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Der Zustand der gesamten menschlichen Moral lässt sich in zwei Sätzen
zusammenfassen: We ought to. But we don’t.

Kurt Tucholsky
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thèse!
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Stelle wäre. Mutti, Papi, Martin, Alex und beide Omis und Opas, danke für
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Me gustaŕıa dar las gracias a Vı́ctor Guallar y Jordi Mestres por el tiempo
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Contents

1 Introduction 3

Bibliography 6

2 Materials & Methods 9

2.1 Proteins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.1 Amino acid . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.2 Primary Structure . . . . . . . . . . . . . . . . . . . . . 10

2.1.3 Secondary Structure . . . . . . . . . . . . . . . . . . . . 10

2.1.4 Tertiary Structure . . . . . . . . . . . . . . . . . . . . . 12

2.1.5 Quaternary Structure . . . . . . . . . . . . . . . . . . . 12

2.1.6 Intrinsically Disordered Proteins . . . . . . . . . . . . . 13

2.1.7 Experimental methods for protein structure determination 13

2.1.8 Molecular surface . . . . . . . . . . . . . . . . . . . . . . 15

2.1.9 From structure to function . . . . . . . . . . . . . . . . 17

2.2 Molecular simulations . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.1 Classical Mechanics & force fields . . . . . . . . . . . . . 18

2.2.2 Molecular mechanics and dynamics . . . . . . . . . . . . 21

2.3 Protein pocket prediction . . . . . . . . . . . . . . . . . . . . . 23

2.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3.2 Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3.3 Pocket Identification Strategies . . . . . . . . . . . . . . 25

2.3.4 Current pitfalls . . . . . . . . . . . . . . . . . . . . . . . 29

2.3.5 The fpocket project . . . . . . . . . . . . . . . . . . . . 31

2.4 Transient pocket and channel prediction . . . . . . . . . . . . . 33

2.4.1 Small molecule binding sites . . . . . . . . . . . . . . . . 33

2.4.2 Ligand migration channels . . . . . . . . . . . . . . . . . 33

2.5 Pocket characterization . . . . . . . . . . . . . . . . . . . . . . 36

2.5.1 Definition of druggability . . . . . . . . . . . . . . . . . 36

2.5.2 Controversy on the term ”Druggability” . . . . . . . . . 37

2.5.3 Definition of ”non-druggable” . . . . . . . . . . . . . . . 38

2.5.4 Prediction of druggability . . . . . . . . . . . . . . . . . 38

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

1



2 CONTENTS

3 Results and Discussion 51
3.1 Prediction of protein druggability . . . . . . . . . . . . . . . . . 52

3.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 52
3.1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.1.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Paper 1: Understanding and Predicting Druggability. A High-Throughput

Method for Detection of Drug Binding Sites . . . . . . . . . . . 69
3.2 Structure kinetics relations . . . . . . . . . . . . . . . . . . . . 87

3.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 87
3.2.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . 89
3.2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Paper 2: Shielded Hydrogen Bonds as Structural Determinants of

Binding Kinetics. Application in Drug Design. . . . . . . . . . 99
3.3 Pocket prediction on proteins in motion . . . . . . . . . . . . . 145

3.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 145
3.3.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . 146
3.3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
Paper 3: MDpocket : Open Source Cavity Detection and Character-

ization on Molecular Dynamics Trajectories . . . . . . . . . . . 157
Paper 4: fpocket: online tools for protein ensemble pocket detection

and tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
3.4 Pocket Database & Applications . . . . . . . . . . . . . . . . . 183

3.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 183
3.4.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . 185
3.4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
3.5 The Pocketome . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

3.5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 199
3.5.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . 200
3.5.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
3.5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

4 Conclusions 223

5 Appendix 227
Paper 5: Fpocket: An open source platform for ligand pocket detection229
Book Chapter: Druggability Prediction . . . . . . . . . . . . . . . . 241
Paper 6: Large-Scale Comparison of Four Binding Site Detection Al-

gorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
Paper 7: Structural Plasticity and Functional Implications of Internal

Cavities in Distal Mutants of Type 1 Non-Symbiotic Hemoglobin
AHb1 from Arabidopsis thaliana . . . . . . . . . . . . . . . . . 275



Chapter 1

Introduction

3



4 CHAPTER 1. INTRODUCTION

Observe, learn, predict; these are the three main steps for most scientific
discovery processes, especially in biological sciences. We gradually learn and
accumulate knowledge about a subject of interest. Once this knowledge is suffi-
ciently abundant we are likely to derive a theory, or a model explaining what we
observe. Ultimately, these theories and models are used to predict and classify
new observations. Among other famous examples of such a typical scientific
process, the theory of evolution by Charles Darwin.

Modern biomedical research follows very similar principles on a different scale.
It is a very active field at the interface between basic and advanced applica-
tive research linking biological observables to medical outcomes. Several new
experimental techniques appeared during the last century helping in this com-
plex endeavour. However, two events changed modern biomedical science and
our everyday life profoundly in the last century, the introduction of mainstream
computing and the development of a global network between computers, the in-
ternet. Computers have been used since the 1960s in research, but initial cost
was prohibitive and calculation power limited. Today, average smartphones
have a peak performance that is around 10 times higher than a Cray-1, a 5.5
tons weighting supercomputer in the 1970’s. If Darwin had wanted to discuss
and share his notes with several researchers in different places in the world he
would probably have lost precious years for doing actual investigation. Today,
the internet allows to send tremendous amounts of data nearly instantaneously
to other parts of the world making research globally accessible. Ultimately,
very much like Darwin’s notebook at the time, modern data storage solutions
allow to gather and organise together an unimaginable amount of biological
observables. In order to analyse this data, whole new scientific disciplines have
seen the day, like bio-informatics, systems biology and chemo-genomics. These
disciplines try to analyse, learn and interpret this data to derive theories and
models to predict biological outcomes. The work presented in this thesis is
situated on the intersection of these three disciplines.

The protein data bank

A data collection of particular importance for this work is the Protein Data
Bank (PDB) [Berman et al., 2000]. In this data bank a multitude of macro-
molecular structures, mostly of biological interest, is stored and organised. The
PDB was born in the 1970s with the appearance of several crystal structures of
proteins. Crystallography had indeed made tremendous advances for solving
protein 3D structures [Perutz, 1970]. Today, over 60.000 protein crystal struc-
tures are available in the PDB, accessible via the internet.
Such structures are very complex and difficult to analyse and still there is a
substantial amount of information than can not be understood. This problem
is very similar to fields like genomics. Improvements in sequencing techniques
make is possible to retrieve a genome sequence of a whole organism very rapidly.
However, the information is so complex and so abundant that analysing this
data alone is a field of investigation on its own.
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An important part of my work intends to analyse protein structures (observe),
derive theories (learn) and use them to predict several properties on a global
scale (predict) throughout the PDB. A particular focus is set on applications in
structure based target discovery and characterisation for drug design purposes.

Drug discovery

In industrialized countries we are used to have access to medical treatments
against diseases like hypertension, cancer or AIDS. What is less commonly
known is the process, time and amount of work behind the little pill taken
every day by some people. Usually more than ten years separate an initial
discovery of a target to a final drug on the market. During this time several
steps are more or less recursively followed.
Starting with a disease of interest, first steps intend to isolate possible targets,
proteins, that either cause a disease or could alter the outcome of a phenotype
linked to the disease. Once such a target is identified, validated and assays
are set up, the search for small molecules begins. Several techniques, both
experimental and computational are employed to discover so-called hits, small
molecular prototypes showing weak potency to the investigated targets. These
molecules are then further optimised to so-called leads. In pre-clinical stages
the ADMET properties and pharmacokinetic profiles of the selected compounds
are investigated in in-vitro and in-vivo assays. Finally, during clinical trials
compounds are tested in humans for efficacy and toxicity before entering the
market.
The work presented in this thesis is intimately linked to various of these steps
in drug discovery. Two contributions in this thesis specially focus on the char-
acterisation of proteins as pharmaceutical targets. A third work in this thesis
is shown to have possible applications in hit-to-lead optimisation and lead op-
timisation processes. The last two contributions are related to a manifold of
fields during the drug discovery process. Possible applications range from ar-
eas like promiscuity evaluations of a chosen target in the beginning of the drug
discovery process, to the re-use of already existing drugs for different purposes,
drug-repurposing.

Scope of the work in a global project

Several parts of the work presented here can be perceived as independent
projects tackling various issues related to computational drug discovery. How-
ever, this work is also part of a larger project carried out in our research group.
This project is guided by the following observation: Most computational drug
discovery efforts focus on the identification of ligands binding to known active
or binding sites via equilibrium binding. However, it is known that various
successful drugs on the market do not use this precise molecular mechanism of
action [Swinney and Anthony, 2011]. Indeed, other mechanisms of action can
be considered.
Lately, pharmaceutical industry became more involved in the investigation of
protein-protein complexes. The discovery of drug-like molecules inhibiting the
association of proteins shows the potential of pursuing other strategies in drug
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development [Ding et al., 2005].
In our group we are particularly interested in alternative strategies to target
proteins, notably allosteric inhibition, and targeting protein-protein interac-
tions. However, instead of inhibiting an association of two proteins, another
possible strategy can be to stabilise the interaction. As a matter of fact, a few
known small molecules, such as brefeldin A [Renault et al., 2003] and rapamycin
[Liang et al., 1999] act as protein-protein stabilisers. Despite this observation
protein-protein stabilisation is currently subject of very moderate research.
To prove that this strategy is of therapeutic interest and feasible, my task
consisted in systematically mining the Protein Data Bank for protein-protein
complexes that could potentially be stabilised via the action of a drug-like
molecule. To do this, a new method had to be developed and a purpose built
data-base was designed. Subsequently, the identified targets will be further
analysed by other members of our research group using a sophisticated target
assessment method developed in-house. Once the potential targets further val-
idated with this method, virtual screening will be performed, docking a library
of compounds to the potential binding sites. Last, the identified compounds are
purchased and tested experimentally for their ability to stabilise the interaction
between both protein partners.

Accessibility of research

A very important aspect in modern research is communication. This commu-
nication is mainly facilitated by the internet and permits to share information,
new findings and ideas in a very short time.
Areas of research related to a drug discovery are close to applicative outcomes.
For this reason industrial and financial interests hinder free circulation of tools,
ideas and research results in this area. This behaviour is likely to slow down
research and progress [Edwards et al., 2009].
A central aspect of the work presented in this thesis is related to its accessi-
bility. Most of the software and tools are published as open-source software.
Data is made available and can be visualised via other open-source software.
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10 CHAPTER 2. MATERIALS & METHODS

2.1 Proteins

Accounting for around 50% of the dry mass in Escherichia coli [Stouthamer,
1973], proteins play a major role in nature. Often designated as the factories
of the cell, proteins do not only play a functional, but also a structural role.
The study of the protein structure revealed several recurrent motives and pat-
terns. These are often classified into four hierarchical levels further explained
in the following pages.

2.1.1 Amino acid

Amino acids are small molecules constituting the building blocks of proteins.
Composed of an amine group and a carboxylic group they differ in the side
chain they carry on the Ca atom. In total 20 amino acids are encoded in
the genome. Through transcription and translation the information carried
by DNA is transformed into a sequence of amino acids. Amino acids can
polymerize by forming a peptide bond between the carbonyle group of one
amino acid and the amide group of another.

2.1.2 Primary Structure

This first level of protein structure hierarchy is simply the sequence of amino
acids polymerized to a chain of amino acids linked by so-called peptide bonds.
Shorter chains of amino acids are usually called peptides. The term protein
is reserved for polypeptide chains above a given size usually with a precise
function. This structure can be a well defined three dimensional structure
[Lodish et al., 2004], but can also contain disordered regions.
The main chain of the amino acid sequence is composed of atoms constituting
the peptide bond and the C terminal and Ca atom. This ensemble of atoms is
termed backbone, as they constitute the main scaffold of the protein allowing
for its relative structural stability. As previously mentioned, attached to the
backbone Ca are side chains that differ from one amino acid to another. These
side chains are usually more flexible than the backbone.

2.1.3 Secondary Structure

The primary sequence of amino-acids is able to arrange itself in three dimen-
sional structural patterns. These patterns are structurally stabilized by intra-
molecular hydrogen bonds. To form secondary structural motives, these hydro-
gen bonds occur only between backbone atoms, i.e. the oxygen of the peptide
bond carbonyl and the nitrogen of the amide. The three different types of com-
mon secondary structure motives are described in the following paragraphs.

The α helix

An example of an alpha helix is shown on figure 2.1. The helical secondary
structure is a periodic arrangement of hydrogen bonds formed between the
carbonyl oxygen of residue (red) n and the amide nitrogen (blue) of residue
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n+4 on the amino acid sequence. Thus the backbone adopts a spiral fold. α
helices are frequently found in proteins, and they are the main constituent of
trans-membrane domains. In 3D-visualization, secondary structure motives are
often simplified. Instead of representing all atoms of the molecule a simplified
representation is used. Here the semi transparent cartoon representation of the
alpha helix is overlaid. Side chain atoms are shown as transparent sticks. In
the cartoon representation an alpha helix is often represented as a flattened
ribbon.

Figure 2.1: Example of an alpha helical secondary structure motif.

The β sheet

A β sheet is formed when 2 β strands (nearly linear extended backbone) are
placed adjacent to each other allowing hydrogen bonding between the carbonyl
oxygen and amide nitrogen of the backbone of the paired strand. β sheets
are usually composed of strands of 5 residues or more. Figure 2.2 shows an
example of a beta sheet. In the simplified cartoon representation a β strand
is represented as a flat ribbon followed by an arrow indicating the direction of
the amino-acid sequence. Beta sheets tend to be flat, but they can also show
significant deformation to form for instance beta-barrels.

The turn

Turn motives allow very sharp redirections of the polypeptide chain. Usually
built up by 3 to 4 residues, they are stabilized via one hydrogen bond again
between the oxygen and nitrogen of two different residues (the end residues)
of the turn. Proline and glycine residues are frequently found in turn motives.
An example of a turn motif between 2 anti-parallel beta strands is shown on
figure 2.3.
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Figure 2.2: Example of a beta sheet.

Figure 2.3: Example of a turn motif.

2.1.4 Tertiary Structure

The tertiary structure results of the way secondary structures arrange between
each other to form the whole protein/domain. While secondary structural
motives are mainly built up using hydrogen bonds as key interaction, tertiary
structures are stabilised via a multitude of interactions. The main driving
forces for globular protein folding are hydrophobic interactions, but ionic and
hydrogen bonding interactions can also contribute to stabilize the structure.
Furthermore, disulphide bridges can be built between cystein residues of a
protein. Often, this level of hierarchy is the final 3D representation of a protein
used in structural bio-informatics.

2.1.5 Quaternary Structure

The understanding, prediction and exploitation of the protein quaternary struc-
ture is another field of very active research. The quaternary structure corre-
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sponds to the arrangement of two or more polypeptide chains to form a complex
functional super-structure. In such a complex, the same peptide chain can be
represented several times. In such a case the complex is designated as homo-
multimer. If the peptides interacting in such a complex are different they are
called hetero-multimers. A very well known example of a homo-dimer is HIV1-
protease where two identical chains form the so-called biological unit of the
protein. The biological unit describes the form of a protein that is able to fulfil
a given function.

2.1.6 Intrinsically Disordered Proteins

The derivation of hierarchy in a protein structure is heavily based on observa-
tions made by experimental techniques like X-ray crystallography and NMR.
However, these techniques imply that the protein is stable in a given confor-
mational state. Lately, increasing interest is paid in understanding the role
and structure of another category of proteins, loosely designated as intrinsi-
cally disordered proteins or IDP’s. They are characterized by the absence of a
stable secondary and tertiary structure which makes them difficult to observe
experimentally. Nonetheless intrinsically disordered proteins play an impor-
tant biological role [Tsvetkov et al., 2009]. While in this thesis the analysis
is exclusively carried out on ordered proteins, it should be acknowledged that
IDP’s constitute an important separate class of proteins, which are building
ground for a new exciting field of research.

2.1.7 Experimental methods for protein structure deter-
mination

The structure of a protein is crucial to its proper functioning. Knowledge of
this three dimensional structure at an atomistic level can help us understand-
ing structure function relationships, gain mechanistic insights into the role of
the protein and last allow us to use this knowledge to alter or direct a pro-
teins behaviour. Determining a protein structure is a long and expensive pro-
cess. Currently, two main experimental methods are used to determine protein
structure at an atomistic level, X-ray crystallography and NMR. Here basics
of X-ray crystallography are shortly presented, because the work in this thesis
relies substantially on structural information derived from crystal structures.

X-ray crystallography

Kendrew and Perutz were the pioneers of protein crystallography, publishing
the first high resolution crystal structure of myoglobin in 1958. Since that
date, 61683 protein crystals have been solved and deposited in the Protein
Data Bank. Protein crystallography is a very long process, but this is not only
due to methodologies used during structure determination itself. Several other
steps have to be undertaken which are only shortly mentioned herein, but re-
quire substantial amount of time and work. First, the protein of interest has
to be purified. Then, the protein has to be aligned in a rigid array to form
a lattice of millions of repetitions of the same protein. This process is called
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crystallization as this alignment results in a crystal, that can then further be
analysed via techniques shown on figure 2.4. A beam of X-rays is sent through

Figure 2.4: Schematic representation of the extraction of diffraction data via X-ray
crystallography.

the crystal. The crystal scatters, or diffracts, the beam into a specific pattern
of spots with varying intensities that can be captured via various means behind
the crystal. Such a diffraction pattern is shown on figure 2.4 B. This pattern
contains the relative information of atomic positions in space. To reconstruct
the whole 3D structure, the crystal is rotated and several of these diffraction
patterns are recorded.
Next, the series of diffraction patterns are converted to a 3 dimensional model
of electron densities of the protein, as shown in figure 2.4 C. This process is
mathematically very complex and involves different key steps. First each re-
flection is indexed, identifying which peak corresponds to which position in
reciprocal space, accessible via Fourier transformation of the real space. Each
rotation of the crystal during data collection produces one diffraction image. In
a process called merging reflections from one image appearing in another image
are identified. In a subsequent process called scaling, the relative intensities of
the reflections between different diffraction images are optimised.
Practically, for calculating the electron density of a structure from a diffraction
map, the indices of a reflection, the intensity of the spot and the phase an-
gles of each reflection are required. While the first two can be derived directly
from the diffraction plot, the phase angle is not known. Several techniques can
be considered to determine the phase angle. These techniques won’t be cov-



2.1. PROTEINS 15

ered here, but more detail can be found in specialized introductory literature
[Rhodes, 2006].
Once phases have been gathered, an initial atomic model of the molecule can
be built into the electron density map. This model can then be used to cal-
culate a theoretical diffraction pattern to verify how well the model fits the
experimental data. Using various refinement cycles, the accordance between
observed diffraction patterns and the final atomic model is optimised.
Two important parameters to assess the quality of a crystal and a final struc-
tural model are (i) the resolution expressed in Å and (ii) the R-value. The
R-value expresses the accordance between the final model and experimental
structure factor amplitudes derived from the diffraction pattern. The reso-
lution of a structure is a global number expressing how uncertain the atom
positions of the final model are on average, with high numbers corresponding
to low resolution and vice-versa. For example, a resolution of 2.5Å of a crystal
structure yields uncertainties of around 0.4Å on atom positions in the modelled
structure.

Limitations While X-ray crystallography allowed the elucidation of an im-
portant number of macromolecular structures during the past decades, the
technique has also limitations. Given the high impact the publication of the
crystal structure of a protein has, these limitations are not always thoughtfully
considered or even understood, resulting in publication of structures that are
later found to be wrong (http://retractionwatch.wordpress.com).
A major limitation of X-ray crystallography is the fact that the protein has to
be packed in a regular crystal. This process can alter the position of atoms in
the protein and thus modify its shape [Eyal et al., 2005]. Furthermore, crys-
tallization of the protein hinders observation of dynamics of the protein and
provides a rather static image of the protein structure.
The construction of a molecular model into an electron density map is based
on the fitting of atoms into such an electron density cloud. While proteins
are built from a known sequence of amino-acids, which eases the structural
prediction, small organic molecules are more difficult to identify only using the
electron density, as are water molecules [Davis et al., 2003]. This can lead to
misinterpretations of electron density maps and wrong ligand modelling into
binding sites. Furthermore crystallization conditions can affect both protein
and ligand conformation and position. This is particularly problematic for
drug discovery, where the identification of the exact binding pose of a ligand
in a binding site can give important insights into hotspots of the pocket and
hints to further improve the ligand. Thus, before using a crystal structure for
a particular project, uncertainties should be critically assessed.

2.1.8 Molecular surface

Three dimensional macromolecular structures are very complex in terms of
shape and flexibility and various ways exist to describe it. While secondary
structure representations help understanding the main architecture of a macro-
molecule an accurate estimation of the surface of a protein and an interaction
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partner (macromolecule or small molecule) are crucial for understanding un-
derlying concepts of molecular interaction.
Several computational means exist to approximate the molecular surface on
static three dimensional structures. The three main approaches used in the
field are resumed in the following subsections. Figure 2.5 shows schematically
principles of each method.

Figure 2.5: Different surface representations. A: Van der Waals surface, B: Lee-
Richards surface, C: Connolly surface

Van der Waals surface

The van der Waals surface can be calculated by representing each atom by a
sphere and the corresponding van der Waals radius of the atom. This repre-
sentation is also called space-filling diagram and was introduced by [Lee and
Richards, 1971]. It yields a multitude of protein internal interstitial volumes
that are usually inaccessible for solvent molecules like water.

Lee-Richards surface or accessible surface

This surface representation is shown in figure 2.5 B. It is principally a van der
Waals surface but using increased van der Waals radii by an increment corre-
sponding to solvent radii [Lee and Richards, 1971]. For water molecules usually
a radius of 1.4Å is considered. Compared to the simple van der Waals surface,
the accessible surface does not encompass internal interstitial surface patches.
However, the surface still remains slightly over-evaluated, as the surface portion
between two atoms remains inaccessible by another interacting atom.
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Connolly surface or solvent accessible surface

The solvent accessible surface area is related to the accessible surface area
and has been originally refined by Richards and Lee from their previous work
on accessible surface area. Here, the surface is defined as being able to be
contacted by a probe sphere of the size of a water molecule. Figure 2.5 C
shows the principles behind the so-called reentrant surface, that is smoothed
compared to accessible surface or van der Waals surface.

2.1.9 From structure to function

Figure 2.6 resumes schematically the multitude of functions a protein can have
and that current research knows of. To achieve these functions, any given

Figure 2.6: Overview of structure and function of proteins. Figure inspired by
[Lodish et al., 2004])

Figure 2.7: Examples of different protein shapes extracted from PDB-101. A:
Actin, B: Reverse transcriptase, C: Clathrin

protein must carry out several complex tasks in a very specific manner. For
instance, ion channel proteins must insert in the cell membrane, bind specif-
ically to a signal molecule (e.g. a neurotransmiter), then allow certain ions
to flow trough them. Additionally they must be susceptible to regulation by
contact with other proteins or by posttranductional signals, etc. To achieve
all of this, proteins must position the chemical functionalities of their residues
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and prostetic groups in the manner necessary to attain the required physico-
chemical properties (shape, polarity, reactivity, flexibility, etc.) at the right 3D
location, resulting in a wide variety of shapes as exemplified on figure 2.7.
Amongst the various functional units of proteins, small molecule binding sites
are of particular interest because they are necessary for recognition of sub-
strates by enzymes, hormones and other signalling molecules by receptors and
allosterically regulated proteins, amongst other. The identification and char-
acterisation of these sites is thus of interest to infer the function of a protein.
Furthermore, they are privileged pharmacological sites of action. Section 2.3
explains in further detail methods to predict such small molecule binding sites
and its implications.

2.2 Molecular simulations

Studying macromolecules like proteins, DNA or RNA on an atomic level us-
ing experimental techniques is very complex, time consuming and expensive.
Furthermore, experimental structure determination techniques like X-ray crys-
tallography can only give a limited insight into mechanistic details of a protein
and even small molecules.
To ease the study of macromolecules at atomic resolution theoretical models
can be used. The field of computational chemistry intends to develop new theo-
retical approaches and use them to (i) represent the molecule and (ii) simulate
the molecule as accurately as possible.
In order to be able to study the dynamics of systems composed of thousands
of atoms several approximations and techniques have been developed. These
methods are less accurate than quantum mechanics but are commonly used
to study macromolecular systems at an atomic level. In the following para-
graphs principles of such an approximation (molecular mechanics) are very
shortly outlined and applications to molecular dynamics (MD) and free energy
calculations are shown.

2.2.1 Classical Mechanics & force fields

A fundamentally different approach to quantum chemistry is undertaken by
classical molecular mechanics. Instead of describing electron positions around a
nucleus, atoms are represented as a sphere of a given radius, charge and a mass.
To calculate the potential energy of a system, charges, masses, radii, typical
bond lengths, etcetera, have to be known for each atom and atom pairs. These
parameters and corresponding equations using them constitute so-called force-
fields. Several force-fields exist (Amber, Gromos, Charmm, MMFF, Dreiding
...) and mostly they are built on empirical knowledge or detailed calculations.
Here I will focus on generalities on force-fields usually applied in simulating
macromolecules. While all force-fields use different parameter sets and slightly
different energy terms to calculate a systems’ potential energy, globally all
consider that the potential energy V of a system is additive and composed
of the potential from bonded (or covalent) and non bonded (non covalent)
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interactions of a system as represented by equation 2.1

Vpot = Vb + Vnb (2.1)

where Vpot is the potential energy of a system and Vb the bonded interaction
energy and Vnb the energy derived from non-bonded terms. Both, bonded and
non-bonded terms are explained in more detail in the following paragraphs.

Bonded or covalent terms

This set of functions describes interactions between two atoms linked via a
covalent bond. The covalent energy is composed of a sum of generally four
terms, considered to be independent between each other.

Vb = Vbond + Vangle + Vdihedral + Vimproper (2.2)

Bond length: Vbond is a term estimating the energy related to the bond
length between two atoms. As covalent bonds vibrate around a given bond
length, harmonic potentials are used to approximate this behaviour.

Vbond =
∑
bonds

ki
2
(li − li,0)

2 (2.3)

Equation 2.3 is a form often used to calculate Vbond. Here the energy depends
on the deviation of the observed bond length li from a reference (equilibrium
or natural) bond length of the atom pair of li,0, where ki is a force constant.

Bond angle: This term describes the angle observed between two adjacent
bonds in a molecule. Vangle is very similar to the bond length. Here again a
harmonic oscillator is used to estimate the energy corresponding to a deviation
of the observed bond angle θi compared to the equilibrium bond angle θi,0.

Vangle =
∑

angles

ki
2
(θi − θi,0)

2 (2.4)

Dihedral angles: This energy is calculated for bonds in the middle of
4 adjacent atoms. Generally the torsion angles formed by these 4 atoms can
adopt a series of minima. Thus in the contrary to the previously used harmonic
oscillators a more complex function is used to represent dihedrals.

Vdihedral =
∑

torsions

Vn

2
(1 + cos(nω − γ)) (2.5)

where ω is the observed angle, γ the phase angle (indicating whether ω passes
through a minimum). Vn is the height of the barrier and n the periodicity. The
use of the cosine function results in a periodic energy function that can thus
adopt various local minima.
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Improper dihedral angles: Describing torsional angles is not enough to
accurately describe a molecule. Often a last function estimating energy from
improper dihedral angles is necessary. Typically, improper dihedrals are used
to describe the planarity of a molecule or to prevent interconversion of stereo-
centers.

Vimproper =
∑

torsions

Ki(1 + cos(2ξn − 180)) (2.6)

where ξn is the dihedral angle, Ki is a force constant.

Non-bonded or non-covalent terms

To describe long range and short range interactions between two atoms two
energy terms are commonly used, the van der Waals energy and the electrostatic
energy.

Vnb = Vele + Vvdw (2.7)

where Vele is the electrostatic energy and Vvdw the van der Waals energy.

Electrostatic energy Contrary to quantum mechanics which explicitly ac-
counts for electron distribution and nuclear charges, molecular mechanics ap-
proximate the electrostatic effect by means of partial point charges assigned to
each atom centre. Due to this fact, Coulombs law can be used to estimate the
electrostatic energy of two interacting molecules.

Vele =
∑
i=1

∑
j=1

qiqj
4πε0rij

(2.8)

where qi and qj are point charges of atoms i and j, ε0 is the dielectric constant
of the medium and rij is the euclidean distance between both atoms. The most
exact way to represent the solvent is to consider each solvent molecule explic-
itly. When molecular simulations with explicit solvent molecules are run, ε0 is
considered to be 1. Unfortunately, explicit solvent simulations are very costly,
thus in so-called implicit solvent simulations the medium is approximated via
the dielectric constant. Several approximations exist to estimate the effect of
the solvent implicitly, like Generalized Born (GB), Linear Poisson-Boltzmann
and non-linear Poisson Boltzmann. However, these are a crude approximation
to represent the effect of a medium on an electrostatic interaction. In reality
the dielectric constant is depending on the medium and an interaction occur-
ring in bulk solvent would not require the use of the same dielectric constant
as if it was happening on the surface of the protein. To account for the effect
of the solvent on the electrostatic energy term, several other corrections can be
used, like distance dependent dielectric constants for example.

Van der Waals energy Very short range interaction energies are highly
influenced by van der Waals terms. These terms describe the behaviour of two
atoms approaching each other without forming a covalent bond. When both
atoms get too close to each other (inter-penetrate each other) a steric clash is
modelled by large repulsive energies. Also an attractive term is included to
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simulate London dispersion forces. The function found to reproduce such a
behaviour is the Lennard Jones potential. While other descriptions of the van
der Waals potential exist, the Lennard Jones 12-6 potential is commonly used.

Vvdw =
∑
i=1

∑
j=1

(
Aij

r12ij
− Bij

r6ij
) (2.9)

where rij is the euclidean distance between atom i and j and A and B are
atom pairwise parameters, each depending on the atom radius and well-depth
parameter.

2.2.2 Molecular mechanics and dynamics

The hyper-surface of the potential energy of a macromolecule like a protein
is very complex. Very often one is interested in determining the state of the
system when the potential energy is low or minimal because these states corre-
spond to stable configurations of the system. In order to navigate this potential
energy surface towards local and global minima, so-called energy minimisation
algorithms can be used. Methods such as steepest descent or conjugate gradient
alter the system (change of atom positions) iteratively to identify pathways on
the energy surface towards the minima. As the discussion of these methods is
not central for the critical understanding of this thesis the reader is directed to
corresponding literature [Leach, 2001].
Another approach called molecular dynamics (MD) make use of Newtons laws
of motion relating the net force F directly to the mass and acceleration of a
particle.

Fi = miai (2.10)

dri(t)

dt
= vi (2.11)

dvi(t)

dt
=

Fi

mi
(2.12)

where m is the mass, a the acceleration, F the force and v the velocity of
a particle i. First simulations of molecular dynamics were performed in the
1960’s [Alder and Wainwright, 1959] on 32 perfect spheres colliding with each
other. To this date molecular dynamics have become a cornerstone in the study
of protein dynamics and mechanistics, allowing the simulations of millions of
atoms, increasingly long time-scales and its integration with experimental data
to obtain information that, otherwise, would be inaccessible.
Although this thesis is not about molecular dynamics, on several occasions
data used was produced using MD or related techniques. Thus principles are
very shortly outlined here, but more focussed literature is recommended for the
interested reader [Leach, 2001].

Integrating molecular motion

Simulating molecular motion of macromolecules involves the calculation of
forces acting on all atoms in the system with all atoms in the system. Thus,
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positions of atoms are highly interdependent and evolve together (or coupled)
[Leach, 2001] which does not allow for an analytical solution of the equations
of molecular motion. Instead numerical integration methods have to be em-
ployed.
Different numerical integration algorithms have been proposed in the past. For
example an algorithm proposed by Verlet in 1967 uses the positions and ac-
celerations of atoms at a time t and of a time t − δt to calculate positions of
atoms in time t+ δt [April, 2009]. However, the leap-frog algorithm is among
the most widely used in macromolecular MD simulations.

r(t+ δt) = r(t) + v(t+
δt

2
) (2.13)

v(t+
δt

2
) = v(t− δt

2
) + a(t)δt (2.14)

The leap-frog algorithm calculates velocities at a time step t+1/2δt and these
are used to calculate the new positions of atoms r at time step t + δt. Using
these approximation, positions are calculated more precisely compared to the
Verlet algorithm. The disadvantage is that velocities for time t + δt are not
directly available. However they can be derived using the following expression:

v(t) =
1

2
[v(t+

δt

2
) + v(t− δt

2
)] (2.15)

Various other methods exist which are not covered here. A central aspect in all
numerical integration techniques is the integration step. This step is crucially
linked to the precision of the calculation. In the context of molecular dynamics
simulations the integration step over time generally chosen has to be smaller
than the fastest motion of the system. The covalent bond vibration is the
fastest motion in a typical molecular system in classical mechanics.

Simulation conditions

Next to intra and intermolecular aspects in a system the conditions of a simula-
tion can also affect the behaviour of it. Thus, prior to running a MD simulation
it is required to fix an ensemble of these conditions:

• N: number of particles

• V: volume of the system

• T: temperature of the system

• P: pressure of the system

• E: energy of the system

Common ensembles are (i) the microcanonical ensemble or NVE, (ii) the
isothermic-isobaric ensemble or NPT and (iii) the canonical ensemble or NVT.
In MD simulation mostly NPT and NVT ensembles are employed.
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Steered molecular dynamics

Classical MD simulations simulate freely evolving systems at equilibrium. How-
ever, lots of molecular processes occur at time-scales that are out of possible
simulation times that can be achieved with classical MD. Thus, several ap-
proaches have been proposed to ”accelerate” simulations. Here so-called steered
molecular dynamics are shortly presented in the context of free energy calcu-
lations.
As the name indicates, steered MD or SMD directs a system along a particular
reaction coordinate towards a wished end-state. A typical example related to
drug design would be a MD simulation where a ligand is slowly pulled out of
the binding site. Another interesting aspect in SMD is that the steering can
happen either using a constant force or constant velocity. The second is par-
ticularly interesting because the force necessary to move from state A to B as
well as the profile of forces on the trajectory A → B can be evaluated.
In 1997 Christopher Jarzynski derived a very powerful relation between the
difference in free energy ΔG of sates A and B and the work W to go from A
to B.

e−ΔG/kT = 〈e−W/kT 〉 (2.16)

where k is the Boltzmann constant and T the temperature of the system. The
relation states that the average of the work necessary of taking a system from
equilibrium state A to a non-equilibrium state B via all possible realisations
approximately equals the difference in free energy between A and B. If the
process of moving from state A to state B is done infinitely slow, ΔG equals
W numerically.
SMD’s jointly with the Jarzynski relation were used extensively within one
work presented in this thesis. Practically, the Amber MD software was used to
perform SMD simulations and extract the work (W ). As the Jarzinsky relation
is based on an average of the work, multiple SMD trajectories from different
initial states (generally from 20 to 100) were produced and the Boltzmann
average of the corresponding works calculated.

2.3 Protein pocket prediction

2.3.1 Introduction

The three dimensional structure of a protein is highly complex and dense. As
shown on figure 2.8, the surface of a protein is irregular and contains protru-
sions, smaller and larger clefts as well as internal cavities. These pockets are of
particular interest for target based drug discovery, that is to say, the discovery
of small drug-like molecules fitting inside these pockets on particular proteins.
The concave shape of a cavity usually allows binding of small molecules with
higher affinities [Cheng et al., 2007, Englert et al., 2010]. It is mainly assumed
that there is significant shape complementarity between a binding site and a
small molecule inside the pocket and that this complementarity is responsible
for a part of the affinity the ligand has for the receptor.
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However, the concave shape notably allows the protein to modulate the be-
haviour of solvent and ligands on the protein surface. This modulation helps
to ensure molecular recognition as well as right binding kinetics and thermody-
namics. This line of thought is indirectly in accordance with results published
by Kahraman and co-workers [Kahraman et al., 2007] showing that shape com-
plementarity between small molecules and pockets is an often used assumption
but turns out to be only partially true. Drug-like molecules are small and
provide only a limited amount of putative interaction points. Thus, drug-like
molecules usually interact through a series of weak directed (polar) as well as
undirected hydrophobic interactions with the protein surface. If that interac-
tion surface between the protein and the ligand was shallow, dissociation could
be easily initiated via attacking solvent. Furthermore, the interaction surface
between the ligand and the protein is maximised in such environments. There-
fore a concave shape on the protein counterpart of a small molecule is required,
which makes protein pocket prediction a relevant field for protein assessment
in drug discovery.

Figure 2.8: Surface representation of Heat shock protein 90 (rendered with PyMOL
[DeLano, 2002])

2.3.2 Purpose

In order to understand the physico-chemical principles underlying protein lig-
and binding, a thorough analysis of the binding site and the ligand has to be
undertaken. Protein cavities are complex 4 dimensional (space and time) enti-
ties difficult to (i) identify and (ii) analyse. While protein pocket identification
is not a central part of this thesis itself, the main research results presented
throughout this work are heavily based and connected to automated cavity
prediction. Thus, principles, main players in the field and our own work is
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shortly presented hereafter. A concluding discussion shows current pitfalls in
this area of research and highlights progress to be made.

2.3.3 Pocket Identification Strategies

Repositories of structural information like the PDB can be used to gather a
vast amounts of protein structures. As seen at least partially on figure 2.8,
the shape of proteins is very complex. In order to study further properties
of pockets on that surface, an automated way to detect these can be helpful.
Pocket detection or identification means to automatically find the surface patch
that corresponds to a known or putative binding site with sufficient accuracy.
Fully automated identification of such binding sites is not trivial. During the
last 2 decades, a vast amount of methods and programs have been proposed
to address automated identification of protein ligand binding sites and it is
still a very active field. Unfortunately, together with the increasing quantity
of published methods, more and more approaches of how to validate these are
considered and prediction assessment gets more diverse. While this might be
a common evolution in scientific methods development it hinders strongly a
thorough and objective comparison between all methods in the field.
In order to tackle computer based automated pocket predictions several ap-
proaches can be considered. All of them are shortly described hereafter high-
lighting only their principles.

Sequence based: These methods make use of the assumption that residues
inside known pockets and active sites are conserved. This assumption is used
for prediction of portions on the sequence corresponding to putative binding
sites.

Energy based: Here a putative binding site is evaluated using energy calcu-
lations between probe atoms and the protein. The more favourable the poten-
tial interaction energy is, the more likely it is for the probe to be placed in the
binding site of interest.

Geometry based: This type of methods takes advantage of the fact that
cavities are, like the name indicates, concave shaped surface patches. Various,
usually fast, geometrical principles can be applied to delimit a binding site.

Similarity based: Here known binding sites are used to derive structural
patterns that describe these sites. These templates can then be used to compare
a surface patch of a query protein and predict if this particular patch is a
binding site similar to the template.

Mixed approaches and Meta-methods: The majority of existing meth-
ods in current literature use a mixture between mostly energy and geometry
based approaches. Several other examples exist using various established meth-
ods for performing predictions and then consider the consensus of results as final
pocket prediction.
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Available methods & Software

Early works The program POCKET [Levitt and Banaszak, 1992] is among
the first algorithms in the field efficiently using geometric properties of the
protein surface to identify cavities. Using a regular grid probes are placed on
each grid point and vectors are traced in the x, y and z dimension. Using this
type of three dimensional scanning local buried parts on the protein surface
can be identified. POCKET was the basis for various improvements. Figure
2.9 shows the principle of grid-based pocket detection algorithms schematically.
Each grid point having more than one vector (or ray) cutting the protein be-
low a given distance is considered to be in a buried portion (grey circles). The
others are not (black x). Grid points close to known pocket grid points are
often clustered together to form an ensemble of pocket grid points. The well
known LIGSITE program [Hendlich et al., 1997] is an enhancement of the ini-
tial POCKET algorithm. Here not only 3 vectors are used for ray-tracing, but

Figure 2.9: Scheme of a 2D cut of a protein with a superposed grid. Grid based
pocket detection places probes on grid points and uses ray-tracing to delimit buried
zones)

14 vectors are used. In subsequent improvements, LIGSITE was extended to
account also for the Connolly surface [Connolly, 1983]. Instead of using atom
coordinates, LIGSITEcs performs ray-tracing on the accessible surface of the
protein. A last extension was introduced to the algorithm by considering the
conservation of residues in the identified binding site [Huang and Schroeder,
2006], thus introducing here sequence based evaluations next to pure geometri-
cal techniques. While various approaches in the field make use of grids to detect
surface depressions on proteins another type of geometry based approach is fre-
quently encountered.
These techniques try to identify the biggest sphere one can fit to a surface
portion without containing any atom of the protein. Several computational ge-
ometry means exist to perform this task. A seminal approach was published by
Edelsbrunner and Liang making use of computational geometry principles until
then not used for analysing biophysical properties of macromolecules [Edels-
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brunner et al., 1995]. This so-called alpha shape theory was used to develop sev-
eral approaches, like CAST [Liang et al., 1998] and subsequently CASTp [Dun-
das et al., 2006], SiteFinder (http://www.chemcomp.com/journal/sitefind.
htm) and APROPOS [Peters et al., 1996]. Shown on figure 2.10, the alpha

Figure 2.10: Figure and legend taken from [Edelsbrunner et al., 1995]: Illustration of
concepts in alpha shape theory. A: A two-dimensional molecule consisting of of disks
of uniform radii. The dashed lines show the Voronoi diagram of the molecule. Arrows
indicate 2 of the 10 Voronoi edges that are completely outside the molecule. B: The
convex hull of the atom centres in A (all shaded area) with Delaunay triangulation
(triangles defined by dark lines). C: The alpha shape of the molecule in A. This alpha
shape, or dual complex, consists of the light-shaded triangles, the dark line segments,
and the atom centres. There are 10 shaded line segments corresponding to the 10
Voronoi edges that are completely outside the molecule. Any triangle with one or
more shaded edges is an ”empty triangle”. A void formed by three empty triangles
can be seen at the bottom center. It encloses a molecular cavity.

shape principles rely on three main principles. The protein is considered as a
set of points in 3D space and this space is segmented using Voronoi tesselation
[Voronoi, 1907]. Next, the convex hull is calculated to delimit the boundaries
of the molecule and capture the main molecular shape, using the atom centres.
Last, the atom centres are used to triangulate the hull[Delaunay, 1934] and
isolate Voronoi edges outside the molecule.
Both geometrical approaches presented in this paragraph built the basis for up-
coming improvements made in the field of pocket detection. While grid based
approaches are easier to understand, they have a certain number of limitations.
Using a grid to scan a protein surface results usually in algorithms with low
computational performance. The results are dependent on the rotational and
translational position of the protein and dependent on the grid-spacing used.
Sphere fitting algorithms, like the one based on alpha spheres and subsequent
developments show less sensitivity and are usually orders of magnitude faster
than grid based algorithms.
Another method that should be mentioned in this section is called VOIDOO
[Kleywegt and Jones, 1994]. Although, strictly speaking, it is not a pocket
detection method, VOIDOO can be used to find internal cavities and invagi-
nations on the protein surface. To do so and to measure accurately the cavity
volumes, the program applies atom fattening techniques to close solvent ac-
cessible cavities and determine this way the volume. While this method has
been frequently used for channel predictions, it is not suited to determine open
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pockets on the protein surface.

Further developments in the field Among widely used programs in aca-
demics is PASS (Putative Active Sites with Spheres)[Brady and Stouten, 2000].
This algorithm coats the protein with several levels of spheres finally retain-
ing sphere clusters that are sufficiently buried. SURFNET is also placing
spheres between atom pairs to identify those not including any internal atoms
[Laskowski, 1995].
In parallel, several new algorithms have been proposed. Notably, energy cal-
culations to characterize the pockets made their entry in the field while com-
putational resources became available to academic labs and force-fields more
accepted by the community. All of these algorithms use principles similar to
the widely used GRID program [Goodford, 1985], which places atom probes
on an equally spaced grid around a protein and calculates interaction energies.
Q-SiteFinder [Laurie and Jackson, 2005] developed in the Jackson lab in Leeds
is among these energy based pocket identification algorithms. Similar in its
principles, PocketFinder was proposed by Ruben Abagyans group [An et al.,
2005] the same year. A contribution from 2008 [Morita et al., 2008] follows
very similar ideas. All three approaches place methyl groups on a grid super-
posed to the protein and evaluate the interaction / Lennard Jones potential
and use subsequent clustering and smoothing techniques to identify partially
buried and ”favourable” interaction sites. Probably the SiteMap program is
the algorithm most tailored to the identification of drug binding sites [Halgren,
2007, 2009]. This software, marketed by Schrödinger LLC uses also energy
calculations on an equally spaced grid. Geometric delimitation of the pocket
is done using principles similar to the first geometry based algorithms in the
field, POCKET and LIGSITE. Subsequently, energy calculations are mainly
used to assess and characterize the pocket, assign it a so-called SiteScore and
rank all cavities according to this score.
Pure geometry based algorithms using grids have also been further considered
compared to initial approaches like POCKET and LIGSITE [Venkatachalam
et al., 2003, Weisel et al., 2007]. However, given the multitude of available
algorithms in this field another type of approach has seen the day. In a pro-
tocol called Metapocket [Huang, 2009], Huangs group gather results from dif-
ferent cavity detection programs, namely PASS [Brady and Stouten, 2000], Q-
SiteFinder [Laurie and Jackson, 2005], SURFNET [Laskowski, 1995], fpocket
[Le Guilloux et al., 2009], GHECOM [Kawabata and Go, 2007], ConCavity
[Capra et al., 2009] and POCASA [Yu et al., 2010]. Metapocket takes only the
top 3 cavities from each prediction method and clusters spatially close cavities
together.
The scope of this thesis is not to compare and describe all algorithms in the
field. Cavity prediction is a very active field and still today several new methods
see the day. Unfortunately there is no critical review encompassing the whole
field available. Papers coming closest to this, but not assessing these methods
were recently published [Pérot et al., 2010, Ghersi and Sanchez, 2011]. The
reasons for the lack of a thorough review of all methodologies are complex.
They are tentatively discussed in section 2.3.4.
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Methodological differences & consequences As seen previously, various
different ways exist to identify cavities on complex surfaces such as a protein
surface. Each implementation and algorithm has its advantages and disadvan-
tages and the final choice of how to implement a method or which method to
use depends on the purpose of the work. A relatively important number of
existing methods use grids superimposed to protein structures. These methods
tend to be computationally more expensive than alternative geometry based
approaches (for instance). Importantly, energy based approaches make an im-
portant protein preparation step necessary. Atom types and force-field param-
eters have to be assigned accurately to use these methods, connected to an
even higher computational cost. Grid based methods furthermore render cav-
ity prediction results dependent on the position of the protein within the grid.
Despite these facts, grid based and especially energy based methods have ad-
vantages. An energy based evaluation of the protein surface can give first and
important insights into the characteristics of the binding site. Often underes-
timated, but grid based methodologies are usually easier to understand than
their geometry-based counterparts. Energy-grid-based methodologies can thus
be deemed an excellent choice for punctual and accurate pocket detection needs
that involve further characterization of the cavities.
Other geometry based approaches (alpha shapes for example) are computa-
tionally very efficient and do not suffer theoretically from rotational sensitivity
of results. However, these methods usually do not characterise the pockets
that were identified. Usually very simple descriptors encompassing size and
enclosure are extracted and used to rank one binding site versus another.

