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ABSTRACT 

The importance of the load forecasting has been acknowledge since the beginning of the XX 

century. The firsts on spotted its value were public organizations, then it didn’t take long time 

until the estimation procedures were extrapolated to the generation and distribution applications 

in order to maximize the delivering of power.  

Lately, forecasting procedures evolve in quality and complexity, linked to the rise of artificial 

intelligence algorithms; allowing to implement energy management activities relying on the 

low levels of uncertainty obtained from the forecast. Load forecasting plays a corner stone on 

the decision making processes carried out by energy management systems.   

The accuracy of the forecast in an essential condition to obtain improvements on cost reduction 

tasks such as load scheduling, co-generation scheduling, and planning energy purchases. 

Nevertheless, accuracy on load forecasting is a difficult parameter to achieve; mostly because 

consumptions are influenced by many factors such as weather conditions, holidays, economy 

status, and idiosyncratic habits of individual customers. 

Over recent years, the study of the short term load forecasting on the user side has been 

addressed using several types modelling strategies, the most successful ones are centered on 

the use of non-linear models due to their aptitude to shape strong but non-trivial and non-linear 

relation between future consumption and factors that produce it (climatic conditions, goals of 

production, labor at calendar, etc.). 

Most of these approaches have considered strategies that benefit the general model accuracy 

over a specific data set, and leave it behind traits such as the model adaptiveness or the potential 

diversity captured.  There are few studies which addressed the load modelling as a multi-

scenario strategy, and are fewer which has developed an exhaustive measure of the model 

goodness. 

This research work proposes three main contributions on the load forecasting field: the 

enhancement of the forecasting accuracy, the enhancement of the model adaptiveness, and the 

automatization on the execution of the load forecasting strategies implemented. On behalf the 

accuracy contribution, learning algorithms have been implemented on the basis of machine 

learning, computational intelligence, evolvable networks, expert systems, and regression 

approaches.  

The options for increase the forecasting quality, through the minimization of the forecasting 

error and the exploitation of hidden insights and miscellaneous properties of the training data, 

are equally explored in the form of feature based specialized base learners inside of a modelling 

ensemble structure. Preprocessing and the knowledge discovery algorithms are also 

implemented in order to boost the accuracy trough cleaning of variables, and to enhance the 

autonomy of the modelling algorithm via non-supervised intelligent algorithms respectively.  
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The Adaptability feature has been enhanced by the implementation of three components inside 

of an ensemble learning strategy. The first one corresponds to resampling techniques, it ensures 

the replication of the global probability distribution on multiple independent training sub-sets 

and consequently the training of base learners on representatives spaces of occurrences.  

The second one corresponds to multi-resolution and cyclical analysis techniques; through the 

decomposition of endogenous variables on their time-frequency components, major insights are 

acquired and applied on the definition of the ensemble structure layout. The third one 

corresponds to Self-organized modelling algorithms, which provides of fully customized base 

learner’s. 

The Autonomy feature is reached by the combination of automatic procedures in order to 

minimize the interaction of an expert user on the forecasting procedure. Experimental results 

obtained, from the application of the load forecasting strategies proposed, have demonstrated 

the suitability of the techniques and methodologies implemented, especially on the case of the 

novel ensemble learning strategy.  
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Thesis Delimitation 

  

This chapter presents an overview of the research scope of this thesis. It fulfills the principal reader 

doubts related with the problem awareness conducted by this research. The contents follows a 

storyline directed by the problem statement, the statement of research aim and objectives, and the 

hypothesis delineate for this study. 
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1.1 Introduction 

he importance of the load forecasting has been acknowledge since the beginning of the 

XX century. the first on spotted its value were public organizations [1]; they start to 

consider to make estimations of the energy on the consumption side based on historic 

registers [2] and weather conditions [3]. It didn’t take long time until the estimation procedures 

were extrapolated to the generation and distribution applications in order to maximize the 

delivering of power [4]. lately, forecasting procedures evolve in quality and complexity, linked 

to the rise of artificial intelligence algorithms; allowing to implement energy management 

activities relying on the low levels of uncertainty obtained from the forecast. it scenario produce 

a sky-rocket of  business activities around the energy services sector with special focus on 

energy management applications for the demand side [5]. 

On generation side, especially on the electric utility industry, many of them count with in-house 

load forecasting capability followed for incipient energy management systems. Meanwhile on 

the demand side; utilities, residential buildings, commercial buildings, and private householders 

may have to outsource load forecasting services as well as the energy management. The reason 

is the high cost implied on the planning, instrumentation and development of an energy 

management project up to the current state of art. Nevertheless, as the benefits include 

technological advances and cost-reduction operation, it may become economically justifiable 

to outsource the energy management. 

This chapter presents a brief overview of the load forecasting, scope of research exposed on 

this thesis, awareness of the problem, problem statement, research aim and objectives, 

hypothesis, delimitations and motivation of the research assumptions. It also presents a draft of 

research design and methodologies. At the end of this chapter, the outline of the thesis and the 

conclusions are provided. 
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1.2 Thesis framework 

0 years ago, we had assisted to the birth of a cultural awareness about the environment 

and the limited resources that the humanity have. Since then until now, Public and private 

sectors has been sharing efforts in order to construct a policy framework over energy 

strategies. Consequently, new trends of research on the energy field has flourish; as well as, the 

develop of new business of opportunities for the upcoming technologies. 

The deregulation on the power utility industry was one of the most important political decisions 

that trigger the development of the energy sector. Its impact has opened a business competition 

in every aspect of power systems; at power generation, at transmission, at energy consumption; 

and the most important, the professional management of the electric energy with the 

correspondent efficiency enhancement. 

As side effect, the market liberalization and de-regularization has rocket the technological 

developments on the energy field; the most important one is the enhancement on the operation 

of the power system networks. It has evolved to use integrate information based tools in the 

electric power generation, demand or load management; these are implemented in order to 

discovery knowledge based on historic data and support decision making. Between them, load 

forecasting in the most critical tool for the operation of power systems. Those tools make 

possible the distributed and controlled generation (DG), together with the storing and 

demand side management (DSM). 

The forecast of the load profiles is crucial for network planning, energy scheduling, 

infrastructure investment, development, and MANAGEMENT. On terms of utilization side, 

load forecasting can be classified on two categories. Utility based forecasting, applied on to 

the power generation side provide assistance to management planning on strategic decisions 

such as co-ordination on the generation, interchange evaluation, security assessment and other 

planning tasks. On this side, forecast is applied at a high level of load aggregation, which 

produces a smooth profile; being the peak detection and consumption offset the most important 

parameter to forecast.  

Consumer based forecasting is often used as a source of information for energy optimization 

procedures carried out on the transport networks and consumption users. On terms of economic 

value, the forecasting performance affects organizational process such as manage risk of the 

supply, infrastructure finance, reduction of operational cost, among others. Energy service 

provider companies (ESPC’s) usually perform this kind of forecast, most of the time hired as 

outsourced services. 

The advice of the load forecasting on the planning capacity is usually measured in terms of time 

resolution, the load forecasting is frequently classified on three categories; namely short, 

medium and long term forecasting. There is no consensus on the exact definition of the time 

horizon that covers these categories. However, based on the generalized opinion the time 

horizons are defined as following is presented. Short-term load forecasting (STLF) covers 

2 
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from one hour ahead to weekly forecast. These are often needed by intra-day operations on 

energy trading, management or power generation. 

Medium-term load forecast (MTLF) covers from weeks, seasons with a maximum of one 

year ahead. This type of forecast is important for annual scheduling productivity and 

maintenance plans linked to seasonal factors. Long-term load forecast (LTLF) deals with 

horizons over one year ahead, it serves to help on capacity extension plans, long-term financial 

studies, capital investments and so on. Due to his short range, Very short term load forecast 

(VSTLF) is not useful to planning task, but instead make real time optimization tasks. 

The assistance of long-term forecasting on financial decisions is always balanced by external 

factors that transform the socio-economic conditions such as politics, market behavior, and 

future uncertainties. The support on the decision making of the deployment, expansion, and 

enhancement on power system networks are another remarkable use the long-term forecasting. 

However, the value of the support decision is subject to the accuracy itself, for that reason 

accuracy is the most critical feature on load forecasting. A lame forecast mislead customers to 

take non-efficient decisions with the correspondent financial cost. On the case of network 

planners and utilities, accuracy is important for distribution systems investments. On the user 

side, end-users and service providers depend entirely of the accuracy to perform their 

management strategies. 

The accuracy severity on the load forecasting is biased towards the under-prediction energy 

profile. A negative error could severely affect the production levels at the consumption side, 

and trigger the expansion plans on delivery networks at short time. For that reason, short-term 

predictions always are preferred instead of medium-term. 

In pursuit of accurate predictions, several methodologies have been emerged to shape load 

consumption profiles on the user-side and utility-side; being classified in terms of their 

complexity, flexibility and data requirement. The load forecasting on the user side have a 

difficulty factor incorporated due to the consumption peaks unforeseeably located. Otherwise, 

in generator side is possible to estimate a flatter consumption, due to the sum of different users. 

Statistic techniques used in this area, implement multiple regressions, analysis of time series 

and state space [6].   

However, applications based on non-linear models obtain better results in forecasting, due to 

their aptitude to shape strong but non-trivial and non-linear relation between future 

consumption and factors that produce it (climatic conditions, goals of production, labor at 

calendar, etc.); as well as artificial intelligent (AI) based systems are capable of iteratively 

adjust their internal parameters until reduce the model error.  

Applications based on artificial intelligence methods, neural networks [7] using learning with 

and without supervision [8]–[13] are example of it. The use of hybrid techniques has spread 

recently, due to the complexity of the forecast in real cases. This is the case of combination 

between neural-fuzzy inference systems (ANFIS) [14], pre-filter and optimization components 
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[15]–[18]. Intelligent methods are often favored for short and medium time load forecasting 

applications. 

Recent authors have proposed an improvement of the accuracy on the load forecasting based 

on the implementation ensemble models [19]–[22]. They have took the ideas from its success 

on the weather prediction, which combines specialized models from different phenomena’s 

(wind, temperature, humidity, irradiance, wave tides, pressure) to produce an integrated 

forecast [23].  

Ensemble modelling used the combination of weak learners, usually based on supervised 

learning models, each one specialize his learning on specific sectors of the target according to 

their intrinsic particularities or the guided selection made by a human expert. They also can be 

used to construct lateral models, providing supplementary information to the main modelling 

structure [24], [25].  

Some drawback of this method have been gathered by some authors  [21], [26], [27]; the 

elevated training time cause that high specialized models can’t be implemented for very short-

term forecasting. The high computational effort to train the models; together with the big 

amounts of storage necessary to save the models, are other minors drawbacks. 

This new trend represents a challenging framework on load forecasting on planning, design, 

control, and support to decision making on future power systems. 
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1.3 Problem awareness 

oad forecasting plays a corner stone on the decision making processes carried out by 

energy management systems [28].  The accuracy of the forecast in an essential 

condition to obtain improvements on cost reduction task such as loads scheduling, co-

generation scheduling, and planning energy purchases. Nevertheless, accuracy on load 

forecasting is a difficult parameter to achieve; mostly because consumptions are influenced by 

many factors such as weather conditions, holidays, economy status, and idiosyncratic habits of 

individual customers [7]. 

In the deregulated power system market, a minimal increase of few units in the prediction 

accuracy percentage would bring benefits of millions of dollars [29], which makes load 

forecasting become more important than ever before. Otherwise, inaccurate load forecasts may 

increase operating costs for the Energy Service Companies. Authors on [30] reported that a one 

percent error in the cumulative forecasting of the residential electricity demand  has resulted on 

an increase of operating costs by worth of £10 million over the British power system.  

On the industrial consumption-side the consequences of a poor accuracy can be listed as, wrong 

and expensive expansion plans, redundant reserve of electric power or failure in providing 

sufficient electric power for the manufacturing processes [31].  

As we can see, for an energy planner, the accuracy feature is a problem that comprises not only 

an underestimation or overestimation of the load; on this scenario, forecasting techniques with 

high degree of accuracy need to be developed. Artificial intelligent algorithms presents some 

superiority on the modelling of non-linear relationships, but possibilities to improve associated 

drawbacks cannot be ruled out.  

Among the most remarkable disadvantages of the AI are the dependence on initial parameters, 

the limitations of the forecasting due to topologies and the impossibility to extract all the 

information without human support. Therefore, there is a need for development of optimal 

model structures for load forecasting in order to improve the forecast error.  

Based on the previous statements, the main research question of this thesis can be formulated 

as: 

- How an ensemble based load forecasting model be rationally trained using supervised 

algorithms and variables product of cyclical and multiresolution analysis; and possibly 

obtain an optimal network structure for short-term load forecasting? 
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1.4 Problem statement  

s general opinion, authors [2], [3], [7], [19], [29] define the load forecasting as an easy 

task when authors search describe the load profile by means of basic patterns; but, in 

terms of accuracy, forecast becomes a complex exercise due to the idiosyncratic habits 

of individual customers, the operation regimes of the loads, and the intrinsic uncertainty of 

environmental variables used to be inputs for models. 

In view of electric load profiles are non-linear probabilistic functions with and high stochastic 

component associated, traditional forecasting methods are simply not suitable for the 

implementation of high accuracy models due to the lack of nonlinear mapping ability. Although 

artificial intelligent algorithms had proven be superior candidates for load forecasting compared 

to traditional techniques, the research and design of optimal network structures has not yet fully 

researched.  

On the other hand, an enhancement on the accuracy and performance of load forecasting 

systems require optimal network structures and the complete exploitation of the information 

hidden on the learning data.  

Problem statement: To develop an optimized ensemble-based models for medium and short-

term Load Forecasting; to apply these models to a real life case of study to evaluate the 

performance of the proposed approach providing as result prediction with horizons of one day, 

one week, and one moth ahead. 
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1.5 Research aim and objectives  

he scope of the research is develop novel ensemble structures for STLF & MTLF, 

perform network assessments on the basis of the forecast quality, and network 

performance using different algorithms approaches. 

The models are trained using as input drivers a collection of preprocessed exogenous variables 

extracted from time and environmental information; all of them together with endogenous 

variables extracted from multiresolution, cyclical and entropy analysis.  

On the other hand, base learners have been implemented on the basis of machine learning 

algorithms such as on neural networks, evolvable networks, expert systems, support vector 

machines, and trees topologies. The options for increase the forecasting quality, through the 

minimization of the forecasting error and the exploitation of hidden insights and miscellaneous 

properties of the training data, are equally explored in the form of clusters of sub-specialized 

base learners inside of the ensemble structure.  

The algorithms and methodologies early mentioned have been selected in pursuit of some 

modelling features such as Accuracy, Adaptability, and Autonomy. Preprocessing and the 

knowledge discover algorithms are implemented in order to boost the accuracy trough cleaning 

of variables, and to enhance the autonomy of the modelling algorithm via non-supervised 

intelligent algorithms respectively.  

The Adaptability feature has been reached using a base of three components. Base learners 

trained using resampling techniques [32], which ensures the replication of the global probability 

distribution on multiple independent training sub-sets and consequently the training of base 

learners on representatives spaces of occurrences; building general models that produce 

accurate predictions on new cases restrained by the global probability distribution.  

Multiresolution and cyclical analysis: Through the decomposition of endogenous variables 

on their time-frequency components, major insights are acquired and applied on the definition 

of the ensemble structure layout. Self-organized modelling algorithms such as Cartesian 

genetic programing based algorithms, used as provider of customized weak learner’s networks, 

are the last component on to the model adaptation over the training data. 

The Autonomy feature is reached by the use of automatic procedures and experimental 

criteria’s in order to minimize the interaction of an expert user on the forecasting procedure. 

Aim: To develop novel ensemble models architectures for short & medium term load    

forecasting (STLF & MTLF), reinforcing and enhancing features such as accuracy, autonomy, 

and adaptability of the modelling algorithm through a solid methodology; to evaluate the 

performance of these models on the user-side in order to predict the load profiles one day, and 

one week in advance. 

In order to accomplish this aim, the following objectives are intended to achieve: 

T 
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1.5.1 Technical & Methodological objectives 

 To review the state of art on load forecasting in order to discover variables that plays an 

important role on prediction of the electricity consumption at short, medium, and long 

term;  along with the methods to discover, measure and rank those variables from the 

raw data.  

 To make a thorough study of the state of the art of load forecasting to find out which 

modelling algorithms group has the greater number of benefits. 

 To gather historical databases that includes the load consumption for a set of consumers 

with theirs exogenous variables (weather information), grouped in accordance of their 

user-side sector (state consumption, industrial consumer, commercial/residential 

buildings, house holding). 

 To develop a strategy for detect and eliminate/replace the corrupted data, due to the 

possible existence of bad data in the load profiles as well as in the weather data can‘t 

unfortunately be discarded.  

 To verify the modelling features former defined: accuracy, adaptability, and autonomy 

1.5.2 Scientific objectives  

 To develop novels load-forecasting structures based on the mixture of experts trough 

ensemble architectures and evaluate their performance using standard error measures, 

normality tests and other supplementary performance measure functions.  

 Performs an exhaustive measure of the uncertainty associated with the forecasting error 

in terms of modelling approach and forecasting horizons selected. 

 To apply resampling techniques in order to create independent sub-sets of training data; 

maximizing the replication of the global probability distribution into small sub-spaces. 

This provides a wide data specialization due to the training of the base learners on 

representative’s spaces of occurrences, and builds an ensemble model that produce 

accurate predictions with a low generalization error restrained by the global probability 

distribution. 

 To define and measure the suitability of novel ensemble structure layouts, designed 

based on the insight of the multiresolution and cyclical analysis of the endogenous 

variables. 

 To integrate non-supervised knowledge discovery algorithms in order to produces an 

effective segmentation of the data, helping to small-groups of base learners to obtain a 

regional specialization based on the clustering the load profile. 

 To record the approaches presented on this thesis on a readable and easygoing way, in 

order to allow to neophyte users the replication of the models. 
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1.6 Hypothesis 

uring the presentation of this thesis, author will test the followings hypothesis ranging 

from general to specific.   

 

 Ensemble modelling architectures can be implemented for STLF & MTLF with the 

added benefit of an improvement on the accuracy, adaptability, and autonomy of the 

forecasting system by means of artificial intelligence algorithms; tested over load 

profiles extracted from different consumption scenarios. 

 Accuracy of STLF & MTLF can be improved by the use of base learners based on 

artificial intelligence algorithms, and structurally oriented in base of multiresolution and 

cyclical analysis. 

 The Integration of non-supervised knowledge discovery algorithms produces a 

segmentation of the data, which helps on the increase of accuracy. 

 The integration of statistical analysis, preprocessing techniques, and knowledge 

discovery algorithms allows extracting information to support the autonomy of the 

forecasting system. In parallel, it also helps to mitigate the uncertainty components 

carried by the drivers and source of inaccurate forecasting’s.  

 The adaptability of the load forecasting algorithm can be achieved by means of a 

forecasting methodology based on three components; usage of base learners trained 

using resampling techniques; usage of multiresolution and cyclical analysis over 

endogenous variables in order to construct a structural adapted model; implementation 

of self-organized modelling algorithms as provider of customized weak learner’s 

networks.  

 An automatic and non-supervised load forecasting algorithm, able to create in an 

exhaustive way accurate models tested over different consumption scenarios, can be a 

push on the state of the art for Energy Management Systems.  
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1.7 Research scope 

his research work presents the novel implementation of load forecasting algorithms 

on the user side. The forecasting horizons cover on this research includes short-term 

and medium term load forecasting. Long-term horizon are not covered on this 

document due to the lack of technological importance for comitial applications rather than long 

term planning purposes, but this does not mean that methods described can’t be equally useful 

for this horizon. On the other hand, very short-term load forecasting present a challenge for the 

training time of the algorithms only solved using large computational resources.  

The forecasts are generated by Ensemble models (EM) using a mixture of novel structures, 

algorithms and platforms, i.e. ensemble model of cascade feed forward networks using seasonal 

components developed in MATLAB environment; or an ensemble model of neural network 

Cartesian genetic programming using cyclical and multi-resolution analysis developed in 

C++/MatLab environment.  

Once time the models architectures are designed, they are trained with the historical data 

obtained from user such as buildings, industries and regional aggregation of consumers. The 

comparisons between forecast and real data are done merely as case study to validate the 

approach. The Figure 1 below attempts to clarify the focus of this research. 

 

Figure 1. Types of load forecasting and focus of the research. 
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1.8 Project motivation 

oad forecasting of energy profiles contains a very volatile, uncertainly located, and 

hardly predictable component. Most of the times, it is related with the idiosyncrasy of 

the human behavior or the environmental conditions, and always it suffer an increment 

with the expansion of the forecasting horizon.  

Nevertheless, not only the characteristics of the target to analyze impact on the accuracy of load 

forecasting systems; the model limitation to simulate the load profile and extrapolate their 

behavior time ahead; the preprocessing of the variables; and knowledge discovery methods are 

another circumstances that can increase or reduce the performance of the forecasting system. 

Solve the accuracy problem is the major subject of this research because load forecasting is the 

corner stone on energy industry. It assists to utilities on the planning network expansions, to 

calculate the optimal point of the reserve capacity, on the system security and reliability 

planning, on the energy purchasing, etc. On the user side, accuracy can affect also on the cost 

reduction task such as loads scheduling, co-generation scheduling, energy purchases, and 

investing criterion purposes. 

Furthermore, this work presents an approximation to the user side load forecasting problem due 

to its high business profitability, on the current state of the energy management systems 

markets, together with the plenty scope for accuracy improvements to be applied on it.  

Also, continuous supervision compared to load forecasting helps to detect malfunctions of 

equipment, or missed set points, thus improving the energy efficiency of the system. Figure 2 

attempts to clear the case of study of this research, the first dimension deals with the forecasting 

horizon, and second one involves the user side as principal subject of the forecast. 

 

Figure 2. Load forecasting outline and some applications.  
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1.9 Thesis outline 

This thesis document have been developed in order to introduce gradually the reader on the 

problematic of the energy management, highlighting the importance of the load forecasting 

among all the services running on an energy management system. Then, the elements and 

procedures carried out on the load forecasting process are analyzed based on real data sets.  

This leads to the introduction of the customization process that must be carried out by human 

experts during the installation of an energy management system. Later, the modelling 

techniques necessary to obtain forecasting models are introduced, leaving space to the 

description of the novelties introduced by this thesis on the field of the load forecasting 

modelling. 

The previous paragraphs corresponds to a general description of the thesis contents, on the other 

hand we will proceed to be more specific about the contents per chapter on the following 

paragraphs. Chapter 2 presents the state of the art of the load forecasting on power systems. It 

start with a general description of the energy management systems, making a special emphasis 

on the forecasting system and the load modelling process. 

It continues with a detailed description about the elements that affect the short time load forecast 

for a given electric consumption, and more important the state of the art of the load forecasting 

techniques. Based on this stat of the art the Chapter 3 is presented, it comprises all the 

contributions implemented in order to fulfill the thesis objectives.  

The chapter starts with the description of a load modelling algorithm based on expert systems 

and multi-resolution analysis, continues with the description of a load forecasting algorithm 

based on evolutionary modelling, and finalize with an ensemble learning strategy which 

embrace and satisfy the objectives of fast execution, accuracy, adaptability and Semi-automated 

deploy. 

On Chapter 4, the conclusions about the load forecasting algorithms presented for a short time 

forecasting are presented per each objective stated on the thesis objectives, praising the 

goodness of our modelling strategies. Chapter 5 presents the dissemination of the thesis results 

in form of scientific dissemination or participation on technology transfer projects. 

Finally, Appendix section introduces the helpful information to understand the estimation of 

the errors on load forecasting, a detailed multivariable analysis of the experimental databases 

implemented to test our hypothesis, and a socio economical description of the impact of energy 

management in the European and Spanish markets. 
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This chapter presents the state of the art of the load forecasting techniques, including the concepts 

related with them. The reader will be introduced on the energy management systems, known as the 

pillar of the energy management revolution; the definitions, processes and functions that make 

operative the EMS’s, and the central pillar of all the energy savings actions “the modelling and 

forecasting system engine.” 
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2.1 Introduction 

n the chapter 1, the reasons and objectives to carry out a doctoral investigation around 

the load forecasting systems are presented. Thus far, we introduced the problem 

statement on an economical and scientific context resulting on a delimitation of the 

research plan to critical horizon of predictions. 

In that order of ideas, this chapter introduces the reader on the areas where the load forecasting 

techniques are widely used, as well as his economic impact as element of the EMS’s. 

Furthermore, this section describes the EMS’s, the systems in charge of analyze, control, and 

optimize the energy consumption across different consumption levels.  

Later, is introduced a complete description of the characteristics of the load profile, their origin, 

challenges and the objectives of the forecasting process. These concepts cause a classification 

on the implementation of the forecasting system, which leads to implementations specialized 

on the forecasting horizon, or the field of application. Finally, the characteristics of the ultimate 

forecasting system are depicted as a guide for future commercial implementations at the reader's 

discretion. 

On the fourth section, the preprocessing techniques executed as previous step of the load 

forecasting are introduced. This section starts with a description of the driver’s frequently 

employed on the modelling task; including the importance of the exogenous variables, and the 

endogenous variables and their generation. On the same section, interesting cyclical behaviors 

allocated on the load profile are described.  

The section continues with the description of the preprocessing techniques implements with the 

aim of clean the signals that participate on the modelling process. Furthermore, knowledge 

discover and input selection techniques are introduced as helpers on the antecedent steps of the 

modelling.  

Fifth section presents the state of the art of the load forecasting techniques from simple’s 

regression methods to computational intelligence and machine learning approaches. This 

section also made an especial remark on the problems and limitations related to the previous 

techniques as an introduction to ensemble forecasting methods.  
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2.2 Energy Management Systems 

ne of the most spread and well-known technology, which can help on the energy 

delivering and consumption issues, is the energy management systems (EMS). EMS 

allows collect, analyze, and share critical information to understand, control, and 

optimize the energy consumption across different consumption levels. As example, EMS can 

help to consumers to flat the peak consumption hours avoiding high prices and keeping on a 

database a history of the actions carry out used for future references. 

The research about EMS and its principal characteristics has been published since three decades 

and the latest advances bring to it specialized instrumentation for monitoring and a user-friendly 

configuration adequate by the software resellers. EMS lay on emerging technological advances 

and trends including:  

 Non-intrusive load monitoring techniques applied to gather data from the energy 

consumption at any level of disaggregation or consumer. 

 The availability and diversification of sensors, it allows gather several environmental 

variables that can be integrated in to EMS to increase the effectiveness and exploit the 

maximum information. 

 The big data systems in charge to manipulate enormous quantities of data, storing, 

sorting, analyzing and visualize in a meaningful way to consumers. 

 Cloud computing, which made possible to perform large-scale analytics on 

disaggregated energy data and offer real-time reports to operators without. 

 The increased accuracy of the artificial intelligence algorithms applied to knowledge 

discovery and evidence-based learning. It support to the modelling, supervision and 

optimization of the demand to perform savings with a minimum of human intervention.  

 The evolve of the market landscape on trends such as corporate awareness of the Internet 

of Things (IoT) and demand for data-driven decision support tools facilitate the 

adoption of EMS’s. 

In terms of the application sector, EMS can be classified as Building Energy Management 

Systems (BEMS) or Enterprise Energy Management Systems (EEMS). BEMS are generally 

referred to as Building Automatization Systems (BAS). By setting a goal on the operational 

performance of the energy facility while ensuring the comfort and safety of the occupants, 

BEMS help to reduce the operational cost over the life cycle of the facility. 

BEMS realize functions at upper level, which are advance monitoring which provides data 

about the consumption pattern, extremely useful in intelligent decision making related with 

energy use and the smart control of the loads at the facility [33]–[38]. BEMS can support 

modularity and inter-operability; visualization and reporting; fault detection and diagnostics; 

predictive maintenance and continuous improvement; and their decision-making intelligence 

can integrate algorithms for dynamic control and system optimization. 
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Integration of more sophisticated tools and programming techniques on BEMS’s, allows the 

implementation of controls to maximize optimally the energy conservation. Measures to 

manage mechanical, electrical, and plumbing systems; for example: installing carbon dioxide 

sensors; varying air handler fan speed; checking speed of circulating hot water and condensed 

water pumps; controlling enthalpy economizers; controlling intensity of light and many others.  

The global market for BEMSs continues to grow with the maturity technologies and financially 

motivated high potential customers. Due to the cost of control devices is decreasing, and 

monitoring and control systems generate complementary strategic benefits such as greenhouse 

gas reductions and sustainability improvement, BEMSs are becoming more cost-effective 

options for a broader set of customers. 

According to Navigant Research [39], the global BEMS market is expected to reach $2.4 billion 

in 2015 and grow to $10.8 billion by 2024. The Navigant Research report assesses the global 

market for BEMSs, including the software, services, and hardware components. On the other 

hand, according to the Mordor intelligence [40], The European Building Energy Management 

Systems market revenue is estimated to grow with a compound annual growth rate of 22.48 

percent from 2014 to 2020 to reach at US$9.50 billion in 2020. 

At the European Union, The EMS industry has been largely fueled by the use of smart grid 

services, industrial competition and the political framework of incentives in energy efficiency 

as far was commented previously [41], [42]. The Mordor intelligence report has segmented 

BEMS market by Software (Data Management, Asset Performance Optimization, Application 

Platform, HVAC system and Lighting system), by Technology (Wired and Wireless), by 

Services (Consulting & Training and Support & Maintenance Services) , by Industry 

(Manufacturing, Telecom & IT, Office & Commercial Buildings, Municipal, University, 

School & Hospital (MUSH) systems and Government) and by Countries. 

Enterprises EMSs provides a complete and disaggregated view of the facility’s operations. 

Unlike BEMSs, EEMSs is defined by software and services that support holistic energy 

management within an industrial facility or across an enterprise to achieve efficiency, cost 

savings, sustainability, and climate change targets while maintaining the optimal operational 

parameters for the production processes. 

Based on the penetration level of the EEMS capabilities with the facilities infrastructure, the 

EEMS is able reproduce a strategic energy management at several levels. On the basic level, 

monitoring and report generation provide key performance indicators and help to track the 

energy performance goals by energy project participants.  

On the medium level, the EEMS strategy support modeling and forecasting of the demand 

and generation profiles; benchmarking against historical consumption; cost analysis of energy 

use; and measurement and verification. At high level, the strategy support actions such as 

dynamic control of the loads and system optimization; fault detection and diagnostics; 

productive planning; predictive maintenance and continuous improvement. 
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The EMS strategies bring to organizations a comprehensive understanding of historical energy 

performance, planning and cost-effective selection over energy conservation measures, 

performance tracking of implemented measures, and saving verification. 

On general terms, several authors [43]–[45] agreed to divide the EEMS on: 

 EEMS for industrial and commercial consumers. An EEMS system can give energy 

consumers the ability to take ownership of the procurement and consumption of 

electrical energy. The system can help identify accurately enterprise-wide energy needs 

by aggregating and profiling usage patterns and by helping perform variable analysis 

against utility rate choices. It can help procure energy effectively, verify billing, and 

allocate energy costs to tenants, clients, departments, or processes. 

 EEMS for energy services. EEMS give Energy Service Providers (ESPs) an 

economical and feature-rich way to offer competitive value added reporting, 

performance contracting, and consulting services to large numbers of customers, with 

multiple facilities spread across wide geographical areas. Intelligent devices can be 

located at the customer’s service entrance and within their facilities, with head-end 

software at the offices of the ESPs. 

 EEMS for grid enterprises and utilities. An EEMS enables demand response or load 

curtailment programs for ISO and utility enterprises by providing the high-speed 

communications necessary to efficiently contact customers, control distributed 

generators or loads, and verify operations. It also automatically acquires the energy logs 

from each location to support settlement and billing. 

Today, EEMS adoption is increasing worldwide because of current industrial market dynamics, 

including customer demands for solutions that help them hedge risks and take advantage of 

opportunities. According to Navigant Research [46], global IEMS revenue is expected to grow 

from $13.5 billion in 2015 to $35.6 billion in 2024. 

2.2.1 Energy Management System Features 

On the practice, exist clear differences amongst the types of EMS that exist. Power generating 

companies have very complex needs to monitor and control energy conversion processes for 

the large amount of equipment and devices that exist in these systems. On the other hand, 

delivering and services companies need detailed controls to optimize the power flowing through 

the grid.  

Regarding to end users, the EMS is able to diversify and scale their operations and 

characteristics in order to manage the energy needs and unique demand profiles on the user 

side. Different authors define the next set of features as the most relevant on the conception of 

an EMS [47]–[49]. 
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 Monitoring. Systems must provide energy consumption information at various 

temporal frequencies such as 15 min., hourly, daily, and weekly. The feedback is most 

successful when it is provided frequently and over a long period. 

 Disaggregation. systems must provide a perception about the energy consumed by 

individual appliances. The disaggregated data also highlights the impact of long-term 

changes such as switching to an energy-efficient appliance.. 

 Availability and accessibility. systems must make the information available to the 

consumer at all times through an easy-to-use interface, either in the form of a physical 

device, or through a web or mobile portal. EMS may also use push technology to send 

urgent notifications to consumers. 

 Information integration. EMS must also integrate other types of information such as 

indoor temperature, humidity, acoustics, and light; and consumers historical data, usage 

data related to different appliances, as well as peers consumption data.  

 Affordability. systems should allow easy installation without professional help. Its 

configuration and maintenance should be simple. It should consume minimal energy 

with a low running cost. These factors help reduce the entry barrier of the system and 

facilitate widespread adoption. 

 Control. systems should be able to provide remote, programmable, and automatic 

control of devices. Generally, the consumer is expected to perform necessary control 

operations manually. However, a digital control option or automated actions are more 

effective. 

 Cyber-security and privacy. systems must authenticate all transactions to ensure that 

consumers data and control operations are secure, and not accessible to third parties 

without explicit consent. 

 Intelligence and analytics. A desirable feature in new generation of EMS is the 

expert use of information. Consumers often lack a deep understanding of electrical 

systems and have limited time to make energy-related decisions. Thus, it is desirable to 

have the system perform intelligent actions that balance energy consumption and 

consumer comfort. Those actions requires techniques from machine learning, human–

computer interaction, and “big data” analytics to discern usage patterns and predictive 

actions. The following list collect the new trends of the computational intelligence on 

the energy management, these are equally presented graphically on the Figure 3: 

o Load modelling and forecasting on the user side, this feature is the central 

pillar of the intelligence energy management process. The consumption profiles 

of the loads, single or aggregated, can be modelled using technical specifications 

of loads and its programmed use; this approach is called parametric modelling. 

o Alternatively, the modelling of the load profiles based on historic data increases 

the automatization of the system and reduces the human intervention; this 

approach is often called data-driven modelling.  
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o In addition, a data-driven approach allow to benchmark the model against 

historical consumption models, measure their accuracy and verify the normal 

condition of the load. 

o Fault detection and diagnostics, EMS can measure and verify the state of the 

loads using the registers gathered through its continued monitoring. Analyzing 

possible deviation on the load profiles respect to its historical behavior is 

possible detect failures or associate a probability to them. 

o Dynamic control of the loads and system optimization, in order to find a 

solution that optimizing costs and minimize the risk of loss a load by over/under 

frequency operations; EMS should optimize the load operation based on the 

stochastic probability of several conditions (load schedule, forecasted 

production from renewable generators, prices frames).  

o Productive planning, EMS can schedule an optimized planning according to 

cost-productive boundaries obtained from the optimization. 

o Predictive maintenance, EMS can provide a planning of maintenance 

combining the information of the fault detection, the diagnosis results, and the 

optimized schedule of operation. This guarantee a cost-efficient planning over 

the use of the loads.  

 

Figure 3. Modern IEMS diagram, includes the new trends of the computational intelligence on 

energy management. 

It is clear that EMS research shows to be a trending topic in the scientific community and the 

industrial world. This fact is supported on the economic implication of the energy management 

reported on [39], [41], [42], [46] and the one-thousand publications yearly registered by the 

Institute of Electrical and Electronics Engineers. Although the scientific effort is being focused 

on tackle partial energy management problems, the scientific community has identified the 

modelling and optimization as the most important challenges to allow a next generation 

of EMS [33], [47], [49]–[55]. 
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2.2.2 The Modelling and forecasting engine  

Since 70’s, techniques for energy consumption prediction and load forecasting are being 

applied to user-side including tertiary buildings and SMEs and large companies [33]. Initially, 

these have been used in order to build models of the energy usage through the gathering of 

information about energy consumption and to plot this against some variables (such as degree-

days or production activity). These simple correlation methods where enough efficient to find 

the primary drivers among the consumptions.  

Still today, these basic principles allow to human-supported systems find the most accurate 

technique and model on each scenario, let’s check some of the basic principles: on buildings, 

is normally found direct relationships between the energy consumed by a building and degree-

day measurements. On production processes, where energy use is largely determined by the 

physics of the process, there is normally a direct relationship between the energy consumed and 

production volume. On household applications the energy is largely drained from HVAC and 

white goods, who follows the human patters governed by temperature or holydays. 

These simple relationships were used as base information to provide a model of consumptions 

by simple interpolation of acquired data [43]. As a consequence, on large implementations of 

EMS, The forecasting system allows the benchmarking as a straightforward method for 

comparing the energy consumption of different buildings or equipment against each other as a 

way to determine why some of the buildings are more efficient, which ultimately results in 

action to increase the efficiency in the under-performing building. 

In terms of importance, the novel implementations of the forecasting systems have reach the 

electricity markets. It has penetrated in a large energy intensive enterprise in order to aim the 

purchase/selling operations on the electricity trading operators. In addition, Load Modelling 

Forecasting (LMF) has been supporting different areas of energy management, for example, for 

utilities in generation, transmission, and distribution of electricity; in energy markets for price 

forecasting; and in buildings for HVAC control and optimization.  

In industries, the load modelling forecasting is important in the support of the decision making 

process. For example, to address the problems of economic scheduling of generating capacity, 

scheduling of fuel purchases, security assessment and planning for energy transactions. Energy 

security and stability rely on accurate planning of these items.  

In utilities, Short-term load forecasting (STLF) is the most important type of forecasting. 

Commonly, the STLF methodology is used for the calculation of an energy forecast 24 hours 

ahead with time series sampled between 15 minutes to 1 hour. Another important kind of 

forecasting is the peak power load forecasting of a few days ahead, it is used as an operation 

index for unit commitment and scheduling. 

In general for any energy management system, the load forecasting is greatly important because 

it provides the basis for the control and optimization of the loads. For example, when calculating 

the energy forecast demand for a day ahead, the BEMS can schedule the demand of the heating 
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and ventilation equipment taking advantage of the slow thermal behavior of the buildings. Its 

importance has been such that there was a society founded in 1894 dedicated to HVAC systems 

for buildings called ASHRAE. This society, among its many lines of action, supports research 

on LMF systems for energy consumption in buildings. The potential of energy modelling in 

buildings is also presented in [38], especially in HVAC systems forecasting. It is not mentioned 

that in the industrial sector, the potential could be larger since the possibility of process and 

machine control exists. 

As consequence, energy forecasting has attracted great attention in power system research. 

Alfares et al. [56] divided the existing energy consumption forecasting methods into two 

categories and nine sub-categories. Aggarwal [57] agreed with the upper categorization namely 

hard and soft computing techniques. Hard computer includes: multiple linear regression, 

exponential smoothing, iterative reweighted least-squares, mixed models, and autoregressive 

moving average with exogenous variable. 

Soft computing includes approaches as: Bayesians nets, models based on genetic algorithms, 

fuzzy logic, fuzzy neural networks, neural networks, and expert systems. One of the most 

accurate methods was those based on an artificial neural network (ANN) technique. However, 

in scientific work, concerning to soft computing approaches, there is a lack of appropriate 

methods that allows the determination of the optimal structures on each scenario.  

Indeed, there is a trend to use computational intelligent tools for load modelling forecasting. 

Neural networks, neuro-fuzzy networks and evolutionary algorithms are noteworthy of 

mention. This is mainly due to the capacities of the computational intelligence algorithms to 

model non-lineal behaviors, such as electrical consumption. In utilities, as well as in BEMS, 

the computational intelligence tools are well accepted for load modelling forecasting and for 

hybrid algorithms with computational intelligence and statistical algorithms.  

On the user-side, particularly for industrial users, the LMF of energy consumption has also 

acquire high importance as in other areas. LMF has been used to support decision-making, 

looking to take advantage of available energy smart-meters database by means of data mining 

[58]. These applications can forecast the energy profiles based on some energy drivers, such as 

the daily total production, the work hours, and the running time of equipment in the plant. 

However, basics applications use the endogenous variables created from the overall 

consumption of the plant. 

Hybrid proposals such as modelling combined with pre-processing methods, or evolutionary 

approaches in order to fix the internal parameters of models have been widely documented. 

Principal component analysis (PCA) mixed with support vector machine (SVM) for long-term 

energy consumption forecasting [59], support vector regression (SVR) for electric forecasting 

in combination with seasonal filtering [60],  particle swarm optimization and adaptive-network 

based fuzzy inference system (ANFIS) for the energy consumption forecasting in Spain [61], 

or improved models by feature selection based on correlation analysis [62]. 
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In this way, load forecasting systems applied to industrial users has adopt Computer Intelligence 

(CI) technologies used to enhance the efficiency on their plants. CI tools have great flexibility, 

proof of that is their capacity to be mixed with other CI tools, statistical or signal processing 

functions. This mix can be done in different levels and schemes. For example, we can mix 

different structures as neural networks and fuzzy logic, or evolutionary algorithms to train 

adaptive network structures as NN, NFN, ANFIS and get evolutive trained structures. 

Furthermore, because of the cyclical behavior of demand load profiles, statistical and signal 

processing functions, or operators can be useful to highlight this kind of cyclical behavior and 

improve the results. Examples of these functions are wavelet transformations, Kalman filters, 

correlation functions, etc. Therefore, proposals based on hybrid algorithms by joining CI with 

statistical, signal processing functions or operators have presented the best results in the resent 

years [63]–[65]. 

 Definition of the forecasting engine  

The forecasting engine is in charge of the modelling, and consequent forecast, of the energy 

consumption on the scenario analyzed. It considers a mixture of external and internal 

parameters to the process that can affect the behavior of the load´s operation (i.e., weather data, 

working days, production process, etc.). These parameters are frequently addressed as energy. 

 

Figure 4. Forecasting engine 

As is shown in the previous figure, the forecasting unit is divided into three principal parts: the 

load modeling and forecasting system (LMFS), the auto tuning process and finally the 

forecasting process. 

 Load modeling and forecasting system (LMFS) 

The load modeling and forecasting system is in charge of request the required historical data of 

the energy drivers, and uses them to generate the mathematical models of the energy 

consumption. In order to generate them, the system has to process and analyze the data in order 

to find and describe the relationship between the consumption profile and the energy drivers. 

The energy database could include:  

 The historical power consumption by load or by set of loads. 

Expert user

Reports

Forecast 
parameters

LMFS
Forecasting 

process

Models

Autotuning

Updating

Historic 
drivers



Chapter 2: Load Forecasting on Power systems 

2.2 Energy Management Systems  

 

 

Adaptive Load Consumption Modelling on the User Side                      | 41 

 The list of parameters that may affect the load profile.  

 Forecasting process 

The forecasting process uses a supervised training algorithm which can acquire information and 

learn from the historical database. In order to complete a forecast load profile the following two 

main steps are required. 

ENERGY DRIVERS
(TIME VAR., DELAYED 
VAR., WEATHER VAR., 

WORKING VAR.)

ENERGY
CONSUPTIONS

LEARN STEP

FUTURE ENERGY 
DRIVERS (TIME VAR., 

DELAYED VAR., 
WEATHER VAR., 
WORKING VAR.)

FUTURE ENERGY 
CONSUMPTIONS

 FORECASTING STEP

 

Figure 5. Learn and forecasting steps. 

During the first step, the algorithm, by means of its training method, finds and learns the 

different relationships between the energy drivers and the energy consumptions. The result of 

this process is a nonlinear model of multiple inputs and a single output. 

In the second step, the model is evaluated with inputs independent of those previously used and 

the short-term energy forecast is calculated. 

 

Figure 6. Flowchart of forecasting process. 

To generate short-term energy forecasting, it is necessary to know the future values of the 

particular energy drivers that have been used during the training process. It is possible to obtain 

this information by using databases of that includes exogenous variables (climatic predictions, 

time variables, working schedules), and endogenous variables (delayed energy consumption, 

derivatives of weather signals). All of these parameters are stored in the energy driver database. 
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The time resolution and the forecasting horizon depend on the EMS features and function 

requirements. The EMS functions or upper level applications are the “users” of the forecasts 

and these forecasts are their initial input information which they use to carry out their tasks. 

For example, the result of the forecasting process is used in the diagnosis unit to detect 

malfunctions or anomalies, in the optimization unit for taking decisions or adjustment of 

equipment or on energy prediction calculations for general reports. 

 Auto tuning 

A second concept that is important in the EMS is the online modeling or also called “auto 

tuning” [66], [67]. It gives the LMSF the ability to closely match the operating conditions to 

the model. That means that the model can detect when there are unusual weather conditions, 

energy consumption averages in workshops, or other conditions and take them into account for 

the future predictions. 

The auto tuning operation is a periodic execution of the LMFS using collected data. Its process 

is regularly executed (e.g., every two months), updating the energy driver database and updating 

the mathematical models of the energy consumption. As a minimum, the database has to include 

an appropriated amount of collected data to run the modeling (e.g., two months would be 

enough for a first modeling). 

