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Abstract 

 
 
 

The PhD project, entitled «Second harmonic generation in disordered nonlinear crystals: 
application to ultra-short laser pulse characterization», is devoted to the study of second 
harmonic generation in nonlinear ferroelectric crystals formed by a random distribution of 
domains with inverted quadratic nonlinear susceptibility (such as the Strontium Barium 
Niobate and Calcium Barium Niobate crystals) and its application to the single-shot 
characterization of ultrashort laser pulses. The basic principle of operation is related to 
the unique type of emission associated to those kinds of crystals where the second 
harmonic signal is emitted transversally to the beam propagation direction. Using the 
transverse second harmonic generation from these crystals we measure the pulse 
duration, the chirp parameter and the temporal profile in a single-shot configuration. This 
method has been implemented both in transverse auto-correlation and transverse cross-
correlation schemes for the measurement of pulses with durations in the range from 
several tens up to several hundreds of femtoseconds. The main advantages gained with 
the developed techniques against other traditional methods include the removal of the 
requirement of thin nonlinear crystals for harmonic generation, the possibility to get 
automatic phase matching without angular alignment or temperature control over a very 
wide spectrum and a simplified operation process. Different types of pulses have been 
measured in different conditions and the limits of validity of the technique have been 
explored. 
 
Since this work relies strongly upon the characteristics of emission of the second 
harmonic signal by these random crystals, an important part of this work has been 
focused on the characterization of the distribution of domains of the random nonlinear 
ferroelectric crystals and its relation with the angular emission of the second harmonic 
signal. The domain distribution of the nonlinear polarization implies an associated 
distribution of reciprocal lattice vectors, which can compensate the phase mismatch in 
the nonlinear interaction. Any change in the domain distribution would have a direct 
impact in the second harmonic generated and in its intensity angular distribution.  Based 
on these fundamental concepts we demonstrate an indirect non-destructive optical 
method for the characterization of nonlinear domain statistics based on the analysis of 
the second harmonic generation intensity angular distribution. This method has been 
implemented experimentally and tested in crystals with different types of distributions. To 
gain a deeper insight on these processes, numerical simulations have been performed 
using a split-step fast-Fourier transform beam propagation method. It has been 
demonstrated that the analysis of the dependence of the second harmonic generation 
angular emission with the fundamental beam wavelength can be used to obtain relevant 
information about complicated domain structures. This method could be used for real 
time monitoring of the unknown domain distribution during the poling or crystal growing 
process. 
 

Keywords: Nonlinear optics, harmonic generation, nonlinear crystals, 

ultrafast optics. 



  

 

 

ii 

 

Resum 

 
 
 
Esta tesis doctoral es un estudio de la generación de segundo armónico en cristales no 
lineales compuestos por dominios ferroeléctricos que alternan el signo de la non 
linealidad de segundo orden y distribuidos de una forma aleatoria (como por ejemplo 
niobato de estroncio y bario o niobato de calcio y bario). Como primera aplicación 
proponemos una técnica de caracterización de pulsos laser ultracortos, cuyo principio de 
operación está relacionado con la manera singular en la que este tipo de cristal emite la 
señal de segundo armónico en una dirección transversal a la dirección de propagación 
del pulso a medir. Utilizando esta señal no lineal podemos determinar la duración del 
pulso, el parámetro de chirp y el perfil temporal en una configuración de single-shot. 
Hemos implementado este método en dos configuraciones distintas - auto correlación y 
correlación cruzada - para la medida de pulsos con duraciones entre 10 fs y 1 ps. Este 
método, en comparación con otros métodos tradicionales para la caracterización de 
pulsos ultracortos, permite obtener el ajuste de fase (phase matching) de forma 
automática sobre un rango espectral muy amplio, sin necesidad de aliñamiento crítico ni 
ajuste de temperatura, elimina el requisito de utilizar cristales delgados y tiene un 
proceso de operación más sencillo. Se han medido diferentes tipos de pulsos y se han 
explorado las limitaciones de la técnica. 
 
Como este trabajo se basa en las propiedades específicas de la emisión de segundo 
armónico en los cristales no lineales con distribución aleatoria de dominios, un objetivo 
importante ha sido la caracterización del tamaño y la distribución de los dominios 
ferroelectricos y su relación con la distribución angular específica del segundo armónico 
generado. La distribución espacial de los dominios implica una distribución 
correspondiente de vectores en la red recíproca que puede compensar el ajuste de fase 
en la interacción no lineal. Cualquier cambio en la distribución de dominios tendrá pues 
un impacto directo en la intensidad y distribución angular de la señal de segundo 
armónico generado. Basándolos en estos conceptos, demostramos un método óptico 
non destructivo indirecto para la caracterización estadística de los dominios no lineales 
basado en el análisis de la intensidad y la distribución angular del segundo armónico 
generado. Implementamos este método experimental en la caracterización de cristales 
con diferentes tipos de dominios. Para un estudio más detallado hemos desarrollado un 
modelo numérico basado en el método de “split-step fast-Fourier transform beam 
propagation” que simula el proceso no lineal observado experimentalmente. 
Demostramos que el análisis de la dependencia angular del segundo armónico puede 
aportar información relevante sobre estructuras con distribuciones complejas de 
dominios. Este método se puede utilizar para la monitorización en tiempo real de 
distribuciones desconocidas en el mismo proceso de crecimiento o del poling del cristal 
ferroelectrico.  
 

Palabras clave: Óptica no lineal, generación de armónicos, cristales no 

lineales, óptica ultrarrápida. 
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Résumé 

 
 
 

Ce projet de thèse de doctorat est  intitulé « Génération du second harmonique dans des 
cristaux non-linéaires désordonnés: application pour la caractérisation d'impulsions laser 
ultra-courtes ». Il est consacré à l'étude de la génération de deuxième harmonique dans 
des cristaux ferroélectriques non linéaires formés par une distribution aléatoire de 
domaines. Ceci  conduit à une distribution aléatoire de la susceptibilité non linéaire 
quadratique (Tels que le nitrate de baryum de strontium –SBN- et les cristaux de nitrate 
de calcium et de calcium) et son application à la caractérisation unique des impulsions 
laser ultra-courtes. Le principe de base de l'opération est lié au type unique d'émission 
associé à ces types de cristaux où le second signal harmonique est émis 
transversalement à la direction de propagation du faisceau. En utilisant la génération 
transversale de deuxième harmonique à partir de ces cristaux, nous mesurons la durée 
de l'impulsion, le paramètre chirp et le profil temporel dans une configuration à un seul 
pulse laser. Cette méthode a été mise en œuvre à la fois dans l'autocorrélation 
transversale et les schémas transversaux de corrélation croisée pour la mesure des 
impulsions avec des durées allant de plusieurs dizaines à plusieurs centaines de 
femtosecondes. Les principaux avantages obtenus avec les techniques développées par 
rapport à d'autres méthodes traditionnelles comprennent l'élimination de l'exigence de 
cristaux minces non linéaires pour la génération harmonique, la possibilité d'obtenir une 
correspondance automatique de phase sans alignement angulaire ou contrôle de la 
température sur un spectre très large et un processus d'opération simplifié. Différents 
types d'impulsions ont été mesurés dans différentes conditions et les limites de validité 
de la technique ont été explorées. 
 
Étant donné que ce travail repose fortement sur les caractéristiques de l'émission du 
second signal harmonique par ces cristaux ferroélectriques à distribution aléatoire des 
domaines, une partie importante de ce travail a été axée sur la caractérisation de la 
distribution des domaines des cristaux ferroélectriques non linéaires aléatoires et sa 
relation avec l'émission angulaire du signal de la deuxième harmonique. La distribution 
de la polarisation non linéaire implique une distribution associée de vecteurs de réseau 
réciproque, ce qui peut compenser le décalage de phase dans l'interaction non linéaire. 
Toute modification de la répartition des domaines aurait un impact direct dans la 
distribution angulaire de la deuxième harmonique et de sa distribution angulaire 
d'intensité. Sur la base de ces concepts fondamentaux, nous démontrons une méthode 
optique non destructive indirecte pour la caractérisation de statistiques des domaines 
non linéaire basées sur l'analyse de la distribution angulaire d'intensité de génération de 
la deuxième harmonique. Cette méthode a été mise en œuvre expérimentalement et 
testée dans des cristaux avec différents types de distributions. Pour obtenir une 
meilleure compréhension de ces processus, des simulations numériques ont été 
effectuées en utilisant une méthode de propagation de faisceau adaptée aux matériaux 
non linéaires. Il a été démontré que l'analyse de la dépendance de l'émission angulaire 
de la deuxième génération harmonique avec la longueur d'onde fondamentale du 
faisceau peut être utilisée pour obtenir des informations pertinentes sur les structures de 
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domaines compliquées. Cette méthode pourrait être utilisée pour la surveillance en 
temps réel de la distribution de domaines inconnue pendant le processus de polling ou 
de croissance des cristaux. 
 

Mots clés : Optique Non linéaire, génération du harmonique, cristal non 

linéaire désordonné, Optique Ultra-rapide. 

 

 

 

 

 
 
 
 
 
 
 
 
 
 



 

Chapter 1 

Introduction  

1.1 Nonlinear optics in parametric processes  

Nonlinear optics (NLO) is the branch of optics that describes the behavior of light-matter 

interactions induced by a strong laser in the regime where the dielectric polarization P responds 

nonlinearly on the electric field of light. NLO remained unexplored until the discovery of second-

harmonic generation (SHG) by Peter Franken et al. [Fra61] in 1961, just one year after the laser 

invention. In this experiment light at the doubled frequency was generated from the interaction of a 

strong laser beam with the nonlinear medium (quartz crystal). This experiment marked the birth of the 

field of NLO which complemented very fruitfully the technology development of lasers. Nonlinear 

processes can be classified in two different categories, non-parametric process and parametric process. 

In a nonlinear non-parametric process, the quantum state of the nonlinear material is changed because 

of the transfer of energy, momentum or angular momentum between light and matter. In a nonlinear 

parametric process, the quantum state of the nonlinear material is not changed by the interaction with 

the light. As a consequence of this, the energy and momentum are conserved in the optical field, 

making phase matching important and polarization-dependent. [Rüd08] [Rob08] Maxwell's equations 

constitute the complete synthesis of the entire theory of classical electromagnetism and form the 

foundation of classical optics.  
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In this introductory chapter, we will focus on the second-order nonlinear parametric process and 

explore the corresponding solution of Maxwell’s equations and different phase-matching processes in 

different nonlinear media. 

1.1.1 Nonlinear Maxwell's equations and second order nonlinear interactions 

We consider the form of the wave equation for the propagation of light through an optical 

nonlinear medium. Maxwell’s equations in SI units can be written in the form of: 

D                                                                     (1.1) 

 0B                                                                      (1.2) 

 
B

E
t

                                                               (1.3) 

D
H J

t
                                                            (1.4) 

Since, in general, we will not consider the presence of free charges and free currents we take 0  , 

0J  . In non-magnetic media the magnetic field, B , and magnetic intensity, H , are related through 

the relation: 0B H ; The electric field displacement vector 0D E P   includes the nonlinearity of 

the materials when the polarization density vector P depends nonlinearly upon the local value of the 

electric field strength E . Combining Eq. (1.1)-Eq. (1.4) and the above supplementary equations we 

obtain the expression: 

2 2

2 2 2 2

0

1 1
E E P

c t c t
                                           (1.5) 

where c=(00)
-1/2

 is the speed of light in vacuum, 0 the electric permittivity and 0 the magnetic 

permeability. This is the most general form of the wave equation both in linear and nonlinear optics. 

The first term on the left-hand side of Eq. (1.5) can be written as: 

2( )E E E                                                   (1.6) 

In linear optics, E  term vanishes when a plane wave propagates in an isotropic media. In 

nonlinear parametric process, the E  term is generally non-vanishing as a consequence of the more 

general relation 0D  , but in many cases the term ( )E  can be small enough to be ignorable, 

especially when the slowly varying amplitude approximation is valid. In this PhD work all the cases 

discussed will be under the condition that the contribution of ( )E is negligible. Taking 

( ) 0E  and Eq. (1.6) into Eq. (1.5) the wave equation can be rewritten as: 

2 2
2

2 2 2 2

0

1 1
E E P

c t c t

 
  

 
                                                  (1.7) 
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The right term contains the polarization P and it describes the influence of the medium on the field as 

well as the response of the medium. Splitting P into its linear and nonlinear parts as: 

( , ) ( , ) ( , )L NLP r t P r t P r t                                                      (1.8) 

The nonlinear materials under study can be considered as lossless and dispersionless in the 

frequency range of interest. It can be considered as a monochromatic approximation. When a 

monochromatic plane wave interacts with a second-order nonlinear medium, the linear part ( , )LP r t  is 

related to ( , )E r t  through the linear susceptibility tensor  1

ij : 

(1)

0

L

i ij j

j

P E   

In isotropic media (1)

ij can be reduced to a constant
(1) . With this constant

(1)  the above equation 

can be rewritten as: 

(1)

0

LP E                                                                  (1.9)  

Substitution of Eq. (1.8) and Eq. (1.9) into the wave equation (1.7) gives:  

2 2
2

0 02 2

NLE
E P

t t
  

 
  

 
                                                (1.10) 

Eq. (1.10) is the nonlinear wave equation, where the nonlinear polarization acts as a source radiating 

in a linear medium characterized by the dielectric function  (1)

0 1    . 

Here we consider the interaction of a light beam at the frequency ω1 with a medium possessing 

quadratic nonlinearity. The field at 
1  is written as: 

  1

1 1 01
ˆ, . .

i t
E r t e E e c c


                                                  (1.11) 

E01 being its complex amplitude. For case of a lossless and dispersionless medium, the second-order 

nonlinear polarization written in matrix form is as below: 

(2)

0 1 1

,

. .NL

i ijk j k

j k

P E E c c                                                   (1.12) 

It has two contributions: (a) Generate photons at ω2=2ω1, which is the so-called SHG process. (b) 

Generate photons at the same frequency ω1. The term related to the SHG process can be written as: 

     2
2

2 0 0 1 0 1

,

. .
i t

NL ijk j k

j k

P E E e c c
   

                                           (1.13) 

where  2

ijk is the second-order or quadratic susceptibility tensor.  

It is convenient to introduce a change in notation defining the nonlinear coefficient, d, 

proportional to the nonlinear susceptibility:  21

2
ijk ijkd  . Because the ijkd is symmetric in last two 
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indices, the contracted 3×6 matrix, ijd , is usually used. The second-order nonlinear polarization 

leading to SHG in terms of ijd can be described by the matrix equation: 

2

1

2

1

2 11 12 13 14 15 16 2

1

2 0 21 22 23 24 25 26

1 1

2 31 32 33 34 35 36

1 1

1 1

2
2

2

2

x

y

x

z

y

y z

z

x z

x y

E

E
P d d d d d d

E
P d d d d d d

E E
P d d d d d d

E E

E E



 
 
 

    
   

    
    

    
 
 
 

                          (1.14) 

where we have replaced the subscripts j and k by a single symbol according to the prescription:  

xx=1, yy=2, zz=3, yz=zy=4, xz=zx=5, xy=yx=6. 

Under Kleinman’s symmetry [Kle77], which states that when the interacting frequencies is far 

from resonance conditions the susceptibility coefficients can be considered independent of frequency, 

there are only 10 independent elements of ijd in Eq. (1.14). Moreover, any crystalline symmetries of 

the nonlinear material can reduce this number further. For crystals belong to point group 4mm 

symmetry, (SBN, for example) the ijd tensor is given by [Ric03] [Cha00]: 

15

15

31 31 33

0 0 0 0 0

0 0 0 0 0

0 0 0

ij

d

d d

d d d

 
 

  
 
 

                                          (1.15) 

In practice, the highest component can be selected by using a specific polarized electric field. 

Propagation of the SH beam in the medium can be described using Eq. (1.10) with P given by Eq. 

(1.13): 

2 2 22 2 (2)

02 2 02 0 0 01 01

,

i t i t i t

i i ijk j k

j k

E e k E e E E e
      

                              (1.16) 

2 2

2 0 2 2k                                                            (1.17) 

 Eq. (1.16) can be simplified to a 1-D problem if:  

(i) Diffraction effects can be neglected, i.e. in this case we take 0x y      ;  

(ii) Setting particular polarization states for the interaction the nonlinear process can be 

described through an effective nonlinear coefficient, deff (the proper expression for deff in 

different symmetries can be found in [ Boy03, Zer06];  

(iii) Considering that the fields can be written as    01 1 1expE A z ik z  and 

   02 2 2expE A z ik z .  

With these assumptions Eq. (1.16) becomes: 

2 1

2
( 2 )2 2 2

2 0 0 2 12
2 e

i k k z

z eff

d
k A d A

dz
     

   
 

                            (1.18) 
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When the changes in the amplitude of the field envelope over distances of the order of the wavelength 

are small we can apply the slowly varying amplitude approximation (SVEA): 

2
2

dA
k

dz
 

2

2

2

d A

dz
 

Substituting this approximation into Eq. (1.18): 

202
2 1

2

i kz

eff

dA
i d A e

dz






                                                    (1.19)  

where 2 12k k k   is the phase mismatch factor. 

To obtain a similar equation for the fundamental field we must consider the interaction between 

the fundamental and the SH field in the nonlinear medium. A similar procedure as that considered in 

Eq. (1.13) leads to a nonlinear polarization oscillating at ω1, given by: 

    1
2 *

1 0 0 2 0 1

,

. .
i t

NL ijk j k

j k

P E E e c c
   

                                         (1.20) 

Under the same assumptions applied to the SHG field, we can obtain the evolution equation for the 

fundamental field as: 

*01
1 2 1

1

2 kz

eff

dA
i d A A e

dz






                                                  (1.21) 

In most of the experimental conditions, the power lost by the input fundamental beam due to the 

conversion to the SH frequency can be negligible, i.e., 
1 0dA dz  . This assumption takes the name of 

undepleted pump approximation. In these conditions, the SHG process can be analyzed by taking into 

account only Eq. (1.19). Its solution, in absence of an input SH beam, i.e.  2 0 0A  , and for a 

propagation length L inside the nonlinear crystal is: 

  20
2 2 1

2

1i kLe
A L i dE

i k






 
 


 

which gives the expression of SHG intensity: 

   
2

22 2 2 2 20
2 0 2 2 1 2

2

sin ( 2)
2 2

( 2)
eff

kL
I L cn E L d E L

kL


 




 


 

The conversion efficiency   can be calculated as: 

 
  2 2 2

12

3 2

1

sin ( 2)

( 2)

effd I LI L kL
L

I n kL



 


                                          (1.22) 

where 
2

1 2 0n    .  

If ∆k=0, the sinc(∆kL/2) function is equal to 1 and the conversion efficiency is directly 

proportional to 2

effd , to L
2
 and to the total the intensity of the pumping beam.  If ∆k0, Eq. (1.22) 

predicts a dramatic decrease in the conversion efficiency as shown in Fig. 1.1 (Left). In this case, the 
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SH wave generated at a given point z1, having propagated to another point z2, is not in phase with the 

SH wave generated at z2, which leads to the interference described by the sinc function. This sinc 

function imposes an oscillating behavior on the SH intensity with the propagation distance which is 

shown in Fig. 1.1 (Right). This figure reveals the effect of phase mismatch, ∆k, on SH intensity: the 

larger the phase-mismatch the lower the SH intensity. When the propagation length equals the 

coherence length LC the accumulated phase difference is  and the nonlinear parametric process 

reverses its direction transferring energy back from SH to fundamental wave. This is the origin of the 

decrease of SH intensity for ∆k0. One half of the length separating two adjacent peaks of this 

interference pattern is the coherence length, which expressed as: 

2 1 2 12 4
CL

k k k n n

  
  
  

                                             (1.23) 

where λ is the FF wavelength. The coherence length represents the maximum crystal length that is 

useful in producing the SH power.  

 

 

Fig. 1.1 SHG efficiency and intensity. (Left) Normalized conversion efficiency as a function of the phase 

mismatch; (Right) SH intensity versus the propagation distance for different ∆k values.  

  

According to the Eq. (1.22), the condition for an efficient SHG is ∆k=0, which means that k2=2k1. 

This relation means that both the SH and FF beam have the same phase velocity and can be written 

more generally for a 2D space as: 

2 12k k                                                                   (1.24) 

It is the so called perfect phase matching (PM) condition. In the second-order nonlinear parametric 

process the optical field obeys the energy conservation and momentum conservation and the 

momentum conservation links to this PM condition. In this case, the SH is generated in the same 

direction as the fundamental beam as shown in Fig. 1.2 (a). For phase mismatch process, Eq. (1.24) is 

revised as: 

2 12 0k k k                                                            (1.25) 
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The collinear phase mismatch and non-collinear phase mismatch are shown in Fig. 1.2 (b) and (c). The 

more general non-collinear situation when two fundamental beams are launched at different directions 

is also included in Fig. 1.2 (c). Since the magnitude of the wave vector is fixed by the refractive index 

and the wavelength, 2 2 2k n c , the wave vector of SH signal only ends on the blue dashed arc of 

circumference. However, as it is clearly seen from the figure, the phase mismatch vector k will 

assume the lower extension in the direction of the geometrical sum '

1 1k k  because of the high SH 

efficiency for a small k . This will be always the direction of generated SH in a homogeneous 

nonlinear material. 

 

 

Fig. 1.2 Schematic diagrams of PM and phase mismatch. (a) Collinear PM; (b) Collinear phase mismatch; (c) 

Non-collinear phase mismatch.  

 

1.2 Phase matching techniques 

Typically in nonlinear materials the difference of refractive indices of the FF beam and SH beam 

is of the order of 10
-1

 to 10
-2

, therefore, the coherence lengths are only a few wavelengths long. We 

seek a large coherence length in materials in order to obtain an efficient SHG over long distances. 

However, in nature there are no materials with 1 2n n because of the dispersive dependence of the 

refractive index with the wavelength. Fortunately, various methods have been proposed that attempt to 

bring the interacting waves closer to PM condition. Here we will provide a brief review. 

1.2.1 Birefringent phase matching  

One of the most important PM techniques is the birefringent phase matching which is based on the 

natural birefringence of crystals. [Gio62, Mak62] When an optical wave propagates in an isotropic 

crystal, the electrons displacement takes place in the direction of the applied field. In a birefringent 

crystal, however, the electrons will move in a direction imposed by the crystalline structure and, as a 

result, the polarization vector is not parallel to the electric field. For uniaxial crystals, given a 
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propagation direction with respect to the crystallographic axis, , two normal modes of propagation 

exist: the ordinary and extraordinary mode. Each of them propagates inside the crystal with a 

particular value of index of refraction and polarization state. The ordinary index of refraction, no, is 

isotropic, while the extraordinary index of refraction, ne, depends on the angle, , which can be written 

as: 

2 2

2

1 cos sin

( )e o en n n

 


   

Fig.1.3 (Left) shows the diagram of the varying refractive indices along the propagation direction 

inside the birefringent crystal for both the ordinary and extraordinary polarizations and for both the 

fundamental and SH wavelengths for the case of negative uniaxial crystals (ne<no). One can see that 

for the particular propagation direction, θ, the ordinary polarized FF beam has the same refractive 

index that the extraordinary polarized SH beam:  

( ) (2 , )o en n                                                           (1.26)  

 

 

Fig. 1.3 (Left) The refractive index ellipsoid projection of a negative uniaxial birefringent crystal. The red 

and green ellipsoids and circles are corresponding to the varying refractive indices along the propagation direction 

inside the crystal for both the fundamental and SH wavelengths. Propagation along the 𝜃 direction allows the PM 

condition. (Right) Phase mismatch bandwidth. Bandwidth increases as the crystal gets thinner or the dispersion 

decreases. 

 

In some crystals, the refractive index depends on the temperature and ne change with temperature 

is greater than the temperature dependence of no. Therefore, the temperature tuning can be used to 

approach the PM condition. The major limitations of using birefringent crystals in nonlinear 

parametric process are:  
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(i) PM condition is highly dependent on the wavelength (frequency), incidence angle, and 

polarization state of the incident beam. 

(ii) Usually, in the birefringent crystal only a narrow frequency band can reach PM condition at a 

particular propagation direction. Since ultrashort pulses span over a broad frequency bandwidth, 

achieving approximate phase matching for all frequencies can be a big issue.  

In the nonlinear parametric process the range of wavelengths (frequencies) that can reach approximate 

PM is the PM bandwidth. Generally, the PM bandwidth is very narrow, but as shown in Fig. 1.3 

(Right) it increases as the crystal length decreases or as the wavelength increases due to the decreased 

dispersion. Another phenomenon reducing the PM bandwidth is the group-velocity mismatch, arising 

as a consequence of the different group velocities of the fundamental and SH inside the crystal. Fig. 

1.4 shows the SHG of ultrashort pulse containing different frequency components ωi (i=1, 2, 3…) in 

birefringent crystals. When the ultrashort pulse irradiates a thick nonlinear birefringent crystal along 

the PM angle, because of the limited PM bandwidth the thick crystal generates SH wave for limited 

frequencies, which is shown in Fig. 1.4 (Left). Fig. 1.4 (Right) shows the situation when the ultrashort 

pulse irradiates a thin nonlinear birefringent crystal along the PM angle, the thin crystal generates SH 

wave for all frequency components of the input pulse in the forward direction. To solve this ultrashort 

pulse related issue and reach a large PM bandwidth, a thin nonlinear birefringent crystal is always 

needed.  

 

 

Fig. 1.4 SHG of ultrashort pulse in birefringent crystals. Left: A limited PM bandwidth of thick nonlinear 

birefringent crystal allows limited frequencies to achieve approximate phase matching. Right: A large PM 

bandwidth of thin nonlinear birefringent crystal allows all frequency components to achieve approximate phase 

matching and the frequency components of SH wave are exactly the mapping of that of fundamental wave.  

 

(iii) The PM in birefringent materials always occurs under the condition that FF and SH beams 

have different polarization states. For extraordinary wave it is polarized in the principal plane and 

propagates along the poynting vector resulting in a spatial walk-off problem. 

 

Thick  

SHG crystal 

optical axis 

ωi 
2ω0 

i=0,1,2,3…  

Thin 

SHG crystal 

optical axis 

ωi 
2ωi 

i=0,1,2,3…  i=0,1,2,3…  
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1.2.2 QPM in 1D periodic poled materials 

Another very important PM technique, proposed for the first time by Armstrong et al. in 1962 

[Arm62] and experimentally proved in 1992 [Fej92], is the one dimensional (1D) quasi-phase-

matching (QPM) technique. As we have seen previously, the generated SH intensity will be low unless 

the PM condition is satisfied. When the propagation length equals the coherence length LC, a phase 

difference of π is accumulated by the interaction and then the nonlinear parametric process reverses its 

direction transferring the energy back to the fundamental beam. By adding a phase shift of π 

periodically every coherence length, the SH intensity will keep increasing monotonically with distance. 

Fig. 1.5 (Top) illustrates with black and green arrows the complex amplitude contributions from 

different parts of the nonlinear crystal to the SH wave. In the case without PM (Top Left), these 

contributions cannot constructively add up over a significant distance in the crystal as shown by the 

black line in the bottom figure. With QPM (Top Right), the sign of the contributions is reversed at 

every coherence length. In that way, the total amplitude can keep increasing as shown by the green 

line in the bottom figure. As a comparison, the gray line shows the SH intensity under the PM 

condition. 

 

Fig. 1.5 (Top): The complex amplitude contributions from different parts of the nonlinear crystal to the 

harmonic wave. (Top Left): A low conversion efficiency without PM; (Top Right): With quasi-phase matching, a 

high conversion efficiency can be achieved. (Bottom): The corresponding SH intensity under different 

conditions. (Black Line): Without PM; (Green Line): With QPM; (Gray Line): with PM. 
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The realization process consists in periodically invert the sign of second-order NL susceptibility 

χ
(2)

 of the material every coherence length. This can be done by periodic poling of ferroelectric 

nonlinear crystal materials such as Lithium Niobate (LiNbO3), Lithium Tantalate (LiTaO3) or 

Potassium Titanyl Phosphate (KTP, KTiOPO4). A strong electric field is applied to the crystal for 

some time, using micro structured electrodes, so that the crystal orientation and thus the sign of the 

nonlinear coefficient are permanently reversed only below the electrode fingers. The poling period 

(the period of the electrode pattern) determines the wavelengths for which certain nonlinear processes 

can be quasi-phase-matched. As shown in Fig. 1.6, the value of the period length, , is twice the 

coherence length, LC. The periodically spatial distribution gives rise to a constant reciprocal lattice 

vector 2G m  . The phase mismatch can be compensated through this G and it applies directly in 

the momentum conservation relation as:  

2 12 0k k k G                                                           (1.27) 

The benefits of the QPM technique are:  

(1) It can be implemented for a very wide range of nonlinear interactions in crystals which do not 

have birefringent properties. 