2.3.4 Current pitfalls

Pocket identification is an active field of research for nearly 20 years now. Dur-
ing this time more than 30 different algorithms, programs and improvements
of existing tools have been published.

Datasets: Like in other disciplines, for example small molecule docking, ma-
jor problems persist in the objective evaluation of such methods using a com-
mon benchmark and conditions to compare prediction performance. Unlike in
docking, no common benchmarks like the DUD [Huang and Schroeder, 2006]
or the Astex Diverse Set [Hartshorn et al., 2007] have been thoroughly estab-
lished or consequently used within the domain. While Nayal & Honig [Nayal
and Honig, 2006] proposed a comprehensive study on 99 proteins, other studies
like [Huang and Schroeder, 2006] provided data-sets and methods comparison
which were subsequently used more often in literature [Weisel et al., 2007, Le
Guilloux et al., 2009, Zhu and Pisabarro, 2011].

Precision: Another central question when evaluating these algorithms is:
When is a cavity correctly identified and with what precision? While some
methods like Q-SiteFinder [Laurie and Jackson, 2005] focus on evaluating thor-
oughly the prediction performance, others like PASS [Brady and Stouten, 2000],
LIGSITEcsc [Huang and Schroeder, 2006], PocketPicker [Weisel et al., 2007] or
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PocketFinder [An et al., 2005] use more permissive criteria to define what a
correctly identified binding site and the precision of the prediction is.

The identification paradox: Pocket detection algorithms are meant to
identify putative binding sites. One protein can have more than one cavity
on its surface. Subsequently the identified sites are usually scored and ranked
between each other to identify the cavity that resembles most to the binding
site. Such scoring and ranking is often based on training a score with a set of
known protein ligand complexes.
In order to evaluate the performance of a pocket prediction method one detects
all cavities on a set of different proteins with known binding sites. A successful
pocket prediction method is deemed to rank a significant amount of known
binding sites from different proteins among the first few positions. However,
identification and ranking are completely independent tasks that should also
be evaluated separately.
For example, all recent pocket prediction algorithms report high success rates
(90%) for ranking cognate binding sites from a benchmark data-set among
the first 3 ranks. Unfortunately, pure identification success is rarely reported,
meaning how many binding sites among a set of known binding sites are iden-
tified.
Jayaram and Singh show that the pocket identification algorithm they present
is able to identify all cognate binding sites. This is also known to be the case
for fpocket (not published data) [Jayaram and Singh, 2011, Le Guilloux et al.,
2009]. It is very likely that a substantial amount of programs allow the iden-
tification of all binding sites. Thus, it should be acknowledged that modern
pocket identification algorithms are excellent, unlike stated in the concluding
remarks of a recent review in the field [Pérot et al., 2010].

Significantly more work and especially focus is however necessary on classi-
fying types of cavities, an entirely different problem. Hormone binding sites
from nuclear hormone receptors are very distinct from galactose binding sites
for instance. Furthermore, a protein can have multiple cavities on its surface.
Among these only one might act as active site (for an enzyme for example),
but others could act as allosteric sites, peptide binding sites etc. In conclusion,
the main focus of the field should move from cavity identification to character-
ization of very precise types of cavities.
For example, Liu and Altmann proposed FEATURE, a method to identify
specifically Ca2+ binding sites in disordered regions. Another active field is
trying to predict the druggability of cavities, thus characterising them as being
able to bind drug-like molecules [Fauman et al., 2011]. Other approaches focus
on sugar binding sites [Taroni et al., 2000, Shionyu-Mitsuyama et al., 2003],
nucleotide binding sites [Kono and Sarai, 1999] or peptide binding sites [Pet-
salaki et al., 2009], but no pocket prediction program is able to classify cavities
according to what they are likely to bind.

Availability of methods: Despite the important number of methods in the
field, no clear trend in publishing new methods as freely accessible tools can
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be observed. Cavity detection is connected to financially interesting drug dis-
covery, thus various methods are only commercially available. Others are only
available as public web-servers, making them appealing for academic groups,
but unusable for pharmaceutical industry. Other methods are freely available,
but only binaries are provided. Thus, no further extensions of project spe-
cific improvements can be implemented if necessary. Finally, only a fraction of
methods is free, provide source code and a web-server for running the program.
A tentative review of accessibility of various software is available in [Ghersi and
Sanchez, 2011].

Proteins move: Another aspect usually not considered in such studies is
that proteins are dynamic and pockets can move. The problem is that a crystal
structure of a protein provides only a static snapshot. Integration of protein
motion in binding site prediction and estimation of pocket plasticity are of
utmost importance but mostly unmet by currently available approaches. A
dedicated section 2.4 explains current developments in this field as this is an
issue of high importance linked to a part of the work presented in this thesis.

2.3.5 The fpocket project

Prior to my thesis, Vincent le Guilloux and myself, started the fpocket project
in the context of the MSc in Bioinformatics of the University Paris Diderot.
Next, the principles behind fpocket are explained.
Edelsbrunner and Liang established the use of the alpha shape theory for cavity
detection and fpocket uses a very similar principle. Using Voronoi tesselation
performed by Qhull [Barber et al., 1996], the 3D space defined by protein atoms
is segmented into so-called Voronoi cells, defined by Voronoi edges. Crossing
Voronoi edges form Voronoi vertices, as shown on figure 2.11. Such Voronoi ver-

Figure 2.11: Schematic representation of Voronoi tesselation on a protein.
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tices have a property that used by fpocket. Onto each Voronoi vertice a sphere
can be placed that contacts exactly 4 atoms of the protein without any internal
atoms in the sphere volume. Such a contact sphere is called an alpha sphere.
Depending on the shape of the surface portion an alpha sphere is contacting the

Figure 2.12: Overall fpocket workflow for cavity detection

radius of the latter will vary from very small to infinite. The algorithm applies
a simple filtering step retaining only alpha spheres big enough not to fill inter-
stitial space between atoms on the protein interior, but also small enough to
only encompass areas of a certain degree of enclosure. Next several clustering
steps are performed to gather together alpha spheres situated in close neigh-
bourhood with respect to each other. Finally, such an alpha sphere cluster is
retained if a certain number and types of alpha spheres compose the cluster.
A pocket is thus formed by such a cluster, describing the void space lined by
the atoms contacted by all alpha spheres of the cluster.
The clustering and filtering procedures can be controlled by the user via command-
line flags and are explained in detail in the fpocket manual and paper [Le
Guilloux et al., 2009]. Various pocket descriptors are calculated by fpocket
and a score is attributed to each pocket, allowing pocket ranking. I has been
shown that fpocket achieves very good prediction performance on predicting
protein ligand binding sites in reference benchmark sets in the literature [Le
Guilloux et al., 2009]. Furthermore, the program is among the fastest in the
field, open-source and free.
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2.4 Transient pocket and channel prediction

2.4.1 Small molecule binding sites

The majority of pocket detection methods for small molecule binding sites
concentrates on pointing surface locations on fixed, representative structures
of proteins. The reasons for the lack of methods accounting for protein flexibil-
ity are multiple. Accounting for protein flexibility is complex and experimental
data is rare. Thus one has to use computational usually very costly techniques
like molecular dynamics (MD), to get a partial insight into the protein plas-
ticity. Surprisingly, only one approach exists to detect transient pockets on
molecular conformational ensembles created using MD. This protocol named
EPOSBP was proposed by Eyrisch and Helms and was assessed on the de-
tection of transient cavities on protein-protein interfaces [Eyrisch and Helms,
2007]. Using the cavity detection algorithm PASS [Brady and Stouten, 2000]
the protocol systematically defines cavities on each frame of the MD trajectory
and clusters distinct cavities together when they significantly overlap using the
contacted residues of the protein as reference.

Novelty: This study tackled several aspects in the field of drug discovery.
First the authors consider that even very short living cavities can be interesting
for drug discovery purposes. Second, they consider targeting protein protein
interfaces, notoriously difficult due to their shallowness, detecting situations in
time when these cavities deepen, to putatively accommodate a small molecule.
Interestingly, several currently known interfacial binders act as stabilizer of a
particular protein conformation unable to interact with its protein counter-part.

Limitations: Transient cavity appearance is considered to be very short lived
in this study. While there is still an ongoing discussion on if ligand protein as-
sociation implicating protein motion is mainly due to an induced fit effect or
conformational sampling, the authors claim the second possibility appropriate.
One main limitation in the current version of EPOSBP is the fact that pockets
identified on different time-frames but in the same regions can be considered
as separated pockets with a discrete pocket ID. This fact is hindering to gain
insights into continuous pocket and channel plasticity. This limitation becomes
obvious while trying to visualise transient cavities as an ensemble. EPOSBP

was only accessible via a public web-server after the publication of the work,
however it was recently released as standalone binary. Unfortunately, neither
for PASS [Brady and Stouten, 2000] nor for EPOSBP source code is avail-
able. Usage and especially visualization and interpretation is limited. Only
few properties can be assessed using the approach.

2.4.2 Ligand migration channels

Significantly more work has been done in a related field to pocket prediction.
In addition to surface depressions, proteins can also contain migration channels
or very small internal cavities. These channels and cavities are of importance
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for functioning of some types of proteins, like myoglobin. Here, the size of a
cavity or channel is able to allow migration of a diatomic ligand at most and
thus cavities are an order of magnitude smaller than typical drug binding sites.
Although initially not developed for this purpose VOIDOO [Kleywegt and
Jones, 1994] allows internal cavity and volume calculations and doing so on
a set of conformations from MD trajectories allows to assess plasticity of in-
ternal channels and cavities. However, the use of VOIDOO for this purpose is
rather time consuming and not straightforward.

The CAVER family

Figure 2.13: Channel search methods implemented in CAVER (A) and MOLE (B).
Figure adapted from [Petrek et al., 2006, 2007]

CAVER [Petrek et al., 2006, Beneš et al., 2010] is a PyMOL plugin and
standalone program that allows internal channel detection on MD trajectories.
CAVER was recently improved to a software called MOLE using computational
geometry principles instead of grid-based calculations [Petrek et al., 2007]. As
schematically shown on figure 2.13 A, CAVER superimposes a grid to the pro-
tein structure. A cost value is associated to each grid-point. This value is
related to the maximum sphere one could place at this point, just touching
the protein surface. Then a starting position is defined (active site). Next, a
modified version of the Dijkstra algorithm for detection of the shortest path
[Dijkstra, 1959] is used to find optimal exit pathways on the grid coordinates.
MOLE uses very similar principles, but the path detection is guided by Voronoi
edges obtained from Voronoi tesselation of the protein structure as shown on
figure 2.13 B. Subsequently again the Dijkstra algorithm is used to identify
cost-effective paths. A very similar approach to MOLE has been followed in
a recent contribution by Yaffe and coworkers proposing a method called Mo-
lAxis for detection of channels from the interior of the protein to the bulk
solvent [Yaffe et al., 2008]. All these previously cited methods claim to allow
calculation of channels on single crystal structures and molecular dynamics tra-
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jectories. This is only partially true, as channels have to be identified on single
static structures. Once identified, these can then be analysed using several
structures of a molecular dynamics trajectory. There is a fundamental differ-
ence between observing transient channels on an ensemble of conformations of
a macromolecule and observing a putative channel on a static structure and
then track it.

Novelty: All algorithms of this category have similar principles, aims and
outcomes. Main novelties from these methods are intuitive visualisation of
cavities (CAVER & MOLE) or more rapid calculations (MolAxis). Further-
more, channel dimensions can be measured on molecular dynamic trajectories.

Limitations: Here again, these methods suffer from practical limitations.
Most importantly, all are purpose built to detect internal channels from a
starting position to the outside of the protein. As discussed previously, these
methods allow channel extraction on static structures and deriving transient-
ness of appearance of channels from conformational ensembles is insufficiently
covered.

Implicit ligand sampling

Another very distinct technique frequently used for studying transient gas mi-
gration pathways is implicit ligand sampling, or ILS. Unlike methods described
before, ILS is a technique that allows identification of transient channels on
molecular dynamics trajectories [Cohen et al., 2008]. Prior to analysis, all
snapshots of the MD trajectory are aligned (structurally superimposed) to a
reference structure. Next an equally spaced grid is placed onto the protein.
Similarly to the GRID program [Goodford, 1985], a probe molecule (O2 for
example) is placed on each grid point and the interaction energy between the
probe and the protein is calculated. Here the interaction energy is only approx-
imated with the Lennard Jones potential. Next, formula 2.17 is used to derive
the free energy of placing a gas molecule on each grid point. This energy is im-
plicit, as no explicit gas particle was simulated during the MD trajectory, but
it is considered that these channels can transiently open without the presence
of a diatomic ligand.

Gimplicit(r) = −kBT ln
N∑

n=1

C∑
k=1

e
−ΔEn,k(r)

kBT

NC
(2.17)

Gimplicit is the free energy of placing the ligand on position r. kB is the Boltz-
mann constant and T the temperature. N is the number of frames used from
the molecular dynamics trajectory and C the number of conformations and ro-
tations considered for the gas particle. Finally ΔEm,k is the interaction energy
calculated at position (r) on a given frame (n) with a given rotation of the gas
particle.
Applying this calculation on a whole MD trajectory, free energy maps can be
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derived allowing easy visualisation of transient migration pathways, inferred
implicitly.

Novelty: ILS is the first approach in the field to use sound physical principles
to address exploratory transient gas migration pathway prediction. The result
of ILS is an energy map, that can be visualised using popular molecular viewers,
like VMD [Humphrey et al., 1996], PyMOL [DeLano, 2002] or Chimera [Huang
et al., 1996].

Limitations: Energies derived using ILS are implicit and it is inferred that
the gas particle has no influence on transient openings of channels. Second,
only van der Waals interaction energies are calculated in a reasonable amount
of time to allow analysis of MD trajectories. To track specific channels or
calculate putative migration pathways, subsequent and independent analysis
tools have to be used. Last, no evaluation of the influence of the structural
superimposition, necessary for this method, on the results is performed.

DyME

More recently, a MATLAB protocol called DyME has been introduced [Lin and
Song, 2011] allowing also detection of migration pathways that transiently ap-
pear on MD trajectories. This procedure performs a Voronoi tessellation on the
protein on each snapshot of a MD trajectory that has been previously superim-
posed. Voronoi vertices with small minimal boundary spheres (clearance) are
discarded. All remaining vertices are transformed to a spanning tree. Spanning
trees for all frames of the MD trajectory are overlapped and conserved cavities
are clustered together. Portal regions, connecting internal channels to the out-
side are identified. In a final super graph conserved cavities are connected via
maximum clearance channels observed at least once during the MD simulation.

Novelty: DyME is relatively fast compared to other commonly used tools.
Furthermore, it allows to produce an easy to visualise and understand channel
network with associated channel radii (clearances).

Limitations: The article describing DyME is missing important details to
discuss fully limitations of the approach. Like for other methods, no assessment
of the necessary structural superimposition has been done. Furthermore, it is
likely that migration pathways identified as maximum clearance pathways are
inferred, as the maximum clearance radius can be rather low.
Last, the method is not available as standalone tool to the scientific community.

2.5 Pocket characterization

2.5.1 Definition of druggability

The term ”druggability” is used for designating very different concepts in the
area of genome analysis and drug discovery. In the work presented in this the-
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sis, the druggability is associated to a binding site, and therefore to a protein.
A druggable binding site is a pocket that can bind a molecule similar to orally
available marketed drugs. This definition does not take into account any con-
sideration about pharmacokinetics, the mechanism of action or toxicity.
The definition of druggability is necessarily linked to the notion of drug-likeness.
Here again debate is ongoing on the scope of drug-likeness.

2.5.2 Controversy on the term ”Druggability”

The word ”Druggability” is a neologism that appeared first in abstracts of
scientific papers in 1999 [Labischinski and Johannsen, 1999]. However, the
”Druggable Genome” paper by Hopkins and Groom [Hopkins and Groom, 2002]
made the first comprehensive review on chemical tractability using the catchy
word ”druggable” in 2002. Since that review, the usage of the term became
widespread among different areas in drug discovery. Figure 2.14 shows the num-
ber of scientific papers referenced in Pubmed containing the word ”druggable”,
”drugable” or the corresponding nouns in the title or the abstract. Despite the

Figure 2.14: Number of publications with the word ”druggable” or ”druggability”
in the title or abstract.

more widespread usage of this neologism in today’s literature, the exact scope
of the term remains fuzzy and varies substantially from paper to paper. The
current wikipedia entry on druggability highlights the ambiguity of the defini-
tion : ”Druggability is a term used in drug discovery to describe the suitability
of a protein or protein complex to be targeted by a drug or drug-like molecule,
in a way that this interaction will alter the proteins function and correct dis-
ease causing behavior. The term is typically used for designating tractability
by a small molecular weight drug, although druggability can be achieved using
biotherapeutics such as monoclonal antibody. Druggability is now an ubiqui-
tously used term that is referred to in different contexts, but always meaning
the suitability of a target for drug discovery”
From a purely structure based point of view, the usage of this term is too
generic. The actual structural features responsible for the interaction between
a drug and the protein only constitute a part of all features required for a
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protein to be druggable. Structure based techniques do not assess the disease
relation of proteins and if the binding of a small molecule has an impact on
the function of the protein. As stated by Robert Sheridan and co-workers at
Merck : ”The term “druggable” implies too much. Getting to an actual drug
involves many hurdles that are almost impossible to predict in advance and in-
volve properties of small molecules as well as the target. For example, there is
nothing in those approaches that determines whether the active site in the tar-
get is different enough from related targets that selectivity is possible. It is also
not clear that there will be the desired therapeutic effect in vivo even if we can
find drug-like molecules to bind to the target protein.” [Sheridan et al., 2010].
Thus, the term of ”chemical tractability” should be used, renamed by Sheridan
et al to ”bindability”. These terms encompass the definition of druggability,
but without the restrictions on unpredictable properties from structural data.
The reason why finally the term druggability was used throughout this work
is mostly due to two factors : (i) if we train a method on known druggable
proteins, we have explicit knowledge about the druggability and tractability in
the training set, (ii) for sake of shortness, druggability is a less cumbersome
terminology than chemical tractability. If the exact definition and, most im-
portantly, restrictions are given in the context of using the word druggability
we deemed it appropriate using it instead of chemical tractability. This fact is
further underlined by several authors in the field deeming the usage of ”drugga-
bility” appropriate, knowing the underlying approximations and assumptions.

2.5.3 Definition of ”non-druggable”

Defining a target druggable using historical results that can be found in liter-
ature is a manageable task. On the contrary, to define a target non-druggable
we have to accept a substantial amount of approximations and suppositions.
The first data-sets differentiating druggable from non druggable proteins in a
structure based context were provided by Hajduk et al. [Hajduk et al., 2005a]
from Abbott and later by Alan Cheng and co-workers at Pfizer [Cheng et al.,
2007]. While the first deemed proteins non-druggable if the NMR fragment
screening hit was low on these targets, the second declared a protein non drug-
gable if despite substantial efforts (several years of research) drug discovery
projects fail. The limitation of both approximations is that they are depen-
dent on the (i) NMR fragment library and experimental conditions and (ii) on
the fact that systematically all possible techniques have been tried to identify
drug-like molecules on these targets.

2.5.4 Prediction of druggability

Despite the controversy on what druggability is, several groups tried to develop
methods to predict if a given gene and associated proteins are tractable or not.
Within this thesis I’ll focus especially on structure based methodologies that
use 3D protein structures and properties of putative binding sites to assess if
they could bind small drug-like molecules.
To develop methods predicting druggability, reference data has to be found to
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describe both druggable and non druggable binding sites. While historically
most binding site identification methods focused on the identification of drug
binding sites, they did not specifically assess the nature of the small molecules
binding in these pockets. Probably the dataset derived by Emanuele Perola
and co-workers [Perola et al., 2004] comes closest to the first set of druggable
pockets. This dataset was subsequently used by Nayal and Honig to extract an
extensive set of pocket descriptors for these cavities [Nayal and Honig, 2006].
However, no consistent definition of non druggable cavities has been given till
the pioneering work of Hajduk, Huth and Fesik [Hajduk et al., 2005a].

Abbott Laboratories (Hajduk et al)

In this pioneering methods paper Hajduk and colleagues follow a very simple
and appealing idea. The more hits can be achieved using experimental NMR
based screening, the more the target is deemed druggable. This assumption
was then used to characterize a set of proteins as druggable and non druggable
(hit rate at 0). Next the ActiveSite Search flood-fill algorithm from Insight
II was used to identify binding sites computationally on the protein surface.
Various characteristics of the identified pocket were derived and used to built
a regression based model predicting experimental NMR hit rates. The predic-
tivity of the different descriptors was assessed and their final contribution to
the score is symbolized by a + if positive, and - if negative. The NMR hit
rate can be predicted using the total surface area of the pocket (+), the polar
contact area (-), the apolar contact area (+), the first principal moment (-),
the third principal moment (+) and the pocket compactness (+). The pocket
compactness is defined by the ratio between the pocket volume and surface
area. The principal moments tend to capture the shape of the pocket. The
final model predicts experimental screening hit rates with a leave-one-out Q2

of 0.56.

Novelty: This study was the first to derive a statistical model to predict
experimental screening hit rates, assumed herein to be correlated with drugga-
bility. Furthermore, it is the first method using automated pocket prediction
to perform this task. Potential applications of this method are shown in the
review published by the same group the same year [Hajduk et al., 2005b].

Limitations: Despite the certain impact this study had on the field and the
novelty, the work has several limitations especially regarding reproducibility of
the results presented in the study. The authors use a set of proteins among
which a substantial amount of inaccessible in-house structure are listed. Fur-
thermore, for non-profit research groups, the usage of software like Insight II
(discontinued, now Discovery Studio) for pocket detection and descriptor ex-
traction is connected to licensing costs.

Pfizer (Cheng et al)

A significant impact in the field had the study performed by Alan Cheng and
co-workers [Cheng et al., 2007]. The reasons for the popularity of this work
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are diverse. First it was published in a high impact journal (Nature Biotech-
nology), gathering a broad readership compared to more focused journals in
the field. Second, the work presented a newly derived and this time publicly
available data set for knowledge based druggable and also non-druggable pro-
teins. Last, the model that was derived in this work is very simple and easy to
understand, so are the underlying principles and easy ideas tend to propagate
faster in science.
A total of 63 crystal structures corresponding to 27 different pharmaceutical
targets from the PDB were selected from literature as basis for a new data-
set in the druggability prediction field. A target was defined non druggable
if despite efforts in the pharmaceutical industry, no known drug has seen the
day. Out of these 27 targets, 4 were deemed non druggable. Furthermore,
Cheng and co-workers distinguished druggable proteins from pro-drug binding
proteins, creating thus a third category containing 6 targets. The remaining
17 targets were defined as druggable.
All crystal structures used in this study were co-crystallized with a small
molecule inside the known binding site. A mix of automatic binding site de-
tection (using SiteFinder implemented in MOE) and the environment of the
cognate ligand was used to define the extent of the pocket on the protein
structure. Computational geometry algorithms have been used to describe the
binding site and derive descriptors, like the curvature of the pocket and surface
areas [Liang et al., 1998, Coleman et al., 2005].
Using these descriptors a model was created meaning to predict the maximum
affinity a drug-like molecule could ideally have for the given binding site. The
model called MAPPOD is shown in equation 2.18

ΔG ≈ −γ(r)Atarget
apolar

Atarget
druglike

Atarget
total

+ C (2.18)

Here γ(r) is a term dependent on the curvature of the binding site. Atarget
druglike

is a constant value considered to be 300 Å2. Aapolar
target corresponds to the apolar

accessible surface area of the pocket and Atarget
total is its total accessible surface

area. Basically, the model relates hydrophobic enclosed to maximal affinity
that can be achieved. As shown in the results of this work, the model is able to
distinguish between druggable proteins and prodrug-binding and non-druggable
proteins.

Novelty: Several problems have been addressed by this paper. Of impor-
tance for methods development is the provided data-set with publicly available
structures. The paper shows furthermore, that without complex regression and
a few assumptions a predictive model can be produced.

Limitations: Despite the novelty of the data-set proposed, it is still very
small and the choice of crystal structure for a given target seems arbitrary.
The definition of the binding site is semi-automatized and thus needs human
intervention and the presence of a small molecule. This fact renders the method
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hardly usable for screens of structural databases for unoccupied druggable bind-
ing sites. Indeed a purely automated pocket detection could be used to delimit
the pocket extent, but the curvature calculation algorithms used to derive the
radius of the pocket are certainly very elegant, but unfortunately very sensitive
to changes in the definition of the pocket (non-published reimplementation of
the method in-house and communication with Ryan G Coleman). These limi-
tations render the method hardly usable as a screening tool.

Schrödinger (Halgren)

Thomas Halgren from the New York based Schrödinger LLC published the
so-called Dscore in 2009 [Halgren, 2009]. The previously established set of
structures by Cheng et al was used to fit a regression based model using cavity
descriptors from SiteMap [Halgren, 2007], the binding site detection program
sold by Schrödinger. The model is shown in formula 2.19

Dscore = 0.094
√
n+ 0.60e− 0.324p (2.19)

Here n is the number of site points for the cavity (grid voxels), e is the degree
of enclosure for the site and p a hydrophilicity score computed by SiteMap.
Using only 3 descriptors, SiteMap and Dscore are able to predict druggability
by reproducing results published by Cheng et al. Furthermore, Dscore appears
to be able to distinguish between non druggable proteins and prodrug binding
proteins.

Novelty: The principal novelty is that the derived Dscore is able to spot the
three categories defined by Cheng et al, (i) druggable, (ii) prodrug binding and
(iii) non druggable. Else, the paper follows a similar idea as the work proposed
by the group from Abbott, linking automatic pocket detection to an automated
score using pocket properties. A definite plus for Dscore is that it’s available for
purchase from Schrödinger and thus potential customers can test and evaluate
the score themselves.

Limitations: The derived score is based on the Cheng data set, that is fairly
small. The multiplicative factors of the descriptors of the model have been
derived using the very same data, so no thorough learning / validation process
has been performed. Although SiteMap in combination with Dscore is the
first ready to use tool in literature, cost of the software might be prohibitive
for punctual use within non profit research labs. Last, the use of grid based
energy calculations renders the pocket prediction and descriptor extraction
using SiteMap relatively slow and the protein preparation cumbersome. While
accuracy can be important for punctual predictions, a large scale screen of
structural database would be difficult to perform.

Merck (Sheridan et al)

A fundamentally different approach was followed by Robert Sheridan and co-
workers from Merck contributing the last method published so far in this area of
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research [Sheridan et al., 2010]. Starting from a purely ligand based viewpoint.
All pockets containing a drug-like ligand in the PDB are considered tractable.
For all pockets three basic properties are calculated: (i) the volume, (ii) the
buriedness and (iii) the hydrophobicity. These three properties are used to
create a three dimensional pocket space. Using this space so called drug like
densities (DLID) are derived. The DLID basically assesses the number of
neighbouring binding sites containing a drug like ligand a cavity has in the
three dimensional pocket space. The rational presented in this work suggests
the more pockets in the immediate neighbourhood bind drug like ligands, the
more the particular pocket is likely to be chemically tractable.
In a next step Sheridan et al. built a simple regression model (mDLID) using
these three pocket characteristics (formula 2.20) :

mDLID(v, b, h) = −8.70 + 1.71log(v) + 3.94(b) + 2.27(h) (2.20)

where v is the volume of the pocket, b the buriedness and h the hydrophobic-
ity. mDLID appears to be well correlated to the previously calculated DLID
and can thus be used to approximate it. Although no training was done on
druggable binding sites explicitely, DLID is shown to correlate with previous
results published by Cheng et al. and Halgren.

Novelty: The approach chosen by this group was very distinct from other
contributions made to the field so far. Based on a ligand drug like point of view
chemical tractability and not druggability was assessed. This way it is possible
to analyse several thousands of structures instead of doing ”manual” training
on a hundred structures. The manuscript highlights several problems related
to large scale structural database analysis and also regarding the definition
and limitations of the term druggability. While these are not a fundamental
novelty, it should still be highlighted that they have been critically assessed in
this paper in the contrary to several other contributions in the field.

Limitations: The misuse of druggability according to Sheridan et al led to
the use of the term ”bindability” or chemical tractability meaning the capabil-
ity of pockets to bind drug-like molecules. In this particular work, the use of the
term druggability is indeed inappropriate. Thus, the outcome is not directly
comparable to previous work performed on druggability prediction. In any way
this study incorporates the strength of an observed interaction in the crystal
structure and thus even pockets accommodating weak binders that cannot be
optimized further could be potentially classified tractable. While this is true
for using the terminology tractability or bindability, it isn’t druggability.
More importantly, the authors define a pocket space using three pocket de-
scriptors and use this space to derive pocket neighbourhoods to calculate the
DLID. The subsequent relation of the DLID to mDLID is thus predefined and a
correlation not that astonishing as claimed by the authors. Last and probably
the most critical point concerns the choice of the descriptors. This choice is
not thoroughly discussed in this work, but the set of descriptors are of great
significance as they are used to represent the pocket space in the later analysis.
Thus herein the authors consider that the descriptors chosen are best suited to
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efficiently separate tractable from non tractable pockets in the pocket space.
While this choice can be considered at best as an educated guess (especially re-
garding existing literature in the field), a clear rational for descriptor selection
is missing.

Parallels between all methods

It is very impressive to see that all methods consider the same type of descrip-
tors without exception. Of utmost importance appears to be the hydrophobic-
ity of the cavity. All characteristics that are generally used and tracked down
by all these models are well resumed in Halgrens work [Halgren, 2009]. Among

Category Characteristics

undruggable → very strongly hydrophilic; little or no hydrophobic
character
→ requires covalent binding
→ very small or very shallow

difficult sufficient hydrophobicity for administration as prodrug;
less hydrophobic as a typical cavity

easy reasonable size & enclosure (buriedness, curvature) and
hydrophobicity with unexceptional hydrophilicity

Table 2.1: Typical characteristics of druggable, non druggable and difficult pockets.
Adapted from Halgren [Halgren, 2009].

hydrophobicity, relative buriedness and the size play a role directly or indirectly
in all models. In consequence all druggable pockets are ideal when they are
completely hydrophobic and very buried and of reasonable size. Interestingly
no model considers the importance of polar atoms in the binding site.

Other methods in the field

The previously presented methods all calculate characteristics of pockets and
try to use these to predict druggability. As the models are all fairly simple and
based on usually easy to calculate descriptors they tend to be fast. Another
category of methods does not consider only the protein for determining drug-
gability but ligand protein interactions.
Inspired by fragment screening these computational methods assess whether
small molecular fragments or solvent molecules bind into specific locations on
the protein surface. CS-MAP (for Computational Solvent MAPping) published
by the Vajda group is one of these methods[Landon et al., 2007]. The protocol
intends to identify interaction hotspots by systematically placing 14 different
small molecular fragments on the surface of the protein and assess the inter-
action energy of these. The method is shown to be able to distinguish regions
binding drug-like molecules from other regions binding peptidomimetics for
example. Furthermore apparent correlation between NMR hit rates and the
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energy of clustered fragments in a pocket exist. This is shown comparing CS-
MAP results to the public structures in the training set published by Hajduk
et al[Hajduk et al., 2005a].
Within our group another approach has been developed using molecular dy-
namics (MD) trajectories of proteins with a solvent mixture of isopropanol and
water [Seco et al., 2009]. The occupancy of isopropanol on the protein sur-
face is then related to a maximum affinity estimate that a drug-like molecule
could have for this site. The applicability of this method is shown on several
characterised and known systems like MDM2, PTP1B, elastase and more. As
maximum affinities are derived from dynamically occurring contacts (based on
molecular mechanics force-fields) no prior training has to be performed so the
method is not tailored to a given training set. Furthermore it is able to identify
protein protein interaction sites and other shallow surface patches. Thus, this
methodology named MDMix is till today probably the most unbiased and ac-
curate measure of putative fragment interaction patterns that can be observed
on the protein surface.
A last category of methods uses systematic molecular docking of small frag-
ments into binding sites to assess their suitability to bind drug-like molecules.
Analogue to experimental NMR hit screening the approach published Huang
and Jacobson relates virtual screening hit rates to druggability[Huang and Ja-
cobson, 2010].
This second category of methods has an inherent advantage of not being de-
pendent on extensive training or pocket properties of predefined characteristics.
Thus they tend to be more generic and should be the methods to choose when
one particular target has to be evaluated. However, if the aim of druggabil-
ity prediction is not a single target validation, but exploratory putative target
discovery, then these techniques are far too complex and slow to be applied on
structural databases.

Importance of druggability prediction

Several papers and reviews highlight the importance of druggability predic-
tions for pharmaceutical industry usually in introductory paragraphs or con-
clusions[Egner and Hillig, 2008, Fauman et al., 2011]. Also seen the list of herein
presented methods it shows that main pharmaceutical companies like Abbott,
Pfizer and Merck work on these issues and the fact that software companies
like Schrödinger take the effort to implement their own druggability prediction
score shows that there can be potential interest in the industry. Despite this
apparent interest, other pharmaceutical groups appear uninterested towards
further target assessment (personal communication with representatives from
Johnson & Johnson, Actelion and others). In most scientific communications
in the field especially from pharmaceutical industry one can observe that the
main aim of predicting druggability is to validate a particular target. The use
of such methods for large scale screens to discover new putative targets is still
in its beginnings in the field.
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3.1 Prediction of protein druggability

3.1.1 Introduction

Since the publication of the ground-breaking article by Hopkins & Groom
[Hopkins and Groom, 2002] describing the druggable genome lots of discussion
emerged on the concept of druggability and ways to predict it using structural
and sequence information available in the public and private domain.

The concept and the term of druggability vary substantially from one study
to the other. Throughout this work, the definition given by Hopkins & Groom
is used. Thus, a protein is deemed druggable if it has at least one pocket on its
surface capable of binding molecules having drug like properties regardless of
the molecular mechanism of action. A more thorough discussion on the scope
of this term can be found in section 2.5.2.
One of the main reasons of the high impact of the druggable genome paper was
the estimation that there might be only around 3000 genes encoding for puta-
tively druggable proteins out of the supposedly 22000 human genes [Hesman
Saey, 2010]. This estimation created lots of speculation on the actual number
of tractable proteins in the human but also viral, bacterial, fungal and other
genomes. ”Surprisingly, for an industry that spends in excess of US$50 billion
on research and development each year, there is a lack of knowledge of the set of
molecular targets that the modern pharmacopoeia acts on. If we are to develop
predictive methods to identify potential new drug targets, it is essential that we
establish with confidence the number, characteristics and biological diversity of
targets of approved drugs.” [Overington et al., 2006]. This introduction in John
Overingtons review entitled ”How many drug targets are there?” highlights an
apparent paradox linked to this ongoing discussion in literature.
The results published by Overington et al. reproduced in figure 3.1 show that
there is currently a clear tendency in pharmaceutical research to target well
characterized target families, like G-protein coupled receptors, nuclear hormone
receptors and ion channels, accounting alone for more than 50% of all targets
identified in that survey. Also serine/threonine and tyrosine kinases and other
proteins are among well studied targets, but till today with lower outcome on
actual drugs on the market.

Structure based druggability Druggability became a hot topic for a part
of the pharmaceutical industry accompanying steady discussion about reasons
for high attrition rates together with the observation of a decrease in the num-
ber of new targets for new chemical entities (NCE’s) discovered. Indeed it
would be invaluable for emerging drug discovery projects to be able to assess,
very early, if a given target is actually able to accommodate a drug-like molecule
and second if it is disease-related. While the second is usually a pre-requisite
for biologists to validate a protein as putative therapeutical target, the first is
not. Furthermore, current drug discovery and target discovery pipelines don’t
sieve systematically for new putative targets using structural information avail-
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Figure 3.1: The family share as a percentage of all FDA-approved drugs for the top
ten families. Adapted from Overington et al.

able in public databases like the PDB or in-house data banks.
During the last years a few notable methods emerged trying to use the 3D
structure of the protein and the known location of the binding site to study
the properties of the latter and assess if it would be able to bind a drug like
molecule. An initiating contribution has been done by Hajduk et al. describ-
ing a first regression model to predict the likelihood of binding small molecular
fragments into binding sites [Hajduk et al., 2005]. Another very simple model
has been described by Cheng et al. in 2007 [Cheng et al., 2007]. This model
related size, shape and relative hydrophobicity of the binding site to druggabil-
ity. Furthermore this paper proposed the first public dataset for evaluation of
structure based druggabilty descriptors. Last, Tom Halgren from Schrödinger
LLC implemented a druggability prediction into the already existing pocket
detection software called SiteMap [Halgren, 2007, 2009]. The resulting Dscore
is based on SiteMap descriptors of the binding site like enclosure, size and hy-
drophilicity. All methods in the field are explained in more detail in section
2.5.4.
Despite the publication of these methods, none has been used to efficiently sieve
structural databases for yet uncharacterized druggable binding sites. Second,
they have been validated only on a restricted dataset. Third, none of them is
freely available and ready to be used. Last, most of these methods inherently
assume a druggable binding site to be hydrophobic. While hydrophobicity is a
frequent observation in drug binding sites and a good predictor of druggability,
a purely hydrophobic pocket would be unable to yield specificity towards drug
like molecule.
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3.1.2 Objectives

Focusing on the development of a new structure based druggability prediction
method, this work intends to address four main issues in the field.

Dataset availability and extension Current datasets in the field are very
small regarding the number of publicly available proteins they include and
number of conformational states per protein. Based on the already available
data, this work intends to propose a larger dataset of protein binding sites
known to recruit drug like molecules and pockets known to be undruggable.
Unlike previous publications, the dataset should be publicly available. [Hajduk
et al., 2005] Furthermore, not only a hand picked ensemble of structures per
protein should be used, as done by Cheng et al [Cheng et al., 2007] and Halgren
[Halgren, 2009], but available structures of a protein should be systematically
used if they fulfil necessary quality requirements.

Coupled to automated cavity detection In contrast with several previous
works in the field the method developed here should use automatic 3D pocket
detection algorithms to delineate the protein binding site.

Large scale applicability The focus of this work is somehow further re-
stricted, as the method is intended to be applicable on huge structure databases,
like the PDB. Thus the reliability and accuracy of the pocket identification has
to be weighted against a high throughput usage. Next, the druggability predic-
tion needs to be robust towards variations of the structure of the protein as well
as variability occurring during cavity detection. A part from the necessary sci-
entific accuracy and reliability another important objective in high-throughput
applications is technical feasibility. This includes notably reasonable calcula-
tion time and usage of computer resources.

Investigate the role of polar atoms in drug binding sites Interestingly,
the role of polar atoms in drug binding sites is completely neglected in drug-
gability predictions. One objective of the work presented here is to highlight
the importance and presence of polar atoms within druggable binding sites.

Open access to our methods and data A central point of my work is
related to open access. Unfortunately it is very common in research related
to drug discovery to publish methods that are then further commercialized.
Often these methods are out of reach for potentially interested researchers
in academia or in small companies. Another recurrent problem is that they
usually can not be tailored to a specific context or use inside a research group
because of disclosed source code of underlying methods.
Publishing results and methods in open accessible source code allows other
researchers to honestly evaluate and use the research results immediately, also
increasing the impact of the published results.
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3.1.3 Results

Creating and sharing a novel data set

Training knowledge based scoring functions to predict properties like ”drugga-
bility” requires a substantial set of diverse structural data. Previous datasets
available to the community were either partially disclosed or representative
structures had been chosen in a semi objective manner. Furthermore, as the
creation of such a set is mainly based on lengthy literature analysis and expe-
rience, only few proteins were included (27 for the only publicly available data
set).
Prior to the development of a new druggability assessment I established a new
reference data-set. This new data-set uses the existing data provided by Cheng
and co-workers [Cheng et al., 2007] as well as the public part of the data pro-
vided by Abbott [Hajduk et al., 2005]. Next, supplementary data was added
via a semi-automatic protocol.
A list of marketed and orally administered drugs [Vieth et al., 2004] has been
cross referenced with PubMed [Bolton et al., 2008] and the PDB [Berman et al.,
2000] to identify if the PDB contains co-crystallized structures of the drug and
the protein. The retrieved protein-ligand complexes were further validated
using DrugBank [Wishart et al., 2006] to verify that the protein actually corre-
sponds to the intended target of the drug. Next, the resulting complexes were
manually classified into three categories already pre-defined by Cheng and co-
workers: (i) druggable, (ii) non-druggable, (iii) prodrug binding. For the first
time, also apo structures have been added to the data-set.

NRDD DD Cheng Hajduk

druggability class holo holo apo total holo holo
druggable 45 773 146 919 17(43) 35
nondruggable 20 75 9 84 4 (10) 37
prodrug 5 60 7 67 6 (10)

total 70 908 162 1070 27 (63) 72

Table 3.1: Composition of the DD dataset. NRDD: non redundant data-set (one
structure per protein). For the Cheng data-set the number of proteins are listed and
number of structures in brackets.

A list of 1070 crystal structures from 70 different proteins was derived.
As the assembly of such a set of proteins is intended to be helpful for the
community different ways can be envisioned for the distribution of the data.
Usually a list of structures is published in a scientific communication and the
data-set either becomes a benchmark in the community or other contributors
consider establishing a new data-set. To keep the data set creation and shaping
accessible at all times to the community a scientifico-sociological experiment
was connected to this work. I created a collaboratorive web-platform named
”Druggable Cavity Directory” (DCD) that allows researchers from all over the
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world to anonymously download and browse the data. The DCD contains
assigned druggabilities on a scale of 1 to 10 (10 being druggable) connected
to a PDB code and the hetero-atom residue name to spot the ligand in the
binding site (defining the binding site). In addition, researchers are allowed to
register as contributor and/or validator to further add new data to the existing
data-set. Thus it is possible for the community to continuously evolve the data,
discuss the pertinence of certain assignments and use it to retrain / validate
new methods and models. The druggable cavity directory is accessible on:
http://fpocket.sourceforge.net/dcd

Are polar atoms needed in drug binding sites?