The results of the auto tuning consist of a fine adjustment of the model to predict the future 

load´s energy consumption with the right accuracy; meanwhile the energy database keeps 

growing. 

The accuracy improvement of the modelling using auto tuning is mostly based on adaptability 

of the model structures to changes inside of energy drivers. For example, ANFIS or ANN as 

data driven models, are excellent candidates as basic model structures, due to theirs 

extraordinary adaptability to uncertainly events. Later in the document, these type of model 

structures are being explained in depth. 

2.3 Classification of the load forecasting   

He forecast horizon is defined as the number of periods between today and the date that 

we want forecast. It could be annual, quarterly, monthly, weekly, hourly, etc. the 

horizon is important for at least two reasons. First, the forecast change with the forecast 

horizon what means that the accuracy is lost and the prediction intervals became width. Second, 

the best forecasting model will often change with the forecasting horizon as well (Update) [68].  

On all the cases the forecast is limited to the quality and the quantity of information available 

when forecast are made. Sometimes, we use the univariate information set, composed by the 

endogenous variables including the present. Alternatively, we use the multivariate information 

set composed by the endogenous and exogenous variables. 

T 
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Those ideas are fundamentals for the evaluation of a forecast, because we are sometimes 

interested in whether the forecast could be improved by using a given set of information more 

efficiently, or add more information to the current set. Furthermore, the selection of the 

forecasting tools is determined by the specifics of the situation will indicate the desirability of 

a specific method or modelling strategy. 

The reader might guess that the complexity of this models is often associate with the complexity 

of the real phenomena, but far from be true, decades of literature have proven just the opposite. 

Simple parsimonious models tend to be the best for out-of-sample forecasting in complex 

matter such as finance and economics.  

This originated the parsimonious principle, which present simple models with characteristics 

such as a better generalization, easily interpretation, and intuitive feel of their operation. 

Enforcing their simplicity with data mining techniques maximizes its fit with the historical data. 

Also, restrictions over the forecasting model known as Shrinkage principle helps to enhance 

the accuracy of the models by means of making them sharp under specific conditions. The 

models contained on this thesis try to follows the last principles and retain the KISS principle, 

keeping sophisticatedly simple all the approach presented. 

All of the previous paragraphs have a close relation with the forecasting horizon. Because, they 

show clear clues to select the set of conditions or parameters necessary for each kind of horizon. 

For example, a very short term forecasting running in the matter of minutes, need to use the last 

samples of the target forecasted to produce the next points. Meanwhile, on a long term forecast 

we prefers extract the cyclical behavior of the exogenous variables. 

2.3.1 Forecasting time ahead windows, which one is more suitable for each 
case?  

The multitude of modelling methods could confuse to readers on their application and 

suitability depending of the given load scenario and forecast horizon required. In this section 

we will try to present some practical knowledge to determine the best modelling strategy. 

 Very short-term load forecasting (VSTLF) 

There is no officially accepted definition for VSTLF, but literature has used the term to indicate 

load forecasting from one minute to half hour lead time. It principal function is provide a 

generation target for economic dispatch and load frequency control.  

The VSTLF is closely related with the rise of the Smart Grid and Microgrid concepts, on the 

management of large operations at real-time a very short term forecast is required. This is 

mostly because the stochastic nature of renewable energy sources such as photovoltaic (PV) 

panels and wind farms, and the multiplicity of load profiles combined trough load-aggregation. 

The techniques employed on this area comes from polynomial regressions, ARMA models, 

modified filters, space-state models, fuzzy logic, autoregressive neural networks [69]. But, 
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experience has demonstrated that VSTLF method's accuracy is extremely variable, and 

basically governed by the statistical characteristics of the system it is applied to. This concludes 

that accuracy and tolerance of VSTLF system must be adapted according to the complexity of 

the model. 

 Short-term load forecasting (STLF) 

Short-term load forecasting (STLF) covers from one hour ahead to weekly forecast and his 

quality impact has a significant importance on the operation efficiency of any electrical utility. 

This forecast support many operational decisions on the generation side such as economic 

scheduling for near-future trading, calculation of the generation capacity and availability of 

resources for energy request, scheduling of fuel purchase, security assessment of the production 

margins, and frequency control. 

On the transmission grid, the STLF had a major impact on the restriction of the climate effects 

over the energy transactions, planning, and vertical integration of the services given by the 

Trading system operator (TSO) and data hub. It is often difficult to predict and can vary 

significantly even over a short period. Climate also varies in time: seasonally, annually and on 

a decadal basis. 

On distribution grid, it serves to diverse functions such as peak demand identification, 

assessment of the load variability, confidence margins of distribution, frequency control for 

large consumers. In all the previous cases, STLF have been cataloged as the key factor on the 

enhancing of the energy management. This is because the weather variability and the 

corresponding energy consumption reach the maximum level of uncertainty in this short-term 

period of time.  

In comparison, VSTLF is only limited to forecast period where the derivative of the profile are 

steady state or nearly zero. On the other hand, long-term forecast are mostly governed by 

activities scheduled on base of previous expansion plans or long-term economics. This fact and 

the cyclical behavior of the weather make easy stablish error boundaries an uncertainty. 

 Medium-term load forecasts (MTLF)    

MTLF covers from weeks to a maximum of one year ahead. This type of forecast is important 

for annual scheduling productivity and maintenance plans linked to seasonal factors. Medium-

term load forecasts enables companies to estimate the load demand for a longer time interval 

which helps them for example in the negotiation of contracts with distribution companies or 

service operators. 

It application also covers the predictive maintenance due to most of the failures show their 

patterns on periods lower than one year. The MTLF mostly aims for the decrease of the general 

error thought an over fitting on the bias, this means that they prefers the follow the curve over 

the time period instead of fine details as peak of consumption. The input values for this 

prediction usually incorporate additional influences like demographic and economic factors.  
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  Long-term load forecast (LTLF)   

The LTLF deals with horizons over one year ahead, is usually found forecast of 20 years ahead. 

It serves to help on capacity extension plans, long-term financial studies, and capital 

investments. For these methods the population growth and gross domestic products have to be 

considered. Due to his long range, the differences in forecast comes visible and have 

consequences for the models and methods applied and for the input data available and selected. 

The information of the section is summarized in the Table 1. Moreover, information about the 

use of the forecasting horizon is added on the APPENDIX section. 

Table 1. Classification of load forecast. 

 Weather variables 
Economic 

variables 
Updating cycle Horizon 

VSTLF Optional Optional <= 1 hour 1 day 

STLF Required Optional 1 day 2 weeks 

MTLF Simulated Required 1 month 3 years 

LTLF Simulated Simulated 1 year 30 years 

 

Table 2. Availability of weather, economics, and land use variables. 

 Accurate Inaccurate Unreliable 

Weather 1 day 2 weeks => 2 weeks 

Economics 1 month 3 year => 3 year 

Land use 1 year 5 year => 5 year 

 

2.3.2 Characteristics of Electric Load Series 

A mixture of information about the load profiles is available for the forecasters by visual 

inspection. Being the easiest information to notice the cyclic patterns, and the difficult ones the 

slow changes on the nature of the consumption and/or the uncertainty attached to the 

consumption often called volatility. This information is usually called components and it study 

came when early economists try to understand the nature of a business cycle. 

They began studying series in search of calendar effects (prior monthly and trading day 

adjustments), trends, cycles, seasonal, and irregular components. These components could be 

added or multiplied together to constitute the time series. The decomposition could be 

represented by the additive and multiplicative unobserved-components decomposition: 

Eq. 1           𝑌̂𝑎(𝑡) = 𝑃̂(𝑡) ∔ 𝑇̂(𝑡) ∔ 𝑆̂(𝑡) ∔ 𝐶̂(𝑡) ∔ 𝐼(𝑡) 
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Where 𝑌̂𝑎(𝑡)  represent the non-linear additively composed time series, 𝑃̂(𝑡)  the prior 

distribution of the target,  𝑇̂(𝑡)  trend, 𝑆̂(𝑡)  seasonality, 𝐶̂(𝑡)  cyclical components, and 𝐼(𝑡) 

irregularities.  

On this section we will introduce the unobserved components of an observed time series.  The 

modelling of these components by separate constitutes a useful approach to obtain an 

uncorrelated residual error. 

 Trend component  

Is the part of the series movement that corresponds to long-term slow evolution. The trend is 

extremely slow and is easy noticed on long runs, an example of this is the influence of the global 

warming over the weather variables. In business, finance, and economics areas, for example, 

the trend evolve slowly due to technology, demographic, preferences and politics. 

The trend could manifest different natures, frequently it describe a linear or quadratic behavior, 

but in non-linear cases, the series must be analyzed on logarithmic scales. This type of trend is 

common on finance fields where it are associated with the name log-linear trend. The trend is 

easily detected on the Sample ACF correlogram as a slow decay. 

Of course the trend is not a decisive factor on short forecasting horizons, but this concept can 

serves to the EMS to filter corrupted data. Sometimes, the key variables are mixed with a trend 

pattern as result of a defective sensor preprocessing. In this cases the identification of the trend 

is crucial to nullify the variable until it not being cleared.  

 Seasonal component  

Seasonality is that part of the series pattern that repeat each year or less. If the repetition is exact 

we are speaking of a deterministic seasonality, other case we are in front of a stochastic 

seasonality. The special characteristic of the seasonality is that comes from a high correlation 

between the phenomena and the calendar. The weather, for example, is a very important 

seasonal series. It comprises a group of variables that change around the year following a solid 

pattern. Any technology highly influenced by the weather will exhibit a seasonal behavior.  

A key technique to modelling seasonality is the use of seasonal experts, which stablish the 

creation of seasonal specialized models by means of a data segmentation, or the use of an input 

variable which indicate the season of interest. On temporal terms the seasonality could be 

expressed on patterns dependent of vacations, holidays, working days, weekends and weather 

seasons.  It possible say that the calendar and the holiday effect are special category among the 

seasonal patterns.   

 Cyclical component 

Cycle is catch-all phrase for various forms of dynamic behavior that link the present to the past 

and hence the future with the present [70]. Cycles in finance could be a pattern that describe a 

cyclicality totally uncorrelated of the temporal dimension, as the commodities prices or the 
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Brent oil barrel cost. Cycles may display a persistence in such way that any sample could be 

easily linked with the past on a finite period. 

Although, the trend could be easily modeled using polynomial regression, and the seasonality 

using a mixture of experts; In terms of complexity, the cyclical dynamic is far complicated to 

capture due to the wide variety of cyclical patterns. In these terms, all the methods classified on 

the state of the art dig their roots on the demonstration of the covariance stationarity of the 

dependent and independent time series. 

It means, probe that after a certain number of steps, the target and the key drivers are not white 

noise showing some degree of autocorrelation & cross correlation. The steps could be 

summarized as: 

 Checking of the series mean: it must remain stable over time. 

 Checking of the variance: it must be constant over time at a confidence interval. 

 Checking of the covariance stationarity: covariance structure must be stable over time. 

 The first two steps could be easily checked using visual inspection, on third step is 

necessary calculate the auto covariance function of the signal. Don’t get lost by the term 

auto covariance, it is only a mean centered version of an autocorrelation. The idea of 

calculate a correlation over the signal deviations outside the mean, allow us to calculate 

the percentage of white noise inserted on the signal (see sample autocorrelation and 

Bartlett bands). 

 On the practice, the characterization of the cyclical components is an iterative process. 

It is preceded with the analysis of the target signal by means of the PACF in order to 

find the seasonal components on the signal. Once time the model has been customized 

to integrate the seasonal dynamics, the residual error over the prediction is analyzed. 

The PACF is applied on them in order to obtain as much influential lags exhibit the 

series.  

 In this iterative process, the stop is produced once time the 95% of the correlation falls 

inside the Bartlett bands. That indicates that the residuals only contains independent and 

uncorrelated noise. 

2.3.3 Consumer classes  

The nature of the operations carried out by the consumers are diverse, this is expressed clearly 

on the characteristics of the load profile such as: volatility, peak demand, load duration curve, 

and load curve. Through the classification of the diverse loads the TSO can perform a close 

track of the users aimed to reduce the non-observability of the grid and enhancing the unit 

commitment. 

 Large aggregation of consumptions  
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This consumption is represented as a large aggregation of loads on a territorial limit such as 

regions, countries, or interconnected communities. Examples of big aggregations profiles can 

be seen on the actors of the transmission grid, and high-end actors of the distribution grid. 

These load profiles are characterized by smooth transitions and cyclic transitions. As a large 

aggregation, more than serve to the dispatch, control or optimization of the energy; it provide a 

valuable statistical measure of the total energy distributed. This information is key for the LTLF 

because it serves to planning actors to perform studies about the pertinence of a grid expansion 

or investment. 

 Commercial and Industrial users   

The industrial users have a production activity defined, this fact implies that consumption is 

directly correlated with the activity carried out, and the schedule of the operation. Furthermore, 

the consumption exhibit cyclical and seasonal patterns, with slightly differences in comparison 

with the last time where the same pattern occur. The volatility the profile user is composed by 

uncorrelated peak of production or faulty machinery, being a good indicator for maintenance 

analysis. 

As their industrial counterparts, commercial users usually have specific energy contracts, which 

specifies cheap prices on the time frames where they are most active. Their use of electricity 

goes from lighting, HVAC, and office machinery. Commercial users comes on a range among 

private building, mall centers, or government institutions. 

Their diversity on activity purposes make hardly to differentiate the kind of profile that they 

exhibit. However, in general the profile express a high volatility on the working period, mostly 

due the high aggregation of loads. The patterns found on this profile are seasonal and cyclic, 

expressing a clear tendency to be influenced by human’s factors. 

 Residential buildings and household users   

Their private nature make them susceptible to have a high volatility, mostly subject to human 

criteria based on uncertainty factor. In most of the cases human decisions can be forecasted 

based on their needs and the influence of the externalities, such as weather variables, calendar, 

or politics. These facts can help to determinate the activation of certain loads.  

Residential consumption can be totally absent of intraday patterns except a variation on the 

consumption during the day and a peak during night. The seasonal patterns are mostly expressed 

on a week level on non-holiday season. According to the level of aggregation on residential 

buildings is possible to stablish a pattern for intraday behaviors, but accurate 1 day predictions 

are still unreliable unless they forecast the cumulated energy consumed per day. 

Residential and commercial clients are traditionally implemented more EMS. This fact is easily 

explained due to the major concentration of the demand found on the industrial users (2 - 10%) 

in contrast with others sectors. other reason is the high level of specialization of the production 

activity on industrial user which lead specialized EMS features. 
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2.3.4 Requisites of a good STLF system    

A forecast is a little bit more than guess about the future, is make a probabilistic statement about 

the future of a certain temporal series. A forecast is also defined as an especial case of the 

prediction, which can derivate on a projection when the forecast is immerse on a conditional 

scenario or hypothesis. Because the aim of a forecast is guide on the decision making, a good 

forecaster is the key to sharp and decisive early action. In this section we will present the 

features of a good quality forecast system.    

  Fast execution 

Computational resources every time increase their efficiency, reducing the cost of new and 

advanced processors and memory. On the other hand computational methods have a long span 

of life on literature, inclusive are rebranded for new applications such the case of deep learning 

and the use of multiple layer neural networks. This leave us with the last influential factor, the 

size of the data necessary to make the prediction.  

At major system complexity, more variables must be added in order to model the internal 

dynamics. This means, more space necessary to keep the data and more dimensions to consider 

by the model. But, the complexity of the modelling could be easily reduced by correct use of 

the forecasting horizon. For example, VSTLF require a fast modelling time usually solved by 

algorithms that exploit the recency effect.  

STLF have a span of hours to produce a forecast, which is more than sufficient time for the 

state of the art forecast methodologies. However, complex models such as hierarquical models 

and probabilistic forecast require multiples iterations to complete a forecast. These used to 

parallelize as much operations they can in order to process threads of the forecast process on 

multicore CPU’s. Finally, MTLF & LTLF systems doesn’t have any hurry to produce forecast, 

and their data sources could be objectively trimmed on the study phase.     

  Accuracy  

The accuracy term comprises the major challenge of any forecast horizon. Accuracy can be 

perceived on VLST as a little deviation, but for the others intervals came in company with a 

probability of error associated. In general terms the accuracy could be classified on two, the 

accuracy achieved on the training-test process (benchmark accuracy), and the obtained one once 

time our prediction is compared with the validation set (forecast accuracy). 

Benchmark accuracy comprises the standard measures of the model previous to the forecast. It 

include the information about the bias and variance of the model on the form of statistical errors, 

and the residual analysis of the prediction over the test set. This accuracy concerns only to the 

set-up modelling process and gives hints about lack on the model.  

Forecast accuracy is found over the validation set and can be extrapolated to forecast on the 

future samples of the target. It comprises the probabilistic nature of the forecast achieved by 

the model (conditional probability distribution), and gives a measure of the margin error of the 
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prediction as a function of time. On STLF the accuracy is described in terms of the error 

distribution associated to the forecast, this gives the error margins founded on the forecast plots. 

  Automatic deploy  

Autonomy is the condition where by the forecast system achieve a complete or partial autonomy 

of the human expertize. The industry dedicated to provide solutions on the forecasting sector 

limit the autonomy concept to the options that can be automatically processed by the system 

once time the forecasting system is running. It means humans experts are artifices of the driver 

preprocessing, driver identification, and modelling method design.  

Once time the EMS is operative, the human decisions are already coded and no interaction are 

required except those ones with the system user. But the modelling automatization could be 

pushed forward, it means that the identification of the key drivers, the selection of best suitable 

modelling algorithm according to the scenario (user, forecasting horizon… etc.), and inclusive 

the selection of the modelling strategy could be carried out by a set-up configuration system. 

This configuration system could contain the preprocessing and the knowledge discover 

algorithms in order to boost the accuracy trough cleaning of variables, previously codding of 

the human expertize. Then, the Autonomy feature is reached by the use of automatic procedures 

and experimental criteria’s in order to minimize the interaction of an expert user on the 

forecasting procedure. 

  Adaptability  

The adaptability refers to the ability of a forecast system to keep a high accuracy in any kind of 

implementation scenario, focusing the modelling method to counter the volatility of the load 

profile. The adaptability on a forecasting system can be achieved by the automatization of the 

error analysis, in his form of distribution or residuals. 

Unless this feature hasn’t been deeply discussed on the state of the art, some authors has already 

implement approaches to bring a solution on wind and electricity power forecasting. On the 

wind power forecast implementation, the authors propose an experimental method to handle 

the temporal limitation of the forecasting algorithm and the uncertainty associated to the 

physical location [71]. The authors seem to tackle the problem with an automated preprocessing 

and iterative modelling. 

On the electricity power forecasting implementation [72], authors present the adaptability 

concept as a the combination of a preprocessing step to find and select the predictors on the 

weather-load model, and a modelling that combines the prediction of a weather-sensitive load 

component and his complement. However, these approaches are not so far away that a common 

multi-agent implementation on subjects governed by the same nature.  

On this thesis the adaptability feature is presented on three components of the forecasting 

methodology. The first one refers to the implementation of an ensemble modelling approach, 

which serves to capture the global probability distribution of the target on multiple base models 
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trained from independent sub-sets. The second one refers to the multiresolution and cyclical 

analysis of the target, it refers about the time-frequency decomposition of the endogenous 

variables. These analysis brings major insights about the ensemble structure layout, which 

increase the accuracy making the model insensible of the forecasting horizon requirement. 

The last component refers to an experimental method for the layout organization at the base 

modelling level, it brings a third degree level trough the creation of structural adapted base-

models. Self-organized modelling algorithms, such as Cartesian genetic programing, are used 

as provider of customized weak learner’s networks.  

These components bring to the approaches implemented on this thesis the ability to be easily 

implemented on users governed by different phenomena’s, as for example the elements on a 

smart grid controlled by a multy-agent system.  
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2.4 Data collection and preprocessing 

ne of the biggest challenges on the pursuit of major accuracy on forecasting is the 

preprocessing. It comprehends the identification, creation and treatment of the 

variables that governs or give hits about the future of the target. This section present 

the influence of the preparations carried out before the modelling task, together with the 

techniques employed to maximize the extraction of key forecasting elements. 

This section start with a description of the most influent variables over the load consumption, 

continues with the techniques carried out in order to customize the final model to particular 

incidences related with human influences over the load profile, and finish with the introduction 

on the preprocessing techniques implemented on this thesis 

2.4.1 Introduction to the forecasting variables  

The variables employed to obtain a forecast are usually called key drivers, and they can be 

originated form the target (Endogenous variables); or from phenomena’s which behavior 

scape of any causality generated by the target (Exogenous variables). These variables must 

express some correlation degree with the target, and their importance will be measured 

according with this measure. On the following paragraphs the most influent variables on load 

forecasting are presented. 

 The load profile and the endogenous variables 

The load profile itself can be a good regressor variable, this fact is exploited on algorithms that 

used lagged samples of their forecast as for example autoregressive models (AR) or the 

autoregressive neural network (NARNN). On this thesis, the benchmark is settled to explore 

the autoregressive models and their counter parts which integrate the lagged samples as input 

variables at the margin of the model topology. 

The lagged versions of the target have been considered as strong key drivers by the literature. 

Due to they collect information about the characteristics of the load influenced by conditions 

such as cycles, season, trends or recency. The number and importance of the lags is usually 

determined by the peaks obtained on the partial autocorrelation of the target. But those strong 

peaks are usually closely followed by smaller peaks (mirror peaks) caused by the recency effect.   

In order to not interfere with the customization procedure aimed to control the recency effect, 

the correlation peaks near to the origin and mirror peaks are discarded. The most widely 

implemented lags associated with the current load consumption are the equivalent to a day or a 

week samples.  

 Weather variables 

The load behavior is strongly affected by the weather, especially on sectors where HVAC 

covers the majority of the consumption. Although some STLF methods doesn’t require weather 

O 
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information most of the methods use them. The most frequent weather variables reported on 

literature include dry bulb temperature, wind speed, dew point temperature, wind direction, 

relative humidity, and cloud cover. 

Among the variables mentioned before, the temperature (known as dry bulb temperature) is the 

most widely accepted. Variables derived of the temperature such as lagged versions of itself, 

windowed averages, and temperature derivate are the usual way to include the temperature on 

models. 

 Calendar variables 

These variables can be used by the load forecasting system to extract information about 

periodical patterns that affect human or the process behaviors. In term of periodicity and 

grouping, the literature have been using a metric of season and moths; being the definition of 

season dependent of the climate on the service territory. This fact make the season 

classification, and the variables derivate, a case to consider on the customization of the model 

and the updating period.  

For example, a typical load profile on the southern part of the world may have a longer summer, 

while northern localization have a longer winter. Linked to the seasonal specialization of the 

models, literature used to distinguish the transition between periods: summer (Jul 1- Sept 15), 

fade to fall (Sep 16 - CST), fall (CST- Nov 30), winter (Dec 1 – Feb 15), fade to spring (Feb 16 

– DST), spring (DST – May 31), fade to summer (Jun 1 – Jun 30). 

On STLF, the most important to define the calendar variable to use is recognize and classify 

the dynamics of the week. Factories used to work on working days and activate fewer loads on 

weekends. Household users tends to wake up late on weekends and provoke a displacement on 

weekend morning peaks. Furthermore, methods to group load profiles according to his temporal 

behavior may be influenced by the human factor as beliefs and laziness.  

This leaves us with a visual method to identify the daily clusters on the load profiles, the optimal 

method will be introduced on the section referred to the week profile and the weekend effect. 

In terms of intraday behavior, the day could be divided at the engineering discretion. In base of 

the seasons the hours can be grouped in 6 groups, which aren’t necessarily match identically 

among seasons. But, in general terms, the simplicity of modelling four invariant hour profiles 

is well accepted. 

The previous method is part of the customization procedure, considered as last step after the 

definition of the main modelling algorithm. For that reason, is usual get previous versions of 

the forecast by the use of input variables that gives hints to the learning algorithm to discover 

the correlation time-consumption. Those variables are usually expressed as integers that 

correspond to the Hour of the day and the Day of the week. 

 Labor driven & economic indicators   
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Variables related with the process carried out on the facilities of the user are directly correlated 

with the load profile. This variables gives a hint about the amount of energy necessary to carry 

out the process and are closely connected to the working calendar. Among them the most 

common are the working days, the scheduled production and current production. 

Economic indicators also have proven a correlation with the load profile on long term. 

Population incremental ratio, land use, and others macro indicators and policies are in this group 

of drivers. On the household sector, labor variables as working calendar could has a major 

significance on the working days, but weekend are totally governed for stochastic process 

derived of the human factor. 

2.4.2 Customizing the Benchmarking Model  

On any energy management project, the modelling strategy must be designed based on the 

knowledge of the conditions, features and necessities of the specific implementation to be 

carried out. This characterization of the scenario (type of user) usually comes previous to the 

definition of the model to implement, in order to not oversize the forecasting application. But 

can be placed on the last stage of modelling in order to reduce the forecasting error. 

This section introduce the theory behind the customizing procedure carried out on the 

benchmark of the models described on this thesis. 

 The recency effect   

This effect refers to the “memory” of any sample of the target signal, respect to the recent past 

samples of influent variables such as temperature, dew point, irradiation, humidity, economics, 

etc.  The following procedures are proposed to model the recency effect of the variables and 

sharp the original forecast.  

Step 1, calculate a simple moving average of the key driver on the preceding 24 hours. This 

variable will be inserted as an input vector, as well as the original inputs, on a second layer. 

This model will make a close calibration of the prediction originated on the first layer by means 

of a bias correction. At the end of this step the model must be evaluated in order to measure the 

improvement on the MAPE.  

If there is a negative increment on the accuracy, you can jump to the step 2. Vice versa, you 

can continue adding samples to the moving average until reach the forecast horizon desired. 

Step 2, replace the moving average by a weighted moving average using the equation 

Eq. 2              𝑋𝑤(𝑡) = ∑ ∝𝑘−1 𝑋(𝑡 − 𝑘)24
𝑘=1 ∑ ∝𝑘−124

𝑘=1⁄  

The smoothing factor ∝ is determined by using values from 0.95 to 0.8, being 0.95 the closest 

sample to the forecasting point and 0.8 the most distant sample. Is important remember that 

steps above presented reach an accuracy improvement on the near forecast horizon (1-24 hours), 

and the accuracy tends to decrease with time.     
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 The week profile and the weekend effect   

Most of the loads profiles suffer a big change mostly influenced by social conventions. Office 

buildings close, factories close, commercial buildings increase their consumption, and 

household sector obtain major uncertainty. People used to wake up late than working days, 

shifting the morning peak one or two hours. Also Sunday and Saturday are completely different 

on the last two cases due to departments stores close early at the Sunday. 

After a weekend, factories must resume the production line, which usually leads a peak of 

consumption than usual. Monday mornings also are different of the weekdays, due to the 

pronounced slope that they manifest. In order to customize the weekend effect have been 

proposed three steps, implemented as the discretion of the programmer and based on the best 

results over the generalization error. 

Step 1, a variable called weekday is declared in the range of integer numbers from 1 to 7. This 

variable will be inserted as input together with the key variables in order to leave the 

classification of the different profiles in charge of the model. If the MAPE is reduced in 

comparison with the model without the weekday input proceed to Step 3. Otherwise proceed to 

Step 2. Alternatively on this step you can use a vector of decimals values between 1 to 7. 

Step 2, this steps exploit the differences between the days and their characteristics patterns. In 

this step the prediction will be in charge of five different models, each one in charge of model 

each one of the following days: Monday, Tuesday-Thursday, Friday, Saturday, and Sunday. 

These groups have been stablished by the experience of the author through several cases 

scenarios and supported by literature benchmarks [73]–[75]. If the MAPE decrease you could 

still try the step 3 in order to compare results. 

Step 3, based on the key drivers such as weather variables or production is possible make a 

clustering classification of the load consumption. The groups can be obtained using the Lloyd 

algorithm guessing how many cluster could be since the beginning, which must be contrast by 

the modelling implementation.  

Alternatively, hierarchical clustering could make a progressive clustering between a 

maximum amounts of cluster to the initial population. This allows you to observe the 

progression (dendrogram) and prone where the number of branches became low but conserve 

the maximum like hood. 

 The holiday effect 

Holidays can come fixed by date or fall on any day of the week. But, we can be sure that 

holidays are a back pain for the forecasters because the load profile is similar to weekend effect, 

however it is located on wrong places affecting the day classification process carried out before. 

Of course, the human factor (skip days between holidays or holidays to weekend) must be 

considered on detailed applications, but it will be skipped on this thesis implementations. 
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In case of the holidays occurs on the working days, it can be threaten as weekends and the 

surrounding days as Mondays and Fridays. This can be an easy task if the country year calendar 

is available, or the scenario-related calendar is available. Holidays can be classified on fix-date 

holidays and fix weekday ones. Fix-dates holidays are not easy to forecast because there is not 

similar days on the historic record. 

On the next steps is presented the strategy to deal with holidays. This strategy can be easily 

obtained by close inspection of the load profile behavior. 

Step 1, classify the holidays according to the effect of it has on the load profile. Use on the 

historic record for this task.  

Step 2, Gather only those ones with major significance and classify them in terms of their week 

position. In parallel, observe the special cases (New Year, Columbus Day, thanksgiving, labor 

day, etc.), and classify then on a special class. 

Step 3, follow this guideline: 

 If the holyday is observed on a weekend, no especial action is carried out. 

 If the holyday is on a working day (except Friday). The day is treated as a Sunday (day 

after as Monday, and day before as Saturday). 

 If the holyday is on Friday, the day is treated as a Saturday. 

 The treatment of special holiday’s class must be copied of previous records or based on 

social conventions. 

This strategy is compatible with the naïve model (created without take care of the holidays), 

but the inputs must be modified in order to forecast the holidays. Other option is reserve a model 

for holidays, but it will be against the KISS principle.  

2.4.3 Data preprocessing 

On load forecasting is usual that gathered data doesn’t present the optimal conditions to work 

with. On this case the forecasting experts must perform an initial analysis to measure the 

importance of the variables related with the target to predict, at the same time that defines an 

automatic procedure for the cleaning of the key drivers.  
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Figure 7. Preprocessing process flowchart. 

The preprocessing approach presented on this thesis is introduced on the previous figure. The 

first step on the preprocessing task corresponds to the target signal treatment. On this step the 

experts clean irregularities on the signal such as outliers, gaps, and sensing errors without 

replacing the samples. Their objective is analyses the samples that belongs to the 95% of the 

Gaussian distribution and observe that irregularities don’t present any cyclic pattern or suitable 

to be correlated.  

This samples are represented as white noise on this stage, but will be saved as incidences to be 

analyzed on the diagnosis and predictive maintenance EMS functionalities. On the second step, 

knowledge discovery algorithms are executed in order to detect and measure the characteristics 

of the drivers such as trend, seasonal, cyclic effects, distribution, or correlation.  

Based on the previous measures, the experts automatize the creation of the most common key 

drivers such as weather, calendar and endogenous variables. Variables derived from the target, 

such as the resulted of temporal or frequency transformations, are also added on this step. In 

parallel, a customized algorithm measure of the importance of the drivers as predictors. This 

last procedure is susceptible to be automatized, but always require of the human criteria in order 

to maintain the simplicity and not oversaturate the model with many inputs. 

Once time the key variables are totally identified, on the third step the expert must codify the 

relevant procedures to obtain them automatically. On the preprocessing algorithm must be 

declared the procedures to detect and handle corrupt data, and the variable generation process. 

On the following sections we will introduce the preprocessing procedures implemented on this 

thesis. 

 Detection and handling of corrupt data 

The data gathered from the SCADA regularly suffer of gaps, atypical values, or white noise. 

This data can induce error on the efficiency of the forecasting system without the proper 

treatment. For that reason statistical analysis are necessary in order to identify and remove the 

corrupted data automatically.  
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The first procedure is the verification of the covariance stationarity on the dependent (target) 

and independent (key drivers) time series. This procedures allows to the algorithm fulfill the 

first logical condition, the target or any of the signals are not pure white noise. 

The second procedure includes: the identification of the gaps in order to fill them with NaN 

values; the identification and exclusion of the outlier data. The criteria to identify and remove 

them is based in the analysis of the standard deviation. In the case that any sample inside of a 

day exceed a boundary imposed by three times the value of the standard deviation of the same 

day, it is automatically removed.   

This leads some problems on the exclusion of samples of quick change dynamics such as 

samples on early Saturday or late Sunday, whose inclination is higher than intraday variation. 

The solution is consider these few samples NaN and fill them with KNN. 

The third procedure implemented is the gap filling of consecutives NaN samples lesser than 

the equivalent of one day samples. The decision of set this maximum amount of samples to fill 

was based on the premise of not introduce large modifications on the raw data collected because 

that could lead to biased predictions.  

On the other hand, if the gap is as big as a week or a month, fill these with interpolations could 

cause an effect on the global and local average as well as on the signal distribution. For this 

reason, sectors with big gaps will remain as NaN on the modelling set. 

The identified gaps to fill are set as missing values, and later introduced on a K nearest 

neighborhood algorithm. The most suitable predictors used on the KNN algorithm are set 

experimental test, those are the variables Time, WeekDay, WorkingDay. 

 Time series filtering  

Instead of erase non desired components of the time series, the filtering process are 

implemented in order to highlight specific time or frequency zones where the cyclical or 

seasonal effects are remarkably visible. The filters implemented are presented attending to the 

primary objective of their implementation. 

The first group are those implemented to discover knowledge from the data as well as to score 

the importance of the key drivers. The first technique usually observed on time series analysis 

are the sample autocorrelation function (Sample ACF) and the partial autocorrelation function 

(PACF). These functions serves originally to found the grade of auto regression that the system 

presents. 

It means how many periodic signals are presented on the time series. Based on the number of 

peaks it is possible calculate how long is the period of the seasonal effect and his magnitude. 

This derivate on the number of lagged target versions added as inputs to the forecasting model. 

Same result is easily obtained by the use of the Fourier analysis on the target signal. On the 

single side amplitude spectrum is easy to observe the frequencies who exhibit a seasonal effect 
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and perfectly match with the previous analysis, despite of showing little differences on the lag 

ranking.  

As you already notice, none of the previous analysis measure the importance of the exogenous 

variables against the target. Most basic techniques such as correlation matrix serves to rank the 

exogenous variables via the analysis of their variances, on this case the use of the covariance 

matrix is only plausible when the variables have similar range and scale.  

In this scenario, exploratory data analysis (EDA) seems to be perfect for the study across 

multiple dimension of the entangled effects among the variables. MVA flagship visual 

technique called Principal component analysis (PCA), again the correlation based PCA is the 

indicate option if the series doesn’t have similar range or scale.  

On the other hand, PCA is extremely sensible to unit change and standardization, so their use 

must be limited to a human supervision. Furthermore, the graphical nature of this technique 

limit his use to a handy tool during the preliminary study  

Although EDA techniques are widely used by forecast experts, the analysis of the results are 

totally dependent of the expert criteria. This means each preliminary study is custom for the 

application and where only the procedure can be repeated for future implementations. 

Fortunately, data mining provides a series of procedures to calculate the importance of the input 

drivers with low human intervention. 

In Data Mining, Feature Selection is the task where we intend to reduce the dataset dimension 

by analyzing and understanding the impact of its variables on a model. Such analysis allows us 

to select a subset of the original variables, reducing the dimension and complexity. During a 

subset selection, we try to identify and remove as much of the irrelevant and redundant 

information as possible. 

Techniques for Feature Selection can be divided in two approaches: feature ranking and subset 

selection [76]. In the first approach, variables are ranked by a given criteria and then variables 

above a defined threshold are selected. In the second approach, the techniques explore on a 

space of variables subsets for the optimal subset.  

Moreover, the second approach can be split in three methodologies: Filter approaches, the 

variables are selected and are used as a subset to execute a classification algorithm. Embedded 

approaches, the feature selection occurs as part of a classification algorithm. Wrapper 

approaches, an algorithm for classification is applied over the dataset in order to identify the 

best variables. 

On this study we are selected two algorithms from feature ranking and one from subset selection 

approaches respectively. One Rule: is a simple, yet accurate, classification algorithm that 

generates one rule for each consumption unit in the data and then selects the rule per each 

consumption unit with the smallest total error as its "one rule". Correlation filter: This 
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algorithm finds the weights of the energy driver candidates basing on their correlation with the 

consumption unit.  

Consistency-based filter: This algorithm finds a subset of energy drivers using consistency 

measure for continuous and discrete data. These techniques have been selected due to the low 

power of computing, the simple formulation of the algorithms, and the different types of scores 

to measure the weight of any predictor variable over the target.  

Second group are those filter techniques implemented to create new variables from the original 

set. On this group we can found time-frequency analysis techniques such as Wavelet 

transform, the Hilbert-Huang transform, or the short-time Fourier transform (STFT). Discrete 

operators are also added on this thesis such as the Scaling.  

On this thesis, our approaches make use of the wavelet transform in order to obtain smooth 

filtered versions of the target signal, which allows to the forecasting algorithm assign more 

weight to the waveform instead that try to model the withe noise. 

Scaling is a discrete operator used to obtain multiple quantized versions of the target attending 

the window average of the signal. On load forecasting is usual that the longest seasonal effect 

moves with the weather season, practically looking like a trend for a STLF algorithm. 

As a result, the solution to be implemented needs not only to follow the offset on the time series, 

but also to recognize, adaptively, the pattern exhibited. The quantization procedure start with 

the collection of the ranked lags. Then the algorithm perform an average on a number of samples 

equal to the lag number (window of samples), the procedure starts from the last sample 

acquired.  

Once time the average is obtained, all the samples on the window are replaced by the average. 

The result are multiples stepped versions of the target signal according to the number of lags 

selected.  

  

  

  



Chapter 2: Load Forecasting on Power systems 

2.5 Load forecasting techniques  

 

 

Adaptive Load Consumption Modelling on the User Side                      | 61 

2.5  Load forecasting techniques 

n this section are introduced the load forecasting algorithms implemented on this 

thesis. They have been selected due to capacity to maximize the adaptability, the 

accuracy and the automatization of the forecasting methodology proposed on this 

thesis as a novelty. Furthermore, the forecast algorithms have been grouped and introduced 

according to the algorithms complexity. 

The first subsection describes a set of regression techniques implemented to calculate the 

prediction intervals of the most complex forecast algorithms such as computational intelligence 

and machine learning approaches.  The subsection start with a family of multivariate spline 

regressor, and finalize with the generalized autoregressive conditional heteroskedasticity 

models (GARCH). 

The second subsection introduce the computational intelligence (CI) methods used as forecast 

algorithms. These algorithm comes from the family of neural networks and have been selected 

due to the strong popularity on literature, and their ability to achieve a high accuracy. 

The third and last subsection are dedicated to machine learning (ML) approaches on load 

forecasting. It start with an introduction to support vector machines (SVM), and continues with 

the description of an adaptive network-based fuzzy inference system (ANFIS). Previous ML 

approaches and CI methods constitute the base of the benchmark of this thesis, because they 

are ranked with medium complexity, interpretability, and relative high accuracy. 

Packed on this subsection evolutionary computation is presented. It includes two multipurpose 

modelling techniques, Cartesian genetic programming (CGP) and Neural Cartesian genetic 

programming (NCGP), novels among the load forecasting implementations.  

2.5.1 Regression techniques 

Simplest regression methods usually achieve good generalization errors due their strong 

learning algorithms, and their simplicity on the description of the polynomial matrices 

governing over the regions on the data to forecast. However, regression methods are a good 

example to show the usual trade-off among the flexibility of the model and the interpretability, 

often called complexity. 

Linear models poses a lower complexity but are too rigid on large datasets and/or non-linear 

dependences. Second and third degree interpolations covers partially the non-lineal 

dependences, but equally fails on large data sets. Multivariate adaptive regressions spline 

(MARS) [77] use tensor product splines, who are flexible and  simple to interpret if the level 

of interaction on the hinge functions is small. 

Time series fitting by polynomials adjusts on a data set or regions of itself presents two 

challenges, the first one is that piecewise linear model requires that a priori know the number 

of regions (pieces) needed to model the data avoiding overfitting. Second, the piecewise 

O 
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polynomial structure is itself sharpie; owning discontinuities in derivatives and data variability 

along the boundaries. A solution of these problems are introduced on the proposed Bayesian 

Multivariate Linear Spline (BMLS) [78]. 

From the point of view of uncertainty analysis, the previous modelling errors could be classified 

on errors due to parameters and structure of the model respectively. However, some errors come 

from the volatility/innovations present on the data. The terms volatility or innovation refers to 

disturbances that cannot be explained as corrupt data and neither product of trend, seasonal or 

cyclic effects.   

Assuming the condition of non-independence on the volatility, the hypothesis that the 

innovation error is pure white noise is discarded and a heteroskedasticity forecast technique can 

be adjusted to the time-variant volatility. Generalized autoregressive conditional 

heteroskedasticity (GARCH) is the forecast technique selected to model the time-variant 

volatility. 

These algorithms, prior their great features as predictors, have been selected because their low 

computational requirements and their great accuracy on large data bases. It grant them the 

possibility to be implemented in dedicated applications as the nodes of a multiagent system, 

which is the hot trend today with the awareness about the grid decentralization and the smart 

grid. 

 Multivariate spline interpolation 

You might guess that the idea that a simple polynomial cannot model an entire data set seems 

obvious; but take a step more and guess the number of regions on the data to model, and the 

order of the polynomial to adjust each of those regions sounds as an optimization problem.  

Well, the idea that a high order interpolation was already stated by Runge in 1901, and the 

natural solution was stablish a low order polynomials between equidistant points of the data. 

Multivariate spline interpolation are considered as piecewise function, an ensemble of 

polynomials models which adjust polynomials to pieces of the data set called regions.  

Eq. 3 𝒚̂(𝒕) = {

𝒂𝒌𝟏𝒕
𝒏 + 𝒃𝒌𝟏𝒕

𝒏−𝟏 +⋯+ 𝒛𝒌𝟏     𝒊𝒇    𝟎 < 𝒕 ≤ 𝒕𝒌𝟏
𝒂𝒌𝟐𝒕

𝒏 + 𝒃𝒌𝟐𝒕
𝒏−𝟏 +⋯+ 𝒛𝒌𝟐     𝒊𝒇    𝒕𝒌𝟏 < 𝒕 ≤ 𝒕𝒌𝟐

𝒂𝒌𝒎𝒕
𝒏 + 𝒃𝒌𝒎𝒕

𝒏−𝟏 +⋯+ 𝒛𝒌𝒎     𝒊𝒇    𝒕𝒌𝒎−𝟏 < 𝒕 ≤ 𝒕𝒌𝒎

 

The control parameters on a Spline algorithm are: the number of equidistant nodes (knots) 

which split the data on the regions (m), the degree of the polynomial which is usually stablished 

between linear and cubic order (n), and the penalty coefficient which ensure the fit or constrain 

level of the piecewise function to the time series (p).  

Benefits of the splines implementations are: lower computational cost because tuning get 

focused only on two parameters, the degrees of freedom (m) and the penalty coefficient (p); 

custom control of the overfitting and smoothness by the possibility of increase the number of 



Chapter 2: Load Forecasting on Power systems 

2.5 Load forecasting techniques  

 

 

Adaptive Load Consumption Modelling on the User Side                      | 63 

basis functions and the degrees of freedom (m) without risks; maximum interpretability of the 

model; discontinuities avoided on high order kernels such as cubic spline. 

 Multivariate adaptive regressions spline (MARS) 

A second piecewise approach called MARS follows the steps of the previous approach but 

replacing the polynomial adjust for hinge functions [77]. Hinge functions 𝒉𝒊(𝒙), has their 

mirror version on the activation function rectifier linear unit from neural networks, or the ramp 

function on signal processing. These are expressions who operator describe a line starting from 

a knot 𝒕 on straight or reversed version [79]. 

Equations below presents a reflected pair of hinge functions. 

Eq. 4 𝒉(𝒙 − 𝒕)± = {
𝒉𝒕(+(𝒙 − 𝒕)) = {

𝒙 − 𝒕     𝒊𝒇     𝒙 > 𝒕
𝟎      𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆    

𝒉𝒕(−(𝒙 − 𝒕)) = {
𝒕 − 𝒙     𝒊𝒇     𝒙 < 𝒕
𝟎      𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆    

     

Other forms of express hinge functions. 

Eq. 5 𝒉𝒕(+(𝒙 − 𝒕)) = 𝒎𝒂𝒙(𝟎, 𝒙 − 𝒕) = (𝒙 ∙ 𝒕)+ = (𝒙 − 𝒕)+ = 𝒉(𝒙|𝒕)+ = 𝒉(𝒙 − 𝒕)+ 

A MARS model is defined as: 

Eq. 6 𝒚̂(𝒙) = 𝜷𝟎 + ∑ 𝜷𝒎 𝒉𝒎(𝒙)
𝑴
𝒎=𝟏        ,          𝑴 = 𝒕𝒐𝒕𝒂𝒍 𝒌𝒏𝒐𝒕𝒔 

Where 𝒉𝒎(𝒙) could be any version of the reflected pair, and be a product of univariate hinge 

functions. 

Eq. 7 𝒉𝒎(𝒙) = ∏ 𝒉(𝒙𝒊(𝒔,𝒎)|𝒕(𝒔,𝒎))
𝒌𝒎
𝒔=𝟏        ,           𝟏 ≤ 𝒎 ≤ 𝒌 

Where the subscript 𝒊 means a particular explanatory variable, 𝒕 the knot where the hinge 

function fix the basis spline, and  𝒌𝒎 are the maximum number of hinges function allowed to 

interact at one knot. Also, it can be defined as the number of interactions among the variables 

and knots. On this case of 𝒌 = 1, the model will be purely additive. Next equation presents an 

example of a linear MARS function, hinge functions can express quadratic an cubic terms also 

[80]. 