(2) It can be implemented at a convenient temperature. 

(3) Without spatial walk-off problem. 

(4) The method of periodic poling can be applied to crystal materials with particularly high 

nonlinearity, and makes possible to utilize the largest nonlinear coefficient that are not accessible 

with birefringent PM. 

 

Fig.1.6 QPM in 1D periodically poled nonlinear ferroelectric medium. QPM technique scheme for a typical 

case of LiNbO3 crystal with G=∆k. 

 

1.2.3 QPM in 2D quadratic nonlinear photonic crystals 

When we extend the modulation of the χ
(2)

 to the two dimensional (2D) space, people usually talk 

about quadratic nonlinear photonic crystals (NLPC), which can be divided into periodic/ quasi-
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periodic/ random structures according to the randomness of the  χ
(2)

 modulation. The inverted χ
(2)

 

distribution provides a set of reciprocal lattice vectors in the plane of modulation. In the SHG process, 

the direction of the SH light is decided by the reciprocal lattice vectors. In contrast with linear 

photonic crystals (LPC) which have periodic modulated lower and higher refractive indices, these 

quadratic NLPC have homogenous refractive indices. Quadratic NLPC are usually used as 2D QPM 

materials. [Ber98] As the 1D QPM materials, the phase mismatch in 2D NLPC is also compensated 

through adding external momentum to reach the 2D QPM condition.  

GaAs waveguides [Yoo96], periodically poled Lithium Niobate (PPLN) [Mye95] and periodic 

poled KTP [Kar97] have recently become some of the most attractive nonlinear materials for optical 

parametric oscillators. The realization process of the 2D NLPC can be understood by the realization 

process of the 1D QPM materials. In 1D case, the 1D periodicity of the nonlinear susceptibility is 

defined by the design of a metallic grating, which can be used as a mask for a reactive ion etching step 

[Yoo96] or can be used as an electrode for ferroelectric domain reversal [Mye95]. Though these 

techniques are very different, they both use a metallic grating, defined by electron-beam lithography, 

which defines the pattern of the QPM structure. Both techniques can be used to generalize the 2D 

quadratic NLPC structures with a space-independent refractive indices and a space-dependently 

periodic/quasi-periodic / random modulated sign of the second order nonlinear susceptibility χ
(2)

. 

(A) QPM in 2D periodic NLPC 

The first detailed work on such 2D periodic NLPC structures was from Berger [Ber98] in 1998. 

Two years later the experimental results published by Broderick [Bro00]. Fig. 1.7 schematically 

illustrates this 2D NLPC structure.  

 

Fig. 1.7 Schematic picture of a 2D NLPC. The material presents a translation invariance perpendicular to the 

figure, and is invariant by translation in a 2D lattice (here a triangular lattice). The linear susceptibility is constant 

in the whole material but the sign of the second-order susceptibility χ(2) presents a given pattern in the unit cell. 

[Ber98] 

  

  The 2D periodic NLPC contain constant linear refractive index but the periodically inverted the 

sign of χ
(2)

 in the plane of modulation. Assume a plane wave at the frequency ω propagating in the 

transverse plane of the Fig. 1.7 described 2D NLPC perpendicular to the translation axis of the 
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cylinders. In the case of fundamental and harmonic waves are TM polarized with the electric field in 

the translational direction. The parametric process can be written as : 

2
2 2 2 (2) 2

2
( ) 2 ( ) ( )exp ( 2 )k E r i E r i k k r

c

    
                                 (1.28) 

The periodically modulated χ
(2)

 can be rewritten as a Fourier series,   

   (2) expG

G RL

r iG r 


                                                  (1.29) 

where G are the available vectors from 2D reciprocal lattice (RL). 
G is its corresponding Fourier 

coefficient. Substituting Eq. (1.29) into Eq. (1.28), the increase of the SH field appears to be related to 

a sum of: 

 2exp 2i k k G r   
 

 

The QPM condition appears then as the expression of the momentum conservation,   

2 2 0k k G     

The QPM in a 2D χ
(2)

 NLPC involves a momentum taken from the 2D RL to compensate the phase 

mismatch ( 2 2k k  ).  

Two examples of 2D QPM processes are shown in Fig.1.8 (left). ( 1 2,e e ) compose the 2D basis of 

the RL and the available G vector can be depicted as , 1 2m nG me ne  . 2D QPM processes of 1,0G and

1,1G  are represented in the figure. The related SH efficiencies depend on the Fourier coefficients of Eq. 

(1.29), which depends on the shape of the χ
(2)

 pattern at the unit cell level. Using some trigonometry, 

Fig.1.8 (Left) leads to: 

2

2

2

2 2

2
1 4 sin

n n

G n n

 


 


 

 
   

 
                                             (1.30) 

where λ2ω is the SH wavelength inside the material and 2θ is the between kω and k2ω. If the medium has 

no dispersion,
2n n  , Eq. (1.30) is reduced to the well-known Bragg law: 

4
sin 2 sind

G


     

where d is the period between two planes of scatters.  

Fig. 1.8 (Right) shows the corresponding nonlinear Ewald construction. In the RL space, the 

successful QPM can be achieved by the following steps: 

(1) Draw 2k  in the right direction but finishing at an origin; 

(2) Draw a circle with radius at 2k  with center CE,S. ; 

(3)Where the circle passes through an origin, the ,m nG used to realize the QPM is marked in the 

figure. 
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Fig. 1.8 Schematic picture of a 2D Reciprocal lattice. (Left) Reciprocal lattice of the structure of Fig.1.7, with 

the 2D QPM processes of order [1, 0] and [1, 1] shown schematically. (Right) Nonlinear Ewald construction: the 

center of the Ewald sphere is located 2k 
 away from the origin of the RL and the radius of the sphere is 

2k 
. If a 

point of the RL is located on the Ewald sphere, PM occurs for the SHG process. [Ber98] 

 

The advantages of 2D periodic NLPC can be summarized as: 

(a) Can be used to compensate very large phase mismatches; 

(b) Simultaneous phase matching of several parametric processes; 

(c) Broad SHG bandwidth. 

However, the limitation is that the available G value in the nonlinear parametric process is limited 

by the 2D basis of the RL and the quantity of G is small. 

 (B) QPM in 2D quasi-periodic NLPC 

In order to broaden the G distribution and increase the corresponding quantity, people resort to the 

quasi-periodic NLPC. For example, in Ref. [She07] the authors Sheng et al. fabricated ferroelectric 

domains in a short-range order. These quasi-periodic NLPC provide the possibility for broadband 

QPM SHG in the visible range. The fabricated 2D ferroelectric domain pattern with electric field 

poling method is shown in Fig. 1.9 (a) and the radius of the inverted domain is around 3.5 μm. The 

plot in Fig. 1.9 (b) shows the values of the modulus of the reciprocal lattice vectors obtained by 

Fourier transform of the spatial ferroelectric domain pattern. Fig. 1.9 (c) displays the calculated 

Fourier spectrum of the ferroelectric domain pattern corresponding to the spectrum of reciprocal 

vectors. The distribution of reciprocal vectors in a manner of concentric rings allows us to achieve an 

efficient frequency conversion over a broad bandwidth. The structural short-range order plays an 

important role in the observed high-efficiency broadband SHG and in other words the structural short-

range order provides a bigger flexibility to realize simultaneous PM in different nonlinear parametric 

processes. 
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Fig. 1.9 2D quasi-periodic domain distribution and the corresponding discontinued reciprocal vectors. (a) 

Micrograph of etched domain structure; (b) Modulus values of reciprocal vector obtained by Fourier transform of 

the spatial ferroelectric domain pattern. Figure extracted from [She07]. 

 

 (C) QPM in 2D random ferroelectric crystals 

Random quasi phase matching (RQPM) is a very novel and interesting technique to achieve 

broadband optical frequency conversion in disordered nonlinear ferroelectric crystals. The typical 

disordered nonlinear ferroelectric crystals include the as-grown Strontium Barium Niobate (SBN), 

Calcium Barium Niobate (CBN), etc. Moshe Horowitz first reported the broadband SHG from a 

broadband input FF wave in disordered nonlinear ferroelectric crystal without any temperature or 

angular tuning in 1993 [Hor93]. After that, the ferroelectric structure and other optical properties of 

these disordered nonlinear ferroelectric crystals were reported [Tun03, Bau04, Ski04, Vid06].  

 

Fig. 1.10 Random domain structure of disordered nonlinear ferroelectric crystal. (a). Optical micrograph 

revealing the 2D distribution of the alternate ferroelectric domains in x-y plane after selective chemical etching 

[Mol08]; (b) The domain structure along c axis with higher resolution [Rom01].  

 

Fig. 1.10 (a) shows an optical microscope image of the ferroelectric domain in x-y plane of the as-

grown SBN crystal after conventional chemical etching. The image exhibits the disordered 

ferroelectric domains with random diameter and random position. The ferroelectric domains align 

parallel to the optical axis (c axis) as indicated in the figure. The domain cross-sections in x-y plane 
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are squares with rounded corners. [Mol08] The domain diameters in x-y plane are in the range 0.1–10 

μm with a particular distribution with mean domain width at ~ 2–3 μm. [Mol08] The ferroelectric 

domains have needle-like shape with the longest dimension parallel to the optical axis [Ram04]. Fig. 

1.10 (b) shows the domain structure along optical c axis with higher resolution [Rom01]. 

For these as-grown crystals, the linear susceptibility is constant, while the second-order χ
(2)

 

nonlinear susceptibility is spatially random modulated by the disordered ferroelectric domains as 

shown in Fig.1.11 (a).  The random inverted χ
(2)

 distribution provide a continuous set of reciprocal 

lattice vectors in the plane of modulation as shown in Fig.1.11 (b). The simultaneous RQPM processes 

as shown in Fig. 1.11 (c) yield the SHG in the xy plane. 

 

Fig. 1.11 Continuous G distribution in disordered nonlinear ferroelectric crystal.  (a) Random distributed χ(2) 

domains; (b) Continuous distribution of reciprocal lattice vectors G in the x-y plane; (c) RQPM processes for the 

SHG. 

 

The limitation of this RQPM process is low SHG efficiency and the SHG intensity grows 

linearly with distance. However, the advantages can be summarized as: 

(a) A very large quantity of reciprocal lattice vectors G; 

(b) Continuous G distribution; 

(c) A very Broad SHG bandwidth. 

 

1.3 Ultrashort pulse representation 

In optics, an ultrashort pulse of light is an electromagnetic pulse whose time duration is usually of 

the order of few tenth of femtoseconds (10
−15

 s), but in a larger sense this definition can be applied to 

pulses with a duration of a picosecond (10
−12

 s) or less. Such short pulses have a broadband optical 

spectrum, and can be created by mode-locked oscillators. The electric field of the pulses can be in 

general a vector and it can be reduced to a scalar in the case of linear polarization, which is the case in 

many situations and the case we are working in this thesis. In this research, polarization of ultrashort 

laser pulse is always linear, either ordinary polarized or extraordinary polarized, and time independent, 
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which leads to the fact that a separate temporal characterization is sufficient to describe the ultrashort 

pulse. The ultrashort pulse in the time domain is defined by a temporal amplitude and phase. The 

relation between the pulse in the frequency and the temporal domain is the Fourier transform. In order 

to have shorter pulses, it is necessary to have larger spectral bandwidths of emission.  

This section is devoted to a general mathematical description of ultrashort laser pulses and their 

temporal properties. Although the definitions provided in this section are well-suited to describe an 

arbitrary temporal waveform, the analysis will focus on Gaussian temporal pulse profiles as they are 

commonly encountered in a femtosecond laser laboratory.  

1.3.1 Temporal intensity and phase 

An optical wavepacket is generally defined by its electric field as a function of space and time 

(x,y,z,t). A general treatment involving spatiotemporal coupling is relevant under specific situations 

found for instance during propagation of ultrashort pulses [Ben12]. However, many problems 

encountered in optics allow for a simplification of the problem in which the spatial and temporal 

evolution of the fields can be decoupled, leading to the concepts of optical beam and optical pulse 

respectively.  If the polarization state of the fields is not changing we can also avoid a full vectorial 

treatment and consider an scalar approximation [Tre00]. The spatial dependence is considered in 

problems where the transverse spatial variation of the fields on propagation, i.e. diffraction effects 

must be included. In the following no spatial dependence will be assumed (plane-wave approximation) 

and the expresion for an optical pulse is given by: 

         cos ot I t t t                                                 (1.31) 

where (t) is the temporal phase, O the pulse carrier frequency and I(t) is the temporal intensity.  

   
2

I t t                                                              (1.32) 

where the average is taken over times longer than the optical period. This representation, known as the 

quasi-monochromatic pulse representation, is valid for pulses as short as few femtoseconds. 

To simplify the mathematical treatment it is usually adopted a complex representation of the fields: 

                
*1

exp exp
2

o ot E t i t E t i t                                   (1.33) 

Expressed in terms of the analytical signal E(t) 

          exp exp oE t I t i t i t  

Since we are only concerned about the temporal pulse shape and duration not the absolute magnitude 

of the intensity, we omit the constants in the Eq. (1.32). The temporal phase can be expressed as 

following: 
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Im( ( ))
( ) arctan

Re( ( ))

E t
t

E t
                                                     (1.34) 

The temporal phase, ϕ(t) contains frequency vs. time information, and the pulse instantaneous angular 

frequency, ωinst(t), is defined as:  

0

( )
( )ins

d t
t

dt
                                                       (1.35) 

The Taylor series for ϕ(t) about the time t=0: 

2

0 1 2( ) 2t t t                                              (1.36) 

where only the first few terms are required to describe well-behaved pulses. The second order term ϕ2, 

called the chirp coefficient (usual units expressed in fs
-2

) gives an instantaneous frequency as shown in 

Eq. (1.35), which varies linearly with time and results in up-chirped (if ϕ2>0) or down-chirped (ϕ2<0) 

pulses. Higher order contributions lead to pulse distortions. The pulse can be alternatively expressed in 

the spectral domain, through a Fourier transform of the temporal envelope, in terms of the frequency 

Ω=ω-ωo. 

1.3.2 Spectrum and spectral phase 

The pulse field in the frequency domain is the Fourier transform of the time-domain field as 

shown below: 

( ) ( )exp( )t i t dt                                                    (1.37) 

also, the inverse  Fourier transform is: 

1
( ) ( )exp( )

2
t i t d                                                (1.38) 

separating ε(ω) into its intensity and phase yields: 

( ) ( ) exp( ( ))S i                                                     (1.39) 

where S(ω) is the spectrum and φ(ω) is the spectral phase. We could have defined the spectrum and 

spectral  phase  in  terms  of  the Fourier transform of the complex pulse amplitude E(t): 

0 0 0( ) ( ) exp( ( ))E S i                                       (1.40) 

where S(ω-ω0) would have been the spectrum, and φ(ω-ω0) would have been the spectral phase. 

Most of the time, researchers don't do this simply in ultrafast optics. Generally, in the ultrafast 

optics the time-domain field choose the complex field envelope, while the frequency-domain field is 

the Fourier transform, not of the complex field envelope, but of the full real electric field. The reason 

for this usage is that people like their spectra centered on the actual center wavelength not zero-but 
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they don't like their temporal waveforms rapidly oscillating, as would be required to be rigorously 

consistent.  The spectrum is given by: 

2
( ) ( )S                                                              (1.41) 

The spectral phase is given by expressions analogous to those for the temporal phase: 

Im( ( ))
( ) arctan

Re( ( ))
                                                   (1.42) 

Like the temporal phase contains frequency and time information, the spectral phase contains time and 

frequency information. So we define the group delay vs. frequency, tgroup (ω), given by: 

( )groupt d d                                                           (1.43) 

Correspondingly, the Taylor series for the φ(ω) about the time ω0 is follow: 

2

0 0 1 0 2( ) ( ) ( ) 2                                (1.44) 

In the Eq. (1.36) and Eq. (1.44), the zeroth-order phase term is often called the absolute phase, 

which is the phase of the carrier at the peak of the pulse envelope or some other reference time. 

Usually, we don't care much about the lowest-order term, because when the pulse is many carrier-

wave cycles long, variation in the absolute phase shifts the carrier wave from the peak of the envelope 

to a value only slightly different and hence changes the pulse field very little; The first-order phase is a 

shift in time or frequency, which isn’t considered in this work with the reasons as follows: from the 

Fourier Transform Shift Theorem, the first-order (linear term) in the spectral phase shown by the 

second term in Eq. (1.44) corresponds to a delay representing when the pulse arrives, which is not 

interesting for us. Also from the Fourier Transform Shift Theorem, the first-order (linear term) in the 

temporal phase shown by the second term in Eq. (1.36) corresponds to a frequency shift, which is 

often interesting but can be easily measured with a spectrometer. Since in this work we concentrate on 

the time domain, we overlook this first-order phase; the second-order phase is often called the linear 

chirp term. Quadratic variation of ϕ(t), that is, a nonzero value of ϕ2, represents a linear ramp of 

frequency vs. time and so we say that the pulse is linearly chirped.  

1.3.3 Pulse duration and spectral width 

One of the most important goals of this thesis is to measure the temporal pulse duration (also 

known as pulse length, or pulse width), unfortunately, no single definition of the pulse duration and 

the spectral width is used. There are several definitions existing, such as full-width-half-maximum 

(FWHM), half-width-l/e (HW1/e), root-mean-squared (RMS) width and equivalent pulse width. 

[Tre00]. 

 Unless specified otherwise, in this thesis we define the pulse duration T as the full-width-half-

maximum duration in intensity, which is the time between the most- separated points that have half of 
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the pulse's peak intensity (see Fig. 1.12). This is the most intuitive definition, and it's the rule in 

experimental measurements, since it's easy to pull T off a plot. Fig. 1.12 (a) shows a Gaussian pulse 

and its 200 fs FWHM duration and Fig. 1.12 (b) shows a pulse with double-peak structure and its 480 

fs FWHM duration.  

 

 

Fig. 1.12 FWHM duration. (a) A Gaussian pulse and its 200 fs FWHM duration; (b) A pulse with double-peak 

structure and its 480 fs FWHM duration.  

 

Analogously, the spectral full-width-half-maximum width (indicated by ∆ω) is the frequency 

between the most-separated points that have half of the pulse's peak spectral intensity. Unless 

specified otherwise, in this thesis we define the spectral width or spectral bandwidth ∆ω as the full-

width-half-maximum width.  

Because the temporal and spectral characteristics of the electric field are related to each other 

through Fourier transforms, the spectral width ∆ω and pulse duration T cannot vary independently of 

each other. The product of temporal duration T and spectral width ∆ν of a pulse is called time-

bandwidth product (TBP) and there is a minimum TBP value written as: [Die06]: 

2 2 BT T c                                                   (1.45) 

The smaller the TBP, the "cleaner" or simpler the pulse, and the minimum TBP corresponding to the 

simplest, and it increases with increasing pulse complexity. The equality holds for the case, where the 

pulse spectral components are perfectly phase-locked (constant phase) and the pulse is called 

bandwidth-limited or FTL, exhibiting the shortest possible duration at a given spectral width and pulse 

shape. The dimensionless parameter cB depends on the actual pulse temporal shape and can be derived 

analytically in each case. 

For the phase-locked Gaussian pulse the corresponding electric field is expressed as bellow: 

2

( ) exp
(4 ln 2)

t
t

T
                                                  (1.46) 

where T is the pulse duration. Submitting Eq. (1.46) to Eq. (1.37) and Eq. (1.39) we calculate the 

spectral profile:  
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2

( ) exp
(2 ln 2)

S
T

                                                (1.47) 

where the spectral width  
2

2 ln 2 T  , which gives the minimal TBP value: 

(2 ) 0.441 BT T c                                               (1.48) 

In a more general case, if the spectral components forming the Gaussian pulse carries a time-

dependent phase relation, due to chromatic dispersion for example, a longer temporal duration than the 

bandwidth-limit (Eq. 1.48) can be generated. In general, a non-vanishing phase yields a larger time-

bandwidth product and a pulse with duration longer than a Fourier Transform Limited (FTL) pulse but 

with the same spectrum. 

1.3.4 Pulse propagation in dispersive media 

The chromatic dispersion of an optical medium is the phenomenon that the phase velocity,

p k  , and group velocity,  
1

g k 


   , of light propagating in a transparent medium depend on 

the optical frequency. The attribute “chromatic” is used to distinguish this type of dispersion from 

other types, which are relevant particularly for optical fibers: intermodal dispersion and polarization 

mode dispersion.  

When propagating in transparent optical media, the properties of ultrashort pulses can undergo 

complicated changes. Typical physical effects influencing pulses are: (a) Chromatic dispersion can 

lead to pulse broadening, but also to pulse compression, chirping, phase changing, etc. (b) Various 

nonlinearities can become relevant at high peak powers. For example, the Kerr effect can cause self-

phase modulation, and Raman scattering may e.g. induce Raman gain within the pulse spectrum 

(Raman self-frequency shift). (c) Optical gain and losses can modify the pulse energy and the spectral 

shape. (d) The spatial properties can change due to linear effects such as diffraction and waveguiding, 

but also due to nonlinear effects such as self-focusing. In highly nonlinear interactions, filamentation 

may occur. Of course, different effects can act simultaneously, and often interact in surprising ways. 

For example, chromatic dispersion and Kerr nonlinearity can lead to soliton effects. [5 rp-

photonics.com] If we consider an ultrashort pulse with relatively low power propagation in a 

dispersive media, the effects (b, c, d) can be ignored and the chromatic dispersion is the only effect 

that dominates the propagation process.  

The inherent dispersive character of any material media affects considerably the properties of 

ultrashort optical pulses due to their intrinsic finite bandwidth. The direct consequence is that any 

pulse propagating in a dispersive medium has a natural tendency to increase its pulse duration and 

acquire a pulse chirp. Since this will be a predominant effect in the propagation through our crystals 

let’s resume briefly some well-known aspects related to this phenomenon. We consider that the pulse 
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has a finite bandwidth  centered at frequency 0, where the relation <<0 holds (this is valid for 

pulses with durations as short as few tens of femtoseconds) and define the shifted frequency =-0. 

Chromatic dispersion of second and higher order can be defined via the Taylor expansion of the 

wavenumber k (change in spectral phase per unit length) as a function of the angular frequency ω 

(around the central frequency 𝜔0, e.g. the mean frequency of the laser pulses): 

     
  
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                                                     (1.49) 

where  
0

1
u k





    is the group velocity, 1/u contains the inverse group velocity (i.e., the group 

delay per unit length) and describes an overall time delay without an effect on the pulse shape; 

 
0

2 2g k


    is the group velocity dispersion (GVD) coefficient and contains the second-order 

dispersion or group delay dispersion (GDD) per unit length;  
0

3 3

3 k


     is the third order 

dispersion (TOD) coefficient and contains the TOD per unit length. GVD and TOD coefficients, g and 

β3, depend on the frequency or wavelength in transparent media. Different frequency components 

travel at different group velocity in dispersive media, which leads to pulse chirping and consequently 

results in lengthening or compression of the pulse. 

The general propagation equation is in general quite involved [Die06], but we can obtain a 

simplified propagation equation by truncating the dispersion effects up to second order and chose a 

reference frame propagating with the pulse, the so called retarded frame of reference. In this case the 

resulting equation constitutes the parabolic equation for pulse propagation: 

2

2

( , ) ( , )
0

2

A t z ig A t z

z t
                                                    (1.50) 

with  

0 0( )
( , ) ( , )

i k z t
E t z A t z e                                                       (1.51) 

where A(z,t) is the complex amplitude of the pulse. The solution to this equation can be obtained quite 

straight forwardly in the frequency space in terms of the spectral complex amplitude A (z, ω): 

21

2
0( , ) ( , ) ( ,0)e

i g z

A z A z A                                     (1.52) 

When both the GVD and TOD are considered, the above solution can be rewritten as: 

2 3
3

1 1

2 6
0( , ) ( , ) ( ,0)e

i g z i z

A z A z A                             (1.53) 

This result indicates two important consequences: (i) During pulse propagation the spectrum, 

corresponding to the square modulus of E(z, ω), is not changed, i.e S(0, ω)=S(z, ω). (ii) The pulse 
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acquires a quadratic phase during propagation when GVD coefficient, g, dominates the dispersion 

process, while a cubic phase during propagation when TOD coefficient, β3, dominates the dispersion 

process. Direct Fourier Transform gives us the expression for the electric field of the pulse: 

1
( , ) ( , )

2

i tE t z E z e d                                                  (1.54) 

More information about the effect of GVD and TOD on pulse propagation will further discussed in 

Chapter 2. 

 



Chapter 2 

Optical properties of SBN crystal 

2.1 Ferroelectric crystal: SBN crystal  

2.1.1 Ferroelectric crystal  

In this work, we are interested in materials showing a natural occurrence of nonlinear domain 

inversion as well as in those with the artificially poled nonlinear domain inversion. All these nonlinear 

domain structures exist in the ferroelectric crystals. Ferroelectric crystals are defined as crystals which 

show a spontaneous electric polarization that can be reversed by the application of an external electric 

field. [Wer57, Lin79] The ferroelectricity was first observed in 1920 in Rochelle salt by Valasek. 

[Val21] In this section, we will briefly introduce a linear description of these crystals. The further 

information can be found from DoITPoMS website (Dissemination of IT for the Promotion of 

Materials Science), of the University of Cambridge, from which this paragraph draws on information 

from. 

Ferroelectric crystals are important basic materials for technological applications in capacitors and 

in piezoelectric, pyroelectric, and optical devices. In many cases their nonlinear characteristics turn 

out to be very useful, for example in optical second-harmonic generators and other nonlinear optical 

devices. Possessing a spontaneous dipole moment that can be switched in an applied electric field is a 

prerequisite for ferroelectric. The dipole moment μ of two particles of charge q separated by some 

distance r is μ = qr. In a ferroelectric material, there is a net permanent dipole moment, which comes 

from the vector sum of dipole moments in each unit cell, Σμ. This means ferroelectrics must be non-
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centrosymmetric. There must also be a spontaneous local dipole moment which can lead to a 

macroscopic polarization, but not necessarily if there are domains that cancel completely. This means 

that the central atom must be in a non-equilibrium position. An inherent dipole moment in the 

structure results in a polarization, which may be defined as the total dipole moment per unit volume, 

i.e. P= Σμ/V. When the materials are polarized along a unique crystallographic direction, certain 

atoms are displaced only along this axis, leading to a dipole moment along it. But, depending on the 

crystal system, there may be few or many possible displacing axes. 

As the most common and easy example, let us examine a tetragonal system that BaTiO3 forms 

when cooled from the high temperature cubic phase, through the Curie temperature (Tc=120°C). In 

this system, the dipole moment can lie in 6 possible directions corresponding to the original cubic axes 

as shown in Fig. 2.1 (Left). In a crystal, it is possible that dipole moments of the unit cells in one 

region lie along one of the possible six directions while the dipole moments in another region lie in a 

different one. Each of these regions is called a domain, and a cross section through a crystal can look 

like as sketched in Fig.2.1 (Right). 

 

Fig. 2.1 (Left) The dipole moment can lie in 6 possible directions corresponding to the original cubic axes. (Right) 

Sketch of the domains formation when a ferroelectric crystal is cooled down to the Curie temperature. 

 

A domain is a homogeneous region of a ferroelectric, in which all of the dipole moments in 

adjacent unit cells have the same orientation. In a newly-grown single crystal, there will be many 

domains, with individual polarizations such that there is no overall polarization. The polarization of 

individual domains is organized such that polarization vector heads are held near the neighboring tails. 

This leads to a reduction in stray field energy, because there are fewer isolated heads and tails of 

domains. This is analogous to the strain energy reduction found in dislocation stacking. Domain 

boundaries are arranged so that the dipole moments of individual domains meet at either 90° or 180°. 

