection is typically generated by a parallelizing compiler
where occurrences of the reduction variable are syntactically replaced by
references to thread-private copies. The privatization step, that is allocation
of the thread-private data and its initialization, is followed by a hierarchical
and parallel merge phase once the computation is complete. Privatization
is the de facto standard with implementations reaching across programming
models and hardware architectures today. It gained popularity as this ap-
proach supports reductions over small data (as being the case in Figure
reasonably well, keeping overheads of allocation, initialization and reduction of
thread-private copies small. Further, this approach does not require complex
code transformations, making support in parallelizing compilers relatively
straightforward. Unfortunately, for larger data (array types) and for higher
numbers of processors, privatization does not scale. Figure shows a re-
duction kernel from the LULESH hydrodynamics simulation code [2]. It
represents a particularly challenging use-case where a reduction is defined
over three arrays, fr, fy and fz of type float, each accessed in an irregular
pattern as defined by elemToNode. To support array-type reductions, neither
atomic access nor replication are suitable approaches.

Consequently a wide body of research has been conducted on more advanced
parallelization strategies with projected implementations in both hardware
and software. Among these techniques only a small fraction gained relevance.
The lack of hardware support can be mainly attributed to the fact that
established processor functionality such as atomics or access synchronization
cover certain scenarios sufficiently well which together with the complexity
of adding new features discourages hardware manufacturers to invest into
further development. A thinkable hardware support may include extensions
to the processor ISA to relax cache coherence for cache lines that correspond
to reduction variables as well as offloading computation to functional units
located on memory controllers, thus implementing a push semantic and
avoiding data round trips. Still, the question arises if software-based techniques
are not sufficient enough making reduction support a matter of software
support after all.

Figures [1.3(a)| and [L.3(b)| show representations of memory access patterns
for codes in Figures [T.1] and It illustrates the distribution of iterations
between processors represented by circles, memory accesses as edges and




Processor: P1
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Shared variable: r

(a) Memory access pattern of a concurrent scalar-
type reduction over the variable r

Processor: P1
ro DO @@@9
Access: idx

2 3 4 s-4 s-3 s-2 s-1

Shared variable: r[idx]

(b) Memory access pattern of a concurrent near-linear reduction
defined over an array-type variable r with one element being
updated by two processors. It represents a simplified version
of the memory access pattern of the reduction kernel shown in
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Processor: P1

999 009
Access: idx

2 3 4 s-4 s-3

Shared variable: r[idx]

(¢) Memory access pattern of a concurrent, irregular array-type
reduction defined over an array-type variable r

Figure 1.3: Representative memory access patterns of scalar and array-type
reductions showing conflicting accesses resulting from parallel execution by
multiple processors



accessed memory locations as rectangles. Figure [1.3(c)| shows the memory
access pattern for irregular array-type reductions. We discuss application
with this access pattern later in this work.

1.2 Current and future software techniques

While synchronized access or privatization works well for scalar types, solutions
are needed to cover reductions over arrays. Several advanced techniques
have been proposed among which SelectivePrivate [3] and Local Write [3]
gained most significance and also influenced our work. Selective privatization
uses a conditional redirection of accesses into thread-private data replicas.
LocalWrite is a technique where memory updates remain unchanged but the
iteration space for each thread is modified in order to avoid data races. Both
techniques are suited for cases where the application exhibits a particular
memory access pattern, a property which limits their general applicability.
However, these techniques gave inspiration for our work towards generalization
and deriving the following classification.

In our work, we group techniques by their underlying approach into three
categories:

e Reductions with direct access. This strategy relies on atomicity
or equivalent implementation of the read-modify-write operation. An
example of this technique is the use of atomics.

e Reduction support through access redirection. This group covers
techniques that use the idea of access redirection into thread-private
objects. This eliminates potential race conditions and caching effects due
to sharing. Replication, as discussed in the previous section, is therefore
a special case of access redirection where the thread-private object is a
copy of the reduction variable. A generalization of this approach can
be achieved if the original memory updates are replaced by a function
f(address, value, parameters). It is left to the programming model
vendor to implement f following any particular placement strategy
including conditional redirection. Consequently the allocated thread-
private storage is implementation dependent and we refer to it as thread-
private data container. Techniques within this category are suited for



algorithms with irregular memory accesses where the placement function
can improve locality and where the cost of privatization can be amortized.
SelectivePrivatization is an approach that falls within the category.

e Reduction support through ordering. This covers techniques that
avoid race conditions and shared accesses by assigning particular itera-
tions of the reduction loop to each thread. LocalWrite is an example
for this category. Techniques following this strategy are typically suited
for reductions with sparse or near-regular memory access pattern as in
this cases, cost of ordering is low.

We call techniques that redirect accesses into thread-private data containers
by implementing the placement function f as reductions with alternative
memory layouts, AML, and techniques that order iterations as reductions
with alternative iteration spaces, AIS.

It is interesting to point out that integration of advanced approaches into
existing programming models has not been carried out successfully yet. As
a result these techniques are rarely used leaving cases like that shown in
Figure unsupported. We believe that by abstracting from particular
techniques, a generic support in parallel programming models can be achieved.
We show how techniques with redirection and ordering can be supported
transparently in task-parallel programing models in this work.

1.3 Challenges to support irregular access patterns

Irregularity is a dynamic property of an algorithm that results in a random
sequence of accessed memory locations, an access pattern that is inherently
cache inefficient. Irregular array-type reductions exhibit such an access pattern
where seemingly random array positions are updated. Supporting these cases
is non-trivial as conventional techniques of atomic access and privatization
do not improve cache performance. With these techniques, the sequence of
accessed memory addresses remains unchanged. It turns out that irregular
array reductions can be well supported by techniques with access redirection
that implement a data placement strategy for improved cache efficiency.

Taking a closer look at techniques with access redirection reveals that four
design features are important for scalable performance:



Avoidance of data replication (creating full data copies) for non-scalar
data types

e Avoidance of privatization for unrelated threads

Support for custom data placement strategies (by allowing different
implementations of f)

Support of arbitrary thread-private data containers (objects)

In this work we propose two new approaches that fulfill these requirements.
One implements access redirection into software caches to support architec-
tures with high memory latencies (clusters), also called CachedPrivate; and
binning, an approach that uses a fast hash function to sort accesses into bins
corresponding to memory regions for higher data locality. We also refer to
binning as PIBOR, Privatization with In-lined Block Ordering. Both, software
caching and binning are examples of reduction techniques with redirection, im-
plementing alternative memory layouts and data placement strategies. These
techniques achieve the highest speed-ups compared to replication and atomic
access. A schematic representation of an irregular access pattern is shown in

Figure [[3(D)

We discuss these techniques in chapters [5] and [6] The generalized support is
discussed in Chapter [7]

1.4 Challenges to support near-regular access pat-
terns

A special case occurs when a seemingly irregular memory access pattern turns
out to be sparse or near-regular. The latter typically occurs when the reduction
kernel is preceded by a sorting phase (e.g. coloring), a technique to reduce
irregularity of accesses. In these cases each participating thread accesses either
disjoint memory regions or memory regions with small overlaps with other
regions accessed by other threads. To support these cases, techniques are
needed that benefit from these access properties. In turns out that techniques
building on top of an inspector-executor approach are well suited for this
purpose. Techniques that build on top of this execution model fall within
both aforementioned categories.



From the programming model perspective, the following features are required
to support inspector-executor techniques:

e The reduction kernel must be executed multiple times during the lifetime
of the application such that the cost of inspection can be amortized.

e The programmer must define a point in the source code where the
runtime completes inspection and switches to execution.

e The inspection phase must not change application behavior.

e The runtime must implement task instance identifiers and their tracking
across instantiation. This guarantees that inspection results are applied
to the same task instance during the next iteration.

e The programmer must be aware of the requirement that the instantiation
order of tasks must remain unchanged.

Once access properties are recorded and ownerships defined, the execution
phase can switch from inspection to execution. We propose an executor that
avoids privatization all together based on dependency-aware task scheduling,
called DepRed. It is an approach that uses work scheduling based on data
dependencies. During inspection, accessed memory regions and their overlaps
are identified. During execution, overlapping memory regions are interpreted
as dependencies between units of work (tasks). To avoid data races, only
tasks with no overlapping regions are scheduled for execution at a time. This
approach is well suited for task-parallel programming models that support the
expression of data-flows in the code. Since dependency-aware task execution
results in a different order of how loop iterations are processed, this approach
falls into the category of techniques with alternative iteration spaces (AIS).

This technique yields near-linear speed ups for the reduction kernel of the
LULESH application shown in Figure In this case the inspector is able
to detect a near-regular access pattern (as shown in Figure [1.3(b)|) with
small overlapping regions. How AIS techniques with an inspector-executor
execution model can be supported in task-parallel programming models is
discussed in Chapter [7]

It is important to point out that our programming model support for reduc-
tions foresees that the programmer is in charge to take a decision on which
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int foo (...){ 1...
if (checkl(...)) return 1; 2int red = 0;
int count = 0; 3int foo(node_t node,...){
for (int i=0;i<width;i++){ 4 while(node—>next){
if (check2(...))) 5 red+=bar (node—>value );
count += foo (...); 6 node=node—>next ;
} 7}
return count; 8}
} 9.
(a) Recursive reduction (b) While-loop reduction

Figure 1.4: Common occurrences that require the support of task-parallel
reductions to express concurrency

technique to use. Therefore, in Chapter we discuss a key indicator that
hints on the suitability of particular approaches for particular cases.

1.5 Language support and programmability

Language support for common algorithmic patterns is a key property for
achieving programming efficiency. In the context of declarative task-parallel
programing models, language constructs are needed that capture programmer
intention and algorithmic parameters. With this information parallelizing
compilers can generate the appropriate code and invoke runtime functionality.
At the same time language design is needed that maintains consistency and
programmer understanding inherited from the surrounding parallel program-
ming model. For general reduction support, the expression of the following
programmer intents must be supported syntactically:

e Declaration of a reduction computation in the context of a parallel region.
This applies to programming models that implement the concept of a
parallel region. In OpenMP, worksharing constructs support this feature
through the reduction clause already.

e Declaration of a reduction computation in the context of a task. This
would allow the support of task-parallel reductions including while-loop
programs and recursions. (Unsupported intent)
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e Expression to invoke a particular underlying reduction technique. (Un-
supported intent)

e Expression of inspector-executor phases. (Unsupported intent)

The three unsupported intents are further explained in the next paragraphs.

Expressing task-parallel reductions Task-parallel algorithms represent
a super-class of for-loop computable algorithms. These algorithms include
while-loop computable, also called general recursive, algorithms. Further task-
parallelism is a convenient way to express concurrency in recursive algorithms.
Adding reduction support for this type of algorithms represents an important
step towards programmability.

While for-loop reductions were supported in OpenMP from early on, task-
parallel reductions remained unsupported. This is due to the following
reasons:

e Task-parallel reductions do not define a scope per se. For a parallel
programming model it is impossible to know when the scope of a
reduction ends, a piece of information that is crucial since the runtime
is required to invoke functionality corresponding to a given reduction
support technique to finalize a reduction.

e The occurrence in recursions rises the demand for reductions support
that avoids the step of invoking a runtime technique for each recursive
call.

e The specification of OpenMP does not foresee the allocation of a data
context in its task specification. In case of reductions, a data context
is always required. This collision with existing specification requires
non-trivial changes of the OpenMP specification.

Consequently, a solution is needed that allows the definition of scope, supports
recursions and minimizes impact on the specification. Our solution presented
in chapters [3| and |4 shows a solution that complies with these requirements
and was recently accepted into the OpenMP specification.

Figure shows examples of a while-loop and recursive reduction.
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Expression of technique To enable meaningful support for array-type
reductions, syntactical means are needed to allow the developer to express
which underlying technique to apply. Once a technique is selected by the
programmer, the compiler can perform the appropriate code transformations
and invoke the selected runtime support.

Expression of inspector-executor phases The inclusion of inspector-
executor based techniques requires the definition of a switch-point. This point
in code indicates to the programming model runtime that the inspection
phase is completed and execution mode can transfer to an executor.

In Chapter [7] we present language constructs to define a technique as well as
to express inspector-executor phases for OpenMP and OmpSs [4].

1.5.1 Why building on top of task-parallelism?

We base our work on declarative task-parallel programming models. For
programmers, tasking represents a well understood and easy to use concept
of work decomposition. For programming model vendors, it offers freedom to
define surrounding concepts and to provide runtime libraries implementing
advanced functionality in areas such as scheduling, accelerator- or distributed
memory support. A runtime that implements such features is included in the
OMP Superscalar (OmpSs) programming model.

OmpSs is a declarative, task-parallel programming model supporting data-flow
based task scheduling. Data-flows are expressed by the programmer using
the input and output clauses in the task pragma. While OmpSs supports
comparable programming primitives as OpenMP, its execution model is
centered around tasks, leaving the concept of threads or parallel regions out of
concern. Parallel execution is obtained when tasks become ready as their data
dependencies are progressively satisfied and are scheduled for execution. Its
proximity to OpenMP makes OmpSs a forerunner for many novel techniques
and a suitable experimentation platform for our work.

1.6 Contributions

Our work advances reduction support in OmpSs and OpenMP, two relevant
parallel programming models in academia and industry. In particular, we
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contribute to the adoption of task-parallel and array-type reductions in both
programming models. Support for task-parallelism increases programmability
by allowing the expression of while-loop and recursive reductions.

For array support, we provide the ground work consisting of language and
runtime features for a more generic support. This allows software vendors to
implement optimized techniques that follow either the strategy of redirection
or of implementing an alternative iteration space. Techniques with redirection
are generalized by providing a programmable placement function that stores
data into thread-private containers with arbitrary memory layouts. Software
caching and binning are two exemplary implementations. Alternative iteration
spaces can be implemented through dependency-aware task scheduling but
generalization is yet to be determined. Finally we show that runtimes benefit
from inspector-executors, an execution model allowing optimizations based
on dynamic properties of an algorithm. For evaluation we have selected three
representative applications: LULESH, SPECFEM3D [5] and SmartJumper [6].
LULESH and SPECFEM3D are production codes and represent array-type
reductions with near-linear access patterns. SmartJumper is based on the
popular RandomAccess [7] benchmark and is representative for irregular
array-type reductions.

Our contributions can be structured as follows:

1. Support for task-parallel reductions in the OmpSs programming model.
2. Proposal to support task-parallel reductions in OpenMP.

3. Development of CachedPrivate - a technique implementing redirection
into software caches to accelerate near-regular array-type reductions on
distributed memory systems (clusters).

4. Development of PIBOR - a software technique implementing address-
based binning to support irregular array-type reduction on shared
memory systems.

5. We show how support for advanced techniques with access redirection
and ordering can be generalized through the ideas of AMLs and AIS.
This includes the addition of the inspector-executor and related pragmas
in the OmpSs programming model.
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6. Evaluation of techniques with LULESH, SPECFEM3D and SmartJumper.

1.7 Thesis organization

In the next chapter we describe the current state of reductions support with
popular techniques on current hardware architectures and discuss related
work.

The rest of this document is structured as follows. In Chapter [3| we discuss
language and runtime support for task-parallel reductions in OmpSs. In
Chapter [4] we present our proposal for OpenMP. In Chapters [5] and [6] we
introduce techniques to support array-type reductions. In Chapter [7] we
discuss support for AMLs and AIS and the inclusion of an inspector-executor
in OmpSs. Further, in Chapter [§] we present case studies. Finally, Chapter [J]
concludes this topic and previews future work.



CHAPTER

Background and Related work

The promise of parallel processing is performance scalability - a claim that
heavily relies on an application’s algorithm. One particular group of algorithms
that periodically brings up the discussion on how to achieve scalability are
concurrent updates of scalar and array-type data. A concurrent update
operation contains at least two sequences of read-modify-writes. Due to a
non-atomic implementation of this sequence on most hardware architectures,
parallel execution results in data races. Data races manifest themselves as
altered program behavior relative to serial execution (and typically relative
to the programmer’s expectations). Updates over array-types have similar
correctness properties but are defined over array-types. Both, scalar as well
as array-type updates require techniques that ensure correctness.

Among techniques to support concurrent updates only a single generally
applicable solution exists, namely access synchronization. Synchronization
uses software and hardware assisted techniques to implement atomicity. Syn-
chronization constructs are often members of either the language or runtime
specification of a programming model and therefore easy to use but come at
a cost of execution overhead.

A special case occurs when the update operation implements an iterative
function that is associative, commutative and has no control dependency
between loop iterations. These algorithms are called reductions and allow a
whole set of additional techniques to improve performance and scalability.

15
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Thread 1 | Thread 2 | Access | Data Value Thread 1 | Thread 2 | Access | Data Value
0 0
READ 1 0 READ 1 0
MODIFY 0 MODIFY | READ 1 0
WRITE 1 1 WRITE | MODIFY 1 1
READ 1 1 WRITE 1 1
MODIFY 1 1
WRITE 1 2 1

(a) Sequential (b) Parallel

Table 2.1: Without proper synchronization, parallel updates implemented
as read(?), modify and write (]) sequences, produce data races on current
processors. This results in altered program behavior (results)

In programming, a reduction occurs when a variable, var, is updated iteratively
as

iter : var = op(var, expression), (2.1)

where op is a commutative and associative operator performing an update on

var and where var does not occur in expression. An array-type reduction
—

over the variable var is defined as

iter i : var[i] = op(var(i], expression), (2.2)
where ¢ is an induction variable, iters is an iteration space, and where v is a
reduction variable with op being an algebraic monoid.
Similarly, an irregular array-type reduction is defined as
iter ¢ :
j=rf(); (2.3)

var[j] = op(var[jl, expression)

with f implementing a function that returns integers in the range of zero to
number of addressable elements in var.

Such irregular array-type reductions appear in FEM solvers where simulation
data is updated over irregular mashes, in n-body simulations as well as other
graph algorithms where edges connect vertices and processing of each vertex
results in at least two irregular memory updates.
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Implications of the mathematical properties are two-fold: firstly, the order
of memory accesses does not matter anymore which allows concurrent ex-
ecutions without maintaining a constant execution order of tasks or loop
iterations and the existence of the neutral element allows the use of scratch
data to temporarily store intermediate results. These properties led to the
development of different support techniques among which atomic updates
and data replication are the most commonly used. Their objective is to
eliminate potential race conditions while trying to keep associated overheads
small. Table shows sequences of read-modify-writes with two potential
execution orders. An undetermined program behavior is called data race or
race condition.

2.1 On Atomics and Data Replication

The use of atomic updates is perhaps the most straight-forward solution to
avoid data races. As the name suggests, atomic updates make the sequence
of read-modify-write appear as one atomic operation. Implementations dif-
fer. Lock based atomicity relies on an atomic compare and swap instruction
(__sync_val_compare_and_swap). This instruction represents the basic build-
ing block to implement any locking strategy. Other instructions exist that offer
more functionality such as the atomic addition (__sync_fetch_and_add) or
subtraction (__sync_fetch_and_sub). However, the underlying implementation
in hardware differs substantially with variations in performance.

IBM’s POWERS processor implements atomic via a pair of load-link and
store-conditional instructions. This solution is lock-free as a load operation
returns the value in memory but a store only succeeds if no update has
occurred by another processor since the last load. If the value was updated, a
store miss triggers a reload from memory.

On Intel Xeon E5, atomics are implemented with locks on cache-line granular-
ity. In addition, locks enforce in-order execution which affects data prefetching.
Taking a look at the GCC manual reveals the following: ”In most cases, these
builtins are considered a full barrier. That is, no memory operand will be
moved across the operation, either forward or backward. Further, instructions
will be issued as necessary to prevent the processor from speculating loads
across the operation and from queuing stores after the operation.” [§]. On
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1 while(condition ())

2{

3 #pragma omp atomic

4 a+t++;

5}

(a) Sample code
.retry:

1... Iwarx 9,0,10
2  lock; addl $1,—4(%rsp) addi 9,9,1

3 ... stwex. 9,0,10

bne— .retry

N O Ut WN

(b) Assembly codes on Intel’s x86 and IBM’s POWERS ISAs
(right)

Figure 2.1: Different ISAs implement atomics differently. While the x86
ISA issues a global barrier, the POWERS ISA (on the right) implements a
conditional write.

Intel Xeon Phi, atomics have a smaller impact since the processor implements
in-order execution only.

Figure 2.T]shows the implementations on assembly level of an atomic increment
on the Intel x86 and IBM POWERS ISAs produced by the GCC compiler
on each platform. While the x86 implements a memory barrier (lock), the
POWERS uses a conditional store stwzc. If the store fails, the operation is
repeated. Further comparison of synchronization primitives was conducted
by David, Guerraoui and Trigonakis [9].