Eq. 8   𝒚̂(𝒙𝟏, 𝒙𝟐) = 𝜷𝟎 + ∑ 𝜷𝒎 𝒉𝒎(𝒙)
𝒌𝒏𝒐𝒕𝒔
𝒎=𝟏 =

{
 

 
𝜷𝟎

+ 𝜷𝟏 𝒉(𝒙𝟐 − 𝒕𝟏)   

+⋯+ 𝜷𝒎−𝟏 𝒉(𝒙𝟏 − 𝒕𝒎−𝟏) 𝒉(−(𝒙𝟐 − 𝒕𝒎−𝟏))

+ 𝜷𝒎 𝒉(−(𝒙𝟐 − 𝒕𝒎))

 

MARS models allows the product of several hinge functions in order to reproduce the 

correlation of two or more inputs. The two stage MARS training method consist on a forwards 

pass where a heuristic algorithm adds two mirrored hinge functions (reflected pair) in order to 
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reduce the residual error. On each new term the new and previous parameters of the model must 

be adjusted, as well products of hinge functions tested.  

This process continues until the residual error converge to a local minimum, or the maximum 

number of terms is reached. Backward pass serves to increase the model generalization, 

avoiding the overfitting imposed on the previous stage. It prune the model term by term 

searching the best sub model, the subsets are then compared using the Generalized cross 

validation partitioning method.  

This last step itself correspond to a basic but efficient method of variable selection, because 

term discarded in pursuit of the generalization are usually the less important drivers. Others 

impressive features of this algorithm are: the incredibly lower computational cost which can 

handle large data sets in minutes, the interpretability and flexibility of the models, the 

introduction of a partitioning method to obtain the best suitable bias-variance tradeoff,  and 

quick prediction results.  

 Bayesian Multivariate Linear Spline (BMLS) 

BMLS was introduced on [80] carry the same model structure presented on MARS, but with 

an training strategy entirely focused on mimic the probability distribution on the data. As well 

as other interesting articles it not save his approach form plagiarism. Recently, some authors 

have made a semi plagiarism of the technique calling it BARS [81]. 

the algorithm assume a Gaussian distribution on the data set, implying that the number and 

distribution of the basis splines are treated as random on the prior conditions, to be later 

organized by a probabilistic method. It brings the model a model spatially and data adaptive 

feature, a characteristic desired on this thesis.  

The BMLS algorithm inherit some characteristics of the MARS algorithm, as his use of basis 

functions (hinge functions) to construct the regression surface bringing continuity at the pieces 

boundaries at mean level, his soft regression surface due to interaction of the hinge functions, 

and intrinsic variable selection.  But differs on the strategy to locate the basis functions and 

knots which is entirely driven by a Bayesian approach, and the method to simulate the 

probability distribution and the convergence which is performed by a Markov chain Monte 

Carlo (MCMC) sampling. 

Let’s start with the description of the algorithm. BMLS assume that the dependent variable 𝒚 

is a result of a function of the explanatory variables plus a Gaussian noise term. The fact that 

the model consider a Gaussian noise is important, because it represents the assumption of a 

homoscedasticity posterior distribution, making the probability density function completely 

Gaussian for any slice. This will be discussed later on the Appendix B, specifically on the 

probabilistic predictive interval estimation. 

 Eq. 9 𝒚𝒊 = 𝒇(𝒙𝒊) + 𝝐𝒊   =  𝒇(𝒙𝒊) + 𝑵(𝟎, 𝝈
𝟐) 
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As we stated preciously the BMLS is based on a piecewise linear regression algorithm, then to 

model the piecewise structure of a data set we adopt the following basis function approach 

equation. Different from mars equation we reserve  𝑚 variable to refer to the model, and 𝑡 to 

refer to the variable time. 

Eq. 10 𝒇̂(𝒙𝒊) = 𝜷𝟎 + ∑ 𝜷𝒋 (𝒙𝒋 ∙ 𝝁𝒋)+
𝒌
𝒋=𝟏      , 𝒌 = 𝒕𝒐𝒕𝒂𝒍 𝒌𝒏𝒐𝒕𝒔, 𝝁 =

𝒑𝒐𝒔𝒊𝒕𝒊𝒐𝒏 𝒐𝒇 𝒃𝒂𝒔𝒊𝒔 𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏 

As we know the coefficient 𝜇  determine the position of the regression coefficient that 

determines the gradient (𝛽). On typical piecewise linear models the parameters are set to single 

optimal values chosen according to some cost function, such a penalized likelihood or a cross-

validation score on MARS. This procedure fails to merge uncertainty in the setting of these 

values.  

The Bayesian approach of the BMLS, places the probability distribution on all unknown 

parameters. Let’s start referring as a particular model structure and noise variance in function 

of their inner parameters 𝓜(𝒌,𝝁, 𝜷, 𝝈𝟐): number of knots, position of the basis function, 

gradient coefficient, and total variance. Where 𝝁 is defined as the set of spline parameters 𝝁 =

(𝒖𝟏, … , 𝒖𝒏) same for 𝜷. The BMLS use the Bayes’s rule in order to set the parameters.   

Eq. 11 𝑷(𝓜|𝓓) = 𝑷(𝓓|𝓜) ∗  𝑷(𝓜) / 𝑷(𝓓)  

It calculate the posterior 𝑃(𝓜|𝓓) distribution of the model based on the prior distribution 

𝑃(𝓜) and the likelihood 𝑃(𝓓|𝓜) / 𝑃(𝓓) . Based on the previous equation the point 

predictions under the probabilistic posterior model space can be given as expectations. 

Eq. 12 𝑬(𝒚𝒊|𝒙𝒊) = ∫ 𝒇̂𝓜(𝒙𝒊)𝑷(𝓜|𝓓)𝒅𝓜  

Where 𝒇̂𝓜(𝒙𝒊)  refers to model 𝒇̂(𝒙𝒊)  with 𝓜(𝒌,𝝁, 𝜷, 𝝈𝟐)  parameter settings. For the 

piecewise linear models the number of planes 𝒌 is one of the unknowns, and the dimension of 

the posterior density 𝑃(𝓜|𝓓) Is varying and typically complex. For that reason when making 

inferences on the model space is necessary employ simulation methods such as Markov chain 

Monte Carlo samplers (MCMC).  

Now, let’s introduce the Bayesian model estimated for the posterior distribution. As we say 

before the log-likelihood model of the posterior distribution follows the form of our 

assumptions of Gaussian noise. 

Eq. 13 𝒍(𝓜|𝓓) = −𝒏𝒍𝒐𝒈(𝝈) −
𝟏

𝟐𝝈𝟐
∑ {𝒚𝒊 − 𝒇̂𝓜(𝒙𝒊)}

𝟐𝒏
𝒊=𝟏  

Through a mathematical description of the steps needed to present the probabilistic nature of 

the model in terms of parameters subject to be implemented on an optimization algorithm [78], 

the joint prior distribution of the model space can be written in a factorized form as: 

 Eq. 14 𝑷(𝒌,𝜷, 𝝁, 𝝈𝟐, 𝒛, 𝜸) = 𝒑(𝜷|𝝈𝟐, 𝒌) 𝒑(𝝈𝟐)  𝒑(𝝁|𝒛, 𝜸, 𝒌)𝒑(𝜸|𝒛, 𝒌)𝒑(𝒛|𝒌)𝒑(𝒌) 
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Using this representation, the probabilities can be calculated based on known matrixes. On the 

other hand, the among the model parameters two new terms have been introduced. 𝒛 Represent 

the maximum number of interactions or hinge functions are allowed in any piece (spline), and 

𝜸 define the indicator vector that describe the interaction following the formula: 

Eq. 15 𝒛𝒋 = ∑ 𝜸𝒋𝒅 
𝒑
𝒅=𝟏      , 𝒛𝒋 = 𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒊𝒏𝒕𝒆𝒓𝒂𝒄𝒕𝒊𝒐𝒏𝒔 𝒂𝒕 𝒋𝒕𝒉 𝒔𝒑𝒍𝒊𝒏𝒆,  𝜸𝒋𝒅 =

𝒕𝒉𝒆 𝒅𝒕𝒉 𝒆𝒍𝒆𝒎𝒆𝒏𝒕 𝒂𝒕 𝒋   

Now, we wish to sample the posterior density (posterior distribution) 𝑃(𝓜|𝓓) in order to make 

an inference of the predictive conditional distribution and the mean regression (point forecast). 

But because conventional MCMC needs to know a priori the number of pieces or knots, the 

BLMS use the reversible MCMC jump sampler. This algorithm redistribute the size of the 

pieces making an optimization of the inertia or variance contained on it. 

A simplified explanation of the MCMC process, by whom the basis (hinge) functions are added, 

removed or modified (actions) follows these steps: first an action is required, the model at time 

t has the following state 𝓜𝒕 = {𝒌, 𝜷, 𝝁, 𝝈
𝟐, 𝒛, 𝜸} at the Markov chain; second, for a random 

spline is stablished a basis functions and calculated the improvement on the posterior state. 

The MCMC sampler is iterated until enough samples have been considered to have been 

collected with an initial portion discarded to allow for the chain to converge the sufficiently 

closer to its stationary distribution. The resulting samples are the BMLS models drawn from 

the posterior model space 𝑃(𝓜|𝓓). Is important know that the mean regression surface is 

reported as the average of the piecewise linear surfaces generated by the samples. 

On summary, added to the spline modelling benefits the BLM algorithms provide an absolute 

control on the mathematical description of the kernel employed as basis function. The 

modelling surface constructed is soft and doesn’t present discontinuities, this as result of the 

smooth kernels integrated. The last but not less important, the model avoid be over fitted due 

to the MCMC sampler iterates until the stationary distribution is reached, this means that 

optimal model and the number of basic functions are set in function of the global variance not 

the mean. 

 Stochastic time series models 

Until now, the models presented has perform regressions made under pieces or slices of the 

dependent variable respect to the independent variables. They have assume Gaussian 

distribution on the errors, a stationary covariance, and a conditional distribution (only BMLS). 

But there is no really reason to believe that the errors are white noise, neither the conditional 

distribution remain constant and indifferent of the forecast horizon. 

Remember, those assumptions comes from the theory that a valid regression model could model 

all the temporal effects until it possesses a constant error variance. On the early 80’s authors 

such as Engle, Diebold, Lopez, Granger, and Kraft describe that under some circumstances the 
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“error variance can change over the time and be predicted by the past forecast errors” [70], [82], 

[83].  

They study financials econometrics processes with a high autoregressive heteroskedasticity 

associated such as the analysis of the inflation, which cause an increment on the volatility of 

the value of a stock option. Where error variance increase with the time the risk of investments 

increase (see more at [83]). These studies derivate on the assumption that in some cases the 

value of the error variance can be a function of the time lag.  

In case of regression models, an autoregressive model with conditional heteroskedasticity error 

variable could be appropriate to model the financial risk or volatility. Based on the previous 

information, we assume that modelling the conditional heteroskedastic error variance presented 

on load forecasting can reduce the error due innovations. Finally producing an effective 

modelling of the non-normal time-dependent distributed errors. This characteristic is a strong 

point for the adaptability feature in order to reduce the volatility not measured. 

Now let’s get introduced on the stochastic model algorithms using a combined description from 

[70], [82], [83]. Let’s suppose we have a time series from which any trend and seasonal effects 

have been removed and from which linear (short-term correlation, minor lags) effects may also 

have been removed. Thus 𝑟𝑡 could, for example, be the series of residuals from a regression or 

autoregressive model  

Eq. 16 𝒚𝒕 = 𝜷𝟏𝒙𝒕 + 𝜺𝒕        𝒂𝒏𝒅     𝜺𝒕 ∽ 𝑵(𝟎, 𝝈𝒕
𝟐) 

Where 𝜀𝑡 denotes a sequence of independent modelling errors with zero mean and unit variance 

and 𝜎𝑡 may be thought of as the local conditional variance of the process. The errors here as 

well as other modelling approaches are assumed as normal, but this assumption is not necessary 

for much of the theory. In any case, the unconditional distribution of a data generated by a non-

linear model will be generally fat-tailed rather than normal.  

Let’s stop a minute,  𝜀𝑡  is white noise, some authors define white noise as strong or weak 

(independent or merely serially uncorrelated). When 𝜀𝑡 is independent, there is no distinction 

between the unconditional distribution of 𝜀𝑡 (PDF), and the conditional distribution of 𝜀𝑡 upon 

its past (CPDF). Hence, 𝜎𝑡
2 is both the unconditional and the conditional variance of 𝜀𝑡.  

If 𝜀𝑡 is dependent, then its unconditional and conditional distribution differ. For that reason the 

Wold decomposition used as base to stablish the ARCH model denote the residuals as a 

conditional distribution. This conditional dynamic is explained on a time-varying conditional 

distribution (time-varying volatility) representation such as: 

Eq. 17 (𝜺𝒕|𝜺𝒕−𝒏) ∽ 𝑵(𝟎, 𝝈𝒕
𝟐) 

Where n could be considered the lag order or as a model equation  

Eq. 18 𝒓𝒕 = 𝝈𝒕𝜺𝒕 
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The notation 𝑟𝑡  is used to emphasize that models for changing variance (heteroskedastic 

prediction models) are rarely applied directly to the observed data. Then, 𝑟𝑡  should be 

(approximately) uncorrelated but may have a variance that changes through time, being 

represented in the form. 

Once time we can observe the 𝜎𝑡, various models can be assumed based on his time change.  

The AutoRegressive Conditionally Heteroscedastic model of order p, abbreviated ARCH(p), 

assumes that 𝜎𝑡
2  is linearly dependent on the last p squared values of the time series.  

Eq. 19 𝝈𝒕
𝟐 = 𝜶𝟎 + ∑ 𝜶𝒋 𝜺𝒕−𝒒

𝟐𝒒
𝒋=𝟏   

For example ARCH(1) shows how the conditional variance evolves through time according to 

the equation. 

Eq. 20 𝝈𝒕
𝟐 = 𝜶𝟎 + 𝜶𝟏𝜺𝒕−𝟏

𝟐   

Notice the parallelism between the formula of an AR(1) and ARCH(1). The ARCH model has 

been generalized to allow linear dependence of the conditional variance 𝜎𝑡
2 , on past values of 

𝜎𝑡
2 as well as on past (squared) values of the series. The Generalized ARCH (or GARCH) 

model of order (p, q) assumes the conditional variance depends on the squares of the last p 

values of the error series 𝜀𝑡
2 and on the last q values of 𝜎𝑡

2.  

Eq. 21 𝝈𝒕
𝟐 = 𝜶𝟎 + ∑ 𝜶𝒋 𝜺𝒕−𝒋

𝟐𝒒
𝒋=𝟏  + ∑ 𝜷𝒊 𝝈𝒕−𝒊

𝟐𝒑
𝒊=𝟏   

Where the parameters 𝛼, 𝛽 must satisfy (α + β) < 1 for stationarity.  

For example, the conditional variance of a GARCH(1, 1) model may be written 

Eq. 22 𝝈𝒕
𝟐 = 𝜶𝟎 + 𝜶𝟏𝜺𝒕−𝟏

𝟐  + 𝜷𝟏𝝈𝒕−𝟏
𝟐

 

These models have been documented as viable algorithms to compute the probability density 

function (PDF) and the conditional probability density function (CPDF) on econometrics 

[84]. They are part of the set of parametric modelling algorithms that estimate the variance on 

the predictions such as the generalized linear models (GLM). 

So, in order to forecast the conditional variance one step ahead follows directly from the 

model. Forecasting more than one step ahead is carried out by replacing future values of 𝜎𝑡
2  

and of 𝜀𝑡
2 by their estimates.  

Chatfield. [83] continues with some recommendations about the use of GARCH models. 

GARCH models have now been used in forecasting a variety of financial variables, where 

estimation of variance is important in the assessment of risk. These include share prices, 

financial indices and the price of derivatives such as options to buy a certain share at a pre-

specified time in the future.  
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The evidence indicates that it is often important to allow a changing variance, but that GARCH 

models do not always outperform alternative models. Sometimes a random walk model for the 

variance is better than GARCH, while GARCH may not cope well with sudden changes in 

volatility or with asymmetry. In the latter case, something like EGARCH or a stochastic 

volatility model may be better. 

An alternative to ARCH or GARCH models is to assume that 𝜎𝑡
2 follows a stochastic process. 

This is usually done by modelling log(𝜎𝑡
2) to ensure that 𝜎𝑡

2 remains positive. Models of this 

type are called stochastic volatility or stochastic variance models. It seems intuitively more 

reasonable to assume that 𝜎𝑡  changes stochastically through time rather than deterministically, 

and the resulting forecasts are often at least as good as those from GARCH models. 

This statement open a new question about the nature of the load profile. Is stochastic the 

distribution of the variance/volatility?, it means at each interval of time the distribution presents 

a skewness an a kurtosis unique that will change following a behavior that cannot be follow by 

a linear equation such GARCH presents. Could be approximate by to a linear model which a 

certain grade of confidence?.  

The degree of acceptance of the answer of this questions, rather than philosophical implications 

could be extrapolated to the existence of probabilistic models as Hidden Markov Chain models 

or Bayesian networks. Our expertise could notice that any attempt to model the stochastic 

variance component will continue under a mere exercise of modelling because some errors 

(such as the model structure error) will be impossible to avoid.  

2.5.2 Computational Intelligence based models: Artificial neural networks 
topologies 

In order to model the nature of the interactions presented among the key drivers and the target, 

this thesis has introduced alternatively the use of some members of the ANN family.  The 

implementation of this topologies will highlight the effects of specifics effects such as recency, 

seasonality and trend. At the same time they will serve as a modelling algorithms to construct 

a benchmark, and compare our strategies. 

  Non-linear Autoregresive Neural Network (NARNN) 

It is a neural network that forecasts a time series based on the past values, thus generating an 

autoregressive model. This method has been considered because the thermal convection follows 

a trend based on his past values [85].  This neural network will be implemented in order to 

check the dependency of the target with its own past. The following figure shows the structure 

of the NARNN model for a single output.  
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Figure 8. NARNN model structure.  

NARNN is modelled as,  

Eq. 23 𝒚[𝒏] = 𝒇(𝒚[𝒏 − 𝒊𝟏], 𝒚[𝒏 − 𝒊𝟐], … , 𝒚[𝒏 − 𝒊𝒏]) 

The output y[n] is a function of past values of outputs, where: 

y[n-i1], y[n-i2],…,y[n-in]  are the past output values at the ith sample. 

uk[n-i1], uk[n-i2],…,uk[n-in]  are the past input values at the ith sample. 

f1 and f2 are the activation functions on the hidden and output 

layers. 

IWq.k  is the input weight matrix order s^2 * Rk, the superscript 

q denotes the layer number and k denotes the number of vector inputs entering the weight. 

LWq.1  indicates the layer weight matrix of order s2*s1. 

b2, b1  are the bias vectors of first and second layer 

respectively. 

Rk  denotes input vector of R elements. 

Z-i  indicates the number of lag samples to use. 

The previous description presented will be considered as canonical, and is the work of the reader 

extrapolate it to future NN model structures. 
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NARXNN is a neural network used to forecast time series based on the past values. It has 

exogenous inputs, this means that the model uses a feedback version of its forecast and also 

current and lagged values of the inputs [85]. This is a basic algorithm that can replace an 

autoregressive polynomial, for that reason it is implemented to test the dependency of the target 

with it past and the exogenous variables employed on the forecast. 

The following figure shows the internal structure of the NARXNN model.  

 

Figure 9. NARXNN model structure.  

NARXNN is modelled as, 

Eq. 24 𝒚[𝒏] = 𝒇(𝒖𝒌[𝒏 − 𝒊𝟏], 𝒖𝒌[𝒏 − 𝒊𝟐], … , 𝒖𝒌[𝒏 − 𝒊𝒏], 𝒚[𝒏 − 𝒊𝟏], 𝒚[𝒏 − 𝒊𝟐], … , 𝒚[𝒏 −

𝒊𝒏]) 

Where the output y[n] is a function of the past inputs and outputs values. 

 Layer Recurrent Neural Network (LRNN) 

LRNN uses the specified signals as inputs, but also integrates a lagged version of the hidden 

layer outputs. This creates a directed feedback lagged circle also called internal memory, thus 

exhibiting a dynamic temporal behavior [85]. The load profile could have some behaviors that 

are activated by the combination of certain conditions of the inputs, and whose effect can persist 

on a fix time. This particular case could make ideal the use of the LRNN algorithm. The 

following figure shows the internal structure of the LRNN model.  
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Figure 10. LRNN model structure. 

The equation of the LRNN model is given as, 

Eq. 25 𝒚[𝒏] = 𝒇(𝒖𝒌[𝒏], 𝒂
𝟏[𝒏 − 𝒊𝟏], 𝒂

𝟏[𝒏 − 𝒊𝟐], … , 𝒂
𝟏[𝒏 − 𝒊𝒏]) 

The next value of the signal y[n] is regressed to the input and the previous values of the 

intermediate layer outputs. 

 Feed Forward Neural Network (FFNN)  

It is a classical NN whose weights are adjusted through a back-propagation algorithm [85]. This 

type of network consists of multiple layers of computational units, usually interconnected in a 

feed-forward manner. By applying various techniques, the error is then feedback through the 

network. Using this information, the algorithm adjusts the weights of each connection in order 

to reduce the value of the error function by some small amount. 

After repeating this process for a sufficiently large number of training cycles, the network will 

usually converge to some state in which the error is small. The following figure shows the 

internal structure of a NN model. 

 

Figure 11. FFNN model structure. 
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The equation for the FFNN model is given as, 

Eq. 26 𝒚[𝒏] = 𝒇(𝒖𝒌[𝒏]) 

Where, the next value of the signal y[n] is regressed to the input. 

 Cascade Feed Forward Neural Network (CFFNN) 

The following figure shows the internal structure of a CFFNN with a unique hidden layer. As 

in the FFNN, the back propagation algorithm adjusts the weights, but the architecture includes 

a connection from the inputs and every layer to following layers. 

 

Figure 12. CFFNN model structure. 

The equation for the CFFNN model is as, 

Eq. 27 𝒚[𝒏] = 𝒇(𝒖𝒌[𝒏], 𝒂
𝟏[𝒏]) 

Where the next value of the signal y[n] is regressed to the input and the values of the 

intermediate layer outputs.  

2.5.3 Machine learning approaches 

In competition with the artificial intelligence approaches, machine learning has introduced their 

highly adaptive candidates. On this section we will introduce a highly adaptable statistical 

learning algorithm called SVM, which compete on generalization capability with NN except 

that instead of find the local optima it searches for the global one.   

As second algorithm is introduced an algorithm that mimic the linguistic expressions that 

humans use to take and communicate decisions. ANFIS algorithms are a mixture among soft 

codding of inputs realized by fuzzy logic, neural network structure, and piecewise weighted 

polynomials. Third algorithms covers evolutionary approaches in order to construct models 

driven by the force of convergent error evolution.  
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 Support vector machines (SVM) 

Support Vector Machine, proposed by V. N. Vapnik in 1995 through a statistical learning 

theory, is a comparatively new approach to the problems of classification, regression, ranking, 

etc. As a binary classifier, it tries to find an optimal hyperplane that maximizes the margin 

between data samples in two classes in a higher dimensional feature space derived from the 

original data space through a kernel function, while reducing the training errors. 

As a linear regressor, the basic idea is to map the data into a high dimensional feature space by 

nonlinear mapping and then performing a linear regression in this feature space. The regression 

function performed by a vector machine is as follows: 

Eq. 28 𝒚𝒕 = 𝝎 𝚽(𝒙𝒕) + 𝒃   

Being w, b estimated by minimizing the regularized risk function 

Eq. 29 𝑹 =  
𝟏

𝟐
‖𝒘‖𝟐 + 𝑪

𝟏

𝒍
∑ |𝒚𝒊 −𝒇(𝒙𝒊)|𝜺
𝒍
𝒊=𝟏  

‖𝑤‖2 is the weights norm, which is used to constrain the model structure capacity in order to 

obtain better generalization performance. C is the regularized constant determining the trade-

off between the empirical error and the regularization term. 𝜀 known as the intensive zone, is a 

linear loss function used as a measure for the empirical error. 

The vector w can be written in terms of the data points  

Eq. 30 𝒘 = ∑ (𝜶𝒊−𝜶𝒊
∗)𝝓(𝒙𝒊)

𝒍
𝒊=𝟏  

With 𝛼𝑖 , 𝛼𝑖
∗ being the solutions of the risk function. Considering the previous equations, we 

can get the regression function in the low dimensional input space. 

Eq. 31 𝒇(𝒙,𝜶𝒊, 𝜶𝒊
∗) = ∑ (𝜶𝒊 − 𝜶𝒊

∗)𝑲(𝒙𝒋, 𝒙𝒊)
𝒍
𝒊=𝟏 + 𝒃         𝒘𝒉𝒆𝒓𝒆    𝑲(𝒙𝒋, 𝒙𝒊) = 𝝓(𝒙𝒊) ×

 𝝓(𝒙𝒋) 

𝐾(𝑥𝑗 , 𝑥𝑖) is called kernel function, and is the inner product of the x vectors on the feature space 

𝜙(𝑥𝑖), 𝜙(𝑥𝑗). Popular kernels include the linear kernel 

Eq. 32 𝑲(𝒙𝒋, 𝒙𝒊) = ⟨𝒙𝒊, 𝒙𝒋⟩ 

The polynomial kernel 

Eq. 33 𝑲(𝒙𝒋, 𝒙𝒊) = ⟨𝒙𝒊, 𝒙𝒋⟩
𝒏

 

And the Gaussian kernel, called radial basis function (RBF). 
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Eq. 34 𝑲(𝒙𝒋, 𝒙𝒊) = 𝒆𝒙𝒑(−
‖𝒙𝒊−𝒙𝒋‖

𝟐

𝟐𝝈𝟐
) 

The kernel trick, i.e., mapping the data point with a kernel in to another hiperplane and then 

accomplish the learning task on it, is a general strategy that can be incorporated into any 

learning algorithm that considers inner products among the input feature vectors. In principle, 

the only parameter used in SVM, besides the kernel function and his parameters, is a parameter 

C, which determines the trade-off between two conflicting goals: maximizing the margin and 

minimizing the training errors. 

Neither ANNs nor SVMs are perfect. SVMs are fast in training and guarantee a global 

optimum if the kernel satisfies Mercer’s condition, but requires an appropriate choice of kernel 

function. ANNs are slow in training and can only guarantee local optima, but are robust 

to noise and fast in classifying [86]. 

 Adaptive network-based fuzzy inference system (ANFIS)  

ANFIS is an algorithm of universal approximation composed by the supervised learning of the 

neuronal networks and functions based on linguistic expressions of fuzzy logic. it was proposed 

in 1993 by J.S.R. Jang [14]. ANFIS is based on fuzzy inference systems of the type Takagi-

Sugeno [87]. 

Using the training data, ANFIS creates an inference fuzzy system consisting of one membership 

function input layer. The parameters on this layer are called antecedent parameters, they trained 

using backpropagation algorithm. For default authors use the same algorithm on the training of 

the output consequent parameters.  

When least squared method is used to train the consequent parameters, the training algorithm 

is called hybrid. These algorithms allow to ANFIS to learn from the time series the 

characteristics on the target trend by means of mapping those trends in to regions where driven-

fitted polynomials can be applied. 

In order to introduce the ANFIS topology let us start with a simple fuzzy first order model 

Takagi-Sugeno. On this example, the system has two inputs and one output; each input also 

counts with two functions of membership by every variable (see Figure 13a). The equivalent 

architecture ANFIS of the first order inference system Takagi-Sugeno is shown in the Figure 

13b. 
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(a)

(b) 

Figure 13. (a) If-then rules of the fuzzy model takagi-sugeno and mechanism of fuzzy 

reasoning, (b) ANFIS Structure. 

The system consists of five layers, in which can exist several nodes. In order to explain the 

functioning of the system let us denote  𝑂𝑖
𝑗
 as the exit for the i-th node in the layer j. In Layer 

1, every node i is an adaptive node with node function. 

Eq. 35  𝑶𝒊
𝟏 = 𝝁𝑨𝒊(𝒙)  if   𝒊 = 𝟏, 𝟐      &       𝑶𝒊

𝟏 = 𝝁𝑩𝒊−𝟐(𝒚)  if   𝒊 = 𝟑, 𝟒 

Where x (o y) is the input to the i-th node and 𝐴𝑖 , 𝐵𝑖−2 is a linguistic label associated with this 

node. Membership functions for A and B are usually described by generalized bell functions, as 

for example: 

Eq. 36 𝝁𝑨𝒊(𝒙) = 𝟏 𝟏 + |
𝒙−𝒓𝒊

𝒑𝒊
|
𝟐𝒒𝒊

⁄  

Where {pi, qi, ri} are the parameters to set, they control the width, shift, and shape/altitude of 

the membership function. Any continuous and piecewise differentiable functions, such as 

triangular-shaped membership functions, are also qualified candidates for node functions in this 

layer. In the layer 2, each node Π multiplies incoming signals and sends the product out. Here 

each node output represents the firing strength of a rule. 

Eq. 37 𝑶𝒊
𝟐 = 𝑾𝒊 = 𝝁𝑨𝒊(𝒙)𝝁𝑩𝒊(𝒙),    𝒊 = 𝟏, 𝟐 
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In layer 3, each node N computes the strength ratio of each i-th rule respect to the sum of all 

rules strengths. Outputs of this layer are called normalized firing strengths. 

Eq. 38  𝑶𝒊
𝟑 = 𝑾̅̅̅𝒊 =

𝑾𝒊

𝑾𝟏+𝑾𝟐
, 𝒊 = 𝟏, 𝟐            

In the layer 4, each node computes the contribution of the ith rule to overall output. 

Eq. 39  𝑶𝒊
𝟒 = 𝑾̅̅̅𝒊𝒁𝒊 = 𝑾̅̅̅𝒊(𝒔𝒊𝒙 + 𝒕𝒊𝒚 + 𝒖𝒊),     𝒊 = 𝟏, 𝟐  

Where 𝑊̅𝑖 is the output of layer 3 and {si, 𝑡i, 𝑢i} are the coefficients to set. The parameters on 

this layer are referred to as consequent parameters. In layer 5, the single node Σ compute the 

final output as the sum of all incoming signals. 

Eq. 40  𝑶𝒊
𝟓 = ∑ 𝑾̅̅̅𝒊𝒁𝒊𝒊 =

∑ 𝑾𝒊𝒁𝒊𝒊

∑ 𝑾𝒊𝒊
  

Thus, an adaptive network is functionally equivalent to a sugeno-type fuzzy inference system. 

As was explaining at the beginning, this system obtains his expertise from the initial man-made 

configuration, where parameters such as the number of memberships functions per input, the 

number of rules to be interpreted according to their importance (this stablish the number of 

polynomials to use), the training method, and the number of epochs contribute to enhance the 

algorithm performance avoiding the over fitting.  

The similarities between the soft mapping of polynomial regions according to inference rules 

makes to the ANFIS an algorithm comparable to an ensemble learning system, being capable 

to lead with the uncertainty of the signals easily; but leaving a big weakness floating around, 

his under capacity to generalize  on the boundaries and outer limits of the variables analyzed. 

 Evolutionary computing  

The adaptativeness of a model could be interpreted as the parameter fit made by the learning 

algorithm, or as the structural fit performed by an expert. The selection of the number of 

neurons, the membership function, the number of membership, and the order of the 

polynomials… all of those are structural decisions.  

But, what if the structure together with the parameters were driven by a learning algorithm. On 

this section an experimental optimization method is presented, the method is able to construct 

models structural and parametrically fitted to the time series observed.  

The two most common implementation of the genetic programming method are introduced: the 

Cartesian genetic programming, who constructs directed acyclic graphs based on pre-defied 

functions; and the Neural Cartesian genetic programming, who constructs directed acyclic 

graphs based on neurons. 
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 Cartesian genetic programing (CGP) 

CGP was originally proposed as a method for general genetic programming in [88]. While its 

name comes from its original application, evolving circuits on a two dimensional grid, modern 

CGP can represent any directed acyclic graph (DAG), and has been utilized in applications such 

as digital circuits [89], robot controllers [90], neural networks [91], image classifiers [92], and 

regression [93]–[95]. 

CGP represents DAGs using a linear genome of integer values. Each node in the DAG is 

encoded as a tuple of genes, with one gene specifying the function that the node applies to its 

inputs, and the remaining genes expressing where the node takes its inputs. Nodes can take 

input from either a problem input or any node preceding them in the linear genome. 

Restricting connections in this way prevents the creation of cycles, while still allowing CGP to 

reuse values. This is in contrast to tree based GP, which must duplicate functionality anywhere 

the same value is needed. To complete the representation, a set of extra genes are included at 

the end of the genome to specify which nodes or input locations to use as function outputs. 

As both output locations and information flow in the DAG are evolvable, often only a tiny 

fraction of the genome participates in creating the output values. These nodes are referred to as 

“active,” while the nodes not being used to create output values referred to as “inactive.” 

Inactive nodes allow for genetic drift, as individuals can be mutated without affecting their 

fitness.  

These mutations can then be incorporated, as future mutations can change the DAG structure 

causing previously inactive nodes to become active. Previous work suggests CGP is most 

efficient when up to 95% of the genome is inactive [96], it may be a result of the parsimony on 

the error convergence due to the low mutation rate [97]. 

CGP uses very simple evolutionary mechanisms. The most common evolutionary strategy is µ 

+ λ. On this article, we have defined µ ← 1 and λ ← 4; it means a total de 4 chromosomes 

to evolve, during each generation a single parent produces four offspring using mutation. The 

best offspring then compete with the parent replacing the parent if it is less fit.  

This replacement strategy encourages neutral drift. In CGP mutation, each gene of each node 

could change randomly to some different valid value. For example, if a function gene is chosen 

for mutation, its new value is randomly chosen from all possible functions, excluding the gene’s 

current value.  

As it is mentioned on [98], experience shows that in order to achieve a reasonably fast evolution, 

the mutation should arrange rate μr to be such that the number of genes chosen for mutation 

being a function of the genotype length. However, some authors [89]–[91], [98] prefer to fix 

the mutation rate to values between 1-10%. It is also recommended to maintain high mutation 

rates on small genotypes for fast evolution. 
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 Neural Cartesian genetic programing 

Neural Cartesian genetic programing (NCGP) is a natural driven evolution of CGP. It 

introduces the replacement of the node functions for neuronal operators, granting a similar look 

to the neuron functions on NN architectures. As well as the CGP, the driven force of the 

evolution lies on a genetic evolutionary mechanism which need time and patience for a 

moderate accuracy convergence. 

The DAG evolved from the training process could be suitable for the exploited data, but for 

less computational effort a non-oversized NN could achieve better performances. Finally CGP 

and NCGP could be considered an excellent modelling strategy to be exploited for academic 

publications on the load forecasting, but they will never beat robust and well accepted methods 

such as NN or SVM. 

NCGP can be considered an Evolutionary application towards the training of artificial neural 

networks.  In the case of CGP it is referred to as Cartesian Genetic Programming of Artificial 

Neural Networks (CGPANN). NCGP makes use of the same training strategy presented on the 

CGP theory but exploit the weights on the node connections, which have existed on the CGP-

Library but has been deliberately ignored for GCP implementations. 

  



Chapter 2: Load Forecasting on Power systems 

2.5 Load forecasting techniques  

 

 

80 | Adaptive Load Consumption Modelling on the User Side    

2.5.4 Hierarchical load forecasting and ensemble learning 

One of the major concern related with the previously introduced computational intelligence 

techniques is their lack of detail on the track of components and effects that control the time 

series. Although they constitute the top tier techniques used on forecast they are not enough 

complex to generalize all the components on the dependent variable on to a single model. 

Literature describe this problem as a trade-off between generalization and piecewise 

specialization [99]. The strategy followed for regression algorithms is to perform some type of 

decomposition of the search space on pieces to be regressed, limiting their inference to a finite 

number quadrants avoiding over map the regression surface. 

But, regression errors are inherent to the learning algorithms so their description of the 

quadrants is not totally accurate. In order to complement their guess, more elements will be 

added and a strategy to weight and combine the elements must be defined. 

Ensemble learning methods train multiple base-learners and then combine them using Boosting 

and Bagging as representatives. They ensembles is usually significantly more accurate than a 

single learner, and ensemble methods have already achieved great success in state-of-the art 

literature and many real-world tasks. 

The origins of ensemble methods, referring to the basic idea of deploying multiple models, is 

fuzzy due to has been in use for a long time; however, it is clear that ensemble methods have 

become a hot topic since the 1990s [100], and various fields such as data mining, pattern 

recognition, machine learning, neural networks and statistics have explored ensemble methods 

from different aspects [21], [26], [27]. 

On this thesis the ensemble learning approaches has been introduced on a custom ensemble 

approach called hierarchical load forecasting model. It includes an ensemble learning 

approach made by combining different multi-resolution specialized forecasters, who are in turn 

containing another ensemble group of base learners.   

 Ensemble methods 

An ensemble structure contains a number of learners called base learners. Base learners are 

usually generated from training data by a base learning algorithm which can be decision tree, 

neural network or other kinds of learning algorithms. Most ensemble methods use a single base 

learning algorithm to produce homogeneous base learners, i.e., learners of the same type, 

leading to homogeneous ensembles, but there are also some methods which use multiple 

learning algorithms to produce heterogeneous learners, i.e., learners of different types, leading 

to heterogeneous ensembles [24], [25].  

The generalization ability best characteristic of an ensemble, it is often much stronger than that 

of base learners. In fact, Ensemble methods are able to boost weak learners, which are even 

just slightly better than random guess, as well as strong learners which can make very accurate 

predictions.  
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The current area of ensemble methods is a sum of three early threads of research; these are, 

combining classifiers, ensembles of weak learners and mixture of experts. Combining 

classifiers was vastly studied in the pattern recognition community, this thread was 

characterized by its focus on strong classifiers and the design of powerful combining rules to 

get stronger combined classifiers.  

Ensembles of weak learners was mostly studied in the machine learning community. In this 

thread, researchers often work on weak learners and try to design powerful algorithms to boost 

the performance from weak to strong. This thread of work has led to the birth of famous 

ensemble methods such as AdaBoost, Bagging, etc., and theoretical understanding on why and 

how weak learners can be boosted to strong ones [101][102].  

Mixture of experts was mostly studied in the neural networks community. In this thread, 

researchers generally consider a divide-and-conquer strategy, try to learn a mixture of 

parametric models jointly and use combining rules to get an overall solution. The basic 

approach to construct an ensemble consist on two steps, i.e., generating the base learners, and 

then combining them. To get a good ensemble, it is generally believed that the base learners 

should be as accurate as possible, and as diverse as possible. 

 Hierarchical load forecast 

The novel approaches presented on this thesis are based on a hierarchical combination of 

ensemble learners, each one trained along a certain key multi-resolution element, i.e., one hour 

average load, wavelet decomposition level, etc.  The base learners explored goes from so called 

weak ones, i.e., spline regressions, MARS regression, BLMS regression, regression trees, CGP, 

to strong ones, i.e., NCGP, NARXC, NARX, NN, ANFIS, SVM. 

In this section we will introduce the ensemble theory [102] which provided the theoretical basis 

for the novel load forecasting architectures presented in the next chapter. The ensemble theory 

integrate the following design elements: 

 Ensemble learning methods to train the base learners 

 Combination methods for the base learners 

 Ensemble diversity measurements 

 Pruning methods and  the identification of the optimal size of learners and  

 Clustering methods for base learner specialization 

 Ensemble learning methods 

Ensemble learning methods are closely related with sampling methodologies. Sampling refers 

to the selection of a subset of individuals from a population to estimate the characteristics of 

the entire population. The main advantage of these methods on ensemble modelling is the 
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statistical diversity founded at each subset. This is translated to a better capacity of 

generalization due to the diversity of weak learners.  

On the other hand, sampling allows to create probability density estimations by the 

combination of the individual forecast made by the ensemble forecasters. The sampling method 

employed on this thesis is called bagging, it has been selected for the validation methods of the 

weak learners and the entire ensemble. Typical validation methods comprises the k–fold cross 

validation (K-FCV) and hold out validation (HOV). So, Lets describe the formal description of 

the ensemble learning approaches. 

According to how the base learners are generated, there are two paradigms of ensemble 

methods, that is, sequential ensemble methods where the base learners are generated 

sequentially, with Ada-Boost as a representative, and parallel ensemble methods where the base 

learners are generated in parallel, with Bagging as a representative [29], [103][102]. 

The basic motivation of sequential methods is to exploit the dependence between the base 

learners, since the overall performance can be boosted in a residual-decreasing way. The basic 

motivation of parallel ensemble methods is to exploit the independence between the base 

learners, since the error can be reduced dramatically by combining independent base learners. 

The name Bagging came from the abbreviation of Bootstrap AGGregatING. As the name 

implies, the two key ingredients of Bagging are bootstrap and aggregation. Bagging applies 

bootstrap sampling to obtain the data subsets to train and validate the base learners, generating 

a different distribution for each base learner. 

Table 3. Bagging algorithm of a simple regression. 

Input: Training data set 𝐷𝑇𝑟 = {(𝑥𝑇𝑟[1, … ,𝑚], 𝑦𝑇𝑟[1, … ,𝑚])}; 

Base learner algorithm 𝔏 ;  

Number of base learners 𝐸 ; 

Process: 

1. for e = 1,…,E: 

2. ℎ𝑒 = 𝔏(𝐷, 𝐷𝑏𝑠) 𝑜𝑟 𝔏(𝐷𝑖𝑏 , 𝐷𝑜𝑜𝑏)       % (𝐷,𝐷𝑏𝑠) data set due to bootstrap distribution 

3. end 

Output: 𝐺𝐸𝑜𝑜𝑏(𝑥) =
1

𝐸.𝑚
∑ (ℎ𝑒(𝑥) − 𝑦)  .  𝕀(𝑥 ∈ 𝐷𝑜𝑜𝑏)
𝐸
𝑒=1      % generalization error 

 

𝐴𝑉𝐺𝑀𝑆𝐸𝑜𝑜𝑏(𝑥) =
1

𝐸.𝑚
∑ (ℎ𝑒(𝑥) − 𝑦)

2 .  𝕀(𝑥 ∈ 𝐷𝑜𝑜𝑏)
𝐸
𝑒=1  % average out of bag MSE error 

The sampling process consist on generate bootstrap replicas, as much as weak learners, of the 

training data set (training part). Each bootstrap replica is generated by sampling with 

replacement, this create two new sets called “in-bag” and "out-of-bag" observations. In-bag 

observations is expected to have approximate 63% of unique samples, the rest 37% are 

duplicates.  

This means that 37% of samples have been omitted. These are the so called out-of-bag 

observations. They are used to estimate the predictive accuracy of the entire ensemble or about 
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the learners as out-of-bag errors, i.e., MSEOOB, RMSEOOB. Out-of-bag average error of 

the entire ensemble is often called generalization error, and can be obtained by average the 

errors of the base learners.  

This is an attractive feature of bagging, inclusive without supply test data is possible obtain 

reliable estimates of the predictive power in the training process. Bagging leads to 

"improvements for unstable procedures", which include, for example, artificial neural 

networks, classification and regression trees, and subset selection in linear regression [104]. 

Notice that bagging is not recommendable for base learners based on autoregressive structures 

such as NARXNN, NARNN, LRNN. 

The out-of-bag samples can also be used to stablish the posterior probability of the prediction. 

Among the techniques employed to calculate the conditional probability density function 

(CPDF), there are some ones based on prediction error approaches, such as Monte Carlo 

approaches. These ones execute several times a modelling algorithm in order to set the 

distribution of the prediction and stablish the prediction distribution at the same time a margin 

error zone. 

On our case the due to the data set diversity has been gather on individual learner, and those 

have been trained using a stochastic sampling algorithm, every base-learner prediction could 

be accepted as a probable prediction. It means that gather all the predictions could leads to 

obtain the conditional distribution. 

On this thesis, the random sampling without replacement is also explored in order to create 

in-bag and out-of-bag sets of observations, results are presented on Chapter 3. 

  Combination methods 

Combination methods refers to the techniques employed to combine the set of base learners in 

order to achieve strong generalization ability. Combination methods are supported on three 

fundamental reasons: accuracy of the ensemble (statistical), finding the optima (computational), 

finding true hypothesis (representational). 

The statistical issue refers to the mixture of base learners trained, each one representing a 

hypothesis. Due to the risk of choosing a wrong hypothesis for new data, its better combining 

them. The computational issue refers to the capacity of learners to get stuck on local optima, 

by combining the hypothesis (predictor functions) choose a wrong local minimum can be 

avoided. The representation issue presents a riddle, supposing that exist unknown hypothesis 

that cannot be generated form the limited training data, by a combination of hypothesis could 

be possible reach the unknown ones. 

These three issues are among the most important factors for which the traditional learning 

approaches fail. A learning algorithm that suffers from the statistical issue is generally said to 

have a high “variance”, a learning algorithm that suffers from the computational issue can be 

described as having a high “computational variance”, and a learning algorithm that suffers from 
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the representational issue is generally said to have a high “bias”. Therefore, through 

combination, the variance as well as the bias of learning algorithms may be reduced [102]. 

The basic combination methods start with: simple/weighted averaging, 

majority/plurality/weighted/soft voting. But on this thesis we have been explored the 

combination by learning where the individual learners are combined by another learner, this 

technique is often called Staking.   

