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Abstract

Wepropose amathematical formalismcalledAlgebraicDependencyGrammarwith applications
to formal linguistics and to formal language theory. Regarding formal linguistics we aim to
address the problem of grammaticality with special attention to cross-linguistic cases. In the
field of formal language theory this formalism provides a new perspective allowing an algebraic
classification of languages. Notably our approach suggests the existence of so-called anti-classes
of languages associated to certain classes of languages.

Our notion of a dependency grammar is as of a definition of a set of well-constructed
dependency trees (we call this algebraic governance) and a relation which associates word-
orders to dependency trees (we call this algebraic linearization).

In relation to algebraic governance, we define a manifold which is a set of dependency
trees satisfying an agreement condition throughout a pattern, which is the algebraic form of a
collection of syntactic addresses over the dependency tree. A boolean condition on the words
formalizes the notion of agreement.

In relation to algebraic linearization, first we observe that the notion of projectivity is
quintessentially that certain substructures of a dependency tree always form an interval in its
linearization. So we have to establish well what is a substructure; we see again that patterns pro-
portion the key, generalizing the notion of projectivity with recursive linearization procedures.

Combining the above modules we have the formalism: an algebraic dependency grammar
is a manifold together with a linearization. Notice that patterns sustain both manifolds and
linearizations. We study their interrelation in terms of a new algebraic classification of classes
of languages.

We highlight the main contributions of the thesis. Regarding mathematical linguistics, alge-
braic dependency grammar considers trees and word-order different modules in the architecture,
which allows description of languages with varied word-order. Ellipses are permitted; this issue
is usually avoided because it makes some formalisms non-decidable. We differentiate linguistic
phenomena structurally by their algebraic description. Algebraic dependency grammar permits
observance of affinity between linguistic constructions which seem superficially different.

Regarding formal language theory, a new system for understanding a very large family
of languages is presented which permits observation of languages in broader contexts. We
identify a new class named anti-context-free languages containing constructions structurally
symmetric to context-free languages. Informally we could say that context-free languages
are well-parenthesized, while anti-context-free languages are cross-serial-parenthesized. For
example copy languages and respectively languages are anti-context-free.





Algebraic Dependency Grammar

Carles Cardó





(. . . ) and also invisible to us was another planet,
Antichthon, or Counter-Earth, for this revolved within our
orbit, and also in twenty-four hours. It was added to the
system, because the addition of Earth as a heavenly body
spoiled the sacred number of seven, but by adding
Antichthon, and counting the star-sphere as another, the
total was brought up to ten, another sacred number.

Dante and the Early Astronomers
Mary Acworth Orr (1807)
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1
Introduction

This first chapter constitutes a guide to reading the thesis. We present a historical
review of formal linguistics and its main concepts. We introduce the basic features
of the family of dependency grammar and we review recent work in dependency
theories.

The purpose of this thesis is to introduce a new dependency based formalism
from an algebraic perspective which aspires to account for natural languages
transversally; however we will see that this has also ramifications in the panorama
of formal languages. We expose in brief the elements and the architecture of the
model. The most important contributions are presented together with the structure
of the chapters.

In order to display linguistic examples in the future we need to fix some con-
ventions for dependency analysis and the notation for syntactic functions. Finally
we summarize the necessary mathematical concepts and fix also notations to
understand subsequent chapters.

1.1 Some Topics on Formal Linguistics

Before we consider some basic topics on dependency grammar, let us zoom out and
comment some general aspects considered significant in formal linguistics and that will
arise throughout the thesis. By way of introduction we make a rapid historical review.

1.1.1 The Productive Decade:
A Very Short Note on the Chronology of Formal Linguistics1

In the mid-twentieth century linguistics was shaped by two formal theoretical ap-
proaches. Linguistics was a field that had previously been formed by linguistic struc-
turalism, philosophy, logic and, in general, mathematics in the first half of the century.

1In this note we just relate innovations and contributions in formal syntax and semantics, not other
linguistic issues such as phonology or pragmatics. Further, we just review the last half of the XX century,
and the XXI century. For a more detailed chronology see (Kruijff, 2002).

3
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The common denominator of the innovations was the application of formal tools to
analysis of the mechanisms of natural language.

On the one hand in 1957 N. Chomsky wrote his Syntactic Structures (Chomsky,
1957). Today the imprint of that work is still palpable in linguistics and computer
science. His hierarchy was one of the first road maps in formal languages, and its four
classes are the four cardinal points with respect towhich theorists still orient themselves.
It is widely assumed that the class of natural languages inhabits a level between the
class of context-free languages and the context-sensitive languages.

Chomsky has followed a long trajectory: from the early rewriting systems, through
Transformationalism (TG), Principles and Parameters or Government and Binding
(GB), and finally to the Minimalist Program (MP) in the 1990’s.2 Over this time
linguistics has accumulated a number of derivative theories such asGeneralized Phrase
Structure Grammar (GPSG) or its successor, Head-Driven Phrase Structure Grammar
(HPSG), among others. Regardless of the details these approaches are frequently called
constituency grammars because of the way one groups words of a sentence.

On the other hand, in the beginning of the 1950’s Y. Bar-Hillel picked up an old
and simple idea from the logician K. Adjukiewicz (1935) and invented a combinatorial
system, or as he named it, a quasi-arithmetical notation for syntactic description, (Bar-
Hillel, 1953). Just a few years later J. Lambek independently connected this idea to
logic in (Lambek, 1958). This formulation captured a grammar elegantly in a few
deductive rules giving what is now named Lambek Calculus (L). Nevertheless this
attempt did not account for discontinuities of natural language. Recently that problem
was addressed preserving the initial elegance of Lambek Calculus by Morrill, Valentín
and Fadda (Morrill et al., 2011) in the form of the Displacement Calculus (D). This
research continues actively.3

However, by way of a third route, at the same time that Chomsky and Lambek
produced their early works, there was published posthumously the Éléments de syntaxe
structurale of L. Tesnière (1959). His style falls short of formality, but contains a deep
and interesting intuition: the stemma, an unfortunate denominationwhich nobodywould
use again (in modern literature, dependency tree).4 This notion was a very compact and
succinct way to represent syntactic structure. Unfortunately his work remained unno-
ticed, perhaps overshadowed by the other authors, but the ideas it contained flourished
later, being transformed into what is now called Dependency Grammar.

Intermittently in the following years several authors formally developed the first
steps of the Éléments. Regarding the weak generative capacity Gross (1964), Hays
(1964), Gaifman (1965) and Robinson (1970) established the equivalence of certain
dependency systems with context-free languages. Since context-free grammars are

2Chomsky talks simply of generative grammars for any of his works, cf. (Chomsky, 1995).
3See Morrill (2007) for a chronicle of type logical grammar.
4The dependency based approach enjoys its own prehistory. See (Osborne and Kahane, 2015) for

some examples of rudimentary dependency structures well before Tesnière.



1. Introduction 5

considered insufficient for natural languages (in fact Chomsky already claimed this
insufficiency from his first works); this could be one of the reasons why dependency
grammar had been temporarily sidelined.

More in relation to linguistic issues, there appeared the stratificational theories
versus the first mono-stratal stemmas: the Functional Generative Grammars (FGD) of
Sgall et al. (1969) and later the Meaning-Text Theory (MTT) of Gladkij and Mel’čuk
(1975), amongst others.

The new millennium has revitalized and exploited the Tesnerian ideology with
works which will be commented later, when we explicate our contributions to this third
route. All in all, the 1950’s in the past century was a productive decade.

1.1.2 Some Topics of Formal Linguistics

Finiteness and Decidability

A formal grammar G is a well-defined and finite formalism describing fundamental
phenomena of linguistics such as grammaticality, semantics, first language acquisition,
second language acquisition or existence of universal principles, apart from computer
applications. Perhaps, the most basic of these fundamental problems is that of gram-
maticality, which consists in establishing a set of grammatical strings, L (G ) ⊆ Σ∗.

By finite here we mean a mathematical system (a finitely generated algebraic struc-
ture, a finite axiomatic system, an algorithm or any other mathematical object finitely
described) able to capture the infinite combinatorial capacity of language, i.e. L (G ),
using a finite set of resources. This constitutes a widely accepted general principle for
formal linguistics which goes back to the XIX century, and perhaps before, when the
philosopher and linguist, Humboldt, stated that languages “make infinite use of finite
means”, apud (Chomsky, 1965).

But strict finiteness, as stipulated above, is a too vague and weak condition. Decid-
ability is a more reasonable feature which a linguistic formalism should enjoy.5 This is
based in the human skill to decide when a sentence is grammatically correct and when
it is not, which establishes a well-delimited set of grammatical occurrences or strings.6

There are two possible manners of formulating this problem: universal recognition
vs. fixed language recognition:

• (Universal) Given a grammar G (in some grammatical framework) and a string
x, is x ∈ L (G )?

• (Fixed Language) Given a string x, is x ∈ L, where L is some independently
specified set of strings L?

5Sometimes the constraint of finiteness in the sense of Humboldt is such a weak hypothesis that the
term “finiteness” is almost taken as synonymous of decidability.

6This is an idealization, because when one tests speakers with confusing sentences, the frontier of
acceptance turns out fuzzy and there seems to appear a grammatical gradient.
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The problems are distinct. The first contains two variables: the grammar and an
input string. The second contains just one variable, the string. This means that the fixed
language recognition problem can employ any technique to solve the membership.
There arises the question which of them is most adequate for linguistics. Universal
problems study entire grammatical families and they consider the worst case grammar
as input and hence they are harder than fixed language problems.

Speakers of a language do not need to have knowledge of a wide class of grammars,
but just one grammar and, by using some internal brain mechanism, are able to develop
fast processing. So, it could seem that fixed language problems are more pertinent for
linguistic inquiry.7

Notwithstanding, finiteness and decidability are still weak conditions. In a majority
of cases a hearer can decide quickly the grammaticality of a sentence. This leads some
authors to consider the hypothesis that natural languages are recognizable in polynomial
time in the length of the sentence. But there is no longer total consensus here.We resume
this issue later.

Phrase Structure Grammars

Early computational approaches to linguistics came from the direct manipulation of
strings of symbols. Based on previous notions of the logician E. Post and the mathe-
maticianA. Thue, Chomsky introduced a family of rewriting grammars, now sometimes
called phrase structure grammars, consisting in: a finite set of non-terminal symbols
or variables, P,Q, R, S, . . ., with a distinguished start symbol; a finite set of terminal
symbols or letters, a, b, c, . . .; a finite set of rewriting rules or productions consisting
in expressions as X → Y , where X and Y are strings of letters and variables. A rule
can be applied over a string of letters and variables when the scheme described by X
occurs in the string. Then we can substitute X by Y in the string. A string of letters is
derivable if we can obtain it by applying rules from the start symbol. According to the
form of the productions Chomsky separated four classes of grammars:

Type 3 (or regular grammars, RGG): when the X only contain a variable and Y
is of the form aP, where a is a letter and P is a variable.8

Type 2 (or context-free grammars, CFG); when the X only contains a variable.

Type 1 (or context-sensitive grammars, CSG); when the X and Y are of the form
aPb.

Type 0 (or unrestricted); there is no constraint.

7For further discussion see e.g. (Barton et al., 1987).
8Or of the form Pa, but all the rules in the same form. It is provable that the same classes of languages

are obtained.
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The derivational history of a string in the case of type 2 grammars can be encoded
by a tree. In this formalism the syntactic structure (the derivational tree) is the byprod-
uct of a computation. This contrasts with other formalisms where the computational
protagonist is the syntactic structure itself, as in the case of dependency grammars.

Weak Capacity

Theweak capacity of a grammar is the set of sentences licensed by the grammar, and, by
extension, the weak capacity of a class of grammars is the class of languages generated
by the grammars. Every kind of Chomskian grammar generates a class of languages:
regular languages, RG (which coincide with the class of languages recognizable by
automata or the class of languages definable by regular expressions); context-free
languages, CF; context-sensitive languages, CS. In particular unrestricted grammars
generate the class of recursively enumerable languages, RecEnum, i.e. those languages
the strings of which a Turing Machine can enumerate. The four formalisms yield an
increasing hierarchy of classes of languages:

RG ( CF ( CS ( RecEnum.

By an empirical idealization we can assume a classNT of all possible natural languages.
There arose the question of where the class NT of natural languages is placed. Early on
theorists realized that context-free grammars are too inexpressive, but the convincing
proof did not arrive before 80’s. A paper of Shieber (1985) closed a long debate about
the context-freeness of natural languages initiated in the 50’s, (Chomsky, 1956).9Using
elementary techniques of formal language theory, Shieber showed that certain sentences
of Swiss-German could be reduced to a non-context-free language. In the opposite side,
context-sensitive grammars were too powerful. These grammars were proved to be very
near to Turing machines, and these last are clearly excessive for natural language.10
The scenario was then:

RG ( CF ( NT ( CS ( RecEnum.

Under the suggestive title “Tree adjoining grammars: How much context-sensitivity is
required to provide reasonable structural descriptions” Joshi (1985) proposed guiding
conditions which an adequate formalism for natural language should satisfy (of course
subsuming context-freeness): “1. limited cross-serial dependencies, 2. constant growth,
3. polynomial parsing”. Kallmeyer (2010) interprets these conditions as properties of
classes of languages: a set L of languages is mildly context-sensitive iff

9See also the paper of Pullum and Gazdar (1982), for a state of the art in the debate just a few years
before the paper of Shieber (1985).

10More exactly, context-sensitive grammars are equivalent to linear bounded automata, i.e. Turing
machines restricted to a bound portion of tape, see (Hopcroft and Ullman, 1979).
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(a) CF ⊆ L;

(b) L can describe cross-serial dependencies: there is an n ≥ 2 such that Lk-copy =
{xk | x ∈ Σ∗} ∈ L for all k ≤ n;

(c) the languages in L are polynomially parsable, i.e. L ⊆ PTIME;

(d) the languages in L have the constant growth property.

The first point is clear. Regarding the second point the definition only requires generation
of the L2-copy language, but permits that all the k-copy languages could be generated.
Regarding time complexity, here PTIME is the class of languages with fixed language
recognition problem solvable in polynomial time. Although some linguists do not insist
on this requirement, computationally it is a desirable property. The last condition means
informally that the lengths of strings of languages in L cannot be too far apart. Weir
(1988) defines the constant growth property as follows: a language L has the constant
growth property iff there is a constant c0 > 0 and a finite set of constants C ⊂ N such
that for all x ∈ L with |x | > c0, there is a x′ ∈ L with |x | = |x′| + c for some c ∈ C.

There is another notion of growth which is alleged for natural languages. We set
Σ = {a1, . . . , ak}. The Parikh mapping is the mapping p : Σ∗ −→ Nk

+ defined by
p(x) = (|x |a1, . . . , |x |ak ). A set in Nk

+ is semi-linear iff it is a finite union of sets of the
form {p1 A1+ · · ·+ pn An+B | p1, . . . , pn ∈ N+} for some n ≥ 0 and A1, . . . , An, B ∈ Nk

+.
A language L ⊆ Σ∗ is semi-linear iff p(L) is a semi-linear set. This is more restrictive
notion than the Weir one, see (Kallmeyer, 2010).

With Joshi’s conditions there commenced a difficult search to establish the precise
place of natural language, and a discussion ensued on the four above points. Several for-
malism were proposed: indexed grammars IG, Aho (1968);11 linear indexed grammars
LIG, Gazdar (1988)12; tree adjoining grammars TAG, Joshi (1985); q-linear context-
free rewriting systems q-LCFRS, Vijay-Shanker et al. (1987); q-multiple context-free
grammars q-MCFG, Seki et al. (1991). See Fig. 1.1, which contains a diagram of inclu-
sions for these formalisms, with some examples of specific languages (inclusions are
strict). Some of these formalisms are equivalent, for example linear indexed grammars
are equivalent to tree adjoining grammars, and q-LCFRS are equivalent to q-MCFG,
for any q. And some of the formalisms are subsumed by others, for example linear
context-free rewriting systems are more expressive than linear indexed grammars.

As pointed out by Kallmeyer (2010), LCFRS and MCFG are important for natu-
ral language processing. They can account discontinuity phenomena and are weakly
equivalent to other more linguistic-based formalisms, such as minimalist grammars

11Although indexed grammars were proposed before the paper of Joshi we commented here according
to its relation with the other grammars.

12See also (Weir and Joshi, 1988).
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MG, (Stabler, 1997), the formalization of the Chomskian ideology in the minimal-
ist program, (Chomsky, 1995); or finite-copying LFG (lexical functional grammar),
(Kaplan and Bresnan, 1982).

Some works suggest that natural languages are beyond LCFRS. Becker et al. (1992)
shows that scrambling in German can be reduced by regular intersections and homo-
morphisms to the p-counting language Lp-count = {an

1 · · · a
n
p | n ∈ N+, a1, . . . , ap ∈ Σ}

for a sufficiently large p, which, using a pumping lemma by Seki et al. (1991), shows
that natural language cannot be described by any LCFRS.

Recently Salvati (2011) proved the surprising result that the language Lmix = {x ∈
{a, b, c}∗ | |x |a = |x |b = |x |c} can be generated by a 2-multiple context-free grammar.
That language is supposed to be an extreme case without linguistic relevance, whereby
it should not be derivable by a constrained formalism for natural languages.13

Some authors discuss the property of growth. Boullier (1999) considers the Chinese
number language which exhibits a non-constant growth property, and hence non-mild
context sensitivity. This lead him to define range concatenation grammars RCG, Boul-
lier (2004). Another phenomenon which is alleged to be beyond the constant growth
property is the genitive construction of Old Georgian, Michaelis and Kracht (1997).
The accumulated genitive infixes grow quadratically.

Furthermore, another construction in Yoruba, a Nigerian language, suggests that
natural languages would tolerate exponential growths. Parallel Multiple Context-Free
Grammars PMCFG allows to construct the language Lexpo = {a2n | n ≥ 0}; see Clark
and Yoshinaka (2012).

All these phenomena are argued to be truly syntactic constructions (actually, Old
Georgian is a dead language and there are no speakers to contrast the hypothesis). How-
ever as Clark and Yoshinaka (2012) comment: “There is a broad consensus that natural
language string sets are semilinear, and so attention has focused largely on properties
of formalisms that generate semilinear languages. However there are a number of cases
where linguistic data suggest that there are richer processes involved, processes that
either require or might benefit from a more powerful formalism.”

Structural Adequacy and Strong Capacity

The considerable efforts focusing on weak capacity of natural languages sometimes
make us forget the question of the structural adequacy of grammar formalisms. The

13See (Bach, 1981, 1988; Salvati, 2011; Kanazawa and Salvati, 2012).
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Figure 1.1: hierarchy of grammars (and classes of languages) in relation to mild context-
sensitivity. Figure adapted from (Kallmeyer, 2010).

following context-free grammar:

S → NPsingular + Vsingular + NP
S → NPplural + Vplural + NP
NPsingular → Mary, John, . . .
NPplural → girls, boys, . . .
Vsingular → eats, grows, . . .
Vplural → eat, grow, . . .
NP→ apples, tomatoes, . . .

generates sentences like John grows tomatoes with a correct agreement of number
between the subject and the verb. Under the point of view of weak capacity there is
nothing to say. In Chomskian terms, it is said that the grammar is a purely generative
engine, where “generative” means enumerative.

However if we address our interest rather to obtain linguistic explications, then the
above grammar seems tricky or artificial; we tend to interpret the variable symbols with
some syntactic meaning, but in fact computationally they are simply auxiliary symbols.
Notice that in the derivation the number of subject and the verb is decided before the
actual subject and verb. Furthermore, one can design a context-free grammar to make
long distance agreement by introducing more auxiliary variables. But this rewriting
style approach is linguistically misleading because it multiplies the number of variables
and rules.
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Figure 1.2: a sample of dependency structures.

Chomsky introduced the concepts of strong and weak capacity of a grammar,
(Chomsky, 1965). The strong capacity is defined by the set of parse structures which a
grammar generates, and similarly the strong capacity of a class of grammars is the class
of sets of parse structures, see (Bach and Miller, 2003). This permits differentiation
of two grammars yielding the same language but with different structural devices.
Unfortunately, while for weak capacity we can compare classes of languages from
different formalisms, strong capacity depends on the format of the syntactic structure
which only allows us to compare grammars inside a same formalism.

In sum, the syntactic structure is also an element of study in itself, even more in
dependency grammar. This appreciation is limited by the obvious practical fact that
syntactic structures are invisible, while string sentences are not. So the work of giving
an adequate structural description of natural language is harder than that of giving a
mechanism which proportions the correct sentences as mere strings.

1.2 Dependency Grammar

Dependency based approaches assume as a foundational notion that there is a sort of
linguistic structure called dependency structure. Very informally a dependency is a
triplet formed by two words and a function or role which relates them. Graphically:

caught
object
−−−−→ frogs

It is said that the word “caught” governs the word “frogs”. Joining together a set of
dependencies we have a dependency structure. So for dependency grammarians the
linguistic structure is a relational system. Fig. 1.2 shows a sample of dependency
structures.

Dependency structures are very versatile objects which according to their topology
can be used for different purposes: for a semantic representation, for a syntactic repre-
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Figure 1.3: (a) syntactic representation for the sentence John gives Mary the cold shoulder; (b)
semantic representation; (c) representation of the word-order.

sentation or even for a word-order representation; see Fig. 1.3 for some examples. Thus
a dependency grammar is able to use different modalities of dependency structures
orchestrated according the convenience of each author.

In order to discuss general concepts let us fix a very short glossary.We just comment
a few words of widespread usage; the more specific glossary will be introduced in the
course of the text.

By word-order we mean a string of words, or more abstractly all those syntactic
aspects concerning the order of words in a sentence. For a formal notion of word order
we will use the term linearization. By syntactic functions or grammar roles we mean
arguments, syntactic arguments or semantic arguments, or more in general any label
on the edges on a dependency structure. In the old Tesnèrian denomination: actants.
The relation of domination is the reflexive and transitive closure of the governing
relation. Some authors call dependency structure a dependency tree together a word
order.14 Here we prefer to use this terms for a general dependency set (without word-
order) where its graphical representation can be a general graph. When the graph is
tree-shaped we call it a dependency tree.

1.2.1 The Parameters of Dependency Grammar

The family of dependency models shows differences from the smallest cog to the most
general architecture. For a brief exposition on the various models see e.g. (Debusmann,
2000). We make a list of variables to highlight the differences between models. We
follow and adapt with some changes the exposition from Nivre (2005).15

Stratification. This is an intuitive concept and there is no consensus on what it
is. Stratum, level or layer means a component in the architecture of the model.
The Elements of Tesnière was mono-stratal: his stemma was the centre of the

14For example (Kuhlmann, 2013).
15List of abbreviations: FGD, Functional Generative Grammar; MTT, Meaning Text Theory; TDG,

Topological Dependency Grammar, XDG, eXtensible Dependency Grammar.
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theory. However his approach left issues without treatment. FGD presented two
components: a syntactic representation and a tectogrammatical representation.
MTT exhibited a multi-stratal architecture, including structures for deep phonet-
ics, surface morphology, deep morphology and semantics. The notion of stratum
suggests a linear organization of the layers. The idea is still employed in TDG
which is bi-stratal. In the XDG framework layers are not linearly allocated, so
it would be more adequate to speak of modules (or dimensions in the XDG
denomination).

Nodes Another variable, linguistic rather than structural, concerns nodes. Most
theories agree that nodes on dependency trees must contain single words. How-
ever, in one direction, some approaches pad out nodes with phrases, and in the
other direction, some authors decompose words in lexemes granting a deeper
representation.

Grammar Roles. This issue is closely related to the architecture. Mono-stratal
models must establish a set of grammar roles for the whole theory, while complex
models are able to use several groups depending on the nature of each layer.

Shape. This concerns the shape of the syntactic structure. Many theories accept
only tree-shaped structures. However XDG considers also directed acyclic graphs
for semantic representations, see Fig. 1.3(c).

Projectivity. This is, perhaps, the most important issue in dependency grammar.
A linguist draws dependency trees following the grammar roles (which sometimes
is a very intuitive procedure) and then adds a linear order. Linguists speak of
“continuity” to express that this relationmust not break the syntactic substructures
in the linear word order. There are several equivalent formalizations of this idea,
for example: subtrees in the dependency tree must become continuous intervals in
the linear order. Nonetheless, projective structures do not cover the totality of the
sentences of natural language. For this reason other wider kinds of projectivity
have been proposed.

1.2.2 Recent Work in Dependency Grammar

Topological Dependency Grammar (TDG) is a proposal of Duchier and Debusmann
(2001). An analysis in TDG consists of two dependency structures. The first one,
called the syntax tree or ID tree, contains a dependency tree capturing the syntactic
dependencies (edges are labeled as Subject, Object, . . . ) and a non-projective word-
order (i.e.: admitting crossing edges in its representation). The second one, called the
topological tree or LP tree, contains a dependency tree where the edges are now labeled
by semantical roles; it also contains a projective word-order. In addition the LP tree
contains a partial order on the tree. So this model can be considered bi-stratal (where
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every layer is a dependency structure). A number of constraints (captured by principles)
on some parameters like valencies, barriers, climbings, etc, which act simultaneously
on both layers license analysis.

Duchier and Debusmann and others have been developing these ideas in recent
years: (Debusmann and Duchier, 2002a), (Debusmann and Duchier, 2002b), (Duchier,
2004), (Debusmann, Duchier, Koller, Kuhlmann, Smolka and Thater, 2004). In the
later papers more structures (for example semantic directed acyclic graphs) have been
added to account for richer phenomena. In the successor theory eXtensible Dependency
Grammar XDG (Debusmann, Duchier and Kruijff, 2004), layers are not distributed
sequentially and are renamed dimensions. This extension allows semantics to be tackled;
for examplemultiple structures allow the scope ambiguity of quantifiers to be dealt with.
See the evolution in (Debusmann et al., 2005), (Debusmann, 2007a), (Debusmann,
2007b).

In relation to semantic representation, recent works have introduced amodule called
Abstract Meaning Representation (AMR) which proportions a very deep semantic form
which is not obtained directly from the word-order, (Tosik, 2015; Flanigan et al., 2014;
Koller, 2015).

Some other recent works are focused not on the general architecture of a grammar,
but on the dependency structures in themselves, as in for example (Kahane, 1997;
Gerdes and Kahane, 2015; Kahane and Mazziotta, 2015). These works test the limits
of the capability of syntactic representation of dependency trees and word-order and
investigate variations on the theme.

Work of (Kuhlmann andNivre, 2006; Kuhlmann andMöhl, 2007; Kuhlmann, 2010)
investigates how rewriting grammars, such as TAG or LCFRS, can be translated to a
dependency framework, via lexicalization. A grammar is lexicalized if each rewriting
rule contains a non-terminal symbol (called the anchor). For example every CFG can
be lexicalized via the Greibach normal form. A derivation in a lexicalized grammar is
interpreted as inducing a set of dependencies.

Recently dependencies have been attracting attention thanks to the existent treebanks
which permit the computational treatment and metric analysis of natural language.16
However these trends go far from the idea of a underlying grammar and try to explain
language from the direct observation of data. It is thought that such approaches are
going to be more and more influential in coming years and probably the more classical
point of view of language as a grammar and these empirical approaches will coexist.

16Consider in this connection the contributions made in the International Conference on Dependency
Linguistics (Depling 2013, 2015, 2017).
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1.3 The Formalism in a Nut-Shell

In the course of the following chapters we will introduce a new dependency based
grammar formalism. We give here an overview which can be used as a reading guide.
Fig. 1.4 shows the necessary elements in the apparatus and the organization.We explain
them succinctly (key concepts are in boldface, secondary concepts, in italic).

1.3.1 Building Blocks: Syntagmata and Patterns

First of all we present the basic tool kit. Syntagmata and patterns can be considered as
the bricks and mortar in order to construct the modules of the formalism. Syntagmata
are a form to capture algebraically a dependency tree. We set a vocabulary Σ = {John,
hunts, frogs, . . .} and a set of syntactic functions ζ = {Sb,Ob, . . .}. A syntagma is a
mapping S : ζ∗ −→ Σ t {0} where 0 is a null word without phonetic realization. The
free monoid ζ∗, the elements of which are called loci, represent syntactic addresses. For
example the locus Dt ·Sb ∈ ζ∗ is read as “the determiner of the subject”. The mapping
S assigns words of Σ to syntactic addresses in ζ∗. If we make null all the loci except a
finite set then this captures a dependency tree.

In order to capture syntactic constraints we will need to control these syntactic
addresses in some way: patterns do this. We consider the a times Cartesian product of
the monoid ζ∗, that is (ζ∗)a, with the product taken component-wise. This is newly a
(non-free)monoid the elements of which can be though as vectors of syntactic addresses
(or loci). The whole vector represents a link among the components. A pattern is a
product of constants, singletons of (ζ∗)a, and submonoids of (ζ∗)a. So patterns are
certain subsets of vectors of addresses.

1.3.2 Modules: Algebraic Governance and Algebraic Linearization

Our notion of a dependency grammar is as of a set of well-constructed syntagmata or
dependency trees (we call this algebraic governance) and a relation which associates
linear orders to each dependency tree (we call this algebraic linearization).

We establish the algebraic governance part. Well-constructed dependency trees are
captured by a manifold through the patterns. More specifically, a manifold is a set
of syntagmata satisfying an agreement condition throughout a pattern. We will see
that the well-construction of a syntagma can be established by agreeing its addresses
and, furthermore, these agreements (vectors of syntactic addreses) form a pattern. We
only need to formalize the notion of agreement which is simply made by a boolean
condition on the words.

Nowwe consider algebraic linearization. First we notice that the notion of projectiv-
ity can be reread as that the substructures of a dependency tree always form a prosodic
interval in its linearization. So if we take this as a lemma we only have to establish well
what is a substructure. In order to do this we will see again that patterns proportion the
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Figure 1.4: organization of the model and the thesis by concepts (alg.=algebraic).
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key: a subsyntagma is a substructure of the syntagma induced by a pattern. Thus we
obtain a generalized notion of projectivity.

However this does not tell us howwe have to linearize a syntagma.We need a further
element. We will notice that a linearization must behave recursively. If we decompose a
syntagma in subsyntagmata and we specify how these subsyntagmata must be ordered
(this is an arrangement) and we repeat this action for each subsyntagma we will
have established a recursive procedure. This is formalized as a system of recurrence
equations which we call systems of arrangements.

1.3.3 The Model: Algebraic Dependency Grammars and the Bi-Hierarchy

Joining the above modules we already have the formalism: an algebraic dependency
grammar is a manifold together with a linearization given by a system of arrangements.

Notice that patterns sustain both manifolds and linearizations. Since these parts
have the same mathematical essence it will be natural to study their interrelation. More
specifically, a monoidal pattern is a product of constants and submonoids. So every
pattern has at least one description in terms of these basic classes. If we use the symbol
k for constants and the symbol M for submonoids, a pattern which is a product of
constant by submonoid by submonoid by constant by constant by submonoid can be
described comfortably as: kM2k3Mk. In this way we will be able to write for example:

Mk3
�k2M2

to represent the class of languages which havemanifolds using patterns of the formMk3

and which are linearized using patterns of the form k2M2. The higher the complexity
of this pair of descriptions, the higher is the complexity of the related languages. Since
we have in fact two modules in the theory we have two classificatory axes. We call this
a bi-hierarchy.

1.3.4 Applications: Formal Languages and Natural Languages

Once we have defined all the concepts to construct our machinery we will be able to
put it to work and check its capabilities. The above described bi-hierarchy is a broad
hierarchy of languages (which we call the general bi-hierarchy). However we can use
more refined systems of classification, and thus more refined bi-hierarchies. Notably
there is the homogeneous bi-hierarchy. In this bi-hierarchy we have two basic types
to describe patterns, namely: k for constants and H for those monoids the compoments
of which are all equal. We are going to classify several classical formal languages in
the homogeneous bi-hierarchy. By way of a short sample:

CF = k2H�Hk, copy language is in Hk2
�Hk.
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The bi-hierarchy enjoys interesting properties. The main one, called bi-symmetry, states
that if we take the reversed words X<,Y< we obtain the same class:

X�Y =
X<�Y<.

All these properties are going to suggests that there is a hidden class, which we can
name anti-context-free and which we notate −CF given by the class Hk2/Hk. Such
languages contain constructions symmetric to context-free languages.

Regarding natural languages we will firstly analyze several constructions involving
manifolds and linearizations. Although we are not going to construct a complete gram-
mar for a natural language we will claim the viability of this showing some complex
linguistic phenomena.We study them attending structural facts andwe see that linguistic
phenomena can be classified according to certain fragments of an adequate classifi-
catory monoid. Secondly we reanalyze the constructions attending to just the weak
capacity, and we show that the semi-linear constructions can be reduced to the class
k2H/GkG. We show that this class contains context-free languages, anti-context-free
languages (and hence all the copy languages), that they are semi-linear and decidable.
We also see that the manifolds defining languages in this class are locally definable sets
of syntagmata, and hence they are decidable in linear time.

1.3.5 The Model in the Context of Dependency Based Formalisms

The algebraic dependency grammar proposal matches some of the characteristics of
known models and differs from other ones. Let us review the parameters in relation to
our proposal.

Stratification. Since we have decided to separate the dependency structure from
the word-order, algebraic dependency grammar is bi-modular: algebraic gover-
nance + algebraic linearization.

Nodes. In this aspect we follow the majority: one-node-one-word, although syn-
tagmata and manifolds allow other possibilities and we do not exclude other
analyses.

Grammar Roles. We will use ordinary syntactic functions like: subject, object,
indirect object. See section §1.5 and Appendix B.

Projectivity. Our model incorporates projectivity amongst other kinds of lin-
earizations. We will see that projective linearizations are given by patterns of the
formMk, which are only one of many possibilities: k,M, kM,Mk2, . . ..
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1.3.6 Structure of the Thesis

The thesis has a tripartite structure: I Introduction, II Theory, and III Applications, the
contents of each part of which have been already commented. The previous Fig. 1.4
incorporated the chapters dealing with each item. We have deferred to three appendices
contents onwhich themain reading does not depend. AppendixA examines the question
of coordination, which is a controversial point in dependency grammar. Since we are
going to implement some fragments of natural language, it is necessary to configure a
system of syntactic functions, which is donemore systematically in the Appendix B.We
have reserved the Appendix C for some algorithmic questions concerning manifolds.

1.4 Mains Contributions of this Thesis

Let us highlight the main contributions of the thesis. We separate two domains: math-
ematical linguistics and formal language theory.

Mathematical Linguistics

• Algebraic dependency grammar considers trees andword-orderdifferentmod-
ules in the architecture. By treating linearizations separately from trees we can
describe languages with highly free word-order. Systems of arrangements permit
us to do this compactly.

We allow thepossibility of ellipses. This issue is usually avoided because itmakes
some formalisms non-decidable. However under certain conditions ellipses can
be appropriate and can be tractable.

• By introducing an adequate bi-hierarchy, we differentiate structurally linguis-
tic phenomena by their algebraic description. Local constraints, long distance
agreement, non-semi-linear constructions, projectivity, movements, extraposi-
tions or nested and cross-serial dependencies each have a characteristic algebraic
description.

Algebraic dependency grammar permits observance of affinity between lin-
guistic constructions which seem superficially different. For example we see
that the family of West German languages share a same scheme of linearization.

Formal Language Theory

• Anew system for understanding a very large family of languages is presented.
The classical Chomsky hierarchy and the successive hierarchies appended along
the decades are linear in their conception. Bi-hierarchies emerge as more intricate
organizations which permit observation of languages in broader contexts.
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• We discover a new class named anti-context-free languages,−CF, which shares
some properties with context-free languages but which occupies a symmet-
ric place in the homogeneous bi-hierarchy with respect to its homologue. We
prove that −CF contains only semi-linear languages and that all the copy and
respectively languages are anti-context-free. Informally we could say that CF
are languages which are well-parenthesized, while −CF are languages exhibiting
analogous cross-serial dependencies.

There are two aspects which will not treated in the thesis. For reasons of space we
will not address semantics, although some suggestions are made tangentially. Parsing is
a fundamental part of any formal linguistic model. Unfortunately we cannot enter into
the parsing issue itself. We will show, however, that the universal problem for algebraic
dependency languages is decidable.

1.5 Styles and Notation of Dependency Analyses

Styles of Dependency Analysis

Dependency analyses are very intuitive in themajority of cases. Frequently the structure
is suggested by the semantic reading of the sentence.17 However there are some tricky
cases for which linguists do not agree on a unique solution. The main such cases are:

• What must be the structure for coordination? Or even, are bare dependencies
capable of capturing coordination?

• Assuming that dependency structures suffice for coordination, where must coor-
dinators be placed in them?

• Where must prepositions be placed?

• Where must auxiliary verbs be placed?

This thesis does not propose to solve these questions incontestably. We are more
interested in developing the underlying mathematics of dependency than in finding
evidences for one or other style of analysis. These issues are more purely linguistic than
mathematical. Nevertheless in order to display examples we need to adhere to certain
conventions. For this reason let us comment the last points.

• Coordination is perhaps the more delicate and controversial of these points and
we dedicate some space to discuss the pro- and contra-arguments in Chapter 2 and
in Appendix A. In brief, we accept than dependency trees suffice and we assume
a style à la Mel’čuk for coordination, i.e. the conjuncts are chained through a
coordination function, see (Melčuk, 1988).

17Here by “analysis” we mean the general style of analysis, not the specific parsing of a sentence.
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Figure 1.5: (a) some possible positions of the coordinator; (b) possible positions of the prepo-
sition; (c) possible positions of the auxiliary verbs. The enclosed dependency structures corre-
spond to the style chosen in the thesis.

• However once we have assumed the last point, we can still place the coordinators
in several places. See Fig.1.5(a.i), (a.ii) and (a.iii). We will take the bottom
position, Fig. 1.5(a.iii).18 See details in Appendix A.

• Basically there are two possible solutions: either the preposition dominates the
rest of the phrase, or the preposition is governed by the noun; see Fig. 1.5 (b.i)
and (b.ii). The second is the style adapted by The Stanford NLP Group (2017),
although Groß and Osborne (2015) and Osborne (2015) give good evidence in
defense of the other option. We will take the second, (b.ii), however we feel
ourself very tempted to follow the arguments of Groß and Osborne.

• Usually the auxiliary verbs are placed at the top as in Fig. 1.5(c.i) and so they
govern the full verb. The other solution consists in understanding auxiliaries
as complements of the full verb as in Fig. 1.5(c.ii). This issue is related to the
last point, in fact Groß and Osborne advocate solutions such as (c.i), while the
Standford group, (c.ii). Here we follow the most widespread solution (c.i).

Of course the list of tricky cases does not end here. For example where must a
floating quantifier be placed? Or, must interrogative particles be moved in the analyses?
We address such issues in Chapters 10, 11 and 12.

18Although Mel’čuk uses the variant (a.i).
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Remark 1.1. None of the conventions assumed above need to be taken definitively. Our
notion of grammar will be capable of accommodating the several possible alternatives.

Syntactic Functions Notation

Regarding notation for syntactic functions, there exists a growing necessity to unify
a nomenclature for syntactic functions in the treebanks, for example (The Stanford
NLP Group, 2017) or (Charles University, Czech Republic Faculty of Mathematics
and Physics, 2017). Unfortunately these notational systems are inconveniently long for
an algebraic manipulation. In addition we will stipulate a structure on the functions
which is not shared by these treebanks. In consequence we develop our own particular
notational system. TheAppendixB contains tables and lists of examples for consultation
at any moment of the reading. Nevertheless for most of the examples it is not necessary
to know all the system. The following shorter list covers the majority of cases.

Sb — Subject function introduces the subject argument of
a verb when it is dominated by a noun.

Ob — Object function introduces the object argument of a
verb when it is dominated by a noun.

In — Indirect function introduces the indirect object argu-
ment of a verb when it is dominated by a noun.

Pd — Predicate function or attribute function introduces
the attribute of a copulative verb like to be.

Ax — Auxiliary function introduces a verb which is gov-
erned by an auxiliary verb.

ObS — Sentential or Propositional subordinate object func-
tion introduces a subsyntagma representing a subor-
dinate clause which plays the role of a propositional
object. The functions SbS, InS are similar.

Dt — Determiner function introduces the determiner
which is governed by a noun.

Ad — Adjective function introduces an adjective which is
governed by a noun.

Nc — Noun complement function introduces a noun com-
plement mediated by a preposition.

Co — Coordination function chains conjuncts.
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1.6 Mathematical Notation and Background

We have decided to maintain throughout the text a high level of formality. So we have
tried to prove detailedly all the mathematically significant statements. This entails that
some intuitive results have a non-short proof, which can discourage the reader. In order
to facilitate a general reading we have advertised those parts of the text which are not
fully necessary to understand the thesis as a whole. The symbol ♣ indicates that the
item (section, theorem, proof, . . . ) can be skipped.

Algebraic style tends to introduce objects according to some preliminary universal
property which licenses the concept and then a posterior proposition tells how to obtain
a set-theoretical representation of the object. This contrasts with the computer science
style which introduces directly the set-theoretical representation.

We introduce basic mathematical notions and fix notations. Some of these items
will be defined again in the course of the thesis. We have tried to preserve the most
widespread mathematical notation. Subsections titled as “specific notation” are nec-
essary for understanding concepts. For deeper exposition of the concepts we refer the
reader to the cited bibliography.

1.6.1 Set Theory

Conventional notation

We use the symbols and operators ∈,�,∪,∩, ⊂, ⊆ in the usual sense. Sometimes we
will emphasize A ⊂ B as A ( B. A t B means A ∪ B but in addition this notation
indicates that the union is disjoint A ∩ B = ∅. A \ B stands for the difference of sets.
A− x = A \ {x}. The power set of A is the set of all subsets of A and it is notated ℘(A).
The cardinality of a set A is notated |A|.

Given a set A, we notate A × B the Cartesian product consisting of all the ordered
pairs of elements of A and of B which we notate (a, b). An = A × · · · × A where the
product is repeated n times. We call vectors of length n elements (a1, . . . , an) ∈ An. We
call components every ai for i = 1, . . . , n. We omit parenthesis in contact with other
superscript operators such as A∗n = (A∗)n.

A binary relation π between the sets A and B is a subset π ⊆ A× B. A relation f is
a mapping provided that for every x ∈ A there is at most one y ∈ B, called the image,
such that (x, y) ∈ f .

Mappings are notated as f : A −→ B. The image of an element x ∈ A is notated
f (x). The domain of f is the set dom( f ) = {x ∈ A | ∃x ∈ B such that f (x) = y}. The
image is the set im( f ) = f (A) = {y ∈ B | ∃x ∈ A such that f (x) = y}. A mapping is
said to be total when the domain is A, otherwise it is said to be (properly) partial. If we
do not say anything we presuppose that the mapping is total. The identity mapping on
set A is the total mapping idA : A −→ A given by idA(x) = x.
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The canonical set extension of an operator is the extension element-wise. For
example f (A) = { f (a) | a ∈ A} or A · B = {a · b | a ∈ A, b ∈ B}.

A mapping f : A −→ B is injectivewhen for any x, y ∈ A f (x) = f (y) =⇒ x = y.
f is surjective or epijective when f (A) = B. f is bijective when it is injective and
surjective.

Specific notation

When all the n components of a vector are equal we write (a)n = (a, . . . , a). We call
homogeneous power the set (A)n = {(a)n | a ∈ A}. Do not confuse (A)2 = {(a, a) | a ∈
A} with A2 = {(a1, a2) | a1, a2 ∈ A}. In this notation parentheses will always be
maintained in order not to confuse the homogeneous power with an ordinary subscript.
However we avoid the second pair of parentheses in expressions such as ((A)2)∗ for
which we will simply write (A)∗2.

N is the set of natural numbers, which must not to be confused with the blackboard
notation for the types in the classificatory monoid M. We assume by convention that
0 is not a natural number. In general the subindex + in X+ adds to the set X an extra
element which depends on the context. Thus, the following expressions will be very
frequent: N+ = N ∪ {0}, Σ+ = Σ ∪ {0} and ζ+ = ζ ∪ {1}. {a}+ = {a, 0} (or more
informally a+ = {a, 0}). We must not confuse this notation with Σ+ = Σ∗\{0}, see later
§1.6.5. For singletons, i.e. sets with only one element, we frequently write a instead
{a}.

1.6.2 Algebra19

Algebras

An operation of arity t is a mapping + : At −→ A. An algebra is a set A together
with some operations notated (A;+1, . . . ,+n). As is usual we will simply notate A the
algebra when the operations are given by the context.

Let (A;+1, . . . ,+n) and (B;×1, . . . ,×n) be two algebras such that the arity of each
+i and ×i coincides and is ti. A morphism of algebras is a mapping f : A −→ B such
that for each operation +i and ×i, i = 1, . . . , n we have that:

f
(
+i (a1, . . . , ati )

)
= ×i

(
f (a1), . . . , f (ati )

)
,

where ti is the arity of each operation. A morphism of algebras is said to be amonomor-
phism when it is injective, epimorphism when it is surjective, isomorphism when it is
bijective. When two algebras are isomorphic we will notate A � B.

19References: (Grätzer, 1968), (Sankappanavar and Burris, 1981), (Lang, 2004), (Sakarovitch, 2009),
(Basart, 2003).
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Given an algebra (A;+1, . . . ,+n), a subalgebra is a subset B ⊆ A such that all
the operations restricted to B are closed. Every subalgebra is trivially an algebra
(B;+1, . . . ,+n).

Imposing conditions on the operations (associativity, commutativity, . . . ) we obtain
several kinds of algebras. Some examples which we are going to introduce later are:
semigroups, monoids, semilattices, lattices, boolean algebras, . . . .

Relational Algebras

A relational algebra is a generalization of algebras in the sense thatmappings are simply
relations. So a relational algebra is a set A with some relations (A; π1, . . . , πn), πi ⊆ Ati

for any i = 1m, . . . , n. Given two relational algebras (A; π1, . . . , πn) and (B;σ1, . . . , σn),
a morphism of relational algebras is a mapping f : A −→ B such that for each relation
πi, i = 1, . . . , n we have that:

(a1, . . . , ati ) ∈ πi =⇒
(
f (a1), . . . , f (ati )

)
∈ σi,

where ti is the arity of each relation πi and σi. A morphism of algebras is said to be a
monomorphism when f is injective, and epimorphism when it is surjective. However
we have to note that the notion of isomorphism of relational algebras is stronger than
simply algebras. A mapping f : A −→ B is a isomorphism of relational algebras when
it is bijective and:

(a1, . . . , ati ) ∈ πi ⇐⇒
(
f (a1), . . . , f (ati )

)
∈ σi .

When two relational algebras are isomorphic we will notate A � B.
One of the most immediate relational algebras are graphs. A directed graph is a

pair (V, E) , E ⊆ V ×V , where V are called vertices and E edges. We will suppose that
notions such as path, cycle, forest, tree, . . . are well known. There is abundant literature
on the issue.

More in general imposing conditions on the relations (reflexivity, transitivity, . . . )
we obtain several kinds of relational algebras. Some examples which we are going to
introduce later are: graphs, preorders, partial orders, automata, . . . .

1.6.3 Order Theory20

Orders

A preorder is a set X together a binary relation ≤ ⊆ X × X , notated (X; ≤), i.e. a
relational algebra, satisfying that:

(i) (reflexivity) ∀x ∈ X, x ≤ x;

20References: (Davey and Priestley, 2002), (Birkhoff, 1940).
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(ii) (transitivity) ∀x, y, z ∈ X, x ≤ y, y ≤ z =⇒ x ≤ z.

When in addition it satisfies that:

(iii) (antisymmetry) ∀x, y ∈ X, x ≤ y, y ≤ x =⇒ x = y.

we say that the preorder is a partial order or that X is a poset. When a partial order
satisfies that:

(iv) (totality) ∀x, y ∈ X, x ≤ y or y ≤ x,

it is called a total order.
When x ≤ y and x , y we write x < y. Two elements x, y ∈ X are called

comparable iff x ≤ y or y ≤ x.
The transitive closure of a relation π ⊆ X × X is the least relation containing π

which is transitive. The reflexive closure is defined similarly.
A way to show an order (X; ≤) is through a Hasse diagram which consists in a

graph where vertexes are the set X and edges are pairs (x, y) such that x < y but there is
no any other z ∈ X such that x < z < y. So a Hasse diagram only contains the essential
relations; the remaining relations can be deduced by transitive closure.

An order morphism, also called order homomorphism, isotonic mapping or mono-
tonic mapping is a mapping f : (X; ≤) −→ (Y ; ≤′), such that if x ≤ y =⇒ f (x) ≤′
f (y), for any x, y ∈ X .

Semi-lattices and Lattices

Let (X; ≤) be a partial order and letY ⊆ X . An element x ∈ X is an upper bound ofY iff
y ≤ x for any y ∈ Y . A Lower bound is defined dually.We define the suppremum sup(Y )
as the least upper bound of Y , provided that it exists. Dually we define the infimum,
inf(Y ).

We say that (X; ≤) is an upper semilattice when for each x, y ∈ X , sup({x, y})
exists. This defines an operation in X denoted sup(x, y). Dually when the operation
inf(x, y) exists, we say that (X; inf) is a lower semilattice. When both operations occur
we have a lattice, (X; sup, inf).

When sup(X) exists, we say that the semilattice is upper bounded. The bound is
called top. Dually when inf(X) exists, we say that the semilattice is lower bounded. The
bound is called bottom. Another common notation for sup(x, y) and inf(x, y) are join
x g y and meet x f y. The operations in a lattice (X; g, f) satisfy for all x, y, z ∈ X:

(i) x ≤ y ⇐⇒ x f y = x ⇐⇒ x g y = y;

(ii) (idempotency) x g x = x and x f x = x;

(iii) (associativity) (x g y) g z = x g (y g z) and (x f y) f z = x f (y f z);
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(iv) (commutativity) x g y = y g x and x f y = y f x;

(v) (absorption) x g (x f y) = x and x f (x g y) = x.

When in addition we have an upper and a lower bound, usually notated > and ⊥, the
lattice (X; g, f,>,⊥) is called complete and it satisfies that for all x ∈ X:

(vi) (bounds absorption) x g > = >, x f > = x, x g ⊥ = x, and x f ⊥ = ⊥.

We say that the lattice is distributive when for all x, y, z ∈ X:

(vii) (distributivity) x g (y f z) = (x g y) f (x g z) and x f (y g z) = (x f y) g (x f z).

Finally if we can add a unary operator called complement ·{ satisfying for any x ∈ X:

(viii) (complement) x g x{ = 1 and x f x{ = 0;

then we call (X; g, f,>,⊥, ·{) a boolean algebra.
A ∪∩-combination of sets is a finite combination of intersections and unions of the

sets. The ∪∩-closure of a set X (of sets) is the least set closed by ∪∩-combinations
containing X , or equivalently, the lattice generated by X .

1.6.4 Monoids and Free Monoids21

Monoids

A semigroup is a set M equipped with a operation, (M;+), such that it is associative:
∀x, y, x ∈ M , (x + y) + z = x + (y + z). A monoid is a semigroup with a distinguished
element called identity or neutral elementwhich is notated (M;+, 0) in additive notation
or (M; ·, 1) in multiplicative notation, and satisfying that ∀x ∈ M , x + 0 = x = 0 + x
in the additive notation (or x · 1 = x = 1 · x in multiplicative notation). A monoid is
called abelian iff the operation is commutative.

A submonoid is a subset N ⊆ M such that the operation of the monoid restricted
to N is closed and it contains the identity. Given a subset of a monoid G ⊆ M we
notate 〈G〉 the least submonoid of M containing G. A subset of a monoid G ⊆ M is a
generator of M iff 〈G〉 = M . We say that a monoid M is finitely generated iff it has a
finite generator set. All the monoids considered here will be finitely generated.

A morphism of monoids M and N (or homomorphism) is a mapping f : M −→ N
such that for any x, y ∈ M , f (xy) = f (x) f (y). A morphism of monoids is determined
by the image of a generator set of M .

21References: (Sankappanavar and Burris, 1981), (Lang, 2004), (Pin, 2016), (Sakarovitch, 2009).
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Free Monoids

A monoid M is called free on X iff given a mapping ν : X −→ M for each monoid
N and for each mapping f : X −→ N there is a unique homomorphism g : M −→ N
such that g ◦ ν = f , i.e. we have the commutative diagram:

X

ν   

f // N

M

g

OO

The mapping ν is necessarily injective and we have that M = 〈ν(X)〉. This is the
bare algebraic characterization. However in computer science sometimes a more useful
notion is string. An alphabet A is a finite set the elements of which are called letters. A
string of length t is a tuple (a1, . . . , at) ∈ At . The product of two strings is defined as:

(a1, . . . , at) · (b1, . . . , bs) = (a1, . . . , at, b1, . . . , as).

An identity ε, called the empty string is introduced by convention:

ε · (a1, . . . , at) = (a1, . . . , at) = (a1, . . . , at) · ε, ε · ε = ε.

The set of strings over A is notated A∗. It can be proved that A∗ with the product of
strings is a (finitely generated) free monoid and that for any free monoid M there is
an alphabet A such that M � A∗. The isomorphism is given by a bijection between
generators of M and elements of A which are the generators of A∗.

Given a subset of strings B ⊆ A∗, B∗ = 〈B〉 with the product of strings. The operator
·∗ is called Kleene star. The plus operator is defined as A+ = A∗ \ {ε}.

A free monoid A∗ satisfies the cancellation laws:

x · y = x · z =⇒ y = z, x · y = z · y =⇒ x = z.

for any x, y, z ∈ A∗. Amain property of A∗ is that for any a1, . . . , an ∈ A and b1, . . . bm ∈
A

a1 . . . an = b1 . . . bm ⇐⇒ n = m and ai = bi ∀i = 1, . . . , n.

In other words any element of a free monoid factorizes in a unique form on the
generators.

Specific Notation for Monoids

Given the uniqueness of the factorization of free monoids, we also call the generators
prime factors. The length of x ∈ A∗ is notated |x |. The number of occurrences of a
letter a ∈ Σ is notated |x |a or sometimes #a(x).
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We are going to use throughout two freemonoids ζ∗ andΣ∗. Elements in ζ are named
syntactic functions and we will use preferably Greek letters α, β, γ, . . . for abstract cases
and the abbreviations Sb,Ob, In, . . . for grammatical roles (syntactic functions); in both
cases we will use the multiplicative notation.

Regarding Σ, when we deal with classical formal languages, its elements will be
called letters, we will use the multiplicative notation and we will use preferably roman
letters Σ = {a, b, c, . . .}. However when we deal with natural languages, elements in Σ
will be called words or lexical items, Σ = {John, hunts, frogs, . . . } and we will use
additive notation.22

1 is the identity for the multiplicative notation and 0, for additive notation, so in
general we are not going to use other common symbols like ε, λ or Λ for the empty
word. With this, expressions looks as:

α2 ·β ·γ ∈ ζ∗,
Sb·Ob2 ∈ ζ∗,
a2b2c2 ∈ {anbncn | n ∈ N+} ⊆ Σ∗,

John + hunts + frogs ∈ Σ∗.

The direct sum of two monoids M and N is the set M × N with the new operation
taken component-wise: (x, y) · (x′, y′) = (xx′, yy′). We write them M ⊕ N in order
to notice that the operation is taken component-wise. We also use this notation for
singletons: if x, y ∈ M , x ⊕ y = (x, y), being both notations possible. For repeated sums
we notate Mn =

⊕n
i=1 M . We avoid parenthesis in (ζ∗)n = ζ∗n.

We have defined that 〈G〉 is the submonoid generated by G. Notwithstanding this
notation, when the monoid is ζ∗n and ξ ⊆ ζn∗ we will use the notation ξ∗ instead of
〈ξ〉. This operator is then a generalization of the Kleene star to monoids of several
components. We reserve this notation exclusively for these submonoids in ζ∗n. For
instance, considering the alphabet ζ = {α, β} we have the submonoids of ζ∗2:

{(1, α), (1, β), (α, 1), (β, 1)}∗ = 〈(1, α), (1, β), (α, 1), (β, 1)〉 = (ζ∗)2 = ζ∗2,
(α, β)∗ = 〈(α, β)〉 = {(αn, βn) | n ∈ N+},

{(α, β), (1, α)}∗ = 〈(α, β), (1, α)〉 = {(αn, x) | n ∈ N+, x ∈ Σ∗, |x |β = n}.

Notice that with this notation ζ∗n = (ζ∗)n = (ζn)∗.

22The term “word” is also used for the strings in formal language theory. In the context of formal
languages we will use the term “letters” for the elements in Σ and “strings” for the elements in Σ∗. In the
context of natural languages we will use the term “words” for the elements in Σ and term “sentences” for
the elements in Σ∗. Finally the elements in ζ will be called “syntactic functions” and the elements in ζ∗,
“loci”.
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1.6.5 Formal Languages, Automata Theory and Theory of Computation23

Formal Languages

A language L is a subset of Σ∗. See page 301 for a list of languages appearing in the
thesis. Given an x ∈ L, xR stands for the reverse string. Operations on languages are
the usual L ∩ L′, L ∪ L′, L · L′, LR, L∗, L+, . . ..

A language L ⊆ Σ∗ and a language of L′ ⊆ Σ′∗ are said to be similar (sometimes it
is said that L is a copy of L′) iff there is an isomorphism of free monoids f : Σ∗ −→ Σ′∗

such that f (L) = L′. That is L and L′ are the same language up to renaming of letters.
A class of languages L is a set of languages which is closed under similarity. That

is, if L ∈ L and f is an isomorphism then f (L) ∈ L. Sometimes a class is also called
a family of languages.

Classes of languages are notated with sans serif typography, RG,CF,CS, . . ., while
classes of grammars are notated with a roman one, RGG, CFG, CSG, . . . . See page 303
for a list of classes and acronyms appearing in the thesis.

A context-free grammar is a tuple G = (N, Σ, P, S) such that: Σ and N are disjoint
alphabets; Σ are the terminal symbols or letters or vocabulary; N are the non-terminal
symbols or variables. P ⊂ N × (N t Σ)∗ is a finite set of productions or rewriting
rules; and S ∈ N is the start symbol. Productions are usually notated by X → Y , but
sometimes in order to reserve the arrow for other meanings, we use the Backus–Naur
form, X ::= Y . Equally instead of the start symbol S we will use the symbol Start.
x ⇒ y means that the string y is derivable in one step from y;

∗⇒ denote the reflexive
and transitive closure. Notation for other grammars will be presented in the course of
the text following similar notations.

Automata Theory and Theory of Computation

For general concepts we have followed (Barton et al., 1987), (Hopcroft and Ullman,
1979) and (Hopcroft et al., 2001), and for a more algebraic style (Berstel, 1979), (Pin,
2016) and (Sakarovitch, 2009). We will suppose well-known fundamental notions on
computational theory, for which we take as reference (Arora and Barak, 2009).

1.6.6 Categories and Functors24

A category C consists in:

(i) a set of objects notated Ob(C);

23References: (Barton et al., 1987), (Hopcroft et al., 2001), (Hopcroft and Ullman, 1979), (Berstel,
1979), (Pin, 2016), (Sakarovitch, 2009), (Kelley, 1995), (Alfonseca Cubero et al., 2007), (Arora and
Barak, 2009).

24References: (Adámek et al., 2004), (Lang, 2004).
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(ii) for any pair of objects X,Y ∈ Ob(C), a set HomC(X,Y ), called homomorphisms
from X to Y ;

(iii) for any three objects X,Y, Z ∈ Ob(C), a mapping

HomC(X,Y ) × HomC(Y, Z) −→ HomC(X, Z),

which is named composition. The image of this mapping of the pair ( f , g) is
notated g ◦ f , o simply g f .

In addition the following axioms must be satisfied:

(associativity) the composition is associative: if f ∈ HomC(X,Y ), g ∈ HomC(Y, Z)
and h ∈ HomC(Z,W), then h ◦ (g ◦ f ) = (h ◦ g) ◦ f ;

(identities) for any object X ∈ Ob(C), there is an element idX such that idX◦ f = f
and g ◦ idX = g, for any f ∈ HomC(Y, X) and for any g ∈ HomC(X,Y ).

Examples of categories are the category of sets with usual mappings, the monoids and
their morphisms. Similarly other elementary structures such as groups or rings form
a category. Homomorphisms are not necessarily mappings in the classical set theory
sense.

Let C and C′ be two categories. A functor, F : C −→ C′ is a mapping which
for each object X ∈ Ob(C) assigns an object F(X) ∈ Ob(C′), and which for each
morphism f : X −→ Y ∈ HomC(X,Y ) assigns a morphism F( f ) : F(X) −→ F(Y ) ∈
HomC′

(
F(X), F(Y )

)
. In addition it must be satisfied that:

(i) F(idX) = idF(X);

(ii) F( f ◦ g) = F( f ) ◦ F(g), for any homomorphisms f , g.

A functor is called faithfull provided that all the hom-set restrictions

F : HomC(X,Y ) −→ HomC′
(
F(X), F(Y )

)
are injective. When they are surjective the functor is called full. A functor is isomorphic
when it is faithful, full and bijective on the objects.
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2
Syntagmata and their Adequacy

The present and the following chapter are devoted to introduce the most basic
notions, namely syntagmata and monoidal patterns. They can be thought of re-
spectively as the bricks and the mortar with which we will construct the elements
of the whole theory.
In this chapter we introduce syntagmata which is nothing more than a simple
mapping from the free monoid generated by the set of syntactic functions to the
vocabulary. So a syntagma assigns words to strings of syntactic functions, which
amount to syntactic addresses.
The graphical representation of a syntagma is a tree with the edges labeled with
syntactic functions with the peculiarity of being functional. This property means
that given a node and a syntactic functions there is at most one node governed by
the node through the function. We give linguistic arguments in order to motivate
tree-shape and functionality.

2.1 Definitions

Definition 2.1. Given a (possibly empty) finite set ζ called syntactic functions, we call
the elements of the free monoid ζ∗ loci. Given a non-empty finite set Σ which we call
vocabulary, we notate Σ+ = Σ ∪ {0} where 0 is an extra element 0 < Σ called the null
word.

We keep as far as possible the letters ζ for the syntactic functions and Σ for the
vocabulary. We are going to use free monoids ζ∗ and Σ∗. 1 is the identity of ζ∗ and
0, the identity of Σ∗. We will use the multiplicative notation for ζ∗, while for Σ∗ we
will use the additive notation. Since Σ represents the vocabulary, the languages are
taken from Σ∗ with the additive notation, however we make an exception for classical
formal languages, like {anbncn | n ∈ N∪{0}} for which we prefer preserve the classical
multiplicative notation.

Definition 2.2. Given a mapping S : ζ∗ −→ Σ+ we call its support the set

Spt(S) = {x ∈ ζ∗ | S(x) , 0}.

33
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A syntagma with syntactic functions ζ and vocabulary Σ is a mapping S : ζ∗ −→ Σ+

such that its support is finite, |Spt(S)| < ∞. We call the size or the order of a syntagma
S the cardinality of the support, |Spt(S)| and we write |S | = |Spt(S)|.

We notate Synt Σ,ζ the set of syntagmata S : ζ∗ −→ Σ+. When these sets are given
by the context we simply write Synt .

The locus Dt · Sb, say, must be read as the determiner of the subject or the locus
Md · Ad · Ob must be read as the the modifier of the adjective of the object. In the
framework of formal languages syntactic functions will be notated generally by Greek
letters, the more usual being: α, β, γ, λ, ϕ, ψ.

Example 1. A syntagma. Let the syntactic functions be ζ = {Sb,Ob,Dt,Ad} and let the
vocabulary be Σ = {cup, dirty, soldier, the, washed, young}. Let S be the mapping

S(x) =



washed if x = 1;
soldier if x = Sb;
cup if x = Ob;
the if x = Dt ·Sb;
young if x = Ad ·Sb;
the if x = Dt ·Ob;
dirty if x = Ad ·Ob;
0 otherwise.

S is a syntagma with order |S | = 7 and Spt(S) = {1, Sb,Ob,Dt ·Sb,Ad ·Sb,Dt ·Ob,Ad ·Ob}.

Definition 2.3. We call atomic syntagma, syntagmata with a unique letter a , 0 at the
root. We notate them by a•, that is:

a•(x) =
{

a if x = 1;
0 otherwise.

We call null syntagma the syntagma everywhere null, S(x) = 0, ∀x ∈ ζ∗. We also notate
them by 0•, although we do not consider null syntagma as atomic.

Definition 2.4. We introduce the following kit of basic concepts given a syntagma S:

(i) We say that a locus ϕ ∈ ζ∗ is an ellipsis iff S(ϕ) = 0, but S(xϕ) , 0 for some
x ∈ ζ∗ with x , 1. We notate Ell(S) the set of ellipses of S. We say that S is
non-elliptic iff there are no ellipses in S, that is Ell(S) = ∅. We notate Nell the
set of non-elliptic syntagmata.
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(ii) We say that a locus is definitively null when it is null but not an ellipsis.

(iii) The envelope, notated Env(S), is the set of loci which are not definitively null.

(iv) A child of ϕ is a locus αϕ with α ∈ ζ . We also say that ϕ governs αϕ.

(v) A leave is a non-null locus such that all its children are definitively null. The set
of leaves is notated Lvs(S).

(vi) The depth of a syntagma depth(S) is the maximum length of its leaves.

(vii) Given two locus ϕ, ψ ∈ ζ∗, we say that ϕ dominates ψ, and we write ϕ � ψ (or
ψ � ϕ) when ϕ is a suffix of ψ, i.e. exists a φ ∈ ζ∗ such that ψ = φϕ.