This new and more extensive data-set was then put to use to analyse struc-
tural properties of druggable binding sites versus non druggable binding sites.
It should be noted that all properties were extracted from the pocket defini-
tion from cavities automatically identified using fpocket. These pockets have
to overlap significantly with the known binding site (mutual overlap criterion
has to be 1, c.f. [Le Guilloux et al., 2009] ) While previous studies highlighted
the importance of the hydrophobicity, size and enclosure of the binding site,
none of these [Hajduk et al., 2005, Cheng et al., 2007, Halgren, 2009] considers
investigating the role of polar atoms in the binding site. This results in the
debatable assumption that druggable binding sites are necessarily very greasy
and buried. Polar interactions are known to be important as anchoring points
playing a central role in pharmacophoric models of binding sites [Hoffmann,
2006]. Thus, during the analysis of available pocket descriptors for druggabil-
ity prediction special attention was also paid on factors that can influence drug
recognition by the protein.
Very simple surface properties of binding sites from the DD have been calcu-
lated. First the polar accessible surface area was compared to the total surface
area of the pocket. Previous studies of surface properties by Cheng [Cheng
et al., 2007] already suggested that for druggable pockets the accessible surface
area is only to 20% to 40% polar. As shown on figure 3.2 this trend is also
seen within the DD. On the contrary, non druggable binding sites tend to be
more polar (40-60%). From the analysis of around 220.000 cavities identified
by fpocket on single protein chains in the PDB around 50% of their surface
area is defined by polar atoms (±16%). Again this result highlights the im-

Figure 3.2: Accessible surface ratio between polar and total area for druggable and
non druggable cavities.
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portant hydrophobicity of druggable binding sites. Another characteristic that
has been observed is that in druggable cavities, 70% of all polar atoms have an
accessible surface area of 10Å2 versus 50% in non druggable cavities.
Hydrogen bonds can be up to 1.2kcal/mol stronger in hydrophobic environ-
ments [Gao et al., 2009]. To study the protrusion of polar atoms into the
hydrophobic cavities another property has been calculated on all known drug-
gable and non druggable binding sites. In order to know to what extent polar
atoms make themselves available, the polar and apolar accessible surface areas
have been calculated. This step was repeated increasing the van der Waals
radius ri of the pocket atoms from ri+1.4 Å (for water) to ri+2.2 Å. By doing
so, the cavity gets gradually filled up and surface area decreases due to the
concave shape of the pocket. This process called atom fattening is also used
in several other computational approaches like VOIDOO [Kleywegt and Jones,
1994], but not for the same purpose.
While tracking polar and apolar surface areas during atom fattening, different
scenarios can be imagined like shown in figure 3.3 A, B and C. Here three

Figure 3.3: Schematic representation of polar versus apolar surface areas (ASA)
upon atom fattening in different binding sites (radius axis)

cases have been considered. Given that the cavity is by definition globally con-
cave, the surface area is decreasing or, at most, stable during atom fattening.
On figure 3.3 A a case is represented where the polar (grey curve) and apolar
(black curve) loose accessible surface area upon atom fattening at the same
pace. Thus the derivative of the curves dpASA and dapASA are equal. Next, the
relative position of the apolar versus the polar ASA curve can vary as already
shown on figure 3.2. In figure 3.3 B the polar surface area decreases less fast
compared to the apolar surface area. This indicates that polar atoms are more
exposed than the apolar surface area. The contrary is shown in C, where apolar
atoms are more exposed than polar atoms.
Now the relative decrease in polar and apolar surface area has been analysed on
druggable and non druggable cavities and it was found that druggable cavities
systematically follow a profile like the one shown on figure 3.3 B. This is more
clearly shown on figure 3.4, where the ratio between dapASA and dpASA (called
concavity profile ratio) is shown for druggable and non druggable cavities. On
this figure we can see a clear shift of this ratio towards values bigger than 1 for
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Figure 3.4: Ratio between apolar and polar slopes of ASA curves upon atom fat-
tening

druggable proteins. This means that the polar surface area, although less im-
portant (c.f. figure 3.2) is more exposed compared to the apolar surface area.
On the contrary for non druggable proteins, most pockets have a concavity
profile ratio close to 1 or below 1.
While it is known that druggable binding sites are more apolar than other
pockets, the protrusion of poorly exposed polar atoms in these is significantly
different from non druggable binding sites. These specific polar atoms can thus
be seen as hallmark of druggable binding sites. This might infer that their
protrusion can play a fundamental role augmenting their visibility to putative
interaction partners. In section 3.2 a subsequent work is presented intending to
provide insights into why these characteristics are observed and especially how
the local environment around polar atoms can affect the interaction between
the pocket and a putative ligand molecule.

Coupling to an automated pocket prediction method

The main objective of the work presented in this section was the development
of a new druggability prediction method. To fulfil all requirements previously
defined an automatic cavity prediction algorithm had to be used to detect,
define and characterise all putative binding sites on a protein 3D structure.
During the last two decades a vast amount of such algorithms have been pro-
posed and they are summarized in section 2.3 and reviewed in [Pérot et al.,
2010]. Taken all algorithms and programs in this field only two programs could
be considered for this project: ligsitecsc [Hendlich et al., 1997] and fpocket [Le
Guilloux et al., 2009]. Both algorithms have good pocket prediction accuracy
[Le Guilloux et al., 2009, Schmidtke et al., 2010], are open source and rea-
sonably fast to allow large scale pocket predictions without the need of high
performance computing facilities.
As fpocket was developed as a project for the MSc Bioinformatics Paris by
Vincent le Guilloux and myself and published in the beginning of my thesis the
choice between ligsitecsc and fpocket was facilitated by the fact that I simply
knew all details, advantages and disadvantages of fpocket. Next to an initial
small scale evaluation of fpocket [Le Guilloux et al., 2009], we further validated
fpocket in a large scale comparison with 3 commercial pocket identification algo-
rithms, namely ICMPocketFinder [An et al., 2005], SiteMap citepHalgren2007
and SiteFinder included in the Molecular Operating Environment (MOE). In
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this study (annexed to this thesis) [Schmidtke et al., 2010], fpocket was found
to be the fastest algorithm together with SiteFinder while producing the most
accurate binding site predictions. SiteFinder and SiteMap had higher success
rates in binding site identifications, but often with a cost of producing unrea-
sonably big binding sites.
Once a cavity is identified by fpocket two scenarios could be considered: (i)
The cavity location known via fpocket is used to re-analyse the pocket and
derive new descriptors tailored for druggability predictions or (ii) the cavity
descriptors already extracted by fpocket during pocket detection are used for
druggability predictions. For this project the second scenario was considered
as it is more suitable for large scale applicability. Furthermore it allows easy
adaptation of fpocket to include a new druggability score and its subsequent
dissemination.

A model predicting druggability

All descriptors available in fpocket were extracted for all cavities from a non
redundant version of the DD (druggability data-set defined for this study)
hereafter named NRDS, acronym for non redundant data-set. The termino-
logical distinction between druggability and non druggability is very strict and
purely binary, although from a scientific point of view this distinction could be
mapped on a continuous scale. A mathematical model having a close to binary
behaviour while being continuous is the logistic model. As the logistic function
is sigmoid, a prediction can vary quickly from being 0 (non druggable) to 1
(druggable), having an inflexion point at 0.5, which would be the druggability
threshold. While this is a wanted behaviour it can be problematic knowing
that pocket definitions can vary from one structure to another for the same
protein. Thus a second layer of logistic models was incorporated for the final
druggability scoring model to behave like a two step voting model. First a
logistic model is separately constructed for each descriptor. Then the results
from the predictions of these models are used in a final logistic model weight-
ing previous ”votes” to a final score. The final model is shown in equation 3.1.
Using this modelling layout, the R statistical software was used to test vari-

Figure 3.5: ROC curves for internal learning (A) / validation (B) and external
validation (C) of the druggability score.
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ous combinations of descriptors for their (i) predictive power for druggability
and (ii) stability upon cross validation and external validation. To this end
the NRDS was split in two parts constituting a training set and an external
validation set. Next the training set was used to perform a 10 fold bootstrap
cross-validation on half of its data. A set of three descriptors have been iso-
lated via this procedure and receiver operator characteristics (ROC) for various
modelling steps are shown on figure 3.5. Finally, the other half of the NRDS
was used to validate the model. It should be noted that previously assessed
descriptors regarding polar accessible surface area and the protrusion of polar
atoms were also considered in this assessment. However, unfortunately these
descriptors were found to be too variable regarding different pocket definitions
and were thus discarded as candidate descriptors for a high-throughput model
predicting druggability.

ds(z) =
e−z

1 + e−z
(3.1)

z = β0 + β1f1 + β2f2 + β3f3 (3.2)

fx(dx) =
e−βx,0+βx,1dx

1 + e−βx,0+βx,1dx
(3.3)

descriptor coefficient meana stdev
mean

b

intercept β0 -6.238 -0.095
mean local hydrophobic density (norm) β1 4.592 0.154
hydrophobicity score β2 5.717 0.170
polarity score (norm) β3 3.985 0.459

intercept β1,0 -5.141 -0.170
mean local hydrophobic density (norm) β1,1 6.579 0.173

intercept β2,0 -2.669 -0.168
hydrophobicity score β2,1 0.056 0.216

intercept β3,0 -2.445 -0.238
polarity score (norm) β3,1 2.762 0.330

Table 3.2: Coefficients for the final druggability score after 10 fold boostrap cross
validation.

The learning and validation process allowed us to derive a set of parameters for
each descriptor of the model 3.1. These parameters are summarised in the table
3.2. The three fpocket descriptors retained for the final druggability model are
described in more detail in the fpocket paper [Le Guilloux et al., 2009] and
hereafter:

1. The Mean local hydrophobic density is a numerical value assessing the
amount of local hydrophobic sub-pockets in a binding site and their rel-
ative packing. Shortly, the number of overlapping apolar alpha spheres
in a binding site is calculated and normalized by the count of apolar
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alpha spheres in the binding site. In the druggability model, the nor-
malized mean local hydrophobic density is used. This normalization was
performed versus all other pockets on the same protein structure.

2. The hydrophobicity score is a measure of the propensity of hydrophobic
residues in the binding site using a hydrophobicity scale of amino-acids
[Monera et al., 1995]. Here the average hydrophobicity score is calculated
for the whole pocket.

3. The polarity score is a score classifying the polarity of amino acids lin-
ing the binding site. Two categories of polarities (0 or 1) were consid-
ered. This was originally published on a web resource at the university of
Angers (France), which is not accessible anymore. The polarity score val-
ues for each amino-acid are now publicly accessible in the fpocket source
code (file aa.c here : http://fpocket.sourceforge.net/programmers_
guide/aa_8c-source.html). The final polarity score used as descriptor
is the average of all polarity scores for each amino acid lining the binding
site. Each residue is evaluated only once.

As shown on figure 3.5 stable predictions with good enrichment in druggable
cavities are obtained during internal learning and validation as well as external
validation.
Interestingly all descriptors have a global positive contribution to the final
druggability score. As highlighted in a recent review [Fauman et al., 2011],
this makes this particular druggability score the first model to incorporate a
polar term as positive contribution for predicting protein druggability and is
a counter example to all structure based druggability estimation models that
exist in the field.

Variability upon different crystal structures

A central point of predictions in high throughput applicable methods is their
evaluation versus variability. Even though several methods have been pub-
lished, their predictions were usually validated using only one single crystal
structure, although hundreds might exist in the PDB. The DD presented pre-
viously was thus subsequently used to measure the variability of druggability
prediction of a given target using fpocket automated pocket detection and scor-
ing using the druggability score developed throughout this work. Figure 3.6
resumes predictions on all structures in the DD for each protein in the DD for
all three categories considered (druggable, non druggable and prodrug binding
or difficult). Analysing these results we can observe that certain categories
yield very stable and correct predictions, like buried and hydrophobic cavities
of nuclear hormone receptors (AR, PR, MCR, GCR, SHB, ER, THRA). Well
known and characterized drug targets COX2, P38, DHFR and other kinases
also allow stable predictions with the method presented here. As expected
variability of prediction for druggable proteins is highest for proteins that have
average scores around the inflexion point (0.5) of the logistic model. This is
for example the case for enoyl reductase, but also phosphodiesterase 5A (and
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Figure 3.6: Average druggability prediction scores using fpocket on the whole DD.
Error bars indicate standard deviations and maximum druggability scores for each
target are marked as thick horizontal lines. The theoretical druggability threshold is
0.5.

4D).

A very important prediction variability can be observed for HDAC8. This
due to the fact that the cavity detection carried out on a total 10 different
cavities yields different results. Thus, for example for HDAC8, maximum drug-
gability scores of 0.72 can be observed, while the average of scores is below the
druggability threshold of 0.5. Interestingly on other cavities known to be more
solvent exposed and flexible, like P38 and CDK2, more stable predictions are
obtained.

AR Androgen Receptor; PR Progesterone Receptor; MCR Mineral Corticoid Receptor;
GCR Glucocorticoid Receptor; SHB Sex Hormone Binding globulin; ER Estrogen Receptor;
THRA Thyroid Hormone Receptor; DHFR Dihydrofolate Reductase; MDM2 Mouse Double
Minute 2-Tumor Protein; EGF Epidermial Growth Factor Receptor; P38 P38 Map Kinase;
COX2 Cyclooxygenase 2; DHFR-TS Bifunctional Dihydrofolate Reductase-Thymidylate Syn-
thase; PPARg Peroxisome Proliferator Activated Receptor gamma; B2AR Human Beta 2
Adrenergic Receptor; PLA2 Phospholipase A2; CYP450-51 Cytochrome P450 51; 3AHD
3-Alpha-Hydroxysteroid Dehydrogenase type 3; PDE5A Phosphodiesterase 5; EAR Enoyl
Reductase; CDK2 Cell Division Protein Kinase 2; TK Tyrosine Kinase; PTP-1B Pro-
tein Tyrosine Phosphatase 1B; PDE4D Phosphodiesterase 4D; HDAC8 Histone Deacety-
lase 8; FX Factor Xa; HMG-CoA 3-Hydroxy-3-Methylglutaryl-coenzyme A Reductase;
PHH P-Hydroxybenzoate Hydrolase; GST Glutathione-S-transferase; P4M Phenylalanine-
4-Monooxygenase; CYP450-SU1 Cytochrome P450 105A1; HemK N5-glutamine methyl-
transferase; DNH Deoxyuridine Nucleotide Hydrolase; FDS Farnesyl Diphosphate Syn-
thase; CCAT cytosolic Branched Chain Aminotransferase; NPRT Nicotinate phosphori-
bosyltransferase; PISPLP Phosphatidylinositol spec. phospholipase; EBDGA Exo-beta-D-
glucosaminidase; TPK Tyrosine protein kinase BTK; ACE Angiotensin Converting Enzyme;
PBP Penicillin Binding Protein; IMPDH Inosine Monophosphate Dedhydrogenase
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Several cases have been observed where fpocket either detects a complete inter-
nal channel system attached to a cavity of interest (ACE) or where no cavity is
found (HIV integrase, HIV-RT) with sufficient precision (mutual overlap crite-
rion equals 1). Especially in the context of non druggable cavity prediction, the
fact that fpocket does not identify the cavity of interest is in-line with the fact
that buried cavities are needed for effective drug binding. The geometric prin-
ciple exploited by fpocket allows identification of such buried surface patches.
If the degree of burial is too low, then fpocket may discard the putative pocket
even before scoring.
Other reasons of variabilities during druggability predictions can be pointed
out on carbonic anhydrase. The ligand used as reference for indicating if a
pocket detected by fpocket is the binding site is given using the residue name.
However on several structures the same ligand binds to two different pockets
on the same structure. Both cavities yield very different druggability scores.
Thus here the prediction seen in the results is altered by the way the data set
is used.

Comparison with other methods

A strict comparison of our results with other methods is possible within given
limits. Comparing our predictions to the MAPPOD score is only feasible on
the set of structures used by Cheng and co-workers [Cheng et al., 2007]. Fur-
thermore, our druggability model does not estimate a maximum affinity, but
produces a binary measure of druggability. However, as results shown by Cheng
can be split up in two different parts, one druggable the other either difficult,
or non druggable. Most druggable proteins are classified as such by both,
MAPPOD and the druggability score. Also for proteins like cathepsin K, cas-
pase 1 (ICE-1), PTP-1B and HIV integrase low scores are predicted or the
cavity of interest was deemed too shallow (HIV integrase). For predicting pro-
drug or difficult binding sites MAPPOD clearly allows a ranking of these among
non druggable cavities. As the druggability score developed here has a binary
behaviour, the average drug score could be situated at around 0.5, but the fact
that the inflexion point does not favour scoring close to the threshold. Fur-
thermore, none of the difficult (or prodrug binding protein) pockets have been
used for training and validation.
Significant differences between MAPPOD can be observed for factor Xa and
HMG-CoA reductase. Both are also poorly scored with MAPPOD, but con-
sidered to be above the druggability threshold. However, in our results factor
Xa is predicted non druggable on average. This is mainly due to the fact that
the binding site is very heterogeneous and composed of several sub-pockets
separated by shallow and solvent exposed areas. Automatic cavity detection
mostly allows detection of the S1 sub-pocket of factor Xa. The exact extent of
the binding site used for MAPPOD calculations for factor Xa is likely to include
other sub-pockets. HMG-coA has a very polar binding site allowing drugs like
rosuvastatin to make ionic interactions, usually a hallmark for prodrugs.
Another more thorough comparison of our druggability score has been carried
out versus Dscore a measure of druggability developed by Schrödinger LLC



64 CHAPTER 3. RESULTS AND DISCUSSION

using the SiteMap [Halgren, 2007] cavity detection algorithm.

Figure 3.7: Relative enrichment from screening for druggable cavities from a pool
of pockets using fpocket and SiteMap

In this study we used the NRDS previously defined as reference data-set.
Using automatic cavity detection 430 cavities were identified with SiteMap
(63 druggable cavities) versus 440 with fpocket (70 druggable cavities). Not
all proteins could be prepared for SiteMap analysis, as the automatic protein
preparation protocol failed on 8 structures.
The druggability and Dscore were calculated for all cavities and the result-
ing list was ordered by each score. A normalized enrichment factor (ratio of
druggable cavities in a subset of the set of cavities analyzed) was used to com-
pare the scoring performance of both methods. Results are shown on figure
3.7 where the relative enrichment for each method (fpocket in red, SiteMap in
blue) are compared to a perfect prediction case (green) and random prediction
(grey). It is noteworthy that both methods yield significantly enriched pre-
dictions compared to random ranking of cavities. Very good early enrichment
is achieved by SiteMap using Dscore. However, here the binary classification
between druggable and non druggable is critical and the thresholds for both
scores are depicted on the figure (0.5 for fpocket and 1.089 for SiteMap) as well
as their location on the enrichment plot. Both thresholds are situated in the
same zone of the plot and show that both methods yield very similar enrich-
ment on this data-set.
These results further confirm that fpocket is as able as SiteMap to identify
binding sites and successfully rank them either druggable or non druggable.
While producing comparable results, fpocket has various inherent advantages
over SiteMap. Instead of searching for cavities in an order of minutes, fpocket
performs cavity detection and scoring in a matter of seconds. Fpocket is fully
automatized allowing large scale applications without lengthy protein prepara-
tion protocols.
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Uncertainties on druggability prediction

Results previously summarised on figure 3.6 also showed several proteins, where
the cavity was predicted druggable although the status of the protein was as-
signed as non druggable. This was especially the case for GST, P4M, Glu-
coamylase and CYP450 Subunit 1. All of these targets were identified in Drug-
Bank as binding a drug. However upon visual inspection they were considered
non druggable. P4M was wrongly assigned as target for levodopa in DrugBank.
Glutathione-S-transferase and Glucoamylase binders are not drug-like, thus the
targets were deemed non druggable. CYP450 and GST are both detoxifying
enzymes and therefore binding of drug-like molecules can happen in a non-
specific manner, questioning the druggability status of both proteins. While
more uncertainties might persist on classifying targets as non druggable, the
presence of an actual orally bio-available drug is evidence of the druggability
of a target. However, even among known druggable targets, predictions can
falsely predict them as non-druggabile or difficult to target. However, upon
a more thorough analysis of these targets one can notice that among them,
ionic and covalent interactions are driving forces for drug-protein interactions,
which is not a hallmark for druggable proteins. This is for instance the case
for PHH, ADAM33, β-lactamase or xanthine oxydase. PTP-1B, an interesting
system already discussed in a previous work of our group [Seco et al., 2009]
yields predictions in the zone of difficult to target pockets.
While assignments of druggability are fixed within this study on the newly
established data-set, the Druggable Cavity Directory provides a necessary en-
vironment for the scientific community to discuss and alter further assignments
and decide on a consensus used throughout the field.

Novelty

In conclusion three principle novelties should be highlighted for this work. First
a novel and more comprehensive data-set has been derived to train and evaluate
new druggability prediction methods. For the first time systematically different
structures for proteins were used. Furthermore apo-structures were considered.
This data-set was made available via an interactive online platform.
Second, it is shown for the firs time that polar atoms follow a particular pattern
in druggable binding sites. Even if the accessible surface area of polar atoms
is low, these were found to make themselves available. This phenomenon is
further investigated in the following study.
Third, the work presented here is the first and till today only method to freely
and easily detect cavities and estimate their druggability. Last, given the fact
that the underlying method is very fast, fpocket with the druggability score
can be used as high throughput prediction tool.

Limitations

Main limitations of the method developed here are linked to (i) the concept of
druggability and (ii) the variability of the automated pocket prediction. Drug-
gability is a debatable concept as is the data used to train the druggability
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score. For this reason I proposed the druggable cavity directory (DCD), to
allow for further discussion and evolution of the current data-set.
An important limitation origins from structural variability. The definition of an
automatically identified pocket by fpocket can vary substantially in few cases.
As the pocket characteristics used for druggability prediction are derived from
such a pocket definition, the outcome is affected.
Last, the prediction is based on training with a specific data-set. Thus a bias
of the predictions towards pockets similar to the data-set can be theoretically
expected. To accurately assess druggability, low-throughput strategies like MD-
mix [Seco et al., 2009] could be considered. However, the druggability score
coupled to fpocket is purpose-built to sieve through large structural data-bases
and retrieve several systems of which the druggability has to be validated via
other techniques (computational and experimental).
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Entendiendo y Prediciendo la Drugabilidad.
Un método High-Throughput para la detección de sitios

de unión de fármacos.

Peter Schmidtke, Xavier Barril
Journal of Medicinal Chemistry, 2010, 53 (15)

Las predicciones de drugabilidad son importantes para descartar los targets in-
abordables y aśı centrar los esfuerzos en aquellos sitios que, de entrada, ofrecen
mejores perspectivas. Sin embargo algunas herramientas de predicción de dru-
gabilidad han sido hechas públicas y ninguna ha sido probada extensamente.
Hemos compilado un grupo de cavidades drugables y no drugables en una
plataforma colaborativa (http://fpocket.sourceforge.net/dcd) que puede
ser utilizada, ampliada y corregida con contribuciones comunitarias. Los sitios
de unión de fármacos, en ocasiones son sobresimplificados como cavidades cer-
radas e hidrofóbicas, sin embargo los análisis de datos posteriores revelan que
los grupos polares en los sitios de unión de fármacos tienen propiedades que les
permiten jugar un papel decisivo en el reconocimiento del ligando. Los datos
recogidos, se utilizaron en conjunto con el código abierto fpocket para probar y
validar el modelo loǵıstico. El rendimiento punta de esta nueva herramienta ha
sido predecir las cavidades de unión de fármacos en sitios de unión conocidos
a priori y experimentos de screening virtual, donde se eligieron las cavidades
con capacidad de unir fármaco del conjunto inicial. Dicho algoritmo es gratu-
ito, extremadamente rápido y puede ser utilizado de manera efectiva con las
cuantiosas colecciones de estructuras.
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Druggability predictions are important to avoid intractable targets and to focus drug discovery efforts
on sites offering better prospects. However, few druggability prediction tools have been released and
none has been extensively tested. Here, a set of druggable and nondruggable cavities has been compiled
in a collaborative platform (http://fpocket.sourceforge.net/dcd) that can be used, contributed, and
curated by the community. Druggable binding sites are often oversimplified as closed, hydrophobic
cavities, but data set analysis reveals that polar groups in druggable binding sites have properties that
enable them to play a decisive role in ligand recognition. Finally, the data set has been used in
conjunction with the open source fpocket suite to train and validate a logistic model. State of the art
performance was achieved for predicting druggability on known binding sites and on virtual screening
experiments where druggable pockets are retrieved from a pool of decoys. The algorithm is free,
extremely fast, and can effectively be used to automatically sieve through massive collections of
structures (http://fpocket.sourceforge.net).

Introduction

Despite advances in both experimental and computational
fields, it is estimated that around 60% of drug discovery
projects fail because the target is found to be not
“druggable”.1 Drug discovery project failures are very expen-
sive, and understanding the difficulties associated with a
prospective target is essential to balance investment risks.
Since the publication of “the druggable genome”2 and its
estimation of the number of therapeutically useful proteins in
the human genome, druggability has gradually becomepart of
the target validation process. Traditional target validation
tries to assess whether or not alteration of the normal activity
of a potential target can have some significant therapeutic
effect. The druggability concept adds a structural dimension
and evaluates the likelihood that small drug-like molecules
can bind a given target with sufficient potency to alter its
activity. Several structure-based druggability prediction
methods have been published (reviewed in ref 3). Notable
contributions in this domain were first done by the group of
Hajduk et al.,4,5 who usedNMR-based fragment screening hit
rates as a measure of druggability. The model, based on a
simple regression analysis, used descriptors like the surface
area, the polar/apolar contact area, the roughness, and the
number of charged residues in the binding pocket. In 2007,
Cheng et al.6 published a very simple model to estimate the
maximum affinity that an ideal drug-like molecule could have
for a given binding site. This model was remarkable because
correct predictions were obtained on the assumption that
binding affinity of drug-like molecules may derive exclusively

from the hydrophobic effect. Drug-target molecular recogni-
tion is, nevertheless, a more complex phenomenon,7 and as
our understanding of druggability gradually improves, it will
influence our view of the drug binding event, just like phar-
macokinetics and drug-likeness have influenced each other.8,9

With few exceptions,10 druggability predictions are based
on empirical structure-activity relationships, which require a
substantial data set on which to train and validate the model.
In that regard, the pioneering studies carried out at Abbott
and Pfizer are particularly important because they provided
an initial pool of test cases which has facilitated subsequent
developments.11 However, these are still limited and, because
the druggabilty concept allows for different interpretations,
the classification given to some of the targets is debatable. In
this study we unify the previous sets and extend them with
further examples, adhering to Cheng’s et al. definition of the
term “druggable”, i.e., capable of binding oral drugs. Un-
doubtedly, the enormous range of binding affinities and
bioavailability rates exhibited by this drug class, as well as
the fact that some of these molecules are in fact pro-drugs,
introduces a fair amount of ambiguity to the definition.
Nevertheless, druggability scores will be extremely useful even
if they can only provide a qualitative classification between
“druggable”, “borderline”, and “non-druggable”. To facil-
itate further studies, to promote community involvement in
the generation of a larger data set, and to reach a wider
consensus on the druggability classification, we have made
our test set publicly available and editable (http://fpocket.
sourceforge.net/dcd).

Initial studies set the path for druggability predictions, but
the resulting algorithms were not made available.4,6 More
recently, Schr€odinger have used Cheng’s data set to endow
their SiteMap cavity detection program with a druggability
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score (Dscore),11 but it was trained and presented for usage in
specific target validation. Thus, the user has to select a very
precise zone for performing the druggability prediction. Be-
cause themethodwas trained to estimate druggability of well-
defined cavities, itmight notbe suitable to assess themultitude
of cavities that occur in protein structures, many of which
have no reported functional role.12 Automatic predictions on
large structural databases would offer the opportunity to
identify druggable cavities on sites or targets that might not
be considered a priori, such as allosteric sites or proteins for
which a therapeutic rationale has not been fully developed.
With this goal in mind, the work presented in this article
describes a new structure-based target druggability prediction
score coupled to the open source cavity prediction algorithm
fpocket.13 We demonstrate the ability of the method to
accurately evaluate the druggability of automatically detected
cavities, which allows us to correctly rank binding sites both
across and within protein structures. At 2 to 4 s per averaged-
sized structure, the method is at least 1 order of magnitude
more efficient than SiteMap, and the whole of the Protein
DataBank (PDBa) can be processed in a fewdays ona normal
computer. fpocket, including the herein presented druggabil-
ity score, is freely available for download at http://www.
sourceforge.net/projects/fpocket.

Last, we discuss which cavity descriptors are more useful to
detect druggable cavities and what they tell us about mole-
cular recognition between proteins and drugs. As shown in
previous studies, hydrophobicity correlates particularly well
with drug binding sites but the implication of a hydrophobi-
city-explains-all model such as the MAPPOD

6 is that the ideal
binding site is a closedand“greasy” cavity.Even in the cavities
that more closely resemble this description (e.g., the hormone
binding site of nuclear receptors), polar interactions play a
fundamental role in binding, selectivity, or mediating the
biological response.14 New evidence is presented here for the
special characteristics of the polar groups present in binding
sites, which provides a more complex and realistic picture of
drug-protein molecular association.

Results and Discussion

Compilation of an Open Data Set. A set of protein-oral
drug complexes was obtained crossing the list of marketed
oral drugs provided by Vieth et al.15 with the PDB.16 The
DrugBank17,18 target information was then used to ensure
that the complex corresponds to the actual drug-target pair.
Visual inspection ensued to classify the complex as drug-
gable, difficult (e.g., in the case of prodrugs), or undruggable
(e.g., in the case of nondruglike ligands). Cheng’s data set6

and the public part of Hajduk’s data set4 were added to
obtain the druggability data set (DD) used in this study.
As most targets are represented by several structures, and
to avoid too much bias toward certain protein families, a
nonredundant druggability data set (NRDD) was estab-
lished using a 70% identity cutoff. The composition of the
data sets is summarized in Tables 1 and 2.

The notion of druggability is often riddled with uncer-
tainty and classification can be difficult and may evolve over
time. A good example of that is the different classification
given by Cheng et al. to the related serine proteinases

thrombin and factor Xa as “difficult” and “druggable”,
respectively.6 As discussed by Halgren, they share common
characteristics and it is likely that, eventually, thrombin will
become “druggable” although it is an objectively difficult
target.11 For this reason, we deemed necessary to leave the
classification of targets open for discussion. Furthermore,
we make the data set public in an attempt to instigate parti-
cipation of scientists from the field into the creation and
design of a unified data set. As demonstrated in the docking
arena, the establishment of general benchmarks is important
to ensure a fair evaluation of prediction performance.19,20 In
the case of druggability predictions, some targets are more
easily predicted than others and, even for the same protein,
classification may depend on the particular conformation
adopted by the receptor. The use of a common data set will
facilitate further developments in the field and avoid biases
when comparing methodologies. The Druggable Cavity

Table 1. Composition of the DD Data Set; For Comparison, The
Composition of the Cheng and Hajduk Data Sets Are Also Shown

no. of protein structures

NRDDa DDb Chengc Hajdukd

druggability

classification

holo holo apo total holo holo

druggable 45 773 146 919 17 (43) 35

nondruggable 20 75 9 84 4 (10) 37

prodrug 5 60 7 67 6 (10)

total 70 908 162 1070 27 (63) 72
aNonredundant data set, one structure per protein. bTotal number of

structures in the druggability data set. cReference 6 number of proteins
and, in brackets, number of structures. dReference 4 it contains only one
structure per protein.

Table 2. Distribution of Structures in DD per Function of the Protein,
As Annotated in Uniprot

druggability

no. of

structures function

average

resolution

druggable 170 lyase 1.76

150 hydrolase 1.97

149 kinase 2.02

138 nuclear hormone receptor 2.06

123 oxidoreductase 1.76

55 Hya, Prb 1.98

42 Hya, Prb, Trc 2.49

41 Trc, Oxf 2.08

6 structural protein 2.85

6 transport protein 1.84

4 ligase 2.17

4 transferase 2.30

3 isomerase 1.78

3 GPCR 3.20

nondruggable 42 Hya, Prb 2.12

21 hydrolase 1.95

11 transferase 2.32

4 Lyase 2.18

3 Trc, Ki
d 2.03

3 oxidoreductase 1.98

1 Hya, Prb, Trc, Poe 2.10

prodrug binding 39 Hya, Prb 2.05

22 hydrolase 1.85

3 oxidoreductase 2.82

3 penicillin binding TMP 2.73
aHydrolase. bProtease. cTransferase. dKinase. ePolymerase. fOxi-

doreductase.

aAbbreviations: ASA, accessible surface area; DD, druggability data
set; DCD, druggable cavity directory; MOc, mutual overlap criterion;
NRDD, nonredundant druggability data set; PDB, Protein Data Bank;
ROC, receiver operator characteristics.
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Directory (DCD) is a web-based platform that allows multi-
ple users to upload known cavities (identification by PDB
code and ligand Hetero Atom Identifier) and assign a value
to their druggability in an arbitrary scale from 1 (not
druggable) to 10 (druggable). These uploads are then vali-
dated by a set of experts (validators) in the field in order to be
part of the final data set. Only registered users can upload/
validate data. However, anonymous users can access and
download the validated data set. The PDB structural data-
base is growing steadily, thus we highly encourage all
contributors of the field (medicinal chemists, structural
biologists, molecular modellers, etc.) to register, participate,
and use this platform, allowing more robust future training/
validation cycles for upcoming methods or for retraining of
existing methods and scores. The project is available at
http://fpocket.sourceforge.net/dcd.

On the Role of Polar Atoms in Druggable Binding Sites.

Models with predictive capacity may inform about the
physicochemical basis of the underlying process. A good
example at hand is the famous rule of five, which predicts
drug-likeness based on descriptors related to pharmacoki-
netics (and very particularly to passive membrane permea-
tion).21 Similarly, it would be desirable that construction of
druggability models could help identify the basis of molec-
ular recognition of drugs by their targets. The Cheng model
tells us that the essential feature of a drug binding site is that it
should be closed and lipophilic. This was justified on the basis
that electrostatic interaction and desolvation energies act in
opposition, and the combination of the two is expected to
make an insubstantial contribution in the case of charged or
polar groups.6 Nevertheless, the contribution of polar inter-
actions is context dependent, and a single hydrogen bond can
contribute as much as 1.8 kcal/mol,22 comparable to the
hydrophobic gain provided by the side-chain of a Val
residue.23 The same applies to ionic interactions.24 The fact
that polar groups play a fundamental role in binding affinity is
also supported by the observation that they often constitute

anchoring points, featuring predominantly in pharmacopho-
ric models of binding sites.25 Furthermore, potency is just one
of the many factors required for a drug-target complex to
result in biological activity. Drugs also have to recognize their
target with certain specificity and maintain a stable and
specific 3Darrangementwithin the binding site to be effective.
These properties are typically associated with polar interac-
tions, and it seems reasonable to expect that polar groups in
binding sites should have some differential properties with
regard to the rest of the protein surface. The fact that polar
groups are considered irrelevant in Cheng’s model or have a
negative contribution to druggability in the case of Hajduk
et al.4,6 may wrongly lead to the notion that the ideal drugg-
able site is a completely hydrophobic cavity.Wehave searched
for descriptors with predictive capacity, with the aim of
getting an insight on the underlying principles of drug recog-
nition by their targets.

In agreement with previous reports, a predominantly
lipophilic composition of druggable binding sites is con-
firmed in this bigger data set. They typically contain only
20-40% of polar surface versus 40-60% for nondruggable
cavities (Figure 1A). Focusing on polar atoms, we find that,
on average, 70% of them have very small solvent exposed
areas (<10 Å2), whereas in nondruggable cavities the propor-
tion decreases to 50%. Considering together the small solvent
exposed area of polar atoms and the preponderance of non-
polar atoms, it becomes evident that, in druggable binding
sites, protein-ligand hydrogen bonds are surrounded by a
hydrophobic environment. In such low dielectric medium,
electrostatic interactions become stronger. Very recently, this
effect has been quantified in proteins, demonstrating that
hydrogen bonds can be up to 1.2 kcal/mol stronger in hydro-
phobic environments.26This clearly indicates that, beyond the
obvious gain in hydrophobic potential, a decrease in the polar
surface ratio can have the paradoxical effect of increasing the
hydrogen bonding potential of the binding site. Without
diminishing the importance of hydrophobic interactions, this

Figure 1. Distribution of (A) the fraction of polar ASA of the pocket and (B) the ASA profile slope ratio on the drugability data set (DD).
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view marries better with the common perception of hydrogen
bonds as key elements in drug-protein binding.

Among other descriptors, we investigated the change in
accessible surface area (ASA) as a function of the radii used to
represent the atoms (seeMaterials andMethods). Being loca-
ted in concave regions (cavities), the surface area of a binding
site decreases as longer atomic radii are used. Figure 1B shows
the ratio of ASA change between polar and nonpolar areas.
The different behavior of druggable and nondruggable cav-
ities is highly significant, suggesting that a fundamental aspect
of molecular recognition must be associated with this obser-
vation. Intriguingly, in nondruggable cavities, the decrease is
similar for polar and nonpolar surface areas (average ratio
is 1), whereas in druggable cavities, the polar surface area
decreases at a much slower rate (average ratio is 3). This
means that, in druggable cavities, polar atoms tend to pro-
trude from the cavity surface,making themselves available for
interactions (see Figure 6 for a graphical representation). We
postulate that the increased protrusion of polar atoms in
druggable cavities is fundamental to increase their visibility,
rendering them available for interactions and extending the
range on which they can exert their selective action. These
results also prompted us to investigate the effect of the local
environment on the energetics of association of polar groups.
In a separate paper (Schmidtke et al., inpreparation),we show
that the type of local environment found in druggable cavities
protects the hydrogen bonds formed between the ligand and
the receptor, effectively locking the ligand and permitting
longer residence times. Kinetic stability (both of the complex
and the binding mode) is another fundamental property of
protein-drug complexes that cannot be explained simply on
the basis of shape and lipophilic interactions.

Druggability Score. A druggability score was trained and
validated on the NRDS, following the protocol described in
Materials and Methods. The result of a 10-fold bootstrap
run on the learning and internal validation sets is depicted in
parts A and B of Figure 2, respectively. The mean prediction
result is represented as solid black line, which shows good
and stable enrichment. Each cross-validation result is repre-
sented as score-colored dashed line. Half of the NDRS was
set aside as external validation set, onwhich the performance
of the average model resulting from the learning process was
tested (Figure 2C). The resulting scoring function is a two-
step logistic function represented by eqs 1-3 and para-
meters in Table 3 (Materials and Methods). It should be

noted that the final formula reflects the need to provide
robust predictions in spite of the variability introduced by
the automated pocket detection algorithm. Although indi-
vidually informative, the descriptors in Figure 1 did not yield
very robust models during the 10-fold bootstrap learning
and validation procedure. These ASA-based descriptors
gather information on atomic detail, but as the fpocket
cavity prediction can be rather variable from one structure
to another or from one conformer to another, their corre-
sponding values are not sufficiently consistent. Instead, the
most important descriptor in terms of predictive perfor-
mance is the mean local hydrophobic density of the binding
site. This descriptor combines size and spatial distribution of
hydrophobic subpockets into a single number. The two other
descriptors used to predict druggability are the hydrophobi-
city and normalized polarity scores, both of which refer to
the physicochemical character of the amino acids lining the
pocket. It is noteworthy that both contribute favorably to
the score, indicating that both hydrophobic and polar resi-
dues can make the binding site more druggable. Again, the
residue-based character of theses descriptors makes them
more granular, but they also show far less variability than
atom-based descriptors during the construction of the final
scoring function. As one of the main aims of this scoring
function is its high-throughput applicability, it must deliver
robust predictions in spite of the varying definition of the
binding site provided by the automatic pocket detection
algorithm. Thus we would like to emphasize that the scoring
function reflects the application for which it has been
designed. Descriptors such as those described in Figure 1
are more interpretable and provide a finer level of detail but
may be better suited for supervised applications such as
predicting the druggability of known binding sites.

As the score is indented for high-throughput and fully auto-
matic predictions, it is necessary to assess its robustness across
different crystal structures of the same target. With that pur-
pose, the scoring function established with the NRDS was
applied to the whole of the DD. This is a major difference with
previous methods. Hajduk et al.4 used a single structure per
protein, whereas Cheng et al.6 used a variable number of struc-
tures, but with no apparent logic. For instance, p38 MAP
kinase, for which multitude of structures are available in the
PDB, is represented by a single structure (1KV1; DFG-out
conformation). Figure 3 illustrates the average score and the
standard deviation for each target in the data set. Satisfactorily,

Figure 2. ROC curves for the model building. (A) Training on a total of 74 cavities, (B) internal validation on a total of 146 cavities,
(C) external validation on a total of 220 cavities. AUC: area under the curve.
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the standard deviation is low at both ends of the distribution.
Variability is larger for scores approximating 0.5, but this is a
natural consequence of using a logistic model. Another cause
for variability is the pocket prediction itself. In the caseof buried
and fairly rigid cavities such as the nuclear hormone receptors,
the pocket detection algorithm produces consistent results and
the druggability score is very stable. In solvent exposed or
flexible cavities, the automated pocket detection may yield
significantly different binding site predictions and the drugg-
ability score may diverge. HDAC8 or CDK2 exemplify this
situation, as manifested by very large standard deviations and
individual predictions ranging from nondruggable to very
druggable. For instance, the average drug score for HDAC8
is 0.36, but the best scoring cavity gets a value of 0.72, comfor-
tably within the druggable range. On rare occasions, the pocket
detection algorithm may completely fail to identify the drug
binding site. On ACE, fpocket detects the whole internal
channel system as one single and continuous cavity, thus it is
too large (up to 7700A3) to consider it as a proper definition of
the binding site. For very shallow binding sites, such as theHIV
integrase, a cavity may not be detected at all. Arguably, this is
not a bad result but a mere reflection of the nondruggable
character of the site. In summary, variability in the cavity defini-
tion step is an intrinsic limitation of the method presented here,
but constraining the druggability prediction to a very concise
zone around the experimentally known binding pocket would
forbid large scale applicability of the method. Notwithstanding
this limitation, the results in Figure 3 and Table S1 (Supporting
Information) demonstrate the predictive performance of
druggability measurements, indicating that fpocket most often
produces consistent results and that the drug score formula
manages well pocket variability.

The fact that information in the PDB is very often redun-
dant is an advantage for the method, as multiple predictions
can be obtained for a given site. Druggability predictions can
then be based on the average score (with a cutoff of 0.5), but

if the associated standard deviation is large, it may be
advisible to take the value for the top scorers instead. Inspec-
tion of Figure 3 (red lines) indicates that, in this case, a cutoff
value of 0.7 provides better discriminating power between
the druggable and nondruggable sets.

Protein flexibility may also be a source of variability. For
instance, the PDE4Dbinding site can be exposed to solvent or it
may be closed due to interactions between the UCR2 domain
and the catalytic domain. Interestingly, this conformational
change may influence druggability, as a recent paper27 shows
that allosteric modulators binding to the former state have
improved side effects compared to known PDE4D inhibitors.
All binding sites containing the allostericmodulatorwere scored
(six pockets originally not included in the test set), yielding a
higher and less variable drug score than the open conformations
(0.55( 0.12 and 0.4( 0.28, respectively). Another system, not
originally included in the druggability data set, for which con-
formational changes havebeenassociated todifferentdegreesof
druggability is renin.28 We have therefore calculated the drugg-
ability on structure 2BKS, which contains two monomers.
Chain A has no inhibitor and adopts the conformation that,
as stated by Davis et al., is less suitable for drug discovery.28

Nevertheless, it should be noted that aliskiren is an approved
drug targeting this conformation.29 On chain B, ligand binding
induces opening of a hydrophobic subpocket (Figure 4), alleg-
edly making it more druggable. The score obtained was 0.9 and
0.93, respectively. So in this case the structural rearrangements
do not alter significantly the druggability prediction, which
suggests that thedifficulty to developdrugs from the closed con-
formationmay be related to the chemical scaffold of the inhibi-
tors (peptidomimetics) rather than to the physical-chemical
properties of the binding site.

Another protein yielding variable predictions is the drug-
gable carbonic anhydrase. However, here the prediction
error is due to the fact that many structures contain twice
the same ligand, one in the actual binding site and a second

Figure 3. Prediction of druggability on all structures of the DD. Error bars correspond to mean prediction( standard deviation. For details
and full list of protein name abbreviations, refer to Supporting Information.
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one in a more superficial cavity (e.g., PDB codes 2QOA,
2NNS). As the ligand is used to identify the binding pocket,
two completely different binding sites are thus scored. Sa-
tisfactorily, they yield opposing drug scores. Accordingly,
the variability seen on carbonic anhydrase is not a limitation
of themethodbut of the data set used to evaluate themethod.

Comparison with MAPPOD. Analyzing the results ob-
tained for the structures in the Cheng data set, few noticeable
differences can be observed with the MAPPOD score.6 Pro-
teins like HIV RT (NNRTI site), COX2, CDK2, MDM2,
CYP450_121, EGF, PDE5A, acetylcholinesterase, p38, and
others are clearly classified as druggable by both methods.
Nevertheless, the scores of one protein relative to another do
not correlate between models, reflecting the fact that our
score is a binary classifier whereas theMAPPOD value aims at
predicting the maximal binding affinity for the binding site.
Agreement is also obtained for the nondruggable proteins
cathepsin K, caspase 1 (ICE-1) and PTP-1B, which yield
rather low druggability scores. As mentioned above, HIV
Integrase has a very shallow binding site that is not even
identified by fpocket, indicating that the binding site is not
buried enough to wrap a small molecule.

Regarding proteins binding prodrugs, results show a clear
separation between druggable binding sites and such “diffi-
cult” to target binding sites, again in consonance with the
MAPPOD score. Considering that druggability score was
trained as a bimodal predictive model and none of the
prodrug binding sites was used during training or validation,
classification of proteins in this category in the nondruggable
class is a desirable behavior of the model. Particularly
encouraging is the case of thrombin, which receives a score of
0.5. As discussed by Halgren,11 dabigatran etexilate, a pro-
drug targeting thrombin, is now marketed in Europe and
Canada. Approval by the U.S. Food and Drug Administra-
tion is pending for this year.

There is an apparent discrepancy between druggability
score and MAPPOD on proteins Factor Xa and HMG-CoA
reductase. But, in fact, both proteins also yield rather low
MAPPOD scores, 100-fold lower than the following protein in
the druggable data set (DNA gyrase B). The low scores
obtained by both methods on HMG-CoA reductase can be
explained by the very polar nature of the binding site, which
forms ionic interactions with the drugs (e.g., rosuvastatin).
Factor Xa, on the other hand, has a heterogeneous and partly
shallow cavity, which could influence the low MAPPOD

score. In the present study, the low score results from the
binding site identification protocol, which yields two distinct
pockets instead of one.

In conclusion, the method presented here is able to repro-
duce results obtained by previous publications while not
focusing on the binding site of interest, which is a crucial
requirement for automated high-throughput druggability
predictions.