2.5.4.1.1.1 Staking 

The main idea is connect the base learners “first-level learners” by a meta-learner “second-level 

learner” [105]. The first-level learners are training using the original data set, and their 

predictions over new samples are then used as a new data set to train the second-level learner. 

The pseudo-code of a general stacking procedure is summarized below. 

Table 4. General stacking procedure. 

Input: Training data set 𝐷𝑇𝑟 = {(𝑥𝑇𝑟[1, … ,𝑚], 𝑦𝑇𝑟[1, … ,𝑚])};  

Number of base learners 𝐸 ; 

First-level learning algorithm 𝔏𝐸 ;  

Second-level learner algorithm 𝔏 ; 

Process: 

1. for e = 1,…,E:                            % Train a first-level learner by applying the 

2.      ℎ𝑒 = 𝔏𝐸(𝐷𝑇𝑟)                         % first level learning algorithm 

3. end 

4. 𝐷′ = 0;                                        % Generate a data set for second-layer learner 

5. for e = 1,…,E: 

6.     for i = 1,…,m: 

7.         𝑧𝑒[𝑖] = ℎ𝑒(𝑥
𝑉𝑎𝑙[𝑖]);             % Prediction over the validation samples 

8.     end 

9.     𝐷′ = 𝐷′ ∪ (𝑧𝐸 , 𝑦
𝑉𝑎𝑙); 

10. end  

11. ℎ′ = 𝔏(𝐷′);                                          % Train the second-level learner h’ using the 𝐷′ 

Output: 𝐻(𝑥) = ℎ′(ℎ1(𝑥
𝑇𝑠), … , ℎ𝐸(𝑥

𝑇𝑠))     % Second level prediction over the test set 

If the data used to train the first-level learner are also used to generate the new data set for 

training the second-level learner, there will be a high risk of overfitting. Hence, it is suggested 

cross validation or leave-one-out procedure. On this thesis, the validation data is used to train 

the second-learners. 

2.5.4.1.1.2 Mixture of experts 

Mixture of experts (ME) is an effective approach to train multiple learners as experts on a set 

of features. In contrast to typical approximation to ensemble learning, where individual learners 

are trained for the same problem, ME works in a divide-and-conquer strategy where a complex 

task is broken up into several simpler and smaller subtasks, and individual learners (called 

experts) are trained for different subtasks.  
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A function called Gating is usually employed to combine the experts by a system of weights. 

In the benchmarks of models presented on this thesis no gating function is presented because 

the 2nd learner is in enough capable to mix the 1st learners.  The equation that define the 

procedure of the ME and the final output is presented below in a simple regression notation 

(f(x) = a*x+b). 

Eq. 41 𝑯(𝒚|𝒙;𝚿) = 𝒉′ (𝒉𝑲,𝑬(𝒚 | 𝒙)) = ∑ ∑ 𝒘𝒌,𝒆 ∙ 𝒉𝒌,𝒆(𝒚 | 𝒙; 𝜽𝒌)
𝑬
𝒆=𝟏

𝑲
𝒌=𝟏 + 𝒃𝒌,𝒆 

Where, 𝚿 includes the unknown parameters, the output y is a continuous variable. Given an 

input x, each local expert 𝒉𝒌,𝒆 tries to approximate the distribution of y and obtains a local 

output 𝒉𝒌,𝒆(𝑦 | 𝒙; 𝜽𝒌), where 𝜽𝒌 is the k-th feature used to build the ensemble. The 2nd level 

learner provides a set of coefficients: 𝒘𝒌,𝒆 that weigh the contributions of experts, and 𝒃𝒌,𝒆 is 

the parameter of bias. Thus, the final output of the ME is a weighted sum of all the local outputs 

produced by the experts.  

 Ensemble diversity 

Ensemble diversity is known as the difference among the individual learners inserted by the 

ensemble learning strategy. As it was presented on the previous sections, diversity can be 

provided by sampling methods, mixture of experts based on features, or mixture of experts 

based on clustering [106]–[109]. Last one introduced on the next section. 

But, the major obstacle for the diversity lies in the fact that the individual base learners are 

trained for the same task, and from the same training data, making them highly correlated. As 

a conclusion, a successful ensemble learning approach lies in achieving a good trade-off 

between the individual performance (learner’s accuracy) and learner’s diversity. 

In fact the diversity is the holy grail of the field of ensemble learning, there is no well-accepted 

formal definition of it, but is crucial achieved it and measure it on this thesis. 

2.5.4.1.2.1 Diversity generation 

We already study some effective some heuristic mechanisms for diversity generation in the 

ensemble construction. On these, the basic idea is to inject some randomness into the learning 

process. On this section we will classify them based on their mechanics. 

Data Sample Manipulation, consist on the training of individual learners from a re-sampled 

original data set, i.e. Bagging, AdaBoost. Input Feature Manipulation, consist on the 

description of the training data on a set of features. Different subsets of features, a.k.a. 

subspaces, provide different views on the data. Making the individual learners trained from 

different subspaces diverse. The searching for features could be based on inputs, i.e. day of the 

week, could be based on clustering, or be totally random.  

Learning Parameter Manipulation, this mechanism consist on generate diverse individual 

learners by using different parameter settings for the base learning algorithm, i.e, different 
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initial weights can be assigned to individual neural networks. Output Representation 

Manipulation, it consist on the manipulation of the base learners outputs in order to transform 

their nature as if other class of learner algorithm produce it, i.e.,  converts multi-class outputs 

to multivariate regression outputs to construct individual learners. 

2.5.4.1.2.2 Error decomposition measures for ensemble methods 

We could infer that the generalization error of an ensemble have a direct connection with the 

diversity concept, or a term related to. On this section two famous error decomposition schemes 

for ensemble methods will be studied, known as, the error-ambiguity decomposition and the 

bias-variance decomposition. 

2.5.4.1.2.3 Error-ambiguity decomposition  

It measure the ability of an ensemble and their learners to approximate a real function that 

describe the target, and it final prediction. A weighted ensemble average is defined by  

Eq. 42 𝑯(𝒙) = ∑ 𝒘𝒆 ∙ 𝒉𝒆(𝒙)
𝑬
𝒆=𝟏  

Then, the error of the ensemble 𝑯 and each one of the individual learner 𝒉𝒆  and the, are 

respectively 

Eq. 43 𝑒𝑟𝑟(𝐻|𝑥) = (𝑦(𝑥) − 𝐻(𝑥))
2
 

Eq. 44 𝒆𝒓𝒓(𝒉𝒆|𝒙) = (𝒚(𝒙) − 𝒉𝒆(𝒙))
𝟐 

Given an instance x, the ambiguity term measures the disagreement among the individual 

learners on instance x. the ambiguity of the individual learner he is defined as 

Eq. 45 𝒂𝒎𝒃𝒊(𝒉𝒆|𝒙) = (𝒉𝒆(𝒙) − 𝑯(𝒙))
𝟐 

And the average ambiguity of the ensemble is 

Eq. 46 𝒂𝒎𝒃𝒊̅̅ ̅̅ ̅̅ ̅̅ (𝒉|𝒙) = ∑ 𝒘𝒆 ∙ 𝒂𝒎𝒃𝒊(𝒉𝒆|𝒙)
𝑬
𝒆=𝟏  

Then, the average ambiguity, which is the variance of the output over the ensemble is 

Eq. 47 𝒂𝒎𝒃𝒊̅̅ ̅̅ ̅̅ ̅̅ (𝒉|𝒙) = ∑ 𝒘𝒊 ∙ 𝒆𝒓𝒓(𝒉𝒆|𝒙)
𝑬
𝒆=𝟏 − 𝒆𝒓𝒓(𝑯|𝒙) = 𝒆𝒓𝒓̅̅ ̅̅ ̅(𝒉|𝒙) −  𝒆𝒓𝒓(𝑯|𝒙)  

Being  

Eq. 48 𝒆𝒓𝒓̅̅ ̅̅ ̅(𝒉|𝒙) = ∑ 𝒘𝒊 ∙ 𝒆𝒓𝒓(𝒉𝒆|𝒙)
𝑬
𝒆=𝟏  

Where w is the weighted average of the individual errors. Based on the above notations, we can 

get the error-ambiguity decomposition. The term 𝒆𝒓𝒓(𝑯|𝑥) is the ensemble error. 

Eq. 49 𝒆𝒓𝒓(𝑯|𝒙) = 𝒆𝒓𝒓̅̅ ̅̅ ̅(𝒉|𝒙) − 𝒂𝒎𝒃𝒊̅̅ ̅̅ ̅̅ ̅̅ (𝒉|𝒙)   
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By averaging over the input distribution 𝑃(𝑥), and implicitly over the target outputs y(x), one 

obtain the ensemble generalization error. 

Eq. 50 𝒆𝒓𝒓 = 𝒆𝒓𝒓̅̅ ̅̅ ̅ − 𝒂𝒎𝒃𝒊̅̅ ̅̅ ̅̅ ̅̅    

Notice that the weights are simply impossible to get on non-linear models, for that reason on 

the section we will introduce a more general notation that consider unitary weights. 

2.5.4.1.2.4 Bias-variance decomposition 

This decomposition is an important tool for analyzing the performance of ensemble methods 

and learning algorithms in general. Given a learning target and the size of training set, it divides 

the generalization error of a learner into three components, i.e., intrinsic noise, bias and 

variance.  

The intrinsic noise is a lower bound on the expected error of any learning algorithm on the 

target; the bias measures how closely the average estimate of the learning algorithm is able to 

approximate the target; the variance measures how much the estimate of the learning approach 

fluctuates for different training sets of the same size. 

Since the intrinsic noise is difficult to estimate, it is often subsumed into the bias term. Thus, 

the generalization error consist into the bias term which describes the error of the learner in 

expectation, and the variance term which reflects the sensitivity of the learner to variations in 

the training samples. 

Let’s denote the target y(x) as y, and h denote the learner. For squared loss, the decomposition 

is 

Eq. 51 𝒆𝒓𝒓(𝒉) = 𝔼[(𝒉 − 𝒚)𝟐] = (𝔼[𝒉] − 𝒚)𝟐 + 𝔼[(𝒉 − 𝔼[𝒉])𝟐] 

= 𝒃𝒊𝒂𝒔(𝒉)𝟐 + 𝒗𝒂𝒓𝒊𝒂𝒏𝒄𝒆(𝒉) 

Where the bias and variance of the learner h is respectively 

Eq. 52 𝒃𝒊𝒂𝒔(𝒉) = 𝔼[𝒉] − 𝒚;                        𝒗𝒂𝒓𝒊𝒂𝒏𝒄𝒆(𝒉) = 𝔼(𝒉 − 𝔼[𝒉])𝟐 

For an ensemble of E learners, the decomposition can be further expanded, yielding the bias-

variance-covariance decomposition. Without loss of generality, suppose that the individual 

learners are combined with equal weights. The averaged bias, averaged variance, and averaged 

covariance of the individual learners are defined respectively as 

Eq. 53 𝒃𝒊𝒂𝒔̅̅ ̅̅ ̅̅ ̅(𝑯) =
𝟏

𝑬
∑ (𝔼[𝒉𝒆] − 𝒚)
𝑬
𝒆=𝟏  

Eq. 54 𝒗𝒂𝒓𝒊𝒂𝒏𝒄𝒆̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ (𝑯) =
𝟏

𝑬
∑ (𝒉𝒆 − 𝔼[𝒉𝒆])

𝟐𝑬
𝒆=𝟏  

Eq. 55 𝒄𝒐𝒗𝒂𝒓𝒊𝒂𝒏𝒄𝒆̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅(𝑯) =
𝟏

𝑬(𝑬−𝟏)
∑ ∑ (𝒉𝒆 − 𝔼[𝒉𝒆])(𝒉𝒋 − 𝔼[𝒉𝒋])

𝑬
𝒋=𝟏;𝒋≠𝒆

𝑬
𝒆=𝟏  
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Then, the bias-variance-covariance decomposition of squared error of ensemble is 

Eq. 56 𝒆𝒓𝒓(𝑯) = 𝒃𝒊𝒂𝒔̅̅ ̅̅ ̅̅ ̅̅ 𝟐(𝑯)+ 𝟏
𝑬
𝒗𝒂𝒓𝒊𝒂𝒏𝒄𝒆̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ (𝑯)+ (𝟏− 𝟏

𝑬
) 𝒄𝒐𝒗𝒂𝒓𝒊𝒂𝒏𝒄𝒆̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅(𝑯) 

It shows that the squared error of the ensemble depends heavily on the covariance term, which 

models the correlation between the individual learners. The smaller the covariance, the better 

the ensemble. It is obvious that if all the learners make similar errors, the covariance will be 

large, and therefore it is preferred that the individual learners make different errors. 

Thus, the covariance term shows that the diversity is important for ensemble performance. 

Notice that the bias and variance terms are constrained to be positive, while the covariance term 

can be negative. As you will notice there is a connection between the error ambiguity 

decomposition and the bias-variance-covariance decomposition. For simplicity, assume that the 

individual learners are combined with equal weights.  

Eq. 57 𝒃𝒊𝒂𝒔̅̅ ̅̅ ̅̅ ̅𝟐(𝑯) + 
𝟏

𝑬
𝒗𝒂𝒓𝒊𝒂𝒏𝒄𝒆̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ (𝑯) + (𝟏 −

𝟏

𝑬
)  𝒄𝒐𝒗𝒂𝒓𝒊𝒂𝒏𝒄𝒆̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅(𝑯) = 𝒆𝒓𝒓̅̅ ̅̅ ̅(𝑯) − 𝒂𝒎𝒃𝒊̅̅ ̅̅ ̅̅ ̅̅ (𝑯) 

Eq. 58 𝑒𝑟𝑟̅̅̅̅̅(𝐻) =
1

𝐸
∑ (ℎ𝑒 − 𝑦)

2𝐸
𝑒=1 = 𝑏𝑖𝑎𝑠̅̅ ̅̅ ̅̅ 2(𝐻) + 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ (𝐻) 

Eq. 59 𝑎𝑚𝑏𝑖̅̅ ̅̅ ̅̅ ̅(𝐻) =
1

𝐸
∑ (ℎ𝑒 − 𝐻)

2𝐸
𝑒=1 = 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ (𝐻) − 

1

𝐸
𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ (𝐻) − (1 −

1

𝐸
)  𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ (𝐻) 

Thus, we can see that the term variance appears in both the averaged squared error term and the 

average ambiguity term, and it cancels out if we subtract the ambiguity from the error term. 

Moreover, the fact that the term variance appears in both err and ambi terms indicates that it is 

hard to maximize the ambiguity term without affecting the bias term, implying that generating 

diverse learners is a challenging problem.  

 Ensemble pruning 

Ensemble pruning tries to select a subset of individual learners, rather than combining all of 

them to comprise the ensemble. Among the advantages obtained are: smaller sizes, increase of 

the efficiency, better generalization error.  

Originally, ensemble pruning was defined for the instance where the individual learners have 

already been generated, and no more individual learners will be generated from training data 

during the pruning process. Although, recent literature have extended it to all steps of ensemble 

construction.  

Indeed, the central problem of ensemble pruning research is how to design practical algorithms 

leading to smaller ensembles without sacrificing or even improving the generalization 

performance contrasting to all-member ensembles. Ensemble pruning methods can be classified 

into three categories: 
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 Ordering-based pruning. They try to order the individual learners according to some 

criterion, and only the learners in the front-part will be put into the final ensemble.  

 Clustering-based pruning. Those methods try to identify a number of representative 

prototype individual learners, from  groups created by clustering, in order to constitute 

the final ensemble.  

 Optimization-based pruning. Those methods formulate the ensemble pruning 

problem as an optimization problem which aims to find the subset of individual learners 

that maximizes or minimizes an objective related to the generalization ability of the final 

ensemble. 

It is obvious that the boundaries between different categories are not crisp, and there are 

methods that can be put into more than one category.  

 Clustering methods 

We already spoke about the possibility to use clustering to create diversity inside the ensemble, 

it could be considered a data sample manipulation. Clustering consist on the classification of 

the training data by grouping them into clusters based on features of the inherent data structure.   

Table 5. General clustering procedure on ensemble algorithms. 

Input: Training data set 𝐷𝑇𝑟 = {(𝑥𝑇𝑟[1, … ,𝑚], 𝑦𝑇𝑟[1, … ,𝑚])};  

Number of base learners 𝐸 ; 

1st level learning algorithms 𝔏𝐸 ;  

2nd level learning algorithm 𝔏 ; 

Set of features to train expert 𝜃𝐾 ; 

Number of features/subspaces/clusters 𝐾; 

Process: 

1. 𝜃𝐾 = Classify(𝐷𝑇𝑟 , 𝐾);            % Classify the data set                     

1. for k = 1,…,K:                         % Select the feature 

2.     for e = 1,…,E:                      % Select a 1st learner 

3.         𝑓𝑘,𝑒 = 𝑅𝑆(𝐷𝑇𝑟|𝜃𝑘)           % Random sampling over the class 

4.         ℎ𝑘,𝑒 = 𝔏𝐸(𝑓𝑘,𝑒)                % Train a 1st level learner for the set f 

5.     end 

6. end 

7. 𝐷′ = 0;                                     % Generate a data set for second-layer learner 

8. for k = 1,…,K:                         % Select the feature 

9.    for e = 1,…,E: 

10.       for i = 1,…,m:  

11.           𝑧𝑘,𝑒[𝑖] = ℎ𝑘,𝑒(𝑥
𝑉𝑎𝑙[𝑖]);  % Prediction over the validation samples 

12.       end 

13.       𝐷′ = 𝐷′ ∪ (𝑧𝑘,𝑒 , 𝑦
𝑉𝑎𝑙); 

14.    end  

15. end 

16. ℎ′ = 𝔏(𝐷′);                              % Train the second-level learner h’ using the 𝐷′ 

Output: 𝐻(𝑥) = ℎ′(ℎ1,1(𝑥
𝑇𝑠), … , ℎ𝐾,𝐸(𝑥

𝑇𝑠))     % Second level prediction over the test set 



Chapter 2: Load Forecasting on Power systems 

2.5 Load forecasting techniques  

 

 

90 | Adaptive Load Consumption Modelling on the User Side    

Clustering can be used as a stand-alone exploratory tool to gain insights on the nature of the 

data, and it can also be used as a preprocessing stage to facilitate subsequent learning tasks. A 

lot of clustering methods have been developed and various taxonomies can be defined from 

different perspectives clustering methods could be divided on the following five categories. 

Partitioning Methods. A partitioning method organizes the data space into k partitions by 

optimizing an objective partitioning criterion. The most well-known partitioning method is k-

means clustering which optimizes the square-error criterion. 

Hierarchical Methods. A hierarchical method creates a hierarchy of clusters on the data space 

at various granular levels, where a specific clustering can be obtained by thresholding the 

hierarchy at a specified level of granule.  

Density-Based Methods. A density-based method constructs clusters on the data space based 

on the notion of density, where regions of instances with high density are regarded as clusters 

which are separated by regions of low density. DBSCAN is a representative density-based 

clustering method, which characterizes the density of the data space with a pair of parameters 

(radius, MinPts).  

Grid-Based Methods. A grid-based method quantizes the data space into a finite number of 

cells forming a grid-structure, where the quantization process is usually performed in a multi-

resolution style. STING is a representative grid-based method, which divides the data space 

into a number of rectangular cells.  

Each cell stores statistical information of the instances falling into this cell, such as count, mean, 

standard deviation, minimum, maximum, type of distribution, etc. There are several levels of 

rectangular cells, each corresponding to a different level of resolution. Here, each cell at a 

higher level is partitioned into a number of cells at the next lower level, and statistical 

information of higher-level cells can be easily inferred from its lower-level cells with simple 

operations such as elementary algebraic calculations. 

Model-Based Methods. A model-based method assumes a mathematical model characterizing 

the properties of the data set, where the clusters are formed to optimize the fit between the data 

and the underlying model. The most famous model-based method is GMM-based clustering, 

which works by utilizing the Gaussian Mixture Model (GMM). 

 



Chapter 3: Study and contributions to load forecasting 

2.5 Load forecasting techniques  

 

 

Adaptive Load Consumption Modelling on the User Side                      | 91 

  

 

  

      

  

C H A P T E R 
  

  `  

    

Study and Contributions to 

Load Forecasting 

  

This chapter presents the contributions on the load forecasting techniques brought by the research 

made on this thesis. The contents follow a timeline directed by the problem statement. It starts with 

the implementation of single forecast algorithms, move through implementations of novel ensemble 

learning algorithms, and finish the compilation of the best strategies on an ensemble predictor. 
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3.1 Introduction 

n the chapter 2 we sketched a variety of areas for which the load forecasting 

techniques are widely used, a complete description of the characteristics that defines 

each component of the load profile, the state of the art on the preprocessing techniques 

on the area, and the framework of algorithms that compose the techniques used for energy 

prediction on the literature. 

On this chapter, we will introduce the contributions on the forecasting field proposed on this 

thesis. The contributions have been classified on three main categories attending to the standard 

classification of forecasting on temporal series. 

The following sections will start with a machine learning approach, an ANFIS combined with 

a robust multi-resolution techniques in order to obtain an improvement variance error without 

the decrease the generalization error. 

Continues with the introduction of a novel evolutive method (CGP) as result of the search for 

a method with high generalization and adaptiveness. On third section, approaches based on 

ensemble learning are presented. Although this technique is part of the machine learning 

algorithms, we have create a special section due the extensive develop of novel methods on this 

area.  

  

O 
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3.2 Load forecasting algorithm based on expert systems and 
multi-resolution analysis  

he implementation presented on this section makes use of an algorithm that possesses 

strong learning rules and human reasoning inspired rules; we are speaking about the 

expert systems. As was stated on the chapter 2, implementations based on non-linear 

models obtain better results on forecasting due their aptitude to shape non-trivial and 

non-trivial relations.  

This relationship exists between future consumption and factors that produce it (climatic 

conditions, goals of production, labor at calendar, etc.), and precisely this has motivated the 

risen of hybrid techniques on the field of expert systems; the complexity of the forecast in real 

cases. This is the case of combination between ANFIS and pre-filter and optimization 

components [15], [110], [111]. 

Following this trend, we introduce an approximation to a STLF on the user-side to be presented 

from here onward. It employs an ANFIS algorithm as modelling core and the SWT as 

preprocessing component; the implementation is carried out based on the general electricity 

consumption of the car manufacturer. 

3.2.1 Theoretical approach 

The objective of the STLF algorithm proposed is introduce the wavelet preprocessing in order 

to decompose the target variables into a number of approximations and details of original signal. 

This would bring some useful insight on the construction of analytical relationships inside of 

the modelling algorithm.  

The load forecasting process implemented over the industrial scenario, have been tested using 

the inputs and target addressed on the Figure 14. The inputs variables created has been based 

on temporal information of the series, weather information of the consumption location, and 

delayed versions of the target. 

Decomposed signals are fed into an ANFIS algorithm, and finally when the model converges 

to the minimal error between the information of training and checking data, the best model is 

obtained. Figure 14 present the flow diagram of the algorithm implement on the proposed 

approach. 

On the Step 0, the drivers and target are gathered on a matrix. The drivers employed as 

predictors of the total electricity demanded by the car manufacturing company where: 

Temperature (Temp) in Celsius; Hour of the day (Hour), a integer number between 0 and 23, 

Day of the week (WD), a integer number between 1-7; and labor  day (LD), a Boolean. 

Once the input matrix is created, the data is cleaned from out layers and the remaining gaps are 

filled on the Step 1. Next, the endogenous variables such as one day (Elec_1Dd) and one week 

(Elec_1Wd) delayed consumptions are created in base of the target consumption. These 

T 
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variables are added to the modelling dataset. Then, the dataset is partitioned in three sets 

training (60%), tes (30%), and validation (10%). The normalization of the train-test data set to 

normal distribution using z-is carried out as final step. The original statistical properties for a 

future reuse.  

On the Step 2, inputs are decomposed using the SWT. The endogenous variables are divided 

in six levels of approximations (A1-A6) and details (D1-D6); the temperature is divided in three 

levels; for this decomposition, the wavelet function Db10 is used. In this stage is applied 

thresholding to remove strong variations in the coefficients, which can cause noise in the 

reconstruction. The approximations of the original signals will be versions more smoothed of 

the original ones, whereas the details allow ANFIS make thin adjustments [112]. 

Later, the process of reconstruction applying ISWT is effectuated. Selecting A5, D1 and D5 to 

describe the delayed consumptions and A3, D1 and D3 to describe temperature. These signals 

retain most of the information of the original signals according to authors [15], [113]. The 

original Temperature and endogenous variables are replaced by their filter versions.  

 

Figure 14. Flow diagram of the Load forecasting algorithm based on expert systems and multi-

resolution analysis. 
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On the Step 3, the elements of the modelling algorithm are set. In this case, two membership 

functions are selected by every input and their parameters are initialized using clustering. The 

ANFIS is trained using back propagation method. The maximum number of epochs to reach 

the minimum generalization error is fixed to 200 due to the fast convergence of the learning 

algorithm. If the convergence is not reach, the training task will be restarted. 

Once the model is obtained, the validation set is employ to obtain the prediction on the Step 4. 

In this step, the validation set is normalized using the statistical information of the train-test 

dataset, and feed on to the model. In order to evaluate the precision in the forecasting of the 

load profile, the root means square error (RMSE) and the mean absolute percentage error 

(MAPE) are considered. 

 Wavelet transform (WT) 

WT belong to time-frequency transforms, it decomposes the origin signal on a family of 

functions with zero average called wavelets. These are created from time-shift and time-expand 

on the function base called wavelet mother. WT's can be divided in two categories: discrete 

wavelet transforms (DWT) and continuous wavelet transforms (CWT). Any of the wavelet 

filtered signals (W(a,b)), of an original signal f(x), using the wavelet mother ϕ(x) is given by: 

Eq. 60 𝑾(𝒂, 𝒃) =
𝟏

√𝒂
∫ 𝒇(𝒙)𝝓(

𝒙−𝒃

𝒂
)𝒅𝒙

+∞

−∞
 

Where a=f0⁄f and f0 is the central frequency of function wavelet ϕ(x), a is known as scale factor 

and determines the width of ϕ(x); b is parameter of shift and determines central position of ϕ(x). 

The CWT needs a significant capacity of calculation, represented in time and resources. It 

happens with the majority of transformations in continuous time, on the other hand, DWT 

reduces significantly these disadvantages and is much simpler to implement. the DWT is 

defined as 

Eq. 61 𝑾(𝒎,𝒏) =
𝟏

√𝒂
∑ 𝒇(𝒙)𝝓(

𝒙−𝒃

𝒂
)𝑻−𝟏

𝒕=𝟎  

Where T is the length of the signal f(x). Shift and scale parameters are functions, on powers of 

2, of the integer variables m and n (a=2^m, b=n2^m). It can be observed how the signal in 

discrete terms is linear combination of shifted and scaled functions. It makes us resemble the 

known time-frequency transformations, but do not get confused; wavelet transform has a non-

linear axis on frequency. In fact, it gives more importance to a few frequencies instead of others. 

Rapid algorithm DWT is based on Mallat's development [114]. It implementation use 

decimation to facilitate the computational process, but it causes losses of information in tasks 

of forecasting. In order to settle the problem we have been always use not decimated DWT 

known as SWT. In Figure 15 the multilevel process, presented as a successive decomposition 

on the original sign and each of his approximations, proposed by Mallat is observed.  
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Figure 15. Process of multilevel decomposition realized by the Wavelet transforms. 

In this thesis has been selected like wavelet mother ϕ(x) the Daubechies scaling function of 

order 10. This wavelet offers an appropriate balance between wavelength and smoothness. That 

allows analyze to simple sight the consumption profile to realize short-term forecast [15], [112]. 

It is possible due that approximations of the signal present a polynomial approximation of minor 

degree that the original ones. 

3.2.2 Experimental results 

The errors obtained for the current implementation are presented in comparison with a simple 

ANFIS implementation on the Table 6. Despite to appear being low, these error errors are 

significantly high when are measure on kWh. 

Table 6. Error the Load forecasting algorithm based on expert systems and multi-resolution 

analysis. 

 RMSE (%) MAPE (%) 

Current implementation 5.3 11.56 

ANFIS 6.5 13.54 

 

However, taking into account that the forecast was realized in the user-side, which is 

characterized by a fast fluctuation of load, the results are suitable for be used in an iEMS. It is 

reasonable to conclude that the necessary polynomials to predict the load profile in the user-

side have to be more than polynomials to predict in the generator-side. 

The database was gathered between 1/06/2010 and 25/03/2011. Numerical results of the 

forecast are showed on the Figure 16 to Figure 17. These graphs present the predicted load 

profiles for weeks located in summer, autumn, winter, and spring respectively. 

Level 1 Approximation 1 Detail 1

Level 2 Approximation 2 Detail 2

Level 3 Approximation 3 Detail 3

Original Input Signal
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Figure 16. Annual consumption profile, original (red) and forecasted by the proposed Load 

forecasting algorithm based on expert systems and multi-resolution analysis (black). 

 

(a) 

 

(b) 

(c) 
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(d) 

 

Figure 17. Weekly profile of power consumption, original (red) and forecasted by the proposed 

STLF approach (black) for: (a) the summer week 07/12/10 to 07/19/10, (b) the autumn week 

10/18/10 to 10/25/10, (c) the winter week 01/24/11 to 01/31/11, (d) the spring week 03/14/11 

to 03/21/11. 

3.2.3 Discussion and conclusion 

In this section, we proposed an STLF algorithm based on expert systems and multiresolution 

analysis. The multiresolution element refers to the stationary wavelet transform, employed to 

filter and detect the cyclical information on the target profile. This stage contributes to planning 

the incoming steps of the modelling strategy.  

The families of wavelet functions implemented, Daubechies, are chosen because are 

characterized by maximum number of vanishing moments for a given support, which improves 

its ability to handle the information in load data. The performance of the proposed approach is 

compared with an ANFIS, and is found to be superior. This proves the effectiveness of proposed 

method on the treatment of the input variables characteristic as key on the reduction of the 

generalization error.  

Another contribution on the effectiveness of the algorithm is made by the combination of the 

filter key drivers and the fuzzy reasoning – polynomial evaluation performed by the ANFIS. 

The first one allows to the second one to follow the trend of the profile and not the finest details 

which contribute to an over fitting of the model. 

In presence of the obtained results with our current approach, we conclude that the STLF 

scheme proposed is suitable to be implemented on an EMS due to it meets with the requirement 

of enhance the global prediction accuracy by the mitigation of the uncertainty components 

carried out by the drivers and source of inaccurate forecasting’s. In terms of autonomy the 

preprocessing part constitute a hard obstacle due the selection of the parameters selected on the 

filtering are part of the human expertise and must be corrected with the experience. 
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3.3 Load forecasting algorithm based on Genetic Cartesian 
Programing. 

ost of the papers related with genetic programming found a niche on other 

application fields, being the load forecasting applications still at a congress level 

due to the experimental soul of the algorithm implementation. This constitutes a 

window of opportunity for reseach on the field.  

Published genetic programming methodologies have been attempted to tackle the load 

forecasting problem from an evolutive point of view [115]. These novel model structures are 

known for their integration of pieces of functional code, assembled using genetic programming.  

This section introduce an enhancement over a type of evolutionary programming algorithm 

called Cartesian Genetic Programming (CGP). The contributions are made in order to develop 

a model with one day ahead load forecasting capabilities. Regular CGP implementations fix its 

mutation ratio to low values causing a low convergence over a big number of generations [90], 

[115]–[117]. Also is known that CGP model produce overfitted models due to the use of a 

unique data set on the training phase. 

The main contribution described on this section is the proposal of a novel approach for the 

efficient evolution of models based on CGP. Our approach is applied on a regression problem, 

specifically short-term load forecasting. In alignment to the previous statement, we will test the 

following hypotheses:  

 A fitness function obtained from train-validation data sets can reduce the generalization 

error on the models. 

 A mutation rate method based on the generation epochs and MAPE of the train set could 

reduce the number of generations necessary to converge at a low forecast error. 

3.3.1 Theoretical approach 

In order to test our hypotheses, we have performed a multistep procedure as shown in the 

following figure. The procedure starts with the construction of the data array used by the 

modelling algorithms. 

The data array is randomly sorted in order to cancel the effects of the seasonality over the train 

and validation sets. Models are obtained from our proposed strategy and three relevant 

modeling methods and their forecast errors are calculated. The model errors are gathered over 

two hundred runs and the accuracy of the proposed strategy is compared with the others 

modelling methods. 

M 
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Figure 18. Flow chart of the procedure implemented in order to test the suitability of a load 

forecasting based on CGP. 

Step 0-1: Data array creation & Random sorting. Based on the data set of ACT-NSW 

regions, the data array used for the one day ahead forecast consist of the followings variables: 

dry bulb temperature, dew point, hour, day of week, holidays, previous day demand, previous 

week demand, and current demand. A random sort is applied over the data. The models use 

pieces of the data array divided into train (60%), validation (30%) and test (10%) sets. 

Step 2: Modeling. Based on the train-validation sets, the models learn the dynamics of the 

electric consumption. Each model adjusts its internal parameters using the train samples and 

verifies its accuracy over the validation ones. 

We have implemented a novel evolutive strategy in order to enhance the basic form of the CGP 

algorithm. Our approach is compared with the basic implementation of the CGP algorithm [93], 

[118] obtained from “http://cgplibrary.co.uk”, a polynomic regression, a binary decision tree, a 

neural network and an ANFIS model. The characteristics of the models have been presented on 

the modeling algorithms section.  

Step 3: Accuracy measures. Once the models are trained, we proceed to validate their accuracy 

evaluating them over the test partition. The Root Mean Square Error (RMSE) and MAPE have 

been calculated on each running. After two hundred executions, the mean and standard 

deviation of the error measures are calculated. This provides a general view of the error variance 

and the performance of the learning algorithm. 
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Step4: Results analysis. The distribution of the MAPE is studied using the Levene’s test [19, 

20]. It analyzes the observed data in order to compute the difference of the error distribution 

shape with respect to a Gaussian distribution, obtaining the p-value from these discrepancies. 

P-value allows to conclude if the convergence of our modelling approach is better than the basic 

CGP implementation in terms of a narrow distributed error.  

 Modelling Algorithms 

In order to model the ACT-NSW electricity consumption a novel evolutive strategy based on 

CGP is implemented. This strategy is called: Fast double checked Cartesian genetic 

programming (FCD-CGP). 

The proposed CGP implementation is based on the hypothesis that the generalization error can 

be reduced using a strategy that check the train and validation errors. This strategy provides 

robustness to the CGP method due to its double check on pairs of randomly sorted sets. The 

procedures described on this sections could be easily replicated by introducing the 

correspondent modifications on the original CGP implementation. 

  

Figure 19. Algorithm to select a new parent. 

The new parent selection algorithm performs the evaluation of the fitness function over N 

chromosomes using the train and validation sets as shown in previous figure. Only if a 

chromosome is able to obtain lower fitness in comparison with its parent, the new chromosome 

replaces the parent. Variables such as, the fitness value over the train and validation set and the 

generation number are saved. 
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The fitness function showed on previous figure is based on MAPE and is shared with all CGP 

implementations presented on this article. The mutation rate is calculated on the generations 

where an improvement of the fitness train error occurs, and persists until another calculation is 

made.  

The follow figure shows the equation used to calculate the mutation rate. It depends on the 

fitness obtained from the train set and the generations where a new parent is found. 

 

Figure 20. Algorithm to calculate the mutation rate at each generation. 

The concept behind the mutation rate equation are meant to provide an inertia effect over the 

random mutation. The derivative term over the train fitness error adds the capacity of use the 

error momentum to force an adaptive fast convergence. The derivative term over the best 

generations provide a supplementary momentum too, especially when the errors reach a steady 

state. 

 Study of the variance on the forecasting error 

Due to the genetic algorithm produce different models on each run, the estimation of the 

convergence accuracy must be evaluated. Some tests are introduced to validate the normal 

distribution on the forecast errors for the CGP modelling algorithms. These tests has been 

performed in order to measure the degree of disturbance introduced by our evolutive strategy 

on the normal error convergence of the CGP algorithm. In order to measure the disturbance 

degree, a large number of executions (200) over the model algorithms have been carried out.   

On the other hand, the test has only been applied over the CGP implementations as well as over 

the test set. 

The heteroskedasticity tests indicates the variability of the variances for a group of data sets 

[119]. Levene’s test is used for checking if k samples present heterogeneity of variances 

(heteroscedasticity) or homogeneity (homoscedasticity) [120]. On this test, the null hypothesis 

is the normality condition on the variances [121]. 

The homoscedasticity provides a measure of the goodness of the learning algorithm used to fix 

the internal model parameters [122]. In order to test our evolutive strategy, the random sort over 

the train, validation and test sets has been performed [123]. 

3.3.2 Experimental result 

In order to demonstrate the convergence qualities of the proposed evolutive strategy on a CGP 

algorithm against other relevant algorithms, a normalized database based on the Australian 

electric market has been used. 
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As relevant information, the parameters used on the execution of the CGP algorithms where: 

stop criteria fixed to 20000 generations, number of nodes fixed to 100+1, nodes columns fixed 

to 100 and rows fixed to 1, arity per node fixed to 2, any input node can use any of the previous 

node outputs.  

The allowed node functions were: square root, reciprocal, power, addition, subtraction, 

multiplication and division. On the case of the CGP regular approach, the mutation rate was set 

to 10%. 

The polynomial regression, introduced as an example for comparison, consist on an eight-

degree polynomial. In the case of the decision tree, it consist of 20 leaf nodes. The neural 

network consist of a single layer with 14 neurons. The ANFIS model consist of two membership 

functions per input.    

The reason behind choosing a polynomial regression and a decision trees algorithm was to 

compare the accuracy of the CGP approach based on their simple structure. The neural network 

and the ANFIS model have been introduced in order to compare the accuracy with state of the 

art algorithms. The CGP is able to ensemble a model based on simple function nodes and using 

only an evolutive algorithm to set the model parameters.  

Due to his simplicity, the models created act as mathematic functions easy to implement based 

on the DAG. This simplicity has led us to compare CGP with basic repressors with the quality 

of being easy to read such as polynomic regression and binary decision trees. The order and 

level used on those methods has been fixed proportionally to the median of nodes function 

obtained from the two hundred CGP models. 

After two hundred executions of the modeling algorithms over the randomly sorted data sets, 

the accuracy measures have been obtained. The median (M) and standard deviation (D) of the 

experiments have been recorded on the Table 7 for MAPE and RMSE over the training (Tr), 

validation (Va) and test (Ts) sets. 

Table 7.  Comparison of accuracy in terms of MAPE & RMSE values (median & std. Dev.) For 

models built over two hundred randomly sorted datasets. 

Model 
MAPE RMSE 

Tr Va Ts Tr Va Ts 

CGPprop 
M 3.53 3.95 4.13 3.49 3.81 3.94 

D 0.69 0.75 0.60 0.79 0.83 0.92 

CGP 
M 4.54 4.73 4.91 4.35 4.18 4.29 

D 0.84 0.83 0.90 0.88 0.80 0.91 

Tree 
M 4.12 4.14 4.15 3.42 3.51 3.53 

D ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 

Poly 
M 4.91 5.04 5.01 4.53 4.65 4.56 

D ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 

NN 
M 3.12 3.04 2.77 2.86 2.92 2.78 

D 0.18 0.16 0.19 0.15 0.13 0.13 

ANFIS M 4.55 4.21 4.32 4.12 4.02 4..9 
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D 0.75 0.45 0.51 0.66 0.52 0.47 

As it can be observed on the Table 7, the proposed evolutive strategy confers to the CGP 

modelling the ability to select the best chromosome with a low generalization error. This is 

demonstrated by the homogeneous values obtained from MAPE and RMSE over the data sets. 

Also, Table 7 confirms that our evolutive strategy produce a remarkable reduction over the 

standard deviation of the error. It means that our approach helps the model converge to low 

errors. 

On the other hand, we can check that the common CGP evolutive strategy that only uses the 

training set to train the model shows a clear tendency to be over trained. The standard deviation 

of the decision tree and polynomial model are close to zero due its deterministic learning 

algorithms. 

 Homoscedasticity test over the CGP algorithms. 

Regarding to the homoscedasticity study, Table 8 shows the result by applying Levenne’s test 

based on MAPE obtained from the CGP model algorithms using the test set. The symbol ‘b’ 

indicates that the variances of the distributions of the CGP algorithms for the current data set 

are not homogenous. It implies that the null hypothesis, normality of the distribution, is rejected. 

Table 8.  Results of Levene homoscedascity test in terms of p-values for CGP algorithms using 

MAPE values from the test set. 

Model P-values 

CGPprop 0,765 

CGP 0,962b 

We had applied the Levenne’s tests by considering a significance confidence level of α=0.05. 

It means that P-values over 0.95 and under 0.05 would reject the null hypothesis. The two 

hundred MAPE values, obtained from the test set, have been splitted in two groups in order to 

apply the Levenne’s test.  

On Table 8, the CGP models do not satisfy the homoscedasticity test because the learning 

algorithm is entirely driven by a stochastic approach such as genetic programming. 

The following figure introduces a graphical representation of the homoscedasticity condition 

over the models trained with our CGP approach. The histogram represents a MAPE by using 

bars, so that the area of each bar is proportional to the frequency of the represented value. The 

Q-Q graphic represents a confrontation between the quartiles from MAPE observed (blue) and 

those from the normal distribution (red). 
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Figure 21. Models obtained from the CGP approach proposed: histogram and Q-Q graphic. 

As it can be observed, the MAPE distribution over the test set follow a normal distribution. This 

confirms the results of the Levenne’s test; the learning algorithm of the CGP model produces a 

stochastic convergence and our evolutive strategy introduce a slightly measurable disturbance 

on the model convergence, as well as it is demonstrated on the standard deviations of the Table 

7. 

 Load forecasting examples 

As an example, Figure 22, Figure 23, and Figure 24 presents the results obtained from the 

best model trained with the proposed CGP approach. Figure 22 shows the architecture of the 

best model obtained with our CGP approach. On the graph: the inputs are represented by 

squares, the node functions by circles and output by an oval. 

 

Figure 22. Results of CGP approach proposed: internal architecture of the best model obtained. 
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Figure 23 shows the one day ahead electricity consumption forecasting corresponding to the 

CGP model, presented on the Figure 22, over the train, validation and test sets. The plot shows 

a low absolute percentage error (less than 5%). 

 

Figure 23. Results of CGP approach proposed: Real and forecasted electricity consumption 

using the best model trained. 

Figure 24 Shows the boxplot of the one day ahead electricity consumption forecasting over the 

validation set. It presents a comparison between the forecasted samples obtained from the CGP 

approach presented and the real samples. 
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Figure 24. Results of CGP approach proposed: boxplot of the one day ahead load forecasting, 

over the validation set, carried out by the best model trained. 

As we can see, the medians are quite similar, but the percentile intervals are shorter on the 

forecasted case. This means that the modelling algorithm can’t mimic accurately the spread 

distribution of the electricity consumption, but it keeps the forecasted samples closer to the 

median than the real samples. It demonstrates the accuracy of the algorithm presented. 

In order to validate the reduction of the computational time on the proposed strategy, the Table 

9 presents the statistics of the maximum number of generations reached by the CGP algorithms. 

Also includes the statistics of the number of node functions obtained from the models and the 

training time. 

Table 9. Generations reached by CGP algorithms, number of nodes functions and training time. 

Model Generation # Node functions 
training 

time (s) 

CGPprop 
M 5625 20.51 170.38 

D 1851 8.69 40.35 

CGP 
M 14592 23.15 726.98 

D 3210 9.54 12.68 

As we can see, the number of node functions are similar; but the generation, in which is 

achieved the last improvement before reach the maximum generation number, is almost three 

times lower in our proposed implementation than in the common one. 

Regarding to the training time, it is near to five times lower on our implementation. Because 

our approach uses a double check, it should be slower than the CGP basic implementation that 

only uses a fitness calculation over the train set. The reason of the enhancement on the 
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computational execution is based on the use of parallel processing. This characteristic is not 

presented on the original CGP implementation [88]. 

On our proposed approach, the calculation of the fitness function per chromosome is assigned 

to a thread. Due to the implementation of the CGP algorithms have been programmed on C++ 

[88], we have used the OpenMP API [124]. This API supports a multi-platform shared-memory 

parallel programming in C/C++. This API allows to the user control the number of iterations 

assigned to each thread and manage the shared and individual memory.  

The algorithms have been implemented on a CPU with 8 GB of RAM, a quad-core processor 

running at 3.4 GHz and WINDOWS 7 as operating system. The CGP implementations have 

been compiled on the IDE Code::Blocks and the compiled executable file have been managed 

using MATLAB as well as the other model algorithms. 

Because the fitness function was based on MAPE, Figure 25 shows the MAPE values. They 

are obtained from the train and validation set, for the generations in which a mutation leads to 

an accuracy improvement. The mutation rate is also shown. 

 

Figure 25. Results of CGP approach proposed: training, test and mutation rate curves carried 

out by the best model trained. 

The Table 9 and Figure 25 demonstrates the fast convergence of the proposed evaluative 

strategy without any penalty over the accuracy. 
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3.3.3 Discussions and conclusion 

On this section, we proposed a novel evolutive strategy based on CGP in order to improve the 

efficiency of the convergence of models. The methodology has been applied to the load 

forecasting Australian electric case in order to test it. The main goal of the proposed strategy 

was to demonstrate that it is possible to train models with a high generalization and accurate 

error convergence. To test this statement, we used a chromosome selection based on the check 

of train and validation set. 

The fast convergence of the models was an additional goal. A variable mutation rate controlled 

by the training error and generation was implemented. In addition, the fitness evaluations was 

implemented using multithreading. 