The term “ellipsis” is reminiscent of linguistic ellipsis (or gapping). In order to
indicate the presence of an ellipsis in a sentence we will use the usual symbol �,
however in the syntagma we will use the null word.

Definition 2.5. Given a syntagma S and a subset Γ ⊆ ζ∗ we define the syntagma
restricted to Γ as

SΓ(x) =
{

S(x) if x ∈ Γ;
0 otherwise.

Notice that Spt(SΓ) = {x ∈ ζ∗ | SΓ(x) , 0} = {x ∈ ζ∗ | x ∈ Γ and S(x) , 0} =
Spt(S) ∩ Γ.

2.2 Graphical Representation of a Syntagma

To represent graphically a syntagma we can use as base the Cayley digraph of a binary
operation. The Cayley digraph of a free monoid ζ∗ is the directed graph (V, E) with
vertexes V = ζ∗ and edges E = {(x, λx) | x ∈ ζ∗, λ ∈ ζ }. Edges (x, λx) are labeled with
the function λ. We call this the right-handed representation. Since the monoid ζ∗ is
free, the Cayley digraph is always tree-shaped (this can be proved using the cancellation
laws of free monoids).

Now we label the vertices according to the map S with the convention of not
picturing definitively null loci, that is, only the envelope Env(S). This will be the
standard representation of a syntagma in the sequel. Fig. 2.1(a) shows a syntagma
with all the loci depicted; Fig. 2.1(b) shows the standard representation, i.e. without
definitively null loci; Fig. 2.1(c) shows the graphical representation of the syntagma
from the last example.

The set of loci ζ∗ can be interpreted as a set of addresses. The reading of a locus
Dt · Sb (the determiner of the subject) gives a path from the locus to the root of the tree.

The notions just introduced depend on the handedness of the products. One can
define similarly co-elliptic locus ϕ satisfying S(ϕ) = 0, but S(ϕx) , 0 for some x ∈ ζ∗
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Figure 2.1: (a) a syntagma where all loci are represented, including null loci; (b) standard
representation for a syntagma (definitively null loci are omitted, only the envelope); (c) Repre-
sentation of the syntagma from the Example 1.

Figure 2.2: (a) an example of a syntagma S with the set of loci Γ = ζ∗ ·ObS encircled; (b) the
restricted syntagma SΓ.

with x , 1. ϕ is a co-definitively null locus when it is null but not a co-ellipsis. Similarly
we can establish co-leaf and co-depth. As we are going to see these co-notions are not
geometrically so immediate as the corresponding notions which we will use in the
majority of situations. However in some situations the co-notions will be helpful.

Regarding the graphical representation, note thatwe could have chosen the other side
to define edges: {(x, xλ) | x ∈ ζ∗, λ ∈ ζ } (left-handed representation). For graphical
representations we always use the definition before, but this handedness will play a
prominent role in the Thesis.

2.3 Some Immediate Properties of Syntagmata

Lemma 2.6. For every syntagma S with size s, depth d, and e ellipses over the set of
functions ζ , such that |ζ | = m > 1, we have the inequalities:

d + 1 ≤ s + e ≤ md+1 − 1
m − 1

.

When m = 0 then we have that e = d = 0 and s ≤ 1. When m = 1 then s + e = d + 1.
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Proof. When m = 0, S is atomic and then e = d = 0 and s ≤ 1. Suppose m ≥ 1.
First we consider the case e = 0. When m = 1 it is trivial that s = d + 1. When
m > 1 the inequalities come from counting vertices of the thinnest tree and the widest
tree of its graphical representation, both with a fixed depth d. That is, d + 1 and
m0 + m1 + · · · + md = md+1−1

m−1 , respectively. For the elliptic case e > 0 we can imagine
that we relabel the ellipses by a new extra letter. This new syntagma has size s + e. �

Lemma 2.7. The dominance relation � is a partial order.

Proof. Trivial by the neutral, associativity and cancellation laws of free monoids. �

Lemma 2.8. Given a syntagma S, we have that:

(i) Spt(S) ⊆ Env(S);

(ii) Env(S) = {x ∈ ζ∗ | y � x, y ∈ Lvs(S)} = {suffixes of y | y ∈ Lvs(S)};

(iii) Env(S) = Spt(S) t Ell(S). Then, S is non-elliptic iff Env(S) = Spt(S).

Proof. (i) Trivial: if a locus is non-null then it is not definitively null. (ii) The second
equality is trivial. Consider the first equality (⊆). If x ∈ Env(S) then x is not definitively
null, whereby either x is a leaf or there is a leaf under it, say y � x. So x ∈ {x ∈ ζ∗ | y �
x, y ∈ Lvs(S)}. Consider the other direction (⊇). y is a leaf iff it is non-null and all its
children are definitively null. Then any locus x such that y � x, cannot be definitively
null (otherwise y would be null). (iii) We can decompose Env(S) as:

Env(S) = {x ∈ ζ∗ | x is not definitively null and S(x) , 0}
t {x ∈ ζ∗ | x is not definitively null and S(x) = 0}
= Spt(S) t Ell(S).

S is non-elliptic iff Ell(S) = ∅, hence the equivalence. �

Remark 2.9. Notice that given the support Spt(S), the set Env(S) is obtained by suffix clo-
sure. For non-elliptic syntagmata, they correspond to the notion of tree domain (although
sometimes tree domains are taken with an additional condition which orders lexicographi-
cally the set ζ∗). Thus syntagmata are a generalization of tree domains with some possible
gaps.

For a computational implementation we need to take a finite version of a definition
of a syntagma. Given a syntagma we only need to deal with the mapping restricted to the
support. Hence a syntagma in computational terms is indeed a pair (A, S) where A is a
finite subset A ⊆ ζ∗ and S is a mapping S : A −→ Σ.



38 2.4. Why Are Syntagmata Suitable? Linguistic Considerations

2.4 Why Are Syntagmata Suitable? Linguistic Considerations

Syntagmata are very simple algebraic structures which in the end represent trees with
the edges labeled by functions and nodes labeled by a vocabulary; notice in addition that
two edges originating from the same node cannot be labeled by the same function. In
other words, given a locus and a syntactic function there is at most one node governed.
This property is called functionality.1

These two properties, tree-shape and functionality, determinate totally the character
of a syntagma, as we are going to prove later in the mathematical considerations.
However, before this, let us make some linguistic comments.

Tree-shape

In a semantic representationwhat is sought is representing only the argumental relations
involved in a sentence without worrying about morphology or word-order and other
syntactic constraints. Those nodes which represent the same real referent create the
apparition of co-governed nodes (Mary in the example Fig. 2.3(a)). In terms of graphs
we are dealing with directed acyclic graphs, or more general graphs.

However we are not going to need such representations. The following chapters
should prove that the unique kinds of structures really necessary to account for gram-
maticality are dependency trees for a syntactic representation.

Let us show a simple example of this. We suppose a simplified model with three
representations: semantic, syntactic and word-order.2 Consider the pair of sentences in
French:

(1) Marie
Mary

veut
wants

chanter.
to-sing

/
/
Marie
Mary

veut
wants

que
that

Jean
John

chante.
sing

‘Mary wants to sing. / Mary wants John to sing.’

In the semantic representation of the first sentence the subject of the main clause and the
subordinate clause points to the same element, Fig. 2.3(a). In a syntactic representation
the second subject is gapped, Fig. 2.3(b). Finally Fig. 2.3(c) shows a linear dependency
tree for the word-order.

1The term “functionality” was suggested by an anonymous referee of (Cardó, 2016).
2Of course, usual formalisms enrich this architecture with more modules or layers. For example in

Meaning Text Theory (MTT) (Melčuk, 1988) seven layers are considered: one for a semantic represen-
tation, two for syntactic representation and the rest for the morphological representation. In Topological
Dependency Grammar (TDG) (Debusmann and Duchier, 2002b) four modules are postulated, namely:
syntax, topology, semantic arguments, and semantics. Later, these modules are called dimensions. See
eXtensible Dependency Grammar (XDG) (Debusmann, Duchier and Kruijff, 2004; Debusmann et al.,
2005).
However the above is a simplified example in order to illustrate that only dependency trees and a

word-order are necessary to consider the grammaticality.
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Figure 2.3: (a) semantic representation, (b) syntactic representation, and (c) word-order repre-
sentation of the sentenceMarie veut chanter.

In Romance languages the form of the subordinate verb varies according the pres-
ence or absence of the subordinate subject. In the first sentence the subordinate verb
must be in infinitive form, chanter. In the second sentence where the subject of the
subordinate clause is different from the main clause the verb takes a finite form, chante.
We do not need the semantic representation in order to capture this. We only need to
stipulate that subordinate verbs without subject must be in infinitive form, otherwise
they must be in finite form (and, in particular, the verb must be in subjunctive and it
must agree in number with the subordinate subject). This stipulation can be made in a
tree-shaped dependency graph.

This is a declarative manner of understanding grammaticality. However there is an
alternative, procedural, explanation. One begins from a semantic representation and
then the syntax-semantic interface operates adequate changes: if both subjects coincide
then we delete the second subject and we put the verb in infinitive. Ultimately, the two
interpretations need not be incompatible, indeed they should coincide.3

The main propose of this thesis is giving a dependency based formalism to account
for grammaticality, i.e. providing a grammar which defines a set of correct sentences
of natural language. We do not try to study anaphora mechanisms or transformations
of a semantic representation preserving the meaning (Melčuk, 1988). Neither are we
concerned in the logical readings of a sentence or any other properly semantic question.4
Since we are interested just in the problem of grammaticality trees should suffice. All
in all, this assumption can be paraphrased as:

Claim 1. The problem of grammaticality is a syntactic problem.

That is, we do not need to know to whom a pronoun refers to know that a sentence

3Let us show that this is not surprising through a very naive mathematical metaphor. Consider the
set of even numbers, say E . One can describe this set “declaratively” as E = {x ∈ N | 2 divides x},
or through a mapping (that is through an “interface”) f : N −→ N, f (x) = 2x. E is the image of f ,
E = im f . Both coincide.

4These questions remain for future study, but here we deal only with the problem of grammaticality.
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is grammatical and we do not need understand all the possible logical readings of a
sentence to know that the sentence is well-formed.

This is not exempt of philosophical consequences. For instance, assuming thismeans
that a native English speaker can become a Chinese corrector without understanding
anything of Chinese at all. Such a person can correct a Chinese text but he cannot
establish a Chinese conversation. 5 However our interests are focused rather in effective
procedures and mathematical structures than in philosophical discussions.

Functionality

A first objection to functionality could be made through sentences such as:

(2) a. Mary left yesterday at five.
b. This girl, Mary, left yesterday.

A possible interpretation is that, for example in the case (2a), yesterday and at five are
both adjuncts of time and that they must be placed in a same level in the dependency
tree, as in Fig. 2.4(a.i). Similarly for the sentence (2b) two subjects could be observed:
This girl andMary, Fig. 2.4(b.i). Nevertheless, we opine that these possible duplications
of functions must be interpretated hierarchically. In the first example, the constituent
at five specifies a part of the day, so we can interpret it as a noun complement which
complements yesterday, as in Fig. 2.4(a.ii).6

Similarly the second sentence is interpreted better as Fig. 2.4(b.ii), where the noun
complement is specifying the name of the girl. One can paraphrase the sentence as This
girl, whose name is Mary, left yesterday.

Functionality is closely related to the issue of coordination which is a controversial
point in the dependency based approaches, whereby we devote the Appendix A to the
subject. Although the discussions and argumentations are placed in that appendix, let
us to comment rapidly here the main issues.

The problem of coordination arises already from the modern foundation of depen-
dency grammar, Eléments de syntaxe structurale (Tesnière, 1959, pg. 323-356). One is
tempted to use the possibility of non-functionality to form groups of conjuncts. How-
ever when we have a combination of different coordinators this strategy is insufficient.

5This could be considered the linguistic analogue of Searle’s Gedankenexperiment (Searle, 1980). In
our Chinese room we judge the claim syntax-suffices-for-grammaticality instead of the original Searle
thought experiment which judges the claim Turing-machines-suffice-for-human-intelligence.

6An argument for this comes from considering the same sentence in a Romance language. Such
languages place generally the complements at the right. Although both sentences are grammatical, the
first option prevails, which suggests that a las cinco is a complement of ayer.

(3) María
Mary

se
her-self

marchó
left

ayer
yesterday

a
at
las
the

cinco.
five

/
/

?María
Mary

se
her-self

marchó
left

a
at
las
the

cinco
five

ayer.
yesterday

‘Mary left yesterday at five. / Mary left at five yesterday.’
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Figure 2.4: (a.i) non-functional and (a.ii) functional analysis of the sentenceMary left yesterday
at 17:00; (b.i) non-functional and (b.ii) functional analysis of the sentence This girl, Mary, left
yesterday.

Figure 2.5: (a) Tesnière’s solution for coordination; (b) Tesnière’s solution with a non-tree-
shaped underlying dependency tree.

Tesnière’s solution consisted in linking conjuncts; see for example Fig. 2.5(a). Never-
theless this is not yet a pure dependency structure since it contain an extra relation.
In fact some authors claim that a bare dependency structure does not suffice in order
to capture coordination whereby the structure must be enriched; see in this respect
(Kahane, 1997; Lison, 2006).

However, enriching structures has some inconveniences. We just comment two
of them. Firstly, some styles of coordination lead to a non-tree shaped analysis, see
Fig. 2.5(b), even for a syntactic representation, which makes the linearization less
direct.7 Secondly, adding a supplementary structure makes more complex the mathe-
matical and linguistic treatment.

For these and other reasons (see Appendix A) we advocate for a pure dependency-
tree solution affine to the (Melčuk, 1988) style. Such a solution consist in choosing one
of the conjuncts and then concatenating the rest of the conjuncts by a syntactic function,
say Coor. See Fig. 2.6(a) and a variant of this solution in Fig. 2.6(b) and (c) which uses
syntactic functions in order to differentiate kinds of coordination and which is the style

7Although not impossible. Kuhlmann and Jonsson (2015) consider linearizations also for non-tree-
shaped dependency graphs.
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Figure 2.6: (a) Mel’čuk’s solution for coordination; (b) a variant of Mel’čuk’s solution which
differentiates kind of coordination; (c) combination of different coordinations in Mel’čuk’s
solution.

used in the thesis.8 The result is a tree-shaped and functional dependency structure.

2.5 ♣Why Are Syntagmata Suitable? Mathematical Considerations

As we have said the two properties, tree-shape and functionality, characterize syntag-
mata. First of all we need to formalize both notions. A usual mathematical framework
for dependencies is the language of graphs.

Definition 2.10. We define a dependency graph as a graph G = (V, A) with vertexes V
and edges A ⊆ V × V together with a pair of mappings f : V −→ Σ and g : A −→ ζ
which label vertices with letters in Σ and edges with syntactic functions in ζ . We notate
these G = (G, f , g).

Then two dependency graphs G = (G, f , g) and G′ = (G′, f ′, g′) are isomorphic,
notated G � G′, iff there is a bijective mapping Ψ : V −→ V ′ such that it is a
isomorphism of graphs and it commutes with the mappings f , f ′ and g, g′.

A dependency graph is tree-shaped iff the underlying graph is. We write: x
α→ y

iff there are two vertices x, y ∈ V such that g(x, y) = α. Then a dependency graph is
functional iff for any vertices x, y, y′ ∈ V and for any syntactic function α ∈ ζ :

x
α−→ y, x

α−→ y′ =⇒ y = y′.

We call a path a configuration of the form: x1
α1−−→ x2

α2−−→ · · · αt−2−−−→ xt−1
αt−1−−−→ xt .

Similarly to the practice in automata theory we notate this x1
αt ···α1−−−−−→ xt with αt · · · α1 ∈

ζ∗. The reversed order of the string of syntactic functions is just a convention.
Then it is easy to prove that tree-shaped and functional dependency graphs are

syntagmata, up to notations. More formally, for each functional dependency tree G

8The position of the coordinators is not shown in order to exhibit the bare structure of the functions
chaining the conjuncts.
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with root u we define the syntagma SG : ζ∗ −→ Σ+:

SG(ϕ) =
{

f (x) if u
ϕ
−→ x;

0 otherwise.

This syntagma is well defined and furthermore:

G � G′ ⇐⇒ SG = SG′ .

This means that representation of functional dependency trees as syntagmata is faithful:
no functional tree is lost. We know that for trees, for every node there is a unique path
from the root to the node. In addition if the dependency tree is functional this path can
be described by a string, or locus, in ζ∗, since a syntactic function cannot appear twice
as an immediate descendant of a node. Since this construct does not take account of
the vertices nor the edges in themselves, only the paths, SG is the same for isomorphic
functional dependency trees. Conversely, given a syntagma S we can reconstruct a
functional dependency tree G such that SG = S and it is unique up to isomorphism.
Notice, however that there are more syntagmata than classes of isomorphic functional
dependency trees. The reason for this is that syntagmata allow ellipses or holes in the
structure.

In the sequel “syntagma” will mean a functional tree-shaped dependency structure
with the possibility of gaps or ellipses. The first advantage of using syntagmata is the
simplicity in their notation. A second advantage is provided by the above equivalence.
Two dependency graphs with the same shape and labels are isomorphic although
their set of vertices can be different. An isomorphism of dependency graphs means
a linguistic “equality”. However regarding syntagmata, a pure equality of syntagmata
means a linguistic “equality”, without the mediation of external isomorphisms. This
will simplify the notation for the concepts that we will present.
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3
Patterns and Classificatory Monoids

This chapter continues introducing basic concepts. Amonoidal pattern is a subset
of the monoid ζa∗ defined as a product of constants (singletons) and submonoids
of ζa∗. The number a is called the arity of the pattern. So patterns are certain
types of rational sets, and when the arity is one, they are a subclass of regular
languages: that closed by Kleene star and concatenation.
If we notate k the class of constants andM the class of submonoids, every pattern
can be described in terms of these two basic classes as an element of the free
monoid {k,M}∗ which we call the classificatory monoid the elements of which
are called types.
This is the most basic form of describing the structure of a pattern, but in order
to differentiate kinds of sets of syntagmata, linearizations, formal languages,
and natural constructions we will need more detailed classificatory monoids. We
introduce them and study the elementary properties.

3.1 Definitions

Monoidal Patterns are subsets of the non-free monoid ζ∗a =
⊕a

i=1 ζ
∗ formed by

products of submonoids and constants.1 Here “constant” stands for singleton sets. In
order to introduce them we need a norm for the elements in ζ∗a given by:

|(x1, . . . , xa)| = max
i=1,...,a

{|xi |},

which extends the length for arities ≥ 1.

Definition 3.1. Given a fixed finite set ζ of syntactical functions consider the monoid
ζ∗a. We call a 1-norm constant of arity a a set consisting of one element {ϕ} ⊆ ζ∗a such
that |ϕ| ≤ 1. We call a 1-norm submonoid of arity a, a finitely generated submonoid

1In the literature on formal languages, pattern languages are a class of languages due to Angluin
(1980a,b). However there is no relation between these two concepts. Since we happen to use Angluin
pattern languages later, in order to avoid any confusion we will rename them as Angluin languages. For
the rest of the thesis the term “pattern” will stand for “monoidal pattern”.
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〈ϕ1, . . . , ϕm〉 ⊆ ζ∗a such that |ϕi | ≤ 1 for i = 1, . . . ,m. We will use the star operator
instead of the brackets: {ϕ1, . . . , ϕm}∗ = 〈ϕ1, . . . , ϕn〉.

The following lemma justifies the notation (·)∗ for the 1-norm submonoids.

Lemma 3.2. Consider a 1-norm submonoid 〈ϕ1, . . . , ϕn〉 ⊆ ζ∗ of arity 1. If x ∈
〈ϕ1, . . . , ϕn〉, then all the prime factors of x are in {ϕ1, . . . , ϕn}. Equivalently, 〈ξ〉 ⊆ ζ∗
is a 1-norm submonoid if and only if ξ ⊆ ζ .

Proof. Since x ∈ 〈ϕ1, . . . , ϕn〉, x can be expressed through these generators. By as-
sumption it is a 1-norm submonoid and then |ϕ1 | = 1, . . . , |ϕn | = 1. Since the arity is
1, every ϕi is in ζ . This means that the factorization of x in generators ϕ1, . . . , ϕn is a
factorization in prime factors in ζ . The equivalence is trivial. �

Definition 3.3. A monoidal pattern, or simply a pattern of arity a is a finite product of
1-norm constants and 1-norm submonoids. In other words a pattern Γ is an expression
of the form:

k∏
i=1

Γi,

where each Γi is a 1-norm constant or 1-norm submonoid, which we call basic patterns.
Given a pattern Γ, we call the length of Γ the least number k such that

∏k
i=1 Γi for some

basic patterns Γi, i = 1, . . . , k. When we fix a specific decomposition we call k the
length of that decomposition.

When the context permits, we will say simply constants and submonoids, or even
simply monoids. Frequently we will write ϕ instead {ϕ}. For example, we may write
ζ∗ϕ instead ζ∗ · {ϕ}.

The most common patterns in the examples are the trivial patterns {(1)a}, the full
pattern ζ∗a and the ideal patterns ζ∗aϕ, ϕζ∗a, ϕζ∗aψ. But we also will usemore complex
ones such as that in the next example.

Example 2. Some patterns. Constants are patterns of length 1. Submonoids are patterns
of length 1. The trivial monoid {1} ⊆ ζ∗ is a pattern of arity 1 because it is simultaneously
a constant and a submonoid and it has length 1. The trivial monoid of arity 2 {(1)2} =
{(1, 1)} ⊆ ζ∗2 or any other arity is also a pattern of length 1.

The full monoid ζ∗ is a pattern of arity 1 and length 1. More generally ζ∗a is a pattern
of arity a of length 1, since {α, β}∗2 = {(α, 1), (β, 1), (1, α), (1, β)}∗.

The specific decomposition ζ∗ = ζ∗·ζ∗ has length 2, but really the pattern ζ∗ has length
1. So the “real” length is always less or equal than the length of a decomposition. The
bilateral ideal pattern ϕζ∗ψ has length 3 provided that ϕ, ψ , 1.
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{α2}∗ is not a pattern, because it is a submonoid generated by a element with |α2 | = 2.
α{α, β}∗γ2 is a pattern of arity 1, or (1, γ3)ζ∗2 is a pattern of arity 2.

The set {(αβiγα j, γαi) | i, j ∈ N+} is a monoidal pattern of arity 2 and length 4 because
it can be written as (α, γ)·(β, α)∗·(γ, 1)·(α, 1)∗. However the set {(αiβ j, β jαi) | i, j ∈ N+} is
not a monoidal pattern because the set in itself is not a monoid nor a constant and it cannot
be decomposed into a succession of products of submonoids and constants. On the other
hand, the set {(αiβ j, αiβ j) | i, j ∈ N+} can be written as: (α, α)∗·(β, β)∗, and this shows that
it is a pattern of length 2.

Let us see a last example. {(αn, αm) | n ≤ m} is a pattern of arity 2 and lenght 2; just
consider the product (α, α)∗(1, α)∗ = {(αi, αi+j) | i, j ∈ N+} and that i ≤ i + j ∀i, j ∈ N+.

In particular when the arity is 1, we have a formal language over the strings of
syntactic functions, a kind of regular language. So monoidal patterns can be viewed as
a generalization in several components of this type of regular languages. Indeed:

Remark 3.4. Rational sets are a generalization of regular languages over free monoids to
general monoids. More exactly (we follow definitions from (Berstel, 1979; Sakarovitch,
2009)): let M be a monoid; the class Rat(M) of rational subsets of M is the least class R
of subsets of M satisfying the following conditions:

(i) ∅ ∈ R; {m} ∈ R for all m ∈ M;

(ii) if A, B ∈ R, then A ∪ B, A·B ∈ R;

(iii) if A ∈ M then A∗ ∈ R.

Thus any subset A of M obtained from singletons by a finite number of unions, products
and star operations is in Rat(M). In particular we have that for free monoids Rat(ζ∗) is
the set of regular languages over the alphabet ζ . And more generally, Rat(ζa∗) contains
the set of patterns of arity a over the functions ζ . Notice that we do not need the union
closure in the case of patterns.

We can make more precise the inclusion of patterns in rational sets. The well-known
notion of star-height of a rational set is a measurement of its complexity. Let M be a
monoid, and define inductively sets Rat0(M) ⊂ Rat1(M) ⊂ · · · by:

A ∈ Rat0(M) ⇐⇒ A is a finite subset of M

A ∈ Ratk+1(M) ⇐⇒ A is a finite union of sets of the form B1B2 · · · Bn

where Bi is a singleton or a set of the form Bi = C∗i for some Ci ∈ Rath(M). This
decomposes rational sets as Rat(M) = ⋃

h≥0 Rat(M). The sets Rath(M) \ Rath−1(M) are
said to have star-height h. Trivially every pattern has star-height 0 or 1, which means that
they occupy the simplest strata in this hierarchy.
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Although rational sets generalize regular languages, some computational properties
are lost when we pass from arity 1 to greater arities, see Appendix C.

Given two patterns Γ, Γ′, the cartesian product Γ×Γ′ is also a pattern.Wewill notate
this pattern Γ⊕Γ′ to emphasize that the product of its elements is taken componentwise.
If Γ and Γ′ have respectively arities a and b then Γ ⊕ Γ′ is a pattern with arity a + b.

The j-projection is the mapping π j :
⊕a

i=1 Γi −→ Γj , defined π j(x1, . . . , xk) = x j .2

3.2 Unambiguous and Proper Patterns

By definition every pattern, say Γ, has at least one decomposition or factorization in
basic patterns, that is a succession Γ1, . . . , Γk , where Γi is a constant or a monoid for all
i = 1, . . . , k, such that Γ =

∏k
i=1 Γi. Notice that a factorization suggests automatically a

mapping π :
⊕k

i=1 Γi −→ Γ, given by the product of the components: π(x1, . . . , xk) =
x1 · · · xk . We call this mapping the product mapping of the factorization.

However, a pattern has many factorizations. For example we can always add a trivial
factor: Γ = 1 · Γ · 1 · 1 · 1. Or for example, ζ∗ = ζ∗ · ζ∗. More generally, if ξ ⊆ ζ then
ξ∗ζ∗ = ζ∗. These decompositions have a redundancy of factors. Finally we have in
certain cases the same factorization with distinct order. For example α3α∗α = α2α∗α2

= αα∗α3=α∗α4 . . ..

Definition 3.5. Given a pattern with the decomposition Γ = Γ1 · · · Γk we say that the
decomposition is unambiguous iff we have that:

x1 · · · xk = y1 · · · yk, with xi, yi ∈ Γi =⇒ xi = yi, ∀x = 1, . . . , k .

There are otherways to say the same thing. For example the decomposition is unambigu-
ous iff every x ∈ Γ has a unique factorization in basic patterns, x = x1 · · · xk, xi ∈ Γi.
Another way to say the same is that the product mapping is bijective. So for example
the decomposition ζ∗ = ζ∗ · ζ∗ is not unambiguous. However this still allows trivial
decompositions. For example ζ∗ = ζ∗ · {1} is unambiguous: each x ∈ ζ∗ has the unique
factorization x · 1, with x ∈ ζ∗, 1 ∈ {1}.

Definition 3.6. We say that a decomposition of a pattern Γ = Γ1 · · · Γk with arity a is
proper iff either k = 1 and Γ = (1)a or the decomposition is unambiguous and the basic
patterns are not trivial. A pattern is proper iff it has at least one proper factorization.

Thus ζ∗ has only one proper factorization, ζ∗ itself. On some occasions a pattern
has no proper factorization because it has no unambiguous factorization, for example
ζ∗αζ∗, with ζ = {α, β}. Such cases are called in the theory of rational sets inherently
ambiguous, see (Berstel, 1979; Sakarovitch, 2009).

2Of course, j-projection is different from projection in the habitual sense of dependency grammar.
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3.3 Classificatory Monoids

In the following chapters we will see that certain classes of sets of trees, linearizations,
formal languages, and natural constructions can be differentiated by the forms of the
patterns involved.

The very definition of patterns suggests a form of describing them. For example
the pattern (1, α)(α, β)∗(γ, γ) is formed as a constant by a monoid by a constant. The
following definitions formalize this simple idea and generalize it to obtain several
systems of classification.

Given a vector x = (x1, . . . , xa) ∈ ζa∗, we notate ϕR = (xR
1 , . . . , xR

a ) the reversed
vector. Given a pattern Γ we notate ΓR = {xR | x ∈ Γ} the reversed pattern.

Definition 3.7. Let ζ be a fixed set of syntactic functions. We call a basic type, T a set
of patterns over ζ satisfying:

(i) {(1)a | a ≥ 1} ⊆ T;

(ii) If Γ ∈ T, then ΓR ∈ T.

Given a finite set of basic types T1, . . . ,Tn we call the free monoid {T1, . . . ,Tn}∗ a
classificatory monoid. We call its elements types. We notate its identity as 1.

Let X be a type X ∈ {T1, . . . ,Tn}∗, X , 1, with a decomposition in prime factors
X = X1 · · · Xk . We say that a pattern Γ ⊆ ζa∗ has type X iff Γ can be decomposed as
Γ = Γ1 · · · Γk and Γi ∈ Xi, for each i = 1, . . . , k. By convention patterns like (1)a, a ≥ 1
have type 1; we even write 1 = {(1)a | a ≥ 1}.

Example 3. For a fixed ζ we will consider the following basic types:

• k = {Γ ⊆ ζa∗ | Γ is a 1-norm constant , a ≥ 1}, called the constant type;

• M = {Γ ⊆ ζa∗ | Γ is a 1-norm submonoid , a ≥ 1}, called the monoid type;

• H = {(ζ)∗a | a ≥ 1}, called the homogeneous type;

• G = {(ξ)∗a | ξ ⊆ ζ, a ≥ 1}, called the generalized homogeneous type;

• P = 1 ∪ {1 ⊕ ξ∗ | ξ ⊆ ζ }, called the pivoting type.

One can check that these are really basic types. For instance, we notice that (1)a is a
constant for any a ≥ 1. In addition if {ϕ} ∈ k, then |ϕ| ≤ 1, whereby ϕR = ϕ. Similarly
(1)a is also monoid for any a ≥ 1 and since generators of monoids have norm 1, ΓR =
({ϕ1, . . . , ϕn}∗)R = Γ. Notice that the condition of 1-norm is necessary, otherwise this last
is no longer true.
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For formal languages we will use mostly the general classificatory monoid {k,M}∗ or
the homogeneous classificatory monoid {k,H}∗. For example:

(γ, γ)(α, β)∗(α, α)∗(γ, γ) has type kM2k,

(α, β)(α, α)∗ has type kH.

The basic types k, P,G will be used in the final chapters for natural languages. Observe the
inclusions, H ⊆ G ⊆ M and P ⊆ M. So these types give more detailed classifications. For
instance:

(β, β)∗(γ, γ)(α, α)∗ has type GkG,

(α, β)(1, α)∗ has type kP.

Indeed one can use more combinations such as the classificatory monoid {k, P,H,G,M}∗.
For example (1, α)∗(β, γ)(1, α)(α, α)∗(β, β)∗(ζ)∗2(α, 1)(α, β)

∗ has type Pk2G2HkM.
Notice finally that when patterns have arity 1, the typesM andG coincide. For example

if ζ = {α, β}∗, then αβ∗ has type kM or kG indistinguishably, but it has no type kH.

Example 4. Patterns of arity one and two can be represented graphically; they yield
geometrical configurations according to the types. Patterns of arity one depict a distribution
of loci in the support of a syntagma. Let ζ = {a, b}. Fig. (a) represents a pattern ζ∗αβ2 with
type Mk3 which captures the subtree with root at αβ2. Fig.(b) represents the pattern αζ∗
which has type kM. Notice that this pattern has the reversed type of the former consisting
in all the loci that begin with an α (or that finish with an α in the arboreal representation;
recall that we use the inverse order to represent paths because doing so, this has linguistic
meaning). In addition since these patterns have arity one, they can also be classified as Hk3

and kH, respectively.

When the pattern has arity two, we can represent the pairs by a link (dashed lines in
the figures). Fig.(c) represents the pattern (1, α)(ζ)∗2 with type kH. Fig.(d) represents
the pattern (α, β)(ζ)∗2 also with the same type. Fig. (e) represents a pivoting pattern
(α, β)(1 ⊕ β∗) with type kP.
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Remark 3.8. We fix some conventions on notations. In order to differentiate structures
better we will notate X< the reverse of type X , instead of XR, e.g. (kH)< = Hk. The
notation XR will be reserved for elements in ζ∗a, e.g. (αβ)R = βα, or by extension patterns
or subsets in ζ∗a, e.g. (αζ∗)R = ζ∗α. In addition, on some few occasions, which will be
announced, we will notate the reversed type as −X .

By a mild abuse of notation, we will use as synonymous the expression “the pattern Γ
has type X” and the expression “the pattern Γ is in X” or even “Γ ∈ X”.

Given a finitely generated free monoid and two elements x, y, we say that x is a
subsequence of y iff all the prime factors of x appear in the sequence of prime factors
of y preserving the order. We write x v y. This relation is a partial order. So for
example: 1, cada, bcdb v abracadabra. The following properties on types will be
used throughout the thesis.

Proposition 3.9. Let X,Y be types in the classificatory monoid {T1, . . . ,Tn}∗.

(i) (1)a ∈ X , for any type X and for any a ≥ 1;

(ii) If Γ ∈ X and Θ ∈ Y , then ΓΘ ∈ XY ;

(iii) If Γ ∈ X , and X v Y , then Γ ∈ Y ;

(iv) If Γ ∈ X , then ΓR ∈ X<.

Proof. (i) Let X be a type with prime factorization X = X1 · · · Xk , with k ≥ 1. By
definition of basic type, (1)a is included in any basic type, so (1)a has type Xi for each
i = 1, . . . , k. Then we can write (1)a = (1)a · · · (1)a, k times, hence (1)a has type X .
Now we suppose that k = 0, then X = 1 and by definition (1)a has type 1.

(ii) Consider the prime factorizations of the types X = X1 · · · Xk and Y = Y1 · · ·Yt .
We suppose that Γ decomposes as Γ = Γ1 · · · Γk with Γi ∈ Xi, i = 1, . . . , k and
Θ = Θ1 · · ·Θn, and Θi ∈ Yi, i = 1, . . . , t. Clearly ΓΘ = Γ1 · · · ΓkΘ1 · · ·Θt has type
X1 · · · XkY1 · · ·Yt = XY .
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Figure 3.1: Hasse diagram of subsequences in the classificatory monoid {k,M}∗.

(iii) If X v Y then there are types Z0, . . . , Zk such that Y = Z0X1Z1 · · · Xk Zk ,
where X = X1 · · · Xk is the prime factorization of X . Consider Γ = Γ1 · · · Γk such
that Γi ∈ Xi, i = 1, . . . , k. We rewrite the pattern Γ as Γ = (1)aΓ1(1)a · · · (1)aΓk(1)a.
By (i) (1)a has every type, and in particular (1)a has types Z0, Z1, . . . Zk . By (ii),
Γ = (1)aΓ1(1)a · · · (1)aΓk(1)a has type Z0X1Z1 · · · Xk Zk = Y .

(iii) We notice that if Γ = Γ1 · · · Γn is a decomposition in basic monoids, then ΓR

admits the decomposition ΓR = ΓR
n · · · ΓR

1 . By definition of basic types, if Γi ∈ Xi then
ΓR

i ∈ Xi, for i = 1, . . . , n. So if Γ has type X , then ΓR has type X<. �

Fig. 3.1 shows the Hasse diagram of the subsequence relation in the general classi-
ficatory monoid.
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4
Manifolds

Syntactic manifolds constitute the first component for the construction of our
formalism. We introduce valuations which are boolean conditions over the vo-
cabulary. We apply such a condition at multiple loci in a syntagma which are
indicated by a monoidal pattern. This combination (valuation + pattern) imposes
a constraint on syntagmata, or in classical terms, yields a description of the de-
pendencies in the tree. A (syntactic) manifold is the set of syntagmata that satisfy
a valuation throughout a pattern. We motivate this design of algebraic governance
by linguistic data. Manifolds can be classified by the type of the pattern used.

We review some classical formal languages and their relevance for linguistics,
and we construct corresponding manifolds. In addition we learn some strategies
in order to build manifolds and we see dependency trees for a small fragment of
English.

We compare manifolds with other tree formalisms: local tree grammars and logic
over trees. It is proved that manifolds with type kpH, which have served to model
the fragment of English, are essentially local.

4.1 Grouping Agreement: Linguistic Basis

In order to understand the central proposal of this chapter we are going to present some
linguistic cases and extract an empirical hypothesis which serves us as heuristic for
mathematical development.1

4.1.1 Verb Inflection in English

We are interested in grouping the several agreement instances of the words in a sen-
tence. The most visible match is when two words are morphologically matched. Some
languages are more profuse in this respect, for example Romance languages, however
even English manifests some examples. In English when the subject of a sentence is the

1The material in this section is published as (Cardó, 2016).
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Figure 4.1: (a) and (b) agreement of subject and verb in English; (c) and (d), agreement of
subject and attribute in Catalan.

third person singular and the main verb is present tense and not modal, the verb goes
with an -s at the end. For example:

(4) JohnSb often eats1 meat.

We have underlined the morphologically matched words and subscripted the loci. The
analysis is given in Fig. 4.1(a); the agreeing words are linked by a curve dashed line in
this and the following examples.2 Since the main verb is always allocated the locus 1
and the subject is in Sb we can represent this match as an ordered pair (1, Sb). At the
moment we are interested in the loci involved, not in the rule or condition. Now we can
take the new sentence:

(5) Mary says JohnSb·ObS often eatsObS meat.

There are two matched pairs: a new pair (1, Sb) and the old which is now in a deeper
position (Ob, Sb · Ob). The sentence has an analysis as in Fig. 4.1(b). The agreement
phenomenon iterates in deeper sentences: Paul says Mary says John often eats meat,
Peter says Paul says Mary says John often eats meat, . . . . In general we can describe
the set of the loci of all these agreements as: Agr = {(Obn

S, Sb · Obn
S) | n ∈ N+}.

2Agreements (dashed lines) are not dependencies (arrows), but loci can be used to describe them.
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4.1.2 Matching of Subject and Predicate

We can consider other languages and other types of matching. In some Romance
languages the number and gender of the predicate (also called attribute) of a copulative
verb (to be, to look, . . . ) must be equal to that of the subject.

(6) Mon
My

pareSb
father

està
is

cansatAt.
exhausted

/
/
Les
the

meves
my

germanesSb

sisters
estan
are

cansadesAt.
exhausted

‘My father is exhausted. / My sisters are exhausted.’

These examples are in Catalan, however the same occurs in Spanish, French and Italian.
The matched pair is (Sb,At). We also consider other examples in a deeper position:

(7) a. El
The

Joan
John

diu
says

que
that

mon
my

pareSb·ObS
father

està
is

cansatAt·ObS .
exhausted

‘John says my father is exhausted’.
b. Que

that
mon
my

pareSb·SbS
father

estigui
is

cansatAt·SbS
exhausted

em
me

preocupa.
worries.

‘The fact of my father being exhausted is worrying.’
c. El

The
Joan
John

diu
says

que
that

que
that

mon
my

pareSb·SbS ·ObS
father

estigui
is

cansatAt·SbS ·ObS
exhausted

em
me

preocupa.
worries
‘John says that the fact of my father being exhausted is worrying.’

The analyses are given in Fig. 4.1(c) and Fig. 4.1(d). The first agreement is (Sb ·ObS,At ·
ObS), but the second is (Sb · SbS,At · SbS) and the third is (Sb · SbS ·ObS,At · SbS ·ObS).
This can be interpreted as that the set of agreements is in general

Agr = {(Sb·x,At ·x) | x ∈ {SbS,ObS}∗},

in other words, this match, (Sb,At), would hold everywhere under arbitrary products of
SbS and ObS.

4.1.3 Pied-piping in Some Romance Languages

We consider another phenomenon called pied-piping consisting in the embedding of a
filler such as a relative pronoun within accompanying material from the extraction site.
Consider the sentence in Catalan:

(8) Aquesta
This

reinaSb,
queen

el
the

pare
father

del
of-the

pare
father

. . .

. . .
del
of-the

pare
father

de
of

laDt·Nc·Ncn·Sb·AdS ·Sb
the

qual
who

fou
was

destronat,
dethroned,

regnà
reigned

justament.
rightly
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Figure 4.2: agreement in pied-piping in Catalan.

‘This queen the father of the father . . . of the father of whom was dethroned
reigned rightly.’

The underlined words must agree in number and gender; see Fig. 4.2. In English there is
not any match and we cannot underline any word because the pronoun is not preceded
by any article. The agreement arises because the relative pronoun qual (who), although
it has no gender inflection in Catalan, has as referent reina (queen) which is a feminine
word. Since the relative pronoun must be complemented by an article, which does has
gender inflection, this article must agree also with the referent: la qual.3 The proof of
this agreement is that in Catalan we cannot say:

(9) *Aquesta reina, el pare del pare . . . del pare de el qual fou destronat, regnà
justament.

Now the agreement set is

Agr = {(Sb,Dt · Nc · Ncn · Sb · AdS · Sb) | n ∈ N+}.

This is structurally revealing because there arises a monoid growing right in the middle
of certain loci. But this phenomenon can occur anywhere, for example in the object:

3One can suppose that the relative pronoun has an invisible marker of gender. By the way a frequent
syntactic error of Spanish children, where the same pied-piping agreement occurs, consists in inflecting
forcibly the relative pronoun: la cual-a (then the adults humorously reprove them with the non-sense
rime: . . . la tia Pascuala). Here we are only interested in the morphological matches, not in the operation
of the anaphora.
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(10) El
The

poble
populace

no
not

acceptà
accepted

mai
never

aquesta
this

reinaOb
queen

el
the

pare
father

del
of-the

pare
father

. . .

. . .
del
of-the

pare
father

de
of

laDt·Nc·Ncn·Sb·AdS ·Ob
the

qual
who

fou
was

destronat.
dethroned

‘The populace never accepted this queen the father of the father . . . of the father
of whom was dethroned.’

So the agreements are more general:

Agr = {(x,Dt · Nc · Ncn · Sb · Ad · x) | n ∈ N+, x ∈ ζ∗}.

4.1.4 A Working Hypothesis

We can summarize all these agreements using subsets of the monoid ζ∗2 = ζ∗ ⊕ ζ∗. In
the first case we have:

Agr = {(Obn, Sb · Obn) | n ∈ N+} = ϕ · Γ,

where ϕ = (1, Sb), Γ = (Ob,Ob)∗. In the second case we also have:

Agr = {(Sb · x,At · x) | x ∈ ζ∗} = ϕ · Γ,

where ϕ = (Sb,At), Γ = {(x, x) | x ∈ {SbS,ObS}∗}. Finally in the third case:

Agr = {(x,Dt · Nc · Ncn · Sb · Ad · x) | n ∈ N+, x ∈ ζ∗} = ϕ · Γ · ψ · Γ′,

where ϕ = (1,Dt · Nc), Γ = (1,Nc)∗, ψ = (1, Sb · Ad) and Γ′ = {(x, x) | x ∈ ζ∗}. From
the examples seen, and many others that could be given, we can extract a hypothesis.

Claim 2. Monoidal Pattern Hypothesis. For any natural language the set of places
where agreements occur can be described as a monoidal pattern:

Agr =
k∏
i=1

Γi ⊆ ζ∗n.

This is a weak initial hypothesis. In order to obtain a much better picture of natural
languages we will have to strengthen this claim. This is one of several increasingly strong
hypotheses which we will make. At the moment it must be taken as a guideline to be
continued.

Even though the agreements shown were binary the monoidal hypothesis supports
several arities, but the most common are 1, 2 and 3. For example: that the subject Sb is
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always a noun can be see as an agreement of arity 1 which must hold generally in all
loci of a syntagma, therefore the pattern must be Sb · ζ∗.4

At the moment these examples must be taken as the motivation for the following
definitions. In Chapter 10 we develop with more detail these constructions and others
and we will see that some of the involved patterns are more complex.

4.2 Manifolds

Definition 4.1. Let Σ be a vocabulary and a ∈ N a positive integer. A valuation of
arity a is a boolean function B : Σa

+ −→ {0, 1}. Here 0 and 1 are the truth values. A
syntagma S satisfies the valuation B throughout the pattern Γ ⊆ ζ∗a iff

B
(
S(x1), . . . , S(xa)

)
= 1 for each (x1, . . . , xa) ∈ Γ.

Some valuations that we will frequently use are the following which we write in
prefix notation, although we will use also the infix notation:

• The characteristic function (∈ σ) : Σn
+ −→ {0, 1} defined as:

(∈ σ)(x) =
{

1 if x ∈ σ;
0 otherwise.

• The equality (≈) : Σ2
+ −→ {0, 1} defined as:

(≈)(x, y) =
{

1 if x = y;
0 otherwise.

• The curried restriction of the equality valuation (≈ a)(x) = (≈)(x, a):

(≈ a)(x) =
{

1 if x = a;
0 otherwise.

• The negations of above valuations:

(< σ)(x) =
{

1 if x < σ;
0 otherwise.

(0)(x, y) =
{

1 if x , y;
0 otherwise.

In infix notation: (x ∈ σ), (x ≈ y), (x ≈ a), (x < σ), (x 0 y) and (x 0 a).

4We have been talking about morphological agreement but there is no reason not to talk about other
kinds. When a verb like to drink selects a “drinkable" object it is producing a semantic “agreement”
(1,Ob), and so forth.
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Example 5. A valuation and a Pattern. Let Noun ⊂ Σ be the set of all nouns in English
and let Sb ∈ ζ be a syntactic function. If we want Sb to always take an element from Noun
in the syntagma S. The expression:

(∈ Noun)(S(Sb)) = 1,

says exactly that. In infix notation:

(S(Sb) ∈ Noun) = 1,

in other words this last states that S(Sb) ∈ Noun. Let us take the constant pattern Γ = Sb.
Then the syntagma in Fig. (a) satisfies the valuation in the pattern while Fig. (b) does not.

However we want this constraint to be hold in any locus of a syntagma. We can take the
pattern Γ = Sb·ζ∗. Now the syntagma in Fig. (c) satisfies the valuation throughout Γ while
Fig. (d) and Fig. (e) do not.

In view of the boolean nature of valuations we can define new valuations from
others. Let a pair of valuations be B : Σn

+ −→ {0, 1}, B′ : Σm
+ −→ {0, 1}; then we can

define:
B ∧ B′ : Σn+m

+ −→ {0, 1}

(x1, . . . , xn, y1, . . . , ym) 7−→ B(x1, . . . , xn) ∧ B′(y1, . . . , yn).

In the same way we can define: B ∨ B′, B → B′, ¬B, and so forth. Composing new
valuations and rules does not increase our descriptive power but it makes reading easier.
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Example 6. A valuation and a pattern for transitive verbs. A transitive verb is a
verb which always takes an object (e.g. the following sentence is ungrammatical: *John
likes �). Let Trans ⊂ Σ be the set of transitive verbs and let Ob be a syntactic function.
Consider the valuation in infix notation:

B(x, y) =
(
x ∈ Trans→ y 0 0

)
.

The following expression asserts that the object cannot be null if a verb is transitive:

B
(
S(1), S(Ob)

)
= 1;

or by a mild abuse of notation: 1 ∈ Trans→ Ob 0 0. As in the previous example we also
want that the constraint to be hold in any place of a syntagma. In this case the arity is 2 and
the pattern is (1,Ob) · {(x, x) | x ∈ ζ∗} = (1,Ob) · (ζ)∗2.

Definition 4.2. Recall that we notated Synt Σ,ζ the set of all syntagmata with vocabulary
Σ and syntactic functions ζ . Given a valuation B and a pattern Γ we define the simple
syntactic manifold as the set:

Synt Σ,ζ
(
B
Γ

)
= {S ∈ Synt Σ,ζ | S satisfies B throughout Γ}.

We call a syntactical manifold any ∪∩-combination of simple manifolds (i.e. any finite
combination of unions and intersections). Given a type X in a classificatory monoid,
we notate Man(X) the class of manifolds the simple manifolds of which have patterns
in X .

To simplify we will write Synt omitting Σ and ζ . In addition, since we are going
to use mostly intersections we abbreviate:

Synt
(
B1 · · · Bn

Γ1 · · · Γn

)
= Synt

(
B1
Γ1

)
∩ · · · ∩ Synt

(
Bn

Γn

)
.

An easy property is the following.

Corollary 4.3. Simple manifolds reverse the inclusion of patterns. That is, for every
patterns Γ, Γ′ and any valuation B:

Γ ⊆ Γ′ =⇒ Synt
(
B
Γ

)
⊇ Synt

(
B
Γ′

)
.

Proof. The valuation B is the same in both manifolds. If S satisfies B in any locus of Γ′,
since Γ ⊆ Γ′ then in particular S satisfies B for any locus in Γ. Hence the inclusion. �
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Figure 4.3: (a) non-crossing dependencies in English; (b) serial-cross dependencies in Dutch;
(c) nested dependencies in German.

Trivially every class Man(X) is a bounded lattice. Bounds are given by the false
constant valuation 0, Synt

(0
Γ

)
= ∅ , and the true constant valuation 1, Synt

(1
Γ

)
= Synt

where Γ is any pattern in X .
Interestingly the descriptive power of a manifold is given not by the valuation but

by the pattern, or more specifically the type of the pattern. However we will need to
advance some chapters to understand this.

4.3 Some Examples of Manifolds

4.3.1 Five Classical Formal Languages and their Historical Relevance

We fix a vocabulary, for instance Σ∗ = {a, b, c}, and consider the languages:

Lsqua = {a2
1 · · · a

2
n | a1, . . . , an ∈ Σ, n ∈ N+},

Lcopy = {xx | x ∈ Σ∗},

called respectively the language of squares and the copy language. The first is a context-
free, indeed regular, language. It is a mathematical idealization of a chain of subordinate
clauses in English. E.g.:

(11) . . . that Johna sawa Peterb helpb Maryc readc.

The second is not context-free and it represents a chain of subordinate clauses in Dutch,
(Bresnan et al., 1987). E.g.:

(12) . . . dat
. . . that

Jana

Jan
Pietb
Piet

Mariec

Marie
zaga

saw
helpenb

help
lezenc.
read

‘. . . that J. saw P. help M. read.’

This example is said to exhibit cross-serial dependencies. Compare Fig. 4.3(a) and
Fig. 4.3(b). The same crossing configuration is found in Swiss-German. The links are
visible since Swiss-German has case marking:



64 4.3. Some Examples of Manifolds

(13) Jan
John

säit
said

das
that

mer
the

d’chind
childrenACC

em Hans
HansDAT

es
the

huus
houseACC

lönd
let

hälfe
help

aastriiche.
paint.

The abstraction into the formal language follows from the argument structure (i.e. we
mark with a same letter the subject and the related verb) which is purely intuitive.5
However the case of Swiss-German can be formally reduced into the copy language by
intersecting the whole Swiss-German language with a regular language and reducing
by a homomorphism of monoids according the case mark, see for example Kallmeyer
(2010). Since context-free languages are closed under regular intersections and homo-
morphisms, see e.g. Hopcroft et al. (2001), if we suppose that natural languages are
context-free, then the copy language should be. But this is not the case, so natural
languages are not context-free.6

Closely related to the above languages we consider the mirror language defined as

Lmirr = {xxR | x ∈ Σ∗},

where xR is the reversed string. This language captures the nested dependencies in
German (see Fig. 4.3(c)). E.g.:

(14) . . . dass
. . . that

Jana

Jan
Pietb
Piet

Mariec

Marie
lesenc

read
helfenb

help
saha.
saw

‘. . . that J. saw P. help M. read’.

Interestingly we will see later that this language can be obtained from any of the above
manifolds.

Another pair of languages that we are going to consider in the future are themultiple
abc language and the respectively abc language:

Lmult = {(abc)n | n ∈ N+},
Lresp = {anbncn | n ∈ N+}.

The first is a context-free, indeed regular language, but not the second. The first corre-
sponds to simple coordination, as in sentence (15a), while the second is a mathematical
idealization of the respectively construction, as in sentence (15b):

(15) a. Jeana seems Germanb but he is Frenchc, Pietroa seems Russianb but he is
Italianc and Petera seems Belgianb, but he is Englishc.

5This is the case of (Bresnan et al., 1987) which address the strong generative capacity rather than
the weak generative capacity.

6A similar, earlier, reasoning gave Shieber the key in order to prove the non-context-freeness of
Swiss-German, (Shieber, 1985).
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b. Jeana, Pietroa andPetera seem respectivelyGermanb, Russianb andBelgianb,
but they are Frenchc, Italianc and Englishc.

Respectively constructions have already been considered as initial counterexamples
against context-freeness of English with sentences as:7

(16) a. John, Mary and David are a widower, a widow and a widower respectively.
b. This land and these woods can be expected to rend itself and sell themselves

respectively.

However the linguistic community considered such constructions too artificial, the
Swiss-German data being more clear.8

Remark 4.4. We have chosen these formal languages for historical reasons. They have
played an important role in formal languages and linguistics, howeverwe are also interested
in these languages here because they provide a glimpse of a deeper internal relation. Given
a string x ∈ Σ∗ we have the usual exponentiation:

xn = x · · · x︸ ︷︷ ︸
n times

.

If x = a1 · · · am with a1, . . . , am ∈ Σ, we define the exponentiation by letters as

x↓n = an
1 . . . a

n
m.

Then the languages above can be rewritten and contrasted as follows:

Lsqua = {x↓2 | x ∈ Σ∗}, compare to Lcopy = {x2 | x ∈ Σ∗};
Lmult = {(abc)n | n ∈ N+}, compare to Lresp = {(abc)↓n | n ∈ N+}.

As we will see, this shifting relation which we will call symmetry actually operates in the
dependency structure rather than the string structure although the effect is, at least for the
above particular cases, mildly visible in the latter.

4.3.2 Some Examples of Manifolds

At the moment we cannot show grammars for such languages, however in order to do
this in the future we will have to implement adequate manifolds, i.e. a manifold Wsqua
for the squares languages, a manifold Wcopy for the copy languages, and so forth. The
following examples illustrate some general strategies in order to establish a manifold.
Let us show how to build the squares manifold.

7See (Bar-Hillel and Shamir, 1960) for the first sentence and (Kac et al., 1987) for the second.
8See (Pullum and Gazdar, 1982) for a discussion at that time. See later §11.10.
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Example 7. The squares manifold Wsqua and how to build a manifold. We want
to achieve a set of syntagmata as in the following Fig. (a) which we denote by Wsqua =

{Q0,Qa,Qb,Qa,a,Qa,b, . . .}:

Let us see how to build a manifold capturing them. We assume an alphabet Σ and two
syntactic functions, ζ = {α, β}. Then let there be the following manifold divided in three
parts:

Wsqua = Wnull ∩Wnoell ∩Wlink,

where:

Wnull = Synt
(
≈ 0 ≈ 0

α2(ζ)∗2 βα(ζ)∗2

)
∈ Man(k2H);

Wnoell = Synt
(

B B
(1, α)(ζ)∗2 (1, β)(ζ)∗2

)
∈ Man(kH);

Wlink = Synt
(

B′

(1, α)(ζ)∗2

)
∈ Man(k2H).

In general in order to build a manifold it is advisable to first think in terms of the general
shape of the trees, and then in terms of the inner correlations. Shaping a tree is similar to a
pruning. In order to cut brancheswe use the valuation, defined by (≈ 0)(x) = 1 ⇐⇒ x = 0,
which acts as pruning scissors. The manifold Wnull says that the loci given by the patterns
α2(ζ)∗2 and βα(ζ)

∗
2 must be null. Notice, however, that this does not cut really the branches:

underneath there can appear non-null loci and then there would be ellipsis.
To avoid this we can define a manifold which excludes ellipsis. Consider the valuation

B(x, y) = (x ≈ 0 → y ≈ 0), which is read “if x is null then y must be null". If we apply
this valuation to adjacent pairs (x, αx) and (x, βx) for any x ∈ ζ , we obtain the desired
effect. This is realized by the manifold Wnoell, called the non-ellipticity manifold. Now if
we combine Wnull and Wnoell we have real pruning scissors, and the branches cut by the null
manifold indeed fall. See below Fig. (b).

Finally, the manifold Wlink links pairs of loci. The valuation B′ is defined by B′(x, y) =
(y 0 0 → x ≈ y), in other words if y is not null, x and y must be equal. The pattern is
the set (1, α)(ζ)∗2 = {(x, αx) | X ∈ ζ∗}. So the syntagmata, S ∈ Wlink, have to satisfy that
S(x) = S(αx) provided S(αx) , 0. In particular we must have S(1) = S(α), S(β) = S(αβ),
S(β2) = S(αβ2), . . . . Graphically this is saying that the vertices connected by the α edge
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must be equal; see Fig. (c). Notice that given the combination of the above manifolds, for
the remaining pairs (x, αx) we have that S(x) = 0 and S(αx) = 0. Finally we observe that
this manifold is in Man(k2H).

The non-ellipticity used in this example, which is captured by the manifold Wnoell,
is a very useful manifold to shape trees, so we are going to fix a notation for it. There
are, as we shall see, other ways to prune a tree, however the usage of the non-elliptic
manifold will be frequent.9 In addition we check that the set of atomic syntagmata and
the set of non-elliptic syntagmata are manifolds.

Lemma 4.5. Consider the empty set of syntactic functions ζ = ∅; then ∅∗ = {1}. The
unique pattern that we can consider is the trivial pattern. Consider the valuation 00,
i.e. (00)(x) = 1 iff x , 0. We define:

Atom = Synt
(
00
1

)
.

Now consider the valuation B(x, y) = (x ≈ 0→ y ≈ 0). We fix a finite set ζ of syntactic
functions and define the following manifolds:

Nell =
⋂
λ∈ζ

Synt
(

B
(1, λ)(ζ)∗2

)
; Nell< =

⋂
λ∈ζ

Synt
(

B
(ζ)∗2(1, λ)

)
.

Then Atom comprises all the atomic syntagmata, Nell comprises all the syntagmata
without ellipsis and Nell< comprises all the syntagmata without co-ellipsis.

Proof. Consider the first manifold Atom , where ζ = ∅ which means that syntagmata
S in Synt ζ,Σ only have one locus, namely 1, thus they are all atomic. If we consider
the constant valuation 1 (i.e. 1(x) = 1, for any x ∈ Σ+) then S(1) can take any letter

9In (Cardó, 2016) all the syntagmata considered were non-elliptic, so we did not need include this
manifold. However, here we prefer to adopt the general case and make non-ellipticity explicit.
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in Σ, so Atom contains all the atoms. Regarding Nell the pattern can be rewritten as
(1, λ)(ζ)∗2 = {(ϕ, λϕ) | ϕ ∈ ζ

∗)} for any λ. If we apply the valuation we have that

S ∈ Nell ⇐⇒ (S(ϕ) = 0→ S(λϕ) = 0) ∀λ ∈ ζ, ∀ϕ ∈ ζ∗.
In other words if a locus ϕ is null then its child λϕ is null. Since this is the case
for any locus and for any λ, when a locus is null all the loci under it are null. So
ellipsis is precluded. The case of Nell< is similar and, by the same token, precludes
co-ellipsis. �

Example 8. Another three manifolds: Wcopy, Wmult and Wresp. Consider now the man-
ifold comprising syntagama as in Fig. (a) Wcopy = {C0,Ca,Cb,Ca,a,Ca,b, . . .}:

Wcopy = Nell< ∩ Synt
(
≈ 0 ≈ 0
ζ∗α2 ζ∗αβ

)
∩ Synt

(
y 0 0→ x ≈ y

(ζ)∗2(1, α)

)
,

where we are supposing an alphabet Σ and two syntactic functions, ζ = {α, β}. The
understanding of this manifold is as in the previous example. Another example is displayed
in Fig. (b) comprising syntagmata Wmult = {M0, M1, M2, . . .}:

These are captured by the following construction. Let there be the sets ζ = {α, β, γ},
Σ = {a, b, c}, and let there be the manifold in Man(kH): Wmult = Nell∩

∩ Synt
(
x ≈ c→ (y ≈ a ∧ z ≈ b ∧ t ∈ {c, 0}) x ∈ {a, b} → (y ≈ 0 ∧ z ≈ 0 ∧ t ≈ 0)

(1, α, β, γ)(ζ)∗4 (1, α, β, γ)(ζ)∗4

)
.

Finally, the set of syntagmata Wresp = {R0, R1, R2, . . .} (Fig. (c)):
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This is obtained by the manifold in Man(Hk): Wmult = Nell∩

∩ Synt
(
x ≈ c→ (y ≈ a ∧ z ≈ b ∧ t ∈ {c, 0}) x ∈ {a, b} → (y ≈ 0 ∧ z ≈ 0 ∧ t ≈ 0)

(ζ)∗4(1, α, β, γ) (ζ)∗4(1, α, β, γ)

)
.

4.3.3 How to Build Manifolds for Natural Languages

Thanks to the boolean nature of valuations we are able to implement a wide variety of
rules. If we want to describe a natural language we can build a number of manifolds
capturing different phenomena. We can begin with a manifold to describe for each
word what kind of words or categories it can govern. For example, a noun can govern
a determiner and an adjective, but not an adverb or verb, as in Example 5.

With another manifold we can define for each function what functions can follow,
such as the rule for transitive verbs in Example 6. Using the Tesnèrian denomination,
this amounts to defining valence. We can define still another manifold to describe
morphological agreements, and so forth.

Some constraints must be imposed only under certain conditions. For example, a
subject and an attribute must agree only when the attribute is not null, that is, when the
attribute really appears in the structure.

Next we have to think where these rules must hold, i.e. wemust think of the patterns.
For all the commented constraints the pattern will have the shape kH.

Fortunately in order to add new phenomena, like pied-piping or others, we can
build other manifolds and intersect them with the existing ones. We will implement
some fragments of natural language in chapters 10 and 11. For the moment we see an
example which captures a fragment of dependency trees of English.
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Example 9. A toy manifold for English. We consider the following set of syntactic
functions ζ = {Sb,Ob,Dt,Ad,Md} and the vocabulary Σ = {catch, catches, caught, smile,
smiles, smiled, John, Mary, boy, boys, frog, frogs, a, the, this, these, that, those, big, small,
very}. We consider the following subsets of Σ, or lexical categories:

Verb = {catch, catches, caught, smile, smiles, smiled},
TransitiveVerb = {catch, catches, caught},
IntransitiveVerb = {smile, smiles, smiled},
Noun = {John, Mary, boy, boys, frog, frogs},
Determiner = {a, the, this, these, that, those},
Adjective = {big, small},
Modifier = {very},
Singular = {a, the, this, that, John, Mary, boy, frog, catches, caught, smiles, smiled},
Plural = {the, these, those, boys, frogs, catch, caught, smile, smiled}.

Given a lexical category Σ′ ⊆ Σ, we notate Σ′+ = Σ′ ∪ {0}. We define parametrically the
manifolds:

govern(Σ0, Σ1, ζ0) =
⋂
λ∈ζ0

Synt
(
x ∈ Σ0 → y ∈ Σ1
(1, λ)(ζ)∗2

)
,

and
Rgovern(Σ0, Σ1, ζ0) =

⋂
λ∈ζ0

Synt
(
x ∈ Σ0 ← y ∈ Σ1
(1, λ)(ζ)∗2

)
.

We also need the manifold Nell and the manifold root = Synt
(x∈Verb

1
)
. Then we consider

the intersection of the following manifolds, which we notate WEng:

(a.1) Nell ,

(a.2) root,

(b.1) govern(Verb, {0}, {Dt,Ad,Md}),
(b.2) govern(Noun, {0}, {Sb,Ob,Md}),
(b.3) govern(Determiner, {0}, {Sb,Ob,Dt,Ad,Md}),
(b.4) govern(Adjective, {0}, {Sb,Ob,Ad}),
(b.5) govern(Modifier, {0}, {Sb,Ob,Dt,Ad}),

(c.1) govern(Verb,Noun+, {Sb,Ob}),
(c.2) govern(Noun,Adjective+, {Ad}),
(c.3) govern(Noun,Determiner+, {Dt}),
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(c.4) govern(Adjective,Modifier+, {Md}),
(c.5) govern(Modifier,Modifier+, {Md}),

(d.1) govern(Verb, Σ, {Sb}),
(d.2) govern(TransitiveVerb, Σ, {Ob}),
(d.3) govern(IntransitiveVerb, {0}, {Ob}),

(e.1) Rgovern(Singular, Singular, {Sb,Dt}),
(e.2) Rgovern(Plural,Plural, {Sb,Dt}),
(e.1) govern(Singular,Σ, {Dt}).

Let us comment on the meaning of some of these manifolds. The manifold (a.1)
precludes ellipses. (a.2) says that the root of any syntagma is a (finite tense) verb. Manifolds
(b.1)-(b.6) forbid arguments according to the lexical category; thus, (b.1) says that verbs
cannot govern determiners, adjectives, nor modifiers. Complementarily, manifolds (c.1)-
(c.5) establish which lexical categories are governed by each function. For instance, by
(c.1), a verb always takes a noun as subject and object (which may be null). Manifolds
(d.1)-(d.3) establish obligation or not of the verbal arguments. In particular (d.1) says that
the subject is never empty. By (d.2), transitive verbs cannot exhibit an empty object, while
by (d.2), intransitive verbs must exhibit an empty object. The manifolds (e.1) and (e.2)
attend number agreements. For example, (e.1) says that if the subject is singular, then the
verb which governs the subject is also singular, and likewise for the determiner. Notice
that in these cases, the implication of the conditional in the valuation is reversed, i.e. the
number of the governed implies the number of the governor. For example caught is a plural
and singular word simultaneously which cannot decide which is the number of the subject;
however if the subject is John then the verb must be singular. Finally (e.3) says that singular
(count) nouns always needs a determiner (the boy caught the frog/ ∗boy caught frog).