As each domain possesses its own dipole moment, we may switch dipole moments in order to encode 

information. 
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Fig. 2.2 Free energy diagram. This scheme represents the potential barrier between the two stable positions (left 

and right versus on the horizontal direction) of the dipole moments.   

 

In an electric field, E, a polarized material lowers its (volume-normalized) free energy by -PE, 

where P is the polarization. Any dipole moments which lie parallel to the electric field are lowered 

in free energy, while moments that lie perpendicular to the field are higher in free energy and 

moments that lie anti-parallel are even higher in free energy (+PE). This introduces a driving 

force to minimize the free energy, such that all dipole moments align with the electric field. We 

start by considering how dipole moments may align in zero applied field; since the horizontal 

direction is crystallographically unique, the dipole moment is stable either aligned to the left of to 

the right. These two moments are stable, because they sit in potential energy walls. The potential 

barrier between them can be represented on a free energy diagram (Fig.2.2). This material is 

considered to be homogenous. If the polarization points left then we have the situation in Fig. 

2.2(a). The electric field consequently alters the energy profile, resulting in a “tilting” of the 

potential well, Fig. 2.2(b). An increase in the electric field will result in a greater tilt, and lead to 

the dipole moments switching, Fig. 2.2(c). 

 

Fig. 2.3 Snapshot of the inhomogenous nucleation process that happen when a reversed external electric field Eext 

is applied on a fully polarized crystal. The arrows represent the local direction of the polarization. 

 

We can now look at the more realistic scenario in which domains form. Consider a material 

which is fully polarized, so that all of the dipole moments are aligned in the same direction. Then 

if we apply a reversed electric field over it, new domains with a reversed polarization start to 

nucleate. This requires a certain amount of time, in the same manner as any nucleation process. 

When the fluctuating nuclei reach a certain critical radius, they grow outwards, forming needle-
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like structures. When they reach the other side of the ferroelectric, they begin to grow outwards (Fig. 

2.3). 

This dynamics explain the origin of the hysteresis loop. The removal of the field will leave some 

polarization behind. Only when the field is reversed, also the polarization starts to lessen and new, 

oppositely poled, domains form. They grow quickly however, giving a large change of polarization for 

very little electric field. But to form an entirely reversed material, a large switching field is required. 

This is mainly due to defects in the crystal structure but it also due to stray field energy. The 

polarization of the material goes from a coupled pattern, with 180° boundaries, to a state in which 

many heads and tails are separated. This leads to the increase in stray field energy. Therefore, to attain 

this state, lots of energy has to be put in by a larger field. In Fig. 2.4 it is shown how a minor 

hysteresis loop fits into the major loop above. There are three sections to this curve: 1) reversible 

domain wall motion; 2) linear growth of new domains; 3) new domains reaching the limit of their 

growth. 

 

Fig. 2.4 Hysteresis loop due to the nucleation process. It is possible to distinguish three sections: 1)reversible 

domain wall motion; 2) linear growth of new domains; 3) new domains reaching the limit of their growth. 

2.1.2 SBN crystal  

Strontium Barium Niobate crystals (SrxBa1-xNb2O6, noted SBN:100x or SBN) [Neu88] have 

attracted much attention due to their potential applications in quasi-phase-matching second-harmonic 

generation [Kew94], electro-optic modulation [Neu90], data storage [Kah94], pyroelectric detection 

[Gla69], phase conjugation [Zha94], generation of photorefractive solitons [Wes01], and surface 

acoustic wave devices [Neu80]. In this section, we will briefly introduce some basic information of 

SBN crystals. Further information can be found in reference [Mic11]. 

The existence of SBN crystals was first reported in 1960 [Fra60]. In the mid 1960's, the first 

SBN single crystals were grown over a range of compositions 0.25<x<0.75 [Bal67]. Czochralski 

[Fur76], Stepanov [Ivl87], and vertical Bridgman [Lee98] techniques have been used to grow SBN 

single crystals. However, because of their properties of low thermal conductivity and relatively large 

latent heat, it is not easy to grow large size SBN crystals. To overcome this problem, a method for 



 

 

 

 28                                                                                                   Chapter 2: Optical properties of SBN crystals 

 

growing SBN single crystals by the Czochralski technique using a resistance-heating furnace and 

crucible-base cooling was proposed in 2001[Kub01]. 

SBN crystallizes in the region 0.25 < x < 0.75 with the tetragonal tungsten bronze (TTB) structure 

represented in Fig. 2.5. [Jam68] The arrangement of NbO6 octahedra in the form of five-member rings 

provides three types of interstitial sites: trigonal sites are vacant, tetragonal (A1) and pentagonal (A2) 

sites are partially occupied (5/6) by the divalent Sr and Ba atoms, and partially vacant (1/6) for reasons 

of electroneutrality. In this structure NbO6 octahedra are not equivalent and two types must be 

distinguished. For both types the octahedral axes are not perfectly perpendicular to the (a, b) plane but 

slightly tilted from the polar c-axis (about 8°). Five formula units are necessary to form the unit cell 

depicted in the left part of Fig. 2.5. Cell dimensions decrease with increasing the Sr/Ba ratio due to the 

smaller atomic radius of Sr from {a=b ≈ 12.48 Å, c ≈ 3.98 Å} when x≈25% to {a=b ≈12.43 Å, c ≈ 

3.91 Å} when x≈75% at room temperature. This double variation in lattice parameters and chemical 

composition modifies significantly the Curie temperature Tc of the ferroelectric crystal: Tc decreases 

from about 220°C when x≈25% to about 60°C when x≈75% [Bal67]. 

Above Tc the displacement of metallic atoms from their mean oxygen planes along the c-axis 

becomes zero except for one of the two types of Nb atoms (80% of them), which are distributed above 

and below oxygen planes with equal probability. The symmetry point group of the crystal transforms 

from 4mm to 42m, which is a non-polar but also a non-centrosymmetric class. Birefringence and 

second harmonic generation exist above Tc. 

SBN is a disordered crystal since each interstitial site A1 or A2 may be either occupied or vacant, 

and, if occupied, either by a Sr or a Ba atom. Local composition may change from cell to cell. As a 

result SBN is a ferroelectric relaxor exhibiting a broad phase transition. 

 

Fig. 2.5 View along the polar c-axis of the strontium barium niobate tetragonal tungsten bronze structure. Rings 

made of five NbO6 octahedra form three types of interstitial sites. The tetragonal (A1) and pentagonal (A2) 

positions are partially occupied by Sr and Ba atoms (5 /6) and partially vacant (1/6). Figure extracted from [Jam68]. 

 

SBN crystals are optically uniaxial negative (ne<no) at room temperature. Compared to the 

ordinary index no in the (a, b) plane, the extraordinary index ne along the polar c-axis is much 
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more sensitive to both Sr content and temperature [Ven68]. At λ=633 nm and room temperature, (no, 

ne) vary from (2.314, 2.259) to (2.312, 2.299) when x varies from 25 to 75%, respectively.  

Ferroelectric, dielectric and nonlinear optic properties of SBN crystals are very sensitive to the 

Sr/Ba ratio consistently with the impact of this ratio on Curie temperature [Gla69, Len67]. Increasing 

the Sr content reduces the interval between room and Curie temperatures, thus inducing a drastic 

enhancement of the dielectric permittivity, pyroelectric coefficient and nonlinear optic properties. 

Exceptionally large values of the linear electro-optic coefficient have been obtained (r33=1340 pm/V at 

λ=633 nm) with a 75% Sr content [Len67]. 

Generally the tungsten bronze typed relaxation ferroelectric SBN crystals are grown by 

Czochralski method. The Curie temperature of SBN crystals is in the range of 25～200℃ with the 

variation of Sr content, that are lower than the familiar CaxBa1-xNb2O6（CBN）crystals, whose Curie 

temperature is in the range of 124～347℃ with decreasing Ca content from 0.366 to 0.224. SBN 

crystallizes in a wide solid solution rang in the tetragonal symmetry (space group P4bm). In 

ferroelectric phase, SBN has the 4mm point group symmetry, which transforms to centrosymmetric 

4/mmm point group above Curie temperature. With the same techniques of the 2D QPM, people 

produces the artificially poled SBN crystals, which are χ
(2)

 modulated nonlinear photonic crystals. 

Both the as-grown and artificially poled SBN crystals are our study interest in this PhD work. 

2.2 Linear refractive indices measurement 

A preliminary step to use these crystals in the different application is to characterize properly their 

optical properties. We have performed some measurements and calculations for the characterization of 

SBN which we will briefly review in this chapter. In this section we focus on the linear refractive 

indices measurement. One of the first measurements of the refractive index of SrxBa1-xNb2O6 was 

performed by Venturini et al in 1968 [Ven68] and the crystals with components at x=0.25, 0.50 and 

0.75 were measured. Later, SBN crystals with other components were measured [Kip96, Woi01] 

[Tun04]. In this work refractive index measurements for as-grown SBN with composition x=0.61 

covering a wide wavelength region can be as a supplement and validation for the previous publications. 

2.2.1 Experimental setup  

The optical setup used to measure linear refractive indices is schematically shown in Fig. 2.6 

(Top). The sample was placed on the sample stage which can be rotated along the rotation axis. A 

CCD was used to record the light passing through the crystal. In order to measure the refractive index 

we generated a vertical light line illuminating the SBN crystal along the selected direction. The upper 

part of this light line passes above the crystal, while the bottom part of the light line passes through the 

crystal. When the light line irradiates the crystal at normal incidence, no refraction is produced during 
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light passing through the crystal and the vertical light line is not distorted. A single straight line is 

recorded by the CCD. As we rotate the crystal, the upper part of the light line is fixed while the bottom 

part of the light line due to refraction is deviated by a distance, d, given by:  

(sin cos cos sin )
cos

ex in ex in

in

L
d    


                                             (2.1) 
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n



                                                                    (2.2) 

where L=5 mm is the thickness of the SBN crystal, 
ex is the crystal rotation angle which is also the 

external angle, 
in is the internal angles, n is refractive index to be measured which is dependent on 

the wavelength of the light. Combination of Eq. (2.1) and Eq. (2.2) leads to the following equation: 
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  

                                               (2.3) 

The offset distance, d, can be clearly detected by the CCD as shown in Fig. 2.6 (bottom). 

 

 

 

Fig. 2.6 Experimental setup and schematically shown the distance between refractive light and input light. 
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2.2.2 Refractive indices measurement results  

We measured several wavelengths. The first wavelength is 532 nm from a diode pumped solid 

state laser. To get a valid refractive index, three steps have been carried out in each measurement.  

(1) Zeroing the position of output light.  

The input light irradiating the crystal at normal incidence is used to calibrate the undeviated light 

direction.  

(2) Rotating the crystal in 1 degree steps and the CCD camera recorded offset distance, d, is 

obtained as a function of rotation angle,
ex . 

(3) A fit is made over all the measured 
ex and d using Eq.(2.3). From this fit the refractive index 

to be measured can be deduced.  

Fig. 2.7 shows the measurement results corresponding to no (λ=532 nm). The blue dots show the 

experimentally measured d value and the 
ex ; the red, green, and pink lines show the plots of Eq. (2.3) 

with refractive index value at 2.31, 2.18, and 2.25 respectively. Comparing the three lines and the 

experiment data we can see: 

(1) The experiment data fits the pink line, which means no is close to 2.25; 

(2) The red line corresponds a refractive index with a positive deviation, 0.06, from no=2.25; 

(3) The pink line corresponds a refractive index with a negative deviation, -0.07, from no=2.25; 

 

Fig. 2.7 Measurement result of no(λ=532 nm). 

 

From the comparison, we can see the measurement error is around 5%, which is far from 

precise. One important reason is: when we use camera to record the possition of each 
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refracive beam, we can not find a reference point due to the complex diffraction pattern. 

Besides, the absence of camera lens in this measurement leads to the low accuracy of the 

measurement. 

Besides this wavelength at 532 nm, we also measured some other wavelengths at 400 nm, 574 nm, 

580 nm, 633 nm, 667 nm, 769 nm, 800 nm, and 808 nm using supercontinuum generation in SCG-800 

photonic crystal fiber. The corresponding measurement results are summarized in Table 2.1. All the 

measurement results show the refractive index measurement error is around 5% with this method. 

 

Table 2.1 
λ (nm) 400 532 574 580 633 667 769 800 808 

no (λ) 2.431 2.249 2.229 2.344 2.268 2.257 2.238 2.177 2.195 

no positive deviation 0.04 0.06 0.06 0.06 0.06 0.05 0.06 0.07 0.05 

no negative deviation -0.05 -0.07 -0.04 -0.06 -0.08 -0.06 -0.06 -0.06 -0.06 

no tolerance deviation 0.09 0.13 0.10 0.12 0.14 0.11 0.12 0.13 0.11 

 

Table 2.1 Measurement result of no at different wavelengths. 

 

According to the two references [Woi01] and [Tun04], the value of (no-ne) is much less than 0.12, 

so we can not distinguish ne and no using this method. The refractive index from reference [Woi01] 

and [Tun04] are shown by the green and blue lines in Fig. 2.8. The +5% and -5% error of the two 

refractive indices are plotted by the pink and red lines. The blue circle and blue bar represent the 

refractive index and the error bar we measured in our experiments. According to these results, we can 

see that the measured refractive index is closer to the results in [Woi01].  

 

Fig. 2.8 Comparison of reference and experimental measurement. 
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2.3 Mathematical description of chromatic dispersion in SBN  

The Sellmeier equation of unpoled SBN61 crystal is given by Ref. [Woi01]: 

2

2
( )

B
n A D

C
                                                    (2.4) 

where the parameters A, B, C and D for the refractive index of extraordinary ray are as following: 

A=4.8592; B=0.1231; C=0.0567; D=0.0252.  

The dispersion of the material can be described by either the frequency dependence of the 

refractive index  n  or the wavelength dependence of the refractive index  n  . The derivatives of 

the propagation constant  2 2 3 3, ,dk d d k d d k d   used in pulse propagation process, expressed in 

terms of the refractive index  n  [Die06], are: 

' 1dk n dn dn
k n

d c c d c d
                                           (2.5) 
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d c d c d c c d d
                     (2.7) 

where, the first-order term 'k contains the inverse group velocity (i.e., the group delay per unit length) 

and describes an overall time delay without an effect on the pulse shape; the second-order (quadratic) 

term g is the group velocity dispersion (GVD) coefficient and contains the second-order dispersion or 

group delay dispersion (GDD) per unit length; the third-order (cubic) term β3 is the third order 

dispersion (TOD) coefficient and contains the TOD per unit length. GVD and TOD effects appear due 

to the wavelength dependence of their associated parameters g and β3. Different frequency 

components travel at different group velocity in dispersive media, which leads to pulse chirping and 

consequently results in lengthening or compression of the pulse. 

When substituting Eq. (2.4) into Eq. (2.6) and Eq. (2.7), we obtain the GVD value g and the TOD 

coefficient value β3 as functions of the wavelength λ. The two curves are plotted in Fig. 2.9 (a) and (b). 

For the unpoled SBN61 the typical value of GVD and TOD coefficients are 486 fs
2
/mm and 342 

fs
3
/mm at 790 nm, 476 fs

2
/mm and 337 fs

3
/mm at 800 nm, and 301 fs

2
/mm and 281.5 fs

3
/mm at 1064 

nm respectively.  
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Fig. 2.9 The GVD and TOD coefficients of unpoled SBN61. (a) The GVD coefficient of unpoled SBN61; (b) 

The TOD coefficient of unpoled SBN61.  

 

2.3.1 The effect of GVD and TOD on pulse propagation  

As an important example let’s consider the particular case when an un-chirped incident pulse 

possesses a Gaussian profile and propagates along z direction. The initial complex amplitude of the 

electric field at z = 0 position can be written as: 

2

2

0

1
( ,0) exp

2 ( (2 ln 2))

t
E t

T
                                             (2.8) 

where T0 is the initial temporal FWHM duration in intensity.  

According to Eq. (1.52) the GVD will impose a quadratic phase onto the initial pulse after 

propagating a distance z as represented in Eq. (2.9) and Eq. (2.10): 

21

2( , ) ( ( ,0))
i g z

GE z E t e                                              (2.9) 

1( , ) ( ( , ))GE t z E z                                                   (2.10) 
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where 1 and denote the inverse Fourier transform and the Fourier transform operators. The 

spectrum and intensity related to GVD can be written as:  

2
( , ) ( , )G GS z E z and 

2
( , ) ( , )G GI t z E t z  

According to Eq. (1.53) the TOD will impose a cubic phase onto the initial pulse after propagating 

a distance z as represented in Eq. (2.11) and Eq. (2.12): 

3
3

1

6( , ) ( ( ,0))
i z

TE z E t e                                            (2.11) 

1( , ) ( ( , ))TE t z E z                                                    (2.12) 

The spectrum and intensity related to TOD can be written as:  

2
( , ) ( , )T TS z E z and 

2
( , ) ( , )T TI t z E t z  

For the un-poled SBN61 crystal, the typical value of GVD and TOD coefficients can be extracted 

from Fig. 2.9. Substituting Eq. (2.9), Eq. (2.10) and Eq. (2.11), Eq. (2.12) into Eq. (1.34) and Eq. (1.42) 

respectively, the temporal and spectral phase can be calculated. 

The effect of GVD and TOD on 180 fs pulse  

Fig. 2.10 shows the effect of GVD and TOD on the laser pulse with initial FWHM duration 

T0=180 fs at 1064 nm central wavelength after propagation 10 mm inside the SBN crystal along z axis. 

The plots in top row depict the initial pulse with a Gaussian temporal profile (blue curve) and a 

Gaussian spectrum (red curve) together with the corresponding constant phase (green curve). The 

plots in middle row depict the corresponding intensity and spectrum information related to GVD. The 

plots in bottom row depict the corresponding intensity and spectrum information related to TOD. We 

can see from these plots that during propagation of 10 mm distance in the SBN crystal the 180 fs pulse 

is not obviously affected by the GVD and TOD. 
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Fig. 2.10 The effect of GVD and TOD on the 180 fs pulse after propagation 10 mm inside SBN crystal. (Top 

row): Initial pulse with 180 fs duration; (Middle row): The effect of GVD on the initial pulse; (Bottom row): The 

effect of TOD on the initial pulse. 

 

The effect of GVD and TOD on 10 fs pulse  

The same calculation is performed for the pulse with initial FWHM duration T0=10 fs at 1064 nm 

central wavelength. The effect of GVD and TOD on the laser pulse after propagates 100 mm inside 

the SBN crystal along z axis is shown in Fig. 2.11. The initial pulse as shown in top row has a 

Gaussian intensity profile (blue curve) and a Gaussian spectrum (red curve). The initial phase in both 

time and spectral domain are constant. The spectrum and intensity related to GVD are shown in 

middle row. The pulse gets broaden dramatically in temporal domain and gathers a quadratic phase in 

both temporal domain and spectral domain, while the Gaussian spectrum keeps unchanged. The 

spectrum and intensity related to TOD are shown in bottom row. After propagation 100 mm distance 

the TOD gives a strong effect on this 10 fs pulse. The pulse gets distorted dramatically in temporal 

domain and gathers a cubic spectral phase. Again the Gaussian spectrum keeps unchanged. We can 

see from these plots that during propagating 100 mm distance in the SBN crystal the 10 fs pulse is 

dramatically affected by the GVD and TOD. 
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Fig. 2.11 The effect of GVD and TOD on the 10 fs pulse after propagation 100 mm inside SBN crystal. (Top 

row): Initial pulse with 10 fs duration; (Middle row): The effect of GVD on the initial pulse; (Bottom row): The 

effect of TOD on the initial pulse. 

 

We simulated several different cases via selecting different initial pulse duration and propagation 

distance and found that the effect of TOD becomes obvious only for short enough pulse duration and 

long enough propagation distance. For example, when the 30 fs pulse propagates along a 10-mm SBN 

crystal the effect of TOD can be negligible. Therefore, in this PhD work when we consider pulse 

propagation over distance of the order of few millimeter the pulse duration is always long enough to 

ignore the effect of TOD. 

2.3.2 The combination effect of initial chirp and GVD on pulse propagation  

Consider the propagation along z axis of an ultrashort pulse with a Gaussian intensity and 

quadratic temporal phase imposed by the initial chirp parameter, C. The initial complex amplitude of 

the electric field at z = 0 position can be written as: 

2

0 2

0

1
( ,0) exp

2 ( (2 ln 2))

iC t
E t E

T
                                       (2.13) 

Rewrite Eq. (2.13) in the form of ( ) ( ) exp( ( ))E t I t i t  and obtain the temporal phase:  

2

2

0

( )
2 ( (2 ln 2))

C t
t

T
                                                     (2.14) 
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The instantaneous frequency can be expressed as following when substituting Eq. (2.14) into Eq. 

(1.35):  

0 2

0

( )
( (2 ln 2))

ins

C
t t

T
                                                (2.15) 

According to Eq. (1.37) the electric field in the frequency domain can be written as:  

( ,0) ( ,0)exp( )E E t i t dt  

          
2 2

0 0
0

2 (2 ln 2) ( (2 ln 2))
exp

2(1 )1

T T
E

iCiC
                                 (2.16) 

After propagation z distance, according to Eq. (1.52) the electric field in the frequency domain can be 

written as follow:  

0

21
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E z E i g z  
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2 2 22
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E i g z

C CiC
                             

(2.17) 

Rewrite Eq. (2.17) in the form of Eq. (1.40) and obtain the spectral phase after propagate z distance:  

0

22

0

2

( (2 ln 2))
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2 1

T C
z g z

C
                                          (2.18) 

with Eq. (1.38) the corresponding pulse field in the temporal domain is:  

1
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(2.19) 

Rewrite Eq. (2.19) in the form of ( ) ( ) exp( ( ))E t I t i t  and obtain the temporal phase after propagate 

z distance:  
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where 
0

2

0( (2 ln 2))DL T g  is the group velocity dispersion length, which is a characteristic length 

of the medium (after propagate a distance LD the pulse gets broadened by a factor of 2 ); the 

temporal phase evolution is represented in Eq. (2.20), which is a function of initial chirp and the group 

velocity dispersion coefficient of the nonlinear material.  

The initial phase is only related to the initial chirp and according to Eq. (2.13) and Eq. (2.16) the 

initial phase can be described by a quadratic function. During pulse propagating inside the SBN 

crystal the phase evolution is determined by the initial chirp and the material dispersion. Both the 

GVD and initial chirp induced phase can be described by quadratic function.  

Besides, the initial chirp and the group velocity dispersion coefficient also impose obvious effect 

on the pulse shape which makes the pulse broadening or compression during propagation.  To see this 

clearly, Eq. (2.19) is rewritten in the same form with Eq. (2.13) and the expression as shown below: 

2

0 2

1 ( )
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(2.21) 

 

Here we define:  

(i) Pulse duration (1/e intensity) at z position:  

2
2

0 2

2
( ) 1 (1 )e e

D D

Cz z
T z T C

L L
                                            (2.22) 

with 0 0 (2 ln 2)eT T , where Te0  and T0 are the pulse duration at 1/e intensity and FWHM 

intensity at z=0 position.  

(ii) Chirp parameter at z position:   

2(1 )
( )

D

C
C z C z

L
                                                        (2.23) 

with 2

0( (2 ln2))DL T g .  The chirp evolution inside a dispersive medium is determined by the 

initial chirp, C, and the dispersion of the material, g. Since both C and g can have positive or 

negative values, we find two different situations during pulse propagation in dispersive media: (a) 

when the sign of GVD coefficient and of the initial chirp are the same the pulse broadens during 

propagation; (b) For different signs of the GVD and chirp coefficients an initial compression of 

the pulse is observed, until it is reached the point of minimum pulse duration (corresponding to a 

Fourier transform limited pulse). From this point on the pulse will start broadening again. 
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2.4 Absorption spectrum of SBN 

Theoretically, SBN crystals possess a very wide transparency window. The absorption spectrum 

of SBN crystal was measured within the range of our interest and is plotted in Fig. 2.12, which shows 

that signals with wavelengths less than 380 nm will be absorbed by SBN crystal. 

 

Fig. 2.12 Absorption spectrum of SBN crystal. 

2.5 Phase mismatching curve of SBN 

Some nonlinear parametric process in disordered nonlinear crystals sensitively depends on the 

phase mismatch value. For example, during the SHG process with collinear beams the phase mismatch 

is given by ∆k =k2-2k1. Where k1 and k2 are the wavenumbers of the fundamental and second-

harmonic beam, respectively. The corresponding coherence length can be calculated via LC=π⁄∆k. The 

phase mismatch evolution as a function of FF wavelength for oo-e (blue star) and ee-e (red circle) are 

presented in Fig. 2.13 (a1) and Fig. 2.13 (b1) for SBN and CBN, respectively. [Tun04, EBr03] The 

coherence length evolution along FF wavelength for oo-e (blue star) and ee-e (red circle) are presented 

in Fig. 2.13 (a2) and Fig. 2.13 (b2) for SBN and CBN, respectively. 
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Fig. 2.13 Comparison of phase mismatch and coherence length for oo-e and ee-e interactions. (a1, b1): Phase 

mismatch at different wavelengths for SBN and CBN crystals; (a2, b2): Coherence length at different wavelengths 

for SBN and CBN crystals. 

 

2.6 SHG in SBN 

The as-grown ferroelectric SBN crystals exhibit a random-sized distribution of needle-like 

oppositely oriented ferroelectric domains all aligned parallel to the optical axis (z axis). A schematic 

representation of such domains is shown in Fig. 2.14 (a). While the reversed orientation of domains 

corresponds to inversion of sign of the quadratic susceptibility χ
(2)

, the refractive index of these 

crystals remains practically homogeneous [Kaw98]. Unlike the typically used homogeneous nonlinear 

crystals, SBN crystals are capable of achieving PM for frequency conversion processes over wide 

angular and frequency bandwidths without angular or temperature tuning [Tun03, Rop13, Wan10]. 

PM can be obtained due to the continuous set of reciprocal lattice vectors, shown in Fig. 2.14 (b), 

arising from the random size and distribution of the nonlinear domains. For the oo-e and ee-e 

interactions in this 4mm point symmetry crystal the random nonlinear domains correspond to random 

distribution of the χ
(2)

. The reciprocal lattice vectors, with different modulus and orientations, lie in the 

x-y plane. As a result, planar SH emission is observed when the input fundamental beam propagates in 

the direction perpendicular to the optical axis (e.g. x axis). This effect constitutes the so-called 

transverse second harmonic generation (TSHG) illustrated in Fig. 2.14 (c). Since the spectra of the 
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TSHG, 2ωi, represent almost exact copies of the fundamental waves, ωi, the unique optical property 

can be used as an efficient frequency mapping from the fundamental wave to the SH wave for 

ultrashort pulse characterization. 

 

Fig. 2.14 The structural and optical property of SBN crystal. (a) The schematic representation of random 

nonlinear ferroelectric domains; (b) The continuous set of reciprocal lattice vectors in the x-y plane; (c) TSHG 

emission plane when z axis is perpendicular to the input fundamental beam propagation direction, where ωi and 

2ωi represent different fundamental and SHG frequency components respectively. 

 

When the optical axis (z axis) of SBN crystal is oriented perpendicular to the propagation 

direction, the SH radiation is emitted in the x-y plane shown in Fig. 2.15 (a), which is because the 

specific phase matching conditions shown in Fig. 2.15 (b). In disordered ferroelectric SBN crystal the 

reciprocal vectors can be oriented in any direction in the plane perpendicular to the optical axis, and 

their magnitudes are determined by the domain size distribution. In this case the harmonic generation 

is mainly due to a high-order QPM and subsequently the efficiency is low. Under such condition, SHG 

can be emitted in any direction in the x-y plane.  

When the fundamental beam propagates along or forms an angle with the optical axis, only a 

limited number of grating vectors are involved in SHG processes. The SH is emitted in the form of a 

cone shown in Fig. 2.15 (c), which is because the phase matching conditions shown in Fig. 2.15 (d). 

The cone angle is a function of both the fundamental wavelength and misalignment angle of the 

fundamental beam with respect to the crystal optical axis. [Fis06] Again because of the limited 

minimal size of domain the QPM is maily dominate by the high-order QPM and subsequently the 

efficiency is low. 
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Fig. 2.15 SHG in disordered ferroelectric SBN crystal.  (a). SH emission plane for the optical axis perpendicular 

to the fundamental beam propagation direction; (b) Phase matching condition for case (a); (c) SH conical emission 

for the z axis parallel to the fundamental beam propagation direction; (d) Phase matching condition for case (c).   