Wrong Predictions or Wrong Druggability Status? Some-
times, target misclassification can be directly attributed to
the ambiguous nature of the “druggability” concept. In the
case of druggable cavities with very low score, the pockets are
usually very small or host ionic interaction patterns (P-
hydroxybenzoate hydrolase, ADAM33). In other cases, the
protein forms covalent bonds with the ligand (β lactamase
and xanthine oxidase). In those cases, druggability is largely
the result of a specific chemical feature rather than a global
property of the cavity. Correct assignment of these cavities
may therefore require a completely different approach to the
one used here. For large-scale predictions, these failures
should not be significant, as the sites correspond to enzy-
matic catalytic centers whose relevance is already evident
and can be detected by other means.30 A borderline drugg-
ability score for the allosteric binding site of PTP-1B can
hardly be considered a failure given that these inhibitors are
weak31 and the binding site offers limited opportunities for
tight binding.10

Good druggability scores for nondruggable targets GST,
P4M, cytochrome P450 105A1, and glucoamylase, can be
traced to the fact that all of these proteins do have well-
defined binding sites. They were initially selected because
they are listed in the DrugBank as targets of an approved
drug and the drug-target complex is available in the PDB.
Upon detailed analysis, it was decided that the targets could
not really be considered as druggable and were included in
the nondruggable data set with the aim of improving the
balance between positive and negative data. Reasons to
reverse the original classification includedwrong drug-target
assignment in the DrugBank (e.g., P4Mwas listed as a target
of levodopa), lack of drug-likeness on the ligand part (e.g.,
the GST inhibitor ethacrynic acid), or the biological role
(e.g., GST andCYPare detoxifying enzymes). The druggabi-
lity status of these proteins is therefore debatable. Glucoa-
mylase is known to bind the oral drug acarbose with high
affinity,32,33 but because this drug acts in the intestine and is
not bioavailable, the original classification as nondruggable
byHajduk et al.34 seems adequate. In all these cases, SiteMap
also predicts the sites as druggable or difficult, never as
nondruggable. TheDCDprovides an adequate environment
to reconsider the classification of these and other proteins in
the data set.

Druggability Prediction on Apo Structures. Because of
induced-fit effects, holo structures may present a different
arrangement of the features that determine binding. In the
molecular docking field, holo structures have been shown to
provide qualitatively better results.35 As training and drugg-
ability predictions have been carried out on holo structures,
it was necessary to test the robustness of predictions on apo
structures to ensure that unused druggable cavities can be
found when screening large structural databases (Figure 4).
As shown on Table S1 (Supporting Information), the drugg-
ability score observed in holo structures is generally repro-
duced within the range of confidence in apo structures. The
main source of variability appears to be the number of apo

Figure 4. Renin druggable binding site yielding similar druggabil-
ity scores for holo and apo monomers.
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structures, which is comparatively small. In fact, there are
only two proteins with a large number of apo structures:
carbonic anhydrase and β lactamase. The latter is predicted
as nondruggable, and the average value is identical for the
apo and holo sets (0.11). The former is interesting because
it is the most populated set (83 holo and 61 apo structures),
and the results suggests that there is some information
decay as the apo structures get worst average values than
holo (0.4 ( 0.3 and 0.5 ( 0.3 respectively). Nevertheless,
the best apo cavities get druggability scores as high as the
best holo structures (close to 0.9). In the rest of the sys-
tems, the number of apo structures is insufficient to get
statistics, but the individual values fall within the range
observed with holo structures. β-2-Aadrenergic receptor/
T4 lysozyme chimera is an exception to this rule, as the
apo structures (PDB codes: 2R4R, 2R4S) have missing
residues on the extracellular side of the transmembrane
helices, where the catecholamines bind. This demonstrates
that, except in the case of grossly different cavity shapes, the
predictions are sufficiently robust to detect apo as well as
holo binding sites.

Comparison with SiteMap. Finally, the method presented
here was compared with Dscore, a recent contribution by
Thomas Halgren from Schr€odinger,11 which is, to the best of
our knowledge, the only other software available to screen
for druggable cavities out of the box. The performance of
both scores was assessed on the druggable and nondruggable
structures from the NRDD. The druggability score is inti-
mately linked to the procedure used to define the cavity;
therefore cavities are not interchangeable between programs
and have to be generated independently. SiteMap analy-
sis was run on 63 structures, as the remaining eight gave
problems when running SiteMap in an automated way.
Fixing these structures would have required manual inter-
vention, but this was not done because the goal was to
simulate an automated large-scale screen for druggable
cavities. As a result, the number of cavities differs between
methods (70 druggable, 440 total for fpocket; 63 druggable,
430 total for SiteMap). The performance metric used to
compare the methods must take into account the different
composition of the data set. We have used a normalized
enrichment factor, defined as the ratio of druggable cavities
in a given subset of the library. Figure 5 plots this value
versus the amount of selected cavities after ordering them by

decreasing druggability score/DScore. In both cases, the
enrichment factor is ideal in the beginning and remains very
good throughout. Predictive power of the druggability score
decreases sharply after 0.5, which is the expected behavior, as
this value corresponds to the inflection point in the logistic
model. The correspondingDscore at the same fraction of the
library is 1.1, coincidingwith the average value for druggable
cavities in the Dscore training set.11

In terms of performance, both methods are similarly
capable of retrieving druggable cavities from structural data-
bases. Nevertheless, fpocket present two important advan-
tages for large scale screening purposes. First, the method is
very fast (1-2 s for structures up to 450 residues compared
to a few minutes for SiteMap). Second, fpocket is comple-
tely automatic and does not need protein preparation or
selection of parameters. Additionally, the logistic scoring
scheme provides a natural cutoff for acceptable enrichment
values.

Conclusions

Considerations about druggability are becoming part of the
target selection process (see, for instance, ref 36). If the structure
is available, this can be done by visual inspection of the binding
site but, in the absence of clear guidelines, the decision may be
largely subjective. Compiling a large set of targets with their
associated druggability is an efficient way of making sure that
previous knowledge is retained, thus contributing to our under-
standing of the fundamental processes behind druggability.
Here we present the largest druggability data set to date, which
the community can freely download, edit, or extend. In compar-
ing druggable to nondruggable binding sites we find that,
contrary to previous models,6 hydrophobicity is not the sole
determinant of target druggability, as polar groups also play an
important role on the recognition of drug-like molecules. The
data set can also be used to train computational methods or to
assess their performance. Previously, computational methods
were trained to predict the druggability of known binding sites.
Here we have placed particular emphasis on the ability of the
program to automatically detect binding sites and subsequently
assess their druggability.The resulting software is state of the art
in terms of druggability prediction performance while having
the advantage of being free of charge, open source, and com-
putationally very efficient. As the druggability prediction is
directly associated to a cavity detection method, screening for
druggable cavities in large structuraldata sets is straightforward.
Application of this method to the PDB could, then, provide
insights into the druggable targetome already contained in
the structural proteome. Putative drug binding sites can then
be further analyzed by complementary methods.3,10,37 We ex-
pect that this will be a useful approach to unlock promising
yet largely unpursued mechanisms of action such as allosteric
modulation,38 protein-protein inhibitors,39 pharmacological
chaperones,40 or interfacial inhibitors.41

Materials and Methods

Data Set. Currently, one data set for assessment of drugg-
ability prediction methods was commonly used. This data set
was provided by Cheng et al.6 and was further used for valida-
tion of SiteMap druggability score.11 For a more robust valida-
tion of this method, a bigger and nonredundant data set is pro-
vided. The herein presented data set was derived using a study
published in 2004 by Vieth et al.15 In this paper, characteristic
physical properties and structural fragments of marketed oral

Figure 5. Comparison of druggability prediction performance be-
tween fpocket druggability score and SiteMap Dscore.
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drugs were derived from an extensive data set. Only orally
available marketed drugs were kept from this data set.

Next, PubChem (pubchem.ncbi.nlm.nih.gov) was used to
check whether a 3D structure of the drug in whatever protein
exists in the PDB.16 Only drugs having resolved 3D structures
were kept. Next, data was crossed with DrugBank17,18 entries
for these drugs. The DrugBank contains entries of the targets
corresponding to each drug. The known 3D structures from
PubChem Compound, corresponding to the actual target of the
drug, were kept for further analysis. Finally, structures were
checked by hand to establish whether the drug in the protein
could be classified as drug, prodrug, or if the binding site
should be considered undruggable due to missing drug likeness
of the ligand. Structures from Cheng’s data set were also added,
and the same set was enhanced by other structures for the same
proteins, resulting in the druggability data set (DD). Generally,
crystal structures with a resolution lower than 2.5 Å and
Rfree below 0.3 were kept despite some exceptions for under-
represented protein classes.

These steps allowed building up of an extensive data set
containing formajor parts druggable proteins.However, known
negative information is also very important and very difficult to
find in this field. To enhance the data set with known negative
data, the nondruggable proteins fromCheng’s data set and parts
of the data set published by Hajduk and co-workers4 was used.
Table S1 in Supporting Information summarizes the contents of
the data set as well as the prediction results.

Last, for druggable, prodrug binding and nondruggable pro-
teins, a nonredundant data set (NRDD) was established using the
BlastClust clusters from the PDB at a maximum of 70% sequence
similarity (ftp://ftp.wwpdb.org/pub/pdb/derived_data/NR/clus-
ters70.txt). For learning and validation, only well-defined known
druggable and nondruggable cavities were chosen. This was done
using the fpocket mutual overlap criterion (MOc),13 that allows
assessment if a found cavity covers well the actual ligand binding
site or not. Thus, known druggable and nondruggable cavities
needed a MOc of 1 in order to be considered for learning and
validation of a druggability scoring function.

Cavity Detection. For this study, fpocket, a highly scalable
and free open source pocket detection software package, was
used.13 Extensive usage was made especially of the dpocket
program, allowing easy extraction of pocket descriptors. The
default set of dpocket descriptors was extended by polar and
apolar pocket surface area (van der Waals surface þ1.4 Å and
van der Waals surface þ2.2 Å). The dpocket derived pocket
descriptors were further tested for suitability in the creation of a
druggability score using logistic regression.

Finally, the retained pocket descriptors are:

• The normalized mean local hydrophobic density. This
descriptor tries to identify if the binding pocket contains
local parts that are rather hydrophobic. For each apolar R
sphere the number of apolar R sphere neighbors is detected
by seeking for overlapping apolar R spheres. The sum of all
apolar R sphere neighbors is divided by the total number of
apolar R spheres in the pocket. Last, this score is normal-
ized compared to other binding pockets on the same
protein.

• The hydrophobicity score. This descriptor is based on a
residue based hydrophobicity scale published by Monera
et al.42 For all residues implicated in the binding site, the
mean hydrophobicity score is calculated and is used as
descriptor for the whole pocket. Each residue is evaluated
only once.

• The normalized polarity score. As published on http://
www.info.univ-angers.fr/∼gh/Idas/proprietes.htm, each
residue can be split in two polarity categories (1 and 2)
The final polarity score is the mean of all polarity scores of
all residues in the binding pocket. Each residue is evaluated
only once.

Druggability Score. As the NRDD contains only 45 drug-
gable and 21 nondruggable proteins, the following rule was
considered: all other cavities (not in contact with a ligand)
identified on the proteins containing at least one druggable
cavity and having a size higher than 60 R spheres (corres-
ponding to reasonably sized cavities) were also considered as
nondruggable. This rule allows to introduce decoys into the
given set of cavities in the NRDD and thus increase its size
substantially.

To train and validate the druggability score, the NRDD,
consisting of 70 druggable cavities, 16 nondruggable cavities
having aMOcof 1, and 354 decoyswas split in two. The first half
of the data was used to train the model. Training and internal
validation was performed using a 10-fold bootstrap with a one-
third/two-third training/validation ratio. First logistic models
were derived for each pocket descriptor using the glm function
from the R statistical software package,43 and according to
predictive power and stability during the 10-fold bootstrap,
these models were further considered.

In the next step, predictions coming from these “one descrip-
tor based” logistic models were associated in one common
logistic model where statistically nonsignificant descriptors or
unstablemodels were filtered out. The generalmodel is shown in
eqs 1-3 as drugscore, the single descriptor based models are
designated by the function fx(dx), where dx is a given descriptor.

drugscoreðzÞ ¼ e- z

1þ e- z
ð1Þ

z ¼ β0 þ β1f1ðd1Þþ β2f2ðd2Þþ β3f3ðd3Þ ð2Þ

fxðdxÞ ¼ e- βx, 0 þ βx, 1dx

1þ e- βx, 0 þ βx, 1dx
ð3Þ

The coefficients of the model, as shown in Table 3, were
obtained by averaging coefficients derived on each step of the
bootstrap.

The second half of NRDD was reserved for external valida-
tion (selected by random before the bootstrap run). Receiver
operator characteristics (ROC) and derivative figures shown in
this paper were produced using the ROCR package.44

Comparison with Schr€odinger SiteMap. To compare fpocket
druggability prediction performance with SiteMap Dscore, the
NRDD data set was used as benchmark. SiteMap was system-
atically launched on all structures after running the Prepwizard
protein preparation protocol of Maestro. SiteMap was run to
accept a maximum number of 10 binding sites to reproduce
prediction results published by Halgren. However, no binding
site restrictions were applied. A binding site was successfully
recognized if at least 20 site points were less than 1.5 Å away

Table 3. Constants of Druggability Score Model

descriptor coefficient

mean

valuea
standard

deviation/meanb

intercept ss0 -6.238 -0.095

mean local hydrophobic

density (normalized)

ss1 4.592 0.154

hydrophobicity score ss2 5.717 0.170

polarity score (normalized) ss3 3.985 0.459

intercept ss1,0 -5.141 -0.170

mean local hydrophobic

density (normalized)

ss1,1 6.579 0.173

intercept ss2,0 -2.669 -0.168

hydrophobicity score ss2,1 0.056 0.216

intercept ss3,0 -2.445 -0.238

polarity score (normalized) ss3,1 2.762 0.330
aMean values refer to mean constants after a 10-fold bootstrap run.

bThe ratio between the standard deviation and the mean value of the
constant assess the variability of the constant during the bootstrap.
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from any of the atoms of the known ligand. Unlike the training/
validation procedure, all other binding sites on druggable and
nondruggable proteins were considered as decoys for both
algorithms.

For this comparison, fpocket was run on the NRDD and the
druggability score calculated for each binding site. A binding
site was considered druggable/nondruggable according the rules
specified in the previous part of Materials and Methods.

Pocket Surface Calculations. To assess the importance
of polar atoms in known drug binding sites (bound struc-
ture), surface calculations were performed in the following way.
The set of pocket atoms were identified as the atoms within at
most 5.5 Å from the nearest ligand atom. For this set of atoms,
the portion of van derWaals surface nonoccluded by surround-
ing atoms was calculated.

To calculate an ASA close to the solvent-accessible surface
area, the van der Waals radius of each pocket atom was
increased by 1.4 Å for the surface calculation.

Next, atom fattening was performed, increasing the van der
Waals radius correction from 1.4 to 2.2 Å in steps of 0.1 Å. For
each modified van der Waals radius, the van der Waals surface
of the pocket was calculated. By definition, in concave portions
of the protein surface, the van derWaals surface decreases upon
atom fattening. In the protein binding sites assessed here, these
surfaces decreased linearly. Because of this linear behavior in the
radius range considered (van derWaalsþ1.4 Å to van derWaals
þ2.2 Å), an automatic construction of linear regression based
models is possible and reliable. Thus for the polar and apolar
ASA profiles, two models with two parameters (slope and
intersect) for each can be obtained. The behavior of these
parameters was assessed throughout this study, enabling direct
access to the concavity of the pocket for polar and apolar atoms
(slope) and the ratio of polar versus apolar atoms (ratio of
intersects). The principle is shown in Figure 6. Furthermore, the
ratio between the apolar and polar slope of the concavity
profiles is of importance in this work and will be referenced to
concavity profile ratio. The concavity profile calculation was
implemented for running onNVIDIA graphics processing units
using python, the excellent Biskit structural bioinformatics
framework,45 and PyCUDA.46
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AR : Androgen Receptor 

PR : Progesterone Receptor 

MCR : Mineral Corticoid Receptor 

GCR : Glucocorticoid Receptor 

SHB : Sex Hormone Binding globulin 

ER : Estrogen Receptor 

THRA : Thyroid Hormone Receptor 

DHFR : Dihydrofolate Reductase 

MDM2 : Mouse Double Minute 2-Tumor Protein 

EGF : Epidermial Growth Factor Receptor 

P38 : P38 Map Kinase 

COX2 : Cyclooxygenase 2 

DHFR-TS : Bifunctional Dihydrofolate Reductase-Thymidylate Synthase 

PPARg : Peroxisome Proliferator Activated Receptor gamma 

B2AR : Human Beta2 Adrenergic Receptor 

PLA2 : Phospholipase A2 

CYP450_51 : Cytochrome P450 51 

3AHD : 3Alpha-Hydroxysteroid Dehydrogenase type 3 



S2 

PDE5A : Phosphodiesterase 5 

EAR : Enoyl Reductase 

CDK2 : Cell Division Protein Kinase 2 

TK : Tyrosine Kinase 

PTP-1B : Protein Tyrosine Phosphatase 1B 

PDE4D : Phosphodiesterase 4D 

HDAC8 : Histone Deacetylase 8 

FX : Factor XA 

HMG_CoA : 3-Hydroxy-3-Methylglutaryl-coenzyme A Reductase 

PHH : P-Hydroxybenzoate Hydrolase 

GST : Glutathione S-Transferase 

P4M : Phenylalanine-4-Monooxygenase 

CYP450_SU1 : Cytochrome P450 105A1 

HemK : N5-glutamine methyltransferase 

DNH : Deoxyuridine Nucleotide Hydrolase 

FDS : Farnesyl Diphosphate Synthase 

CCAT : cytosolic Branched Chain Aminotransferase 

NPRT : Nicotinate phosphoribosyltransferase 

PISPLP : Phosphatidylinositol spec. phospholipase 

EBDGA : Exo-beta-D-glucosaminidase 

TPK : Tyrosine protein kinase BTK 

ACE : Angiotensin Converting Enzyme 

PBP : Penicillin Binding Protein 

IMPDH : Inosine Monophosphate Dedhydrogenase 
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Table S1. Summary of prediction results per protein. 

 Holo cavities Apo cavities 

Protein 
Name 

No. of 
cavities 

Mean 
score 

Std. dev 
Mean 
score of 
top10% 

Confi-
dence1 

No. of 
cavities 

Mean 
score 

Std. dev 
Mean 
score of 
top10% 

Confi-
dence1 

druggable 

Carbonic 
Anhydrase 

76 0.56 0.31 0.86 0.93 61 0.42 0.30 0.82 0.83 

DHFR-TS 3 0.73 0.06 0.77 0.90 -     
DHFR 39 0.69 0.14 0.85 0.91 1 0.73 0.00 0.73 0.00 
Thymidine 
Kinase 

29 0.46 0.19 0.76 0.87 2 0.43 0.06 0.47 0.87 

SHB 6 0.84 0.03 0.88 0.96 -     
PDE4D 54 0.40 0.28 0.78 0.84 -     
Mineralcortic
oid Receptor 

25 0.87 0.09 0.95 0.94 -     

Glucocorticoi
d Receptor 

6 0.86 0.07 0.96 0.91 -     

Androgen 
Receptor 

38 0.95 0.01 0.97 0.99 -     

Progesterone 
Receptor 

9 0.94 0.03 0.97 0.97 -     

Estrogen 
Receptor 

77 0.83 0.10 0.96 0.95 2 0.86 0.01 0.87 0.97 

CYP P450 -
121 

13 0.62 0.21 0.87 0.82 -     

HIV RT -
NNRTI 

38 0.75 0.09 0.90 0.94 -     

HIV1 
Protease 

24 0.65 0.14 0.76 0.90 1 0.44 0.00 0.44 0.00 

PPAR� 43 0.70 0.12 0.86 0.93 2 0.50 0.04 0.52 0.93 
ADAM33 1 0.08 0.00 0.08 0.00 1 0.15 0.00 0.15 0.00 
Acetylcholine
sterase 

42 0.60 0.26 0.80 0.84 4 0.68 0.11 0.74 0.85 

HMG CoA
Reductase 

27 0.12 0.00 0.42 0.93 -     

DNA gyrase
B 

3 0.43 0.28 0.75 0.53 -     

Plasminogen 
Kringle 4 

8 0.31 0.15 0.44 0.84 1 0.29 0.00 0.29 0.00 

p-
hydroxybenzoa
te Hydroxylase 

12 0.05 0.02 0.08 0.98 -     

COX2 9 0.72 0.11 0.83 0.89 -     
Phospholipase 
A2 

19 0.62 0.19 0.79 0.85 4 0.77 0.04 0.80 0.94 
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Beta-2-
adrenergic 
Receptor/T4 
lysozyme 
chimera 

1 0.69 0.00 0.69 0.00 2 0.25 0.21 0.39 0.56 

Enoyl-[acyl-
carrier-protein] 
reductase  

22 0.49 0.26 0.85 0.81 2 0.47 0.07 0.47 0.85 

Coagulation 
factor X, 

20 0.12 0.18 0.62 0.87 -     

Cardiac 
Troponin C 

2 0.76 0.01 0.76 0.99 -     

3 Alpha
Hydroxysteroid 
Dehydrogenase 

12 0.69 0.27 0.89 0.76 -     

Beta 
Lactamase 

59 0.11 0.12 0.45 0.93 20 0.11 0.09 0.34 0.93 

PDE-5A 17 0.61 0.22 0.89 0.82 2 0.74 0.13 0.83 0.73 
THRA protein 2 0.82 0.01 0.83 0.97 -     
Cyclophilin C 4 0.33 0.24 0.66 0.66 -     
Aldose 
Reductase 

67 0.81 0.08 0.87 0.96 5 0.90 0.06 0.86 0.93 

cABL Kinase 17 0.63 0.19 0.79 0.85 -     
CDK2 50 0.59 0.27 0.83 0.84 2 0.32 0.20 0.46 0.59 
Epidemial 
Growth Factor 

3 0.73 0.10 0.83 0.83      

MDM2 5 0.73 0.18 0.88 0.77      
P38 Map
Kinase 

43 0.73 0.21 0.92 0.87 2 0.49 0.27 0.91 0.44 

Renin  37 0.68 0.20 0.88 0.95 1 0.88 0.00 0.88 0.00 
HDAC 10 0.36 0.28 0.72 0.73      
Topoisomeras
e 2 

1 0.17 0.00 0.17 0.00      

Xanthine 
Oxydase 

4 0.10 0.02 0.12 0.97      

Alpha Beta
Tubulin 

1 0.30 0.00 0.30 0.00      

PTP-1B 
(druggable 
site) 

2 0.44 0.07 0.49 0.85     

          

non druggable 
cytosolic 
Branched 
Chain 
Aminotransfer
ase 1 

1 0.24 0.00 0.24 0.00 -     
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Farnesyl 
Diphosphate 
Synthase 

3 0.26 0.29 0.59 0.51 -     

Glutathione S-
Transferase 

1 0.90 0.00 0.90 0.00 -     

Nicotinate 
phosphoribos
yltransferase 

1 0.10 0.00 0.10 0.00 - 0.00 0.00 0.00 0.00 

Exo-beta-D-
glucosaminida
se 

2 0.05 0.04 0.07 0.93 - 0.00 0.00 0.00 0.00 

Phenylalanine
-4-
Monooxygena
se 

1 0.80 0.00 0.80 0.00 - 0.00 0.00 0.00 0.00 

CYP P450 –
SU1 

1 0.76 0.00 0.76 0.00 - 0.00 0.00 0.00 0.00 

HIV RT Nucl.
site 

- 0.00 0.00  0.00 - 0.00 0.00 0.00 0.00 

Cathepsin K 14 0.30 0.25 0.70 0.79 - 0.00 0.00 0.00 0.00 
PTP-1B (non
druggable 
site) 

6 0.37 0.26 0.60 0.69 - 0.00 0.00 0.00 0.00 

Caspase 1 8 0.03 0.01 0.04 0.99 - 0.00 0.00 0.00 0.00 
HIV Integrase 1 0.01 0.00  0.00 - 0.00 0.00 0.00 0.00 
HemK 7 0.45 0.22 0.67 0.76 - 0.00 0.00 0.00 0.00 
IP 
Phosphatase 

1 0.02 0.00 0.02 0.00 - 0.00 0.00 0.00 0.00 

Tyrosine 
protein kinase
BTK 

2 0.03 0.00 0.03 0.00 - 0.00 0.00 0.00 0.00 

Deoxyuridine 
nucleotide 
hydrolase 

5 0.27 0.19 0.60 0.76 - 0.00 0.00 0.00 0.00 

Glucoamylase 1 0.73 0.00 0.73 0.00 - 0.00 0.00 0.00 0.00 
Phosphatidyli
nositol spec.
phospholipase 

1 0.08 0.00 0.08 0.00 3 0.05 0.03 0.07 0.96 

Endoglucanas
e C 

1 0.09 0.00 0.09 0.00 - 0.00 0.00 0.00 0.00 

Malate 
dehydrogenas
e 

2 0.06 0.04 0.09 0.92 - 0.00 0.00 0.00 0.00 

          

Prodrug binding 
IMPDH 6 0.04 0.01 0.35 0.99 - 0.00 0.00 0.00 0.00 
Neuraminidas
e 

22 0.08 0.10 0.34 0.92 3 0.05 0.03 0.07 0.95 

Thrombin 30 0.51 0.18 0.64 0.88 - 0.00 0.00 0.00 0.00 
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Penicillin 
Binding 
Protein 

1 0.25 0.00 0.25 0.00 - 0.00 0.00 0.00 0.00 

Angiotensin 
converting 
enzyme 

2 0.39 0.47 0.72 0.01 - 0.00 0.00 0.00 0.00 

1The confidence level is a measure of possibility of accurate prediction. The confidence level is calculated 
as difference between 1 and the ratio of the standard deviation of the drug score and the log of the number 
structures incremented by 1. Thus a confidence level close to 1 signifies that drug score yielded very stable 
results on multiple structures. The less structures one uses or the more the prediction gets variable in one 
protein structural family, the lower the confidence. 
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3.2 Structure kinetics relations

3.2.1 Introduction

As described in the previous section on druggability, an intriguing relation was
found between druggability and the relative exposure and protrusion of po-
lar atoms in the rather apolar environment of druggable binding sites. The
analysis of several druggable versus non druggable binding sites revealed that
druggable binding sites tend to contain polar atoms that are less exposed (70%
of all polar atoms with a surface area below 10Å2). Furthermore, the relative
protrusion of these poorly exposed atoms into the lumen of the pocket is higher
than in non druggable pockets, meaning that these polar atoms despite their
low surface area, tend to make themselves more available for an interaction.
The study described in this section was undertaken to investigate this relation-
ship of polar atoms with respect to the druggability of a given binding site.
This lead us to investigate binding kinetics, an aspect of protein-ligand inter-
actions that is poorly understood, but increasingly perceived as a fundamental
aspect controlling the biological activity of drugs.
Thermodynamics reign in drug discovery and binding affinity optimisation,
even though kinetic aspects are central and would provide a more detailed vi-
sion of the binding process [Holdgate and Ward, 2005, Swinney, 2009, Englert
et al., 2010].
David C Swinney, a pioneer in promoting the importance of binding kinetics in
drug discovery describes the current situation in the following poignant terms:
”Current capabilities for the use of binding kinetics in shaping and effecting
safe, therapeutic responses are rudimentary. There is a lack of understanding
or awareness that binding kinetics can be used to differentiate drugs, as well
as a lack of appreciation that the optimization of binding kinetics and mecha-
nisms can drive an increase in the therapeutic index of a drug. Furthermore,
the application of binding kinetics as a discovery and optimization parameter
currently requires an empirical approach due to the challenge of employing this
reductionist biochemical tool to complex physiological systems.”
Figure 3.8 illustrates basic concepts of energetics of an equilibrium binding /
unbinding process where higher barriers are correlated with slower exchange
rates (A). In several studies Swinney shows the potential of considering kinet-
ics in particular in addition to the understanding of underlying mechanisms of
action [Swinney and Anthony, 2011] to define drug efficacy, safety, duration
of action and differentiation to other medicines. This effort is supported by
Copeland [Copeland et al., 2006] and Zhang [Zhang and Monsma, 2009], fo-
cusing particularly on the effect of long residence times of drug molecules in
their respective binding sites, directly linked to the duration of action and thus
pharmacokinetic profiles, target selectivity and drug safety. The importance of
residence time was already acknowledged very early in a study by Leysen and
Gommeren on serotonin-S2, dopamin-D2 and histamin-H1 antagonists and opi-
ates[Leysen and Gommeren, 1986]. In the context of increasing importance and
possibilities in systems biology approaches Ohlson shows the putative interest
of transient drugs, characterised by fast off and on rates [Ohlson, 2008]. Despite
these contributions, the pharmaceutical industry ”still appears to be acting with
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Figure 3.8: Figure and legend adapted from [Swinney, 2009]: A: Energetics of
a simple equilibrium reaction; the position of the equilibrium is determined by the
relative energy between A and B, while the height of the barrier describes the rate
of transition between the two states. Equilibrium with a high barrier is reached
slowly, whereas equilibrium with a low barrier is achieved rapidly. B: Boundaries to
accessible states are determined by the height of the energy barrier. Solid line; A and
A’ are in equilibrium and B is not accessible because of a high energy barrier. Dashed
line; the barrier to B is lowered by energy provided by a coupled system such as drug
binding, enzyme catalysis and induced conformational changes. This is an example
of a kinetically controlled reaction.

trepidation toward assessing the fundamental role of kinetics in drug actions”
[Zhang and Monsma, 2009]. Reasons for this hesitating behaviour of industry
can be manifold, but a central aspect is the lack of understanding of bind-
ing kinetics and the lack of known structural characteristics on the ligand and
receptor site influencing kinetics.

Observing drug binding

A very privileged group of researchers around David E Shaw lately started to
harvest impressive success of the long term project around very long molecular
dynamics simulations. Using a specifically developed computer architecture
called ANTON, and MD software Desmond, the group was able to observe
spontaneous drug binding in various proteins, like the β1 and β2 - adrenergic
receptors [Dror et al., 2011] or Src kinase [Shan et al., 2011]. Such simula-
tions can help to understand at molecular level which events are hindering and
favouring binding of a molecule on a specific target. Interestingly but not sur-
prisingly, water has been found to play a central role in ligand binding events.
Running such extensive molecular dynamics simulations is currently not possi-
ble for academics labs, especially outside the US. A cheaper alternative is to use
software optimized for GPUs. Buch et al. have used this approach (ACEMD)
to produce 495 replicas of 100 ns MD trajectories, observing spontaneous bind-
ing of benzamidine to β-trypsin in 187 simulations [Buch et al., 2011]. These
pioneering works should prove useful in understanding structure kinetic rela-
tionships and awake interest in pharmaceutical industry. However, unbiased
MD simulations can currently only be used to study fast processes. Thus, there
is a need for alternatives for studying slower processes, such as drug-target dis-
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sociation (drugs on the market have residence times varying from seconds to
days).

Structure kinetic relationships

Using properties observed during the work on druggability, we intended to de-
rive putative relationships between the structure of proteins and the kinetics of
ligand association and dissociation. As both are intimately linked to solvation
and desolvation, the role of water molecules appears to be crucial for mediating
binding and unbinding processes.

3.2.2 Objectives

Analyse the influence of the pocket properties on ligand binding The
initial and main objective guiding this work was to understand the observation
that poorly exposed polar atoms seem to protrude more into the pocket lumen
in druggable binding sites. In order to do so, the druggability has to be analysed
with respect to 3 parameters: (i) the role of the surface area of the polar atom,
(ii) the role of the cavity shape in the local environment of the polar atom and
(iii) the role of the protrusion of polar atoms into the cavity.
From this main objective various other conclusions and further investigations
have been undertaken to prove the findings experimentally.

ABPA and water molecules A subsequent objective was related to the
investigation of the role of almost buried polar atoms (ABPAs) to the stability
or slow kinetics of water molecules.

ABPAs and drug design A last objective of this study was to prove that the
structure-kinetics relationship observed on waters and small ligands translates
to protein-ligand binding and that the principle can be used to understand and
predict structure kinetic relationships (SKRs).

3.2.3 Results

The structural analysis of real biological systems like proteins is very complex.
The surface shape and distribution of different atoms is rather heterogeneous.
Thus, analysing the effect of the pocket curvature and the exposure of one polar
atom in an apolar environment on a protein is not trivial.
To simplify the problem and still be able to seek the role of protruding polar
atoms in apolar environments, we created an artificial cavity, which intends
to mimic the main properties we are trying to investigate within this study.
This artificial cavity is built up by a truncated restrained methane half sphere.
A cyanonitril molecule acting as hydrogen bond acceptor is positioned at the
bottom of this hydrophobic concave shape. Last, the system is solvated with
TIP3P water and ammonia is placed in the lumen of the artificial pocket acting
as hydrogen bond donor and ligand.
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Figure 3.9: Overview of the theoretical experiment. A: Architecture of the artificial
cavity of methane (grey spheres) and cyanonitrile as H-bond acceptor (N). Ammonia
is approached (reaction coordinate) to the H-bond acceptor. B: While approaching
ammonia to the cavity, the necessary work is tracked. C: For each combination of
curvature and exposure of the acceptor atom the accessible surface area is calculated
using increasing van der Waals radii for each atom of the system.

The advantage of such an artificial system is that the curvature of the cavity
as well as the protrusion of the hydrogen bond acceptor can be freely modu-
lated to assess very different scenarios otherwise difficult to analyse. Using the
Jarzynski relation detailed in Materials & Methods equation 2.16 we can relate
the work necessary to approach ammonia towards the hydrogen bond acceptor
to the free energy. The overall system architecture is schematically shown on
figure 3.9
Steered molecular dynamics (SMD) have been run on this system for various
configurations of cavity curvature and polar atom exposure (29 in total). Dur-
ing 20 replicas for each configuration the ammonia has been slowly (4.5Å per
ns) approached to the hydrogen bond acceptor in the bottom of the cavity.
We found that, when the polar atom had specific structural characteristics a

Figure 3.10: A: Free energy profiles of ammonia approaching an hydrogen bond
acceptor, (red) when this acceptor is an ABPA and (black) when the acceptor is not
an ABPA. When the hydrogen bond acceptor is an ABPA a clear transition state can
be observed (TS). B: Van’t Hoff analysis of an ABPA and a non-ABPA system.

transition state as shown on figure 3.10 A (red curve) can be observed, when
the ligand is situated between the first and the second solvation shell. More
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precisely, the transition state exists only when :

1. 2Å2 < A0 < 10Å2

2. when ΔA < 0

where A0 is the accessible surface area of the H-bond acceptor in the bottom of
the cavity and ΔA the difference of accessible surface area of the H-bond accep-
tor using fattened and default van der Waals radii for the surface calculation
of the cavity (see figure 3.9 C). The polar atoms following these characteristics
will be designated as almost buried polar atoms, or ABPA’s. To our knowledge,
this is the first time that such simple structural characteristics can be linked
to a kinetic property like the one observed here.
The presence of the transition state corresponds to a situation during the ap-
proach of ammonia when the hydrogen bond acceptor in the bottom of the
cavity has to be desolvated. As represented in figure 3.10 A, this desolvation
happens in a concerted-like manner when the polar atom is well exposed and
very accessible. However, for ABPA’s the acceptor has to be previously desol-
vated to finally allow ammonia to approach the acceptor to an ideal hydrogen
bond distance. This intermediate state explains the energetic penalty measured
by the transition state.
To assess if the appearance of the transition state is enthalpic or entropic, two
configurations of the cavity were chosen (one containing the polar atom as an
ABPA, another one with a more exposed polar atom) and SMD’s were run for
seven different temperatures producing 100 replicas for each system and tem-
perature. These were subsequently used to derive the entropic and enthalpic
terms of the free energy doing a van’t Hoff analysis. Figure 3.10 B shows that
the intermediate lengthening of the hydrogen bond between the ABPA and the
ligand results in an enthalpic penalty, partially offset by a positive entropic
contribution.
These results show that we can link structural properties of the cavity to a
kinetic effect due to a specific desolvation pattern upon binding and unbinding
of the ligand. Even if the artificial system that was used here to study these
properties is very simplistic compared to complex biological systems, it allowed
us to derive the elementary role of an almost buried atom and showed its link
to kinetic properties of ligand binding. As previously shown on figure 3.10,
the binding of a ligand can be energetically neutral. However, the presence of
an ABPA can act as kinetic trap lengthening the residence time of the ligand
within the binding site.

Dispersion of water molecules

While these theoretical studies allow us to demonstrate what might happen
on an elementary level, evidence on proteins has to be found to support this
hypothesis. ABPA’s can be found all over the protein surface. However local
shape and hydrophobicity might play a key role in the relative importance of
one ABPA versus another on the protein surface. Given the wealth of experi-
mental structures available in the PDB, the stability of water molecules on the
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protein surface was further analysed. Applying the kinetic trapping or ABPA
theory, water molecules hydrogen bonded to ABPA’s on the protein should be
more stable.
During this analysis different measures of stability have been used to evaluate if
this hypothesis could be verified. First the radial distribution of water around
backbone carbonyles of the protein has been analysed on a set of 2.704.956
atom pairs. On figure 3.11 A the radial distribution of water molecules is

Figure 3.11: (A) Radial distribution of waters around backbone carbonyles for
different accessible surface areas of the carbonyles. (B) Ratio of B-factors between
waters and carbonyles on the protein.

shown around the backbone carbonyles of proteins. The black curve corre-
sponds to all carbonyles considered, the red curve only to carbonyles having
an accessible surface area in agreement with the definition of an ABPA. The
green curve shows atoms having larger accessible surface areas (¿10Å). The
radial distribution is normalised by the maximum probability of finding water
in the first solvation shell (first peak at around 2.6Å). However, the interesting
result is the well-depth between the first and the second solvation shell be-
tween ABPA’s and exposed atoms. Clearly, solvation shells are better defined
for ABPA’s than for other atoms which could indicate that water molecules
are more stable around ABPA’s. To foster data from crystallographic struc-
tures, electron density maps were gathered for 1723 different proteins from the
Uppsala Electron Density Server [Kleywegt et al., 2004]. Next, the electron
density of water molecules making a single hydrogen bond and being in an
apolar environment was analysed. Figure 3.11 B shows the B-factors of these
water molecules normalized by the B-factors of the carbonyle of the protein.
Here again water molecules in contact with ABPA’s tend to be less mobile.
Both studies suggest that ABPA’s can act as kinetic traps, as suggested by our
theoretical model. Further validation of the theory has been undertaken by
analysing a set of unrelated protein MD trajectories. Water stability around
ABPA’s was investigated and it was found that the long residence times of wa-
ter are exclusive of ABPA’s. Thus these particular polar atoms are a necessary
but not sufficient condition for stabilising water on the protein surface.
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ABPA’s in protein ligand complexes

Like previously shown on figure 3.10, exchange of water molecules is energet-
ically neutral. Thus, the presence of a transition state like the one observed
when interacting with an ABPA is directly linked to longer residence times
of waters with ABPA’s. However, if one considers molecules that are usually
object of drug discovery the situation is far more complex. While the kinetic
effect described here might still take place, it can be difficult to extricate from
other events happening upon association and dissociation of the compound.
Still, the concept presented in this work was investigated on a real life example
of a series of 4 compounds, shown on figure 3.12 of known activity on HSP90.
These compounds are from the resorcinol series which is currently in Phase I
and II of clinical trials. All chosen compounds are very similar. This is mainly
to minimise possible problems explained previously.

Figure 3.12: Overview of the 4 compounds analysed in this study

Interacting with an ABPA More precisely, these 4 compounds are com-
posed of a set of 2 pairs of compounds that have been chosen as extensive
crystallographic data is available on HSP90. The first pair of compounds (com-
pound 1 & 2) will be used as a test case for benefits that one can expect when
interacting with an ABPA on the protein. While compound 2 is able to hydro-
gen bond to the backbone carbonyle of G97 via an added amide moiety in R2,
compound 1 is unable to do so. This oxygen on G97 is an ABPA, having an
accessible surface area of around 4Å2 and a ΔA < 0. The differences between

ITC(25oC) SPR(25oC) SPR(279K-303K)

Compound ΔG ΔH −TΔS Kon Koff ΔG ΔG∗off ΔH∗off −TΔS∗off

1 -9.01 -1.54 -7.47 4.3e+05 2.2e-02 -9.94 19.8 21.4 -1.7
2 -10.32 -2.74 -7.58 4.6e+06 6.1e-03 -12.09 20.4 15.6 4.9

Diff / (ratio) 1.3 1.2 0.1 (0.09) (3.5) 2.1 -0.7 5.8 -6.6

Table 3.3: ITC and SPR data for compound 1 & 2. Differences & ratios are signif-
icantly different (5% risk) expect the entropy derived via ITC.
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compound 1 and 2 are quite substantial, structurally and with respect to exper-
imental results. Analysis of the later reveals that compound 2 interacts more
favourably with HSP90 than compound 1 (ΔΔG=1.3 kcal/mol). Interestingly,
the half life is also 3.5 times longer for the compound making a hydrogen bond
with the ABPA.
On the theoretical model established using artificial cavities a particular ther-
modynamic signature was found: ΔH > 0, ΔS > 0 → ΔG > 0. In the
more complex example here, the enthalpy of the transition is however nearly 6
kcal/mol larger for compound 1 and entropy is negative for compound 2.
In order to analyse more deeply the reasons for this disagreement between
experimental results and the theoretical model, here again steered molecular
dynamics simulations have been performed. This time however, the ligand
was pulled out of the binding site (initiation of dissociation). Figure 3.13 is

Figure 3.13: Free energy profiles (top) of compounds 1 and 2 derived from SMD
simulations. The bottom shows the number of water contacts with the ABPA on G97
during the dissociation pathway.

composed of two parts. The top graph shows the free energy versus the dis-
tance between the center of mass of the compound and a reference point in the
binding site. The bottom plot shows average number of water contacts of the
ABPA while in contact with either compound 1 or 2. On both plots it is clearly
visible (i) that compound 1 (red) dissociates faster (lower slope of energy while
pulling the ligand out) and that the ABPA is always in contact with 1 water
molecule. On the contrary, when interacting with compound 2, the ABPA is
not solvated in the beginning of the simulation, but gradually gets solvated
during the dissociation process. The grey curve is the result of one SMD simu-
lation of compound 2 with a free energy profile close to average. Here, one can
clearly see the solvation starting (one water molecule is interacting) when the
slope of the energy profile changes at around 4Å of dissociation pathway. The
change of slope in the energy profiles indicate hydrogen bond breaking events
and it can be seen that these events do not occur at the same moment for
both compounds (earlier for compound 1 than for compound 2). This empha-
sizes the stabilizing role the interaction with the ABPA has. Furthermore it
gives insights into molecular details of the dissociation process. Indeed it was
found that both compounds dissociate differently, explaining the discrepancies
between experimental results and the theoretical model. The hydrogen bond
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added via compound 2 is found to be very stabilizing playing an important
role in the stability of the compound. During dissociation, the resorcinol ring
initiates dissociation even before the hydrogen bond made with G97 is broken.
On the contrary in compound 2 such a stabilization is not present, thus the
methyl group can move unhindered out of the pocket.

Shielding and ABPA The first example investigated the benefits one could
expect targeting specifically ABPAs during a possible lead-optimisation pro-
cess. However it also showed how difficult it is to extricate the kinetic con-
tributions to the overall behaviour of the compound. Using a second set of
compounds, another aspect is studied while interacting with ABPAs on the
protein surface. Here, both compounds interact with the carbonyle of G97.
The only difference is that compound 3 has a methyl attached to the amide,
while compound 4 contains an ethyl. Figure 3.14 shows both compounds in

Figure 3.14: Detail on the binding site and compounds 3 (A) and 4 (B) interacting
with the ABPA. Water densities at 75% occupancy are shown. Arrows indicate
significant changes in hydration pattern in (A).

Figure 3.15: Free energy profiles (top) of compounds 3 and 4 derived from SMD
simulations. The bottom shows the average number of water contacts with the ABPA
on G97 during the dissociation pathway.

the binding site and their respective modifications. The water density observed
during a 50ns MD trajectory is represented as red mesh at 75% occupancy. In-
terestingly, here the added ethyl group acts as protector of the hydrogen bond
between the ABPA and the ligand. This can be clearly observed on part A of
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the figure (indicated by arrows), where water can be seen on favourable posi-
tions to attack the protein-ligand complex.
Steered molecular dynamics were then run for compounds 3 and 4, pulling the
ligands out of the binding site. Figure 3.15 shows the free energy profile with
respect to the position along the dissociation path for compound 3 (red) and
compound 4 (black). Here subtle but visible differences can be noted with
respect to the slope of the energy profile. Compound 4 dissociates less eas-
ily than compound 3. In the lower part of the plot, data already observed
on figure 3.14 is confirmed. Here we can see that the ABPA is on average
more solvated along the MD trajectory when it is interacting with compound
3. Experimental results (table 3.4) obtained via ITC and SPR show that the

ITC(25oC) SPR(25oC) SPR(279K-303K)

Compound ΔG ΔH −TΔS Kon Koff ΔG ΔG∗off ΔH∗off −TΔS∗off

3 -10.13 -3.79 -6.35 1.4e+06 1.12-02 -11.13 20.3 20.5 -0.2
4 -10.44 -3.69 -6.74 9.9e+05 6.9e-03 -11.10 20.6 21.1 -0.5

Diff / (ratio) 0.3b -0.1c 0.4c (1.4)c,d (1.6)b,d 0.0c -0.3a -0.6b 0.3c

Table 3.4: ITC and SPR data for compound 3 & 4. Significant difference with p-
value: a ≤ 0.01, b ≤ 0.05; No significant difference: c ≥ 0.01; d significance calculated
from ratio values over temperature range

methyl to ethyl modification has little effect on the binding affinity, improving
it by 0.3 kcal/mol when adding the ethyl group (only measurable via ITC).
More noticeable is the difference in rate constants. Both compounds have the
same kon but compound 4 has a 1.6 times slower koff . Even more striking is
the fact that the thermodynamic signature derived from theoretical systems is
observed within this example. Altogether, SMD simulations and experimental
results suggest that shielding the hydrogen bond made with the ABPA is bene-
ficial for increasing residence time of the compound. Another striking result is
the fact that shielding appears to primarily influence dissociation and not the
association of the compound. The dissociation process starts with disruption
of hydrogen bonds, linked to the solvation of these. On the contrary, during the
association process the site can already be pre-desolvated via other interactions
with the ligand.