The intersection of all these manifolds yields a manifold which is infinite; this allows
syntagmata for sentences such as the boy caught a very very very (...) very big frog. For
instance Fig.(a) shows a syntagma in WEng, while the syntagma in Fig.(b) violates the rules
in the manifolds (c.1) and (e.1).
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4.4 Tree formalisms and the Class Man(kpH)

4.4.1 Tree Grammars

There arises the issue of comparing manifolds with other formalisms establishing sets
of arboreal structures such as logic over trees or tree grammars. Let us consider in this
subsection the case of tree grammars.

Some frameworks use the notation of terms of a free algebra to encode trees.10
More formally, the set of trees over Σ, denoted by TΣ, is the language over the alphabet
Σ∪{[, ]} defined inductively as follows. If a ∈ Σ0, then a ∈ TΣ. For k ≥ 1, if a ∈ Σk and
t1, . . . , tk ∈ TΣ, then a[t1 . . . tk] ∈ TΣ. Thus, a[t1 . . . tk] encodes a tree with root labeled
by a and subtrees hanging from the root, t1, . . . , tk . A tree language is a subset of TΣ.

Several notions from languages are transported into tree languages such as automata,
regular grammars or local languages. For example, the regular tree grammar with the
rules S → p[aTa], T → q[cp[dT]b] and T → e (i.e. rules consisting in rewriting the
non-terminal symbols S,T) generates the tree given by the derivation:

S ⇒ p[aTa] ⇒ p[aq[cp[dT]b]a] ⇒ p[aq[cp[de]b]a].

For every tree we can consider the yield consisting in the letters of the leaves taken in
the same order as in the tree expression: Yield(p[aq[cp[de]b]a]) = acdeba. Given a
tree language L, Yield(L) is the set of yields of each tree. Then it is proved that:

Theorem 4.6. The following statements hold.

(i) Let G be a context-free string grammar; then the set of derivation trees of L(G)
is a regular tree language.

(ii) Let L be a regular tree language; then Yield(L) is a context-free string language.

(iii) There exists a regular tree language which is not the set of derivation trees of any
context-free language.

Proof. See (Comon et al., 2007). �

Thus, by (i) and (ii), context-free (string) languages can be regarded as the set
of (regular) syntactic structures conveniently linearized by the yield function. This
connects with our precept of separating the syntactic structure and theword-order. Since
context-free constructions are a fundamental part of language, syntactic structures of
a formalism should exhibit an expressive power no greater than regular trees, (at least
in order to explain the context-free part). Actually, in some formalisms regularity of
trees is assumed fully, whereby non-context-free constructions must be achieved in the
linearization process. Mildly context-sensitive formalisms exhibit regular structures.

10We follow definitions and notations from (Engelfriet, 2015; Comon et al., 2007).
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Dependency languages that can be generated by TAG or even more generally, by
LCRFS, are regular in the sense of Kuhlmann and Möhl (2007). Likewise the MTS
(Model Theoretic Syntax) advocated by Rogers and Pullum, although in the logic
framework, uses by definition regular structures.11

It is indeed our conviction also that syntactic structures should approximate regu-
larity. We will resume this issue in the final chapter in the light of several linguistic
examples. For the moment let us consider the following geometrical interpretation of
the little fragment of English structures in Example 9. The simple manifolds used in
order to define WEng only contain patterns in kH. The effect of these patterns over the
constraint B consists in sliding B throughout the tree. When we multiply a constant ϕ
by a homogeneous monoid (ζ)∗a, the positions in the components of ϕ are translated
simultaneously. Since these components fit in a triangle (a node with its immediate
descendants), one can check if a syntagma is in the manifold by sliding a triangular
window and checking whether every triangle is in a sample of triangles given in ad-
vance; this sample is given by the constraint B. The following subsections prove this
formally.

This idea is in fact the notion of local testability. In the framework of languages, it
is said that a language is strictly locally k-testable iff by sliding an interval of length k
over the word we can decide if the word is in the language or not.12

The notion of locality can be elevated to the level of trees. A tree language is said
to be k-locally testable when it can be determined by three sets of subtrees of depth k:
top, triangles and leaves.13 A tree t is in the local grammar iff the top of t is in the top
set, every subtree is in the triangles set and leaves of t are in the leaves sample.14

It is the case that local tree languages are regular tree languages, thus the manifold
WEng in Example 9 satisfies the requirement, above commented, that the sets of syntactic
structures should not be too expressive. We will see that in fact these kinds of manifolds
can also be used to generate non-context-free constructions. But this will be addressed
when we introduce linearizations.

Despite the simplicity of regular grammars, not every regular tree language is
learnable in the sense of identification in the limit, Gold (1967). However local testable
tree languages are, (Knuutila, 1993; Rico-Juan et al., 2005). This could be a good
starting point in order to study machine-learnability questions of our model.

11Thanks to an anonymous reviewer for references.
12For example {a, b}∗ is 1-strictly locally testable, and a(baa)+ is 3-strictly locally testable, while

(aa)∗ is not strictly locally testable for any k. Although these languages are subregular, and hence nor
sufficiently expressive for natural languages, they enjoy applications to linguistic fields beyond syntax,
such as morphology and phonology, cf. (Bordihn et al., 2009; Rogers and Hauser, 2010; Rogers et al.,
2013; Edlefsen et al., 2008; Heinz et al., 2011).

13Leaves are rather a vector of possible leaves, not a subtree.
14In the original definition from Knuutila (1993) these subtrees of depth k are called k-forks.
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4.4.2 Locality and the Class Man(kpH)

We prove the correspondence between manifolds in Man(kpH) and local testability.
Notice, however, that trees as defined above are not exactly syntagmata: in syntagmata
the arrows are labeled with syntactic functions, nodes are not ordered and, in addition,
ellipses are allowed. It is convenient to translate the notions of locally testability to the
field of syntagmata.

A peculiarity of syntagmata, in relation to definition of locality, is that it is not
necessary to specify separately conditions over leaves. These conditions can be made
by the set of inner triangles, because we can use triangles with null loci to scan the
bottom parts of the syntagma in hand.

The Class Man(kp)

Given a syntagma S, we define the p-top of S S′ as the result of trimming branches
deeper than p:

S′(x) =
{

S(x) if |x | ≤ p;
0 otherwise.

Definition 4.7. We say that a set of syntagmata W is a p-top set iff there is a finite set
of syntagmata with depth ≤ p,U, such that S ∈ W ⇐⇒ the p-top of S is inU. Then
we notate Topp[U] = W . We notate TOPp the class of p-top sets.

Theorem 4.8. Man(kp) = TOPp.

Proof. We assume syntagmata over Σ and ζ , with |ζ | = m. We set q = mp+1−1
m−1 . (⊇) Let

Topp[U] be a p-top set. We encode a syntagma of depth p by the vector in Σq
+ where

the first component is the root, the following m components encode the children of the
root, the following m2 components encode the grand-children, and so forth. Thus we
can imagine the setU as a subset of Σq

+, notating this last subset asU. Then we define
the manifold:

W = Synt
(
(x1, . . . , xq) ∈ U

ϕ

)
,

where ϕ = (1, λ1, . . . , λm︸      ︷︷      ︸
children

, λ2
1, λ2λ1, λ3λ1, . . . , λ

2
m︸                      ︷︷                      ︸

grandchildren

, . . . . . . , λ
p
1, . . . , λ

p
m).︸        ︷︷        ︸

p-grandchildren

Thus, W = Topp[U] ∈ Man(kp). Let us see the other direction (⊆). Consider W =

Synt
(B
ϕ

)
a simple manifold with ϕ ∈ kp. We observe that the constraint given by the

valuation B only affects those loci x ∈ ζ∗ such that |x | ≤ p, in other words we can
only control the top of the tree, while the rest of the syntagma can take any letter. Since
there are a finite number of loci such |x | ≤ p, the constraint is defining a finite number
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of combinations of letters on the top. So there is a set U such that S ∈ W ⇐⇒
the p-top of S is in U. Now we have to consider non-simple manifolds. The class
TOPp is closed by unions and intersections: Topp[U] ∪ Topp[U′] = Topp[U ∪ U′],
Topp[U] ∩ Topp[U′] = Topp[U ∩U′]. So we are done. �

The Class Man(kpH)

We call the triangle of depth p and root ϕ of S, or simply p-triangle, the syntagma S′:

S′(x) =
{

S(x) if x ∈ ζ∗ϕ and |x | ≤ p + |ϕ|;
0 otherwise.

I.e. geometrically S′ is the subtree of S with depth at most p and root at ϕ.

Definition 4.9. We say that a set of syntagmata W is strictly strongly p-locally testable
iff there is a finite set of syntagmata V with depth ≤ p, such that S ∈ W iff all the
p-triangles of S are inV. We notate Trip[V] = W .

We say that a set of syntagmata is lattice p-locally testable iff it is the ∪∩-closure
of p-top and strictly strongly p-locally testable sets. We notate LLOCALp the class of
these sets.

Theorem 4.10. Man(kpH) = LLOCALp, for any p ≥ 0.

Proof. We assume syntagmata over Σ and ζ , with |ζ | = m. We set q = mp+1−1
m−1 . Let us

see the inclusion (⊇). We distinguish two cases. First, let Topp[U] be a p-top set; then
by the previous Theorem 4.8, Topp[U] ∈ Man(kp) ⊆ Man(kpH). Second, let Trip[V]
be a strictly strongly p-locally testable. As in the proof of the previous theorem we
encode a syntagma of depth p by the vector in Σq

+, being V ⊆ Σ
q
+ the encoding of the

setV. Now we define the manifold W :

W = Synt
((x1, . . . , xq) ∈ V

ϕ(ζ)∗q

)
,

where ϕ = (1, λ1, . . . , λm︸      ︷︷      ︸
children

, λ2
1, λ2λ1, λ3λ1, . . . , λ

2
m︸                      ︷︷                      ︸

grandchildren

, . . . . . . , λ
p
1, . . . , λ

p
m).︸        ︷︷        ︸

p-grandchildren

We have thatW = Trip[V] and thatW ∈ Man(kpH). Since a set in LLOCALp is a ∪∩-
combination of top sets and strictly strongly locally testable sets, and since Man(kpH)
is ∪∩-closed, Man(kpH) ⊇ LLOCALp.

Let us see the inclusion (⊆). Consider W = Synt
(B
Γ

)
a simple manifold which has

a pattern Γ ∈ kpH. So either Γ = ϕ or Γ = ϕ(ζ)∗a, where ϕ ∈ ζa∗ and |ϕ| ≤ p. In the
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first case we saw in the previous theorem that this manifold defines a p-top language.
So we consider Γ = ϕ(ζ)∗a. We notice that:

Synt
(

B
ϕ(ζ)∗a

)
⊆ Synt

(
B
ϕ

)
.

The effect of this pattern consists in sliding the constraint defined by B and ϕ throughout
the syntagma. As in the above proof B and ϕ are defining a finite set of syntagmata of
depth ≤ p, sayV, such that W = Trip[V]. So W is a strictly strongly p-locally testable
set. Since the class LLOCALp is the ∪∩-closure of strictly strongly p-local sets and
p-top sets, any non-simple manifold in Man(kpH) is also in LLOCALp. �

Example 10. Some manifolds as local sets. The squares manifold uses patterns with
types in k2H, or in other words Wsqua ∈ Man(k2H), and is therefore lattice local by
the above theorem. We have that Wsqua = Top2[U] ∩ Tri2[V], where U = {0•} ∪ W,
V = {0•, a•, b•} ∪W and whereW is the set of syntagmata:

The manifold Wmult ∈ Man(kH) is also lattice local and Wmult = Top1[U] ∩ Tri1[V],
whereU = {0•} ∪W,V = {0•, a•, b•} ∪W and whereW is the set of syntagmata:

4.4.3 Logic over Trees

Another family of tree formalisms which can be compared with manifolds are those
based on tree logic, (Rogers and Nordlinger, 1998). Several logical languages have
been proposed to encode and define trees. Such languages have variable symbols
for the vertices of a tree (or, more in general, graphs), some usual logical constants
(∀, ∃,¬,∧,∨,→) and some basic symbols for the relations over vertices such as “succes-
sor” or “sister” relations. This conforms to standard first order logic (FOL). In monadic
second order logic (MSOL), quantification over sets of vertices is allowed, which pro-
portions an extra expressive power. In this framework a set of finite trees is definable
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in MSOL iff it is recognizable by a finite tree automaton, (Thomas, 1997). Other more
specific logics as wMSO, L2

K,P or SnS formalize ad hoc linguistic theoretic concepts;
see (Rogers and Nordlinger, 1998; Rogers, 2003, 1996). These approaches are located
in the framework of MTS (Model Theoretic Syntax). Linguistic structures are the set
objects which satisfy logical formulas, i.e. the set of models in the logical sense, see
(Pullum and Scholz, 2001; Pullum, 2007). In this respect consider the definition of
simple manifold. The condition for a syntagma S to be in the manifold Synt

(B
Γ

)
is that

S satisfies:
B(S(x1), . . . , S(xa)) = 1 for all (x1, . . . , xn) ∈ Γ.

Soour approach throughmanifolds is similar toMTS in the sense that licensed structures
are models of a logical formula, but we concentrate the descriptive power in the exact
form of the domains of quantification which we constraint to be patterns.

If we restrict ourself to FOL, it is provable that a first-order definable set of graphs
of bounded degree is locally threshold testable, (Thomas, 1997).15 In simpler words
“first order logic is local”. Here we show that manifolds in Man(kpH) are definable
in a fragment of FOL (and viceversa), and recall that these manifolds are local sets of
syntagmata in the sense of Theorem 4.10.16

The condition for a syntagma S to be in the manifold Synt
(B
Γ

)
can represented in

prenex form:

∀x1∀x2 . . . ∀xa

(
PΓ(x1, . . . , xa) → QB(S(x1), . . . , S(xa))

)
,

where PΓ andQB are predicates interpretated as that PΓ(x1, . . . , xa) is true iff (x1, . . . , xa)
∈ Γ and QB(y1, . . . , ya) is true iff (y1, . . . , ya) ∈ B−1(1).

ExpressingQB in FOL is not a problem. Recall that B is a finite mapping B : Σk
+ −→

{0, 1} or, what is the same, it is given by the characteristic mapping of the set B−1. Then
we can encode valuations as:

QB(x1, . . . , xk) =
∨

(a1,...,ak )∈B−1(1)

k∧
i=1
≈ai(xi),

where ≈a(x) is a unary predicate meaning x = a.
Predicates PΓ are a bit more difficult to translate into a logical formula because of

the rich variety of patterns Γ. However when the pattern is of the form kH, a certain set
of formulas of the FOL characterize the class Man(kH).

15Local threshold testability is a concept a bit more general than locality. Structures are recognized by
means of a sliding window in which in addition one has to take care of number of occurrences of certain
segments; Ruiz et al. (1998).

16In order to define manifolds with more complex patterns probably it is necessary to move to MSOL,
but we are not going to deal with this in this thesis.
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Let us see this informally. Consider the fragment of FOL language with symbols:

∀,∧,∨, x, S,≈a,Chα, r,

where ∀,∧,∨ are the usual logical constants; x is a variable x (for vertices); S is a
unary functional symbol (meaning the letter labels on vertices); ≈a, with a ∈ Σ, are
unary predicates; Chα, with α ∈ ζ , are unary functional symbols (meaning Chα(x) is
the child of x by the syntactic function α); and r is a constant (meaning the root), and
where Σ and ζ are any finite sets.

As semantics for this language we take syntagma structures S = (S, Σ, { fα}α∈ζ, 1)
where S : ζ∗ −→ Σ is a syntagma; Σ is the set of letters; fα : ζ∗ −→ ζ∗ are the functions
defined fα(x) = αx; and 1 is the identity of ζ∗.

A syntagma structure S models the formula q in the above language, S |= q, iff q
is true for the symbol S interpreted as the mapping S; ≈a(x) interpreted as x = a; Chα
interpreted fα; and r interpreted as the identity 1.

Then, if ϕ = (1, α1, . . . , αk) with αi ∈ ζ, 1 ≤ i ≤ k, formulas such as:

∀x QB

(
x, S(Chα1(x)), . . . , S(Chαk (x))

)
,

are modeled by the same set of syntagmata as the simple manifold Synt
( B
ϕ(ζ)∗

k

)
, while

formulas such as:
QB

(
S(r), S(Chα1(r)), . . . , S(Chαk (r))

)
,

are modeled by the same set of syntagmata as the simple manifold Synt
(B
ϕ

)
. Therefore,

the fragment of FOL consisting in ∨∧-combinations of the above formulas defines
any manifold in Man(kH); in other words, every set of syntagmata which satisfies a
logical formula as above is a manifold with type kH. And conversely, any manifold
is definable by these formulas. A simple generalization allowing the p-th composition
Chα1(Chα2(· · · (Chαp (x)) · · · ) characterizes the classes Man(kpH).

4.5 Ellipticity of Manifolds

Definition 4.11. We call the ellipticity of S the number of ellipsis of S, |Ell(S)|. Given
a manifold W we say that it has effectively bounded ellipticity iff there is a computable
function ε : N+ −→ N+ such that |Ell(S)| ≤ ε(|S |) for every S ∈ W .

Example 11. Manifolds with and without effectively bounded ellipticity. The
manifold Nell trivially has effectively bounded ellipticity, |Ell(S)| = 0, ∀S ∈ W . Since
Wsqua,Wmult ⊂ Nell they also have effectively bounded ellipticity. Indirectly one can check
that Wcopy,Wresp are not elliptic.
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No manifold in W ∈ Man(kp), with ζ , ∅, has effectively bounded ellipticity, because
given an integer n there are infinite syntagmata S ∈ W such that |S | = n, which means that
the number of ellipses is not bounded. More specifically, consider a syntagma S ∈ W ∈
Man(kp), and let x ∈ ζ∗ be such that |x | = depth(S). From depth p+1 the valuation cannot
control loci, whereby we can add a chain to the locus x with k ellipses (as many as we
want) and a leaf at the end. Notating S′ this new syntagma we have that S′ ∈ W and that
|Ell(S)| ≥ k.

Ellipticity in manifolds of the kind kpH depend on the specific cases. One can define
a manifold in Man(k2H) in which, although it tolerates ellipses, |Ell(S)| ≤ |S |. We only
need a rule saying if a locus and all its children are null, then all the grandchildren are
null. When this happens these loci becomes definitively null, but notice that this permits the
existence of chains of ellipses as long as we want provided they govern at least one non-null
locus. This seems to be the situation in natural languages, as in the following example.

Example 12. Bounded ellipticity in natural languages. In natural languages gen-
erally gaps in a sentence are suggested by some surrounding lexical pieces such as some
complements of the gapped element. Consider for example the sentences in Catalan (anal-
ysis in Fig (a) and (b) below):

(17) a. La
The

noia
girl

del
of-the

tercer
third

pis
floor

ha
has

marxat
moved

‘The girl of the third floor has moved.’
b. La

The
�
�
del
of-the

tercer
third

�
�
ha
has

marxat
moved

The number of ellipses is unbounded in the sense that we can find sentences with as many
ellipses as we want: la �(noia) del tercer �(pis) del segon �(bloc) s’ha mudat (the �(girl)
of the third �(floor) of the second �(building) has moved). However, since in each ellipsis
there is a particle which announces it, the number of ellipses of each sentence is bounded
by the length of the sentence.



80 4.6. Decidability of Manifolds

4.6 Decidability of Manifolds

Regarding the decidability of amanifold,we study the question inAppendixC.Amongst
other results, we prove that in general manifolds in Man(X) with a polynomially
bounded ellipticity can be decided in polynomial time for any type X ∈ {k,H}∗.
However in particular, given the characterization ofmanifoldsMan(kpH) as lattice local
sets (Theorem 4.10), the universal recognition problem for these manifolds becomes
linear on the size of the syntagma. Since a manifold is a ∩∪-combination of simple
manifolds, the problem is trivially reduced to that of simple manifolds. If we consider a
simple manifold Synt

( B
ϕ(ζ)∗a

)
, we just have to build from B and ϕ the sample of triangles

defining the local set. In order to recognize whether a syntagma is in the manifold we
check if all the triangles are in the sample.

♣ The above comment should be enough to understand the idea, but the following
definition and theorem formalize the proof.

Definition 4.12. The input format of a simple manifold W = Synt
(B
Γ

)
is given by

(B, (Γ1, . . . , Γn)) where Γ1, . . . , Γn are the basic types of the decomposition of Γ. We
say that a simple manifold W is decidable when the problem S ∈? W given a simple
manifold W in input format and a syntagma S is decidable.

The input format for a (not necessarily simple) manifold is given by a ∩∪-term of
simple manifolds. We say that a manifold W is decidable when the problem S ∈? W
given a manifold W in input format and a syntagma S is decidable.

Theorem 4.13. For any p ≥ 0, manifolds in Man(kp) are decidable in constant time
O(1) in the size of the syntagma, and manifolds in Man(kpH) are decidable in linear
time O(|S |) in the size of the syntagma S.

Proof. The time for deciding an intersection/union of manifolds is the sum of the time
of deciding the manifolds. So we suppose that the manifold is simple. We suppose
W = Synt

(B
ϕ

)
∈ Man(kp). By Theorem 4.8W is a p-top set. We only have to transform

B and ϕ into a sample set UB,ϕ, such that W = Topp[UB,ϕ]. Notice that UB,ϕ = {S ∈
Synt | depth(S) ≤ p, B(S(ϕ1), . . . , S(ϕa)) = 1}, where ϕ = (ϕ1, . . . , ϕa) which can be
made in constant time mp+1−1

m−1 , where m = |ζ |. Given S ∈ Synt we have that S ∈ W iff
the p-top of S is inUB,ϕ which can be checked in constant time. Now we consider the
case W = Synt

( B
ϕ(ζ)∗a

)
∈ Man(kpH). Again, we construct the set VB,ϕ such that W =

Trip[VB,ϕ]. Notice that VB,ϕ = {S ∈ Synt | depth(S) ≤ p, B(S(ϕ1), . . . , S(ϕa)) = 1}
which is made in constant time. Given S ∈ Synt we have that S ∈ W iff every p-triangle
of S is in VB,ϕ. This can be checked in |S | + 1 steps because S have |S | + 1 triangles
(|S | proper triangles and the null syntagma). �
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4.7 ♣ A Generalization of Manifolds for Dependency Graphs

Although we are not going to use non-tree-shaped dependency structures in the thesis,
we would like to show that the notion of manifold can be extended to more general
structures.

Recall that a dependency graph (see §2.5) is a triple G = (G, f , g)where G = (V, A)
is a graph with vertexes V and edges A ⊆ V × V , together with a pair of mappings
f : V −→ Σ and g : A −→ ζ which label vertices with letters in Σ and edges with
syntactic functions in ζ .

A vertex u ∈ V of a dependency graph is a generator iff for all x ∈ V there is a
ϕ ∈ ζ∗ such that there is the path u

ϕ
→ x. In particular, when the graph is tree shaped

there is a unique generator, the root of the tree.

Definition 4.14. Given a valuation B and a pattern Γ we say that a dependency graph
G = (G, f , g) satisfies the valuation B throughout the pattern Γ iff for each generator
of G, say u, and for all (ϕ1, . . . , ϕa) ∈ Γ we have that:

u
ϕ1→ x1, . . . , u

ϕ1→ xa =⇒ B( f (x1), . . . , B( f (xa)) = 1,

and in the case that some of the vertices xi do not exist for ϕi we have to substitute the
corresponding i-th components by the null word 0, and then it must be satisfied that:

B( f (x1), . . . , 0, . . . , 0, . . . , B( f (xa)) = 1.

Definition 4.15. We notate GSyntΣ,ζ the set of all dependency graphs. The simple
manifold of dependency graphs is the set:

GSyntΣ,ζ
(
B
Γ

)
= {G ∈ GSyntΣ,ζ | G satisfies B throughout Γ}.

One can check that these definitions generalize the analogous definitions for syntagmata.
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5
Morphisms of Syntagmata

This chapter introduces some simple notions, some well-known, for the following
chapters. As is usual in algebra a morphism is a mapping preserving structures. In
the case of syntagmata morphisms preserve the assignment of vocabulary. This is
a very weak condition which, however, permits, for the moment, introduction of
two elementary concepts: symmetry and individual linearization.
Two syntagmata are symmetricwhenwe can obtain one from the other by reversing
the loci. Symmetry extends to manifolds.We see that a symmetric manifold results
from reversing the pattern. In particular symmetric manifolds are described by
reversed types.
We distinguish individual and global linearizations. We present strings as a lin-
ear syntagmata whereby an individual linearization becomes an isomorphism of
syntagmata. Projectivity is a well-known notion in dependency grammar. We in-
troduce projectivity as a property of individual linearizations and we study some
properties and their graphical representations.

5.1 The Category of Syntagmata

As is usual in algebra a morphism is a mapping preserving structures, cf. (Sankap-
panavar and Burris, 1981). In the following we will use the vocabulary of category
theory, see for example (Adámek et al., 2004).

Definition 5.1. Given a pair of syntagmata S, S′ we say that a mapping f : Spt(S) −→
Spt(S′) is a morphism of syntagmata iff f makes the following diagram commute:

Spt(S)

S
""

f // Spt(S′)

S′||
Σ

We notate f : S −→ S′ a morphism. We say that f is a monomorphism iff it is
injective, an epimorphism iff it is surjective, and an isomorphism when it is bijective.
Two syntagma S, S′ are isomorphic iff there is an isomorphism f between them.

83
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Figure 5.1: (a) an epimorphismof syntagmata f : S −→ S′; (b) amonomorphismof syntagmata
f : S −→ S′.

Lemma 5.2. We have a category of syntagmata with syntagmata in Synt as objects
and morphisms of syntagmata as morphisms.

Proof. We only need to see that the identity is a morphism of syntagmata, which is
trivial, and that the composition of morphisms of syntagmata is also a morphism of
syntagmata. To check this we just compose two triangular diagrams:

Spt(S)

g◦ f

''

S
%%

f // Spt(S′)
S′
��

g // Spt(S′′)

S′′
yy

Σ

�

Fig.5.1 depicts some examples of the these concepts. Fig. 5.1(a) shows an epimor-
phism of syntagmata. Fig. 5.1(b) shows a monomorphism of syntagmata. Notice that
the mapping f can be described as a translation f (x) = x · ObS. In general subtrees
are embedded into a syntagma through right-handed translations. Another example of
monomorphism is given by the restricted syntagma (Definition 2.5). We just consider
the inclusion mapping η : Spt(SΓ) = Spt(S) ∩ Γ −→ Spt(S).

One is tempted to define that S′ is a subsyntagma of S when there exists a monomor-
phism f of syntagmata f : S′ −→ S. However all the notions above are defined by
conditions which are very weak in the structural sense. Fig. 5.1(a) shows that the arrows
(dependencies) are not necessarily preserved by a morphism. The restricted syntagma
SΓ, although it will be algebraically useful, is not linguistically interesting. Amongst
other things it has a lot of inconvenient null-loci. Since this notion of substructure is
too general we will give later a more refined notion called subsyntagma induced by a
pattern or Γ-subsyntagma, which forms a fundamental part of our formalism.
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5.2 Symmetries

In (Cardó, 2016) we introduced symmetry as a permutation of a certain factorization of
the supports of syntagmata. We call this ρ-symmetry. Even though this concept enjoys
linguistics applications, here we are going to use in the main another kind of symmetry,
even simpler, which allows us to explore more algebraic properties.

Definition 5.3. The reversal string xR induces the mapping:

(·)< : Synt −→ Synt
S 7−→ S<,

defined by S<(x) = S(xR). We call this involutive mapping <-symmetry. We say
that two syntagmata S, S′ are <-symmetric iff S′ = S<. We extend <-symmetry to
manifolds by W< = {S< | S ∈ W}. We say that two manifolds W,W′ are<-symmetric
iff W′ = W<. Since we are going to use only this kind of symmetry we call it simply
symmetry.

Remark 5.4. Symmetry introduces a duality on the manifolds, and, as we will see, this
dualityworks also at the level of linearizations. It is immediate to check that elementary no-
tions of syntagmata (ellipsis, leaves, depth, ...) in a syntagma S become the corresponding
co-notions in the symmetric syntagma S<. Notice that Spt(S<) =

(
Spt(S)

)R.
Lemma 5.5. If f : S −→ S′ is a morphism of syntagmata S and S′ then f< defined by
f<(x) = ( f (xR))R is a morphism of syntagmata S< and S′<. If f is a mono/epi/iso-
morphism then f< is a mono/epi/iso-morphism. Furthermore (g ◦ f )< = g< ◦ f<

and id< = id. So (·)< is a covariant and isomorphic functor from the category of
syntagmata Synt to itself.

Proof. The first statement arises from the totally commutative diagram:

Spt(S)
S

##
R

��

f // Spt(S′)

R

��

S′

{{
Σ

Spt(S<) f< //

S<
;;

Spt(S′<)

S′<
cc

Since (·)R is bijective, the injectivity and surjectivity of f is preserved in f<. To see
the composition of morphisms we just take a diagram for f and a diagram for g and
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concatenate:

Spt(S)

g◦ f

**

S

##
R

��

f // Spt(S′)

R

��

S′

{{

g // Spt(S′′)

R

��

S′′

ssΣ

Spt(S<)

g<◦ f<=(g◦ f )<

44
f< //

S<
;;

Spt(S′<)

S′<
cc

g< // Spt(S′′<)

S′′<
kk

�

The meaning of this result is that a lot of properties should be preserved by symmetry.
Let us consider an example:

Example 13. Symmetric Manifolds. Reviewing the first examples of manifolds, a re-
markable fact is that Wcopy and Wsquar share the same valuations. Furthermore, the patterns
in Wcopy are the patterns of Wsquar, but with the reversed order. The fact is that we can
check graphically in Fig. (a) that they are symmetric: Q<x1,...,xn = Cx1,...,xn . So the mani-
folds are also symmetric: W<copy = Wsquar. Another example of symmetry, see Fig. (b), is
W<mult = Wresp, since M<

k
= Rk for all syntagmata.

This example suggests that the algebraic content of a manifold commutes with the
whole manifold under symmetry:

Lemma 5.6. Let Γ be a pattern and B be a valuation. Then:

Synt
(
B
Γ

)<
= Synt

(
B
ΓR

)
.
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Proof. Since the arity here is not crucial, we abbreviate the quantified expression:

B(S(x1), . . . , S(xa)) = 1 ∀(x1, . . . , xa) ∈ Γ

as B(S(xi)) = 1 ∀(xi) ∈ Γ, and see the equalities:

Synt
(
B
Γ

)<
= {S ∈ Synt | B(S(xi)) = 1, ∀(xi) ∈ Γ}<

= {S′ ∈ Synt | S′ = S<, B(S(xi)) = 1, ∀(xi) ∈ Γ}
= {S′ ∈ Synt | S′< = S, B(S(xi)) = 1, ∀(xi) ∈ Γ}
= {S′ ∈ Synt | B(S′<(xi)) = 1, ∀(xi) ∈ Γ}
= {S′ ∈ Synt | B(S′(xR

i )) = 1, ∀(xi) ∈ Γ}
= {S′ ∈ Synt | B(S′(yi)) = 1, (yi) = (xi)R, ∀(xi) ∈ Γ}
= {S′ ∈ Synt | B(S′(yi)) = 1, ∀(yi) ∈ ΓR}

= Synt
(

B
ΓR

)
. �

Corollary 5.7. If W ∈ Man(X) then W< ∈ Man(X<).

Proof. Notice that < is a bijective mapping and thus it preserves set union and set
intersection. So if W and W′ are simple manifods, (W ∪ W′)< = W< ∪ W′< and
(W ∩W′)< = W< ∩W′<. Then, first recall Lemma 3.9 and then apply Lemma 5.6. �

As an application of this result we have that manifolds in Man(Hkp) are decidable
in linear time. We only have to built the symmetric syntagma (which is made in linear
time in the size of the syntagma) and check if it is in the symmetric manifold, now in
Man(kpH), and we know that this can be done in linear time (Theorem 4.13).

Lemma 5.8. Given a syntagma S over ζ and Σ, we set m = |ζ |, s = |S |, s′ = |S< |,
d = depth(S), d′ = depth(S<), e = |Ell(S)|, e′ = |Ell(S<)|. We have that:

s = s′, d = d′, and e′ ≤ ms′+e − 1
m − 1

− s′ provided m > 1;

when m = 0 or m = 1 then e = e′. In particular if a manifoldW has effectively bounded
ellipticity, W< does.

Proof. It is trivial to prove that s = |S | = |Spt(S)| = Spt(S<)| = |S< | = s′. Let
x ∈ Spt(S) be such that |x | = d. Then S<(xR) = S((xR)R) = S(x) , 0, since x ∈ Spt(S).
Then the depth of SR is greater than |xR | = |x | which is the depth of S. So we
have that depth(S<) ≥ depth(S). We can use this twice: depth(S) = depth((S<)<) ≥
depth(S<) ≥ depth(S) and then d = depth(S) = depth(S<) = d′.Whenm = 0 or 1, then
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trivially S = S< and then e = e′. Consider m > 1; by Lemma 2.6 d+1 ≤ s+e ≤ md+1−1
m−1

and d′ + 1 ≤ s′ + e′ ≤ md′+1−1
m−1 ; then e′ ≤ md′+1−1

m−1 − s′ = md+1−1
m−1 − s′ ≤ ms+e−1

m−1 − s′ =
ms′+e−1

m−1 − s′. Thus if W has effectively bounded ellipticity with |Ell(S)| ≤ ε(|S |), then
W< has effectively bounded ellipticity with |Ell(S)| ≤ m |S |+ε( |S |)−1

m−1 − |S |. �

5.3 Linearizations and Projectivity

5.3.1 Strings as Syntagmata, Individual and Global Linearizations

Notice that a string in Σ∗ can be understood as a syntagmata. Let us consider a syntactic
function u understood as “the next”. Then a string x1 + · · · + xn ∈ Σ∗ can be thought of
as a mapping x : u∗ −→ Σ+, such that:

x(1) = x1, x(u) = x2, x(u2) = x3, . . . , x(un−1) = xn, x(un) = 0, x(un+1) = 0, . . . .

We call syntagmata with just one syntactic function linear. We can endow linear
syntagmata with the obvious operation:

(a1
u−→ · · · u−→ an)+ (b1

u−→ · · · u−→ bm) = a1
u−→ · · · u−→ an

u−→ b1
u−→ · · · u−→ bm

Clearly this operation is associative and 0• is the identity, which properties provide us
with a monoid. Since atomic syntagmata are a special case of linear syntagmata, we
can consider the set generated by atoms under the above sum, which we notate Atom?.
This set is the set of linear syntagma which are not elliptic. So definitively we have an
isomorphism:

Σ
∗ −→ Atom?

a1 + · · · + an 7−→ a•1 + · · · + a•n = a1
u−→ · · · u−→ an.

Since this isomorphism Σ∗ � Atom? is so natural we are be able to represents strings
by both forms; we can even say by a mild abuse of notation that Atom? = Σ∗.

Definition 5.9. Lets S ∈ Synt and x ∈ Σ∗. An individual linearization is an isomor-
phism of syntagmata S −→ x, i.e.: a bijection ` that makes the following diagram
commute:

Spt(S)

S
""

` // Spt(x)

x
||

Σ

A global linearization is a mapping Π : Synt −→ ℘(Σ∗) such that for all x ∈ Π(S)
there is an individual linearization ` : S −→ x. Notice that then Π(S) is a finite set of
strings.
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Example 14. An individual linearization. Take the syntagma S from the first example
and take the string:

the + young + soldier + washed + the + dirty + cup,

or what amounts to the same thing, the string in Atom?:

x = the• + young• + soldier• + washed• + the• + dirty• + cup•.

The following mapping defines a linearization ` : Spt(S) −→ Spt(x). `(Dt · Sb) = 1,
`(Ad · Sb) = u, `(Sb) = u2, `(1) = u3, `(Dt ·Ob) = u4, `(Ad ·Ob) = u5, `(Ob) = u6. Fig. (a)
represents graphically this mapping ` on the loci; the mapping S is not represented. Fig. (b)
shows the same linearization with the mappings S and x; this will be the standard form of
representing an individual linearization.

So “individual linearization” just means an ordering of the lexical items of a specific
given isolated syntagma, while “global linearization” means an a organization many
isolated linearizations. When the context permits we avoid the distinction individual-
global. However this distinction is fundamental.

Our interpretation of dependency grammar is as a pair G = (W,Π) where W is a
manifold and Π is a global linearization. The language of the grammar is then the set
L (G ) = ⋃

S∈W Π(S). However some constraint over the concept of global linearization
is required. We will need some additional mathematical preliminaries in order to arrive
at an adequate formulation, which is made in the following two chapters. Combining
a manifold with this adequate global linearization we will arrive at the concept of
Algebraic Dependency Grammar.

Notwithstanding we can continue here studying linearizations individually. We
examine in the following section a property of individual linearizationsmuch celebrated
in dependency grammar, namely projectivity.
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5.3.2 Projectivity

Since linearizations, understood as simple orderings of the nodes of a dependency tree,
are too general; theorists have tried to find adequate constraints for natural language.
The most fundamental class of linearizations considered is the class of projective
linearizations or simply projections. Intuitively a projection is a relation between the
dependency tree and a linear order the graphical representation of which connects
the vertices of the tree to the vertices of the linear order by lines without crossing
each other; see Fig. 5.2. However some additional restrictions must be made for a
graphical representations, see later §5.4. Before giving a geometric characterization
it is preferable to have a more formal definition of projectivity. There exist several
equivalent characterizations in terms of adjacency, governance and intervals.1 Here we
take as reference a characterization of Kuhlmann (2010):2 a linearization is projective
iff it transforms subtrees of the dependency tree into intervals of the word-order;3 see
Fig. 5.3. Later we will translate this definition into our vocabulary of syntagmata.

Projectivity appears to capture well the linguistic intuition of “continuity”. Nonethe-
less, projective structures do not cover the totality of the sentences of natural language.4
To explain the non-projective part there are two options. Either we must assume a less
intuitive analysis of the sentences, or we must loosen the sense of projectivity. The first
option is not considered a good alternative. Generally, even in a syntactic representa-
tion, the dependencies in the dependency tree must conform to the semantic arguments
(although it is an intuitive condition rather a formal constraint). 5 For this reason other
wider kinds of linearizations have been proposed, such as pseudo-projective (Kahane
et al., 1998), planar 6 (Temperley et al., 1993),multiplanar (Yli-Jyrä et al., 2003), well-
nested (Obrebski and Gralinski, 2004), or block-degree restricted (Kuhlmann, 2010)
linearizations. See Kuhlmann and Nivre (2006) for general discussion. We also will
consider other forms of linearization in Chapters 7 and 11.

In sum, projectivity is a property of individual and isolated linearizations which,
although it does not explain natural language in its entirety, any formalism should take
into account.

1Kuhlmann (2010), following Marcus (1967), lists at least four characterizations: those of K. Harper
and D. Hays; Y. Lecerf and P. Ihm; S. Filiatov; and J. Robinson. Some sources attribute to Lecerf (1961)
the first characterization.

2Which in its turns is based in a characterization attributed to S. Filiatov.
3Kuhlmann (2010) says “convex sets” instead of intervals.
4See (Kuhlmann, 2010; Debusmann and Kuhlmann, 2010; Straka et al., 2016) for some statistics.
5In (Cardó, 2016) we explore this possibility.
6Kuhlmann (2010) calls these linearizations “weakly non-projective” in order to avoid confusion

with the more widespread concept of planarity for general graphs.
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Figure 5.2: (a) projective linearization; (b) non-projective linearization.

Figure 5.3: the projective linearization from Fig. 5.2(a) which preserves subtrees into intervals.

5.3.3 Projectivity through Syntagmata

Although subtree and substring are clear concepts we must formalize them. We can
capture the notion of (total) subtree using patterns. Note that given a locus ϕ ∈ ζ∗ the
elements of the right ideal pattern (of arity one) ζ∗ϕ depict a subtree. An interval of u∗

is a set of the form: {up+1, up+2, . . . , uq}, for some integers 0 ≤ p ≤ q. A subtree of a
syntagma S is the set of loci Spt(Sζ∗ϕ) = ζ∗ϕ∩Spt(S) for some fixed ϕ ∈ ζ∗, provided
it is not the empty set. In the sequel our definition of projectivity will be the following:

Definition 5.10. Let S be a non-elliptic syntagma and let x be a string. A linearization ` :
S −→ x is projective iff ` transforms subtrees into intervals.We call these linearizations
projections.

5.4 Some Properties and Graphical Representations of Projections

♣We study a couple of elementary properties and well-known graphical characteriza-
tions of projectivity. Since the issue is well-known the informed reader may skip this
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Figure 5.4: an example of a projective linearization read as a monomorphism of orders: (a) the
set of all subtrees of a given syntagma ordered by inclusion; (b) the set of intervals ordered by
inclusion.

section.
A nice way to read the above definition is through order theory. Notice on the one

hand that the set of subtrees of a non-elliptic syntagma S, notated SubTrees(S) =
{Spt(S) ∩ ζ∗ϕ | ϕ ∈ ζ∗}, can be ordered by inclusion, which gives a partial order. On
the other hand the intervals of the support of a string x, notated Intervals(x), form also
a partial ordered set. We have that if ` is projective it induces a ⊆-monomorphism of
orders:

` : SubTrees(S) −→ Intervals(x),

where we notate also ` the canonical set extension, `(t) = {`(x) | x ∈ t} for any tree t.
The proof is immediate: the induced mapping is well-defined because ` is projective; in
addition since ` is injective the set extension is. However surjectivity is not preserved:
there are many more intervals than subtrees. See Fig. 5.4 for an example.

The following is an easy result which bounds the distance between words in a
projective linearization.

Lemma 5.11. Given a projective linearization the distance in the linear order of two
nodes of the dependency tree is strictly less than the size of the least subtree containing
the nodes.

Proof. Let t be the least subtree containing ϕ, ψ ∈ ζ∗. Since the linearization is projec-
tive this tree is transformed into an interval, `(t) which has length |`(t)|. In the worst
case `(ϕ) and `(ψ) are placed at the extremes, and then the distance is |`(t)| − 1. So the
distance is strictly less than |`(t)|. �
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Example 15. An example of the metric property. Let us see an example of application
of the last lemma. Consider the linearization ` of the following figure:

We want to prove that it is indeed non-projective. Although the picture shows crossing
lines, in order to be completely sure that it is not a projective linearization we would have
to check that redrawing the linearization cannot remove the crossing points.

Alternatively, in virtue of the previous lemma, we can consider the words a and issue,
which are placed at the loci Dt·Sb and Nc·Sb respectively. Its distance in the linear order is
6. However the least tree containing both loci is given by root Sb (with the word hearing)
which has size 5, which means that ` is not projective.

There exist two planar representations for linearizations, namely by straight lines
and by arcs. Here we define and prove that both representations are equivalent. In the
following chapters when we need to exhibit an individual linearization we will use the
representation by straight lines.7 For the rest of this section we are going to suppose
that all syntagmata are non-elliptic.

Consider the first representation. We introduce a little geometric notation. R2 =
{(x1, x2) ∈ R2 | x2 > 0} is the superior half-plane and R = {(x1, x2) ∈ R2 | x2 = 0}
the base line. π1 and π2 : R2 −→ R are the orthogonal projections π1(x1, x2) = x1,
π2(x1, x2) = x2. ‖(x, y)‖ =

√
x2 + y2. Finally, given a pair A, B of points in the plane,

we notate the open segment AB = {A + t(B − A) | t ∈ (0, 1) ⊂ R}.
Definition 5.12. A straight representation of a linearization ` is a pair of injective
mappings f , g such that they make the following diagram commute:

Spt(S)
`
��

f // R2

π1
��

Spt(x) g // R

The segments f (ϕ) f (ψ) such that ϕ and ψ are adjacent are called arrows. The segments
f (ϕ)g(`(ϕ)) are called projection lines.8

7For more considerations on linearization under a geometric perspective see (Marcus, 1967).
8Notice that f (ϕ)g(`(ϕ)) = f (ϕ)π1( f (ϕ)).
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Figure 5.5: (a) prohibited configurations for a straight representation of a projective lineariza-
tion; (b) prohibited configurations for a representation by arcs of a projective linearization.

Figure 5.6: representation by arcs of a projective linearization (a) and a non-projective lin-
earization (b).

Given a linearization and astraight representation we establish the three conditions:

(a.i) if ϕ ≺ ψ then π2( f (ϕ)) < π2( f (ψ)), for any ϕ, ψ ∈ Spt(S);

(a.ii) arrows never intersect each other;

(a.iii) arrows and projection lines never intersect each other.

These three conditions are in fact defining prohibited configurations. Fig. 5.5(a.i),
(a.ii) and (a.iii) show them. Fig. 5.2(a) depicts a straight representation of a projective
linearization, while Fig. 5.2(b) is not projective. We see in a few moments that the three
conditions characterize projectivity.

In the second representation there are no projection lines and the straight segments
for the arrows are replaced by arcs. Given two points A, B ∈ R, we call the arc
AB_ = {(x, y) ∈ R2 |



(x, y) − A+B
2



 = ‖A−B‖
2 } i.e. the superior half of the unique

circumference containing both A and B with center in R. Given a point A in the plane
the vertical ray is the set −→A = {(0, t) | t > 0}.

Definition 5.13. A representation by arcs of a linearization ` is an injective mapping
f : Spt(S) −→ R such that if `(ϕ) ≺ `(ψ) then f (ϕ) < f (ψ) for any ϕ, ψ ∈ Spt(x). We
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call root ray the set
−−−→
f (1), where recall that 1 is the root locus. Given two adjacent loci

ϕ, ψ we call arc-arrow the arc: f (ϕ) f (ψ)_
.

Given a linearization and a representation by arcs we establish the two conditions:

(b.i) arc-arrows never intersect each other;

(b.ii) any arrow and the root ray never intersect.

In both straight and arc representations it is usual to draw the direction of the
arrows. Similarly to the straight representation, these two conditions are in fact defining
prohibited configurations. Fig. 5.5(b.i) and (b.ii) show them. Fig. 5.6(a) depicts a
representation by arcs of a projective linearization, while Fig. 5.6(b) is not projective.

Theorem 5.14. A linearization is projective if and only if there is a straight repre-
sentation satisfying the conditions (a.i), (a.ii), (a.iii). Equivalently a linearization is
projective if and only if there is a representation by arcs satisfying the conditions (b.i),
(b.ii).9

Proof. We sketch the proof. We see the first statement. (⇒) By induction on the depth
d of the syntagma. The case d = 0 is trivial. We assume that the induction hypothesis
is true for any subsyntagma with depth d, and consider a syntagma with depth d + 1.
Any syntagma can be decomposed in its greatest proper subtrees together with the root.
These subtrees have depth d and thus they satisfies the three conditions by induction
hypothesis. We place them in the plane sufficiently separated and we add the root
sufficiently high. Then the whole configuration satisfies the three conditions. (⇐).
Consider a subtree. Geometrical conditions (a.i), (a.ii) and (a.iii) ensure that there is
a polygon defined by the base line, arrows and projection lines which contains the
subtree; see Fig. (a). Then since all the nodes of the subtree are in the polygon if we
project them, they fall in the interval of the base line.

Now we prove that we have a straight representation satisfying (a.i), (a.ii), (a.iii) iff
we have a representation by arcs satisfying (b.i), (b.ii). First add an extra special arrow

9If we remove the condition (b.ii) on the root ray we obtain the class of planar (or weakly non-
projective) linearizations, (Temperley et al., 1993).
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in the straight representation which targets the root and which sources from infinity, as
in Fig. (b). It can be proved that if we replace the condition (a.i) by a condition (a’.i)
which says that no arrow crosses the root arrow, then (a.i), (a.ii), (a.iii) are equivalent
to (a’.i), (a.ii), (a.iii). So we only have to prove that these last conditions are equivalent
to (b.i), (b.ii). In order to see this we consider the mapping of each arrow into an arc as
in Fig. (c). Then the condition (a’.i) turns into condition (b.i), and conditions (a.ii) and
(a.iii) turns into condition (b.ii). �

Although the representation by arcs is more concise andmathematicallymore elegant, it
cannot separate the syntagma from the linear order and for large sentences it is difficult
to grasp the structure, whereby in the sequel we adopt the straight representation.



6
Subsyntagmata Induced by Patterns

Substructure is a fundamental notion in linguistics: it is the basis of the under-
standing of many phenomena. We review first several notions of substructure.

This chapter presents as our notion of substructure subsyntagmata described by a
pattern. This will allows us to control the parts of a syntagma in order to linearize
it in the following chapters. Patterns are just a set of loci, not syntagmata, whereby
we have to explain how a pattern induces a subsyntagma.

Since this construct is not immediate we study first the more intuitive case of
subtrees or right ideal patterns. Then we give the general definitions in order to
arrive at the definition of subsyntagma induced by a pattern or Γ-subsyntagma.
In particular we prove that the subsyntagma induced is always unique and we
show how to calculate it. We will provide several examples. In the last section we
observe that induced subsyntagmata and symmetry commute perfectly.

6.1 A Note on the Importance of Substructures

The notion of substructure is as fundamental in linguistics as it is in algebra. In the field
of algebra the set of substructures of a given structure informs about the nature of the
latter; it can even identify it totally. Hence inquiry into an algebraic structure usually
begins by studying substructures.

In linguistics the concept of substructure is still an object of debate today. There is
much evidence that a sentence is not a monolithic unit. These arguments are the called
constituency tests or more in general diagnosis tests and they appear frequently in tradi-
tional syntax monographs. Consider for example one such test, pro-form substitution:

(18) A man with dark glasses is following us{ He is following us.

Since the substitution is successful the underlined substring is considered a constituent
of the sentence. Hence it would seem that one could easily deduce an underlying
syntactic structure. However in many situations tests fail or are not definitive and there

97
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is no a unequivocal procedure to recover the structure.1, 2
The most basic and ancient division of a sentence, subject-predicate, goes back to

Aristotle.3 Nowadays it is not such a clear division: in dependency grammar it is not
clearly accepted (however see in the last chapter §12.2 a proposal), while in constituency
grammar and categorial grammar this is substituted by the opposition noun phrase-verb
phrase. More in general the widespread notion of substructure is the constituent which
is framed into the phrase-structure formalisms, also called constituency approaches.

In dependency grammar several proposals for substructures have been suggested:
(partial) subtrees and (complete) subtrees (Hays, 1958), word order domains (Bröker,
1998), or more recently, catena (Osborne et al., 2012), which is a very relaxed notion.
According to Osborne et al. (2012, pg 354) a catena is: “a word or combination of words
that is continuous with respect to dominance”. Here “continuous” in graph-theoretical
terms means a connected subset of nodes of the dependency tree.4 Catenae help to
understand finer questions such as idioms, ellipses or morphology, cf. (Osborne et al.,
2012; Groß, 2011). However in our opinion an eventually “discontinuous” substructure
notion could help to understand better some constructions. Consider, for instance,
the disconnected subjects in a sentence with subordinate clauses in some Germanic
languages, which seem to behave as a unitary substructure in the linearization, see
Example 19 later.

Here we will introduce substructures as subsyntagmata induced by a pattern which:
(1) include a rich variety of combinations like in the notion of catena, but in addition
(2) include “discontinuous” cases; (3) are defined algebraically, not geometrically; (4)
can be located in a classificatory monoid, which helps us to discern phenomena.

6.2 Warm-Up: Subtrees

Since our main objects are syntagmata which we depict as trees, the first substructures
we consider are subtrees. We already saw that when we depict the loci of the right ideal
ζ∗ϕ we obtain a subtree. However this is not a syntagma but a set of loci.

The most abstract notion of substructure must satisfy a pair of requirements. The
substructure must have the same status as the first structure (cf. subgroups are groups

1See Groß and Osborne (2015) and Osborne (2015) for some diagnosis tests in the dependency
framework.

2As we have said, pro-form substitution states that if we substitute a substring by a pro-form with a
grammatical result, then the substring is a constituent. But simple string manipulations are dangerous, as
in the substitution I think that the first answer is right { it is right; the adequate constituent is the first
answer is right, not the underlined substring. There are other similar wrong diagnoses, see for example
(Phillips, 2003).

3See (Matthews, 1981).
4Hays had already defined “subtree” as “any connected set of nodes contained in a tree” (Hays, 1958,

pg 261). In this thesis the term “subtree” means a complete subtree, i.e. is the set of loci which are
dominated by a unique locus, also expressed by right ideal patterns.
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Figure 6.1: a subsyntagma S′ of S defined by S(x) = S(x ·ObS) and its embedding as a
translation, τ : S′ −→ S, τ(x) = x ·ObS .

or subgraphs are also graphs). In addition the substructure must be embeddable in the
first structure, i.e. there must be a monomorphism.

For example the restricted subsyntagma SΓ can be embedded into S. These require-
ments, which are framed in category theory, see for example Adámek et al. (2004), are
a bit more general than the classical notion of a substructure in universal algebra, i.e.
a set with certain inner operations, see for example Sankappanavar and Burris (1981).
However we do not have operations in a syntagma to be preserved in a subsyntagma.
SΓ is just the result of removing loci outside the pattern Γ and this says nothing about
the relation between SΓ and S; in other words, the embedding is the trivial inclusion.
We would like something similar, or better, something isomorphic to SΓ, where the
embedding is not trivial.

In this relation consider again the notion of subtree as a right ideal Γ = ζ∗ϕ. Note
that all the loci of the support of SΓ are of the form xϕ for some x ∈ ζ∗. Consider the
new syntagma given by S′(x) = S(xϕ). Now the support of S′ is derived from the same
set but we have deleted the constant ϕ at the end:

x ∈ Spt(S′) ⇐⇒ xϕ ∈ Spt(S ζ∗ϕ).

Moreover, we have an isomorphism of syntagmata:

Spt(S′)

S′ ""

τϕ // Spt(Sζ∗ϕ)

Sζ∗ϕ
zz

Σ

There are two ways to conceptualize S′. First, a geometric way where we can think
of loci of Spt(S)∩ ζ∗ϕ as translated upwards in such a way that now the root of S′ (given
by the identity 1) is the root of ζ∗ϕ; see the example in Fig. 6.1. Indeed this translation
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τϕ(x) = xϕ gives the monomorphism which embeds S′ into S:

Spt(S′)

S′ ""

τϕ // Spt(S)

S
||

Σ

The injectivity of τ is given by the cancellation property of free monoids. Thus S′ =
S ◦ τϕ is a subsyntagma of S in the above sense.

A second way to understand S′ is combinatoric rather than geometric. We have
the relation x ∈ Spt(S′) ⇐⇒ xϕ ∈ Spt(S ζ∗ϕ). So we can consider that the ϕ’s
are superfluous, or better, redundant in the syntagma SΓ. If we delete them we will
obtain the support of S′. Interestingly this second procedure is more productive and
generalizable than the geometric interpretation.

Subtrees are closely related to right ideals (of arity one). Are these right ideals ζ∗ϕ
the unique patterns which proportion substructures? Consider the simple construction
ϕζ∗ where we have just swapped the handedness. These left ideals should, by the same
token, become substructures. In the end “subtre” is a geometrical notion depending on
the handedness of the graphical representation. Right ideals draw a tree-shaped cloud
of nodes while left ideals draw another distribution of the nodes which we can name
co-subtrees. Fig. 6.2(a)-(d) shows the distribution of loci in some patterns. Importantly
we will see later that right ideals are closely related to projective linearizations.

But indeed why should we stop here? We can take more complex patterns, like say
ϕζ∗ψξ∗. Can more general patterns induce subsyntagmata which yield other lineariza-
tions? This chapter provides algebraic conditions to answer positively these questions.

6.3 Induced Subsyntagmata: Definitions

In the following sections all the patterns will be of arity 1. Since we want to define
certain mappings over the patterns, we need to be able to decompose x ∈ Γ univocally.
Recall that a pattern with its decomposition Γ = Γ1 · · · Γk in basic patterns Γi is proper
iff it is unambiguous (i.e. the product mapping π :

⊕k
i=1 Γi −→ Γ is bijective) and it

has no trivial factors. Let us introduce the following mapping:

Definition 6.1. Let
⊕k

i=1 Γi be a factorization of a pattern Γ. We say that a mapping
of the form:

∂ :
k⊕

i=1
Γi −→

k⊕
i=1

∂i(Γi)

(x1, . . . , xk) 7−→ (∂1(x1), . . . , ∂k(xk)),

is a deletion iff for each i = 1, . . . , k, ∂i is the constant mapping 1 or the identity idΓi .
In other words ∂ deletes some components of the factorization making them 1.
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Figure 6.2: distribution of the loci for several patterns with ζ = {α, β}; (a) ζ∗α; (b) αζ∗; (c)
αζ∗β; (d) ζ∗αζ∗.

Lemma 6.2. Let π :
⊕k

i=1 Γi −→ Γ be a proper factorization and let ∂ be a deletion.
Then there exists a unique surjective mapping ∂̃, a product mapping π̃ and a pattern
Θ, which make the following diagram commute:⊕k

i=1 Γi
∂ //

π

��

⊕k
i=1 ∂i(Γi)

π̃
��

Γ
∂̃ // Θ

where π̃ :
⊕k

i=1 ∂i(Γi) −→ Θ is a factorization. In other words, ∂̃ deletes some factors
of Γ being Θ = ∂̃(Γ) the result of this deletion.

Proof. Consider themapping π̃ :
⊕k

i=1 ∂i(Γi) −→ π̃
(⊕k

i=1 ∂i(Γi)
)
with π̃(y1, . . . , yk) =

y1 · · · yk . The set π̃
(⊕k

i=1 ∂i(Γi)
)
=

∏k
i=1 ∂i(Γi) is a pattern because each ∂i(Γi) is a

constant or a submonoid.
Now since the mappings must make the diagram commute, ∂̃ = π̃ ◦ ∂ ◦ π−1 which

exists because π is bijective and in addition this is the only possible choice for ∂̃. Then
we can calculate ∂̃(Γ) = π̃ ◦ ∂ ◦ π−1(Γ) = π̃ ◦ ∂

(⊕k
i=1 Γi

)
= π̃

(⊕k
i=1 ∂i(Γi)

)
. Clearly

∂̃ is surjective. Now we can take Θ = ∂̃(Γ). �

Definition 6.3. Let π :
⊕k

i=1 Γi −→ Γ be a proper factorization and let S be a syntagma.
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Consider also the j-projection:

π j :
k⊕

i=1
Γi −→ Γj

(x1, . . . , xk) 7−→ x j .

We define the deletion associated to S and Γ and its factorization as ∂ = (∂1, . . . , ∂k)
where for j = 1, . . . , k,

∂j is the constant mapping 1 ⇐⇒ |π j ◦ π−1(Spt(SΓ))| ≤ 1;
∂j is the identity idΓj ⇐⇒ |π j ◦ π−1(Spt(SΓ))| > 1.

Given a syntagma S and a proper factorization of Γ, we say that a syntagma S′

is a subsyntagma induced by the pattern Γ (or in short a Γ-subsyntagma) of S iff its
associated deletion mapping ∂ yields an isomorphism SΓ �∂̃ S′; that is, we have the
isomorphism of syntagmata:

Spt(SΓ)

SΓ
##

∂̃ // Spt(S′)

S′||
Σ

Remark 6.4. In order to be absolutely formal we should say that S′ is a
⊕

i Γi-subsyntagma
or that S′ is the subsyntagma induced by the factorization of Γ. However by a mild abuse
of terminology, we will suppose that the factorization is given implicitly and we will say
Γ-subsyntagma; here “implicitly" means that when we write Γ =

∏
i Γi we understand the

obvious factorization
⊕

i Γi.

Lemma 6.5. Given a syntagma S and a pattern Γ with a proper factorization, there is
at most one, unique, subsyntagma induced by Γ.
Proof. Consider two syntagmata S′, S′′ both being Γ-subsyntagmata of S. By definition
∂̃ is surjective, so that ∂̃(Spt(SΓ)) = Spt(S′) and ∂̃(Spt(SΓ)) = Spt(S′′), and both
supports coincide. By definition S′ ◦ ∂̃ = S and S′′ ◦ ∂̃ = S, so we have the diagram:

Spt(S) ∩ Γ

S
$$

∂̃ // Spt(S′) = Spt(S′′)
S′

|| S′′ssΣ

Since ∂̃ is surjective, S′ ◦ ∂̃ = S′′ ◦ ∂̃ =⇒ S′ = S′′. Notice that this equality works
for S′ and S′′ on the domain set defined in the diagram, Spt(S′) = Spt(S′′). We have
to check in addition that they coincide outside the set. But this is immediate because
when x < Spt(S′) = Spt(S′′), S′(x) = S′′(x) = 0. �
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Since the Γ-subsyntagma is unique when it exists, we can define:

Definition 6.6. Given a syntagma S and a pattern Γ with a proper factorization, when
there exists the Γ-subsyntagma, we will write it as SΓ.

Now we see that Γ-subsyntagmata are indeed subsyntagmata, and how to calculate
them.

Proposition 6.7. Let S be a syntagma, Γ be a pattern with a proper factorization, and
∂ be its associated deletion. We have the following properties:

(i) If SΓ exists, SΓ � SΓ and then SΓ is a subsyntagma of S.

(ii) If SΓ exists, it can be calculated as:

SΓ(x) =
{

S ◦ ∂̃−1(x) if x ∈ ∂̃(Spt(SΓ));
0 otherwise.

(iii) SΓ exists if and only if the mapping ∂̃ : Spt(SΓ) −→ ∂̃(Spt(SΓ)) is bijective.

(iv) SΓ exists if and only if |Spt(SΓ)| = |∂̃(Spt(SΓ))|.

Proof. (i) Trivial from the definitions and the fact that SΓ is a subsyntagma of S. (ii)
We consider the syntagma S′ defined by:

S′(x) =
{

S ◦ ∂̃−1(x) if x ∈ ∂̃(Spt(SΓ));
0 otherwise.

First we check that S′ is well defined. We use the fact that ∂̃ is an injective mapping
over the set Spt(SΓ). The injectivity is a property of a mapping which depends only
on the domain. By hypothesis we are assuming that there exists a Γ-subsyntagma. So
∂̃ defined over Spt(SΓ) = Spt(S) ∩ Γ is injective. Hence the expression S ◦ ∂̃−1 makes
sense and S′ is well defined.

Secondly, we calculate its support. From the definition of S′ we have that Spt(S) ⊆
∂̃(Spt(SΓ)) = ∂̃(Spt(S) ∩ Γ). The following equalities show that this inclusion is indeed
an equality:

Spt(S′) ={x ∈ ζ∗ | S′(x) , 0}
={x ∈ ∂̃(Spt(SΓ) | S ◦ ∂̃−1(x) , 0}
={x ∈ ∂̃(Spt(SΓ) | ∂̃−1(x) ∈ Spt(S)}
={x ∈ ∂̃(Spt(S) ∩ Γ) | x ∈ ∂̃(Spt(S))}
=∂̃(Spt(S) ∩ Γ)
=∂̃(Spt(SΓ)).
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Finally, we check that S′ satifies the definition of Γ-subsyntagma. On the one hand S′

makes the following diagram commute:

Spt(SΓ)

S
##

∂̃ // Spt(S′) = ∂̃(Spt(SΓ))

S′=S◦∂̃−1
ww

Σ

On the other hand ∂̃ is bijective in this diagram. So S′ is a Γ-subsyntagma of S; but
since this is unique we conclude SΓ = S′.

(iii) If SΓ exists then Spt(SΓ) = ∂̃(Spt(SΓ)) and then the mapping ∂̃ : Spt(SΓ) −→
∂̃(Spt(SΓ)) is bijective. Let us see the other direction. If we suppose that the last
mapping is bijective then we can construct an S′ as in (ii) which satisfies the definition
of Γ-subsyntagma, therefore S′ = SΓ exists.

(iv) This is trivial from (iii) because the sets involved are finite. �

6.4 Examples and Ideal Subsyntagmata

Example 16. A non-induced subsyntagma. Consider the proper pattern Γ = β∗αβ∗

(with the factorization β∗ ⊕ α ⊕ β∗) and the syntagma S as in the following figure:

We calculate the sets:

Γ = {α, βα, αβ, βαβ, β2αβ, βαβ2, . . .},
Spt(S) = {1, α, β, βα, αβ},

Spt(SΓ) = {α, βα, αβ}.

We are going to calculate the associated deletion ∂ = (∂1, ∂2, ∂3). From the following table:

Spt(SΓ) π−1 π1 ◦ π−1 π2 ◦ π−1 π3 ◦ π−1

α (1, α, 1) 1 α 1
βα (β, α, 1) β α 1
αβ (1, α, β) 1 α β
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we have that:

|π1 ◦ π−1(Spt(SΓ))| = |{1, β}| = 2 =⇒ ∂1 = id;
|π2 ◦ π−1(Spt(SΓ))| = |{α}| = 1 =⇒ ∂2 = 1;
|π3 ◦ π−1(Spt(SΓ))| = |{1, β}| = 2 =⇒ ∂3 = id.