The implemented procedure to test the goals of our approach include: two hundred executions 

of the CGP approach and another five models over a randomly sorted data set; a comparison 

over statistics of the errors measured; a statistical test of the homoscedasticity on the error 

variance; and finally, the measure of the maximum number of generations reached with an error 

reduction and the number node functions for the CGP algorithms. 

As conclusion, our approach achieved a faster convergence than the regular method without 

compromising its accuracy. It also obtained a low error variance and a low running time.  
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3.4 Ensemble learning strategies for load forecasting  

n this section we will introduce the load forecasting experiments based on ensemble 

learning strategies. The theory behind the ensemble learning methods as well as the 

motivations behind the design of a custom hierarchical load forecasting on this thesis 

has been widely explained on 2.5.4 Hierarchical load forecasting and ensemble 

learning.  

Continuing with the motives exposed on the previous chapter, Ensemble learning strategies 

seems to be highly aligned with the objectives of this thesis, granting the potential to achieve 

high adaptability-accuracy ratio and the flexibility to be configured with a semi-autonomous 

degree.   

On this thesis, the ensemble learning approaches has been introduced on a custom ensemble 

approach called hierarchical load forecasting model. It includes an ensemble learning 

approach made by combining different multi-resolution specialized forecasters, who are in turn 

containing another ensemble group of base learners.   

On our custom ensemble implementation the diversity is provided by sampling methods such 

as bagging, mixture of experts based on features, or mixture of experts based on clustering. 

But rather that train the 1st base learners using only a data set, which provokes highly correlated 

bagged training sets. On this thesis another diversity component is introduced as novel concept 

called multi-resolution manipulation. 

Multi-resolution manipulation calls for a transformation of a data set by means of multi-

resolution techniques such as stationary wavelet transform (SWT), or time scaling. They 

create non-linear related versions of the data set, which also serve to create parallel training, 

validation and test sets. 

Our ensemble implementations are structured as a three level hierarchy, each the previous 

described these parallel data sets will create consequently 1st and 2nd level learners, henceforth 

called parallel branches. Being the 1st learner algorithms on each parallel branch affected for 

the data sample manipulation (bagging), and the input feature manipulation (clustering).  

Due to each parallel branch of our scheme have been trained with statistically non-

homogeneous data sets, the combination of their predictions must be performed by a non-linear 

learner. This introduced a 3rd level learner, which creates a new stack level.  

On the other hand, because the non-homogeneous data sets possibly are not-statistically related 

with the target and among them, the more convenient way to measure the ensemble errors is 

calculate them globally and inside of each branches. 

This means that errors based on the bias-variance decomposition, and error-ambiguity 

decomposition, will measure the accuracy and diversity of the branches, serving as parameters 

O 



Chapter 3: Study and contributions to load forecasting 

3.4 Ensemble learning strategies for load forecasting  

 

 

Adaptive Load Consumption Modelling on the User Side                      | 111 

to estimate the relevance of the branch on the ensemble and score each one of the diversity 

methods implemented.  

In order to assets this measures, 1st level error measures on each parallel branch are averaged. 

In this manner, the averaged errors will serve to compare the accuracy of the base learning 

algorithms and his potential to depict the introduced clustering diversity. 

On this thesis, the pruning method lies on a heuristic optimization of the cluster organized 

base learners. Our heuristic optimization pruning, search in advance the correct number of 1st 

base learners per cluster which minimizes the general error of the parallel branch. Notice that 

this method exploit the best of the clustering-based and optimization-based pruning methods. 

The heuristic optimization algorithm is based on a gradual increase of the base learners for each 

clustering, measuring at each step three key parameters that comprises the global accuracy and 

the generalization accuracy of the branch. An analysis of these parameters will provide the 

optimal number of base learners per cluster to be set on the branch. 

 

Figure 26. Flow diagram of the novel procedure implemented to create and train a hierarchical 

load forecasting models.  

This heuristic procedure is accelerated using the fastest learning algorithm as base learner, this 

also allow to test different clustering techniques in order to identify the best combination among 

clustering methodologies and subspace size. Among the clustering algorithms explored we 

Ensemble
Model

Cluster 
method

# of Clusters 
per Branch

Learning 
algorithm

1st level 
Learner

2nd  level 
Learner

3rd level 
Learner

Database

Bagging

# of Lags

Time 
Scaling

# Branches

Feature 
Manipulation

Re-Sampling
Multi-resolution 

Manipulation

SWT

# of 
Aprox.

# of 1st level 
learners per 

cluster
+

Input Output



Chapter 3: Study and contributions to load forecasting 

3.4 Ensemble learning strategies for load forecasting  

 

 

112 | Adaptive Load Consumption Modelling on the User Side    

count with Fuzzy c-means clustering, Self-Organized Maps, Gaussian Mixture Models, K-

Nearest Neighbors, and Hierarchical clustering. 

Finally as a resume, the efforts introduced on this section in order to minimize the forecast error 

sources are presented on the following table. The table is based on the concepts introduced on 

2.5.4 Hierarchical load forecasting and ensemble learning, and the appendix B.    

Table 10. Thesis course of action to minimize the uncertainty due to modelling errors. 

 Errors due to modelling structure  

o Data preprocessing has been introduced in order to obtain a complete knowledge of the 

dynamics presented on the load profiles.  

o Ensemble learning has been introduced to improve the general goodness of the modelling 

structure. It relies on the following components: 

 Stacking, a combinational method that allows combine base learners predictions by 

the use of a hierarchical architecture of 3 levels and non-linear learners. 

 Statistical diversity, an ensemble learner feature achieved by: 

 A mixture of parallel branches based on multi-resolution components. 

 A mixture of base learner algorithms. 

 Bagging, a random sampling method. 

 Clustering of the base learners based on features of the load profile. 

 Heuristic optimization of the cluster size as the clustering-based and optimization-

based pruning methods. 

 Error due to model parameters 

o Random initialization of the model parameters. 

 Goodness model statistics 

o Bias-variance decomposition 

o Error-ambiguity decomposition 

o Error measures. 

 Accuracy measures 

 Residual statistics 

 Estimation of the model sensibility regards to parameters 

3.4.1 Architectures based on a non-linear aggregation of multi-resolution 
components: theoretical approach 

As was preciously introduced, the modelling approach proposed on this thesis is an ensemble 

learning architecture that combines the stacking method and the mixture of experts. The 

ensemble architecture combine three levels of staking, the 1st level is integrated by a base 

learner population, the 2nd level is integrated by a branch specialized model and the 3rd level is 

a single model that integrate all the branches base predictions.  
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Figure 27. Ensemble learning model representation, 1st level: bagged models grouped by data 

cluster, 2nd level: model aggregator of base learners predictions, 3rd level: model aggregator of 

branch predictions.  

The Figure 27 illustrate the components of our ensemble architecture, on it is possible observe 

that non-homogeneous data sets are required to construct parallel branches. Each data set is also 

explored using clustering techniques in order to break the profile consumption on feature-based 

subsets.  

This allow us to maximize the extraction of information by the feature specialization of the base 

learners. Furthermore, in order to increase the resilience of the model bagging is introduced on 

each data set. This creates high diversity on the prediction of the subset base learners. On the 

following subsections we make the technical description of our approach.  

 Description of the base learner algorithms  

On this section we will describe the model parameters selected for the learners of the ensemble. 

It means that every one of the learning algorithms addressed have been serve as base learners 

of the ensemble models. As consequence, each one of these algorithms have been tested during 

the survey of the best learning algorithms to constitute the ensemble (see section 3.4.1.1.3). 

Bayesian MARS and BLMS learners are trained using a maximum number of 1000 hinge 

functions and assume a Gaussian response variable using Markov chain Monte Carlo (MCMC).  

Regression trees learners are trained based on the square error, allowing deep trees but making 

a prune of the tree when the predictive power remain stable. Larger leaves didn’t increase so 

much the predictive power for our datasets. In fact, a reduction of the tree sizes also reduces 

training and prediction time, as well as memory usage for the trained ensemble. 

Neural Networks learners are trained using a maximum epoch’s equal to 200 and a number of 

neurons on the hidden layer equal to: 2 * #inputs +2. For autoregressive models as LRNN, 

NARXNN, and NARNN the delay introduced is equal to one sample. 
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ANFIS learners are trained using a maximum epoch’s equal to 200 and 3 membership functions 

per cluster. These parameters have been chosen over systematically test in order to reduce the 

training time and the memory usage without loss accuracy. SVM learners are trained using a 

Gaussian radial basis function. 

NCGP learners are trained based on the follow list of parameters: node arity = 5, probabilistic 

mutation rate = 1%, node function = logistic sigmoid of the weighted sum of inputs, recurrent 

connection probability = 0, target fitness = 1% or 0.5 million of generations, fitness function = 

MAPE, evolutionary strategy = 4 + 1. 

 Growth of parallel branches based on multi-resolution components 

Multi-resolution components comes from the transformation of the original data set by means 

of multi-resolution techniques such as stationary wavelet transform, or time scaling. They 

create non-linear related versions of the original data set, which in turn, serve to create parallel 

branches. 

These braches help to the ensemble to reduce the general bias error, by containing a better track 

of the conditional mean. Their function is basically provide smooth predictions to the 3rd level 

learner to decrease his dependency over the branches most affected by the white noise. 

Scaling is a discrete operator used to obtain multiple quantized versions of the target attending 

the window average of the signal. The quantization procedure start with the collection of the 

ranked lags. Then the algorithm perform an average on a number of samples equal to the lag 

number (window of samples), the procedure starts from the last sample acquired.  

Once time the average is obtained, all the samples on the window are replaced by the average. 

The result are multiples stepped versions of the target signal according to the number of lags 

selected. The number of lags and parallel branches to grow will be discussed on the section 

results. 

On the case of the parallel branches created using the SWT, each branch is trained using as a 

target an approximation or detail. In order to extract the proper number of details, and guess the 

correct approximation that retain the minimum of identifiable information from the target, the 

SWT decomposition is monitored by the welch t-test.  

 Base learner specialization by means of feature classification 

We already spoke about the possibility of use methods such as mixture of experts based on 

selected features, or mixture of experts based on clustering to create diversity inside the 

ensemble. These methods consist on the classification of the training data at the current branch 

into clusters. Finally, the base learners are trained over bagged versions of each cluster data set.  

These methods create expert sets of base learns inside branches, increasing the diversity, 

adaptability, accuracy and the resilience of the ensemble.  The concept behind the base learner 

specialization is graphically explained at Figure 27, and Figure 28. On those figures is possible 
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distinguish the clusters obtained from the 1st level data set, and the model trained over bagged 

versions of each cluster. 

The pruning method of the cluster-organized base learners lies on a heuristic optimization of 

the cluster. Our heuristic optimization pruning, search in advance the correct number of 1st base 

learners per cluster which minimizes the general error of the branch.  This method exploit the 

best of the clustering-based and optimization-based pruning methods. 

The heuristic optimization algorithm is based on a gradual increase of the base learners for each 

clustering, measuring at each step three key measures that comprised the global accuracy and 

the generalization accuracy of the branch. An analysis of the error will provide the optimal 

number of base learners per cluster to be set on the branch. 

This heuristic procedure is accelerated using the most fast/accurate learning algorithm as base 

learner, this also allow to test different clustering techniques in order to identify the best 

combination among clustering methodologies and subspace size. Among the clustering 

algorithms explored we count with Fuzzy c-means clustering, Self-Organized Maps, Gaussian 

Mixture Models, K-Nearest Neighbors, and Hierarchical clustering, and Density-based spatial 

clustering.   

 Clustering based specialization 

The classification techniques implemented belongs to supervised and unsupervised algorithms, 

the objective of these algorithms is bring added diversity to the ensemble on the first two layers 

making it more robust and adaptable.  Due to is necessary stablish an optimal number of 

classes/features among the data set, on this thesis was develop a method to measure the 

convenience of a model with a certain number of clusters. 

Ensemble pruning serves to identify those individual learners that are representative yet diverse 

among the given set individual learners, and then select only these individuals to constitute the 

ensemble. The most straightforward way to identify these individuals is by use of clustering 

techniques [101], [125], the last ones gives the name to the pruning method called clustering-

based pruning. 

Generally, the implementations of clustering-based pruning methods used to work in two steps. 

First step gather the individual learners into a number of clusters by means of a cluster 

technique. The following examples present some of the clustering techniques applied to 

ensemble base learner. On [126], authors used hierarchical agglomerative clustering and 

regarded the probability that the individual learners do not make coincident validation errors as 

the distance. [127] used KNN clustering based on Euclidean distance, and [128] used 

deterministic annealing for clustering. 

The second step erase the contributions of those base learners not selected. Continuing with the 

authors previously introduced. For example, [126] select from each cluster the learners which 

more distant to other clusters;  [127] iteratively remove individual learners from the least to the 
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most accurate inside each cluster until the accuracy of the ensemble starts to decrease; and [128] 

select the closest elements to the centroid of each cluster.  

Our heuristic optimization approach rather than abuse of the use of computational resources by 

means of genetic algorithms [101], is performed based on explain the maximum variance 

that the cluster could retain, because finally this is the objective of this diversity technique. 

On this thesis the assessment of the optimal number of learners allowed per cluster is based on 

a combined custom criteria, this try to retain the maximum variance that could be explained by 

the cluster over the validation data. Our criteria consist on the observation of three key 

measures, the first key measure is the accumulated averaged variance error of the cluster 

calculated among the elements of the cluster, 

Eq. 62 𝐴𝑐𝑐𝑉̅𝐸 = ∑ 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 𝑡
𝑇
𝑡=1 =

1

𝐾∗𝐸
∑ ∑ ∑ (ℎ𝑏,𝑘,𝑒

1 (𝐷𝑇𝑠|𝑥) − ℎ𝑏,𝑘,𝑒
1 (𝐷𝑇𝑠|𝑥)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)2𝐸

𝑒=1
𝐾
𝑘=1

𝑇
𝑡=1  

This formula comes from the generalization of the Bias-Variance-Covariance decomposition. 

The second and third key measures are based on the F-statistic, which serves to measure the 

ratio 

Eq. 63                             𝐹 =
𝑒𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑑 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛−𝑔𝑟𝑜𝑢𝑝 𝑣𝑎𝑟𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦

𝑢𝑛𝑒𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑑 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑤𝑖𝑡ℎ𝑖𝑛−𝑔𝑟𝑜𝑢𝑝 𝑣𝑎𝑟𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦
 

It could be equally used to measure if an increment on the cluster models leads a better ability 

to fit a target, respect to a unique learner or the previous number of learners tested. Based on 

the description of the F-statistic introduced on the appendix B, The second key measure could 

be defined as  

Eq. 64                               𝐹ℎ|ℎ1 =
(𝑆𝑆𝑅ℎ1−𝑆𝑆𝑅ℎ)/(𝐾∗𝐸−2)

(𝑆𝑆𝑅ℎ)/(𝑇−𝐾∗𝐸)
    

It present an F-test of a cluster with E base learners versus an cluster with an unique 

learner 𝒉𝟏, under the null hypothesis that the first model does not provide a significantly better 

fit than the second model, F will have an F distribution, with (K*E-2, T−K*E) degrees of 

freedom. The null hypothesis is rejected if the F calculated from the data is greater than the 

critical value of the F-distribution for the false-rejection probability equal to 0.05. 

The third key measure is based on an F-test of a cluster with E base learners versus a cluster 

with E-1 base learner 𝒉𝟏.  

Eq. 65                                         𝐹ℎ|ℎ𝐸−1 =
(𝑆𝑆𝑅ℎ𝐸−1−𝑆𝑆𝑅ℎ)/𝐾∗(𝐸−1)

(𝑆𝑆𝑅ℎ)/(𝑇−𝐾∗𝐸)
    

Under the null hypothesis that the first model does not provide a significantly better fit than the 

second model, F will have an F distribution, with (K*(E-1), T−K*E) degrees of freedom. The 

null hypothesis is rejected if the F calculated from the data is greater than the critical value of 

the F-distribution for the false-rejection probability equal to 0.05. The term SSR correspond to 

the sum square of the residuals over the ensemble set of clusters, it is defined as: 
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Eq. 66            𝑆𝑆𝑅ℎ = ∑ 𝑒𝑟𝑟𝑡,ℎ
2𝑇

𝑡=1 =
1

𝐾∗𝐸
∑ ∑ ∑ ((𝐷𝑇𝑠|𝑦) − ℎ𝑏,𝑘,𝑒

1 (𝐷𝑇𝑠|𝑥) )2𝐸
𝑒=1

𝐾
𝑘=1

𝑇
𝑡=1   

 Custom feature based specialization  

This specialization refers to create diversity implementing a mixture of experts based on 

selected features. The custom classification method make use of temporal features clearly 

defined at the data base, being the strongest one the weekday, and less important the Labor Day 

indicator. The reader can notice the importance of this variables based on the data base appendix 

graphics. On these, the daily load distribution per season exhibit the same pattern on all the data 

bases. 

Being the weekends the days with the lower consumption and variance, and the labor days 

presenting opposite characteristics. Labor days and weekend days also present differences 

among elements of each set, making more convenient use a more general and strong feature 

such as the weekday. The method to select the optimal number of expert base learners is also 

surrogated to the heuristic optimization procedure. 

 Ensemble learning procedure 

In this section we will explain the procedure carried out in order to build the ensemble model, 

the theoretical background is included on 2.5.4 Hierarchical load forecasting and ensemble 

learning. On Table 11, the pseudo-code of the modelling procedure for our proposed ensemble 

approach is explained. The first section of the table introduces the basic definitions to read the 

process, the designated acronyms for the elements of the data base, the set of multi-resolution 

operators and the model notation are introduced 

As initial parameters these ones are fix: the data set to be regressed, the number of multi-

resolution components / number of branches, the cluster method or the number of clusters to 

split the training sets, the number of base learners per cluster, and the designated learning 

algorithm per each level. In order to maintain the simplicity, the diversity on learning algorithms 

inside of a level is restricted. 

The training stage start with the branch creation (1), the multi-resolution operator is applied 

over the original data set, except during the first execution which not modify the original data 

base. Each multi-resolution operation, like time scaling based on lags or time-frequency based 

on the SWT, create non-homogeneous versions of the original data set to be stored on a cell 

array (2).  

The branch data set is divided on training, validation and test sets. Each set with 60, 30 and 

10% of the original size respectively (3). Once time data set of the branch is created, the 

diversity generation process start with the input feature manipulation via clustering (5). The 

optimal cluster method and number of clusters has been obtained thanks to the theory presented 

on the previous section, the clustering results will be introduced on the result section. As result 

of the clustering operation, feature classified data set are created for the 1st level branch. 



Chapter 3: Study and contributions to load forecasting 

3.4 Ensemble learning strategies for load forecasting  

 

 

118 | Adaptive Load Consumption Modelling on the User Side    

The diversity generation process continues with the data sample manipulation via bagging, and 

the training of the 1st base learners (5-16). In this step, each set of features is re-sampled with 

a ratio 63% in-bag to 37% out-of-bag. Then, the learning algorithm defined for the 1st level 

proceed to create a base learner per each in-bag set on the branch (8). 

The learning algorithm make use of the in-bag set and the branch validation set. The overall 

procedure brings statistical diversity to base learners, independence that is manifested on the 

reduced error and the sharp density estimation.  

Because the training set is compromised on the training of the 1st level learners, we had come 

up with a strategy to train the 2nd and 3rd level learners. In order to create statistical independent 

sets for the learners on these levels we have proceeded to use the validation and training set to 

train these levels respectively.  

Using the 1st learner predictions over validation set (11) the 2nd level learners are trained (13). 

In this case the 2nd level learner will be our gating function employed to combine the cluster 

specialized base learners. This process produce a number of 2nd level learners equals to the 

number of features. 

The FFNN algorithm has demonstrated be the most reliable gating function, the number of 

neurons in the hidden layer are fix to two times the number of 1st level learners per cluster. On 

the 3rd level the staking aggregates the mixtures of experts and the diversity principles by the 

combination of 2nd level learner’s predictions. 

Using the 1st & 2nd learner predictions over training set (10) the 3rd level learner is trained 

(17). In this case the 3rd level learner will be our general gating function, employed to combine 

the clustered branch predictions coming from 2nd level learners. At this point the reader could 

fear the overfitting of the models because the recurrent use of the training set, so let’s make 

some considerations about this. 

The principal method to introduce diversity on the ensemble is based on provide differences 

among the training sets, such as bagging sampling. If we planning to use a sampling technique 

to train 2nd & 3rd level, this leads more memory usage, make hard the observation of the error, 

and still we must sampling over the training and validation sets. These ones are no benefits at 

all. 

But, the principal objections against sample to train upper layers are based on the nature of the 

ensemble. In order to normalize the prediction of many base learners, ensemble must count with 

a non-modified set which provide the guide to regularize the vote among the predictions. This 

means that gating functions needs sets that remain as the original signal to model.  

On this thesis the validation set has been set as the guide to regularize the 1st base learner 

predictions on the 2nd level gating function per each cluster. Similarly, but avoiding use the 

validation dataset because was used to train 2nd level learners, the 3rd level learner is trained 
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using the prediction of the lower levels over the training set. In this way, the overfitting is 

avoided due to the high diversity inserted among the lower levels. 

The prediction stage (19-26) starts with the prediction of the test set using the 1st level learners 

on the branch (22). Consequently, the predictions are gathered and feed the 2nd level learner 

correspondent to the current branch (24). Once time all the branches had produced their 

predictions, these feed the 3rd level learner, producing the ensemble prediction (27). 

As result of the ensemble procedure the following data is available: an array of the ensemble 

learners organized by layers and branches, ready to be used for a prediction; the ensemble 

prediction made over the test set, and the statistics about the model goodness. 

A general diagram of the ensemble model architecture is presented on the Figure 28. It 

describes all operations carried inside the architecture starting at the multi-resolution 

transformation of the original inputs, the prediction carried out by the 1st level learners, the 

prediction combination carried out by the 2nd level learner, and the combination of the 

predictions carried out by the branches carried out by the 3rd level learner. 

 

Figure 28. Ensemble learning model - diagram representation.  
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Table 11. Pseudo-code procedure of the proposed ensemble learning model. 

Definitions:  

data set split 𝐷 = {𝐷𝑇𝑟 , 𝐷𝑉𝑎𝑙 , 𝐷𝑇𝑠};                        

Training data set 𝐷𝑇𝑟 = {𝑥𝑇𝑟[row x col], 𝑦𝑇𝑟[row x 1]};  

Set of multi-resolution operators Ψ = {0,Ψ2, Ψ3, … ,Ψ𝐵}; 

Set of features 𝜃𝐾 ;  

Hypothesis/model ℎ ; 

 

Initial parameters:  

Original data set 𝐷; 

# of branches  𝐵 (𝐵 ≥ 1); 

Cluster method / # of clusters; 

# of base learners per cluster 𝐸 ; 

 

1st level learning algorithm 𝔏1 ; 

2nd level learning algorithm 𝔏2 ; 

3rd level learning algorithm 𝔏3 ; 

Process: 

1. for b = 1:B 

2.   𝐷𝑏 = Ψ𝑏(𝐷); 

3.   { 𝐷𝑏
𝑇𝑟 ,  𝐷𝑏

𝑉𝑎𝑙 ,  𝐷𝑏
𝑇𝑠} = 𝑠𝑝𝑙𝑖𝑡(𝐷𝑏)    

4.   𝜃𝐾 = Classify( 𝐷𝑏
𝑇𝑟 , 𝐾, 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑚𝑒𝑡ℎ𝑜𝑑);                                 

5.   for k = 1:K                                              

6.     for e = 1:E                                           

7.         [ 𝑆𝑏,𝑘,𝑒
𝑖𝑛𝑏  ,  𝑆𝑏,𝑘,𝑒

𝑜𝑜𝑏  ] = 𝑏𝑎𝑔𝑔𝑖𝑛𝑔(𝜃𝑘);        

8.         ℎ𝑏,𝑘,𝑒
1 = 𝔏𝐸(𝑆𝑏,𝑘,𝑒

𝑖𝑛𝑏 |𝑥 , 𝑆𝑏,𝑘,𝑒
𝑖𝑛𝑏 |𝑦,   𝐷𝑏

𝑉𝑎𝑙|𝑥 ,  𝐷𝑏
𝑉𝑎𝑙|𝑦)                              

9.          𝑧𝑏,𝑘,𝑒
𝑜𝑜𝑏 = ℎ𝑏,𝑘,𝑒

1 (𝑆𝑏,𝑘,𝑒
𝑜𝑜𝑏 |𝑥); 

10.          𝑧𝑏,𝑘,𝑒
𝑡𝑟 = ℎ𝑏,𝑘,𝑒

1 ( 𝐷𝑏
𝑡𝑟|𝑥); 

11.          𝑧𝑏,𝑘,𝑒
𝑣𝑎𝑙 = ℎ𝑏,𝑘,𝑒

1 ( 𝐷𝑏
𝑉𝑎𝑙|𝑥); 

12.      end 

13.      ℎ𝑏,𝑘
2 = 𝔏2( 𝑧𝑏,𝑘,−

𝑣𝑎𝑙  ,  𝐷𝑏
𝑉𝑎𝑙|𝑦); 

14.      𝑧𝑏,𝑘
2 = ℎ𝑏,𝑘

2 ( 𝑧𝑏,𝑘,−
𝑡𝑟  ); 

15.   end 

16. end 

17. ℎ3 = 𝔏3(𝑧𝑏,𝑘
2  ,  𝐷1

𝑇𝑟|𝑦); 

18.  

19. for b = 1:B 

20.   for k = 1:K                                              

21.     for e = 1:E                                           

22.         𝑜𝑢𝑡𝑏,𝑘,𝑒
1 = ℎ𝑏,𝑘,𝑒

1 (𝐷𝑏
𝑇𝑠|𝑥); 

23.      end 

24.   𝑜𝑢𝑡𝑏,𝑘
2 = ℎ𝑏,𝑘

2 (𝑜𝑢𝑡𝑏,𝑘,−
1 ) 

25.   end 

26. end 

27. 𝑦𝐻̂ = ℎ
3(𝑜𝑢𝑡−,−

2  ) 

28. 𝐺𝐻 = 𝐺𝑜𝑜𝑑𝑛𝑒𝑠𝑠 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑠                             

                             

Output:  

𝐻(𝑥𝑇𝑠) = 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛                             

𝐻 = {ℎ3, {ℎ1
2…ℎ𝐵

2 }, {ℎ1,1,1
1 …ℎ𝐵,𝐾,𝐸

1 }}  

𝐺𝐻 

 

// Select  branch  #b 

// Multi-resolution operator 

// Split of the branch data set 

// Split of the training set #b on K set 

// Select the feature #k 

// Select the 1st base learner #e 

// Bagging the feature set #k  

// Training base learner  

// Predictions over the out-of-bag sets 

 

// Predictions over the training set 

// Predictions over the validation set 

 

// Train 2nd level learners over val. predictions 

// Prediction over 1st level prediction over the 

training data set. 

 

// Train 3rd level model 

 

// Prediction procedure 

 

 

// 1st learner predictions  

 

 

// 2nd learner predictions 

 

 

// 3rd level prediction 

// calculation of the model goodness 

 

 

// Ensemble prediction  

// Ensemble model 

// Goodness model statistics 
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 Ensemble model equation 

Two reasons allows the simplification of our ensemble approach on a model equation: the 

variety of base learners algorithms implemented, which allows consider each algorithm as a 

black box, and the use of a simple NN algorithm for 2nd and 3rd layer. On the following equation 

the ensemble procedure is presented in function of the layer predictions using a regression 

notation (f(x) = a*x + bias). 

Eq. 67 𝑯(𝒚|𝒙) = ∑ 𝒘𝒃
𝟑 ∙ (∑ ∑ (𝒘𝒃,𝒌,𝒆 ∙ 𝒉𝒃,𝒌,𝒆(𝚿𝒃(𝒙)) + 𝒃𝒊𝒂𝒔𝒃,𝒌,𝒆)

𝑬
𝒆=𝟏

𝑲
𝒌=𝟏 ) + 𝒃𝒊𝒂𝒔𝒃

𝟑𝑩
𝒃=𝟏  

Where, 𝚿 is the multi-resolution operator active on the branch, and the output y is a continuous 

variable. Given an input x, each local expert 𝒉𝒃,𝒌,𝒆 tries to approximate the distribution of y and 

obtains a local output 𝒉𝒃,𝒌,𝒆(𝚿𝒃(𝒙)). The 2nd level learners provides a set of coefficients: 𝒘𝒃,𝒌,𝒆 

that weigh the contributions of base learners, and 𝒃𝒊𝒂𝒔𝒃,𝒌,𝒆 is the parameter of bias. Thus, the 

final output of the ensemble model is a weighted sum of all the branch outputs produced on the 

gating functions of the 2nd level and combined on the 3rd level learner.  

 Goodness statistics. 

The goodness of the ensemble model cover statistics like: the general accuracy of the 1st base 

learners, true authors of the regression task; the diversity among base learners, necessary to 

extract as much information the ensemble can;  accuracy measures of the ensemble 

performance; or the analysis of the prediction errors. 

Because the general theory of the goodness statistics has been introduced on section 2.5.4.1.2.2 

and appendix B, we will not dig on deep explanations. The first statistics calculated correspond 

to the estimation of the model sensibility regards to parameters. These statistics will bring 

information about the accuracy of the base learns using the out-of-bag set. 

Out-of-bag RMSE error over 1st learner predictions, based on a single branch ensemble. 

Eq. 68   𝑅𝑀𝑆𝐸𝑜𝑜𝑏
1 =

1

𝐸.𝐾.𝑁
∑ ∑ ∑ ( 𝑧1,𝑘,𝑒

𝑜𝑜𝑏 − (𝑆1,𝑘,𝑒
𝑜𝑜𝑏 |𝑦))2 𝐸

𝑒=1
𝐾
𝑘=1

𝑁
𝑛=1  

In the case of ensemble with more than one branch these formulas must be replaced by the Out-

of-bag MAPE error. Together with the fact that data base has been normalized, this percentage 

error allows a sum of error through the non-homogeneous branches. Out-of-bag MAPE over 1st 

learner predictions, based on a single multi-branch ensemble. 

 Eq. 69   𝑀𝐴𝑃𝐸𝑜𝑜𝑏
1 =

1

𝐸.𝐾.B.𝑛
∑ ∑ ∑ ∑ |

 𝑧𝑏,𝑘,𝑒
𝑜𝑜𝑏 − (𝑆𝑏,𝑘,𝑒

𝑜𝑜𝑏 |𝑦)

(𝑆𝑏,𝑘,𝑒
𝑜𝑜𝑏 |𝑦)

⁄ | 𝐸
𝑒=1

𝐾
𝑘=1

𝐵
𝑏=1

𝑁
𝑛=1  

The second’s statistics corresponds to the error decomposition measures. These measures has 

been customized for the proposed ensemble approach, being these a mere conduct to compare 

the fitness among the ensembles to test. The error decomposition measures are presented below.  
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The average ambiguity for the first branch of the ensemble is 

Eq. 70 𝒂𝒎𝒃𝒊̅̅ ̅̅ ̅̅ ̅̅ (𝒉𝟏
𝟏|𝒙) =

𝟏

𝑬.𝑲.𝑵
∑ ∑ ∑ ( 𝒉𝟏,𝒌,𝒆

𝟏 (𝒙) −  𝑯(𝒙))
𝟐

𝑬
𝒆=𝟏

𝑲
𝒌=𝟏

𝑵
𝒏=𝟏  

The average error of individual base learners is 

Eq. 71 𝒆𝒓𝒓̅̅ ̅̅ ̅(𝒉𝟏
𝟏|𝒙) =

𝟏

𝑬.𝑲.𝑵
∑ ∑ ∑ ( 𝒉𝟏,𝒌,𝒆

𝟏 (𝒙) −  𝒚)
𝟐𝑬

𝒆=𝟏
𝑲
𝒌=𝟏

𝑵
𝒏=𝟏  

The generalization error of the base learners on the first branch is  

Eq. 72 𝒆𝒓𝒓(𝒉𝟏
𝟏|𝒙) = 𝒆𝒓𝒓̅̅ ̅̅ ̅(𝒉𝟏

𝟏|𝒙) − 𝒂𝒎𝒃𝒊̅̅ ̅̅ ̅̅ ̅̅ (𝒉𝟏
𝟏|𝒙)  

The bias error of the base learners on the first branch is  

Eq. 73 𝒃𝒊𝒂𝒔𝟐(𝒉𝟏
𝟏|𝒙) =

𝟏

𝑬.𝑲.𝑵
∑ ∑ ∑ ( 𝒉𝟏,𝒌,𝒆

𝟏 (𝒙) −  𝒚)
𝟐

𝑬
𝒆=𝟏

𝑲
𝒌=𝟏

𝑵
𝒏=𝟏  

The variance error of the base learners on the first branch is  

Eq. 74 𝒗𝒂𝒓𝒊𝒂𝒏𝒄𝒆(𝒉𝟏
𝟏|𝒙) =

𝟏

𝑬.𝑲.𝑵
∑ ∑ ∑ ( 𝒉𝟏,𝒌,𝒆

𝟏 (𝒙) − 𝒉𝟏,𝒌,𝒆
𝟏 (𝒙))

𝟐
𝑬
𝒆=𝟏

𝑲
𝒌=𝟏

𝑵
𝒏=𝟏  

These statistics allow to measure the suitability of the 1st learning algorithm. The selection of 

the 1st branch correspond with the fact that only this branch has been trained using a non-

manipulated target, allowing a direct check of the base learners performance.  

The third measures corresponds to the error measures calculated overall ensemble 

performance. Accuracy measures such as MAPE, SMAPE, Daily peak MAPE, RMSE, Error 

Variance, MAE are implemented. Furthermore, residuals statistics such as SSR, F-statistic, 

FVU, R2, Dubin-Watson statistic, S2, AIC, SBC and Theil-U statistics are included. 

 Experimental results 

This section presents the procedures carried out in order train the proposed ensemble models 

and test their general goodness over the selected consumption scenarios. Because the amount 

and diversity of experiments realized, we will address models accordingly with the procedures 

employed on their training, creating a benchmark of ensemble models which are the central 

interest of this section.  

The comparison among the techniques employed will show how successful were the procedures 

carried out to strength the model, and how much the error sources have been reduced. The data 

base used to make a benchmark of our implementations is widely described at the APPENDIX 

C.  

The length of the data set has been reduced to 10 Weeks in order to accelerate the training and 

optimization procedures, being the length of the training, validation and test sets 6, 3 and 1 
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week correspondingly.  This means that Goodness measures are calculated over a test set equal 

to 1 week despite the forecast is made 1 day-ahead. 

 Optimization of the ensemble parameters based on clustering 
techniques: optimal number of clusters and base learners. 

For a moment, think about combination of techniques and parameters necessary to construct 

our model approaches, from the Figure 26 to Figure 28 is clearly stated that our particular 

ensemble method requires a study over a fair quantity of options. Consequently, we have 

decided divide the optimization process by stages, providing at each one the optimal solution 

for a set of techniques/parameters.   

Our first stage, consist on the identification of the optimal number of clusters and base 

learners per cluster. Our heuristic optimization procedure is presented on the Figure 29, it   

gradually grows the set of base learners per cluster and the number of cluster at the same time 

switch among clustering methods; measuring at each iteration the global accuracy and the 

generalization accuracy of the branch.  

The error measures to be observed correspond to the follow ones: 

 Mean absolute percentage error (MAPE), low values secures a high accuracy on the 

model. 

 The accumulated averaged variance error (𝐴𝑐𝑐𝑉̅𝐸): it measures how diverse are the 1st 

level predictions. High values means high diversity captured on the model. 

 P-value of the F-test over a cluster with E base learners versus a cluster with a unique 

learner ℎ1 (𝐹ℎ|ℎ1): it measures the accuracy of the 1st level predictions. Improvements 

over the model accuracy on the 1st level predictions will lead to a unitary p-value. 

 P-values of the F-test over of a cluster with E base learners versus a cluster with E-1 

base learner ℎ1  (𝐹ℎ|ℎ𝐸−1 ): it measures the accuracy of the 1st level predictions. 

Improvements over the model accuracy on the 1st level predictions will lead to a unitary 

p-value. 

In order to find the optimal cluster size, our analysis weight the importance of each error 

measure following the values 0.5, 0.25, 0.125, and 0.125 respectively. It considers the whole 

performance of the ensemble for a fixed cluster size regardless the number of base learners.  

The heuristic procedure is accelerated using one of the fastest, accurate, and consistent learning 

algorithm as base learner such as feed forward neural network (FFNN). On our study we also 

integrates several clustering techniques in order to minimize the possibilities of make a mistake 

on the guessing of the best combination among number of clusters and number of base learners. 

The clustering algorithms explored are:  K-Nearest Neighbors clustering, Density-based spatial 

clustering, Fuzzy c-means, Hierarchical clustering, Self-Organized Maps, Self-Organized Maps 

combined with KNN, and Gaussian Mixture Models.  
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Also, because our heuristic procedure is an exploratory analysis that only require a 

representative set of samples, we have decided to boost the speed of the iterations reducing the 

length of the data set to 10 Weeks. The length reduction has allow us to conduct our heuristic 

procedure over two consumption scenarios, and three different configurations of learning 

algorithms for the ensemble architecture. 

This implies a six fold execution of the heuristic procedure under different conditions to test 

the strength and consistency of the results, as well as satisfy the acceptance of our null-

hypothesis. Our null hypothesis assume that clusters sizes equals to 2, 5, and 7 will consistently 

exhibit ideal scores on the four error measures observed. This clusters corresponds with the 

class: Labour Day, Sunday/Monday/Tuesday-Thursday/Friday/Saturday, and weekdays. 

The data bases implemented correspond to the industrial consumption scenario (Car 

manufacturing plant), and the regional consumption scenario (Australian data). The 

combinations of learning algorithms on for the 3 levels of the ensemble architecture has been 

respectively: Reg. Tree - Reg. Tree - Reg. Tree, Reg. Tree – FFNN - FFNN, and FFNN – FFNN 

- FFNN.  

Given the similarities among the results obtained from the six executions of our heuristic 

procedure, we have decided to prioritize the presentation of the most interesting results. These 

results correspond to the analysis of high volatile consumption profiles: industrial scenario, and 

the ensemble architectures which present the most consistent accuracy measures among the 

experiments: Reg. Tree – FFNN – FFNN, FFNN – FFNN - FFNN. 

The Figure 29 introduces the steps carried out over an execution of our heuristic optimization, 

the process is equivalent to the pseudo code introduced on the Table 11. The procedure start 

with the definition of the number of branches to grow (Step 1). The lack of multi-resolution 

processing is equivalent to operate only with the original version of the data base, leading to 

the creation of the base branch. 

On the Step 2 clustering method is selected among the 7 available, also the number of clusters 

to grow is set form 1 to 10. On the Step 3 each classified data set is bagged in a number of in-

bag and out-bag pair of sub-sets equal to the number of base learners to grow, the number of 

bagging sets goes from 1:11. The Step 4 the ensemble model is trained based on the selection 

of the learning algorithms per level. 
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Figure 29. Flow diagram of the heuristic optimization procedure carried out to find the optimal 

combination of techniques/parameters inside the ensemble architecture.  
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The forecast for the test set is made on the Step 5, and the error measures calculated on the 

Step 6. Each error measure is saved on an array of three dimensions pointing the clustering 

method, the number of clusters and the number of base learners employed. When the executions 

reach the end, a graphic analysis of the result array is done. 

In order to facilitate the analysis of the error measures we have proceed to plot the error matrix 

obtained per clustering method, as a result the figures Figure 30 - Figure 36  are presented. On 

the description of each figure we have include the optimal cluster sizes found at the clustering 

method analyzed. In general terms, our null-hypothesis could be accepted due to the best scores 

has been obtained from models with 2, 5, and 7 classes. 

Regarding to the optimal number of base learners per cluster, the figures shows that traits 

measured such as model accuracy (MAPE), Variance captured at 1st level (AccVe), and the 

Accuracy improvements regarding to variance captured at 1st level (F-tests) fails to deliver a 

consistent answer if all the classes are observed.  

One easy explanation the reader could infer is related with the effects of data base length over 

the measures. This assumption is rejected because we had make our procedure insensitive as 

soon we use a relevant subset of the original load profile correspondent to dates among 11-Jan-

2017 to 21-Mar-2017, which are stable working weeks of the spring season.  

On the other hand, if we observe only the clusters sizes 2, 5, and 7 we could notice that a low 

number of base learners leads implicitly to a low MAPE and a low AccVE, regardless the 

clustering techniques implemented. Among the number of clusters selected the lowest MAPE 

was 3.85 at the KNN clustering (Figure 30– MAPE: [1 2]).  

Regarding to accumulated variance error is logical conclude that more base learners implies 

more diversity on the first level of the ensemble, remember that this error show the accumulate 

differences among the first level predictions against the averaged prediction inside of a cluster.  

According to the AccVE the optimal number base learner could be set around 6-8 models per 

cluster. But helped by the p-values from the test 𝐹ℎ|ℎ1 , and 𝐹ℎ|ℎ𝐸−1  we decided to set the 

optimal number of base learners to 1 & 8. As a last comment, NaN scores and errors over 

15% has been set to zero in order to maintain low the color bar palette on the figures.   

Once time we identified the optimal number of clusters (2, 5, 7), and the optimal number of 

base learners (8); we proceed to compare the general goodness of the ensemble models trained. 

The Table 12, Table 13 presents the goodness statistics of the model, the models are presented 

using the notation #Br_#Cl_#Bl which correspond to the number of branches, clusters and sub 

models implemented on the model.  
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Figure 30. Results of heuristic optimization procedure obtained from the K-Nearest Neighbors 

clustering. Optimal number of clusters extracted from the graphs: starting from the highest score 

5, 7, 3, and 1.  

 

Figure 31. Results of heuristic optimization procedure obtained from the density-based spatial 

clustering. Optimal number of clusters extracted from the graphs: starting from the highest score 

3, 4, 1, and 7. 
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Figure 32. Results of heuristic optimization procedure obtained from the fuzzy c-means 

clustering. Optimal number of clusters extracted from the graphs: starting from the highest score 

7, 8, 2, 4, and 5. 

 

Figure 33. Results of heuristic optimization procedure obtained from the Hierarchical 

clustering. Optimal number of clusters extracted from the graphs: 2. 
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Figure 34. Results of heuristic optimization procedure obtained from the self-organized map 

clustering. Optimal number of clusters extracted from the graphs: starting from the highest score 

4, 6, and 2. 

 

Figure 35. Results of heuristic optimization procedure obtained from the Self-Organized Maps 

– KNN clustering. Optimal number of clusters extracted from the graphs: starting from the 

highest score 2, 1, and 5. 
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Figure 36. Results of heuristic optimization procedure obtained from the Gaussian mixture 

models clustering. Optimal number of clusters extracted from the graphs: starting from the 

highest score 3, 1, and 5. 
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Table 12. Goodness measures of the ensemble models with configuration: Reg. Tree – FFNN 

– FFNN, and trained with the optimal parameters obtained from the heuristic optimization. 

Goodness 

measure 

EM 

1_1_1 

EM 

1_1_8 

EM 

1_2_1 

EM 

1_2_8 

EM 

1_5_1 

EM 

1_5_8 

EM 

1_7_1 

EM 

1_7_8 

RMSEoob 2,41 2,06 1,73 1,91 0,23 0,18 0,53 0,22 

MAPEoob         

Avg. 

Ambi 

0,065 0,028 0,217 0,022 0,003 0,003 0,000 0,048 

Avg. 

Error 

0,760 0,788 0,706 0,788 0,030 0,017 0,015 0,020 

Gen. 

Error 

0,69 0,76 0,49 0,77 0,03 0,01 0,01 -0,03 

Bias Error 0,76 0,79 0,71 0,79 0,03 0,02 0,02 0,02 

Var. 

Error 

        

ME 
-3,72E-

06 

-1,11E-

05 

-4,99E-

06 

-7,46E-

06 

-7,70E-

06 

-8,82E-

06 

-9,76E-

06 

-6,61E-

06 

EV 1,81E-06 2,05E-06 2,82E-06 1,30E-06 1,76E-06 1,47E-06 3,48E-06 1,84E-06 

MSE 0,0012 0,0014 0,0019 0,0009 0,0012 0,0010 0,0023 0,0012 

RMSE 0,0349 0,0371 0,0436 0,0296 0,0344 0,0314 0,0484 0,0351 

MAE 0,0191 0,0175 0,0213 0,0155 0,0199 0,0156 0,0308 0,0174 

MAPE 4,96 4,19 5,45 3,74 4,85 3,73 7,13 4,33 

SMAPE 0,0204 0,0187 0,0228 0,0166 0,0213 0,0166 0,0329 0,0186 

Daily 

Peak 

MAPE 

3,58 2,72 3,06 2,83 5,44 3,03 5,62 5,30 

FVU 0,060 0,068 0,094 0,043 0,058 0,049 0,115 0,061 

R2 0,940 0,932 0,906 0,957 0,942 0,951 0,885 0,939 

Durbin 

Watson 

0,377 0,093 0,270 0,168 0,236 0,181 0,200 0,183 

S2 0,001 0,001 0,003 0,003 0,007 0,007 0,011 0,011 

S 0,6143 0,3045 0,5193 0,4094 0,4860 0,4251 0,4472 0,4283 

AICc 4512 4428 4215 4735 4541 4661 4085 4515 

General 

SBC 

4517 4433 4226 4746 4568 4688 4123 4553 

Theils U1 0,036 0,038 0,045 0,030 0,035 0,032 0,050 0,036 

Theils U2 1,036 1,011 1,047 0,983 1,015 0,998 0,987 1,027 
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Table 13. Goodness measures of the ensemble models with configuration: FFNN – FFNN – 

FFNN, and trained with the optimal parameters obtained from the heuristic optimization. 