In the context of druggability The initial aim of this study was to relate
the observation of particular polar atoms, ABPAs, to the fact that cavities are
druggable or not. In the work presented here, the relation between ABPAs
and a specific kinetic behaviour has been observed. Considering the kinetic
properties that ABPAs might have, especially in an apolar environment, and
given that druggable cavities are more apolar than non-druggable cavities it is
fair to assume that kinetics do play a role in the tractability of a cavity with
a non covalent neutral drug-like molecule. Interestingly, non-druggable cavi-
ties, either make covalent interactions with the ligand or they tend to contain
charged residues, allowing to make ionic interactions. On protein-protein com-
plexes, such interactions are known to alter association rates but not koff . The
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influence of ABPAs observed here however, is likely to lengthen the residence
time of the molecule, relating longer residence times to druggability.

Novelty

In this work the first structure kinetic relationship (SKR) is presented. Partic-
ular polar atoms, ABPAs, are found to act as putative kinetic traps for solvent
molecules. Furthermore it is shown that targeting ABPAs can confer kinetic
stability in drug design. This can be particularly helpful in lead-optimisation
for longer residence times.

Limitations

The study collects a large variety of information from experimental and the-
oretical sources. Despite this fact it is found that an ABPA is a necessary,
but not sufficient condition to act as a kinetic trap. Further properties have
to be assessed to refine the theory. Furthermore, the results presented, only
show evidence for solvent-protein and protein-ligand interactions. It is likely
that the principle is generally applicable to all types of molecular interactions
(protein-protein especially) that occur in aqueous environment.
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Puentes de Hidrógeno Protegidos: Determinantes
Estructurales de la Cinética de Unión. Aplicación en el

Diseño de Fármacos.

Peter Schmidtke, F. Javier Luque, James B. Murray, Xavier Barril
en revision, Journal of the American Chemical Society

El control a escala temporal de las interacciones moleculares es una parte es-
encial de los sistemas bioqúımicos, pero muy poco se conoce sobre los factores
estructurales que gobiernan la cinética de los reconocimientos moleculares. En
el diseño de fármacos, el tiempo de vida de los complejos diana, es el mayor
determinante de los efectos farmacológicos, pero la ausencia de relaciones es-
tructurales y cinéticas, impide la optimización racional de esta particulari-
dad. Aqúı mostramos que los átomos polares que están casi enterrados en
la protéına –una caracteŕıstica común en los lugares de unión de la protéına-
tienden a formar puentes de hidrógeno que están protegidos del agua. La
formación y posterior ruptura de este tipo de puentes de hidrógeno, conlleva
un estado de transición energéticamente penalizado, puesto que esto ocurre as-
incrónicamente con la hidratación/deshidratación; en consecuencia, los puentes
de hidrógeno protegidos del agua se intercambian a muy baja frecuencia. La
ocurrencia de este fenómeno se puede anticipar por simple análisis estructural,
proporcionando una herramienta novedosa para interpretar y predecir rela-
ciones cinético/estructurales. La validez de este principio se investigó en dos
pares de inhibidores de Hsp90, para los cuáles se han determinado datos ter-
modinámicos y cinéticos de manera detallada. El acuerdo entre observaciones
macroscópicas y simulaciones moleculares, confirman el papel de los puentes
de hidrógeno blindados como trampas cinéticas e ilustran cómo nuestro des-
cubrimiento puede ser utilizado como ayuda en el descubrimiento de fármacos
basado en estructuras.
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Abstract 

Timescale control of molecular interactions is an essential part of biochemical 

systems, but very little is known about the structural factors governing the kinetics of 

molecular recognition. In drug design, the lifetime of drug-target complexes is a 

major determinant of pharmacological effects, but the absence of structure-kinetic 

relationships precludes rational optimization of this property. Here we show that 

almost buried polar atoms – a common feature on protein binding sites – tend to form 

hydrogen bonds that are shielded from water. Formation and rupture of this type of 

hydrogen bonds involves an energetically penalized transition state because it occurs 

asynchronously with dehydration/rehydration. In consequence, water-shielded 

hydrogen bonds are exchanged at slower rates. Occurrence of this phenomenon can be 

anticipated from simple structural analysis, affording a novel tool to interpret and 

predict structure-kinetics relationships. The validity of this principle has been 

investigated on two pairs of Hsp90 inhibitors for which detailed thermodynamic and 

kinetic data has been experimentally determined. The agreement between 

macroscopic observables and molecular simulations confirms the role of water-

shielded hydrogen bonds as kinetic traps and illustrates how our finding could be used 

as an aid in structure-based drug discovery. 
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The structure of macromolecules has been used for decades both to understand 

fundamental biological processes and as an aid in drug discovery.1 Owing to the type 

of available experimental data, structure-activity relationships have mainly focused on 

the thermodynamic properties of end-states. However, biological processes occur at 

specific and finely controlled timeframes. The biological activity of drugs is also 

heavily influenced by the kinetics of the drug-target complex2. Modulating the kinetic 

behavior of complexes is, therefore, of fundamental interest both in protein design 

and in drug discovery. However, this goal is severely hampered by our limited 

knowledge about the structural factors mediating the association and dissociation 

processes. 

Electrostatic steering has been described as a factor that can speed up the association 

rate, while leaving the dissociation rate unchanged. This has been used in the design 

of tighter protein-protein pairs3, 4, but the concept has limited applicability in drug 

design as the introduction of charged centers has multiple and important off-target 

consequences. Coupling association/dissociation to a slower process is another known 

mechanism to modulate the kinetics of binding. This is illustrated by the DFG-out 

inhibitors of p38 MAP kinase: as they require a displacement of the activation loop, 

their on- and off-rates are much slower than those of DFG-in inhibitors5. This 

knowledge is often exploited in the design of kinase inhibitors, but cannot be applied 

to other target families, as information about conformational transitions and the 

timescale in which they occur is rare and difficult to obtain. In this paper we 

demonstrate that formation of water-shielded hydrogen bonds between a ligand and 

its receptor protein is a viable strategy to increase the kinetic stability of complexes.   

The notion of water shielding as a stabilizing mechanism has important precedents in 

the literature. In fact, water has been touted as the “lubricant of life”6 and numerous 

accounts indicate that water acts as a facilitator of motion in proteins and nucleic 

acids7, 8. Similarly, computational studies replicating single-molecule force 

spectroscopy experiments have long noted that the mechanical stability provided by 

hydrogen bonds depends on their degree of solvent exposure (see 9 and references 

therein). These studies clearly point out that, per se, hydrogen bonds are stiff 

structures and the presence of water is necessary to achieve the dynamic exchange 

characteristic of biological systems. From that point of view, controlling water 
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accessibility seems a straightforward mechanism to set the pace of events. At the 

bottom of deep cavities, water may be completely removed, leading to large penalties 

and extremely slow exchange rates. This is the case of the biotin-streptavidin system, 

one of the tightest and longest-lived protein-ligand complexes. The interacting pair 

forms a dry network of hydrogen bonds in the deepest part of the pocket and water 

entrance through an access channel is thought to be the first event of the dissociation 

process10. This is consistent with the fact that streptavidin mutants that increase the 

water contents around the hydrogen bond network not only produce a significant loss 

of potency, but also a large increase in the on- and off-rates11, 12. Quite unexpectedly, 

we find that this effect is also reproduced – at a smaller scale – on solvent exposed 

areas of the protein surface. Firstly, a description of the phenomena on a test system is 

presented. Evidence of its occurrence in biological systems is then sought using 

crystallographic data and molecular dynamics simulations. Finally, the relevance of 

the principle for drug design is demonstrated on Hsp90 inhibitors.  

 

RESULTS AND DISCUSSION 

Dissociation of shielded hydrogen bonds involves a transition state. 

In a recent effort to predict the druggability of putative binding sites, we noticed that 

polar atoms in drug binding sites are located in predominantly apolar environments 

and tend to be poorly solvent exposed. Yet, they are available for interactions13. Given 

that burial of polar surface area involves a substantial desolvation cost, a functional 

role for such almost buried polar atoms (hereafter referred as ABPAs) can be 

assumed. From a thermodynamic perspective, protecting hydrogen bonds from water 

results in a decreased dielectric constant and subsequent stabilization of the 

electrostatic interaction14. Recently, this effect has been quantified in proteins, 

demonstrating that hydrogen bonds can be up to 1.2 kcal/mol stronger in hydrophobic 

environments.15 Considering that electrostatic effects can be relatively long-range, we 

were curious to know whether ABPAs could also be related to other fundamental 

aspects of binding not strictly related to the energetics of the bound state. To that end, 

we investigated how the level of exposure of a polar atom on the receptor affects the 

interaction with a ligand along the association pathway. In order to make the problem 
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tractable and to disentangle the effect of burial from the many other interactions that 

occur in a real system, we designed a virtual binding site composed of a hydrogen 

bond acceptor (acetonitrile) surrounded by methane molecules arranged as a half 

sphere. Although not intended to replicate real biological systems, similar model 

systems have proved useful to investigate fundamental molecular phenomena 16, 17. In 

particular, we wanted to understand if and how changes in the solvent accessible 

surface area (SASA) of the polar atom and in the local curvature of the receptor could 

affect the free energy profile of hydrogen-bond formation. To that end, we generated 

a set of artificial systems that cover a range of values for the parameters A0 (SASA 

obtained with a probe of 1.4Å radius) and ΔA (change of SASA as the radius of the 

probe increases). Full details are provided as Supporting Information. Each one of 

these systems was then solvated with TIP3P water molecules and multiple steered 

molecular dynamics (SMD) simulations were used to study the formation of a 

hydrogen bond between acetonitrile (receptor) and an ammonia molecule (ligand). 

The corresponding free energy profile was computed using the Jarzynski 

relationship18 and is shown on Figure 1A for an exposed donor on a flat surface (black 

line) and an ABPA on a convex surface (red line). In both cases the formation the 

hydrogen bond is unfavorable, reflecting the characteristics of the system19, but it 

should be noted that we are not interested on the specific values but on the effect that 

the local environment has on them. In accordance with the above-mentioned dielectric 

effect, we see a slight tendency to lower the free energy of the bound state as the 

acceptor group becomes shielded from bulk solvent. However, a more noticeable 

effect is the appearance of a free energy peak when the ligand moves from the second 

solvation shell to form a direct contact (Fig. 1a). If the polar atom of the receptor is 

solvent exposed, exchange of hydrogen bonding partners occurs in a concerted-like 

manner (water molecule leaves as ammonia approaches) and no transition state is 

involved (Fig. 1b and black-framed picture in Fig. 1a). However, more restricted 

environments (small A0 and negative ΔA values) impose a steric impediment on the 

exchange, and the water molecule must start to dissociate before the polar atom on the 

receptor becomes accessible to the incoming ammonia molecule. This results in a 

situation in which both water and ammonia are removed from the acceptor atom, thus 

explaining the energetically penalized transition sate (Fig. 1c and red-framed picture 

in Fig. 1a). As the energy of a hydrogen bond is sharply dependent on the distance, 
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any uncompensated lengthening of the interaction leads to significant penalties that 

should be enthalpic in origin. To confirm the expected thermodynamic signature, the 

free energy profiles of two of the systems were obtained at 7 different temperatures, 

ranging from 280K to 340K, and a van’t Hoff plot was used to obtain the 

thermodynamic components of the transition state. As shown in Fig. S1 

(Supplementary Information), the transition state is due to an enthalpic term that is 

offset by a favorable entropic contribution, possibly due to a disruption of the 

solvation shell. 

In summary, simulations with the model systems suggest that polar atoms may act as 

kinetic traps for any interacting partner if they have low SASA (A0<10Å2) and are 

placed in concave local environments (ΔA<0), due to decoupling of the association 

and hydration processes. Although extrapolation to real systems must be done with 

care, it seems likely that this effect may also occur in protein binding sites because 

they are concave and have a high proportion of ABPAs. Naturally, the height of the 

barrier will depend very much on the particular characteristics of the local 

environment (flexibility, polarity, shape, etc.) and the values obtained with the model 

systems should not be taken as reference. However, as the effect stems from a steric 

impediment on the transition between the bound and unbound states, it is only logical 

that it will increase with the size of the ligand (Fig. 1d). It should also be noted that 

even small increases in the height of the transition state might have major effects on 

the rate constant because they are related by an exponential term20.  

 

Distribution and mobility of water molecules in crystal structures and MD 

simulations. 

To find evidence of the role of ABPAs as kinetic traps on real biological systems, we 

investigated protein-water complexes, taking advantage of the wealth of 

crystallographic data available for such interactions in the protein data bank (PDB)21. 

The presence of an energetic penalty for the exchange between the first and second 

layers of solvation should have measurable consequences both on the distribution and 

the dynamics of bound water molecules. Fig. 2a shows the radial distribution function 

of water molecules around carbonylic oxygens of the protein backbone, derived from 

a set of 2,704,956 pairs from 5,664 non-redundant crystallographic structures. 
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Overall, the first, second and third layers of solvation can be identified at 2.5, 5.0 and 

7.5Å. Splitting the data according to the surface area of the carbonyl oxygen, it 

becomes apparent that the probability of having water molecules in intermediate 

positions between the first and second layer is much lower for ABPAs than for 

exposed polar atoms, which is consistent with the presence of a transition state in a 

higher proportion of cases, as expected. 

Further evidence of this effect was obtained comparing the spread of the electron 

density corresponding to water molecules hydrogen-bonded to polar atoms. If a 

transition state exists, waters will vibrate with shorter amplitude and exchange less 

frequently, both of which effects will result in a more localized electron density and, 

in consequence, lower B-factors. As the absolute value of B-factors is often 

meaningless, we have normalized the B-factor of crystallographic waters relative to 

the B-factor of the polar atom to which they are attached. The histograms in Fig. 2b, 

show that water molecules hydrogen-bonded to ABPAs tend to be less mobile than 

those bonded to more solvent-exposed atoms. Direct measurement of the electronic 

dispersion offers the same conclusion (Fig. S2).  Although not a direct proof of 

concept, these results are in very satisfactory agreement with the idea that ABPAs are 

more likely to act as kinetic traps.  

In order to obtain a more direct insight into the kinetic behavior of protein-water 

interactions, an in-house collection of long MD trajectories (≥50ns) corresponding to 

several unrelated proteins was analyzed. For each carbonylic oxygen on the protein 

backbone, all water molecules forming hydrogen bonds along the trajectory were 

identified and the corresponding residence times were calculated. The histogram in 

Fig. 3 shows that long residence times are exclusive of ABPAs, but most ABPAs do 

not have a significant effect on the dynamics of water. In agreement with the results 

obtained with artificial systems, the inset in Fig. 3 also shows that flat or concave 

environments are a necessary condition for long residence times.  
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Elucidating the effect of water-shielded hydrogen bonds on protein-ligand 

complexes.  

As the exchange of water molecules between the protein surface and bulk solvent is 

energetically neutral, the effects described in the previous section are directly linked 

to the free energy of transition state between the bound and unbound forms. For 

protein-ligand complexes, the situation is far more complex because formation of a 

hydrogen bond, or changes in its level of shielding, will have thermodynamic 

consequences that may mask the kinetic effect. Furthermore, for drug-sized ligands, 

breakage and formation of the specific hydrogen bonds is only one of many steps in 

the association and dissociation pathways, which will also include conformational 

changes of the ligand and the protein as well as formation of transient interactions. 

Unless it affects the rate-limiting step, the kinetic effect of water shielding will be 

smeared and hardly noticeable on the macroscopic rate constants. On the other hand, 

as the level of shielding also depends on the bulk of the ligand molecule, it seems 

reasonable to expect that the kinetic effect becomes more obvious than in the 

exchange of water molecules. 

In order to understand the impact of water shielding on the binding kinetics of drug-

like compounds, we have obtained kinetic, thermodynamic and structural data for 

several Hsp90 inhibitors. The compounds belong to the resorcinol series, exemplified 

by NVP-AUY922 22 (currently in Phase I and II clinical trials for hematologic 

malignancies and solid tumors) and their study in this context is particularly relevant 

because slow exchange rates correlate with better cell and in vivo activities 23. Two 

pairs of compounds have been investigated (1-4; Fig. 4a). They all share a common 

binding mode (PDB entry 2BSM) but differ in their ability to form hydrogen bonds 

with the carbonyl oxygen of G97, an ABPA (A0 ≈ 4Å2 and ΔA < 0) located at the 

periphery of the binding site (Fig. 4b). Compound 1 (VER37655) has a methyl in 

position R2 and is unable to interact with this atom, whereas the amide moiety in 

compound 2 (VER49181) forms a hydrogen bond that is shielded from solvent both 

by the protein and by the rest of the ligand. The difference between compounds 3 

(VER49008) and 4 (VER49009) is much more subtle, as they both form a hydrogen 

bond with G97, but the change of methyl to ethyl alters the level of water shielding. 
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For the sake of clarity, we will start describing the latter pair, where the kinetic effect 

of water shielding is more straightforward. 

Hsp90 inhibitors: consequences of modifying the level of shielding. 

The hydrogen bond between the amide of compound 3 and the carbonyl of G97 is 

protected from water attack, because there is only one position in the vicinity from 

where water molecules can access. Furthermore, the density of water at that position 

is below the normal value (Fig. 5a). Shielding is further increased in compound 4. 

Although the ethyl group is free to rotate, MD simulations indicate a clear preference 

of the group to occupy the position previously taken up by water (Fig. 5b). As 

expected for such a small change at the periphery of the binding site, the impact is 

modest. In fact, the binding affinity of both compounds is indistinguishable by SPR 

(Table 1) as well as in binding and functional assays24. ITC experiments, however, 

reveal a small gain in binding free energy for compound 4 (0.3 kcal/mol). The methyl 

to ethyl change also has measurable kinetic consequences: the dissociation rate of 

compound 4 is 1.6-fold slower than 3 (extending the dissociative half-life of the 

complex2 from 63 to 100 s). The change in association rate constant, on the other 

hand, is within the experimental error. Most noticeable, the rise of the dissociation 

transition state (ΔΔG* = 0.3 kcal/mol) is due to an enthalpic penalty (ΔΔH* = 0.6 

kcal/mol) partially offset by an entropic compensation, a thermodynamic signature in 

line the with the hydrogen bond shielding effect (Fig. S1).  

In order to obtain a more direct relationship between structural effects and the 

macroscopic constants, we simulated the early dissociation process by means of 

SMD. As shown in Fig. 5, the free energy profile of all compounds starts with a 

steepest phase, corresponding to rupture of hydrogen bonds, followed by a less 

pronounced phase in which protein and ligand still form a substantial number of 

contacts (Fig. S3). The slope during the first stage of the dissociation free energy 

profile is not as steep for 3 as it is for 4, leading to a gap of approximately 1 kcal/mol 

(upper part of Fig. 5a). This indicates that the native hydrogen bonds can be more 

easily broken in the case of 3, which is consistent with the larger solvent accessibility 

of G97 when this compound is bound (lower part of Fig. 5a). 
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Considering together: i) that the slower compound is the one better protected from 

water; ii) the enthalpic origin of the transition state; and, iii) the qualitative agreement 

between macroscopic constants and molecular simulations, it seems logical to assume 

that the water shielding effect is behind the change in kinetics. This example also 

demonstrates that water shielding can have a larger effect on dissociation than 

association, thus resulting in tighter complexes. This can be explained because the 

rupture of hydrogen bonds is the first dissociation step and is more likely to limit the 

rate of the process. Conversely, the association rate is more easily influenced by the 

formation of the encounter complex (hence the effect of electrostatic steering on kon 

but not koff). It should be noted that, although relatively small, the 60% increase in 

kinetic stability of ethyl-amides appears to confer better biological activities24 and the 

moiety was preserved throughout the lead optimization stage that yielded the clinical 

candidate22, 23.  

Hsp90 inhibitors: consequences of forming a shielded hydrogen bond. 

Calorimetric data (Table 1) shows that 2 binds 1.3 kcal/mol more favorably than 1, 

clearly indicating that hydrogen bond formation with G97 is very exothermic. The 

complex is also kinetically more stable (half-life 3.5 fold longer) due to an increase of 

0.7 kcal/mol in the free energy of the dissociation transition state (ΔΔG*off). 

Qualitatively, this is what would be expected for the formation of an additional water-

shielded hydrogen bond. However, the enthalpic component is 5.8 kcal/mol larger in 

compound 1, which is in disagreement with the expected thermodynamic signature 

(Fig. S1). To better understand these contradictory results, we have simulated the 

early dissociation process by means of SMD. As shown in Fig. 4b, both compounds 

have a similar slope in the first part of the dissociation free energy profile. But in the 

case of 1, the first phase ends when the ligand has moved 1Å away from the ideal 

position, while this occurs 0.6 Å further away in the case of 2, coinciding with the 

first contacts between G97 and water molecules (lower part of Fig. 4b). This 

demonstrates that the additional water-shielded hydrogen bond opposes dissociation 

strongly and is the last native hydrogen bond to be broken. At the same time, the fact 

that the change of slope occurs at different points of the reaction coordinate, suggests 

that dissociation proceeds through different pathways, which would justify the 

unexpected thermodynamic signature of the dissociation transition state. Very 
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satisfactorily, SMD simulations at three different temperatures, followed by van’t 

Hoff analysis, also find that the dissociation of 1 has a larger enthalpic component 

than 2 (Fig. S4). Monitoring of protein-ligand distances confirms that dissociation 

proceeds differently for both compounds: the additional hydrogen bond in 2 acts as a 

pivotal point, delaying dissociation of the pyrazole ring and causing an earlier rupture 

of the hydrogen bond between the resorcinol and D93 (Fig. S5). These results 

highlight the validity of the principle in protein-ligand complexes, but also the 

difficulty to extricate the kinetic effect of water shielding from other kinetic and 

thermodynamic effects at the macroscopic level for such complex systems.  

DISCUSSION 

We have demonstrated that water-shielded hydrogen bonds provide kinetic stability 

by the simple mechanism of decoupling ligand association from water dissociation 

(and vice versa). Several recent but unrelated publications have also found 

relationships between binding kinetics and hydration. For instance, Liu et al. have 

demonstrated that a dehydrated state (gas phase) provides kinetic stability to a 

protein-ligand complex, while hydration stabilizes the transition state25. In an 

impressive study carried out at D. E. Shaw Research, it was found that removal of the 

last solvation layer was a kinetic barrier in the association process of kinase 

inhibitors26. Researchers at Pfizer found a correlation between displacement of tightly 

bound water molecules and second-order acylation rate constants of β-lactam 

antibiotics27. We are hopeful that our work provides a theoretical framework to 

interpret those results and to help uncover structure-kinetic relationships in protein-

ligand complexes and any molecular interaction occurring in aqueous environments. 

Considering the relationship between kinetic stability of drug-target complexes and 

bioactivity2, we have also investigated the possibility of exploiting the water-shielding 

principle in drug design. Predicting if – and to what extend – a potential hydrogen 

bond will be shielded from solvent is a trivial exercise using structure-based drug 

design methods. Comparison of compounds 3 and 4 demonstrates that subtle 

structure-kinetic relationships can be predicted by simple visual inspection when the 

water shielding effect is considered. Although in some cases it may be difficult to 

disentangle the water shielding effect from other consequences of the chemical 

modification (e.g. 1 vs. 2), this principle provides two simple recommendations to 
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improve the kinetic stability of protein-ligand complexes: 1) increase the shielding of 

existing hydrogen bonds and, 2) when reaching for new interaction, prioritize ABPAs. 

In an extremely suggestive contribution, Colizzi et al. have shown that true binding 

modes and true ligands are more difficult to remove from the binding site than 

decoys.28 If this is confirmed as a general rule, hydrogen bond shielding and other 

structural determinants of binding kinetics should also prove useful to develop new 

scoring functions. 

 

METHODS 

Molecular simulations. All molecular simulations were carried out with the AMBER 

9 package 29 and the Amber 99 forcefield. Full details are provided as Supplementary 

Methods. 

Analysis of crystallographic structures: Electron density and B-factors. First the 

PDB was scanned for crystal structures having a resolution better than 2.0 Å and an 

Rfree factor below 0.3. From this set only proteins with a maximum of 90% sequence 

similarity were retained. Of this set, 1,723 structures having the electron density maps 

available in the Uppsala Electron Density Server30 were considered for this study. 

Water molecules were considered if they made contacts only with the asymmetric unit 

(i.e. they were more than 4 Å away from all symmetric units) and had 100% 

occupancy. For the sake of simplicity, only the water molecules in contact with a 

single polar atom of the protein were further analyzed (i.e. polar atom-water distance 

< 3.5 Å and no other polar atom within a 4 Å range of the water coordinates). For 

those waters, the average and standard deviation of electron density was extracted 

from a box of 9 grid points around the closest grid point to the water molecule, called 

EDwat. For the polar atom on the protein, the electron density was extracted based on 

the same principles as for waters resulting in a quantity called EDprot. Similarly to the 

derivation of the electron density, the B factors were extracted for the water and the 

polar atoms, called BFwat and BFprot respectively. As electron densities and B factors 

are two measures that are not directly comparable between two different crystal 

structures, we normalized a water-protein atom interaction by calculating the ratio 

between EDwat and EDprot, as well as BFwat and BFprot, called EDratio and BFratio 
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respectively. Last, the EDratio was divided in two categories (i) localized electron 

density and (ii) dispersed density. This division was done per structure using the 

maximum 30% of EDratio as definition of localized ED and the minimum 30% of 

EDratio as dispersed ED. 

Analysis of crystallographic structures: Radial distribution functions. In order to 

derive the radial distribution of waters around carboxylic oxygens, the previously 

established dataset was used with the difference that the availability of an electron 

density map was not necessary. Thus, a total of 5,664 structures were analyzed, 

resulting in 2,704,956 water-carbonylic oxygen pairs. A continuous form of the radial 

distribution function 31 was used: 

g(r) = A(r)−1 e
j =1

Nwat

∑
i=1

N prot

∑
−C (r−rij )2

    1 

where r is the distance measured, A the area of a sphere of radius r, rij the distance 

between the protein atom i and the water atom j, and C a constant damping term set to 

10 in this study. 

Materials. Compounds 1-4 were provided by Vernalis and their synthesis has been 

published previously24. Histidine-tagged Hsp90 was produced as previously described 
24, 32. 

Isothermal tritation calorimetry (ITC). Isothermal Titration Calorimetry. The ITC 

measurements were performed using an iTC200 instrument (Microcal, GE 

Healthcare). All experiments were performed with 20 μM protein at 25ºC, 10 mM 

HEPES pH7.4, 150 mM NaCl, 0.5 mM EDTA, 0.05% Tween-20 and 1% DMSO.  All 

data was fitted to a one site model using the provided software. 

Surface Plasmon Resonance. SPR measurements were performed on a BIAcore 

T100 instrument (BIAcore GE Healthcare). All experiments were performed on 

Series S NTA chips (certified) according to provider’s protocols with 10 mM HEPES 

pH7.4, 150 mM NaCl, 25 μM EDTA, 0.05% Tween-20 and 1% DMSO as a running 

buffer. Histidine-tagged Hsp-90 was immobilized on the sensor surface, reference 

surfaces without immobilized Ni2+ served as controls for non-specific binding and 

refractive index changes.  The sensor surface was regenerated between experiments 

with 1 M imidazole and 45% DMSO to eliminate any carry-over of protein and /or 
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analyte.  Data processing was performed using BIAevaluation 1.1 software (BIAcore 

GE Healthcare Bio-SciencesCorp) with global fitting of the concentration series to a 

single step Steady State affinity model. 

 

Thermodynamic properties derived from SPR data. The Kon and Koff rates 

obtained from SPR experiments were used to obtain binding constants and the 

corresponding binding free energies: 

Ka =
kon

koff

       2 

ΔGbind = −RT ln(Ka )      3 

Activation free energies for the dissociation process were obtained using Eyring’s 

equation: 

ΔGoff
∗ = −RT ln

koff h

kBT

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟       4 

Thermodynamic decomposition of this property was achieved obtaining Koff values at 

7 different temperatures in the 6ºC to 30ºC range and using the linear form of 

Eyring’s equation: 

ln
koff

T
= −

ΔHoff
∗

RT
+ ln

kB

h
+

ΔSoff
∗

R
    5 

The fitted linear relationship between ln(Koff/T) and 1/T had an r2 value of 0.90 for 2 

and 0.96 for the other three compounds (Figure S6). Details on the statistical 

treatment of experimental data are provided in tables S1-S3. 
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FIGURES 

 

Figure 1. A) Free energy profile of association between a hydrogen bond donor 

(ammonia) and a model binding site containing a single hydrogen bond acceptor with 

varying degrees of solvent accessibility. At low levels (A0=3.3Å2; ΔA=-1.4; red line) 

a transition state appears between the bound and unbound states, not present at higher 

solvent accessibility levels (A0=12.8Å2; ΔA=1.3; black line). The insets show the 

respective configurations at the point in the reaction coordinate where the transition 

state appears. B) Schematic representation of the water-ligand exchange process with 

a solvent-exposed polar atom. C) Idem for an almost buried polar atom. D) Same as 

B, with a bulkier ligand.   
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Figure 2. A) Radial distribution function of water molecules around carbonylic 

oxygens of the protein backbone for a whole set of atom-atom pairs extracted from 

the PDB (black line). Dividing the set according to the degree of solvent accessibility 

of the carbonylic oxygen produces a distribution with a deeper minima between the 

first and second layers of solvation for poorly exposed atoms (red line) and a 

shallower one for more exposed atoms (green line). B) Histogram showing the 

distribution of B-factor ratios between interacting water molecules and carbonylic 

oxygens. The set has been split according to the degree of solvent accessibility of the 

carbonylic oxygen. Poorly exposed atoms (ABPAs) show a shift towards lower values 

compared to more exposed atoms, indicating reduced relative mobility of the water 

molecule. 



-20- 

 

Figure 3. Histogram showing the time length of the interaction between water 

molecules and the carbonylic oxygen atoms of the protein backbone, obtained from 

three different molecular dynamics simulations. The distribution for poorly exposed 

atoms (black line) is shifted towards longer residence times than in the case of 

exposed atoms (red line). The inset shows a scatter plot of residence times vs. the 

convexity of the local environment around the carbonylic oxygen, demonstrating that 

long residence times only occur in concave regions. 
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Figure 4. A) Chemical structure of four Hsp90 inhibitors. B) Binding mode of 

Compounds VER37655 (pale blue) and VER49181 (orange) in the ATP-binding site 

of Hsp90, as obtained from X-ray crystallography. Colored surfaces depict areas 

where the water density is 3-fold the expected value, as obtained from molecular 

dynamics simulations. High water density areas are depicted in black for the apo form 

of the protein, in cyan for the Hsp90-VER37655 complex and orange for the Hsp90-

VER49181 complex. Gly 97 is shown in sticks. 
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Figure 5. A) Water density isosurface (at 0.75-fold the expected value) for Hsp90-

VER49008 complex. B) Idem for Hsp90-VER49009 complex. The red circle 

highlights the different hydration levels in the vicinity of G97O. 
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Figure 6. A) Dissociation free energy profile (top) and mean number of G97O-water 

contacts (bottom) along the dissociation process for VER49008 (3) and VER49009 

(4), derived from multiple SMD simulations. The former has higher solvent exposure 

of G97O and a less steep free energy profile. B) Dissociation free energy profile of 

VER37655 (1) and VER49181 (2) (top) and mean number of water contacts made by 

G97O along the dissociation process (bottom), as derived from multiple SMD 

simulations. The thin black line corresponds to an individual SMD simulation of the 

VER49181-Hsp90 complex. For VER49181, G97O makes no water contacts until the 

hydrogen bond with the ligand is broken. The rupture of the hydrogen bond occurs on 

average at point 4.2Å of the reaction coordinate (±0.5Å) and in individual SMD 

simulations it coincides with a change of slope in the free energy profile (vertical 

dashed line).  
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Table 1. Summary of calorimetric (ITC) and Surface Plasmon Resonance (SPR) data. 

Full statistical details provided in supplementary tables S1-S3. 

 ITC (25º) SPR (25º) SPR (279K-303K) 

 ΔΔG  ΔH -TΔS Kon Koff ΔG ΔG*off ΔH*off -TΔS*off 

1 -9.01 -1.54 -7.47 4.3E+05 2.2E-02 -9.94 19.8 21.4 -1.7 

2 -10.32 -2.74 -7.58 4.6E+06 6.1E-03 -12.09 20.4 15.6 4.9 

Diff | (ratio) 1.3a 1.2b 0.1c (0.09)a (3.5)a 2.1a -0.7a 5.8a -6.6a 

3 -10.13 -3.79 -6.35 1.4E+06 1.1E-02 -11.13 20.3 20.5 -0.2 

4 -10.44 -3.69 -6.74 9.9E+05 6.9E-03 -11.10 20.6 21.1 -0.5 

Diff | (ratio) 0.3b -0.1c 0.4c (1.4)c,d (1.6)b,d 0.0c -0.3a -0.6b 0.3c 

a Significant difference with p-value ≤ 0.01; b Significant difference with p-value ≤ 

0.05; c No significant difference (p-value >0.1); d significance calculated from ratio 

values over the temperature range 
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�,����� /�+#���� "�����+,"*� ��,����� &�"2�*��'� 8��4!� A9 � 2$�� ��&� �����+�',"����

&�4,"�$����&�*+&��2��"$&����&&+��"��+,�/�+����&���--���,�*'���",�-+���+�/+$,��/!�
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��"�*���&�"��&���"*�","*'&�&�+-��;���"�"��+**������"��5CF�!��**���&�&�"���

+,���"�*��� 2��"$&�� ���� 4+"*� ."&� �+� -�,�� &�4,�-��",�� �,���"&�:�����"&�� 2��.��,�

/"��&� +-� �+�/+$,�&!� ��+����+����'� 8�9� �",4�&� -�+�� 1!=0� �+� 1!05� -+�� "**�

��"&$����,�&!�

 
 ITC (25º) 
 KA ΔΔGbind ΔHbind −ΤΔSbind 

1 (n=3) 4.3E+06 ± 1.7E+06 -9.01 ± 0.27 -1.54 ± 0.26 -7.47 ± 0.50 
2 (n=3) 3.7E+07 ± 2.7E+06 -10.32 ± 0.04 -2.74 ± 0.09 -7.58 ± 0.11 

Diff | (ratio) 
P-value (t-test) 

(0.12) 

0.01453 
1.3 

0.008712 
1.2 

0.01178 
0.1 

0.3858 
3 (n=3) 2.7E+07 ± 3.9E+06 -10.13 ± 0.08 -3.79 ± 0.34 -6.35 ± 0.39 

4 (n=3) 4.5E+07 ± 4.6E+06 -10.44 ± 0.06 -3.69 ± 0.25 -6.74 ± 0.26 

Diff | (ratio) 
P-value (t-test) 

(0.61) 

0.0003512 
0.3 

0.001503 
-0.1 

0.1774 
0.4 

0.3967 
�

�

�

�������-+�
��"�*���&�"��&���"*�","*'&�&�+-������"�"��+**������"��5CF�!��**���&�&�"���

+,���"�*��� 2��"$&�� ���� 4+"*� ."&� �+� -�,�� &�4,�-��",�� �,���"&�:�����"&�� 2��.��,�

/"��&� +-� �+�/+$,�&� !� ����&�� �&� $&��� �+� �+�/"��� �+�/+$,�&�4� ",��5� �$�� �+� ����

��--���,���&�?��+-�����&"�/*�&!�

 SPR (25º) 
 Kon Koff ΔG 

1 (n=4) 4.3E+05 ± 1.3E+05  2.2E-02 ± 5.1E-03 -9.94 ± 0.30 
2 ( n=4) 4.6E+06 ± 6.4E+05 6.1E-03 ± 6.7E-04 -12.09 ± 0.15 

Diff | (ratio) 
P-value (t-test) 

(0.09) 

0.00068 
(3.5) 

0.00312 
2.1 

0.00041 
3 (n=2) 1.4E+06 ± 3.8E+05 1.1E-02 ± 3.3E-03 -11.13 ± 0.07 
4 (n=3) 9.9E+05 ± 3.8E+05 6.9E-03 ± 1.3E-03 -11.10 ± 0.20 

Diff | (ratio) 
P-value (Welch t-test) 

(1.4) 

0.15690 b 
(1.6) 

0.15390 a 
0.0 

0.40600 
"�;�����--���,���2��+��&�&�4,�-��",��8��#"*$������&��E�1!1>0<9�.��,��+,&�����,4�

�+--��"��+&�"��"**����/��"�$��&���&����8&���;"2*���>9!�2�;�����--���,������"�,&�,+��

&�4,�-��",�� 8��#"*$�� ����&�� E� 1!50D>9� .��,� �+,&�����,4� �+,� �"��+&� "�� "**�

���/��"�$��&���&����8&���;"2*���>9!��
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��"�*���&�"��&���"*�","*'&�&�+-������"�"��+**������+#�������5D0��>1>��

���/��"�$��� �",4�!� �**� ��&�&� "��� +,���"�*��� 2��"$&�� ���� 4+"*� ."&� �+� -�,��

&�4,�-��",���,���"&�:�����"&��2��.��,�/"��&�+-��+�/+$,�&!�

 SPR (279K-303K) 
 Kon Koff ΔΔG*off ΔH*off 

a -TΔS*off 
a 

1 (n=8) - - 19.8 ± 0.11 21.4 ± 0.45 -1.7 ± 0.46 
2 (n=8) - - 20.4 ± 0.16 15.6 ± 0.96 4.9 ± 1.00 

Diff | (ratio) 
P-value (t-test) 

(0.13 ± 0.04) 
4.3E-10 b  

(3.40 ± 0.89) 
0.0024 b  

-0.7 

1.11E-05 
5.8 

7.67E-08 
-6.6 

3.94E-08 
3 (n=7) - - 20.3 ± 0.12 20.5 ± 0.60 -0.2 ± 0.61 
4 (n=7) - - 20.6 ± 0.13 21.1 ± 0.67 -0.5 ± 0.71 

Diff | (ratio) 
P-value (t-test) 

(1.38 ± 1.08) 
0.2973 b,c 

(1.64 ± 0.49) 
0.0396 b 

-0.3 

0.00163 
-0.6 

0.04958 
0.3 

0.21020 
"��$*��/*��Δ	G�",��Δ�G�#"*$�&�"���+2�"�,���*�"#�,4�+,���"�"�/+�,��+$���"��������

",�� -����,4� ���� ���"�,�,4� �"�"� �+� �%!� C!� 2� /"����� +,�� �"�*��� ����&�� �+�/"��,4� ����

�"��+&�+-��"����+,&�",�&�+-�&�?��,�2��.��,������.+��+*��$*�&��+�"��",�+��,+��"*�

��&���2$��+,�+-�&�?��,�.����/"�"�����&�μE��",��σ��"��,�"&�����&�",�"�����#�"��+,�

+-�����+2&��#�����&���2$��+,!�;���/�+��&&��&���/�"����$,��*�����"#��"4��/�#"*$��+-�

���� ����&�� ��"���&� �+,#��4�,��!� �� ;��� *"��� +-� &�4,�-��",��� -+�� &$��� &�"**� ��",4��

8HC1I� �,���"&�9� �&� ,+�� $,�3/������ 2��"$&�� +,��"��� ��"&$��&� 2�"�� *"�4���

$,����"�,���&���",�+--��"�����"&$��&!�
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�/����&� +-� ��--���,�� �"���� 8C � D� (� �1B9� .���� $,�-+��*'� ��&���2$���� /+�,�&� .����

4�,��"���� $&�,4� "� /�+4�"�� .�����,� 2'� �"$*� �+$���� "#"�*"2*�� �,� ���� �,���,���

8���/J::*+�"*!."&/!$."!��$!"$:H/2+$���:4�+����':&/����/+�,�&:&+$����!�9!�

;��� ,$�2��� +-� /+�,�&� ."&� ��+&�,� �+� +2�"�,� "� $,�-+��� &�/"�"��+,� +-� >!1B�

2��.��,� ,��4�2+$�� /+�,�&!� ;��� �++���,"��&� +-� +,�� +-� ���� /+�,�&� ."&� $&��� �+�

/*"��� ���� ,���+4�,� "�+�� +-� ",� "���+,����*�� �+*��$*�� 8��/+�,�9!� ;��� -��&�� �.+�

*"'��&� +-� /+�,�&� "�+$,�� ���� ��/+�,�� 8��&�",��� K� DB9� .���� ���"�,��� ",�� ������

�++���,"��&�$&����+�/*"�������",���+*��$*�& ���$&�+2�"�,�,4�",�"���-���"*�2�,��,4�

&���� �+,&�&��,4� +-� "� �'��+4�,� 2+,�� "���/�+�� &$��+$,���� 2'� "� �'��+/�+2���

&/�����"*� �"/� +-� #"�'�,4� �$�#"�$��!� ;���Δ�� /"�"������ �&� �+&�*'� �������,��� 2'�

�����"����+-� ����&/���� �.��*���+��-��"��+,&�+-� �����1�/"�"������.����+2�"�,���

��&/*"��,4�����"���+,����*���+*��$*��"*+,4�����#���+����"��@+�,&�������,����+-�����

&/����� .���� ������/+�,�� 8�,�/*",�� ",�� �� B� +�� 5� B� +--�/*",�� �,� �"��� �������+, �

��&$*��,4��,�"��+�"*�+-��C�"���-���"*�L2�,��,4�&���&M9!�;���&"���#���+��."&�$&����+�

/*"�������*�4",���+*��$*��8"��+,�"9�D�B�"."'�-�+������"���+,����*�7&��!���+����

��"�4�&� -+�� "��+,�" � "���+,����*�� ",�� ����",�� .���� +2�"�,��� $&�,4� ���������

/�+���$��NCO�",��"�+���'/�&�.�����",$"**'�"&&�4,����+�+2�"�,�����#",�����P""*&�

/"�"�����&!�Q&�,4���"/�-�+��������2���0�/"��"4�N<O �����&'&���&�.����&+*#"����

.���� ;��>�NDO� ."���� �+*��$*�&� ",�� /*"���� �,� "� /���+���� 2+3� �3��,��,4� �1B�

-$������-�+������&+*$����++���,"��&!��

�)��%����&���*��%��$'����(�&���%)��������($()��(+�

;��� �'��+4�,� "�+�&� +-� ���� &'&���� ",�� ."���� �+*��$*�&� .���� ��,���?��� $&�,4�

���� &���/�&�� ��&��,�� "*4+������ .���� "� �"3��$�� ,$�2��� +-� ����"��+,&� +-� C111 �

���/�,4�"**��"�2+,�",��,���+4�,�"�+�&�+-�����"�+�&���&��"�,���.����"�.��4���+-�

�11���"*:�+*:B5!�;���,+,�2+,��������& �.������,���"**'�.�����+.,�.��4������+�

"#+��� �$4�� &������ �+**�&�+,& � .���� 4�"�$"**'� .��4����� $/ � "**+.�,4� "� &�++���

��,���&"��+,!� 
$��,4� "**� �%$�*�2�"��+,� ",�� /�+�$���+,� &��/&� "� �",4�#�,�

�����+&�"��.����"��+**�&�+,�-��%$�,�'�+-�<�."&�$&��!���-��&���%$�*�2�"��+,����/�,4�

���� ����",�� �"*-� &/���� � ���� "���+,����*�� ",�� ���� "��+,�"� ��&��"�,��� $&�,4� "�

-+�����+,&�",��+-��1���"*:�+*:B5�."&�/��-+������$��,4�51/&�.��*����"��,4�-�+��

511���+�5C1��",�����/�,4�"��+,&�",��#+*$��!���3� �"�&��+,���%$�*�2�"��+,�&��/�

+-� 5C/&� $,���� �+,&�",�� /��&&$��� ."&� /��-+����!�
$��,4� ���&� �%$�*�2�"��+,� ����

&'&����."&���"����$/�$,��*�����-�,"*�>11�!���3��"�/�+�$���+,��
�+-��,&�."&��$, �

���/�,4� ���� /+&���+,&� +-� "**� �"�2+,� ",�� ,���+4�,� "�+�&� ��&��"�,��� .���� "� -+����

�+,&�",��+-��1���"*:�+*:B5!�51�&,"/&�+�&��%$"**'�&/"����"*+,4������,&���"@���+�'�

.�����3��"�����"&�&�"���,4�/+�,��-+������&��������
�8��
9�&��$*"��+,!��,��"���+-�

��+&��51�&��$*"��+,& �����"��+,�"�."&�/$**����$��,4��,&�-�+��"�D!1B���&�",���

�+� 5!CB� ��&�",��� $&�,4� +,*'� ���� ��&�",��� "&� ��"���+,� �++���,"��� 8C111�

��"*:�+*:B5�"&�-+�����+,&�",�9�.��*����"���,4�����.+���,���&&"�'��+�/��-+�������

��&/*"����,�!� 
$��,4� ��
� "**� "�+�&� +-� ���� "���-���"*� 2�,��,4� &���� .����

�+,&��"�,�� � .��*�� ."���� �+*��$*�&� .���� $,��&��"�,�� � "&� ."&� ���� "��+,�"�

�+*��$*��8�3��/��-+��������"���+,��++���,"�����&�",��9!�;���&��$*"��+,&�.�����$,�
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�,� ���� ��;� �,&��2*�� .���� �&+��+/��� /+&���+,� &�"*�,4!� ;��� ��&$*��,4� .+���

��"&$����"*+,4�������"���+,��++���,"����."&��+*�?�",,�"#��"4����+�����#������

��",4���,�-�����,��4'�2��.��,�����&�"���",���,��&�"���+-�����&��$*"��+,�$&�,4�����

�"�?',&�����*"��+,N=OJ�

e
−ΔG

kBT

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

= e
−W

kBT

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

� � � � � � <�

 �/37/33 �/373.3 
T R
��, R
�"3 RR
;� R
��, R
�"3 RR
;� 
280 0.6341 1.29 0.6559 0.1767 0.4433396 0.2666396 
290 0.457 1.0871 0.6301 0.258965 0.5125946 0.2536296 
300 0.5847 1.1484 0.5637 0.2687 0.537395 0.268695 
310 0.5653 1.09117 0.52587 0.29545 0.5462832 0.2508332 
320 0.547 1.0392 0.4922 0.3212 0.59026 0.26906 
330 0.55678 0.99971 0.44293 0.3405247 0.6214365 0.2809118 
340 0.5007 0.92007 0.41937 0.39503 0.6688633 0.2738333 
�������5+�������,��4'�#"*$�&�8��*"��#���+�����$,2+$,��&�"��9�+-�����2+$,��&�"���

8R
��,9 � ���� ��",&���+,� &�"��� 8R
�"39 � ",�� ���� ��--���,��� 2��.��,� ����� 8RR
;�9!�

��1S1=1� �&� ",� "���-���"*� &'&���� �+,�"�,�,4� "� &+*#�,�� �3/+&��� /+*"�� "�+� �

��1S�11��&�",�"���-���"*�&'&�����+,�"�,�,4�",������8�1�K��1B5T�R��K�19!�

�

�,�+������+��������,������&�",�"����,��"*/'�",���,��+/'���",4��+-� ����&'&����

���� 6",7��	+--� �%$"��+,� ."&� $&��� �+� ��*"��� ���� �%$�*�2��$�� �+,&�",�� .���� ����

*"������.+!��+�����&�","*'&�&��.+��+,-�4$�"��+,&�+-�"�����",���"*-�&/�����+-��1B�

�"��$&� .���� �+,&������!� �,�� �"#�,4� ",� �3/+&��� "���+,����*�� ,+�� &�+.�,4� "�

��",&���+,� &�"��� 8�� "�+�� /�+��$��,4� 5B� �+."��&� ���� ��,���� +-� ���� &/����T�

��1S1=19�",��"�&��+,��+,��.����������"�+���,�*�,��.������������",���"*-�&/�����

8��1S�119!��+���"���+,��+-���+&��&�"��& �/�+�$���+,�",����
�&��$*"��+,&�.����

�"������ +$�� "�� D� ��--���,�� ���/��"�$��&� �",4�,4� -�+�� 5=1� �+� >A1�!� �,� +����� �+�

��/�+#�� &�"��&���& � �,� ���&� �"&�� �11� ��
� &��$*"��+,&� .���� �$,� "�� �"���

���/��"�$��!�Q&�,4������"�?',&�����*"��+,&��/�"4"�, �����-�����,��4'�/�+-�*��+-�����

"//�+"��� +-� ���� "��+,�"� �+."��&� ���� "���+,����*�� ."&� ����#��� ",�� ���� -����

�,��4'�+-� ������",&���+,�&�"���8RR
;�9�."&��"*�$*"����"&� ������--���,���2��.��,�

���� ��,��$�� �+���&/+,��,4� �+� ���� 2+$,�� &�"��� 8R
��,9� ",�� ���� �"3��$��

&�/"�"��,4� 2+$,�� -�+�� $,2+$,�� &�"��� 8R
�"39� 8�,� "**� �"&�& � R
$,2+$,�E19!� ;���

�+���&/+,��,4�#"*$�&�"���/�+#������,�;"2*���A!�;����+�',"�������+�/+&���+,�
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3.3 Pocket prediction on proteins in motion

3.3.1 Introduction

”Lively proteins move and shake.” The terminology of protein dynamics encom-
passes very different time-scales of molecular motion. From atomic vibration
to protein folding, each level of motion has functional inference on the protein.
Table 3.5 resumes characteristic motions, their corresponding time-scales and
amplitudes.
Understanding the dynamics of a protein can give important insights into its

Time scale Amplitude Description

1fs− 1ps 0.001 - 0.1 Å bond stretching, angle bending
constraint dihedral motion

1ps− 1ns 0.1 - 10 Å unhindered surface side chain motion
loop motion, collective motion

1ns− 1μs 1 - 100 Å folding in small peptides
helix coil transition

1μ− 1s 10-100 Å protein folding

Table 3.5: Time scales of molecular motion, from http://www.whatislife.com/

reader/motion/motion.html

mechanistic functioning. From this knowledge subsequent strategies can be de-
rived aiming to modulate its function therapeutically. For example, allosteric
effectors can be used to alter the binding affinity for the natural substrate of
a protein [Rizk et al., 2011]. As another example, enzyme catalysis is known
to depend on coupled thermal motions on the protein [Hammes-Schiffer and
Benkovic, 2006].
A recent review on molecular mechanisms of action for discovered drugs high-
lights that several drugs alter protein motion [Swinney and Anthony, 2011].
Despite such evidence, few attempts are made in pharmaceutical industry to
account for protein motion in rational drug-design. While the reasons for this
reluctance won’t be analysed here, they might be related to the complexity of
protein motion.
Till today, no experimental or theoretical approach exists to gain a global in-
sight into the conformational landscape of a protein. Thus, one is reduced to
work with fragments, punctual snapshots in time of this landscape.