So ∂ = (id, 1, id) and then we have ∂̃ = π′ ◦ ∂ ◦ π−1. We check whether ∂̃ is bijective. On
the one hand Spt(SΓ) = {α, βα, αβ} and on the other hand ∂̃

(
Spt(SΓ)) = {�α, β�α,�αβ} =

{1, β}. Thus ∂̃ is not bijective and SΓ does not exist. The following table summarizes the
calculations:

Spt(SΓ) π−1 π1 ◦ π−1 π2 ◦ π−1 π3 ◦ π−1

α (1, α, 1) 1 α 1
βα (β, α, 1) β α 1
αβ (1, α, β) 1 α β

{1, β} {α} {1, β} πj ◦ π−1(Spt(SΓ)
2 1 2 |πj ◦ π−1(Spt(SΓ)|
id 1 id ∂j

Example 17. An induced subsyntagma. Consider now the same proper pattern Γ =
β∗αβ∗ (with the factorization β∗ ⊕ α ⊕ β∗) and the syntagma as in Fig. (a). First we
calculate Spt(SΓ):

Γ = {α, βα, αβ, βαβ, β2αβ, βαβ2, . . .},
Spt(S) = {1, β, β2, αβ2, βαβ2},

Spt(SΓ) = {αβ2, βαβ2}.

We calculate its associated deletion:
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Spt(SΓ) π−1 π1 ◦ π−1 π2 ◦ π−1 π3 ◦ π−1

αβ2 (1, α, β2) 1 α β2

βαβ2 (β, α, β2) β α β2

{1, β} {α} {β2} πj ◦ π−1(Spt(SΓ)
2 1 1 |πj ◦ π−1(Spt(SΓ)|
id 1 1 ∂j

Then ∂ = (id, 1, 1) and ∂̃
(
Spt(SΓ) = {�α��β2, β�α��β

2} = {1, β}. Since |Spt(SΓ)| = |∂̃
(
Spt(SΓ)|,

SΓ exists; see Fig. (b).

Example 18. Another induced subsyntagma: the subject subsyntagma of a sen-
tence. Consider now a linguistic example from the syntagma in Fig. (a).

We take the pattern Γ = ζ∗·Sbwith the factorization ζ∗⊕Sb.We repeat the same calculations:

Γ = {Sb, Sb·Sb,Ob·Sb,Dt ·Sb,Ad ·Sb, Sb·Sb·Sb,Dt ·Dt ·Sb, . . .},
Spt(S) = {1, Sb,Ob,Dt ·Sb,Ad ·Sb, Ad ·Sb},

Spt(SΓ) = {Sb,Dt ·Sb,Ad ·Sb,Md ·Ad ·Sb}.

We calculate its associated deletion:

Spt(SΓ) π−1 π1 ◦ π−1 π2 ◦ π−1

Sb (1, Sb) 1 Sb
Dt ·Sb (Dt, Sb) Dt Sb
Ad ·Sb (Ad, Sb) Ad Sb

Md ·Ad ·Sb (Md ·Ad, Sb) Md ·Ad Sb
{1,Dt,Ad,Md ·Ad} {Sb} πj ◦ π−1(Spt(SΓ)

4 1 |πj ◦ π−1(Spt(SΓ)|
id 1 ∂j

Then ∂ = (id, 1) and ∂̃
(
Spt(SΓ) = {��Sb,Dt·��Sb,Ad·��Sb,Md·Ad·��Sb} = {Dt,Ad,Md·Ad}. Since

|Spt(SΓ)| = |∂̃
(
Spt(SΓ)|, SΓ exists; see Fig. (b).
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Proposition 6.8. Let S be a syntagma and Γ a proper pattern such that |SΓ | = 0; then
the induced subsyntagma exists and SΓ = 0•. In particular 0•

Γ
= 0•.

Proof. We understand by convention that a mapping ∅ −→ ∅ is indeed bijective. So
Spt(SΓ) = ∅ and then ∂̃(∅) = ∅ whereby:

SΓ(x) =
{

S ◦ ∂̃−1(x) if x ∈ ∅;
0 otherwise.

= 0. �

When the intersection of the pattern and the syntagma consists in only one locus,
the induced syntagma is the atomic syntagma of this locus.

Proposition 6.9. Let S be a syntagma and Γ a proper pattern such that |SΓ | = 1; then
the induced subsyntagma exists and SΓ = (S(ϕ))• where {ϕ} = Spt(SΓ). In particular
Sϕ = (S(ϕ))• for any constant ϕ ∈ kp.

Proof. Let
⊕k

i=1 Γi be a proper factorization of Γ. We want to calculate the associated
deletion ∂ = (∂1, . . . , ∂k). Note that since |SΓ | = |Spt(SΓ)| = 1, |π j ◦ π−1(Spt(SΓ)| = 1.
Thus ∂ = (1, . . . , 1). But then ∂̃(Spt(SΓ)) = {1}. So if {ϕ} = Spt(SΓ) then ∂̃(ϕ) = 1.
Thus:

SΓ(x) =
{

S ◦ ∂̃−1(x) if x ∈ {1};
0 otherwise.

=

{
S(ϕ) if x ∈ {1};
0 otherwise.

= S(ϕ)•. �

Now we calculate some subsyntagma induced by patterns which will be the most
common in the following chapters andwhich have types: kp,M, kpM,Mkq, and kpMkq.

Proposition 6.10. Let S be a syntagma over ζ and Γ be a pattern such that |SΓ| > 1.
For the patterns Γ = ζ∗, ξ∗, ζ∗ψ, ϕζ∗, ϕζ∗ψ, ξ∗ψ, ϕξ∗, ϕξ∗ψ, where ϕ ∈ kp, ψ ∈ kq and
ξ ⊆ ζ , the following induced subsyntagma exist and we can calculate them as shown:

(i) Sζ∗ = S;

(ii) Sξ∗ = Sξ∗;

(iii) Sζ∗ψ(x) = S(xψ);

(iv) Sϕζ∗(x) = S(ϕx);

(v) Sϕζ∗ψ(x) = S(ϕxψ);

(vi) Sξ∗ψ(x) = S(xψ), Sϕξ∗(x) = S(ϕx), Sϕξ∗ψ(x) = S(ϕxψ) when x ∈ ξ∗, otherwise
they are 0.
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Proof.

(i) The pattern Γ = ζ∗ has the obvious proper factorization with only one factor: ζ∗.
Then π = id and π1 = id. Since |SΓ| > 1:

=⇒ |π1 ◦ π−1(Spt(SΓ)| = |Spt(SΓ)| > 1
=⇒ ∂ = (id)
=⇒ ∂̃(Spt(SΓ)) = Spt(SΓ) = Spt(S) ∩ Γ = Spt(S) ∩ ζ∗ = Spt(S).

Thus

SΓ(x) =
{

S ◦ ∂̃−1(x) if x ∈ Spt(SΓ);
0 otherwise.

=

{
S(x) if x ∈ Spt(S);
0 otherwise.

= S(x).

(ii) The pattern Γ = ξ∗ has the proper factorization with only one factor: ξ∗. Then
π = id and π1 = id. Since |SΓ| > 1:

=⇒ |π1 ◦ π−1(Spt(SΓ)| = |Spt(SΓ)| > 1
=⇒ ∂ = (id)
=⇒ ∂̃(Spt(SΓ)) = Spt(SΓ).

Thus

SΓ(x) =
{

S ◦ ∂̃−1(x) if x ∈ Spt(SΓ);
0 otherwise.

=

{
S(x) if x ∈ Spt(SΓ);
0 otherwise.

= SΓ(x).

(iii) This is a particular case of (v) when ϕ = 1.

(iv) This is a particular case of (v) when ψ = 1.

(v) Let the pattern be Γ = ϕζ∗ψ. Suppose ϕ = ϕ1 · · · ϕp and ψ = ψ1 · · ·ψq. Then we
consider the proper factorization:

p⊕
i=1

ϕi ⊕ ζ∗ ⊕
q⊕

i=1
ψi .

So ∂ has the form ∂ = (∂1, . . . , ∂p, ∂p+1, ∂p+2, . . . , ∂p+q+2). We have the following
cardinalities:

|π j ◦ π−1(Spt(SΓ))| is


= 1 if 1 ≤ j ≤ p;
> 1 if j = p + 1;
= 1 if p + 2 ≤ j ≤ q.
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Let us see this in a little more detail. When 1 ≤ j ≤ p then π j ◦ π−1(Spt(SΓ)) =
{ϕ j}. Equally when p + 2 ≤ j ≤ q , π j ◦ π−1(Spt(SΓ)) = {ψ j}. So

|π j ◦ π−1(Spt(SΓ))| =
{

1 if 1 ≤ j ≤ p;
1 if p + 2 ≤ j ≤ q.

Now we see |πp+1 ◦ π−1(Spt(SΓ))|. We appeal to an easy general set-theoretical
fact. If we have finite sets such that A ⊆ A1×· · ·×Ak then |A| ≤ |π1(A)| · · · |πk(A)|
(this is a consequence of A ⊆ π1(A) × · · · × πk(A)). Applying this we have:

1 < |Spt(SΓ)| = |π−1(Spt(SΓ))|
≤ |π1 ◦ π−1(Spt(SΓ))| · · · |πk ◦ π−1(Spt(SΓ))|
= 1 · · · 1 · |πp+1 ◦ π−1(Spt(SΓ))| · 1 · · · 1 = |πp+1 ◦ π−1(Spt(SΓ))|.

The first inequality is given by assumption in the proposition we are proving. So
we have:

∂ = (1, . . . , 1, id, 1, . . . , 1).
Notice that every element in SΓ can be written as ϕxψ and then ∂̃(ϕxψ) = x
which gives the bijection ∂̃ : Spt(SΓ) −→ ∂̃(Spt(SΓ)). Hence SΓ exists. We
calculate it:

SΓ(x) =
{

S ◦ ∂̃−1(x) if x ∈ ∂̃(Spt(SΓ));
0 otherwise.

=

{
S(ϕxψ) if ϕxψ ∈ Spt(S);
0 otherwise.

= S(ϕxψ). �

(vi) We combine (ii) and (v).

Example 19. Co-subtrees and chains of subjects in Germanic languages. When a
pattern takes a simple form such as ξ∗, ϕ or ζ∗ϕ then the induced subsyntagma has an
immediate geometric interpretation. The pattern ξ∗ only takes the part of the syntagma in
ξ∗ and forget the rest; ϕ takes just a locus; and ζ∗ϕ takes a subtree.

Nevertheless in the case of left ideals ϕζ∗ the loci in ζ∗ϕ∩ Spt(S) form a disconnected
set. We call this distribution of loci a co-subtree; in Fig. 6.2(b) there is an example of a co-
subtree with ζ = {α, β}. From the previous proposition the induced subsyntagma is given
by Sϕζ∗(x) = S(ϕx). These patterns are useful to understand linearization in Germanic
languages. These languages display verbal clusters and their arguments in very particular
configurations.
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Wewill see in the next chapter that context-freeness and right ideals are closely related.
Since Shieber argued that Germanic cross-serial dependencies are not context-free (cf.
§4.3.1), we should not be restricted to using right ideals. Indeed, the adequate patterns to
treat the subject arguments are left ideals. Consider the subordinate clause in Dutch. In
the following example the sentence exhibits an object argument in the deepest clause, de
nijlpaarden (compare with the Dutch sentence in §4.3.1), which makes the analysis more
complex:

(19) . . . omdat
. . . because

ik
I

Cecilia
Cecilia

henk
Henk

de
the

nijlpaarden
hippopotamuses

zag
saw

helpen
help

voeren.
feed

‘. . . because I saw Cecilia help Henk feed the hippos.’

Fig. (a) shows the dependency analysis. When we consider the pattern Sb·Ob∗S (where
recall that ObS is simply a syntactic function which introduces a subsyntagma representing
a subordinate clause which plays the role of a propositional object) we are grouping all the
loci which end with a subject, or simply put we are grouping the subjects. Now consider the
induced subsyntagma SSb·Ob∗S in Fig. (b). The subjects are linked by arrows in its graphical
representation, which did not exist in S. These new connections will be the key to giving a
recursive system to linearize the syntagma.

Notice that co-subtrees are the dual form of subtrees. That is, a subtree in S becomes
a co-subtree in S<. In the linguistic framework co-subtrees are the alternative form for
Germanic languages to linearize. However these languages use patterns even more complex
than left ideals. When the subjects of the subordinated clauses contain modifiers we have
to expand the pattern to ζ∗ ·Sb·Ob∗S .

6.5 Symmetric Induced Subsyntagma

Wehave seen that symmetrymakesmanifolds commutewith their patterns (cf. Lema5.6).
Similarly we have the following result; this lemma is necessary to understand how the
duality of symmetry extends throughout the components in our formalism.
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Lemma 6.11. Let S be a syntagma, and Γ be a pattern. Suppose that SΓ exists, then
S<
ΓR

exists, and we have:
(SΓ)< = S<

ΓR
.

Proof. Recall that we defined the symmetric syntagmata as S<(x) = S(xR). For reasons
of readability we will also use sometimes the notation R(x) = xR. Even though R is
an involutive mapping, and therefore R−1 = R, we keep the exponent −1 to indicate
the direction of the arrows in the following diagram the mappings of which will be
introduced during the proof:⊕k

i=1 Γ
R
k−i

π<

��

∂< //
⊕k

i=1 ∂k−i
(
ΓR

k−i

)
π̃<

��

⊕k
i=1 Γi

π

��

R
99

∂ //
⊕k

i=1 ∂i(Γi)

π

��

R
77

ΓR ∂̃< // ∂̃<(ΓR)

Γ
∂̃ //

R

99

∂̃(Γ)

R
66

The first goal is proving that this commutes (steps (1)-(6)):

(1) If π :
⊕k

i=1 Γi −→ Γ is a proper factorization then π< :
⊕k

i=1 Γ
R
k−i −→ ΓR is a

proper factorization.
We define the mapping R(x1, . . . , xk) = (xR

k , . . . , xR
1 ) which is clearly bijective.

Now we prove that π ◦ R
−1
= R−1 ◦ π<:

π ◦ R
−1(xk, . . . , x1) = π(xR

1 , . . . , xR
k ) = xR

1 · · · x
R
k ,

R−1 ◦ π<(xk, · · · , x1) = R−1(xk · · · x1) = xR
1 · · · x

R
k .

Then π ◦ R
−1
= R−1 ◦ π< =⇒ π< = R ◦ π ◦ R

−1. Hence if π is bijective then
π< is too.

(2) We know that if Γ is a basic pattern then ΓR = Γ. By (1) if
⊕k

i=1 Γi is a proper
factorization of Γ then

⊕k
i=1 Γk−i is a proper factorization of ΓR.

(3) (SΓ)< = S<ΓR.

(SΓ)<(x) = SΓ(xR) =
{

S(xR) if xR ∈ Γ;
0 otherwise.

=

{
S<(x) if x ∈ ΓR;
0 otherwise.

= S<ΓR.
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(4) If ∂ = (∂1, . . . , ∂k) is the deletion associated with S and Γ, and if ∂< =
(∂<1 , . . . , ∂

<
k ) is the deletion associated with S< and ΓR then we have that

∂< = (∂k, . . . , ∂1).
First we define π<j as the j-projection π<j :

⊕k
i=1 Γk−i −→ Γj , π<j (xk, . . . , x1) =

xk− j . Now we check the following identity:

π j ◦ π−1 = R ◦ π<k− j ◦ (π
<)−1 ◦ R

We see that:
π j ◦ π−1(x) = π j(x1, . . . , xk) = x j,

and that:

R ◦ π<k− j ◦ (π
<)−1 ◦ R(x) = R ◦ π<k− j ◦ (π

<)−1(xR)
= R ◦ π<k− j(x

R
k , . . . , xR

1 ) = R(xR
j ) = x j .

Now we prove that R
(
π j ◦ π−1(Spt(SΓ))

)
= π<j ◦ (π

<)−1
(
Spt(S<ΓR)

)
:

R
(
π j ◦ π−1(Spt(SΓ))

)
= π<j ◦ (π

<)−1
(
(Spt(SΓ)<

)
= π<j ◦ (π

<)−1
(
Spt((SΓ)<

)
= π<j ◦ (π

<)−1
(
Spt(S<ΓR)

)
.

We take cardinalities:���R(
π j ◦ π−1(Spt(SΓ))

)��� = ���π<j ◦ (π<)−1
(
Spt(S<Γ<)

)���
⇐⇒

��π j ◦ π−1(Spt(SΓ))
�� = ���π<j ◦ (π<)−1

(
Spt(S<ΓR)

)��� .
Recall that we defined ∂j by:

∂j is the constant 1 ⇐⇒
��π j ◦ π−1(Spt(SΓ))

�� ≤ 1,

otherwise ∂j is the identity. Consider the deletion associated with S< and ΓR,
namely, ∂< = (∂<1 , . . . , ∂

<
k ). If we apply this definition to this deletion we have

∂<j is the constant 1 ⇐⇒
���π<j ◦ (π<)−1(Spt(S<ΓR))

��� ≤ 1.

But we have proved that sets involved in the definition of ∂j and ∂<k− j have the
same cardinality. Thus ∂j = ∂

<
k− j and ∂

< = (∂k, . . . , ∂1).
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(5) ∂ = R
−1 ◦ ∂< ◦ R.

First we need to prove that ∂i(xR
i ) = ∂i(xi)R for any i = 1, . . . , k. But this is easy

because ∂i is the identity mapping or the constant mapping 1 and in both cases it
commutes with R. Then we have:

R
−1 ◦ ∂< ◦ R(x1, . . . , xk) = R

−1 ◦ ∂<(xR
k , . . . , xR

1 )

= R
−1 ( (

∂k(xR
k ), . . . , ∂1(xR

1 )
) )

= R
−1 ( (

∂k(xk)R, . . . , ∂1(x1)R
) )

=
(
(∂1(x1)R)R, . . . , (∂k(xk)R)R

)
=

(
∂1(x1), . . . , ∂k(xk)

)
= ∂(x1, . . . , xk),

where we have used part (5) to reverse the vector.

(6) ∂̃ = R−1 ◦ ∂̃< ◦ R.

By definition ∂̃ = π̃ ◦ ∂ ◦ π−1 and ∂̃< = π̃< ◦ ∂< ◦ (π<)−1. We also need the
commutations R ◦ π−1 = (π<)−1 ◦ R and π̃ ◦ R

−1
= R−1 ◦ π̃<.

The first arises from inverting π ◦ R
−1
= R−1 ◦ π< which was proved in part (1).

The second is very similar (we only substitute π̃ for π). Then if we combine these
and we use part (5) we will obtain:

∂̃ = π̃ ◦ ∂ ◦ π−1

= π̃ ◦
(
R
−1 ◦ ∂< ◦ R

)
◦ π−1

=
(
π̃ ◦ R

−1) ◦ ∂< ◦ (
R ◦ π−1

)
=

(
R−1 ◦ π̃<

)
◦ ∂< ◦

(
(π<)−1 ◦ R

)
= R−1 ◦

(
π̃< ◦ ∂< ◦ (π<)−1

)
◦ R

= R−1 ◦ ∂̃< ◦ R.

Notice that parts (1) to (6) prove that the whole cube commutes.

(7) If S<
ΓR

exists we have the isomorphism S<ΓR �
∂̃<

S<
ΓR
.

There is nothing to prove: this is just the definition of the subsyntagma of S<

induced by ΓR.
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(8) The functor < preserves isomorphisms of syntagmata. So if SΓ �∂̃ SΓ then we
have the isomorphism (SΓ)< �R◦∂̃◦R−1 (SΓ)<.
We saw this in Lemma 5.5.

(9) S<ΓR �
∂̃<
(SΓ)<.

By part (3) we have S<ΓR = (SΓ)< so we have by part (8) that S<ΓR �R◦∂̃◦R−1

(SΓ)<. By part (6) we have S<ΓR �
∂̃<
(SΓ)<.

Now we have all the ingredients. We see that we have two isomorphisms. The first, by
part (7), S<ΓR �

∂̃<
S<
ΓR
. The second is given by part (9), S<ΓR �

∂̃<
(SΓ)<. So by the

definition of induced syntagmata we have two candidates to be subsyntagma. However
the induced subsyntagma is unique and thus S<

ΓR
= (SΓ)<. Now we prove the existence.

If SΓ exists then (SΓ)< exists always. By the last equality S<
ΓR

exists. �



7
The Model and the Bi-Hierarchies

The present chapter represents the core of the thesis. We introduce the model of
algebraic dependency grammar in terms of the concepts developed in the previous
chapters. An algebraic dependency grammar consists in a manifold (already dis-
cussed in Chapter 4) and a global linearization given by a system of arrangements.
Two methodological considerations are made before the formalization.
First we notice that the classical notion of projectivity is quintessentially that cer-
tain substructures of a dependency tree always form an interval in its linearization.
So we have to establish well what is a substructure. We saw in the last chapter that
patterns proportion the key: a subsyntagma is a substructure of a syntagma which
is induced by a pattern. This generalizes the notion of projectivity. By decompos-
ing a syntagma in subsyntagmata and specifying how these subsyntagmata must
be ordered, and repeating this action for each subsyntagma, we establish recursive
global linearization procedures.
Notice that patterns sustain both manifolds and linearizations. We study their
interrelation. We can classify languages by a pair of descriptions X/Y in a classi-
ficatory monoid; one for the manifold X , and another for the linearizationY . Since
we have two classificatory axes, we call this a bi-hierarchy which depends on the
classificatory monoid. We see several initial examples.

7.1 Two Methodological Considerations

7.1.1 Extending the Monoidal Hypothesis (Individual Linearizations)

An example of so-called discontinuity is the possibility of extracting a noun complement
and locating it to the right. This construction is named extraposition and it will be
revisited when we review the applications of the theory in future chapters. Consider the
pair of sentences:1

(20) a. A hearing on the issue is scheduled today.
b. A hearing is scheduled on the issue today.

1Example from Kuhlmann (2013).
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Figure 7.1: (a) projective individual linearization for the sentence a hearing on the issue
is scheduled today; (b) non-projective individual linearization for the sentence a hearing is
scheduled on the issue today.

Figure 7.2: the same linearizations as in Figure 7.1 with attention to the substructures rather
than on the words.

The first is the non-problematic version and it enjoys a projective linearization. The
second linearization is not a projection due to the metric property for projections; see
Example 15. Traditionally in this situation it is said that a constituent (on the issue) has
been “moved” to the right in the sentence. See Figures 7.1(a) and (b).

Instead of looking where the linearization places each word, let us focus on how
the linearization deals with bigger substructures. We focus just on the biggest proper
parts of the structures. Fig. 7.2(a) and Fig. 7.2(b) show the effect of the linearization
on these parts. It appears that the substructures in the second figure are finer than in the
first and that, thus, the speaker has a finer control on the parts of syntactic structure.
This is an interpretation without appeal to “movement”.

On this perspective we can say that individual linearizations transform certain
substructures into intervals under a generalization of projectivity. We have defined such
a general concept of substructure induced by a pattern in the last chapter.

This leads us to an extension of the monoidal hypothesis, whereby let us recall
what we stated after studying a number of natural language examples: for any natural
language the set of the places where agreements occur can be described as a monoidal
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pattern. Now we would like to extend this hypothesis:

Claim 3. Monoidal Pattern Hypothesis (continuation). (. . . ) and furthermore natural
languages in their linearization decompose the structures in certain substructures also
described by monoidal patterns which are transformed into prosodic intervals.

Nevertheless, this hypothesis, which only tries to capture the underlying notion, does
not inform as how these “certain” structures must be chosen. This is a consideration on
linearizations taken individually and it says nothing about how a global linearization is
orchestrated. Next section starts out on the way to do this.

7.1.2 Recurrences on Syntagmata (Global Linearizations)

Let us make some mathematical considerations on recurrences. A typical recurrence
definition of a function is: n! = n · (n − 1)!, when n > 0, and n! = 1, when n = 0. The
case n = 0 is called the base case which starts the recurrence. More than one equation
and variable can be used in a recurrence:

Xn = Yn−1 + Xn−1 if n > 0;
Yn = Xn−1 − Yn−1 if n > 0;
Xn = 1 if n = 0;
Yn = 0 if n = 0.

The first values of this pair of sequences are Xn = 1, 1, 2, 2, 4, 4, 8, 8, . . . and Yn =

0, 1, 0, 2, 0, 4, 0, 8, . . ..
In a similar way we can describe recursively a mapping Π over syntagma. Consider

syntagmata Synt with syntactic functions ζ = {α, β}. The following example defines
a mapping over syntagmata into natural numbers, Π : Synt −→ N+ given by the
recurrences: 

Π(S) = Π(Sζ∗α) + Π(Sζ∗β) if S is not atomic;
Π(S) = 1 if S is atomic;
Π(S) = 0 if S is the null syntagma.

This mapping is calculating Π(S) = |Lvs(S)|. Notice that the base case is given by both
atomic syntagmata and the null syntagma. Let us see now a mapping Π : Synt −→ Σ∗:

Π(S) = a + b + Π(Sζ∗α) if S is not atomic;
Π(S) = c if S is atomic;
Π(S) = c if S is the null syntagma.

The result of apply it to a syntagma S is Π(S) = a + b + · · · + a + b + c. The image of
this application Π(Synt) is the language {(ab)nc | n ∈ N+}, where n is the number of
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subtrees ζ∗αk successively nested. We can use recurrence equations in order to define
a global linearization Π. We need secondary auxiliary functions, Π′,Π′′:

Π(S) = Π′(Sζ∗Sb) + Π′(S1) + Π′(Sζ∗Ob) if S is not atomic;
Π′(S) = Π′′(Sζ∗Dt) + Π′′(Sζ∗Ad) + Π′′(S1) if S is not atomic;
Π′′(S) = Π′′(Sζ∗Md) + Π′′(S1) if S is not atomic;
Π(S),Π′(S),Π′′(S) = a if S = a• is atomic or null;

Notice that the right side of the recurrence equations do not add nor substract material
of the syntagma. They just split a syntagma and reorder its parts. Let us see an example
of calculation from the following syntagma S.

Π(S) = Π′(ζ∗Sb) + proved + Π′(ζ∗Ob)
= (Π′′(ζ∗Dt) + Π′′(ζ∗Ad) + John) + proved + Π′(ζ∗Ob)
= (0 + 0 + John) + proved + Π′(ζ∗Ob)
= John + proved + (Π′′(ζ∗Dt) + Π′′(ζ∗Ad) + theorem)
= John + proved + (a + (Π′′(ζ∗Md) + hard) + theorem)
= John + proved + a + (Π′′(ζ∗Md) + very) + hard + theorem
= John + proved + a + (Π′′(ζ∗Md) + very) + very + hard + theorem
= John + proved + a + 0 + very + very + hard + theorem
= John + proved + a + very + very + hard + theorem.

In order to avoid subsyntagmata of subsyntagmata, e.g. (Sζ∗Sb)ζ∗Dt, we have just
written the last pattern involved in the computation,Π(ζ∗Dt). Notice that the recurrences
correspond with the intuitive order arrangements that one can read in a traditional
grammar:

Π ↔ Subject + Verb + Object;
Π
′↔ Determiner + Adjective + Noun;

Π
′′↔ Modifier + Adjective.
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This recurrence uses right ideal patterns (which represent subtrees). However, in the last
chapter we have defined a rich zoo of substructures and we can use them. A recurrence
system as in the last example defines a global linearization Π : W −→ Σ∗. If we fix a
manifold and such a recurrence system we will have a grammar.

However, in natural languages, linearizations are not mappings, but relations. In
dependency grammar it is widely admitted that the set of sentences:2

(21) a. Fortunately, the man left the room.
b. The man, fortunately, left the room.
c. The man left, fortunately, the room.
d. The man left the room, fortunately.

must come from a unique syntactic structure. So instead of a mappingΠ : Synt −→ Σ∗

defined by recurrences we have to deal with relations defined by recurrences, or what
amounts to the same thing, a mapping Π : Synt −→ ℘(Σ∗). Notice that the essence of
the above recurrences resides in indicating in the right part of the equations which is the
new equation to apply or invoke for each subsyntagma. Fig. 7.3(a) shows a scheme of
invocations for the last recurrence equations. An arrow sourcing from a pattern indicates
which equation must follow. In the more general case with Π : Synt −→ ℘(Σ∗), we
must allow invocation of several equations.

By way of a minimal example of relational recurrence consider shifting movement
on certain adjectives in Romance languages:

(22) Un
a

magnífic
great

espectacle
play

/
/
un
a

espectacle
play

magnífic
great

‘a great play’

This can be captured by a “non-deterministic” diagram, see Fig. 7.3(b).3
So we can summarize all this as:

Claim 4. Monoidal Pattern Hypothesis (continuation). (. . . ) This linearization is
organized by a finite system of recurrences or word arrangements. Every recurrence tells
how to order the substructures and how to decompose these further.

What follows is a formalization of these ideas.

2These constructions are called parentheticals; the example is from Morrill (2011).
3The example is in Catalan. The possibility of shifting adjectives in Romance languages does not

involve every adjective. Just a few adjectives can be placed in both positions (prenominal, postnominal)
without changing the meaning of the phrase or even making it incorrect. Thus, to be more exact we
should use a specific function Ad′ similar to the ordinary adjective Ad which only would select those
few adjectives.



120 7.2. Algebraic Dependency Grammar

Figure 7.3: (a) and (b) diagrams invoking equations of a recurrence.

7.2 Algebraic Dependency Grammar

Definition 7.1. Given a finite set of patterns Γ1, . . . , Γm we say that it forms a partition
of the syntagma S iff Spt(SΓ1), . . . , Spt(SΓm) is a partition of Spt(S), i.e:

(i) Spt(S) = ⋃m
i=1 Spt(SΓi);

(ii) if Spt(SΓi) , Spt(SΓj) then Spt(SΓi) ∩ Spt(SΓj) = ∅, for every i, j = 1, . . . ,m.

Definition 7.2. We say that the set of patterns Γ1, . . . , Γm is applicable to a syntagma
S when:

(i) Γ1, . . . , Γm form a partition of S;

(ii) the induced subsyntagma SΓi exists, for every i = 1, . . . ,m;

(iii) |SΓi | < |S |, for every i = 1, . . . ,m, provided that S is not atomic, nor null.

Given a mapping Π : Synt −→ ℘(Σ∗) we notate its set extension by the same Π,
i.e.Π({S1, . . . , Sk, . . .}) = {Π(S1), . . . ,Π(Sk), . . .}. Given a set of mappingsΠ1, . . . ,Πn,
and ω ⊆ {1, . . . , n}, we notate Πω(X) =

⋃
i∈ω Πi(X).

Definition 7.3. Let there be a finite set of patterns doubly indexed thus:
Γ1,1, . . . , Γm1,1,

Γ1,2, . . . , Γm2,2,
...

Γ1,n, . . . , Γmn,n;

with n ≥ 1 and m1, . . . ,mn ≥ 1. Consider a mapping:

ω : {(i, j) | i = 1, . . . ,m j, j = 1, . . . , n} ∪ {(0, 0)} −→ ℘({1, . . . , n}) \ {∅}.
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We call a system of arrangements a finite set of doubly indexed patterns as above together
with the mapping ω. We say that a partial mapping Π : Synt −→ ℘(Σ∗) is a solution of
the systemof arrangements iff there are n partialmappingsΠ1, . . . ,Πn : Synt −→ ℘(Σ∗)
such that, for all 1 ≤ j ≤ n:

(i) Π = Πω(0,0);

(ii) Π j(a•) = {a} for all a ∈ Σ+;

(iii) for all S ∈ dom(Π j), the set of patterns Γ1, j, . . . , Γmj, j is applicable to S and:

Π j(S) = Πω(1, j)(SΓ1, j ) + · · · + Πω(mj, j)(SΓmj, j
).

Numbers in {1, . . . , n} represent equations. The first condition just says that the calcu-
lation begins with the equations invoked by ω(0, 0). The second condition expounds
the base cases while the third condition establishes the recurrences. Conditions on
applicability permit us to prove inductively the correct working of the system. When
|ω(i, j)| = 1 for each i, j the system becomes deterministic, and for each syntagma Π
yields a unique string.

Notice that if Π is a solution of a system of arrangements with domain dom(Π) we
can obtain another solutionΠ′ by picking any subdomain dom(Π′) ⊆ dom(Π), however
we can take always the largest solution:

Lemma 7.4. Given a system of arrangements, there is a unique solution which is
maximal over the domain.

Proof. Let Π and Π′ be two solutions of a system of arrangements. We notate D =
dom(Π) and D′ = dom(Π′) (might be empty) and we prove that Π(S) = Π(S′) for any
S ∈ D∩D′. LetΠ1, . . . ,Πn be the mappings of the solutionΠ with domains D1, . . . ,Dn
and Π′1, . . . ,Π

′
n be the mappings of the solution Π′ with domains D′1, . . . ,D

′
n. We

proceed by induction on the size s of S. By the point (ii) in the definition, if S is
atomic or null the statement is trivial, Π j(S) = Π′j(S), for each j = 1, . . . , n and then
Π(S) = Π′(S). We suppose that the statement is true for syntagmata with size < s. Let
S ∈ D j ∩ D′j be a syntagma with |S | = k. Then we can suppose that for every i, j, we
have SΓi, j ∈

⋃
k∈ω(i, j) Dk ∩ D′k , otherwise one of the mappings Π j or Π′j is not defined

for S, and thenΠ orΠ′ is not defined, which is a contradiction. Then, since the involved
patterns are applicable (point (iii) in the definition), |SΓi, j | < |S | and we can use the
hypothesis of induction:

Π
′
j(S) = Π′ω(1, j)(SΓ1, j ) + · · · + Π′ω(mj, j)(SΓmj, j

)
= Πω(1, j)(SΓ1, j ) + · · · + Πω(mj, j)(SΓmj, j

) = Π j(S).
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Since this works for any j, Π′(S) = Π′
ω(0,0)(S) = Πω(0,0)(S) = Π(S). Now it is easy to

see that there is a unique maximal solution. Since given two solutions Π and Π′ they
coincide in the domain D ∩ D′, we can construct a new solution say Π′′ with domain
D ∪ D′, defined as Π′′(S) = Π(S) if S ∈ D and Π′′(S) = Π′(S) if S ∈ D′. Thus to find
the maximal solution we only have to join all the possible solutions. �

In the sequel “the solution of a system” will stands for “the maximal solution”.
When there is no possible confusion, we write Π to refer to the solution or the system
in itself.

Definition 7.5 (Algebraic Dependency Grammar). Let Π be a system of arrangements
as in the above definition, and let W be a manifold with effectively bounded ellipticity
such that W ⊆ dom(Π). We define an algebraic dependency grammar as a pair:
G = (W,Π), and its associated language is:

L (G ) =
⋃
S∈W

Π(S).

We say that a language L is an algebraic dependency language iff there exists an
algebraic dependency grammar G such that L = L (G ).

We ensure that the definition is sound:

Proposition 7.6. Let G = (W,Π) be an algebraic dependency grammar.

(i) For each S ∈ W , Π(S) is a finite set, and can be effectively computed.

(ii) For each x ∈ Π(S), S ∈ W and there is an individual linearization ` : S −→ x.

Proof. (i) By induction on the size of S. When the syntagma is atomic or null, then
trivially we can compute Π(a•) = a. We suppose that the statement is true for any
syntagma with size < s and let S be a syntagma with |S | = s. We prove that every
mapping Π j can be calculated in a finite number of steps. First notice that given a
syntagma and a pattern we can effectively calculate its induced subsyntagma. As in the
above proof, |SΓi, j | < |S | = s, and then according to the recurrence:

Π j(S) = Πω(1, j)(SΓ1, j ) + · · · + Πω(mj, j)(SΓmj, j
)

Π j can be calculated in a finite number of steps, since every Πω(i, j)(SΓi, j ) can be
calculated in a finite number of steps. So Π is calculated in a finite number of steps and
in addition Π(S) is a finite set.

(ii) We notice that since since SΓ1, j, . . . , SΓmj, j
is an arrangement of S, every equation

is well balanced in the following sense. Let us write |S |a = |S−1(a)|. SΓ1, j, . . . , SΓmj, j
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must form a partition of S, whereby Spt(S) = ⋃mj

i=1 Spt(SΓi, j). Since the sets are pairwise
disjoints, for every a ∈ Σ we have:

|S |a =
mj∑
i=1
|SΓi, j |a =

mj∑
i=1
|SΓi, j |a.

Then the recurrences satisfies that:

|Π j(S)|a = |Πω(1, j)(SΓ1, j )|a + · · · + |Πω(mj, j)(SΓmj, j
)|a,

that is, equations do not add and do not remove the whole number of each letter. In
consequence, if we take an x ∈ Π(S), the letters of x and the letters of S are the same.
So there is a bijection ` : Spt(S) −→ Spt(x) which is an individual linearization. �

Remark 7.7. Linearizations so defined work “continuously”: when we consider a sub-
syntagma SΓi, j of S, then Πω(i, j)(SΓi, j ) becomes a substring (or an interval) of Πj(S).
What can be discontinuous are the patterns Γi, j . This will be the way in which we obtain
discontinuous examples in natural languages.

7.3 Some Comments on the Definition

Notation

We adopt the following conventions on vocabulary and notation. Given a system of
arrangements Π, for each recurrence equation:

Π j(S) = Πω(1, j)(SΓ1, j ) + · · · + Πω(mj, j)(SΓmj, j
),

we take the following simpler expression which we call an arrangement:

A j = Γ1, j + · · · + Γmj, j .

We identify recurrence equations with arrangements (hence the term “system of ar-
rangements”). We say that the pattern Γi, j invokes the arrangement (equation) k iff
k ∈ ω(i, j). The function ω can be represented graphically as in Fig. 7.3(a) and (b)
where each arrow represents the patterns invoked by ω. For practical issues we need a
notational system to explicate ω. Given an arrangement A j we will write under each
induced subsyntagma the value of ω:

A1 = Γ1,1
ω(1,1)

+ · · · + Γm1,1
ω(m1,1)

,

...

An = Γ1,n
ω(1,n)

+ · · · + Γmn,n
ω(mn,n)

.
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So a system of arrangements Π can be described as a finite set of arrangements with
the mapping ω, i.e. ({A1, . . . , Am}, ω). When we need to separate the solution from the
system in itself we denote the solution as ΠA , where A = ({A1, . . . , Am}, ω).

On Computational Implementation

In a computational implementation a system of arrangements can be treated as a
rewriting process in the free monoid Synt ∗. We start with a syntagma S ∈ W and we
choose an arrangement

Ak = Γ1,k + · · · + Γmk,k,

such that k ∈ ω(0, 0). Then we remove S and we write the string of syntagmata

SΓ1,k + · · · + SΓmk,k
.

We notate this string Ak(S) and we call it the application of the arrangement Ak to the
syntagma S. In the second step we pick some syntagma SΓi, j from this string and we
choose some other arrangement Ak ′ with k′ ∈ ω(i, j). We remove SΓi, j and put in its
place the string of syntagmata Ak ′(SΓi, j ). We repeat the last step as many times as is
necessary to obtain a string of atomic syntagmata.

We call this process a derivation. Thus Π(S) is the set of all the possible derivations
of S. Notice that the function ω is indicating which arrangements can be invoked for
a syntagma depending just on the result of the last arrangement applied to this. So the
system only remembers the last step and forgets the previous steps. I.e. there are no
“transderivational” constraints. In addition this procedure allows us to know whether
given a syntagma S, S ∈? dom(ΠA), where ΠA is the solution of the system A. If for
all the derivations the induced subsyntagmata exist and patterns are applicable (which
can be decided in linear time in the size of S), then S ∈? dom(ΠA), otherwise the
computation stops and S < dom(ΠA).

Notice that when in a derivation appears a null or an atomic syntagma it persists
during all the computation until the end. If we apply an arrangement to it we will obtain
the same null or atomic syntagma. The possible arrangements invoked by a constant
patterns, which always induce atomic syntagmata, are innocuous. For this reason, for
constant patterns we do not specify ω.

Another special case is when the set of arrangements only contains one arrangement
{A1}. For these linearizationsω can only take the valueω(i, j) = {1}. Sowewill specify
nothing.

Some theorems are proved more easily with the original definition, while others
in this last fashion. In order to show examples we use this rewriting style. Every time
that we apply an arrangement we write { and we notate at the right margin which
arrangement has been applied. To avoid writing subsyntagmata of subsyntagmata, for
example (Sζ∗Sb)ζ∗Dt, we only write the last pattern in the computation, ζ∗Dt.
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Some Examples of Linearizations

Example 20. An example of notation.We see two examples of systems of arrangements.
First in the notation commented above and second in diagrammatic form. The system (I)
only offers one possible order, while the system (II) accepts the adjective in prenominal or
postnominal position.

(I)


A1 = ζ∗Sb

2
+ 1 + ζ∗Ob

2
;

A2 = ζ∗Dt + ζ∗Ad
3
+ 1;

A3 = ζ∗Md
3
+ 1.

(II)



A1 = ζ∗Sb
2,3
+ 1 + ζ∗Ob

2,3
;

A2 = ζ∗Dt + ζ∗Ad
4
+ 1;

A3 = ζ∗Dt + 1 + ζ∗Ad
4

;

A4 = ζ∗Md
4
+ 1.

Example 21. A simple linguistic example. Consider the following grammar which
captures simple sentences in English. We take the manifold WEng from Example 9. We
consider the system of arrangements (I) from the previous Example 20. This defines a
linearizationΠEng. Joining both we obtain the grammar (WEng,ΠEng) the language of which
is a little fragment of English concerning simple sentences. For instance, the manifoldWEng
is able to license the syntagma:
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We have the following derivation:

S { ζ∗Sb + caught + ζ∗Ob (A1)
{ (ζ∗Dt + ζ∗Ad + John) + caught + ζ∗Ob (A2)
{ (0 + 0 + John) + caught + ζ∗Ob (A3)
{ John + caught + (ζ∗Dt + ζ∗Ad + frog) (A2)
{ John + caught + a + (ζ∗Md + big) + frog (A3)
{ John + caught + a + (ζ∗Md + very) + big + frog (A3)
{ John + caught + a + (ζ∗Md + very) + very + big + frog (A3)
{ John + caught + a + 0 + very + very + big + frog
{ John + caught + a + very + very + big + frog.

We are going to see several examples in the following sections whose peculiarities help
us to understand the nature of such grammars. For a lot of examples on formal languages
we need just one arrangement. However natural languages with a great freeness of order
need a large number of arrangements.

A linearization is in general not deterministic or convergent since linearizations can
derive different word-orders from the same syntagma. We recall the examples in §7.1.2
about parentheticals or shifting adjectives in Romance languages.

Example 22. An example of non-convergence . As we said, systems of arrangements
permit computations in parallel, and different word orders from a unique syntactic structure.
We start with a unique syntagma:

We want to achieve the two sentences in Catalan:

(23) Veuràs
see-will-you

un
a

magnífic
great

espectacle.
play

/
/
Veuràs
see-will-you

un
a

espectacle
play

magnífic.
great

‘You are going to see a great play’.

We take the system of arrangements (II) from the previous Example 20. Let us see the two
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possible derivations:

S { ζ∗Sb + veuràs + ζ∗Ob (A1)
{ (0) + veuràs + ζ∗Ob (A2) or (A3)
{ veuràs + (ζ∗Dt + ζ∗Ad + espectacle) (A2)
{ veuràs + un +magnífic + espectacle (A4)

S { ζ∗Sb + veuràs + ζ∗Ob (A1)
{ (0) + veuràs + ζ∗Ob (A2) or (A3)
{ veuràs + (ζ∗Dt + espectacle + ζ∗Ad) (A3)
{ veuràs + un + espectacle +magnífic (A4)

7.4 Decidability of Algebraic Dependency Grammars

The universal recognition problem is the problem of deciding for an algebraic depen-
dency grammar G = (W,Π) and string x ∈ Σ∗ whether x ∈? L (G ). In order to tackle
this we can decompose the problem into two subproblems:

• First we parse the word x, which consists in finding all the syntagmata S such
that x ∈ Π(S). I.e. finding the set Π−1({x}).

• Second we check if there is some such syntagma such that S ∈ W .

Thus, if there is some S ∈ Π−1({x}) such that S ∈ W then x ∈ L (G ), otherwise
x < L (G ). So we have two subproblems: parsing and S ∈? W . We do not deal with the
parsing problem, but we show that Π−1 is computable in finite time.

Theorem 7.8. Let G = (W,Π) be an algebraic dependency grammar. IfW is decidable,
the universal problem x ∈? L (G ) is decidable.

Proof. We start from the equivalence x ∈ L (G ) ⇐⇒ Π−1({x}) ∩W , ∅. So first
we calculate the set Π−1({x}) and then we verify whether there is a S ∈ Π−1({x})
such that S ∈ W . Recall that Env(S) = Spt(S) t Ell(S), by Lemma 2.8, and therefore
|Env(S)| = |S | + |Ell(S)|. If S ∈ Π−1(x) then there is an individual linearization ` :
S −→ x which means that |S | = |x |. So: S ∈ Π−1({x}) =⇒ |Env(S)| = |x | + |Ell(S)|.
Since by definition the ellipticity is effectively bounded, |Env(S)| = |x | + |Ell(S)| ≤
|x | + ε(|S |) = |x | + ε(|x |). Then:

S ∈ Π−1({x}) =⇒ |Env(S)| ≤ |x | + ε(|x |).
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If we notate the set Ax = {S ∈ Synt | there is a linearization ` : S −→ x such that
|Env(S)| ≤ |x | + ε(|x |)}, this last statement can be paraphrased as Π−1({x}) ⊆ Ax . It is
easy to check that Ax is a finite set, the cardinality of which is equivalent to the number
of trees with at most |x | + ε(|x |) vertices.

Now we prove that Π−1({x}) can be computed. Since the ellipticity is bounded by
a computable function ε, we can construct the set Ax and for each S ∈ Ax we consider
the problem S ∈? Π−1({x}). In order to solve this we construct the set Π(S), which can
be built in finite time (we only have to apply the system of arrangements on S and write
all the possible linearizations) and we saw before that S(x) is finite (Proposition 7.6).
If there is some y ∈ Π(S) such that y = x then S ∈ Π−1(x), otherwise S < Π−1(x).

Now we just have to check whether there is some S ∈ Π−1({x}) such that S ∈ W
which can be made in finite time because Π−1({x}) is finite and W decidable. �

7.5 The Bi-Hierarchies

A remarkable fact is that we are using the same building blocks for manifolds and
linearizations, namely patterns. This opens a corridor between both modules of our
grammars and suggests the next definition. Recall that we defined Man(X) as the set of
manifolds that have type X . Now we can do the same for linearizations. In this way we
can classify a language according to a pair of types. Recall that these descriptions are
given by a classificatory monoid. So depending on the classificatory monoid chosen
we obtain different hierarchies of classes of languages, which we name bi-hierarchies.

Definition 7.9 (Bi-hierarchies). Consider a fixed classificatory monoid {T1, . . . ,Tn}∗
the elements of which we called types.

(i) (reminder) We say that a manifold has type X iff all the patterns of the simple
manifolds involved in the definition of the manifold have type X; we define the
set of manifolds of type X as:

Man(X) = {W ⊆ Synt |W has type X}.

(ii) We say that an arrangement has type Y iff all the patterns involved in the ar-
rangement have type Y . We say that a system of arrangements Π has type Y iff
all the arrangements involved in the definition have type Y . We define the set of
linearizations of type Y as:

Lin(Y ) = {Π : Synt −→ ℘(Σ∗) |Π has type Y }.

(iii) We define the class of languages of type X over type Y as:

X�Y = {L (G ) | G = (W,Π),W ∈ Man(X),Π ∈ Lin(Y )}.
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We call a bi-hierarchy over {T1, . . . ,Tn}∗ the set of these classes of languages X/Y
with types in the classificatory monoid and we notate it as BH(T1, . . . ,Tn).

Example 23. Some examples of bi-hierarchies are the general bi-hierarchy BH(k,M) ,
the homogeneous bi-hierarchyBH(k,H) , and the pivoting bi-hierarchy,BH(k, P,H). Let
us list the first combinations in BH(k,M) (we enumerate them by the sum of lengths
|X | + |Y |):

|X | + |Y | = 0 1/1;
|X | + |Y | = 1 1/M, 1/k, M/1, k/1;
|X | + |Y | = 2 1/M2, 1/Mk, 1/kM, 1/k2, M/M, M/k, k/M, k/k,

M2/1, Mk/1, kM/1; k2/1;
|X | + |Y | = 3 1/M3, 1/M2k, 1/MkM, 1/kM2, 1/k3, 1/k2M, 1/kMk, 1/Mk2,

M/M2, M/Mk, M/kM, M/k2, k/M2, k/Mk, k/kM, k/k2,

M2/M, M2/k, k2/M, k2/k, kM/M, kM/k, Mk/M, Mk/k,
M3/1, M2k/1, MkM/1, kM2/1, k3/1, k2M/1, kMk/1, Mk2/1;

...
...

|X | + |Y | = n (n + 1)·2n possible classes.

As we will prove, some classes collapse in one class, for example, the class of languages
X/1 is the same regardless of the type X , Corollary 8.11.

The bi-hierarchies are monotone in the following sense:

Lemma 7.10. For any types X,Y the following holds:

(i) X v X′ =⇒ Man(X) ⊆ Man(X′);

(ii) Y v Y ′ =⇒ Lin(Y ) ⊆ Lin(Y ′);

(iii) X v X′,Y v Y ′ =⇒ X�Y ⊆ X′�Y ′.

Proof. (i) and (ii) are trivial. (iii) If L ∈ X/Y then L = L (W,Π) for some W ∈
Man(X),Π ∈ Lin(Y ). Since X v X′,Y v Y ′ then Man(X) ⊆ Man(X′),Lin(Y ) ⊆
Lin(Y ′). So L = L (W,Π) ∈ X′/Y ′. �

Thus we could expect that the simpler the patterns, the simpler are the languages, as
we will exemplify in subsequent chapters.

There is a simple relation between a classificatory monoid and its bi-hierarchy.
Consider the direct product {T1, . . . ,Tn}∗ × {T1, . . . ,Tn}∗ with the component-wise



130 7.6. First Examples

order: (X,Y ) v (X′,Y ′) ⇐⇒ X v X′, Y v Y ′. Now consider BH(k,M) with the
subset order ⊆. Then the mapping:

{T1, . . . ,Tn}∗ × {T1, . . . ,Tn}∗ −→ BH(T1, . . . ,Tn)
(X,Y ) 7−→ X�Y

is an epimorphism of orders; this is just another way of stating Lemma 7.10.

Remark 7.11. The previous epimorphism admits a linguistical interpretation. The pair
(X,Y ) ∈ {T1, . . . ,Tn}∗ × {T1, . . . ,Tn}∗ represents the description of the structural de-
vices of the class of grammars with type X for the manifold and the type Y for the
linearization, while the set X/Y represents the weak capacity. The epimorphism of orders,
then, establishes the relation between both. So the pair (X,Y ) is a new interpretation of
“strong capacity” for classes of grammars.

So when we say that a certain construction of natural language has a type X for
manifold and a type Y for linearization we are saying that there is a grammar generating
the construction with structural devices (or a strong capacity) given by the pair of types
(X,Y ), and a weak capacity given by the class X/Y , for which it might be possible to find
a weakly equivalent grammar with a simpler strong capacity: since the above morphism
of orders is surjective but not injective, grammars with different strong capacity can have
the same weak capacity.

7.6 First Examples

Consider the classical formal languages named squares language, copy language, mul-
tiple abc language, respectively language and mirror language defined by:

• Lsqua = {a2
1 · · · a

2
n | a1, . . . , an ∈ Σ, n ∈ N+};

• Lcopy = {x2 | x ∈ Σ∗};

• Lmult = {(abc)n | n ∈ N+};

• Lresp = {anbncn | n ∈ N+};

• Lmirr = {xxR | x ∈ Σ∗}.

In §4.3.1 we highlighted the importance of these languages as idealizations of certain
linguistic phenomena of natural language. We also defined several manifolds which
captured their syntactic structure. In order to design a global linearization we can begin
to imagine how to draw an individual linearization for some syntagmata of a given
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Figure 7.4: individual linearizations for (a) the squares language, (b) the copy language, (c) the
multiple abc language, and (d) the respectively language.

manifold. Fig. 7.4 does this. The following examples conclude with a grammar for each
language. In particular, on the one hand we have that:

Lsqua ∈ k2H�Hk, Lmult ∈ kH�Hk, Lmirr ∈ k2H�Hk;

and on the other hand we have that:

Lcopy ∈ Hk2
�Hk, Lresp ∈ Hk�Hk, Lmirr ∈ Hk2

�Hk.

Example 24. Squares language and copy language. We begin with the squares lan-
guage. Consider the manifold Wsqua = {Q0, Qa, Qb, Qa,a, Qa,b, . . .} together with one
arrangement:

A = ζ∗α + 1 + ζ∗β.

We apply this arrangement several times, for example to Qa,b,c (the process is shown in
Fig. (a)):

Qa,b,c

{ a + a + ζ∗β (A)
{ a + a + (b + b + ζ∗β) (A)
{ a + a + (b + b + (c + c)) (A)
{ a + a + b + b + c + c.
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Thus we obtain the language: Lsqua = {a2
1 · · · a

2
n | a1, . . . , an ∈ Σ, n ∈ N+}. In other

words, where Πsqua denotes the global linearization established by the above arrangement,
we have L (Wsqua,Πsqua) = Lsqua. All the patterns involved in the arrangement ζ∗α, ζ∗β
are in Hk and 1 ∈ 1 ⊆ Hk, so Πsqua ∈ Lin(Hk). Recall from the Example 7 that Wsqua ∈
Man(k2H) and that it has effectively bounded ellipticity. Thus Lsqua ∈ k2H/Hk.

Nowwe are going to linearize the copymanifold by using the same arrangement as in the
squares language, A = ζ∗α+1+ ζ∗β. Consider a syntagmaCa,b,c ∈ Wcopy (see Example 8).
If we apply the arrangement several times, we have the derivation (see Fig. (b)):

Ca,b,c

{ (ζ∗α + a + ζ∗β) (A)
{ (0 + a + ζ∗β) + a + ζ∗β (A)
{ a + ζ∗β + a + (0 + b + c) (A)
{ a + (0 + b + c) + a + b + c (A)
{ a + b + c + a + b + c.

The arrangement has type Hk, and Wcopy has type Hk2, so Lcopy ∈ Hk2/Hk.

Example 25. Multiple abc language, respectively language and mirror language.
Let us review the classifications of these languages. For the multiple abc language we take
the manifold Wmult which contains syntagmata denoted by M0, M1, M2 . . .. We take the
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arrangement: A = ζ∗α + ζ∗β + 1 + ζ∗γ, and applying successively we will have for M3:

M3

{ (a + b + c + ζ∗γ) (A)
{ a + b + c + (a + b + c + ζ∗γ) (A)
{ a + b + c + a + b + c + (a + b + c + 0) (A)
{ a + b + c + a + b + c + a + b + c.

The arrangement contains patterns in Hk, and since Wmult uses patterns in kH the language
is in kH/Hk. For the respectively language we take the same above arrangement which
operates on the syntagmata R0, R1, R2, . . . ∈ Wresp ∈ Man(Hk). So the language is in
Hk/Hk. An example of linearization follows:

R3

{ (ζ∗α + ζ∗β + c + ζ∗γ) (A)
{ (a + ζ∗γ) + ζ∗β + c + ζ∗γ (A)
{ a + (a + a) + ζ∗β + c + ζ∗γ (A)
{ a + a + a + (b + ζ∗γ) + c + ζ∗γ (A)
{ a + a + a + b + (b + b) + c + ζ∗γ (A)
{ a + a + a + b + b + b + c + (c + c) (A)
{ a + a + a + b + b + b + c + c + c.

Regarding the mirror language we discover an interesting property: it can be obtained
equally either from the squares manifold or the copy manifold. If we take syntagmata from
the squares manifold then we can use the arrangement: A = ζ∗α + ζ∗β + 1. For example:

Qa,b,c

{ (a + ζ∗β + a) (A)
{ a + (b + ζ∗β + b) + a (A)
{ a + b + (c + c) + b + a (A)
{ a + b + c + c + b + a.

Whereby the mirror language is in k2H/Hk. On the other hand if we take syntagmata from
the copy manifold we can use the system of three arrangements:

A1 = ζ∗α
2
+ ζ∗β

3
+ 1;

A2 = 1 + ζ∗β
2

;

A3 = ζ∗β
3
+ 1.
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See for example the derivation:

Ca,b,c

{ (ζ∗α + ζ∗β + a) (A1)
{ (a + ζ∗β) + ζ∗β + a (A2)
{ a + (b + c) + ζ∗β + a (A2)
{ a + b + c + (c + b) + a (A3)
{ a + b + c + c + b + a.

This means that the mirror language is in Hk2/Hk. As a consequence classes in the bi-
hierarchy are not in general disjoint because:

Lmirror ∈ k2H�Hk ∩
Hk2

�Hk.

7.7 Projective Arrangements

Definition 7.12. We say that an arrangement A is projective iff it is of the form:

A = ζ∗λ1 + · · · + ζ∗λk + 1 + ζ∗λk+1 + · · · + ζ∗λm,

such that the λi’s are syntactic functions in ζ and 1 ≤ k ≤ m. We also accept the case
m = 0 with A = 1 as a projective arrangement.

Notice that projective arrangements use patterns in Hk. Fig. 7.5 shows a partition
of a syntagma into patterns and a projective arrangement. All the examples up to here
were projective. By contrast we show now a pair of non-projective examples which will
be developed in more detail in Chapter 11.

Example 26. A non-projective arrangement for Dutch. Consider again the non-
projective cross-serial Dutch subordinate clause from example 19. In order to linearize the
corresponding syntagma (see Fig. below) we use the arrangement:

A1 = Sb·Ob∗S + ζ
∗ ·Ob·Ob∗S + Ob∗S .

This is a non-projective arrangement because Sb·Ob∗S ∈ kM.
If we want to complete the linearization we must add more arrangements:

A2 = 1 + Ob∗S ·ObS, and A3 = ζ
∗ ·Dt + 1.
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Figure 7.5: partition of a syntagma in patterns and a projective arrangement.

That is, the linearization continues projectively.

It must be said that in this case the subjects involved are single words. However, since such
sentences can exhibit more complex subjects (e.g. with some modifiers) the arrangement
must be a bit more general: A1 = ζ

∗·Sb·Ob∗S + ζ
∗·Ob·Ob∗S +Ob∗S . Thus ζ

∗·Sb·Ob∗S ∈ MkM.

Example 27. A non-projective arrangement for topicalization in English. Consider
now the sentence where the object of a subordinate clause is topicalizated: That idea, Carl
thinks Bob said she likes (see Fig. below). The ordinary form,Carl thinks Bob said she likes
that idea, can be obtained by projective arrangements. However the topicalization causes a
discontinuity which can be solved by the non-projective arrangement:

A1 = ζ
∗ ·Ob! ·Ob∗S + (ζ − {Ob!})∗,

where we have marked the topicalized object with the syntactic function Ob!. This is a
non-projective arrangement since ζ∗ ·Ob!Ob∗S ∈ MkM. Now we can linearize every new
syntagma through projective arrangements.
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Definition 7.13. We say that a system of arrangements is in projective normal form iff
all the arrangements in it are projective arrangements.

Theorem 7.14. An individual linearization ` : S −→ x is projective iff there is a system
of arrangements Π in projective normal form, such that x ∈ Π(S).

Proof. We sketch the proof. We say that a subtree is maximal when it is defined by ζ∗λ
with |λ | = 1. I.e. maximal subtrees are the greatest proper subtrees.
(⇒) Let ` : S −→ x be a projection. We design a system of arrangements (i.e. a

set of arrangements with the mapping ω) which linearizes S into x. We decompose
a syntagma S into maximal subtrees and the root. Since ` is projective the maximal
subtrees and the root becomes intervals. We take as initial arrangement:

A1 = ζ
∗λ1 + · · · + ζ∗λi + 1 + ζ∗λi+1 + · · · + ζ∗λm,

where the positions of every ζ∗λi correspond to the positions of the intervals of the
maximal subtrees in x, and similarly the root. So the mapping ω invokes initially the
arrangement A1. Now we take all maximal subtrees and we deal with them again as
full syntagmata with the same linearization ` restricted to them. Thus, for each one
we design an arrangement A′1, . . . , A′m as before. Then each subtree ζ∗λi invokes a
new arrangement A′i. We continue until there are no more subtrees, which yields a
tree-shaped diagram of invocations for ω.
(⇐)Consider the initial arrangement of a linearizationΠ in projective normal form:

ζ∗λ1 + · · · + ζ∗λk + 1 + ζ∗λk+1 + · · · + ζ∗λm.

This takes the maximal subtrees ζ∗λi and puts them into an interval of the final string.
All thematerial of these subtrees will remain inside this interval during the linearization
(recall, Remark 7.7, that linearizations work “continuously”). So maximal subtrees are
transformed into intervals. The second step of the computation of Π takes the maximal
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subtrees of the maximal subtrees and puts them into an interval. So these subtrees are
also transformed into intervals. An inductive argument proves that every subtree is a
maximal subtree of some subtree during the computation. So all the subtrees becomes
intervals. �

7.8 A Normal Form for Lin(Mk) and Lin(Hk)

A system of projective arrangements yields a lineariation in Lin(Hk) ⊆ Lin(Mk). By
Theorem 7.14, the issue of projectivity is closely related to these types of patterns.
We are going to prove that any linearization in Lin(Mk) can be expressed through
projective arrangements. In particular we will have that Lin(Hk) = Lin(Mk).

Theorem 7.15. For every linearization in ΠA ∈ Lin(Mk) there is a linearization ΠB
given by a system of arrangements, B, in projective normal form such that ΠA = ΠB .

Proof. For all the proof we recall lemma 3.2 which said that the prime factors of a
1-norm submonoid are prime factors of ζ . Given a system of arrangements, our goal
is substituting some (maybe all) of the arrangements by projective arrangements and
showing that the linearization induced is always the same. So we start with a system
A1 = ({A1, . . . , As}, ω) of arrangements which use patterns inMk and we consider the
solution of the system ΠA . We proceed in four steps. In the first three steps we replace
the arrangements but not the mapping ω. In the last step we also replace this mapping.

(1) Every arrangement in any linearization in Lin(Mk) is necessarily a permutation
of an arrangement in the form:

A =
n∑

i=1
αi +

m∑
j=1

H∗j β j +

p∑
k=1

G∗k,

where n,m, p ≥ 0, n+m+p ≥ 1, and |αi | = 1, |β j | = 1, and the setsHj,Gk ⊆ ζ can
be empty, for each subscript. Notice that this general form A contains projective
arrangements under the form n = 0, p = 1 and G1 = ∅, (∅∗ = {1}):

A =
m∑

j=1
ζ∗β j + 1,

or a permutation of this. First we prove that p ≤ 1 must always hold, otherwise A
is not an arrangement. We suppose for the sake of contradiction that p > 1. Then
there are two different submonoids G∗i , G∗j . However the trivial monoid is always
a submonoid of any monoid and then G∗i ∩G∗j = {1} , ∅, so the patterns are not
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disjoint and they do not constitute a partition, whereby A is not an arrangement.
So p ≤ 1 and any arrangement in A1 is of the form:

A =
n∑

i=1
αi +

m∑
j=1

H∗j β j + G∗, or of the form A =
n∑

i=1
αi +

m∑
j=1

H∗j β j,

or a permutation of this.
Now we are going to see that we can always suppose that p = 1. Consider the
arrangement with p = 0, A =

∑n
i=1 αi +

∑m
j=1 H∗j β j , and we suppose that it is

applied to a syntagma S. Notice that:

1 <
( n⋃

i=1
{αi}

)
∪

( m⋃
j=1

H∗j β j

)
.

Since the arrangement is a partition of S then 1 < Spt(S), i.e. S(1) = 0. However
since S(1) = 0, if we add the trivial pattern in the arrangement it does not affect
the result and it is a new arrangement: the patterns form a partition of S, S1
exists, and 0 = |S1 | < |S | (provided that S , 0•). So we can suppose that the
arrangements in A1 are always of the form (up to permutations):

A =
n∑

i=1
αi +

m∑
j=1

H∗j β j + G∗,

although G∗ can be trivial, 1 = ∅∗. In order to gain clarity we omit until the end
of the proof the limits on the counters: A =

∑
i αi +

∑
j H∗j β j + G∗.

(2) Now we rewrite the constants. First we check that if we want to apply an arrange-
ment A in A1 to a syntagma S, then all the constants αi are leaves in S. Suppose
for the sake of contradiction that αi is not a leaf, or what is the same, that there is
a ψ ∈ ζ∗, ψ , 1 such that S(ψαi) , 0. Patterns involved in an arrangement must
form a partition of the support of S:

Spt(S) ⊆
(⋃

i

{αi}
)
∪

(⋃
j

H∗j β j

)
∪ G∗.

But ψαi is not in any of these three sets. Let us check this:

(a) Since αi, ψ , 1, we have ψαi <
⋃

i{αi}.
(b) If ψαi ∈ H∗j β j for some j then there is an x ∈ ζ∗ such that ψαi = xβ j , but

then αi = β j (recall again that αi , 1). Patterns form a partition and this
means that they are disjoint. So ψαi < H∗j β j .
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(c) G is a norm-1 submonoid meaning that all the functions in G have norm at
most 1. If we suppose that ψαi ∈ G∗ all the prime factors of ψαi are also in
G∗. In particular αi ∈ G∗, which is also a contradiction, with the fact that
patterns of the arrangement form a partition.

In consequence if an arrangement A in A1 is applied to a syntagma S, ψαi <
Spt(S) or, what is the same, S(ψαi) = 0, for any ψ ∈ ζ∗, so αi is a leaf. We can
substitute the arrangement A by the arrangement (or an adequate permutation
of):

A′ =
∑

i

ζ∗αi +
∑

j

H∗j β j + G∗.