 

The second-order parametric processes in this random structure have the following features: The 

emitted SHG over a large spectral range which is limited only by transparency window of the crystal; 

The non-collinear QPM interactions offer rich variety of phase matching possibilities, which enables 

the SHG to occur at multiple directions; In the nonlinear parametric process there are no need of any 

angular or temperature tuning. However, the limitation is that the SHG efficiency is always low and 

intensity grows linearly with the propagation distance, which is a signature of the incoherent character 

of the superposition of the SH emission from different domains. [Tru07] 

2.7 Conclusions 

In this chapter we systematically studied the optical properties of the SBN crystal. These 

properties are closely related to the laser pulse propagation processes, which will study in the 

following Chapters 3, 4 and 5. The study of these properties helps to understand the rest of the work. 

Optical properties of the SBN crystal, such as, refractive indices, chromatic dispersion, linear 

absorption and phase mismatching, can be found in literatures [Woi01, Tun04, Die06, Cal04], 
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however, they depend on the growing process or eventually doping component of the crystal. Since 

these properties will strongly affect the laser pulse propagation process and impose effect on our 

measurements, we have decided to test and validate them.  

We built the setup and measured the linear refractive indices of SBN crystals, which can be as a 

supplement and validation for the previous publications.  

We studied the effects of group velocity dispersion and third order dispersion and the combination 

effect of initial chirp and chromatic dispersion on pulse propagation, which is the preliminary study to 

apply SBN crystal to ultrashort pulse characterization because dispersion in SBN crystal has a strong 

effect on the initial chirp retrieving process. 

We measured the linear absorption spectrum of SBN crystal. In this dissertation all the 

measurements in different applications highly depend on the precise measurement of the output beam, 

so the confirmation of the transparency window is the basis for efficient parameter estimation in the 

rest of the work. 

Some nonlinear parametric process in artificially poled random nonlinear crystals as discussed in 

Chapter 5 sensitively depends on the phase mismatch value, so we calculated the phase-mismatching 

curve of SBN crystal. 

Since second-order nonlinearities are directly related to the domain distribution within the crystal, 

in this chapter we briefly reviewed the ferroelectricity and second harmonic generation in SBN crystal. 

The ferroelectric and optical properties of SBN make them suitable for poling and transverse second 

harmonic generation. 



Chapter 3 

Ultrashort pulse duration and chirp 

measurement via transverse auto-

correlation technique 

3.1 Introduction 

Ultrashort laser pulses, with their variety of peak powers and durations, are becoming an 

important tool in an increasing number of applications in the fields of technology (materials 

processing, etc.), biomedical sciences, and basic research, in general. As the pulses become shorter, 

the dispersion effects that modify pulse properties during propagation through optical materials 

become increasingly relevant so a precise characterization of the pulse properties is needed. The laser 

pulses we are studying in this thesis are entirely defined by their electric field, which can be 

represented either in temporal or spectral domain. Since the pulse parameters in temporal and spectral 

domains are closely related by Fourier transform relations, the measurement of the pulse intensity and 

phase in either temporal or spectral domain is sufficient to completely characterize the laser pulses.  

Direct electronic detection methods are used to measure some basic information of a laser pulses. 

For example, the energy detector detects pulse energy, spectrometer measures the spectrum, and the 

temporal pulse duration of pulses longer than 1 nanosecond can be measured with a photodiode.  

However, pulses in the sub-100 fs temporal regime are shorter than the temporal response of any 

electronic detector, thus it becomes impossible to perform a direct measurement that could determine 

their temporal profile [Won95]. The state-of-the-art technology that sets the temporal resolution limit 
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in the case of electronic detectors, exhibiting an ultrafast response in the sub-picosecond timescale, is 

the streak camera [Ham08]. Commercial streak cameras can reach nowadays a temporal resolution of 

200 fs, while the theoretical limit lies just below 100 fs [Jaa04]. Ordinary electronic detectors have an 

infinitely slow response compared to the ultrashort light pulse duration and can be therefore 

considered to be time integrating, simply measuring the average pulse power. Some slow methods for 

characterization of ultrashort pulses were proposed and classified as linear, which maybe because the 

detected field is a linear function of the input field. [Kau94, Bec93, Won94] The majority of the 

methods for characterization of ultrashort pulses are based on nonlinear-optical elements acting as 

time gates that allow a short temporal segment of the pulse to be sampled. [Sza88, Yan91, Nag89, 

Chi91, Kan93, Tre93, Pay93]  

For characterizing linearly polarized ultrashort laser pulses, the most widespread nonlinear 

techniques can be broadly defined to operate in the time domain (i.e., intensity cross-correlation (CC) 

and intensity autocorrelation (AC)), both in time and spectral domains (i.e., Frequency Resolved 

Optical Gating - FROG [Tre00]), and the spectral domain (i.e., Spectral Phase Interferometry for 

Direct Electric-field Reconstruction-SPIDER [Iac98, Lep95]. Besides, the D-Scan is a new and 

interesting technique for characterization few-cycle pulses [Mir12]. The advanced FROG, SPIDER 

and D-Scan techniques are able to implement a complete waveform reconstruction.  

One of the first attempts to retrieve some information from short optical pulses is the intensity AC, 

providing quantitative information about the temporal structure of an unknown signal. Because of its 

simplicity, AC is by far the most common technique in ultrashort pulses measurement. However, the 

AC trace by itself provides only an estimation of the pulse duration. The basic optical configuration of 

the intensity AC is shown in Fig. 3.1 (a). The unknown signal to be measured is splitted into two 

replicas of equal intensity. An adjustable optical delay is introduced to control the overlapping of the 

two replicas. When the two signals are recombined within a nonlinear crystal, with sufficient intensity 

and proper phase matching over the entire bandwidth of the two signals, a SH signal is generated and 

its electric field is given by ( ) ( )E t E t  . The function of the nonlinear crystal in this process is to 

multiply the spatial overlap region of the two pulses. Separating the generated noncollinear SH signal 

from the collinear SH signal generated by each input pulse is ensured by the noncollinear geometry. 

The energy of the generated signal is measured with an integrating detector and is recorded as a 

function of the relative delay between the input signals, providing the intensity AC trace. The ( )ACI   

data, shown in Fig. 3.1 (b), consists of a one-dimensional array of numbers representing the 

noncollinear SH signal energy as a function of the delay, which is related to the input field by: 

         
2

ACI E t E t dt I t I t dt  
 

 
                                         (3.1)  

where    AC ACI I   , which means that intensity AC fails to tell the “direction of time” of a pulse. 

It is a symmetric function providing information of pulse duration but without pulse shape information. 
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Fig.3.1 Intensity autocorrelator. (a) Schematic representation of the intensity AC. (b) the intensity AC trace 

calculated by different temporal delay τ. 

 

Since the AC function depends on the assumed signal shape, to estimate the actual signal duration 

through AC trace we should know the functional form for the temporal shape of the unknown signal. 

If we consider a Gaussian-shaped signal 2 2( ) exp( ( (2 ln2)) )I t t T   with the temporal intensity FWHM 

duration T, the corresponding intensity AC trace can be expressed as 2 2( ) exp( ( (2 ln2)) )AC ACI t t T  , 

where the relation between pulse duration T and AC duration TAC can be written as 2 ACT T . For a 

Sech
2 
pulse the relation between pulse duration T and AC duration TAC becomes 1.54T=TAC. 

The intensity AC is the simplest and the most common technique for measuring pulses with 

durations above 150 – 200 fs. The AC profile can be only used for the estimate of the pulse duration, 

which is actually enough in an important number of applications. However, the AC technique has 

several limitations when ultrashort pulses below 100 fs have to be measured: 

(a) Demand of multiple shots pulses. The AC technique depends on the measurement of SHG at 

different pulse overlap region. In order to get a complete AC profile one has to keep changing the 

delay time until it covers the entire pulse duration. In this way, one will always measure the 

average pulse duration of a train of pulses. In order to overcome this limitation, a background-free 

single-shot method to measure the intensity AC trace was developed by Janszky [Jan77]. In 1987 

this method was used to measure pulses shorter than 100 fs [Sal87]. In this technique two replicas 

of the pulse to be measured are overlapped with a given angle inside a NL crystal and the SH trace 

is spatially recorded using a CCD. The recorded signal as a function of transverse dimension 

provides naturally the AC trace of the two replicas of the pulse. 

(b) Pulse distortion. Because the AC trace is measured in forward direction, one can only measure 

the pulse duration at the output plane of the crystal. Compared with the pulse duration at the input 
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plane of the crystal, the pulse at this measurement place is already distorted after its propagation 

through the dispersive nonlinear material.  

(c) As described in Chapter 1, the PM condition is highly dependent on the PM angle and 

wavelength. In order to get SHG efficiency, the optical path alignment is very critical to make 

pulses propagate along the PM angle. For different pulses at different central wavelengths, 

different nonlinear crystals are needed to realize phase matching. 

(d) The demand of thin crystals. As described in Chapter 1, in order to get a large PM bandwidth 

thin crystals are always needed. However, a thin crystal leads to a low SHG efficiency since the 

efficiency is proportional to the square of crystal length. 

As an alternative to the standard AC configurations it has been shown that parametric conversion 

process in the as-grown ferroelectric SBN crystals can be used as an efficient and user-friendly 

frequency mapping from infrared to visible for the femtosecond pulse monitoring. The non-collinear 

SHG geometry in SBN crystals, shown schematically in Fig. 3.2 (a), was firstly proposed in Ref. 

[Rop08] and later the corresponding transverse auto-correlation (TAC) trace simulation model is 

reported in Ref. [Tru09].  The technique was initially applied to the measurements of around 200 fs 

pulses. When the two pulse replicas represented by the black and red rectangles in Fig. 3.2 (b) overlap 

inside the SBN crystal, different pulse overlap regions are automatically formed at different positions 

along the transverse direction. The non-collinear second-order nonlinear interaction between the two 

pulses within the SBN crystal, generates the TSHG which contributes to the TAC trace. In contrast to 

the traditional single shot AC technique [Jan77] where the AC profile is recorded in the forward 

direction at the output of the nonlinear crystal, the TAC technique captures the SHG signal at 90
o
 with 

respect to the propagation direction of the input beams and it allows for single-shot measurement of 

the TAC profile evolution as a function of the propagation distance inside the crystal. This transverse 

technique can be used for the determination of the pulse duration and of the initial chirp parameter of 

the incident pulse when considering the dispersion effect during the pulse propagation inside the SBN 

crystal.  

We mentioned in the previous chapter there are some limitations in the random quasi phase 

matching process, however, in the ultrashort pulse characterization process the limitations can be 

transformed into advantages: 

(a) The low efficiency can become an advantage in pulse characterization, because small pump 

depletion can keep pulse characteristics unchanged during propagation inside the crystal. 

(b) The large number of reciprocal lattice vectors, G, provided by the random crystal create broad 

frequency bandwidth for full conversion at different wavelengths without need of alignment or 

temperature control. 

(c) Simultaneous PM of SHG process allows for nonlinear planar SHG other a large angular range 

including the transverse SHG emission.  
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Fig. 3.2 The non-collinear SHG geometry for the implementation of TAC measurement. (a) Non-collinear 

SHG geometry in SBN crystal; (b) Interaction of two pulse replicas in SBN crystal composed the TAC profile. 

 

In this chapter, we explore the capability of TAC technique in measuring the temporal duration 

and the initial chirp parameter of pulses with duration between 13 fs and 13 ps. This study provides 

important evidence both in experiment and in theory to indicate the capability and limitations of TAC 

technique in pulse measurement. 

3.2 Experimental setup and theoretical model  

3.2.1 Experimental setup  

The experimental setup is schematically shown in Fig. 3.3 (a). In this experiment we have used 

different laser systems delivering pulses with different pulse duration between 13 fs and 13 ps and 

different central wavelengths between 790 nm and 800 nm. The laser pulse to be measured is splitted 

into two replicas via a 50/50 beam splitter (BS). The two pulses propagate noncollinearly in the x-z 

plane of an un-poled SBN crystal, overlapping with an angle +α and –α with respect to the x-axis. The 

polarization state and the average power of the two fundamental beams can be controlled by the 

combination of one polarizer (P) and a half-wave plate (HW). The nonlinear interaction in SBN 

crystals allows different polarization combination for the FF and SH beams [Tru07]:  

(1) Both beams are extraordinary polarized: ee-e interaction.  

(2) Perpendicularly polarized fundamental beams (extraordinary and ordinary):  eo-o interaction.  

(3) Both beams are ordinary polarized: oo-e interaction.   

Since the SHG for type ee-e interaction has the highest efficiency compared with other two possible 

geometries, the polarization vectors of both fundamental beams are chosen to be extraordinary, being 

directed along the crystallographic axis z in our setup. The cylindrical lens (C) is compressing the 

laser pulse along y direction but keeping pulse spatial shape unchanged along z direction, which 

increases the pulse intensity without inducing any measurement error since the part contributing to the 
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spatial TAC trace is the spatial shape along z direction which is undistorted after passing through the 

cylindrical lens. A CCD camera in conjunction with a camera lens, placed above the crystal, is used to 

record the spatially resolved nonlinear signal. 

 

Fig. 3.3 Experimental setup, image system and background subtraction method for retrieving TAC trace set. 

(a) Schematic representation of the TAC setup. P—polarizer, BS—50/50 beam splitter, M—mirror, HW—half-

wave plate, C—cylindrical lens; (b) The background subtraction method. The TAC trace set is retrieved by 

subtracting the background signal when τ >>T0 from the total signal when τ = 0. 

 

The Delay Control element is inserted into the setup to adjust optical delay as shown in Fig. 3.3 

(a). When the delay time (τ) between the two optical paths is zero (the two pulses perfectly overlap), 

the nonlinear interaction of the two fundamental beams gives rise to three well-differentiated SH 

emissions shown in Fig. 3.3 (b) (bottom): two of them correspond to the conical SH emission from 

each individual beam while the middle one is the SH emission coming from the non-collinear 

interaction between the two pulse replicas. A clean background signal formed by the two conical SH 

emission by each individual beam can be recorded when the delay τ>>T0, where T0 is the unknown 

pulse initial duration. To get the TAC trace, one needs to subtract the background signal from the total 

signal, which is the so-called background subtraction method. The TAC trace evolution along the 

whole propagation distance within the crystal is composed by its spatial intensity profile at different 
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propagation distances (x0, x1…xn) as shown in the Fig.  3.4. Each TAC intensity profile IAC (z) is 

directly related to the temporal intensity AC profile IAC (t) at this position inside the crystal. To 

retrieve the temporal AC profile from the corresponding recorded spatial profile, a calibration factor 

which depends on the geometry of the setup must be applied. This calibration can be properly obtained 

with the following procedure:  

(1) Image the whole SBN crystal surface to get the calibration factor between mm and pixel. 

(2) Calculate the calibration factor between fs and mm with Eq. (3.2) [Rop08]. 

2 sin( )AC
AC

z
T

c
                                                       (3.2) 

The corresponding pulse duration can be calculated by 2ACT T . The factor 2 comes from 

the assumption of Gaussian pulse profile for input pulses. Other pulse profiles should use different 

factor.  

(3) Combining the two calibration factors we finally get the relationship between space (pixel) and 

time (fs), which can be used to retrieve the pulse duration evolution from the spatial width of TAC 

trace set.  

 

 

Fig. 3.4 TAC trace set obtained with the CCD imaging system. CCD recorded image of the TAC trace profile at 

different propagation distances (x0, x1…xn) constitute the TAC trace set.  

 

3.2.2 TAC trace theoretical model 

As previously commented, an advantage of this technique is the possibility to record of SH signal 

transversely to propagation direction. This allows to track the behavior of the input pulse along the 

propagation direction. It is well known that any pulse will get broadened or compressed temporally 

during propagation in dispersive media. Therefore the study of the evolution of the SH signal as a 

function of the propagation distance can be used to obtain a measurement of the chirp parameter of the 

input pulse. 
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We study the role of the broadening and compressing with a simplified theoretical model in which 

we consider Gaussian pulses with initial chirp parameter C. The two Gaussian pulse replicas propagate 

in the crystallographic plane x-z of an SBN crystal with the angles –α and +α with respect to the x-axis 

as shown in Fig. 3.5.  

 

Fig. 3.5 The schematic diagram of beam superposition inside SBN crystal. As beams propagate, the TSHG 

emission region moves along x axis giving rise to the recorded TAC trace set. 

 

The electric fields of the two replicas at x1=x2=0 mm can be written as: 

 
 
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                                    (3.4) 

where C is the initial chirp parameter, u is the speed of light in the crystal, T0 is the initial FWHM 

duration of the unkown pulse. According to the Eq.(2.21), after propagate x1 and x2 distance inside the 

SBN crystal, the electric fields of the two fundamental replicas at x1 and x2 position can be written as: 
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                              (3.5) 

 
 

  
  

2

20
2 2 221 4

2
0 2

, exp exp

2 2 ln 2

t x uE
E t x i t

F T F



 
 

    
 
   

                             (3.6) 

where  
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                                                           (3.9) 

and g=486 fs
2
/mm is the group velocity dispersion (GVD) for SBN crystal at 790 nm central 

wavelength (seen in Fig. 2.9 (a)), T0 is intensity FWHM duration and LD is GVD length over which the 

initial pulse duration increases by factor of square root of 2. We can see from Eq. (3.9) that LD is 

closely related to the pulse duration and the shorter the pulse the shorter the dispersion length, which 

means the dispersive media has a stronger influence on short pulses than on the long pulses. The phase 

term  1 t  in Eq. (3.5) and  2 t  in Eq. (3.6) can be ignored, because the phase term has no 

contribution to the intensity TAC trace at particular position in this model. The following 

transformation is used to change the variables to a common reference system: 

   1 sin cosin inx z x   

 

                                                (3.10) 

   2 sin cosin inx z x  

 

                                                 (3.11) 

If we consider that the ee-e interaction is phase-matched provided the available conversion 

bandwidth of SBN then the generated TAC trace along the crystal can be simulated by: 

     1 2ACI t I I t d   
 

                                                 (3.12) 

where 
2

1 1I E  and 
2

2 2I E . The spatial AC trace can be written as: 
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                                                 (3.13) 

where T(x) is the pulse duration evolution during propagation inside the SBN crystal and the 

expression is represented as Eq. (1.57). During propagation the pulse duration T(x) is modified due to 

the combination effect of initial chirp parameter and material dispersion characterized by the GVD 

coefficient g. In normal GVD regime (g > 0), group velocity decreases with frequency and redder 

frequencies travel faster than bluer ones. If C > 0, the pulse will become longer during the propagation. 

If C < 0 instead, the pulse will be compressed until the different frequency components are in phase 

and the pulse acquires its minimum FWHM duration (Tmin) corresponding to the Fourier transform 

limited case. This minimum pulse duration occurs at the maximum compression distance xmin. In the 

case of anomalous GVD regime (g < 0), when bluer frequencies travel faster than redder ones, the 

pulse gets longer for C < 0 and is initially compressed if C > 0 (compression is obtained whenever C 

and g have different signs).  
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For wavelengths corresponding to the normal GVD regime (λ < 2 μm for SBN crystal, seen in Fig. 

2.9) one observes pulse compression when C < 0 as shown in Fig. 3.6. The minimum FWHM duration, 

Tmin, and the corresponding maximum compression distance inside the crystal, xmin, can be obtained 

from the condition: 

min

min

min

( )
0, ( )

x x
x x

T x
T T x

x
                                           (3.17)    

The corresponding expression can be written as Eq. (3.18) and Eq. (3.19): 
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                                                             (3.19) 

The value of initial chirp, C, and initial pulse duration (FWHM), T0, can be deduced from xmin and Tmin: 

min

2

min

4ln(2) g x
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T
                                                            (3.20) 
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2 min
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4ln(2) g x
T T

T
                                                 (3.21) 

In the TAC technique, the dependence of the spatial TAC trace width, ∆z, with propagation 

distance, x, allows the measurement of pulse temporal duration evolution T (x) as a function of 

propagation distance. From the above analysis the duration evolution T (x) can be used to deduce the 

initial pulse duration and initial chirp parameter.  

 

 

Fig. 3.6 Effect of material dispersion on the negative chirped pulse during propagation inside the SBN 

crystal. When the pulse propagates xmin distance, the dispersion induced chirp compensates the initial chirp and 

where the pulse becomes Fourier transform limited pulse with the minimal pulse duration Tmin. 
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3.3 Results and discussions 

3.3.1 Measurement of 180 fs pulses 

In the first experiment we have measured pulses delivered by a Ti: Sapphire oscillator (Mira, 

Coherent) operating at 800 nm with a repetition rate of 76 MHz. The average power of the laser 

system was 1W and the initially unchirped pulse duration was around 180 fs. The two replicas of the 

pulse propagated in the x-z plane of an SBN crystal (5×5×5 mm) forming angles +α and –α with 

respect to the x-axis (external angle α=5.5º, internal angle αin=2.5
o
).  

Fig. 3.7 (a) shows the experimentally recorded TAC trace set along the 5-mm propagation 

distance along the SBN crystal with pulse propagation from left (x=0 mm) to right (x=5 mm). The 

inset shows the AC trace intensity profile as a function of z at the position of the rectangular marker 

(x=3 mm). From this plot we can measure the AC width at FWHM intensity, ∆zAC. To get a precise 

width measurement we have to take into account that the measurements can be very irregular because 

noise cannot be ignored in the detection of weak signals. In order to measure the AC width at FWHM 

intensity we developed a MATLAB code based on the knife-edge technique. We calculated the total 

area under the AC trace and calculate the positions (Z1, Z2) where area is (16%, 84%). This 

measurement gives ∆zAC=Z2-Z1. With this method we can retrieve the TAC trace intensity profile and 

calculate the FWHM width at each propagation distance. The space-time decoding factor can be 

calculated from Eq. (3.22), with which the reference pulse duration at FWHM can be calculated and 

the pulse duration evolution curve is shown in Fig. 3.7 (b). 

2 sin( )ACz
T

c
                                                       (3.22) 

The plot in Fig. 3.7 (b) shows the initial pulse FWHM duration at x=0 mm is around 170 fs. The 

accuracy of the results in this configuration can be limited by the quality of the CCD camera image 

(quantity of recorded pixels) and in the precision measurement of the incident angle α. We have 

measured the pulse duration with an alternative auto-correlator and we have obtained the same result. 

Thus, the alternative measurement can verify that the built setup and MATLAB code can work 

properly. 
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Fig. 3.7 Experimental data process for reference pulse measurement. (a) Experimentally recorded TAC trace 

set along SBN crystal. (b) The retrieved reference pulse temporal duration evolution along SBN crystal. 

 

3.3.2 Measurement of a 30 fs pulse 

After the measurement of pulses from conventional Ti: Sapphire oscillator, in this section we start 

the innovative work and we move to measurements of pulses with durations below 50fs, where this 

technique have not been previously tested. This work is the first complete research, to the best of our 

knowledge, in detecting the chirp parameter and pulse duration with the TAC technique. This 

experiment was performed in Centro de Láseres Pulsados, CLPU, Salamanca, Spain. We used a laser 

source (Femtopower PRO HE CEP from Femtolaser) emitting pulses with FWHM duration around 30 

fs at a repetition rate of 1 kHz and with 2 mJ energy per pulse, operating at 790 nm central wavelength. 

The laser source can also provide shorter pulses, down to 6 fs, by the hollow-core fiber post-

compression technique [Nis96] using chirped mirrors to implement spectral phase compensation. An 

acousto-optic device (Dazzler from Fastlite) was used to modulate the phase via imposing a selected 

initial chirp on the FTL pulses with FWHM duration around 30 fs. The modulated pulses composed 

the unknown pulses to be measured in our work. We have selected different negative values of initial 

chirp parameter C in order to distinguish different unknown pulses. The two replicas of the unknown 

pulse propagated in the x-z plane of the SBN crystal (5×5×10 mm) forming angles +α and –α with 

respect to the x-axis (external angle α=3.4
o
 and internal angle αin=1.5

o
). Since different unknown 

pulses own different initial chirp, the maximum compression distance for each pulse is different from 

another. For an increased chirp parameter, the maximum compression distance inside the crystal 

increases.  
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Before entering the TAC setup, each unknown pulse was carefully characterized using the 

SPIDER [Iac98] technique. The initial chirp value C and initial FWHM duration T0 of the first 

unknown pulse measured by SPIDER technique is [C= -7.9, T0=257 fs] and the corresponding 

experimental results of TAC technique are presented in Fig. 3.8. Fig. 3.8 (a) shows the experimentally 

recorded TAC trace set along the 10-mm SBN crystal with pulse propagation from left (x=0 mm) to 

right (x=10 mm). The compression and broadening effect of the TAC trace during propagation can be 

clearly seen in the plot. The retrieved spatial TAC trace profiles at position A (x=1.5 mm), B (x=3.3 

mm), C (x=6.4 mm) and D (x=8.9 mm) marked by the dashed line are plotted in Fig. 3.8 (b). With the 

space-time decoding factor (evaluated by Eq. (3.22)) we convert the spatial TAC profile width to 

temporal pulse duration. The unknown pulse FWHM duration evolution is plotted in Fig. 3.8 (c). From 

the pulse duration evolution curve the minimal time duration, Tmin=32 fs, and the corresponding 

maximum compression distance, xmin=6.4 mm, can be extracted. We substitute the extracted Tmin and 

xmin into Eq. (3.20) and Eq. (3.21) and consequently retrieve the initial chirp parameter C= -7.9 and 

initial pulse FWHM duration T0 =257 fs.  

 

Fig. 3.8 Experimental data process for the first measurement of 30 fs pulse with [C= -7.9, T0=257 fs]. (a) 

Experimentally recorded TAC trace set along SBN crystal. (b) Spatial TAC trace profile at each position of the 

dashed line. (c) The retrieved unknown pulse temporal duration evolution along SBN crystal. 
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With the retrieved initial chirp parameter C= -7.9 and initial pulse FWHM duration T0 =257 fs we 

substitute Eq. (3.5)- Eq. (3.11) into Eq. (3.12) and obtain the TAC trace along the crystal. The 

corresponding spatial TAC trace set along SBN crystal with pulse propagation from left (x=0 mm) to 

right (x=10 mm) is shown in Fig.3.9 (a). The compression and broadening effect of the TAC trace 

during propagation can be clearly visible in the plot. The retrieved spatial TAC trace profiles at 

position A (x=1.5 mm), B (x=3.3 mm), C (x=6.4 mm) and D (x=8.9 mm) marked by the dashed line 

are plotted in Fig. 3.9 (b). Using expression (3.2) the spatial TAC profile width can be directly related 

to the unknown pulse FWHM duration. The retrieved temporal pulse duration evolution from the 

simulated spatial TAC trace set is shown in Fig. 3.9 (c). From the pulse duration evolution curve the 

minimal time duration, Tmin=35 fs, and the corresponding maximum compression distance, xmin=6.4 

mm, can be extracted, which shows good agreement with the experimental results. 

 

Fig. 3.9 Simulation results for the first measurement of 30 fs pulse with [C= -7.9, T0=257 fs]. (a) The 

simulation of the spatial TAC trace set along SBN crystal with the initial conditions determined from the 

experimental results. (b) Spatial TAC trace profile at each position of the dashed line.  (c) The retrieved temporal 

pulse duration evolution from the simulated spatial TAC trace set.  
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Since the spectrum of pulse was not modified by the Dazzler system in the experiment, according 

to the theoretical analysis in the introduction the temporal phase and spectral phase at x position can be 

written as: 
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Expressions (3.23) and (3.24) can be used to plot the evolution of the temporal and spectral phases of 

a Gaussian pulse with a particular value of initial chirp, C, and initial pulse duration, T0. Fig. 3.10 (a1, 

b1, c1, d1) show the temporal intensity (blue line) and the corresponding temporal phase (green line) 

at position A (x=1.5 mm), B (x=3.3 mm), C (x=6.4 mm) and D (x=8.9 mm). The plots in Fig. 3.10 (a1, 

b1, c1) show the temporal pulse compression process where the dispersion induced positive chirp try 

to compensate the initial negative chirp. When the dispersion induced positive chirp equals to the 

initial negative chirp the pulse becomes FTL pulse with the minimal pulse duration and constant phase 

shown in Fig. 3.10 (c1). The plots in Fig. 3.10 (c1, d1) show the pulse broadening process where the 

dispersion induced positive chirp is already overcompensated the initial negative chirp. The 

corresponding phase becomes a parabolic phase again but with opposite sign from the previous 

parabolic. The plots in Fig. 3.10 (a2, b2, c2, d2) show the spectrum profile and spectral phase for each 

case (a1, b1, c1, d1). We can see during pulse propagation the spectrum profile keeps unchanged but 

the spectral phase has opposite sign from the temporal phase. 
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Fig. 3.10 The simulation of the temporal intensity and phase (left) and spectrum and spectral phase (right) 

at position x=1.5 mm, 3.3 mm, 6.4 mm and 8.9 mm marked A, B, C and D in Fig. 9.  (a1): temporal intensity 

profile (blue line) and temporal phase (green) at x=1.5 mm; (b1): temporal intensity profile (blue line) and 

temporal phase (green) at x=3.3 mm; (c1): temporal intensity profile (blue line) and temporal phase (green) at 

x=6.4 mm; (d1): temporal intensity profile (blue line) and temporal phase (green) at x=8.9 mm; [(a2), (b2), (c2) and 

(d2)] are the corresponding spectrum and spectral phase for each case [(a1), (b1), (c1) and (d1)]. 