Computational methods exist to generate such fragments of the conforma-
tional landscape of a protein at atomistic resolution. Among them, molecu-
lar dynamics (MD). Physical principles of MD are explained in section 2.2.
Here a method is presented that uses conformational ensembles to detect and
characterise transient cavities and channels.

Pocket detection on moving proteins Identifying pockets on moving pro-
teins is not a trivial task and surprisingly a flexible representation of a putative
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pocket is still barely considered in today’s drug discovery projects in pharma-
ceutical industry. As previously stated, a large panel of methods exist to predict
pockets on static structures. Also, modern pocket prediction methods are very
well performing and accurate to allow automated cavity prediction. Despite
these advances, only one single method in the field considered the detection of
transient cavities suitable for drug design. This method called EPOSBP was
introduced in 2007 by Eyrisch & Helms and is basically composed of running a
sequence of cavity detections using PASS [Brady and Stouten, 2000] on confor-
mations of a protein derived from a molecular dynamics trajectory. Till today,
it remains the only method tackling this task, while new methods see the day
allowing pocket prediction on static protein structures.
Nevertheless, the global approach chosen by Eyrisch and Helms is very valuable
and was constituted the basics for the study presented in this section of the
thesis.

Functional studies on moving proteins Interestingly, in a field not closely
related to drug discovery, the consideration of protein motion and transient-
ness of appearance and disappearance of cavities and channels is primordial to
gain mechanistic insights into the functioning of various proteins. Such pro-
teins usually contain internal channel systems transporting gas particles, but
can also be transmembrane proteins transporting for example ions. In order to
know if such a system could be of potential interest as pharmaceutical target,
its mechanism of action has to be understood to be able to alter it. At this
point it should be highlighted that internal channels as found in heme proteins,
are very distinct from cavities targeted by structure based drug discovery.
In the past 10 years the study of channel motion and transientness has at-
tracted substantially more contributors from academia, than the counter part
on druggable binding sites. In order to study channels on dynamic and static
structures, several computational tools exist. A description of the state of the
art of those is provided in section 2.4.2 of this thesis.

3.3.2 Objectives

Development of a general purpose pocket tracking method for con-
formational ensembles The main objective of this work is to develop a
software capable of transforming transient pocket and channel opening and
closing observed on conformational ensembles of macromolecules to a visually
easy to interpret representation. This transformation should be fast and rela-
tively easy to produce.

Extraction of pocket characteristics on conformational ensembles
Another central point of transient and mobile pocket detection is to know which
protein conformer shows certain characteristics of interest. The program de-
veloped within this work should allow to track a given set of properties for a
user defined zone on the protein surface. These properties could then further
be used to either (i) characterize the cavity, (ii) to extract similar conformers
having similar properties or (iii) to extract distinct conformers.
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Identify conserved cavities on homologous proteins The method should
be general and robust enough to allow for pocket identification on different
homologous protein structures. The program should also be robust towards
different protein lengths, missing atoms or residues.

3.3.3 Results

The pocket tracking method

Here a new method called MDpocket is presented allowing to track and char-
acterise cavities and channels on conformational ensembles of proteins. As this
work describes the development of a new method, the results section contains
a description of the methods itself. MDpocket is based on the fpocket project
described in section 2.3.5.
In order to analyse a conformational ensemble all conformers have to be struc-
turally superimposed. Next, fpocket is run on all these conformations. While
performing cavity detection a 3D grid is placed over the protein and each grid
point tracks the (i) number of nearby alpha spheres and (ii) if at least one alpha
sphere centre (Voronoi vertice) was nearby on each protein conformation. This
workflow is schematically shown on figure 3.16. Once all pockets have been

Figure 3.16: MDpocket workflow

assigned to the grid for all individual conformers, this grid can then be used to
(i) visualise transient cavities and (ii) extract pocket/channel descriptors of a
user-defined pocket. MDpocket produces 2 types of grids, (i) a frequency grid
and (ii) a density grid.

Frequency grid This particular grid intends to capture how often a cavity
or channel opened in a given region on the protein surface. It is normalized by
the number of structures analysed. If transient pocket and channel openings
occur within the time range of the conformational ensemble that is analysed,
then this will be measurable in this grid as frequency of opening Φi

Φi =
1

n

n∑
i=1

δi (3.4)
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where n corresponds to the number of snapshots analysed and δi to 1 if at least
one alpha sphere centre was near to grid point i, 0 otherwise.

Density grid Protein flexibility and accounting for it in molecular simula-
tions and analysis is very complex. Using the discrete way of detecting tran-
sientness of opening of pockets and channels in this method, we have to assume
that within the conformational ensemble the cavity opens at least a certain
amount of time. One way among others to produce conformational ensembles
of protein structures is via molecular dynamics simulations. These simulations
are often very time consuming to produce. In the end they allow for assess-
ment of the conformational space of a protein corresponding to a nano second
to micro second time scale. It is obvious that fortuitous openings of channels
and cavities happening within that time interval could potentially be captured
within the frequency map. However, very rare openings would not be included.
In order to identify putative transient channels another type of grid is produced
by MDpocket. This so-called density grid tracks the number of times an alpha
sphere centre falls next to a given voxel on each conformer. The more atoms are
packed, the higher the probability is to find more dense alpha sphere clusters.
Higher atom packing is more frequently observed in concave and narrow envi-
ronments like the lumen and the bottom of binding sites and within channels.
Thus tracking the density of alpha spheres emphasizes also more buried zones
of a channel or pocket.
The density map is derived using formula 3.5

ρi =
1

n

n∑
i=1

dAS,i (3.5)

dAS,i = card (ASi ∩ {(x, y, z)i ± 0.5}) (3.6)

Visualising and interpreting pocket grids

As an example of how to visualise and interpret pocket grids produced by MD-
pocket, we selected 88 crystal structures of the heat shock protein 90 (HSP90).
This protein was chosen because the known plasticity of the ATP binding site
can be observed experimentally.

These known binding site movements are shown on figure 3.17 A (black
arrow). The helix 4 - loop 2 - helix 5 motive can in some case form a straight
helix opening a hydrophobic in the nearby ATP binding site. As the number
of crystal structures used for this example is limited it is possible to count the
number of structures being in conformation 1 (hydrophobic sub-pocket open)
or conformation 2 (hydrophobic sub-pocket closed). In this example, 35.2% of
all structures are of conformation 1, the rest of conformation 2.
All structures have been superimposed onto the reference structure (PDB code
1byq) and MDpocket was run producing (i) a frequency grid Φ and a density
grid d. Results from MDpocket can be conveniently visualised as pocket fre-
quency and density maps the same way as an electron density map. Popular
visualisation software like VMD [Humphrey et al., 1996], Chimera [Pettersen
et al., 2004] and PyMOL [DeLano, 2002] can be used. Figure 3.17 B shows
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Figure 3.17: A: HSP90 helix motion lining the binding site, B: Frequency grids
obtained with MDpocket on 88 crystal structures. Orange mesh: frequency 30% or
more, blue surface: 40% or more pocket opening.

Φ at two levels of pocket opening, 30% (orange mesh) and 40% (blue sur-
face). While the pocket frequency map evolves slowly on higher percentages,
between 30 and 40% (more precisely around 35% a sub-pocket appearance can
be observed. This subpocket, indicated by the black arrow on figure 3.17 B
corresponds to the hydrophobic sub-pocket open in 35.2% of all input struc-
tures. This result is in excellent agreement with prior knowledge and shows
how MDpocket frequency maps can be used on conformational ensembles of
crystal structures or from MD trajectories.
The hydrophobic sub-pocket considered here can be of interest for drug de-
sign, as known inhibitors of HSP90 activity bind to this sub-pocket (figure not
shown, but available as figure 1 related paper of MDpocket).
While frequency maps allow highlighting portions of binding sites that open
frequently, the scale of simulation time and conformational space that is sam-
pled with techniques like MD might be limited to observe very rare openings
of transient cavities. Thus, such rare events are less likely to be easily visible
within frequency maps. To circumvent this problem, another type of map is
produced by MDpocket, tracking not the frequency, but the density of alpha
spheres around a grid point during time. Transient openings tend to occur
in closed environments characterised by high atom packing. Given the use of
alpha spheres by the fpocket cavity prediction algorithm, the number of alpha
spheres clustered in a given location are related to atom packing. Thus, such
a density of alpha spheres can give insights into where transient and buried
cavities open. In the example given in figure 3.17 MDpocket produced density
maps allow to spot both the main binding site and the sub-pocket, although
the sub-pocket is present only in 35.2% of all conformations.
MDpocket provides a overall structural cavity detection result, not precisely
focusing on any zone. Via visual analysis, pocket grids allow thus a first ex-
ploratory view on overall transient pocket and channel openings. This is par-
ticularly helpful for identification not only of overall binding site motions, but
also for discovery of unknown water access channels to the pocket.
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Last, this exploratory cavity detection does not allow direct tracking or filter-
ing of pocket properties. Thus, results provided can be sometimes difficult to
analyse visually when lots of channels and cavities are found (typically heme
proteins). Based on the work presented on druggability in this thesis, MD-
pocket however has the possibility to track cavities using the druggability score
instead of alpha sphere presence and absence. In this mode, MDpocket is run
and cavities are detected, but instead of mapping a pocket frequency to a grid,
the druggability score is mapped to a grid. This allows tracking specific tran-
sient druggable pockets and might provide very useful for exploratory cavity
detection on MD trajectories for identified putative allosteric binding sites.

Tracking a specific zone Despite the tracking for druggable pockets, the
extraction of pocket properties is limited in the first step of the method. Thus,
the user is allowed to select a zone of a density or frequency grid (with Py-
MOL for example) to delimit an area of interest. Once this area selected, it
can be used as input for a subsequent MDpocket analysis, where all cavities
are tracked, but only the cavity of interest selected by the user is analysed
and various fpocket descriptors are extracted for each time-frame of the trajec-
tory. Figure 3.18 shows an example of tracking the pocket volume of the ATP

Figure 3.18: Tracking pocket properties with MDpocket. A: P38 Map kinase ATP
binding site selected (orange grid). Two snapshots of a MD trajectory are shown,
illustrating large lobe movement (black arrow). B: Volume of ATP binding site of
P38 during MD trajectory calculated with MDpocket.

binding site of P38 Map kinase during a 50ns molecular dynamics trajectory.
Here MDpocket was first run to produce a density grid. From the density grid
the grid points represented in orange in figure 3.18 A have been selected with
PyMOL. These grid points have then be used to extract properties of a zone
the zone of interest. As an example, the volume of the cavity is shown in figure
3.18 B. Here we can observe that the average volume (thick black curve) is
increasing especially after 2000 snapshots. Part A of the figure shows indeed
that the big lobe of P38 is moving versus the small lobe (black arrow), know-
ing that the structural alignment has been done using the beta sheet lining the



3.3. POCKET PREDICTION ON PROTEINS IN MOTION 151

binding site (green cartoon) as reference.

MDpocket use cases

Gas migration channel predictions As stated in the introduction, several
methods have been proposed for detecting protein internal channels. MDpocket
allows via it’s versatility to detect small molecule binding sites but also smaller
cavities and channels allowing diatomic ligand migration.
A well known example in the field of gaseous ligand migration is myoglobin.
Small gaseous ligands like CO2, O2 or NO are known to bind to the heme of
myoglobin. The system is very well studied especially with respect to potential
pathways, gaseous ligands could use to enter the protein [Tilton et al., 1984,
Scott and Gibson, 1997, Ostermann et al., 2000, Scott et al., 2001, Schotte
et al., 2003, Cohen et al., 2006, Tomita et al., 2009]. Migration is assumed
to be enabled via stable internal cavities connected by transient channels. To
show the usefulness of MDpocket in the discovery of such transient channels,
as well as stable cavities 10000 snapshots, equally spaced in time from a 50ns
trajectory of myoglobin have been analysed. On figure 3.19 A results obtained

Figure 3.19: Myoglobin transient cavities detected with MDpocket from 50ns MD
trajectory. A: Blue iso-surface, pocket frequency map at 60%m and orange mesh
pocket density map at 2.0. B: Transient channel density. Known xenon (orange
spheres) binding sites are found, as well as channels connecting them.

are shown and here again, different applications for frequency and density maps
can be observed. While the frequency map at 60% pocket opening (blue iso-
surface) shows known xenon binding sites, as well as the distal pocket above
the heme and two other binding sites often found, the connections between
them occur less frequently, such as they don’t appear at this iso-level in the
frequency map. To visualise them, the pocket density can be considered, as
shown using the orange mesh in figure 3.19. Here clear connections can be
observed between all stable binding sites, clearly indicating that these connect
intermittently via these channels.
How and especially in which exact pathway these ligands migrate from one
cavity to the other is still under scientific debate. However, it appears logical
that wider and longer open transient channels would favour a faster exchange
between sub-pockets and closed channels would hinder fast migration. To some
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extent MDpocket can be used to favour certain routes versus others. Figure
3.19 B shows the minimum densities in alpha spheres when transient channels
appear between stable cavities. Here, the connection between the distal pocket
(DP) and xenon pocket Xe4 is found to be the most stable in agreement with
time resolved X-ray crystallography experiments showing that the migration
from DP to Xe4 is an initiating event [Schotte et al., 2003, Tomita et al., 2009].
Subsequent migration from Xe4 to Xe2 and Xe3 are observed. Here we find that
Xe1 is predicted to be a stable pocket, connected by rarely opening transient
channels to the outside and especially Xe2. Also in agreement with previously
cited studies, showing high residence times of CO in Xe1, this results shows
that MDpocket can provide qualitative and probably quantitative insights into
protein internal ligand migration pathway and pathway networks.

Putative applications of MDpocket for ensemble docking The second
use case presented for MDpocket is related to the study of binding sites of
interest for drug discovery. Among usual steps in structure based drug discovery
molecular docking is used to fit small organic molecules into the binding site
of interest. This process called docking can be used to sieve through large
databases of ligands and retrieve putative actives. While the ligand molecules
usually are considered to be flexible during docking, the receptor structure is
not. Several approaches exist to consider the complexity of including protein
motion into small molecule docking, among which ensemble docking [Novoa
et al., 2010]. Basically, several conformations of the protein are considered for
docking all ligands. Given that docking is timely, using thousands of receptor
conformations is prohibitive and an educated guess of which conformations to
choose has to be made [Rueda et al., 2010].
Here MDpocket is used to analyse the previously used P38 ATP binding site. 32
crystal structures from known P38 binders co-crystallized with P38 have been
systematically superimposed to 5000 snapshots from a 50ns MD trajectory of
the same protein. This superimposition has been done using the stable beta-
sheet lining the ATP binding site as reference. Ones superimposed, the ligand
is extracted from the crystal structure and inserted into the MD snapshot and
the interaction energy between the ligand and the protein is calculated using
MOE. This process was done to simulate a docking process without all flaws in
binding pose prediction and scoring that usually are paired with docking. These
superimposed binding poses, by definition near to the cognate binding pose are
then used to assess whether they fit correctly in the pocket or not. This is done
considering that if steric clashes occur, the interaction energy is unfavourable
(so positive). Thus, the amount of binders that have favourable interaction
energies among the 32 binders can be calculated and tracked throughout the
time of the MD simulation. This fraction of acceptable poses inside the moving
pocket is represented as grey line curve on figure 3.20 and averaged as black
curve.

As stated previously, several pocket descriptors can be extracted for an area
of interest. Here, all MDpocket descriptors have been extracted and tested
for correlation with the fraction of acceptable binding poses. Intuitively one
might expect the pocket volume to correlate, relating more open and accessible
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Figure 3.20: Fraction of binding poses without steric clashes (grey) from 32 known
binders of P38 superimposed to 5000 snapshots of a MD trajectory. Average fraction
is represented as thick black curve. The mean local hydrophobic density of the ATP
binding site is shown in red.

binding sites to sterically acceptable binding poses of superimposed ligands.
However, as could be seen in the analysis presented in figure 3.18, despite an
important increase of the pocket volume after 2000 snapshots, the contrary of
an improvement in binding poses can be observed. However, another descrip-
tor, the mean local hydrophobic density is shown to correlate with the fraction
of poses without steric clashes (red curve in figure 3.20). This descriptor has
also been shown to be of importance in predicting druggability of a cavities in
work presented previously in this thesis.
The mean local hydrophobic density allows to measure situations in time when
hydrophobic sub-pockets and hydrophobic atom packing form dense local clus-
ters in a binding site. While MD simulations in TIP3P water might hinder
the exposure of large hydrophobic surface patches into the pocket, interac-
tion between these and the ligand are important, especially seen the rather
hydrophobic characteristics of drug-like molecules [Vieth et al., 2004]. Thus,
tracking this descriptor allows to capture moments during the simulation when
these hydrophobic surfaces are more accessible.

Novelty

MDpocket is the first free open-source tool allowing easy extraction of both,
drug binding sites and transient channels from conformational ensembles. MD-
pocket is invariant to the source of these conformations and can thus be used
to analyse MD trajectories or homologous protein structures. Compared to
EPOSBP , MDpocket provides a continuous description of cavities and does not
split them according to clustering rules. This is of importance when studying
the whole spectrum of descriptors of a cavity of interest.
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Limitations

Despite advantages of MDpocket, several limitations exist. The most important
drawback is due to the methodology and the necessary superimposition. Such a
superimposition is by definition erroneous on conformational ensembles. Thus,
structural alignments have to be done with a focus on parts of the structure
that are either stable or of particular interest.
Another limitation is linked to the relative length of MD simulations. In order
to be able to observe and measure the frequency of opening of transient channels
in the frequency map a substantial simulation length and number of snapshots
might be required. Such simulations lengths are currently barely accessible.
Last, regarding channel predictions, MDpocket does not allow measurements
of channel dimensions.
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MDpocket : Herramienta de Detección de Cavidades y
Caracterización de Trayectorias en Dinámica Molecular

Peter Schmidtke, Axel Bidon-Chanal, F. Javier Luque y Xavier Barril
en revision, Bioinformatics

Motivación: Una variedad de algoritmos para la detección de cavidades son
ahora gratuitos o están comercialmente disponibles para la comunidad cient́ıfica,
para el análisis de estructuras de protéınas estáticas. Sin embargo, desde que
las protéınas son entidades dinámicas, aumentan las capacidades de dichos pro-
gramas para, de manera sencilla, detectar y caracterizar las cavidades teniendo
en cuenta los conjuntos conformacionales valuables para capturar la plastici-
dad de las cavidades, y por tanto, permiten mejorar la visión de las relaciones
estructura-función.
Resultados: Este trabajo describe un nuevo método, llamdo MDpocket, que
proporciona una nueva herramienta rápida, gratuita y de código abierto, para
el seguimiento de moléculas pequeñas, sitios de unión y migración de gas en
las trayectorias de MD u otras agrupaciones conformacionales. MDpocket está
basado en el algoritmo de detección de cavidades, además de una valorable
contribución de herramientas de análisis pre-existentes. Las capacidades de
MDpocket están ilustradas desde tres casos relevantes: i) la detección de sub-
huecos transitorios utilizando un complejo cristalizado de estructuras HSP90
ii) la detección de conocidos sitios de unión de xenon y v́ıas de migración en
la mioglobina y iii) la identificación de huecos por Docking molecular en Map
quinasa P38.
Disponibilidad: MDpocket es gratuito y el software de código abierto puede
ser descargado desde: http://fpocket.sourceforge.net.
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ABSTRACT 
Motivation: A variety of pocket detection algorithms are now freely 
or commercially available to the scientific community for the analysis 
of static protein structures. However, since proteins are dynamic 
entities, enhancing the capabilities of these programs for the 
straightforward detection and characterization of cavities taking into 
account protein conformational ensembles should be valuable for 
capturing the plasticity of pockets, and therefore allow gaining in-
sight into structure-function relationships.  
Results: This paper describes a new method, called MDpocket, 
providing a fast, free and open source tool for tracking small mol-
ecule binding sites and gas migration pathways on MD trajectories 
or other conformational ensembles. MDpocket is based on the 
fpocket cavity detection algorithm and a valuable contribution to 
existing analysis tools. The capabilities of MDpocket are illustrated 
for three relevant cases: i) the detection of transient sub-pockets 
using an ensemble of crystal structures of HSP90 ii) the detection of 
known xenon binding sites and migration pathways in myoglobin, 
and iii) the identification of suitable pockets for molecular docking in 
P38 Map kinase.  
Availability: MDpocket is free and open source software and can be 
downloaded at http://fpocket.sourceforge.net. 
Contact: pschmidtke@ub.edu 
Supplementary information: Supplementary data are available at 
Bioinformatics online. 

1 INTRODUCTION  
Over the past two decades a variety of algorithms have been pro-
posed with the aim to identify binding pockets for small molecules 
in biomolecular targets (An, Totrov, & Abagyan, 2005; Brady & 
Stouten, 2000; Hendlich, F. Rippmann, & Barnickel, 1997; D. Kim 
et al., 2008; Kleywegt & Jones, 1994; Laskowski, 1995; Laurie & 
R. M. Jackson, 2005; Le Guilloux, Schmidtke, & Tuffery, 2009; 
Peters, Fauck, & Frömmel, 1996; Weisel, Proschak, & G. 
Schneider, 2007). These algorithms can be classified in three broad 
classes depending on the general method used for cavity detection: 
(i) geometry-based, (ii) energy-based or (iii) sequence-based meth-
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ods. The first class relies on geometrical features of pockets with 
no or few considerations for the interaction energy between a 
putative ligand and the pocket. Energy-based algorithms estimate 
the suitability of a pocket to bind a molecule using probe-pocket 
interaction energy calculations. The latter methods are usually 
computationally more expensive and require specific atom typing 
and the use of underlying force fields. Sequence-based methods 
exploit the propensity of conserved residues in the binding site. 
Last, various hybrid methods, combining at least two of the previ-
ous approaches, also exist (Halgren, 2007; B. Huang, 2009; Liang, 
Edelsbrunner, & Woodward, 1998). The reader is directed to re-
cent reviews for a detailed discussion of different cavity detection 
algorithms (Henrich et al., 2010; Leis, S. Schneider, & Zacharias, 
2010; Pérot, Sperandio, Miteva, Camproux, & Villoutreix, 2010). 
The vast majority of cavity detection algorithms have been devel-
oped to treat static structures, like crystal structures of proteins 
available in the PDB. However, this represents a serious limitation 
to account for the intrinsic plasticity of the binding pocket. Protein 
dynamics act on a multitude of aspects in protein function. For 
instance, side chain flipping or domain motions can obstruct or 
free internal cavities or channels that allow migration of ligands, 
and reshape the binding sites (Axel Bidon-Chanal et al., 2006; 
Carrillo & Orozco, 2008; Spyrakis et al., 2011). In turn, these 
findings raise challenging questions about the impact of protein 
flexibility on the topological features of cavities and their binding 
properties.  
Few works have attempted to account for the dynamical behaviour 
of proteins in the identification of binding cavities and tunnels. The 
interplay between protein dynamics and ligand migration pathways 
can be characterised by tools that rely on prior molecular dynamics 
(MD) simulations and further post-processing of the trajectory. 
VOIDOO (Kleywegt & Jones, 1994) allows internal cavity and 
volume calculations, but it is rather time consuming and its use is 
not straightforward. CAVER (Beneš et al., 2010) is a PyMOL 
plugin that allows internal channel detection on MD trajectories. 
CAVER was recently improved to a software called MOLE using 
computational geometry principles instead of grid-based calcula-
tions (Petrek, Kosinová, Koca, & Otyepka, 2007). More recently 
Wolfson and coworkers have proposed a method called MolAxis 
for detection of channels from the interior of the protein to the bulk 
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solvent (Yaffe, Fishelovitch, Wolfson, Halperin, & Nussinov, 
2008). These methods are designed to detect channels on static 
structures or conformational ensembles of the protein.  
In order to examine the suitability of internal pathways for ligand 
migration, more time consuming techniques like implicit ligand 
sampling have been proposed (Cohen, Olsen, & Klaus Schulten, 
2008). Glazer et al. have used MD for the identification of calcium 
binding sites and have shown that the inclusion of dynamic behav-
iour can improve function prediction (Glazer, Radmer, & Altman, 
2009). Recently a MATLAB-based approach called DyME (Lin & 
Song, 2011) has been proposed for analysis of putative internal 
channels from MD trajectories using Voronoi tessellation and 
clustering techniques. Regarding the binding of ligands in cavities, 
protein dynamics has been accounted for by using a set of privi-
leged static structures, which are chosen as representative confor-
mational states of the pocket based on experimental X-ray struc-
tures or from MD simulations of the target (Barril & Morley, 2005; 
Kua, Zhang, & McCammon, 2002; Novoa, Pouplana, Barril, & 
Orozco, 2010). More recently, Eyrisch and Helms established a 
protocol for the detection of transient cavities in protein-protein 
interfaces by using MD simulations and the cavity detection algor-
ithm PASS (Brady & Stouten, 2000; Eyrisch & Helms, 2007). 
Other approaches combine conformational sampling and/or selec-
tion from MD simulations to allow pocket adaptation to a given 
ligand positioned in the binding site (Sherman, Day, Jacobson, 
Friesner, & Farid, 2006). Finally, a distinct strategy has been ad-
opted in PELE (Borrelli, Vitalis, Alcantara, & Guallar, 2005), as 
internal pockets and channels are identified based on localized 
perturbations that combine Monte Carlo sampling and energy 
minimization calculations to track and predict ligand migration 
pathways. 
In this work a new generic pocket detection program called 
MDpocket is presented. The aim of MDpocket is to identify and 
characterize binding sites and channels that might be transiently 
formed in the protein from the analysis of conformational ensem-
bles generated by MD or other sources. The core of this new pro-
gram is the recently published open source platform Fpocket (Le 
Guilloux, Schmidtke, & Tuffery, 2009), which is a very fast ge-
ometry-based cavity detection algorithm. The platform relies on 
three programs: i) fpocket, which identifies cavities in a protein, ii) 
dpocket, which extracts descriptors of the pocket, and finally iii) 
tpocket, which allows assessment of pocket scoring functions. One 
main advantage of fpocket is its adaptability to a given problem: 
initially developed for the discovery of small molecule binding 
sites, it can detect different types of cavities, including very small 
pockets, ligand binding sites or even tunnels via a proper choice of 
parameters available through command line.  
MDpocket is fast and well suited for the study of processes where 
tracking of cavities is of interest. In particular, the capabilities of 
MDpocket are illustrated by examining i) the plasticity of the 
HSP90 binding site using a set of X-ray crystallographic structures, 
ii) the analysis of xenon binding sites and migration pathways in 
myoglobin, and iii) the selection of suitable docking sites for P38 
DFG-in binders.  
The software is freely available as part of the Fpocket software 
package and can be downloaded from 
http://fpocket.sourceforge.net.  

2 METHODS 

2.1 MDpocket input 
The general input format of MDpocket is a text file listing filenames to all 
pdb files to be considered for the analysis. This choice is motivated by the 
fact that MD trajectories are stored in different file formats depending on 
the specifications defined in programs such as Amber (Case et al., 2005), 
Charmm (Brooks et al., 2009; MacKerel Jr. et al., 1998), Gromacs (Hess, 
Kutzner, van der Spoel, & Lindahl, 2008) or NAMD (J. C. Phillips et al., 
2005). Due to the lack of a common format, we have decided to transform 
the trajectory to a set of pdb files corresponding to snapshots taken along 
the simulation. Moreover, when those files are ordered by time, MDpocket 
permits the analysis of time-dependent events. In addition, the use of pdb 
files also facilitates the analysis of X-ray structures taken from the PDB. 
Finally, the PDB files do not need to be identical (no generic topology 
required), which makes MDpocket easily adaptable to analyse conforma-
tional ensembles from various sources (homologous proteins, for instance).  
To carry out the cavity detection with MDpocket, it is important to super-
impose the PDB structures onto each other. To this end, solvent molecules 
and counter ions were stripped off the system prior to pdb export, and then 
structural alignments were carried out using ptraj from AmberTools (Case 
et al., 2005). 

2.2 fpocket parameters and output 
MDpocket relies on the pocket detection program fpocket, which makes 
extensive use of Voronoi tesselation during cavity detection. This geomet-
ric approach allows retrieving the alpha spheres (i.e., spheres that are in 
contact with exactly 4 atoms without any other atom situated within the 
sphere). The center of the alpha sphere corresponds to a Voronoi vertex. A 
list of all Voronoi vertices (clustered into pockets) situated on the protein 
surface is provided in the output of fpocket. 
The fpocket module is very flexible regarding the type of cavity to be 
detected. The flexibility is achieved through user accessible command line 
parameters that influence filtering and clustering of alpha spheres. The 
most important parameters are those that define the size of alpha spheres 
built up in a binding site (-m : minimum alpha sphere size, -M : maximum 
alpha sphere size). Moreover, filtering and clustering of alpha spheres can 
be modified using parameters –i (the minimum number of alpha spheres in 
the final pocket) and –n (the minimum number of alpha spheres close to 
each other for merging two binding sites into a single one).  
Three different parameter sets for pocket detection have been assessed here 
in order to illustrate the scalability of the algorithm,. Set 1 denotes the 
default fpocket parameter set (-m 3.0, -M 6.0, -i 30, -n 3), which is tailored 
for detection of small molecule (i.e., peptides, drug-like compounds) 
binding sites. Set 2 is intended to identify very small channels and pockets 
(-m 2.8, -M 6.0, -i 3, -n 2). Finally, set 3 (-m 3.5, -M 5.5, -i 1, -n 2) is 
chosen to represent an alpha sphere with a physically meaningful minimum 
size, while retaining all the pockets (even tiny ones built by a single alpha 
sphere), it being thus better suited to identify very open cavities physically 
accessible to a water molecule and detection of continuous channels that 
can accommodate a water molecule.  

2.3 MDpocket workflow: pocket detection 
Pockets are detected based on the workflow depicted in Figure S1: 
a) A 1Å spaced grid is placed over the first snapshot of the set of super-
posed pdb files. 
b) fpocket is run on every snapshot of the set of pdb files. 
c) For every snapshot each alpha sphere is assigned to the grid point i 
closest to the alpha sphere centre. Note that several alpha spheres can be 
assigned to a given point of the grid originating from the same snapshot or 
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from different snapshot. The number of counted alpha spheres assigned to 
each grid point is then normalized by the number of snapshots in order to 
generate the density map, ρ (Eq. 1). 
 

     (1) 

where n corresponds to the number of snapshots, AS stands for alpha 

sphere, and  is determined as 

dAS,i = card ASi ∩ (x,y,z)i ± 0.5{ }( )  (2) 

where the tolerance of 0.5 is considered for all grid points. 

d) In addition, for every snapshot each grid point i is given an occupancy 
parameter δi, which equals 1 or 0 depending on the previous assignment of 
alpha spheres to that point (δi = 1 if at least one alpha sphere has been 
assigned to the grid point i, otherwise δi = 0). Then, a frequency map, φ, is 
generated by normalizing the sum of values δi assigned to point i by the 
total number of snapshots (Eq. 3). 
 

     (3) 

The normalized pocket frequency map (Eq. 3) allows visualisation of the 
opening frequency of a pocket during a MD trajectory. Thus, it indicates 
whether a given point in the grid is permanently accessible (Φi = 1), hind-
ered (Φi = 0), or transiently accessible (0 < Φi <1). In contrast, the pocket 
density map (Eq. 1) is intended to provide information about the envi-
ronmental atom packing around the pocket. Both density and frequency 
maps can be visualized using VMD (Humphrey, Dalke, & K Schulten, 
1996), Chimera (Pettersen et al., 2004) or PyMOL from the output files 
produced by MDpocket.  
In contrast to the pocket detection on a single static structure, MDpocket 
provides information about the plasticity of pockets from the normalized 
frequency/density maps generated from a given ensemble of structures. 
This is a major difference to other approaches that assign discrete pocket 
Ids to track pockets during MD trajectories (Eyrisch & Helms, 2007). In 
MDpocket an accurate pocket Id identification and tracking is not neces-
sary, rendering the detection protocol more generic and less error prone. 

2.4 MDpocket workflow: pocket characterization 
Frequency and density maps are valuable to explore pocket open-
ing/closure. MDpocket also permits to characterize those pockets or bind-
ing sites by providing a variety of descriptors, which include the accessible 
surface area and volume of the pocket, the number of alpha spheres, and 
the mean local hydrophobic density, which is an index of binding site 
druggability (Schmidtke & Barril, 2010). 
To carry out the pocket characterization, the user can extract all grid points 
having a grid value equal or higher than a certain threshold from the previ-
ously calculated pocket frequency map (a default value of 0.5 is defined in 
MDpocket). Thus, visualization of the frequency map permits the user to 
select an area of interest (i.e., a transient channel or a binding site) using a 
graphical display tool, and the user-defined zone (saved as pdb file) can 
then be used as input for MDpocket in order to determine all pocket de-
scriptors corresponding to the selected area for the whole ensemble.  

2.5 MDpocket validation  
 
The usefulness and accuracy of MDpocket have been calibrated consider-
ing three molecular systems studied previously in our group. 
 
HSP90. A 78.5 ns trajectory run of the N-terminal domain of the heat 
shock protein 90 (HSP90) with explicit solvent (TIP3P water model) was 
first considered. The simulation was run in the NPT ensemble (1 atm, 298 
K) using periodic boundary conditions and Ewald sums (grid spacing of 1 
Å) for long-range electrostatic interactions. The parm99 force field and the 
Amber (Case et al., 2005) package were also used. From this trajectory 
3925 equally spaced snapshots were extracted and analyzed with 
MDpocket. Furthermore, an alternative ensemble of structures was built up 
by retrieving 88 X-ray crystallographic structures from the PDB (see Table 
S1), which were subsequently aligned using PyMOL.  
 
Myoglobin. The crystal structure of myoglobin (PDB entry 1VXD) (F. 
Yang & G N Phillips, 1996) was immersed in an octahedral box of TIP3P 
water molecules and the net charge of the system was neutralized with 
sodium ions. The final system contained around 21000 atoms. The simula-
tions were run using the PMEMD module of amber9 and the parmm99 
force field with special parameters for the haem residue (Bidon-Chanal et 
al., 2006; Marti et al., 2006). The SHAKE algorithm was used to keep 
bonds involving hydrogen atoms at their equilibrium length, in conjunction 
with a 1 fs time step for the integration of the Newton’s equations. Trajec-
tories were collected in the NPT ensemble (1 atm, 298 K) using periodic 
boundary conditions and Ewald sums (grid spacing of 1 Å) for long-range 
electrostatic interactions. The systems were minimized using a multistep 
protocol, involving first the adjustment of hydrogens, then the refinement 
of water molecules, and finally the minimization of the whole system. The 
equilibration was performed by heating from 100 to 298 K in four 100-ps 
steps at 150, 200, 250 and 298 K. Finally, a 50 ns trajectory was obtained, 
collecting frames at 1 ps intervals. The MDpocket analysis was performed 
with 10000 snapshots equally spaced in time. 
 
P38 Map kinase. The PDB structure 1P38 was used as initial structure for 
a 50 ns MD trajectory. Leap was used to immerse the protein in an octahe-
dral solvent box. The overall charge of the system was neutralized by 
addition of counterions. The solvent box contained a mixture of water and 
20% isopropanol molecules. In order to obtain more information about the 
equilibration protocol, refer to Seco et al. (Seco, Luque, & Barril, 2009). 
The production run was carried out at 1atm and 300K using periodic boun-
dary conditions. 5000 snapshots equally spaced in time have been used for 
the MDpocket analysis. 
To assess whether MDpocket is able to give useful hints during the selec-
tion of receptor conformations for molecular docking, 32 X-ray crystallo-
graphic structures of P38 with DFG-in conformations and bound ligands 
were extracted from the PDB (see List S2), and aligned to all snapshots of 
the MD using the Cα atoms of residues 35-39, 45-50 and 100- 104, which 
correspond to the stable part of the beta sheet lining the binding site. In 
order to extract the interaction energies for each DFG-in ligand, the aligned 
ligand was extracted from the crystal structure and added to each snapshot 
of the MD trajectory to calculate the interaction energy. All energy calcula-
tions were performed using MOE (Chemical Computing Group, 2009), and 
the default potential energy function with the MMFF force field. No modi-
fications or conformational changes were applied to the ligands near the 
residues in the binding site. Thus, this very crude interaction energy evalu-
ation should mainly give insights into steric clashes that could occur in the 
ligand-protein complex, if the ligand is docked in a given conformation of 
the protein sampled during the MD trajectory. 
 

3 RESULTS 
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3.1 Spotting and interpreting variation on structural 
ensembles 

Although protein dynamics and flexibility can be crucial for re-
cognition with other proteins or small ligands, it is still an often-
neglected aspect in structural analysis. Insights into protein flexi-
bility can be gained from the structural differences observed in X-
ray structures or by using NMR-derived data. In both cases, expen-
sive equipment is needed and sample preparation can be a real 
handicap. On the other hand, MD represents a powerful theoretical 
tool to explore the dynamical behaviour of biomolecules and 
MDpocket is intended to take advantage of this fact to identify and 
characterize pockets and binding sites in proteins from the analysis 
of structural ensembles chosen to account for the intrinsic flexi-
bility of proteins.  
The capability of MDpocket is first explored by considering the 
heat shock protein 90 (HSP90), which was chosen because the 
available X-ray data reveals a transient opening of a hydrophobic 
sub-pocket connected to the known ATP binding site. This opening 
occurs when loop 2 (residues N105 – A111) in the helix 4–loop 2–
helix 5 motif reorganises to an alpha helix (Wright et al., 2004). 88 
different PDB structures (see Table S1) were superimposed to the 
reference structure 1BYQ using PyMol. In this set 31 structures 
have a straight helix conformation (corresponding to the open sub-
pocket), whereas the rest of the conformations show predominance 
of loop 2 and thus the sub-pocket does not exist. Next, MDpocket 
was run on all superimposed structures. 

Fig. 1.  HSP90 binding site derived from 88 X-ray crystallographic struc-
tures. (A) MDpocket pocket frequency map at 50% (blue iso-surface) and 
30% (mesh). The red structure corresponds to a crystal structure where the 
sub-pocket is closed. The green structure has the sub-pocket open. The 
main pocket (black ellipse) is found in all snapshots. The subpocket (red 
arrow) is open in 35.2% of all X-ray structures, and the isosurface deter-
mined from MDpocket (mesh) appears at 35% of pocket appearance fre-
quency. (B) MDpocket pocket density map (for clarity only the green 
structure is shown) at two levels of pocket density. The main pocket is 
found at low (3, yellow mesh) and high (10, blue surface) densities. The 
subpocket is also found at low (3) densities and a spot (blue surface) can 
also be seen at high densities despite the fact that the pocket does not open 
frequently. 

Figure 1A shows the HSP90 binding site with a ligand in the main 
binding site (red protein and ligand) and another ligand filling the 
open sub-pocket (red arrow). The pocket frequency map, which 
gives the amount of time a pocket was found, is represented at two 
different isocontours (0.5, blue isosurface; 0.3, orange mesh). At 
the lower isovalue (0.3, corresponding to minimum 30% pocket 
opening on all conformations), the subpocket is open. The isovol-

ume corresponding to the subpocket disappears above 35% and is 
not visible anymore for 50% of all conformations (blue isosurface). 
This result is in agreement with our prior knowledge that the 
pocket is open in about 35.2% of all conformations. 
Figure 1B illustrates the pocket density map, which provides in-
formation on the density of alpha spheres in a pocket. The density 
map is represented at very high (10, blue isosurface) and low (3, 
orange mesh) isocontours. Interestingly, one can observe a highly 
dense isosurface in the subpocket (red arrow), although it just 
opens 35.2% in all conformations. Thus, the density map can give 
useful insights about the relative enclosure of different regions of a 
binding site regardless of its frequency of appearance. 
 