In other words if A can be applied to S, then A′ can also be applied to S and
A(S) = A′(S). This entails that A′ is always an arrangement for S, that is, it forms
a partition of S, which can be easily checked. We notateA2 the result of making
this substitution in all the possible arrangements in A1.

(3) Now we want to rewrite all the factors H∗j β j . Let A be an arrangement inA2 and
suppose that A is applied to a syntagma S. We pick a locus ψβ j ∈ (ζ∗\H∗j )β j .
Patterns in A must form a partition of S so:

Spt(S) ⊆
(⋃

i

ζ∗αi

)
∪

(⋃
j

H∗j β j

)
∪ G∗.

But, similarly to (2), ψβi is not in any of these three sets:

(a) Clearly ψβi <
⋃n

i=1 ζ
∗αi, otherwise β j = αi for some i and we know that

β j ∈ H∗j β j andαi ∈ ζ∗αi. So β j ∈ H∗j β j∩ζ∗αi , ∅, which is a contradiction.
(b) Supose that ψβ j ∈ H∗k βk . Then βk = β j . Since β j ∈ H∗j β j and βk ∈ H∗k βk

then H∗j β j ∩ H∗k βk , ∅. Since patterns must form a partition of S, the only
possibility is i = k. But this is a contradiction because we picked ψβ j such
that ψβ j ∈ (ζ∗\H∗j )β j .

(c) Suppose, finally, that ψβ j ∈ G. Similarly to the point (c) from the second
point (2), since G∗ is a 1-norm submonoid, prime factors of ψβ j are in G,
so β j ∈ G, which is a contradiction.

So necessarily for any syntagma to which the arrangement is applied we have
that if ψβ j ∈ (ζ∗\H∗j )β j , S(ψβ j) = 0. But then we substitute the pattern H∗j β j
in the arrangement A, by the pattern ζ∗β j . We notate A′ this new arrangement
and we have A(S) = A(S′), because loci outside of H∗j β j are null. Then we can
rewrite every pattern as: ∑

i

ζ∗αi +
∑

j

ζ∗β j + G∗,
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or an adequate permutation of this. Now simply grouping sums we write∑
i

ζ∗γi + G∗.

We notate A3 the result of making this substitution in all the possible arrange-
ments in A2.

(4) It just remains to reduce the submonoid term G∗. Given an arrangement A =∑
i ζ
∗γi +G∗ (or a permutation) in A3 we consider the following transformation

of the system of arrangements defined in three subcases:

(a) If G∗ = {1}, then the arrangement is projective and then we do not change
anything.

(b) We suppose that G∗ , {1} and that we have a loop in the diagram of the
mapping, i.e. the patternG∗ invokes the arrangement A itself, amongst other
arrangements B1, . . . , Br .

We can prove that the loop is not contributing to the linearization. Notice
that if we apply the arrangement twice the result is the same. First recall that
in general SG∗ = SG∗ (Proposition 6.10(iv)). Then (SG∗)G∗ = (SG∗)G∗ =
(SG∗)G∗ = SG∗ = SG∗ . But then |(SG∗)G∗ | ≮ |SG∗ |. So necessarily SG∗ is
atomic or null. So we can change G∗ by the constant pattern 1. We can
maintain the old invocations of G∗, although now these are unproductive,
because the linearization always stops at this pattern 1.

(c) In the last casewe suppose thatG∗ , {1} and thatG∗ is invoking the arrange-
ments B1, . . . , Br , where Bi , A, ∀i = 1, . . . , r , that is, there are no loops.
Then we replace the configuration (with the corresponding permutations):

by the new configuration:
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A′i is the result of applying Bi to A in the patternG∗ (importing andmaintain-
ing the convenient orders of the patterns). So the system continues defining
the same linearization and in addition A′i preserves the general form ofA3.
Notice that nowwe havemore arrangements, but importantly, the patternG∗

has been removed from the system and in effect G∗i satisfies that |Gi | < |G |.
Let us see this. First we notice that we can assume that Gi ⊆ G. Since
(SG∗)G∗i = (SG∗)G∗i = (SG∗)G∗i = S(G ∩ Gi)∗ = (SG∗)(G∩Gi)∗ , if Gi * G,
thenwe could substitute previously all theG∗i by (G∩Gi)∗. Secondwe can as-
sume that Gi ( G. If Gi = G then (SG∗)G∗i = (SG∗)G∗ = (SG∗)G∗ = (SG∗),
i.e. |(SG∗)G∗i | = |(SG∗)G∗ | = |(SG∗)|, so this arrangement is only applicable
when S is null or atomic; in this case we could substitute Gi by 1.

The cases (a), (b), (c) cover all the possibilities. We repeat the substitution (c)
as many times as we can, throughout the system. If a loop appears, we apply
the substitution (b) and come back to substitution (c). Since the size of the Gi’s
always decreases, at some moment they become empty, i.e. ∅∗ = 1, and then all
the arrangements are projective. We notate this final system A4.

To sum up, for any linearization ΠA1 ∈ Lin(Mk) there are linearizations ΠA1 = ΠA2 =

ΠA3 = ΠA4 , where the last is a linearization given by a system of arrangements in
normal projective form. �

The previous proof shows indeed an algorithm to transform any linearization in
Lin(Mk) into projective normal form. As a very simple corollary we obtain that indi-
vidual linearizations in Lin(Mk) are projective.

Corollary 7.16. Every global linearization Π ∈ Lin(Mk) is individually projective,
i.e. for any x ∈ Π(S) the local linearization ` : S −→ x is projective.
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Proof. Straightforward from Theorem 7.15. �

Corollary 7.17. Lin(Hk) = Lin(Mk) = Lin(Gk).

Proof. The inclusion Lin(Hk) ⊆ Lin(Mk) is trivial. The other inclusion is given by
Theorem 7.15. Regarding Lin(Mk) = Lin(Gk) we notice thatMk ∩ { patterns of arity
1} = Gk ∩ { patterns of arity 1} �
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8
Lowest Positions and Properties
of the Bi-Hierarchies

This chapter and the following one are devoted to studying the bi-hierarchies in
itself and especially BH(k,M) and BH(k,H) . The goal is to obtain a sketch of
the character of these bi-hierarchies and their relation to the landscape of formal
languages.

A remarkable property of the bi-hierarchies is so-called bi-symmetry which states
that if we reverse the types of the manifold and the linearization simultaneously
we obtain the same class of languages. In relation to this we also prove that the
bi-hierarchies are symmetric, meaning that the Hasse diagram of inclusions is
geometrically symmetric.

We go on to study the general bi-hierarchy. By examining the lowest positions we
observe that several classes collapses to simpler cases. We prove in addition some
closure properties of algebraic dependency languages.

8.1 Structure of this Chapter and the Following One

This chapter and the following one are devoted to studying general properties of the bi-
hierarchies and studying some of the lowest positions in them, especially on the general
and the homogeneous bi-hierarchies. The general bi-hierarchy BH(k,M) contains
every algebraic dependency language which means that for each L ∈ AD there is a class
X/Y ∈ BH(k,M) such that L ∈ X/Y . However given its generality this bi-hierarchy is
hard to study. Notice that for every class X/Y ∈ BH(k,H) we have X/Y ⊆ µ(X)/µ(Y )
where µ is the isomorphism of free monoids µ : {k,H}∗ −→ {k,M}∗, given by
µ(k) = k, µ(H) = µ(M). For example, k2H/Hk ⊆ k2M/Mk. So the homogeneous
bi-hierarchy is more restricted and easier to study.

At the beginning of this chapter we study how reversing the types affects the class.
Laterwe study the general bi-hierarchy.We examine the lowest positions andwe observe
that several classes collapses to simpler cases. We prove some closure properties.

145



146 8.2. Symmetry and Bi-Symmetry in the Bi-Hierarchies

The classes reviewed in this chapter seem not to be linguistically relevant since we
just explore the lowest positions.1 Fortunately, the homogeneous bi-hierarchy encap-
sulate more interesting classes, such us context-free languages, semi-linear languages
and others. In addition some results from the general bi-hierarchy can be translated to
it. This will be dealt in the following chapter.

In the sequel the form of the types inform us in which bi-hierarchy we are. So, for
example, when a result uses general monoids M, this means that what is claimed is
valid for any monoid.

The known classes which we will treat in relation with the bi-hierarchies in this
and the following chapter will be introduced in due course, but the diagram depicted in
Fig. 8.1 summarizes their inter-inclusions.

8.2 Symmetry and Bi-Symmetry in the Bi-Hierarchies

The theorem which we are going to prove greatly simplifies the bi-hierarchies; it
identifies one half of a bi-hierarchy with the other half. We have called it bi-symmetry
because it uses a double symmetry in the two modules of an algebraic dependency
language: manifolds and linearizations. For the moment let us notice that languages
have more than one description in the bi-hierarchy; see the following example:

Example 28. Alternative classification of the copy and squares languages. We
have shown that Lcopy ∈ Hk2/Hk through the manifold Wcopy and the linearization given
by the arrangement ζ∗α + 1 + ζ∗β. However, we can use the manifold Wsqua with type k2H

and the arrangement A = αζ∗ + 1 + βζ∗ of type Hk to obtain the same language. See the
following derivation and the figure at the end:

Qa,b,c

{ (αζ∗ + a + βζ∗) (A)
{ (a + βζ∗) + a + βζ∗ (A)
{ a + (b + c) + a + βζ∗ (A)
{ a + b + c + a + (b + c)
{ a + b + c + a + b + c

Notice that, as we said at the beginning (see §5.2), the manifold Wsqua is symmetric to
the manifold Wcopy. The arrangements ζ∗α + 1 + ζ∗β and αζ∗ + 1 + βζ∗ that we have just
used are almost the same, with the difference that the involved patterns are reversed. This
means that the copy language is also in the class k2H/kH.

1And higher positions appear to be very complicated to characterize at the moment.
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Figure 8.1: Hasse diagram of inclusions of classes of languages examined in this and the next
chapter: AB alphabet lngs., FN finite lngs, FN0 finite stressed lngs.,RG regular lngs.,CF context-
free lngs., AN Angluin lngs., AN0 constant-free Angluin lngs., PGp p-polynomial growth unary
lngs., IN indexed lngs., RecEnum Recursive Enumerable lngs.
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Similarly we can define arrangements using patterns in Hk and obtain the squares
languages from the copy manifold, whereby the squares language is also in the class
Hk2/Hk.

This example suggests that whenwe take the symmetricmanifold and the symmetric
linearization we obtain the same language. Remarkably the following theorem shows
that this situation is totally general. We make a previous definition.

Definition 8.1. Given the system of arrangements:


A1 = Γ1,1

ω(1,1)
+ · · · + Γm1,1

ω(m1,1)
,

...

An = Γ1,n
ω(1,n)

+ · · · + Γmn,n
ω(mn,n)

;
we define:



A<1 = ΓR
1,1

ω(1,1)
+ · · · + ΓR

m1,1
ω(m1,1)

,

...

A<n = ΓR
1,n

ω(1,n)
+ · · · + ΓR

mn,n
ω(mn,n)

,

which we call the symmetric system.

Theorem 8.2. (Bi-Symmetry) Given a classificatory monoid, for any types X,Y we
have:

X�Y =
X<�Y<.

Proof. Let G = (W,Π) be a grammar. We define the symmetric grammar as G< =
(W<,Π<) where W< is the symmetric manifold (which by Lemma 5.8 has effectively
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bounded ellipticity) and where Π< is the solution of the symmetric system above
defined. Clearly if L (G ) ∈ X/Y then L (G<) ∈ X</Y<. Our goal is to show that
L (G ) = L (G<).

We prove that for any S ∈ W , Π(S) = Π<(S<), by induction on the size s of S.
In fact we prove that for all the auxiliary mappings Π1, . . . ,Πn of Π, and Π<1 , . . . ,Π

<
n

of Π<, we have Π j(S) = Π<(S<) ( j = 1, . . . , n in the sequel). For s = 0 and s = 1
we have atomic cases and we have trivially that Π<j ((a

•)<) = Π<j (a
•) = a = Π j(a•).

We suppose that the statement is true for any syntagma with size < s and let S be a
syntagma |S | = s. Then we have the equalities:

Π
<
j (S) = Π

<
ω(1, j)(S

<
ΓR1, j
) + · · · + Π<

ω(mj, j)(S
<
ΓRmj, j

)

= Π<
ω(1, j)((SΓ1, j )<) + · · · + Π<ω(mj, j)((SΓmj, j

)<)
= Πω(1, j)(SΓ1, j ) + · · · + Πω(mj, j)(SΓmj, j

) = Π j(S).

In the second line we have used that S<
ΓR
= (SΓ)<, by Lemma 6.11. In the third line we

have used the hypothesis of induction, since |SΓi, j | < s. In consequenceΠ<(S<) = Π(S).
Thus L (G ) = ⋃

S∈W Π(S) = ⋃
S<∈W< Π

<(S<) = ⋃
S′∈W Π<(S′) = L (G<), be-

cause the symmetry operator (·)< : Synt −→ Synt is bijective.
We observed that L (G ) ∈ X/Y =⇒ L (G<) ∈ X</Y<. But since the languages

coincide, L (G ) = L (G<), we have X/Y ⊆ X</Y<. Finally since< is involutive we
can also use the same result and write X</Y< ⊆ (X<)</(Y<)< = X/Y . Joining both:
X/Y = X</Y<. �

We say that two classes X/Y and X′ = Y ′ are symmetric iff X</Y = X′/Y ′ or
equivalently X/Y< = X′/Y ′, since, by the bi-symmetry theorem:

X<�Y =
(X<)<�Y< =

X�Y< =
X′�Y ′.

We say that a class is self-symmetric iff X</Y = X/Y = X/Y<. The simplest
classes in a bi-hierarchy are self-symmetric, for instance: Mk/k = kM/k. An easy
property is the following:

Proposition 8.3. Given a class X/Y ∈ BH(T1, . . . ,Tn), if |X | + |Y | ≤ 3 then X/Y is
self-symmetric.

Proof. The proof just needs the fact that if |X | + |Y | ≤ 3 then either |X | ≤ 1 or |Y | ≤ 1
and then either X< = X or Y = Y<. �

There are, of course, non-self-symmetric classes. For example the classes which we
have been using for classifying. In fact now we can revisit them and rewrite:

Lsqua ∈ k2H�Hk =
Hk2

�kH, Lmult ∈ kH�Hk = Hk�kH, Lmirr ∈ k2H�Hk =
Hk2

�kH;
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Lcopy ∈ Hk2
�Hk =

k2H�kH, Lresp ∈ Hk�Hk =
kH�kH, Lmirr ∈ Hk2

�Hk =
k2H�kH.

We have the circumstance that both classes are symmetric to each other, but not
self-symmetric. What about the mirror language? We know that Lmirr ∈ k2H/Hk ∩
Hk2/Hk = (k2H ∩ Hk2)/Hk. Although this intersection does not inhabit the bi-
hierarchy, it is interesting to consider it. Indeed, we have that:

(k2H ∩ Hk2)<�Hk =
(k2H)< ∩ (Hk2)<�Hk =

Hk2 ∩ k2H�Hk =
k2H ∩ Hk2

�Hk.

So this class is self-symmetric.

8.3 Anti-Languages

Remark 8.4. The notation for the classes of the bi-hierarchy has an arithmeticalmotivation.
If we notated −X = X<, the reversed type X then bi-symmetry would be expressed as

−X
−Y
=

X
Y

and
−X
Y
=

X
−Y

.

This raises the question whether sense can be made of:

−X
Y

?

In this relation, this section translates the reversing operator to languages as well as
types in order to obtain this third arithmetical rule and others. This leads as to the
concept of anti-languages of a given class of languages. We will preserve during this
section the notation for the reversed type as −X .

Let us recall that we saw in the proof of the Bi-Symmetry Theorem 8.2 that
L (W,Π) = L (W<,Π<), which is equivalent to saying L (W<,Π) = L (W,Π<).

Definition 8.5. Let L, L′ be algebraic dependency languages. We say that L and L′ are
symmetric, notated L⊥L′, iff there are manifolds W,W′ and linearizations Π,Π′ such
that L = L (W,Π), L′ = L ′(W′,Π′) and such that:

W< = W′ and Π = Π′,

or equivalently in virtue of the above comment:

W = W′ and Π
< = Π′.

These properties mean that symmetry resembles the orthogonality relation in vectorial
spaces. For a vector there are many orthogonal vectors. Here the situation is the same;
let us see an example.
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Example 29. Symmetric languages. From the examples from previous chapters we have
the following symmetric languages: Lcopy⊥Lsqua and Lmult⊥Lresp.

A language does not have a unique symmetric language. Let us examine the following
case. First we consider another classical language called the Dyck language LDyck ⊆
(Σ t Σ)∗ where Σ = { (, [, {, [[ } is the alphabet of left parenthesis and Σ = { ), ], }, ]] } the
alphabet of right parenthesis. LDyck consists in the strings of well balanced parentheses; see
(Berstel, 1979). This language is representative of context-freeness in the sense stated in
the Chomsky-Schützenberger Theorem, see (Chomsky and Schützenberger, 1963; Berstel,
1979; Autebert et al., 1997).

Now we consider a pair of languages very similar to Lsqua and Lcopy. We define the
operator (·) : Σ −→ Σ by ( =), [ =], { =} and [[ =]]. With this we define:

�Lsqua = {a1a1 · · · anan | a1 . . . an ∈ Σ, n ∈ N+},�Lcopy = {a1 · · · ana1 · · · an | a1 · · · an ∈ Σ, n ∈ N+}.

These languages are, respectively, context-free (indeed regular) and non-context-free. Of
course all the three languages are algebraic dependency languages.

For the Dyck language we can construct a manifold for which the following Fig. (a)
shows a syntagma. The function α opens a parenthesis, γ closes the parenthesis, β puts
material inside the parenthesis while δ puts material at the right. So we take the arrange-
ment 1 + ζ∗α + ζ∗β + ζ∗γ + ζ∗δ. Once this syntagma is linearized it yields the string
[ ( ) ] { [[ ]] }. Fig. (b) depicts the symmetric syntagma which, when it is linearized with the
same arrangement, yields the string [ ( [[ { ] ) ]] } ∈ �Lcopy. This shows that LDyck⊥�Lcopy.

Now we consider the following Figures. Fig. (c) depicts a syntagma for a certain
manifold with which the arrangement ζ∗α+1+ ζ∗β yields the language �Lsqua. In particular
the syntagma from the figure yields the string [ ] ( ) [[ ]] { }. Fig. (d) shows the symmetric
syntagma with which the same arrangement yields the string [ ( [[ { ] ) ]] } ∈ �Lcopy
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In sum, �Lcopy⊥LDyck and �Lcopy⊥�Lsqua, whereby a language has more than one symmetric
language.

Definition 8.6. Let L be a class of algebraic dependency languages. We call anti-
languages of L, and we notate −L the class of languages that are symmetric to L for
some language L ∈ L. More formally:

−L =
⋃

alphabets Σ
{L ⊆ Σ∗ | ∃L′ ∈ L, L′ ⊆ Σ∗ such that L⊥L′}.

Clearly −L is a class of languages.

Proposition 8.7. Some properties of the “anti” operator −L are:

(i) L ⊆ −(−L);

(ii) L ⊆ L′ =⇒ −L ⊆ −L′;

(iii) −(L ∪ L′) ⊇ −L ∪ −L′;

(iv) −(L ∩ L′) ⊆ −L ∩ −L′.

Proof. (i) If L (W,Π) ∈ L then L (W<,Π) ∈ −L. Thus L (W,Π) = L ((W<)<,Π) ∈
−(−L). i.e. L ⊆ −(−L). (ii) Let L ⊆ L′. We take T ∈ −L; i.e. there is an L ∈ L
such that L⊥T . However this means that T ∈ −L′ since there is an L ∈ L ⊆ L′
such that L⊥T . (iii) L ⊆ L ∪ L′ and L′ ⊆ L ∪ L′. By (ii) −L ⊆ −(L ∪ L′) and
−L′ ⊆ −(L ∪ L′). Then −L ∪ −L′ ⊆ −(L ∪ L′). (iv) L ∩L′ ⊆ L and L ∩L′ ⊆ L′;
by (ii) −(L ∩ L′) ⊆ −L and −(L ∩ L′) ⊆ −L′. Then −(L ∩ L′) ⊆ −L ∩ −L′. �

When the class L coincides fully with a class in the bi-hierarchy the inclusion in
point (i) in the last proposition becomes an equality:
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Theorem 8.8 (Arithmetical properties of the bi-hierarchies). Given a classificatory
monoid, for any types X,Y we have the equalities in its bi-hierarchy:

X�Y =
−X�−Y,

−
(
X�Y

)
= −X�Y =

X�−Y,

−
(
−

(
X�Y

))
= X�Y .

Proof. The first equality X/Y = −X/−Y is the Bi-Symmetry Theorem 8.2 rewritten
with the minus symbol instead of the reversed type. For the second equality −(X/Y ) =
(−X)/Y we consider the equalities:

−X�Y = {L (W
′,Π) |W′ ∈ Man(−X),Π ∈ Lin(Y )}

= {L (W′,Π) | (W′)< ∈ Man(X),Π ∈ Lin(Y )}
= {L (W<,Π) |W ∈ Man(X),Π ∈ Lin(Y )}
= {L (W<,Π) |L (W,Π) ∈ X/Y }
= {L′ | ∃L′ ∈ X/Y, L⊥L′}

= −
(
X�Y

)
.

In the second line we have used that W′ ∈ Man(−X) ⇐⇒ (W′)< ∈ Man(X); in the
third line we have made the change of variable W′ = W<.

In order to see −(X/Y ) = X/(−Y ) we use the previous equality and bi-symmetry:
−(X/Y ) = (−X)/Y = (−(−X))/(−Y ) = X/(−Y ).

Finally for the last equality −(−(X/Y )) = X/Y we use the second equality twice:
−(−(X/Y )) = −((−X)/Y ) = (−(−X))/Y = X/Y . �

Corollary 8.9. For any classificatory monoid, the following mapping is an automor-
phism of orders:

BH(T1, . . . ,Tn) −→ BH(T1, . . . ,Tn)
X�Y 7−→ −

(
X�Y

)
Proof. We saw in Proposition 8.7(i) that −L preserves inclusions. Since it is involutive
(last equality in Theorem 8.8), this mapping is injective and surjective. �

This tells us that the Hasse diagram of a bi-hierarchy is symmetric in the geometrical
sense.
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8.4 The General Bi-Hierarchy BH(k,M)

8.4.1 The Classes X/1

Themost elementary class inhabiting the bi-hierarchy is the class of alphabet languages
AB, i.e. languages equal to the alphabet L = Σ.
Lemma 8.10. AB ⊆ X�Y for any types X,Y .
Proof. We prove that AB ⊆ 1/1, whereby AB ⊆ X/Y for any types X,Y , since 1/1 ⊆
X/Y for any types X,Y . Given L = Σ ∈ AB we build a manifold with vocabulary Σ and
the set of syntactic functions ζ = ∅; this means that the patterns can only be the trivial
patterns {(1, . . . , 1)}. We already saw how to obtain atomic syntagmata as a manifold:

Atom = Synt
(
0 0
1

)
= {a• | a ∈ Σ}.

If we apply the trivial arrangement A = 1 we obtain the language L. The pattern
involved in the manifold and the pattern of the arrangement are in 1/1. �

Lemma 8.11. X�1 ⊆ AB for any type X .
Proof. Lin(1) are linearizations given by trivial arrangements A = 1. So themanifold of
a grammar can only contain atomic syntagmata. Therefore the language of the grammar
is just the alphabet Σ and then X/1 ⊆ AB. �

Theorem 8.12. AB = 1�1.
Proof. By the above lemmas, 1/1 ⊆ AB ⊆ 1/1. �

8.4.2 The classes X/Mq

Proposition 8.13. X�Mq = AB for any q ≥ 0 and for any type X .
Proof. The direction (⊇) is trivial by Lemma 8.10. (⊆) Let L = L (W,Π) be a language
in X/Mq. Suppose that ζ , ∅, otherwise the unique possible arrangements are A = 1
and we are done.

We pick an S ∈ W and consider the first arrangement applied to S to obtain a
linearization, say A = Γ1 + · · · + Γn. Since Γ1, . . . , Γn ∈ Mq then 1 ∈ Γi for any
i = 1, . . . , n which implies that 1 ∈ Γ1 ∩ · · · ∩ Γn. First notice that the patterns in
an arrangement must be disjoint. Thus the only possibility to consider is n = 1,
which makes the arrangement A = Γ. Now notice that the patterns in an arrangement
must cover the support of the syntagma, so Spt(S) ⊆ Γ. However this means that
SΓ = Sζ∗ = S and therefore |SΓ | ≮ |S |. This means that S is always atomic or null,
and thus the system of arrangements just effects the root. The arrangement A can be
substituted by the arrangement A′ = 1 and no more arrangements are needed. This
system of arrangements can only linearize atomic syntagmata, so L ∈ AB. �
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8.4.3 The classes kp/X

Proposition 8.14. kp
�X = AB for any p ≥ 0 and for any type X .

Proof. (⊇) is trivial. (⊆). We saw in Example 11 that almost no manifold in Man(kp)
has effectively bounded ellipticity. The unique exception is by considering that ζ = ∅
and then the manifold consists in atomic syntagmata. So the unique language definable
in this class is in AB. �

8.4.4 The Classes X/kp

Let FN stand for the class of finite languages.

Theorem 8.15. FN = k2M�k.

Proof. Let us see the inclusion FN ⊆ k2M/k. Let there be a string x = c0 · · · ct , with
t ≥ 0. First we build a manifold with only one syntagma of depth 1 which when it is
linearized yields the string x. Consider n ≥ t syntactic functions ζ = {λ1, . . . , λn} and
let Wn

x be the manifold:

Wn
x = Synt

(
≈ c0 ≈ c1 · · · ≈ ct ≈ 0 · · · ≈ 0

1 λ1 · · · λt λt+1 · · · λn

)
.

Consider the manifold of non-ellipticity Nell and finally consider the manifold with
null loci of length greater than 1:

V =
n⋂

j=1
Synt

(
≈ 0 · · · ≈ 0
λ1λ j · · · λnλ j

)
.

Nell ∩ V grants that the syntagma has depth 1, while Wn
x fills out all the letters. So

Wn
x ∩Nell ∩V has a unique syntagmata with all the letters of x, and maybe some zeros.

We notate this syntagma Sx which looks as follows:

We construct an arrangement which uses only patterns in k: A(S) = 1+λ1+ · · ·+λn.
We have that A(Sx) = x. Now we consider a finite language L, with n = maxx∈L |x | and
we let there be the intersection of manifolds:

WL = Nell ∩ V ∩
⋃
x∈L

Wn
x ,
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which contains as many syntagmata as strings in L. If we use the same arrangements
above we obtain the language L. We just have to check that WL has type k2M. This is
so because Nell has type kM, V has type k2 and Wn

x has type k. So the full manifold
has type k2M. Since the arrangement has type k, we have that FN ⊆ k2M/k.

On the other hand if a language is in X/k then its strings are linearized by constant
patterns. Any other non-null locus of greater depth could not be captured by any
arrangement. So all the syntagmata from a manifold have depth ≤ 1. In consequence
the manifold is finite which implies that the language is finite. Since this is valid for
any X , we have k2M/k ⊆ FN. �

We consider a subclass of finite languages. We say that a finite language L is finite
stressed iff there are two alphabets Σ and Σ with Σ ∩ Σ = ∅ such that every string
in L ⊆ (Σ ∪ Σ)∗ contains exactly one letter in Σ. We notate FN0 the class of these
languages which forms a strict subclass of finite languages FN0 ⊂ FN as proves the
language {a2} < FN0.

We call such languages “stressed” because they can formalize a decomposition
of words in syllables with one stressed syllable. For example we take the alphabets
Σ = {tu, crash, clo, car, ti} and Σ = {tu, sed, pet, com, pe, tion}. The following language
is in FN0:

L = {tu·tu, crash, clo·sed, car·pet, com·pe·ti·tion}

In addition notice that if we take Σ , ∅, Σ = ∅ this, together with the condition that
every string in a finite language L ⊆ (Σ ∪ Σ)∗ contains just one letter in Σ, yields an
alphabet language L ⊆ Σ ∈ AB. Thus AB ⊂ FN0. The strictness is trivial.

Theorem 8.16. FN0 ⊆ kM�k.

Proof. Let L ∈ FN0 be a finite stressed language. Every string in z ∈ L contains just
one letter b ∈ Σ which splits the string z in three parts, z = x · b · y, with x, y ∈ Σ∗. We
call x the first part of z and y the second part of z. We take ζ = {α1, . . . , αn, β1, . . . , βm},
where n = max{|x | | x is the first part of x for some z ∈ L} and m = max{|y | | y is the
second part of y for some z ∈ L}.

For every string z ∈ L with z = a1 · · · an′ · b · c1 · · · cm′ where a1 · · · ap ∈ Σ∗ is the
first part (n′ ≤ n), b ∈ Σ and c1 · · · cm′ ∈ Σ∗ is the second part (m′ ≤ m), we take the
manifold:

Wz = Synt
(
≈a1 · · · ≈an′ ≈0 · · · ≈0 ≈b ≈c1 · · · ≈cm′ ≈0 · · · ≈0
α1 · · · αn′ αn′+1 · · · αn 1 β1 · · · βm′ βm′+1 · · · βm

)
.

Notice that the following manifold:

Wz ∩ Nell ∩
⋂
λ∈ζ

Synt
(
(x ∈ Σ) → (y ≈ 0)
(1, λ)(ζ)∗2

)
,
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contains a unique syntagma which we can linearize with the arrangement
∑n

i=1 αi + 1+∑m
j=1 β j in order to obtain the string:

z = a1 + · · · + an′ + 0 + · · · + 0 + b + c1 + · · · + cm′ + 0 + · · · + 0,

or inmultiplicative notation: z = a1 · · · an′1 · · · 1bc1 · · · cm′1 · · · 1 = a1 · · · an′bc1 · · · cm′ .
Clearly this arrangement describe a linearization in Lin(k). In order to describe the
language L we only have to consider the join of manifolds:⋃

z∈L

(
Wz ∩ Nell ∩

⋂
λ∈ζ

Synt
(
(x ∈ Σ) → (y ≈ 0)
(1, λ)(ζ)∗2

))
∈ Man(kM).

�

Lemma 8.17. X�kp ⊆ FN for any p ≥ 0 and for any type X .

Proof. Any arrangement in Lin(kp) has the form A = ϕ1 + · · · + ϕs with ϕi ∈ kp. So
the manifold of a grammar can only contain syntagmata with depth ≤ p. Since the set
of syntactic functions is finite we have |S | ≤ ∑p

k=1 |ζ |
k . Since all the syntagmata are

bounded, the manifold must be finite. So any language in X/kp is finite. �

Corollary 8.18. For any type X and for any p ≥ 1, if k2, M v X then X�kp = FN.

Proof. We know that X/k ⊆ FN. Notice that if k2 v X then we can define themanifolds
V and Wx in the proof of Theorem 8.15. If M v X , since k2 v X then either kM v X
or Mk v X . In the first case we can define the manifold Nell and we are done. In
the second case we observe that X/k is self-symmetric, so we can reverse X to obtain
kM v X<. �

Corollary 8.19. kMp
�kq = M

pk�kq for any p, q ≥ 0.

Proof. Straightforward by bi-symmetry. �

These results reduce the classes X/kp to the following cases:

k2M�k = FN, 1�1 = AB, Mp
�kq, kM

p
�kq,M

pkMq
�kr ⊆ FN.

8.5 Closure Properties of BH(k,M)

In the following we consider all the manifolds with effectively bounded ellipticity.
Manifolds built from these inherits the bounds.

Suppose ζ ⊆ ξ, we write ζ ′ = ξ \ζ . Consider the mapping η : Synt Σ,ζ −→ Synt Σ,ζ ′
given by:

η(S)(x) =
{

S(x) if x ∈ ζ∗;
0 otherwise.
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If W = Synt Σ,ζ
(B
Γ

)
⊆ Synt Σ,ζ is a manifold, W can be embedded by η and it is still a

manifold which can be calculated as:

η(W) = Synt Σ,ξ
(
B
Γ

)
∩

⋂
α′∈ζ ′

Synt Σ,ξ
(
≈0

ξ∗α′ζ∗

)
.

The second manifold is necessary in order to make null all the loci in ξ∗ \ ζ∗. So if
Γ ∈ X andMkM v X then η(W) ∈ X . In the case thatW is non-elliptic we can simplify
the expression of the manifold:

η(W) = Synt Σ,ξ
(
B
Γ

)
∩

⋂
α′∈ζ ′

Synt Σ,ξ
(
≈0
α′ζ∗

)
∩ Nell Σ,ξ .

Now if Γ ∈ X and kM v X then η(W) ∈ X .

Theorem 8.20. If X is a type such thatMkM v X , then the class X/Y is closed under
unions, i.e.:

L1, L2 ∈ X�Y =⇒ L1 ∪ L2 ∈ X�Y .

Proof. Consider the languages L1 = L (W1,Π1), L2 = L (W2,Π2) such that L1, L2 ∈
X/Y . Without lost of generality we can suppose that W1 uses the set of syntactic
functions ζ1 and W2 uses the set ζ2 and that ζ1 ∩ ζ2 = ∅ (otherwise we rename the
syntactic functions). Consider the two embeddings: η1 : Synt Σ,ζ1 −→ Synt Σ,ζ1tζ2 and
η2 : Synt Σ,ζ2 −→ Synt Σ,ζ1tζ2 . Then we consider the manifold:

W1^W2 = η1(W1) ∪ η2(W2)

as in Fig. (a), and the system of arrangements Π1^Π2 given by the mapping ω1^ω2
as in Fig. (b).

Then L (W1^W2,Π1^Π2) = L1 ∪ L2. On the one hand since W1,W2 ∈ Man(X)
and MkM v X by assumption, and taking account the comment made before, then
W1^W2 = η(W1) ∪ η(W2) ∈ Man(X). On the other hand clearly if Π1,Π2 ∈ Lin(Y )
then Π1^Π2 ∈ Lin(Y ). �

Definition 8.21. We say that an algebraic dependency language is a non-elliptic lan-
guage if there is a non-elliptic manifold and a system of arrangements defining it.
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Corollary 8.22. Let X be a type such thatMk v X . If L1, L2 are non-elliptic languages
in X/Y then L1 ∪ L2 ∈ X�Y .

Proof. The proof is the same as in the last theorem. However at the end we use the fact
that manifolds are non-elliptic and the comment made before Theorem 8.20. �

Theorem 8.23. Let X,Y be types satisfying thatMkM v X andMk v Y . We have:

L1, . . . , Ln ∈ X�Y =⇒ L1 · · · Ln ∈ Xk�Y .

Proof. Consider the languages Li = L (Wi,Πi), such that Wi ∈ Man(X) and Πi ∈
Lin(Y ) for any i = 1, . . . , n. We show the proof for the case n = 2; the case n > 2
generalizes easily. Consider the manifolds Wi = Synt Σi,ζi

(Bi

Γi

)
with syntactic functions

ζi and vocabulary Σi. Without lost of generality we can suppose that ζ1, ζ2 are disjoint.
We take ζ = ζ1 t ζ2 t {β1, β2} (where β1, β2 are new functions), Σ = Σ1 ∪ · · · ∪ Σn and
construct the manifold:

W = Synt Σ,ζ
(

B1
Γ1(β1)a1

)
∩

⋂
α1∈ζ

Synt Σ,ζ
(
≈0

ζ∗α1ζ
∗
1 β1

)
∩

Synt Σ,ζ
(

B2
Γ2(β2)a2

)
∩

⋂
α2∈ζ

Synt Σ,ζ
(
≈0

ζ∗α2ζ
∗
2 β2

)
∩⋂

α∈ζ1tζ2
Synt Σ,ζ

(
≈0
ζ∗α

)
∩ Synt Σ,ζ

(
≈0
1

)
,

where ai is the arity of Γi, i = 1, 2. We have Γiαi ∈ Xk, since Γi ∈ X . And since
MkM v X ,MkMk v Xk and then W ∈ Man(Xk). Now we consider the set of all the
arrangements headed by a new arrangement 1 + ζ∗1 β1 + ζ

∗
2 β2; see the new system of

arrangements in Fig.(b):

Since we have assumed that Mk v Y we have that this gives a new linearization
Π ∈ Lin(Y ). Finally L1 · L2 = L (W,Π) ∈ Xk/Y . �

Theorem 8.24. Let X,Y be types satisfying that Mk2 v X and Mk v Y . If L is a
language such that 0 ∈ L, we have:

L ∈ X�Y =⇒ L∗ ∈ XM�Y .
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Proof. Consider the language L = L (W,Π), such that W = Synt Σ,ζ
(B
Γ

)
∈ Man(X)

and Π ∈ Lin(Y ). We take the set ζ ′ = ζ t {λ} and we construct the following manifold:

W′ = Synt Σ,ζ ′
(

B
Γ(λ)∗a

)
∩

⋂
α∈ζ

Synt Σ,ζ ′
(
≈0

ζ ′∗λαλ∗

)
,

where a is the arity of Γ. This manifold contains syntagmata as in Fig.(a). The condition
of 0 ∈ L is required in order to avoid that the chain of subsyntagmata (shaded triangles
in the figure) grows indefinitely. Notice that the first manifold in the definition of W′

chains syntagmata of W through the function λ. If we supposed that 0• < W then
chaining could not stop, which would make W′ = ∅. However since 0 ∈ L, we have
0• ∈ W . Regarding the types, ifMk2 v X thenMk2M v XM and thenW ∈ Man(XM).

Now we take all the arrangements in Π and a new arrangement ζ∗ + ζ ′∗λ with the map-
pingω′ given in Fig. (b). This yields a linearizationΠ′ ∈ Lin(Y ) since we have assumed
thatMk v Y . So L (W′,Π′) = L∗ ∈ XM/Y . �

The condition 0 ∈ L can be removed from the last theorem.

Corollary 8.25. Let X,Y be types satisfying thatMk2 v X andMk v Y . We have:

L ∈ X�Y =⇒ L∗ ∈ XM�Y .

Proof. Consider the language L = L (W,Π), such that W = Synt Σ,ζ
(B
Γ

)
∈ Man(X)

and Π ∈ Lin(Y ). Then we have L ∪ {0} = L (W ∪ {0•},Π). The manifold W ∪ {0•}
can be calculated as W ∪ {0•} = W ∪ Synt

(≈0
ζ∗

)
. SinceMk2 v X , in particularM v X

wherebyW ∪{0•} ∈ Man(X) and then L∪{0} ∈ X/Y . We apply the last Theorem 8.24
and we have that (L ∪ {0})∗ ∈ X/Y . Now simply notice that (L ∪ {0})∗ = L∗. �

Theorem 8.26. Let X,Y be any types:

if L ∈ X�Y =⇒ LR ∈ X�Y .

Proof. Let L be the language L = L (W,Π). Given an arrangement A =
∑n

i=1 Γi we
can construct the reversed arrangement AR =

∑n
i=1 Γn−i.2 Then we can construct the

2We must not confuse the reversed arrangement AR with the symmetric arrangements of the sym-
metric system A< =

∑n
i=1 Γ

R
i (see Definition 8.1 and Theorem 8.2): here we reverse the order of the

patterns, while in the symmetric arrangement we reversed patterns, but not the order.
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reversed linearization ΠR defined by the system of reversed arrangements with the
same mapping ω. We have to prove that:(

L (W,Π)
)R
= L (W,ΠR).

We see the direction (⊆), that is, if a succession of arrangements is applied to a
syntagma S to obtain the string x, applying to S the same succession of arrangements but
reversed yields the string xR. This can be shown by induction on the size of syntagmata.
When the syntagmata are null or atomic the statement is trivial. Suppose now that the
statement is true for any syntagma of size n and let S be a syntagma with size n + 1
and such that S yields the string x after the application of some arrangements. Let
A(S) = ∑n

i=1 SΓi be the first arrangement to be applied.
Let xi be the string resulting from linearizing every SΓi . Since |SΓi | < |S | we can

use the hypothesis of induction. When we apply to each subsyntagma the remaining ar-
rangements in the reversed formwe obtain the strings xR

i . So if we have the linearization
(using non-reversed arrangements):

S { SΓ1 + · · · + SΓn { x1 + · · · + xn = x,

then we have the linearization (using reversed arragements):

S { SΓn + · · · + SΓ1 { xR
n + · · · + xR

1 = xR.

This proves that
(
L (W,Π)

)R ⊆ L (W,ΠR). In order to see the other direction (⊇) first
we use the result just proved to obtain:

(
L (W,ΠR)

)R ⊆ L (W, (ΠR)R) = L (W,Π).
Now we notice that in general if L ⊆ L′ then LR ⊆ L′R. Hence

(
(L (W,ΠR))R

)R ⊆(
L (W,Π)

)R, or what is the same L (W,ΠR) ⊆
(
L (W,Π)

)R.
Finally it is obvious that if Π ∈ Lin(Y ) then ΠR ∈ Lin(Y ). So if L ∈ X/Y then

LR ∈ X/Y . �

If a homomorphism of monoids f : Σ∗ −→ Σ′∗ is length-preserving, i.e. | f (x)| =
|x |, then f is determined by the restriction f : Σ −→ Σ′. In particular f is 0-free (that
is f −1(0) = {0}).3

Theorem 8.27. For any types X,Y and for any length-preserving homomorphism f we
have:

L ∈ X�Y =⇒ f −1(L) ∈ X�Y .

Proof. Let f : Σ∗ −→ Σ′∗ be a homomorphism. The syntagma given by the composition
f ◦ S makes sense. Consider L ∈ X/Y , L = L (W,Π), W ∈ Man(X),Π ∈ Lin(Y ).

Let x be a string of L and suppose that x is obtained from the syntagma Sx and
certain succession of arrangements in Π.

30-free homomorphisms are also called ε-free or λ-free homomorphisms, (Hopcroft et al., 2001).
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If f preserves the length, the restriction f : Σ −→ Σ′ is well-defined and then
f (Σ) ⊆ Σ′. We are going to see that each string y ∈ f −1(x) can be obtained from some
syntagma Sy such that f ◦ Sy = Sx by the same succession of arrangements. First we
notice that if x ∈ Π(S) then f (x) ∈ Π( f ◦ S) (this can be proved by induction on the
size of S as on other occasions). Since f preserves the length, if we apply f to S, it does
not remove any node and then S and f ◦ S have the same shape up to the letters. So
during the linearization the same arrangements are invoked equally for S and for f ◦ S.
The only difference lies in the atomic syntagmata: in the case of f ◦ S these become
( f (a))•. All this means that the language f −1(L) can be described as:

f −1(L) = L
(
{S ∈ Synt | f ◦ S ∈ W}, Π

)
.

However this expression is sound only if the set of syntagmata is indeed a manifold.
We notate fa(x1, . . . , xa) = ( f (x1), . . . , f (xa)). The mapping B ◦ fa, where a is the arity
of B is always well-defined. We write W = Synt

(B
Γ

)
and W f = Synt

(B◦ fa
Γ

)
. Notice that

we have the equivalences:

f ◦W ⇐⇒ f ◦ S ∈ Synt
(
B
Γ

)
⇐⇒ ∀(x1, . . . , xa) ∈ Γ, B( f ◦ S(x1), . . . , f ◦ S(xa)) = 1
⇐⇒ ∀(x1, . . . , xa) ∈ Γ, (B ◦ fa)(S(x1), . . . , S(xa)) = 1

⇐⇒ S ∈ Synt
(
B ◦ fa
Γ

)
⇐⇒ S ∈ W f .

This means that the set {S ∈ Synt | f ◦ S ∈ W} = W f . So, if W ∈ Man(X) then
W f ∈ Man(X) and then f −1(L) ∈ X/Y . �

The following corollary sums up all the results viewed in this section.

Corollary 8.28. The class of algebraic dependency languages is closed under unions,
products, Kleene star, reversal, and length-preserving inverse homomorphism. That is
if L, L′ ∈ AD then

L ∪ L′, L·L′, L∗, LR, f −1(L) ∈ AD,

where f is an homomorphism preserving the length.

Proof. We apply according to each case Theorem 8.20, Theorem 8.23, Corollary 8.25,
Theorem 8.26, Theorem 8.27. We notice that if one of the languages L is in a class X/Y
which does not satisfy some of the conditions on X and Y of the previous theorems,
then these types can be enriched as needed; for example if L ∈ X/Y then L ∈ X Z/YT
for some adequate Z,T , and the theorem can be applied. �



9
Lowest Positions and Properties
of the Bi-Hierarchies (Cont.)

This chapter continues examining the structure of the bi-hierarchies. We import
some results from the general bi-hierarchy BH(k,M) to the homogeneous bi-
hierarchyBH(k,H) . This more restricted bi-hierarchy permits us to characterize
context-free languages as the class k2H/Hk. We also see that Angluin languages,
which can exhibit cross-serial dependencies, are in the symmetric class Hk2/Hk.

Semi-linearity is a property on the growth of languages which is supposed to hold
for natural languages. Restrictiveness of the homogeneous bi-hierarchy allows
identification of several fully semi-linear classes. We also classify some non-
semi-linear languages inside and outside of the homogeneous bi-hierarchy.

We consider the operator anti- to form classes of languages, already introduced in
the previous chapter, which we apply here to the context-free languages. We show
basic properties of this new class of formal languages which we call anti-context-
free languages, such as cross-serial dependency and semi-linearity.

In order to summarize the main results we depict the lowest positions of the
homogeneous bi-hierarchy. By contrast to the classical hierarchies which are
basically linear, this bi-hierarchy suggests a branching disposition of languages.

9.1 The Homogeneous Bi-Hierarchy BH(k,H)

9.1.1 Results Translatable from the General Bi-Hierarchy, and Some Differences

The first important result of the homogeneous bi-hierarchy is that any language L in
any class L ∈ X/Y ∈ BH(k,H) is decidable. This is consequence of Theorem 7.8 and
Theorem C.12.

Some results from the general bi-hierarchy can be translated directly to the homo-
geneous bi-hierarchy. This is so because the monoids of the patterns of those proofs
were homogeneous. So those proofs can be reused for analogous results inBH(k,H) .
More in particular, for any p ≥ 0 and for any types X,Y :

163
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• X�1 =
kp
�Y =

X�H = AB;

• k2H�k = FN;

• FN0 ⊆ kH�k;

In addition we have that H/X = AB for any type X: we can use the characterization
of manifolds in Man(H) as local sets, and then we see that if ζ , ∅ then such manifolds
do not have effectively bounded ellipticity, whereby the unique language definable is
an alphabet language.

An important difference between the homogeneous bi-hierarchy with respect to the
general bi-hierarchy is that types Hp with p > 1 do not contribute at all:

Proposition 9.1. For any types X,Y, Z,T and p, q ≥ 1:

XHpY�ZHqT =
XHY�ZHT

Proof. The inclusion (⊇) is trivial. For the other inclusion we recall that a pattern
has type H iff it is of the form (ζ)∗a. However notice that this pattern is idempotent:
(ζ)∗a · (ζ)∗a = (ζ)∗a. So, in general, if a pattern has type XHpY with p ≥ 1 then it also has
type XHY . �

This means that classes of finite languages are reduced to the cases:

1/1 = AB, k2H/k = FN, kH�kq,HkH�kq ⊆ FN.

We can take further advantage of the restrictiviness of the basic type H.

Proposition 9.2. For any type X , X�HkH ⊆ X�kHk.

Proof. Consider a pattern in an arrangement in a linearization in Lin(HkH) of the form
ζ∗αζ∗ ∈ HkH. This arrangement is never proper because it is ambiguous. So SΓ is not
defined and the arrangement cannot be applied in any case. So the patterns must be of
the form α, ζ∗α, or αζ∗ which are all in kHk. �

More in general:

Theorem 9.3. for any X/Y ∈ BH(k,H) there are p, q ≥ 0 such that X�Y ⊆ X�kpHkq.

Proof. By generalizing the previous arguments. A pattern of the form ϕ1ζ
∗ϕ2 · · · ζ∗ϕn

with at least two ζ∗’s is never proper. The unique possibilities are ϕ, ζ∗ψ, ϕζ∗, ϕζ∗ψ ∈
kpHkq, for some p, q ≥ 0. �
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Figure 9.1: An example of simulation of a context-free grammar through syntagmata.

9.1.2 Context-Free Languages

Context-free languages lie in a specific place in the bi-hierarchy: CF = k2H/Hk. We
see first the inclusion (⊆). The proof rests in simulating derivations of Greibach normal
form of a context-free grammar through syntagmata. The Fig. 9.1 shows an example.

Theorem 9.4. CF ⊆ k2H�Hk.

Proof. Let G be a context-free grammar generating the non-empty language. For each
such context-free grammar we can take an equivalent grammar (i.e. generating the same
language) in Greibach normal form, see (Hopcroft and Ullman, 1979) and (Blum and
Koch, 1999). In these grammars each rewriting rule begins with a terminal symbol
which is followed by some variables. More precisely all the rules are of the form
Y ::= C + X1 + · · · + Xn where C ∈ Σ is a terminal symbol and Y, X1, . . . , Xn are
variables. If we want the language have the empty string, 0, we have to allow the rule
Start ::= 0 where Start is the start symbol. Here we ignore this, however the proof can
be modified easily to incorporate this rule.

We fix a finite set of letters or terminal symbols and a finite set of variable symbols.
Consider the Greinbach normal form context-free grammar G with n rewriting rules:

Y1 ::= C1 + X1,1 + · · · + Xm1,1,
...

...

Yn ::= Cn + X1,n + · · · + Xmn,n;

where Yi, Xi, j are variables and Cj ∈ Σ are terminal symbols for all subscripts i, j. We
suppose a start symbol Start, so some of the Yi can be equal to Start. We denote L the
language generated by this grammar.

Our goal is to build an algebraic dependency grammar (W,Π) such that L =
L (W,Π). In order to construct these we take as vocabulary Σ = {C1, . . . ,Cn} (the
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same set of terminals symbols), and as the set of syntactic functions we take ζ =
{λi, j | i = 1, . . .m j, j = 1, . . . , n}. Notice that we can have more syntactic functions
than symbols in the rewriting rules, because symbols can be repeated but not syntactic
functions. This will make our construction easier.

The spirit of the proof consists in simulating each rewriting rule by a depth 1
triangle of a syntagma, so that the whole syntagma simulates a derivation in the CFG;
see the example in Fig. 9.1. Thus since the derivational history of a string in the CFG
can be decomposed by the rewriting rules, the related syntagma can be described by
concatenation of triangles.

We need also an auxiliary function:

δ : {(i, j) | i = 1, . . . ,m j, j = 1, . . . , n} ∪ {(0, 0)} −→ ℘({1, . . . , n}),

which works similarly to the mapping ω of a system of arrangements, although we
are going to perform the concatenation of triangles rather than linearizations. This
mapping, δ, is defined by the variables in the context-free grammar G as:

δ(0, 0) = {k ∈ {1, . . . , n} |Yk = Start},
δ(i, j) = {k ∈ {1, . . . , n} |Yk = Xi, j},

for all the subscripts i, j. In the following, when the counters i, j appear they are to be
read as i = 1, . . . ,m j, j = 1, . . . , n.

We establish three manifolds:

• Non-Ellipticity Manifold. This is the manifold already used before in order to
preclude elliptic syntagmata: Nell .

• Starting Derivation Manifold. We have to define a valuation to describe the top
of each syntagma, which we associate to the start of the derivation in the context-
free grammar. Suppose thatYk is the start symbolYk = Start. This manifold states
the conditions in order to begin with the variable Yk :

Synt
(
≈ Ck

1

)
∩

⋂
i, j, j,k

Synt
(
≈ 0
λi, j

)
.

The first operand says that the root must be the letter Ck while the second says
that only the variables λi,k can be non-null and continue the derivation.
However several variables Yk can coincide with the start symbol Start, and then
we have to consider any of those possibilities, whereby we define:

Wstart =
⋃

k∈δ(0,0)

©­«Synt
(
≈ Ck

1

)
∩

⋂
i, j, j,k

Synt
(
≈ 0
λi, j

)ª®¬ .
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• Concatenating Triangles Manifold. Suppose that the variable Xi, j is equal to the
variable Yk in the CFG. Then two things occur. First, the function λi, j takes the
letter Ck . Second the function λi, j can be followed by the functions λ1,k, . . . , λmk,k
(and they can be null or non-null). However, and most importantly, λi, j cannot
be followed by any other function but those. That is λi′, j ′ · λi, j must be null for
all subscripts i′, j′ with j′ , k. In addition this condition must be considered
throughout the whole syntagma. The following manifold captures exactly this:

Synt
(
≈ Ck

λi, j ·ζ∗

)
∩

⋂
i′, j ′, j ′,k

Synt
(

≈ 0
λi′, j ′ ·λi, j ·ζ∗

)
.

However as in the above point, we have to consider all the possible Yk such that
Xi, j = Yk . So we define:

Wconc =
⋃

k∈δ(i, j)

©­«Synt
(
≈ Ck

λi, j ·ζ∗

)
∩

⋂
i′, j ′, j ′,k

Synt
(

≈ 0
λi′, j ′ ·λi, j ·ζ∗

)ª®¬ .
Notice that for terminal symbols we have δ(i, j) = ∅ and then the intersection
operator

⋂
i′, j ′, j ′,k must be read

⋂
i′, j ′ since there is no k to consider.

Now we intersect the three manifolds: W = Nell ∩Wstart ∩Wconc. We can calculate:
Nell ∈ Man(kH), Wstart ∈ Man(k) and Wconc ∈ Man(k2H). So W has type k2H.

There remains the linearization. One could think that we need to use the function
δ in order to define a system of arrangements. Nevertheless since we have used many
more syntactic functions than variables, we have to linearize directly. So we take a
unique arrangement which yields a linearization Π ∈ Lin(Hk):

A = 1 +
n∑

j=1

mj∑
i=1

ζ∗λi, j .

The second sum gives the order of the subsyntagmata according to each rewriting rule,
while the first just groups all the possibilities. Let us see this in a little more detail.
Let S be a syntagma which simulates a derivation such that Yk =Start. Then the only
possible non-null loci in the top of the tree are the root and its children λ1,k, . . . , λmk,k .
So when we apply A to S it yields:

A(S) = S1 + 0• + · · · + 0• +
mk∑
i=1

Sζ∗λi,k + 0• + · · · + 0• = S1 +

mk∑
i=1

Sζ∗λi,k,

which is exactly the order related to the k-rewriting rule of the context-free grammar.
This situation repeats itself for every subtree, so when we continue the linearization,
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the arrangement only produces the order of the corresponding arrangement. So the
arrangement A suffices to linearize any syntagma in the manifold.

To summarize, for each string x ∈ L there is a derivation in the context-free
grammar G that leads to x. This derivation can be simulated by a syntagma in W which
can be linearized projectively into x by Π. This yields the inclusion L ⊆ L (W,Π).
Conversely, every string x ∈ L (W,Π) is linearized from at least one syntagma in W ,
which can be decomposed in triangles and which represents the derivation of x in the
context-free grammar G, and this means that L (W,Π) ⊆ L. Thus Π(W) = L.

For every context-free language we can construct a manifold in Man(k2H) and a
linearization in Lin(Hk) proportioning the same language, thus we have that CF ⊆
k2H/Hk. �

We see the other direction and we prove at the same time that for p ≥ 2 the constants
in the class kpH/Hk do not confer more expressibility.

Theorem 9.5. kpH�Hk ⊆ CF for all p ≥ 0.

Proof. Let (W,Π) be an algebraic dependency grammar with W ∈ Man(kpH) and
Π ∈ Lin(Hk). Recall that we characterized manifolds of type kpH, Theorem 4.10.
These manifolds are ∪∩-combinations of simple manifolds, and these are either strictly
strongly p-local sets of syntagmata and p-top languages. We can consider without lost
of generality that W is given in disjunctive normal form:

W =
⋃

j

⋂
i

Wi, j,

whereWi, j are simple manifolds and i, j range over finite sets of counters. By reordering
the ∩-terms we can rewrite:

W =
⋃

j

((⋂
i

Topp[Ui, j]
)
∩

(⋂
i′

Trip[Vi′, j]
))
,

for some sample setsUi, j ,Vi, j . We saw in the proof of Theorem 4.8 that p-top sets are
∪∩-closed, and then:

Topp[U] ∩ Topp[U′] = Topp[U ∩U′],
Topp[U] ∪ Topp[U′] = Topp[U ∪U′].

Regarding the strictly strongly p-local sets, they are closed under intersections:

Trip[V] ∩ Trip[V′] = Trip[V ∩V′],

but not under unions. Then we can rewrite W as:

W =
⋃

j

(
Topp[

⋂
i

Ui, j] ∩ Topp[
⋂

i′
Vi′, j]

)
=

⋃
j

(
Topp[U′j] ∩ Topp[V′j ]

)
,
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where U′j =
⋂

iUi, j and V′j =
⋂

i′Vi′, j . Now we observe that given two alge-
braic grammars with the same linearization (V,Π), (V ′,Π) we have: L (V ∪ V ′,Π) =
L (V,Π) ∪L (V ′,Π). Then:

L (W,Π) = L
(⋃

j

(Top[U′j] ∩ Topp[V′j ]),Π
)
=

⋃
j

L
(
Topp[U′j] ∩ Topp[V′j ],Π

)
.

Hence, if we prove that L
(
Topp[U′j] ∩ Topp[V′j ],Π

)
∈ CF with Π ∈ Lin(Hk) we will

be done, since context-free languages are closed under unions.
Thus we are going to prove that languages of the form L (Topp[U] ∩ Topp[V],Π)

are context-free. First we will prove the case p = 1, second the case p = 2, and
then we will generalize for any p > 2. Consider then the language L (W,Π), with
W = Top1[U] ∩ Top1[V] and Π ∈ Lin(Hk) given by the system of arrangements A.
We suppose that the language is not empty (otherwise we are done); in consequence W
is not empty.

We construct a context-free grammar with Σ+ as the set of terminal symbols and
the set of variable symbols of the form XT,A, i.e. we parametrize the variables ranging
T ∈ U and A ∈ A. Start stands for the start symbol.

Recall from previous chapters that every linearization in Lin(Hk) admits a pro-
jective normal form where each arrangement consists in a certain permutation of the
arrangement:

1 +
∑
α∈ζ

ζ∗α.

We observe also that when we apply an arrangement, every pattern ζ∗α in it invokes
a new arrangement. Given an arrangement A, Aα stands for an arrangement invoked
by the pattern ζ∗α. We need the following relation: we say that the triangle T ′ ∈ V is
1-concatenable at the locus α with the triangle T ∈ V iff T(α) = T ′(1).

Now consider the context-free grammar with the following rewriting rules:

• A first set of rewriting rules of the sort:

Start ::= XT,A,

for every T ∈ U and for every initial arrangement A.

• A second set of rewriting rules consisting in:

XT,A ::= ρA

(
T(1) +

∑
α∈ζ

XTα,Aα

)
,

for every arrangement A ∈ A, for every triangle T ∈ V, and for every possible
sum

∑
α∈ζ XTα,Aα , where Tα ∈ V is a triangle such that it is 1-concatenable with
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T at the locus α and Aα is an arrangement invoked by ζ∗α. Finally, ρA is the
permutation of the arrangement A, i.e.:1

A = ρA

(
1 +

∑
α∈ζ

ζ∗α

)
.

• A set of empty rules:
X0•,A ::= 0,

for every arrangement A.

Notice that the CFG makes sense. On the one hand, if W , ∅ then U ⊆ V. So the
second set of rules connects to the starting rules. On the other hand, since 0• ∈ V,
which is always true when W , ∅, the right part of second set of rules must contain
variables of the form X0•,A. Then these rules connect to the third set of rewriting rules
permitting that the computation ends.

This context-free grammar generates the language L (W,Π). The key to under-
stand how it works consists in the fact that syntagmata in W can be decomposed into
overlapping triangles of depth 1, i.e. a node and its immediate descendants. Since the
linearization is in normal form, each step of a derivation is described by a node (1
in the arrangement) and its immediate descendants (the α′s of the patterns ζ∗α in
the arrangement). The above context-free grammar synchronizes the concatenation of
triangles and the arrangements.

Now we consider the case p = 2, L (W,Π), with W = Top2[U] ∩ Top2[V] and
Π ∈ Lin(Hk).We have to visualize each syntagma decomposed in overlapping triangles
of depth 2. However the linearization, which we suppose in projective normal form,
is in Lin(Hk) which works with subtrees at depth 1. We can solve this by composing
arrangements. Consider the arrangements A0, A1, . . . , Am, such that each Ai, 1 ≤ i ≤ m
is invoked by some pattern of A0. Then we can apply the arrangements in each invoked
pattern. The result is a new arrangement of type Hk2 consisting in a permutation of:

1 +
∑
α∈ζ

α +
∑
α∈ζ

∑
β∈ζ

ζ∗αβ.

We call these 2-composed arrangements. As before, given a 2-composed arrangement
A and the locus αβ ∈ ζ · ζ we can refer a new arrangement invoked by the pattern ζ∗αβ
as Aαβ. We generalize the concatenation of triangles. We say that the triangle T ′′ ∈ V
is 2-concatenable at the locus αβ with the triangle T ∈ V iff there is another triangle
T ′ ∈ V such that T ′′(1) = T ′(β) and T ′(1) = T(α). Then we define the context-free
grammar:

1More formally, given a permutation (a bijective mapping) ρ : {1, . . . , n} −→ {1, . . . , n} we define
the permutation ρ(x) of a string x = x1 + · · · + xn, where x1, . . . , xn are prime factors, as ρ(x) =
xρ(1) + · · · + xρ(n). Then ρ(x) does not depend on the prime factors of x but in the place of these factors.
For example, given the permutation ρ =

(1 2 3
3 1 2

)
, we have ρ(a+b+c) = b+c+a and ρ(p+q+r) = q+r+p.
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• A first set of rules of the sort:

Start ::= XT,A,

for every T ∈ U and for every initial 2-composed arrangement A.

• A second set consisting in:

XT,A ::= ρA

(
T(1) +

∑
α∈ζ

T(α) +
∑
α∈ζ

∑
β∈ζ

XTαβ,Aαβ

)
,

for every 2-composed arrangement A, for every triangle T ∈ V, and for every
possible double sum

∑
α∈ζ

∑
β∈ζ XTαβ,Aαβ where Tαβ ∈ V is a triangle such that it

is 2-concatenable with T at the locus αβ and Aαβ is an arrangement invoked by
ζ∗αβ. Finally, ρA is the permutation of the 2-composed arrangement A, i.e.:

A = ρA

(
1 +

∑
α∈ζ

α +
∑
α∈ζ

∑
β∈ζ

ζ∗αβ

)
.

• A set of empty rules:
X0•,A ::= 0,

for every 2-composed arrangement A.

This grammar generates the language L (W,Π). The case p > 2, although the no-
tation turns out more complicated, consists in considering triangles of depth p, p-
concatenation of triangles and p-composed arrangements. �

Corollary 9.6. We have that:

(i) CF = k2H�Hk =
kpH�Hk for all p ≥ 2.

(ii) kH�Hk ( k2H�Hk.

Proof. (i) According the two preceding theorems: kpH/Hk ⊆ CF ⊆ k2H/Hk ⊆
kpH/Hk, for all p ≥ 2. For (ii) we have that {a2} ∈ k2H/Hk = CF (trivially) but
{a2} < kH/Hk. This last is obtained by considering all the cases in the set of inner
triangles and the top triangles which defines the manifolds with type kpH with p = 0, 1
(Theorem 4.10). �
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Example 30. An illustration of Theorem 9.5. Consider the language Lmult =

L (Wmult,Πmult) ∈ kH/Hk. We saw in Example 10 that Wmult = Top1[U] ∩ Tri1[V]
where U = {0•,T, R}, V = {0•, a•, b•,T, R} and where T, R are the syntagmata in the
figure below which captures also the relation of 1-concatenability. Vertices in that graph
are given byV, vertices inU are doubly circled, and an edge S

ϕ
−→ S′means that a triangle

S is 1-concatenable to the S′ at the locus ϕ.

Recall that Πmult is given by the unique arrangement A = ζ∗α + ζ∗β + 1 + ζ∗γ. Then we
construct the corresponding context-free grammar:

Start ::= XT,A,

Start ::= XR,A,

Start ::= 0,
XT,A ::= Xa•,A + Xb•,A + c + XT,A,

XT,A ::= Xa•,A + Xb•,A + c + XR,A,

XR,A ::= Xa•,A + Xb•,A + c + X0•,A,

Xa•,A ::= X0•,A + X0•,A + a + X0•,A,

Xb•,A ::= X0•,A + X0•,A + b + X0•,A,

X0•,A ::= 0;

�


Start ::= X,Y, 0,
X ::= a + b + c + X,
X ::= a + b + c + Y,
Y ::= a + b + c + Y .

And these context-free grammars generate the language (abc)∗ = Lmult.
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9.1.3 Angluin Languages

Angluin Pattern Grammars are a very intuitive kind of grammars, probably the most
simple way to show a non-context-free language, which were introduced by Angluin
(1980a,b) in the context of machine learning.

Let us recall a comment on the terminology. Angluin denominated pattern lan-
guages the languages that we are going to present, but to avoid interference of terms
we call them Angluin Languages and we call Angluin-pattern a pattern in the sense of
Angluin. This is a coincidence: there is no relevant relation between Angluin patterns
and Monoidal patterns.