The other common technique is replication. Replication avoids data races by
redirecting memory accesses to thread-private data copies and is typically
implemented by parallelizing compilers for scalar-type reductions. Data
privatization is efficient in cases where the cost of allocation, initialization
and reduction of data is sufficiently small relative to the computation, and
performance and applicability are not limited by memory bandwidth (that is
if data fits into cache) or physical memory size. Unfortunately, with growing
core counts per processor as well as higher numbers of threads per core
(SMT), privatization of even small arrays becomes expensive as the algorithm
becomes memory bound or even unusable due to memory size limitations.
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Processor: P1

Temporal variable: ry

Variable: r

(a) Scalar-type reduction

Processor: P1

Iter: i a
Access: idx

11\
2 3 4] |- s-4 s-
Temporal variable: r; 8 -
y Vv VvV V 7 7
1 2 3 4 s-4 s-3 s-2 s-1

Shared variable: r[idx]

(b) Array-type reduction

Figure 2.2: Reduction support through replication redirects original memory
accesses to the reduction variable r into thread-private data copies r; and rs.
This operation is preceded by a concurrent initialization and followed by a
serial reduction of private copies into the original reduction variable.
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(b) Scalability of the SmartJumper micro benchmark over different problem sizes

Figure 2.3: Concurrent executions of LULESH and SmartJumper on different
systems show the degree at which atomic updates and privatization affect per-
formance. While for LULESH, privatization results in significant performance
degradation due large overheads, it is the technique of choice for SmartJumper
and small data sets (2.3(a)l).

Furthermore, privatization does not address the inherently low data locality
of irregular accesses. Figure shows a schematic representation of this
support technique for scalar and array types.

In Figure [2.3] we show the performance impact of both, atomic updates
and data replication applied to the LULESH and SmartJumper application.
SmartJumper is a modern implementation of a random access benchmark that
scatters memory updates over an array of variable sizes. Its irregular memory
access pattern is shown in Figure in Chapter [I} The measurements
were taken on an Intel XEON E5 and IBM POWERS system. The charts
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show achieved speedups expressed as speedup over serial execution time
and fixed problem size for LULESH ([2.3(a)) and achieved bandwidth with
variable problem size for SmartJumper. They show the performance
impact of atomic updates and replication. Interestingly, while the use of
replication produces large overheads due to the handling of private memory,
this technique yields the best performance results for small array sizes as
shown in the lower charts. In this case the overhead of private memory
handling is small due to small array copies. Further, the use of thread-private
copies, data sharing among processors can be avoided. This effect is visible on
the POWERS system for execution with 192 threads, where the use of replicas
results in a significantly better performance. For bigger sizes, handling of
large memory copies becomes the limiting factor. In these charts, Race refers
to a hypothetical version with no applied technique that produces data races.
Throughout our work we use this version as a reference for comparison.

Consequently, it is desirable to follow two design recommendations when
implementing support techniques:

e Keep small data apart

e Remove atomic updates from the hot path of an application

Still the question remains if execution speeds can be improved for these
algorithms and if similar or even better speedups can be achieved in comparison
to Race. We discuss a technique that does so in Chapter [6] and present more
results in Chapter

2.2 Related Work

In this section we take a look at the most influential work on supporting
reductions in software and hardware.

One commonly known technique to avoid the large memory overheads of
privatization is called selective privatization, (SelectPriv). This approach
inspects accesses by traversing the iteration space and marks conflicting
elements in a hash table. During execution, called the executor phase, the
hash map is consulted for each memory access. In case an entry is marked
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Replicated iter;: i p P1 Replicated iter,: i
Access: idx rocessor:

55000 ©-00-08

Shared variable: r[idx]

Figure 2.4: Schematic overview of Local Write, a techniques that implements
an "owner computes” execution model by replicating the iteration space and
selectively executing only those iterations that result in updates of owned
memory.

as conflicting, the update is redirected to private memory. At the end of the
computation, privatized data is reduced to global memory. In case of many
conflicts, it converges to privatization. In our work we have implemented
selective privatization as an additional feature to our techniques with access
redirection. More information on this technique as well as experiences gained
from its use are discussed in Chapters [7] and

Another technique that avoids data races falls into the category of iteration
reordering and is called Local Write. It implements an ”Owner computes”-
policy. This approach defines ownerships over regions of the reduction array
and assigns iterations (loop indexes) to processors depending on the ownership
of the resulting memory access location. This significantly improves data
locality as each processor updates local data only. Implementations differ.
One implementation builds on top of iteration space replication. In this case,
each processor iterates over the entire iteration space but updates only those
iterations that result in updates of owned memory. A schematic overview
of LocalWrite with iteration space replication is shown in Figure Other
implementations rely on descriptors that mark relevant iterations and help to
avoid iterating over unnecessary section of the iteration space. Unfortunately,
in scenarios where many iterations update the same data causing many
conflicts, execution is serialized. Similarly to SelectPriv, LocalWrite requires
an inspector-executor execution model.
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A particular implementation of a LocalWrite approach is called Synch-
Write [10] [1I]. The idea is that the iterations space is partitioned based on
the range of accessed data. Such partitions can be processed in parallel to
each other using synchronization to separate groups of conflicting iterations
into different execution phases. While it is considered as a scalable scheme for
near-linear or not non-overlapping access patterns, its execution performance
is limited by underutilization of processing power in the opposite case.

A comparison of LocalWrite, SelectePriv and replication was conducted by
Han and Tseng [3]. Their work discusses each approach as well as their
implications on performance in respect to key algorithmic properties.

An automated decision framework based on algorithmic properties was pre-
sented by Yu and Rauchwerger [12]. In their work they identified a multitude
of different static and dynamic properties of reduction kernels that allowed
them to develop a decision tree. Using that tree, a runtime system could
select a technique for a particular problem. This work led to the publication
by Yu, Dang and Rauchwerger [13] where the decision making process was
further formalized by introducing a pattern descriptor and a decision tree
learning algorithm.

We think that automated decision making is beneficial for programmers as
it lowers the requirement to know system or even algorithmic properties
and follows the trend of abstraction. However, we direct our attention more
towards investigating generic and extensible solution frameworks that allow
programming model implementors to provide a portfolio of documented
techniques instead. This approach favors programming transparency and
leaves decision making to the programmer. In Chapter [7| we discuss this in
more detail.

Figure [2.5] shows a landscape of algorithms and associated software techniques
as discussed in this section. The picture shows a grouping that we propose
based on the underlying strategy of direct access, iteration ordering or access
redirection.

On hardware support for reductions, two main contributions were made
that also reflect the general direction of thinking. Firstly, Ahn, Erez and
Dally propose the addition of a functional unit that includes a local memory
(a combine store) to either the memory interface of the processor or to



24

Update
[] Algorithm

4/¢ [] strategy
( Direct Reduction [] Technique
access

e
( Locks j ( Ordering j (Redlrectan
o v (

(Privatization)
( LocalWrite J (SynchWriteJ

SelectPrivateJ ( Replication ]

Figure 2.5: Landscape of algorithms, support strategies and techniques

the memory controller [I4]. If access to an address corresponding to a
memory location of an ongoing reduction is detected, a new entry in the local
memory of the functional unit is created, initialized to the neutral element
and immediately returned to the requesting processor. In the meantime, the
functional unit issues a request to the memory subsystem. Once data arrives,
it is combined with the current, temporal result located in the combine store
by the functional unit itself. Address lookup is implemented via CAM (content
addressed memory). The functional unit proposed in this work implements
an adder only but the addition of more functional units is thinkable.

Garzardn et al. propose a similar approach but instead of using functional
units with local memories, they propose the use of private cache lines [15].
Private cache lines hold temporal reduction data provided from the memory
controller to the processor on request. Private cache lines are excluded from
cache coherence and serve for the purpose of aggregating temporal, processor-
private results. In case a cache line is evicted, the memory controller performs
a load from memory, combines it with the temporal results and writes it back
to memory.

We believe that both hardware assisted approaches are feasible and also of
interest to us as they coincide with our future work of implementing a push
semantic towards memory to avoid data round trips.
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2.3 The OmpSs Programming Model

OmpSs is the representative task-parallel programming model used in this
work for feature development and experimentation. Therefore in this section
we give a quick introduction to this programming model.

OmpSs is a high-level, task-based, parallel programming model supporting
SMPs, heterogeneous systems and clusters. It consists of a language spec-
ification, a source-to-source compiler for C, C++ and Fortran [16] and a
runtime [I7]. The language defines a set of directives that allow a descriptive
expression of tasks. Further, OmpSs allows the programmer to annotate task
parameters with an input or output semantic depending on access type of this
parameter within that task. This information establishes a producer-consumer
relationship between tasks, also called task dependency or data flow. Due to
the internal representation of these relationships in a directed, acyclic graph
(DAG) with nodes being tasks and edges representing relationships, this
semantical information is also called directionality information of a parameter
or directionality for short.

In OmpSs, a task is defined as

l1#pragma omp task in(list) out(list) [other_clauses]
2 structured —block

with in and out being the corresponding directionality clauses.

With this information the runtime is capable of automatic scheduling of
tasks that maintains correctness of code while alleviating the programmer of
implementing manual synchronization. While this is similar to tasking in the
recent specification of OpenMP, the OmpSs runtime implements a different
execution model. In OmpSs, every application starts with a predefined set of
execution resources and an explicit parallel region does not exist. This view
avoids the exposure of threading to the programmer as well as the requirement
to handle an additional scope, the scope of a parallel region.

At compile time, the OmpSs compiler processes pragma annotations and
generates an intermediate code file. This file includes both, user code as well
as all required code for task generation, synchronization and error handling.
In the final step of compilation, OmpSs invokes the native compiler to create
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a binary file. At runtime, the main thread progresses through code, creates
tasks and stops at synchronization points (explicit or implicit barriers).

Task creation is composed of creation of that task object itself that carries all
descriptive information and of handling of its dependencies. Once a task object
has been created, the runtime inspects the dependency graph to determine
the relationship to previously created tasks. If a dependency has been found,
progression into deeper levels of the graph can be stopped and a representative
node is added to the graph. In the opposite case, the task is placed into a
ready queue.

2.3.1 Handling Reductions in Data-flow Graphs

Reductions, due to the read-modify-write sequence, represent inout depen-
dencies. Naturally this type of dependency serializes execution. Concurrency
can be restored by overriding this dependency between reduction tasks. This
can achieved by defining reduction variables as concurrent. Since OmpSs
implements this feature already, reduction support in OmpSs builds on top of
this infrastructure.

Figure [2.6] shows a sample application that includes an initialization task, 4
commutative tasks and one additional task that frees memory. Its dependency
graph is shown in Figure 2.7]
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1#define SIZE 1000
2 int main( int argc, charxx argv )

34

'

int sum=0, start=0,* array=(int x*)calloc (sizeof (int), SIZE);

5
6 #pragma omp task out(array, sum) shared(sum) label(init)
7 A
8

sum=0;
9 for (int i = 0; i < SIZE; i++4) array[i] = 1;
10 }
11
12 for(int j=0; j<4; j++)
13
14 #pragma omp task in(array) concurrent(sum))\
15 label ( concurrent)
16
17 for (int i = start; i < start4+SIZE/4; i++){
18 #pragma omp atomic
19 sum += array [i];
20 }
21 }
22 start+=SIZE /4;
23}
24
25 #pragma omp task in(array,sum) label(free)
26
27 printf("%i\n" ,sum);
28 free (array);
29
30

31 #pragma omp taskwait
32 return 1;
33}

Figure 2.6: A complete application shows the use of different OmpSs pragmas
to implement a parallel array-sum. Reduction support is based on the
functionality implemented for the concurrent clause.
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User functions:
0 init
B concurrent
o free

Figure 2.7: A dependency graph generated for the application shown in
Figure shows three different node types representing program methods
and directed edges representing dependencies among them.



CHAPTER

Task-parallel Reductions in OmpSs
and OpenMP

In this chapter we present an extension to the OmpSs and OpenMP task
construct to add support for reductions in while-loops and general-recursive
algorithms. Further we discuss implications on the OpenMP standard and
present a prototype implementation in OmpSs. We explain the concepts of
multi-level and nested-level domains as a solution to define the scope of a task-
parallel reduction and also implement on-demand (dynamic) private memory
allocation to minimize overheads associated to privatization. Benchmark
results confirm applicability of this approach and scalability on current SMP
systems.

29
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3.1 Introduction to Task-parallel Reductions

Taking a broader look at usage patterns across applications reveals three
common types of reductions: for-loop (bounded loop), while-loop (unbounded
loop) and recursive. For-loop reductions enclose a reduction in a for-loop
body. They are often used in scientific applications to update large arrays of
simulation data in each simulation step (such as updating particle positions
by a displacement corresponding to a time slice) or in numerical solvers where
values are accumulated over a scalar to indicate convergence behavior and
break conditions [5]. They are often referred to as array or scalar reductions.

For-loops represent the class of primitive-recursive algorithms where the itera-
tion space is computable and where control structures of no greater generality
are allowed. The iterative formulation of primitive-recursive functions is
currently supported in OpenMP.

While-loop reductions represent another usage pattern and define the class of
general-recursive functions. They appear in algorithms where the iteration
space is unknown such as in graph search algorithms.

The last occurrence represents recursions. Recursive reductions can be found
in backtracking algorithms used in combinatorial optimization. Even though
one could argue that for each recursion an iterative formulation exists (either
as a for-loop or a while-loop), recursions often allow very compact and readable
formulations. Examples of a recursive and while-loop reductions are shown in

Figure

In this work we propose an extension to OmpSs by adding support for while-
loop and recursive reductions through the task reduction directive. Formally,
this extends the existing support for primitive-recursive, iterative algorithms
by the class of general-recursive algorithms for both, iterative and recursive
formulations. In terms of parallel programming, the proposed task reduction
allows the expression of so called task-parallel reductions. Further we propose
a compliant integration into OpenMP and present a prototype implementation
based on OmpSs.
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3.2 Specification for OmpSs and OpenMP

The idea to support task-parallel reductions builds on top of the conceptual
framework introduced with explicit tasking in OpenMP. Since tasking allows
to express concurrent while-loops and recursions, it represents a convenient
mechanism to support task-parallel reductions as well. For its definition we
use the current standard specification [I] as a baseline and add a set of rules
describing data consistency and nesting. While this work is written with a
certain formalism in mind, it does not represent a language specification.

3.2.1 Definition

The task reduction directivdll is defined as:

l#pragma omp task [clauses] reduction (identifier : list)
2 structured —block

The reduction clause in the task construct declares an asynchronous reduction
task over a list of items. Each item is considered as if declared shared and for
each item a private copy is assigned for each implicit task participating in the
reduction. At implicit or explicit barriers or task synchronization, the original
list item is updated with the values of the private copies by applying the
combiner associated with the reduction-identifier. Consequently, the scope of
a reduction over a list item begins at the first encounter of a reduction task
and ends at an implicit or explicit barrier or task synchronization point. We
call this region a reduction domain. Implications on synchronization in case
of domain nesting is conforming to the OpenMP specification.

We would like to point out that the provided definition is generic and does
not restrict the usage of task-parallel reductions to any particular enclosing
construct. However, as in this case the scope of a task-parallel reduction is
defined by both task synchronization as well as by barriers, its support would
require to modify their current implementations. In particular they would
need to check for outstanding private copies and reduce them. A solution to
minimize the impact on unrelated programming constructs is to restrict the
use of task-parallel reductions to the context of a taskgroup.

1Shown in C and C++ syntax
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int red=0;
while (node—>next) {
#pragma omp task reduction (+:red)
red+=bar (node—>value );

node=node—>next ;

}

10#pragma omp taskwait

11

return red;

Figure 3.1: A concurrent reduction using a taskwait to ensure data consistency
so a function would return a correct value of red

In the rest of this Chapter we discuss implications of this proposal on taskwait
and taskgroup directives, reductions on data dependencies and nesting.

3.2.2 Reductions on taskwait

The taskwait construct specifies a wait on the completion of child tasks in
the context of the current task and combines all privately allocated list items
of all child tasks associated with the current reduction domain. A taskwait
therefore represents the end of a domain scope. The previous example shown

in Figure [2.1(a)| can now be easily parallelized as shown in Figure

3.2.3 Support in taskgroups

The taskgroup construct specifies a deep wait on all child tasks and their
descendent tasks. After the end of the taskgroup construct, all enclosed
reduction domains are ended and original list items are updated with the
values of the private copies. Similarly to a taskwait construct, task-parallel
reductions require to extend their role of task synchronization to actively
perform a memory operation to restore consistency. Figure shows an
example where a reduction domain is ended implicitly at the end of a taskgroup
construct.
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1 ...
2 int red=0;
3#pragma omp taskgroup

¥
5 while(condition (){

6 #pragma omp task reduction (+:red)
7 red += foo ();

8 }

9}

10 return red;

Figure 3.2: A concurrent reduction within the taskgroup performs a wait
on all children and their descendant tasks (this is often referred to as ”deep
wait”)

3.2.4 Reductions on data dependencies

Data-flow based task execution allows a streamline work scheduling that
in certain cases results in higher hardware utilization with relatively small
development effort. Task-parallel reductions can be easily integrated into this
execution model but require the following assumption. A list item declared in
the task reduction directive is considered as if declared inout by the depend
clause. As this would effectively serialize the execution of reduction tasks
due to the ”inout” operation over the same variable, dependencies between
reduction tasks of the same domain need to be overridden.

An example, where a reduction domain begins with the first occurrence of a
participating task and is ended implicitly by a dependency introduced by a
successor task, is shown is Figure In this example the actual reduction of
private copies can by overlapped by the asynchronous execution of bar which
again might improve hardware utilization.

3.2.5 Nesting support

Nested task constructs typically occur in two cases. In the first, each task at
each nesting level declares a reduction over the same variable. This is called
multi-level reduction. In this case, a taskwait at each nesting level is not
mandatory as long as a deep wait ensures proper synchronization later on.
It is important to point out that only task synchronization that occurs at
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1...

2 int red=0;

3 for (int 1=0; i<SIZE; i+=BLOCK){

4  #pragma omp task shared(array) reduction (+:red)
5 for(int j=i; j< i4BLOCK; ++j){

6 red += array[]];
7}

5}

9#4pragma omp task

10 bar ();

11#pragma omp task shared(red) depend( in:red)
12 printf ("%i\n" ,red);
13 ...

Figure 3.3: The reduction domain over the variable red is ended by a task
dependency

the same nesting level at which a reduction scope was created (that is the
nesting level that first encounters a reduction task for a list item), ends the
scope and reduces private copies. Within the reduction domain, the value of
the reduction variable is unspecified. An example for a multi-level domain
reduction is shown in Figure

In the second occurrence each nesting level reduces over a different reduction
variable. This happens for example if a nested task performs a reduction
on task-local data. In this case a taskwait at the end of each nesting level
is required. We call this occurrence a nested-domain reduction. Figure |3.5
shows an example of an element-wise matrix summation, where inner tasks
iterate over rows and compute partial results that are then reduced by outer
tasks to compute the final value. Since in this example the nested domain is
ended by the inner taskwait, accessing red_local returns a correct value.

3.2.5.1 General nesting support

The general support for nesting requires to inspect scenarios where a task-
parallel reduction is nested within the parallel and worksharing constructs.

An example for such a scenario where a reduction is computed over a shared
variable in a parallel for construct on one level and reduction tasks on the
second level is shown in Figure [3.6 This example represents a multi-domain
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1...

2 int red = O0;

3 for (int i=0; i<SIZE; i+=BLOCK){

4  #pragma omp task shared(array) reduction (+:red)
5 for(int j=i; j< i4BLOCK; ++j){

6 #pragma omp task shared(array) reduction (+:red)
7 red += array[j] + bar(/xlong_computationx/);

8 }

9 #pragma omp taskwait

10 printf("Unspecified value of red:%i\n",red);

11}

12#pragma omp taskwait

13 ...

Figure 3.4: A multi-level domain reduction is computed over the same variable
by tasks participating at different nesting levels

1...

2int red = O0;

3for(int i = 0; i < SIZE.Y; i++){

4  #pragma omp task shared(array) reduction(+:red)
5 |

6 int red_local = 0;

7 for (int j = 0; j < SIZE_.X; j+=BLOCKX) {

8 #pragma omp task reduction(+:red_local)

9 for (int k = j; k < j + BLOCKX; ++k){

10 red_local += array[i][k];

11 }

12 }

13 #pragma omp taskwait

14 printf("Correct value of red_local:%i\n",red-local);
15 red += red_local;

16}

17}

18#pragma omp taskwait

19 ...

Figure 3.5: Element-wise matrix sum implemented as a nested-domain re-
duction, where each dimension is processed in a different nesting level over a
different variable
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int red = 0;

3#pragma omp parallel for shared(array) reduction (+:red)

4
5

6
7
8

9
10

for (int i=0; i<SIZE; i+=BLOCK){
for (int j=i; j< i#BLOCK; ++j){
#pragma omp task shared(array) reduction (+:red)
red += array[j] + bar(/xlong_computationx/);
}

#pragma omp taskwait
}

11 ...

Figure 3.6: Nested task-parallel reduction in a worksharing construct performs
a reduction over the shared variable red

reduction because even though both directives declare a reduction over the
same variable (similarly to Figure , the inner reduction is performed on
private copies that were created for each implicit task of the parallel region.
In this case the outer reduction domain starts at the encounter of the first
reduction task (implicit in this case) and ends at the implicit barrier at the
end of the parallel region. The inner reduction domain starts on each thread
with the encounter of the first explicit task and ends at the taskwait.

In case the reduction variable in the work-sharing construct would be declared
shared instead, each implicit task would perform a reduction on the shared
variable by its nested reduction tasks. Here the scopes of the inner reductions
would end at implicit synchronization points within the implicit tasks and
the runtime would need to make sure to update the shared variable atomically.

Currently OpenMP does not support nesting data-parallel and task-parallel
reductions because of the following restriction.

e A list item that appears in a reduction clause of the innermost enclosing
worksharing or parallel construct may not be accessed in an explicit
task.