Goodness 

measure 

EM 

1_1_1 

EM 

1_1_8 

EM 

1_2_1 

EM 

1_2_8 

EM 

1_5_1 

EM 

1_5_8 

EM 

1_7_1 

EM 

1_7_8 

RMSEoob 1,89 2,05 1,17 1,25 0,20 0,21 0,28 0,23 

MAPEoob 311,17 322,54 252,53 275,43 25,36 26,19 60,37 50,35 

Avg. 

Ambi 

0,018 12,936 4,133 2,700 0,009 0,015 0,223 0,143 

Avg. 

Error 

0,795 0,649 1,347 2,011 0,030 0,025 0,203 0,087 

Gen. 

Error 

0,78 -12,29 -2,79 -0,69 0,02 0,01 -0,02 -0,06 

Bias Error 0,80 0,52 1,35 1,36 0,03 0,02 0,20 0,07 

Var. 

Error 

0,00 0,13 0,00 0,65 0,00 0,00 0,00 0,02 

ME 
-2,91E-

06 

-1,41E-

06 

-2,76E-

07 

4,01E-06 -1,87E-

06 

-3,22E-

06 

-1,74E-

08 

-7,85E-

06 

EV 1,84E-06 3,01E-05 1,83E-06 4,20E-06 2,14E-06 4,23E-06 4,75E-06 5,39E-06 

MSE 0,0012 0,0202 0,0012 0,0028 0,0014 0,0028 0,0032 0,0036 

RMSE 0,0351 0,1422 0,0351 0,0531 0,0379 0,0533 0,0565 0,0602 

MAE 0,0199 0,1170 0,0187 0,0239 0,0217 0,0258 0,0282 0,0264 

MAPE 4,89 36,89 4,86 5,71 5,71 6,28 8,20 6,54 

SMAPE 0,0212 0,1246 0,0199 0,0253 0,0231 0,0275 0,0300 0,0282 

Daily 

Peak 

MAPE 

4,94 29,92 1,76 7,30 1,53 13,54 4,07 7,64 

FVU 0,061 0,999 0,061 0,139 0,071 0,140 0,158 0,179 

R2 0,939 0,001 0,939 0,861 0,929 0,860 0,842 0,821 

Durbin 

Watson 

0,160 0,011 0,231 0,382 0,139 0,851 0,175 0,404 

S2 0,001 0,012 0,003 0,024 0,007 0,063 0,011 0,091 

S 0,4004 0,1042 0,4803 0,6180 0,3722 0,9224 0,4185 0,6357 

AICc 4503 2637 4507 3978 4408 4026 3876 3900 

General 

SBC 

4509 2681 4518 4065 4435 4241 3914 4198 

Theils U1 0,036 0,148 0,036 0,054 0,039 0,054 0,058 0,061 

Theils U2 0,999 1,000 0,979 0,952 0,988 0,973 0,976 0,961 

 

These tables confirms that more base learners increases the accuracy and variance retained by 

the ensemble, being the optimal models those ones correspondent to 2, 5 clusters with 8 base 

learners. A more detailed comparison is leaved to the reader which could address the theory of 

the goodness measures presented on the APPENDIX C. 

 

 Selection of ensemble parameters based on custom features 
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On the previous section we confirm that optimal number of clusters match with a temporal 

classification of the load profile (see null-hypothesis). On this section we will make a direct test 

of the null-hypothesis, forcing the clustering process to follow the features provided by us.  

The on this test we have proceed to evaluate three different cluster sizes: 2, 7, and 24. These 

clusters corresponds with the classes: Labour Day, weekdays, and Day hour correspondingly. 

The Table 14, and Table 15  presents the goodness statistics of the model, the models are 

presented using the notation #Br_#Cl_#Bl which correspond to the number of branches, clusters 

and sub models implemented on the model. 

The ensemble architecture implemented is based on the learning algorithm configurations: Reg. 

Tree – FFNN – FFNN, and FFNN – FFNN - FFNN.  

Table 14. Goodness measures of the ensemble models with configuration: Reg. Tree – FFNN 

– FFNN, and trained using the manual clustering option. 

Goodness 

measure 

EM 

1_2_1 

EM 

1_2_8 

EM 

1_7_1 

EM 

1_7_8 

EM 

1_24_1 

EM 

1_24_8 

RMSEoob 0,91 0,57 1,59 0,68 0,16 0,07 

MAPEoob       

Avg. Ambi 0,014 0,017 0,003 0,022 0,136 0,004 

Avg. Error 0,378 0,103 1,363 0,669 0,188 0,015 

Gen. Error 0,36 0,09 1,36 0,65 0,05 0,01 

Bias Error 0,38 0,10 1,36 0,67 0,19 0,02 

Var. Error       

ME -5,15E-06 -8,59E-06 -6,27E-06 -1,08E-05 1,02E-06 -4,87E-06 

EV 2,88E-06 1,69E-06 3,72E-06 1,57E-06 4,02E-06 1,41E-06 

MSE 0,0019 0,0011 0,0025 0,0011 0,0027 0,0009 

RMSE 0,0440 0,0337 0,0500 0,0325 0,0520 0,0308 

MAE 0,0226 0,0171 0,0296 0,0168 0,0244 0,0168 

MAPE 5,87 4,18 8,48 4,00 6,96 4,30 

SMAPE 0,0241 0,0183 0,0316 0,0180 0,0259 0,0180 

Daily Peak 

MAPE 

5,94 2,25 6,71 3,30 16,70 5,20 

FVU 0,095 0,056 0,123 0,052 0,133 0,047 

R2 0,905 0,944 0,877 0,948 0,867 0,953 

Durbin Watson 0,240 0,122 0,142 0,164 0,604 0,205 

S2 0,003 0,003 0,011 0,011 0,037 0,037 

S 0,4898 0,3494 0,3767 0,4048 0,7770 0,4528 

AICc 4203 4559 4040 4620 4024 4729 

General SBC 4214 4570 4079 4658 4154 4859 

Theils U1 0,045 0,035 0,051 0,033 0,053 0,031 

Theils U2 1,052 0,979 1,001 0,991 0,984 1,020 
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Table 15. Goodness measures of the ensemble models with configuration: FFNN – FFNN – 

FFNN, and trained using the manual clustering option. 

Goodness 

measure 

EM 

1_2_1 

EM 

1_2_8 

EM 

1_7_1 

EM 

1_7_8 

EM 

1_24_1 

EM 

1_24_8 

RMSEoob 0,54 0,56 0,42 0,49 0,05 0,05 

MAPEoob 73,37 75,31 90,47 97,76 8,69 10,10 

Avg. Ambi 0,028 0,040 0,160 3,434 0,015 0,005 

Avg. Error 0,136 0,131 1,679 2,213 0,013 0,011 

Gen. Error 0,11 0,09 1,52 -1,22 0,00 0,01 

Bias Error 0,14 0,12 1,68 0,89 0,01 0,01 

Var. Error 0,00 0,01 0,00 1,32 0,00 0,00 

ME 7,08E-06 -1,91E-05 -6,01E-06 1,22E-06 -5,58E-06 -6,79E-06 

EV 1,59E-06 7,44E-06 3,97E-06 6,94E-06 2,83E-06 2,19E-06 

MSE 0,0011 0,0050 0,0027 0,0047 0,0019 0,0015 

RMSE 0,0327 0,0707 0,0517 0,0683 0,0436 0,0384 

MAE 0,0193 0,0320 0,0253 0,0315 0,0216 0,0183 

MAPE 5,31 8,15 6,56 8,25 5,22 4,40 

SMAPE 0,0205 0,0345 0,0270 0,0335 0,0231 0,0196 

Daily Peak 

MAPE 

5,58 8,61 4,06 27,02 7,25 3,55 

FVU 0,053 0,247 0,132 0,230 0,094 0,073 

R2 0,947 0,753 0,868 0,770 0,906 0,927 

Durbin Watson 0,179 0,438 0,097 0,539 0,351 0,234 

S2 0,003 0,024 0,011 0,091 0,037 0,400 

S 0,4231 0,6615 0,3112 0,7344 0,5928 0,4835 

AICc 4599 3593 3996 3730 4260 4923 

General SBC 4610 3680 4035 4027 4390 5824 

Theils U1 0,033 0,073 0,053 0,069 0,045 0,039 

Theils U2 0,979 1,001 1,000 1,013 0,978 0,963 

Following the trend of the previous section, the results the diversity created via manual 

classification corroborate the strength of the temporal features. Being the strongest trait the load 

pattern per days, followed by the load pattern per labor day, and the load pattern per hour. The 

reader can notice the importance of this variables based on the data base appendix graphics. On 

these, the daily load distribution per season exhibit the same pattern on all the data bases. 

On the other hand, the results obtained by means of our manual clustering are as good as their 

counterpart results obtained from the clustering techniques. Being the more accurate achieved 

on the ensemble model Reg. Tree – FFNN – FFNN 1_2_8 as consequence of the better 

classification on the clustering algorithm.  

As a resume of the clustering procedures, the Figure 45 presents the MAPE/RMSE of each test 

made. On it is possible observe that the lowest MAPE/RMSE are always obtained with high 

numbers of regression trees as base learners. On the contrary FFNN base learners obtain low 
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MAPE/RMSE with a single base learner per cluster. This clearly shows that weak base learners 

performs better than strong ones, at least for this data base. 

 

Figure 37. Comparison of the MAPE/RMSE among the ensemble models constructed from the 

clustering procedure and the manual classification. 

Another interesting conclusion comes from the classification of the data according to the hour 

observed, under the condition of 24 classes and 8 base learners both ensembles achieve low 

errors. The meaning of such behavior is intuitive, as less samples classified on the cluster the 

strong base learner sharp his accuracy while the weak learner remain dumb. 

 Survey of the best learning algorithms to constitute the ensemble 

The differences among the goodness of weak learners and strong learners is visible, so we must 

conduct a study among the best combinations of learning algorithms on the ensemble levels. 

We have created a pool of base learners for the first layer:   Bayesian MARS regression, 

BLMS regression, regression trees, NCGP, NARXC, NARX, FFNN, CCNN, LRNN, ANFIS, 

SVM, and RBNN. On the second and third layer we had restricted the functions to FFNN and 

regression trees.  

The best performances amongst the first layer learning algorithms where for regression trees, 

Bayesian MARS regression, CCNN, FFNN, and RBNN respectively. The best performances 

amongst the second and third layer where for FFNN, and CCNN. The best 10 combinations are 

presented on the Table 16, and Table 17 It is easy to appreciate that weak learners such as 

regression trees and Bayesian MARS overwhelm the results obtained by the strong learners.  
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Furthermore, the tables corroborates that models based on neural network architectures 

performs better among the strong learners algorithms. On the other hand weak learners such as 

regression trees and Bayesian MARS stand out amongst the base learners. 

Table 16. Goodness measures of the best 10 ensemble models created from the combinations 

of the learning algorithms. 

Goodness measure 

Reg. Tree-

FFNN-FFNN 

2_8 

Reg. Tree-

FFNN-FFNN 

5_8 

Reg. Tree-

FFNN-FFNN 

24_8 

FFNN -

FFNN-FFNN 

24_8 

CCNN -

FFNN-FFNN 

2_1 

RMSEoob 1,91 0,18 0,07 0,05 0,556 

MAPEoob 0,00 0,00 0,00 10,10 76,061 

Avg. Ambi 0,022 0,003 0,004 0,005 0,007 

Avg. Error 0,788 0,017 0,015 0,011 0,112 

Gen. Error 0,77 0,01 0,01 0,01 0,104 

Bias Error 0,79 0,02 0,02 0,01 0,112 

Var. Error 0 0 0 0 0 

ME -7,46E-06 -8,82E-06 -4,87E-06 -6,79E-06 -4,65E-06 

EV 1,30E-06 1,47E-06 1,41E-06 2,19E-06 1,30E-06 

MSE 0,0009 0,0010 0,0009 0,0015 0,001 

RMSE 0,0296 0,0314 0,0308 0,0384 0,030 

MAE 0,0155 0,0156 0,0168 0,0183 0,016 

MAPE 3,74 3,73 4,30 4,40 4,063 

SMAPE 0,0166 0,0166 0,0180 0,0196 0,017 

Daily Peak MAPE 2,83 3,03 5,20 3,55 2,161 

FVU 0,043 0,049 0,047 0,073 0,043 

R2 0,957 0,951 0,953 0,927 0,957 

Durbin Watson 0,168 0,181 0,205 0,234 0,158 

S2 0,003 0,007 0,037 0,400 0,003 

S 0,4094 0,4251 0,4528 0,4835 0,398 

AICc 4735 4661 4729 4923 4738,210 

General SBC 4746 4688 4859 5824 4749,194 

Theils U1 0,030 0,032 0,031 0,039 0,030 

Theils U2 0,983 0,998 1,020 0,963 1,026 

 

Table 17. Goodness measures of the best 10 ensemble models created from the combinations 

of the learning algorithms. 

Goodness measure 

CCNN -

FFNN-FFNN 

24_1 

RFB_FFNN_F
FNN 
24_8 

BMARS -

FFNN-FFNN 

2_1 

BMARS -

FFNN-FFNN 

5_1 

BMARS -

FFNN-FFNN 

24_1 

RMSEoob 0,056 0,050 0,704 0,306 0,053 

MAPEoob 10,925 9,872 95,251 43,629 10,686 
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Avg. Ambi 0,001 0,017 0,036 0,007 0,001 

Avg. Error 0,008 0,011 0,212 0,085 0,012 

Gen. Error 0,007 -0,006 0,177 0,077 0,011 

Bias Error 0,008 0,011 0,212 0,085 0,012 

Var. Error 0 0 0 0 0 

ME -7,70E-06 5,10E-07 -7,06E-06 -5,80E-06 -4,89E-06 

EV 2,09E-06 1,91E-06 2,40E-06 1,61E-06 1,30E-06 

MSE 0,001 0,001 0,002 0,001 0,001 

RMSE 0,037 0,036 0,040 0,033 0,030 

MAE 0,019 0,018 0,019 0,016 0,016 

MAPE 4,474 4,668 4,499 4,200 3,975 

SMAPE 0,020 0,020 0,020 0,017 0,017 

Daily Peak MAPE 2,795 11,759 1,901 4,133 3,020 

FVU 0,069 0,063 0,080 0,053 0,043 

R2 0,931 0,937 0,920 0,947 0,957 

Durbin Watson 0,186 0,508 0,203 0,189 0,206 

S2 0,037 0,400 0,003 0,007 0,037 

S 0,432 0,713 0,451 0,434 0,454 

AICc 4464,526 5016,156 4324,107 4598,552 4784,178 

General SBC 4594,760 5917,464 4335,092 4625,976 4914,412 

Theils U1 0,038 0,036 0,041 0,034 0,030 

Theils U2 1,036 0,998 1,029 1,024 1,034 

 

 Growth of parallel branches based on multi-resolution components 

Multi-resolution components comes from the transformation of the original data set by means 

of multi-resolution techniques such as stationary wavelet transform, or time scaling. They 

create non-linear related versions of the original data set, which in turn, serve to create parallel 

branches.  

On this section we will test the null-hypothesis which states that the general goodness of the 

ensemble model could be increased with the insertion of multi-resolution branch specialization. 

The multi-resolution techniques implemented are called Time scaling and the non-decimated 

Stationary wavelet transform. 

Time scaling requires a set of lags, each one in charge of grow a branch, easily obtained from 

an analysis of the periodogram, Sample ACF, and PACF. An example of this analysis is 

presented on the APPENDIX C for the Australian load profile. The lags selected to be tested, 

in order of importance, corresponds to 2, 24, 8, 12, and 48 hours.  

It’s important to remark that every load profile have specific scores among the autocorrelation 

peaks and periodogram peaks; in order to generalize the lags tested on this section corresponds 

to the first ranked scores obtained from the industrial load profile and the other scenarios. In 
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the case of the SWT, The number of approximations implemented has been set among 3 to 5 

levels of decomposition. 

Based on the best ranked ensemble models presented on Table 16, and Table 17, we have 

proceeded to train each one of these models with the all the combinations possible amongst the 

time scaling lags, SWT number of approximations, or both.  On the Table 18, the best ranked 

ensemble model configurations obtained from the multi-resolution pool are presented.   

Table 18. MAPE and RMSE of the best 5 ensemble models created from the combinations of 

the multi-resolution elements. 

Ensemble Model 

# Cluster_#Base leaner 

# Clusters 

/ # Base 

leaners 

Time Scaling 

Lags 

SWT 

Number of 

approximations 

RMSE MAPE 

Reg. Tree-FFNN-FFNN  1 / 8  5 3,399 4,054 

FFNN-FFNN-FFNN  24 / 8  5 3,884 4,672 

FFNN-FFNN-FFNN  1 / 3  5 3,672 4,347 

CCNN-FFNN-FFNN  2 / 1  5 2,820 4,003 

CCNN-FFNN-FFNN  1 / 1 1, 2, 8  2,870 3,979 

In general terms, the inclusion of multi-resolution branches on the optimal haven’t introduced 

improvements, except in the case of the algorithm CCNN-FFNN-FFNN 2_1 which has 

increased his RMSE but maintained his MAPE.  

Although, the new configuration FFNN-FFNN-FFNN 1_3 has reached a new minimum. It 

means that multi-resolution components doesn’t necessary work together with previously 

optimized #cluster - #base learner ensemble models.  

 Resume of the best ensemble model configurations 

The best five scored ensemble models has been gathered on the Table 19; also we have include 

an ANFIS, and FFNN models in order to compare the ensemble model accuracy with some 

simple control algorithms. The Table 20 presents the goodness measures of the models 

presented on the Table 19. 

Table 19. MAPE and RMSE of the best 5 ensemble models created from the combinations of: 

multi-resolution elements, number of clusters, number of base learners, and learning algorithms. 

# Ensemble Model 

# Clusters 

/ # Base 

leaners 

Time 

Scaling 

Lags 

SWT 

Number of 

approximations 

RMSE MAPE 

1 Reg. Tree-FFNN-FFNN  5 / 8   3,142 3,728 

2 BMARS -FFNN-FFNN 24 / 1   2.952 3.975 

3 CCNN-FFNN-FFNN  2 / 1 1, 2, 8  2,870 3,979 

4 CCNN-FFNN-FFNN  2 / 1  5 2,820 4,003 

5 Reg. Tree-FFNN-FFNN  1 / 8  5 3,399 4,054 

 ANFIS    6,952 13,016 

 FFNN    5,369 6,838 



Chapter 3: Study and contributions to load forecasting 

3.4 Ensemble learning strategies for load forecasting  

 

 

Adaptive Load Consumption Modelling on the User Side                      | 139 

 

Table 20. Goodness measures of the best 5 ensemble models created from the combinations of: 

multi-resolution elements, number of clusters, number of base learners, and learning algorithms. 

Goodness measure 1 2 3 4 5 

RMSEoob 0,18 0,053 0,553 0,558 1,977 

MAPEoob 0 10,686 75,236 76,595 0 

Avg. Ambi 0,003 0,001 0,110 0,034 0,282 

Avg. Error 0,017 0,012 0,143 0,128 0,696 

Gen. Error 0,01 0,011 0,033 0,094 0,414 

Bias Error 0,02 0,012 0,143 0,128 0,696 

Var. Error 0 0 0 0 0 

ME -8,82E-06 -4,89E-06 -6,78E-06 -1,42E-06 -1,08E-05 

EV 1,47E-06 1,30E-06 1,23E-06 1,18E-06 1,72E-06 

MSE 0,0010 0,001 0,001 0,001 0,001 

RMSE 3,14 2,95 2,87 2,82 3,40 

MAE 0,0156 0,016 0,016 0,017 0,016 

MAPE 3,73 3,975 3,979 4,003 4,054 

SMAPE 0,0166 0,017 0,017 0,018 0,018 

Daily Peak MAPE 3,03 3,020 4,101 4,698 3,794 

FVU 0,049 0,043 0,041 0,039 0,057 

R2 0,951 0,957 0,959 0,961 0,943 

Durbin Watson 0,181 0,206 0,299 0,315 0,334 

S2 0,007 0,037 0,001 0,001 0,001 

S 0,4251 0,454 0,547 0,561 0,578 

AICc 4661 4784 4785 4821 4557 

General SBC 4688 4914 4818 4886 4590 

Theils U1 0,032 0,030 0,029 0,029 0,035 

Theils U2 0,998 1,034 1,007 0,968 0,999 

The best results are integrated by ensemble models which employ weak base learners such as 

Regression Trees and Bayesian MARS. These models are specialized on load profile features 

such as Day Type (Sunday, Saturday, Friday, Monday, Tuesday-Thursday), or day hour. These 

features corresponds to a number of classes equals to 5 and 24 and are fount on Model #1 & 

#2. 

Model #3 & #4  use a strong learner as base learner, CCNN; it also make use of a calendar 

variable, Labor Day, as element to discern among the  features of the load. In comparison his 

single branched version, presented at Table 16, the increment of the model accuracy suggest 

the convenience of multi-resolution elements on ensemble models with strong base learners.  

Model #5 has been a surprised among the pool of ensemble models, previously we have noticed 

that ensemble models based on weak learners often requires larger numbers of base learners per 
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cluster, but on this case the large number of clusters seems to be compensated by the number 

of branches (1 + 5 approximations). 

In order to present the accuracy of the ensembles in a visual form, we have proceeded to plot 

the forecasts obtained from the 5 best models over the industrial scenario test set.  

 

Figure 38. Load forecast correspondent to the ensemble model #1. Learning algorithm 

combination: Reg. Tree-FFNN-FFNN. Number of clusters/number of base learners:  5/8. Lags 

implemented: 0. Approximations implemented: 0. 
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Figure 39. Load forecast correspondent to the ensemble model #1. Learning algorithm 

combination: BMARS -FFNN-FFNN. Number of clusters/number of base learners:  24/1. Lags 

implemented: 0. Approximations implemented: 0. 

 

Figure 40. Load forecast correspondent to the ensemble model #1. Learning algorithm 

combination: CCNN-FFNN-FFNN. Number of clusters/number of base learners:  2/1. Lags 

implemented: 1, 2, 8. Approximations implemented: 0. 
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Figure 41. Load forecast correspondent to the ensemble model #1. Learning algorithm 

combination: CCNN-FFNN-FFNN. Number of clusters/number of base learners:  2/1. Lags 

implemented: 0. Approximations implemented: 5. 

 

Figure 42. Load forecast correspondent to the ensemble model #1. Learning algorithm 

combination: Reg. Tree-FFNN-FFNN. Number of clusters/number of base learners:  1/8. Lags 

implemented: 0. Approximations implemented: 5. 
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The graphics gives a hint about the real problem behind the models, all of them lack of the 

ability to forecast the Friday-Saturday transition, and some of them are not so good tracking the 

slope transition Sunday-Monday. They exhibit tendencies most typical of office workers.  

But there is a reason for the lack of accuracy on these two zones, the uncertainty implicit on the 

zones with switching dynamics. In order to make a hypothesis about this problem we have 

checked the slopes of weeks previous to the forecasted week, and they doesn’t tend to remain 

stable neither, adopting a different twist every week.  

These dynamics are not unique of an industrial scenario, it is also reflected on the representative 

data sets of the Spanish university case, and the residential building case. On the other hand this 

dynamic is not so strong at the regional consumption scenario: Australian data set.  

Is important highlight that despite of the errors obtained on this two highly volatile zones, the 

weekly forecasting error remains low; being the last one the most important forecast for energy 

dispatch, energy purchase and monthly load forecasting decisions.  

In demonstrate the adaptability of our ensemble learning strategy for load forecasting, we have 

conduct a series of forecasting on different scenarios. Using the best ensemble model 

configuration model #1: Reg. Tree-FFNN-FFNN 5/8, obtained for the industrial scenario, and 

adding some options such as the possibility to include lags or approximations we have created 

three models to test the evolution of the ensemble model trough scenarios. 

We also have included the second model on accuracy, model #3: CCNN-FFNN-FFNN 2/1. It 

will serve as a control ensemble model, providing a second point of view about the ensemble 

learning adaptation to the current data set from the perspective of a model with strong base 

learners.  

Simple learners, FFNN - ANFIS, are also implemented in order to highlight the ensemble model 

accuracy, and give a measure about the background difficulty to model the current set. Given 

the smoothness of the data set employed on the Table 21 was natural expect low forecasting 

errors, the ensemble models have demonstrated the convenience of the multi-resolution 

approach at the same time achieve low scores. 

Table 21. MAPE and RMSE of the ensemble models tested over the regional consumption 

scenario: Australian data set. 

# Ensemble Model 

# Clusters 

/ # Base 

leaners 

Time 

Scaling 

Lags 

SWT 

Number of 

approximations 

RMSE MAPE 

1 Reg. Tree-FFNN-FFNN  5 / 8   2,19 2,62 

2 Reg. Tree-FFNN-FFNN  5 / 8  5 1,67 2,24 

3 Reg. Tree-FFNN-FFNN  5 / 8 1, 2, 8  2,69 2,85 

4 CCNN-FFNN-FFNN  2 / 1 1, 2, 8  2,18 2,57 

 ANFIS    3,63 4,21 

 FFNN    3,59 3,89 
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The level of aggregation on the commercial consumption scenario employed on the Table 22 

is high but the random walk on the series becomes a serious problem for ensemble models and 

simple learners. The optimal modelling strategy for this set, rather than a fine grained feature 

specialization, seems to be a less grained clustering such as in the model #3. 

The data set on the Table 23 also possess a high uncertainty intraday but remain stable during 

the week. These results support the ensemble learning strategy proposed on this thesis at the 

same time that opens a window for more applications on the time series prediction. 

Table 22. MAPE and RMSE of the ensemble models tested over the commercial consumption 

scenario: Spanish university case. 

# Ensemble Model 

# Clusters 

/ # Base 

leaners 

Time 

Scaling 

Lags 

SWT 

Number of 

approximations 

RMSE MAPE 

1 Reg. Tree-FFNN-FFNN  5 / 8   7,06 7,75 

 Reg. Tree-FFNN-FFNN  5 / 8  5 8,19 10,11 

 Reg. Tree-FFNN-FFNN  5 / 8 1, 2, 8  7,18 8,04 

3 CCNN-FFNN-FFNN  2 / 1 1, 2, 8  7,17 7,40 

 ANFIS    9,84 11,71 

 FFNN    9,04 8,70 

 

Table 23. MAPE and RMSE of the ensemble models tested over the Residential consumption 

scenario: Bristol building. 

# Ensemble Model 

# Clusters 

/ # Base 

leaners 

Time 

Scaling 

Lags 

SWT 

Number of 

approximations 

RMSE MAPE 

1 Reg. Tree-FFNN-FFNN  5 / 8   5,81 4,53 

 Reg. Tree-FFNN-FFNN  5 / 8  5 5,25 4,40 

 Reg. Tree-FFNN-FFNN  5 / 8 1, 2, 8  5,77 4,64 

3 CCNN-FFNN-FFNN  2 / 1 1, 2, 8  5,49 4,26 

 ANFIS    7,13 6,94 

 FFNN    7,21 7,35 
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3.5 Conclusion 

n this section major advances on the construction of adaptable, accurate and 

semiautomatic modelling approaches has been made. The approaches presented has 

comprised a diversity of techniques, starting at the signal processing of the data using 

a time-frequency decomposition technique in order to extract information for the 

modelling process. Continuing on the exploration of auto-generated models from a refined 

evolutionary programming technique, and finalizing with the development of a novel strategy 

to build, train and optimize ensemble methods. 

All the approaches presented had follow a clear path of evolution in order to guarantee the 

accuracy of the ensemble and ensure the maximum extraction of knowledge form the data sets. 

The Wavelet-ANFIS modelling approach brings an improvement over the plain learner 

algorithm, corroborating that an exploration the time-frequency traits of the signals is a clear 

path to elaborates more accurate models. 

The Cartesian genetic programming approach brings the opportunity to test the hypothesis of a 

fully adapted model to the data, since it grew/evolve of it, making the term “adaptability” the 

key term to judge the performance of this algorithm instead of the accuracy; which also obtain 

a good performance over a typical learning algorithm. 

Inspired of these approaches, a novel ensemble learning strategy have been develop as a way 

to retain as much as possible traits contained on the signal, following the bias and volatility of 

the signal on a more precise and controlled way. In order to achieve this objectives was 

necessary implement clustering methods to control the features to model, subsampling to grow 

diversity among sets of base learners, and more important: declare a hierarchy to combine all 

the predictions.  

Finally, in order capture more diversity among the elements of the ensemble model we have 

tested the introduction of multi-resolution techniques, which has corroborated the conclusions 

obtained from the Wavelet-ANFIS approach. In order to test the accuracy and diversity 

extracted by the model we have carried out a set of 24 goodness measures.  

These measures has help us to conclude: 

 Ensemble models based on weak base learners retain mayor diversity than those ones 

based on strong learners 

 Accuracy improves with the use of multi-resolution elements but they must be selected 

previous analysis. 

 Our ensemble learning strategy offers good results for series with high volatility on short 

time forecasting. 

 

 

O 
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4.1 Conclusions 

As the reader could notice, this thesis has presented an exercise of pattern recognition. We could 

say that time-series analysis, modelling algorithms, and forecast analysis, are procedures to find 

and identify elements susceptible to be parameterized and classified. An example of this 

statement is the usage of the time-series analysis for the identification of the trend and seasonal 

components on the signal, and the posterior parameterization of those using base-learners. 

On the other hand, an example of hard parameterization is founded on the estimation of the 

conditional variance. This estimation require a residual error analysis, which counts residual 

errors as a mixture of errors such as: modelling errors due to innovations, modelling error due 

improper model structure, errors due to data sample and corrupted data. 

The ensemble learning strategy presented on this thesis is complex during the energy study, 

which is a once-time implementation, but once time the best parameters are defined for the load 

profile the prediction is easy/fast to execute without almost no configuration. The ensemble 

strategy was also created to adapt to any volatile scenario, inclusive those ones with high 

dynamics loads. 

Our novel ensemble strategy has been inspired by techniques original from time series 

forecasting field and weather prediction models, extending the validity to very short forecasting 

horizons. In fact, the training of a model could happen in less than quarter hour prediction 

interval, allowing to present a novel forecasting methodology with great accuracy and without 

over calculations. 

The ensemble load forecasting approaches presented on this dissertation, have been designed 

in order to minimize the errors presented on three so-called features of the load forecasting 

methods. The conclusions obtained from the implementation presented are summarized on the 

following sections based on their respective association with the features called adaptability, 

accuracy, and automatization.  

4.1.1 Adaptability in terms of the load profile volatility 

Deterministic modelling algorithms generally perform a training based on the unconditional 

mean, except on the case of autoregressive models which can be considered as conditional mean 

regressor. Such methods can be improved by the implementation of resampling statistical 

methods such as Monte Carlo methods, or their particular cases bootstrapping and stochastic 

sampling methods such as MCMC could be also considered. These methods will serve to obtain 

the conditional variance through several run on the case of base-learners.  

The measuring and modelling the conditional variance is the base of the adaptability, because 

the variance (volatility) on a load profile is defined accordingly to user scenario. Ensemble 

learning approaches based on boosting methods, rather than averaging methods, reduce 

effectively the bias and provides a better understand of the aggregation of explanatory models 

constructed for the dominant effects on the load profile.  
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But, the reduction of the bias is a consequence of the accurate conditional mean track. In order 

to calculate the conditional variance is necessary integrate a model suitable for this task. On 

this scenario, assumptions like implement a density estimator as base learner (BMLS - MARS), 

genetically evolved models (CGP - NCGP), or strong learners, are equally valid and have been 

discussed and compared on this thesis. 

4.1.2 Accuracy in terms of Bias tracking  

Accuracy is a term linked with the estimation of the conditional mean of a time series on a 

forecasting horizon. Although, the best methods to control the conditional mean tracking (active 

bias tracking, online forecasting) implies short-term sequential updating instead of recursive 

forecast, the decision on the implementation of any alternative is penalized according with the 

load forecasting algorithm requirements (training method, database size, algorithm 

complexity). 

Results has demonstrated that short-time forecast made by NN family algorithms could be 

relative quicker than a fraction of the forecast horizon under large data sets. But apart of being 

possible, this leads to the question of the consequences of rely on an online training instead of 

use modern one-step ahead forecast.  

The principal objective of the approaches presented on this thesis are define a series of 

structured models driven by the special features founded on the load profiles scenarios. Features 

such as seasonal components, cyclical effects, day patterns, and autoregressive terms linked to 

recency effect are some of the key elements used to build these ensemble structures.  

However, in order to increase the precision of the model, linked to innovations that cannot be 

described on the previous elements, methods based on multi-resolution elements are discussed. 

It has been shown that models that aggregates these elements achieve a significant improvement 

but it always depend on the quality of the data available.  

As we can see, errors due to innovations plays a central role on the analysis of the residuals, 

but the study is not limited to them. Our research performs an exploratory analysis of the errors 

inherent to the forecast algorithm chosen. The contributions to the residual error due to model 

structure are explored using a variety of model to compare their contributions on to an ensemble 

approach, and the errors due to model parameters are intended to be cancelled by the use of 

samplers.  

Finally the errors due to corrupted data or quantization of the signal are considered elements 

susceptible to be largely filtered on the preprocessing stages, residuals of those errors must be 

considered part of the innovations. 
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4.1.3 Automatization 

Energy study comprised as the actions necessary to install an EMS on a new user always will 

depend on human expertise, there is no possibility to codify the expertise, just make it more 

affordable to be used in form of software packages or documented procedures. 

In order to catalog the procedures necessary to carry out a load forecast, it has been proposed a 

modelling strategy from the identification and filter of the variables, up to the presentation of 

the forecast results, and the measures necessary to validate the reliability of the model according 

to the dynamics of the user scenario. The packing of these procedures on a fully automated 

method is left to user discretion. 

Although the main focus of this thesis is load forecasting, we wish have maintained a statistical 

spirit describing a way to understand the problems of the energy time-series on energy 

management. Following that motivation, the next sections will present some of the promissory 

research paths on the study of the time-series forecast with applications to energy profiles. 

4.2 Future outlook 

Time-series forecasting applied to load profiles have been mostly restrained to conditional 

mean regression models, and the expert supervision to achieve an accurate adaptation to data 

sets. On this section, based on the analysis of the current literature, the advance of the smart 

grids, and the multy-agent implementations, we propose two possible trend topics for the 

upcoming 10 years. 

4.2.1 Enhancement of the stochastic modelling  

The approaches presented on this thesis have been searching for the correct modelling of the 

volatility presented on the load profiles; but, as we stated along the previous chapters, there is 

no point on assume Gaussian distribution on the error variance (modelling methods presented) 

or assume that conditional prediction error could be correlated with previous states (GARCH 

models).  

Although, we have presented a robust approach to minimize the sources of error on the 

modelling, we encourage to readers to test if probabilistic approaches such Markov Chain 

derivatives could increase the modelling accuracy. Readers can use those probabilistic 

approaches to compute a short term load forecast or a non-parametric density estimation using 

a similar procedure as the explained on the GARCH modelling.  

Also, readers can combine such approaches with piecewise functions or artificial intelligence 

algorithms such as NN [129]. Although the recency of those approaches is a big attractor, these 

predict the conditional variance based on the previous stage, reducing their reliability for more 

than one step ahead. As recommendation, readers could use the conditional mean extracted 

from sampler methods as base for the conditional distribution.   
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Other methods focused on the probability density based on the data projections such as 

probabilistic principal components analyzers [130], used on image compression and hand 

written digital recognition could be also explored as an alternative to found the volatile in terms 

of artificial dimensions easy to analyze.  

Referenced books on the field of stochastic forecasting [131]–[134] are introduced to reader in 

order to make their own research on stochastic modelling.  

4.2.2 Dynamic recognition of modelling set up parameters using pattern 
recognition.    

Deep learning is the current fashion… yes, as you tough, welcome to the rollercoaster of 

fashion. The 80’s were a factory of trends such as Yuppie’s, an acronym for 'Young Upwardly 

Mobile Professional Person', who style perfectly define the new hipster-informal way of dress. 

But, 80’s was recognized also for diverse applications of multilayer perceptron’s a.k.a 

multilayer neural networks. 

This means that the large applications on the identification of complex parameter on a signal 

without effort was existing since 30 years ago and recently investigators decide give a second 

chance to a dusty technology. This rusty technology could also provide the ideal autonomy 

searched for the load forecasting process, from the time-series analysis passing by the modelling 

method and finishing on the custom forecast. 

Future research works could use pattern recognition in order to measure key indicators such as 

mean, variance, mode, median, season effects, volatility, etc. in order to customize the load 

modelling method and the statistics provided by the forecasting process. 
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5.1 Related journal and conference publications 

5.1.1 Journals 

August/2016 

Giacometto, F.; Capelli F.; Riba J. R.;Romeral, L.; Sala, E. “Thermal 

Response Estimation in Substation Connectors Using Data-Driven 

Models.” In Advances in Electrical And Computer Engineering. vol.16, 

no.3, pp.25-30, 2016-Aug. doi: 10.4316/AECE.2016.03004. 

5.1.2 Conferences 

November/2015 

Giacometto, F.; Sala, E.; Kampouropoulos, K.; Romeral, L.; “Short Term 

Load Forecasting using Cartesian Genetic Programming: an Efficient 

Evolutive Strategy Case: Australian electricity market.” In 41st Annual 

Conference of the IEEE Industrial Electronics Society IECON 2015. 

pp.5087-5094, 2015-Nov., doi: 10.1109/IECON.2015.7392898. 

• Best presentation recognition in the Computational Intelligence 

session. 

November/2015 

Giacometto, F.; Romeral, L.; Sala, E.; Capelli F.; Riba J. R., 

“Temperature Rise Estimation of Substation Connectors Using Data-

Driven Models Case: Thermal conveccion response.” In 41st Annual 

Conference of the IEEE Industrial Electronics Society IECON 2015. 

pp.3957-3962, 2015-Nov., doi: 10.1109/IECON.2015.7392717. 

October/2012 

Giacometto, F.; Cardenas, J.J.; Kampouropoulos, K.; Romeral, J.L., 

"Load forecasting in the user side using wavelet-ANFIS," in IECON 2012 

- 38th Annual Conference on IEEE Industrial Electronics Society , 

pp.1049-1054, 25-28 Oct. 2012, doi: 10.1109/IECON.2012.6388575. 

5.1.3 Collaborative work 

 

November/2014 

Sala, E.; Kampouropoulos, K.; Giacometto, F.; Romeral, L., "Smart 

multi-model approach based on adaptive Neuro-Fuzzy Inference Systems 

and Genetic Algorithms," in Industrial Electronics Society, IECON 2014 

- 40th Annual Conference of the IEEE, pp.288-294, 2014-Nov., doi: 

10.1109/IECON.2014.7048513. 
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November/2014 

Sala, E.; Kampouropoulos, K.; Giacometto, F.; Romeral, L., "Smart 

multi-model approach based on adaptive Neuro-Fuzzy Inference Systems 

and Genetic Algorithms," in Industrial Electronics Society, IECON 2014 

- 40th Annual Conference of the IEEE , vol., no., pp.288-294, Oct. 29 

2014-Nov. 1 2014, doi: 10.1109/IECON.2014.7048513. 

September/2012 

Cardenas, J.J.; Giacometto, F.; Garcia, A.; Romeral, J.L., "STLF in the 

user-side for an iEMS based on evolutionary training of Adaptive 

Networks," in Emerging Technologies & Factory Automation (ETFA), 

2012 IEEE 17th Conference on , pp.1-8, 17-21 Sept. 2012, doi: 

10.1109/ETFA.2012.6489626 
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5.2 Collaborations in technologic transfer projects 

October 2011 – 

March 2015 

EUROENERGEST: Increase of automotive car industry 

competitiveness through an integral and artificial intelligence driven 

energy management system. Funded under FP7-ICT.  

Responsibilities: 

• Writing and coordination of the work package 4: "Theoretical models 

for the load forecasting system" 

• Analysis of the load consumption on the SEAT car manufacturing plant 

using data mining 

• Design and coding of data-driven models for a load forecasting service 

at an energy management application 

January 2012 – 

July 2015 

OPTIENER: energy efficiency optimization on building sector. Funded 

under IMPACTO Spanish projects. 

Responsibilities: 

• Writing and coordination of the work package 4: " Configuration of 

dynamic models for the energy load system" 

• Analysis of the load consumption on the buildings using data mining 

• Design and coding of data-driven models for a load forecasting service 

at an energy management application 

August 2013 – 

August 2014 

EFINDPRO: Process And Living Lab For Industry Energy Efficiency. 

Funded under KIC InnoEnergy projects. 

Responsibilities: 

• Writing and coordination of the work package 2: " theoretical automatic 

and tunable models for power consumption, ready for plant integration " 

• Analysis of the HVAC load consumption at industrial users using data 

mining 

• Design and coding of data-driven models for a load forecasting service 

at an energy management application 
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𝑥 Variable 

𝒙 Vector 

𝑨 Matrix 

𝑰 Identity matrix 

𝓧,𝓨 Input and output spaces 

𝒟 Probability distribution 

𝐷 Data sample (data set) 

𝒩 Normal distribution 

𝓤 Uniform distribution 

ℋ Hypothesis space 

𝑯 Set of hypotheses 

ℎ(. ) Hypothesis (learner) 

𝓛 Learning algorithm 

𝑝(. ) Probability density function 

𝒑(. |. ) Conditional probability density function 

P (.) Probability mass function 

P(. |. ) Conditional probability mass function 

𝔼.~𝒟[𝑓(. )] Mathematical expectation of function f(·) to · under 

distribution 𝒟. 𝒟 and/or, · is ignored when the meaning is clear 

𝔼[. ] Unconditional mean 

𝑣𝑎𝑟.~𝒟[𝑓(. )] Variance of function f(·) to · under distribution D 

𝑒𝑟𝑟(. ) Error function 

{… } Set 

(… ) Row vector 

(… )𝑇 Column vector 

|. | Size of data set 
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‖. ‖ L2-norm 

𝕀(. ) Indicator function which takes 1 if . is true, and 0 

otherwise 

Ψ(. ) Custom function transform (time-frequency or time 

scaling) 
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Appendix B:  Load forecasting error estimation  

 

n the Chapter 2 the load forecasting theory was presented on general terms, concepts 

as the classification of the load forecasting and the loads to forecast, the identification 

of their characteristics, the preprocessing techniques and the methods to model the 

load behavior were presented.  But, the methods to measure the significance of the 

modelling techniques or the load forecasting strategies presented where introduced. 

We deliberately left the conceptual framework of the error estimation as a separate section due 

to the analysis of the error could be addressed from several points of view. An example of this 

could be stated on the representation of the generalization error for ensemble models, wich 

could be divided on bias, variance, and covariance, or in the average base learner error and the 

average ambiguity generated by them. 

On this appendix we will introduce concepts that has been addressed on the novel approaches 

implemented on this thesis, and not have been fully explained. The first section describe the 

load forecasting error theory viewed from a structured combination of errors produced by a 

mixture of sources, i.e., model parameters, model structure, data innovation.  

The second section will introduce the statistical tools used to measure the goodness of the 

forecast and model. The third section introduce the techniques employed to set the intervals 

where the prediction is likely supposed to be, knowing as confidence intervals. Last section is 

dedicated to show some statistical operators employed.  

Forecasting error decomposition 

First of all, let’s remember the definition of the residuals or so called error, they are constituted 

by a sum of all those components that the model fails in their explanation whether through 

incapacity or lack of data. When we introduce the description of the BMLS algorithm, we 

consider the dependent variable 𝒚 as result of a function of the explanatory variables plus a 

Gaussian noise term.  

Eq. 75 𝒚𝒕 = 𝒇(𝒙𝒕) + 𝜺𝒕           𝐚𝒏𝒅    𝜺𝒕 ∽ 𝑵(𝟎, 𝝈
𝟐) 

O 
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The function 𝑓 represents the real mathematical relationship that exist among the inputs and 

desired output, it can be only guessed or approximate by the forecasting approach. The 

Gaussian noise represents the assumption of a homoscedasticity posterior distribution, it means 

that BMLS present the error due to innovation as a term with fix distribution.  

Later, on the description of the GARCH algorithm the equation changed to 

Eq. 76 𝒚𝒕 = 𝒇(𝒙𝒕) + 𝜺𝒕        𝒂𝒏𝒅     𝜺𝒕 ∽ 𝑵(𝟎, 𝝈𝒕
𝟐) 

Where the error due to innovations 𝜀𝑡 this time is time dependent. It denotes a sequence of 

independent modelling errors with zero mean and local conditional variance of the process 𝜎𝑡. 

This guarantee the assumption of heteroskedasticity on the posterior distribution, it means that 

GACH models presents the error due to innovation as a term with time dependent distribution. 

This formula is follows the same principle of a random walk, where 𝝓𝒕 is a random variable 

that describe the probability for the next step, and 𝒉 the time between subsequent intervals. 

Eq. 77 𝒚𝒕+𝒉 = 𝒚𝒕 + 𝝓𝒉        𝒂𝒏𝒅     𝝓𝒕 ∽ 𝑵(𝟎, 𝝈𝒕
𝟐) 

If the direction and longitude of the step becomes only dependent of the last sample and no 

other previous position, the random walk is considered with a Markov property.  