An Angluin pattern is a string in the alphabet Σ0 t Σvar . Elements in Σ0 are called
Angluin constants and elements in Σvar are called variables. A substitution is a homo-
morphism f : (Σ0 t Σvar)∗ −→ Σ∗0 such that when we restrict it to Σ0 it is the identity
mapping. An Angluin language LP ⊆ Σ∗0 is given by a Angluin pattern P ∈ (Σ0tΣvar)∗
as the set:

LP = { f (P) ∈ Σ∗0 | f : (Σ0 t Σvar)∗ −→ Σ
∗
0, f substitution}.

For example if we consider the Angluin pattern P = abX XcY ∈ ({a, b}∗ t Σvar)∗ this
generates the language LP = ab · Lcopy · c · {a, b}∗. We notate AN the class of Angluin
Languages. This class is not comparable with context-free languages; however:

AB ⊂ AN ⊂ IN,

where IN is the class of indexed languages.2
We say that an Angluin language is free of Angluin constants iff the Angluin

pattern does not have any constant. We notate AN0 the class of these languages. Clearly
Angluin languages free of Angluin constants is a proper subclass of Angluin languages:
AN0 ⊂ AN. For example the copy language is free of Angluin constants, Lcopy ∈ AN0.

Theorem 9.7. AN ⊂ Hk2
�Hk.

Proof. First we see the inclusion. Consider an Angluin Pattern P ∈ (Σ0 t Σvar)∗.
Factorize P in prime factors in Σ0 t Σvar , P = p1 · · · pm. We take ζ = {α1, . . . , αm} and
we decompose ζ as ζ0 t ζvar , such that ζ0 = {αi | pi ∈ Σ0} and ζvar = {αi | pi ∈ Σvar}.
For example the pattern abX XcY gives the decomposition ζ0 = {α1, α2, α5}, ζvar =

{α3, α4, α6}.
Let W1 be the manifold:

W1 =
⋂
α∈ζ

⋂
β∈ζ0

Synt
(
≈ 0
ζ∗αβ

)
∈ Man(Hk2),

2See Example 35 later for some comments about indexed languages.
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which prunes below the functions for the Angluin constants in the tree. Let W2 be the
manifold:

W2 =
⋂

αi,αj∈ζvar, pi=pj

Synt
(
≈

(ζ)∗2(α, β)

)
∈ Man(Hk),

which makes equal subtrees that are governed by functions which represent identical
variables. Finally we define:

W3 =
⋂
αi∈ζ0

Synt
(
≈ pi

αi

)
∈ Man(k), and W4 = Synt

(
≈ 0
1

)
∈ Man(1).

W3 fills out the Angluin constants in the tree and W4 fills out a 0 at the root. Then
we consider W = W1 ∩W2 ∩W3 ∩W4 ∈ Man(Hk2). The following figure shows an
example of syntagma in the manifold W for the Angluin pattern abX XcY .

Now we simply take the arrangement A = 1 +
∑m

i=1 ζ
∗αi (see again the example in

the figure) which yields a linearization in Lin(Hk). So AN ⊆ Hk2/Hk.
In order to see that the inclusion is strict we take a finite language, for example

{a, b} < AN. Since FN ⊂ Hk2/Hk, AN ( Hk2/Hk. �

Angluin Languages free of Angluin constants inhabit a lower position in the bi-
hierarchy.

Corollary 9.8. AN0 ⊂ Hk�Hk.

Proof. We reuse the notation from the last proof. Since ζ0 = ∅ we only need to take the
manifold W = W2 ∩W3 ∩W4 ∈ Man(Hk). For the strictness of the inclusion we take
{ab, cb} ∈ FN0 ⊆ Hk/Hk; but {ab, cb} < AN and therefore {ab, cb} < AN0. �

9.1.4 The q-copy and q-respectively Languages

We have seen that some non-context-free languages which contain cross-serial de-
pendencies inhabit the class Hk2/Hk. We explore a little more the weak capacity
of this class, subsuming some generalizations. We note that the q-copy language,
Lq-copy = {xq | x ∈ Σ∗}, is an Angluin language for any q ≥ 0, so Lq-copy ∈ Hk2/Hk.
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We see another possible grammar for the q-copy language the base trees of which serve
to construct grammars for a couple more examples:3

Example 31. Generalized copy, generalized counting and crossed languages. Con-
sider the languages: Lq-copy = {xq | x ∈ Σ∗}, Lq-count = {an

1 an
2 · · · a

n
q | a1, . . . , aq ∈ Σ, n ∈

N+} and Lcros = {anbmcndm | n,m ∈ N+}, named the q-copies language, q-counting
language and crossed language. Even though these languages are more general than the
original versions, they inhabit still the same class:

Lq-copy, Lq-resp, Lcros ∈ Hk2
�Hk.

To show this, we are going to suppose q = 4 , but the general case generalizes easily.
We suppose four syntactic functions ζ = {α, β, γ, σ}. For the three languages we are going
to use a manifold which trims the tree to obtain syntagmata as in Fig. (a), (b) and (c):

Wtrim =
⋂

ϕ∈{α,β,γ}

⋂
ψ∈{α,β,γ,σ }

Synt
(
≈ 0
ζ∗ϕψ

)
.

In the three cases, given that all of them have the same kind of tree shape, we use the same
linearization given by the arrangement: A = ζ∗α + ζ∗β + ζ∗γ + 1 + ζ∗σ.

Let us see the first language:

W4-copy = Wtrim ∩ Synt
(

≈4
(ζ)∗2(1, α, β, γ)

)
,

where≈4 (x, y, z, t) = 1 ⇐⇒ x = y = z = t. The first part gives the syntagmata tree-shape
as in Fig. (a), while the last manifold forces all the branches to be equal.

To obtain the second language, Fig. (b), we have to change the second manifold:

W4-count = WTrim ∩ Synt
(
a+ b+ c+ d+
ζ∗α ζ∗β ζ∗γ ζ∗

)
∩ Synt

(
B4

(ζ)∗4 ·(1, α, β, γ)

)
,

3The q-counting languages Lq-count = {an
1 · · · a

n
q | n ∈ N+, a1, . . . , aq ∈ Σ} are very similar to the q-

respectively languages, Lq-resp = {an
1 · · · a

n
q | n ∈ N+} with a1, . . . , aq ∈ Σ fixed. This last also inhabits

Hk2/Hk.
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where the valuations a+ means (a+)(x) = 1 ⇐⇒ x ∈ a+ = {0, a}, and the valuation B4
means:

B4(x, y, z, t) = 1 ⇐⇒ (if one of the x, y, z, t is 0 then the others are also 0).

This ensures that all the branches have the same length.
For the crossed language we just change the valuation B4 to B defined as B(x, y, z, t) =

B2(x, z)∧ B2(y, t). Now instead of linking simultaneously the depth of all branches, we link
the first to the third one and the second to the fourth one, see Fig. (c).

9.2 Semi-linearity

9.2.1 Semi-linearity in the Bi-hierarchies

We set Σ = {a1, . . . , ak}. The Parikh mapping is the mapping p : Σ∗ −→ Nk
+ defined by

p(x) = (|x |a1, . . . , |x |ak ). A set in Nk
+ is semi-linear iff it is a finite union of sets of the

form {p1 A1+ · · ·+ pn An+B | p1, . . . , pn ∈ N+} for some n ≥ 0 and A1, . . . , An, B ∈ Nk
+.

A language L ⊆ Σ∗ is semi-linear iff p(L) is a semi-linear set.

Theorem 9.9 (Parikh Theorem). Each context-free language is semi-linear.

Proof. (Parikh, 1966). �

Semi-linearity is a property of a languages, but in the case of the algebraic dependency
languages this property is translated to the manifold. We define the Parikh mapping
for syntagmata as P : Synt Σ,ζ −→ Nn

+, by P(S) = (|S−1(a1)|, . . . , |S−1(an)|), where
Σ = {a1, . . . , an}. We say that a manifold is semi-linear if its Parikh image is a semi-
linear set.

Suppose an algebraic dependency language L = L (W,Π), and let x be the result
of linearizing S ∈ W , i.e. x ∈ Π(S). We have that the Parikh mappings for the string
and for the syntagma coincide, p(x) = P(S), and then:

L is semi-linear ⇐⇒ W is semi-linear.

With this in mind the following theorems are easy to prove. We say that a class of
languages is semi-linear iff each language in the class is.

Theorem 9.10. Consider a class X/Y in any bi-hierarchy:

X�Y is semi-linear ⇐⇒ −
(
X�Y

)
is semi-linear.
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Proof. L (W,Π) ∈ −X/Y ⇐⇒ there is a language L (W′,Π) ∈ X/Y with W′ = W<.
However it is clear that P(S) = P(S<), since the symmetric syntagma contains exactly
the same letters though in other loci. Then P(W) = P(W′), hence the equivalence. �

Turning back to the homogeneous monoid:

Lemma 9.11. For any type Y ∈ {k,H}∗ the classes kpH�Y and Hkp
�Y are semi-linear

for any p ≥ 0.

Proof. Instead of proving that manifolds in Man(kpH) are semi-linear we proceed
indirectly. We consider the case kpH�Y , the symmetric case follows by the previous
theorem. Languages in kpH/kq or kpH/Hq are finite and thus trivially semi-linear.
Now we consider the case Hk v Y . Suppose L (W,Π) ∈ kpH/Y . Since Hk v Y , we
take any linearization Π′ ∈ Lin(Hk) in projective normal form, which can linearize
any manifold (i.e. dom(Π′) = Synt provided that Π′ is in projective normal form).
Then we consider the language L (W,Π′) ∈ kpH/Hk ⊆ CF which is semi-linear by
the Parikh Theorem. Thus the manifold W is semi-linear, which implies that L (W,Π)
is semi-linear. Now consider the remaining cases: Y , kq, Y , Hq, Hk @ Y and we
observe that the only possibility is Y = kH. However kpH/kH = −(kpH/Hk) and by
the previous theorem since kpH/Hk is semi-linear, kpH/kH is too. �

Theorem 9.12. Manifolds in kpH and Hkp are semi-linear for any p ≥ 0. So in
general for any type Y in any classificatory monoid the classes kpH�Y and Hkp

�Y are
semi-linear.

Proof. Trivial, by the last theorem. �

9.2.2 Exponential Growth Languages

This subsection and the following one will consider languages that do not satisfy
the constant growth property, nor the semi-linearity constraint. First we examine the
exponential growth language which is still in the homogeneous bi-hierarchy.

The language {a2n | n ∈ N+} is known to be an indexed language, but non-context-
free. Indexed languages, IN, were introduced by A. Aho as a generalization of context-
free languages, (Aho, 1968).4 We have seen some examples of indexed languages:
AN ⊂ IN, or CF ⊂ IN.

An indexed grammar (IG) (we adapt notation and followcomments from (Kallmeyer,
2010)), looks like a context-free grammar except that the non-terminals are equipped
with stacks of indices, i.e., besides the non-terminals symbols N and the terminals Σ,
we have an alphabet I of indices. In a derived sentential form x, non-terminals can be
equipped with stacks of indices, i.e., x ∈ (N · I∗ ∪ Σ)∗.

4See also (Hayashi, 1973). For a comparison with other formalisms with an equivalent weak capacity
see (Vijay-Shanker and Weir, 1994).
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The productions in an IG have the form (i) A→ α or (ii) A→ B f or (iii) A f → α
with A, B ∈ N , f ∈ I, α ∈ (N ∪ Σ). The first kind of production works like context-free
productions while copying the stack of A to all non-terminals in α. The second kind of
production adds a symbol to the stack of A while replacing A with B. The third kind of
production deletes a symbol f from the stack of A and then works like the first kind of
production.

In order to obtain {a2n | n ∈ N+} we consider the indexed grammar with N =
{S, A, B}, I = { f , g}, Σ = {a} and the productions: S → a, S → Ag, A→ A f , A→ B,
B f → BB, Bg → aa. We have the derivation:

S ⇒ Ag (S → Ag)
⇒ A f g (A→ A f )
∗⇒ A f f f g

⇒ B f f f g (A→ B)
⇒ B f f gB f f g (B f → BB)
∗⇒ B f gB f gB f gB f g
∗⇒ BgBgBgBgBgBgBgBg
∗⇒ aaaaaaaaaaaaaaaa = a24 (Bg → aa)

The following example situates in the homogeneous bi-hierarchy the language
defined as Lexpo = {a2n−1 | n ∈ N+}. The construction can be modified slightly to
obtain the extra a by adding an extra function hanging from the root which just contains
this extra a. Thus one obtains the language {a2n | n ∈ N+}.

Example 32. Exponential growth languages. We have that:

Lexpo ∈ HkH�Hk.

Unary languages have an advantage: since all the letters in the tree are the same we do
not have to worry about the linearization; for example we can always use a projective
linearization in Lin(Hk).

We take Σ = {a} and ζ = {α, β}. We are going to construct a manifold containing full
binary trees. Since the size of full binary trees of depth d is 2d − 1 when we linearize them
we obtain the required language. The key consists in forcing all the loci at the same level to
be equal. We take the manifold:

Wexpo = Nell ∩ Synt
(

≈
(ζ)∗2(α, β)(ζ)

∗
2

)
.
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This rule can be read as: for any syntagma S and for all x, y ∈ ζ∗, S(xαy) = S(xβy). So for
example the sibling loci α and β at the first level take always same value. In general siblings
αy and βy take always the same value. Consider at the second level the grandchildren αα
βα and their cousins αβ and ββ. The locus αα and its cousin βα take the same value. Since
siblings take the same value, all the grandchildren at the second level take the same value,
and so forth for the next generations. In general if a member of a generation is null all its
distant relatives at the same level will take the same value, 0 or a. The figure below shows
a set of links which suffices to make equal all the loci at a same level.

9.2.3 Polynomial Growth Languages

We are going to see a family of languages which seem to have an infinitely increasing
complexity in the general bi-hierarchy. First we see a pair of examples for the quadratic
and cubic growth unary languages, and then we generalize for any unary language with
polynomial growth.

In the following chapter we examine (supposed) natural constructions which are
not semi-linear. Chinese numbers and genitive stack in Old Georgian exhibit quadratic
growths. What is significant is that in both cases the classes inhabit the general bi-
hierarchy and importantly two M’s in the numerator of the class seem to be needed.
The following examples suggest that the degree of the polynomial growth coincides
with the numbers ofM’s in the numerator of the class.

Example 33. Quadratic growth language. Consider the language Ln2-poly = {an2 | n ∈
N+}. We see that

Ln2-poly ∈ (kM)
2
�Mk.

Recall that we do not have to worry about linearizations for unary languages; we can always
use a projective linearization in Lin(Mk). So we see the manifold. The strategy consists
in constructing a square-shaped tree through binary trees, ζ = {α, β}. First we construct a
framework which simulates the grid of natural number pairs, N+ ×N+. This is made by the
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manifold:
W2-grid = Synt

(
≈ 0
βαζ∗

)
∩ Nell.

Of course this is not a grid, but it behaves similarly, see Fig. (a):

Now the key is imposing a constraint on a cell, and then transporting it around the grid:

S(1) = a, S(α) = a, S(β) = a ⇐⇒ S(αβ) = a.

See Fig. (b). Since we want the condition for every αnβm, we write:

S(αnβm) = a, S(αn+1βm) = a, S(αnβm+1) = a ⇐⇒ S(αn+1βm+1) = a.

This can be captured by the valuation B(x, y, x, t) = (x ≈ a) ∧ (y ≈ a) ∧ (z ≈ a) ↔ (t ≈ a)
and the pattern: Γ = (1, α, 1, α)·(α, α, α, α)∗ ·(1, 1, β, β)·(β, β, β, β)∗. With this we define:

W2-cell = Synt
(
B
Γ

)
, W2-edges = Synt

(
≈
(α, β)∗

)
.

The second manifold ensures that the two sides of the square are equal (notice that the
pattern (α, β)∗ in this manifold is not homogeneous). And now we have the full manifold:

W2-poly = W2-grid ∩W2-cell ∩W2-edges.

All this works as follows (see Fig. (c)). Suppose for example that S(α3β2) = a which is
marked with a bullet in the figure (step 1); then by the condition W2-cell, we can mark
the three superior loci (step 2), S(α3β), S(α2β), S(α2β2) = a. This can be repeated, up to
the root, until to get a rectangle (step 3). Now we apply the condition on sides, W2-edges,
and then we perform step 4. Steps 5, 6, and 7 mark from top to bottom using again the
cell conditions. So in general given some non-null locus we always complete a square and
W2-poly just contains squares. To sum up, W2-grid has type k2M, W2-cell has type (kM)2,
W2-edges has typeM. Therefore Ln2-poly ∈ (kM)2/Mk.
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Example 34. Cubic growth language. Consider the language Ln3-poly = {an3 | n ∈ N+}.
We see that:

Ln3−poly ∈ (kM)
3
�Mk.

The planes are similar as in the quadratic case. We take ζ = {α, β, γ} and we define a cubic
grid (see Fig. (a)):

W3-grid = Synt
(
≈ 0 ≈ 0 ≈ 0

γβζ∗ γαζ∗ βαζ∗

)
∩ Nell.

These conditions say that γ cannot appear before β; γ cannot appear before α, and β cannot
appear before α. If a string does not have the order αnβmγp then by one of the conditions
in the manifold it is considered null.

Regarding the cell conditions, we have to highlight that now we cannot multiply the left
and the right side to transport the conditions. Instead we can use the factorization of Γ
in the quadratic case, and generalize it. We need two cell conditions such that given any
non-null locus, we will be able to fill out a cube. They are shown in Fig. (b). We see the
first cell condition:

S(αβγ) = a =⇒ S(1), S(α), S(β), S(γ), S(αβ), S(βγ), S(αγ) = a.

Now we need to transport this condition around the grid, so in general the condition is:

S(αn+1βm+1γp+1) = a =⇒S(αnβmγp) = a, S(αn+1βmγp) = a, S(αnβm+1γp) = a,

S(αnβmγp+1) = a, S(αn+1βm+1γp) = a, S(αnβm+1γp+1) = a,

S(αn+1βmγp+1) = a.

We need the valuation B(x1, . . . , x8) = (x1 ≈ a) → (x2 ≈ a ∧ · · · ∧ x8 ≈ a) and the pattern

{(αn+1βm+1γp+1, αnβmγp, αn+1βmγp, αnβm+1γp, αnβmγp+1,

αn+1βm+1γp, αnβm+1γp+1, αn+1βmγp+1) | n,m, p ∈ N+}.
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This can be rewritten as

(α, 1, α, 1, 1, α, 1, α)·(α)∗8 ·(β, 1, 1, β, 1, β, β, 1)·(β)
∗
8 ·(γ, 1, 1, 1, γ, 1, γ, γ)·(γ)

∗
8 ∈ (kM)

3,

where recall that we use the notation (x)8 to represent a vector with 8 equal components
x. The other cell condition can be rewritten similarly, and it is also in (kM)3. With this we
can define W3-Cell. Finally we need to make the three sides of the cube equal:

W3-edges = Synt
(
≈ ≈ ≈
(α, β)∗ (α, γ)∗ (β, γ)∗

)
.

The full manifold is W3-poly = W3-grid ∩W3-cell ∩W3-edges, and hence Ln3-poly ∈ (kM)3/Mk.

More in general we call polynomial languages Lp(n)-poly = {ap(n) | n ∈ N+} where
p(n) is a polynomial with coefficients in N+. The degree of a polynomial language is
the degree of the polynomial. Then we notate PGd the class of polynomial languages
with degree d.

The place in the bi-hierarchy of PGd for d = 0 and d = 1 are a bit special because
the manifolds in the examples consume some patterns in order to trim the trees and
other subsidiary questions. But by the previous theorems we have PG0 ⊆ FN = k2H/k
and that PG1 ⊆ RG ⊆ CF = k2H/Hk. For the case d ≥ 2 we have a general formula:

Theorem 9.13. PGd ⊆ (Mk)d�Mk for any d ≥ 2.

Proof. First one must prove the result for monomials: Lnd-poly ⊆ (Mk)d/(Mk). The
cases quadratic and cubic viewed in the above Examples 33 and 34 can be extended
using similar geometric tricks, although it is notationally a little tedious. The manifold
Wd-grid has type k2M and the manifold andWd-edges has typeM, regardless of the degree
d. Really the type (kM)d is contributed by the manifold Wd-cell.

Now notice that a polynomial with coefficients in N+ is a sum of monomials (for
example 3n5 + 2n3 = n5 + n5 + n5 + n3 + n3). Let us see how to sum two monomials,
np, nq. Geometrically we join (with disjoint syntactic functions) hypercubes of p
and q dimensions with the same root. This is equivalent to considering the manifold
Wp-poly ∩Wq-poly. We just need to make equal the sides of both hypercubes, which can
be done by a similar manifold to Wd-edges. We are done. �

Now we consider the language Lnoin = {(ban)n | n ∈ N+}, which was proved by
Gilman (1996) not to be an indexed language. This language has a quadratic growth
n2 + n and hence it is very close to the polynomial language Ln2-poly; this is born out in
its classification in the general bi-hierarchy as the following example demonstrates.
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Example 35. A non-indexed language. We can show that:

Lnoin ∈ (kM)
2
�Mk.

We use a geometric construction similar to that for the 2-polynomial language. We use the
same grid and the same cell conditionswith some additional conditions depicted in the figure
below. These conditions are redundant but they cover all the possibilities. Finally we need
tomake equal the sides of the square of a’s. That is, the axes α∗, β∗ are equal except for the b.

This works as follows. The totally null grid satisfies all these conditions, so the empty string
is in the language. Now note that the fourth cell condition in the right column ensures that
we have at least one b on the grid (because the grid is not null). From this b we can fill out
all the grid following the grid conditions until we reach the axis. If the side on the axis β∗
is greater than the other side (without counting the line of b’s), then there is no syntagma
with that initial b. If both sides coincides then the syntagma is in the manifold. With this
we achieve that this syntagma contains a square number of a’s, say n2, and n b’s.

Now it is easy to linearize with a pair of arrangements to obtain the string (ban)n. If the
side on the axis β∗ is shorter than the other side we fill this axis with a’s and then continue
filling out the rest of the loci with the cell conditions until we have a square of a’s. And
then we can linearize it to obtain a string in the language for which we use the projective
arrangement A = ζ∗α + 1 + ζ∗β.

This process is exhaustive: for any n ∈ N+ we can find a syntagma in the manifold
such that it yields (ban)n. All the involved patterns are the same as for the 2-polynomial
language.
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9.3 Anti-Context-Free Languages

We introduced in the last chapter the notion of symmetry and anti-classes of a given
class. In view of the above results it is trivial to prove that −AB = AB and −FN = FN.
So in these cases the operator “anti-” does not contribute anything. However we can
show that −CF , CF. For example, since Lsqua and Lcopy are symmetric languages, and
Lsqua ∈ CF, Lcopy ∈ −CF, and it is known that Lcopy < CF, follows that anti-context-free
languages form a new class in the classical landscape of formal languages. Let us see
some basic properties of the anti-context-free languages:

Proposition 9.14. The following properties hold:

(i) FN ⊆ −CF ∩ CF;

(ii) Lmirr, L2-resp ∈ CF ∩ −CF;

(iii) Lq-copy, Lq-resp ∈ −CF, for all q ≥ 2;

(iv) −(−(CF)) = CF;

(v) −CF is semi-linear.

Proof. The majority of the statements are trivial by the results obtained for the bi-
hierarchies, by Corollary 9.6 and by the fact that the operator anti- is monotonic
(Corollary 8.9). (i) Since FN = k2H/k ⊆ CF then −FN = −k2H/k ⊆ −CF. But notice
that −(k2H/k) = k2H/k, i.e. the class is self-symmetric, and thus −FN = FN. Therefore
FN ⊆ −CF ∩ CF. For (ii) just recall that Lmirr ∈ k2H/Hk ∩ Hk2/Hk. We can use the
same shape of trees (up to the letters) and linearizations from the mirror language for
the language L2-resp and we obtain also L2-resp ∈ k2H/Hk ∩Hk2/Hk. (iii) We saw this
in §9.1.4. (iv) Since CF = k2H/Hk, by the Corollary 8.9, we have −(−(CF)) = CF. (v)
Theorem 9.10 says that the semi-linearity is preserved by the operator anti-, and CF is
semi-linear by the Parikh Theorem. �

Speaking grosso modo, CF comprehends languages with nested embedded de-
pendencies (like well-balanced parentheses), while −CF comprehends languages with
cross-serial dependencies; recall Example 29. Algebraic dependency grammar reveals
that these are symmetric phenomena; Fig. 9.2 shows a scheme of both classes.

In addition,CF and−CF are semi-linear classes.We do not know if anti-context-free
languages are parsable in polynomial time. However we suspect that more properties
of ordinary context-free languages are transplantable to the anti-class. If this is so, we
could consider the family CF ∪ −CF as a lower bound for the weak capacity of those
mildly-context-sensitive formalisms which tolerate an unbounded copying power (as
for example LCFRS’s or MCFG’s , but not TAG’s nor LIG’s).5

5By unbounded copying power we mean that the formalism can generate any q-copy language.
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Figure 9.2: Diagram of the context-free and anti-context-free classes with some examples of
languages. Two languages linked by a dashed line indicate that these are symmetric languages.

We can take advantage of the accumulated results to establish the strictness of some
inclusions in BH(k,H) . We know that CF = k2H/Hk and that −CF = Hk2/Hk; thus
k2H/Hk ( Hk2H/kH. If we suppose that k2H/Hk = Hk2H/kH, then since −CF ⊆
Hk2H/kH, we would have −CF ⊆ CF, but then Lcopy ∈ CF which is absurd. Therefore
k2H/Hk , Hk2H/kH. By symmetry of the bi-hierarchy, Hk2/Hk ( Hk2H/kH.

9.4 A Fragment of the Homogeneous Bi-Hierarchy

Bi-hierarchies are rich systems for the classification of algebraic dependency languages,
for which we have just explored the simplest classes. The results collected in these last
two chapters sketch the character of these hierarchies. For instance we know that they
are perfectly symmetric under the operator anti- (Corollary 8.9).

The homogeneous case seems to be the most feasible bi-hierarchy. We consider a
small fragment of the homogeneous bi-hierarchy. Fig. 9.3 depicts a diagram of inclu-
sions for the lowest positions. Fig. 9.4 shows the samediagramwith the characterizations
and relations obtained in this chapter.

In order to draw this diagram we have considered only classes X/Y such that
|X | + |Y | ≤ 5 which leads us to consider

∑5
n=0(n + 1)2n = 1137 potential classes.

However by using all the previous theorems these classes reduce to the following
seventeen classes which are depicted in the diagram.6

In addition we have to consider possible subclasses of each X/Y which are not
trivial, i.e. those which are not obtained by considering subsequences of X and Y .7 We
have the ascending chains kH/k ⊆ kH/k2 ⊆ kH/k3 ⊆ kH/k4 ⊆ · · · ⊆ k2H/k = FN;
and HkH/k ⊆ HkH/k2 ⊆ HkH/k3 ⊆ HkH/k4 ⊆ · · · ⊆ k2H/k = FN. However we do

6Namely: 1/1 kH/k, kH/k2, kH/k3,HkH/k,HkH/k2, k2H/k, kH/Hk, kH/kH, k2H/Hk, k2H/kH,
HkH/Hk, kHk/Hk, kH/k2H, kH/Hk2, kH/kHk, kH/HkH. The diagram also includes at the top the
class k2H/kHk which contains the class CF ∪ −CF.

7Notice that in general X/Y ⊆ X ′/Y ′ does not implies that X v X ′,Y v Y ′, nor |X |+ |Y | ≤ |X ′ |+ |Y ′ |.
For example AB = 1/k100 ⊂ k2H/Hk = CF.
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not know if they collapse at some level, whereby these classes are not depicted in the
diagram. Similar phenomena could affect higher positions.

The inclusions in the diagram are not necessarily proper (see Fig. 9.5 for known
proper inlcusions), and it is not known whether this bi-hierarchy is finite. Although
there remains some open questions, Fig. 9.3 should be a good first approximation to
this space of classes of languages.
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Figure 9.3: diagram of inclusions in the homogeneous bi-hierarchy.
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Figure 9.4: diagram of inclusions in the homogeneous bi-hierarchy (•) together with the viewed
classes from this and the last chapter (◦).
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Figure 9.5: diagram of known proper inclusions (in bold line) in the homogeneous bi-hierarchy.
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10
Natural Language Constructions:
Manifolds

This chapter and the following deal with natural language. Our purpose is to test
the machinery presented in the previous chapters. The best way to achieve this is
to confront our model with as many natural natural language constructions as we
can. We do not provide a complete grammar, but choose a range of examples for
their relevance. Here we study manifolds for natural phenomena and, in the next
chapter, linearizations.

First of all we introduce a system of syntactic functions and some related concepts.
With this we will examine several natural constructions involving manifolds. A
first stage to establish a grammar consists in defining rules of the flow of syntactic
functions attending valence and selection. A second stage consists in defining
local agreements. These two points can be achieved using simple patterns.

Cluster functions are functions which can be iterated indefinitely. They are respon-
sible for long distance agreements. The effect of implementing clusters in a pattern
is the interposition of a monoid in its description. So long distance agreements
causes more complex patterns.

Finally we will implement three non-semi-linear constructions: Chinese numera-
tion system, Suffixaufnahme in Old Georgian and Recursive Copy in Yoruba.

10.1 Some Previous Concepts

10.1.1 Classificatory Monoids

We are going to show several constructions which refer for the most part to the manifold
component. In the last chapters we have studied the homogeneous and general bi-
hierarchies. Here these natural constructions will require other specific patterns. We
will see that in general local phenomena such as valence, selection or local agreements
are described by manifolds of type kpH. However, long distant agreement seems to
appeal to pivoting monoids; recall that we notated P pivoting monoids, which are of

191
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the form 1 ⊕ ξ∗ where ξ ⊆ ζ (see Example 3). These appear in combination with the
homogeneous monoids, whereby we need as a classificatory monoid {k, P,H}∗.

Furthermore, extreme constructions examined at the end of the chapter exceed these
patterns. So we will need to appeal to other kinds of types in {k,H,G}∗.

Every construction can be regarded as a sublanguage of a natural language. To obtain
a full natural language we have to consider all the manifolds together and linearize it.
The linearization for these constructions are in general independent of the manifolds.
For example two words agree morphologically independently of the way we linearize
the syntagma. For simplicity the reader can suppose a projective linearization. We will
not make special comments about linearizations, which will be treated in the following
chapter.

We comment issues regarding weak capacity of these languages in Chapter 12. Here
we concentrate on describing natural constructions and classify them according their
structural character.

10.1.2 Lexical Categories

Although we are not going to construct a grammar, in order to implement one partially
we need to introduce some concepts. A first is the lexical category. By this we mean
simply a subset of Σ. For example:

Verb = {catch, catches, caught, smile, smiles, smiled},
TransitiveVerb = {catch, catches, caught},
IntransitiveVerb = {smile, smiles, smiled},
Noun = {John, Mary, boy, boys, frog, frogs},
Name = {John, Mary},
Determiner = {a, the, this, these, that, those},
Adjective = {big, small},
Modifier = {very},
Singular = {a, the, this, that, John, Mary, boy, frog, catches, caught, smiles, smiled},
Plural = {the, these, those, boys, frogs, catch, caught, smile, smiled}.

We use categories in order to construct valuations. Sometimes it is necessary that
the null word 0 belong to a certain category. Recall that given a subset Σ′ ⊆ Σ we
notated Σ′+ = Σ′ ∪ {0}. So sets such as: Noun+ or Adjective+ will be used. Natural
language uses a rich variety of such sets. Even though it would be really interesting
to draft a comprehensive system of categories and show their interrelations, here we
introduce just a few of them.



10. Natural Language Constructions: Manifolds 193

10.1.3 Organization of a Table of Functions, Primitive and Isotope Functions

Since we use a considerable number of syntactic functions we devote some lines to their
organization. Appendix §B contains a detailed inventory of functions and examples.
The name of the functions often varies among grammarians, however the meaning of a
syntactic function is given by its combinatorial usage and its interrelations rather than
by the name.1

Although the interplaying of the functions is quite complex, some regularities can
be extracted regarding governance features and the lexical category with which they
are related. Functions can be organized as in Table 10.1 which shows a generic table of
functions on which a particular language draws, see Appendix B, Table B.7, Table B.8
and Table B.8.

This table is structured as the Cartesian product of groups of functions. We survey
them. First we distinguish five groups: verbal, nominal, modifier, introductory,
and coordinator functions, according to their governing lexical category. Verbal
functions yield verb phrases when we linearize them. Similarly nominal functions yield
noun phrases.

Transversally the three first groups can be organized by isotopes. These give infor-
mation about the lexical category of the governed word. We say that X is an isotope
function of Y when they share the same semantic role but they differ on some syntactic
peculiarities such as the lexical category selected or the position in a sentence. This
is an informal notion which help to organize functions.2 Mathematically they must
be considered as different functions. We introduced six forms of isotope: primitive,
subordination, interrogation, relative pronoun, topicalization, and pronoun.

Consider for example the primitive function object Ob which introduces a noun
as the object of the main verb: Kids hate vegetablesOb. If we want to introduce a
subordinate clause as the object we must use the subordinate isotope ObS, for example
I know [that kids hateObS vegetables], where indicates the the head and , the
governed item. However if we want to form a question about the object we have to
use the interrogative isotope of object: WhatOb? do kids hate ?. Beside the change of
lexical category we need this isotope because in many languages subordinate clauses
and main clauses linearize in different ways. The relative pronoun isotope for object
is used to introduce the relative pronoun which announces the subordinate clause and
which fills the role of object in the subordinate clause: whatObR kids like is important.
Topicalization isotope for object is used to topicalize the object, as in VegetablesOb! ,
kids hate. Fig. 10.1 collects the main features of the organization of a table of functions.

1For example, the word “modifier” can be a bit tricky since a lot of functions are in the end modifying
something. Some grammarians call adjectives “modifiers” since they “modify” the noun. For us a
modifier introduces a word which modifies the intensity or mode of a complementer. For example very
long trip which modifies the adjective or almost one hundred penguins which modifies the quantifier.

2We borrow the name from Chemistry. Chemic isotopes are behaved under reactions very similarly.
In our case, isotope functions are behaved semantically very similarly.
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Table 10.1: generic table of functions.
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For practical purposes it is convenient to introduce the following notation:

∆ = Primitive Verbal Func. = {Sb,Ob, In,Pd,Rg,Ap,At,Am, . . .}
∆S = Subordinated Verbal Func. = {Ax, SbS,ObS, InS,PdS,RgS,ApS,AtS,AmS, . . .}
∆? = Interrogation Verbal Func. = {Sb?,Ob?, In?,Pd?,Ap?,At?,Am?, . . .}
∆R = Relative Verbal Func. = {Re, SbR,ObR, InR,PdR,ApR,AtR,AmR, . . .}
∆! = Topicalized Verbal Func. = {Sb!,Ob!, In!,Pd!,Ap!,At!,Am!, . . .}
∆P = Pronoun Verbal Func. = {SbP,ObP, InP,PdP,ApP,AtP,AmP, . . .}

10.1.4 Orthogonality and Cluster Functions

We present two more concepts before listing examples. Examining syntagmata for
natural languages we observe that the main groups of functions, verbal and nominal,
never appear mixed in a same level. We call this property orthogonality.

A clustering group is a group of functions that they can be concatenated by other
functions in the same group. For example the determiner function Dt does not form a
clustering group because we cannot find a sentence with a determiner which determines
another determiner. Or for example the modifier function Md does form a clustering
group: very very very tall. We have detected five clustering groups:

• Auxiliary cluster: {Ax};

• Subordination cluster: ∆S = {SbS,ObS, . . .};

• Noun complement cluster: {Nc};

• Modifier cluster: {Md};

• Coordination cluster: {Coand,Coor, . . .}.

These functions create loops in the systemof arrangements and permit the language to be
infinite. Let us see some examples. Subordination cluster: she thinks1 that you believeObS
that he saidObS ·ObS that . . . . Coordination cluster: John1, BillCoand , MaryCo2

and
and

PeterCo3
and

. Noun complement cluster: The father1 of the motherNc of the fatherNc2 .
Modifier cluster: veryMd3·Ad very Md2·Ad very Md·Ad longAd trip.

10.2 Main Verb Principle

This principle states that all sentences must be analyzed with the main verb on the top
of the syntagma. This excludes headlines from natural language sentences. So, titles of
books like:
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• Verbal functions are governed, or headed, by verbs. In a system of arrangements these
form the verb complements. In order to clarify we have subdivided them in three subgroups:
canonical, adjuncts and unities. Canonical functions are the most basic functions
and most grammarians accept them for a syntactic representation. Adjuncts contextualize
the deixis. Unities is a special group. Certain functions (Ax and Re) seem to be better
accommodated in the tables if we understand them as isotopes of the identity 1. Transversally
we have the isotopes:

– Primitive verbal functions govern a noun;

– Subordinate verbal functions govern a verb;

– Interrogative verbal functions govern an interrogative pronoun;

– Relative verbal functions govern a relative pronoun;

– Topicalized verbal functions govern a noun which is topicalized;

– Pronoun verbal functions govern a pronoun.

• Nominal functions are governed by nouns. In a system of arrangements these form the
noun phrases. Transversally we have the isotopes:

– Primitive nominal functions govern the category suggested by the noun of the
function (e.g. quantifier function governs quantifiers, and so forth);

– Subordinate nominal functions govern a verb;

– Interrogative nominal functions govern an interrogative pronoun;

– Topicalized nominal functions govern the category suggested by the noun of the
function which is topicalized;

– Relative nominal functions govern a relative pronoun.

• Modifier functions can be governed by several lexical categories: adjectives, adverbs,
quantifiers or even modifiers themselves. Transversally we have the isotopes (topicalized
and pronoun isotopes seem not to exist for modifier functions, at least for the examined
languages):

– Primitive modifier functions govern several categories;

– Subordinate modifier functions govern a verb;

– Interrogative modifier functions govern an interrogative pronoun;

– Relative modifier functions govern a relative pronoun.

• Introductory functions govern prepositions and coordinators which are introduced iso-
latedly.

• Coordination and Connecter functions are mainly coordination functions which con-
catenate conjuncts and they can govern and be governed by any category and functions which
connect clauses.

Figure 10.1: main features of the organization of the table of functions.
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Figure 10.2: (a) non-correct syntagma because the root 1 is not a finite verb, (b) correct
syntagma.

(24) *The man1 who would be king

are excluded, see the syntagma in Fig. 10.2(a), while the sentence:

(25) The man Sb who would be king liked1 novels.

is accepted, Fig. 10.2(b). This principle can be paraphrased by a valuation Verb(x)
which returns the true value iff x satisfies:

TopVerb(x) = (x ∈ FiniteVerb),

where FiniteVerb is the set of all finite verbs. We need to apply the valuation on the
top, which is the locus 1, so our pattern is the trivial pattern {1} (or simply 1). Thus
the manifold:

Synt
(
TopVerb

1

)
only accepts syntagmata with a finite verb at the top. If we would want to incorporate
headlines as part of the language, we have to remove this rule from the manifold.

10.3 Orthogonality, Valence and Selection

Since not all verbs accept the same arguments we have to define for each verb which
arguments can follow the verb: which ones are optional, which ones are obligatory,
and which ones are forbidden. For example a rule of English is that verbs always need
a subject. Some grammarians say that the verb selects a subject to indicate that this
function is obligatory.

These constraints must be extended to other categories such us nouns, adjectives
or modifiers. For example, a finite verb cannot govern a determiner; and vice versa a
determiner cannot govern a verb. These are always orthogonal functions. Fig. 10.3(a)
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shows verbal functions which are orthogonal to nominal functions, Fig. 10.3(b). Ad-
junct functions are usually optional in the context of verbal functions but they are
also orthogonal to nominal functions, Fig. 10.3(c). This topic was already treated in
Example 9 where we took a general manifold:

govern(Σ0, Σ1, ζ0) =
⋂
λ∈ζ0

Synt
(
x ∈ Σ0 → y ∈ Σ1
(1, λ)(ζ)∗2

)
,

and we took the manifolds:

(b.1) govern(Verb, {0}, {Dt,Ad,Md}),

(b.2) govern(Noun, {0}, {Sb,Ob,Md}),

(b.3) govern(Determiner, {0}, {Sb,Ob,Dt,Ad,Md}),

(b.4) govern(Adjective, {0}, {Sb,Ob,Ad}),

(b.5) govern(Modifier, {0}, {Sb,Ob,Dt,Ad}),

which imposed orthogonality constraints.We used the same kind ofmanifolds to impose
selection constraints:

(c.1) govern(Verb,Noun+, {Sb,Ob}),

(c.2) govern(Noun,Adjective+, {Ad}),

(c.3) govern(Noun,Determiner+, {Dt}),

(c.4) govern(Adjective,Modifier+, {Md}),

(c.5) govern(Modifier,Modifier+, {Md}),

(d.1) govern(Verb, Σ, {Sb}),

(d.2) govern(TransitiveVerb, Σ, {Ob}),

(d.3) govern(IntransitiveVerb, {0}, {Ob}).

We can expand this set of ruleswithmore syntactic functions, for example: govern(Verb,
TimeAdjunct+, {At}), where TimeAdjunct = {yesterday, tomorrow, . . .}. In §4.4 we
concluded that all these features can be achieved locally throughmanifolds inMan(kH).
If we do not add more constraints these arguments will be optional. Of course we have
to include that a determiner cannot govern an adjunct: govern(Determiner, {0}, {At}),
and so forth.
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Figure 10.3: (a) and (b) show verbal functions which are orthogonal to nominal functions; (c)
show optional adjuncts (dashed lines).

10.4 Local Agreements

10.4.1 Subject-Verb and Subject-Predicate Agreements

A large number of morphological agreements can be described by patterns in kH; see
for example the agreement between the subject and the verb in English, Fig. 10.4(a).
We just need a valuation which says that if the subject is a singular (plural) word, then
the verb is a singular (plural) word, where:3

Singular = {a, the, this, that, John, Mary, boy, catches, caught, smiled},
Plural = {the, these, those, boys, catch, caught, smiled}.

We saw in Example 9 that this is achieved with the manifold:

Rgovern(Σ0, Σ1, ζ0) =
⋂
λ∈ζ0

Synt
(
x ∈ Σ0 ← y ∈ Σ1
(1, λ)(ζ)∗2

)
.

(e.1) Rgovern(Singular, Singular, {Sb,Dt}),
(e.2) Rgovern(Plural,Plural, {Sb,Dt}),
(e.1) govern(Singular,Σ, {Dt}).

Sincewe require that these agreements hold everywherewe use the pattern (1, Sb)·(ζ)∗2 ∈
kH. Fig. 10.4(a) shows two pairs of places where the agreement can occur: the pair
(1, Sb) and the pair (Ob, Sb·Ob), both in the pattern (1, Sb)·(ζ)∗2.

Notice that when, for example, the subject is null, the valuation returns the true
value, which is correct in Romance languages where the subject is optional. This
permits that when some of the parts are null, there is nothing to agree.4

3Notice that some words can be singular and plural simultaneously.
4If we want to include the possibility of a gapped verb, for example, John eats vegetables, and Mary

(�) meat, we have to take the manifold Rgovern(Singular, Singular+, {Sb}).
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Figure 10.4: local agreements.

Romance languages exhibit a more complex usage of agreement. For example, the
predicate (the attribute of a copulative verb) Pd and subject Sb must agree in gender
and number. Fig. 10.4(b) and Fig. 10.4(c) show in Catalan that we have to use a pattern
(Sb,Pd)·(ζ)∗2 ∈ kH. 5 This changes slightly the manifolds:

Synt
(
x ∈ Singular→ y ∈ Singular

(Sb,Pd)(ζ)∗2

)
.

This now says that if the subject is singular, then the predicate is; and the same manifold
works for other agreement features.

We have called these agreements local because the agreed loci must be immediate
family (parents, children or sibling). In algebraic terms this means that the involved
constants are in k and then the pattern is in kM. The next example we will use a
pattern in k2M, but this can still be considered a local constraint (or if the reader wants,
locally second order). Later we will see non-local agreements which manifests even in
morphologically poor languages like English.

10.4.2 Obligatory Determiners in Catalan

In Catalan the subject generally needs a determiner. The following sentence (a) is
allowed but not (b) which requires a determiner:

(26) a. Les/aquestes/algunesDt·Sb
The/these/someDt·Sb

platgesSb
beachesSb

estan
are

desertes.
deserted

‘The/these/some beaches are deserted.’
b. *platges

beaches
estan
are

desertes.
deserted

‘beaches are deserted.’

5In §4.1 we already examined these cases linguistically.
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Figure 10.5: obligatory determiners in Catalan.

This is not necessary in other syntactic functions like object where the determiner is
optional (although the semantic reading varies slightly):

(27) Jo
I

compraré
will-buy

el/�Dt·Ob
the/�Dt·Ob

cafèOb.
coffeeOb

‘I will buy the/� coffee.’

In Catalan determiners are even necessary for person names:

(28) ElDt·Sb
TheDt·Sb

JoanSb
JoanSb

pren
has

cafè
coffee

a
at
les
the

11:00.
11:00.

‘Joan has coffee at 11:00’.

However the determiner is forgotten when the subject is a gerund verb,6 a pronoun or
a celebrity person name:

(29) a. *ElDt·Sb
TheDt·Sb

dormirSb
to-sleepSb

és
is

necessari.
necessary

‘It is necessary to sleep.’
b. *LaDt·Sb

TheDt·Sb

ellaSb
sheSb

vindrà
will-come

demà.
tomorrow

‘She is coming tomorrow.’
c. *ElDt·Sb

TheDt·Sb

Salvador
Salvador

DalíSb
DalíSb

no
not

acabà
finished

aquesta
this

obra.
work

‘Salvador Dalí didn’t finished this work.’

This can be summarized as: a non-null subject is not a verb nor a pronoun nor a celebrity
noun, then this subject forces a determiner (and conversely when the determiner of a

6Other Romance language tolerates a determiner for gerunds, like spoken Spanish.
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subject appears, the subject is not null, nor a verb, nor a celebrity noun).7 This can be
translated into valuations as:

B(x, y) = (x < Verb ∪ Pronoun ∪ CelebrityNoun ∪ {0}) ↔ (y 0 0),

This valuation is applied to the loci: (Sb,Dt ·Sb). But as in the previous examples this
rule must be reproduced throughout the syntagma. So we have to multiply by the pattern
(ζ)∗2. So the whole pattern is:

(Sb,Dt ·Sb)·(ζ)∗2 ∈ k2H.

10.5 Long Distance Agreements

Most morphological agreements occurs locally: that is, the pattern inhabits kH or k2H
or in general kpH for some p ≥ 0. The exponent p means that the distance in the
tree between the linked parts cannot be greater than 2p. However there are agreements
where the distance is unbounded. Unbounded agreement is a consequence of clustering
functions.

10.5.1 Long Distance Agreement of Predicates in English and Romance Lan-
guages

Consider the following sentences in English:

(30) a. SheSb wants to be an actressPd·ObS .
b. She would want to be an actressPd·ObS ·Ax.
c. She would want to try to be an actressPd·ObS ·ObS ·Ax.

(31) a. *She wants to be an actor.
b. *She would want to be an actor.
c. *She would want to try to be an actor.

The agreement is not semantical (or not exclusively); in Romance languages gender
agreement occurs extensively between words which do not have a natural gender.

7The situation is even more complex, because Catalan allows one to say: el Dalí dels anys 70 era
irreverent with the determiner el (in English: the Dalí from the 70’s was irreverent) but not *Dalí dels
anys 70 era irreverent, without the determiner. The noun complement from the 70’s supposes several
Dalís from several artistic periods, and we need an article which chooses one of them. This contingency
can be also implemented by a valuation and a pattern with a pattern, with arity 3: one component for
the determiner, one for the noun and one for the noun complement. Patterns of arity 3 are rare in natural
language.
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Fig. 10.6(a) shows an unbounded cluster between the main copulative verb and the
predicate. If we ignore the verbal cluster the pattern is:

(Sb,At)(ζ)∗2 ∈ kH,

as in the case of local agreements, §10.4. But we have to consider the possibility
of interposing several verbs which means a collection of possible verbal auxiliary
functions and subordinated object functions. So the pattern is (we underline the new
submonoid):

(Sb,Pd) · {(1,Ax), (1,ObS)}∗ · (ζ)∗2 ∈ kPH.
If we take ∆ = {Ax,ObS} we can abbreviate:

(Sb,Pd) · (1 ⊕ ∆∗) · (ζ)∗2 ∈ kPH ,

Notice that this pattern subsumes that above;we only have to realize that (1, 1) ∈ (1⊕∆∗),
and then:

(Sb,Pd) · (ζ)∗2 ⊂ (Sb,Pd) · (1 ⊕ ∆∗) · (ζ)∗2.

10.5.2 Long Distance Agreement of Coordinated Adjectives in Romance Lan-
guages

In Romance languages adjectives must agree in gender and number with the noun in a
similar way to the case of predicates (attributes) and copulative verbs. Now we do not
have a verb or a cluster of verbs. However we can add several adjectives and all of them
must agree individually with the noun. Consider the following phrases in Catalan:

(32) Una
A

noia
girl

encantadora,
charming,

forçuda
strong

i
and

treballadora.
hard-working

‘A charming, strong and hard-working girl.’
(33) *Un noia encantadora, forçuda i treballador-�.
We commented in Chapter 1 that we advocate a style of analisis a la Mel’čuk, as

in Fig. 10.6(b). We use syntactic functions named Coand = coordination-and, Coor =

coordination-or and others similar, which concatenates several items (not only adjec-
tives); we abbreviate Co. This sets the loci:

Ad, Co·Ad, Co2 ·Ad, Co3 ·Ad, . . . .

We have to enforce that all these loci behave as adjectives and that in addition they agree
with the noun in the locus 1. So we need a manifold that says if the word at the locus 1
is in Masculine then the word at the locus Con ·Ad is in Masculine ∩ Adjective. And
the same for other agreement features. So the pattern should be (1 ⊕ Co∗)(1,Ad) ∈ Pk.

However, this constraint must hold at every place of the syntagma because the
noun phrase containing the coordination can appear anywhere. So the pattern is really
(1 ⊕ Co)∗ ·(1,Ad)·(ζ)∗2 ∈ PkH.
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Figure 10.6: long distance agreement of coordinated adjectives in Romance languages.

10.5.3 Combination of Long Distance Agreement in Predicates and Coordinated
Adjectives

It is possible to combine both constructions in sentences such as (see Fig. 10.7):

(34) Ella
She

hauria
would-have

de
to

tornar
be-again

a
to

provar
try

de
to

ser
be

una
a

noia
girl

encantadora,
charming,

forçuda
strong

i
and

treballadora.
hard-working

‘She should try again to be a charming, strong and hard-working girl.’

To achieve the agreement of gender and number we need the pattern:

(Sb, 1)·(1 ⊕ Co∗)·(1,Pd)·(1 ⊕ ∆∗)·(ζ)∗2 ∈ kPkPH.

This pattern generalizes doubly the pattern for the agreement of subject and predicate:

(Sb, 1)·(1 ⊕ Co∗)·(1,Pd)·(1 ⊕ ∆∗)·(ζ)∗2,

since if we take Co0 = 1 we have the pattern (Sb,Pd) · (1 ⊕ ∆∗) · (ζ)∗2, and if in addition
we we take 1 ∈ ∆∗ we obtain the pattern (Sb,Pd) · (ζ)∗2.

We see that in general long distance agreements are a generalization of local agree-
ments. In a definition of a grammar for natural language we have to take the most
general case. In addition notice that each cluster signifies the interposition of a new
monoid P in the middle of a pattern. An interesting questions is how complicated can
the patterns be? Before attempting to answer that we will see some still more complex
patterns.
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Figure 10.7: combination of long distance agreement in predicates and coordinated adjectives.

10.5.4 Long Distance Agreement in Pied-Piping in Romance Languages

We saw in §4.1.3 the agreement of pied-piping in Romance language with sentences
like:

(35) Aquesta
This

reina,
queen

el
the

pare
father

del
of-the

pare
father

. . .

. . .
del
of-the

pare
father

de
of

la
the

qual
who

fou
was

destronat,
dethroned,

regnà
reigned

justament.
rightly

‘This queen the father of the father . . . of the father of whom was dethroned
reigned rightly.’

The underlying words in the example and the following sentences indicates the agreed
parts. Pied-piping is in terms of clustering simply a relativization of a noun complement
NcR which is governed by a noun complement cluster Nc∗, see Fig. 10.8(a). The sentence
invites initially a pattern such as:

(1,Dt)·(1,NcR)·(1 ⊕ Nc∗)·(1, Sb)·(1,AdS)·(Sb)2.

But this phenomenon can occur anywhere, for example in the object, Fig. 10.8(b):
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Figure 10.8: agreement in pied-piping on the subject (a) and on the object (b).

(36) El
The

poble
populace

acceptà
accepted

aquesta
this

reina
queen

el
the

pare
father

del
of-the

pare
father

. . .

. . .
del
of-the

pare
father

de
of

la
the

qual
who

fou
was

destronat.
dethroned

‘The populace accepted this queen the father of the father . . . of the father of
whom was dethroned.’

Then the pattern turns to (1⊕Dt)·(1,NcR)·(1⊕Nc∗)·(1, Sb)·(1,AdS)·(Ob)2. In fact we can
embed it in other functions like indirect object, or deeper positions like the sentential
subordinated object ObS of a sentential subordinated object which leads us to infer a
more general pattern, substituting (Ob)2 or the above (Sb)2 by (ζ)∗2:

(1,Dt)·(1,NcR)·(1 ⊕ Nc∗)·(1, Sb)·(1,AdS)·(ζ)∗2 ∈ kkPkkH.

However we can we can interpose a verbal cluster ∆∗S. See the following sentence and
see Fig. 10.9.

(37) Aquesta
This

reina,
queen

el
the

pare
father

de
of

la
the

mare
mother

de
of

la
the

qual
who

Pere
Pere

II
II
podria
could

haver
have

destronat,
dethroned,

regnà
reigned

justament.
rightly

‘This queen the father of the mother of the whom Pere II could have dethroned,
reigned rightly.’

Now the pattern is (we have underlined the new submonoid interposed):

(1,Dt)·(1, NcR)·(1 ⊕ Nc∗)·(1,Ob)·(1 ⊕ ∆∗S)·(1, AdS)·(ζ)∗2 ∈ kkPkPkH.
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Figure 10.9: agreement in pied-piping which shows a combination of noun complement cluster
and verbal cluster.

Even the Ob in the middle can be any other primitive verbal function in ∆, so a general
pattern for pied-piping is:

(1,Dt)·(1, NcR)·(1 ⊕ Nc∗)·(1,∆)·(1 ⊕ ∆∗S)·(1, AdS)·(ζ)∗2 ∈ kkPkPkH.

Nevertheless this could be not definitive. We have combined a Noun complement
cluster with a verbal cluster. We can try to add a coordination cluster with a sentence
like (see Fig. 10.10):

(38) ?Aquesta
This

reina,
queen

el
the

pare
father

de
of

la
the

mare
mother

de
of

la
the

qual,
who,

la
the

mare
mother

de
of

la
the

qual
who

i
and

el
the

germà
brother

de
of

la
the

qual
who

Pere
Pere

II
II
podria
could

haver
have

destronat,
dethroned,

regnà
reigned

justament.
rightly

?‘This queen the father of the mother of the whom, the mother of the whom
and the brother of the whom Pere II could have dethroned, reigned rightly.’

This leads us to interpose a new submonoid for the coordination cluster Co∗:

(1,Dt)·(1, NcR)·(1 ⊕ Nc∗)·(1 ⊕ Co∗)·(1,∆)·(1 ⊕ ∆∗S)·(1, AdS)·(ζ)∗2 ∈ kkPPkPkH.

Finally, where is the limit? Can we interpose more and more clusters? We think that
this is not the case. The validity of the above sentence (38) is not clear at all, and nobody
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Figure 10.10: eccentric combination of noun complement cluster, coordination cluster, and
verbal cluster.

makes such a construction in a conversation, not even in a formal text. We have detected
in Romance languages and English three clusters which can be combined (although
other languages could enjoy more kinds): noun complement, verbal and coordination
cluster. One can try to combine indefinitely these clusters however some combinations
are grammatically impossible or at least unproductive: for example a verbal cluster
with a verbal cluster would result simply in a verbal cluster. In addition other forms
of combining clusters provokes ellipses in the relative pronoun which removes the
agreement and the pattern becomes unnecessary.8 For these reasons we believe that
there is a limit to combining clusters.

10.6 Non-Semi-Linear Constructions

We conclude the chapter with three constructions sharing the particularity that they
question semi-linearity as a linguistic invariant. Clark and Yoshinaka (2012) collect
the three phenomena and give formalizations in the framework of parallel multiple
context-free grammars.

8For this reason we marked with ? the acceptability of the sentence (38).
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10.6.1 Chinese Numbers

The number-name system in the Mandarin dialect of Chinese works for large numbers
in the following way.9 The name for 1012 is zhao, and the word for 5 is wu. In order to
simplify we do not consider the other basic numerals 1,2,3, . . .

The sequencewu zhao zhao wu zhao is well-formed althoughwu zhao wu zhao zhao
is not. The rule is that the number of consecutives zhao’s must strictly decrease from
left to right. So the language of Chinese numbers that we can construct in Mandarin
with the words zhao and wu is:10

LChin = {wu zhaok1 wu zhaok2 · · ·wu zhaokp | k1 > k2 > · · · > kp > 0}.

According to Radzinski (1991), Chinese numbers seem to call the Joshi conditions
into question. In particular Radzinski (1991) shows that the Chinese numbers language
is not a Linear Context-Free Rewriting language.11 For this reason Boullier (1999)
introduced Range Concatenation Grammars which can generate LChin.

In an algebraic dependency grammar we can describe this construction through a
manifold which contains syntagmata like in Fig. 10.11(a) and a projective linearization,
see Fig. 10.11(b). We need a pair of functions ζ = {α, β} and some basic rules stating
that α takes the word wu and β takes the word zhao; in addition we need that the
manifold be non-elliptic. The main constraint is informally the following:

If βn+1αm is null then βnαm+1 is null,

for any n,m ∈ N+. So formally we take the valuation B(x, y) = (x ≈ 0) → (y ≈ 0)
which is applied along the pattern:

{(βn+1αm, βnαm+1) | n,m ∈ N+} = (β, 1)·(β, β)∗ ·(α, α)∗ ·(1, α) ∈ kG2k.

Notice that if we fix a natural m the rule states that the m-th column of β’s in the
picture Fig 10.11 is strictly longer than the (m+1)-th column. So the number of zhao’s
necessarily decreases. In order to linearize the manifold we simply take the arrangement
1 + ζ∗β + ζ∗α.

10.6.2 Suffixaufnahme in Old Georgian

Old Georgian is a languages which exhibit the phenomenon called Suffixaufnahme
(literally: taking up of suffixes, or suffix stacking). Following Michaelis and Kracht
(1997), from whom we take the example:12

9We will follow definitions and the notation from (Boullier, 1999) and (Radzinski, 1991).
10According to Kanazawa (2017) the last kp must satisfies kp ≥ 0 because strings such as wu zhao

are perfectly grammatical. However we follow the original article (Radzinski, 1991); the manifold which
will be introduced later can be modified in order to incorporate Kanazawa’s refinement.

11As we commented, §9.4, these kinds of languages are an attempt to account for mild context
sensitivity, (Vijay-Shanker et al., 1987; Weir, 1988).

12See also (Clark and Yoshinaka, 2012).
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Figure 10.11: example of a syntagma for the Chinese numbers language.

(39) tkuenda
to=you

micemul
given

ars
is

cnob-ad
knowing-Adv

saidumlo-j
mystery-Nom

igi
Art=Nom

sasupevel-isa
kingdom-Gen

m-is
Art-Gen

γmrt-isa-jsa-j
god-Gen-Gen-Nom

‘Unto You it is given to know the mystery of the kingdom of God.’

It is observed that the infixes, isa or jsa, are repeated in γmrt-isa-jsa-j in order to express
a doubly nested genitive. It has been suggested that if English had suffixaufnahme one
could say noun phrases like:

(40) a. John’s cat,
b. John’s’s father’s cat,
c. John’s’s’s friend’s’s father’s cat,
d. John’s’s’s’s friend’s’s’s father’s’s cat’s tail (. . . )

Notice that the number of genitive ’s for the n-th example grows with the triangular
numbers n(n+1)

2 ∈ O(n2). A major problem for the grammatical acceptance of such
construction is that there are no native Old Georgian speakers with whom to test
controversial examples.

Assuming grammaticality, these noun phrases can be schematically represented by
the formal language:

LOldG = {a, aab, aababb, aababbabbb, aababbabbbabbbb, . . .}

= {
n∏

k=0
abk | n ≥ 0},

where the a’s are nouns and the b’s are genitive affixes. We show a manifold and
a linearization for this language. We take ζ = {α, β} and Σ = {a, b}. The function
α always takes the letter a, and β, letter b. Syntagmata are non-elliptic. The main
constraint is stated informally as follows:
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Figure 10.12: example of a syntagma for the Suffixaufnahme in Old Georgian.

If a column takes n+1 b’s then the preceding column takes exactly n b’s;

more formally, for any n,m ∈ N+:

If αn+2βm+1 is null and αn+1βm+1 is not null (i.e. the (m+1)-th column takes n+1 a’s)
then αn+1βm is null and αnβm is not null (i.e. the m-th column takes n a’s).

So, we take the valuation:

B(x, y, z, t) =
(
(x≈0) ∧ (y00)

)
→

(
(z≈0) ∧ (t00)

)
,

together with the pattern:

(α2, α, α, 1)(α)∗4(β)
∗
4(β, β, 1, 1) ∈ k2G2k.

We have to add a manifold with a constant pattern to makes sure that the a’s begin right
in the second column, consisting in a rule saying: if α is not null then βα is not null. The
linearization is given by the single projective arrangement 1 + ζ∗α + ζ∗β. Fig. 10.12
shows a syntagma and its linearization for the string aababbabbb.

10.6.3 Recursive Copy in Yoruba

The following relative clauses belong to Yoruba, a Nigerian language:

(41) rira
buying

NP
NP

ti
that

Ade
Ade

ra
buy

NP
NP

‘the fact that Ade bought NP’

where the noun phrases NP must be identical. As Kobele (2006) and Clark and Yoshi-
naka (2012) point out, copying constructions occur in several West African languages,
though Yoruba seems to have the most complex system.

Since the noun phrase must be repeated, this suggests a recursive construction of
the form: X ::= v1 + X+ ti + Ade +v2 + X , where v1 and v2 are verbs and where the
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substitution is applied simultaneously to both occurrences of X . This generates a set of
noun phrases with an exponential growth. According to Clark and Yoshinaka (2012),
by intersecting Yoruba with a suitable regular language the resulting set can be reduced
by an homomorphism to the exponential language Lexpo = {a2n | n ≥ 1}, whereby
Yoruba is not described by any MCFG. This motivates Clark and Yoshinaka (2012) to
introduce PMCFG.

We already constructed the exponential language in Example 32 through the mani-
fold:13

Nell ∩ Synt
(

≈
(ζ)∗2(α, β)(ζ)

∗
2

)
∈ Man(HkH).

A weak imitation to this construction in a Romance language could be sentences
such as (in Catalan):

(42) Quan
when

dic
I-say

que
that

vull
I-want

gelat,
ice-cream,

és
it-is

que
that

vull
I-want

gelat!
ice-cream

‘When I say I want ice cream, I want ice cream!’

Usually when a hearer hears the fragment when I say X . . . with an exigent imperative
emphasis, they expect to hear again X finishing the sentence. The construction is
not entirely rigid because it appears that one can say variants in the second X , even
a completely different clause, which makes it a non-well defined phenomenon. But
neglecting this, one could say:

(43) Quan
when

dic
I-say

que
that

(quan
(when

dic
I-say

que
that

vull
I-want

gelat,
ice-cream,

és
it-is

que
that

vull
I-want

gelat),
ice-cream)

és
it-is

que
that

(quan
(when

dic
I-say

que
that

vull
I-want

gelat,
ice-cream,

és
it-is

que
that

vull
I-want

gelat).
ice-cream)

‘When I say (when I say I want ice cream I want ice cream) (when I say I want
ice cream I want ice cream).’

and so forth. Although one cannot isolate this fragment of the language by intersecting
with a regular language because of the variants in the second X , the examples suggest
that a copy mechanism could intervene in the natural language.

This construction, quan dic que X és que X , can be transfered to manifolds by a
rule stating that when certain particles occur at the top of the tree (quan dic que . . . )
then the subtree ζ∗ ·ObS and the subtree ζ∗ ·PdS ·Co (where Co is a connecter function)
must be identical; see Fig. 10.13(a). More formally S(ϕ ·ObS) = S(ϕ ·PdS ·Co) for any
ϕ ∈ ζ∗. This yields the pattern (ζ)∗2(ObS,PdS ·Co) with type Hk2. But this construction
can be embedded as a clause in itself (for example El Pere creu que quan dic X és
que X , in English Peter thinks that when I say X , X; see Fig. 10.13(b)), whereby the

13More exactly, the manifold above yields the language {a2n−1 | n ≥ 0}, but it can be adapted to obtain
the language {a2n | n ≥ 0} with the same types of patterns.



10. Natural Language Constructions: Manifolds 213

Figure 10.13: examples of copied clauses in Catalan.

pattern becomes (ζ)∗2(ObS,PdS ·Co)(ζ)∗2 ∈ Hk2H, which is a case similar to that of the
exponential language.
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11
Natural Language Constructions:
Linearizations

We continue examining natural language constructions. In this chapter we focus
on arrangements and systems of arrangements. The philosophy of linearizations in
algebraic dependency grammar consists in decomposing the syntagma in patterns
and writing them in an adequate order. That is, no restructuring movement or
transformation is required in the linearization process.