Adjusting this restriction as shown below, would add support for the general
nesting support while maintaining the afford of discouraging programming
€rTors.
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1int count = 0; 1int nqueens (...){

2 int nqueens (...){ 2 if (condl (...))

3 if (condl(...)) 3 return 1;

4 return 1; 4 int count = 0;

5 for(int row=0;row<n;row++){ 5 for (int row=0;row<n;row++){
6 if (cond2(...))) 6 if (cond2(...)))

7 #pragma omp task) 7 #pragma omp task)

8 reduction (+:count) 8 reduction(+:count)

9 count += nqueens (...); 9 count += nqueens (...);
10} 10 }

11 #pragma omp taskwait 11 #pragma omp taskwait

12 return 0; //neutral element 12 return count;

13} 13 }

(a) (b)

Figure 3.7: A concurrent implementation of N-Queens as a multi-level (a)
and nested-level domain (b) reduction over the variable count

e A list item that appears in a reduction clause of the innermost enclosing
worksharing or parallel construct may not be accessed in an explicit
task unless it appears in its reduction clause.

e Nested reductions over the same list item must perform the same
reduction operation.

If a general support of task-parallel reductions as discussed in this sections is
desirable depends on its necessity. Currently task-parallel reductions enclosed
in the taskgroup construct represent a satisfactory approach that reduces the
impact of tasking on barriers.

Figure [3.7] shows two implementations of the n-Queens application from
Chapter 1, that compute a reduction over a global (a) and local (b) variable.

3.3 Implementation in OmpSs

To evaluate requirements for compilers as well as for runtime support we
implemented the presented proposal in the OmpSs programming model. In
OmpSs, an application is launched as a single implicit task in an implicit
parallel region over all available threads. Therefore neither the parallel
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Figure 3.8: Static (a) and dynamic (b) allocation differs in when and where
thread-private memory is requested (req), allocated (alloc) and reduced (red)

construct nor barriers are needed and memory consistency is ensured through
data dependencies and task synchronization directives. Even though these
differences exist, OmpSs is suited to serve as a reference implementation for
the specific use-cases presented in section

3.3.1 Runtime support

The runtime implementation is based on the idea of privatization. In order
to avoid the need for mutual exclusive access to the reduction variable, a
thread-private copy (TPRS) is created and used as a temporal reduction
target. Since its creation, initialization and processing later on are expensive
operations, it is important to maximize the life span and reuse of a TPRS.

Therefore we introduce a thread-team private reduction manager object that
tracks privatized memories and assigns them to requesting tasks. Consequently
all tasks that are executed on the same thread and belong to the same reduction
domain always receive the same allocated thread-private memory. Once the
domain ends, one of the participating threads reduces all corresponding TPRSs
serially.

3.3.1.1 Allocation strategies and storage handling

To evaluate memory allocation we implemented two strategies called static
and dynamic allocation.
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Static allocation preallocates and initializes an array of thread-private reduc-
tion storages for all threads of a team (as defined by omp_get_num_threads())
at the moment when the first reduction task is created. This marks the
beginning of a reduction domain. During execution, the runtime provides
previously allocated TPRS objects according to a domain and thread identifier
to requesting child tasks.

With dynamic allocation, memory is allocated and initialized on demand at
task execution. Once a task requests a thread-private storage, the runtime
performs an allocation, registers the storage in the reduction manager and
returns a TPRS. An allocation is performed for each first execution of a
reduction task of a domain on a participating thread. In this case a reduction
domain begins at the execution of the first reduction task. This allocation
strategy does not create any work for the encountering thread as the allocation
is called at execution time of child tasks in parallel.

A schematic execution diagram of an application where a parent task P
creates four reduction tasks R1-4 running on two threads (71D 1, 2) is shown
in Figure In this scenario a following task 7T has an input dependency on
the reduction variable and expects a correct value in memory at the moment
of its execution. In OmpSs, finding the right point in time to reduce TPRSs
is implemented via data dependencies. TPRSs are reduced in the moment
when data dependencies are satisfied, or in other words, when the last task
of a dependency domain has finished execution. In this example, reduction
task R3 is the task that satisfies the dependency requirements for task T and
once completed it instructs the current thread TID 1 to reduce all private
storages of the reduction domain.

The advantage of static allocation is that it allows to allocate memory in a
single call (to malloc for example) and its implementation is lock free once all
TPRSs have been allocated. On the other hand, allocation is in the critical
path and potentially can result in allocating unused storage in case not all
threads participate in the computation. Further this approach does not adapt
to changing numbers of participating threads.
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Dynamic allocation allocates and initializes memory in parallel and avoids
unnecessary allocation for busy threads that will not participate in the reduc-
tion computation. Since the number of registered TPRS storages changes over
time, this implementation requires a lock in the global manager which can
potentially introduce lock contention for fine grained tasks. This approach
corresponds to the idea of dynamic parallelism where neither problem size
nor thread counts are known.

3.3.1.2 Nesting support

In case of nesting, synchronization constructs might occur at any nesting
level. In this case the runtime must be able identify storage locations that
correspond to an ending domain.

For this purpose the reduction manager object implements a list of TPRSs
and two maps that point to individual items in that list. One map uses task
identifiers while the other one uses target addresses (pointers to the original
reduction variable) as primary keys.

At the first execution of a task of new reduction domain, a new TPRS is
allocated and initialized for the current thread and the parent work descriptor
identifier as well as the address of the reduction variable are stored in the
corresponding maps. Each successive task running on that thread and reducing
over same variable will receive the same TPRS because of matching addresses.
Once tasks finish, and the recursion starts to collapse, only those tasks that
have a matching task identifier stored in the map are allowed to reduce TPRS
storages. This corresponds exactly to those tasks that created a new reduction
domain.

3.3.2 Compiler support

The goal of the Mercurium compiler [I8] is to generate code transformations
according to OmpSs annotations provided by the programmer. In case of
encountering a task reduction, the compiler replaces all occurrences of the
original reduction variable within the task by a reference to a previously
requested thread-private reduction store, called TPRS. This transformation
includes the following steps.
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e Generate call to the runtime to obtain a TPRS. The runtime serves a
TPRS corresponding to the current thread that is executing the task

e Replace all references to the original reduction variable within the task
by a reference to the TPRS

e Apply the above transformation on the final task code block (code that
is executed in the final task region).

The final task code block represents the original user-written code without
runtime calls and is invoked when the task’s final clause evaluates to true. The
final clause in the task construct is typically used to set a cut-off value for task
generation in order to control task granularity. In this way recursive functions
can be stopped from task generation in order to avoid large runtime overheads.

In case of task reductions, multiple tasks can invoke the final code block
that is performing a reduction over a global reduction variable in parallel.
Consequently in order to avoid race conditions, accesses to the reduction
variable within the final code block need to be redirected to the thread-private
storage as well. Since requesting a TPRS is typically implemented as a
runtime call, careful implementation is needed to minimize its impact on
performance. Alternatively an additional final code block can be generated
and invoked that accepts a TPRS pointer as an additional parameter. This
would make the runtime call to request a TPRS obsolete.

Compiler transformations applied to Figure |3.4] are shown in Figure (3.9

3.4 Evaluation

The evaluation of the presented runtime support is based on four application
kernels that include while-loop and recursive reductions. The first two appli-
cations, n-Queens and Knight’s tour, represent the satisfiability problem in
numerical combinatorics. They compute in one case the maximum number of
different configurations of n queens, in the other, the number of knight’s paths
covering all fields on a chess board of size n. These applications are imple-
mented as recursive backtracking algorithms in two versions. In one version
the reduction is performed over a task-local variable (nested-domain reduction)
and in the other over a global variable (multi-level domain reduction). The
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void outline_taskl (struct ArgsTaskl args);
void outline_task2 (struct ArgsTask2 args);
int foo () {

for (int i=0; i<SIZE; i+=BLOCK)
rt_create_task ({array, i, &red}, &outline_taskl);
rt_taskwait ();
return red;
}
void outline_taskl (struct ArgsTaskl args) {
int *xtp_.red = rt_get_thread_storage (args.red);
for (int j=i; j< args.i + BLOCK; +4+j)
rt_create_task ({array, j, tp_-red}, &outline_task2);
rt_taskwait ();

}

void outline_task2 (struct ArgsTask2 args) {

17  int stp_tp-red = rt_get_thread_storage(args.tp_-red);
18 (xtp_tp.-red) += args.array|args.j] + bar(/+«long_computationx/);
19 }

Figure 3.9: Transformations applied by the compiler redirecting accesses to a
thread-private reduction store

schematic concurrent code for n-Queens is shown in Figure Execution
traces obtained from the n-Queens application running on 16 threads are
shown in Figure [3.10] and illustrate task execution and lifetimes of TPRSs
for both implementations. In these executions, task granularity was set to
an optimum by using the final clause in the task construct. As visible in
the execution trace, a multi-level domain reduction allows high reuse rates of
thread-private memory across nesting levels.

Max-height, another application, computes the longest path over a directed,
unbalanced and acyclic graph. This application represents a while-loop reduc-
tion. Due to its frequent, irregular memory accesses, its scalability is limited
by memory bandwidth when running on 16 processor cores. The Powerset
benchmark computes the number of all possible sets over a given number
of elements. This application is implemented recursively where unlike the
n-Queens application, each recursive branch is of the same length.

Figure shows application scalability for the aforementioned applications
implemented as nested-domain (a) and multi-level domain (b) reduction as
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Figure 3.10: An execution trace for the n-Queens application (n=15 and
creating tasks in two nesting levels) shows tasks (a) and allocation (1), reuse
(2) and reduction (3) of thread-private reduction storages over a task-local
(b) and global variable (c) as shown in Figure

well as their implementations with tasking and atomic updates (using built-in
atomics where possible). For each benchmark we have selected the best task
granularity and the following problem sizes: n-Queens with n=15, Knight’s
tour with board size 5x5; Max-height with a graph height 15, 7 edges per
node and Powerset over 32 items. Results show that all benchmarks benefit
from reduction support, especially in cases where lock contention and atomic
updates degrade performance.

While all applications were executed with both allocation strategies, they did
not exhibit significant performance differences. Allocation and initialization
strategies are relevant especially in case of user-defined reductions over larger
data types and array reductions where the cost of memory allocation and
initialization becomes expensive. As a more detailed analysis exceeds the
scope of this chapter, we defer it to future work.

Inspecting overheads of the current implementation for both allocation strate-
gies revealed that the additional time introduced by runtime calls specific
to reduction support did not exceed 1% of total time spent in the runtime
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regardless of granularity or problem size. We expect that this behavior will
change in case of user-defined and array-type reductions.
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Figure 3.11: Application speed-up over serial execution implemented with (a)
nested-domain and (b) multi-level domain reductions as well as with regular
tasking using atomics
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3.4.1 Environment

All benchmark results presented in this work were obtained from the MareNos-
trum 3 supercomputer located at the Barcelona Supercomputing Center. Each
system node contains two 8-core Intel Xeon E5-2670 CPUs running at 2.6
GHz with 20MB L3 cache and 32GB of main memory. Applications were
compiled using Mercurium compiler v1.99.1 and GCC v4.8.2 back-end /native
compiler with -O3. The runtime is based on the Nanos++ RTL v0.7a.

3.5 Related Work

OpenMP has allowed concurrent reductions in work-sharing constructs since
its first specification (OpenMP 1.0) in 1997. The supported clauses allow
the use of a reduction operator and a list of scalar, shared locations. During
parallel execution, the runtime creates private copies for each list item and
thread in the team. The result variable is initialized with the identity value
according to the operator that is declared in the clause. In successive versions
of the OpenMP specification, additional features have been added to the stan-
dard. These include min- and max-operators for C/C++ in version OpenMP
3.1, extended reduction support to Fortran Allocatable Arrays (OpenMP 3.0)
and User Defined Reduction (OpenMP 4.0). Aside from small incremental
updates, the OpenMP specification has never allowed OpenMP tasking in
reductions. In fact it explicitly forbids the use of reduction symbols in com-
bination with tasks: ” A list item that appears in a reduction clause of the
innermost enclosing work-sharing or parallel construct may not be accessed in
an explicit task.” [I] This restriction reduces flexibilities achieved by dynamic
parallelism in many algorithms.

Other programming models, such as the Cilk++ [19], introduce different types
of linguistic mechanisms, so called hyperobjects [20], that are coordinating
local views of the same variable. Based on a cilk_spawn mechanism that
starts parallel execution, the parent creates a private copy of the original
view initialized with the identity value, while the child receives the original
view of the symbol. These two views join just before synchronization occurs
(cilk_sync). In the first step, the child view is updated with the value of
the parent view according to a reducer function. Then the parent view is
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discarded, and replaced by the view of the child. Unlike lazy-reduction imple-
mented in OmpSs that is able to reuse storage across nesting levels, in this
case an allocation, reduction and deallocation always occur.

X10 [21], another popular programming model, introduces a phaser-accumulator
[22, 23] construct for dynamic parallelism. A X10-phaser is a coordination
construct allowing to unify point-to-point synchronization among different
X10-tasks (activities). The phaser-accumulators support two logical opera-
tions. It sends a value for accumulation that has been produced in the current
phase or it receives the accumulated value from the previous phase. This
implementation entirely eliminates race conditions through the accumulator
object that handles read and write accesses. This encapsulation of function-
ality allows to define implementation strategies that differ as to when the
reduction itself is performed. That is either when data is supplied or when
a synchronization point is reached. In this respect this implementation is
comparable to OmpSs.

3.6 Conclusions

In this chapter we presented an extension to OpenMP tasking to support
reductions in while-loops and general-recursive functions. It turned out that
the OpenMP taskgroup is suited to support task-parallel reductions as it min-
imizes implications on unrelated constructs. A general support in OpenMP
is possible but requires further analysis of deep task synchronization and of
implementation and performance implications on barriers. This effort should
be made in the future if applications exist that render the taskgroup con-
struct insufficient. The presented runtime implementation offers two different
allocation strategies and maximizes storage reuse. Dynamic allocation follows
the idea of dynamic parallelism where neither the amount of work nor the
number of participating threads are known beforehand. Results show that task
granularity is important and in case of recursive algorithms can be efficiently
controlled by the final clause. In the case of while-loops, task granularity needs
to be taken into account by the programmer through appropriate application
design. Performance results obtained on a MareNostrum 3 system node show
a near-linear speed-up for test cases with optimal granularity.



CHAPTER

Towards Task-parallel Reductions
in the OpenMP Specification

The introduction of OpenMP tasking enabled new parallelization opportunities
for irregular algorithms. Unfortunately the tasking model does not easily allow
the expression of concurrent reductions, which limits the general applicability
of the programming model for such algorithms. In this chapter, we refine our
previous work on task-parallel reductions with the goal to produce a compliant
version to the current OpenMP specification. In particular we restrict the
possible use of task-parallel reductions to task groups and introduce the
in_reduction clause. Further we explore issues for programmers and software
vendors regarding programming transparency as well as the impact on the
current standard with respect to nesting, untied task support and task data
dependencies. Our performance evaluation demonstrates comparable results
to hand-coded task reductions.
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4.1 Introduction to Task-parallel Reductions in
OpenMP

Migrating applications to multi-core and many-core architectures is a chal-
lenging but necessary step to achieve scalable performance on modern systems.
Thus, parallel programming models such as OpenMP [1] have gained pop-
ularity through concepts and tools to introduce portable concurrency in a
broad range of algorithms with relatively little programming effort. This
work follows the line of thought and proposes the addition of task-parallel
reductions to OpenMP to extend support to a wider class of algorithms. For-
loops have a constant iteration space and OpenMP supports their concurrent
execution through worksharing constructs. Unlike for-loops, the iteration
space of while-loops and recursions is dynamic, which prohibits an efficient
use of worksharing constructs. OpenMP 3.0 added support for these irregular
algorithms through the task directive. In this formulation, loop iterations
and recursive calls create task instances of the enclosed code, typically the
loop body.

While for-loops and while-loops can be efficiently parallelized through work-
sharing constructs or tasks, reductions within them require special attention.
A closer look reveals that the reduction operation represents a read-modify-
write sequence that is not atomic so that its parallel execution introduces
data races.

Figure shows while-loop reductions over a linked list that avoid data
races by introducing locks or by applying techniques like thread-privatization.
Programming model support would eliminate the required boilerplate code.
Even though manual implementations are viable solutions, they are error-
prone and require the programmer to select a specific implementation, which
may be inefficient on a given architecture or incur unnecessary memory
overheads.

OpenMP needs a solution that supports task reductions and minimizes the
effect on unrelated constructs. It should comprehensively define the scope of
the reduction and a data context for the private reduction variable.
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1 float var = 0;

2

3

4

5 while ( node ) {

6 var += node—>value;
7 node = node—>next;
8 }

9

10

11

12

13

14 .

1 float var = 0;
2#pragma omp parallel
39

4 Fpragma omp single
5 while ( node ) {

6 #pragma omp task \

7 firstprivate (node)
8 {

9 #pragma omp atomic

10 var 4+= node—>value;

1}

12 node = node—>next;

13}

14 }

(a) Original code (serial version)

(b) Parallel with atomics

1

2 float var = 0;

3 float part[nthreads] = { 0 };
4

5#pragma omp parallel \

6 reduction (+:var)
74

8 #pragma omp single

9 {

10  while ( node ) {

11 #pragma omp task \

12 firstprivate (node)
13 {

14 part [thread_id] +=

15 node—>value;
16 }

17 node = node—>next;

18}

19 }

20 var += part[thread_id];
21}

1 float var = 0;
2 float part = 0;
3#pragma omp threadprivate)

4 (part)
5#pragma omp parallel \

6 reduction (+:var)
74

8 #pragma omp single

9

10 while ( node ) {

11 #pragma omp task \
12 firstprivate (node)
13 {

14 part +=

15 node—>value ;
16 }

17 node = node—>next;
18}

19 }

20 var += part;

21 }

(c) Parallel with manual privatization

(d) Parallel with thread-privatization

Figure 4.1: Different versions of a while-loop reduction over a linked list
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4.2 Discussion of Concerns

We propose to extend the taskgroup and task constructs to support task
reductions. Prior work identified taskgroup construct as a possible scope of
the reduction [24]. We prefer this choice since it does not affect other OpenMP
mechanisms (e.g., barriers) and the taskgroup structured block defines a clear
reduction scope.

We extend the taskgroup and task construct with the clauses reduction and
in_reduction respectively. The in_reduction clause declares a task as a partici-
pant in the computation of var that was previously declared in an enclosing
taskgroup reduction clause with the same reduction-identifier. We deliberately
use the in_reduction clause instead of reusing the reduction clause in order to
stress the differences in behavior to the programmer. The reduction clause in
the taskgroup construct follows its current specification for other constructs.
Alternatively, the in_reduction clause on a task construct defines an access
pattern (an update operation) to one of those copies. Figure [£.2|a) illustrates
our proposal for the previous example.

4.2.1 Updates of a reduction variable outside a reduction con-
text

Programmers must consider that an update of the original reduction variable
occurs just after the taskgroup region and that accesses to that outside of
the taskgroup may create a race condition. Figure (b) shows code that
updates the reduction variable both inside and outside a taskgroup reduction.
The task created in line 8 can be executed concurrently with the taskgroup
reduction update occurring at the end of the taskgroup created in lines 11 —12.
This situation may also occur when multiple taskgroup reductions are working
with the same variable simultaneously. The programmer must provide proper
synchronization to avoid this situation. This requirement is analogous to
existing restrictions on reductions:

To avoid race conditions, concurrent reads or updates of the origi-
nal list item must be synchronized with the update of the original
list item that occurs as a result of the reduction computation (line
20, p. 170 [1).
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1 float var = 0; 1 float var = 0;

2 2

3#pragma omp parallel 3#pragma omp parallel

4{ 4 {

5 #pragma omp single 5 #pragma omp single

6 #pragma omp taskgroup \ 6 1

7 reduction (+:var) 7 #pragma omp task

8 while ( node ) { 8 var—+-+;

9 #pragma omp task \ 9

10 flrstprlvate(node)\ 10 #pragma omp taskgroup \
11 in_reduction(+:var) 11 reduction (+:var)
12 { 12 while ( node ) {

13 var += node—>value; 13 #pragma omp task \

14 } 14 flrstprlvate(node)\
15 node = node—>next; 15 in_reduction(+:var)
16} 16 {

17} 17 var += node—>value;
18 18 }

19 19 node = node—>next ;

20 20 }

21 21}

22 ... 22 }

(a) While-loop reduction (tentative)

(b) While-loop reduction (race condition)

Figure 4.2: Examples of our proposal

4.2.2 Over-specifying the reduction identifier

The declaration of the reduction identifier in the in_reduction clause could be
inferred from the taskgroup context and thus could be omitted to minimize the
potential for programming errors. However, vendor feedback indicates that
omitting the identifier could limit compiler optimizations, or at least introduce
some additional overhead (i.e., registering the reduction inside the runtime)

to perform these optimizations.

OpenMP vendors may use the identifier

to combine a local-copy of a reduction variable with the original/thread-
copy (depending on the implementation approach), which specification of
the identifier in the in_reduction clause would facilitate. Thus, we choose to
require it.
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4.2.3 Supporting untied tasks

Untied tasks can be suspended at a task scheduling point and later resumed on
a different thread. Without proper handling, a task might resume execution
on a different thread but still continue using the thread-private copy of the
thread that started its execution, which could create a race condition. Tied
tasks do not encounter this issue since they execute entirely on one thread
even if they are suspended at some point. Thus, they can safely use that
thread’s copy as they will not be suspended while accessing it.