3.2 Influence of the structural alignment on the re-
sults 

The detection of pockets with MDpocket can be affected by the 
structural alignment of the frames included in the ensemble of 
structures. The influence of structural alignment on the results has 
been explored for 3925 snapshots taken from a 50ns trajectory of 
P38 Map kinase, which was chosen due to the flexibility of the two 
lobes that define the ATP binding site (see Figure 2). Thus, Figure 
2 shows how the alignment of the small lobe in snapshots taken at 
the beginning and end of the trajectory leads to a large displace-
ment in the bigger lobe, which reflects the relative motion between 
the two lobes along the trajectory.  

Fig. 2.  Representative snapshots showing the potential effect of alignment 
on MDpocket results for P38 Map kinase. Left: An important motion of 
one lobe versus the other is observed during the MD trajectory (all snap-
shots have been aligned using the small lobe as reference), white ribbon - 
beginning of the trajectory, red ribbon - end of the trajectory. Right: Pocket 
frequency maps at 40% of pocket opening for (green) a trajectory aligned 
with residues lining the active site, and (red) a trajectory aligned with all 
residues. 

Next, two scenarios have been considered. In the first case the 
superimposition of all structures was done using the Cα atoms of 
all protein residues (global alignment). Second, only the Cα atoms 
of a stable part of the small lobe (the beta sheet lining the binding 
site; local alignment) were considered for superimposition. The 
MDpocket frequency maps at an isocontour of 0.4 reveals major 
differences between the two alignments regarding the pocket ap-
pearance. The green mesh in Figure 2 displays MDpocket results 
derived for the local alignment. Several conserved pockets can be 
observed on the small lobe and also the active site is well identi-
fied. However, no clear pocket is found on the bigger lobe. This is 
due to the large inter-lobe motions occurring during the MD. The 
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red isosurface reflect the same isocontour derived for the global 
alignment. In this case, pockets can be found on the bigger lobe, 
but the active site is just partially identified at this level of pocket 
frequency. 
This example illustrates the sensitivity of the grid-based methodol-
ogy implemented in MDpocket, especially when large motions 
between lobes or domains are involved, as one should expect that 
these changes will have a marked influence on the pockets. As a 
rule-of-thumb, it can be stated that if the aim of the MDpocket 
analysis is the study of one particular cavity or channel, a superim-
position using the heavy atoms lining the pocket should be used. 
Otherwise, usage of all heavy atoms on the protein can be con-
sidered though mobile parts should be excluded for the alignment, 
as, pockets in contact with these mobile parts can yield underesti-
mated pocket frequencies in MDpocket analysis. 

3.3 Effect of fpocket parameters on the results 
The proper choice of cavity detection parameters can be decisive 
for obtaining an accurate description of both tiny channels transi-
ently formed in the protein matrix or permanent drug-like binding 
sites within the protein. In order to tackle these distinct situations, 
three different parameter sets (see Methods) have been used to 
analyse the HSP90 in the region enclosing the binding site. Param-
eter set 1 (default) is intended to identify binding sites able to bind 
small molecular substrates or drug-like molecules. Results ob-
tained for this parameter set are shown as green mesh in Figures 
3A and 3B for the ensemble of 3925 HSP90 snapshots. Parameter 
set 2 is conceived for the identification of internal channels and 

small molecule binding 
sites (results shown as red 
isosurface in Figure 3A). 
Finally, parameter set 3 is 
intended to support detec-
tion of cavities sterically 
able to host diatomic 
ligands or water molecules 
(results shown in Figure 
3B). 

Fig. 3.  MDpocket isosur-
faces/meshes for (A) parame-
ters set 1 (default parameters; 
isovalue 0.4) and set 2 (in-
tended for channel parame-
ters; isovalue 0.8), and (B) 
parameters set 1  (isovalue 
0.4) and set 3 (water probe; 
isovalue 0.25) 

Inspection of Figure 3 reveals differences in the shape of the cavi-
ties/tunnels delineated by the isocontours generated from the three 
parameter sets. Thus, Figure 3A clearly shows the suitability of 
parameter set 2 to identify internal channels, which are neverthe-
less found as discontinuous regions when parameter set 1 is used. 
Interestingly, the putative channel observed on figure 3A corres-
ponds to a region that is known to be part of a larger loop, opening 
during the chaperoning cycle (Ali et al., 2006). Likewise, Figure 

3B shows that parameter set 3 discloses the solvent exposed part of 
the binding site, while very tiny internal channels or narrow parts 
of internal pockets are not identified here. 
Hence, it can be concluded that putative gas or water migration 
pathways can be identified using parameter set 2. Indeed, a puta-
tive channel is found below the sub-pocket discussed earlier.  
Even though parameter set 2 allows identification of tiny cavities 
and channels, they can be however physically meaningless if no 
molecule can fill them. Thus, calibration against pockets and chan-
nels derived using a specific probe mimicking the molecule of 
interest (i.e., a diatomic molecule or a water) can be valuable to 
gain insight into ligand migration. However, if the main interest is 
to track transient druggable cavities on the protein surface, default 
parameters (set 1) are more adequate. In any case, the user can 
easily adjust the parameters required for pocket detection, thus 
facilitating the exploration towards specific class of binding sites 
and channels.  

3.4 Case 1: Pocket detection in myoglobin 
Myoglobin (Mb) is known to bind small diatomic ligands such as 
CO, O2 or NO. Different internal cavities suited to hold small 
diatomic ligands were first detected in soaking experiments of Mb 
crystals with Xe atoms (Tilton, Kuntz, & Petsko, 1984). A large 
number of studies have been performed to characterise the ligand 
migration in Mb (Cohen, Arkhipov, Braun, & Klaus Schulten, 
2006; Ostermann, Waschipky, Parak, & Nienhaus, 2000; Schotte et 
al., 2003; E E Scott & Q H Gibson, 1997; Emily E Scott, Quentin 
H Gibson, & John S Olson, 2001; Tomita et al., 2009). It is gener-
ally assumed that migration involves an intermittent passage be-
tween transient pockets, and the ligand entry to the distal cavity 
from the solvent phase. Here our aim is to show that MDpocket is 
a useful tool to detect those preferential Xe binding pockets, to 
identify the pathways that connect them in the interior of Mb, and 
eventually detect the possible entrance for the ligand from the 
solvent phase from an ensemble of snapshots taken from a MD 
simulation. 
The parameter set 2 was used to analyse 10000 snapshots evenly 
taken over a 50 ns MD trajectory. As expected, the results show 
that frequently appearing pockets overlap with known Xe binding 
sites in the crystal structure (see blue isosurface in Figure 4), which 
indicates that the cavities are present in the majority of the snap-
shots. Thus, they should generally be also detectable when only a 
single snapshot is used for the analysis. On the other hand, connec-
tions between cavities do not occur through long-lived channels, 
i.e. they are not present in the ensemble of crystal structures depos-
ited in the PDB, which is in agreement with the notion that migra-
tion of diatomic ligands is triggered by transient opening of chan-
nels between pockets (Ostermann, Waschipky, Parak, & Nienhaus, 
2000; Schotte et al., 2003). Using conformations coming from the 
MD trajectory, one can observe sparse opening of these channels 
with MDpocket. As these are characterised by a short lifetime, they 
are identified as less frequently appearing pockets. As seen in the 
HSP90 example, MDpocket is capable of detecting these transient 
channels and visualizing them using pocket density maps. Thus, 
the orange isomesh shown in Figure 4 delineates putative migra-
tion pathways between pocket sites.  A more precise display can be 
achieved by examining the evolution in shape of isocontours taken 
at different values of the pocket density, as shown in Figure S2. 
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Here the transient channel between the haem distal pocket (DP) 
and Xe4 is observed at higher densities. Transient channel opening 
is then found between sites Xe4 and Xe2, and between Xe2 and 
Xe3. Finally, channel opening to Xe1 is found to be the less fre-
quent event. 
It is worth noting that the pattern of migration pathways provided 
by MDpocket analysis agrees with the experimental findings re-
ported for CO migration using time dependent X-ray crystallogra-
phy (Schotte et al., 2003; Tomita et al., 2009). The experiments 
indicate that migration of CO from the distal pocket to Xe4 is an 
initiating event in ligand migration appearing in the nanosecond 
time-scale (Schotte et al., 2003). Subsequent transitions involve the 
migration from Xe4 to sites 2 and 3. Furthermore, those studies 
also indicate that CO resides in pocket Xe1 for long periods. This 
fact can indicate that CO is either very stable in this pocket or that 
migration to other pockets is unfavoured by less frequent opening 
of transient channels. Our results support this latter possibility.  

Fig. 4.  Xenon atoms (orange spheres) from PDB structure 1J52 superim-
posed with MDpocket results on the myoglobin MD trajectory. Blue iso-
surface: The pocket frequency map at 60%, which exhibits a close corre-
spondence with all Xe binding sites. Orange iso-mesh: The pocket density 
map at 2 allows to discern putative migration channels from one Xe bind-
ing site to the other. 

Further evidences of the transient character of channel opening are 
shown in Figure S3. Here pocket density maps are derived using 
either 10, 1000 or 10000 conformations of Mb. What can be ob-
served is that stable pockets (red arrows) are identified even using 
few snapshots. However, transient channels (green arrow and blue 
arrow) can just be partially or even not found. Thus, usage of more 
conformational information allows for visualisation of these transi-
ent channels (green arrow).  
The passage of diatomic ligands from the solvent into the distal 
haem cavity is another relevant phenomenon in globins. For Mb, it 
is generally accepted that HisE7 acts as gating residue for the entry 
pathway (Johnson, J S Olson, & G N Phillips, 1989; J S Olson et 
al., 1988; Perutz, 1970; E E Scott & Q H Gibson, 1997). This 
gating mechanism is related to a rotation around the HisE7 Cα-Cβ 
bond that places the residue outside the distal cavity. The opening 
event can be directly related to the appearance of a connecting 
pathway between the protein surface and the distal cavity detected 
with MDpocket. The frequency of appearance is thus a rough 

measure of the accessibility of the cavity, which in this case cor-
responds to around 30%. It must be noted that this value is around 
10% higher than the alternate entry pathway through the Xe bind-
ing pockets. These results are in accordance with the experimental 
measurements that propose the HisE7 route as the main entry to 
the distal cavity (Emily E Scott et al., 2001). 
In conclusion, MDpocket allows easy and straightforward tracking 
and characterization of transient internal migration channels taking 
advantage of the wealth of conformational space sampled in mo-
lecular dynamics. 

3.5  Case 2: MDpocket as a tool for docking 
Docking of small molecules into binding sites is an outstanding 
tool in drug discovery (Jorgensen, 2004). While the flexibility of 
the ligand is generally addressed in modern docking software, very 
often only a rigid representation of the protein target is considered. 
Obviously, this can have a direct impact in limiting the enrichment 
in virtual screening studies. Thus, efforts are being undertaken to 
include protein motion in molecular docking (Henzler & Rarey, 
2010). Here we will show possible applications of MDpocket in 
ensemble docking strategies. It is known that docking results can 
be improved by using conformational ensembles of proteins (Barril 
& Morley, 2005; Novoa et al., 2010) as a strategy to provide a 
better resolution on the motion of the binding site. One problem in 
using such ensembles is the selection of conformations to be in-
cluded in a systematic docking approach (Rueda, Bottegoni, & 
Abagyan, 2010). To test the suitability of MDpocket to guide the 
selection of those structures, the P38 Map kinase protein has been 
examined due to the known flexibility of its binding site. Thus, 
docking on different conformations should be considered on a 
target like P38 (Sherman, Beard, & Farid, 2006). In order to assess 
whether MDpocket can be used for efficient conformation selec-
tion for molecular docking, the ATP binding site was specifically 
tracked using MDpocket and characterized by means of two de-
scriptors: the pocket volume and the mean local hydrophobic 
density. Whereas the volume reflects the fact that the size of the 
binding site is a major limitation to the binding of compounds, the 
second is a powerful predictor of the druggability of a binding site 
(Schmidtke & Barril, 2010).    
During the MD trajectory run for P38 Map kinase, it can be ob-
served that the P-loop lining the binding site is opening. This 
conformational rearrangement is relevant, as it allows increase of 
required space for docking certain P38 binders. However, a com-
plete opening of the cavity yields a huge and very open pocket. 
Partially due to this opening of the loop, and furthermore the rela-
tive motion between the lobes, the pocket volume of the active site 
is increasing (see Figure 5). Though an open pocket can fit a larger 
variety of molecules without large steric clashes, a completely 
open binding site is not necessarily suitable to efficiently fit a 
given ligand.  
To identify which conformations of the receptor can be theoreti-
cally considered for docking, 32 binders of P38 Map kinase with 
known crystallographic structure (see List S2) were superimposed 
to all snapshots of the MD trajectory using the beta sheet lining the 
binding site as reference. The ligand was then extracted from the 
superimposed crystal structure and inserted without altering its 
bioactive conformation into each snapshot of the trajectory. 
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Fig. 5. Fraction of binding poses without steric clashes (grey) of 32 bind-
ers on 5000 snapshots of the trajectory run for P38 Map kinase. Smoothed 
values are shown in black. Pocket volume  and mean local hydrophobic 
density of the pocket are shown in orange and red, respectively. The mean 
local hydrophobic density is correlated with the fraction of good binding 
poses. 

Next, the interaction energy between the ligand and the protein 
was calculated. If the interaction energy is stabilizing (negative 
value), then the pose of the ligand (kept in the bioactive conforma-
tion) is considered to be sterically acceptable in the current MD 
snapshot of the protein. It should be emphasized that this computa-
tional strategy was conceived with a twofold purpose. First, it 
provides a simple tool to identify whether the structural features of 
a given snapshot are suited to accommodate the ligand in its bio-
active conformation. Second, it allows us to circumvent the flaws 
and limitations associated to ligand sampling and scoring inherent 
to classical docking approaches, which might lead to prediction of 
poses dissimilar to the X-ray ones. 
The fraction of acceptable poses out of the 32 known binders is 
tracked over time in Figure 5.. The upper plot shows no significant 
correlation between the fraction of acceptable poses and the vol-
ume of the cavity. In fact, the results indicate that although the 
volume is notably enlarged after the first 2000 snapshots, as re-
flected in the increase of the RMSD for all heavy atoms of residues 
lining the ATP binding site (see Figure S5), a bigger binding site is 
not necessarily the most suitable pocket to bind small molecules. 
This trend can be ascribed to the concomitant reduction of the 
putative interaction surface between ligand and receptor. Thus, the 
selection of interesting conformations suitable for molecular dock-
ing using only the volume of the binding-site as indicator is not 
recommended. Therefore, the mean local hydrophobic density, a 
descriptor that reflects local densities of hydrophobic alpha sphere 
clusters in a binding site and has been shown to correlate with 

druggability (Schmidtke & Barril, 2010) was examined. As shown 
in the lower plot of Figure 5, there is a striking correlation between 
the mean local hydrophobic density and the fraction of good poses. 
A tentative explanation for this good correlation is that the mean 
local hydrophobic density catches situations in time, where hydro-
phobic patches are most accessible in the binding site and the 
binding site is compact. Accessibility of the hydrophobic surface is 
likely to have a beneficial effect on binding the rather hydrophobic 
drug-like molecules (Vieth et al., 2004). 
Overall, the preceding results suggest that tracking the mean local 
hydrophobic density during a MD trajectory on a pocket can give 
hints on the suitability of protein conformations for molecular 
docking. For instance, one can consider snapshots of the MD 
trajectory where the mean local hydrophobic density is maximised 
to use them as conformations for molecular docking. To the best of 
our knowledge, MDpocket is the first tool that might be able to 
identify conformations suited to bind small molecular binders, 
opening a variety of possible applications and rendering MD tra-
jectories of proteins more accessible for molecular docking. 

3.6 Comparison to existing methods 
 
This section intends to propose a comparative analysis of 
MDpocket with other methods designed for prediction of transient 
pockets and channels. With regard to pockets, the comparison is 
limited to EPOSBP (Eyrisch & Helms, 2007), whereas a larger 
variety of methods is considered for the detection of channels. 
Only few tools have been reported to address the identification of 
transient drug binding sites. Using the PASS cavity detection 
algorithm (Brady & Stouten, 2000), EPOSBP defines pocket vol-
umes via active site points and neighbouring probe positions iden-
tified by PASS. Using such an active site volume, all pocket-lining 
atoms (PLA) are identified as being located not more than 5 Å 
from it. After execution of these steps on all snapshots of an MD 
trajectory, sets of PLAs can be compared to each other and clus-
tered together to find conserved cavities, which are assigned a 
pocket Id and whose pocket properties are tracked.. 
A major difference with MDpocket is that pockets identified with 
EPOSBP are mapped to a set of PLAs, while MDpocket maps 
pockets to a grid representation. While mapping cavities to pocket-
lining atoms might provide insensitivity to rotation and translation 
of the protein, it hinders the usage of the method on structural 
ensembles other than MD trajectories (despite the attempt to use 
residue names and atom names). Importantly, this is especially 
useful when analysing homologous structures for conserved cavi-
ties. On the other hand, EPOSBP allows tracking very few pocket 
descriptors: volume, depth and polarity., The usage of this latter 
descriptor might be debatable as it likely includes polar atoms in 
the binding pocket that do not contribute to the accessible surface 
area. MDpocket allows tracking a large set of pocket descriptors 
available via fpocket (for example pocket size, polar and apolar 
surface areas, hydrophobicity and polarity measures, pocket den-
sity and average radius, local hydrophobic density…). The availab-
ility of the source code of MDpocket also allows implementation 
of novel descriptors, but disclosure of EPOSBP’s and PASS’s 
source code hinders this.  
Using our example of 88 crystal structures of HSP90, we note two 
major advantages of MDpocket compared to EPOSBP: pocket 
tracking and performance. When the sub-pocket is open, the ATP 
binding site is identified by EPOSBP as a separate pocket with a 
distinct pocket Id (36.4% of cases), thus making it difficult to track 
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large changes of cavity shape using a continuous representation. 
Computational performance of MDpocket is >25-fold faster mak-
ing it better suited to analyze long MD trajectories; on this set, 
EPOSBP performed pocket detection and clustering (without analy-
sis and property tracking) in 9 minutes versus 20 seconds for 
MDpocket on a single core of an Intel Q9550, 2.83Ghz.  
A multitude of methods exist to tentatively detect transient chan-
nels and visualize them, such as Caver/Mole, MolAxis, implicit 
ligand sampling (ILS) and DyME.  
In Caver (Beneš et al., 2010) a grid is superimposed to the protein 
core and a starting position on this grid has to be defined. A value 
is associated to each grid point dependent on the radius of the 
biggest contact sphere that could be fit into the channel. Next a 
modified version of the Dijkstra shortest path detection algorithm 
is used to find the optimal path from the starting point inside the 
protein to the outside. Caver can be used on MD trajectories to 
identify conserved entry gorges for migration channels. However, 
the need to define the starting position on the grid might limit the 
capabilities of Caver as an exploratory tool to find transient chan-
nels.  
More recently the same authors published MOLE (Petrek et al., 
2007), which relies on the same algorithmic principles as Caver, 
but uses Voronoi tessellation of the interior of the protein to find 
ideal paths, has better execution speeds and allows analysis of 
bigger systems. However, the requirement for defining the starting 
point in the search of channels persists in MOLE. 
MolAxis (Yaffe et al., 2008) pursues to identify migration chan-
nels for small molecules inside the protein. Typical examples are 
given as channels observed in transmembrane proteins and cyto-
chrome P450. Using the alpha shape and the medial axis, MolAxis 
allows identifying so-called corridors or probable migration path-
ways of small ligands. Similarly to Caver, MolAxis requires the 
starting position for searching channels to be defined. In compari-
son to Caver, MolAxis is significantly faster and thus facilitates the 
analysis of larger systems and large sets of MD trajectory snap-
shots.  
Importantly, all of the previously cited methods are able to perform 
channel detection on a single structure. For example MolAxis, 
allows tracking of channel radii during MD trajectories, but not the 
actual detection of transient channels as such, as the channel has to 
be predefined (or detected) and then tracked. 
In Implicit Ligand Sampling (ILS) (Cohen et al., 2008), all snap-
shots of the MD trajectory are superimposed to a reference struc-
ture, and then a suitable probe (i.e., a gaseous ligand) is moved 
through a regular grid inside the protein in order to determine the 
interaction energy with the protein, which is finally used to detect 
favorable migration paths. Like MDpocket, ILS performs a com-
plete and exploratory cavity search. Results can be visualised as 
PMF maps using VMD. Unlike MDpocket, ILS is conceived for (i) 
detection of gas migration pathways and (ii) use on MD trajector-
ies only (i.e., need of consistent topology between different protein 
conformations). Last, ILS itself is a purely exploratory tool, allow-
ing the creation of PMF maps, but not allowing their analysis or 
the extraction of channel properties.  
DyME (Dynamic Map Ensemble) was published during the writ-
ing of this manuscript (Lin & Song, 2011). The initial steps of the 
DyME workflow and the need for a set of conformations are very 
similar to MDpocket. DyME detects all Voronoi vertices on and 
inside the protein and discards vertices with low clearances (radii 
of the alpha spheres in MDpocket). Remaining vertices are reduced 
to a maximum spanning tree. Next, vertices from the spanning tree 
are calculated for every conformation and conserved vertice clus-
ters away from the bulk solvent (internal cavities) are identified. 
These clusters are then mapped back to the Voronoi vertice span-

ning tree of each conformation of the protein. Next putative portal 
regions on the surface of the protein are identified, and last a so-
called super graph is computed connecting stable cavities via 
maximum clearance channels observed at least once in an ensem-
ble of protein conformations between each other and portal re-
gions. 
To show putative applications of DyME the authors also used 
Myoglobin as example. Thus, results obtained via MDpocket can 
be compared with DyME. The density grid produced by MDpocket 
(iso-value 1.8) is shown on figure S4 in mesh representation. Re-
sults obtained from DyME are superimposed as green pathways. 
As MDpocket results are more exploratory and contain more in-
formation, only channels around the Xe2, S1 and S2 pockets are 
shown for MDpocket. Interestingly, as with DyME, MDpocket 
identifies previously observed sites S1 and S2 (Bossa et al., 2004). 
Furthermore connections of these sites to the surface gates P7, P9 
and P10 can also be observed as with DyME. Although not shown 
explicitly, gates like P1, P2, P4 and P6 are also identified by 
MDpocket. The overall coverage between DyME and MDpocket 
results is excellent. 
Both DyME and MDpocket have several advantages over previ-
ously cited channel detection methods, notably the fact that both 
allow identification of the complete channel network and their 
flexibility of application. However, DyME infers the existence of 
small pockets via a clustering algorithm and the existence of con-
nections between them via at least one occurrence of usually very 
low radius connection channels using Voronoi edges. MDpocket 
uses a more generic approach based on observations where alpha 
spheres are found (and thus real voids) during time, how often and 
with what density (similar to cavity densities in DyME). Thus 
MDpocket results correspond to physically more meaningful con-
nection paths, while DyME paths can be true (if the clearance is 
high) but might also be inferred (if the clearance is low). This fact 
can be clearly observed in Figure 7 of (Lin & Song, 2011), which 
shows the distribution of clearances for all channels for a 10 ns 
MD trajectory. While a significant amount of snapshots infer 
clearances of a radius of 1.5 Å, very few do have a clearance radius 
of 1.7 Å and above. Using MDpocket density and frequency maps 
and the corresponding detection parameters, results show actual 
voids of a minimum radius seen during a MD trajectory. Like 
DyME, MDpocket can also identify inferred channels by reducing 
the minimum size for alpha spheres.  
An apparent advantage of DyME is the measure of the channel 
radii. MDpocket, however, can track various properties of the 
channel (or pocket) and show their time evolution along the simu-
lation. On the other hand, the computational efficiency of 
MDpocket is much better. Finally, MDpocket is standalone soft-
ware distributed under the GNU GPL and is not based on commer-
cial software like MATLAB.  

4 DISCUSSION 
MDpocket is a new tool intended to facilitate the qualitative and 
quantitative analysis of transient pockets and channels from con-
formational ensembles that account for the intrinsic dynamics of 
proteins.  MDpocket is based on fpocket, a general-purpose pocket 
detection program, allowing adaptable, fast, free and reliable 
pocket detection. The accuracy of pocket prediction is mainly 
limited by two factors: i) the grid-based nature of MDpocket, and 
ii) the choice of parameters for filtering and clustering alpha 
spheres.  
As MDpocket uses a grid-based methodology, the results can be 
affected by the necessary structural superimposition of the snap-
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shots. Results derived for P38 Map kinase, where the two domains 
exhibit large relative motion with respect to each other, show a 
dependence on the set of atoms used for alignment. If the 
alignment is done using as reference one of the two subunits, 
pocket detection and averaging during time will be altered for all 
pockets on the other subunit. Consequently, pocket frequency and 
density on the second subunit are underestimated. In such a case 
one should perform the structural alignment on the cavity of inter-
est (the active site in our case), and bear in mind that pockets found 
on other places of the protein might not be representative of the 
whole trajectory. 
The use of different parameter sets for pocket detection can have a 
major influence on results. Here, three parameter sets have been 
assessed, each addressing a given purpose. For exploratory 
MDpocket runs, probably water probe-sized alpha spheres (param-
eter set 3) are sufficient to give insights into the pocket behaviour 
during MD trajectories. However, if the main aim is to explore 
internal pathways in the protein matrix, parameter set 2 is better 
suited. This is illustrated by the analysis of the 50 ns MD simula-
tion of Mb. MDpocket was capable of identifying crystallographi-
cally known Xe-binding pockets and infer putative connections 
between these binding sites in agreement with experimental data. 
Furthermore, MDpocket allows for identification of the HisE7 
migration pathway, which is considered to be the main entry of 
diatomic ligands to the distal haem cavity. 
Exploration of binding sites adapted for compounds (i.e., drugs, 
substrates) larger than gaseous small molecules can be simply 
made by changing the search parameters (default parameter set). 
This versatility is illustrated by “simulating” the docking of 32 
ligands to P38 Map kinase. Virtual screening techniques often 
consider a rigid receptor conformation or at most a set of receptor 
conformations (ensemble docking). In this latter case, it is often 
very difficult to choose representative receptor conformations for 
molecular docking (Rueda et al., 2010). The results derived for 
P38 Map kinase indicate that the combined use of MD and 
MDpocket with a descriptor related to druggability (mean local 
hydrophobic density) could be valuable to identify timeframes 
where a pocket of interest is in a good conformation to fit a drug-
like molecule. These results strongly suggest that MDpocket could 
be used for an easy selection of protein conformations for ensem-
ble docking strategies. 
MDpocket is a versatile tool to render mechanistic studies of pro-
teins involving protein motion easier. The software’s adaptability 
and scalability allows applications in various domains like confor-
mational selection for molecular docking or the study of structural 
plasticity of drug binding sites. Comparing MDpocket to existing 
methods, it is noteworthy that the program is the first tool address-
ing both channel and pocket detection and also characterisation in 
one single framework. Contrary to most channel prediction meth-
ods, MDpocket follows an exploratory strategy that renders puta-
tive migration channels and binding sites. MDpocket is the only 
algorithm allowing easy selection of user defined zones and further 
extraction a large set of time dependent descriptors of the selected 
zone. Finally, MDpocket is published within the fpocket suite of 
pocket detection programs, under the GNU GPL License and is 
freely available for download on http://fpocket.sourceforge.net. 
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fpocket: herramientas en ĺınea para la detección de sitios
de uniones en protéınas y el seguimiento conjunto

Peter Schmidtke, Vincent Le Guilloux, Julien Maupetit y Pierre Tufféry
Nucleic Acids Research, 2010, 1(38) - Web Server issue

La detección computación de los sitios de union de moleculas pequeñas tiene
diferentes aplicaciones en el campo de la biomedicina. De notable interés son
la identificación de cavidades basadas en la estructura, o apuntes funcionales
en estructuras. fpocket es un programa de detección de moleculas pequeñas,
cuya teoŕıa recae en la geometŕıa de una esfera. El servidor web de fpocket
permite: (i) la detección de huecos candidatos- fpocket, (ii) seguimiento del
hueco molecular durante la dinámica molecular, a fin de proporcionar infor-
mación sobre la dinámica del hueco molecular- mdpocket, y (iii) una trans-
posición para el análisis combinado de homólogos estructurales- hpocket. Esas
herramientas complementarias en ĺınea, permite abordar varias cuestiones rela-
cionadas con la identificación y anotaciones de sitios funcionales y alostéricos,
huecos transitorios y preservación del bolsillo en la evolución structural de la
familia. El servidor y la documentación están disponibles de manera gratuita
en: http://bioserv.rpbs.univ-paris-diderot.fr/fpocket.
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ABSTRACT

Computational small-molecule binding site detec-
tion has several important applications in the
biomedical field. Notable interests are the identifica-
tion of cavities for structure-based drug discovery
or functional annotation of structures. fpocket is a
small-molecule pocket detection program, relying
on the geometric a-sphere theory. The fpocket
web server allows: (i) candidate pocket detection—
fpocket; (ii) pocket tracking during molecular
dynamics, in order to provide insights into pocket
dynamics—mdpocket; and (iii) a transposition of
mdpocket to the combined analysis of homologous
structures—hpocket. These complementary online
tools allow to tackle various questions related to
the identification and annotation of functional and
allosteric sites, transient pockets and pocket pres-
ervation within evolution of structural families. The
server and documentation are freely available at
http://bioserv.rpbs.univ-paris-diderot.fr/fpocket.

INTRODUCTION

The prediction of functional sites including ligand binding
sites or catalytic sites can guide the design of small mol-
ecules that could interact with a protein and modulate its
function or drive the selection of targeted mutations for
protein engineering. It largely relies on the identification
and characterization of clefts and cavities in protein
structures.

In the past two decades, various approaches have been
proposed to the identification of small-molecule binding
sites. These encompass geometric analysis of protein
surface such as (1–9) see (10) for more references, energy
calculations (11,12), the combination of these with infor-
mation derived from sequences such as residue conserva-
tion (13–15), or even meta-methods combining several
such approaches to improve binding site prediction (16).
Over the last years, however, several new considerations

have become of interest. First, the static view of protein
pockets is approximative, as is the identification of these in
a static image. Differences in the pocket shape and con-
formation between the apo and holo proteins are known
for several proteins, see for example HSP90 (17) or P38
MAP kinase (18). Whether these changes are induced by
the ligand or through self-conformational changes is still
controversial [e.g. (19,20)]. Last, transient pockets are
known to occur on protein surfaces involved in protein–
protein interactions (21,22). Current pocket detection
approaches provide useful tools for identifying static
pockets on static snapshots provided by the Protein
Data Bank (PDB). However, very few attempts (21,22),
have been made to treat information available in struc-
tural families and/or derived from molecular dynamics.
Finally, escaping pocket identification from experimental
structures alone is also a concern in a context of intensive
genome sequencing (23).
Several online services have been proposed for pocket

detection such as Q-SiteFinder (11), LIGSITEcsc(13),
CASTp (24), SCREEN (6), PocketDepth (25) or
Metapocket (16). These will usually take as input a
protein structure and return one or several candidate
pockets. In addition to pocket detection, SplitPocket
(26) and fPOP (27) provide means of functional inference
by comparing the identified patches with those identified
over the complete set of PDB structures.
Recently, fpocket, a new program suite allowing pocket

detection was introduced (10). The method makes use of
Voronoi tesselation and a-spheres to analyse the protein
surface. In a reference test set, 94 and 92% of known
binding pockets were correctly identified within the best
three ranked pockets from the holo and apo proteins.
Here, in addition to making fpocket available online,
new directions for pocket detection and analysis are
proposed.
The first ambition is to analyse pocket dynamics

through iterative pocket tracking on a set of PDB snap-
shots representing various conformational states of the
protein of interest. Such an approach allows one to
tackle aspects such as pocket flexibility and transientness,
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channel opening or ligand-induced conformational
changes. The second purpose is to explore cavity conser-
vation among structural families, to identify potential
common structural regions of interest. Both aspects are
solved using a common grid-based pocket tracking
approach over collection of structures.

CONCEPTS AND METHODS

fpocket

fpocket relies on the concept of a-spheres, a concept
initiated by Liang and Edelsbrunner (3) and is also used
by Chemical Computing Group in the SiteFinder software
(http://www.chemcomp.com/). An a-sphere is a sphere in
contact with four atoms on its boundary, not containing
any internal atom inside. For a protein, very small spheres
are located within the protein, whereas large spheres are
located at the exterior. Clefts and cavities correspond to
spheres of intermediate radii. Thus, it is possible to filter
the ensemble of a-spheres defined from the atoms of a
protein according to some minimal and maximal radii
values in order to address pocket detection. Based on
this, we have recently introduced the fpocket package
for pocket detection. For more information refer to (10).

Pocket tracking over collection of structural frames

Given a collection of comparable protein structures, such
as provided by molecular dynamics or by homology
search, one challenge is to track the persistence of
pockets within this set of conformations or frames. The
approach used can be summarized as an iterative run of
fpocket on each frame, followed by a post-analysis using a
grid-based approach, as illustrated Figure 1.
In more detail, a 1 Å spaced grid is generated to encom-

pass previously aligned conformers. The grid allows
tracking of pockets (a-spheres) in very precise zones
over time. On each grid point the a-sphere density of
8Å3 volume around it is calculated, corresponding to a
small box of a 2 Å sized edge. Furthermore, the associated
pocket score for each a-sphere near a grid point is tracked
following formula (3).
Formulas (1) and (3) describe how the densities and

scores are calculated.

densityðx; y; zÞ ¼ 1

n

Xn

1

f�-spheresðx; y; zÞ;with ð1Þ

f�-spheresðx, y, zÞ ¼cardð�-spheresxyz
\ fðx, y, zÞ � 1:0gÞ ð2Þ

scoreðx, y, zÞ ¼ 1

n

Xn

1

g�-spheresðx, y, zÞ, with ð3Þ

g�-spheresðx, y, zÞ ¼
X

pocketscoreðf�-spheresxyz
\ fðx, y, zÞ � 1:0ggÞ

ð4Þ

(x, y, z) is a given position in the grid space and n is the
number of conformations analysed.

The resulting grid densities can be used to analyse void
space and putative migration pathways of small mol-
ecules, whereas scores can rather be used to identify
conserved cavities that may bind small molecules.
Similar to electron density maps, these pocket density
grids can be visualized as iso-volumes, where a given
isovalue v allows depiction of all grid points having a
density equal to or higher than v.

The interpretation of grid density is often a complex
task. Thus, the pocket grid density is mapped to a given
reference protein structure using:

densityscoreðatomÞ ¼ 1

p

X

gat2

scoreðgridiÞ ð5Þ

where gat2 corresponds to the grid points at a distance
<2 Å of the atom and p is the number of grid points ver-
ifying this condition.

Finally, for visualization purposes using common mo-
lecular visualization tools, like PyMol (http://www.pymol
.org) or VMD (28), the previously calculated density score
for each atom [formula 5] is treated to match a
b-factor-like float scale, allowing easy colouring. The ex-
pression used to calculate this range of values is:

colorðatomÞ ¼ logð1+1

2
densityscoreðatomÞÞ ð6Þ

mdpocket

mdpocket is the application of the pocket tracking
approach to molecular dynamics trajectories. From our
experience, we recommend to consider at least 200 snap-
shots. It can be run in two modes. The first identifies
conserved as well as transient pockets and maps them to
a pocket density grid. Pocket transientness can be
observed by the presence of pockets of lower density in
the pocket density grid, whereas high density regions cor-
respond to stable cavities. The second mode requires a
user-defined selection of grid points of interest extracted
from a previous mdpocket run. It allows to focus on some
specific regions of a structure. Tracking of pocket
properties on grid selection is performed by considering
all a-spheres within the neighbourhood of a selected grid
point and merging those into one single pocket. Then all

Figure 1. Workflow of the pocket tracking methodology. a-spheres
from different snapshots are represented by different colors (dark and
light).
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fpocket descriptors are calculated for this pocket for each
frame.

hpocket

hpocket is the application of the pocket tracking approach
to collections of homologous structures. Homologous
structures are identified either from sequence or from
structures. Sequence-based identification is performed
using CS-Blast (29) on the PDB (30), filtering the hits in
terms of e-value, coverage, identity and maximal number.
Structure-based identification makes use of the Astral/
SCOP (31) classification, using the family level. The hits
are then superimposed using an ancillary facility based on
TM-align (32).

INPUT/OUTPUT

For all programs of the fpocket suite, two different user
interfaces are provided: a classical Common Gateway
Interface (CGI) (called default interface on the server) and
aMobyle portal (33) interface (called advanced interface on
the server). In all cases, the same command line is called and
generated results are strictly identical. Some advantages of
using the Mobyle interface are: (i) the possibility (not man-
datory) to open a user session by registering, which allows
data persistence on the server; (ii) the possibility to
bookmark data for further use, which for mdpocket can
avoid the re-upload of possiblity large files; and (iii)
results could be directly piped as input to other analysis
programs (mdpocket Mode 1 to Mode 2 for example).

fpocket

As input, the fpocket server accepts, a simple standard
PDB file or concatenated PDB files to iterate on (each
file must start with the HEADER PDB field and ends
with the END PDB field). On program termination,
for each target, the server returns the results of the
stand-alone fpocket program (10), e.g. (i) PyMol and
VMD pocket visualization scripts; (ii) the query structure
with embedded centers of pocket a-spheres; and (iii) each
pocket (set of a-sphere centers) in a PQR file (this modified
PDB format allows to set atom van der Waals radius
explicitely to determine more precisely the volume
detected by fpocket). Additionaly, the server provides a
set of six snapshots (six sides of a cubic box) showing lo-
calization of detected pockets (Figure 2A). Moreover, pre-
dicted pockets can be downloaded independently and/or
visualized through the embedded Jmol applet
(http://jmol.sourceforge.net/) and the OpenAstexViewer
(http://www.openastexviewer.net/) for quick analysis of
the results (Figure 2B).

mdpocket

The mdpocket server requires a set of PDB snapshots to
run the first step of the analysis (Mode 1). At the end of
the job, the server proposes three output files: (i) the
mdpocket grid that stores density information for each
grid point; (ii) the pocket grid points at a particular
isovalue (default is 3, i.e. grid points having 3 or more
Voronoi vertices in the 8 Å3 volume around the grid

point for each snapshot); and (iii) the pocket a-sphere
density stored in the b-factor PDB field of the first
snapshot. This last file allows to quickly detect regions
of interest. mdpocket allows to run a second step
(Mode 2) in order to track descriptors evolution of a
user-selected pocket region. To do so, the user should
provide selected grid points and the previous set of PDB
snapshots. As result of running mdpocket in Mode 2,
frame-dependent descriptors are provided as download-
able text file, allowing further treatment using spreadsheet
or statistical software like R (34). Finally, mdpocket also
provides series of pictures giving an overview of the
superposed structure conformational space (see legend of
Figure 3A) and pocket a-sphere density (see legend of
Figure 3B). Similarily to fpocket, the Jmol applet is
embedded in the mdpocket results page for a quick
analysis of the pockets dynamics (Figure 3C).

hpocket

hpocket provides results similarly to mdpocket with
an additional homology search report, data containing
the blast report, PDB hits sequences alignment and
superimposed structures.

ONLINE MDPOCKET USE CASE

In the following, we detail a use case utilizing mdpocket
and more briefly another more classical use case. Similar
analyses could be performed in a homology context using
hpocket.
A prototype of mdpocket was used to produce results

published in (35). Using the same molecular dynamics for
the penta-deoxy FB10L mutant of Type 1 non-symbiotic
hemoglobin, Ahb1, from Arabidopsis thaliana, 17 snap-
shots equally spaced in time were submitted to the
mdpocket server. Within seconds, the result depicted on
the Figure 4A is produced (Mode 1). Comparing results
obtained by the server with those published in (35)
(Figure 4B), one can notice that the main results can be
reproduced even using a very low number of snapshots
compared to the number used in (35), 17 versus 800.
For this particular mutant it was shown in (35) that the

geminate rebinding of carbon monoxide (CO) is not
altered compared to the wild-type. Interestingly, the exit
path of CO is closed (Figure 5), which alters geminate
rebinding rate. However, the presence of the cavity seen
beneath the heme, which is not observed in the wild-type,
can explain retention of CO within the structure, without
altering geminate rebinding rates as it can be seen for the
HE7L mutant. This cavity is regularly disconnected from
the trans-location pathway of CO, which is furthermore in
concordance with a slower geminate rebinding rate
compared to the HE7L mutant. Thus, mdpocket allows
rapid evaluation of a bunch of snapshots from
a Molecular Dynamics (MD) trajectory for conserved
pockets or pockets that appear upon time.
As example for the mdpocket Mode 2, Ahb1 is taken

again, this time using 267 snapshots picked up during
the whole trajectory. Here mdpocket is used to track the
volume of the connection between the pocket above the
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heme group and the cavity below the heme group. In order
to do so, the selected grid points defining the pocket and
the 267 snapshots were uploaded to the mdpocket server.
Providing the user-defined pocket definition, mdpocket
automatically tracks pocket descriptors over time on this
precise zone. The resulting descriptor text file provided by
the server was then used to produce the pocket volume
curve in Figure 5C. Using the user-defined pocket volume,
tracking of pocket descriptors intends to show transient

opening/closing of this channel. A depiction of this zone is
available on Figure 5A and B. The heme is situated on the
left and the selected pocket grid is represented as red
spheres. Furthermore, Y145 is shown in sticks as it plays
an interesting role here. This run of mdpocket uses the
same input data as the previous, more exploratory
phase, just with the additional pocket definition. On
Figure 5C, the smoothed volume (black) is plotted over
time and despite fluctuations (gray), a mean volume

Figure 2. (A) fpocket server provides a set of target structure pictures, showing predicted pockets as surfaces of each pockets atoms (one color per
pocket). (B) The fpocket results page embeds both Jmol and OpenAstexViewer (used here) applets for a quick analysis of the predicted pockets.
A control panel on the right part allows the selection of the pockets to visualize and switch between various molecular representations. Here, the
surface of the residues of the pocket is in red, the a-spheres in magenta and green and the envelope of the pocket is represented using a green mesh.
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Figure 3. The mdpocket server provides a set of target structure pictures, showing superimposed PDB snapshots as ribbon (A) and the first snapshot
structure molecular surface colored by a-spheres density ranging from blue (low density) to red (high density) (B). The mdpocket results page embeds
the Jmol applet (C) to give an overview of the conserved cavities (the density grid is represented as an isosurface), and the right part provides viewing
components and to extract cavity conservation at a user-selected isovalue—for more details see the main text. It is possible (D) to map the density
information onto the residues to explore pocket stability in the structure. Here, residues corresponding to high-density regions are displayed as
molecular surfaces in the OpenAstexViewer.
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increase after 100 snapshots can be noticed. The residue
Y145 is situated directly in the selected pocket (Figure 5A)
and thus its position towards the pocket is measured using
the distance between its hydroxyl group and the proximate
heme. One can notice on Figure 5C that the volume
increase corresponds to a flipping of Y145 on the side of
the cavity (like that seen on figure 5B).
The small volume variation observed despite such im-

portant change in torsion angles of Y145 could be ex-
plained by the fact that Y145 is still bordering the
pocket, but not obstructing it anymore. These results

confirm the hypothesis that the connection between the
two parts of the pocket bordering the heme is sometimes
closed. Here, such a closed state can be seen during a long
part of the trajectory, preceding a transient opening,
which leads again to the closed state.

In the Ahb1 use case, we have illustrated how to inves-
tigate very precisely one tiny cavity. Figure 6 on P38 Map
kinase shows another use case focusing on the volume of
the binding site. Out of a 50 ns trajectory with explicit
solvent, 1000 equally spaced snapshots were uploaded to
the mdpocket server as well as the previously defined
binding site. Several descriptors were tracked for the
binding site of P38. Looking at the variation of the
binding site volume during the trajectory, an increase of
the pocket volume to 1000 Å3 at around snapshot 200 can
be seen. Afterwards, the mean volume of the pocket de-
creases to 600 Å3. This very simple example shows how
open/closed conformations of cavities can be isolated
during MD trajectories, which can have important impli-
cations on choosing representative MD snapshots for
ensemble docking, for example.

DISCUSSION AND FUTURE WORK

The fpocket web server provides a valuable, fast, free and
easy to use online service allowing to tackle various
aspects of protein pocket detection. It relies on a fast
and efficient approach for pocket detection from a single
protein structure. Furthermore, it allows to investigate
new directions to explore and analyse structure ensembles.

Pocket tracking capabilities of mdpocket were shown to
coincide with experimental results obtained in (35), thus
the mdpocket server provides an easy interface to a new
methodology for studying pocket conservation and
transientness during molecular dynamics trajectories.

Due to the high scalability of the methodology behind
mdpocket, it can also be used to assess pocket conserva-
tion among structural families. This functionality is
provided by the hpocket service. As suggested by recent
pocket detection methods such as Concavity (14) or

Figure 4. (A) Result of a run in Mode 1 of mdpocket on 17 snapshots of a MD trajectory of Ahb1 FB10L. A pocket density grid is provided,
allowing visualization of conserved pockets and open channels during the MD trajectory. Analysis shows that the exit pathway of CO is closed in
this mutant and that a secondary cavity beneath the heme group is existing. (B) Illustration of the results obtained in (35).

Figure 5. Tracking the volume of the channel between the upper heme
pocket and lower heme pocket (mdpocket Mode 2). The pocket grid is
shown as red spheres. (A) Y145 in the closed state is situated in the
pocket, (B) Y145 in the open state is situated on the edge pocket. (C)
smoothed volume of the pocket (black curve) versus time, the distance
between the hydroxyl group of Y145 and the heme versus time is rep-
resented in red.