Since we need to show a large number of arrangements, first of all we introduce a
few notational devices in order to describe several arrangements in one go.

We start with the canonical word-order of English and Romance languages, which
shows us how to organize a system of arrangements for natural language. Then we
show how to use isotopes in order to achieve some constructions which are projec-
tive: subordination, coordination, and shifting. In continuation we will examine
the typical difficult non-projective cases: wh-fronting, floating quantifiers, extra-
position, topicalization, discontinuities in classical Latin, serial dependencies in
Germanic languages, scrambling in German, and finally respectively construc-
tion.

11.1 Linearization in Algebraic Dependency Grammar

Typical cases of discontinuity are wh-fronting, floating quantifier, extraposition, top-
icalization, cross-serial dependencies or scrambling. We related in §5.3.2 that the
question of non-projectivity can be tackled by two means: either we recast the analysis
of dependency trees, or we reconsider the constraint of projectivity.

With respect to the first means, the strategy consists essentially in that the particle,
or constituent, or the fragment in the dependency tree, which is problematic climbs up
to the root, which facilitates a projective linearization. Several such proposals are made
in the literature: climbing, (Duchier and Debusmann, 2001); emancipation, (Gerdes and
Kahane, 2001); raising, (Hudson, 2000); lifting, (Bröker, 2000); adjunction, (Eroms
and Heringer, 2003); and rising, (Groß and Osborne, 2009).

215
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Nevertheless restructuring the syntactic tree, although simple and effective for some
cases, comports some non-desirable consequences; consider (Groß and Osborne, 2009)
which analyzes several cases by this means.1 The issue is that the tricky constituent
must be placed in a non-natural position. This implies that either we are forcing an
artificial syntactic analysis or else we are assuming covertly some kind of movement.
In the first case we would have to incorporate a mechanism capable to describe these
new artificial analysis. In the second case, this movement must be incorporated in the
architecture of the model which complicates it with the interposition of an extra layer
or module between the syntactic structure and the word-order.

We would like to address linearization phenomena exclusively through arrange-
ments, which situates us in the secondmeans.2 This, in the framework of our formalism,
consists in choosing carefully a decomposition of the syntagma in patterns and then
writing them in the adequate order. The interrelation of the several arrangements (the
system of arrangements) will describe the general word-order of the language.

11.2 Abbreviation Operators

Since a natural language can exhibit a large number of word-orders, which implies
a large number of arrangements, we need some abbreviations. We emphasize that no
operator which we are going to introduce confers any additional computational power
to the linearizations: the number of arrangements continues being finite. They must be
viewed just as abbreviatory devices. We introduce three operators (in the definitions we
use the multiplicative notation for reasons of space).

Set extension operator: We extend the product in Σ∗ to sets. Given x ∈ Σ∗ and
X,Y ∈ ℘(Σ∗) we write:

x ·Y = {xy | y ∈ Y };
Y ·x = {yx | y ∈ Y };
X ·Y = {xy | x ∈ X, y ∈ Y }.

Floating operator:

Z: Σ × Σ∗ −→ ℘(Σ∗)
(x, a1 · · · an) 7−→ {xa1 · · · an, a1xa2 · · · an, . . . , a1 · · · anx}.

1Even with this however, there are some cases which are not well explained. Consider for example
the case of floating quantifiers, as it is related in (Osborne, 2013).

2We also investigate the first means in (Cardó, 2016) which led us to observe an underlying symmetry
between some cases of projectivity and non-projectivity. Also Groß and Osborne (2009) address several
cases of discontinuity by the first means.
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This operator can be extended as:

Z: Σ × ℘(Σ∗) −→ ℘(Σ∗)
(x,Y ) 7−→ x Z Y =

⋃
y∈Y

x Z y.

Scrambling operator:

scr : Σ∗ −→ ℘(Σ∗)
a1 · · · an 7−→ {aσ(1) · · · aσ(n) | σ is a permutation}.

It extends as:

scr : ℘(Σ∗) −→ ℘(Σ∗)
X 7−→

⋃
x∈X

scr(x).

The set extension operator is useful to write several arrangements in one go. For
example the pair of arrangements: ζ∗α + 1 + ζ∗γ, ζ∗β + 1 + ζ∗γ can be written as:
ζ∗Θ+ 1+ ζ∗γ, where Θ = {α, β}. Regarding the second operator we have for example:

x Z a = {xa, ax},
x Z ab = {xab, axb, abx},

x Z abc = {xabc, axbc, abxc, abcx}.
...

We will abbreviate:

x1 Z x2 Z · · · xn Z y = x1 Z (x2 Z (· · · (xn Z y) · · · ))

An interesting property is x Z y Z z = y Z x Z z. Using this we have that for any
permutation σ of the subscripts we have that:

x1 Z x2 Z · · · xn Z y = xσ(1) Z xσ(2) Z · · · xσ(n) Z y.

The third operator will be useful to describe the scrambling construction in German
and others. We have for example:

scr(a) = {a},
scr(ab) = {ab, ba},

scr(abc) = {abc, acb, bac, bca, cab, cba},
...

Some obvious properties are: scr(scr(x)) = scr(x); scr(ab) = a Z b, where a, b ∈ Σ;
scr(x Z y) = scr(xy); |scr(x)| = |x |!.
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11.3 Canonical Word-Orders

By canonical word-orders we mean a system of arrangements describing the order of
the most basic functions: Sb,Ob, In,Dt,Ad,Md. For many languages canonical word-
orders can be described using projective arrangements. The issue of projectivity has
been addressed in previous chapters and we concluded that these linearizations use
patterns in Hk. We proved that Lin(Hk) = Lin(Mk) = Lin(Gk); see Corollary 7.17.
Since we are going to use in general patterns which are not always the full ζ∗, we will
use the classificatory monoid {k,G}∗.

The system of arrangements in English for these functions is:

We call them respectively verbal arrangement, nominal arrangement, and modifier
arrangement. We already saw an example in §22.

Canonically Romance languages position the indirect object after the direct object
and the adjective after the noun. That is ζ∗·Sb+1+ ζ∗·Ob+ ζ∗·In and ζ∗·Dt+1+ ζ∗·Ad.

The above system of arrangements displays only one cluster which is represented as
a loop in the modifier. It permits sentences of unbounded length by adding modifiers:
John caught a very very . . . very big frog.

11.4 Subordination and Coordination

Let us add a subordinate isotopeAdS which permits complementation of a noun through
a subordinate clause. Consider the sentence:

(44) John met the man who caught frogs.

The subordinate clause is complementing the noun, so man dominates the subordinate
clause. More specifically man governs the verb of the clause caught through the sub-
ordinate isotope AdS. In addition there is a relative pronoun isotope function which
introduces the pronoun who which is the subject of the subordinate clause, so we need
the isotope SbR. See the first figure of Fig. 11.1 and consider the system of arrangements:
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Figure 11.1: linearization of a syntagma with a subordinate clause.

Fig. 11.1 shows the process of linearization: first we apply the verbal arrangement for
the main clause; second, the subordinate arrangement and finally, the nominal arrange-
ment. We dispose of a new loop which permits linearization of sentences like John met
the man who met the man who met the man . . . who caught frogs. Similarly we can add
to the system the other possible subordinate functions: SbS,ObS, . . ..

Consider now the coordination function which creates loops in each arrangement.
We are going to write simply Co, instead of Coand,Coor, . . . in order to simplify;
the several specific coordination functions can be implemented similarly. We take the
system of arrangements for English:

This shows how coordination is allowed at several levels.
By way of example consider the sentence with gapping:

(45) John caught frogs and Mary, rabbits.

The process of linearization can be followed in Fig. 11.2.
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Figure 11.2: linearization of a syntagma with a coordinate clause.

In order to describe a grammar we should merge both systems of arrangements,
subordination + coordination, which yields:

However, we will illustrate the following constructions separately. We start every time
from the canonical system and we add some new arrangements (or groups of arrange-
ments) or we susbtitute some arrangement for another more complex one (usually the
verbal arrangement which enjoys a richer phenomenology). So every case is studied
separately. In order to formulate a complete grammar we would have to merge all the
cases.

11.5 Shifting

A main virtue of isotopes is in achieving a more specific control of the linearization,
since the addition of a new function permits a new position in the arrangement.

11.5.1 Shifting of Object and Indirect Object in English

The canonical verbal arrangement explains the sentence:

(46) The President awarded John a gold medal.

However when the indirect object is introduced by a preposition or it is quite long it
shifts with the object, as in for example:

(47) He distributed chocolates to all the boys.
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Figure 11.3: shifting of indirect object in English.

In order to distinguish both cases we introduce the isotope In†. This function needs to
be introduced by the preposition to. That is for any syntagama S we have that for any
x ∈ ζ∗ if S(In† ·x) , 0 then S(Ip·In† ·x) ∈ {to}. This can be implemented easily in the
manifold. We need another rule to ensure that In and In† are orthogonal, that is, they
do not appear simultaneously. See Fig. 11.3 for the analyses. Finally we must consider
an alternative verbal arrangement for this alternative indirect object:

ζ∗ ·Sb + 1 + ζ∗ ·Ob + ζ∗ ·In†.

However, since the functions In, In† are orthogonal, we can merge the last arrangement
and the original verbal arrangement:

ζ∗ ·Sb + 1 + ζ∗ ·In + ζ∗ ·Ob + ζ∗ ·In†.

11.5.2 Shifting of the Subject in Catalan

The canonical word-order in Catalan is SVO, however some specific verbs allows other
positions of the subject. For example:

(48) a. La
The

finestra
window

ha
has

caigut.
fallen

‘The window has fallen.’
b. Ha

Has
caigut
fallen

la
the

finestra.
window

‘The window has fallen.’

We consider the lexical category: PostverbalSubjectVerbs = {arribar, sortir, marxar,
caure, morir, . . . }, in English: to arrive, to leave, to march, to fail, to die, . . . . All these
kind of verbs allow the subject in postverbal position. We can introduce an isotope of
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the subject Sb† which is orthogonal to the primitive subject. In addition Sb† only can
be non-null when the main verb is in PostverbalSubjectVerbs, which can be easily
achieved in a manifold. Then we take the pair of arrangements:

ζ∗ ·Sb + 1 + ζ∗ ·Sb† + ζ∗ ·Ob + ζ∗ ·In.

ζ∗ ·Sb† + ζ∗ ·Sb + 1 + ζ∗ ·Ob + ζ∗ ·In.
We do not need to worry about the interrelation between the shifting subject and the
object and indirect object, because the verbs from the list above turn to be intransitive
and consequently these functions are empty (cf. Solà et al. (2010) §1.3.3.2). We can
implement shifting adjectives in Romance languages similarly. Regarding the type of
the patterns we are still using patterns of the form Hk ⊂ Gk.

11.6 Some Romance Constructions3

11.6.1 Verb Clusters in Romance Languages

The term verb cluster refers to a chain of verbs which could be auxiliary, modal,
subordinate verbs, and so forth. These tend to form a syntactic unit which authors try
to capture by some means.4 Here we use patterns to capture them. It is necessary to
distinguish two kinds of verb cluster. On the one hand, one which only contains the
auxiliary function Ax (as for example hauries hagut d’agafar, in English you had to
have taken),5 and, on the other hand, one which can contain auxiliary functions and
subordinate functions ∆S = {Ax, SbS,ObS, . . .} (as for example hauries volgut intentar
començar, in English you had to want to try to start).

In Romance languages verbal clusters behave more monolithically than in English,
whereby we are going to differentiate both cases in this and the following section. In
addition the condition of unity only arises when we consider the cluster in relation with
some constructions. As an evidence of this last consider a sentence like:
(49) El

The
Joan
John

ha
have

pogut
been-able

donar
give

diners
money

a
to

la
the

Maria.
Mary

‘John has been able to give Mary some money’.
Even though this sentence can be linearized projectively as in Fig. 11.4(a) (we have just
to take the projective arrangement ζ∗·Sb+ 1+ ζ∗·Ax), this turns out to be inadequate in
relation to someother constructions such aswh-fronting, adjuncts or floating quantifiers.
In fact we must to consider the verbal arrangement:

ζ∗ ·Sb + Ax∗ + ζ∗ ·Ob·Ax∗ + ζ∗ ·In·Ax∗.

3For the Romances language we have taken examples in Catalan. This shares features with Spanish,
French or Italian, for example.

4See the issue of substructures in §6.1.
5For simplicity we will understand modal verbs as auxiliary verbs.
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Figure 11.4: (a) non-adequate arrangement for a sentence with a verb cluster; (b) adequate
arrangement for a sentence with a verb cluster.

See Fig. 11.4(b). Here the monoid Ax∗ captures the chain of verbs, so we need an extra
arrangement to linearize this, namely 1+ζ∗·Ax. The system of arrangements for Catalan
becomes:

The consequence of capturing the verb cluster with a pattern is that it does not allow
the intercalation of material between the verbs.
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11.6.2 Wh-Fronting in Romance Languages

First let us examine the case of wh-fronting with simple verbs. We form questions for
the functions Sb,Ob and Ap; for the others functions there is a very similar treatment.
Consider the following affirmative sentence and their interrogative forms:
(50) a. El

The
Joan
John

amaga
hides

les
the

claus
keys

sota
under

la
the

catifa.
carpet

‘John hides the keys under the carpet.’
b. Què

What
amaga
hides

el
the

Joan
John

sota
under

la
the

catifa?
carpet

/
/
Què
What

amaga
hides

sota
under

la
the

catifa
carpet

el
the

Joan?
John

‘What does John hide under the carpet?’
c. Qui

Who
amaga
hides

les
the

claus
keys

sota
under

la
the

catifa?
carpet

/
/
Qui
Who

amaga
hides

sota
under

la
the

catifa
carpet

les
the

claus?
keys
‘Who hides the keys under the carpet?’

d. On
Where

amaga
hides

el
the

Joan
John

les
the

claus?
keys

/
/
On
What

amaga
hides

les
the

claus
keys

el
the

Joan?
John

‘Where does John hide the keys?’
We consider the interrogative isotope functions Sb?,Ob?,Ap?. They work argumentally
similarly to the primitive functions but there are some important syntactic constraints.
First, when they are not null, they must take an interrogative pronoun. That is, Sb?
must take the interrogative pronoun qui; Ob?, the pronoun què; Ap? the pronoun on,
and so forth.6 Second, we treat the case of only one interrogative isotope function per
sentence. Third, the primitive function and its isotopic are orthogonal. These rules are
implementable in a manifold using patterns in kH. Nowwe define the arrangements, for
example, for the interrogative object. In Romance languages the interrogative pronoun
goes to the left followed by the verb and then the remaining non-interrogative functions
which can be placed in any order:

ζ∗ ·Ob? + 1 + ζ∗ ·Sb + ζ∗ ·Ap,
ζ∗ ·Ob? + 1 + ζ∗ ·Ap + ζ∗ ·Sb,
ζ∗ ·Sb? + 1 + ζ∗ ·Ob + ζ∗ ·Ap,
ζ∗ ·Sb? + 1 + ζ∗ ·Ap + ζ∗ ·Ob,
ζ∗ ·Ap? + 1 + ζ∗ ·Sb + ζ∗ ·Ob,
ζ∗ ·Ap? + 1 + ζ∗ ·Ob + ζ∗ ·Sb.

6In English: who, what, where.
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Figure 11.5: (a) and (b) wh-fronting with verbal cluster in Catalan.

The following expression (the first pair of parentheses are just a visual help):(
ζ∗ ·Sb? + ζ

∗ ·Ob? + ζ
∗ ·Ap?

)
+ 1 + scr

(
ζ∗ ·Sb + ζ∗ ·Ob + ζ∗ ·Ap

)
indeed does the same as the six arrangements above since primitive functions and their
interrogative isotopes are orthogonal.

The last is a projective arrangement in Gk. However wh-fronting, even in Romance
languages, is not projective in general. One reason is the presence of clustering verbs.
Consider the questions for object and indirect object with a verb cluster:

(51) a. Què
What

ha
has

pogut
been-able

donar
give

el
the

Joan
John

a
to

la
the

Maria?
Mary

‘What has John been able to give to Mary?’
b. A

To
qui
whom

ha
has

pogut
been-able

donar
give

el
the

Joan
John

diners?
money

‘To whom has John been able to give money?’

See the analyses in Fig. 11.5(a) and Fig. 11.5(b). From these interrogatives we can infer
an arrangement for the object interrogative:

ζ∗ ·Ob? ·Ax∗ + Ax∗ + ζ∗ ·Sb + ζ∗ ·In·Ax∗,
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Figure 11.6: adjunct with auxiliary cluster in Catalan.

and for the indirect object interrogative:

ζ∗ ·In? ·Ax∗ + Ax∗ + ζ∗ ·Sb + ζ∗ ·Ob·Ax∗.

Since the interrogative isotopes are mutually orthogonal and orthogonal to their prim-
itive functions, we can summarize in one go the verbal arrangement:(
ζ∗ ·Sb? + ζ

∗ ·Ob? ·Ax∗ + ζ∗ ·In? ·Ax∗
)
+ Ax∗ + scr

(
ζ∗ ·Sb + ζ∗ ·Ob·Ax∗ + ζ∗ ·In·Ax∗

)
.

Someword-orders aremore usual than others and the emphasis or focus can change. No-
tice in addition that the complexity has been increased with respect to the arrangements
for an interrogative without verb cluster: now all the patterns inhabits GkG.

11.6.3 Adjuncts in Romance Languages

Adjuncts are complements which have a greatmobility in Romance languages. However
as we can deduce from last subsection, an adjunct cannot penetrate a verb cluster, nor
another verb complement. We list all the combinations of the following sentence the
analysis of which is depicted in Fig. 11.6 (parentheses indicate the possible positions):

(52) (Afortunadament)
(Fortunately)

el
the

Joan
John

(afortunadament)
(fortunately)

ha
has

donat
given

(afortunadament)
(fortunately)

diners
money

(afortunadament)
(fortunately)

a
to

la
the

Maria
Mary

(afortunadament).
(fortunately)

‘Fortunately John have given Mary money.’

However, the adjunct cannot appear in the domain of the auxiliary verb, unlike English:

(53) *El
The

Joan
John

ha
has

afortunadament
fortunately

donat
given

diners
money

a
to

la
the

Maria.
Mary
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So the arrangement should be:

ζ∗ ·Am Z
(
ζ∗ ·Sb + Ax∗ + ζ∗ ·Ob·Ax∗ + ζ∗ ·In·Ax∗

)
.

In Catalan the adjuncts of place, time and mode seem to have the same status. So we
can condense them in the arrangement:

ζ∗ ·At Z ζ∗ ·Ap Z ζ∗ ·Am Z
(
ζ∗ ·Sb + Ax∗ + ζ∗ ·Ob·Ax∗ + ζ∗ ·In·Ax∗

)
.

Recall that we have the commutation x Z y Z z = y Z x Z z.

11.6.4 Floating Quantifiers in Romance Languages

A floating quantifier is a quantifier of the subject with the capability of moving over
the sentence creating non-projective linearizations.7 This particle should not penetrate
in any domain defined by the patterns of the basic functions. So in this sense floating
quantifier and adjuncts behave very similarly.8

However from the point of view of algebraic complexity floating quantifiers are a
bit more sophisticated. We need to extract an element the depth of which is greater than
one (the quantifier of the subject and its possible modifiers, ζ∗ ·Qn ·Sb ∈ Gk2), which
is new in our inventory of patterns. Consider the sentences (analysis in Fig 11.7):

(55) (Tots)
(All)

els
the

nois
boys

(tots)
(all)

han
have

donat
given

(tots)
(all)

diners
money

(tots)
(all)

a
to

la
the

Maria
Mary

(tots).
(all)

‘All the boys have given Mary money.’

7Solà et al. (2010) §8.2.5.4 define a floating quantifier as a quantifier which “appears in postverbal
position” (translation is ours). However the definition of Osborne (2013) is more general and adequate
in the ambit of dependencies: “a quantifier is floating if, for whatever reason, it cannot be construed as
a dependent of the nominal that it quantifies”, where “construed” must be understood as “projectively
construed”.

8According to Osborne (2013) a floating quantifier and an adjunct of mode have a similar distribution
in English. Consider the sentences from (Osborne, 2013):

(54) a. ?The kids all will have been seen.
b. The kids will all have been seen.
c. The kids will have all been seen.
d. ??The kids will have been all seen.

The reason for the difficulty in comparation to Romance languages is, beside reasons that Osborne relates,
the intercalation of material in the verb cluster. However we are not going to treat the construction in
English.
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Figure 11.7: floating quantifiers in Catalan.

The following arrangement yields all the combinations:9

ζ∗ ·Qn·Sb Z
(
(ζ − Qn)∗ ·Sb + Ax∗ + ζ∗ ·Ob·Ax∗ + ζ∗ ·In·Ax∗

)
.

Notice that we have extracted the quantifier Qn from the set of functions in the subtree
pattern of the subject, otherwise we would not have a partition of the syntagma. Now
the involved patterns inhabits GkGk, or alternatively, Gk2G.

11.7 Some English Constructions

11.7.1 Wh-Fronting in English

English, unlike Romance languages, can split the auxiliary cluster. Since questions
for the most case are made through an auxiliary, this effect is observable with simple
questions. These constructions suggests that the head of the verb cluster must be split
from the rest of the cluster in order to interpose the subject, as in the sentence:

(56) What will John have given Mary?

The analysis is in Fig. 11.8 and it works with the decomposition: ζ∗ ·Sb, 1, Ax∗ ·Ax,
ζ∗ ·Ob·Ax∗, and ζ∗ ·In·Ax∗. With this we can construct the arrangement:

ζ∗ ·Ob? ·Ax∗ + 1 + ζ∗ ·Sb + Ax∗ ·Ax + ζ∗ ·In·Ax∗.

This arrangement must be generalized. Sometimes the interrogative function is in a
deep position headed by a verb cluster containing not only auxiliary functions, but

9Floating quantifier can appear in other positions, for example in a subordinate clause, as in Aquests
reis els quals van morir tots sense descendència, van regnar breument (these kings who died all without
descendents reigned briefly). However such positions can be explained locally in the subordinate clause:
the quantifier is attaching the relative pronoun quals (‘who’) which substitutes the subject of the main
clause. So the same arrangement is still valid.
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Figure 11.8: wh-fronting in English.

Figure 11.9: a deep position of the interrogative function.

subordinate functions, see Fig. 11.9. So in order to capture the verbal cluster we must
consider the set of functions ∆S = {Ax, SbS,ObS, InS, . . .}, and in addition possible
other complements containing any other function. So we have to consider the monoid:
(ζ −∆?)∗ which contains any function excepting the interrogative isotopes, which must
be allocated at the left margin of the sentence. So the following arrangement:

ζ∗ ·Ob? ·(ζ − ∆?)∗ ·Ax + 1 + ζ∗ ·Sb + (ζ − ∆?)∗ ·Ax,

with type GkGk, linearizes the following sentence depicted in Fig. 11.9:

(57) Who does Carl believe that Bob knows that Mary likes?

Notice that the subtraction of interrogative isotopes ∆? from the set of all the functions
ζ grants that the patterns ζ∗ ·Ob? ·(ζ − ∆?)∗ ·Ax be able to induce subsyntagmata. This
last can be then generalized in order to make a question of any other verbal function in
∆?

ζ∗ ·∆? ·(ζ − ∆?)∗ ·Ax + 1 + ζ∗ ·Sb + (ζ − ∆?)∗ ·Ax.
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Figure 11.10: Topicalization in English.

11.7.2 Topicalization in English

Topicalization occurs when a speaker emphasizes some part of the sentence by dis-
placing it to the beginning. This construction is closely related to wh-fronting. The
following sentence topicalizes the embedded object of the sentence Carl thinks Bob
said Mary likes that idea. See Fig. 11.10:

(58) That idea, Carl thinks Bob said Mary likes.

The arrangement simply picks up the topicalizated subsyntagma (which is marked by
the isotope Ob!) and places it at the left margin:

ζ∗ ·Ob! ·(ζ − ∆!)∗ + (ζ − ∆!)∗,

with type GkG.

11.7.3 Extraposition in English

Extraposition consists in the possibility of extracting a noun complement and locating
it at the right. Consider the pair of the sentences in English:

(59) a. A hearing on the issue is scheduled today.
b. A hearing is scheduled on the issue today.

The first is the non-problematic version; we can use the projective arrangement in Gk:
ζ∗·Sb+ 1+ Ax+ ζ∗·At·Ax. However the second version has “moved” a constituent (the
subtree ζ∗ ·Nc·Sb) to the right. Fig. 11.11(a) and Fig. 11.11(b) show both versions. To
recreate this apparent movement we can use an arrangement in Gk2. In this space of
linearizations we are allowed to pick up subtrees down until depth 2. For example:

(ζ − Nc)∗ ·Sb + 1 + Ax + ζ∗ ·Nc·Sb + ζ∗ ·At ·Ax,
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Figure 11.11: (a) canonical order in English; (b) the same sentence with extraposition.

11.8 Discontinuities in Classical Latin

We can increase the depth of patterns a bit more. In classical Latin texts we can find
examples of extensive free word-order, Kessler (1995). Consider the following sentence
of Cicero which exhibits two discontinuities:

(60) Hic
He

optimus
the-best

illis
those

temporibus
days

est
is

patronus
lawyer

habitus.
considered

‘He was considered the best layer in those days.’

The sentence can be linearized (see Fig. 11.12) by an arrangement in Gk3:

ζ∗ ·Sb + ζ∗ ·Md ·Ob·At + ζ∗ ·Nc·Ob·Ax + (ζ − {Md,Nc})∗ ·Ob·Ax + ζ∗ ·Ax.

The exponent 3 arises in the type of the pattern because, firstly, the word optimus is
allocated at depth 3 (Md ·Ob ·At) and secondly, the subsyntagmata illis temporibus is
also at depth 3 (ζ∗ ·Nc·Ob·Ax). Furthermore the order of the subsyntagma patronus is
controled by the pattern (ζ − {Md,Nc})∗·Ob·Ax where we need to subtract the functions
responsible for the discontinuities.

11.9 Some Germanic Constructions

Swiss-German, Dutch and German, and in general West Germanic languages, have
been extensively studied as a paradigm of complex word-order. These languages set the
verbal cluster and its arguments (which we name serial dependences) in very particular
configurations. There are two modalities of linearizing the serial dependencies in West
Germanic languages which create: cross-serial dependences and nested-serial depen-
dences, see Fig. 11.13. As discussed in §4.3.1, in the abstraction of formal languages,
the first is related to the copy language Lcopy, while the second is related to the mirror
language Lmirr. We have implemented manifolds and linearizations capturing Lcopy and
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Figure 11.12: Discontinuity in Classical Latin.

Figure 11.13: scheme of linearization of (a) cross-serial dependencies; (b) nested-serial depen-
dencies.

Lmirr; in particular the mirror language can be implemented in two ways (which are
symmetric).

11.9.1 Cross-Serial Dependencies in Dutch

We examine first the Dutch case. For example the following sentence exhibits an object
at the end of the verbal cluster which in the linearization intercalates between the subject
arguments and the verb cluster:10

(61) . . . omdat
. . . because

ik
I

Cecilia
Cecilia

henk
Henk

de
the

nijlpaarden
hippopotamses

zag
saw

jelpen
help

voeren.
feed

‘. . . because I saw Cecilia help Henk feed the hippos.’

Fig. 11.14 depicts the analysis. The tree is controlled by a manifold in kH and the
linearization is provided by the system of arrangements in GkG:

10Example from Steedman (1985).
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The main clause is linearized by a projective arrangement (the verbal arrangement). It
separates on the left side the main clause and puts on the right side the subordinate
clause. Let us examine the subordinate arrangement which contains the key part for the
linearization. The decomposition of the patterns is depicted in Fig. 11.14. Notice that
the first pattern ζ∗ ·Sb ·∆∗S is a new linguistic substructure, it is not a full subtree nor a
catena. Although this pattern shows up discontinuous in its graphical representation, it
induces a subsyntagma consisting of a succession of subject arguments chained by sub-
ordinate isotopes in ∆S. This chain Sζ∗·Sb·∆∗

S
indicates the order to linearize: ik Cecilia

Henk. More exactly, for the next step in the linearization we have to take the nominal
arrangement ζ∗ ·Dt + ζ∗ ·Ad + 1 + ζ∗ ·∆S. So the chain Sζ∗·Sb·∆∗

S
behaves as a stack. The

nominal arrangement extracts the head of the stack (the first subject) and puts it at the
left in the word-order. We repeat the nominal arrangement until the stack is empty.11

The second pattern in the subordinate arrangement is ζ∗·Ob·∆∗ and this is isolating
the hippos. Finally it remains to place the verbal cluster, zag helpen voeren. This is
achieved by the verb cluster arrangement. This arrangement is the one responsible for
the crossing distribution.

11.9.2 Nested-Serial Dependencies in German

Now we consider the German sentence:

(62) . . . Hans
. . . Hans

Peter
Peter

Marie
Marie

schimmen
swim

lassen
help

sah.
saw

. . . ‘Hans saw Peter help Marie to swim.’

Curiously the German case could be achieved simply through a projective arrangement,
namely: ζ∗ ·Sb + ζ∗ ·∆S + 1. see Fig. 11.15(a). We would not need any further arrange-
ment: applying it several times we would obtain the nested dependences. However, and
given the familiarity and closeness between both languages, one could hope for some

11Notice that the summand ζ∗ ·∆S does not intervene when we come from the main clause, since in
this case the pattern ζ∗ ·∆S is null. So the nominal arrangement can be used after the verbal arrangement
for the main clause or after the subordinate arrangement.
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Figure 11.14: cross-serial dependences in Dutch.

deeper algebraic relation. In fact, we think that the last arrangement is not adequate.
As in the abstract case of the mirror language for which there were two ways to obtain
the same language (one using arrangements in Gk and other in kG), we have also
the non-projective alternative in order to linearize the German sentences, see §25. We
consider the same system of arrangements as for Dutch with just a small difference:

Notice the transposition of the patterns 1 and ζ∗ ·∆∗S in the verb cluster arrangement.
This small change alone produces the nested dependencies instead of the crossing de-
pendencies, see Fig. 11.16. So, under this point of view, German and Dutch are very
similar, and the types used are the same: GkG.

11.9.3 Scrambling in German

The last German sentence leads on to another much studied phenomenon called scram-
bling. While the verb cluster must continue being ordered inversely causing nested
dependencies (schimmen lassen sah, unlike the English formula saw help to swim),
when we have several distinct complements hanging from the verbal cluster, these
complements can permute. We begin with a simple case (examples have been extract
from (Becker et al., 1992)):
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Figure 11.15: (a) non-adequate decomposition of German; (b) adequate decomposition for
nested-serial dependences in German.

Figure 11.16: the two forms to linearize the verbal cluster, (a) Dutch and (b) German.
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Figure 11.17: scrambling in German.

(63) . . . daß
. . . that

eine
a

hiesige
local

Firma
company

meinem
my

Onkel
uncle

die
the

Möbel
furniture

vor
three

trei
days

Tagen
ago

ohne
without

Voranmeldung
advance-warning

zugestellt
delivered

hat.
has

. . . ‘that a local company delivered the furniture to my uncle three days ago
without advance warning.’

According to these authors this sentence accepts any reordering of the elements
between brackets:
(64) . . . daß [eine hiesige Firma] [meinemOnkel] [dieMöbel] [vor trei Tagen] [ohne

Voranmeldung] zugestellt hat.
which yields 5! = 120 possible word-orders, see Fig 11.17.

However it is not necessary that complements be at the same level to permute
(in fact the subject is already at a different level). We also have scrambling when the
complements are distributed along the verbal cluster, as in the sentence (see Fig 11.18):

(65) . . . daß
. . . that

dem
the

Kunden
client

den
the

Kuehlschrank
refrigerator

bisher
so-far

noch
yet

niemand
no-one

zu
to

reparieren
repair

zu
to

versuchen
try

versprochen
promised

hat.
has

‘. . . that so far no-one has promised the client to try to repair the refrigerator.’
Such constructions can be treated with the scrambling operator:

scr
(
ζ∗ ·Sb·∆∗S + ζ∗ ·Ob·∆∗S + ζ∗ ·In·∆∗S + ζ∗ ·At ·∆∗S

)
+ ∆∗S
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Figure 11.18: scrambling in German with several complements distributed at several levels.

Notice that this is a generalization of the arrangement from the last section. So the
system of arrangements for German should be:

All the arrangements used in the West Germanic examples are in GkG.

11.10 The Respectively Construction

Ordinary coordination of sentences can be treated comfortably with projective arrange-
ments. Let us consider the sentence:
(66) The young boy is English, the fat man German, and the blond woman Dutch.
Fig. 11.19 shows how to obtain the word-order with the arrangement:

ζ∗ ·Sb + 1 + ζ∗ ·Pd + ζ∗ ·Co;
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Figure 11.19: projective linearization of coordination.

We repeat this arrangement in ζ∗ ·Co. (Here Co is the function which introduces the
conjuncts). Notice that we are supposing that there are two elliptic verbs: The young
boy is English, the fat man �(is) German, and the blond �(is) woman Dutch.12

However the coordination must exhibit a non-projective form in the presence of the
adverb respectively:

(67) The young boy, the fat man and the blond woman are respectively English,
German and Dutch.

Some authors claim that respectively sentences are not natural or at least they are
stylistically inadequate. Here we take such sentences at face value as constituting
grammatical parts of natural language.13 As discussed in §4.3.1, in the abstraction of
formal languages, the first is related to the language Lmult while the second is related to
the language Lresp, which are symmetric.

Our formalism can achieve this linearization as in Fig. 11.20 by applying first the
arrangement:

ζ∗ ·Sb·Co∗ + Co∗ + ζ∗ ·Pd ·Co∗.

The linearization then continues with the projective arrangement:

ζ∗ ·Dt + ζ∗ ·Ad + 1 + ζ∗ ·Co.

So the patterns of the system of arrangements inhabit GkG.

12See Appendix A for the question of the ellipsis and coordination in general.
13See arguments in pro in: (Kac et al., 1987), (Bar-Hillel and Shamir, 1960), and arguments in contra

in: (Pullum and Gazdar, 1982), (de Cornulier, 1973).
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Figure 11.20: linearization of the respectively construction.
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12
Algebraic Complexity of Natural
Language, Prospects, and Conclusions

We collect the patterns of the cases examined in Chapters 10 and 11 and we study
which bi-hierarchy is the most adequate in order to locate natural languages. This
constitutes one of our final goals.

In order to carry this out we have to take two methodological decisions. First, it is
not clear whether the naturalness of some extreme constructions must be accepted.
We see that these seem to separate themselves from the well-accepted construc-
tions by their algebraic description. Second, we have to distinguish structural
descriptions from descriptions based only on weak-capacity. We examine both
cases. In the first case we observe that natural constructions can be grouped into
phenomena according their description in a classificatory monoid. In the second
case we show that all the phenomena can be reduced to a certain class. We discuss
some significant properties of this class in relation to mild context-sensitivity.

We introduce the last concept of the thesis: transposition arrangement. This per-
mits a decomposition of an arrangement into minimal units, allowing explanation
of the fine structure of a linearization. We suggest that this could be the key in
order to introduce semantics in the model in future work.

12.1 The Algebraic Complexity of Natural Languages

12.1.1 Data

Having reviewed several constructions in natural languages, it is natural to ask which
bi-hierarchy is the most adequate to organize them, and whether the whole class of
possible natural languages can be located.

To respond to this let us collect all the cases viewed in Chapters 10 and 11, in a pair
of tables, Table 12.1 and Table 12.2. The first lists the patterns and their types involved
in manifolds and the second does the same for linearizations.

241



242 12.1. The Algebraic Complexity of Natural Languages

Table
12.1:patternsin

the
m
anifoldsand

theirtypesin
the

naturalconstructionsreview
ed

in
C
hapter10.A

bbreviations:English
(Eng),

Rom
ancelanguages(R

om
),classicalLatin

(Lat),G
erm

an
(G

er),D
utch

(D
ut),C

hinese
(C

hi),O
ld
G
eorgian

(O
G
e),Yoruba(W

estA
frican)

(Yor).

D
escription

ofthe
naturalconstruction

Pattern
in

the
m
anifold

Type

Verb
M
ain

Principle,(Eng),(R
om

),...
1

1
O
rthogonality,Valence

and
Selection,(Eng),(R

om
),...

(1,Sb)·(ζ) ∗2
k
H

LocalA
greem

ents,(Eng),(R
om

)
(1,Sb)·(ζ) ∗2

k
H

O
bligatory

D
eterm

iner,(R
om

)
(Sb,D

t·Sb)·(ζ) ∗2
k

2H

Long
D
istance

A
greem

entofPredicate,(Eng),(R
om

)
(Sb,Pd)·(1

⊕
∆
∗)·(ζ) ∗2

k
P
H

Long
D
ist.A

greem
entofC

oordination
A
djectives,(R

om
)

(1
⊕

Co ∗∧ )·(1,Ad)·(ζ) ∗2
Pk
H

C
om

bination
ofthe

previoustw
o,(R

om
)

(Sb,1)·(1
⊕

Co ∗∧ )·(1,Pd)·(1
⊕
∆
∗)·(ζ) ∗2

(k
P) 2H

Long
D
istance

A
greem

entin
Pied-Piping,(R

om
)

(1,D
t)·(1,N

c
R )·(1

⊕
N

c ∗)·(1
⊕

Co ∗∧ )·(1,
∆)·(1

⊕
∆
∗S )·(1,A

d
S )·(ζ) ∗2

k
2P

2k
Pk
H

C
hinese

N
um

bers,(C
hi)

(β,1)·(β,
β) ∗·(α

,α) ∗·(1,α)
k
G

2k
Suffi

xaufnahm
e,(O

G
e)

(α
2,α

,α
,1)(α) ∗4 (β) ∗4 (β,

β,1,1)
k

2G
2k

Recursive
C
opy,(Yor),(R

om
)

(ζ) ∗2 (O
b
S ,Pd

S ·Co)(ζ) ∗2
H

k
2H



12. Algebraic Complexity of Natural Language, Prospects, and Conclusions 243
Ta

bl
e
12

.2
:
pa
tte

rn
s
in

th
e
ar
ra
ng
em

en
ts

an
d
th
ei
r
ty
pe
s
in

th
e
na
tu
ra
l
co
ns
tru

ct
io
ns

re
vi
ew

ed
in

C
ha
pt
er

11
.W

e
on

ly
sh
ow

so
m
e

re
pr
es
en
ta
tiv

e
ar
ra
ng
em

en
ts

fr
om

th
e
sy
ste

m
of

ar
ra
ng
em

en
to

f
th
e
co
ns
tru

ct
io
n.

A
bb

re
vi
at
io
ns
:E

ng
lis
h
(E
ng

),
Ro

m
an
ce

la
ng

ua
ge
s

(R
om

),
cl
as
si
ca
lL

at
in

(L
at
),
G
er
m
an

(G
er
),
D
ut
ch

(D
ut
),
C
hi
ne
se

(C
hi
),
O
ld

G
eo
rg
ia
n
(O

G
e)
,Y

or
ub

a
(W

es
tA

fr
ic
an
)(
Yo

r)
.

D
es
cr
ip
tio

n
of

th
e
na

tu
ra
lc
on

st
ru
ct
io
n

A
rr
an

ge
m
en
t

Ty
pe

C
an
on
ic
al
W
or
d-
O
rd
er
s,
(E
ng

),
(R

om
),
..
.

ζ
∗ ·

Sb
+

1
+
ζ
∗ ·

In
+
ζ
∗ ·

O
b

G
k

ζ
∗ ·

D
t+

ζ
∗ ·

Ad
+

1
G

k
ζ
∗ ·

M
d
+

1
G

k
Su

bo
rd
in
at
io
n,

(E
ng

),
(R

om
),
..
.

ζ
∗ ·

D
t+

ζ
∗ ·

Ad
+

1
+
ζ
∗ ·

Ad
S

G
k

ζ
∗ ·

Sb
R
+
ζ
∗ ·

Sb
+

1
+
ζ
∗ ·

In
+
ζ
∗ ·

O
b

G
k

C
oo
rd
in
at
io
n,
(E
ng

),
(R

om
),
..
.

Ic
+
ζ
∗ ·

Sb
+

1
+
ζ
∗ ·

In
+
ζ
∗ ·

O
b
+
ζ
∗ C

o
G

k
Ic
+
ζ
∗ ·

D
t+

ζ
∗ ·

Ad
+

1
+
ζ
∗ C

o
G

k
Ic
+
ζ
∗ ·

M
d
+

1
+
ζ
∗ C

o
G

k
Sh

ift
in
g
of

O
bj
ec
ta
nd

In
di
re
ct
O
b.
,(
En

g)
ζ
∗ ·

Sb
+

1
+
ζ
∗ ·

In
+
ζ
∗ ·

O
b
+
ζ
∗ ·

In
†

G
k

Ve
rb
al
C
lu
ste

r,
(R

om
),
(E
ng

),
..
.

1
+
ζ
∗ ·
∆
S

G
k

Sh
ift
in
g
of

th
e
Su

bj
ec
t,
(R

om
)

ζ
∗ ·

Sb
+

1
+
ζ
∗ ·

Sb
†
+
ζ
∗ ·

O
b
+
ζ
∗ ·

In
G

k
ζ
∗ ·

Sb
†
+
ζ
∗ ·

Sb
+

1
+
ζ
∗ ·

O
b
+
ζ
∗ ·

In
G

k
W
h-
Fr
on
tin

g,
(R

om
)

( ζ
∗ ·

Sb
?
+
ζ
∗ ·

O
b ?
·A

x∗
+
ζ
∗ ·

In
?·

Ax
∗) +Ax

∗
+
sc
r( ζ
∗ ·

Sb
+
ζ
∗ ·

O
b·

Ax
∗
+
ζ
∗ ·

In
·A

x∗
) G

kG

A
dj
un
ct
s,
(R

om
)

ζ
∗ ·

At
Z
ζ
∗ ·

Ap
Z
ζ
∗ ·

Am
Z

( ζ
∗ ·

Sb
+

Ax
∗
+
ζ
∗ ·

O
b·

Ax
∗
+
ζ
∗ ·

In
·A

x∗
)

G
kG

Fl
oa
tin

g
Q
ua
nt
ifi
er
s,
(R

om
)

ζ
∗ ·

Q
n·

Sb
Z

( (ζ−
Q

n)
∗ ·

Sb
+

Ax
∗
+
ζ
∗ ·

O
b·

Ax
∗
+
ζ
∗ ·

In
·A

x∗
)

G
k2 G

W
h-
Fr
on
tin

g,
(E
ng

)
ζ
∗ ·
∆

?·
(ζ
−
∆

?)∗
·A

x+
1
+
ζ
∗ ·

Sb
+
(ζ
−
∆

?)∗
·A

x
G

kG
k

To
pi
ca
lis
at
io
n,
(E
ng

)
ζ
∗ ·

O
b !
·(ζ
−
∆

!)∗
+
(ζ
−
∆

!)∗
G

kG
Ex

tra
po
si
tio

n,
(E
ng

)
(ζ
−

Nc
)∗
·S

b
+

1
+

Ax
+
ζ
∗ ·

Nc
·S

b
+
ζ
∗ ·

At
·A

x
G

k2

D
is
co
nt
in
ui
tie
si
n
C
la
ss
ic
al
La

tin
,(
La

t)
ζ
∗ ·

Sb
+
ζ
∗ ·

M
d·

O
b·

At
+
ζ
∗ ·

Nc
·O

b·
Ax
+
(ζ
−
{M

d,
Nc
})
∗ ·

O
b·

Ax
+
ζ
∗ ·

Ax
G

k3

C
ro
ss
-s
er
ia
ld

ep
en
de
nc
ie
s,
(D

ut
)

ζ
∗ ·

Sb
·∆
∗ S
+
ζ
∗ ·

O
b·
∆
∗ s
+
∆
∗ S

G
kG

N
es
te
d-
se
ria

ld
ep
en
de
nc
ie
s,
(G

er
)

ζ
∗ ·

Sb
·∆
∗ S
+
ζ
∗ ·

O
b·
∆
∗ s
+
∆
∗ S

G
kG

Sc
ra
m
bl
in
g,
(G

er
)

sc
r( ζ
∗ ·

Sb
·∆
∗ S
+
ζ
∗ ·

O
b·
∆
∗ S
+
ζ
∗ ·

In
·∆
∗ S
+
ζ
∗ ·

At
·∆
∗ S

) +∆∗ S
G

kG
Re

sp
ec
tiv

el
y
co
ns
tru

ct
io
n,
(E
ng

),
(R

om
),
..
.

ζ
∗ ·

Sb
·C

o∗
+

Co
∗
+
ζ
∗ ·

Pd
·C

o∗
G

kG



244 12.1. The Algebraic Complexity of Natural Languages

12.1.2 Strong Capacity of Natural Languages

Examining the data from Tables 12.1 and 12.2 we observe an interesting scheme.
Constructions can be grouped in linguistic phenomena according to fragments of the
classificatory monoid {k,H, P,G}∗ (given by regular expressions):

MANIFOLDS
Top constraints main verb principle. 1
Local constraints orthogonality, valence, selection, local agreements. kH

obligatory determiner. k∗H
Non-local constraints long distance agreements. {k, P}∗H
Non-semi-linearity quadratic growth: Chin. numbers, suffixaufnahme. k2G2k

exponential growth: recursive copy. Hk2H

LINEARIZATIONS
Projectivity canonical orders, subordination, Gk

coordination, shifting, verbal clusters.
Extrapositions extraposition English, discont. in classical Latin. Gk∗

Movements wh-fronting, topicalization, Gk∗Gk∗

floating quantifiers.
Serial dependencies cross-serial, nested-serial, GkG

scrambling, respectively construction.

The fragment k∗H in local constraints only contains one construction (obligatory
determiner with type k2H). However the increment of the exponent of a constant does
not seems to create a new linguistic phenomenon: assuming a constraint of type say
k9H, although not likely, continues being a local constraint. Similarly the fragmentGk∗
in extrapositions only contains two constructions (extraposition in English Gk2 and
discontinuity in classical Latin Gk3), whereby one could imagine an extraposition of
depth four or five. The same reasoning serves to establish the fragment Gk∗Gk∗.

Well-Accepted Constructions

We have a hierarchy of phenomena. For fragments concerning manifolds we have the
inclusions: Man(1) ⊆ Man(kH) ⊆ Man(k∗H) ⊆ Man({k, P}∗H).1 Assuming that
the non-semi-linear constructions are not legitimately fragments of natural languages,
every manifold should be described in Man({k, P}∗H), note that H only appears once.
Regarding linearizations we have the inclusions Lin(Gk) ⊆ Lin(Gk∗) ⊆ Lin(Gk∗Gk∗)

1Here Man(X ) = ⋃
X∈X Man(X), and Lin(X ) = ⋃

X∈X Lin(X) where X is a subset of the
classificatory monoid.
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and Lin(GkG) ⊆ Lin(Gk∗Gk∗). We want to stress that here we are interested mostly
in the structural description in the sense that we gave in Remark 7.11. This leads to the
claim that:

Claim 5. Strong capacity. In view of data, and assuming exclusively semi-linear con-
structions, natural languages can be structurally described by grammars inhabiting the
bi-hierarchy BH(k,H, P,G), however only a fragment is used:

{k, P}∗H�{k,G}∗.

We could strengthen this claim: we can suppose that the complexity of natural language
is bounded. Perhaps by natural brain limitations, exponents in constants cannot be too
large: say two or three.2 Equally the number of monoids of type P and G cannot be too
large. From the examined cases one is tempted to write:

NT ⊆ (k
2P)3H�(Gk3)2.

However doing this is a little precipitated. Data from the tables are not exhaustive and in
addition more complex phenomena could be discovered. Notwithstanding, the number
of these constructions should be finite and then the complexity should be bounded.

Extreme Constructions

There is controversy on the legitimacy of the non-semi-linear constructions, although
the general opinion is that they are not really natural constructions. Suppose that these
constructions were definitively approved. Then we would have to consider a larger
fragment, say: {k, P,G}∗/{k,G}∗ ⊆ BH(k, P,G).

We do not have a firm opinion regarding the naturalness of the extreme construc-
tions. However in algebraic terms, these constructions appear to separate themselves
from the well-accepted ones. Notice that these have types of the form k2G2k and
Hk2H which are not in the fragment {k, P}∗H of the well-accepted constructions. The
significant characteristic of these constructions is that the type for monoids appears
twice.

12.1.3 Weak Capacity of Natural Languages

The descriptions made in Chapters 10 and 11 aim to capture the structural features of
natural constructions. They are made following what is considered a correct syntactic
analysis, up to minor discrepancies. However, turning to questions of weak capacity,

2Even the sentence of Cicero (§11.8) which used a linearization of type Gk3 is considered a literary
extreme example.
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we can reanalyze these constructions using fewer resources. Let us demonstrate in the
following example how long distance constraints can be recast locally with manifolds
in Man(k2H). The trick consists in appending a “memory” to certain functions which
remember the agreement feature:

Example 36. Reduction of long distance agreements to Man(k2H). We consider
again sentences viewed in §10.5.1 such as she would want to try to be an actress. In English
the underlinedwordsmust agree in gender. The pattern involvedwas (Sb,Pd)·(1⊕∆∗)·(ζ)∗2 ∈
kPH, where ∆ = {Ax,ObS}; see Fig. (a).

We can obtain the same agreement effect with a manifold in Man(k2H). We pick the
letters F and M for the gender cases feminine and masculine (we model only the gender
features, but the other agreement features are obtained similarly). Given the original set of
functions ζ = {Sb,Ax,ObS,Pd,Dt}, we create a new set:

ζ = {Sb,Dt} ∪ {F, M} × {Ax,ObS,Pd}.

For clarity we notate the new functions (F,Ax), (M,Ax), (F,ObS), (M,ObS), . . . as
AxF,AxM,PdF,PdM, . . ..We group functions in feminine functions ζF = {AxF,ObFS ,PdF }
and masculine functions ζM = {AxM,ObM

S ,PdM }.
We translate ordinary constraints about selection, valence and orthogonality to the new

functions. For example the functions AxF and AxM select a verb as before regardless of
its gender feature F or M . However the functions PdF and PdM must select respectively
a feminine word and a masculine word. All these constraints are achieved in a manifold
Man(kH). For simplicity we work with a non-elliptic manifold.

The key to the reduction is as follows: if the subject takes a feminine (masculine) word
then we block all the masculine (feminine) functions in the cluster. As a consequence at the
end of the verbal cluster the predicate function inherits the gender and it take a word with
the correct gender. To achieve this we make four constraints:

• for all ϕ ∈ ζ∗, if Sb ·ϕ takes a feminine word then for anymasculine function α ∈ ζM ,
αϕ, is a null locus;

• for all ϕ ∈ ζ∗, if Sb ·ϕ takes a masculine word then for any feminine function α ∈ ζF ,
αϕ, is a null locus;

• for all ϕ ∈ ζ∗, if β · ϕ is not null, where β is a feminine function, then for any
masculine function α we have that αβϕ is null;

• for all ϕ ∈ ζ∗, if β ·ϕ is not null, where β is a masculine function, then for any
feminine function α we have that αβϕ is null.

All these constraints are definable in Man(k2H) as follows:⋂
α∈ζM

Synt
(
x ∈ feminine→ y ≈ 0

(Sb, α)(ζ)∗2

)
,



12. Algebraic Complexity of Natural Language, Prospects, and Conclusions 247

⋂
α∈ζF

Synt
(
x ∈ masculine→ y ≈ 0

(Sb, α)(ζ)∗2

)
,

⋂
α∈ζM

⋂
β∈ζF

Synt
(
x 0 0→ y ≈ 0
(β, αβ)(ζ)∗2

)
,

⋂
α∈ζF

⋂
β∈ζM

Synt
(
x 0 0→ y ≈ 0
(β, αβ)(ζ)∗2

)
.

Intuitively the gender case is transmitted from the subject to the predicate through the verbal
cluster, see Fig. (b). Thus a non-local constraint is transformed into a local constraint.

By interposing more clusters, this can be generalized to other long-distance agreements,
such as coordination and pied-pipping. If we want to subordinate a substructure with this
type of agreement inside another of the same kind, then we have to clear the “memory” of
the functions, which also can be achieved by the above techniques.

By similar means one can reduce a constraint in kpH to a constraint in k2H. In
fact we proved that constants kp with p ≥ 2 do not contribute more expressibility than
context-freeness, see Corollary 9.6. But such constructions are, under our understand-
ing, structurally inadequate because we believe that syntactic functions must be carriers
of syntactic or even argumental information, but not morphological.

Now we reconsider linearizations and see how several constructions can be reduced
to the projective case.

Example 37. Reduction of some linearizations to Lin(Hk). We saw that considering
verb clusters leads to interposition of amonoid in the patterns of the arrangements. However
we can try to reanalyze the chain of auxiliary verbs as follows. Fig.(a) depicts a wh-fronting
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construction attending structural facts, while Fig.(b) shows the projective alternative with
the arrangement ζ∗In? + 1 + ζ∗Sb + ζ∗Ax + ζ∗Ob.

Now we only need to enforce a rule making sure that auxiliary functions can just govern
other auxiliary functions, while the other verbal functions Ob, In,At,Ob?,Ob!, . . . must be
immediate descendants of the root. This is accomplished in a manifold with type k2H.

Extraposition constructions can also be reduced to the projective case. We introduce
a new function Nc↑ which hangs directly from the verb. We also make the adjunct of
time At hang from the root. Fig.(c) shows the linearization obeying structural facts, while
Fig.(d) shows the conversion to the projective case, with the arrangement ζ∗Sb+1+ ζ∗Ax+
+ζ∗Nc↑ + ζ∗At.

Now the constraint on the manifold must enforce that the functions Nc↑ and Nc (which is
ordinarily at depth two) must be orthogonal. This is achieved in a manifold with type k2H.
When the extracted part is at a deeper position p, the rule adopts a type in kpH. However
by means as in the previous example, this can be reduced to the case k2H.

In this last example projectivity is achieved by raising the material from the queue
of the chain of the verbs, or other difficult positions, to the level of root children. In
fact, some dependency grammarians advocate such options, although they are not the
general accepted analyses; see arguments already discussed in §1.5, 6.1 and §11.1.
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Summing up, by reanalyzing constructions, by structurally (in a linguistic sense)
dubious means, one can reduce manifolds for non-local constraints to manifolds in
Man(k2H) and linearizations for movements and extrapositions to projective lineariza-
tions in Lin(Hk). Combining both components we obtain the class k2H/Hk, or in more
familiar words, the combinations all these phenomena are reducible to context-free
languages.

However as is well-known, certain phenomena cannot be reduced to the context-
free case. Firstly, non-semi-linear constructions are not reducible for obvious reasons.
Secondly, cross-serial dependencies and respectively constructions cannot be linearized
projectively without changing the type k2H of the manifold.3

Overall this leads us to a final conclusion:

Claim 6. Weak capacity. Assuming only semi-linear constructions, natural languages
should be described in terms ofweak capacity by the class in the bi-hierarhcyBH(k,H,G):

NT ⊆ k2H�GkG.

There are good reasons to believe that this class could be mildly context-sensitive, or
at least include mild context-sensitivity. Using the properties proved in Chapter 9 we
can observe that the following hold:

• The class contains all the context-free languages, CF ⊆ k2H/GkG.
We only have to see that CF = k2H/Hk = k2H/Gk ⊆ k2H/GkG.

• The class contains all the anti-context-free languages, −CF ⊆ k2H/GkG.
Similarly −CF = k2H/kH = k2H/kG ⊆ k2H/GkG. This means that cross-serial
dependencies are possible, and in particular Lq-copy, Lq-count ∈ k2H/GkG, for any
q ≥ 0.

• The languages in k2H/GkG are semilinear.
We learned that semi-linearity only depends on the semi-linearity of themanifold,
cf. Theorem 9.12.

• k2H/GkG is not generable by TAG, p-LCFRS nor p-MCFG, for some fixed p.
This is a consequence of the fact that Lq-copy, Lq-count ∈ k2H/GkG, for any q ≥ 0
and the pumping lemma (Seki et al., 1991) for multiple context-free grammars.
There is the possibility that languages given by generalMCFG be in this class.We
recall that these formalisms are linguistically relevant since they are equivalent
to MG.

3We saw in §8.2 that the copy language can be obtained projectively in Hk2/Hk but this construct
implies reversing the type of the manifold. Indeed the bi-simmetry theorem states that Hk2/Hk =
k2H/kH, but CF = k2H/Hk , Hk2/Hk = −CF.
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• Syntactic structures of k2H/GkG are local and linear-time decidable.
We saw this in Theorem 4.10 and Theorem 4.13. This is linguistically relevant
because it is believed that syntactic structures of a formalism must be regular
(as in MSOL based grammars, MTS and MCS formalisms). Locality is an even
more restrictive condition than regularity.

• Languages in k2H/GkG are decidable.
By Theorem 7.8 and the above point the class is decidable.

• k2H/GkG is strictly less expressive than other formalisms like unrestrictedHPSG
or LFG which are Turing complete.
This is a direct consequence of the decidability. Indeed the class k2H/GkG is
semi-linear.

These points mark a clear agenda for future work. If we can show a poly-time
parsing algorithm for this class of grammars, then it would be known to be entirely
mildly context-sensitive, andwe couldmake further comparisonswith otherwell-known
formalisms.

Finally, what about non-semi-linear constructions? In this case we would have to
expand the numerator to incorporate the types k2G2k and Hk2H. It remains a question
for the future which is the most adequate class and what is its weak capacity.

12.2 Towards Semantics: Transposition Arrangements

There is a second future direction to develop the ideas shown up until here. Consider
the following phrases where the parentheses indicate how the order of the complements
must be taken in a semantic reading.

(68) a. last (Picasso sold).
b. (last Picasso) sold.

The first reading is the most common. The lexical piece last can be regarded as an
operator which selects the last element of a list of elements chronologically ordered.
So this noun phrase is selecting the last artwork from the list of the Picasso’s sold. In
contrast, the second noun phrase is identifying the last artwork of Picasso, that was
sold.4

Nevertheless dependency trees are not able to differentiate the two possibilities,
because there is only one dependency tree for both phrases. Nor can the linearization by
arrangements distinguish the two cases, because arrangements write all of the elements
of the phrase simultaneously.

4Picasso painted his last work in 1973; in 2015 an earlier Picasso was sold.
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Figure 12.1: an example of left transposition given by ζ∗ ·Sb−.

In this relationwe can try to linearize substructures one-by-one instead of linearizing
the whole phrase in one go. Thus we define:

Definition 12.1. Given a pattern Γ, we call a right transposition the expression in
Synt ∗:

SΓ{ + SΓ,

where we recall that SΓ is the induced syntagma, ·{ is the complement Γ{ = ζ∗ \ Γ. So
SΓ{ is the syntagma in which we make null all the loci in Γ. Similarly we define a left
transposition:

SΓ + SΓ{.

See an example of left transposition (ζ∗ · Sb)− in Fig. 12.1. For comfort we omit
parentheses, ζ∗ ·Sb− = (ζ∗ ·Sb)−.

Now we can translate the notion of system of arrangements to system of transposi-
tions. The underlying idea is the same. We apply a transposition which gives a string of
two syntagmata (instead of a string of several syntagma as in the case of arrangements).
Then we have to indicate how the linearization must be continued for each one of both
syntagmata. We use a continuous line for the induced syntagmata SΓ and a dashed line
for the complement SΓ{. Now we can rewrite the canonical system of arrangements
which we reviewed in the last chapter, §11.3, as a system of transpositions:

Notice that we have taken the arrangements and we have decomposed them in
transpositions. Any arrangement can be decomposed in transpositions, although the
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Figure 12.2: (a) linearization by transpositions. (b) schematization in a binary tree of the same
linearization.
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decomposition is not unique. For example, when signs are different we can shift trans-
positions; we can first transpose ζ∗ ·Sb− and then ζ∗ ·Ob+, or first we can transpose
ζ∗ ·Ob+ and then ζ∗ ·Sb−; both yields the same result, but in general two transpositions
do not commute.

Let us show an example of linearization by transpositions; see Fig. 12.2(a). Inter-
estingly the process can be summarized in a binary tree, see Fig. 12.2(b). This points
towards a bridge between an analysis of dependencies and other formalisms based
in analysis in constituents which assume a binary branching such as the minimalist
program, or categorial grammar.

As we have commented, in general two transpositions do not commute, whereby
the order is important. The application of a transposition places the material SΓ in
the periphery. Thus a succession of transpositions (following dashed lines) performs
a linearization by layers; from the most external to the most internal which yields an
scheme of nested constituents:

(•1(•2(•3 · · · (•n−1(•n)•n−1) · · · •3)•2)•1)

where every •i is realized only in one of the two sides, as for example in the noun
phrase:

( ◦ ( an ( old ( lady ) ◦ ) ◦ ) from Berlin )
( ◦ ( • ( • ( • ) ◦ ) ◦ ) • )

No doubt a well studied system of transpositions for natural language would be more
intricate that above (with multiplicity of paths for a same linearization) and it would
reveal that some constructions can be linearized in different ways, whereby a sentence
could exhibit a non-unique parenthetic structure.5

There is a controversy regarding binary branching and n-branching. On the one
hand, Binary branching agrees with the intuition that words are combined seman-
tically pairwise and is the minimal combinatorial strategy. On the other hand the
traditional grammarians decomposed the sentence in classical grammatical categories
(verb phrase, noun phrase and others) which assumes n-branching.

In our framework linearizations by arrangements conform with the intuition of n-
branching. In fact we have planned systems of arrangements through basic arrangements
(verbal, nominal, modifier, etc.) which correspond to the classical phrases. As we said
above transpositions would seem to agree with a binary branching. In both cases

5Evidence in favor of transpositions is the distribution by layers of the verbal morphemes as a
universal principle, (Mairal and Gil, 2004). These morphemes can be situated at the left or right hand
(depending on the language) of the root, but always distributed in a certain universal order of layers
from the verbal lexeme to the peripheral. This can be implemented by a system of transpositions with
functions introducing the several morphemes. What is universal is the order of the transpositions, while
the sign of each transposition varies between languages.
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branching appears as the trace of the linearizations, i.e. we do not need to introduce
parenthetical structures over and above the syntagmata.6

Reexamining the system of transpositions above we observe that the structure of the
arrangements are still visible (in fact we have still marked the old denominations of the
arrangements: verbal, nominal and modifier). This could signify a convergent solution
which combines naturally both perspectives. However all this constitutes material for
future work.

12.3 Closing

Algebraic dependency grammar, we believe, proportions a new form of understanding
natural languages and formal languages. In particular we have seen how certain natural
constructions are responsible for the distribution of constants and patterns in their
structural description. We have argued that this algebraic complexity is bounded for
natural languages.

Nevertheless in our opinion this bound does not arise from amathematical limitation
of expressibility, rather an empirical limitation of the brain. Perhaps this bound is not
completely fixed. Perhaps primitive languages lacked certain sophisticated syntactic
constructions such as pied-piping, auxiliary verbs, and others. If we could recover data
from ancient languages, we might observe that new constructions have been added to
these in the course of time. We envisage the possibility of seeing language evolution
as a succession of ascending stages in a bi-hierarchy. Of course this prospect belongs
to the field of paleo-linguistics which is far from our competence and the goals of this
thesis.

Regarding the organization of formal languages, we have introduced the notion of
anti-languages. In relation to this let us quote the definition of chiralitywhich was given
by the physician W.T. Kelvin: “I call any geometrical figure, or group of points, chiral,
and say it has chirality, if its image in a plane mirror, ideally realized, cannot be brought
to coincide with itself”, (Kelvin, 1904). Chirality is a very useful concept in chemistry,
physics and biology.7 Each chiral object has a corresponding symmetric object. These
two symmetric realizations are called enantiomeric forms. By contrast, achiral objects
do not enjoy these two forms. So, a shoe is a chiral object which has two enantiomeric
forms: the right shoe and the left shoe, while a sock is an achiral object!

Under this geometrical denomination, up tometaphors, we have shown that the class
of context-free languages is indeed a chiral object, with the enantiomeric forms CF and
−CF. Then, a final interesting, or at least curious, question arises when we consider
the corpus of linguistic phenomena. We know that the vast majority of constructions

6See (Kahane, 1997) which introduces “bubbles” in order to obtain a finer structure in the dependency
tree. In our case, the trace of the linearization (by arrangements or by transpositions) can be represented
also by bubbles.

7See for example (Cronin and Reisse, 2005).
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are context-free. One can ask why there is this prevalence of a handedness, or in other
words, why this abundance of context-freeness in natural language?

There seems to be a rupture of symmetry in favor of one of the enantiomeric
classes of languages. But this is not exclusive to natural languages. Other physical and
biological systems exhibits of this kind of rupture. Consider for example, amongst many
others, the prevalence of right handedness in humans or the prevalence of a clockwise
handedness in the spiral of the shells in the majority of the species of mollusks.
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A
Aspects of Coordination
in Dependency Grammar

A.1 Criteria of Adequacy

We devote the following pages to some approaches to coordination in dependency
grammar, and to providing our own proposal. Before reviewing an inventory of propos-
als for coordination we want to present the possible features and discuss the validity of
criteria which coordination should satisfy.1

Iterativity and recursivity. Kahane (1997) highlights two features of coordina-
tion constructions: iterativity, the number of conjuncts elements is not bounded;
and recursivity, different coordinators can be combined; as in the sentences (a)
and (b) respectively:

(69) a. John, Mary, . . . , Joseph and Bill bought the same car.
b. Peter invited either John and Mary or Bill.