 

With the same TAC setup we measured another six unknown pulses marked as A, B, C, D, E, and 

F. Fig. 3.11 (a1, b1, c1, d1, e1, f1) show the CCD recorded spatial TAC trace set along the SBN 

crystal for each pulse A, B, C, D, E, and F. We can see the increased initial chirp yields a larger 

compression distance inside the SBN crystal. Fig. 3.11 (g1) shows the experimental retrieved 

unknown pulse duration evolution along the SBN crystal for each pulse, which clearly displays the 

minimal temporal FWHM duration, Tmin, and the corresponding maximum compression distance, xmin, 

for each case. The measured minimal temporal FWHM duration and corresponding maximum 

compression distance are as following:  

A [Tmin =34 fs, xmin =0.9 mm], B [Tmin =32 fs, xmin =2.3 mm], C [Tmin =30 fs, xmin =3.2 mm] 

D [Tmin =30 fs, xmin =4.0 mm], E [Tmin =30 fs, xmin =5.1 mm], F [Tmin =32 fs, xmin =6.4 mm] 
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We observe that in all cases the pulse duration at the maximum compression position is of the order of 

30 fs. With Eq. (3.20) and Eq. (3.21) the initial chirp parameter C and initial pulse temporal FWHM 

duration T0 can be retrieved as following:  

A [C= -1.0, T0=48 fs], B [C= -2.8, T0=96 fs], C [C= -4.6, T0=142 fs], 

D [C= -5.7, T0=175 fs], E [C= -7.2, T0=220 fs], F [C= -7.9, T0=257 fs]. 

 

Fig. 3.11 Comparison of experimental results and simulation results. (a1, b1, c1, d1, e1, f1): The 

experimentally recorded TAC trace set along SBN crystal for pulse A [C= -1.0, T0=48 fs], pulse B [C= -2.8, T0=96 

fs], pulse C [C= -4.6, T0=142 fs], pulse D [C= -5.7, T0=175 fs], pulse E[C= -7.2, T0=220 fs], and pulse F [C= -7.9, 

T0=257 fs]; (g1): The experimental retrieved unknown pulse duration evolution along SBN crystal for each case 

(a1, b1, c1, d1, e1, f1); (a2, b2, c2, d2, e2, f2): The simulation of the TAC trace set along SBN crystal with the 

experimental retrieved initial chirp parameter and FWHM duration for each case (a1, b1, c1, d1, e1, f1);  (g2) The 

pulse duration evolution curve from the simulated TAC trace set for each case (a2, b2, c2, d2, e2, f2). 
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In addition to the method above, the value of initial pulse duration can be also obtained by 

measuring the pulse duration directly at the entrance of the crystal, but the accurate measurement of 

these long pulses requires the broader beams to provide complete overlap along the crystal length. 

However, this condition can be relaxed by retrieving the initial pulse duration from the pulse duration 

at the maximum compression point. 

In order to check the validity of the experimental results obtained with this TAC technique, we 

compared our results with the SPIDER measurement results and found a very good correspondence 

between the results. The discrepancy between these two technique measured pulse duration is less than 

2%. This discrepancy can be attributed to the measurement error of the CCD camera, the intersection 

angle, and the Tmin and xmin. Besides, the intrinsic instabilities of the pulse train can also cause the un-

ignorable error. 

In addition to the experimental studies of pulse evolution, we also analyzed these pulse evolution 

with simulation. The simulated TAC traces set are shown in Fig. 3.11 (a2, b2, c2, d2, e2, f2). The 

pulse duration evolution along the SBN crystal for each case is plotted in Fig. 3.11 (g2), which gives 

the simulation results of minimal temporal FWHM duration, Tmin, and the corresponding maximum 

compression distance, xmin, as following:  

A [Tmin =35 fs, xmin =0.89 mm], B [Tmin =35 fs, xmin =2.27 mm], C [Tmin =30 fs, xmin =3.26 mm] 

D [Tmin =30 fs, xmin =4.02 mm], E [Tmin =30 fs, xmin =5.12 mm], F [Tmin =35 fs, xmin =6.42 mm] 

The simulation results have good agreement with experimental results.  

The experimental and simulation results are summarized in Table 3.1. From the comparison 

between experimental and simulation results, we see that this TAC technique works well for pulse 

durations around 30 fs. This technique is capable of implement the real-time pulse duration and chirp 

measurement, which provides the possibility to optimize the pulse parameters in real-time. 

 

Experimental data Calculations Simulation data 

  
xmin 

(mm) 

Tmin 

(fs) 
C 

T0 

(fs) 

GDD 

(fs
2
) 

 
xmin 

(mm) 

Tmin 

(mm) 

(a1) 0.9 34 -1.0 48 -411 (a2) 0.89 35 

(b1) 2.3 32 -2.8 96 -1053 (b2) 2.27 35 

(c1) 3.2 30 -4.6 142 -1511 (c2) 3.26 30 

(d1) 4.0 30 -5.7 175 -1883 (d2) 4.02 30 

(e1) 5.1 30 -7.2 220 -2384 (e2) 5.12 30 

(f1) 6.4 32 -7.9 257 -2982 (f2) 6.42 35 

 

Table. 3.1 The experimental and simulation results. Experimental data corresponding to situations (a1) – (f1) in 

Fig.3.11 and retrieved values of C, T0 , and GDD. Results retrieved from simulation considering the calculated 

values as initial conditions corresponding to the plots (a2) – (f2) in Fig.3.11. 
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3.3.3 Measurement of a 13 fs pulse 

To check the capability of TAC technique in shorter pulse monitoring we performed the 

measurements of pulses of decreased duration. Before implementing pulse measurement with our 

TAC setup, the pulses were carefully characterized using the D-Scan and FROG techniques. As an 

example, the minimal FWHM duration Tmin and the central wavelength of one of the unknown pulses 

measured by D-Scan technique is [Tmin=13 fs, λ=790 nm].  

The experimentally recorded TAC trace set along SBN crystal with our setup is shown in Fig. 

3.12 (a). The retrieved unknown pulse duration evolution along the SBN crystal is shown in Fig. 3.12 

(b), which gives a minimal temporal FWHM duration of 22 fs at x=0.84 mm position. The retrieved 

pulse duration at positions between x=2 and x=5 mm is much smaller than that can be predicted by Eq. 

(2.24). This is because the overlapping of the two beams is not complete at these positions. However 

the measurement of [C, T0] can be performed properly as long as the two beans overlap completely at 

the position of xmin. 

 

Fig. 3.12 Experimental data process for the 13 fs pulse. (a) Experimentally recorded TAC trace set along SBN 

crystal for pulse with 13 fs pulse duration. (b) The retrieved unknown pulse duration evolution along SBN crystal. 

 

Several factors can cause the measurement error, such as pulse background subtraction error due 

to pulse instabilities, resolution of the CCD camera, precision in the angle a measurement, non-

Gaussian temporal profile and the effect of higher order dispersion. We studied the effect of third-

order dispersion (TOD) of 5-mm SBN crystal on the pulse duration and found this TOD effect can be 

overlooked for this 13 fs pulse. Besides, the other factors introduce some discrepancy but not such a 

big difference between the real and measured pulse durations.  
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According to the uncertainty principle, the shorter the pulse width, the larger the spectral width 

will be. Therefore, the SHG spectral bandwidth of 13 fs pulse is larger than the SHG spectral 

bandwidth of 30 fs pulse. If the SHG spectra failed to be detected by the CCD camera due to the 

absorption of crystal or insensitive of CCD, the measurement results with TAC technique can be 

wrong. We excluded the CCD caused measurement error because the Spiricon SP620U CCD camera 

can detect very wide wavelength range, which can cover the whole SHG spectrum. To study the effect 

of absorption on the measurement, the absorption spectrum of SBN crystal is measured and is plotted 

in Fig. 3.13, which shows the SH signal with wavelengths less than 380 nm can be absorbed by SBN 

crystal. To compare this invalid measurement result for the 13 fs FF pulse and the precise 

measurement for the 30 fs FF pulse, we try to theoretically calculate the SHG spectral FWHM 

bandwidth for each case. This calculation is based on two facts when the pulse propagates inside the 

SBN crystal: (a) the spectrum profile of pulse keeps unchanged at different positions; (b) when the 

Gaussian pulse has the minimal temporal FWHM duration, the pulse is FTL pulse having the minimal 

time-bandwidth product (TBP) value as shown in Eq. (3.25): 

0.441 2t                                                       (3.25) 

where ∆ω is the fundamental pulse spectral FWHM bandwidth and ∆t is the fundamental pulse 

temporal FWHM bandwidth. From 2 λc  , we deduce the quantitative relation between ∆ω and ∆λ: 

2

2 c

 




 
                                                               (3.26) 

where λ is the central wavelength of the pulse. Substituting Eq. (3.23) into Eq. (3.26) we can retrieve 

the quantitative relation between ∆λ and ∆t: 

20.441 2

2t c

 





  


                                                     (3.27) 

When ∆t =13 fs and λ=790 nm, according to Eq. (3.27) the fundamental pulse spectral FWHM 

bandwidth ∆λ=70.6 nm can be calculated. For Gaussian pulses the SHG spectral FWHM bandwidth is 

2  times less than the FF pulse spectral FWHM bandwidth, which can be used to calculate the SHG 

spectral FWHM bandwidth ∆λSH=50 nm. Since the central wavelength for the SHG is 395 nm, the 

SHG bandwidth for 13 fs FF pulse is in the wavelength range from 370 nm to 420 nm. This bandwidth 

is marked by the green area in the Fig. 3.13 and it is in the high absorption region.  

When ∆t =30 fs and λ=790 nm, according to Eq. (3.27) the fundamental pulse spectral FWHM 

bandwidth ∆λ=30.6 nm can be calculated. For Gaussian pulses the SHG spectral FWHM bandwidth is 

2  times less than the FF pulse spectral FWHM bandwidth, which can be used to calculate the SHG 

spectral FWHM bandwidth ∆λSH=22 nm. Since the central wavelength for the SHG is 395 nm, the 

SHG bandwidth for 30 fs FF pulse is in the wavelength range from 384 nm to 406 nm. This bandwidth 

is marked by the yellow area in the Fig. 3.13 and it is in the low absorption region.  
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Fig. 3.13 Wrong measurement analysis.  The red line: Absorption spectrum of SBN crystal; The green area: 

SHG spectral FWHM bandwidth for 13 fs FF pulse; The yellow area: SHG spectral FWHM bandwidth for 30 fs FF 

pulse. 

 

Combining the measured absorption spectrum of SBN crystal and the theoretically calculated 

SHG spectral FWHM bandwidth, we can safely conclude that the SBN transparent window is the only 

restriction for measuring the pulse of 13 fs duration but it has negligible effect on the 30 fs pulse 

measurement. However, this is not the limitation of this TAC technique because we can measure 

pulses with duration shorter than 13 fs with the same SBN crystal if laser central wavelength is longer 

than 800 nm. Another solution is to choose other random nonlinear crystals (e.g. Calcium Barium 

Niobate (CBN)) to avoid the absorption when implement the shorter pulse measurement. This TAC 

technique can work for any fundamental wavelength within the transparency window of random 

nonlinear crystal.  

3.3.4 Measurement of a 13 ps pulse 

To explore the capability of TAC technique in longer pulse monitoring, we have performed 

measurements of pulses in the picosecond regime. As an example, we show in Fig. 3.14 the 

measurement of 13 ps (FWHM) pulse. The experiment is performed using a CHEETAH-X Compact 

Picosecond Laser (Radiantis Company) operating at 1064 nm central wavelength. This laser source 

provides pulses with FWHM duration around 13 ps at a repetition rate of 80.8 kHz with maximum 

output power at 13.2 W. The two replicas of the pulse overlapped within the SBN crystal forming 

angles +α and –α with respect to the x-axis (external angle α=11.3
o
 and αin=5.1

o
). The CCD recorded 

TAC trace set along the SBN crystal is shown in Fig. 3.14 (a) and the experimental retrieved unknown 
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pulse duration evolution along the SBN crystal is shown in Fig. 3.14 (b), which gives a temporal 

FWHM duration of 1.4 ps but not 13 ps.  

 

Fig. 3.14 Experimental data process for the 13 ps pulse. (a) Experimentally recorded TAC trace set along SBN 

crystal for pulse with 13 ps pulse duration. (b) The retrieved unknown pulse duration evolution along SBN crystal 

with average pulse duration around 1.4 ps. 

 

To find the reason for this wrong measurement, we study the beam superposition process inside 

SBN crystal. The schematic diagram is shown in Fig. 3.15. The SH signal is generated from the 

volume overlap of the two fundamental beams and the width of the SH emission area ∆z (x=0 mm) 

can be expressed as 
0 cos inR  . 

0R is spatial FWHM width of the beam and 
in  is the internal angle 

inside the SBN crystal. In this case, the SH emission area ∆z has nothing to do with the TAC trace 

FWHM width ∆zAC. This leads to the Eq. (3.22) fail to hold any more. This long pulse case is quite 

different with the short pulse case as shown in Fig. 3.5. In this short pulse case, the SH emission area 

is defined by the temporal overlap of both pulses and it is related with the spatial TAC trace FWHM 

width of ( 2 sin ) ( 2 sin )AC inz Tu Tc    , where u and c are the speed of light in the crystal and 

vacuum and α is the external angle. This relation is valid for an identical Gaussian pulse with the 

intensity FWHM duration T. Since the pulse measurement is directly related with the spatial width of 

TAC trace in this technique, the upper limits of this technique is highly related with the crystal size (or 

laser beam width) and incident angle. This discussion can be reasonable only for a fixed crystal size 

(or laser beam width) or a fixed incident angle. 
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Fig. 3.15 The schematic diagram of beam superposition inside SBN crystal. In this long pulse case, the pulse 

overlap region is decided by the spatial FWHM width R0 and incident angle. 

 

(A) For a fixed laser beam width R0=1 mm 

We consider two limiting cases for a given SBN crystal with an average size of the order of 5 mm 

and a given laser beam FWHM width of the order of R0=1 mm:  

(1) The upper limit of pulse duration when the pulse can be precisely measured along the whole 5-

mm SBN crystal; and  

(2) The upper limit of pulse duration when the pulse can be precisely measured near x=0 mm 

position.  

In case (1), the width of the SH emission area ∆z (x=2.5 mm) can be expressed as

 02 0.5 cos 2.5tanin inR   , which should be larger than the 1/e
2
 width of the recorded TAC trace 

1.7∆zAC in order to have a valid measurement. This quantitative relation can be represented as: 

0 5tan 1.7
cos 2 sin

in

in

R Tc


 
                                                   (3.28) 

where R0=1 mm, c=3×10
-4

 mm/fs. If the fundamental laser beam with 800 nm central wavelength has 

extraordinary polarization vector, the Eq. (3.28) can be rewritten as: 

 6236 tan 1 2.225 sininT                                                    (3.29) 

where the unit of T is in fs ; the relationship between internal angle αin  and α is defined by the Snell’s 

Law and ne (800 nm)=2.247. With the Eq. (3.29) we plot the upper limit of FWHM duration T 

distribution as a function of external angle α shown in Fig. 3.16. For a given crystal size and laser 

beam width, the incident angle has a strong effect on the upper limit. The low upper limit imposed by 

the small angle is because a small incident angle can contribute to a large ∆zAC which is more easily 
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exceed the width of the SH emission area ∆z. The low upper limit imposed by the large angle is 

because a large incident angle leads to the sharp reduced ∆𝑧 which is more easily becomes less than 

the ∆zAC. In order to get a large upper limit, the incident angle should be neither too big nor too small. 

In this case, the largest upper limit of 313 fs can be obtained when the external angle α=13
o
. 

 

Fig. 3.16 The upper limit of FWHM duration distribution as a function of external angle. The low upper limit 

can be imposed by a small or large incident angle. 

 

In case (2), the width of the SH emission area ∆z (x=0 mm) can be expressed as 
0 cos inR  , which 

should be larger than the 1/e
2
 width of the recorded TAC trace 1.7∆zAC in order to have a valid 

measurement. This quantitative relation can be represented as: 

0 1.7
cos 2 sinin

R Tc

 
                                                        (3.30) 

where R0=1 mm, c=3×10
-4

 mm/fs. If the fundamental laser beam with 800 nm central wavelength has 

extraordinary polarization vector, the Eq. (3.30) can be rewritten as: 

4tan 1.6 10in T                                                           (3.31) 

where the unit of T is in fs. From the above equation, we can see the 1 picosecond pulse can be 

properly measured with this transverse technique if we select the experimental data near the x=0 mm 

position. For a given SBN crystal with an average size of the order of 5 mm and a given laser beam 

FWHM width of the order of 1 mm, the pulse duration range can be measured is from a couple of tens 

of femtoseconds to one picosecond. 

(B) For a fixed incident angle 

We still consider the above two limiting cases. According to Eq. (3.28) and Eq. (3.30), the 

measurement of long pulse duration always need a large laser beam width leading to the demand for 

large crystal. The large spatial beam width and the yielded demand for large crystal are the restrictions 

for measuring the pulse of 13 ps duration, but this is either not the limitation of this TAC technique 
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because such a long pulse still could be measured with this technique if we can find a large enough 

crystal to propagate the broaden enough beam.  

3.4 Conclusions 

In this chapter we experimentally, theoretically and numerically explored the capability of 

transverse autocorrelation technique for ultrashort laser pulse characterization.  

The autocorrelation signal is given by the noncollinear planar SHG obtained in a random QPM 

crystal (in our experiments an SBN crystal). These media have the unique property of emitting the SH 

in a plane, perpendicular to the optical axis, when a fundamental beam propagates perpendicular to the 

optical axis. The so-called transverse SHG is the SHG in the direction transverse to the propagation of 

the fundamental beam.  

By imaging the transverse SHG with respect to the pulse propagation we can record the AC trace 

at the entrance of the crystal, which allows the measurement of the undistorted pulse duration. We 

demonstrate that this technique can be implemented to the measurement of the temporal duration of 

pulses between 22 fs and 1ps. However, this temporal window can be significantly enlarged by 

replacing the SBN crystal with other random nonlinear crystals with a larger transparency window or 

by working at longer wavelengths as explained in sections 3.3.3 and 3.3.4. 

When a laser pulse propagates in a dispersive material it will be enlarged or compressed due to the 

dispersion of the material and consequently the width of the AC trace will be modified. The 

measurement of the AC trace evolution along the material gives information about the initial chirp 

parameter of the pulse. For our interested pulse duration and propagation distance, the pulse duration 

evolution along the material is modified by the combination effect of initial chirp and GVD. In normal 

GVD regime (g > 0), If C < 0, the pulse will be compressed until the different frequency components 

are in phase and the pulse acquires its minimum FWHM duration (Tmin). This minimum pulse duration 

occurs at the maximum compression distance xmin. In the case of anomalous GVD regime (g < 0), the 

similar phenomenon happens if C > 0. The value of initial chirp, C, and initial pulse duration (FWHM), 

T0, can be deduced from xmin and Tmin.  

With the TAC trace simulation model and experimental retrieved initial chirp and pulse duration 

we simulated the TAC trace set and the corresponding pulse duration evolution curve, which have a 

good match with the experimental results. We studied phase changing during pulse propagation and 

simulated the temporal and spectral phase evolution along the crystal. Several different Gaussian 

pulses over a broad initial chirp range were measured and the corresponding simulation results had 

good match with experimental data. 

As an important characteristic, the property of automatic PM without angular alignment or 

temperature control makes the technique extensive to a very broad wavelength range and enormously 
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simplifies the operation process. In this chapter we worked on the Gaussian pulses but this TAC 

technique is also suitable for measuring the non-Gaussian pulse chirp and duration evolution along the 

crystal. This technique can be also used for real time monitoring of the chirp content at the 

measurement position. Besides, in this technique the transverse emission of SHG removes the 

requirement of thin nonlinear crystals and enables one to measure the undistorted pulse at the entrance 

of the crystal.  

  



Chapter 4  

Ultrashort pulse duration and shape 

measurement via transverse cross-

correlation technique 

4.1 Introduction 

In Chapter 3 we explored the intensity TAC techniques, as a simple and effective single-shot 

method that can be used to measure the temporal duration and chirp parameter of pulses with duration 

from hundreds of femtoseconds down to a couple of tens of femtoseconds [Tru15, Rop13, Wan10, 

Tru09]. As the conventional intensity AC technique, our TAC method fails to measure the temporal 

pulse shape, since in this technique the pulse is overlapped with its replica leading to the symmetric 

distribution of the TAC trace. AC technique only can be used to characterize temporal pulse duration 

of pulses with an already known pulse shape. Hence, cost-effective and simple methods of 

measurement the pulse shape are still of potential interest. Different techniques have been proposed 

and extensively adopted for temporal shape characterization [Die85, Aus71, Pri06, Liu02, Tre97, 

Kan93, Alo10]. Cross-correlation (CC) and single-shot cross-correlation (SCC) [Ber04, Tun03] are 

well-known techniques for the measurement of pulse temporal shape. Besides, more sophisticated 

techniques, e.g., XFROG (cross-correlation FROG) which can be used for complete characterization 

of optical pulses both in frequency and time domains [Gu02, Dud02, Akt03, Pal10]. Since these 

methods depend on the detection of the SHG, the demand of thin crystals, the critical phase matching 

(PM) angle and temperature tuning make them far from user-friendly. Since these sophisticated 
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techniques are basically variants of the intensity CC measurement principle, it is necessary to review 

this technique. 

In the intensity CC technique, the temporal profile of unknown signal, Is(t), can be determined by 

using a narrow temporal gate that can progressively sample the evolution of the pulse at discrete time 

segments, by varying their relative timing. This process corresponds to measuring a convolution of the 

unknown signal with the narrow temporal gate which is also called reference signal, Iref(t). The optical 

configuration of the intensity CC is shown in Fig. 4.1 (a). An adjustable optical delay,  , is 

introduced into the unknown signal and reference signal. When the two delayed signals are 

recombined within the SHG crystal, with sufficient intensity and proper phase matching over the 

entire bandwidth of the two signals, a new optical signal is generated and its electric field is given by 

   s refE t E t  . The function of the SHG crystal in this process is to multiply the spatial overlap 

region of the two signals. The second-order intensity CC function uses the lowest-order nonlinear 

process available, and therefore operates at the lowest power possible for a nonlinear process. 

Separation of the generated new signal from the independent mixing of the input signals is ensured by 

the noncollinear geometry. The energy of the generated signal is measured with a integrating detector 

and is recorded as a function of the relative delay between the input signals, which composed the 

intensity CC trace. The ( )CCI   data, shown in Fig. 4.1 (b), consists of a one-dimensional array of 

numbers representing the generated new signal energy as a function of the delay, which is related to 

the input field by: 

         
2

CC s ref s refI E t E t dt I t I t dt  
 

 
      

 

Fig.4.1 Intensity cross-correlator. (a) Schematic representation of the intensity CC. (b) the intensity CC trace 

calculated by different temporal delay τ. 
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In an ideal case, if the reference signal is infinitely short compared to the unknown signal to be 

characterized, the unknown temporal profile can be precisely determined by a CC measurement. As 

the reference signal duration increases, the CC function will start to temporally smear and the 

instrumental temporal resolution will decrease. With a prior knowledge of the temporal shape of the 

reference signal, a deconvolution can extract the unknown temporal profile, corresponding to the 

unknown signal. The deconvolution process fidelity relies on the assumed temporal shapes and the 

degree that the reference signal is known. In practice, the reference signal has to be considerably 

shorter than the pulse to be characterized and both pulses must be well overlapped, avoiding temporal 

jitter during the temporal delay scan. When the first condition cannot be fulfilled, accurate knowledge 

of the reference signal is necessary for a high-fidelity deconvolution. 

As an extension of the TAC technique, TCC technique is also implemented using a non-collinear 

SHG geometry. When the reference pulse and the unknown pulse represented by the red and blue 

rectangles in Fig. 4.2 intersect inside the SBN crystal, different overlap regions are automatically 

formed at different positions. During the second-order parametric process, the nonlinear crystal 

multiplies the overlapped pulse and emits the TCC signal in the form of the TSHG, which is result 

from the non-collinear second-order nonlinear interaction between the two pulses. The TCC technique 

captures the SHG signal at 90
o
 with respect to the propagation direction of the input beams and it 

allows for single-shot measurement of the TCC profile evolution as a function of the propagation 

distance inside the crystal. This technique can be used for the determination of the temporal shape and 

duration evolution of the unknown pulse. As mentioned in Chapter 1, the three advantages in the 

RQPM processes are also applied to the TCC technique. 

 

Fig. 4.2 The non-collinear SHG geometry for the implementation of TCC measurement. Interaction of the 

reference pulse and the unknown pulse in SBN crystal composed the TCC profile. 

 

In this chapter, we are committed to the study of the transverse cross-correlation (TCC) technique 

based on the detection of the TSHG signal resulting from the non-collinear interaction of an unknown 
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pulse with the reference pulse in SBN crystal. We extended the theoretical model to include the beam 

width of the pulses. We experimentally explored the effect of beam width and incidence angle on the 

measurement error of this TCC technique in the characterization of pulses of the order of femtosecond 

and picosecond.  

4.2 Experimental setup and theoretical model 

4.2.1 Experimental setup  

The experimental setup is schematically shown in Fig. 4.3 (a). The laser pulse is splitted into two 

replicas via a 50/50 beam splitter (BS1). One of the replicas serves as reference pulse (R) while the 

second one passes through the “unknown pulse generator”. Since we want to explore and prove the 

capability of our technique in temporal pulse shape measurement, we designed a controllable 

“unknown pulse generator” based on the Michelson-type configuration. It provides the controlled 

double pulses by overlapping two temporally delayed Gaussian pulses A and B. The temporal 

separation between pulse A and pulse B, Tsep, is controlled by the M1 mirror's spatial offset distance, 

Dsep. Mirror M1 is mounted on a motorized linear translation stage with 0.1 μm step resolution. 

Tsep=2Dsep/c, where c is the speed of light. The two fields of pulse A and pulse B giving rise to the 

unknown pulse (U). The unknown pulse and the reference pulse compose the two fundamental beams 

in the nonlinear parametric processes, which propagate in the x-z plane of SBN crystal forming angles 

+α and –α with respect to the x-axis. The polarization and transmission of the two fundamental beams 

can be controlled by the combination of polarizer (P) and half-wave plate (HW). The polarization 

vectors of both fundamental beams are chosen to be extraordinary, being directed along the 

crystallographic axis z in our setup. The function of cylindrical lens (C) is compressing the two 

fundamental beams along y direction but keeping pulse spatial shape unchanged along z direction, 

which increases the pulse intensity without inducing any measurement error because in the setup the 

part can contribute to the spatial TCC trace is the spatial shape along z direction which is undistorted 

after passing through the cylindrical lens. An adjustable optical delay between unknown pulse and 

reference pulse is also inserted into one of the arms by the Delay Control 1 element. When the delay (τ) 

of the two optical path is zero, the nonlinear interaction of the two fundamental beams inside the SBN 

crystal gives rise to three well-differentiated SH emissions, which compose the total signal: two of 

them are corresponding to the conical SH emission from each individual beam; the middle one is the 

TSHG from the non-collinear interaction between unknown pulse and reference pulse. When the delay 

of the two optical path τ≠0 (to get a clean background signal the delay τ>>TR, where TR is reference 

pulse duration), the nonlinear interaction only gives rise to the two conical SH emissions, which 

compose the background signal. In order to record only the TCC trace one needs to subtract the 

background signal from the total signal.  
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Fig. 4.3 Experimental setup. (a) Schematic representation of the TCC setup. P—polarizer, BS1, BS2—beam 

splitter, M1, M—mirror, HW—half-wave plate, C—cylindrical lens; (b) CCD recorded image of the TCC trace 

profile at different propagation distances (x0, x1…xn) constitute the TCC trace set. 