Several solutions could support untied reduction tasks. First, an implementa-
tion could not migrate any task (e.g., treat it as tied) if it is involved in a
reduction even though it is declared as untied. This approach is simple but
eliminates the potential benefit of untied task migration.

Alternatively, an implementation could introduce an additional local variable
for each untied reduction task. This task-local variable must be initialized to
the identity. A reference to the local variable would replace all references to
the reduction variable inside the untied task. Finally, at the end of the task,
the partial result stored in the task-local variable would be combined with
the thread-private copy of the thread that finalizes the task. This approach
supports tasks that migrate among threads at the cost of an additional task-
local copy that must be initialized and an additional partial reduction per
untied task.

Finally, the compiler could generate a request for the thread-private copy after
each possible task scheduling point, thus supporting the use of the thread-
private copy. The reduction task would then always access the thread-private
copy of the thread that is executing it. This approach supports tasks that
migrate among threads at the cost of repeatedly obtaining the thread-private
location.

We recommend that the following be implementation-defined:

e Whether untied tasks involved in reductions can migrate;

e The number of private copies that are created for a task reduction.
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The number of private copies could be defined as the number of tasks that
participate in the reduction. Our recommendation thus allows an implementa-
tion to choose any of the above solutions (or a hybrid of them). Untied tasks
could migrate and the number of private copies could be anything between
the number of threads to the number of tasks.

4.2.3.1 Evaluating support for untied tasks

We use two benchmarks to evaluate the choice of supporting untied tasks
by not migrating them or by introducing a new local copy per task. The
first performs a reduction over a scalar. The performance of both versions is
equivalent since the extra overhead introduced in the task-local approach is
small in scalar reductions and the benchmark is well-tuned to obtain good
performance using tasks so the extra overhead of the task-local version is
insignificant compared to the task granularity.

Our second benchmark, Array Sum UDR (since it has a User Defined Reduc-
tion) reduces an array of structs to a unique struct. This struct has a static
array of T'S integers. The UDR/’s initializer sets every element of the struct
to zero and its combiner adds the values of the two arrays. We choose this
benchmark since it increases the cost to allocate and to initialize the extra
copy and to perform its associated reduction.

N=10"9

tasklocal / untied as tied (1 thread)
tasklocal / untied as tied (2 threads)
tasklocal / untied as tied (4 threads)
tasklocal / untied as tied (8 threads)
tasklocal / untied as tied (16 threads)

240

140

Relative Performance (%)

1000 10000 100000 1000000
TS

Figure 4.3: Array Sum UDR benchmark results
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Figure shows the relative performance of the task-local version compared
against the untied-as-tied version, with different number of threads and fixing
the total number of integers to N = 10°. The relative performance is computed
dividing the execution time of an approach by the execution time of another.
Taking a closer look at the execution with a single thread for instance reveals
that the introduction of a task-local variable doubles the execution time as
initialization and reduction of this additional variable is required. Dividing
this execution time by the execution time of the untied-as-tied version and
normalizing the number to 100 results in a 200% speed-up of the latter for
large problem sizes.

In general, the overhead of the task-local version increases with TS, the size
of the static array. The differences among the different relative performances
require further analysis which we defer to future work. Thus, the task-local
approach is reasonable for scalar reductions but may incur excessive overhead
for array reductions or UDRs.

lint a = 0; lint a = 0;
2#pragma omp taskgroup \ 2#pragma omp taskgroup \
3 reduction (+:a) 3 reduction (+:a)
4{ 4 {
5 . 5
6 int b = 0; 6
7 #pragma omp taskgroup \ 7 #pragma omp taskgroup \
8 reduction(+:b) 8 reduction(+:a)
9 { 9 A
10 . 10
11 } 11 }
12 C 12
13 a += b; 13
14 } 14}
(a) Nesting over two different vari- (b) Nesting over the same variable
ables

Figure 4.4: Nested taskgroup reduction scenarios
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4.2.4 Supporting nested taskgroups

Nested taskgroup reductions can be defined either over different list items
or the same ones, as Figure shows. If the nested taskgroup defines a
reduction over a different list item (Figure[4.4(a)), the runtime registers a new
reduction that is independent of the ongoing outermost taskgroup reduction.
Thus, the runtime creates a new set of thread-private copies to compute the
reduction.

Two alternatives exist if the nested taskgroup reduction is over the same
list item (Figure [4.4(b)). The first uses the same approach as when the list
item is different: register a new reduction. The second alternative reuses the
same set of private copies for both reductions. With this approach, we cannot
reduce the private copies at the end of the nested taskgroup reductions: the
final reduction must be computed at the end of the outer taskgroup region,
counter to current reductions semantics that compute the reduction at the
end of the construct that has the reduction clause.

4.2.5 Cancellation, dependencies and merged tasks

Cancellation implies the value of the reduction variable is unspecified since
we cannot guarantee how far the computation of the reduction has progressed.
The programmer must anticipate this behavior.

The specification of a dependency (using the task depend clause) over a
reduction variable might introduce a conceptually misleading situation. The
programmer might intend a dependency over the original variable or the
private copy in the data context of the taskgroup reduction. We could
explicitly restrict the use of the in_reduction clause and depend clause over
the same variable. However the current OpenMP specification does not
restrict similar cases. A dependency over a private variable produces a similar
situation where the OpenMP specification does not provide clarification about
the interaction between data-sharing attributes and dependencies.

A merged task that participates in a reduction does not have a data envi-
ronment. Thus, it must use the parent’s data environment that includes the
private copy of the reduction variable. Since the parent environment for a
reduction task can only be either a taskgroup reduction or another reduction
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task environment, the use of the corresponding private copyF_-] in the parent
region is always guaranteed. Thus, this case also does not require additional
specification.

4.3 Specification for OpenMP

This section describes the syntax of our proposal. We update the syntax of
the taskgroup construct to:

#pragma omp taskgroup [clause[[,] clause]...] new-line
structured-block

where clause is:

reduction (reduction-identifier: list)

We also modify the reduction clause description to cover taskgroup regions.
Once the scope of a reduction is defined, we must identify tasks within the
taskgroup that participate in the computation. Thus, we extend the clauses
allowed on a task construct to include:

in_reduction(reduction-identifier : list)

We add a section for the in_reduction clause and modify the description of
the reduction clause to specify the semantics of references to the list items
that we discussed in the previous section. The section on the in_reduction
clause includes this restriction:

e The task to which the in_reduction clause is applied on a list-item must
be closely nested in a taskgroup region to which a reduction clause is
applied on the same list-item.

IThis case may involve multiple private copies due to support for untied tasks.
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4.4 Evaluation

This section compares the performance of our prototype implementation of
the proposed taskgroup reduction with the manual implementation as shown

in Figure
4.4.1 System environment

We obtained our results on MareNostrum III and the Knight system located at
the Barcelona Supercomputing Center. Each Marenostrum III node contains
two 8-core Intel Xeon E5-2670 CPUs running at 2.6 GHz with 20MB L3 cache
and 32GB of main memory organized as two NUMA nodes. Each Knight
node includes an Intel Xeon Phi coprocessor with CO silicon and board version
COPRQ-7120 (61 cores at 1238095 Khz, 16 GB of GDDR Memory at 5.5
GT/sec, 300W TDP), driver v3.4-1, MPSS v3.4 and flash v2.1.02.0390).

Applications on Marenostrum and Knight were compiled using the Mercurium
source-to-source compiler v1.99. (using GCC v4.7.2 and Intel® C Compiler
15.0.2 as the back-end/native compiler respectively). In both cases the
compiler optimization level was -03, and the parallel runtime used in all
experiments was based on the Nanos++ RTL v0.92P}

4.4.2 Benchmark descriptions

Array Sum: This algorithm takes a single array of N integers as an operand
and computes the sum of its elements. We create a task for each T'S elements.

Dot Product: The dot product algorithm is a simple operation on two
vector operands of N elements. The result is the sum of the products of their
components. We create a task for each T'S elements.

NQueens: This application computes the number of placements of N chess
queens on a N X N chessboard such that none of them can attack any other.
This implementation uses a Branch and Bound algorithm following a recursive

2mexx 1.99.8 (git 538d492)
%nanox 0.9a (git master 10f6134)
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pattern, taskified and using the final clause to control task granularity.

Unbalanced Tree Search (UTS): This benchmark computes the number
of nodes in an implicitly defined unbalanced tree [25]. The program begins
with a single tree node and an initial seed that is used to generate a sequence
of pseudo-random numbers. For each node, the next value in the sequence
is used to sample a parameterized probablity distribution to determine the
number of children for a given node. This algorithm creates an unpredictably
unbalanced workload that makes the use of a cut-off value in the final clause
difficult.

4.4.3 Performance results on Intel Xeon processors

In this section we evaluate the performance of our proposal against the
performance of manual versions of the benchmarks on Intel Xeon processors.

Figure shows the performance results of the Array Sum and Dot Product
benchmarks. Both benchmarks exhibit similar behavior in which performance
drops levels off with higher thread counts. In this case, scalability is limited
by memory bandwidth. In Array Sum, bandwidth saturation starts with 12
threads (with a 10x speed-up), while for Dot Product this effect becomes
visible with 6 threads (reaching a speedup of 5x). These two different phases
(scale and saturate) have a counterpart in the relative performance (the
green dashed line in the figure). For all thread counts with Array Sum, the
performance reaches at least 94% of the performance of the manual version.
For larger thread counts, the differences between the implementations become
smaller because task execution time shifts towards the computation as the
algorithm saturates the memory bandwidth and reduces the importance of
reduction performance. For the Dot Product benchmark, the relative speedup
is between 95% and 100%. For both benchmarks, the gains in maintainability
and portability easily compensate for the slight performance drop that occurs
due to runtime handling of the reduction support.

Figure shows the results for the NQueens benchmark. For this application
we have implemented two versions: one that reduces over a global variable
(subfigure a) and another that reduces over a local variable (subfigure b). We
explore these two versions primarily because the global version only registers
one reduction in the whole program while the local version registers a new re-
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N=15, using final clause, 15000 tasks, baseline: manual_reduction with 1 thread
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duction at each recursive level. When reducing over a global variable, speedup
is essentially linear and relative performance is close to 100%. When the
reduction is performed over a local variable, we compare our proposal against
two different manual versions. The first one is the regular transformation
presented previously whereas the second version optimizes the code when in
a final task. The problem with the regular transformation is that we are still
allocating, initializing and reducing an array of NUM _THREADS elements
even if we are going to use just one element. Thus, the optimized versions
makes use of the omp_in_final() runtime service to avoid this extra overhead.
Despite comparing our proposal against the manual optimized version, the
scalability and the relative performance of our version is still better.

Figure [4.7] shows the results of executing the UTS benchmark with config-
urations that vary the number of created tasks from 50k to 1M tasks. All
configurations achieve essentially linear speedup (subfigure a), and relative
performance is between 96% and 99% for programmability issues again more
than compensate.

4.4.4 Performance results on Intel Xeon Phi coprocessors

In this section we evaluate the performance of our proposal against the
performance of manual versions on a Intel Xeon Phi coprocessor.

Figure [4.8 shows the results of the NQueens benchmark on the Xeon Phi. For
the global version of the NQueens, the scalability and the relative performance
between our approach and the manual version are identical. For the local ver-
sion, the scalability and the relative performance of our proposal is equivalent
to the manual optimized version and far better than the nonoptimized one.

4.5 Conclusions

In this chapter we have presented a proposal to support task-parallel reductions
in OpenMP that extends the taskgroup and task constructs with reduction
and in_reduction clauses. We consider that the taskgroup construct provides
a convenient data environment for reductions and that the scope of the
reduction is clearly defined by the deep synchronization at the end of the
taskgroup region. The in_reduction clause for the task construct associates
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Figure 4.8: NQueens benchmark results on Xeon Phi

tasks with a reduction previously declared in a taskgroup construct. This
approach does not impact barriers or other task synchronization constructs.
We explored implementation options to support nested taskgroups and untied
tasks, which demonstrate that implementors can chose among a range of
implementations and optimizations. Our performance results demonstrate
that the approach incurs little overhead compared to manual versions and may
even provide performance benefits in some cases like recursive applications.
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Most importantly, it significantly reduces boilerplate code that programmers
must currently use to implement reductions manually. This work represents
the foundation for our specification draft presented to the OpenMP review
board.



CHAPTER

Supporting Irregular Array-type
Reductions on Distributed Memory
Systems with CachedPrivate

Supporting irregular array-type reductions on distributed memory systems is
a challenging endeavor due to frequent fine-grained accesses to high-latency,
remote memory. A solution is needed that can maximize local and tempo-
ral data reuse and allow overlapped computation and communication. In
this chapter we present an approach called CachedPrivate that fulfills these
requirements by redirecting memory accesses into thread-private software
caches with eviction buffers of variable size. Results confirm scalability for up
to 32 12-core cluster nodes.

65



66

5.1 Introduction to CachedPrivate

In this work we propose a software-based approach, called CachedPrivate, that
combines high programmability and an efficient parallel execution of reductions
on distributed memory systems. These systems are typically characterized
by high latency and low bandwith remote memory accesses which makes
them well suited to evaluate our approach. To express a reduction, the user
simply annotates an OmpSs program with an additional pragma directive.
The underlying runtime takes care of its parallel execution. At its core, a
software cache is used to privatize reduction data and to ensure scalability
through improved data reuse (locality) and overlapped computation and
communication that occurs on cache line evictions. The process of software
caching is transparent to the programmer.

For practical evaluation we implemented the approach in OmpSs [26]. OmpSs
is a task-based, parallel programming model that allows programmers to
write parallel applications that seamlessly execute on shared- and distributed-
memory systems (SMPs and clusters) and on heterogeneous systems (such as
GPGPUs). The presented approach is not restricted to OmpSs but is generic
and applicable to OpenMP [27, 28] as well as other parallel programming
models.

The contribution of this work consists of:
e CachedPrivate — an approach based on software caching for scalable
runtime support for irregular reductions

e language support for tasking and work-sharing constructs in C-like
languages

e and performance evaluation

5.1.1 Occurrences and motivation

Reductions can occur on scalar and array types. For example a vector dot-
product represents a reduction on a scalar whereas a histogram, as shown in
Figure represents a reduction on a vector. To compute a histogram a loop
iterates over an input array of keys and updates the number of occurrences
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void Histo (TYPE+ keys, TYPEx histo, int K) {

for(int i = 0; i < K; i++)
TYPE key = keys|[i];
histo [key]++;
}

Figure 5.1: Sequential histogram code

of each key. In this case histo is an array of reduction variables. Which
particular variable is updated depends on the value of key and is unknown at
compile time. This prohibits efficient parallel execution and data partitioning
on distributed-memory systems.

In general reductions can be distinguished by their data access pattern. Regu-
lar reductions exhibit an access pattern that is predetermined algorithmically.
In this case, the reduction algorithm can be parallelized in a way that con-
current instances operate on disjoint memory locations thus avoiding race
conditions. Additionally, the regular data access pattern allows an efficient
distribution and computation on parallel architectures with disjoint memory
address spaces (such as clusters, GPGPUs and accelerators) because no inter-
process communication is required for its computation. Figure shows a
concurrent vector addition R = R + I, implemented as a regular reduction on
input vector I and output vector R with R[Ridz| = R[Ridx] + I[Iidx]. The
mapping function map shows a static relation between indexes generated by
the control flow Iidz (they index the input array) and output indexes Ridx
(indexing the output array) and is defined as Ridz = map(ldx) with map
being the identity function map(x) = x. In this example input and output
data are distributed to processors PO, P1 and P2. Each processor operates
on local data only.

On the other hand irregular reductions exhibit a data access pattern that is
not determined by the control flow of the algorithm. Their access pattern
depends on input data. In this case it is not possible to guarantee race-free
concurrent execution algorithmically. Furthermore performance concerns arise.
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(a) Vector sum
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(c) Cached histogram

Figure 5.2: Example of regular, irregular and cached reductions running in
parallel on processors P1, P2 and P3

On SMP systems concurrent write accesses of shared data lead to mutual
cache invalidations by cache coherence protocols resulting in performance
degradation. Likewise locking techniques to implement atomic memory up-
dates in order to ensure memory consistency potentially introduce high lock
contention that leads to a degraded performance. On clusters, advanced tech-
niques are needed to enable irregular reductions. For this purpose typically
either data or computation are replicated to remote nodes (ReplicateBufs [3],
SelectPriv [12] and LocalWrite [29]). Figure [5.2(b)| shows a histogram com-
putation on input vector I and an irregular reduction to output vector R as
R[Ridx] = R[Ridx] + 1. The mapping function is input data dependent and
defined as Ridx = map(I[lidx]). In this case, node-local access cannot be
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guaranteed anymore.

5.1.2 Solution design

Our solution removes irregular updates from the critical path of the application
through caching of output data. A thread-local cache serves as a temporal
reduction target with all accesses being redirected to the cache. The cache
takes care of fetching, storing and evicting cache entries. This approach
guarantees conflict free updates on local nodes, helps to exploit both temporal
and spatial locality and defers irregular updates to the point where evicted
cache entries are committed. Cache evictions overlap ongoing computation
thus effectively hide network bandwith and latency. Further this approach
puts minimal requirements on front-end compilers thus making it a solution
of choice for high programmability languages.

5.2 Language Support in OmpSs

We evaluate programmability and language requirements of CachedPrivate
with OmpSs [26]. OmpSs is a high-level, task-based, parallel programming
model supporting SMPs, heterogeneous systems (like GPGPU systems) and
clusters. We chose OmpSs for several reasons. OmpSs is representative for a
commonly used parallel programming paradigm based on tasking. Further, its
modular plug-in based design makes new directives (such as work-sharing direc-
tives for implicit tasking) and conceptual work on user-defined reductions [30]
easy to implement. Finally, its runtime features are beneficial for Cached-
Private, especially locality-aware task scheduling and dependency-aware task
execution.

5.2.1 Tasking in OmpSs

task [clauses| function definition — function header

As discussed previously, the OmpSs task pragma marks a function for asyn-
chronous execution and accepts input, output, inout and concurrent clauses
to define data directionality. The input clause lists all task parameters with
read-accesses, the output clause lists all parameters with write-access and
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inout clause lists those with read- and write-access within the task. The
concurrent clause relaxes the true dependency between tasks and allows their
parallel execution. In this case the developer is required to take care of correct
synchronization.

The target clause specifies a target device such as an accelerator or SMP.
This information allows the runtime to deploy task data to the target device
automatically as required by the input and output clauses. In this case task
input triggers a data copy from master (data owner) to device and an output
a copy back from device to master. OmpSs further offers synchronization
constructs through the #pragma omp taskwait and #pragma omp taskwasit
on (var) pragmas where var is a shared variable.

5.2.2 Manual reductions in OmpSs

Parallel reductions in OmpSs are currently programmed by explicitly creating
tasks that perform them. Figure shows a parallel histogram computation
over the input keys and output histo. In this case histo represents a reduction
variable. While the input data can be divided into chunks of size block for
each task, the output data is passed to each task in full size due to irregu-
lar updates over the entire length. In order to avoid task serialization, the
concurrent pragma is used to override task dependencies that would result
from the inout declaration. This approach requires an atomic update on SMP
systems (implemented here with a #pragma atomic). On clusters, OmpSs
requires the creation of private copies of output array for each task. Once a
task finishes, it copies back its private copy holding an intermediate result of
the reduction operation to the originating node. This node then reduces all
incoming privatized arrays and computes the final result. While privatization
(ReplicateBufs) is a reduction scheme that can be language-supported and
transparent to the developer (opposed to other approaches requiring substan-
tially more programming efforts) it does not scale. Performance scalability
is limited due to resulting high memory and network utilization and node
local reduction of intermediate results. Figure [5.4] shows a parallel histogram
implementation with privatization in OmpSs.
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1void Histo (TYPEx keys ,TYPE+ histo, int K, int H) {

2 int start=0, block, block_-mod;

3 int NT = NUM.TASKS;

4 TILESIZE (K, NT, block, block_-mod);

5 for(int i = 0; i < NT; i++)

6

7 if (i = NT-1) block += block-mod;

8 #pragma omp target device(smp)

9 #pragma omp task input (keys[start;block]) \
10 concurrent (histo [H])

11 firstprivate(start , block)
12 {

13 INT_TYPE key;

14 for (int j = start; j < start + block; j++)
15

16 key = keys|[j];

17 #pragma atomic

18 histo [key]++;

19 }

20 }

21 start 4= block;

22

23}

Figure 5.3: Parallel histogram with locks
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1void Histo (TYPE* keys ,TYPEx histo, int K, int H) {

3 TYPEx*x privHisto = Alloc (){...}

4 for(int 1 = 0; i < NT; i++)

5

6 TYPE x _histo = privHisto[i];

7 if (i = NT-1) block += block-mod;

8 #pragma omp target device(smp) copy_deps
9 #pragma omp task input (keys[start;block]) \
10 output( _histo [H])

11 firstprivate(start , block)
12

13 Init (-histo)

14 INT_TYPE key;

15 for (int j = start; j < start + block; j++)
16

17 key = keys|[j];

18 _histo [key]++;

19

20 }

21 start += block;

22}

23 #pragma omp taskwait
24 Reduce(privHisto ){...}
25 }

Figure 5.4: Parallel histogram with privatization

l#pragma omp task [clauses] reduction (identifier:var)
2 function definition | function header

1#pragma omp for reduction (identifier:var)
2 [clauses]

Figure 5.5: Reduction support in task and work-sharing language constructs
in OmpSs
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1#pragma omp declare reduction (identifier :\
2 type—list : combiner) [initializer]

Figure 5.6: User-defined reductions in OmpSs

5.2.3 Language support for reductions in OmpSs

For programmability we introduce the reduction clause for explicit tasks. It
extends the OmpSs task construct and instructs the compiler to generate ad-
ditional runtime calls that provide required information to the CachedPrivate
runtime support. Particularly the front-end compiler invokes the following
steps when encountering a reduction

e Generate API calls to CachedPrivate for initialization of supporting
data structures

e Replace references to reduction variable with calls to CachedPrivate

e Introduce an implicit memory barrier on reduction variables to guarantee
data availability when required (this is the case if a subsequent task
has an input data dependency on reduction data or when a reduction is
followed by a synchronization construct). Further this step is required
to identify all manually created tasks that participate in the reduction.