As you will notice, the function 𝑓  is the ideal relationship that remains hidden, and the 

modelling procedure tries to mimic this function. Typically, a supervised learning algorithm is 

employed to map the samples of the x variables against the y variable. On this process the 

innovation error is assumed as another component to be modeled. But, more error is added 

when the fitted model must predict y using estimated x variables, i.e., the estimated temperature. 

Based on this statement, we can consider the GARCH algorithm as the top performer on the 

study of the independent & uncorrelated residuals, consider it a way to understand the 

distribution of the innovation error on the predicted samples. Although, the innovation error 

comprised as a part of the modelling on next section we will study the use of the kernel density 

estimators (KDE), in charge of assert the distribution of the forecast. 

Consequently, any modelling procedure, presents the following equation. Where the forecasted 

dependent variable is presented as the estimated function 𝑓, it could be consider as an ensemble 

of models 𝑓 = 𝐹(𝑓1, 𝑓2, … , 𝑓𝑛).  

Eq. 78 𝒚̂𝒕 = 𝒇̂(𝒙𝒕)         

Then, the square loss error is presented as 

Eq. 79 𝒆𝒓𝒓 = 𝔼(𝒚𝒕− 𝒚̂𝒕)
𝟐 = 𝔼(𝒇(𝒙𝒕) − 𝒇̂(𝒙𝒕) + 𝜺𝒕)

𝟐
       𝒂𝒏𝒅     𝜺𝒕 ∽ 𝑵(𝟎, 𝝈𝒕

𝟐) 

And, the residuals presented as 
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Eq. 80 𝒓𝒕 = 𝒚𝒕− 𝒚̂𝒕 = 𝒇(𝒙𝒕) − 𝒇̂(𝒙𝒕) + 𝜺𝒕      𝒂𝒏𝒅     𝜺𝒕 ∽ 𝑵(𝟎, 𝝈𝒕
𝟐) 

The based on this equation, the residual error could be divided on two terms, the residual error 

because modelling, called model uncertainty. 

 Eq. 81 𝐫𝒕
𝒎 = 𝒇(𝒙𝒕) − 𝒇̂(𝒙𝒕) 

And the residual error because innovations, which must be generalized as uncertainty about the 

experimental framework (EF). 

Eq. 82 𝐫𝒕
𝒆𝒇
= 𝜺𝒕      𝒂𝒏𝒅     𝜺𝒕 ∽ 𝑵(𝟎, 𝝈𝒕

𝟐) 

On the following figure the behavior of the bias and variance associated with an ensemble 

model is presented. Notice how the model attempt to be close to the real function, but is 

deflected because his learning is conditioned to data already corrupt by the EF. 

 

Figure 43. Schematic of the bias-variance behavior on an ensemble model. 

Uncertainty decomposition on load forecasting   

As it was introduced before, the main sources of uncertainty in any statistical could be 

categorized based on their importance.  

 Uncertainty due to modelling: The primary and larger source of error comes from the 

modelling error. This also comprises two errors, the error about the structure of the 

model, and the error about the correct estimation of the model parameters. 

o Uncertainty about the structure of the model: Is related with the lack of 

knwoledge about the dinamic that will be modeled and for consequence choose  

a modelling algorithm with poor performance, or a bad simplification of the 

model, i.e., pruning. It error also include: the incorrect selection of the numebr 

of input variables, and a bad guess of the variable dependency.  
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o Uncertainty about estimates of the model parameters: Assuming the model 

structure is known, a inadecuate asd use of the initial conditions or the learning 

algorithms could lead on this error. 

Then, the residual error because modelling, is presented as 

 Eq. 83 𝐫𝒕
𝒎 = 𝒇(𝒙𝒕) − 𝒇̂(𝒙𝒕) = 𝛆𝒕

𝒑𝒂𝒓𝒂𝒎
+ 𝛆𝒕

𝒔𝒕𝒓𝒖𝒄𝒕𝒖𝒓𝒆 

 Uncertainty about the experimental framework (EF): This will include unexplained 

random variation in the observed variables, i.e., innovations, as well as measurement 

and recording errors such as corrupt data.  

The errors due to the experimental framework could be considered as the intrinsic noise of the 

data set, being the lowest boundary on the expected error of any learning algorithm over the 

target. It should become clear to the reader that doubts about the model have a more serious 

effect on forecast accuracy than uncertainty arising from other sources. An example of this is 

the bias/variance decomposition, which is mostly influenced by modelling errors. 

The bias measures how closely, the average estimation of, the learning algorithm is able to 

approximate the target; the variance measures how much, the estimation of, the learning 

approach fluctuates for different training sets of the same size.  

Since the intrinsic noise is difficult to estimate, it is often subsumed into the bias term. Thus, 

the generalization error is broken into, the bias term which describes the error of the learner in 

expectation, and the variance term which reflects the sensitivity of the learner to variations in 

the training samples. 

The errors due to innovations could be approached taking on consideration the innovations as 

a conditional variable that depends only of the last observation of the signal. It means that new 

values of the innovations follows a conditional probability distribution. 

Probabilistic modelling techniques are focused on model the conditional probability 

distribution of the target at time t-1 in order to predict the next prediction interval, or measure 

the conditional probability distribution of the predictors employed for the regression. 

Algorithms as bayesian networks and markov models are examples of those approaches.   

On this thesis the conditional probability distribution of the innovations is not considered 

individually due to his low significance on short-term forecast. This can be partially explained 

on the stationary covariance property of the load profile. 

However, the thesis author recommends accept his high relevance is on very short-term forecast 

or economic forecast. This is due stochastic nature of the loads time series became excessively 

obvious at low ranges of time and economic forecast most of the time doesn’t have a stationary 

covariance. 
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Estimation of the prediction intervals 

When we performs a forecast, we must decide if the forecast will be (1) a single number “the 

best punctual guess”, (2) a range of numbers into which the future value can be expected to fall 

at a certain percentage of the time, or (3) an entire probability distribution for the future value. 

These conditions define the type of forecast, and represent (1) a point forecast, (2) an interval 

forecast, (3) a density forecast. 

Point forecast provides an easy digest information about the guess of the time series, however 

unpredictable “shocks” will produce errors on the prediction. Thus, we may want to know the 

degree of confidence that we have on a particular point forecast. More specifically, we want to 

know the uncertainty associated to the point forecast.  

An interval forecast has several characteristics, first, the length of the interval conveys 

information about the forecast uncertainty. Second, it contains more information of a point 

forecast, you can construct several point forecast by using the media of the interval.  

A density forecast gives the entire density (probability distribution) of the future value of the 

series. The density forecast also convey more information than interval forecast because, given 

a density function, any interval forecast at any confidence level could be easily created. For 

example, given a the future values of a series y, with a Gaussian distribution 𝑁(𝜇, 𝜎2), an 

interval forecast at 95% could follow the equation 𝑦 = 𝜇 ± 1.96𝜎. 

Notice that density forecast require as central component a density function, it represent the 

distribution that will follow the future values of the series. This functions could be, (1) 

parametric, such as Gaussian or Bayesian, which follows a defined equation and remain 

similar for all the point forecast. Or (2) non-parametric, functions obtained from regressions 

over the distribution of the time series, GARCH models and Kernel estimators are part of these 

group. 

However, in practice point forecast are the most common forecast made, interval forecast are 

distant second, and density forecast are rarely made. There is at least two reason for this. First, 

the construction of interval and density forecast requires either, (1) additional and possibly 

incorrect assumptions relative to those required to for the construction of the point forecast, Or 

(2) advanced and computer-intensive methods involving extensive simulations, i.e., Monte 

Carlo methods. 

Second, it is often easier to understand and take action based upon a set of point forecasts 

relative to an interval or density forecast. Another forecast type of particular relevance to event 

outcome and event timing forecasting is the probability forecast. On the following figure the 

differences among the forecast are obvious. 
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Figure 44. Types of forecast. 

On the next subsections we will dig deeper on the consequences of have a prediction interval 

that relies on a density function, estimated by any sort of regression or conventional such as 

Gaussian distribution, conditioned by the forecast timing. 

 Parametric interval forecast (homoscedastic assumption) 

Point forecast are made based on the mean estimation this means that modelling algorithms 

are conditional mean experts, because their base their forecast on events occurred at a time t. 

This mean forecast give us a hint about the learning method, the modelling algorithm must be 

learning from the inherent temporal distribution of the time series by means of certain rules. 

As we notice on the description of the modelling algorithms, sometimes we start supposing that 

time series follows a normal distribution (Gaussian distribution). But non-linear algorithms 

made his way learning directly from the data without initial assumptions, lead on 

heteroskedasticity mean driven models. On the next section we will discuss this topic. 

The most common  procedure to calculate the forecast interval is assume a homoscedastic 

distribution for all the points of the prediction, and associate to them a predefined probability 

density function (PDF) such as a Gaussian function, T-student distribution etc. Most of the 

forecast intervals found on literature follows a Gaussian distribution. A 100(1−∝)% P.I. for 

a horizon h is given by: 

Eq. 84 𝑷(𝒚̂|𝐭, 𝐡) = 𝒚̂𝒕+𝒉± 𝒛∝/𝟐√𝝈
𝟐(𝒚̂)         

Where 𝒛∝/𝟐 denotes the percentage point of an standard normal distribution with a proportion 

∝/𝟐 above it, ∝/𝟐 area within each of the two tails, 1−∝ probability between the interval 

limits. Others author consider the equation for within-sample prediction intervals 

Eq. 85 𝑷(𝒚̂|𝐭, 𝐡) = 𝒚̂𝒕+𝒉± 𝒛∝/𝟐√𝝈
𝟐(𝒆̂)         

Point forecast

µ=1.3 

5% 5%

90% Forecast Interval 

µ+1.96   = 4.3 µ -1.96   = -2.3 

Density forecast

Probability density 
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This formula only apply for prediction because the future errors are unknown, also his value 

has been widely criticized (Chatfield [83], p. 201).  

Based on the supposition of homoscedasticity we could infer that forecast present a distribution 

as the following graph shows. 

 

Figure 45. Representation of a homoscedastic forecast. 

Non-parametric interval forecast (heteroskedastic assumption) 

In nonparametric interval statistics no assumptions are made on the underlying probability of 

the forecast model, canceling the assumption of a normal distribution around the point forecast. 

The appeal of nonparametric methods lies in their ability to reveal structure in data that might 

be missed by classical parametric methods. 

Then, we can assume that assumptions normality or a homoscedastic distribution is too naïve. 

The real time series presents distributions with extravagant skewness and kurtosis due to the so 

called “shocks”. If we perform a prediction over the time series past, we will find traces of a 

heteroskedastic distribution as the following figure shows. 

Notice that the histogram of the time series, for a given time, could be translated on a probability 

function.  This non-parametric regression methods is exploited to produce empirically based 

probabilistic intervals will be explained later.  

On this section we will present some alternatives to construct a density function estimated 𝑷̂ 

from the observed data with an unknown density function 𝑷. The classical approach to estimate 

the probability density is to assume a parametric model, but inferences derived from it can lead 

to misleading interpretations of the prediction interval. 
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 Figure 46. Prediction of a time series with heteroskedastic distribution. 

In non-parametric density estimation less rigid assumptions are placed over the functional 

expression of the density. The resulting density estimator is more flexible and the time series 

are “allowed to speak for themselves”. This results in a powerful tool for exploratory data 

analysis: visualization of data sets, classification... and a natural framework to formally define 

and handle data sets. 

Non-parametric models also has drawbacks; kernel estimators depend on a smoothing 

parameter, typically hard to select because there is no unique obvious “optimal choice” for it; 

they require large samples because the theoretical motivation for the estimators is usually 

asymptotic; they suffer dimensionality curse, as soon the data dimension grows the estimators 

require larger and larger sample sizes. 

Since the multivariate nonparametric density estimation methods are generalizations of 

univariate ones, we will introduce first the univariate proposals. We are familiarized with the 

simplest density estimator, the histogram.  On the last figure we could see how a density 

estimation could be inferred from dividing the histogram on infinite classes. 

 Kernel estimators 

A simple estimator (based on a similar idea to that of the histogram) is the moving window 

estimator 

Eq. 86 𝒇𝒏(𝒕) =
𝟏

𝒏 𝟐𝒉𝒏
∑ (𝒕 − 𝒙𝒊) ∙ 𝕀(−𝒉𝒏, 𝒉𝒏)
𝒏
𝒊=𝟏     

This can be generalized by replacing the normalized uniform density of the histogram interval 

𝕀(−1,1)/2 with another density function called kernel density function, or kernel density 

estimator (KDE). 

Eq. 87 𝒇𝒏(𝒕) =
𝟏

𝒏 𝒉𝒏
∑ 𝑲(

𝒕−𝒙𝒊

𝒉𝒏
)𝒏

𝒊=𝟏    

1+

Prediction horizon

2+ 3+ 4+ 5+ 6+ 7+ 8+ 9+ 10+

t
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Notice that kernel provides a smoothed version of the histogram, among the possible kernel 

choices we have the Epanechnikov kernel 

Eq. 88 𝑲(𝒙) =
𝟑

𝟒
(𝟏 − 𝐱𝟐) ∙ 𝕀(−𝟏, 𝟏) (𝒙)  

The Biweight kernel 

Eq. 89 𝑲(𝒙) =
𝟏𝟓

𝟏𝟔
(𝟏 − 𝐱𝟐)𝟐 ∙ 𝕀(−𝟏, 𝟏) (𝒙)  

The Triweight kernel 

Eq. 90 𝑲(𝒙) =
𝟑𝟓

𝟑𝟐
(𝟏 − 𝐱𝟐)𝟑 ∙ 𝕀(−𝟏, 𝟏) (𝒙)  

The Gaussian kernel 

Eq. 91 𝑲(𝒙) =
𝟏

√𝟐𝝅
𝒆𝒙𝒑(−

𝐱𝟐

𝟐
) ∙ 𝕀(−𝟏, 𝟏) (𝒙)  

The Student's t-distribution kernel, with 𝜈 as the number of degrees of freedom 

Eq. 92 𝑲(𝒙) =
𝚪(
𝝊+𝟏

𝟐
)

√𝝂 𝝅 𝚪(
𝝊

𝟐
)
(𝟏 +

𝒙𝟐

𝝊
)
−
𝝊+𝟏

𝟐
∙ 𝕀(−𝟏, 𝟏)(𝒙) =

𝟏

√𝝂 𝚩(
𝟏

𝟐
,
𝝊

𝟐
)
(𝟏 +

𝒙𝟐

𝝊
)
−
𝝊+𝟏

𝟐
∙ 𝕀(−𝟏, 𝟏) (𝒙)  

And, finally The Uniform kernel 

Eq. 93 𝑲(𝒙) =
𝟏

𝟐
∙ 𝕀(−𝟏, 𝟏) (𝒙)  

Other kernels could be based on the regression of the time series such as the Nadaraya-Watson 

estimator 

Eq. 94 𝒎̂(𝒙) =
𝒏−𝟏∑ 𝑲𝒉(𝒙−𝒙𝒊)𝒚𝒊

𝒏
𝒊=𝟏

𝒏−𝟏∑ 𝑲𝒉(𝒙−𝒙𝒋)
𝒏
𝒋=𝟏

   

The difference between prediction intervals and confidence intervals 

On the previous section, reader has observe the creation of the probability density functions 

based on the past data. A density function modeled from histograms and softened by some 

kernels. These are called confidence intervals, and we could say that share the homoscedastic 

assumption because it is based on the data available.  

But, prediction intervals (PI) and confidence intervals (CI) are not the same thing. R. Hyndman 

make a clear distinction about them. A PI is an interval associated with a random variable yet 

to be observed, with a specified probability of the random variable lying within the interval. 

Prediction intervals can arise in Bayesian or frequentist statistics. 

A CI is an interval associated with a parameter and is a frequentist concept. The parameter is 

assumed to be non-random but unknown, and the confidence interval is computed from data. 
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Because the data are random, the interval is random. A 95% CI will contain the true parameter 

with probability 0.95. That is, with a large number of repeated samples, 95% of the intervals 

would contain the true parameter. 

Empirically based prediction intervals 

The estimation of the density intervals on out-of-sample data have the same principles of a 

forecasting procedure. When theoretical function of the forecast interval is not available, instead 

of assume a normal distribution, the reader should use a more computationally intensive 

approach based either on (1) using the properties of the observed distribution of the within-

sample prediction errors, or (2) based on simulation or resampling methods. Precursors on the 

method (1) will be following described. 

Gilchrist [135] make a prediction on the within-sample data, finding the within-sample 

prediction errors at 1+,2+,3+, … steps ahead from all the available time origins, and then 

finding the variance of these errors at each lead time over the period of fit. Then assuming 

normality an approximate 100(1−∝)% P.I. for a h-step-ahead horizon h is given by: 

Eq. 95 𝑷(𝒚̂|𝐍, 𝐡) = 𝒚̂𝑵(𝐡) ± 𝒛∝/𝟐 𝝈𝒆,𝒉 = 𝒚̂𝑵(𝐡) ± 𝒛∝/𝟐√𝝈
𝟐(𝒆̂𝑵(𝒉))         

If N is small 𝒛∝/𝟐 is replaced by the corresponding percentage point of the t-distribution with 𝜈 

degrees of freedom, where 𝜎 is also based on these degrees of freedom. Then he extends these 

prediction intervals over the future of the time series. However, the values of variance are 

unreliable because are based on in-sample residuals rather than on out-of-sample forecast error. 

Williams and Goodman [136], divide the past data in two parts: training and validation, the 

validation errors are used to estimate the density distribution of the series. The resulting errors 

are much more like true forecast errors because the use of out-of-sample data. Then, the model 

is refitted with one additional observation in the training data and one less on the validation 

data, and so on, making this a heuristic approach.  

This heuristic approach could be consider as an intention to calculate the conditional 

probability density function (CPDF), because the forecast jumps each sample at time. The 

authors found that the distribution of the forecast errors tended to approximate a gamma 

distribution rather than a normal distribution. 

PDF’s were constructed using the percentage points of the empirical distribution, thereby 

avoiding any distributional assumptions, such as normality. Promising results were obtained 

corroborating that authors were ahead of its time. However, although the approach is attractive 

in principle, it seems to have been little used in practice, presumably because of the heavy 

penalization imposed by the computational demands.  

Resampling methods, sometimes called Monte Carlo approaches, are often the most preferable 

way to obtain the empirical distribution function. These methods are explained as follows [83]. 
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“Given a probability time-series model, it is possible to simulate both past and future behavior 

by generating an appropriate series of random innovations and hence constructing a sequence 

of possible past and future values. This process can be repeated many times, leading to a large 

set of possible sequences, sometimes called pseudo-data. From such a set it is possible to 

evaluate P.I.s at different horizons by finding the interval within which the required percentage 

of future values lie”. Due to the use of a heuristic approach such that, is generally assumed that 

the model has been identified correctly.  

As reader already notice, this concept correspond to a heuristic sampling of the innovations 

from some assumed parametric distribution, often normal. It literally make use of fragmentation 

of the data on sequences that no longer respect the temporal arrangement. An alternative is the 

bootstrapping, it effectively approximates the theoretical distribution of innovations, by the 

empirical distribution of the observed residuals, because it is a distribution-free approach.  

On Simulation, the main idea is to use the knowledge about the primary structure of the model 

to generate a sequence of possible future values and find a forecast interval. Of course, because 

the nature of the model is deterministic, the use of resampling is necessary. Although, they are 

not based on a proper probability method, but rely instead on a set of recursive equations 

involving observed and forecast values. 

In a time series context, resampling would make no sense because successive observations are 

not independent, but are correlated through time. This explains why time series data are usually 

bootstrapped by resampling the residual errors rather than the actual observations. Just 

because residuals are expected to be at least approximately independent.  

However, the reader should be aware that it is generally more difficult to resample correlated 

data, such as time series, rather than resample independent observations, such as residual errors. 

Moreover, the effect of resampling the residual errors makes the procedure much more 

dependent on the choice of model which has been fitted. Finally, literature has demonstrated 

that bootstrapped prediction intervals are a useful non-parametric alternative to the usual Box-

Jenkins intervals. 

Measures of forecast goodness 

In practice, it is unlikely that we will ever stumble upon a fully optimal forecast; instead, the 

most common situation is combine a number of suboptimal forecast. Even for very good 

forecast, the actual and forecasted values may be very different. 

This highlights the inherent limits of the forecastibility, which depends on the process being 

forecast; some process are inherently easy to forecast, whereas others too difficult. In other 

words, sometimes the information on which the forecaster conditions is very valuable, a 

sometimes it isn’t.  

The crucial object in measuring the forecast accuracy is the loss function  𝐿(𝑦𝑡+ℎ, 𝑦̂𝑡+ℎ,𝑡) often 

restricted to residuals 𝐿(𝑒𝑡+ℎ,𝑡). In addition to the shape of the loss function, the notation 𝑡 +
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ℎ, 𝑡  has a deep meaning, it represents that the forecast horizon h at a certain time t is a 

conditional guess based on the current time t.  

Accuracy measures 

Rankings of forecast accuracy may be very different across different loss functions and different 

horizons. On this sections we will discuss few accuracy measures that are important and 

popular. The following notation will be introduced in order to reduce computational resources 

at the calculus of the error. Accuracy measures are usually defined on the forecast errors 

Eq. 96 𝒆𝒕+𝒉,𝒕 = 𝒚𝒕+𝒉 − 𝒚̂𝒕+𝒉,𝒕 

Or percent errors 

Eq. 97 𝒑𝒕+𝒉,𝒕 =
𝒚𝒕+𝒉 − 𝒚̂𝒕+𝒉,𝒕

𝒚𝒕+𝒉
⁄  

The mean error measures the bias, small bias is desired on any model. 

Eq. 98 𝑴𝑬 =
𝟏

𝑻
∑ 𝒆𝒕+𝒉,𝒕
𝑻
𝒕=𝟏  

The error variance measures the dispersion of the forecast errors, small variance are also 

preferred. 

Eq. 99 𝑬𝑽 =
𝟏

𝑻
∑ (𝒆𝒕+𝒉,𝒕 −𝑴𝑬)

𝟐𝑻
𝒕=𝟏  

Although these measures are components of the accuracy, neither provides an overall accuracy 

measure. The most common overall accuracy measure are the mean square error 

Eq. 100 𝑴𝑺𝑬 =
𝟏

𝑻
∑ (𝒆𝒕+𝒉,𝒕)

𝟐𝑻
𝒕=𝟏  

And the mean squared percent error, 

Eq. 101 𝑴𝑺𝑷𝑬 =
𝟏

𝑻
∑ (𝒑𝒕+𝒉,𝒕)

𝟐𝑻
𝒕=𝟏  

Often the square roots of these measures are used to preserve the units, yielding the root mean 

squared error, 

Eq. 102 𝑹𝑴𝑺𝑬 = √
𝟏

𝑻
∑ (𝒆𝒕+𝒉,𝒕)

𝟐𝑻
𝒕=𝟏  

And the root mean squared percent error, 

Eq. 103 𝑹𝑴𝑺𝑷𝑬 = √
𝟏

𝑻
∑ (𝒑𝒕+𝒉,𝒕)

𝟐𝑻
𝒕=𝟏  



Appendix  

Appendix B:  Load forecasting error estimation  

 

 

178 | Adaptive Load Consumption Modelling on the User Side    

To understand the meaning of “preserving units”, and why it is sometimes helpful to do so, 

suppose that the forecast errors are in dollars. Then the MSE is measured on squared dollars, 

using a square root the units come s back to dollars. The opposite of preserving units is delete 

them, this condition is exploited when the errors of the multi resolution branches of an 

ensemble must be mixed. 

Due to, each branches has been subdue to some transformation, the statistical properties of the 

original set are no longer there, although there units maybe is preserved. Somewhat less popular 

accuracy measures are the mean absolute error, 

Eq. 104 𝑴𝑨𝑬 =
𝟏

𝑻
∑ |𝒆𝒕+𝒉,𝒕|
𝑻
𝒕=𝟏  

And the mean absolute percent error,  

Eq. 105 𝑴𝑨𝑷𝑬 =
𝟏

𝑻
∑ |𝒑𝒕+𝒉,𝒕|
𝑻
𝒕=𝟏  

Residual statistics   

Residuals are the forecast errors, in ideal conditions after perform the correct decomposition 

of the signal components and the model of them, residual must express no autocorrelation, 

random distribution at each time t, and independence of any factor. 

Eq. 106                              𝒓𝒕 = 𝒆𝒕       ∴      𝒆𝒕   𝒊𝒊𝒅∼ (𝟎, 𝝈𝒕
𝟐) 

On previous sections we study the decomposition of the residual errors on the contributions 

made by the modelling procedures and the intrinsic noise of the data. On this section we will 

continue referring to the residuals as a unity. The statistics measure the degree of goodness of 

the model for a given data set, they will help us to improve the correct guess of the model 

features. 

The sum square of the residuals serve as constrains to minimize on a least square estimation. 

CGP does use of this measure. 

Eq. 107 𝑺𝑺𝑹 = ∑ 𝒆𝒕
𝟐𝑻

𝒕=𝟏  

The F-statistic could be used indistinctively for two purposes, measure the predictive value of 

the independent variables introduced on the model as a whole, or measure if parameters 

improvements on a model leads a better ability to fit a target. On this thesis the second option 

was employed to measure the optimal base learners per cluster on the ensemble model. 

Eq. 108 𝑭 =
(𝑺𝑺𝑹𝟏−𝑺𝑺𝑹𝟐)/(𝒑𝟐−𝒑𝟏)

(𝑺𝑺𝑹𝟐)/(𝑻−𝒑𝟐)
 

The terms 𝑆𝑆𝑅1, 𝑆𝑆𝑅2 are the sum of squared residuals from a restricted regression 𝑓1̂(𝑥) with 

𝑝1  parameters, and a regression 𝑓2̂(𝑥)  with 𝑝2  parameters. It is called restricted because 

parameters at the regression 1 are fewer than model 2, being 𝑝1 < 𝑝2 a norm. 



Appendix   

Appendix B:  Load forecasting error estimation 

 

 

 

Adaptive Load Consumption Modelling on the User Side                      | 179 

Under the null hypothesis that model 2 does not provide a significantly better fit than model 1, 

F will have an F distribution, with (p2−p1, T−p2) degrees of freedom. The null hypothesis is 

rejected if the F calculated from the data is greater than the critical value of the F-distribution 

for some desired false-rejection probability (e.g. 0.05).  

Fraction of variance Unexplained gives an unbiased estimation of how much variance in the 

response variable can be explained by the model. A value equal to 0 corresponds to a perfect 

fit. 

Eq. 109 𝑭𝑽𝑼 =
∑ 𝒆𝒕

𝟐𝑻
𝒕=𝟏

∑ (𝒚𝒕−𝒚̅)𝟐
𝑻
𝒕=𝟏

=
𝑴𝑺𝑬

𝝈𝟐
 

The R squared error is the percent of the target variance explained by the variables included 

on the regression. It measures the in-sample success of the regression model in forecasting the 

target. It is widely used to quickly check the goodness on fit, or forecastability of y based on 

the input variables. 

Eq. 110 𝑹𝟐 = 𝟏 −
∑ 𝒆𝒕

𝟐𝑻
𝒕=𝟏

∑ (𝒚𝒕−𝒚̅)𝟐
𝑻
𝒕=𝟏

= 𝟏 −
𝑴𝑺𝑬

𝝈𝟐
= 𝟏 − 𝑭𝑽𝑼 

Durbin-Watson statistic allows to examine the residuals in search of patterns, it performs a 

first order serial correlation over the residuals. If the errors are serially correlated, the model 

could improve his goodness by integrating the correlated lags. DW takes values in the interval 

[0,4], being values around 2 normal, and less than 1.5 a motive to worry. 

Eq. 111 𝑫𝑾 =
∑ (𝒆𝒕−𝒆𝒕−𝟏)

𝟐𝑻
𝒕=𝟐

∑ 𝒆𝒕𝟐
𝑻
𝒕=𝟏

=
∑ (𝒆𝒕−𝒆𝒕−𝟏)

𝟐𝑻
𝒕=𝟐

𝐒𝐒𝐑
 

Estimators of the model sensibility regards to parameters 

Forecast accuracy can depend on the forecast horizon. Some forecasts are more stable than 

others. How far into the future this horizon extends and where it ends must be known. In 

general, the farther into the future the forecast horizon, the more difficult it is to forecast. The 

following estimators are joint functions of the minimum forecast error and some form of penalty 

for the number of free parameters (degrees of freedom) in the model. 

As you already notice F-test stablish an analogy between the concept of degrees of freedom and 

parameters to tune on an algorithm. The literature make use of this analogy to estimate the 

goodness of the model; for example on [83], on the section “fitting neural network models”, the 

neurons weights and the number of inputs on a NN model were counted as parameters to 

optimize based on the BIC and AIC.   

On this thesis, analogously to the use of the F-test criteria, information criteria’s such as S2, 

AIC, BIC have been used to fit the ensembles, assuming as parameters to tune the number of 

base learners. These test can be extended to the number of clusters, branches or any other 

parameter that reader could infer as crucial for the model complexity. 



Appendix  

Appendix B:  Load forecasting error estimation  

 

 

180 | Adaptive Load Consumption Modelling on the User Side    

S2, s-squared, is the sample variance of the squared residuals. It estimate the dispersion of the 

regression disturbance, being a natural estimator of the 𝝈𝟐. The larger S2, the worse the models 

fit. 

Eq. 112 𝑺𝟐 =
∑ 𝒆𝒕

𝟐𝑻
𝒕=𝟏

𝐓−𝐩
=

𝐒𝐒𝐑

𝐓−𝐩
 

Of course it exist the standard deviation of the residuals, which is easy to interpret because have 

the same units of the target. S must be no more than the 12-15 % of the target mean.  

Eq. 113 𝑺 = √
∑ 𝒆𝒕𝟐
𝑻
𝒕=𝟏

𝐓−𝐩
= √

𝐒𝐒𝐑

𝐓−𝐩
 

Akaike information criterion, or AIC, estimate the out-of-sample forecast error variance, as 

is S2. But it penalizes harder the degrees of freedom. It is used to select competing models. 

Eq. 114 𝑨𝑰𝑪 =  
𝑺𝑺𝑹

𝐓
𝒆𝒙𝒑 (

𝟐(𝒑+𝟏)

𝑻
) 

If we consider a perfect fit on the model, making AIC equals to zero, we will found the 

generalized form of the AIC 

Eq. 115 𝑨𝑰𝑪 =  𝑻 𝒍𝒏 (
𝑺𝑺𝑹

𝐓
) + 𝟐𝒑 

The AIC have a second extension, it the bias corrected AIC version. Fortunately, it is easy to 

calculate by adding a correction term to the AIC. This term is small when p is small compared 

with N, but can become large if p/N exceeds about 0.05. 

Eq. 116 𝑨𝑰𝑪𝒄 = 𝑻 𝒍𝒏 (
𝑺𝑺𝑹

𝐓
) +  𝟐𝒑 +

𝟐(𝒑+𝟏)(𝒑+𝟐)

𝐓−𝐩−𝟐
 

The Bayesian information criterion (BIC), or the most known Schwartz-Bayesian 

information criterion (SBC), is another criteria for the selection of models among a finite set. 

It has a harsher degrees-of-freedom penalty. 

Eq. 117 𝑺𝑩𝑪 = 
𝑺𝑺𝑹

𝐓
𝑻
𝒑+𝟏

𝑻  

The generalized form of the SBC is 

Eq. 118 𝑺𝑩𝑪 =  𝑻 𝒍𝒏 (
𝑺𝑺𝑹

𝐓
) + 𝒑 + 𝒑 𝒍𝒏(𝐓) 

Forecasts can also be evaluated in terms of their complexity or parsimony. The lesser the 

parameter redundancy and parameter uncertainty, the better the model used for forecasting. 

Simpler forecasts are preferred to complex forecasts, given the same level of accuracy [82]. 
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Relative forecast ability might be assessed in terms of the comparative abilities of different 

approaches. One criterion of relative forecast ability is that of forecast efficiency. Forecast 

efficiency of a model involves comparing the mean square forecast error of the model to some 

baseline model. 

The forecast error variance of the model under consideration may be derived from a baseline 

comparison. That baseline used is often the naïve forecast, a forecast formed by assuming that 

there is no change in the value of the latest observation. Theil developed a U statistics which 

compares forecasts. 

Eq. 119 𝑼𝟏 =
√
1

𝑇
∑ (𝒚𝒕−𝒚̅𝒕)𝟐
𝑻
𝒕=𝟏

√
1

𝑇
∑ (𝒚𝒕)𝟐
𝑻
𝒕=𝟏 +√

1

𝑇
∑ (𝒚̅𝒕)𝟐
𝑻
𝒕=𝟏

 

Eq. 120 𝑼𝟐 = √
∑ (

𝒚𝒕+𝟏−𝒚̅𝒕+𝟏
𝒚𝒕

)
𝟐

𝑻−𝟏
𝒕=𝟏

∑ (
𝒚𝒕+𝟏−𝒚𝒕

𝒚𝒕
)
𝟐

𝑻−𝟏
𝒕=𝟏

 

The more accurate the forecasts, the lower the value of the U1 statistic. The U1 statistic is 

bounded between 0 and 1, with values closer to 0 indicating greater forecasting accuracy. The 

U2 statistic will take the value 1 under the naive forecasting method: (y(t+1)-y(t))/ y(t). Values 

less than 1 indicate greater forecasting accuracy than the naive forecasting method, values 

greater than 1 indicate the opposite.  

Other relevant concepts 

On this section we will introduce the mathematical description of the statistical methods 

employed on the statistical characterization of the temporal series at the preprocessing and 

tuning modeling stages. Although, the description of the methods follows the mathematical 

cannon; the mathematical formulation and the concepts are personalized to highlight the 

application of them on the thesis subject.   

Statistical moments 

Far from being a simple introduction to some statistical descriptors, we will present the tools 

necessary to observe the uncertainty attached to the time series. At the end of this section we 

you will be familiarized with methods to describe the influence of the input variables on the 

statistical moments of the target. 

Mean 

Eq. 121  𝒚̅ =
𝟏

𝐓
∑ 𝒚𝒕
𝑻
𝒕=𝟏     

Standard deviation 
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Eq. 122  𝝈 = √
𝟏

𝐓
∑ (𝒚𝒕 − 𝒚̅)𝟐
𝑻
𝒕=𝟏     

Skewness 

Measures the amount of asymmetry in a distribution, a positive value means a long right tail 

and a negative value a long left tail. A zero value means a totally centered distribution. 

Eq. 123  𝑺𝒌𝒘 =
𝟏

𝐓
∑ (𝒚𝒕−𝒚̅)

𝟑𝑻
𝒕=𝟏

𝝈𝟑
    

Kurtosis 

Measures the thickness of the tails in respect to a normal distribution, a normal random variable 

has a kurtosis equals 3 (mesokurtic), large values create high tails (leptokurtic), lower values 

creates plain tails (platikurtic). 

Eq. 124  𝑲𝒖𝒓 =
𝟏

𝐓
∑ (𝒚𝒕−𝒚̅)

𝟒𝑻
𝒕=𝟏

𝝈𝟒
    

These indicators are called statistical moments because serve to quantify the mass center of the 

data (mass), and the inertia of the series based on the distribution. This is especially important 

for the conditional forecast. 

Jarque-Bera test statistic 

It effectively aggregates the information about the skewness and the kurtosis to produce an 

over-all test for normality. 

Eq. 125  𝐽𝐵 =
𝑇

6
(𝑆𝑘𝑤2 +

1

4
(𝐾𝑢𝑟 − 3)2)    

Under the null-hipothesis of independent normally distributed observations, JB test is 

distributed as a chi-square random variable with 2 degrees of freedom in large samples. other 

normality test [27], as Kolmogorov-Smirnov test  could be also used. 

Other statistical descriptors of the target could be consulted in order to address information of 

the distribution of it.  The sample standard deviation of the dependent variable measures the 

dispersion of it. 

Eq. 126 𝑺𝑺𝑫 = √
𝟏

𝑻−𝟏
∑ (𝒚𝒕 − 𝒚̅)𝟐
𝑻
𝒕=𝟏  

Signal processing operations 

On this section we present the equations that define the signal processing operations carried out 

on this thesis. The equations have been ordered to offer to the reader a hint to compare the 

different operators and find their similarities and differences. 
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Cross correlation 

Eq. 127 𝑊𝑈𝑉(𝑘) =
1
𝑁⁄ ∑ 𝑈(𝑘 + 𝑗) ∗ 𝑉(𝑘)𝑗  

Autocorrelation function (ACF) 

Eq. 128 𝑊(𝑘) = 1 𝑁⁄ ∑ 𝑈(𝑘 + 𝑗) ∗ 𝑈(𝑘)𝑗  

Autocovariance function (mean centered version of the autocorrelation) 

Eq. 129 𝑊(𝑘) = 1 𝑁⁄ ∑ (𝑈(𝑘 + 𝑗) − 𝑈̅) ∗ (𝑈(𝑘)𝑗 − 𝑈̅) 

Covariance coefficient  

Eq. 130              𝑊 = 1 𝑁⁄ ∑ (𝑈(𝑘) − 𝑈̅) ∗ (𝑉(𝑘)𝑘 − 𝑉̅) = 𝐶𝑜𝑣(𝑈, 𝑉) 

Convolution 

Eq. 131              𝑊 = ∑ 𝑈(𝐽) ∗ 𝑉(𝑘 − 𝐽 + 1)𝐽  

Correlation coefficient 

Scaled version of the covariance, also a normalized coefficient of the cross correlation. 

Eq. 132 𝑊 = 𝐶𝑜𝑣
(𝑈, 𝑉)

𝜎𝑈𝜎𝑉⁄ = 1
𝑁⁄ ∑ [

(𝑈(𝑘)−𝑈̅)

𝜎𝑈
∗
(𝑉(𝑘)−𝑉̅)

𝜎𝑉
]𝑘  

Sample autocorrelation function (SACF) 

Eq. 133 𝑟𝑦(𝑘) =
∑ (𝑦(𝑡)−𝑦̅)(𝑦(𝑡+𝑘)−𝑦̅)𝑛−𝑘
𝑡=1

𝜎𝑌
2       𝑎𝑡   𝑘 𝐿𝑎𝑔 

Partial autocorrelation function (PACF) 
 

Eq. 134     𝑟𝑘,𝑘 = {

𝑟1 𝑖𝑓 𝑘 = 1

𝑟𝑘−∑ 𝑟𝑘−1,𝑗 ∙ 𝑟𝑘−𝑗
𝑘−1
𝑗=1

1−∑ 𝑟𝑘−1,𝑗 ∙ 𝑟𝑘
𝑘−1
𝑗=1

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
   ;  𝑟𝑘𝑗 = 𝑟𝑘−1,𝑗 − 𝑟𝑘𝑘𝑟𝑘−1,𝑘−𝑗 
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Appendix C: Experimental databases 

The modelling methodology presented on this thesis has been validated over some electrical 

profiles gathered from public databases, and particular research projects. On this section we 

will present the data bases information, together with a statistical analysis of them. The overall 

characteristics of the data base will be introduced on this section, followed for the description 

of the load profiles on other sections. 

 

Figure 47. Raw Load profile graphs stored on the Db.   
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Figure 48. Cleaned and normalized load profile graphs stored on the Db.   

For all the normalized data bases the following feature parameters has been calculated: 

 Lag: Seasonal periods gather by an automatic analysis of the sample PACF peaks and 

Periodogram peaks 

 Ss: Strength of the seasonality = 1- var(Rt )/var(Yt-St)  (1 month period) 

 Sc: Strength of the cyclical components (1 week, 1 day period) 

 Ee: Espectral entropy 

 Obc: Optimal Box-Cox transformation parameter 

 Ncp: Number of crossing points of mean line 

 Acf1: first order autocorrelation 

 Lu: Lumpiness, variance of intraday variances  

 Spk: Spikiness,variance of intraday residual variances. 
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 Vch: Variance change, max difference in variances of consecutive moving windows of 

day size. 

Based on these parameters, a study of the data base features has been performed in order to 

select the most interesting scenarios to model. On the follow table the calculated parameters for 

all the data bases are presented. Due to the Lumpiness and Spikiness converge to similar results 

the last one was erased. 

Table 24. Db feature parameters. 

Db Name* Ss Sc1 Sc2 Ee Obc  Npc Acf1 
Lu 

(1e-4) 

Vch 

(1e-3) 

Bld_Uk1M1 0,98 0,98 0,95 0,23 -0,60  558 0,98 3,32 85 

Bld_Uk1M2 0,98 0,98 0,96 0,10 0,17  574 0,98 1,94 113 

Bld_Uk1M3 0,96 0,98 0,98 0,19 0,36  1520 0,98 0,45 78 

Bld_Uk2 0,96 0,95 0,87 0,11 -0,85  636 0,96 2,77 99 

Bld_Uk3 0,99 0,99 0,98 0,11 -3,85  500 0,99 0,18 19 

Bld_Uk4 0,97 0,97 0,80 0,22 0,05  678 0,96 5,24 86 

Bld_Uk5 0,98 0,98 0,95 0,14 0,21  858 0,98 0,49 49 

Bld_Uk6 0,98 0,98 0,95 0,24 0,39  2510 0,98 4,01 486 

Bld_EsSV 0,96 0,98 0,95 0,18 -0,72  558 0,94 4,13 157 

Bld_EsSP 0,92 0,96 0,93 0,10 -0,52  634 0,90 2,78 146 

Bld_EsE 0,92 0,95 0,92 0,18 -0,84  850 0,90 1,95 198 

Bld_EsEC 0,92 0,96 0,94 0,19 -0,25  548 0,91 1,70 182 

Bld_EsEA 0,94 0,96 0,91 0,19 -0,64  550 0,90 4,77 1162 

Bld_EsCd 0,97 0,97 0,95 0,13 0,07  324 0,94 2,79 133 

Bld_EsCce 0,92 0,96 0,93 0,16 -0,14  630 0,91 1,79 59 

Bld_EsCp 0,94 0,97 0,94 0,15 -0,62  618 0,93 2,06 2180 

Bld_EsB 0,92 0,96 0,93 0,16 -0,14  636 0,91 1,77 59 

Bld_EsA 0,95 0,96 0,85 0,19 -0,14  548 0,89 3,71 81 

Bld_EsUpcTr1

4 
0,92 0,90 0,83 0,23 0,16  5080 0,94 1,39 95 

Ind_EsUpcCN 1,00 0,99 0,99 0,11 0,16  2380 0,97 1,56 119 

Ind_EsUpcCS 0,99 0,99 0,99 0,25 0,31  2280 0,97 3,83 237 

Ind_CMPTL 1,00 0,98 1,00 0,09 0,97  1676 1,00 0,36 22 

Ind_CMPW1A 0,91 0,78 0,92 0,15 0,86  20912 0,92 0,39 176 

Ind_CMPW2B 0,99 0,99 0,99 0,21 -0,20  2742 0,99 6,67 70 

Ind_CMPW2C 0,99 0,97 0,99 0,13 0,69  3122 0,99 0,06 72 

Ind_CMPW3 0,99 0,99 0,98 0,12 -0,41  2188 0,99 3,22 38 

Ind_CMPW4 0,99 0,97 0,99 0,14 1,65  2066 0,99 2,91 466 

Ind_CMPW5 0,99 0,98 1,00 0,13 0,80  968 1,00 3,75 46 

Ind_CMPW6 0,99 0,96 0,99 0,17 0,73  2656 0,99 3,20 56 

Ind_CMPWCr 0,95 0,93 0,91 0,11 -0,15  8056 0,94 1,81 336 

Ind_CMPW8 0,99 0,99 0,99 0,19 0,39  3664 1,00 0,14 73 

Ind_CMPW9 0,99 0,97 0,99 0,12 0,74  1798 0,99 2,23 79 

Ind_CMPW10 0,98 0,96 0,98 0,10 0,55  2776 0,99 1,93 165 
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Ind_CMPW11 0,98 0,96 0,99 0,11 1,10  2606 0,99 1,88 999 

State_Aus 0,99 0,99 0,98 0,08 0,71  4594 0,98 0,13 13 

* Acronyms: Bld: building load profile, Ind: industrial load profile, State: Regional load profile 

By perform a principal component analysis over the Db feature parameters gathered is possible 

classify the load profiles according to the random walk degree presented, and the seasonality 

strength.  

 

Figure 49. PCA graph of the database features.   

On the PCA graph is intuitive say that first principal component represent the strength of the 

cyclical and seasonal components, and second represent the random walk derived from 

innovations. We can see some examples of that, Australia load profile is for example highly 

seasonal and smooth due to the level of load aggregations. On an opposite position, the Spanish 

building Elche Aljub, is presented as lowly seasonal driven, and highly charged with a random 

walk component. 
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Finally, we can resume the load profiles according to their quadrants. The second quadrant 

present load profiles with a large aggregation level such as industrial and regional profiles, 

showing a soft curve and well defined seasonal and cyclical patters as we move away from the 

origin on a diagonal line.  

The fourth quadrant present load profiles with a lower aggregation level such as building load 

profiles, showing a spiky curve and not so well defined seasonal and cyclical patters as we 

move away from the origin on a diagonal line. First quadrant present a transition among the 

characteristics of the second and fourth quadrants, load profiles are characterized by a medium 

level aggregation. 

Australian electricity case 

The NEM is the Australian wholesale electricity market and the associated interconnected 

electricity transmission grid [137]. It provides electricity service for six states and territories in 

Australia, known as Queensland, New South Wales (NSW), Australian Capital Territory 

(ACT), Victoria, South Australia and Tasmania. In the practical operations of NEM, ACT is 

joined with NSW, leading to five regional networks. Among the five regions, NSW takes the 

largest share of the total electricity consumption. 