 

A CCD camera, placed above the crystal, is used to record the image of the spatially resolved total 

signal when τ=0 and the background signal when τ>>TR. The TCC trace evolution along the whole 

propagation distance within the crystal can be obtained with the background subtraction method. This 

TCC trace gives the spatial CC profile at different propagation distances (x0, x1…xn) shown in the Fig. 

4.3 (b). Each TCC trace profile ICC (z) is directly related to the temporal intensity CC profile ICC (t). To 

retrieve the temporal CC trace profile from the corresponding recorded spatial TCC trace set, a space-

time decoding factor for mapping the spatial information to temporal information must be applied. 

Since the intensity of TCC signal ICC(t) composed by the reference pulse IR(t) and the unknown pulse 



 

 

 

 76        Chapter 4: Ultrashort pulse duration and shape measurement via transverse cross-correlation technique 

 

IP(t) can be mathematically represented by their convolution, the unknown pulse IP(t) can be 

reconstructed with Eq. (4.1) if we assume the reference temporal profile is already known. 

1 ( ( ))
( )

( ( ))

CC
p

R

I t
I t

I t
                                                     (4.1) 

The CCD imaging system in TCC technique is the same with the one we used in Chapter 3. It is also 

constituted by a camera lens and CCD camera. 

4.2.2 TCC trace theoretical model 

In the simulation we consider the reference pulse and the unknown pulse propagating in the 

crystallographic plane x-z of an SBN crystal with the angles −α and +α with respect to the x-axis as 

shown in Fig. 4.3. All the parameters used in the simulation were from the experimental results.  

In Chapter 3 we discussed two extreme situations: (1) when pulse duration is short enough as 

shown in Fig. 3.5, the spatial TAC trace width is decided by pulse duration and incident angle and the 

spatial TAC trace width is the direct mapping of the temporal pulse duration for a particular incident 

angle; (2) when pulse duration is long enough as shown in Fig. 3.15, the spatial TAC trace width is 

decided by beam width and incident angle and the spatial TAC trace width has nothing to do with the 

temporal pulse duration. These two extreme situations also apply to the TCC technique. However, the 

pulse duration we measured in this chapter is either too short or too long, which introduces a third 

situation between the two extreme situations as shown in Fig. 4.4. In this situation, the error-free TCC 

trace is only restricted in particular area, where the spatial TCC trace width is decided by pulse 

duration and incident angle as shown at position A and position B; At position C the spatial TCC trace 

width is limited by the beam width and incident angle giving a wrong estimation of pulse information.  

 

Fig. 4.4 The schematic diagram of beam superposition inside SBN crystal. As beams propagate, the TSHG 

emission region moves along x axis giving rise to the recorded TCC trace set. 
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In order to model the TCC trace properly, we extended the TAC trace simulation model to include 

the spatial width of the electric field. In the experimental setup, the only part that can contribute to the 

spatial TCC trace is the spatial shape along z direction. Therefore, in the new model the reference and 

unknown pulses at x1=x2=0 mm can be written as: 

 
  

 

  

22
11

1 1 102 2

0 0

1
, 0 exp exp

22 2 ln 2 2 ln 2

t x uz iC
E t x E

R T

   
   

        
   
     

             (4.2) 

 
  

 

  

 

  

2

2

201 2

2 0
2

2 2 2
2

0
2

202 2

0

1
exp

2 2 ln 2

, 0 exp

2 2 ln 2
1

exp
2 2 ln 2

sep

t x uiC
E

T
z

E t x

R t T x uiC
E

T

  
  

    
    
                 

   
  

  

 

     (4.3) 

where C is the initial chirp parameter, u is the speed of light in the crystal, T0 is the initial full-width-

half-maximum (FWHM) duration of output laser pulse.  

According to Eq.(3.3)-Eq.(3.8), after propagate x1 and x2 distance inside the SBN crystal, the electric 

fields of the two fundamental replicas at x1 and x2 position can be written as: 
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where the expression of F1 and F2 are written as shown in Eq.(3.7)-Eq.(3.9); g=476 fs
2
/mm is the 

group velocity dispersion (GVD) for SBN crystal at 800 nm central wavelength.  

We can see from Eq. (3.9) LD is around 25 mm for the reference pulse of 180-fs duration, which 

means the material dispersion induced pulse lengthening or compressing can be ignored. To simplify 

the simulation, the phase terms are ignored in Eq. (4.4) and Eq. (4.5). It is because the phase term has 

no contribution to the intensity of TCC trace at particular position in this model. Eq. (3.10) and Eq. 

(3.11) are used to change the variables to a common reference system. We consider the ee-e 

interaction is phase-matched and then the recorded TCC trace profile evolution can be simulated by:  

     33CC R PI t d I I t d    
 

                                               (4.6) 
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where 
2

1RI E  and 
2

2PI E . The ICC represented by Eq. (4.6) can be expressed as the product of the 

spatial term and the temporal term. The spatial term, Ispatial, is written as:   
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where the temporal term, Itemporal, is corresponding to the time integral of the temporal component of 

ICC. The ICC then be rewritten as: 

   0,CC spatial temporalI I R I  

 

                                                (4.8) 

As can be seen in this expression, the TCC trace is strongly affected by the incident angle α and beam 

width R0. The effect of these parameters on TCC will be explored later in this chapter. 

4.3 Experimental and simulation results 

The Ti: Sapphire oscillator (Mira, Coherent) operating at 800 nm with a repetition rate of 76 MHz 

was used to provide pulses with 180 fs FWHM duration, 1 mm FWHM width, and 20 nJ per pulse 

energy. The unknown pulse and reference pulse propagated in the x-z plane of an un-poled SBN61 

crystal (5×5×5 mm) forming angles +α and –α with respect to the x-axis (external angle α=25º, 

interaction angle αin=10.8
o
). According to Eq. (4.1), to reconstruct the unknown pulse shape, the 

reference pulse intensity profile IR(t) and CC intensity profile ICC(t) should be measured in advance. 

Since the pulse from Ti: Sapphire oscillator is Fourier Transform Limited Gaussian pulse, IR(t) is only 

decided by the reference pulse duration. As mentioned in Section 4.2.1, to retrieve the CC temporal 

profile from the corresponding CCD recorded CC trace, a space-time decoding factor for mapping the 

spatial information to temporal information must be applied. The calibration of the reference pulse 

duration and space-time decoding factor will be explained in the following section.  

4.3.1 Parameters calibration 

The reference pulse duration and space-time decoding factor can be properly obtained with the 

following procedures:  

(1) Image the 5-mm SBN crystal surface with the Spiricon SP620U CCD camera to get the 

calibration factor between mm and pixel. For this particular CCD this factor is 230 px/mm.  

(2) Calculate the temporal (fs) and spatial (mm) calibration factor. We block mirror M1 and adjust 

the optical delay, τ, between the reference pulse R pulse B to record the TAC trace of reference 

pulse and pulse B. As mentioned in Chapter 3, the TAC trace is recorded by subtracting the 

background signal when τ>>TR from the total signal when τ=0. The CCD recorded TAC trace set 

along SBN crystal is shown in Fig. 4.5 (a). The retrieved temporal TAC profile at position x=2 

mm is plotted in Fig. 4.5 (b), which shows the reference pulse FWHM duration of TR=178 fs. 
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Besides the reference pulse duration can be calibrated with this TAC measurement, the calibration 

factor between the spatial (mm) and temporal (fs) domains can be calculated with Eq. (3.2).  

(3) Combining the procedures (1) and (2), we finally get the space-time decoding factor between 

pixel and fs of 19.4 fs/pixel (1 pixel equal to 19.4 fs), which can be directly used to map the CCD 

recorded CC spatial profile to the CC temporal profile in this particular configuration. 

 

Fig. 4.5 TAC measurement for parameter calibration. (a): The CCD recorded TAC trace set along 5 mm SBN 

crystal; (b): The temporal TAC profile at x=2 mm. 

 

To calibrate the unknown pulse generator we should find the ‘zero-delay position’ of M1 to make 

pulse A and pulse B have zero delay. This zero delay calibration of pulses A and B was obtained by 

scanning mirror M1 until the CCD recorded TAC trace formed by the reference pulse R and pulse A 

completely overlapped with the CCD recorded TAC trace formed by reference pulse R and pulse B. 

After this calibration the temporal separation between pulse A and pulse B can be precisely controlled 

by the M1 mirror's spatial offset from this ‘zero-delay position’. 

4.3.2 Pulse shape measurement 

After calibrate the reference pulse duration, space-time decoding factor, and zero delay of pulses 

A and B, in this section we will explain the pulse shape measurement procedure. We generated and 

measured several “unknown” pulses. For the first “unknown” pulse the delay between the two sub-

pulses A and B, Tsep, was precisely adjusted and set to 300 fs [Tsep=300 fs]. The experimental results 

are presented in Fig. 4.6.  

The experimental recorded TCC trace set formed by the reference pulse and the unknown pulse 

with Tsep=300 fs is shown in Fig. 4.6 (a). The temporal TCC profile at the position x=2 mm is retrieved 

using the CCD recorded ICC(z) and the space-time decoding factor, which is shown by the blue dots in 

Fig. 4.6 (b), where the two-peaked asymmetric CC trace can be clearly seen. The continuous red curve 

in Fig. 4.6(b) is the fitted temporal CC profile. The unknown pulse temporal profile can be retrieved 

by deconvolution between the experimental data ICC(t) and the reference pulse IR(t) using Eq. (4.1). 

However, a direct use of the discrete experimental data leads to the appearance of oscillations in the 
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profile of the retrieved signal. To retrieve a smooth unknown pulse temporal profile we have used the 

following procedures:  

1) Obtain a fit of the temporal CC profile in order to get a smooth function of ICC(t);  

2) Obtain a fit of the reference pulse; 

3) Use the fitting functions to obtain the unknown pulse temporal profile with Eq. (4.1). The 

fitting function we used for the CC data corresponds to a superposition of two Gaussian functions 

as follows: 
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             (4.9) 

where Tsepcc is the temporal pulse separation and Tcc is the individual pulse duration at FWHM in 

intensity.  

The red curve in Fig. 4.6(b) shows the well fitted temporal CC profile with Tcc=250 fs and Tsepcc=299 

fs. From the previous measurement, the reference Gaussian pulse can be expressed as below: 

2

0

2

(

(2 ln 2

)

)) 
( ) exp

(
R

RT

t t
I t

 
   

 

                                           (4.10) 

where TR=178.5 fs. 

Applying the deconvolution procedure with Eq. (4.9) and Eq. (4.10) we retrieved the unknown pulse 

profile shown by the salmon area in Fig. 4.6 (c). The black curve in Fig. 4.6(c) is the corresponding fit 

function which is represented by Eq. (4.1): 
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where TsepP is unknown pulse peak separation and TP is the temporal duration of each individual 

Gaussian pulse at FWHM in intensity. The fitted values are TsepP=299 fs and TP=175 fs. These values 

are in very close agreement with the corresponding values set by the unknown pulse generator, Tsep 

=300 fs and T=178.5 fs. 

An estimated error ε between the experimental retrieved values, [TsepP=299 fs, TP=175 fs], and their 

counterparts set by the unknown pulse generator, [Tsep=300 fs, T=178.5 fs], is calculated with the 

following expression: 
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where the calculated error is 1.9%.  In order to intuitively display the measurement error, the original 

“unknown” pulse composed by pulse A and pulse B is plotted by the continuous blue curve in Fig. 4.6 

(c).  

This transverse single-shot technique permits to observe the evolution of the CC trace (transverse 

profile in z direction) along the propagation distance (x direction), which can be used to retrieve the 
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unknown pulse temporal shape and duration and their evolutions along the crystal. Fig. 4.6 (d) shows 

the evolution of unknown pulse duration along the 5 mm SBN crystal, corresponding to a stable 

FWHM duration of ~471 fs.  

 

Fig. 4.6 Experimental result for the first measured pulse with [T=178.5 fs, Tsep=300 fs]. (a): The CCD 

recorded TCC trace set along SBN crystal; (b): ICC(t), the experimentally measured temporal TCC trace profile at 

x=2 mm (blue dots), the corresponding fit function (continuous red curve). (c): IP(t), the experimentally retrieved 

unknown pulse profile (salmon area), the corresponding fit function (continuous black curve), and the original 

“unknown” pulse (continuous blue curve); (d): The retrieved unknown pulse duration evolution along SBN crystal. 

 

For this few hundred of femtoseconds pulse the effect of the material dispersion is not obvious, so 

the shape of pulse should remain unchanged during propagation along the 5-mm SBN crystal and the 

spatial TCC trace profile as well, however Fig. 4.6 (a) shows the experimental recorded TCC trace set 

has a distortion at both ends of the crystal and the corresponding error-free area is only restricted 

between x=1 mm and x=2 mm of the crystal. This distorted TCC trace profile evolution can be 

explained by Fig. 4.4: A long pulse yields a large spatial overlap region shown by the blue rectangle 

area; in our measurement the blue rectangle area exceeds the laser beam overlap region at the both 

ends of the crystal, which leads to the error-free area is restricted between x=1 mm and x=2 mm of the 

crystal. 
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Since the laser pulse from Ti: Sapphire oscillator (Mira, Coherent) in this measurement is the FTL 

pulse, the chirp parameter C=0. With the experimentally retrieved reference pulse duration [TR=178.5 

fs], unknown pulse parameters [TsepP=299 fs, TP=175 fs], and the experimental value of beam width 

[R0=1 mm], we substituted Eq. (4.4) and Eq. (4.5) into Eq. (4.6) and finally plotted the spatial TCC 

trace set along SBN crystal, which is shown in Fig. 4.7 (a). The values of E10, E201, and E202 are 

retrieved from the CCD recorded TAC and TCC intensity distribution. The temporal TCC profile at 

the position x=2 mm is retrieved using the corresponding ICC(z) and the space-time decoding factor, 

which is shown by the blue dots in Fig. 4.7 (b), where the two-peaked asymmetric CC trace can be 

clearly seen. The continuous red curve in Fig. 4.7 (b) is the fitted temporal CC profile. The unknown 

pulse temporal profile can be retrieved by deconvolution between the ICC(t) and the reference pulse 

IR(t) with Eq. (4.1). The retrieved unknown pulse is shown by the salmon area in Fig. 4.7 (c). The 

black curve in Fig. 4.7 (c) is the fit function of IP(t). The simulated unknown pulse duration evolution 

is plotted in Fig. 4.7 (d), which is around 471 fs during propagation along the 5-mm SBN crystal. 

These simulation results are in very close agreement with the experimental results. 

 

Fig. 4.7 Simulation result for the first measured pulse with [T=178.5 fs, Tsep=300 fs]. (a): The simulation of the 

spatial TCC trace set along SBN crystal; (b): ICC(t), the temporal TCC trace profile at x=2 mm (blue dots) and the 

corresponding fit function (continuous red curve); (c): IP(t), the retrieved unknown pulse profile (salmon area) and 

the corresponding fit function (continuous black curve); (d):The retrieved unknown pulse duration evolution along 

SBN crystal. 
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With the same setup we generated four different “unknown” pulses marked as A, B, C, and D by 

setting Tsep to 200 fs, 267 fs, 367 fs, and 1333 fs. Fig. 4.8 (a1, b1, c1, d1) shows the CCD recorded 

TCC trace set along the 5 mm SBN crystal for each case. The corresponding temporal CC signals 

selected at x=2 mm position are shown by the blue dots in Fig. 4.8 (a2, b2, c2, d2) together with the 

fitted curves shown by the continuous red curve. The retrieved unknown pulses are shown by the 

salmon area in Fig. 4.8 (a3, b3, c3, d3), which give the unknown pulse peak separation, TsepP, and the 

temporal duration of each individual Gaussian pulse, TP. The measurement results for each pulse are 

as following:  

A [TsepP =203.7 fs, TP =185.7 fs], B [TsepP =269.7 fs, TP =176.9 fs] 

C [TsepP =367.1 fs, TP =177.5 fs], D [TsepP =1206.7 fs, TP =169.4 fs] 

 

Fig. 4.8 Comparison of experimental and simulation result. (a1, b1, c1, d1) The CCD recorded TCC trace set 

along SBN crystal for unknown pulses A, B, C, and D; (a2, b2, c2, d2): The experimentally measured temporal 

TCC trace profile at x=2 mm (blue dots) and the corresponding fit function (continuous red curve); (a3, b3, c3, d3): 

The experimentally retrieved unknown pulse profile (salmon area) and the corresponding fit function (continuous 

black curve; (a4, b4, c4, d4): the simulated TCC trace set along SBN crystal.  
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The errors calculated by Eq. (4.12) are 4.4%, 1.4%, 0.6% and 10.8% respectively. For the few 

hundred of femtoseconds pulse the error can be less than 5%, while for the picosecond pulse the 

corresponding error can increase up to 10%. Again, because of the large pulse duration induced large 

dispersion length, the pulse temporal shape and duration evolution in each case remains constant. 

However, because of the long pulse duration induced large pulse overlap region, the experimental 

recorded error-free TCC trace for each case is restricted between x=1 mm and x=2 mm of the crystal 

as shown in Fig. 4.8 (a1, b1, c1, d1). With the experimentally retrieved reference pulse duration, 

unknown pulse parameters [TsepP, TP], and the experimental value of beam width [R0=1 mm] and 

incident angle, we substituted Eq. (4.4) and Eq. (4.5) into Eq. (4.6) and finally simulated the spatial 

TCC trace set along SBN crystal shown in Fig. 4.8 (a4, b4, c4, d4), which is in good agreement with 

the experimental result for each case. 

4.3.3 Effect of R0 and α on the pulse reconstruction 

As summarized in Chapter 3, the SBN transparency window is the restriction for measuring pulses 

with duration less than a couple of tenths of femtosecond. In the opposite case of long pulses the factor 

that cannot be overlooked in order to obtain a valid measurement is the effect of the beam width on the 

recorded trace. In order to consider this effect we should study the effect imposed by the spatial and 

temporal contributions to the resulting cross-correlation term given in Eq. (4.8). 

To check the relevance of this effect in our particular configuration, we should consider the beam 

size relative to the pulse duration. We find two extreme situations: when the condition TR/R0 <<tanα/c 

holds (R0 is the spatial FWHM beam width in intensity, for our laser beam R0=1mm) the ICC provides 

the direct mapping of the temporal pulse shape, with no limitation imposed by the finite beam size. In 

the case TR/R0 >>tanα/c, the CCD recorded TCC trace sequence, ICC, does not give a proper mapping 

of the temporal pulse shape because the beam size limits the overlapping region. Due to the duration 

of our pulses we need to consider these effects in our actual setup 

When TP/R0 << tanα/u, the spatial part can be safely approximated by 1 and the ICC is decided 

solely by Itemporal which is the direct mapping of the temporal pulse shape. When TP/R0 >> tanα/u, the 

TCC trace sequence ICC is strongly affected by Ispatial.  As can be seen in Eq. (4.8), the influences of 

this term will depend strongly on the incident angle of the overlapping beams.  

In order to further analyze the effect of the incident angle and beam width on the TCC trace, we 

simulated the particular case where TR=180 fs; TP=180 fs; Tsep=300 fs; IC/ID =0.8. The simulated 

Itemporal, Ispatial and ICC traces for case A [α=12
o
, R0 =0.8 mm], case B [α=30

o
, R0 =0.3 mm], and case C 

[α=30
o
, R0 =0.8 mm] are shown in Fig. 4.9. The plots in the first column, (a1, b1, c1), show the 

temporal CC of the pulse with no spatial contribution for two different incident angles 12º (a1) and 30º 

(b1, c1). The Itemporal trace set corresponds to the blue rectangle area in Fig. 4.4, which represents the 
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error-free CC trace evolution. Since the same pulses are used in these three cases, the width of Itemporal 

trace along z-axis is decided by the incident angle. The effect of incident angle on the width of Itemporal 

trace can be described as: the larger the incident angle, the narrower the width.  Temporal broadening 

is not observed during propagation due to the long pulses used in the simulation (notice that for such 

pulse durations the group velocity dispersion length is LD=190 mm for the cross-correlation signal). 

The plots in the second column, (a2, b2, c2), show the Eq. (4.7) represented spatial term, Ispatial, for 

case A, B, and C. The finite size of the beam leads to a strong reduction of the overlapping region, so 

the TCC trace remains unchanged only at a particular region where Ispatial is approximately 1. The 

effect of the spatial part depends strongly on the beam diameter and incidence angle. The width of 

Ispatial trace along z-axis is decided by the size of beam width. The length of Ispatial trace set along x-axis 

is decided by the incident angle. The third column, (a3), (b3) and (c3) show the complete TCC trace 

set, ICC, given by the product of Itemporal and Ispatial as shown in Eq. (4.8), which corresponds to the CCD 

recorded TCC trace set in the measurement. In order to deduce the measurement error, we need 

expand the beam width to get a wide enough Ispatial trace and increase the incident angle to get a 

narrow enough Itemporal trace, but loss of length of ICC trace set is the price we must pay for error-free 

measurement. The plots in the last column show the TCC trace profile at the position indicated by the 

dashed white line of Itemporal (red line) and ICC (blue dots) for each one of the situations. As we can see 

in plot (a4), a too small angle is limiting the capability to record properly the TSCC trace sequence so 

the blue dots do not match the temporal CC signal given by the red line. For the case of plot (b4), a too 

small beam size leads to a narrow Ispatial component, which also leads to a failure in the TCC 

reconstruction. As the pulses to be measured become longer, one should increase the incident angle 

or/and expand the beam size to get an error-free TCC trace set. The plot in (c4) shows that if the 

conditions of beam size and incidence angle are adequate one can properly record the proper CC trace. 

When using this TCC technique to implement pulse characterization, the experimental values of 

incident angle and beam width should be carefully selected according to the above considerations in 

order to properly record the TCC trace profile. As the pulse to be measured with duration in the range 

between a few hundreds of femtoseconds and a couple of picoseconds, one should increase the 

incident angle or / and expand the beam width to get an error-free TCC trace but at the expense of 

length of ICC trace set. The previous conclusion that the measurement error increases when the 

unknown pulse duration increases as shown in Fig. 4.8 could be due to the fact that the increased pulse 

duration induced the higher demand for incident angle and beam width.  

 

 



 

 

 

 86        Chapter 4: Ultrashort pulse duration and shape measurement via transverse cross-correlation technique 

 

 

Fig. 4.9 The simulation of the effect of the incident angle and beam width. Simulation of the temporal term of 

the ICC trace: (a1) Itemporal (α=120, R0=0.8 mm); (b1) Itemporal (α=300, R0=0.3 mm); and (c1) Itemporal (α=300, R0=0.8 

mm). Simulation of the spatial term of the ICC trace: (a2) Ispatial (α=120, R0=0.8 mm); (b2) Ispatial (α=300, R0=0.3 

mm); and (c2) Ispatial (α=300, R0=0.8 mm). Total TCC trace set, ICC, for each cases [(a3), (b3) and (c3)]. TCC trace 

profile at the position of the dashed line for Itemporal (red curve) and ICC (blue dots) [(a4), (b4) and (c4)]. 

 

From the plot in Fig. 3.16, we can see this transverse technique can be used to measure pulses 

with duration around a couple of hundred femtoseconds when the incident angle is between 5
o
 and 20

o
. 

However, in this chapter we extended the measurement capability to a couple of picoseconds by 

considering the combination effect of incident angle and beam width. Besides, another important trick 

is to restrict the error-free TCC trace in particular area and the loss of length of ICC trace set wins the 

possibility of measuring longer pulses. 
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4.3.4 Explore the initial chirp parameter retrieve 

In the previous section, the laser pulse from Ti: Sapphire oscillator (Mira, Coherent) is Gaussian 

shaped pulse with FWHM duration around 180 fs. For such a long pulse, the material dispersion 

induced pulse broadening can be ignored and the initial chirp induced pulse broadening and changing 

of pulse shape during propagation inside SBN crystal are not large enough to be used to detect the 

chirp parameter. Therefore, the effect of pulse chirping on pulse evolution has not been studied with 

this TCC technique so far. 

To explore the capability of initial chirp parameter retrieval using this TCC technique, we resort to 

the simulation of the evolution of TCC trace for short pulses with duration less than 100 fs. In the 

simulation the reference pulse and unknown pulse at x=0 mm and x﹥0 mm position can be expressed 

by Eq. (4.2, 4.3) and Eq. (4.4, 4.5), where T0=96 fs, Tsep=100 fs, E201/E202=0.9, α=15
o
 and R0 =2 mm. 

Three different chirp values are used to distinguish the three different unknown pulses A, B, and C. 

The corresponding chirp parameter for each unknown pulse is: pulse A [C=-1], pulse B [C=-2.8], and 

pulse C [C=-5]. Because of the appropriately selected incident angle and beam width for this particular 

pulse duration, the simulated spatial ICC trace set along the 5 mm SBN crystal is the direct mapping of 

the temporal CC trace. These three error-free TCC trace evolution formed by pulse A, pulse B, and 

pulse C are shown in Fig. 4.10 (a1), (b1), and (c1) respectively with the same TCC trace profiles at 

x=0 mm position due to the fact that initial chirp has no contribution on the initial pulse intensity 

profile. The compression and broadening effect of the TCC trace during propagation in the 5 mm SBN 

crystal can be clearly visible in the plots. The maximum compression distances, xmin, for each case can 

be clearly seen from the plot and the corresponding values are: pulse A [xmin=3.6 mm], pulse B 

[xmin=2.3 mm], and pulse C [xmin=1.3 mm]. The spatial TCC trace profiles at each maximum 

compression distance marked by the dashed line are plotted in Fig. 4.10 (a2), (b2), and (c2) 

respectively. To retrieve the unknown pulse temporal shape at these maximum compression distance, 

we need to implement the deconvolution technique as explained previously between the reference 

pulse IR(t) and the experimental data ICC(t). Combining the maximum compression distance and the 

unknown pulse temporal duration at this position, we can finally retrieve the initial chirp value of 

unknown pulse with Eq. (3.20). It can be seen that for such short pules, the spatial profile can be 

completely changed during pulse propagation due to broadening of the pulses. At the plane close to 

the shortest pulse duration where C=0, the temporal intensity profiles are fully recovered.  
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Fig. 4.10 The simulation of the spatial TCC trace set along 5 mm SBN crystal for unknown pulses with 

different chirp parameter. (A) ICC trace set for unknown pulse with chirp parameter C=-1; (B) ICC trace set for 

unknown pulse with chirp parameter C=-2.8;  (C) ) ICC trace set for unknown pulse with chirp parameter C=-5. 

 

4.4 Conclusions 

In this chapter we demonstrate the possibility of performing single-shot transverse cross-

correlation measurements using a nonlinear SBN crystal, for characterization of temporal shape and 

duration of non-Gaussian ultrashort pulses.  

We experimentally built the TCC setup. To explore the capability of the setup in pulse temporal 

shape measurement, we build the controllable unknown pulse generator via overlapping two delayed 

Gaussian pulses. The delay of the two pulses can be precisely controlled by a stage motor with 0.1 um 

resolution. According to the setup the unknown pulse duration can be reach 1.5 ps. A CCD camera, 

placed above the crystal, is used to record the spatial TCC trace. With a space-time decoding factor, 

the spatial TCC trace can be converted to the temporal CC trace. The unknown pulse can be 

reconstructed from the deconvolution between the temporal CC trace and reference pulse. 

To build the TCC model, we extended the spatial TAC trace model in Chapter 3 to include the 

effect of laser beam width. In the extended model the spatial TCC trace width is the function of laser 
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beam width, incident angle and pulse duration. With the extended model we simulated the TCC trace 

profile evolution.   