Accordingly Kahane (1997) says that “the recursivity is linguistically limited to
one step and must be well marked (by special words, such as either, or prosody).”
An example of necessity of prosody is:

(70) For the next gamewe need a couple. The possibilities are: John andMary,
Lucy and Bill, or George and Sam.

Adequate pauses and stresses suggest the reading (John and Mary), (Lucy and
Bill), or (George and Sam).2

1In the sequel parentheses accompanying an ellipsis �, as in �(x), indicate that x is the gapped
element.

2We do not know how is interpreted the limitation “to one step” of Kahane, although we agree that
some constraints must be imposed. For instance, if we suppose that there is no prosodic marking and that
iterativity and recursivity are not limited then the number of readings of a sentence as: John and Mary
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Symmetric coordination vs. non-symmetric coordination. Coordination can
exhibit directionality. Consider for example the sentence:3

(71) Hans slipped into his jacket and left. / ?? Hans left and slipped into his
jacket.

In this case the coordinator implies a time order: “A and B” means that A occurs
before B, and on some occasions, there is even a logical dependency:

(72) She slept and had sweet dreams. / ?? She had sweet dreams and slept.

However there are plenty of cases where the commutation is possible:

(73) John and Mary went camping=Mary and John went camping.

In several approaches symmetry is emphasized over asymmetry. However natural
language exhibit both possibilities. Thus, on the one hand approaches that only
allow symmetric coordination are insufficient. On the other hand, we could think
similarly that approaches that only exhibit asymmetry are equally inadequate.

However let us consider the following analogy extracted from propositional cal-
culus. The expression of propositional logic, p∧ q, is in fact a string in {p, q,∧}∗
and, strictly speaking, we have different strings p∧ q , q∧ p. When we interpret
the symbols p, q as certain propositions which are truth-valued then the symbol
∧ becomes an operator which involves the value of the propositions and yields a
result according its operands. Thus the symmetry of the formula arises from the
interpretation ∧ as an operator of truth-values which is usually expressed through
equivalence p ∧ q ≡ q ∧ p.4 In short, also in dependency grammar symmetry
could be an interpretative rather than structural feature.

Pure dependency vs. extended structures. Some approaches claim that coor-
dination is not possible to capture with dependency trees only. So the structure
must be generalized or enriched. However we consider this a last resort solution.
Since our framework comprises dependency trees which work well for a lot of
natural constructions we should preserve the discipline of tree-shape dependency
as far as we can go.

or Lucy and Peter, or more in general a1 and b1 or a2 and b2 or · · · an or bn blows up. The number
of parenthesizations is given by the catalan numbers C2n−1 and recall that Cn =

(2n)!
(n+1)!n! ∼

4n√
πn3

, see
for example (Davis, 2006). Some of the configurations of parentheses yield the same interpretation, but
even with this, one can prove that the number of different interpretations is at least 2n−1.

3Examples are from (Lison, 2006).
4The symbol ≡ here means equal for any values on p and q.
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Tree-shape vs. non-tree-shape. Supposing pure dependencies based formalism
we can distinguish tree-shaped vs. non-tree-shaped structures. Co-headed (or co-
governed) words are often used in a semantic representation which in addition
permits represent the coordination, fred peeled and ate it, as two-rooted (and
hence non-tree-shape) dependency structure. 5 We will show that a purely tree-
shape based representation also can be adequate for coordination.

Functionality vs. non-functionality. A functional (or deterministic) tree pre-
cludes the possibility of two arrows labeled with the same syntactic function
governed by a same node.
Some approaches deny functionality, since one can then take advantage of the
possibility of non-deterministic configurations in order to represent groups of
conjuncts. We will show, however, other approaches where functionality is capa-
ble of representing coordination.

Explaining gapping. As far as we know all the modalities accept the possibility
of gapping. Gapping arises in sentences as:

(74) a. Mary loves Bill and Ann loves John.
b. Mary loves Bill and Ann, John.

The coma is supplanting the verb: Mary loves Bill and Ann �(loves) John.
However the following sentence is ungrammatical.

(75) ∗Mary �(loves) Bill and Ann loves John.

An adequate system of representation of coordination should permit explaining
what elements can be gapped.6 We call this feature explaining gapping.

Others: equal status of the conjuncts, the position of the coordinators . . . It
is well-known that in general the conjuncts must be similar. This explains the
possible ungrammaticality of the sentence:

(76) ??John and driving cars are nice.

This is already established in traditional grammars: “Since coordination is a
relation between elements of equal status, they must be syntactically alike”, The
Cambridge Grammar of the English Language, (Huddleston et al., 2002, pg.
1290).
The first desideratum in placing the coordinator is preserving projectivity. Popel
et al. (2013) classify the possible coordinator positions comprehending several
variants and subvariants.

5Example and details in (Temperley, 2005).
6In our opinion this feature is related with the above point asymmetry. We see later the details.
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Figure A.1: (a) and (b) bare style of coordination.

A.2 A short Inventory of Coordination Styles

We list a representative though not exhaustive inventory including the style used in the
thesis. Table A.1 at the end collects the features of each modality.

The bare style. Suppose that we allow non-functional analysis, having a configuration
as in Fig. A.1(a). We call such a situation a non-deterministic configuration. One is
tempted to interpret this as that the words John and Bill form a coordinated group since
they are governed by the same function, Sb. Since the most prominent coordination
in natural language is mediated by the and coordinator we can think of the nodes as
forming a conjunctive group. So this style of coordination is a rather early linguistic
application of non-deterministic configurations. Another feature of this style is that we
can allow co-governed nodes to represent situations such in Fig. A.1(b).7 But this style
lacks the possibility of using different coordinators.

Analyses à la Tesnière. The modality commented just above has the inconvenience
of capturing only one kind of coordination. Tesnière’s solution was grouping and
labeling the non-deterministic configurations in order to differentiate them by adding
a transversal relation on the tree, see Fig. A.2(a) and (b). This permits diversity of
coordinators, but, since Tesnière did not make formal this extra relation, we have
multiple interpretations.

We deduce from the pictures in the Eléments de syntaxe structurale that the relation
is symmetric, anti-reflexive and even anti-transitive. More even, it seems that the transi-
tive closure of this relation must coincide with a whole non-deterministic configuration.
We do not know if Tesnière would have tolerated combining recursively different kinds
of coordinators.

Extended bare style. Another different way to solve the problem of which kind of
coordination operates in a non-deterministic configuration consists in considering the

7This feature is also called muli-head; see (Hudson, 1990; Temperley, 2005).
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Figure A.2: (a) and (b) Tesnière’s style of coordination.

Figure A.3: (a) extended bare style and (b) Mel’čuk style of coordination.

Cartesian product of the set of syntactic roles by the set of coordinators. For example we
notate Sband = (Sb, and), see Fig. A.3(a). Now the second component of the syntactic
role informs as to the kind of coordinator. This style works very similarly to that of
Tesnière, but no extra relation is needed: it is purely dependency based. This style is
illustrative; we do not know any approach which uses it.

Analysis à la Mel’čuk. The approach of Mel’čuk is purist: trees should be sufficient.
No extra relation is needed. Its solution consists in concatenating the conjuncts (as
many as we want) by a function, coord. Fig. A.3(b) shows an example adapted from
Melčuk (2009).

TheMel’čuk style allows several variants. Regarding the position of the coordinators
we enjoy different options: Fig. A.4(a), (b) and (c). In the cases (b) and (c) we introduce
the coordinator through a syntactic function (Ic = Introduction of coordinator). These
options are amongst the most reasonable in order to preserve projectivity.

However the original style ofMel’čuk interposes the coordinator between conjuncts
which could violate the criterion of equality of status, see Fig. A.4(a). For this reason
we have chosen the option (c) with the coordinator at the bottom (we call this style of
this thesis, see last point).
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Figure A.4: (a) and (b) variants of analyses a la Mel’čuk according to the position of the
coordinator; (c) the style chosen in this thesis.

Figure A.5: (a) and (b) arithmetical style; (c) a bubble tree.

Analyses arithmetical-tree style.Another, very different, style of coordination is based
in understanding coordinators as arithmetical operations, as +(x, y) or ×(x, y). So using
operations and(x, y), or(x, y)we can construct a representation for the phrase John and
Mary or Bill as:

and(John, or(Mary, Bill)).

This can be translated to dependency trees by using two functions, say Arg1, Arg2, see
Fig. A.5(a). If we want to iterate several elements, e.g. Bill loves John, Mary, Lucy and
Paul, then a gap is needed to avoid the repetition of the coordinator, see Fig. A.5(b).
The main properties of this style are that it is functional and it allows asymmetric
coordination since the functions Arg1, Arg2 are different although they are placed at the
same level in the tree.

Bubble trees. Very informally “(...) bubble tree are trees whose nodes are bubbles
which in turn contain sub-bubbles linked to other bubbles and so on”, as Kahane (1997)
presented them. Given the rich interplay of trees and bubbles, this mechanism sub-
sumes several kinds of structures over and above coordination. Regarding coordination,
bubble trees allow its capture in a robust and unambiguously way. A coordination is a
bubble enveloping the conjuncts which can be in turn other coordinating bubbles, as in
Fig. A.5(c).
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Figure A.6: the style of this thesis as a Mel’čuk variant; (a) and (b) show constructions which
take advantage of differentiation of coordination by the functions; (c) gapping.

These structures are symmetric and not pure dependency structures. Although bub-
ble trees allow gapping, which permit representation of several tricky constructions,8
it is not clear that this style can account for an explanation of gapping. The reason is
the symmetry: since the conjuncts are symmetric, one cannot differentiate which of the
conjuncts must be gapped.

The Style of this thesis. We examine the Mel’čuk variant with the coordinator at the
bottom. It is functional (and thus tree-shaped and purely dependency based) and it is
asymmetric. Of course it enjoys iterativity. In addition since we place the coordinator
at the bottom this preserve the equality of status of the conjuncts (in the sense that the
coordination function chains always conjuncts, not other elements), and, in particular,
the coordinator does not dominate conjuncts.

Instead of a general function for coordination, coord, we can differentiate the kind
of coordination according the function such as copulative coordination, disjunctive
coordination, adversative coordination, which we notate Coand,Coor or Cobut . See
Fig. A.6(a). Differentiating the syntactic function of the coordinator in itself permits us
to use, for example, the coordinator and in an adversative meaning as in the sentence:
Mary has all the money and(but) I am poor, see Fig. A.6(b).

This last shows that diversity of coordinators is possible. Fig. A.7 shows that indeed
recursivity is also possible. Fig. A.7(a) depicts the semantic representation of the phrase:
John and Mary, Lucy and Bill, or George and Sam. We simply represent the syntactic
functions Coand , Coor ; in the syntactic representation, Fig. A.7(b), we introduce the
coordinators.

We notice that this allows gapping, see Fig. A.6(c) which shows the analysis of
the sentence: Mary loves Bill and Ann, John. Our interpretation is that in a semantic
analysis this sentence must specify the elliptic verb (loves). Then we can assume a
rudimentary principle on the interface semantic-syntax:

8see (Kahane, 1997; Lison, 2006) for more details.
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Figure A.7: recursivity in the style of this thesis; (a) semantic representation and (b) syntactic
representation.

Claim 7. Syntactic representation can preclude the redundancy of words whereby the
repeated words are gapped. Let us establish this with a bit more precision; in fact this prin-
ciple seem to fit well in terms of patterns. Let Co be a syntactic function of coordination,
for example Coand,Coor, . . .. The principle states that the locus which can be gapped is
of the form ϕ ·Con ·ψ with n > 1 and ϕ, ψ ∈ ζ∗, i.e. the pattern ζ∗ ·Co·Co∗ ·ζ∗.

This question is closely connected with co-reference and anaphora, whereby the above
principle is affected by similar phenomenology.

Using this principle of non-redundancy we can exhibit ambiguity in a natural
fashion. Consider the phrase: old books and papers. Supposing that a speaker has in
mind old books and (old) papers. In a semantic analysis we propose analysis as in
Fig. A.8(a.i). By the above principle the word old is gapped at the level of syntax, see
Fig. A.8(b.i). Now we suppose that a speaker has in mind (old books) and papers, i.e.
papers has no adjective. Its semantic representation would be Fig. A.8(b.ii). Since now
there is no redundancy, there is nothing to delete at the syntactic level. Both situations
yields the same syntactic representation. Thus when a hearer tries to reverse the process,
he cannot determine whether the speaker wanted to say old books and old papers or
simply (old books) and papers. Finally, if the speaker has in mind books and old papers,
Fig. A.8(a.iii), the analysis becomes as in A.8(a.ii) and here there is no ambiguity.

We can justify more complex analyses in the same way. Fig. A.9(a) shows an
interpretation at the semantic level of the sentence: John and Mary buy and sell old
books and papers. Fig. A.9(b) shows the gapping and Fig. A.9(d) shows the syntactic
level with the introduction of the coordinators. A couple of more of tricky cases follow
in Fig. A.10 and Fig. A.11.

Although we claim that the grammaticality of coordination constructions can be
explained just with a syntactic component and a word-order component (that is, with
an algebraic dependency grammar), we see that a semantic component helps to under-
stand the why of reviewed cases. However the incorporation of the semantic module
constitutes matter for future research.
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Figure A.8: (a.i) and (a.ii) semantic analyses of old books and papers. (a.iii) semantic analysis
of books and old papers. (b.i) syntactic analysis of old books and papers. (b.ii) syntactic analysis
of books and old papers.

Figure A.9: semantic and syntactic analyses in the style of this thesis for the sentence John
and Mary buy or sell old books and papers: (a) semantic analysis; (b) gapping; (c) syntactic
analysis.
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Figure A.10: semantic and syntactic analyses in the style of this thesis of the sentence Peter
wants to eat apples and Mary, pears.

Figure A.11: semantic and syntactic analyses in the style of this thesis of the sentence Peter
has been and continues to be honest.
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The bare style X × × X × × ×
a la Tesnière X − × × × × ×
Extended bare style X − × X × × ×
a la Mel’čuk X − X X X X −
Arithmetical trees X X X X X X −
Bubble trees X X × × × × ×
Style of this thesis X X X X X X X

Table A.1: styles of coordination and their features. The symbol − means not applied, not
described or unknown.



B
Syntactic Functions and Isotopes

B.1 Notation

We present a more complete table of syntactic functions. For each function we have
proposed at least one example in English, Catalan and Spanish, provided they exist.
Some functions only exist in some of these languages. Not all the functions have
corresponding isotopes; this varies according to the language as well. Tables at the end
summarize functions for each language, see §B.8.

Regarding notation, when the syntactic function does not exist (or we could not find
an example) we mark — —. However when a whole group of functions does not exist
we have removed it.

When the syntactic function exists for certain languagewe indicate first the language,
(Eng) , (Cat) or (Spa) , followed by the example or examples. The continuous underline
word corresponds to the word governed by the function in question and the dashed
underline corresponds to the governor (or head). The brackets indicate the limits of
the domination of the function, which correspond to the traditional constituent. For
example, for the function Ob we display the sentence: John gave Mary [some money].
In this case, the main verb gave governs money , and thus the example establishes the
dependence:

gave Ob−−→ money

The scope of the domination of the object is [some money ]. In some occasions the
constituent is discontinuous and then we mark the segments: [Where ] do you come
[from]?. Of course this depends on the style of analysis adapted (see §1.5).
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B.2 Primitive Functions

Verbal Functions

Unit Function
1 — Unit function. This is not a proper function algebraically, i.e.: 1 is the identity

element of the monoid ζ∗, but it is not a generator, 1 < ζ . However it corresponds
to the root of the syntagma and it has linguistic meaning. It always take a finite
verb. For example: (Eng) [the bird cracked the window]. (Cat) [L’ocell trencà la
finestra]. (Spa) [El pajaro rompió la ventana].

Canonical Functions
Sb — Subject function. This identifies the main argument in the sentence. The subject

function always selects a noun. It is who/what makes the action given by the
verb, e.g. (Eng) [The black bird ] cracked the window. [John ] gave Mary some
money. (Cat) [l’ocell negre] trencà la finestra. [El Joan] donà diners a la Maria.
(Spa) [El pajaro negro] rompió la ventana. [Juan] dio dinero a Maria.

Ob — Object. This identifies the second main argument. 1 The object function always
selects a noun. (Eng)The black bird smashed [the window ]. John gave Mary
[some money]. (Cat) [l’ocell negre trencà [la finestra] El joan donà [diners] a la
Maria. (Spa)El pajaro negro rompió [la ventana]. Juan dio [dinero] a Maria.

In — Indirect object. This identifies the third main argument.2 The indirect object func-
tion always selects a noun. (Eng) John gave [Mary ] some money. (Cat)El Joan
donà diners [a la Maria]. (Spa) Juan dio dinero [a Maria].

Pd — Predicate. The object of a copulative verb like to be or to look. It is also called at-
tribute. (Eng)Mary looks [tired]. (Cat)La Maria sembla [cansada]. (Spa)Maria
parece [cansada].

Rg — Verbal regimen or simply Regimen. This is an extra argument (not subject, nor
object nor indirect object, although sometimes it is very similar to some of them) for
some verbs. It is frequently introduced by a preposition.3 There are many regimen
functions; it would be convenient to differentiate them, but we have condensed
them all into one. (Eng) John works [as a musician]. (Cat)El Joan fa [de músic].
La Maria s’interessa [per la música clàssica]. (Spa) Juan trabaja [de músico].
Maria se interesa [por la música clásica].

1For some linguists, who do not accept the subject as an argument, it is the first argument.
2This is also called the second object in di-transitive verbs.
3The name is taken from Romance grammarians.
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Adjunct Functions
Ap — Adjunct of place. Function which announces where the action occurs.4, 5 (Eng) John

buys fish [here ]. (Cat)La Maria treballa [a l’oficina del costat]. (Spa)Maria
trabaja [en la oficina de al lado].

At — Adjunct of time. Function which announces when the action occurs.6 (Eng)Mary
works tomorrow . (Cat)La Maria treballa [demà]. (Spa)María trabaja
[mañana].

Am — Adjunct of mode. Function which announces how the action occurs. 7 (Eng) John
buys fish [fortunately]. (Cat) [Per sort] demà no treballem . Ho enllestirem [molt
ràpidament]. (Spa)Afortunadamente mañana no se trabaja . Lo acabaremos [muy
rápidamente].

Ab — Adjunct because. Indicates the cause or reason. (Eng) I like sunny days [because
of the light]. (Cat)M’ agraden els dies de sol [per la llum]. (Spa)Me gustan los
dias de sol [por la luz].

· · · — Others. We only have shown the more basic adjuncts. However other are often
recognized: instrument, company, finality etc.

Nominal Functions

Qn — Quantifier. This establishes a quantity or cardinality (one, two, some, all, . . . ). The
quantifier function always selects a lexical element in the category of quantifier.
(Eng)The [two] black cats scratch the sofa; [almost one-hundred] penguins are
jumping together. (Cat) [gairebé tots] els nois hi eren. (Spa)Estaban [Casi todos]
los chicos .

Dt — Determiner. This function is very similar to a quantifier. However determiners give
some extra information which concerns the speaker, such as uniqueness, context,
proximity or prominence. The determiner function always selects a lexical element
from the category of determiners. (Eng) [the ] two black cats scratch the sofa.
(Cat) [els ] dos gats negres d’en Joan esgarrapen el sofà. (Spa) los dos gatos
negros de Juan arañan el sofá.

4Generally it is an optional argument, however some verbs in Catalan always take an adjunct:
(Cat)Posa-hi més sucre/*Posa més sucre.

5If we wanted a detailed grammar, surely we would need to distinguish several functions like, for
example, an adjunct of place for origin (from here), another for destination (to there), and others.

6We could also distinguish an adjunct of frequency, (Eng) sometimes, an adjunct of time location,
(Eng) yesterday, or adjunct of time interval, (Eng) during two days, amongst others.

7This function is related to modal logic, so for a detailed analysis it would be convenient to distinguish
cases. (Eng) [necessarily] dogs are animals.
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Ps — Possesive. This function is very similar to a determiner. Possessives give informa-
tion about the noun and the owner. The possessive function always selects a lexical
element from the category of possessives. My two black cats scratch the sofa.
(Cat)Els [meus] dos gats negres esgarrapen el sofà. (Spa) Mis dos gatos negros
arañan el sofá.

Ad — Adjective. This function generally establishes a constraint on the noun. The adjective
function always selects a lexical element in the category of adjectives. (Eng)Two
[black] cats scratch the sofa. (Cat)Dos gats negres esgarrapen el sofà. (Spa)Dos
gatos negros arañan el sofá.

Nc — Noun complement. This function is very similar to Ad, but Nc is usually intro-
duced by a preposition and it allows construction of a new syntagma. The Noun
complement function always selects a lexical element in the category of nouns.
(Eng) the two black cats [from the street ] scratch the sofa. (Cat)Els dos gats
negres [del carrer] esgarrapen el sofà. (Spa)Los dos gatos negros [de la calle ]
arañan el sofá.

· · · — Others.

Modifier Functions

Md — Modifier. Function which modifies the governor in mode or intensity [very ]
expensive, [too] expensive, . . . . Modifier function always selects a lexical element
in the category of modifiers. (Eng) It will be a [very] long trip. (Cat)Ha resultat
ser una festa [ben] lluïda . (Spa) Será un viaje [muy] largo .

Ma — Adjective Modifier Complement. Function which introduces an argument for the
adjective: (Eng) She felt very sure [of herself]. (Cat)Ella va sentir-se molt segura
[de si mateixa]. (Spa)Ella se sintió muy segura [de si misma].

· · · — Others.

Introductory Functions

Ip — Introduction of a preposition. Introduces materially a preposition. This function
always selects a lexical element in the category of prepositions. (Eng) the two black
cats [from] the street . (Cat)Els dos gats negres [de] ’l carrer . (Spa)Los dos gatos
negros [de] la calle .

Ic — Introduction of a coordinator. Introduces materially a coordinator. This function
always selects a lexical element in the category of coordinators. (Eng) a dog [and]
a cat . Un gos [i] un gat . (Spa)Un perro [y] un gato .
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Coordination and Connecter Functions

Coand — Coordination And. (Eng) John [and Mary] come to supper. (Cat)El Joan [ i la
Maria] venen a sopar. (Spa) Juan [y María] vienen a cenar.

Coor — Coordination Or. Similar to the coordination function and.
Coif — Conditional. (Eng) If I come to supper, [I will prepare desserts]. (Cat) Si vinc a

sopar, [jo faré les postres]. (Spa) Si vengo a cenar, yo prepararé los postres.
· · · — Others like while, however, etc.

B.3 Subordinate Isotope Functions

Subordinate Verbal Functions

Subordinate Unit Functions
Ax — Auxiliar function. This introduces a verb governed by an auxiliary verb. (Eng) We

have [won again]. (Cat) hem [guanyat un altre cop]. (Spa) Hemos [ganado otra
vez].

Subordinate Canonical Functions
SbS — Sentential subordinate subject. The subject is not a noun, but a subordinate clause.

(Eng) [Whoever gets the best mark], will receive a medal. (Cat) [Qui menja sopes]
se les pensa totes. (Spa) [Quien haya robado las galletas] lo pagará caro.

ObS — Sentential subordinate object. (Eng)Yesterday I discovered [John hates vegeta-
bles]. (Cat)El Joan diu [que no vindrà a sopar]. (Spa) Juan dice [que no vendra
a cenar].

InS — Sentential subordinate indirect object. (Eng) She gives money to [whoever does
not need it]. (Cat)Li ha donat els diners [a qui menys ho necessita]. (Spa)Le dió
el dinero [a quién menos lo necesita].

PdS — Sentential subordinate predicate. (Eng) She appeared [to hide the key]
(Cat) Semblava [que amagués les claus]. (Spa) Parecía [que escondiera las
llaves].

RgS — Sentential subordinate regimen. (Eng) I’m interested [in what nobody considers
relevant]. (Cat)M’ interesso [pel que ningú creu important]. (Spa)Me intereso
[por lo que nadie cree importante].

· · · — Others.

Subordinate Adjunct Functions
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ApS — Sentential subordinate adjunct of place. (Eng)We met [where she wanted ].
(Cat) [D’on vinc jo] les muntanyes són altes. Hem quedat [on ella ha volgut].
(Spa) [De donde vengo] las montañas son altas.

AtS — Sentential subordinate adjunct of time (Eng)We met [when she wanted]. (Cat)Hem
quedat [quan ella ha volgut]. (Spa) Quedamos [cuando ella quiso].

AmS — Sentential subordinate adjunct ofmode. (Eng)We met [how shewanted]. (Cat)Hem
quedat [com ella ha volgut]. (Spa) Quedamos [como ella quiso].

AbS — Sentential subordinate because. (Eng) She won’t come [because she is busy].
(Cat)No vindrà [perquè té feina]. (Spa)No vendrá [ya que está ocupada].

· · · — Others.

Subordinate Nominal Functions

QnS — Sentential subordinate quantifier.8 (Cat) N ’atraparé [tantes com pugui ].
(Spa)Atraparé [tantas] ranas [como pueda].

DtS — —
PsS — —
AdS — Sentential subordinate adjective. (Eng)The man [who wears yellow shoes] will

come tomorrow. (Cat)L’ home [que duu les sabates grogues] vindrà demà. (Spa)El
hombre [que lleva zapatos amarillos] vendrá mañana.

NcS — Sentential subordinate noun complement. (Eng) I don’t find the novel [with which
John won the prize]. (Cat)No trobo la novel·la [amb la qual guanyà el premi el
Joan]. (Spa)No encuentro la novela [con la que Juan ganó el premio].

· · · — Others.

Subordinate Modifier Functions

MdS — Sentential subordinate modifier (Eng) I will catch [as many frogs as I can]. On the
hill was erected a house more luxurious [than you could ever imagine]. (Cat)Una
casa luxosa [com no us imaginareu mai] s’alçava damunt del turó. (Spa)En la
colina se erigía una casa lujosa [como no podrias imaginar].

MaS — —
· · · — —

B.4 Interrogative Isotope Functions

8This function does not exist in English, which makes the subordination through the modifier subor-
dination isotope (see MdS later).
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Interrogative Verbal Functions

Interrogative Canonical Functions
Sb? — Interrogative subject. (Eng) [Who ] bought flowers for Mary? (Cat) [Qui ] ha

comprat flors a la Maria? (Spa) ¿[Quien] compró flores a Maria?
Ob? — Interrogative object. (Eng) [What ] did John buy for Mary]? (Cat) [Què ] ha

comprat el Joan a la Maria? (Spa) ¿[Qué] compró Juan a Maria?
In? — Interrogative indirect object. (Eng) [who did John buy flowers? (Cat) [A qui] ha

comprat el Joan flors? (Spa) ¿ [A quién] compró flores Juan?
Pd? — Interrogative predicate. (Eng) [What ] is Mary? (Cat) [Què ] sembla la Maria

amb aquest barret? (Spa) ¿[Qué] parece María con éste sombrero?
Rg? — Interrogative regimen. (Eng) [What ] does John work as? (Cat) [De què ] fa el

Joan? (Spa) ¿[De qué] trabaja Juan?
· · · — Others.

Interrogative Adjunct Functions
Ap? — Interrogative adjunct of place. (Eng) [Where] do you come [from]? (Cat) [D’on]

vens? [On] hem quedat? (Spa) ¿[De donde] vienes ?
At? — Interrogative adjunct of time. (Eng) [When] do you come? (Cat) [Quan] vindràs ?

(Spa) ¿[Cuándo] vendrás ?
Am? — Interrogative adjunct of mode. (Eng) [How ] do things work here? (Cat) [Com ]

van les coses aquí? (Spa) ¿[Cómo] van las cosas aquí?
Ab? — Interrogative because. (Eng) [Why] does John not have a job? (Cat) [perquè] no

té feina el Joan? (Spa) ¿[Porqué] no tiene trabajo Juan?
· · · — Others.

Interrogative Nominal Functions

Qn? — Interrogative quantifier.9 (Cat) [Quants ] peixos has comprat? (Spa) ¿[Cuántos ]
peces has comprado?

Dt? — —
Ps? — —
Ad? — — 10

Nc? — Interrogative noun complement. (Eng) [Whose] car have you stolen? (Cat)El cotxe
[de qui] has robat? (Spa)El coche [de quién] has robado?

9This interrogative pronoun does not exist in English, which makes the interrogation of quantity
through the modifier interrogative pronoun (see Md? later).

10This function seems not to exist. Usually in order to make a question about an adjective we use the
interrogative predicate. (Eng)What was the stolen car like? (Cat)Com era el cotxe robat? (Spa) ¿Cómo
era el coche robado?



276 B.5. Relative Pronoun Isotope Functions

Interrogative Modifier Functions

Md? — Interrogative modifier. (Eng) [How] many attempts do you need? [How] long is
the paper? In Catalan the interrogative modifier is used to ask for a non-countable
amount, not for a quantifier. (Cat) [Com ] de llargs vols els pantalons? (els vull
molt/poc/mig llargs). Similarly in Spanish. (Spa) ¿[Como] de largo es el artículo.

Ma? — —
· · · — —

B.5 Relative Pronoun Isotope Functions

Relative Pronoun Verbal Functions

Relative Pronoun Unit Functions
Re — Relative pronoun unit. (Eng) John says [that] he likes jazz. (Cat)El Joan diu [que]

li agrada el jazz. (Spa) Juan dice [que] le gusta el jazz.

Relative Pronoun Canonical Functions
SbR — Relative pronoun subject. (Eng) She gave the money to a man [who] does not need

it. (Cat)Li ha donat els diners a [qui] menys ho necessita . (Spa)Le dió el dinero
a [quien] menos lo necesita .

ObR — Relative pronoun object. (Eng) I do not know [what] kids want . (Cat)No sé [què]
volen els nois. (Spa)No sé [qué] quieren los chicos.

InR — Relative pronoun indirect object. (Eng) I met the girl [who ] John gives flowers.
(Cat)He conegut la noia [a qui] el Joan regala flors. (Spa)He conocido la chica
a [quién] Juan regala flores.

PdR — Relative pronoun predicate. (Eng) I’m not sure [how] John is . (Cat)El [què] això
sembli no m’interessa. (Spa)Lo [qué] eso parezca no me interesa.

RgR — Relative pronoun regimen. (Cat)Del [que] treballi el Joan no és rellevant. (Spa)De
lo [que] trabaje Juan no es relevante.

· · · — Others.

Relative Pronoun Adjunct Functions
ApR — Relative pronoun adjunct of place. (Eng) I don’t want to know [where] you come

from. (Cat)No vull saber [d’on] vens . (Spa)No quiero saber de [donde] vienes .
AtR — Relative pronoun adjunct of time. (Eng)Tell me [when] you arrive . (Cat) digue’m

[quan] arribaràs . (Spa) dime [cuando] llegarás .
AmR — Relative pronoun adjunct of mode. (Eng)Tell me [how ] the tale finishes .

(Cat)Explica’m [com] acaba el conte. (Spa)Cuentame [como] termina el cuento.
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AbR — Relative pronoun adjunct because. (Eng)Tell me [why ] John bought the house.
(Cat)Explica’m [perquè] el Joan va comprar la casa. (Spa)Cuentame [porqué]
Juan compró la casa.

· · · — Others.

Relative Pronoun Nominal Functions

QnR — Relative pronoun quantifier. 11 (Cat)No sabrem mai [quants] grans de sorra hi ha
a la platja. (Spa)No sabremos nunca [cuantos] granos de arena hay en la playa.

DtR — —
PsR — —
AdR — —
NcR — Relative pronoun noun complement. (Eng)The book the title [of which ] I can’t

remember will be reedited. (Cat)El llibre el títol [del qual ] no recordo serà
reeditat. (Spa)El libro el título [del cual] no recuerdo será reeditado.

· · · — Others.

Relative Pronoun Modifier Functions

MdR — Relative pronoun adjunct of modifier. (Eng)We don’t know [how] long the novel
is. (Cat)No sabem [com] de llarga és la novel·la. (Spa)No sabemos [cuan] larga
es la novela.

MaR — —
· · · — Others.

B.6 Topicalization Isotope Functions12

Topicalization Verbal Functions

Topicalization Canonical Functions
Sb! — Topicalized subject. 13 (Cat)Hi aniré [jo mateix]. (Spa) Iré [yo mismo].

11As in the case of the interrogative pronoun this isotope does not exist in English.
12The following examples are usually with emphatic tone.
13This function either does not exists or its effect is invisible in SVO languages which only topicalize

to the left margin. However in Romance languages there is the possibility of topicalizing the subjects to
the right margin.
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Ob! — Topicalized object. (Eng) [Vegetables ], kids hate . (Cat) [Flors ], ha comprat el
Joan per la Maria. (Spa) [Flores], ha comprado Juan para María.

In! — Topicalized indirect object. (Eng) [Mary], John buys flowers. (Cat) [Per la Maria],
el Joan ha comprat flors. (Spa) [Para Maria], Juan ha comprado flores.

Pd! — Topicalized predicate. (Eng) [Very nice ], she is . (Cat) [ben bonica ] que és .
(Spa) [Bien bonita] que es .

Rg! — Topicalized regimen. (Eng) [As musician ], John works . (Cat) [De music ], fa el
Joan. (Spa) [De músico], trabaja Juan.

· · · — Others.

Topicalization Adjunct Functions
Ap! — Topicalized adjunct of place. 14 (Cat) [A la muntanya], no m’hi veuràs mai.
At! — Topicalized adjunct of time. Similar to Ap!.
Am! — Topicalized adjunct of mode. Similar to Ap!.
Ab! — Topicalized adjunct of cause. (Eng) [For this reason], I don’t want to pay the bill.

(Cat) [Per aquesta raó] no vull pagar el compte. (Spa) [Por esta razón] no quiero
pagar la cuenta.

· · · — Others.

Topicalized Nominal Functions

Qn! — Topicalized quantifier. 15 (Cat) [tres], n’he comprat, de peixos .
Dt! — —
Ps! — —
Ad! — Topicalized adjective. 16: (Cat) [Groc], se l’ha comprat, el cotxe , el Joan.
Nc! — — 17

Topicalized Modifier Functions

14In English this isotope becomes invisible since adjuncts can already be placed at the margins. The
same is true in Spanish. However in Catalan we have a proof of this isotope because of the presence of
a redundant pronoun called pronom de represa (resumptive pronoun) as in the example, where hi is the
resumptive pronoun which duplicates the adjunct.

15English and Spanish disallow this. In Catalan it is allowed to topicalize the quantifier provided we
insert a duplicate pronoun, as in the example. In Spanish this topicalization is not possible. Notice that in
the sentence, for example, tres peces he compradowhat is topicalized is the full object, not the quantifier.

16In Catalan this is similar to the case of the quantifier. In Spanish this topicalization seems unclear.
17A possibility, but not clear, is (Cat)De la Maria, és fill el Joan!.
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Md! — —
Ma! — —
· · · — —

B.7 Pronoun Isotope Functions

Pronominal Verbal Functions

Pronominal Canonical Functions
SbP — Pronominal subject. (Eng) [She] bought the flowers. (Cat) [Ella] ha comprat les

flors. (Spa) [Ella] ha comprado las flores.
ObP — Pronominal object. (Eng)Mary bought [them ]. (Cat)La Maria [les ] ha com-

prades. (Spa)Maria [las] compró .
InP — Pronominal indirect object. (Eng) John gave [her] some money. (Cat)El Joan va

donar -[li] diners. (Spa) Juan [le] dió dinero.
PdP — Pronominal predicate. (Cat)El Joan [ho] sembla . Catalan can use a more specific

pronoun (en) for the predicate. (Cat)El Joan [n’] és . (Spa) Juan [lo] es .
RgP — Pronominal regimen. (Cat)No [hi] estic interessat ara mateix.
· · · — Others.

Pronominal Adjunct Functions
ApP — Pronoun adjunct of place. Catalan uses specific pronouns for adjuncts of place.

(Cat)Ara [hi] vaig . English and Spanish use demonstratives as pronouns. (Eng)We
go [there]. (Spa) Vamos [allá].

AtP — —

AmP — Pronominal adjunct of mode. Catalan and Spanish use demonstratives as pronouns.
(Cat)Es fa [així]. (Spa) Se hace [así].

AbP — Pronominal because. Catalan and Spanish uses a demonstrative pronoun (Cat) [Per
això] no vindré . (Spa)Por [eso] no iré .

· · · — Others.

Pronominal Modifier Functions

MdP — —
MaP — —
· · · — —
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B.8 Tables of Functions

Table B.7: table of functions for English
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Table B.8: table of functions for Catalan
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Table B.9: table of functions for Spanish



C
Aspects of Time Complexity
of Manifolds

This appendix is devoted to studying decidability ofmanifolds in terms thatwere defined
in Definition 4.12. We saw that manifolds in Man(kpH) and manifolds in Man(Hkp)
are linear time decidable for any p ≥ 0; Theorems 4.13 and §5.2. Here we generalize
these results for more complex patterns.

The time for deciding an intersection/union of manifolds is the sum of the time
of deciding the manifolds. Since a manifold is a finite ∪∩-combination of simple
manifolds, in what follows we only treat the case of simple manifolds. We restrict
ourselves to those patterns in {k,H}∗ or {k,H, P}∗ which are the patterns related
to natural constructions. First we have to address the auxiliary problem of deciding
patterns.

C.1 Time for Patterns

C.1.1 Automata over Monoids for Rational Sets

Let us introduce some notation. We call the elements x ∈ ζ∗a string vectors. Recall
that we extended length to string vectors by |(x1, . . . , xa)| = max{|x1 |, . . . , |xa |}. We
introduce the norm ‖x‖ = ‖(x1, . . . , xa)‖ =

∑a
i=1 |xi |, where |xi | is the length of xi ∈ ζ∗.

Note that ‖x · x′‖ = ‖x‖ + ‖x′‖. Notice also that a comparison between two strings,
x=?y, x, y ∈ ζ∗ can be made in min{|x |, |y |} steps, because if x = x1 · · · xn, xi ∈ ζ
and y = y1 · · · ym, yi ∈ ζ , then we have to check whether x1=

?y1, x2=
?y2, . . . until one

of the strings finishes. Equally the comparison of two string vectors x, y ∈ ζ∗a can be
made in min{‖x‖, ‖y‖}. The notions of prefix and suffix generalize for string vectors:
consider x, y ∈ ζ∗a; we say that y is a prefix of x if there is a z ∈ ζ∗a such that x = yz,
and y is a suffix of x iff x = zy. However, and importantly, differently to free monoids,
a vector string can have several prefixes and suffixes z with |z | = 1. For example the
vector (α, β) has three (non-trivial) prefixes of length 1: (α, 1), (1, β), (α, β).

283
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In order to determine the running time of the problem S ∈? W for a given syntagma
S and a given manifold W , which will be done in the next sections, we need to know
before the running time for deciding the problem x ∈? Γ in terms of the norm ‖x‖. We
will suppose that patterns are given decomposed in basic patterns. The length of the
pattern is the length of its decomposition.

We saw that patterns are a particular case of rational sets, see Remark 3.4.1 Similarly
to regular languages, the class of rational sets coincides with the class of sets which are
accepted by a (non-deterministic) finite automaton over M . These automata are a direct
generalization of automata over a free monoid, but now the transitions are labeled by
elements of the monoid M .

Theorem C.1. A subset of a monoid M is rational if and only if it is accepted by a
finite automaton over M .

Proof. See (Sakarovitch, 2009). �

We can construct an automaton accepting a pattern in Rat(ζ∗a). In fact the general
construction is very simple. Given the pattern Γ =

∏k
i=1 Γi we take the automaton

with states {1, . . . , k + 1}. If Γi ∈ M, with Γ = {ϕi,1, . . . , ϕi,n}∗, the state i has n loop
transitions labeled with ϕi, j , see Fig. C.1(a), and we add the trivial or identity transition
(1)a from i to i + 1. If Γi ∈ k with Γi = {ϕi}, we add the transition ϕi from i to i + 1,
see Fig. C.1(b). 1 is the initial state and k + 1 is the state of acceptance.

General non-deterministic automata can also be determinized as in the case of
automata over free monoids. However, differently to standard automata, even when
the automaton is deterministic, this does not guarantee a deterministic computation
(also called unambiguous computation). Consider the pattern {(α, α), (β, β)}∗(1, α).
The automaton of Fig. C.1(c) accepts this pattern and it is deterministic, however the
computation is in general not deterministic. This is because, for example, the string
vector (α, α) has two possible prefixes of length 1: (α, α) itself and (1, α).

In general the problem of deciding whether a vector string belongs to a given pattern
is not harder than NP. We cannot rely on automata in order to decide in polynomial time
the problem x ∈? Γ. However for patterns involved in natural language constructions
the problem turns out to be polynomial. We devote the rest of the appendix to this.

C.1.2 Time for Patterns in {k,H, P,G}∗

Weare going to showan algorithm running in polynomial time for patterns in {k,H, P,G}∗,
i.e. the monoids are homogeneous, generalized homogeneous or pivoting, see defini-
tions in Example 3. Recall that H ⊆ G.

1The class of rational sets over a monoid M , Rat(M), is the least class of subsets of M such that it is
closed by union, product and the star operator.
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Figure C.1: (a) and (b) transitions of an automaton which accepts a pattern; (c) deterministic
automaton on ζ∗2 for a pattern which exhibits non-deterministic computations.

Lemma C.2. If Γ is a basic pattern Γ ∈ k ∪ G ∪ P, then the problem x ∈? Γ can be
solved in linear time O(n), where n = ‖x‖.
Proof. Let us first consider the easiest case Γ ∈ k. There is a ϕ such that Γ = {ϕ} and
then x ∈ Γ ⇐⇒ x = ϕ. The problem x=?ϕ can be solved in constant time ‖ϕ‖.

Now consider the case Γ ∈ G and let Γ = {ϕ1, . . . , ϕg}∗. Notice, first, that when the
arity is a = 1 the problem is clearly linear. We factorize x in prime factors x = x1 · · · xn
and then we check that each xi ∈ {ϕ1, . . . , ϕg}. So we need |x | steps. However monoids
in G behave very similarly to patterns with arity 1, since they have all the components
equal. Thanks to this we only have to check the first component. For a homogeneous
vector we have that ‖(x)a‖ = a|x |, and the time is ‖x‖/a.

Finally consider the case Γ ∈ P. Then Γ = 1 ⊕ ξ∗ Since the first component is 1 we
can ignore it, and then the problem is trivial. �

Now we see the general problem:

Theorem C.3. Given a pattern Γ ∈ {k,H,G, P}∗, the problem x ∈? Γ can be solved in
polynomial time O(na(k−1)+1), where n = ‖x‖, a is the arity, and k is the length of the
given decomposition of Γ.

Proof. First consider the problem of splitting a string. Given x ∈ ζ∗ with length |x | = n,
the number of ways of splitting the string x in k substrings, x = x1 · · · xk, is given by the
number Pk(n) in basic combinatoric theory which is equal to the number of partitions
of a number n in k ordered non-negative integers.2 For example P2(3) = 4 because
3 = 0 + 3 = 1 + 2 = 2 + 1 = 3 + 0. The following expression counts and bounds it:

Pk(n) =
(
n + k − 1

k − 1

)
=
(n + k − 1)!
(k − 1)!n!

=
1

(k − 1)! · (n + k − 1) · · · (n + 1)︸                      ︷︷                      ︸
k−1 products

≤ (n + k − 1)k
(k − 1)! ≤ (n + k)k−1.

2See for example (Comellas et al., 1996).
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Notice that we allow that some substrings be empty (i.e. the identity element 1 ∈ ζ∗).
Now consider the same problem but with the vector string x ∈ ζ∗a, which means

splitting every component in k substrings. Since we have a components the number
now is Pk(n1) · · · Pk(na) where ni is the length of the i-component of x. Notice that
ni ≤ n1 + · · · + na = ‖x‖ = n and then we have:

Pk(n1) · · · Pk(na) ≤ Pk(n) · · · Pk(n) = Pk(n)a ≤ (n + k)(k−1)a.

Now we consider the question in hand, x ∈? Γ. We assume that Γ = Γ1 · · · Γk is
given already decomposed in k basic patterns. Then we split x in k sub-vector-strings
x = x1 . . . xk . For each decomposition and for each factor xs, s = 1, . . . , k we check if
xs ∈ Γs. If we have that x1 ∈ Γ1, . . . , xs ∈ Γs for at least one of these decompositions,
then x ∈ Γ. If not x < Γ.

Now we have only to calculate the time. We known from the above lemma that
the problem x ∈? Γ when Γ is a basic pattern can be solved in O(‖x‖). So checking
that xs ∈ Γs for all s = 1, . . . , k, consumes ‖x1‖ + · · · + ‖xk ‖ = ‖x‖ = n, so the time
complexity is O(n).

Since this must be done for all the decompositions, we have to perform (n+k)(k−1)a×
O(n) steps. That is O((n + k)a(k−1) · n) = O(na(k−1)+1). �

Notice in addition that:

Corollary C.4. The proof of the above theorem defines an algorithm which gives in
fact all the possible decompositions of x = x1 · · · xk with xi ∈ Γi, where the Γi are the
basic patterns of the decomposition of the pattern, Γ = Γ1 · · · Γk .

Proof. Trivial. �

C.2 General Algorithm for Manifolds

First we are going to see an algorithm for the general problem S ∈? W which will serve
next sections. Let W = Synt

(B
Γ

)
be a manifold with arity a and let S ∈ Synt be a

syntagma. Consider the pseudo-code in Fig. C.2. We make some comments. We have
used the set (Spt(S)t {N})a, where N is an auxiliary symbol not in Spt(S). This symbol
represents any possible null locus.

The inputs are the syntagma S and the manifold W given by the valuation B and the
pattern Γ. The syntagma is given just on the support S : Spt(S) −→ Σ, (for example as a
table). The pattern Γ =

∏k
i=1 Γi is given already decomposed in a list Γ = (Γ1, . . . , Γk).

The x is a vector x = (x1, . . . , xa) ∈ (Spt(S) t {N})a. The command for each is a
loop which cycles through all the possible (Spt(S) t {N})a, so the loop cycles (|S | + 1)a
times.

Within this loopwedifferentiate twopossible cases: x ∈ (Spt(S))a and x < (Spt(S))a,
i.e. x contains some N in its components or not. The second case invokes the function
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OUTSIDES,Γ(x) which we define later. Finally the SN : Spt(S) t {N} −→ Σ+ is the
mapping defined as SN(x) = S(x) provided x , N, and SN(N) = 0. We use the
abbreviation for the vector SN(x) =

(
SN(x1), . . . , SN(xa)

)
.

Definition C.5. Suppose that xi1, . . . , xit are all the t > 0 components of x ∈ (Spt(S) t
{N})a which are N, in particular x < (Spt(S))a. Given a subset Y = {yi1, . . . , yit } ⊆ ζ∗
with the same indexation as xij , we define the vector (x |Y )which consists in substituting
all the xis = N by the corresponding yis ∈ Y for each s = 1, . . . , t.

The function OUTSIDES,Γ(x) returns 1 if there is a Y = {yi1, . . . , yit } ⊆ Spt(S) such
that S(yi1) = . . . = S(yit ) = 0 and such that (x |Y ) ∈ Γ, otherwise OUTSIDES,Γ(x) = 0.3

Theorem C.6. The above algorithm, GENERAL_ALGORITHM_FOR_RECOGNITION_OF
_MANIFOLD indeed works provided that OUTSIDES,Γ(x) can be computed.

Proof. A first attempt to solve the problem consists in considering all the vectors
x ∈ Spt(S)a. If x ∈ Γ then we have to check if the syntagma satisfies the valuation B in
the locus x. This is indeed the first if inside the loop of the algorithm.

However this does not consider the possible null loci. Furthermore, there are infinite
null loci. However, we notice that we do not need to take account each null locus. We
only need to know if there is some vector in Γ for which some of the components are
null in S. In fact, we do not need to know these null loci, but just the existence. This is
because the valuation only evaluates elements of (Σ+)a, not loci.

The second if in the loop considers this possibility. So we represent with a N a
possible null locus. Then we check if given x ∈ (Spt(S) t {N})a, we can substitute the
N’s by adequate null loci for S, i.e. (x |Y ) which in addition satisfies that (x |Y ) ∈ Γ.
This is done by the function OUTSIDES,Γ(x). When this is the case, we can evaluate
whether the syntagma satisfies the valuation, i.e. whether B

(
SN(x)

)
= 1. This vector

SN(x) makes null all the N’s. �

C.3 Time for Manifolds with Type in {k,H,G}∗

When the monoids are in Γ ∈ {k,H,G}∗ we can develop an algorithm and calculate
the running time for the function OUTSIDE. Since the calculations can be a bit involved
we consider first that patterns are unambiguous and that syntagmata are non-elliptic. In
the end we will incorporate the general features.

First we see the case OUTSIDES,Γ(x) when x , (N)a and then we will see the other
case x , (N)a.

We will need a technical trick. Patterns in {k,H,G}∗ have the property that one can
reconstruct all the components of an element from a given component. Consider for
example the pattern of arity 2, (α, β)(α, α)∗ ∈ kG. If the first component is α5 then the
second component is βα4.

3We named it “outside” because it consider loci outside the syntagma.
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program GENERAL_ALGORITHM_FOR_RECOGNITION_OF_MANIFOLD
read S, B, Γ;
for each x ∈ (Spt(S) t {N})a do

evaluate x ∈? (Spt(S))a;
if x ∈ (Spt(S))a then

evaluate x ∈? Γ;
if x ∈ Γ then

evaluate B
(
S(x)

)
=? 1;

if B
(
S(x)

)
= 1 then

continue;
else print S < W ; haltprogram;
endif;

else continue;
endif;

else evaluate OUTSIDES,Γ(x) =? 1;
if OUTSIDES,Γ(x) = 1 then

if B
(
SN(x)

)
= 1 then continue;

else print S < W ; haltprogram;
endif;

else continue;
endif;

endif;
endfor;
print S ∈ W ;

endprogram;

Figure C.2: general algorithm for recognition of a manifold W = Synt
(B
Γ

)
which calls the

function OUTSIDES,Γ.
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We recall that the (algebraic) j-th projection is the mapping: π j : ζ∗a −→ ζ∗

π j(x1, . . . , xa) = x j . We also recall that a decomposition of a pattern Γ = Γ1 · · · Γk is
unambiguous iff every x ∈ Γ factorizes in a unique form with k factors in Γi.

Lemma C.7. Consider Γ ∈ {k,H,G}∗ with arity a and an unambiguous factorization
Γ = Γ1 · · · Γk . Suppose that x ∈ Γ. Given a component of x, say x j , we can reconstruct
the rest of the components in time O(na(k−1)+1), where n = ‖x‖.
Proof. We suppose x j ∈ ζ∗ given. We take the pattern given by the projection π j(Γ) =
π j(Γ1) · · · π j(Γk). This pattern has arity 1, but, in any case, we can apply the algorithm
of the proof of Theorem C.3 which in addition yields a factorization of this component
x j = x j,1 · · · x j,k in terms of the basic patterns, i.e.: x j,1 ∈ π j(Γ1), . . . , x j,k ∈ π j(Γk). All
this take O(na(k−1)+1) steps, see Corollary C.4. This factorization is unique since the
decomposition of Γ = Γ1 · · · Γk is unambiguous.4

Now we consider any other component of x, say xi. This component factorizes
as xi = xi,1 · · · xi,k in terms of the basic patterns, i.e.: xi,1 ∈ πi(Γ1), . . . , xi,k ∈ πi(Γk).
Our goal is to reconstruct xi,1, . . . , xi,k from the x j,1, . . . , x j,k which we have obtained
in the above paragraph. With these xi,1, . . . , xi,k we can multiply and then obtain xi =

xi,1 · · · xi,k .
Recall that Γ ∈ {k,H,G}∗ by assumption. For each s = 1, . . . , k we distinguishes

two cases:

• Suppose that Γs ∈ k, say Γs = {ϕs}. Then we can reconstruct immediately
xi,s = πi(ϕs). This takes constant time, O(1).

• Suppose that Γs ∈ G (which contains the case H ⊆ G). Since Γs is homogeneous
all the components are equal. An then xi,s = x j,s. This also takes constant time,
O(1).

If we do this for each s = 1, . . . , k we can reconstruct xi = xi,1 · · · xi,k which takes time
O(k). Thus the total time is O(na(k−1)+1) + O(k) = O(na(k−1)+1). The two cases above
reconstruct unequivocally xi from the decomposition of x j which, we recall, is unique.
This proves that the reconstruction (x1, . . . , xk) is really x. �

We note that the condition of unambiguity is not really necessary to obtain a poly-
nomial time. However, allowing ambiguous patterns increases the time since we have
to repeat calculations for each possible factorization. Notice that the number of possible
factorizations of an x ∈ Γ is bounded by O(‖x‖a(k−1)+1). So in the case of ambiguity
the algorithm would take time: O(na(k−1)+1) + O(na(k−1)+1) ×

(
O(na(k−1)+1) + O(n)

)
=

O(n2a(k−1)+2).
4Let us see this in more detail. Since the decomposition of Γ is unambiguous, for each x ∈ Γ it

decomposes in a unique way as x = x1 · · · xk (here the superscripts are indexes, not exponents). Then
the j-th component of x, i.e. xj , decompose in a unique way as xj = πj(x1) · · · πj(xk) = xj,1 · · · xj,k ,
where the xj,s are the j-th component of xs .
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LemmaC.8. Consider a non-elliptic syntagma S with |S | = n, a pattern Γ ∈ {k,H,G}∗
with arity a, length k, and with an unambiguous decomposition. Consider x ∈ (Spt(S)t
{N})a, x < (Spt(S))a such that x , (N)a. Finally let xi1, . . . , xit be the components of x
which are N’s. Then:

(i) there is a unique possible set Y = {yi1, . . . , yit } ⊆ ζ∗ such that (x |Y ) ∈ Γ;

(ii) the function OUTSIDES,Γ(x) with x , (N)a can be computed in time O(na(k−1)+1).

Proof. The condition x , (N)a implies that x contains at least one component x j , N.
So by the last Lemma C.7 we can reconstruct all the components from x j , and this is
the unique possibility. So we have already proved (i). Doing this takes O(‖x j ‖a(k−1)+1)
steps. However x j ∈ Spt(S), and then ‖x j ‖ ≤ d < n, where d is the depth of S and n is
the size of S. So the time is bounded by O(na(k−1)+1).

Let us see (ii). In order to calculate the time of OUTSIDES,Γ(x) we have to obtain
the set Y and then we have to check that (a) (x |Y ) ∈? Γ (which takes O(na(k−1)+1) by
the above paragraph) and that (b) S(y) =? 0 for each y ∈ Y (which is done in time
t·n ≤ (a−1)·n = O(n), since every checking S(y)=?0 consumes at most n steps). 5 If both
are true then OUTSIDES,Γ(x) = 1, otherwise OUTSIDES,Γ(x) = 0. So we have to sum
the time to obtain Y (which takes O(na(k−1)+1)) with the time to check (a) (which takes
O(na(k−1)+1)) and (b) (which takes O(n)). That is: O(na(k−1)+1)+O(na(k−1)+1)+O(n) =
O(na(k−1)+1). �

Lemma C.9. Consider a syntagma S with |S | = n, a pattern Γ ∈ {k,H,G}∗, and
x = (N)a. Then we have:

(i) if Γ < kp for any p ≥ 0, then OUTSIDES,Γ(x) = 1;

(ii) if Γ ∈ kp for some p ≥ 0 then:

OUTSIDES,Γ(x) = 1 ⇐⇒ S(ϕ1) = · · · = S(ϕa) = 0,

where Γ = {(ϕ1, . . . , ϕa)} ∈ kp.

So the function OUTSIDES,Γ(x) with x = (N)a can be calculated in linear time O(n).

Proof. Let the decomposition of Γ be Γ = Γ1 · · · Γk and a its arity. Consider (i). We
suppose that Γ < kp for any p ≥ 0; then there is a non-trivial monoid Θ ∈ G such that
Γ = Γ′ΘΓ where Γ′, Γ′′ are patterns. Since Θ ∈ G is generalized homogeneous and
non-trivial, there is an element (φ)a = (φ, . . . , φ) ∈ Θ, such that (φ)a , (1)a. Now we
take any ϕ′ ∈ Γ′ and ϕ′′ ∈ Γ′′. Consider the vector y = ϕ′ ·

(
(φ)a

)d+1 ·ϕ′′ ∈ Γ′ΘΓ′′ = Γ.
It easy to check that any component of y has length greater than d + 1. If we take d

5Checking (a) is necessary because we have reconstructed only the N components. However non-N
components could make (x |Y ) not be in Γ.
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the depth of S, then for every component of y = (y1, . . . , ya) we have that S(yi) = 0.
So we have proved that we can substitute all the N’s in x (that is, all the components)
by Y = {y1, . . . , ya} in such a way that (x |Y ) ∈ Γ and S(y1) = · · · = S(ya) = 0. So
OUTSIDES,Γ(x) = 1.

Let us see (ii). We suppose Γ ∈ kp for some p ≥ 0. Then Γ is a constant, say
Γ = {(ϕ1, . . . , ϕa)} ∈ kp. The only possible substitution of the N components is this
vector Γ = {(ϕ1, . . . , ϕa)}. So in this case: OUTSIDES,Γ(x) = 1 ⇐⇒ S(ϕ1) = · · · =
S(ϕa) = 0.

Now using (i) and (ii) we can build an algorithm for OUTSIDES,Γ(x) when x = (N)a
and Γ ∈ {k,H,G}∗. First we solve Γ ∈? kp for some p. This can be done in k steps.
In fact this p must be k, the length of Γ. Since we have Γ decomposed in its factors,
we only have to check if all the factors are constant or not. If Γ < kp we are done and
OUTSIDES,Γ(x) = 1. If Γ ∈ kp then we have to check whether S(ϕ1)=?0, . . . , S(ϕa)=?0,
which can be calculated in |ϕ1 |n + · · · + |ϕa |n = ‖ϕ‖n steps. So the total time is, in the
worst case, k + ‖ϕ‖n. �

Corollary C.10. Consider a non-elliptic syntagma S with |S | = n, a pattern Γ ∈
{k,H,G}∗ with arity a, length k and with an unambiguous decomposition. Consider
x ∈ (Spt(S) t {N})a but x < Spt(S). Then OUTSIDES,Γ(x) can be computed in time
O(na(k−1)+1).

Proof. We use the previous lemmas. Fig.C.3 shows pseudo-code. First we check x =?

(N)a. This can be solved in a steps. If x , (N)a then we apply the first Lemma C.8
where the time is O(na(k−1)+1). If not, we apply the second Lemma C.9 where the time
is linear O(n). So, in either case, the worst time is O(na(k−1)+1). �

Joining the previous lemmas we are equipped to come back to the problem S ∈? W .

Theorem C.11. Let W = Synt
(B
Γ

)
be a manifold with Γ ∈ {k,H,G}∗ with arity a,

length k and with an unambiguous decomposition. The problem S ∈? W for a non-
elliptic syntagma S can be computed in time O(nak+1).

Proof. We take the general algorithm from Fig.C.2. The central loop cycles (n + 1)a
times. We have two basic computations in this loop. We evaluate x ∈? Spt(S)a which
can be done in a steps. When x ∈ Spt(S)a in the worst case in each loop we have to
evaluate x ∈? Γ and B(S(x))=?1.

By assumption Γ ∈ {k,H,G}∗; then by Theorem C.3 the evaluation x ∈? Γ takes
time O(‖x‖a(k−1)+1). We can bound ‖x‖ in terms of the size of S, i.e. n. Consider
x = (x1, . . . , xa), where x1, . . . , xa ∈ Spt(S), |xi | ≤ d, and where d is the depth of the
syntagma. Since d < n, where n = |S |, ‖x‖ = ∑a

i=1 ‖xi‖ ≤ ad < an. So the time is less
than O

(
(an)a(k−1)+1) = O (

na(k−1)+1) .
Regarding the second evaluation B(S(x))=?1, this is the same as searching for the

vector S(x) = (S(x1), . . . , S(xn)) in a finite and fixed set B−1(1). Since B−1(1) ⊆ Σa, the
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function OUTSIDE

input S, Γ, x;
evaluate x =? (N)a
if x = (N)a then

calculate Y ;
calculate (x |Y );
if ∀y ∈ Y, S(y) = 0 and (x |Y ) ∈ Γ then

return 1;
else

return 0;
endif

else

p := length of Γ;
evaluate Γ ∈? kp;
if Γ < kp then

return 1;
else

(ϕ1, . . . , ϕa) := Γ;
if S(ϕ1) = · · · = S(ϕa) = 0 then

return 1;
else

return 0;
endif

endif

endif

endfunction;

Figure C.3: algorithm for the function OUTSIDES,Γ(x); the set Y is the unique possible set such
that (x |Y ) ∈ Γ.
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time is bounded by va steps where v = |Σ |, i.e. constant time.6 Thus when x ∈ Spt(S)a
the computation takes time bounded by O

(
na(k−1)+1) .

Consider now x < Spt(S)a; first we have to calculate the function OUTSIDES,Γ(x)
which takes time O(na(k−1)+1) by the last corollary, and second we have to calculate
B
(
SN(x)

)
which runs in constant time.7 So the loop consumes O(na(k−1)+1) steps.

So in both cases the time is O(na(k−1)+1). Since the general loop cycles (n + 1)a
times, the total time is (n + 1)a × O(na(k−1)+1), that is O(nak+1). �

There remains the general problem where syntagmata can be elliptic and patterns
can be ambiguous:

Theorem C.12. Manifolds with type in {k,H,G}∗ and with effectively bounded ellip-
ticity ε are decidable. In particular, if ε is a polynomial, the time is polynomial.

Proof. First we generalize the problem for possibly elliptic syntagmata S, with |S | = n,
depth d = depth(S), and e = |Ell(S)| ellipses. By assumption the ellipticity of each
syntagma is bounded by a computable function ε(n), e ≤ ε(n). In the previous theorems
and lemmas we have used the inequality d < n. When the syntagma is elliptic this
inequality generalizes as d < n + e ≤ n + ε(n) (Lemma 2.6). So all the bounds can
be generalized and the bound for the last theorem becomes O((n + ε(n))ak+1). We
commented just after Lemma C.7 that it also works for ambiguous patterns, but with
time O(n2a(k−1)+2), or assuming elliptic syntagmata, O((n + ε(n))2a(k−1)+2). We can
remake the calculations of the last proof to obtain the bound O(na(n + ε(n))2a(k−1)+2).
When ε is a polynomial, this bound is also a polynomial. �

C.4 Time for Manifolds with Type in {k, P,H,G}∗

We solve the problem for manifolds with homogeneous (H,G) and pivoting (P) types
with the condition that the valuation is neutral:

Definition C.13. We say that a boolean function is neutral iff

B(x1, . . . , xi, 0, xi+1, . . . , xa) = 1,

for every i = 1, . . . , a and for any x1, . . . , xi, xi+1, . . . , xa ∈ Σ+. That is, if whenever
some input is null, B returns the true value.

Theorem C.14. Let Γ be a pattern in {k,H,G, P}∗ and let W = Synt
(B
Γ

)
be a manifold

such that the valuation B is neutral. The problem S ∈? W can be solved in timeO(nak+1),
where n is the size of S, a is the arity, and k is the length of the given decomposition of
the pattern Γ.

6The value v is constant and thus va is constant although large.
7We construct the vector with components S(xj) when xj , N and 0 otherwise, i.e. SN(x), and then

evaluate B which is done in constant time va.
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program RECOGNITION_OF_MANIFOLD_WITH_NEUTRAL_VALUATION
read S, B, Γ;
for each x ∈ (Spt(S))a do

evaluate x ∈? Γ;
if x ∈ Γ then

evaluate B(S(x)) =? 1;
if B(S(x)) = 1 then continue;
else print S < W ; haltprogram;
endif;

else continue;
endif;

endfor;
print S ∈ W ;

endprogram;

Figure C.4: algorithm for recognition of a manifold W = Synt
(B
Γ

)
with B neutral valuation.

Proof. By definition a neutral valuation always returns 1 when some component is
null. If we consider the second part in the loop of the GENERAL_ALGORITHM_FOR_
RECOGNITION_OF _MANIFOLDwe realize that we do not need to evaluate it for these val-
uations, because B

(
SN(x)

)
= 1 always. So we do not need the function OUTSIDES,Γ(x).

Furthermorewe can rewrite the general algorithmwithout the N symbol, see the pseudo-
code in Fig. C.4. Regarding the time, the loop cycles a times the evaluations x ∈? Γ and
B(S(x))=?1. We see in the proof of Theorem C.11 that this takes time O

(
na(k−1)+1) , so

the total time is O
(
nak+1) . �

Example 38. Neutral valuation. We have seen several examples in which the valuation
is neutral. In general all the morphological agreements can be taken to be neutral. Consider
the gender agreement of a noun and its adjective in Romance languages, given by a valuation
B : Σ2 −→ Σ. When there is no adjective, the valuation must consider the pair (noun, 0).
Since adjectives are optional we must take B(noun, 0) = 1, otherwise the syntagma is
not valid in the manifold. However, even if the adjective was obligatory one could take
B(noun, 0) = 1 because it would never be the case. Similar considerations allow us to take
B(0, adjective) = 1.

However the constraints in a grammar which control valence, or in general the flow of
functions in a syntagma, must consider null loci in their valuations. For example a transitive
verb disallows a null locus Ob, and in consequence the valuation returns the false value
when one of the components is null.
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