Its definition is shown in Figure [5.5

Further we propose the addition of the pragma omp for work-sharing construct
to the OmpSs language front-end (in a work-sharing construct, tasks are
created implicitly). The work-sharing construct accepts the reduction clause
and is defined as shown in Figure In order to make the reduction clause
generic, we extend it by user-defined reductions (UDRs). This makes any
user-defined function a reduction operator that is applicable on arbitrary
reduction data types.

The expression of a UDR consists of a reduction declaration and usage. Fig-
ure shows a reduction declaration where identifier names a reduction
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1void Add(int & a,int & b) {at+=b;}

2void Init(int & a) {a=0;}

3#pragma omp declare reduction(Add:TYPE:Add(omp_out,omp_in))\
4 Init(omp_priv)

5

6 void Histo (TYPE+* keys ,TYPEx histo, int K, int H) {

7 int start=0, block, block_mod;

8 int NT = NUM.TASKS;

9 TILESIZE (K, NT, block, block.mod);

10 for(int i = 0; i < NT; i++4) {

11 if (i = NT-1) block += block.-mod;

12 #pragma omp target device (cluster) \

13 copy-in(keys[start;block])

14 #pragma omp task input (keys[start;block]) \
15 firstprivate (start , block) \

16 reduction (Add: histo [H])

17 {

18 TYPE key ;

19 for (int j = start; j < start + block; j++)
20

21 key = keys|[j];

22 Add(histo [key],1);

23 }

24 }

25 }

26  start += block;

27}

Figure 5.7: Histogram with CachedPrivate and explicit tasking

operator, type-list lists supported data types, combiner extends the reduc-
tion operator by semantic information and initializer defines output data
initialization. A reduction operator must be a binary, commutative and
associative function implementing an update operation as expressed by the
combiner. The combiner accepts omp_out and omp_in clauses that indicate
the update semantics. The initializer follows the idea of the combiner and
defines initialization semantics omp_priv and omp_orig. The reduction usage
employs the reduction declaration in the reduction clause.

A parallel histogram with the new OmpSs reduction scheme with explicit
tasking and with a work-sharing construct (implicit tasking) are shown in

Figure [5.7] and Figure
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void Add(int & a,int & b) {at+=b;}
void Init(int & a) {a=0;}

3#pragma omp declare reduction(Add:TYPE:Add(omp_out,omp_in))\

4
5
6
7
8
9
10
11
12
13
14
15

Init (omp_priv)

void Histo (TYPE* keys ,TYPEx histo, int K, int H) {

#pragma omp for shared(keys[K]) \
reduction (Add: histo [H])
TYPE key;
for(int i = 0; i < K; i+4)
key = keys|[i];
Add(histo [key],1)1
}
}

Figure 5.8: Histogram with CachedPrivate and implicit tasking

5.3 CachedPrivate

Caching offers the advantage of making an irregular reduction input-data
independent, thus regular, by applying a fixed function map that redirects
previously scattered memory accesses to a cache. This has several advantages.
Firstly it allows the use of small cache sizes, making this approach memory-
efficient. Further it allows us to exploit data characteristics such as input
data sparsity. In case of sparse output, updates happen on a subset of
reduction data only. This data is likely to be kept in cache throughout
the computation. Consequently this maximizes data reuse and minimizes
communication requirements. Also irregular accesses are deferred to a point
later in time, typically when a cache entry is evicted and needs to be committed.
Comparably to a CPU cache, where evicted cache entries are written back
to the owning memory location, CachedPrivate communicates evicted cache
entries to the owning process. On arrival the cache entry is committed to
memory. It turns out that the time required for committing evicted cache
lines can be effectively overlapped by computation. This can hide network
bandwith and latency.

Once the computation finishes, all outstanding cached entries are flushed.
Cache flushes cannot be overlapped and therefore are in the critical path
of the reduction computation. Naturally for small cache sizes (256KB) this
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time is negligible. Figure shows the caching approach where all update
operations are redirected to thread local caches. The reduction operation
is defined as C[Cidx] = C[Cidx] + 1 with C being the cached reduction
data and index Cidx computed as Cidx = hash(map(I[Iidx])). The hash
function defines a mapping of the direct-mapped cache. In our case we used
the modulo operation. In the example, the cache is of size one and can hold
one entry at a time. Consequently caching multiple addresses results in cache
evictions. Cache evictions are marked with a dashed line whereas memory
accesses during a flush are marked with a dotted line.

5.3.1 Runtime Support

The OmpSs runtime implements task management, the OmpSs execution and
memory model and the CachedPrivate reduction API.

On application startup each participating thread initializes the runtime envi-
ronment and creates a worker thread pool. One process becomes the master,
all other processes become slaves. The master process begins main code exe-
cution and generates work descriptors for each encountered task declaration
and work-sharing construct. Each time a work descriptor is created, the main
thread adds a representing node to an internally managed dependency graph
(a data-flow DAG) accordingly. If all dependency requirements of a task are
satisfied, it is removed from the dependency graph and placed into the ready
task queue. Worker threads poll the ready queue for ready tasks, process
tasks asynchronously and update the dependency graph once a task execution
is complete. Main code execution is suspended once a synchronization point
is reached.

To execute tasks on remote cluster nodes, each remote process has a rep-
resentative in the master node thread pool. While the representatives are
not physical threads, they participate in polling activities. The polling of
the ready queue is directed through the scheduling object, which applies a
scheduling policy and returns a particular ready task based on a scheduling
decision. OmpSs supports Round-Robin, priority based and locality-aware
task scheduling.
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void Histo (TYPE % keys, TYPE % histo, int K, int H) {

[
for (int i=0; i<NT; i+4) {
/+xtask generation mechanicsx*/
addTarget (histo, localityMap , &Operator, &Initializer );
/xtask bodyx/
INT_TYPE key ;
for (int j = start; j < start + block; j++)
key = keys[j];
INT_TYPE val;
read(&histo [key],&val);
Operator (val ,1);
write (val ,&histo [key]);
flush ();
}
start 4= block;
}

Figure 5.9: Parallel histogram, as shown in Figure after compiler transla-
tion to CachedPrivate

5.3.2 CachedPrivate implementation

We implemented CachedPrivate with a thread-local, direct-mapped, write-
back software cache and the following API calls: addTarget, read, write and

flush.

These API calls are added to the user code automatically by the front-end
source-to-source compiler. Figure [5.9| shows user task code after compiler
translation. AddTarget is called first and marks a task as a reduction task.
Further it configures reduction target, locality map, reduction operator and
initializer. The reduction target represents the original address pointer on the
master node and is used, together with the locality map for address translation.
The locality map is generated by the runtime and defines ownership of
reduction data in case its blocks reside on remote nodes. Finally the reduction
operator and initializer are function pointers to the respective function as
provided by the user using the UDR language construct. Once a reduction
task is scheduled for execution on a worker thread, this information is applied
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Figure 5.10: Reading from reduction cache

to the thread-local cache object. The cache now can initialize to the neutral
element by applying the initializer function and is ready to start.

Read and write calls replace read and write accesses to the reduction variable
in the original code. Figure [5.10] illustrates the control flow of the read API
call. Every cached read operation results in a cache hit or cache miss. In
case of a cache hit, the cached value is immediately returned and task code
execution continues. In case of a cache miss the runtime verifies the state of
the cache entry. If the state is marked as dirty, the cache entry is evicted. In
case the entry is marked invalid, the runtime applies the initializer function,
updates the cache entry with the neutral element and returns the new value.

Cache evictions are either committed to local memory (in case the address
tag belongs to a block owned by the current node) or stored in an eviction
buffer (EB). This buffer can hold up to a configurable number of evicted
cache entries. Once it fills up it is sent to the owning process. The eviction
buffer effectively implements eviction granularity, comparably to cache lines
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on CPU caches. Write returns a cached value. Since each cache is thread
local, it can be safely assumed that a cache entry remains unchanged and
therefore valid after a previous read. For this reason it is not required to
verify cache entry state on a cache write operation.

The flush API call is invoked by the runtime when the execution of user task
code has finished and cached data needs to be flushed. In that case all dirty
marked cache lines are evicted as described above.

On remote nodes, incoming cache evictions are queued and wait for being
processed. To speed up processing we introduced reduction threads. Reduction
threads are similar to worker threads except that they are not included in
task execution but are dedicated to processing reductions.

5.3.3 Defining reduction topology

In order to support heterogeneous environments with different properties (such
as processing speed, network bandwith or latency), CachedPrivate supports
different reduction topologies. A reduction topology consists of links and nodes
that define a reduction path. Currently 1:N and M:N reduction topologies are
supported. A particular reduction topology is defined by the ownership of the
output reduction array and is independent from input data. In case of 1:N,
the entire array resides on the master node and cache evictions are always sent
to the master process. In case of M:N, the array was distributed beforehand
(which often the case for parallel application) and its blocks reside on M nodes.
In this case evicted cache lines are sent to the respective block owner. In
an N:N configuration, data and communication are evenly distributed over a
cluster which generally seems to be the topology of choice.

Figure shows how the programmer can define ownership and the resulting
reduction topology by a parallel initialization of histo. The resulting depen-
dencies, defined by the output(histo[start;block]) output dependency of the
initialization tasks and the input(histo/h]) input dependency of the reduction
tasks are shown as a task dependency graph in Figure [5.12]
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(]

for(int i = 0; i < NT; i++){
#pragma omp target device (smp) copy-deps
#pragma omp task output(histo[start;block]) \
firstprivate (start , block)

for (int j = start; j < start + block; j++)
histo[j] = 0;

© 00O Ut W~

10 start4+=block;
11}
12#pragma omp taskwait noflush

Figure 5.11: Initialization tasks defining CachedPrivate reduction topology

Figure 5.12: Task dependency graph with initialization and reduction tasks

5.4 Evaluation

5.4.1 Methodology

We evaluate CachedPrivate with the parallel histogram application, different
input data characteristics and runtime configurations. We chose the histogram
application for the following reasons.

e [ts scalability relies mainly on memory access efficiency.

e Its input data directly relates to the memory access patterns. This allows
us to configure different input data sets with different characteristics
and to measure their impact on the presented approach.
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e It represents a worst-case application scenario with very frequent irreg-
ular updates.

To analyze the impact of different input data characteristics, we apply the
benchmark on different input data sets. We quantify an input data set by
the resulting memory access pattern. Particularly we are interested in:

e Sparsity, defined as 1 — (R/So) with R being the number of updated
histogram entries (reduction output) and So being the total number of
histogram entries (size of output).

e Connectivity, describing the ratio of S% to R with Si being size of the
input array (size of input).

e Node locality, representing the relation between local memory updates
and memory updates on remote nodes.

Naturally sparsity and connectivity have a significant impact on caching
efficiency and often require more advanced caching algorithms. In this work
we do not apply advanced caching techniques even though we are aware of
their significance. Instead, it turned out that a simple, direct-mapped cache
is sufficient to investigate the runtime’s ability to overlap cache line evictions
with local computation, runtime overhead and the resulting scalability of this
approach. By doing so we believe that this evaluation allows to estimate a
worst-case scalability behavior of CachedPrivate for many other applications.

Further we investigate different runtime configurations by setting the following
properties.

e 1:N and N:N reduction topologies
e Number of worker threads

e Number of reductions threads

5.4.2 Environment

All benchmark runs were performed on 32 cluster nodes running Red Hat
4.4.4. Cluster nodes are interconnected by an Infiniband network and 14
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switches. Every node has two Intel Xeon E5649 6-Core CPUs running at
2.53 GHz with 24 GB of RAM. Applications were compiled with the OmpSs
Mercurium C++ compiler v1.3.5.8 and GCC v4.4.4 back-end compiler with
-03. The runtime is based on OmpSs Nanos+-+ v0.7a. We used the Berkley
GASNet distribution v1.18.2 for single-sided MPT interprocess communication
configured with OpenlIB (ibv) driver support, pthreads support and segment-
fast configuration.

5.5 Results

The following results are based on input data with low sparsity as well as
connectivity. The runtime was configured with a cache size of 2!6 elements
(256KB). Cache evictions are committed in a single-node (1:N) and multiple-
node (N:N) reduction topology. For scalability benchmarking we use a 2GB
large, dense, integer array as input, initialized with uniformly distributed
random numbers over a large range. The output histogram array is 512MB
in size and holds one entry for each possible value. This input set is loosely
connected, with update operations scattered over the entire histogram array
with 4 updates per memory location on average. Loose connectivity results in
low cache efficiency because each cached address is accessed only 4 times on
average during the entire computation. This makes the probability of reusing
a cached line for most caching algorithms negligible.

5.5.1 Node scalability

Figure [5.13(a)| shows histogram scalability with one worker thread per node
for ReplicateBufs (privatization) and for CachedPrivate with both topologies.
The baseline represents serial code performance. Data distribution time, that
is the copy-in time is not included in the results.

The 1:N reduction topology quickly hits scalability limitations. This is due
to the limited single-node performance that cannot process evicted cache
lines from N-1 processes sufficiently fast. The N:N reduction topology shows
better scalability. In this case cache evictions are uniformly distributed over
all participating nodes and can benefit from a scaling number of nodes. As
expected ReplicateBufs does not scale.
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Figure 5.13: Node- and SMP scalability on
data (2GB input, 512MB output, 256KB cache and eviction buffer sizes) with
CachedPrivate (CP) and ReplicateBufs (RB) with one worker thread per
node and atomics

dense, loosely connected input
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Figure 5.14: Worker thread scalability of CachedPrivate (CP) and Replicate-
Bufs (RB)

5.5.2 SMP scalability

In order to validate that the achieved cluster performance scales beyond the
performance boundaries of a SMP system, we compare CachedPrivate with
ReplicateBufs and atomic updates on a single cluster node. Figure
shows that single-thread performance of CachedPrivate is dominated by
the introduced overhead. By adding more CPU cores to the computation,
performance results become comparable to those obtained with ReplicateBufs.
Atomic operations suffer from lock contention and achieve a speed-up of 4x.

5.5.3 Reduction thread scalability

Figure shows how CachedPrivate and ReplicateBufs adapt to a scaling
number of worker threads. While ReplicateBufs quickly degrades in perfor-
mance due to heavy network utilization and the reduction of intermediate
results, CachedPrivate reaches a speed-up of 43x on a fully utilized cluster
(32 nodes with 8 threads per node).
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5.5.4 Impact of other parameters

We conducted further benchmarks with higher degrees of sparsity and connec-
tivity. As expected, the application performance did not change noticeably.
This is due to the currently employed direct-mapped cache that does not
perform well for random accesses over large address ranges that do not fit
into cache.

Further we tested input data sets with different node localities. Results confirm
that the performance with different node localities is comparable to results
obtained in the 1:N and N:N reduction topology evaluation. Particularly 1:N
represents a worst-case scenario with very low node locality on N-1 nodes
and N:N representing an average-case scenario with each node owning one
N part of the output array. Also we observed that the presented caching
approach adapts well to changing memory access patterns between iterations.
This is given by the very small ratio of cache size to output vector size that
allows the cache to adapt to any access pattern rapidly.

5.6 Conclusion

In this chapter we presented programmable and scalable support for irregular
reductions. We demonstrate its programmability in the OmpSs parallel
programming model for both explicit task and work-sharing costructs. By
using a pragma annotation, the programmer can easily express a reduction
and take advantage of available parallel hardware. Runtime scalability is
achieved through software caches that allow overlapping communication and
computation and maximize temporal and spatial data reuse. The proposed
approach requires a minimal API and is applicable on other programming
models as well.

Experimental evaluation shows that with a small coding effort, a highly
irregular histogram computation can scale up to 32 nodes on a cluster. Best
results are achieved when reduction output data is distributed among cluster
nodes in an N:N reduction topology.

Despite the fact that the organization of our software cache is simple, re-
sults are promising. We plan to continue research and development of
CachedPrivate and further focus on caching efficiency (using different orga-



86

nizations and replacement policies), reduction efficiency (by supporting other
reduction topologies such as reduction trees) as well as hardware support.



CHAPTER

Supporting Irregular Array-type
Reductions on Shared Memory
Systems with PIBOR

While software caching can reduce communication traffic for distributed irreg-
ular array-type reductions on cluster level, techniques are needed to achieve
scalability on node level as well. In this chapter we present privatization with
in-lined, block-ordered reductions (PIBOR), a new approach that trades pro-
cessor cycles to increase locality and bandwidth efficiency for such algorithms.

A reference implementation in OmpSs shows promising results on current
multi-core systems.

87
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6.1 Introduction

Irregular array-type reductions are cache inefficient due to poor data locality.
Furthermore, to avoid data races where multiple threads perform an update
of a single memory location at the same time, accesses either need to be
synchronized (via memory barriers or thread synchronization such as atomics),
ordered or redirected.

Access redirection to a thread-private copy of the reduction target eliminates
the need for access synchronization. Unfortunately, while it works well for
scalar types, it becomes expensive for arrays and useless for large data sets.
Figure shows the performance impact of array privatization and atomics on
scalability in the RandomAccess [7] benchmark running with 16 threads and
different problem sizes. For reference, the figure also shows an implementation
with data races caused by unprotected concurrent accesses (Race). Source
codes for atomics and privatization are shown in Figure

= Atomics Privatization Race

14
12

Speed-up over serial
o N b OO

1 2 4 128 256 512 1024 2048 4096 8192
Array size (MB)

Figure 6.1: Speed-up of the RandomAccess benchmark on the Intel Xeon
E5 processor with 16 threads implemented with different parallelization
techniques.

Consequently a new approach is needed that improves cache efficiency, reduces
lock contention, eliminates memory barriers and is applicable on large input
data sets at the same time. It turns out that redirecting accesses to thread-
private, linear buffers that correspond to memory regions of the reduction
array and flushing the buffers when they are full, is a simple yet efficient
technique to meet the above requirements. The contributions of this work
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lint Table[S]; 1...
2int _Table[max_threads][S]; 2 int Table[S];
3init (-Table); 3init (Table);
4 for (j=0; j<num-tasks; j++){ 4 for (j=0; j<num-_tasks; j++){
5 uint64_t seed = ran[j]; 5 uint64_t seed = ran[]j];
6 #pragma omp task \ 6 #tpragma omp task \
7 shared (_Table) 7 shared (Table)
8 8
9 for(i=0;i<block; ++i ){ 9 for(i=0;i<block;++i){
10 uint64_t pos=getpos(&seed); 10 uint64_t pos=getpos(&seed);
11 k= omp_get_thread_num (); 11  #pragma omp atomic
12 _Table[k][pos] "= seed; 12 Table[pos] "= seed;
13}}} 13}}}
ld#pragma omp taskwait l4#pragma omp taskwait
15 reduceTable (-Table, Table); 15 ...
(a) Privatization (b) Atomics

Figure 6.2: Concurrent RandomAccess kernel benchmark showing two com-
mon parallelization schemes.

are the introduction of PIBOR, its evaluation and its proposal as runtime
support to accelerate array reductions on fast processors. This work is also
part of our initiative to propose and evaluate advanced techniques to support
array reduction in the upcoming OpenMP [I] standard.

6.2 Implementation

To support irregular array-type reductions, we developed a new technique
called PIBOR. In this approach memory accesses to the original reduction
array are redirected to a thread-private buffer and the update operation is
replaced by an assignment of the right-hand side of the reduction expression.
Unlike regular privatization, the buffer is filled linearly, is limited to a pre-set
size and additionally stores the memory address along the data of each access.
Once the buffer is full, the owning thread reduces the buffer to global memory
by applying the reduction operation.

Typically writing out data to global memory in parallel requires to set a global
lock over the entire data structure which serializes execution. We prevent
this by dividing the reduction array into disjoint regions and by allocating
multiple buffers on each thread where each buffer corresponds to a memory
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region of the reduction array. In this way accesses to the original reduction
array that would fall within a certain region are stored in the corresponding
buffer on the executing thread. In case a buffer is filled up, the owning thread
tries to acquire a lock that protects only the particular memory region of the
global array. Buffers corresponding to different regions can now be reduced in
parallel and by increasing the number of regions, the effect of lock contention
over a single region can be efficiently mitigated. In order to avoid busy-waits
in case a region is locked, the requesting thread skips to the next region that
has reached a sufficient fill. A schematic overview of an application that runs
N tasks on N threads and performs a reduction over an array divided into M
regions is shown in Figure[6.3

Since memory accesses fall into different regions, each memory access needs to
be inspected in order to determine its corresponding region and buffer. We do
so by applying the hash function pos = f(addr) = (addr — array_start) >>
loga(region_size) on the address of the accessed element. The hash function
takes an address as argument, normalizes it to zero and right-shifts the value
to return the most-significant bits that determine the region number (which
is equivalent to a division of array size by region size).