We have studied the role played by factors such as the beam width or incident angle as error 

sources for the final resolution of this technique. We showed that, if we want to perform 

measurements in the long pulse duration range an increase of the incident angle or/and an expansion 

of the beam width would be required.  

This technique combines the capability of typical intensity CC methods in pulse shape 

measurement, where the spatially resolved nonlinear signal generated by the overlap between a 

reference and an unknown pulse provides information of the temporal CC signal, with the advantages 

of the TAC technique in a wide range of pulse duration and chirp parameter measurement.  

This work is the first research, to the best of our knowledge, in detecting pulse duration and pulse 

shape with the transverse CC technique. 



Chapter 5 

2D solution for detecting domain 

statistics via analyzing second harmonic 

diffraction 

5.1 Introduction 

Nonlinear materials capable of broadband optical frequency conversion have attracted significant 

interest recently due to their potential application in building ultrahigh-bandwidth devices and 

ultrashort laser pulse characterization [She07, Tru09, Tru15, Wan16, Fis07]. As a very important 

category of these nonlinear materials the ferroelectric nonlinear crystals with randomly distributed 

antiparallel ferroelectric domains include Strontium Barium Niobate (SBN) [Kaw98], Calcium Barium 

Niobate (CBN) [Mol09], Strontium Tetra Borate (SBO) [Ale08], etc. Due to the broadband quasi-

phase matching (QPM) condition, when a fundamental beam propagates perpendicular to the optical 

axis of a random nonlinear crystal the generated second harmonic (SH) signal is spatially distributed 

in a plane perpendicular to the optical axis with broad or narrow external emission angle [Fis06, 

Tru07]. The dependence of SH signal on the particular domain size and distribution brings information 

about these parameters. Direct visualization of random domain is not an easy task due to the 

homogeneous character of the linear properties of the medium and the small size of these domains in 

as-grown crystals combined with the limited resolution of conventional microscopy. Different 

techniques including traditional method and time-consuming approaches with complex data 

processing have been used for this purpose, such as chemical etching, Scanning Electron Microscopy 
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(SEM), Piezoelectric Force Microscopy (PFM), Scanning Force Microscopy (SFM) [Soe05]. The 

nonlinear diffraction phenomenon has been considered to be a very useful tool in the research field of 

laser-matter interactions, since it was first introduced into the field of nonlinear optics in 1968 [Isa68]. 

Recently, based on the one-dimensional (1D) model from Le Grand et al. [Gra01] some scientists have 

used the SH diffraction to forecast the one-peak domain statistics of random nonlinear crystals [Rop10, 

Ayo11, Ayo13]. However, this 1D Model is only valid as long as the variance of the domain 

distribution is small compared to mean domain width. Even for a normal distributed domain statistics 

the assumed 1D model yields some discrepancies between the theoretical fits and experimental results 

[Ayo11]. Therefore, it is worthwhile to explore new possibilities in this field. Recently, the 2D 

ferroelectric domain structure in disordered nonlinear ferroelectric media has been studied 

theoretically and numerically and it has been pointed out that different domain statistics in this 2D 

domain directly leads to different far field SH diffraction patterns. [Rop10] However, a precise 

experimental verification of these results is still a missing part.  

In this chapter, we start from the SH diffraction which arises when the QPM condition is fulfilled 

in disordered nonlinear ferroelectric crystals. In Section 5.2, we present the initial experimental study 

and the limitations of the current 1D Le Grand Model. In Section 5.3, we present the improved 

experimental results and the simulation of SH diffraction pattern in the designed 2D domain structure. 

As an extension, in Section 5.4 we analyze the wavelength dependence of the nonlinear diffraction and 

confirm that it can be used to characterize the complicated multi-peak domain statistics.  

5.2 Initial study of domain statistics 

In the initial experiments, we are using two types of random nonlinear crystals. Sample 1 is an as-

grown Ca0.28Ba0.72Nb2O6 (CBN28) crystal with dimensions 5×5×4 mm
3
 Sample 2 is artificially poled 

Sr0.61Ba0.39Nb2O6 (SBN61) crystal with dimensions 5×5×20 mm
3
. Both samples possess random 

distributed nonlinear domains (random domain width and random position) as shown in Fig.5.1 (A) 

and (B).  

The as-grown random nonlinear crystals (eg. SBN61 and CBN28) possess inverted nonlinear 

domains corresponding to inverted sign of second-order nonlinearity χ
2
 [Mo108, Wan10] as 

schematically shown in Fig. 5.1 (a1). The yellow domain corresponds to +χ
2
 nonlinearity and purple 

domain corresponds to -χ
2
 nonlinearity. One periodic length in real space contains two domains with 

different sign of χ
2
. When the domain width follows a certain probability distribution (eg. Gaussian 

probability distribution) with mean value of Dmax_+χ2 =Dmax_-χ2 =Dmax, the random domain structure 

gives a wide spectrum of reciprocal lattice vectors G with mean value of Gmax= 2π ̸ (Dmax_+χ2+Dmax_-χ2) 

=π ̸ Dmax. The as-grown domain pattern depends on a variety of factors, including the type of crystal, 

component of the crystal, the growing method, etc. The domain size and distribution of the artificially 
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poled crystals depends on the poling state (the applied electric voltage) and the thermal history. 

During the artificial poling process, the antiparallel ferroelectric domains are reversed into the same 

direction as shown in Fig. 5.1 (b1). The domain size and distribution can be quite different from 

sample to sample [Rop10, Ayo11]. Both simple one-peak statistics and complicated multi-peak 

statistics in reciprocal space have been reported in the previous literature [Kaw98, Ayo13].  

 

Fig. 5.1 The schematic representation of random domains and collinear / non-collinear SH diffraction 

processes in Sample 1 (A) and Sample 2 (B). (a1) The SH diffraction appears in the whole xy plane for Sample 1; 

(a2) The QPM geometry in SH diffraction process with uniform G distribution and the homogenous external angle 

emission pattern; (b1) The SH diffraction appears in the forward direction with particular peak for Sample 2; (b2) 

The QPM geometry in SH diffraction process with a particular G distribution and the narrow angle forward 

emission pattern with two distinctive maxima.  

 

Based on the existing theories [Gra01, Dol72], the wide spectrum of G vectors from as-grown and 

poled crystals are entirely determined by their domain pattern. This G spectrum is uniquely linked to 

the angular distribution of the SH diffraction intensity. The diagram of QPM for the intense and weak 

SH diffraction processes are schematically plotted in Fig. 5.1 (a2) and (b2). The intense SH diffraction 

occurs at angles of incidence and diffraction for which the QPM is satisfied with the participation of 

those G vectors with large probability density [Gra01, Dol72]. The external angle of maximum 
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emission of the SH diffraction corresponds to the compensation of PM by the maximum G. It can be 

calculated via the following formula theoretically: 

max

max

G
D

                                                           (5.1) 

2 2 2

1 1 2 max

1 1 2

( )
cos

2 ( )
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k k k G
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                                              (5.2) 

where 
1

2sin( )ins nin  is the external angle; θin is the internal angle;  k1, k2 are the wave-vectors of 

the fundamental and SH waves; n2 is the refractive index for the SH wave.  

The weak SH diffraction occurs at angles of incidence and diffraction for which the QPM is satisfied 

with the participation of those G vectors with small probability density. 

According to Eq. (5.2), the G values needed to compensate the phase-mismatch in the first-order 

QPM process is a function of FF wavelength and external emission angle. It can be written as: 
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When fundamental wavelength ranges from 800 nm to 1600 nm and external angle ranges from 0 

degree to 40 degree, a G (λ, θ) map is shown in Fig. 5.2 for ee-e interactions in SBN61 crystal. 

Different colors from blue to red represent different G values from 0 μm
-1

 to 10 μm
-1

. 

 

Fig. 5.2  The theoretically calculated G (λ, θ) map in SBN61 crystal. Different colors from blue to red represent 

different G values from 0 μm-1 to 10 μm-1. 
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5.2.1 Experimental setup and results 

The initial experimental setup is schematically shown in Fig. 5.3. Two laser sources, a 180 

femtosecond Ti: Sapphire oscillator (Mira, Coherent, repetition rate 76 MHz) and a 8 nanosecond 

Nd:YAG system at 1064nm (repetition rate 10 Hz), were used to provide Gaussian pulses, propagating 

at normal incidence onto the surface of the two samples as shown in the figure. The output FF beam 

width at 1/e
2
 intensity was 400μm which was broad enough to cover at least N100 domains (the 

average domain width for typical random nonlinear crystal is less than 3 μm from the reported 

literature [Mol08, Ram04]). Since the typical length of the crystals used in the experiments range 

between 10 and 20 mm, the emitted SH radiation will reflect an ensemble average of the domain 

distribution, which can be used to analyze the dispersion of the domain width. Therefore, the ensemble 

average over a large sample of domains can be realized in our experiment and the width of the SH 

diffraction can be used to analyze the dispersion of the domain width with the first-order quasi-phase 

matching condition in disordered ferroelectric domain structure [Rop10]. The polarization and 

intensities of the incident fundamental beam can be controlled by the combination of a half-wave plate 

(HW) and a polarizer (P). The samples were placed on a stage connected to a rotating arm (RA) whose 

rotation axis was placed at the stage. A filter (F) and an analyzer (P) were mounted on the rotating arm 

used to block the transmitted fundamental beam and select the polarized SH radiation generated by the 

crystal, followed by a slit (S) selecting the SH radiation at a particular angle. A camera lens (L) was 

used to focus the SH radiation onto the CCD camera. With the CCD camera the SH diffraction 

intensity along different external emission angles can be captured. 

 

Fig. 5.3  Schematic representation of the initial experimental setup. HW—half-wave plate, P—polarizer, RA— 

rotating arm , F— filter, S— slit, L—camera lens. 

 

In the initial experiments, Sample 1 and Sample 2 were measured for both oo-e and ee-e 

interactions. As an example of the experimental results we show in Fig. 5.4 the corresponding SH 

diffraction intensity as a function of external emission angle, θ, for Sample 1 (Figure A) and Sample 2 

(Figure B) at wavelength 800 nm (blue line) and 1064 nm (green line) for the oo-e interaction. The 

emission pattern of the SH diffraction from Sample 1 is very broad with external emission angle 

ranging from -60
o
 to 60

o
 as shown in Fig. 5.4 (A). The SH emission pattern from Sample 2 exhibits 



 

 

 

  Chapter 5: 2D solution for detecting domain statistics via analyzing second harmonic diffraction                  95 

 
 

 

distinct intensity peaks at 9
o
 for 800 nm FF wavelength and 4

o
 for 1064 nm FF wavelength as 

shown in Fig. 5.4 (B). 

 

Fig. 5.4 The angular distribution of SH diffraction intensity for fundamental wavelengths at 800 nm (blue 

line) and 1064 nm (green line).  (A) Wide SH diffraction distribution from Sample 1; (B) Narrow SH diffraction 

with two distinctive maxima from Sample 2.   

 

Combining the refractive index of CBN28 crystal [EBr03] and SBN61 crystal [Ayo11] and Eqs. 

(5.1, 5.2), we calculated the reciprocal vectors needed to compensate the phase-mismatch at the angle 

of maximum SH emission and the corresponding domain width. These experimental results are 

summarized in Table 5.1 (A) and (B). 

 

Table. 5.1 The experimental results of values of Gmax and Dmax that contribute to the maximum SH emission 

angle. (A) Experimental results for Sample 1; (B) Experimental results for Sample 2. 

 

5.2.2 The limitation of the current model 

In a seminal paper [Dol72], Dolino established a model to describe SH emission by random 

domain structure. The SH diffraction intensity is proportional to the square of the modulus of the 

Fourier transform of the polarization: 

2

3( ) i k r

SH

V

I P r e d r                                                        (5.3) 

For a particular distributed domain pattern with a particular mean width Dmax and variance σD, the 

Fourier transform of the domain pattern gives the G spectrum with a corresponding mean value Gmax 

and σG. When beam propagates inside this domain structure, the direction of the strongest SHG is 

given by Gmax as shown in Fig 5. 5. 

λ
F
(nm)           θ

 
(degree)

 
       G

max 
(μm

-1
)
           

D
max

(μm)     

 800                     0                  1.87                  1.7 

1064                    0                 0.35                   9.0 

B A 

λ
F
(nm)           θ

 
(degree)

 
       G

max 
(μm

-1
)
           

D
max

(μm)     

 800                     9                3.54                 0.9 

1064                    4               1.04                  3.0 

Sample 1 Sample 2 



 

 

 

  96                Chapter 5: 2D solution for detecting domain statistics via analyzing second harmonic diffraction 

 

 

Fig. 5.5 Schematical introduction of Model from Dolino. (Top) Domain distribution in real space and reciprocal 

space; (Bottom) The relation between the angle of maximum emission of the SH diffraction and the maximum G.  

 

Le Grand [Gra01] obtained a simplified analytical expression based on Dolino’s result. This 

simplified analytical expression is only valid as long as the variance is small compared to the mean 

domain width. It is the mainly used model to estimate the domain statistics of the array of anti-polar 

domains. It permits to estimate the mean domain width and its variance, σ, for a Gaussian domain 

distribution. In this approach the intensity of the SH diffraction generated in the medium consisting of 

randomly distributed antiparallel domains can be expressed as: 

2 2
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4 1
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SH G G

L e
I f G D

G e GD e
                             (5.4) 

where L is the propagation distance; G is the value of reciprocal vector needed to compensate the 

phase-mismatch at the angle of SH emission; D0 is the domain mean width and σ is the variance.  

As shown in Fig. 5.5 in the geometry of interaction the parameter G is uniquely linked to the angle 

between propagation direction of the SH and fundamental waves, the Eq. (5.4) provides the angular 

distribution of the SH intensity. In the Eq. (5.4) the intensity of the FF wave, Iω, and the effective χ
(2)

 

nonlinearity, deff, are not included just because in all the experiments we always fix the intensity of the 

FF wave as constant and the deff also keeps the same for particular interaction. This is not strictly true 

since in general the nonlinear coefficient χ
(2)

 for inorganic materials follows roughly the linear 

refractive index dispersion according to Miller’s rule. Since refractive index drops for longer 

wavelengths so does χ
(2)

 . 

To include the wavelength dependence of the SH intensity, the FF wavelength related term f2(λ) 

[Tru07] is introduced and the intensity of the SH diffraction can be represented as: 
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where 2 4

2 2( ) ( )f k n n , kω is the wave-vector of the FF wave, nω and n2ω are the refractive index 

at FF wavelength and SH wavelength. 

The plots in Fig. 5.6 illustrate the relation Eq. (5.5) as a function of emission angle and FF 

wavelength. For a particular domain statistical distribution with D0=0.9 μm and σ=0.3 μm, the effect 

of FF wavelength on the emission angle is plotted in Fig. 5.6 (A). When we increase the FF 

wavelength the corresponding emission angle of intense SH is increased, which is determined by the 

QPM condition. The angular distribution of SH diffraction intensity at different FF wavelengths from 

800 nm to 1600 nm is represented in Fig. 5.6 (B). The decreased SH intensity with the increased 

wavelengths can be clearly seen from the plots, which is due to f2(ω).  

 
Fig. 5.6 Theoretically predicted angular distribution of the SH emission in Sample 2 (Eq.(5.5)). (A) The effect 

of the FF wavelength on the SH emission angle for a particular domain the with D0=0.9 μm and σ=0.3 μm; (B) The 

angular distribution of SH diffraction intensity at different FF wavelengths from 800 nm to 1600 nm. 

 

As we increase the variance, σ, the width of the SH diffraction angular peaks get broadened, 

leading to the merge between the two adjacent intensity peaks. In this limit Le Grand’s model gives a 

single broad emission peak centered at the zero angular position. However, in this limit of large σ we 

do not expect a quantitative prediction of the angular emission pattern, but it provides a qualitative 

signature of the presence of large σ in the distribution. This large σ behavior is typical of as-grown 

ferroelectric crystals as that shown from Sample 1. One expects this kind of structures always give a 

broad emission pattern. The broader the emission, the larger G (or the smaller domain size) is needed. 

The emission of Sample 2 with well-defined maxima should be consistent with a narrow σ distribution. 

However, the study of the angular position of the maximum of SH as a function of the wavelength is 

in conflict with this model since we experimentally observed a decrease of angular position of 

maximum with increasing wavelength. 



 

 

 

  98                Chapter 5: 2D solution for detecting domain statistics via analyzing second harmonic diffraction 

 

5.3 Study of domain statistics based on numerical simulation 

Since the previous measurements clearly show that the simplified Le Grand’s model can not be 

used to explain all the observed experimental patterns, we decided to implement a more detailed study 

of the SH emission by random domain distributions of χ
(2)

 based on numerical simulation. 

5.3.1 Experimental setup and results 

Since the wavelength dependence of the SH intensity angular distribution gives important 

information, we extended our experimental setup to measure the SH intensity angular distribution at 

different fundamental wavelengths. The schematic representation of the experimental setup is shown 

in Fig. 5.7. We used two tunable laser sources: femtosecond Ti:Sapphire oscillator (Coherent, 

Chameleon Ultra II)  and Optical Parametric Oscillator (APE Gmbh, Chameleon Compact OPO) to 

provide femtosecond pulses at wavelengths ranges: 800 nm to 1000 nm and 1000 nm to 1600 nm, 

respectively. The laser beam propagates at normal incidence onto the sample surface (Sample1: as-

grown CBN28, Sample 2: artificially poled SBN61). The polarization state and the average power of 

the incident fundamental beam can be controlled by the combination of a half-wave plate and a 

polarizer. The output average power for all wavelengths and for both polarizations (ordinary and 

extraordinary) is fixed at the same value: 300 mW for CBN28 and 250 mW for SBN61. In the 

experiment the polarization state is selected either perpendicular (oo-e) or parallel (ee-e) respectively. 

The beam from the laser is weakly focused in the crystal by means of a plano-convex lens (beam waist 

in the middle of the crystal). The beam width at 1/e
2
 intensity was 400 μm for both CBN28 and 

SBN61. The temporal pulse duration at FWHM was around 180 fs (pulse width vary form 140 fs to 

200 fs due to its source wavelength dependency). We projected the SH beam pattern on a diffusing 

screen (Lee Filter) and imaged the pattern into a CCD. A high pass optical filter (Thorlabs FGB-37-A) 

was used to block the strong IR fundamental beam before the CCD camera (Imaging Source 

DMK31BU). We used a stripe of millimeter paper attached to the screen to calibrate spatial dimension 

of the SHG profiles. Distance between screen and output facet of the crystal was measured by digital 

caliper. From aforementioned experiment geometry we are able to calculate angular intensity profiles. 

 

Fig. 5.7  Schematic representation of the deep experimental setup. HW—half-wave plate, P—polarizer, F - IR 

blocking filter, S— diffusive screen,. 
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Besides the domain statistics, there are other factors impose effect on the SH diffraction intensity, 

e.g., the intensity of the FF wave, the effective nonlinearity, the FF wavelength, the laser source 

spurious emissions, etc. Eliminating these additional factors other than domain statistics is helpful to 

reduce a complex analysis to a simpler one such that more detailed investigations can focus on the 

domain statistics. Screening the angular distribution of the SH diffraction intensity is the first step to 

have an effective experimental measurement. 

(A) Eliminating the factors other than domain statistics (Factor screening) 

Before performing this factor screening, we want to present the complete experimental 

measurement results in order to find a safe way to eliminate the undesired factors. In the first 

exploration, we measured the SH diffraction intensity distribution from Sample 1 for oo-e and ee-e 

interactions. The complete SH diffraction intensity distribution as a function of external emission 

angle, θ, at wavelength range from 800 nm to 1600 nm are plotted in Fig. 5.8. Since the output FF 

beam width at 1/e
2
 intensity was 300μm (400μm), the FF beam was large enough to cover a sufficient 

number of domains with different sizes. Besides, additional measurements were averaged over 

different positions of the fundamental beam. Therefore the width of the SH diffraction can be used to 

analyze the dispersion of the domain width assuming first-order quasi-phase matching compensation 

in disordered ferroelectric domain structure [Rop10].  

In the measurement results, there are two things we want to stress: the strong peak at zero angle 

and the decreased SH intensity as increased wavelengths. For the strong peak at zero angular position, 

we found that all data obtained by means of Chameleon laser (FF wavelength range from 800 nm to 

950 nm) has that strong peak. It can not be caused by the collinear SHG process and neither the 

fundamental beam leakage because the FF beam was filtered out by means of a stack of two Thorlabs 

FGB-37 filters. Our investigation revealed that this peak most likely is from Ti: Saphire fluorescence. 

To remove the effect of laser source imperfections all data around 0° were zeroed. The decreased SH 

intensity at increased wavelengths is caused by the f2(λ) factor in Eq. (5.5) which has nothing to do 

with the domain statistics. To focus on the effect of domain statistics on the SH diffraction intensity 

distribution we normalized the SH diffraction intensity distribution. Since we always use the same 

output average power for all FF wavelengths and we do not mix different interactions during the 

domain statistics analysis, the normalization process can eliminate the effects of intensity of the FF 

wave and the effective nonlinearity. 
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Fig. 5.8 The complete experimental measurement results for Sample 1. SH diffraction intensity distribution for 

oo-e (blue line) and ee-e (red line) interactions when wavelengths range from 800 nm to 1600 nm.  

 

(B) Experimental results 

(B1) Experimental results of Sample 1 (natural CBN28) 

The normalized SH diffraction intensity distribution as a function of the external emission angle, θ, 

at different wavelengths ranging from 800 nm to 1600 nm are presented by the blue line (oo-e 

interaction) and red line (ee-e interaction) in Fig. 5.9 (A). As we can see broad emission patterns are 

observed for all wavelengths. The evolution of the SH intensity angular distribution from a single peak 

to a double peak is very clear for both interactions.  

The angles at peak intensity, θpeak, and angles at (1/e)
2
 intensity, θ(1/e)2, are summarized in Table 

5.2 (A) and (B) for oo-e and ee-e interactions respectively.  

The SH amplitude comparisons as a function of the external emission angle and of the FF 

wavelength for oo-e and ee-e interactions are presented in Fig. 5.9 (b1) and Fig. 5.9 (b2). As discussed 

in section 5.2.2, the decreased SH amplitude with increased FF wavelength can be explained by 

Miller’s rule.  
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Fig. 5.9 Experimental results of Sample 1. (A) The normalized experimental measurement results for Sample 1. 

SH diffraction intensity distribution for oo-e (blue line) and ee-e (red line) interactions when wavelengths range 

from 800 nm to 1600 nm. (B) SH amplitude comparison for Sample 1.  SH amplitude comparison vs. FF 

wavelength and emission angle for oo-e (Left) and ee-e (Right). 

 

(A) oo-e 

λF (nm) 800 850 900 1000 1050 1100 1150 1200 1300 1350 1400 1450 1500 1550 1600 

θpeak (
o) 0 5 5 6 7 8 8 8 8 8 8 8 10 10 10 

θ(1/e)2 (
o) 48 43 45 40 50 48 45 45 45 50 45 48 50 45 50 

 

(B) ee-e 

λF (nm) 800 850 900 1000 1050 1100 1150 1200 1300 1350 1400 1450 1500 1550 1600 

θpeak (
o) 0 0 0 3 5 8 8 8 8 8 8 8 10 10 10 

θ(1/e)2 (
o) 48 43 45 40 50 48 45 45 45 50 45 48 50 45 50 

 

Table 5.2 Experimental angles at peak intensity and (1/e)2 intensity for Sample 1. (A) Experimental angles for 

oo-e interaction when wavelengths range from 800 nm to 1600 nm; (B) Experimental angles for ee-e interaction 

when wavelengths range from 800 nm to 1600 nm. 
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The experimental observations are resumed in Fig.5.10 (a1) for oo-e and 5.10 (b1) for ee-e 

together with the corresponding G (λ,θ) maps. The bars indicate the angular width of emission at 1/e
2
 

intensity, while the circles represent the angle at peak intensity, θpeak. We can infer that a broad G 

value distribution is necessary to compensate the phase mismatch over this broad angular and 

frequency range. This large G range can be consistent with the type of emission observed from a 

domain distribution with broad σ as discussed in section 5.2.2. This kind of behavior is usually 

observed from as-grown ferroelectric crystals. In fact, the SH emission at 90 degree (the so-called 

TSHG) has been the basis for the transverse auto-correlation and transverse cross-correlation 

techniques developed in previous chapters. 

 

Fig. 5.10 Summary of the experimental data and theoretically calculated G distribution for oo-e interaction. 

(a1, b1) The theoretically calculated G (λ, θ) map and experimentally measured θpeak and θ(1/e)2; (a2, b2) The 

theoretically calculated G values.  

 

The theoretically calculated values of G are presented in Fig. 5.10 (a2) and Fig. 5.10 (b2) for oo-e 

and ee-e interactions. Gpeak and G(1/e)2 are the theoretically calculated G values needed to compensate 

the phase-mismatch at peak angle, θpeak, and 1/e
2
 intensity angle, θ(1/e)2; ∆kooe and ∆keee are the collinear 

phase mismatch for oo-e and ee-e interactions. Under the first-order QPM condition, the value of G 

which can be involved in the nonlinear process should be not smaller than the collinear phase 

mismatch value for each interaction. Therefore, the effective FF wavelength can be used to measure 
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domain statistics are λFF800 nm for oo-e interaction and λFF 1000 nm for ee-e interaction. In these 

wavelength region, the measured Gpeak remains stable (between 1.2 μm
-1

 and 1.8 μm
-1

), with which we 

deduce the G value with maximum probability density is Gmax=1.5  0.3 μm
-1

. This Gmax corresponds 

to the mean value of domain width around 2.0 μm for this as-grown CBN28 crystal. The dispersion σ 

of the domain width is very large and the modulus value of G can be from |∆kooe|min to 11.7 μm
-1

.  

(B2) Experimental results of Sample 2 (artificially poled SBN61) 

  The normalized SH diffraction intensity distribution as a function of the external emission angle, 

θ, at different wavelengths ranging from 800 nm to 1600 nm are presented by the blue line (oo-e 

interaction) and red line (ee-e interaction) in Fig. 5.11 (A). The results of the measurements of Sample 

2 show more remarkable wavelength dependence for both interactions. The peak angle dramatically 

decreases as the wavelength increases, which is a totally different behavior with respect to the 

experimental results observed for Sample 1. For the oo-e interaction, the evolution of the SH intensity 

angular distribution changing from a double peak to a single peak are very clear. This behavior has 

been also reported previously in the literature [Ayo11].  

The angle at peak intensity, θpeak, and the angle at (1/e)
2
 intensity, θ(1/e)2, are summarized in Table 

5.3 (A) and (B) for oo-e and ee-e interactions respectively.  

SH amplitude comparisons as a function of the external emission angle and the wavelength for oo-

e and ee-e interactions are presented in Fig. 5.11 (b1) and Fig. 5.11 (b2). The SH amplitude first 

decreases and then increases with increased FF wavelength for both interactions. 



 

 

 

  104                Chapter 5: 2D solution for detecting domain statistics via analyzing second harmonic diffraction 

 

 

Fig. 5.11 Experimental results of Sample 2. (A) The normalized experimental measurement results for Sample 2. 

SH diffraction intensity distribution for oo-e (blue line) and ee-e (red line) interactions when wavelengths range 

from 800 nm to 1600 nm. (B) SH amplitude comparison for Sample 2.  SH amplitude comparison vs. FF 

wavelength and emission angle for oo-e (Left) and ee-e (Right). 

 
(A) oo-e 

λF (nm) 800 850 900 1000 1050 1100 1150 1200 1300 1350 1400 1450 1500 1550 1600 

θpeak (
o) 9 7.6 6 4.8 3.8 3.4 3 2.4 1.6 1.4 0 0 0 0 0 

θ(1/e)2 (
o) 16 12.4 11 8 7 6 5.2 5 4 4 3 3 2.2 2 2 

 

(B) ee-e 

λF (nm) 800 850 900 1000 1050 1100 1150 1200 1300 1350 1400 1450 1500 1550 1600 

θpeak (
o) 10 8.4 7.8 6 5.4 4.4 4 3.6 3.2 3 2.8 2.6 2.2 2.2 2 

θ(1/e)2 (
o) 18 14.6 13 10 9 8 7 7 6 5.8 5 5 4.8 4.8 4.8 

 

Table 5.3 Experimental angles at peak intensity and (1/e)2 intensity for Sample 2. (A) Experimental angles for 

oo-e interaction when wavelengths range from 800 nm to 1600 nm; (B) Experimental angles for ee-e interaction 

when wavelengths range from 800 nm to 1600 nm 
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Using the same analytical method as the one used for Sample 1, the corresponding G (λ, θ) maps 

for Sample 2 are shown in Fig. 5.12 (a1) and Fig. 5.12 (b1) for oo-e and ee-e interactions. In this case  

G reciprocal lattice range from 0 μm
-1

 to 6 μm
-1

. Both figures show a decrease of θpeak with increasing 

FF wavelength. 