The load forecasting activities in NEM consist of medium-term load forecasting (MTLF), short-

term load forecasting (STLF), pre-dispatch load forecasting and dispatch load forecasting for 

each regional network [138]. NEM defines that MTLF begins from the eighth day up to 24 

months ahead with a daily resolution. STLF and pre-dispatch load forecasting is run on the 

basis of calendar days from the half-hour start 00:30 am to half-hour ending 24:00 am (48 

points in per day) ranging from 1 to 8 calendar days ahead and dispatch load forecasting aims 

at the load for the next 5 min during the real-time operation of the system.  

The historical electricity consumption data of ACT-NSW regions from 1st January 2006 to 31st 

December 2011 (5 year, 87648 points in total) is used. The data set includes the electricity 

consumption of the regions and its weather variables such as dry bulb temperature, dew point. 

Variables related with the seasonality such as hour, day of week, and holidays; and related with 

historical electricity consumption such as previous day, and previous week consumption can be 

easily created. 

Graphs of some features measured for this load profile are presented on following. According 

to a frequency and temporal analysis the most prominent lags are identified as: 2,4,12 hours, 

and weekdays. 
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Figure 50.  Graphs of the Australian load profile.  Right column: Segmentation of Load profile 

per seasons (blue), First cyclical component of the seasons (red), trend component of the 

seasons (black). Left column: Daily load distribution per season. 
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Figure 51. Periodogram of the Australian load profile. 
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Figure 52. Sample ACF and PACF of the Australian load profile.  

Industrial case: Car manufacturing company  

Load profiles of the industrial user to be forecasted belongs to the car manufacturing company 

SEAT. Located in Martorell (Spain), it counts with numerous workshops specialized on 

different task along the car productive chain: Press (1A), Bodywork (1, 2, 6), Painting (4, 5, 

2B), Assembly (8, 9, 10, 11), Logistics (14, 15), etc. 

The data base collected counts with 12 workshops (1A, 2B, 2C, 3, 4, 5, 6, 8, 9, 10, 11, Cross 

section) and the total factory consumption which was selected as target. The following figure 

shows the distribution of SEAT Martorell plant. Each building is named with the letter T, which 

stands for Taller, ‘workshop’ in Spanish, and it has a number assigned. 
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Figure 53. SEAT factory map. Source: SEAT.  

The historical electricity consumption data goes from 1st January 2012 to 29st January 2017 

(178173 points in total). The data set includes the electricity consumption of the workshops and 

its weather variables such as temperature. Variables related with the seasonality such as hour, 

day of week, and holidays; and related with historical electricity consumption such as previous 

day, and previous week consumption can be easily created. 

STLF is run on the basis of calendar days from the quarter-hour start 00:15 am to 24:00 am (96 

points in per day) According to a frequency and temporal analysis the most prominent lags are 

identified as:  8 hours, and 1,  7 days.  
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Figure 54.  Graphs of the total electric consumption of the SEAT plant.  Right column: 

Segmentation of load profile per seasons (blue), First cyclical component of the seasons (red), 

trend component of the seasons (black). Left column: Daily load distribution per season. 

Spanish university case 

A campus as well as their individual buildings could be considered as commercial users due to 

they are on the service industry, and their load profile is human driven. We have analyzed the 

consumption of the south and north campus of the UPC university located in Barcelona (Spain).  

The data could be obtained at the web page of the energy management services of the UPC: 

http://sirenaupc.dexcell.com/dashboard/widgets.htm. The historical electricity consumption 

data goes from 29-Jan-2010 13:00:00 to 25-Dec-2014 23:00:00 (42995 points in total).  

The selected target was the south campus, the calendar days from the one-hour start 01:00 am 

to hour ending 24:00 am (24 points in per day) According to a frequency and temporal analysis 

the most prominent lags are identified as:  2, 12 hours, and 1,  7 days.  

http://sirenaupc.dexcell.com/dashboard/widgets.htm
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Figure 55.  Graphs of the total electric consumption of the south campus.  Right column: 

Segmentation of load profile per seasons (blue), First cyclical component of the seasons (red), 

trend component of the seasons (black). Left column: Daily load distribution per season. 

 

Residential building cases 

The residential load profiles has been gathered from public and private repositories. Their 

origins also are diverse, covering several geographic location on two countries. The first 

repository refers to 8 electric profiles measured on Bristol, England 

(https://data.gov.uk/dataset/energy-consumption-for-selected-bristol-buildings-from-smart-

meters-by-half-hour). The acronyms of these buildings are:  Uk1M1, M2, M3, Uk2, Uk3, Uk4, 

Uk5, and Uk6. 

https://data.gov.uk/dataset/energy-consumption-for-selected-bristol-buildings-from-smart-meters-by-half-hour
https://data.gov.uk/dataset/energy-consumption-for-selected-bristol-buildings-from-smart-meters-by-half-hour
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Second repository correspond to 10 electric profiles measured on diverse cities of Catalonia- 

Spain, The names of these buildings are:  EsSanVicente, SantaPola, Elche, ElcheCarrus, 

ElcheAljub, ConDomina, ConCEntaina, CamPello, Babel, and Alcoy. 

All of those building profiles counts with a high random walk component on their aggregated 

condition, characteristic of the residential purpose buildings. In order to not be repetitive we 

have selected as target only one building of this category. 

The target selected is located on Bristol, The historical electricity consumption data goes from 

29-Jan-2010 01:00:00 to 26-Dec-2014 20:45:00 (172112 points in total). The calendar days 

from the one-hour start 01:00 am to hour ending 24:00 am (96 points in per day) According 

to a frequency and temporal analysis the most prominent lags are identified as:  2, 12 hours, 

and 1,  7 days.  

 

Figure 56.  Graphs of the total electric consumption of the target residential building.  Right 

column: Segmentation of load profile per seasons (blue), First cyclical component of the 
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seasons (red), trend component of the seasons (black). Left column: Daily load distribution per 

season. 
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Appendix D: A business oriented study of load forecasting 
for energy management 

his Appendix introduces the principal driver on the development of this thesis: the 

demand of energy efficiency and management services on the global energy 

market. The market demand is also introduced under the point of view of the load 

forecasting activity, which is the supporter any energy management action. The contents 

follows a storyline starting from a general introduction to the world energy scenario, followed 

by a focus on the European market and Spanish scenario, and finally the advances on energy 

management technologies. 

Context: World economic scenario 

Nowadays, the technological process combined with the economical shifts caused by regulatory 

reforms and geopolitical uncertainty has been key drivers on the transformation of the 

energy economic. During the last ten years social and technological phenomena’s on the energy 

markets have challenged the theoretical basis of the energy prices forecasting, and the demand 

has returned to be the key driver of price evolution in short, medium and long term. 

Among the remarkable list of events considered as game changers on the energy sector the 

following seems to be the most prevalent. The decay of the interest about the nuclear energy 

due the geopolitical interest in to reduce nuclear arsenal and concerns about the low return on 

investment of those energy generators. The wavy nature on the price of the fossil fuels, due 

to geopolitical uncertainty and organized actors as OPEC, has revealed an extreme dependence 

on those energies. 

Also new generation of fuel such as shale gas and oil have produce a negative impact on the 

market and the public opinion due to their fast spread over several countries producing an 

oversupply and severe damage in ecosystems. Consequently, Renewable energy and Smart 

grids have been taking an important role due his low impact on the environment, easy 

scalability, fast development, and easy integration with existent infrastructure. 

T 
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In order to prepare for a future where these key drivers will be increasingly influential, energy 

companies need access to reliable data and long-term forecasts for key economic and energy 

demand drivers.  

In this scenario, the computational intelligence has been playing and important role. It has 

been providing the energy sector with projections and hypothesis for the world economy by 

zones, analysis of the future trends in global industry production with special attention on 

automotive and construction industries, exhaustive forecast on local consumer billing, energy 

prices projections, and drivers or triggers for economic and political risk. 

To help to companies and government leaders to surf on the risk, opportunities and challenges 

on the energy economics markets, the industry and financial experts lean on the most 

accurate models and analytical tools to provide a valuable decision over the most critical 

energy issues, including: 

 Forecast for energy demand covering 200 countries, 100 industrial sectors and 3000 

cities around the world, with a monthly representation of the future markets trends and 

prices for commodities. 

 Global economics models used to perform macroeconomic simulations, it cover fossil 

fuel demand and supply for 46 countries in detail and other 35 additional economies just 

to cover the 98% of the world GDP. Those models also aggregate the data form OPEC 

supply and other key zones in order to perform price forecasting. 

 Risk analysis on an economic, political, and operational levels, mixed with the latest 

economic events and data releases that might rocketing investment speculation and 

influence on the commodity prices in short, medium and long term. 

 Evaluation of the economic impact of companies to national markets, custom oil price 

scenarios, and tendencies in risk management for the energy and utilities sector. 

In resume, computational intelligence applied to economic modelling and impact analysis 

provide to government, economist, and market actors with invaluable panoramas of the 

regulatory, economic and public decision making. 

The forecasting for energy demand also supports other areas of the economic modelling such 

as: 

 Real options modelling (risk-based decision tools), it provide strong elements of 

decision and support advice on the development of R&D strategies and portfolios. 

 Market modelling, where the models are used for asset evaluations including risk 

assessment, the timing of new developments, gas and electricity procurement and 

contracting, forecast and scenario planning. 

Nevertheless, more than only a buzz word used with a market motivation, the energy forecast 

is a scientific term broadly related with the energy efficiency field. The degree of importance 
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of energy forecast and its impact on the world economy can be easily noticed in base of the 

statistics on energy efficiency performed by the international energy agency (IEA).  

As their annual report document [42], It has measure over the last 25 years a cumulative 

saving over USD 5.7 trillion in energy expenditures via energy efficiency. This virtual 

supply of energy generates multiple benefits for governments, businesses, and households, 

including greater energy security from reduced dependence on energy imports and billions of 

tons of greenhouse gas emissions reductions. 

Major facts, presented by the agency on its annual report, states about the impact of the energy 

efficiency over the world; making highlights on the following areas: 

 Energy efficiency investment returns and markets outlook: 

o In 2014, IEA countries are estimated to have avoided primary energy imports of 

natural gas, oil and coal, totaling at least 7790 Petajoules (PJ) (190 Mtoe), and 

saving USD 80 billion in import bills. 

o In IEA countries, the avoided consumption generated by energy efficiency 

investments increased by 10% (1 930 PJ) in 2014 – the fastest rate in almost a 

decade. 

 Tracking of the energy efficiency progress:  

o Energy efficiency has had the greatest impact in the residential sector, where the 

efficiency effect is estimated to have led to a cumulative TFC reduction of 19 

exajoules (EJ) (463 Mtoe) between 2002 and 2012 in the IEA-18. 

o Improved data collection and analysis will help governments and other 

stakeholders to better track energy efficiency developments. 

 Efficiency markets for buildings: 

o Global energy efficiency investment in buildings (excluding appliances) is 

estimated to have been USD 90 billion (+/- 10%) in 2014, with significant 

potential for additional profitable investments. Investment in three countries 

alone –China, Germany and the United States – is estimated to have been USD 

59 billion. 

o Investment in energy efficiency in buildings globally is growing more rapidly 

than overall growth of building construction. 

o Global energy efficiency investment in buildings is projected to increase to over 

USD 125 billion (excluding appliances) by 2020. 

 Energy efficiency in the electricity system and the outlook for utility efficiency 

investments: 

o Energy efficiency improvements since 1990 drove savings of 2200 TWh in 2014 

in International Energy Agency (IEA) member countries, equaling about 24% 

of total electricity demand. Growth in electricity consumption has flattened 
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across OECD countries, from a peak of 9 385 TWh in 2007 to 9 355 TWh in 

2013. Total electricity demand in the OECD is projected to increase by an 

average of 0.8% per year through 2020 [139]. 

o In addition to delivering electricity, utilities are important players in energy 

efficiency markets, spending over USD 13 billion in 2013 on end-use energy 

efficiency improvements. Utilities also invest in generation, transmission and 

distribution (T&D), and metering infrastructure that improves efficiency and 

reliability of the electricity grid. 

The report continues with an analysis over the impact of lower electricity demand over the sales 

of traditional utility business model. This scenario push to Governments and utilities to renew 

their policies and business models in order to sustain investments, while also keeping an eye 

over long-term climate and energy demand challenges.  

In non-OECD regions, electricity demand is still increasing. This can be translated to better 

opportunities to generate value from energy efficiency, maximizing the profits over utilities 

investment targeting the supply-side and end-use energy efficiency on news deployments due 

to population increases.  

A side effect of energy efficiency policies is generated do to the transport and distribution 

investments. Those bring technical improvements to infrastructure reducing the losses, which 

implies an increase on the reliability of the power supply, giving the possibility to electricity 

access to more customers and reducing the cost of expanding the infrastructure.  

As summary, the most important facts to takeaway on the report are: 

 The energy intensity of countries belonging to the Organization for Economic Co-

operation and Development (OECD) improved by 2.3% in 2014. 

 Energy efficiency improvements in International Energy Agency (IEA) countries since 

1990 have avoided a cumulative 10.2 billion tons of CO2 emissions. 

 Investments worldwide in energy efficiency in buildings, which account for more than 

30% of global energy demand, are estimated to be USD 90 billion (+/- 10%) and are set 

to expand. 

 Electricity consumption in IEA countries has flattened partly as a result of energy 

efficiency improvements; energy efficiency investments since 1990 saved 2200 terawatt 

hours (TWh) in 2014. 

These facts give a proof of the global importance of the energy efficiency at the economic and 

political level; also make clear that data collection and analysis is the pillar of present and future 

research, policies, and deployments.  

The energy modelling & forecasting is inherently connected with energy efficiency analysis; 

because they provide accurate predictions, and the tools which support those ones, over the 
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elements of the energy demand at many aggregated levels. Their results allows to analyst and 

energy players to obtain extrapolations of the future state of energy commodities and profiles.  

IEA has standardize the level of the energy efficiency investment per country identifying three 

key drivers: a supportive policy environment, rising energy prices, and recent changes in energy 

efficiency indicators as a guide to momentum. These key drivers have provide the 

fundament of this thesis, giving a credible economic and political motivational 

background.  

The policy driver indicates the extent to which best practice policies are in place in a 

country based on IEA Energy Efficiency Policies and Measures (EE PAMS). The sector 

categories analyzed are Cross-sectorial, Energy utilities, Industry, Existing buildings, New 

buildings, Appliances, Lighting, and Transport.  

This driver has provide the research delimitations in the form of end-user sectors to analyze, it 

means that energy consumption databases used in this thesis are samples of the most important 

sectors observed. 

The policy types listed in EE PAMS consist on Regulatory instruments, Policy support, 

Economic instruments, Information and education, Voluntary approaches (public-private and 

private sector), and Research, development, and deployment (RD&D) (research programme, 

demonstration project). Because the design of a forecasting system and the deployment of an 

energy management system is framed inside of the policy RD&D, the analysis and conclusions 

presented below only have been related with this policy category. 

The price driver reflects the extent to which end-user prices can be expected to affect the 

potential for energy efficiency investment; the rate of increase, if significant, has an important 

impact on end-user behavior and thus on markets, while prices including taxes are used because 

these are the prices faced by end-users and which ultimately affect energy efficiency markets. 

The performance driver provides quantified evidence of changes in energy intensity and 

efficiency in total final consumption (TFC) in 2012 relative to 2002, decomposed by factors; it 

is measured using the decomposition of IEA energy efficiency indicators. 

The performance driver and price driver have been analyzed in order to make clear the 

economical context in which this thesis has been developed. In addition, those indicators 

provide valuable information about the suitability of new entrepreneurship in the area of energy 

efficiency. 

On the following tables, five countries have been analyzed (Australia, Germany, Spain, 

Sweden, United states). Those countries have been recognized as the most open countries for 

the international surveillance on his energy sector and sharing of public data. Acknowledging 

that is a limited sample, the Snapshots do provide some interesting insights when examined 

collectively.  
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Table 25. Policy driver table (RD&D) 

 Australia Germany Spain Sweden United states 

Cross-sectoral 0 2 0 1 1 

Energy 

utilities 
0 1 0 0 1 

Industry 0 2 0 0 1 

Existing 

buildings 
0 2 0 1 1 

New buildings 0 1 0 1 1 

appliances 0 1 0 1 1 

lightning 0 1 0 1 1 

transport 1 2 0 0 2 

1 = several relevant policies are in place. 1 = at least one relevant policy is in place. 0 = no relevant policies 

have been identified. 

 

Table 26. Price driver table (weigthed price of one unit of energy, percentage increases, 2012-

2014) 

 Australia Germany Spain Sweden United states 

household 31 % 43 % 39 % 36 % 54 % 

Industry 37 % 63 % 47 % 57 % 47 % 

 

Table 27. Performance driver table (change in TFC in 2012 relative to 2002, measuring the 

efficiency effect) 

AUSTRALIA 

 total residential 
Industry and 

services 

Passenger 

transport 
Freight transport 

TFC -12 % 13.43 % 6.81 % 13.29 % 32.41 % 

Activity effect 30.9 % 16.94 % 35.14 % 22.48 % 45.74 % 

Structure 

effect 
-8.1 % 10.49 % -16.15 % -0.53 % -4.59 % 

Efficiency 

effect 
-6.9 % -12.2 % -5.74 % -7.74 % -4.77 % 

GERMANY 
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 total residential 
Industry and 

services 

Passenger 

transport 
Freight transport 

TFC -5.4 % -16.33 % 0.91 % 6.32 % 5.85 % 

Activity effect 9.0 % -0.68 % 15.11 % 5.11 % 23.17 % 

Structure 

effect 
-0.1 % 9.63 % -5.31 % -0.52 % 2.32 % 

Efficiency 

effect 
-13.5 % -23.15 % -7.41 % -10.41 % -16.00 % 

SPAIN 

 total residential 
Industry and 

services 

Passenger 

transport 
Freight transport 

TFC -7.0 % -0.05 % -5.63 % 14.43 % -31.55 % 

Activity effect 3.0 % 12 % 12 % 2 % -20 % 

Structure 

effect 
-9.3 % 17 % -20 % -5 % -1 % 

Efficiency 

effect 
-1.8 % -24 % 5 % 18 % -14 % 

SWEDEN 

 total residential 
Industry and 

services 

Passenger 

transport 
Freight transport 

TFC -12.5 % -15.68 % -14.14 % -9.56 % 5.06 % 

Activity effect 14.6 % 6.65 % 23.85 % 5.28 % -1.16 % 

Structure 

effect 
-9.0 % -2.31 % -13.4 % -1.66 % -5.58 % 

Efficiency 

effect 
-16.7 % -19.07 % -19.94 % -12.65 % 12.58 % 

UNITED STATES 

 total residential 
Industry and 

services 

Passenger 

transport 
Freight transport 

TFC -6.8 % -5.67 % -10.82 % -4.62 % -0.45 % 

Activity effect 5.6 % 9.13 % 15.65 % -5.4 % 5.48 % 

Structure 

effect 
-5.5 % -7.17 % -10.10 % -1.41 % 2.79 % 

Efficiency 

effect 
-7.3 % -6.89 % -14.23 % 2.27 % -8.19 % 

 

Based on the results shown in the Snapshot for the overall of countries, is clearly presented the 

case that all countries need to scale up investment in energy efficiency, from both public and 

private sector sources (at EU level, much of this is being done by the member states). That 

presents an interesting opportunity for the growth of energy forecasting applications on Europe. 
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The RD&D policy Snapshot show that policies directed at the buildings sector are the most 

widely implemented, followed by cross-sectoral policies and transport policies. New buildings 

are almost as well covered as existing buildings, despite their much smaller share of the building 

stock. Energy utilities and lighting are the least well-covered sectors, maybe because the lack 

of private portfolios or public resources dedicated. 

The IEA report remark that Information, education and economic instruments are the most 

widely implemented. About RD&D at Energy efficiency, it may be covered under broader 

research programs in many countries, which means that it is less visible and harder to delimitate 

and monitor. 

There is a wide opinion that energy efficiency technologies are already fully mature. That is 

clearly showed because the market of energy efficiency continues without a dominant 

competitor neither regularization. 

This implies that funding on R&D for energy efficiency technologies is still required, and 

projects based on computational intelligence instead to decrease his popularity continues and 

will be dominant on this areas. This statement may be demonstrated based on the poor 

performance obtained by Spain and Australia and their efforts to strength their energy 

management at research level.  

Regarding to price driver, Countries have seen quite strong energy price increases over the 

period 2002-14, ranging from 33% for Australia up to 52% in the United States for the 

combined industry and households index. The price pillar may be a more important driver in 

the industry sector than in the residential sector: industry prices rose significantly faster than 

household prices in all countries except the United States. This is important to be consider 

because target the sector with more promissory for profits on energy efficiency actions. 

Regarding to the performance driver, the countries had efficiency effect between 2002 and 

2012 ranges from -16.7% in Sweden (the biggest improvement) to -1.8% in Spain. However, 

the decompositions at sector level are more informative. In the residential sector, for example, 

Spain had the largest efficiency effect at -24% but it obtains a bad result at industry and services 

5%. This testifies that energy efficiency & management portfolios also public policies had only 

focused on the household sector. 

The opposite case is presented on Germany case; it shows a high efficient level at residential 

sector and a medium result on industry. Otherwise, Sweden shows good statistics at all sectors 

except transport freight this is supported by the policy framework adopted by this country 

during the last years. 
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Market perspective of the energy efficiency: A glimpse of the 
European and Spanish ESCO’s. 

As it was mention before, The European Union and its member’s states have dedicated large 

efforts in forms to policies framework and public funding in order to improve the energy 

efficiency at generation, transport, and demand sides for the purpose of to cut the energy waste 

and satisfy the growing electricity demand. 

At the same time, on the demand side, users have been more concerned about the energy prices 

and try to avoid them using sustainable construction methods, and searching for financially 

viable long term solution in energy use.  

This market demand have been supplied for Energy Service Companies (ESCO’s) becoming 

integral part of the European energy efficiency market. They are able to offer financial 

solutions, technical and technological expertise, management creativity, market knowledge and 

communication abilities. 

The Energy Efficiency Directive (EED, 2012/27/EU) defines an ‘energy service provider’ as a 

“natural or legal person who delivers energy services or other energy efficiency improvement 

measures in a final customer’s facility or premises”, while ‘energy performance contracting’ 

(EPC) is understood as a “contractual arrangement between the beneficiary and the provider of 

an energy efficiency improvement measure, verified and monitored during the whole term of 

the contract, where investments (work, supply or service) in that measure are paid for in relation 

to a contractually agreed level of energy efficiency improvement or other agreed energy 

performance criterion, such as financial savings” [41]. 

On the European ESCO market report [41], the authors use a slightly different definition of an 

ESCO (an energy service provider, an energy efficiency provider, or energy service company), 

“a company that offers energy services which should include implementing energy-efficiency 

projects (and other sustainable energy projects)”. The three main characteristics of the gainful 

activity on ESCO’s delimited by the European Commission are:  

 Guarantee of energy savings and/or provision of the same level of energy service at a 

lower cost.  

 The remuneration of ESCOs is directly tied to the energy savings achieved.  

 ESCOs can finance, or assist in arranging financing for the operation of an energy 

system by providing a savings guarantee.  

Therefore, ESCOs can reduce their degree of risk via payments for the services delivered (either 

whole or partial) on the achievement of those energy efficiency improvements.  

In principle, energy services include a wide range of activities, such as:  

 Energy analysis and audits,  
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 Energy management,  

 Project design and implementation, 

 Maintenance and operation,  

 Monitoring and evaluation of savings,  

 Property/facility management,  

 Energy and/or equipment supply,  

 Provision of service (space heating/cooling, lighting, etc.),  

 Advice and training 

ESCO’s are not the only ones that offer energy efficiency services, others called Energy 

Service Provider Companies (ESPC’s) maintain in his portfolio options as supply and 

installation of energy-efficient equipment, the supply of energy, building refurbishment, 

maintenance operation, facility management, and educational services. They provide a service 

based on a fixed fee or in base to the added value obtained from the supply of energy of 

equipment. This fact demonstrate that the reduction of the energy consumption is not the first 

interest on their contracts. 

The ESCO’s subscribe an EPC with their clients, their principles turn around a guarantee 

performance in terms of energy efficiency. An EPC may be two types of models, on the 

guaranteed saving model the client usually provide the project budget, therefore, the client 

will pay for the services of the ESCO and for performance guarantee in forms of energy savings. 

The second model is called shared savings; on it, the ESCO provides financing for the 

investments who in returns obtain a share of the savings. The share of the savings is stablished 

based on the length of the contract, the payback time, and the risk taken. This models is more 

common in a starter market or after financial problems because the clients have limited access 

to capital and prefer an ESCO project over own financing. One variation of the shared savings 

is the first out, it declare the validity of the contract based on the level of savings achieved. 

Other contracts different from EPC, could also be supply for ESCOS, between them exist the 

Delivery contracting (DC) model which is focused on the supply of a set of energy services 

such as HVAC mainly via outsourcing the energy supply. Chauffage, on this arrangement the 

supplier guarantee the service and his cost is based on the current bills minus certain level of 

monetary savings. 

Inside of Europe, countries have different versions of those contracts. Some cases are UK and 

Ireland where the ESCO-type work is referred as Contract energy management (CEM). In italy, 

Chauffage contract is equivalent to “Energy Service Plus” contracts wich reduce the energy 

heating consumption in 10% during winter. In Nordic countries the DC are called comfort 

contracting, and beyond just deliver energy it take care of full maintenance and aesthetics. 
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In terms of policy framework, the European commission have been applied a set of actions to 

boost the European and national ESCO markets, it can be summarized as: 

 Directives ESD (2006/32/EC), EED (2012/27/EU), EED (2003/54/EC) 

 prEN15900 standard 

 EU EPC campaign 

 European Energy Efficiency Fund (EEE–F) 

 ESCO market research (done regularly by the EC JRC) 

 Database (JRC and Transparense) 

 IEE projects, such as Eurocontract, EMEEES, ChangeBest, Permanent, Transparense, 

EESI, EESI2020, Combines, etc. 

 FP7 projects: good examples, business models 

The directives are the most important element because they impose the active supporting on the 

development of an ESCO market on EU. In response, regional authorities have prepared a 

“portfolio of flexible mechanisms” which included the formation of ESCO networks; customer 

oriented information, model contracts, credit lines, guidelines for contract process, calls to 

implement energy services in public buildings and project evaluations. 

European ESCO market. 

The European ESCO market was estimated on 2013 around 10.3-12.6 billion per year [41].   

Countries such as France, Germany, Italy, Spain and UK seems to have the biggest and well 

stablished markets. On the other hand, countries such as Belgium, Bulgaria, Austria and 

Denmark shows a non-exploited and promissory market. 

As general opinion, the EU-ESCO market is classified as demand driven, it means that potential 

ESCO clients actively search for suppliers. They define and communicate their needs and 

requirements for an energy services project, waiting for the adequate financial supported 

solution.   

However, exist some business and technological barriers that delay the booming of this market 

at maximum levels. The principal one is the lack of trust by the clients in the markets due to 

inhomogeneous ESCO offers in the market, this statement is supported by the following 

reasons: lack of experience of clients, lack of information with visible references, lack of proper 

measurement and verification practices. 

The second barrier was identified as the Lack of well-established partnerships between ESCOs 

and sub-contractors. This inevitably ends with failed projects, due to the poor execution or 

maintenance, and financial insecurities on behalf of the facilitators. On the pro-side, the 

financial crisis had increased the attention over cost reductions through energy efficiency and 
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advantages of the flexible financing offered by ESCOs (such as third part financing and shared 

savings). 

Other barriers are related with the non-homogenous and complex legislative framework, the 

international accounting rules that harden financing opportunities and the fluctuating and non-

regulated energy prices, most of the time determined by a supply monopoly. 

On the other side, the success factors were identified on the business and political framework, 

between them the more relevant are:  the good will of the European countries on build a 

legislative framework to regularize the ESCO market, the market liberalization, the 

environmental awareness and the institutionalization of the energy efficient market as solution. 

Spanish ESCO market  

The Spanish ESCO market has been increasing their participation on the public sector, with 

partners as local and autonomies authorities, and in the private sectors. Authors [41] refer to it 

as dependent of large national programs during the periods 2005-2007 and 2007-2010, with a 

fast rise between 2011 and 2013.  

The referred public ESCO projects have been focused primarily on public lighting and public 

buildings. Third parties on the private sector have been triggering projects on private non-

residential buildings, industries involving cogeneration, audits and HVAC control systems. 

The IDAE (Instituto para la Diversificación y Ahorro de la Energía, a Spanish National Energy 

Agency) estimate 800 ESCO companies on 2013. About 60-70% of the market players are local 

or national, while the other 30-40% are sister companies of large international ESCO giants 

[41] 

The Spanish ESCO market were estimated at 2015 in €400-500 million and 2016 in €1 billion, 

calculating with all costs, i.e. energy supply costs, investments plus maintenance and 

considering all types of projects [41].  

Main ESCO area is public lighting (installing LED solutions and control systems), it represent 

about 90% of all public projects. Public buildings and water supply renovations in the public 

sector are the second area in importance.  

Private clients such as private hotels, corporate buildings, sports facilities, heating systems in 

apartment buildings and big industries in the private sector constitute the third area. Main 

demand side technologies affected by ESCO have been HVAC, lighting, refurbishment, 

automation systems, pumps, motors and control systems.  
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Technological perspective of the energy efficiency  

On the energy efficient market, ESCO’s and other energy services providers use technological 

resources to guarantee the success of the projects during the execution and maintenance stages. 

The essence of this continuous monitoring underlying on to facilitate the information exchange 

between the energy usage point and the system operator. These technologies not only impact 

the usage of the energy the demand side abut also help the financial and enterprise level 

operations. 

On this scenario, technological companies and researchers collaborate to create a solution from 

the convergence of monitoring, decision-making, and automatization technologies; used for 

energy managing and cost efficient savings. The objective of these emerging technologies is 

the modification of the demand on key processes and equipment, optimizing the energy demand 

to the supply capacity and fitting it to the parameters established by the operator.  

Actors involved on the control of moderns grids. 

Modern grids (as it shown on Figure 57), and by consequence electricity markets, constitutes 

a complex framework of rights, obligations, and exchange of information; and in the center of 

the mapping exists the actors that fulfills the activities from the physical layer to the 

administrative ones.  

 

Figure 57. Evolution of the modern electricity grid (source IEA). 

On the next paragraphs, we will cover the rights and obligations over the electricity market 

information exchange among the actors shown on Figure 58:  

 Transmission System Operator (TSO) 

 Distribution System Operator (DSO) 

 Electricity Supplier  

 Customer 
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 Data Exchange Platform   

 Third Party, including Energy Service Companies  

 

Figure 58. Actors of the electricity grid. 

Due to the definitions about the rights and obligations in relation to the exchange of information 

among the actors are part of the national competences and the model adopted by countries, we 

will use the internationally harmonized role models. It allows covers the most important types 

of interactions between market actors. Besides, the roles will be solely used descriptively and 

not carry any normative consequence, being these ones a guideline will serve to compare the 

countries situations.  

On the other hand, the rights and obligations will be described around the most relevant business 

processes among actors such as metering, Supplier switching, moving, end and start of supply, 

balance settlement, and access to customer data. Within these business processes, the following 

types of information exchange will be also addressed: meter data reading, data validation, 

obligation to deliver information, right to access information, operation of data exchange 

platform, data protection and integrity, and interaction between HUB’s. 

Information exchange regards to the communication of the electricity consumption parameters 

between network companies, TSO, suppliers, end-users, and other market players. The 

information shared can include consumption measured in kWh over a specified time, peak 

consumption, name, address of customer, and market and network data such as prices, network 

tariffs, power flows, outages, voltage quality. 
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In order to study and create a map of the roles and responsibilities of TSO and DSO regarding 

to communications between data-hubs and information exchange systems, we will develop the 

description of the actors around the followings principal points: 

 The obligations of TSOs and DSOs concerning to the information exchange with 

electricity suppliers, energy service companies (ESCOs), customers and national 

communication systems such as hubs.  

 The rights of suppliers, ESCOs and customers to access hubs/information exchange 

systems, both the types of information, accessibility and economic terms  

 Rules of conduct for gaining access to a hub/information exchange system  

 Interaction between hubs and information exchange systems across borders  

 National plans for further harmonization in light of ongoing work at the EU level  

TSO: Transmission System Operator 

The TSO is responsible for operation and development of the Data-Hub, a mandatory 

centralized data exchange platform. Market players have the compulsory obligation to 

communicate solely with the Data-Hub (centralized), meaning that all information is being sent 

to and received from the Data-Hub. Data-Hub is thus the Metered Data Aggregator and the 

Metered Data Administrator. 

The TSO is also imbalance settlement responsible and is final responsible party for the financial 

balancing of electricity consumption (and nomination). TSO receives data from the Data-Hub 

to fulfil this function. TSO are also responsible for development of data exchange platforms 

meaning that on some cases the operation of the data-hub could be allocated on the TSO too.  

DSO: Distribution System Operator 

DSO operates the distribution network and performs all meter readings (Metered Data 

Collector). They send all metering data and meter values to the Data-Hub. DSO remains 

responsible for connection of customers to the grid and for data validation (data quality). DSO 

can choose to be the Metering Point Administrator or outsource this to a third party; however, 

it will not be able to outsource the legal responsibility for meter administration. 

DSOs are currently responsible for most of the functions regarding information exchange. This 

includes meter operation, data collection, data storage, meter data validation, and distribution 

of data to other market participants. Exceptions to this are the countries that have a data-hub in 

operation, here the data storage function lies with the operator of the data-hub. With the 

development of more data-hubs, it is expected that more responsibilities transfer from DSOs to 

data-hubs. 

Supplier 
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A supplier sells electricity to customers (end-users) and is their main contact point. The supplier 

is billed by TSO and DSOs for grid operation costs. The supplier invoices the grid operation 

costs and electricity usage to the final customer including taxes. The supplier subsequently pays 

TSO and DSOs for grid operation costs. TSO and DSO remain responsible for payment of taxes 

to the tax authorities. 

Suppliers are responsible for balance settlement for their customer portfolios. In case of data 

hubs and a supplier centric model, suppliers will operate as the main contact person for 

consumers. In all countries, customers have access to their own data. It differs per country if it 

is the responsibility of the supplier or the DSO to provide the consumer this access It depends 

mostly on the roll-out of smart meters what level of detail the consumption data is. 

End user 

The end-user (customer) has access to its own data (usage). The roll-out of smart meters will 

however impact the exchange of information between market players (including customers), 

this systems must provide final customers with information on actual time of use. Third parties 

(like ESCO or aggregators) should be granted access on behalf of the final customers for the 

purpose of comparing the consumption. 

ESCO: Energy Service Company 

ESCOs fall within the category of legitimate interested party and are not a market player. They 

can be allowed to access customers metering information via a written document (contract or 

attorney power).  

Data Hub 

The data-hub is developed and operated by the TSO while The DSO remains responsible for 

the physical meter, meter reading, and meter data validation. The data-hub serves as centralized 

data storage to which DSOs submit meter data, suppliers submit personal data of consumers 

and TSO submits balance settlement information. 

Harmonization of the electricity roles and standards 

Harmonization towards the opening of an european bilateral marketing have been a target since 

2006. It pursues a harmonization in the definition of contracts, rules, and roles. The upper 

motivation will cause the creation of a “European energy transaction passport,” which is 

necessary to supply and demand a European scale consequently with a broader market, 

facilitating the selling energy on to European borders. 

 A key issue for harmonization is the development of efficient information exchange 

infrastructures between end users, DSOs, TSOs and other market agents, including new entrants 

such as Energy Service Companies (ESCOs).  

Balancing on the market 
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Balancing refers to the capacity of the grid to keep in balance the demand and the supply, and 

it relies on the trading activities on four different time slots (day-ahead, intraday, gate closure 

time to real time and real time).   

 

Figure 59. How the market is balanced based on the energy procurement strategy. 

The actors responsible for this action are two: the balance responsible party (BRP) on the 

distribution side, and responsible for maintain a time-slot rescheduling on their portfolio each 

X minutes and do payments of imbalance tariffs to TSO; and the Balance service provider 

(BSP) which role is mostly assumed by the generator company but also could be the role of the 

prosumers. They deliver balance to TSO as a service whereby they obtain a remuneration. 

In order perform this action, the TSO must be able to guarantee the procurement of balancing 

services, the settlement of imbalance volumes, and ensure a safe control zone for balance on 

their control area. Also, the DSO must to perform switching actions in base on demand and 

generation control, securing the distribution system operation and avoiding overloading the 

distribution grid.    

Flexibility  

Flexibility is the modification of generation injection and/or consumption pattern in reaction to 

an external signal (price signal activation, peak consumption, alarms…) in order to provide a 

service within the energy system. These actions are demanded in order to optimize the portfolio, 

provide balancing, and manage congestions usually caused by errors on the forecasting.  

Could be equivalent to the capacity of the grid and their actors to fulfill the demand constrains 

in time, it is often associated to the capacity of the generators keep on track the demand but also 

counts the availability of decentralized generators and prosumers capacity. As example nuclear 

plants are categorized with low flexibility and gas/diesel engines have a high because these are 

able to operate as soon the requirement exist.  

In order to increase the response to demand, the actors are forced to take the following actions; 

TSO must to prioritize balancing services in order to increase the efficiency on the match of 

generation technologies, the DSO must collaborate passively with the BRP to increase the 

variability on their portfolio.  
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Flexibility activities also could relies in another actor, the aggregator which manages the 

flexibility of a cluster of flexible devices with the purpose of offer demand responses services 

to the different power systems participant thought various markets. Local flexibility on demand 

side could comprises large or small scale from EV`s charging point at homes to parking’s, from 

public lighting to industrial HVAC, but always it depends on the aggregation degree. 

Business Needs of Load Forecasting 

From the commercial point of view, the idea of energy management applied to industrial and 

large users has been around for few years now. Manufacturing and software companies have 

embraced this idea and have been trying to improve the energy management systems that can 

be used in manufacturing plants. 

The current EMS market can be segmented into large software providers and small & 

medium software providers. The large players offer standard software solutions that are 

applicable to diverse manufacturing plants with little room for advanced customization. They 

offer broad features, robust mathematical analysis, and standard integration with corporate 

software. Powerful interfacing tools and a wide range of data presentations are also common 

features. The small and medium software providers, frequently oriented to home and tertiary 

buildings, offer closer customization, module approach to address specific problem, and agile 

response to customer needs. 

Most of the current EMS offer address data acquisition, mathematical analytics, cloud-based 

software as a service (SaaS), financial analysis, and monitoring at different levels of 

sophistication. However, there is a lack of available products based on advanced analysis 

supported by machine learning Intelligence & automated energy optimization without 

human intervention; energy-related maintenance by correlating the states and 

consumptions; and module oriented design that enables plug and play feature for many 

independent functions such as optimization, data mining, knowledge discover, reports & 

analytics, automatization and others. 

Load forecasting based on machine learning play a main role on the EMS features, it principal 

contributions are integrated on operations such as planning, control, optimization, maintenance 

and diagnosis. The most important business needs of the end users related with energy 

forecasting can be summarized on the following: 

 Supervision, monitoring & Productive planning. On the house holding sector real 

time monitoring and supervision constitute the first step, and regularly the unique one, 

on the energy management process; this condition is caused because the control actions 

intended to reduce and optimize the energy consumption are limited by the execution 

of the client preferences.  

 This means that house holding clients regularly perform the plot of energy experts 

following the current and forecasted load profiles and compare them with previous 

period. 
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 Due to the high level of automatization on enterprise users, the load forecasting are 

dropped on computational processes able to gather big amounts of data and perform an 

intelligent dimensional reduction of the data. The result are alarms, information about 

production and process which allows to human expert to supervise and planning. 

 Fault detection and diagnosis. Industrial users and buildings improve the ratability of 

their operation in base of the find and correction of malfunctions on their equipment. 

The implementation of load forecasting algorithms as a way to compare anomalous 

behaviors on the loads allow to detect possible failures states associated with the 

problem. 

 Predictive maintenance. Industrial users also can use the expected demand, expected 

price and productive information to create an automated response and suggest predictive 

maintenance in terms of the economical convenience. 

 Dynamic control of the loads and system optimization. Large consumers with 

aggregated loads can optimize their energy performance of their loads by means of data 

driven modelling; using the forecasted consumption of the loads, Automated control 

systems can decide the optimal energy source regarding customizable criteria to supply 

the energy demand. 

According to the lead time range of each business need described above, the minimum updating 

cycle and maximum horizon of the forecasts are summarized in Chapter 2.  

 

Table 28. Needs of forecasts in large end users. 

Business need Minimum updating cycle Max horizon 

Supervision, monitoring & Productive 

planning. 
5 min 1 years and above 

Fault detection and diagnosis. 15 minutes 1 day and above 

Predictive maintenance. 15 minutes 1 years and above 

Dynamic control of the loads and 

system optimization. 
5 min 10 years and above 

Load forecasting is not only limited to energy management activities at the user side. It also 

constitute the pillar of the decisions made on inner departments of utilities such as planning, 

operations, trading, among others. The most important business needs of the utilities related 

with energy forecasting can be summarized on the following: 

 Energy purchasing. Whether a utility purchases its own energy supplies from the 

market place, or outsources this function to other parties, load forecasts are essential for 

purchasing energy. The utilities can perform bi-lateral purchases and asset commitment 

in the long term, e.g., 10 years ahead. They can also do hedging and block purchases 
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one month to 3 years ahead, and adjust (buy or sell) the energy purchase in the day-

ahead market. 

 Transmission and distribution (T&D) planning. Utilities need to maintain and 

upgrade the interconnection systems in order to satisfy the growth of demand and 

improve the reliability in the territory which they serve. This activities also include real 

state considerations about the placing the substations in the future.  

 These planning decisions heavily rely on the forecasts, known as spatial load forecasts, 

that contain information about the when, where, and how many loads as well as 

customers will grow. 

 Operations and maintenance. In daily operations, load patterns obtained during the 

load forecasting process guide the system operators to stablish switching and loading 

decisions, as well as schedule maintenance outages. 

 Demand side management (DSM). Although lots of DSM activities are belong to daily 

operations, it is worthwhile to separate DSM from the operations category due to its 

importance in this smart-grid world. A load forecast can support the decisions in load 

control and voltage reduction. On the other hand, through the studies performed during 

load forecasting, utilities can perform long term planning according to the 

characteristics of the end-use behavior of certain customers. 

 Financial planning. The load forecasts can also help the executives of the utilities 

project medium and long term revenues, make decisions during acquisitions, approve 

or disapprove project budgets, plan human resources and technologies, among others. 

According to the lead time range of each business need described above, the minimum updating 

cycle and maximum horizon of the forecasts are summarized in Table 29. 

Table 29. Needs of forecasts in utilities. 

Business need 
Minimum 

updating cycle 
Max horizon VSTLF STLF MTLF LTLF 

Energy 

purchasing 
1 hour 10 years and above x x x x 

T&D planning 1 day 30 years  x x x 

Operations 15 minutes 2 weeks x x   

DSM 15 minutes 10 years and above x x x x 

Financial 

planning 
1 month 10 years and above   x x 
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Conclusions & takeaways 

Mayor takeaways of this section are:  

 Regulatory reforms and geopolitical uncertainty has been key drivers on the 

transformation of the energy economic. In this scenario, the computational intelligence 

has been playing and important role. It has been providing the energy sector with 

projections and hypothesis for the world economy, analysis of the future trends in global 

industry, exhaustive forecast on local consumer billing, energy prices projections, and 

drivers or triggers for economic and political risk. 

 At European and global levels, the international energy agency is the organism in charge 

of present’s major facts about the impact of the energy efficiency. The Energy 

Efficiency Policy framework is measured impact is measured trough the analysis of 

fundamental sector categories such as industry, building and transport applications.  

 Data shows that energy efficiency technologies are already fully mature and the 

European market of energy efficiency continues without a dominant competitor neither 

regularization. 

 The European ESCO’s have been exploiting this market estimated on 2013 around 10.3-

12.6 billion per year [41].   Countries such as France, Germany, Italy, Spain and UK 

seems to have the biggest and well stablished markets. However, exist some business 

and technological barriers that delay the booming of this market at maximum levels. 

 The Spanish ESCO market were estimated at 2015 in €400-500 million and 2016 in €1 

billion, calculating with all costs, i.e. energy supply costs, investments plus maintenance 

and considering all types of projects [41]. This market is considered still in growth due 

to the lack of advance on energy efficiency services and the big exploitation potential. 

 One of the most spread and well-known technology, which can help on the energy 

delivering and consumption issues, is the energy management systems (EMS). EMS 

allows collect, analyze, and share critical information to understand, control, and 

optimize the energy consumption across different consumption levels. 

 Load modelling and forecasting is the central pillar of any intelligent process inside 

energy management systems. It constitutes a helper to solve the lack of available 

products based on advanced analysis supported by machine learning. 

In summary, actors at Energy efficiency and management business are not well stablished on 

European markets stills, giving to new competitors the opportunity to take a piece of cake and 

test new business proposals before policies changes.  

In the center of this the energy management systems implemented don’t count with any 

intellectual protection, and most of the time the merely protection is just the industrial secret. 

This gives a special chance to industry to improve their systems based on scientific literature.  
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This thesis have been planned on the frame of these problems, aiming for improve the load 

forecasting as the principal element of any energy management process. Using databases from 

large end users as industries and buildings, houses, and entire countries, we present several 

contributions to the state of the art with a scientific and economic orientation. 

 

 

 

 