Arguably, this approach introduces an instruction overhead relative to original
codes that often are as simple as a load, followed by an increment and store
operation. However, it turns out that using processor cycles in order to replace
scatter-updates over an entire array by linear writes into an array of buffers
followed by a scatter over a region (of which size can be optimized to reflect
architectural and system properties), leads to higher execution performance
due to higher locality. On fast processors with slow memory (sometimes
referred to as memory gap), the instructions overhead becomes less significant.
A control flow diagram of entire process is shown in Figure

6.2.1 Language support

To support PIBOR, the front-end compiler is required to replace all oc-
currences of the reduction array and its operator by a reference and as-
signment to a buffer. Figure shows a simple case, where the com-
piler introduces a temporal variable and inserts calls to the runtime to
acquire storage (-mem_request(reduction identifier, operator)) and buffer entry
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Figure 6.3: Schematic view of PIBOR showing access redirection into buffers
(scatter 1) and regions of configurable size (scatter 2) avoiding scatter-updates

over large memory.
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Configure Reduce
store to
data allocate » buffer
buffer
structs to global

Figure 6.4: Execution diagram of PIBOR.

(_pos_request(address, temporal variable, storage)). For performance reasons,
the request for buffer position is implemented as an in-lined header function.

The presented compiler support however does not allow name aliasing and is
restricted to the lexical scope. Name aliases and calls to external functions
would result in memory accesses violations since they expect the original
memory layout. This is not a restriction induced by PIBOR, but common to
all approaches that implement a different memory layout rather than creating
full thread-private data copies. Consequently, we propose this approach either
as an optimization for parallelizing compilers or as a runtime library used by
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l1#pragma omp task reduction \ 1 {

2 (+:array [0;S])2 pibor_-t * P=_mem_request(array, op);
34 3 ...

4 4 T % _t;

5 array[pos_N]4+=(T)expression_.N;5 _pos_request(&array[pos.N], _t, P);
6 6 *_t = expression_N;

7 7

8} 8}

(a) User code (b) Generated code

Figure 6.5: Language support for array-type reductions in OmpSs.

1#pragma omp task reduction (+:array[0;S])
2

//use of alias

int *x alias = array;

alias [pos_.N]| += expression_N;

//call to external function

f(array);

0O Utk W

Figure 6.6: Unsupported use-cases with reductions performed over aliased
variable names and in external functions.

programmers. Figure shows the unsupported use-cases of aliasing and
external function calls.

6.2.2 Optimization to support unbalanced access patterns

Different applications exhibit different memory access patterns within their
reduction kernels. One particular pattern that represents a worst-case scenario
for all approaches shown in Chapter are hot-spots. Hot-spots are access
imbalances where many updates are performed over a small number of memory
locations. In PIBOR this would lead to a high lock contention over the involved
memory regions, practically serializing execution.

In PIBOR sparse problems with execution hot-spots are supported by in-
creasing the number of regions. Since each new region requires an additional
buffer, we implemented on-demand allocation of buffers for threads and re-
gions. In this case, even though many regions are defined, buffers are not
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allocated for unreferenced memory regions outside execution hot-spots. Sim-
ilarly, buffers are not allocated for threads that do not participate in the
reduction. On-demand allocation allows to set a fine-granular region resolu-
tion while maintaining the same memory footprint for unbalanced memory
access patterns.

6.3 Evaluation

We evaluate PIBOR with RandomAccess and a prototype implementation
in OmpSs. RandomAccess is a kernel benchmark that performs an irregular
array-type reduction. Due to its inherently low data locality, it is the standard
benchmark for memory subsystems, making it especially interesting to show-
case performance gains through locality improvements. Further, its simplicity
allows for a convenient simulation of different problem sizes and access patterns
that mimic properties of other applications.

6.3.1 Methodology

For the purpose of evaluation we conducted experiments to explore parameter
settings for PIBOR, its relative performance compared to implementations
with atomics and privatization as well as its behavior for worst-case access
patterns with access hot-spots. In PIBOR, three parameters can be configured:
total size of allocated memory, size of buffer and size of memory region. The
size of a memory region determines the number of regions and consequently
how many buffers per threads will be allocated. The total size of allocated
memory is computed as mem_total = (S * M) x num_threads, where S is the
buffer size and M is the number of regions defined as array_size/region_size.
In our implementation, always two out of three parameters can be set, while
the third is computed automatically. This allows configurations for strategies
such as limiting maximal memory use or to configure region and buffer sizes to
match hardware properties. We conducted experiments for serial and parallel
executions.

6.3.2 System configuration

Our benchmark results were obtained from the IBM POWERS system and the
MareNostrum supercomputer, both located at the Barcelona Supercomputing
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RandomAccess
256MB, IBM POWERS, 1 thread, PIBOR mem_total 64-2048MB
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Figure 6.7: PIBOR parameter exploration on a single thread of the IBM
POWERS system shows different speed-ups over original code.

Center. The POWERS is a quad-socket configuration with each socket
containing 6 cores with 8MB of L3 cache and 8 threads (SMT) each. The
chip is clocked at 2.1GHz and includes a 8MB L3 cache. The system has 1TB
of memory with a bandwidth of 230 GB/s. The MareNostrum system node
contains two 8-core Intel Xeon E5-2670 CPUs running at 2.6 GHz with 20MB
L3 cache and 32GB of main memory with a bandwidth of 51.2 GB/s. The
Intel Xeon Phi (7120P) features 61 cores at 1.23GHz and 30.5MB of L2 cache,
with 4 threads per core and 16GB of memory with a bandwidth of 352 GB/s.
Applications were compiled with the OmpSs Mercurium compiler v1.99 and
GCC v4.8.2 or Intel C Compiler 15.0.2 as native compilers with -O3. The
runtime is based on the Nanos++ RTL v0.9a.

6.3.3 Serial performance

To explore configuration parameters for PIBOR, we conducted experiments
with variation of region sizes and total allocation sizes for single-threaded
executions.

Figure [6.7] shows the speed-up over the original code on the IBM POWERS
system for six different allocation sizes and different region granularities.
It shows that for small region counts (group I in Figure [6.7) execution
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System ‘ Size Speed-up #Regs RegSize(M) BufSize(S) TotalMem

POWERS|256MB 2.1 256 1024KB  4096KB 1024MB
Xeon E5 |256MB 1.1 32 8192KB 32449KB  1024MB
Xeon Phi |256MB 1.26 256 256KB  2048KB 1024MB

Table 6.1: PIBOR configurations that achieve the highest speed-ups for
single-threaded executions on different architectures

performance drops since in this case each buffer corresponds to a large
memory region (32768KB) and its reduction results in scattered updates over
large data (scatter2 in Figure . The memory access pattern in this case
converges to that of the original code. In the opposite case, defining small
regions (32KB, group 2 in Figure results in introducing many regions and
consequently many buffers. Also in order to accommodate many buffers into
a predefined allocation space, each buffer becomes smaller. The additional
handling of small buffers due to frequent buffer reductions as well as locality
effects when accessing buffers located at distant memory location (scatter! in
Figure results in a performance drop.

It turns out that performance gains are highest (group 3 in Figure
when region size and total allocation size are chosen such that the resulting
buffer size is a multiple of the regions size. This configuration achieves
the highest local data reuse when reducing a buffer to memory. Table
shows configurations used to achieve the highest serial speed-ups on all three
architectures for a given problem size.

Figure shows speed-ups and memory allocation (mem-_total) for different
problem sizes on all three processors. On the Xeon E5 PIBOR does not
achieve significant speed-ups. In single thread execution, the E5 has the
highest memory bandwidth of all presented architectures. This reduces the
ratio of processor speed to memory bandwidth which consequently reduces
the performance benefits of PIBOR.
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Figure 6.8: Execution speed-ups with PIBOR for single-threaded execution
on three different system architectures.

6.3.4 Scalability

Parallel execution with PIBOR requires to tune region sizes to generate
enough regions to avoid lock contention as well as to accommodate data of
multiple threads within a shared cache.

Figure shows performance scalability of PIBOR, atomics and privatization
on the IBM POWERS system for single-, dual-, and quad-socket executions
and with thread striding of 8. This configuration binds threads to cores
first, skipping SMT threads (8 per core), which results in performance peaks
for multiples of 6 due to exclusive use of processor cache and bandwidth
by a single thread per core. On all socket configurations, PIBOR achieves
the highest speed-up due to improved data locality. The figure also shows
the declining PIBOR total allocated memory per thread. Interestingly, on
the IBM POWERS quad-socket configuration, atomics outperform all other
implementations for larger thread counts.

Figures and show scalability on the Intel Xeon E5 and Intel Xeon
Phi coprocessor. PIBOR does not perform well on the Xeon Phi coprocessor
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System ‘ Size  Speed-up #threads #Regs RegSize(M) BufSize(S) MemTotal

POWERS|1024MB 15.7 24 1024 1024KB 512KB 12288MB
Xeon E5 |1024MB 8.1 16 128 8129KBs 2KB 4MB
Xeon Phi | 256MB 33.3 56 64 4096KB 146KB  128MB

Table 6.2: PIBOR configurations that achieve the highest speed-ups for
multi-threaded executions on different architectures

RandomAccess
1024MB, IBM POWERS, single-socket, threading stride 8

PIBOR Privatization Race =#— Atomic mem_total/thr
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(a) Single socket

for executions with many threads. In this case processor speed relative to
the aggregate memory bandwidth of all memory controllers is low and the
introduced instruction overhead becomes more dominant than bandwidth
limitations. Further the use of atomics that enforce in-order execution comes
at no cost, since the Xeon Phi does not support out-of-order execution. The
impact of atomics is visible on the POWERS (especially for the single- and
dual-socket executions) and Xeon E5 processors. Table shows PIBOR
configurations that achieved the highest parallel speed-up.

6.3.5 Memory access patterns

We evaluated the impact of memory access hot-spots by configuring the
random number generator of the benchmark to generate indexes within a
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Figure 6.7: Scalability of RandomAccess with PIBOR, atomic and privatiza-
tion on different socket configurations on the IBM POWERS system.
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Figure 6.8: RandomAccess scalability on the Intel Xeon E5 processor.
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Figure 6.10: Access hot-spots are supported by reducing region size which
results in an increased number of regions and less contention on region locks.

small range of 32MB. This version of the benchmark application is more cache
efficient and results in a slight performance increase over the original code.
Figure [6.10] shows scalability degradation due to increased lock contention for
the hot-spot configuration where many threads update data within a small
number of regions. By decreasing region size and increasing the number of
regions from 256 to 4096, this effect can be mitigated.

6.4 Conclusion

The presented approach improves execution performance of irregular array-
type reductions by increasing data locality through redirecting previously
random accesses into a linear buffer. Full buffers are reduced to corresponding
global memory regions which leads to higher memory reuse due to (region)
local memory updates. PIBOR supports both, for- and while-loop reductions
making this approach generally applicable and requires minimal extensions
to parallelizing compilers. Performance results on Intel Xeon E5 and IBM
POWERS show that PIBOR outperforms implementations with atomics and
privatization for single and multi-threaded executions and that a system’s
memory gap can be reduced by using spare cycles on fast processors to
optimize for higher memory locality. Intel’s Xeon Phi features a relatively
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slow processor with fast memory and in-order execution which allows for
efficient use of atomics. Future work is directed towards automatic parameter
tuning based on the underlying hardware architecture.






CHAPTER

Towards Unified Support for
Array-type Reductions

Supporting irregular array-type reductions on modern systems is non-trivial as
their irregular memory access pattern prohibits an efficient use of the memory
subsystem and costly techniques are needed to eliminate data races. Taking
a closer look at algorithms, memory access patterns and support techniques
reveals that a one-size-fits-all solution does not exist and a solution is needed
that gives the programmer the possibility of choice. Further, recent techniques
require knowledge of access patterns. Inspecting such dynamic properties
requires the addition of an inspector-executor to the programming model.

In this chapter we propose the OmpSs Reduction Model, a solution framework
that generalizes the concepts of access redirection and iteration ordering. The
goal is to enable support for a variety of techniques and allow programmers to
switch between them without complex source code modifications. Further, we
show an implementation of an inspector-executor and discuss which language
extensions are needed. Our reference implementations use PIBOR, PIBOR
with Selective Privatization and Commutative Reductions as representative
techniques for both concepts.

103
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7.1 Introduction

The widening gap between processor and memory speeds periodically brings
up the discussion on how to improve scalability of algorithms that hit the
memory wall exceptionally fast such as irregular array-type reductions. At the
core of the problem are high memory access latencies that become dominant
as a result from the caching and bandwidth inefficiencies of these algorithms.
Further, techniques are needed to ensure correctness by avoiding data races
that occur because of concurrent accesses of shared memory.

These properties led to the development of different support techniques that
follow the strategies of either access redirection or iteration ordering. Access
redirection is a strategy where accesses are redirected to a scratch memory
while leaving the iteration space untouched. The scratch memory is either
a thread-private copy of the original data (replication) or any other private
storage that serves the same purpose but implements an alternative memory
layout, AML. Ordering is a strategy that avoids redirection and reorders
iterations to obtain a desired memory access pattern instead, thus creating
an alternative iteration space, AIS.

Interestingly, techniques can be improved if information about the memory
access pattern of the reduction kernel is provided to them. This creates the
demand for programming models that are capable of inspecting dynamic
properties and switching to optimized execution at a certain point in time.
This execution model is called inspector-executor and works for cases where
the executor can be run multiple times such that the benefit hides the cost
of inspection. Adding inspector-executors to parallel programming models
is not trivial since syntactical means are needed to express what variable to
target, when to inspect and how to optimize.

Figure shows a schematic representation of a reduction kernel where a
global loop drives the progress of a simulation and performs an array reduction
in each step. This iterative nature of kernel execution is a prerequisite for
a meaningful use of inspector-executors. Figure [1.2] mentioned in the first
chapter and Figure show examples of such kernels. They originate from
the LULESH [2] and SPECFEM3D [5] applications.
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lint i, res[S];

2 ...

3 while (simulation_runs ()){
4

5 for(i=0; i<N; i++){

6 res [f(1)]++;

T}

5}

Figure 7.1: Structure of a typical scientific application with an array reduction
in a global simulation loop

1...

2int i,j,k,iglob, elem;

3 for (elem=0; elem<actual_size; elem++) {

4 for (k=0;k<NGLLZ;k++) {

5 for (j=0;j<NGLLY;j++) {

6 for (i=0;i<NGLLX;i++) {

7 iglob = ibool[elem|[k][j][i];

8 accel [iglob ] [X] += sum_terms[elem |[k][j][i][X];
9 accel [iglob ][Y] += sum_terms[elem][k][j][i][Y];
10 accel [iglob][Z] += sum_terms[elem |[k][j][i][Z];
11 }

12 }

13 }

14

15}

Figure 7.2: Representative kernel from SPECFEM3D application implement-
ing an irregular array-type reduction over an array that is called iteratively
within a global simulation loop

In this chapter we present the OmpSs Reductions Model (OmpSs-RM). It
aims to enable generic support of reductions implementing AMLs and AIS for
improved scalability of irregular array-type reductions. OmpSs-RM consists
of a common interface, an inspector-executor and language support. The
language specification allows programmers to select a particular technique
without the need of code rewriting. The common runtime interface allows
vendors to implement any privatization technique. The OmpSs inspector-
executor tracks memory accesses and exposes access statistics to techniques
that require them. To show-case this solution, we provide PIBOR, PIBOR
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Figure 7.3: Landscape of algorithms, parallelization strategies and techniques

with Selective Privatization and Commutative Reductions (abbreviated as
ComRed) as reference implementations of reductions with AMLs and AIS.

Results show that PIBOR with selective privatization and commuative reduc-
tions based on statistical data provided by the inspector achieve a substantial
performance increase compared to other techniques.

Figure gives an overview on how algorithms, parallelization strategies
and techniques are related to each other. Further it shows which techniques
require an inspector-executor as well as their support in the OmpSs reduction
model.

7.2 Generalization through Reductions with AMLs

The most common technique to support reductions is data replication. This
technique falls into the category of access redirection where memory accesses
to the original reduction variable are replaced by accesses to thread-private
copies of the original data in each task.
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Processor: P;

AML storage container: r'p;
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r'er.get(...) @ @

Variable: ]

Figure 7.4: Redirecting accesses into thread-private data containers gives
implementors the freedom to implement any arbitrary data placement strategy

Other techniques exist that follow the same idea of access redirection but
implement an optimization strategy to improve data access locality of irregu-
lar array reductions. Representative approaches for this group are caching
(CachedPrivate) and binning (PIBOR) as described in previous chapters.
Software caches are useful in distributed memory scenarios where the cost of
communication between nodes is higher than the processing overhead on the
local node and where the problem is at least partially cache-friendly. Binning
redirects accesses into bins that correspond to memory regions of original
reduction array. Once a bin is filled, it is reduced to the corresponding memory
location. The proximity of data within a bin results in an improved locality
during the reduction phase. These techniques have three characteristics in
common:

e Implementation of an alternative memory layout (AML) to accommo-
date thread-private data structures of a particular approach and to
minimize the memory footprint

e Implementation of a custom initializer and reducer. These methods are
invoked by the runtime.

e Implementation of a get-method that returns a pointer to a private
storage that accommodates at least one reduction array element
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In terms of AMLs, array replication is a case where the initializer and reducer
methods operate on array copies and the get-method is obsolete as the | |
operator can be used instead.

Figure [7.4] shows the generalization of access redirection where accesses to
the original reduction variable are redirected into thread-private storage
containers 7, and rp,. Their allocation and initialization takes place on
demand but before the execution of the reduction task code. In the Figure,
initialization is marked as Init,,; and Init,, and can be performed in
parallel. Once the storage container is ready, execution of the reduction loop
can start. For each memory access, the AML storage container provides a
get-method that returns a pointer to a memory location. Which particular
memory location is returned is implementation-dependent. The replacement
of the original reduction variable by the get-method is a responsibility of
the compiler at compile time. Once the execution of all reduction task is
completed, outstanding data from storage containers is flushed into memory
by applying the reducer functions Red, p; and Red, ps. Which particular
locations are accesses and in which order is implementation-dependent. For
this example, the original access pattern is shown in Figure

7.2.1 AMLs in OmpSs

Interface definitions as used in our reference implementation are as follows:

e void initializer(AML_T * priv, void * global)
e void reducer (AML_T * priv, void * global)

e void * get (void * address, void * global, analytics_info_t * a)

This interface allows runtimes to allocate any private storage of the size of an
AML container (sizeof(AML_T)) and to invoke the initializer and reducer for
each thread-private copy. The initializer method accepts a reference to an
allocated thread-private storage as well as a reference to a global object. The
global object is typically either a pointer to global reduction variable or any
other structure containing additional information needed by the initializer
such as size information. Similarly, the reducer function receives a pointer
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to a an AML as well as pointer to a global data structure containing further
information if required by the reducer. The get-method returns a pointer to
a private storage location to store a single target array element. It accepts
a global object and an analytics object. The analytics object is computed
by the inspector-executor on a phase switch. An example implementation is
shown in the next section.

7.2.2 Handling AMLs by the Compiler

Our sample AML implements binning with selective privation through the
aforementioned interface methods and its source code is located in a header
file. During compilation, this header is inserted into the user application
and accesses to the original reduction variable are replaced by calls to the
get-method. Encapsulating AML techniques into header files is a design that
offers support for any other user or vendor provided AML implementations
without the need to recompile the programming model runtime. Further, due
to the frequent accesses to the get-method, its in-lining into intermediate code
reduces the overhead of stack operations.

Since reducers and initializers often require additional information about the
reduction object such as array size or size of data type, additional parameters
are passed. For this purpose, both functions accept a reduction_info_t object
holding this information. In addition, the get-method takes a parameter of
type analytics_t containing access analytics obtained during the inspection
phase. Figure shows the particular interfaces used to support AMLs in
OmpSs.

Figure [7.6| shows the compilation process with the OmpSs front-end compiler
(mcxx) and code organization as used in our implementation. Each header
file contains implementations of the initializer, reducer and get-method for
the particular AML technique. The generic runtime header (runtime.h)
includes the definitions of red_info_t, analytics_t and the log-method used
during inspection.

7.2.3 Handling AMLs by the Runtime

The runtime support of OmpSs-RM for AMLs builds on top of the existing
reduction support where the runtime is capable of registering a new reduction
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1//AML interface

2 inline void * AMLGET (void*xadr, AML_txaml, analytics_t=*mal);
3void AML_init (AMLt % priv, reduction_info_t % info);

4void AML.red (AMLt * in, reduction_info_t * info);

Figure 7.5: Interface to an AML object that implements binning with selective
privatization

task code intermediate bin
MCcxXX g++
— —_—)

T+ aml_get(...) runtime.h void register_reduction(aml_init, aml_red,...)
Interface void aml_init(...) N . void * get_thread_storage...)

void aml_red(...) red_lnfo_t . RT lib red_info_t * get_red_info(...)

analytics_t interface | analytics * get_analytics(...)
techniquel.h void log(...) void discard_analytics(...)