 
 

Fig. 5.12 Summary of the experimental data and theoretically calculated G distribution for ee-e interaction. 

(a1, b1) The theoretically calculated G (λ, θ) map and experimentally measured θpeak and θ(1/e)2; (a2, b2) The 

theoretically calculated G values. 

 

The theoretically calculated values of G are presented in Fig. 5.12 (a2) and Fig. 5.12 (b2) for oo-e 

and ee-e interactions. Gpeak and G(1/e)2 are the theoretically calculated G values needed to compensate 

the phase-mismatch at peak angle, θpeak, and 1/e
2
 intensity angle, θ(1/e)2; ∆kooe and ∆keee are the collinear 

phase mismatch for oo-e and ee-e interactions. Unlike the measured stable Gpeak from Sample 1, the 

measured Gpeak at each FF wavelength is slightly larger than the corresponding collinear phase 

mismatch. For example, during oo-e interaction the measured Gpeak at 800 nm is 3.5 μm
-1

, which is 

around 30% larger than the corresponding ∆kooe. This Gpeak corresponds to the domain width around 

1.8 μm. The dispersion σ of the domain width in Sample 2 is smaller than that in Sample 1 and the 

modulus value of G can be from |∆kooe|min to 5.6 μm
-1

.  

 (C) Comparison of Sample 1 and Sample 2 
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A comparison between the results in Sample 1 shown in Fig. 5.9 (b1) and (b2) and the results in 

Sample 2 shown in Fig. 5.11 (b1) and (b2) reveals three main differences between these two samples:  

(a) The emission pattern of the SH diffraction from Sample 1 has a much wider bandwidth than 

that from Sample 2, which can be due to the larger dispersion of domain width in Sample 1;  

(b) The SH intensity is decreased with the increased wavelengths for Sample 1, while the SH 

intensity first decreases and then increases with increased FF wavelengths for Sample 2;  

(c) The emission angle of intense SHG increases with increasing the FF wavelength for Sample 1, 

while it decreases with increased FF wavelength for Sample 2. The emission pattern from Sample 

1 is a typical result from an as-grown random nonlinear crystal, while the behavior of Sample 2 is 

quite strange since as we discussed previously a SH emission pattern showing sharp peak 

emission should have an increased θpeak as we increase the wavelength according to Le Grand 

model. 

To put some light into this difference a supplementary experiment was implemented in order to 

directly visualize the ferroelectric domains pattern. This is not an easy task, since the domain size can 

be very small and there is no refractive index contract between different domains, and the traditional 

domain visualization methods are difficult to realize. In this work, the direct domain visualization was 

performed with high-resolution SH imaging microscopy at ICFO – The Institute of Photonic Sciences. 

The measured domain images of Sample 1 and Sample 2 are shown in Fig. 5.13 (A) and (B) with 

122-nm and 204-nm resolution respectively. From the measurement we can see a very different 

domain distribution. For Sample 1: The inverted nonlinear domains with bright and dark colors are 

compactly arranged within the crystal; the typical domain size is much smaller than 1 μm but the 

agglomeration of domains leads to a broad distribution of domain sizes. For the artificially poled 

Sample 2: There is a large background (dark area) and the domains (bright island) have a very small 

filling fraction around 6% from image calculation. These measurements can be used to check that: 

(1) Sample 1 corresponds to an as-grown random distribution as expected.  

(2) Sample 2 shows a quite uniform nonlinear background with a given orientation of the χ
(2)

 

susceptibility together with a small portion of domains with inverted orientation of χ
(2)

 

susceptibility.  

As it occurs in any birefringent nonlinear crystal, the uniform nonlinear background imposes an 

important effect on pulse propagation especially when the wavelength increases, because wavelength 

increasing makes it closer to the phase matching condition and increases the coherence length. For 

Sample 1 there is no uniform nonlinear background and the SH emission is entirely due to the phase 

match compensation by reciprocal lattice G vectors. For Sample 2 we infer a plausible hypothesis that 

the SH emission is due to the combination effect of quasi phase matching compensation by G vectors 

and the role played by a finite phase mismatch in uniform nonlinear background. 
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The corresponding coherence length for CBN28 and SBN61 as a function of the FF wavelength 

for oo-e (blue star) and ee-e (red circle) are presented in Fig. 5.13 (a1) and Fig. 5.13 (b1), respectively. 

The factor f2(λ), given by the expression in Eq. (5.5), is plotted in Fig. 5.13 (a2) and Fig. 5.13 (b2). 

Combining the measured domain filling fraction and the previously reported literature, we think that 

the decrease of SH intensity with increasing wavelength is entirely due to f2(λ) for Sample 1, while the 

evolution of the SH intensity with increasing FF wavelength for Sample 2 is due to the combination 

effects of f2(λ) and the coherence length, LC. 

 

Fig. 5.13 Comparison of Sample 1 and Sample 2.  (A): The image of natural CBN28 domain pattern from SH 

imaging microscopy with 122-nm resolution; (B): The image of artificially poled SBN61 domain pattern from SH 

imaging microscopy with 204-nm resolution; (a1, b1): Coherence length at different wavelengths for Sample 1 and 

Sample 2; (a2, b2): f2 (λ) for Sample 1 and Sample 2;   

 

5.3.2 Numerical simulations 

As discussed in section 5.2, Le Grand Model is not strictly valid for any of our samples, therefore 

to verify the experimental results we have to resort to the numerical simulation of SH diffraction 

within a domain structure which contains the statistics and filling fraction of domains evaluated from 

the experiments. This method is based on a combination of experimental measurements and numerical 

simulations. The method flowchart is shown in Fig. 5.14. 
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Starting with the experimentally measured SH diffraction pattern from real crystals, we 

numerically designed 2D domain structures and numerically simulated the laser beam propagation 

through them using a split-step Fast Fourier Transform (FFT) beam propagation method. We 

performed the above simulation process, until we obtained the similar SH diffraction pattern for both 

numerical and experimental data, which means the designed domain pattern can truly reflect the main 

aspects of nonlinear domain in real crystal. This numerical domain design process can be extremely 

time consuming and fails to be applied to the analysis of big amount of domains in a normal computer 

because each domain area needs at least 21 pixels  21 pixels to eliminate the domain shape induced 

simulation error.  

 

 

Fig. 5.14 Method Flowchart. 

 

 (A) Design the 2D domain structures 

As shown in the Fig. 5.1, we consider the corresponding simulation when fundamental beam 

propagates along y direction and SH diffraction emission in the x-y plane. Since the ferroelectric 

domains have needle-like shape along z axis [Ram04], we only consider a 2D domain structure lying 

in x-y plane during simulations.  

We adopt the previously reported 2D solution for the simulation of disordered nonlinear 

ferroelectric domains, which was demonstrated by V. Roppo et al. [Rop10]. We would like to review 

this domain modelling again [Leg01, Rop10, Gai09, Mol08, Rom01]:  

(a) Assume that the individual domains have form of rods with a circular transverse profile;  

(b) We assume a particular distribution for the domain size and with this distribution a number of 

domains is randomly generated and randomly placed in a rectangular area representing the size of 

the sample;  

(c) The domains number that takes part in the nonlinear process should be large compared to the 

actual size of the input optical beam.  
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 (A1) Design the 2D domain structures of Sample 1 

In the 2D domain pattern simulation, the domain size was assumed to have a Gaussian distribution 

with the experimental retrieved mean diameter (Dmax=2.0 μm). This assumption is based on the 

processing of domain image as shown in Fig. 5.13 (A) using ImageJ program. The variance (σ) of the 

Gaussian distribution is chosen as close as possible to the value retrieved from the experimental results. 

As explained previously, compare with the total number of domains involved in the real experiment 

the number of domains involved in this simulation is very limited. Therefore, the variance in each 

simulation is always much smaller than the real variance in the crystal. But we can implement a 

number of different simulations to average over these domains to realize the desired σ distribution. 

The filling fraction of the anti-parallel domains used in the simulation is at least 90% and the rest is 

linear background.  

The simulated 2D domain structure in the x-y plane is shown in Fig. 5.15 (A). Fig. 5.15 (B) is the 

corresponding Fourier spectrum of the domain structure in reciprocal space. Because of the randomly 

distributed domain position, the sharp Bragg peaks shown in previous publications with quasi-periodic 

structures [She07] did not appear in this simulation. The majority of reciprocal vectors are gathered 

around a broad ring with radius Gmax=π/Dmax=1.5 μm
-1

. The dispersion of the domain width gives 

direct effect on the width of the SH diffraction but has nothing to do with the peak angle of the SH 

diffraction. This peak angle is only related with the mean value of domain width.  

 

Fig. 5.15 2D domain pattern simulation in real space and reciprocal space. (A) 2D random domain structure in 

the real space with mean diameter Dmax=2.0 μm; (B) 2D spectrum of reciprocal vectors. 

 

 (A2) Design the 2D domain structures of Sample 2 

For the artificially poled crystal the domain distribution can be quite different from sample to 

sample since the resulting domain structure strongly depends on the history of the field and 

temperature changes applied during the polling process. To simplify the 2D domain pattern simulation, 
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the domain size was assumed to have a Gaussian distribution with a variance (σ) chosen as close as 

possible to the value retrieved from the experimental results. The filling fraction of the domains used 

in the simulation is 6% obtained from the domain image calculation and the rest is nonlinear 

background. 

The simulated 2D domain structure in the x-y plane is shown in Fig. 5.16 (A) when we consider a 

Gaussian distribution with a mean domain size value of Dmax=0.9 μm. Fig. 5.16 (B) is the 

corresponding Fourier spectrum in reciprocal space. The majority of reciprocal vectors are gathered 

around a narrow ring with radius Gmax=π/Dmax=3.5 μm
-1

. In the next section the small dispersion 

domanin pattern represented in Fig. 5.16 will be used to analyze the experimental results. 

 

Fig. 5.16 2D domain pattern simulation in real space and reciprocal space. (A) 2D random domain structure in 

the real space with a large nonlinear background; (B) 2D spectrum of reciprocal vectors with a strong central 

intensity. 

 

 (B) Numerical simulations of SH diffraction pattern 

To simulate the SH diffraction and propagation effects in the x-y plane produced by a fundamental 

beam propagation along the y axis, the 1D solution of nonlinear Maxwell’s equations in Chapter 1 

should be extended to a 2D solution. Since both samples can be considered as lossless and 

dispersionless in the frequency bandwidth of our laser, we can use the monochromatic approximation. 

With this approximation, the nonlinear wave equation Eq. (1.10) can be rewritten in Gaussian unit as: 

2 2 (2) 2
2

2 2 2 2

4n E E
E

c t c t

 
  

 
                                                    (5.6) 

where n is the linear refractive index of the crystal. The electromagnetic field  , , ,E x y z t  composed 

by the superposition of two waves oscillating at 1  and 2 can be written as: 

  1 2

1 2, , , ( , , ) ( , , ) . .
i t i tE x y z t E x y x e E x y x e c c  

                                    (5.7) 

Substituting Eq. (5.7) into Eq. (5.6), the second harmonic frequency related term can be written as: 
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                   (5.8 b) 

With the Slowly Varying Envelope Approximation (SVEA), 2 2 2 2

1 2 0E y E y      , the two 

independent coupled equations of fundamental field  1 , ,E x y z  and SH field  2 , ,E x y z are obtained: 

1
1 1 1

E
D E

y
                                                        (5.9 a) 

2
2 2 2

E
D E

y
                                                       (5.9 b) 

where 
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k1, k2 are the wave-vectors of the FF and SH beams; χ
(2)

 is the second-order nonlinear optical 

susceptibility of the two samples, which can be reduced to one independent component as d31 and d33 

during the oo-e and ee-e interaction in our experimental system; n1 and n2 are the refractive indices of 

the FF and SH beams.  

In the split-step fast-Fourier transform based beam propagation algorithm, the actual 

implementation of each step in the crystal can be rewritten as: 

1 1( )

1 0 1 0( 2) ( )
D dy

E y dy e E y                                            (5.10 a) 

 2 2( )

2 0 2 0( 2) ( )
D dy

E y dy e E y                                           (5.10 b) 

They are the practical solutions of Eq. (5.9 a) and Eq. (5.9 b).  

 (B1) Numerical simulation results of Sample 1 

In order to check the numerical code we started simulating random domain structures with narrow 

and wider variances (σ). Fig. 5.17 (A, B, C) depict the simulation results during oo-e interaction at 

different fundamental wavelengths (800 nm, 1200 nm, and 1600 nm). These plots show the evolution 

of the SH diffraction angular distribution when the FF beam is incident onto the domain structure of 

Fig. 5.15 with mean value Dmax=2 μm and a narrow domain width distribution variance. The FF beam 

width at FWHM is about one-third times the length of the crystal, so it can interact with a sufficient 

number of domains. In these figures (a1, b1, c1) we can see the external angle distribution along 

propagation distance where we can clearly see the evolution of the SH intensity angular distribution 

from a single peak to a double peak as the wavelength increases. The far-field emission at the output 

of the sample (x=70 μm) is shown in (a2, b2, c2). As it is clearly observed, the narrow σ structure 
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results in the well resolved maxima separating when wavelength increases (0
o
 for 800 nm, 9

o
 for 

1200 nm, and 11
o
 for 1600 nm). This emission is the main characteristic of Le Grand model as 

shown in Fig. 5.6.  

The simulation results of the SH diffraction pattern during oo-e interaction from Sample 1 with 

large σ are shown in Fig. 5.17 (D, E, F). For this case, we performed an averaging over 25 different 

domain realizations which give an equivalent effect as a wide domain width distribution but keeping 

the same mean value as Dmax=2 μm. Each domain realization has a structure similar to that of Fig. 5.15. 

In this case we can observe a much wider SH diffraction pattern along propagation distance as shown 

in (d1, e1, f1). From the far-field angular distribution of SH diffraction in (d2, e2, f2), we can see that 

intensity peaks appear at the external angles of 0
o
 for 800 nm, 9

o
 for 1200 nm, and 11

o
 for 1600 nm 

fundamental wavelengths respectively. This kind of emission corresponds to that experimental results 

observed from Sample 1.  

 

Fig. 5.17 SH diffraction simulation results during oo-e interaction when fundamental wavelength at 800 nm, 

1200 nm, and 1600 nm. (A, B, C): SH diffraction simulation results with Dmax=2μm and small dispersion of 

domain width; (D, E, F): SH diffraction simulation results with large dispersion of domain width. (a1, b1, c1, d1, 

e1, f1): SH diffraction pattern along propagation distance; (a2, b2, c2, d2, e2, f2): Far-field angular distribution of 

SH diffraction. 
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We also simulated the corresponding SH diffraction patterns during ee-e interaction, which have a 

behavior very similar to that observed for oo-e interaction. 

Fig. 5.18 shows a comparison between our simulated far-field angular distribution and the 

experimental results for both oo-e interaction (blue line) and ee-e interaction (red line). The simulation 

results are in good agreement with the experimental results. This agreement shows the process of 

averaging over different realizations can be an efficient way to simulate the large variance distribution.  

 

Fig. 5.18 Comparison between simulation results and experimental results both oo-e interaction (blue line) 

and ee-e interaction (red line). (Top): Experimental far-field angular distribution; (Bottom): Simulated far-field 

angular distribution. 

 

(B2) Numerical simulation results of Sample 2 

Fig. 5.19 shows the combined effects of domain distribution and nonlinear background on the SH 

intensity angular emission during oo-e interaction. Top: The SH diffraction pattern along propagation 

distance for different FF beams (at 800 nm, 1000 nm, 1200 nm and 1600 nm) incident onto the 

domain structure depicted in Fig. 5.16(A). Bottom: the corresponding Far-field angular distribution. 

From the far-field angular distribution, we can see that the external angle of the intensity peak is 9
o
 

for 800 nm, 4
o
 for 1000 nm, 3

o
 for 1200 nm, and 0

o
 for 1600 nm fundamental wavelengths 

respectively. Comparing the external angle emission of SH at different wavelengths, we can see that 

the nonlinear domain distribution dominates the parametric process at 800-1200nm, while the 

nonlinear background dominates the parametric process at longer wavelengths and it completely 

dominates at 1600 nm. These simulation results fit both the previous theoretical analysis as shown in 

Fig. 5.13  
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Fig. 5.19 Combination effects of domain distribution and nonlinear background on the SH intensity angular 

distribution during oo-e interaction. (Top): SH diffraction pattern along propagation distance; (Bottom): Far-

field angular distribution. 

 

Fig. 5.20 shows the corresponding simulation results during ee-e interaction. Top: The SH 

diffraction angular pattern as a function of propagation distance for fundamental beams of different 

wavelengths incident onto the domain structure shown in Fig. 5.16(A). Bottom: the corresponding far-

field angular distribution at the end of the crystal. From the far-field angular distribution, we find SH 

intensity peaks at the angles 11
o
 for 800 nm, 6

o
 for 1000 nm, 5

o
 for 1200 nm, and 3

o
 for 1600 

nm fundamental wavelengths respectively.  

 

Fig. 5.20 Combination effects of domain distribution and nonlinear background on the SH intensity angular 

distribution during ee-e interaction. (Top): SH diffraction pattern along propagation distance; (Bottom): Far-field 

angular distribution. 
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Comparing the external angles of SH emission at different wavelengths we can see that the effect 

of nonlinear background increases as the wavelength increases because of the larger coherence length 

for longer wavelengths. However, because the LCeee is far less than LCooe, for ee-e interaction the 

nonlinear background could not completely dominate the parametric process even at 1600 nm. All the 

parametric processes for ee-e interaction result from the combination effects of domain distribution 

and nonlinear background.  

Fig. 5.21 shows a comparison between our simulated far-field angular distribution and the 

experimental results for both oo-e interaction (blue line) and ee-e interaction (red line). The simulation 

results are in good agreement with the experimental results.  

 

Fig. 5.21 Comparison between simulation results and experimental results for both oo-e interaction (blue 

line) and ee-e interaction (red line). (Top): Experimental far-field angular distribution; (Bottom): Simulated far-

field angular distribution. 

 

5.4 Effect of more complicated domain statistics on SH diffraction pattern 

5.4.1 Design of the 2D domain structures 

The numerical simulations in Section 5.3.2 provide an effective solution to evaluate the domain 

statistics. In order to further verify the reliability in measuring more complicated domain statistics and 

explore new features of this method we resort to the analysis of the wavelength dependence of the SH 

diffraction pattern. In this section, we numerically designed a more complicated domain pattern with 

two-peak statistics with mean values Dmax=2.7 μm and D’max=0.8 μm which gives a wide spectrum of 

χ
2
 reciprocal vectors G consisting of a distribution of concentric rings as shown in Fig. 5.22.  
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Fig. 5.22 (a) is the reciprocal vector G spectrum of the domain structure. Most of the reciprocal 

vectors are gathered around the first-order bright ring with radius Gmax=π/Dmax=1.2 μm
-1

 and the 

second-order bright ring with radius G’max=π/D’max=4.0 μm
-1

. These concentric rings could be 

experimentally fabricated with the technique proposed in the reference [She07] where laser induced 

writing of domains is studied, so this simulation could be of practical significance. The corresponding 

intensity (probability density) at each value of the modulus of |𝐺| is calculated and the corresponding 

plot is shown in Fig. 5.22 (b). From the plot we can see there are two intensity peaks at 1.2 μm
-1 

and 

4.0 μm
-1

. The reciprocal vectors at Gmax=1.2 μm
-1

 with the maximum probability density result from 

domains with a mean diameter of Dmax=2.7 μm, while the reciprocal vectors at G’max=4 μm
-1

 

correspond to a mean diameter of D’max=0.8 μm. 

 

 
Fig. 5.22 2D two-peak statistics simulation. (a) 2D spectrum of reciprocal vector in a form of concentric rings; (b) 

1D intensity distribution of the modulus of the reciprocal lattice vectors with two intensity peaks at 1.2 μm-1 and 4 

μm-1. 

 

5.4.2 Numerical simulations of SH diffraction pattern 

When these two reciprocal vectors, Gmax=1.2 μm
-1

 and G’max=4 μm
-1

, are involved in the nonlinear 

parametric process for oo-e interaction, the corresponding SH emission angles can be theoretically 

calculated via Eq. (5.2) and summarized in Table 5.4. λF is the fundamental wavelength; θ_Gmax and 

θ_G’max are the theoretically calculated SH emission angle when Gmax and G’max are involved in the 

non-collinear QPM process respectively. When there is no possibility of QPM the SH emission angle 

is an invalid value and marked as NaN.  

oo-e 

λF (nm) 800 850 900 950 1000 1050 1100 1150 1200 1300 1350 1400 1450 1500 1550 

θ_Gmax (
o) NaN NaN NaN NaN 1.8 3.6 4.6 5.3 5.8 6.7 7.0 7.4 7.7 8.0 8.3 

θ_G’max (
o) 10.6 13.5 15.4 16.8 18.1 19.3 20.4 21.4 22.4 24.4 25.5 26.5 27.5 28.5 29.5 

 

Table 5.4 Theoretical SH emission angles with Gmax and G’max. θ_Gmax and θ_G’max are the theoretically 

calculated SH emission angle when Gmax and G’max involved in QPM process respectively. 
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During oo-e interaction the simulation of SH diffraction patterns along propagation distance for 

different fundamental wavelengths are shown in Fig. 5.23 (a1-a2); the horizontal coordinates represent 

the values of external angle from -20
o
 to 20

o
; the vertical coordinates represents the propagation 

distance along y direction. The corresponding far-field angular distributions are shown in Fig. 5.23 

(b1-b2); the horizontal coordinates represent the values of angle; the vertical coordinates represents 

the intensity; the angles of the intensity peaks for each simulation are marked in black and pink in the 

plots; the counterpart of the angles marked in black can be found in Table 5.4; the appearance of the 

angles marked in pink are not from neither the Gmax nor G’max, which comes from simulation error. 

 

Fig. 5.23 The wavelength dependence of the SH diffraction in oo-e interaction. (a1-a2) Simulation of the SH 

diffraction pattern along propagation distance for different fundamental wavelengths; (b1-b2) The corresponding 

far-field angular distribution of SH diffraction intensity. 

 

A summary of the position of the peak angles is represented by the green and blue circles in Fig. 

5.24. The blue circle represents the simulated external angle on the right side, while the green circle 

represents the simulated external angle on the left side. The numerical simulation angles (blue and 

green circles) can be fit with two curves represented by red star and pink star respectively. The red star 
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represents the theoretically calculated external angle when the reciprocal lattice vector Gmax =1.2μm
-1

 

is involved in the QPM process. The absence of data when fundamental wavelengths are shorter than 

1000 nm is because there is no possibility to obtain quasi phase matching at these wavelengths with 

this value of G. The pink star represents the theoretical external angle when G’max=4μm
-1

 is involved 

in the QPM process. The quantitative relation of probability density can be deduced from the fit in the 

wavelength area where the QPM condition can be fulfilled for both reciprocal vectors. When λ≥1000 

nm the trends of simulation and theoretical data calculated with Gmax fit well, which indicates that the 

probability density of Gmax is larger than the probability density of G’max, P(Gmax)﹥P(G’max). The 

degree of misfit (marked with the black dotted circles) reflect the difference between P(Gmax) and 

P(G’max). A large value of P(Gmax)/ P(G’max) leads to a large misfit. For example, the appearance of 

0.8º angle at 900 nm is because the quantity of the reciprocal vector can be used to compensate the 

phase-mismatch at this process is more than the quantity of G’max. 

 
Fig. 5.24 The comparison between theoretically calculated emission angle and simulated emission angle at 

intensity peak for oo-e interaction. 

 

 

We also explored the SH diffraction angular information during ee-e interaction. When Gmax and 

G’max are involved in the nonlinear process for ee-e interaction, the SH emission angles were 

theoretically calculated via Eq. (5.2) and are summarized in Table 5.5. 
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ee-e 

λF (nm) 800 850 900 950 1000 1050 1100 1150 1200 1300 1350 1400 1450 1500 1550 

θ_Gmax (
o) NaN NaN NaN NaN NaN NaN 2.8 4.0 4.8 6.0 6.5 6.9 7.3 7.6 8.0 

θ_G’max (
o) 8.6 12.3 14.6 16.3 17.7 18.9 20.1 21.2 22.3 24.4 25.4 26.5 27.5 28.5 29.6 

 

Table 5.5 Theoretical SH emission angles with Gmax and G’max. θ_Gmax and θ_G’max are the theoretically 

calculated SH emission angle when Gmax and G’max involved in QPM process respectively. 

 

The simulation of SH diffraction patterns along propagation distance for different fundamental 

wavelengths are shown in Fig. 5.25 (a1-a2). The corresponding far field angular distribution are 

shown in Fig. 5.25 (b1-b2); the angles of intensity peak for each simulation are marked in black and 

pink in the plots; the counterpart of the angles marked in black can be found in Table 5.5; the 

appearance of the angles marked in pink comes from the simulation error. 

 

Fig. 5.25 The wavelength dependence of the SH diffraction in ee-e interaction. (a1-a2) Simulation of the SH 

diffraction pattern along propagation distance for different fundamental wavelengths; (b1-b2) The corresponding 

far-field angular distribution of SH diffraction. 
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The corresponding summary of the positions of the peak angle are plotted by the green and blue 

circles in Fig. 5.26. The numerical simulation angles (blue and green circles) can be fit with two 

curves represented by red star and pink star respectively. The red star represents the theoretically 

calculated external angle when Gmax=1.2 μm
-1

 is involved in the QPM process. The absence of data 

when fundamental wavelengths are shorter than 1000 nm is because there are no phase matching can 

be fulfilled at these wavelengths. The pink star represents the theoretical external angle when 

G’max=4.0 μm
-1

 is involved in the QPM process. The quantitative relation of probability density can be 

deduced from the fit in the λ≥1100 nm area. Since the trends of simulation and theoretical data 

calculated with Gmax fit well, we deduce P(Gmax)> P(G’max).  

 

Fig. 5.26 The comparison between theoretically calculated emission angle and simulated emission angle at 

intensity peak for ee-e interaction. 

 

5.5 Conclusions 

In this chapter we demonstrate an indirect non-destructive optical method for the characterization 

of nonlinear domain statistics both in the as-grown random nonlinear crystals and in the artificially 

poled random nonlinear crystals. This optical method is based on a combination of the experimental 

measurements of the second harmonic diffraction intensity angular distribution and the corresponding 

numerical simulation results.  
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In the experiments, we built the experimental setup and measured SH diffraction intensity angular 

distribution at different wavelengths from 800 nm to 1600 nm. 

In the simulations, we started with the designing and simulation of the two different domain 

structures for the as-grown and artificially poled random nonlinear crystals. There are two different 

ways to design the 2D domain structures. For the as-grown domain structure, there is a linear 

background and the inverted nonlinear domains are compactly arranged within the crystal; for the 

artificially poled domain structure, there is a nonlinear background and antiparallel domains, whose 

filling fraction plays an important role in the second harmonic generation process. Besides, we 

expanded the 1D solution of nonlinear Maxwell’s equation to 2D solution and numerically simulated 

the SH diffraction and propagation in the simulated 2D domain structures with the split-step Fast-

Fourier Transform beam propagation method. We performed the above simulation processes, until we 

obtained the similar SH diffraction pattern for both numerical and experimental data, which means the 

designed domain pattern can truly reflect the nonlinear domain in real crystal.  

This method has been implemented experimentally and tested in different crystals with different 

types of distributions. It has been demonstrated that more complicated domain structures possess the 

more complex second harmonic diffraction intensity angular emission pattern and the analysis of the 

dependence of the second harmonic diffraction intensity angular distribution on the fundamental beam 

wavelength can be used to obtain relevant information about complicated domain structures.  

This method could be used for real time monitoring of the unknown domain distribution during 

the poling or crystal growing process. 
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