’WorkDescriptor‘ ’ MemAccessProfiler

AccessLogManage

Figure 7.6: The OmpSs Reductions Model includes a set of header files that
implement different techniques, a header file that implement generic data types
and a runtime components handling reduction scopes and inspector-executor
data.

and allocating, initializing and reducing private storages. In case of using a
technique with an alternative memory layout, the runtime allocates the size
of the AML type which typically is a few bytes in size and contains pointer
variables. The internal allocation of a thread-private memory corresponding
to a technique (such as a software cache) happens on-demand by calling the
initializer during task execution. In case the runtime decides to reduce private
copies, it calls the reducer function of the AML.
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7.3 Towards Generalization of Reductions with AIS

Iteration ordering is a support technique for irregular array-type reductions
that avoids the overheads associated with access redirection and relies on
alternative iteration spaces (AIS). Alternative iteration spaces are created
such that the resulting memory accesses of the loop body fall within disjoint
memory regions (partition). Tasks that execute such an iteration space can be
run in parallel and race condition free. The inspection of accesses to determine
which iterations access which memory is an essential step that requires the
use an inspector-executor.

Techniques implementing alternative iteration spaces can be grouped into two
categories:

e Privatization of Iterations. Task- or thread-private arrays are cre-
ated that hold iteration indexes that correspond to a particular memory
partition. Each participating task processes one or more arrays where
each array hold iterations that belong to one partition. Since parti-
tions represent disjoint memory regions, parallel task execution is race
condition free. This approach is applicable on algorithms with a static
iteration space and where the ratio of size of the iteration space to array
size is small. The distribution of indexes into private index arrays is
based on access statistics obtained during the inspector phase.

e Owner Computes. This case avoids privatization of iterations. In-
stead each participating task iterates over the entire iteration space
but executes only loop bodies of those iterations where the correspond-
ing indexes result in an access of an owning memory location. The
ownership tables are based on access statistics collected during the
inspector phase. This approach works for algorithms where the majority
of indexes result in conflict free updates as the opposite case would
serialize the execution.

We propose a new category, Ordering through Scheduling, that implements
alternative iteration spaces but avoids privatization of iterations nor requires
tasks to process the entire iteration space. Instead, it implements race-free
execution through task scheduling based on data-flows. Techniques within
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this category are suitable for programming models that offer support for
data-flow based task scheduling. This is the case for OmpSs and OpenMP. As
an example, we present a technique called Commutative Reductions, ComRed
in the next section.

We are aware that a generalized support for techniques implementing iteration
ordering would require a transparent support for all three aforementioned
categories. This would include descriptions of APIs and code transformations.
Further, altering the iteration space of an algorithm requires careful inspection
of possible implications on the algorithm itself as cases exist where such
transformations break the code. Since Ordering through Scheduling does not
require to perform any code transformations and is well suited for the range
of applications relevant to us, we focus on this category and defer further
generalization to future work.

7.3.1 Commutative Reductions in OmpSs

ComRed builds on top of data-flow based task execution. This execution
model maximizes concurrency by scheduling tasks according to memory access
semantics thus avoiding manual task synchronization by the programmer. A
reduction, as a sequence of read-modify-write operations, creates an inout
dependency over the reduction variable. Since this type of dependency serial-
izes the execution of participating reduction tasks, runtimes automatically
override this dependency type by declaring reduction variables as concurrent.

ComRed implements a different type of dependency, namely commutative.
Commutative dependency over a variable that permits a commutative order
of execution but does not permit concurrent execution. The motivation to
use this dependency type to support irregular array-type reductions is the
following:

e It turns out that many applications that implement a reduction kernel
exhibit a near-linear memory access pattern with small overlaps of
accessed memory between tasks.

e Identifying such overlapping address regions and declaring them as
commutative would allow schedulers to execute those tasks that have
no overlaps.
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e The identification of overlapping memory regions can be detected during
an inspection phase of an inspector-executor model.

e Serialization due to overlaps can be mitigated by increasing the number
of participating tasks. This ensures that enough tasks are ready to run
and can make use of available resources.

Figure shows how iterations are split into N — 1 fine-granular tasks that
are scheduled for execution in an interleaved manner on processors P, and Ps.
This pattern is the result of commutative handling of overlapping memory
regions of this technique. Such scheduling ensures that only tasks with no
overlaps are running in parallel at a time.

For programming, we define a metric called dependency stride. 1t defines the
minimal offset in task creation order at which any two tasks can be scheduled
for execution concurrently. Figure illustrates different dependency strides.
For the case of a dependency stride of 2, any tasks can be executed in parallel
with even or odd creation identifiers where the offset equals to 2. In case
N tasks access the entire reduction variable r//, the required dependency
stride would surpass the number of available tasks and the entire execution in
serialized. The Figure also shows the number of commutative dependencies
created. Both, the dependency stride as well as the number of dependencies
created have an impact on execution performance. We take a look at these
effects in Chapter

7.4 Implementing the Inspector-Executor

The inclusion of the inspector-executor into a parallel programming model
requires the definition of scope and granularity and immutable task instance
identification. To define a scope for an inspector, we define a region where
the inspection can take place and where the application of the executor later
is valid. We call this region an optimization frame. In case of a reduction, an
optimization frame corresponds to the scope of a reduction computation.

Further, a definition of granularity is required on which inspectors are created
and also on which inspection logging in performed (the resolution). In our case
the inspector-executor is created for each individual task that participates
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Figure 7.7: Ordering through Scheduling is a strategy that implements an
alternative iteration space through dependency-aware task scheduling. Com-
Red is a technique relying on commutative execution of tasks that share
overlapping region(s).
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Figure 7.8: Dependency stride defines an offset in task creation order at which
any two tasks can be scheduled for execution in parallel. In case of a scattered
updated over the entire reduction array, the entire execution is serialized.
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in the reduction computation. The resolution of logging is controlled by a
control parameter.

Finally, since any statistical data created by the inspector for a particular
task needs to be applied on the same task instance in the future during the
execution phase, the runtime is required to track task instances. In case
the optimization frame is identified by a hash value generated by any set
of instance invariant values (such as function pointers), then particular task
instances can be tracked by a simple counter that is incremented on every
instantiation of a participating reduction task. This assumes that neither the
creation order of tasks nor the memory access pattern of the reduction kernel
change between the inspection and execution phases.

7.4.1 Implementation of the inspector

The OmpSs-RM inspector is located in a header file that is inserted into
the intermediate code and implements a logger method (log). This method
receives the address of the currently accessed memory location and is called
from within an AML’s GET-method. Every time the runtime registers a new
reduction, a global inspector manager is created for that particular reduction.
Participating tasks register their inspectors in the inspector manager. At the
end of an optimization frame, the manager passes all logs from all inspectors
to an analytics object for processing and sets a ready flag. This completes
the inspection phase.

7.4.2 Code generation

Figure [7.9 shows a simplified, intermediate code where an instance-invariant
identifier (framelD) is created to identify an optimization frame and that is
subsequently passed to all participating tasks. By doing so, all tasks sharing
one identifier are associated to one optimization frame. Once a task instance
is created, the frame identifier is used to generate a new unique identifier for
that particular task instance (instanceID). In OmpSs and for the context of
reductions, the frame identifier is computed as an zor between the reduction
target address and the value of the reducer function pointer. The instance
frame identifier for each particular task is created again as an zor between
frame identifier and a task creation counter. In case of nesting, new identifiers
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are created for each nest. Optimization frames across nesting levels are not
supported. The intermediate task code in Figure (line 8) shows the triplet
of runtime library calls to acquire a private thread storage (get_thread_storage),
a reduction information object containing additional information about the
reduction (get_red_info) and access analytics (get_analytics). In the kernel
loop itself, occurrences of the reduction target variable are replaced by a call
to the GET-method as well as each access to the original reduction variable
is inspected in cases where the analytics object is not ready yet.

It is important to point out that these code transformations were implemented
manually in our test applications as time constraints for completing this work
did not permit to add direct compiler support. Still, code organization and
transformation steps were designed with feasibility for automation of this
process in mind.

1 while (...){

2 framelD = instance_invariant_identifier;

3 handle_optimization_frame (ID) //compute anltcs
4  task = new reduction_task (framelD , taskcode ,...)
5 task.run ();

6}

7

8 taskcode (...){
9 wvoid % v_priv; red_info_t % i; analytics_t * a;
10  v_priv = get_-thread_storage(v);

11 i = get_red_info (v);

12 a = get_analytics (v, a—>instancelD );

13 for (...) {

14§ o= 1)

15 if (la—>ready)

16 inspect(&v[j],v , a, a—>framelnstancelD);
17 (xaml_get(&v[j], v-priv, i, a))++;

18

19}

Figure 7.9: A simplified, intermediate code shows the support of AMLs and
inspector-executors in OmpSs

7.4.3 Redirection with Selective Privatization

The availability of an inspector-executor in parallel programming models
allows support for selective privatization. It represents an optimization
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technique where redirection of accesses into thread-private containers can
be avoided if the accessed memory address is within the range of an owned
memory region. By inspecting accesses during the inspection phase, an
inspector can generate knowledge on which tasks access which memory regions.
A task that accesses a particular memory region with the highest frequency
becomes the owner of that region. Later, during the execution phase, this task
can avoid redirection and access the owning memory region directly. In case
multiple tasks have an equal number of accesses to a region, a heuristic can
be used to determine the ownership. All accesses into non-owning memory
are redirected into a thread-private storage container (AML). In order to
avoid data races between ongoing direct accesses and the reduction of private
storages during computation, an intermediate copy is used to keep data apart.
We call this intermediate reduction array copy as Recombination Storage.

Selective privatization is generally applicable on approaches that implement
access redirection. A schematic representation of this optimization technique
is shown in Figure In this example, the inspection granularity equals to
the number of elements which allows to define ownership for individual array
elements. Since index four results in an access to a memory region owned by
another task, is redirected into a thread-private container.

In our work we implement selective privatization using access redirection with

PIBOR.

7.5 Language Support for AMLs and AIS

To program with OmpSs-RM, we require three additional pieces of information
from the developer. Firstly, the developer is required to express the intention
to use an AML. This step is necessary in order to preserve consistency as
with AMLs, the scratch memory is not necessarily a replica of the original
data anymore. For this purpose, we propose the extension of the reduction
clause by the additional parameter M ODFE, where mode is an identifier of a
vendor provided privatization technique. We define a reduction clause using
the mode identifier as

reduction (id : target : mode)
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Figure 7.10: Redirection with Selective Privatization combines benefits of an
inspector-executor approach with access redirection into thread-private data
containers. This allows to bypass access redirection for accesses into owned
memory thus effectively reducing the overhead of access redirections.

where reduction corresponds to the OpenMP reduction clause , id is an
operator and target a variable identifier.

Further, in order to enable techniques that require an inspector-executor, we
propose the addition of the invariant(target) clause. The invariant clause
defined over a target specifies that the access pattern of the target as well
as the calling order within the scope of a reduction are invariant. This step
is important to guarantee that the inspector-executor is always applied to
the matching function and that optimization results obtained during the
inspection phase are still valid for subsequent function calls or task instances.
It is defined as

reduction (id : target : mode) invariant(target)

Lastly we propose the addition of the loopstep pragma. This pragma declares
the encountering region as an optimization frame and is used to differentiate
between inspection and execution phases. It is defined as

#pragma omp loopstep
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1/xregionx*/

2 while (simulation_runs ()){

3#pragma omp parallel for reduction (+:v:SP) invariant (v)
4 for(int i = START; i < END; i++) {

5 j = f(i);

6 v[jlt++;

7 }/xend of reductionx/

8 #pragma omp loopstep

9}/xend of optimization frame for vx/

Figure 7.11: OmpSs implementation of a reduction kernel showing the pro-
posed language extensions

On encountering a loopstep pragma, the runtime may transition from exe-
cuting an instrumented code (inspector) to an optimized code version. The
pragma applies to all targets that were declared in the invariant clause in the
same region. Figure shows an example of an array reduction using the
proposed language extensions where MODE is set to selective privatization

(SP).
7.5.1 Restriction

A variable that is declared as a reduction target with a MODE set to an AML
may not be passed to an external function or library due to mismatching
memory layouts.

7.6 Conclusion

In this Chapter we presented the OmpSs Reduction Model. It extends the
OmpSs programing model by language and runtime features to support a
programmable and scalable execution of array-type reductions. This support
allows the use of techniques that are based on the underlying optimization
strategy of access redirection and iteration ordering.

Access redirection can be generalized by allowing the use of custom thread-
private data containers and associated initializer-, reducer- and data placement
functions. Techniques implementing such a data container and access functions
are called techniques with alternative memory layouts (AMLs). Examples
for this category are CachedPrivate, PIBOR and PIBOR with Selective
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Privatization. Since a data placement function can improve data locality,
these techniques are typically suited for irregular array-type reductions.

Further, to support iteration ordering we presented a technique called Com-
mutative Reductions and a new category named Ordering through Scheduling.
Commutative Reductions use the underlying mechanics of dependency tracking
of task data to implement a race condition-free correct scheduling. Declaring
overlapping memory regions as commutative allows the scheduler to run only
those tasks in parallel that result in conflict-free task execution. This tech-
nique works well for near-regular reductions where access overlaps between
tasks are small.

Both, Commutative Reductions and Selective Privatization require the use of
an inspector-executor. In this Chapter we presented an implementation of
this execution model in OmpSs and discussed the concepts of optimization
frame as well as the required language and runtime features.

In the next Chapter we present case studies and discuss performance results
of the aforementioned techniques.



CHAPTER

Case Studies

Our work on support for array-type reductions was motivated by LULESH [2]
and SPECFEM3D [5]. Both applications represent numerical algorithms
with data motion and programming style typical for scientific computing.
Their underlying discretization with irregular meshes as well the use of nodal
and element-wise centering (staggered mesh) to store different values suggest
an irregular memory access pattern. However, specific problem sets and
the use of techniques such as mesh coloring reduce the degree of irregularity
resulting in near-linear access patterns. This property makes both applications
interesting to evaluate techniques such as PIBOR with Selective Privatization
and Commutative Reductions. They promise the highest payoff for such cases.

In this Chapter we provide more information on both applications and discuss
results obtained with different techniques and hardware architectures. Results
show programmability and scalability of our solution.

121
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8.1 Introduction

In the previous chapters we stated that techniques with access redirection
into thread-private containers improve data locality for irregular reductions
if a suitable data placement function is provided. PIBOR is an example
hereof. Its placement function redirects accesses into thread-private bins
corresponding to memory regions of the reduction array. This technique
achieves the highest speed-ups for single and multi-threaded executions of the
RandomAccess micro application.

We also claimed that techniques with iteration ordering can be applied in cases
where the cost of ordering remains small. As an example we presented a tech-
nique called Commutative Reductions, ComRed. This technique implements
an alternative iteration space through dependency-aware task scheduling.
This technique avoids disadvantages associated with Privatization of Itera-
tions or Owner Computers as it implements a more efficient way of ordering,
namely through task scheduling. However, it requires an inspector to identify
memory overlaps. The cost of inspection, potential for amortization as well
as performance scalability of this approach remains unclear so far.

Therefore, in this Chapter, we iterate over all support techniques including
ComRed and apply them on LULESH and SPECFEM3D. We consider the
following topics to be of interest:

e Memory access patterns of the reduction kernels

Impact of atomics and replication

Impact of techniques with redirection into an AML and selective priva-
tization (PIBOR)

Impact of technique with iteration ordering (Commutative Reductions)

Cost of inspection

Scalability across threads and nodes

In the following sections we provide more information on the applications
and systems used and present performance results. We also discuss the
aforementioned points of interest.



123

Element/--
Element-to-node

mapping

Threaa 3

(a)

Figure 8.1: Element-centric computation over a staggered mesh results in
scatter-updates to nodal variables once the computation of values finishes.
This represents the irregular array-type reduction in the LULESH hydro-
dynamics code which simulates a wave blast propagation in a compressible
medium (b)

8.1.1 Applications

LULESH: The Livermore Unstructured Lagrange Explicit Shock Hydrody-
namics, is a simplified, Lagrangian, inviscid compressible hydrodynamics code
adopted from the ALE3D application suite. It simulates the distribution of a
blast wave through a homogeneous medium in 3D.

The simulation domain is discretized in space with a staggered mesh and
hexahedral mesh elements. Staggered mashes hold variables at node- and
element-level which are typically stored in different arrays. Element-wise pro-
cessing includes three steps in each iteration: a gather of data that corresponds
to nodes of an element, applying different numerical methods that update
element- and node-variables and making changes persistent by updating node
variables. This behavior can be observed in the reduction kernels Integrat-
eStressForElems(), shown in Figure and CalcFBHourglassForceForElems
which is similar in structure.

In this example, the method CollectDomainNodesToElemNodes() aggregates
nodal values into temporal variables f{z,y,z}_local. These aggregated values
are used later in computation but with element-wise centering. Once the
computation completes, nodal values are applied back to the respective nodes.
This represents the typical update operations in a reduction kernel as found
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in many related applications. The relationship between elements and nodes
is stored in the nodelist array. A spatial distribution of variables in a mesh
element is shown in Figure LULESH is ongoing development and is
currently available in version 2 [31].

SPECFEM3D: SPECFEM3D simulates a seismic wave propagation at the
local or regional scale based on the spectral-element method (SEM). It im-

plements a reduction kernel which is similar in composition and in runtime
behavior as seen in LULESH. The reduction kernel is shown in Figure

SmartJumper: SmartJumper[6] is a parametrized and templated C++ im-
plementation of the popular RandomAccess micro benchmark[7]. SmartJumper
consists of a kernel method that implements an array-type reduction, a com-
mand line parser and a correctness verification code. Performance behavior is
influences by array-size, number of updates, the order of accesses (sequence),
access distribution and degree of accessed memory overlaps between processors
(locality). The sequence and frequency at which array elements are accessed
(distribution) are configured through template parameters. SmartJumper
provides abstract classes for both, generators and distributions. We have
implemented a linear and random number generator. Distributions include a
linear and Gauss-distribution.

8.1.2 System Configuration

Benchmark results were obtained on the MareNostrum3 supercomputer
equipped with a 2-way Intel Xeon E5-2670 CPU with eight cores each and a
4-way IBM POWERS system equipped with 6 cores each and eight native
treads per core (SMT). On the POWERS system, a thread striding offset of
eight was used in order to distribute threads across cores first.

Applications were compiled with the OmpSs Mercurium compiler v1.99 and
GCC v5.1.0 or Intel C Compiler 15.0.2 as native compilers with -O3. The
runtime is based on the Nanos++ RTL v0.9a.

8.2 Performance Evaluation of LULESH

In Figure [8.4] we show scalability results of both reduction kernels of the
LULESH application obtained on a Xeon E5 SMP node. We have set the
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1//chunking and offsetting code
2 for (i=0;i<num_tasks; i++){

0O~ O Utk Ww

33}

//chunks assignement code here
#pragma omp task in(domain.m x, domain.m_.y, \

domain.m_z, domain.m_nodelist ,\
xsigxx , *sigyy , xsigzz)\
concurrent (xdeterm)\
firstprivate (kk, upper_-limit ) \
label (IntegrateStressForElems) \
reduction (+: fx :COMRED) \
reduction (+: fy :COMRED) \
reduction (+: fz :COMRED) \

invariant (fx, fy, fz)

for ( Index_t k=kk ; k<upper_limit ; 4++k ) {

const Index_t* const elemToNode = domain.nodelist (k);
Real_t fx_local [8] ;
Real_t fy_local [8] ;
Real_t fz_local [8] ;

CollectDomainNodesToElemNodes (fx_local ,fy_local ,\

fz_local ,...);
Computationl (fx_local ,fy_local , fz_local ,...);
ComputationN (fx_local , fy_local , fz_local ,...);

for( Index_-t lnode=0 ; lnode<8 ; 4++lnode ) {
Index_t gnode = elemToNode[lnode|;
fx [gnode] += fx_local [Inode];
fy [gnode] += fy_local [lnode];
fz [gnode] 4= fz_local [Inode];

34#pragma omp loopstep

Figure 8.2: IntegrateStressForElems() with explicit tasking and the proposed
language extensions. This method shows how node values are gathered,
processed and distributed back, thus creating the scattered update access
pattern typical for array-type reductions.
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void SmartJumper<T>::kernel(int taskNum, SIZE.T iters, SIZE_T block,)\
ARRAY.T x a)

{

SIZE_T a_size = settings—>numArrayElements;

#pragma omp task label(kernel) reduction(":[a_size]a:PIB)
Generator<I> gen(taskNum * iters , taskNum, settings);
for(auto i = 0; i < iters; ++i){

SIZE_T pos = (xdistro)(&gen);
a[pos] "= pos;

}

}

Figure 8.3: SmartJumper is a modern implementation of the popular Rando-
mAccess benchmark

problem size to 300 elements per dimension which results in acceptably short
execution times and a reduction array of 200MB. The time information used
corresponds to the execution of one iteration of the corresponding reduction
kernel.

The graph shows speedups on a logarithmic scale relative to serial execution
time over different thread counts and with chart lines corresponding to
different techniques. Looking at the 16-thread execution, the highest speedups
are achieved with ComRed where the performance results are equal to the
hypothetical implementation named (RACE). The inspector in this case
was set to a resolution of 128 regions which corresponds to region sizes of
approximately 1.5MB.

RACE is an implementation that contains data races but avoids overheads that
occur when using support techniques. This version represents a hypothetical
upper scalability bound.

Atomics and an implementation called ORIG, followed by PIBOR and PIBOR
with Selective Privatization achieve lower speedups. The worst scalability is
obtained when using privatization with array replication.

ORIG represents the original, concurrent implementation of LULESH. This
version follows the idea of privatization with array replication. However,
instead of creating copies for each thread, the reduction array is expanded by
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Figure 8.4: Performance scalability of both LULESH reduction kernels ob-
tained on a 2-way Intel Xeon E5 processor with 16 cores shows that Com-
mutative Reductions achieves a four times higher speedup compared to other
techniques and is en par with the unprotected version marked as RACE.
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Figure 8.5: Performance scalability of both LULESH reduction kernels reaches
a plateau with 96 threads and 4 SMT threads per core. Also in this case,
Commutative Reductions produces the highest speedups compared to other

techniques.
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a factor of eight. This number corresponds to the number of nodes of each
indexed element (shown in Figure Since processing each index results
in updates of eight disjoint array positions, this approach is race condition
free but comes at the cost of allocating, initializing and reducing eight array
copies.

It is important to point out that scalability results in the presented charts
exclude the first iteration of the algorithm. A performance chart including
the inspection phase would depend on the number of consecutive iterations
that amortize the overhead of the inspection phase. We take a more detailed
look in the following sections.

Figure shows performance scalability of the LULESH reduction kernels
with different techniques obtained from the IBM POWERS system. To balance
loads across cores we used a thread placement offset of eight. This offset
distributes threads to cores first and avoids initial hot-spots of high thread
counts per core. Consequently, with each 24 threads that are being added to
the benchmark run, the number of SMT threads per core increases by one.
The relation between SMT threads and cores is shown in the horizontal axes of
the chart. Since executions with smaller SMT counts per core reduce resource
sharing between threads, they achieve the highest performance results (peaks).

8.2.1 Discussion

The presented scalability results obtained from the Intel Xeon E5 and IBM
POWERS system bring up a set of interesting questions that we would like
to discuss in this section.

Why is ComRed performing best? The LULESH reduction kernels
manifest a near-regular access pattern and small overlaps between owned
memory regions. This is due to the linear relationship between elements
and surrounding nodes and geometric properties of the mesh. Commutative
Reductions achieves the highest speedups in this case as overheads of data
replication or atomic updates can be avoided. Instead, this technique relies
on task scheduling only.

Figure[8.6]shows the execution trace on the Xeon E5 system implemented with
Commutative Reductions. The repetitive pattern reflects the iterative nature
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Figure 8.6: Execution trace of LULESH with Commutative Reductions shows
the first four iterations of the global global simulation loop. The augmented
view B (b) of the marked region shows three taskified methods including the
two reduction kernels (1 and 2) with the associated dependencies (lines).

of such simulation codes due to the global simulation loop. Taking a closer
look at one iteration (area B) shows the sequence of the two reduction kernels
IntegrateStressForElems, (1) and CalcFBHourglassForceforElems, (2). It can
be seen that the inspection phases (area A) for both reduction kernels take
significantly more time than the execution phases. However, once inspection
is completed, execution phases perform en par with the hypothetical version
described as RACE. In this trace, horizontal bars depict threads and colors
mark tasks that correspond to different methods. Yellow lines represent data
dependencies between tasks excluding commutative dependencies.

Figure [8.7] shows the execution trace of ComRed in comparison to executions
with atomics and the original implementation using array expansion. The
number identifiers I and 2 correspond to the two reduction kernels in the
application. The traces show that the cost of inspection is amortized after
the fourth iteration and gives insight into different overheads associated with
each technique.
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Figure 8.7: Execution traces show differences in execution speeds and time
gains after the fourth iteration of the LULESH simulation loop with both
reduction kernels 7 and 2 implemented with different techniques.
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Figure 8.8: Histograms over IPC and total instructions show that the use of
atomics in the LULESH reduction kernel causes a drop in IPC by a factor
of 2.8 and increases the total instructions count by 18 %. This results in
a performance degradation by a factor of approximately 4 compared to the
implementation using ComRed.

For ComRed, the overhead associated with the inspection phase dominates the
first iterations. The cost of inspection is composed of cost of technique and cost
of creating address histograms and address ranges for each reduction variable
and task. This statistical information is used to compute ownerships and
to define memory overlaps which are used later for commutative scheduling.
Since during inspection a commutative execution of tasks is not applicable
yet, a technique is needed to avoid data races during that phase. In our case
we use PIBOR (redirection into bins).

The use of atomics introduces additional instructions and decreases the rate
at which instructions are executed per cycle (IPC). This decrease in IPC is
related to the processor specific implementation of atomicity. Figure
shows a histogram of instructions and instructions per cycle of the Integrat-
eStressForElems reduction kernel on the Intel system. It shows that the use
of atomics increases the total number of instructions by 18 % while the IPC
rate degrades by a factor of 2.8.
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Figure 8.9: LULESH with replication does not scale due to large overheads
associated with the initialization (A4), reduction (B) and deallocation (C') of
thread-private array copies.

The version with array expansion yields a lower IPC during task execution
compared to ComRed and requires an additional reduction phase of data
stored in the expanded array. Each kernel is then followed by a free system
call. This sequence is shown in in regions A and B corresponding to
the two reduction kernels, where regular task execution (A;) is followed by a
concurrent reduction phase (A3) and single threaded activity that corresponds
to freeing memory (As).

Array privatization with data replication that relies on data replicas is not
scalable due to private memory handling. The IPC during task execution is
below the version of array expansion (0.9 vs. 1.1) but it is the concurrent
initialization and serial reduction of thread-private copies once the kernel
finishes which affects performance most. Figure shows the sequence of
allocation, initialization and serial reduction marked as A, B and C. Each
phase shows three event flags (green markers) that mark the event generation
for each of the three reduction targets fr, fy and fz as shown in the code in
Figure 8.2
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When does ComRed underperform? Commutative Reductions is a
technique that underperforms in the following cases:

e Memory access pattern is unsuitable. Irregular memory accesses with
tasks accessing the entire or large portions of the reduction array cause
a serialization of participating tasks. This case is trivial and does not
require further investigation.

e Not enough tasks are created. Any two tasks with overlapping memory
accesses are serialized. In this case it is mandatory to inspect the
dependency stride length and to create a multiple of tasks to obtain
concurrency.

e Creation order does not allow to schedule the immediate successor for
execution. This is a hypothetical limitation as the performance impact
depends on the actual runtime implementation.

Creating a sufficiently large number of tasks is a requirement to achieve
concurrency and scalability with ComRed in LULESH. Taking a look at both
reduction kernels shows that the dependency stride length is 2. As defined
in the previous Chapter, the dependency stride length is the minimal offset
in task creation order that guarantees concurrent execution. Consequently
LULESH requires at least twice as many tasks as available threads in order
to generate enough interdependent work to achieve a 100% thread utilization.
Figure [8.10] shows an execution trace obtained from the Intel Xeon system
showing only reduction tasks and an overlay that allows programmers
to see the computed dependency stride length.

Figure [8.11] shows two executions of LULESH with different number of tasks.
It can be seen that in case of creating 16 tasks only, half of the execution
resources remain idle (8.11(b))) as not enough tasks are available for concurrent
execution.

The task dependency stride length has another important implication. It
turns out that performance is significantly impacted if the task creation
order is such that the immediate successor cannot be scheduled for execution
immediately. This is the case in common code implementations when the
task generating loop of the reduction kernel continuously creates tasks with
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Figure 8.10: Execution traces of LULESH showing only reduction tasks and
the dependency stride length of 2 (b) computed during the inspection phase.
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Figure 8.11: A dependency stride length of 2 requires at least twice as many
tasks as available threads in order to generate enough independent work to
keep all threads busy.
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consecutive iteration chunks resulting in memory overlaps always between the
current and the successor task.

Since the successor task has a commutative access defined over the overlapping
region, it cannot be scheduled for execution and is queued into the task ready
queue. Once a task is placed into the ready queue all idle threads begin to
poll for work. Each polling activity requires to check if any other task with
the matching commutative memory region is currently in execution. Is that
the case, polling continues. In the opposite case, the task is removed from
the queue and lock variable is set to indicate that a task with the particular
commutative access is currently in execution. The activity pattern results
in high lock contention that also leads to decreased performance of the task
generating thread.

A solution can be achieved in two ways. One possible solution is an improve-
ment of the implementation of commutative in the runtime by substituting
the polling semantic by a notification semantic. The other solution is to
change the task creation order implemented by the task generating loop of the
reduction kernel such that consecutive tasks are free of overlaps. Following
the visualization scheme in Figure this corresponds to the order where
tasks are created group by group and where each group corresponds to one
color. This solution can be compiler supported.

Figure shows the extent of performance degradation when task creation
order does not take the mutual exclusive execution of consecutive tasks into
account (shown in chart line COMRED-NoOffset). In our experiments, we
use a task creation offset of 2 (COMRED).

Figure |[8.13| shows two execution traces of LULESH on the POWERS system
running with 96 threads. In Figure the task creation offset of 2 is used
which allows the immediate execution of the successor task (marked by the
same color). The lower view in this Figure shows the relativly small amount
of polling activity by worker threads. Figure shows the execution
trace where no task creation offset is used and where each successor is placed
in the ready queue first. The amount of polling is high.

What causes performance peaks on the POWERS8 system with
Commutative Reductions? Previously we have described that ComRed
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Figure 8.12: ComRed relies on an efficient implementation of commutative
task scheduling or on a suitable task creation order that allows to generate
independent task sufficiently fast. The opposite case leads to performance
degradation for larger thread count which is shown in the graph as COMRED-
NoOffset.

requires a sufficiently large number of ready tasks and that the creation order
has an important contribution to that. A suitable creation order which allows
the immediate execution of the successor task reduces polling and allows
tasks with no commutative dependency to run in parallel. Unfortunately
scenarios occur where the creation and execution order is disturbed due to
imbalances in execution speed. For LULESH and the IBM POWERS system,
such imbalances are introduced by irregular distributions of SMT threads on
the system. Processor cores with more SMT threads lag in execution speed
for this particular application due to resource sharing. As a consequence,
tasks running on slower threads do not finish on time and start blocking other
tasks from execution.

Figure shows execution traces of one reduction kernel of LULESH created
on the IBM POWERS system with 96 and 102 threads. Executions with 96
threads can maintain the creation order which can be seen by the color blocks.
This changes for excutions with 102 threads. In this case the first processor
has one additional SMT thead per core.
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Figure 8.13: Creating tasks in a sequence where the immediate successor
has a commutative dependency on the previous task results in a high lock
contention, slows down task creation and degrades the number of ready tasks.
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The resulting differences in IPC (instructions per cycle) are shown in Fig-
ure [8.15] The upper trace shows histograms of overall IPC, IPC of the
reduction kernel and IPC overlaying the thread view for 96 threads. The
vertical axes represent thread numbers ranging from 1 to 96. Color blocks
at the beginning of the trace mark NUMA nodes. Since we use a thread
distribution offset on this NUMA system of 8 (size of SMT threads per core),
the color changes every 6 threads (number of cores per processor). The lower
execution trace illustrates the unbalanced case with 102 threads. This thread
count adds an additional colored box since 6 threads are added to the first
processor. In this configuration, one processor runs 5 SMT threads per core,
whereas the other 3 processors run 4 SMT threads per core. It can be seen
that the IPC rate drops on the processor running 5 SMT's per core, visualized
as 5 groups of 6 SMT threads each. The resulting performance difference
corresponds the performance drop as seen in the scalability chart in Figure

Why does Selective Privatization not achieve a higher scalability?
Selective Privatization promises to reduce the amount of redirections by giving
exclusive access to memory regions to tasks with the highest access frequency
to that particular memory region. Such a task becomes the owner of that
region. Interestingly it turns out that for LULESH, selective privatization
is not particularly beneficial. While some tasks avoid redirection and thus
achieve higher execution speeds on the executing thread, other tasks redirect
more accesses into thread-private data containers thus slowing down the
overall execution of the kernel. We call the percentage of owned accesses to
total accesses as hit rate.

Since memory regions being used to define ownerships do not correspond to
the exact starting addresses and sizes of the memory overlaps, the number of
tasks that yield high hit rates differ per execution. Further, the requirement
to reduce the recombination buffer at the end of execution reduces overall
execution performance of the reduction kernel.

Interestingly, increasing the number of tasks does not improve hardware
utilization as more tasks result in more region overlaps and consequently in
an higher total percentage of privatized accesses.
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Figure 8.14: Certain thread counts result in nonuniform distribution of SMT
threads over available cores. The resulting execution speed imbalance reduces
the efficiency of task creation offsetting especially towards the end of the
execution of the reduction kernel. This effect is visible in the execution traces
of the IntegrateStressForElems method on the IBM POWERS system when
comparing different thread configurations.
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Figure 8.15: Unevenly distributed SMT threads shown in Figure [8.14] result
in execution speed differences and manifest as lower IPC rates on the affected
processor cores (lower picture). Differences in execution speed affect the
efficiency of the ComRed technique.

Figure shows the hit rates achieved with selective privatization and the
PIBOR technique applied to the IntegrateStressForElems() reduction kernel
in LULESH.

What are the performance benefits on clusters? Commutative reduc-
tions work similarly in cluster environments. In Figure [8.17] we compare MPI
versions of both reduction kernels of LULESH (7 and 2) implemented with
OmpSs and OpenMP. The OpenMP version represents the original source
code using array expansion by 8. The trace shows the additional time spent
in the reduction (marked as region A) and freeing (marked as region B) of the
memory copies. Since performance and scalability behavior are comparable
to executions on shared-memory systems, we do not present further analysis.

8.3 Performance Evaluation of SPECFEM3D

SPECFEMS3D is an example of a near-linear array-type reduction with small
overlaps between accesses produced by the participating tasks. Figure 8.1§]



142

Hit ratio @ lulesh2.0.prv 23

Selective Privatization

96 threads

IBM POWERS

Figure 8.16: Selective Privatization with PIBOR results in imbalanced hard-
ware utilization as some tasks can avoid up to 94% of redirections while others
cannot.
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Figure 8.17: Execution traces of both reduction kernels of LULESH on the
MareNostrum supercomputer in an 8x8 configuration of MPI processes and
threads shows the performance benefit of commutative reductions in OmpSs
that avoids the reduction phase (A) and freeing of memory (B).
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Figure 8.18: Performance scalability of the SPECFEMS3D reduction kernel
shows speedup relative to the serial execution time with different support
techniques including ComRed.

shows performance speedups over different thread counts on the Intel XEON
E5 processor. Comparably to LULESH, SPECFEM3D performs best with
ComRed. Performance results do not include the inspection phase.

8.4 Performance Evaluation of SmartJumper

SmartJumper implements an irregular reduction over an array type. Since
updates are scattered over the entire address range of a potentially large
reduction array, we showcase the use of PIBOR as a support technique.
PIBOR, Privatization with In-lined Block-ordering, falls within the group of
techniques with access redirection and implements redirection into bins. This
technique is discussed in Chapter [0 in more detail.

Figure [8.19) shows performance results as achieved memory bandwidth for the
SmartJumper micro benchmark. The chart shows results over different array
sizes on the IBM POWERS system. We have selected a thread configuration
that reaches the highest memory throughput on the system which is 48 threads.
Figure(8.19(a)|shows the achieved memory bandwidth for reduction array sizes
ranging from 4KB to 16GB. For small data sizes, array replication (PRIV')
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Figure 8.19: Achieved memory bandwidths obtained from different implemen-
tations of the SmartJumper reduction kernel show that array replication is a
viable technique for small data sizes. PIBOR achieves the highest memory
bandwidth for array sizes larger than 4 MB.

achieves a satisfactory performance. In this configuration, two threads share
one L3 cache of 8MB in size. This corresponds to the steep performance
drop when the array size is approaching the 4MB mark and runs out of cache
for larger sizes. Figure shows an augmented view of the previous
chart with array sizes ranging from 4MB to 16 GB. For these sizes, PIBOR
achieves the highest performance due to improved data locality. Further
performance statistics that include cache data misses for these benchmark
runs are pending.

8.5 Conclusion

In this Chapter we presented performance results for LULESH, SPECFEM3D
and SmartJumper. LULESH and SPECFEMS3D are representative cases of
array-type reductions in scientific computing that exhibit a near-linear access
pattern. This access pattern originates from the linear relationship between
simulation domains. However, concurrent execution is not trivial due to
accesses to overlapping memory regions that arise from parallelization and
concurrent execution of the reduction kernels.
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We showed that among techniques that implement access redirection, AML
techniques perform best (PIBOR) for irregular array-type reductions. This is
the case for the SmartJumper micro benchmark, where this technique can
avoid excessive allocation of thread-private array copies for larger array sizes.

The use of the original parallel code in LULESH allowed us to make a relevant
comparison as that code represents an optimized version developed with
knowledge of the mathematical background. This comparison supports our
claim that AML techniques are a viable technique in the category of techniques
with access redirection.

The highest speedups in our evaluation were obtained with Commutative
Reductions (ComRed) for benchmarks with near-linear access patterns. This
applies to executions on the Intel Xeon and the IBM POWERS systems as
well as to executions on the MareNostrum cluster. This technique implements
an alternative iteration space (AIS) through scheduling. ComRed avoids
overheads caused by redirection into private storages, allocation of data copies
as well as the use of atomic updates. However, this technique requires an
inspector. The use of an inspector has a visible performance impact as
shown in execution traces. Still, in LULESH, the cost of inspection can be
amortized in approximately 4 iterations of the global simulation loop on our
test systems. Given that simulation codes typically run much higher loop
counts, we consider that ComRed can substantially improve accumulated
application performance.






CHAPTER

Conclusion

This work advances research on algorithmic reductions. We have improved
their programmability by adding support for task-parallel and array-type
reductions.

Task-parallel reductions occur in while-loops and recursive algorithms. While
for each recursive algorithm an iterative formulation exists, while-loop pro-
grams represent a super class of for-loop computable programs and therefore
cannot be transformed or substituted. This limitation requires an explicit
support for reduction algorithms that fall within this class. Since tasks are
suited for a concurrent formulation of these algorithms, the presented work
focuses on language extension to the task construct in OmpSs and OpenMP.

In the first section of this work we have presented a generic support for
task-parallel reductions in OmpSs and OpenMP and introduced the ideas
of reduction scope, reduction domains and static and on-demand memory
allocation.

With this foundation and the feedback received from the OpenMP language
review board, we have developed a formalized proposal to add support for
task-parallel reductions in OpenMP. This work not only covers the formal
specification and evaluation as presented in this document, but also includes
substantial effort towards the acceptance of our proposal in form of meetings
and draft improvements. This engagement took place in collaboration with
my colleagues from the Barcelona Supercomputing Center and led to a fruitful
outcome as our proposal has been accepted into OpenMP.

147
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Support for array-type reductions in OmpSs and OpenMP requires software
techniques that offer scalability, transparency and extensibility and that are
suitable for inclusion into a parallel programming model. With transparency,
we refer to the intuitive understanding of behavior by the programmer. Ex-
tensibility can be achieved by defining APIs that allow platform vendors to
develop optimized solutions easily.

As a first step towards support of array-type reduction in a task-parallel
programming model, we present a landscape of support techniques and group
them by their underlying strategy. Techniques follow either the strategy of
direct access (atomics), redirection or iteration ordering. We call techniques
that implement redirection into thread-private data containers as techniques
with alternative memory layouts (AMLs) and techniques that are based on
iteration ordering as techniques with alternative iteration space (AIS). A
universal support of AML-based techniques in parallel programming models
can be achieved by defining basic interface methods allocate, get and reduce.

As examples for new techniques that implement this interface, we have
developed CachedPrivate and PIBOR. CachedPrivate implements a software
cache to reduce communication caused by irregular accesses to remote nodes
on distributed memory systems. PIBOR implements Privatization with In-
lined Block-ordering, a technique that improves data locality by redirecting
accesses into thread-local bins. Both techniques implement a get-method that
returns a private memory storage for each update operation of the reduction
loop.

As an example of a technique with an alternative iteration space (AIS),
we present Commutative Reductions (ComRed). This technique uses an
inspector-executor execution model to generate knowledge about memory
access patterns and memory overlaps between participating tasks. This
information is used during the execution phase to schedule tasks with overlaps
commutatively. We show that this execution model requires only a small set
of additional language constructs.

Performance results obtained throughout different chapters of this work
demonstrate that software techniques can improve application performance
by roughly a factor of 2-4. Other optimizations in software may include
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improvements of the runtime implementation such as avoiding polling-based
mechanisms used in the implementation of ComRed.

Due to the iterative nature of execution of many scientific applications,
we believe that the inspector-executor execution model is future relevant
and would allow different optimizations. Its use in the context of reduction
techniques or as a foundation to automate decision making between techniques
in the future are just two use-case. Further use of this execution model may
avoid redundant runtime activities such as dependency computation for certain
iterative algorithms.

We believe that hardware support for reductions is desirable. Exploiting their
mathematical properties allows weaker coherence requirements between caches
and memories which may be used to reduce their latency and bandwidth
requirements.

Automated selection of reduction techniques, improved runtime efficiency
through the inspector-executor execution model as well as exploring the
implications of reductions on hardware architectures are subject to our future
work.
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