6 Nucleic Acids Research, 2010

 at U
niversitat D

e B
arcelona on M

ay 17, 2010 
http://nar.oxfordjournals.org

D
ow

nloaded from
 



Metapocket (16), taking into account the pocket sur-
rounding residue conservation helps to refine precisely a
ligand binding site. With hpocket, a complementary
approach is proposed, allowing pure geometry-based
pocket prediction on homologous structures.

In terms of ergonomics, the design of an online service
dealing with such ensembles of structures and analysing
dynamic aspects of pockets is a challenging question. The
proposed suite of services included in fpocket is, as
illustrated in a complex use case considering the analysis
of a molecular dynamics trajectory, an efficient starting
point. Interestingly, compared to isolated default servers,
the fpocket, hpocket and mdpocket services are also
provided in the Mobyle environment (33). This integration
allows easy data pipelining between different applications
of the Mobyle portal, including the server presented
throughout this article. Presumably, such an integration
allows more flexible data handling for the end users,
compared to static servers, but could be enhanced. A per-
spective to gain in interactivity seems to lie in availability
of online elementary chainable tools, a direction we are
investigating.
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3.4 Pocket Database & Applications

3.4.1 Introduction

The druggability prediction method associated with fpocket, presented in sec-
tion 3.1 of this thesis, can now be used to detect all cavities on all protein
structures in the PDB. This knowledge can then be analysed for identifying
novel targets, until now not considered for drug-discovery.
A main objective of the work presented in this thesis was the discovery of drug-
gable cavities situated on the surface of protein-protein complexes. Studying
these particular cavities is part of a bigger ongoing research line in our group.
This project is based on the following observations:

• Especially structure based drug discovery projects focus on known bind-
ing sites, like enzyme active sites or known substrate binding sites

• The power of using alternatives to classical equilibrium binding strategies
is currently underestimated [Swinney and Anthony, 2011]

• “In situations in which the dynamic actions of the drug substance stim-
ulate, or inhibit, a biological process, it is necessary to move away from
the descriptions of single proteins, receptors and so on and to view the
entire signal chain as the target” [Imming et al., 2006]

From a structure based viewpoint, addressing these issues is a challenging task.
Here I propose a first work towards an integrative knowledge-base of structure
information on proteins and their cavities.

Structural databases and pitfalls Structural databases of macromolecules
are merely used to initially identify new targets for drug discovery purposes.
This is due to several reasons. First, rational drug discovery is focused on
cognate binding sites and active sites. Second, databases gathering structural,
chemical and genetic information on proteins are hardly consistent with each
other. Thus the development of a global knowledge-base to efficiently address
target assessment prior to drug discovery projects is not straightforward. For
instance, the Protein Data Bank is an incredibly rich resource and is central
in such an undertaking. However, it was also until recently the major limiting
factor. The lack of consistency in the structural deposition process, annotation
and data organisation in the PDB make it difficult to handle this data in
automatic pipelines. This can be exemplified by the observation that there
are several so-called mappings that exist trying to map residues in protein
structures to the actual sequence of the protein deposited in resources like
Uniprot [Velankar et al., 2005, Martin, 2005, David and Yip, 2008]. A recent
paper of Robert Sheridan and co-workers resumes important problems one
encounters while using the PDB, especially in the study of cavities [Sheridan
et al., 2010]. The following paragraph lists main issues identified in that paper,
completed with further observations.
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PDB caveats related to automated pocket prediction:

• The PDB is heavily biased towards some particular targets. Proteins
that are easy to purify and crystallize are more likely to be in the PDB.
Probably the heaviest bias is towards therapeutically interesting targets,
with an obvious relation to immediate impact on pharmaceutical research.

• There is never a guarantee that what appears in the crystal structure is
the species to which a drug-like compound would actually bind. Sheridan
et al. cite the example of HIV integrase inhibitors [Sheridan et al., 2010]
that do not only bind to the protein but to the complex of protein and
DNA. Connected to this issue are incomplete structures, where loops are
too flexible to be crystallized and important residues are mutated to help
crystallisation.

• There are numerous inconsistencies from one PDB structure to the other,
namely, residue numbering rules that are crystallographer dependent
(several residues can have the same residue number), atom ordering inside
a residue and atom naming.

• Several issues persist regarding treatment of what is not a protein or a
macromolecule (DNA/RNA). Ligands, including drugs, co-factors or ions
are all treated as heterogroups. Furthermore, with recent corrections in
the PDB, several ligands were split into independent residues (fragments),
making thorough identification more difficult. There is no indication to
distinguish co-factors from drugs. On the contrary, small peptides that
act as ligands are considered to be proteins.

• Proteins and binding sites are flexible. Using automatic pocket detection
methods can yield a single pocket in one structure and split pockets on
other structures.

• Crystal structures are deposited without explicit indication whether a
protein complex is (i) constitutive or transitory, (ii) biologically relevant
complex or due to crystal packing.

• The previous caveat also makes it more difficult to be able to consider
only one chain in a protein complex and perform pocket detection to
identify putative PPI cavities.

Linking different databases Ideally, structural information should be eas-
ily linked to other data sources. For example what are the phenotypic im-
plications of altering a given protein in a disease-related pathway? This can
currently be accomplished by combining several inconsistent resources with
each other.
Another central issue for structure based drug discovery is the linkage of chem-
ical space to actual targets. While resources like DrugBank [Wishart et al.,
2006], BindingDB [Liu et al., 2007], PDBBind [Wang et al., 2005], Relibase
[Hendlich et al., 2003] or BindingMOAD [Hu et al., 2005] have their importance
in analysing known drug binding sites, they have only limited significance in
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the discovery of novel putative pockets.
Among the best known examples of a comprehensive pocket database is the Re-
libase, Cavbase and Waterbase trio, published and maintained by the group of
Gerhard Klebe. More recently two commercial main players in computational
drug discovery, CCG and Schrödinger, have made first attempts to provide com-
prehensive databases focussing on binding sites found in the PDB. While CCG
has a product called PSILO (http://www.chemcomp.com/psilo-info.htm),
Schrödinger announced intentions to strengthen efforts in the field. This shows
that there is an interest in the pharmaceutical industry for this kind of inte-
grated databases. PSILO includes very interesting ideas allowing browsing and
queries on ligand and 3D structural data, similar to Relibase. Furthermore
pocket similarity searches are implemented and users can annotate data in a
collaborative manner. Despite the existence of PSILO, Relibase and Cavbase,
none of them is available free of charge. Other notable ensembles focusing on
the analysis of protein binding sites alone are EBIeMotif [Golovin and Henrick,
2008] and CREDO [Schreyer and Blundell, 2009].
In an interesting approach, Panjkovich and Daura show the usefulness of such
integrative structural databases [Panjkovich and Daura, 2010]. Through anal-
ysis of known binding sites in different protein families, the authors derived
a measure of pocket conservation within each protein family combining struc-
tural and sequence information. This measure was then subsequently used to
detect conserved putative allosteric binding sites within these families. Here a
related aim is followed using slightly different approaches.

3.4.2 Objectives

Construct a relational database on automatically detected pockets
The primary objective of this work is to use an automatic pocket identification
algorithm (fpocket) to systematically identify cavities on all PDB structures.
The resulting cavities and corresponding properties should be arranged in a
relational database to allow easy and fast querying of the data. Connected
to information on the cavities, extensive information from the PDB should be
added to enhance applications of the database.

Incorporate sequence information Uniprot should be used to map known
protein sequences to the actual PDB structures. This sequence information can
then later be used to select similar (Uniref 50, 90 or 100) proteins and map
binding sites to the sequence to see their relative conservation among different
structures.

Incorporate quartenary structure assessment A current major limita-
tion of structures deposited in the PDB is the fact that hetero-multimeric or
homo-multimeric complexes can be artefacts and not biologically relevant. The
biological relevance can be assessed via the Biounit entry in each PDB file or
via automated prediction tools, which have to be included into the database.
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Suitability for punctual intuitive navigation A relational database is
usually difficult to exploit for non-initiated people with the entity-association
scheme of the database. Particular emphasis should be put on the development
of an interface to the database that allows easy navigation in the cavity space
of the PDB, visualisation of 3D structures, compounds and pocket properties.

3.4.3 Results

Description of the data

The PDB version of winter 2008 was used to run fpocket systematically using
default cavity detection parameters and the -d flag producing pre-formatted
output for database creations. Note that fpocket performs some intelligent
cleaning operations on PDB structures already. Among them, fpocket strips
water molecules and non standard residues with the HETATM designation in
the PDB file, unless they are defined in the structural cofactor list included in
fpocket. For more information see [Le Guilloux et al., 2009]. Using this -d flag
fpocket produces two outputs for each protein. One line per pocket describing
the cavity using PDB Ids, cavity Ids and all scores and descriptors computed by
fpocket. The other output is given in form of structural files (PDB and PQR)
representing the 3D coordinates and radii of alpha spheres as well as identified
pocket atoms and pocket environment atoms. For the sake of maintainability
this 3D structural information was not stored inside the relational database
itself, but in a folder structure on the hard drive inspired by the PDB layout.
For each pocket a unique identifier is defined, hereafter called pocket serial and
stored to a PostGreSQL database. This pocket serial serves as primary key
to gain quick, direct and unambiguous access to the pocket descriptors and
further information. For a detailed entity-relationship diagram refer to figure
ea.png available on the CD. This figure is not available in the print version of
the thesis due to its dimensions. Main properties of this architecture will be
resumed within the text.
Cavity information is stored in a table named pdb d cavities. Associated also
to each pocket is also a PDB Id and a cavity Id (from fpocket). Using the PDB
Id, pdb d cavities is linked to the table pdb containing several details on a given
PDB structure, like experimental methods used, resolution of the structure, ti-
tle and headers as well as digital object identifiers for the primary publication
of the structure.
The pocket database distinguishes two types of cavities. One cavity can contact
a single chain of a protein or several chains of the same or different proteins. In
case a cavity contacts a single chain an entry in the table pdb d cavities single chain
is used to gather information on which chain the pocket lies (chain identifier
from the PDB file), what type of chain it is (protein, DNA or other) and how
long the chain is in total (number of residues). In case the pocket contacts two
or more chains, an entry in table pdb d cavities inter chain is written. Last, if
a small molecule is found in the pocket and if it is not a known cofactor, then
its residue name is tracked in the table pdb d cavities lig het tag.
In theory, each residue occurring as HETATM in a PDB file is listed in the
table pdb het. Here, several inconsistencies have been observed between the
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PDB and the dictionary of HETATM residue names provided by the PDB.
Ideally relational constraints should be applied to this table, but as the aim
is to include as much data as possible, the data is loosely added and software
filters are used to treat data inconsistencies rather than the rigid database rela-
tional constraints. The pdb het gathers not only data on the residue name, but
also SMILES strings of small molecules and molecular properties calculated
using RDKit[Landrum, 2011], like counts of various atoms (heavy atoms, polar
atoms), ring counts, rotatable bond counts and the Crippen LogP.
An important component of the database is built from Uniprot data. Uniprot
was downloaded and a parser written. Next to references between Uniprot Ids,
Uniprot Accessions and Uniref Accessions, sequence information is stored into
the database, as well as various annotations, like known active or binding sites,
mutants etc.
Furthermore, a part of Kegg was included into the pocket database [Kanehisa
et al., 2010]. Here signalling pathways, drug-protein interactions and protein-
disease relations were integrated.
To be able to distinguish biologically relevant quarternary structures from ex-
perimental artefacts the pisa interface table contains only chain partners in
proteins that are predicted to be relevant using PDBePISA [Krissinel and
Henrick, 2007]. Furthermore, various uniprot families and assigned enzyme
classes are stored. Last, most importantly, a PDB to Uniprot mapping was
included. This mapping allows to match the PDB sequence to the sequence in
the Uniprot database. In this work, the mapping provided by Andrew Martin
was used [Martin, 2005].
Finally, the residues of automatically identified cavities that are in contact with
alpha spheres are gathered together in a table names pdb d cavities resnum chain.
This tracking allows very quick mapping of cavities to the primary amino-acid
sequence.
Due to inconsistencies between all these databases (doubled entries, renamed
identifiers mostly in provided flat files) all components, i.e. the PDB, Kegg and
Uniprot are separated relationally in the entity relation scheme of the database.

Intuitive navigation

Various ways of how to exploit this resource can be considered. Here the
database was developed as in-house tool to mine cavities in the whole PDB.
A PyQt graphical user interface [Riverbank, 2010] was developed to efficiently
and intuitively browse through this data. On figure 3.21 a screen-shot of the
Graphical User Interface (GUI) is shown. The main interface gathers different
information together into one window. Window components are numbered in
figure 3.21 and explained here:

1. Search field: Here the user can search either for a PDB code or for a
keyword used to describe PDB structures in the Protein Data Bank itself.

2. 2D Ligand viewer: If a small molecule is found inside a binding pocket
that has been selected by the user, the 2D structure of the ligand is shown
here.
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Figure 3.21: Graphical user interface for the pocket database

Figure 3.22: Cavity of interest is viewable in independent PyMOL session

3. Molecule name and SMILES: If a small molecule is found inside a binding
pocket that has been selected by the user, here the name of that molecule
and the corresponding SMILES string is shown.

4. Resumé of the structure: Here information on the title / header of the
PDB file, a link to the publication and information from uniprot is shown.
This section gives a first insight on what the protein is, how the structure
was determined and if there are annotated functions and binding sites.

5. Predefined queries: To facilitate the use of common searches, a set of
pre-defined queries have been implemented and are available from the
combo-box.

6. SQL input field: If the user is familiar with the database design, then he



3.4. POCKET DATABASE & APPLICATIONS 189

can write direct SQL code and query the database (by pressing the ”Run
Query” Button). If the user selects a predefined query from field 5, then
this query is also shown in this field.

7. Results panel: Here results from the SQL query are shown in a tabu-
lar formatting. This table is interactive and if a pocket is shown per
line (depending on the query), then a click on that pocket opens several
subsequent details, like a 2D structural view of the ligand in (2), a 3D
structural view of the protein and the pocket in PyMOL [DeLano, 2002],
a sequence view in (8) and if available other details in (9), which will be
explained hereafter.

8. Sequence panel: If the user selects a pocket from the results panel, then
the GUI opens the protein sequence (from Uniprot). Onto that sequence
all pockets from all structures for that same protein are then mapped.
Each line in this panel corresponds to a distinct cavity, ordered by drug
score. A ”x” is drawn for each amino acid in contact with a cavity
containing a ligand and a ”o” if there is no ligand inside the pocket. The
sequence panel is also interactive, allowing the user to select a pocket by
clicking and thus viewing details and the 3D structure of it.

9. Supplementary information tabs: Several tabs are shown here and the
tab activated by default is the window shown in figure 3.21. A second
tab called ”Pocket Cluster Browser” is explained in further detail in the
next subsection, as well as the PPI Network tab. Figure 3.22 shows an
example of a cavity opened with the pocket browser. The protein is
generally represented in cartoon and for the surface portion in contact
with the cavity (defined by alpha sphere centres) the solvent accessible
surface is shown.

Pocket Clustering

As previously shown the GUI contains a tab named Pocket Cluster Browser.
Indeed in the default view, all pockets are shown for all proteins on the same
protein (or PDB structure) providing an important amount of information
especially when a protein has several distinct cavities on its surface. If one
wants to focus on a particular cavity, for instance a known binding site and
know all PDB structures containing ligands, then this can be easily spotted in
the Sequence Viewer for instance.
Information in the PDB and also in the pocket database presented here is very
redundant. Several times the same or a very similar cavity is found on either
different homo-multimeres on the same structure or on different structures of
the same protein. Thus mining this redundant data for extracting statistics
on pocket properties is not straightforward. To facilitate the identification
of redundant pockets in the database, a protocol has been implemented that
allows clustering of redundant cavities to so called pocket clusters. The Pocket
Cluster Browser as part of the GUI, simply allows to visualize these clusters.
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Creating pocket clusters As previously seen, each cavity in the pocket
database is mapped to the sequence of the protein it is situated on. For the
sake of simplicity only cavities situated on a single protein chain are considered
first. Cavities in the pocket database are in contact with nearly 11 residues
on average. For clustering, only cavities in contact with more than 4 residues
are considered to avoid using too small pockets. Using the pocket database it
is straightforward to gather all cavities on a particular protein. Now one can
assess how much one pocket overlaps with another once it has been mapped
to its primary protein sequence. If two pockets significantly overlap with each
other, then they are clustered together. Using an agglomerative clustering
approach, finally separate pocket clusters can be identified defining single non
redundant zones on the primary sequence corresponding to a cavity. As this
cavity is seen on several structures of the same protein it can be valuable
to analyse these several occurrences. The Pocket Cluster Browser is shown
in figure 3.23. The window is updated with information if the user selects

Figure 3.23: Graphical user interface for the pocket database cluster browser

a particular cavity in the database table from initial results in the default
window of the navigator. Several aspects can be analysed using the Pocket
Cluster Browser (numbering is referring to figure 3.23):

1. Query View: Here the SQL query is shown corresponding to selecting all
cavities in the same cluster as the selected cavity by the user.

2. Database Results View: In analogy to the default viewer, here pocket
details for all cavities of the same cluster are shown.

3. Property Analyzer: This is a graphical tool included here to analyse the
distribution of various properties of cavities within the same cluster. For
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instance, if one intends to analyse the druggability (as shown in this
example), a histogram of druggability values of all cavities in the cluster
is displayed.

4. Sequence Viewer: Here again the cavities are mapped to the sequence
as already shown on figure 3.21. However, this time only the cavities in
the same cluster (so the same pockets on different structures) are shown.
This allows very quick assessments of the correctness of pocket clustering
using the sequence mapping.

5. Ligand Viewer: Here all ligands found in pockets constituting the pocket
cluster are shown using a 2D representation. It should be noted that these
ligands are interactive and that a click on them loads the 3D structure
of the pocket and the protein onto the current pocket, allowing this way
straightforward pocket alignments and superpositioning of ligands inside
binding sites using PyMOL.

Protein interaction networks and diseases

Another factor included in the pocket database is information on disease re-
lation of proteins and known interaction pathways between different proteins.
Here again with a click on a specific pocket in the default window of the nav-
igator, known protein protein interaction networks are loaded into the PPI
Network tab. Figure 3.24 shows an example from a selection of the ATP

Figure 3.24: Example of a protein protein interaction network centered on HSP90
(red node).

binding site of Heat schock protein 90. Each node in that representation corre-
sponds to a protein labeled with the Uniprot Id. The selected protein itself is
coloured in red in the protein network viewer. Next, every level of subsequent
interactions is coloured differently. By default 2 levels of subsequent interac-
tions are fetched, but the spread of the interaction network to extract can be
user defined. The protein interaction map is interactive and a click on a given
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node fetches disease relation from the Online Mendelian Inheritance in Man
compendium [Hamosh et al., 2005] and the Kegg disease database.

Applications

While the pocket database and the graphical user interface allow punctual
easy browsing and visualisation of cavities of a protein it can also be used to
systematically sieve through all pockets and identify pockets and proteins with
a certain set of characteristics.
An ongoing work intends to estimate the druggability of different types of
pockets and refine the druggable genome, initially defined by Hopkins and
Groom [Hopkins and Groom, 2002]. This can be done via statistical analysis of
binding sites in the pocket database. From such an analysis it was found that
around 20% of all proteins in the PDB contain at least one druggable cavity
situated on a single peptidic chain. This estimate is relatively close to the
14% proposed by Hopkins and Groom, considering that the current estimate
of the size of the human genome is around 22.000 genes [Hesman Saey, 2010].
Further analysis shows that there is a 10% probability to find cavities on protein
interface to either inhibit or stabilise the interaction. The stabilisation of such
an interaction is of particular interest to our group and is analysed in more
detail in the following paragraph.

Identify PPI glue sites: As part of a major ongoing project in our re-
search group, the pocket database and the previously developed druggability
score associated with each pocket can be used to identify special cavities. These
pockets are situated on the surface of a protein-protein complex encompassing
both proteins. The main aim of this research project is to target these pockets
to fit a small drug-like molecule and subsequently stabilise the protein-protein
interaction. Stabilising protein-protein interactions can be understood as of
making them stickier, thus the accronym PPIglue is used to denominate these
particular binding sites.
Untill today very few cases are known, where a small molecule triggers a stabil-
isation of a protein-protein complex via direct interaction. Pommier and Cher-
fils resumed a set of systems where natural products are used to trap protein-
protein complexes in transition states so that they are unable to complete their
biological function [Pommier and Cherfils, 2005]. Despite the existence of these
examples occurring naturally, little interest has been shown by pharmaceutical
industry in exploiting such transient pockets for drug-discovery. Knowing that
a significant amount of medicines are using kinetic or conformational trapping
mechanisms [Swinney and Anthony, 2011], protein-protein complex stabilisa-
tion appears as a viable alternative approach in modern rational drug discovery.
The pocket database presented in this section of the thesis serves primarily the
purpose of discovery of such cavities. The integration of all different data-
sources into one single framework allows us to query for such cavities with
specific properties.
To perform this research several assumptions and approximations have been
made. First only reasonably sized (number of alpha spheres between 100 and
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400) cavities have been considered for this study. Next, only cavities with a
drug score higher than 0.5 have been deemed druggable. Last, the cavity was
allowed to have a maximum flexibility score [Le Guilloux et al., 2009] of 0.2,
reducing the probability of sieving through very flexible pockets. Furthermore,
only hetero-multimeric interfaces have been considered using Uniref 50 as refer-
ence sequence for comparison of the two protein chains. Last, the hetero-dimer
/ multimer had to be non-obligate, meaning that both proteins can exist alone
and were crystallized separately.
Prior to the final analysis of results, several types of systems were excluded
as irrelevant, notably immune system related antibodies, membrane proteins,
proteins related to blood clotting and toxins. This protocol resulted in a list
of 248 redundant pockets on 43 different systems among which 4 were dis-
carded as false positives (constitutive dimers with wrong Uniprot assignments)
resumed hereafter in table 3.6. Interestingly, some of the known natural com-

No. PDB
Code

Comments

1 2c37 Sulfolobus solfataricus: Complex between Exosome Exonuclease 1 and 2, part of mul-
timeric complex

2 1k7e Salmonella typhimurium: Tryptophan synthase alpha & beta chain interface co-
crystallized with inhibitor

3 2pnz Pyrococcus abyssi: Complex between Exosome Exonuclease 1 and 2, similar to No. 1
4 2q97 Toxoplasma gondii: Toxofilin rabbit actin complexe, ATP binding site
5 1f2r Mus muculus: Caspase activated DNAse complexed with protein inhibitor
6 1rj9 Thermus aquaticus: Complex between Signal recognition protein and Signal recogni-

tion particle protein, GTP binding site
7 1lb1 Homo sapiens: Complex between RhoA and DBS, known GTP binding site
8 2f9d Homo sapiens: Complex between Splicing factor 3B & Pre-mRNA branch site protein

p14, binding site involving 4 protein chains
9 1cs4 Mammals: Heterodimer of adenylate cyclase, known forskolin binding site [Tesmer,

1997]
10 2g81 Bos taurus: Trypsin with trypsin inhibitor, hexaethylene glycol binding in the inter-

face stabilizes the complex [Barbosa et al., 2007]
11 1lw6 Bacillus amyloliquefaciens: Subtilisin BPN’ with Chemotrypsin inhibitor
12 2fcw Homo sapiens: Complex between LDL and RAP. MPD molecule found in interfacial

cavity
13 2omi Homo sapiens: Insulin multi heteromeric complex cavity
14 1o9a Homo sapiens: Fibronectin - fibronectin binding protein complex
15 1gua Homo sapiens: RAP C-RAF1 complex. GTP binding site
16 2k8f Homo sapiens: p53 in complex with histone acetyltransferase p300
17 3ci5 Dictyoselium discoideum: Actin gelsolin complex
18 2arp Homo sapiens: Activin A, follistatin complex
19 1a0o Escherichia coli: CheA/ CheY complex
20 2za4 Bacillus amyloliquefaciens: Barnase Barstar complex
21 1efv Homo sapiens: Electron transfer flavoprotein, AMP binding site is part of interfacial

cavity
22 1ira Homo sapiens: Interleukin 1 Receptor & antagonist complex
23 1pvh Homo sapiens: Interleukin 6 Receptor & leukemia inhibitory factor
24 2fin Homo sapiens & Rabbitpox virus: cytokine A4 chemokine inhibitor complex
25 2e30 Homo sapiens: Calcium binding protein p22 & Sodium hydrogen exchanger complex
26 1h25 Homo sapiens: CDK2 Cyclin A complex
27 2h4y Homo sapiens: Caspase 1, p20 & p10 complex, active site found with inhibitor
28 3c7u E.coli & Streptomyces clavuligerus: Beta lactamase & beta-lactamase inhibitory pro-

tein, binding site close to known pocket on Beta lactamase, but occupied by BLIP
29 1oxb Saccharomyces cerevisiae: YPD1/SLN1, pocket occupied by SO4
30 3fap Homo sapiens: FKBP12-rapamycin-FRB ternary complex, known PPI stabilizer ra-

pamycin
31 3c0r Homo sapiens & Saccharomyces cerevisiae: Ubiquitin & Ubiquitin thioesterase OTU1

complex
32 2fuh Homo sapiens & Rattus norvegicus: Ubiquitin & Ubiquitin-conjugating enzyme E2 D3
33 2f4m Mus muculus: peptide N-glycanase-HR23 complex
34 1bi8 Homo sapiens: CDK6-CDK inhibitor complex. Pocket encompassing ATP binding site
35 3h9r Homo sapiens: Activin receptor 1 - FKBP1A complex, empty pocket coincides with

rapamycin binding site known in FKBP
36 1wr6 Homo sapiens & Bos taurus: Ubiquitin GGA3 complex, pocket on the interface of 3

chains
37 1s9d Homo sapiens & Bos taurus: Arno & ADP-Ribosylation Factor 1. Pocket binds

brefeldin A, a known PPI stabilizer
38 1l3e Homo sapiens: Hypoxia Inducible Factor 1 - p300

Table 3.6: Protein-protein interfacial druggable pockets identified via systematic
screen of the pocket database.
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pound pockets discussed in [Pommier and Cherfils, 2005] are found via this
protocol in the pocket database, validating the protocol used here. Using our
protocol on the pocket database, we are able to identify 3 different systems
already described in related literature. Namely, brefeldin A, rapamycin and
forskolin binding sites [Pommier and Cherfils, 2005] have been identified along-
side with several other pockets that either did not have known co-crystallized
ligands in the interfacial cavity or other molecules (GTP, AMP etc...). The
fact that independently of any information on ligands the protocol is able to
identify these known PPI stabilizers is a validation for the detection protocol,
the pocket database integrity and the druggability assessment.
In a subsequent work we manually selected 3 systems out of the series of com-
plexes shown in table 3.6. Given our restricted possibilities, not all possible
systems are currently investigated.
These three examples, namely the Rap Raf complex (15), the CheA/CheY
complex (19) and the CDK6/CDK6 inhibitor complex (37), are investigated
with a more generic approach for druggability assessment called MDMix [Seco
et al., 2009]. Using molecular dynamics of the protein complex several solvent
mixtures are considered and the relative occupancy of each solvent type and
molecule is assessed. This occupancy is then translated to a maximum affinity
that a drug-like molecule could have for a binding site. Furthermore, interac-
tion hotspots for various interaction types (hydrogen bond acceptors / donors,
hydrophobic groups etc..) can be pointed out by the method.

Figure 3.25: Overview of the CheA CheY complex in E.coli. Detailed view of the
cavity found on the interface with 2 strong interaction hotspots (spheres) for H-Bond
acceptors (-2.44 kcal/mol) and hydrophobic groups (-1.80 kcal/mol)

Chea/Chey - proof of principle As starting point we decided to use the
CheA/CheY complex as reference case to proof that PPI stabilisation can be
rationalised and such sites found via rational protocols. This choice has sev-
eral reasons. First, the organism E.coli is well known and easy to manipulate
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experimentally. Both proteins are easy to produce and the complex formation
and stabilization can be assessed with techniques like Biacore, but also possibly
via macroscopic in-vivo essays (motility essays).
On this protein-protein complex (PDB structure 1a0o) MDMix was run within
our research group and 2 interaction hotspots in the bottom of the cavity were
identified. Figure 3.25 A shows the location of the binding site on the complex.
The two most important hotspots identified are shown on figure 3.25 B. These
two locations were used as pharmacophoric restraints for a systematic docking
of all ligands from the vendor SPECS in our in-house small molecule database
CDBM. The docking was performed using both rDock [Morley and Afshar,
2004] and Glide(SP) [Halgren et al., 2004]. Currently, identified ligands via
this virtual screen are assessed experimentally.

Novelty Binding site databases have existed for a long time and are reported
in litterature. However, only few works encompass the whole pocketome, mean-
ing all pockets on all proteins, not only cognate binding sites. Here, a unique
resource is presented, associating data from different renowned data-sources
to a loose ensemble. This data can be used to detect and characterise yet
uncharacterised pockets.

Limitations The consistency of the database is difficult to achieve because
of the inconsistency between different data-sources. This leads sometimes to
entries in the PDB with missing corresponding Uniprot information, for exam-
ple. Structural data corresponds to data from late 2008. An update is required
but a thorough validation protocol for data-integrity after such an update has
yet to be developed. The database is not distributed in its current form.
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3.5 The Pocketome

3.5.1 Introduction

This last section of my thesis presents ongoing work for 4 years. Theoretical
basics were settled during my short stay at Sanofi Aventis and the following
years allowed me to complete the project to its current state. Nearly all previ-
ously developed tools and databases come to use to provide a unique resource,
the pocketome. Although this work has not been published in paper format
yet, I deemed it sufficiently advanced to report first validation and results in
this thesis. Furthermore, it has already been presented at the Gordon Research
Conference on Computer Aided Drug Design 2011 in Vermont-USA.

The dominant paradigm in drug discovery is the concept of designing maxi-
mally selective ligands to act on individual drug targets [Hopkins, 2008]. This
paradigm directly implies that a small molecule acts only on one target and
solely induces an effect there. However, the cell is a crowded environment where
proteins encounter all types of other macro-molecules, solvent, other solutes and
small molecules. Necessarily, drugs bind transiently to other macromolecules.
Such usually unwanted interactions are in most cases weak and don’t induce
any effect on the transient interaction partner. However in some cases they can
also cause severe side-effects or toxicity.
Another major issue in current drug development processes is the efficiency of
small molecules [Kola and Landis, 2004]. A very specific drug might be able to
bind to a single target and alter the function of it. However, systems biology
approaches have shown that the effect produced by altering one protein can
be cancelled by the robustness of biological interaction networks [Albert et al.,
2000, Kitano, 2007, Maslov and Ispolatov, 2007].
These observations gave rise to two research areas, polypharmacology and
chemogenomics [Kola and Landis, 2004, Bender et al., 2007].

Chemogenomics is a discipline promoting systematically screens of series
of ligands against multiple targets, usually of the same family. This aims to
generate activity profiles of each compound versus multiple proteins and select
those with optimal selectivity. Such studies allow to relate targets via ligand
activity and similarity.

Polypharmacology and multi-targeting approaches intend to develop small
molecules specifically targeting multiple targets either using one molecule [Bon-
garzone et al., 2010] or a combination of drugs to improve the efficiency of
current treatments [Hopkins, 2008].

Both disciplines are intimately linked to problems outlined previously regard-
ing toxicity and efficacy of drugs. More recently, structural genomics projects
allow to foster systematically 3D structures of macromolecules involved in the
functioning of a given organism. This enables us to gain exciting new insights
into the complete structural space of a cell. Once all structural information is
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available, also structure-based computational tools can be used to investigate
if a ligand might bind to a battery of targets.
Despite the fact that the currently available structural space is incomplete and
highly biased, several attempts are made to use computational tools already
available to account for cross-reactivity of ligands:

• Systematic molecular docking is performed of a set of ligands on a variety
of target proteins

• Ligand-protein interaction maps covering known interaction and struc-
tural space are established and enlarged via ligand similarity measures

• Pockets are compared between each other to point out structural simi-
larities.

The study presented here will focus on the last two aspects, but especially the
last one, pocket comparison.
In several aspects the project presented here has parallels to the TB-drugome
[Kinnings et al., 2010]. Kinnings and colleagues created a protein-drug inter-
action network for Mycobacterium tuberculosis, M.tb. If a drug is known to
bind it is added to the network connected to the corresponding protein node.
Furthermore, drugs are associated to proteins if the pockets in which they are
found (not necessarily in M.tb) are similar to a pocket on a protein of M.tb.
Pocket similarity was calculated using SMAP [Xie et al., 2009]. On this precise
organism, the drug-protein network was found to be highly interconnected and
applications for drug repurposing and polypharmacology are discussed.
In the work presented here a pocket centric approach was chosen and a ligand
is linked to a pocket if it is observed inside that pocket. Next a pocket should
be linked to another pocket if both are similar using solely physico-chemical
properties, as these are responsible for physical binding of a small molecule. To
produce such a pocket-ligand interaction map, the pocketome, for all pockets
currently in the PDB new approaches had to be developed.

3.5.2 Objectives

This work intends to primarily relate pockets from automatic cavity identi-
fication protocols to each other and to the ligands that are eventually co-
crystallized in such pockets.

Consider non occupied pockets: A major part of chemo-genomic studies
focused on known binding sites that have either been co-crystallized with a
ligand molecule or that have been described previously. The primary objective
of this work is to relate all pockets found with an automatic pocket detection
algorithm.

PDB wide: The study has to be conducted on the whole PDB. Considering
the amount of data to treat, underlying methods that have to be developed, as
well as data-structures have to be optimized for large scale applications.
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Use of an abstract cavity representation: Recent developments in the
area of structural binding site comparison resulted in publication of various
methods. Several of them consider a very restrictive representation of the cav-
ity, where sensitivity to side chain motions can be expected. The pocket com-
parison method used herein should represent the cavity as a fuzzy, or abstract
ensemble of interaction points of a given shape, without considering explicit
side-chain arrangements and strict topology.

Open research: Similar to previous work presented in this thesis, the results
from these implementations and analyses should be open to the public.

Intuitive navigation and visualisation: Given the complexity of under-
lying data, the way the data is presented to the user is of utmost importance.
An intuitive and visual way to navigate the pocket and ligand space has to be
considered for publishing results while guaranteeing free access to all resources.

3.5.3 Methods

A central part for the work presented here is the database of putative binding
sites identified using the fpocket. This database is presented in more detail in
secton 3.4 of this thesis. Cavities in this repository are compared to each other
using a novel pocket comparison approach.

Pocket Comparison

The structure-based cavity comparison method to be developed here should
address 5 main issues :

• define the pocket in a rotational and translational independent manner

• define a scoring metric for mutual overlap or sub-pocket identification

• be relatively insensitive to side-chain flipping events in binding sites

• be reasonably fast to allow high-throughput pocket comparison

Pocket Feature Detection: Prior to undergoing cavity comparison, each
pocket is thoroughly analysed. During this step important physico-chemical
features on the pocket surface are identified. These features, sometimes also
called pseudo-centres, correspond to putative interaction points on the pocket
surface. They are fetched from a predefined dictionary for each amino-acid
and are detected on the automatically identified binding site. Here feature cat-
egories as implemented in FuzCav, proposed by Weill & Rognan, are used [Weill
and Rognan, 2010]. For instance, a tyrosine can have an aromatic ring inside
the pocket, but also the hydroxyl and the backbone carbonyle can be accessi-
ble. Note that in contrary to FuzCav, here backbone features are considered.
Only features with an accessible surface area contribution to the pocket are
counted. Thus for this sample tryosine an aromatic group, an hydrogen bond
donor and a hydrogen bond acceptor are accessible. This process is exemplified
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Figure 3.26: Schematic representation of the feature detection and definition pro-
cess on a tyrosine. Physico-chemical features on residues lining the binding site are
identified and it is assessed if they contribute to the accessible surface area of the
pocket. The Cα position is tracked and the presence and absence of a feature is
tracked in a 6 bit binary vector, each bit representing one possible feature.

on figure 3.26. Next, a very important level of uncertainty is introduced in the
approach marking first differences with some algorithms in the field. This has
been inspired by several other methods published [Xie et al., 2009, Feldman
and Labute, 2010, Weill and Rognan, 2010]. For each amino-acid, only the
position of the alpha carbon is retained. Thus the coordinates of all atoms
on a residue are reduced to one position of the Cα. The previously identified
features are known to be solvent exposed and the residue is likely to be in a
concave environment. Thus, the possible arrangements of side chain atoms in
such a packed space is limited, allowing the reductionist view that ”alpha car-
bons are enough” [Feldman and Labute, 2010]. This level of uncertainty and
reduction in positional information allows also to render the method insensitive
to side-chain motions [Xie et al., 2009].
To each Cα of residues found in the pocket, a 6 bit binary fingerprint Fx is
associated. Each bit corresponds to a specific type of feature that is possibly
found in the pocket, hydrogen bond donors, acceptors, alipathic side-chains,
aromatic groups, negatively charged and positively charged interaction points.
If one or more acceptors are found on one residue, for example, the fingerprint
would still only be set to 1 on the acceptor bit. All residue fingerprints are
stored together with the alpha carbon positions in a fingerprint list Fl. Such a
fingerprint list represents all residues in a precise pocket.

Pocket transformation to a RIPr : In order to compare two binding
sites that are situated in two different places in 3D space, they have to be
superimposed or transformed to be comparable. While this is trivial when the
pockets are very similar in the same protein, it is very difficult for pockets that
are not on the same protein or proteins sharing high sequence similarity. This
problem is shown to be NP-hard, and even NP-complete (depending on the
implementation), meaning that no efficient algorithmic solution exists to solve
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that problem. Thus one has to use approximations to fulfil this task [Boukhris
et al., 2009, Reisen et al., 2010]. Most of the existing methods are based on
clique detection or geometric hashing techniques to superimpose two similar
binding sites [Kellenberger et al., 2008]. Another approach consists in using
fingerprints, also employed by techniques like FuzCav [Weill and Rognan, 2010].
In this method, pockets are reduced to a particular representation, similar to
a fingerprint. One cavity has previously been reduced to a set of Cα positions
in euclidean space and a list of feature fingerprints, Fl corresponding to all
residues in a pocket. This list of feature fingerprints contains a limited number
of possible combinations, such as that a feature fingerprint F2 in list Fl can
be the same as another fingerprint F34 for example. Thus a non redundant
list of Fx contained in Fl is defined as Fi. Next a three dimensional space
Gi is constructed having the dimension Fi, Fi, D, where D is a discrete set of
distance intervals. There are 13 distance intervals ranging from 2.5 to 15.0 Å
by 1.0Å steps.
All feature to feature pairwise distances are calculated between corresponding
Cα atoms in Fl. Next, each occurrence of a pair Fi, 1, Fi, 2 at a distance d
is counted in Gi. This three dimensional box, is now a degenerate representa-
tion of the actual binding site, but stored in a rotationally independent manner.
The acronym RIPr will be assigned to designate this Rotationally Independent
Pocket representation.
In order to avoid issues due to discretisation of Cα to Cα distance into separate
bins a filter of (1,2,1) was applied only in the distance dimension over each
occurrence of a feature pair. This allows smoothing the discretised distance
resulting in less sensitivity to small distance variations on Cα positions.
RIPrs are degenerate, as they (i) translate very precise geometric information
and constraints of a binding site to pairwise distances of alpha carbons only
and (ii) don’t specify the exact count of a given feature, but reduce this infor-
mation to a binary fingerprint. The second reduction of precision on the exact
number of features hasn’t been used so far by other methods to the best of our
knowledge.

Advantages of a RIPr: The reduction of a binding site to a RIPr has lim-
itations but also advantages, especially compared to other fingerprint methods.
Compared to methods like FuzCav [Weill and Rognan, 2010], the size of a RIPr
is adaptive to the number of features and the size of a pocket. Thus, instead
of systematically using 4833 integer fingerprints, RIPrs can be of variable size
(on average 1836±680). Given the number of cavities to analyse (hundreds of
thousands), reducing memory usage and disk access is beneficial. A further
advantage of RIPrs is explained in more detail in the paragraph ”Averaging
RIPRs”.

Similarity between RIPrs: Finally, lets consider two pockets that have
to be compared to each other. Both are transformed to a RIPr. These can
then be used for direct comparison between each other. In order to do so a
measure similar to a maximum mutual overlap between feature to feature to
distance pairs is calculated. This overlap is then normalized by each RIPr
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under investigation to derive two similarities. The average of both similarities
is considered to be the fina similarity. This is tentatively explained here: Let
Fi be the set of all fingerprints under consideration in space i (RIPr i), D the
set of distances. Then we define

Gi : Fi × Fi ×D → N (3.7)

which maps each a ∈ Fi, b ∈ Fi and d ∈ D to the number of pairs with
fingerprint a and b at distance d.

Gi(a, b, d) = The number of pairs with a and b at distance d

Now consider two spaces i and j, corresponding to RIPri and RIPrj . For these
let Fij = Fi

⋂
Fj be the set of mutual binary feature fingerprints. Then we

define the following numbers

Si(j) =
∑
a∈Fij

∑
b∈Fij

∑
d∈D

Gi(a, b, d) (3.8)

Ti = 4 ·
(
|Fi|2 − |Fi|

)
(3.9)

Si(j) is the number of pairs in RIPri also present in RIPrj . Note that Sj(i) is,
in general, different from Si(j) .
Then let Oij : Fij × Fij ×D → N be the following map

Oij(a, b, d) = min{Gi(a, b, d), Gj(a, b, d)} (3.10)

for a ∈ Fij , b ∈ Fij and d ∈ D, which yields the number of mutual pairs in
both RIPrs. Now as a measure of similarity between the two RIPrs:

Wi(j) =
Si(j)

Ti
− 1

Si(j)

⎛
⎝ ∑

a∈Fij

∑
b∈Fij

∑
d∈D

Gi(a, b, d)−Oij(a, b, d)

⎞
⎠ (3.11)

REFi =
1

Ti

(∑
a∈Fi

∑
b∈Fi

∑
d∈D

Gi(a, b, d)

)
(3.12)

SIM(i, j) =
1

2

(
Wi(j)

REFi
+

Wj(i)

REFj

)
(3.13)

Here the global similarity SIM(i,j) is an average value of two similarities of
RIPri versus RIPrj and vice-versa. However, if both pockets are of very dis-
tinct size and for instancee RIPri is a submatch of RIPrj , then averaging both
similarities can yield to a substantial drop in the final similarity. Thus both
mutual similarities can also be used to detect global matches and sub-matches
of pockets.
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Averaging RIPrs: An interesting advantage of the RIPr is that its formu-
lation can be easily handled. Actually, simple mathematical operations can be
carried out on these objects. This turned out to be of particular use to reduce
the pocket space to analyse. A major difficulty for creating the pocketome
is combinatorial. Performing an all against all comparison of 350.000 cavities
against each other is timely very costly and also needs large amounts of disk
space. The RIPrs can be used to reduce this number of cavities by following
the thought that, if two RIPrs are extracted from the same protein and are
very similar (SIM(i,j) above a given threshold) then one can average them to
an average RIPr representing two or more pockets in one single RIPr.

Validation

A dataset of pockets derived from PDB-Bind [Wang et al., 2004, 2005] and the
pocket database presented in section 3.4 were used for a first validation attempt
of this method. This PDB-Bind core-data-set contains 231 cavities. Several
of these 231 cavities can be situated on the same protein, but on different
structures. I established a non redundant list of proteins with their cognate
binding site and considered it for further processing if the binding site was
encompassing only a single protein chain.
Next, the binding site of these proteins was identified in the pocket database
retrieving the corresponding pocket cluster. More precisely, using one protein
and the cognate binding site as seed, all other occurrences of the same pocket
on other structures are retrieved. If no pocket cluster was found due to the lack
of structures or inconsistencies in clustering, the protein was discarded from
the data-set. Furthermore, small pockets (less than 60 alpha spheres) were
discarded. This procedure resulted in set of 59 proteins containing 1 cognate
binding site each. As several crystal structures are known for each protein, a
total of 2809 cavities corresponding to these cognate binding sites on different
crystal structures are considered for this study.

Statistical aspects

In order to determine the ideal cut-off or threshold of the continuous similarity
measure presented in equation 3.13 the F-measure was used. One can define
one binding site as query (1) and all other binding sites as decoys (0). The
predictive power of the similarity measure can be assessed via retrieval of all
cognate binding sites from structures of the same protein with higher scores
than the rest. This retrieval can be performed on various levels of a scoring
threshold (upon which one would define a hit to be the same pocket as the
query). The F-measure is the harmonic mean of precision and recall of a
classification method.

Precision =
TP

TP + FP
(3.14)

Recall =
TP

TP + FN
(3.15)

F = 2
Precision×Recall

Precision+Recall
(3.16)
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Incrementing the similarity measure from its minimum to 1 by increments
of 0.002, the maximum F-measure indicates the best score threshold. An F-
measure of 1 indicates best classification performance while 0 indicates lowest
performance.

3.5.4 Results

As the work undertaken here is new in the sense that pocket comparison is per-
formed on automatically defined cavities on the whole protein surface, various
validation studies have been performed to ensure that (i) the pocket compari-
son method allows to identify the same pocket among different structures and
that (ii) the method allows to find similar pockets on other proteins with known
relation.
The pocket similarities of all against all pockets are calculated for all cavities
of the validation data-set derived from PDB-Bind. The resulting similarity
matrix was further used to perform the following analysis.

Finding the similarity threshold

A central point in development of a continuous similarity measure is to know
above (or below) which threshold a result is either positive or negative. Here,
the pocket similarity measure varies from < 0 to 1, where 1 means a 100% iden-
tity between two cavities. Knowing that our data-set contains several times the
same cavity but on different structures we can measure above which similar-
ity threshold the method is able to retrieve most pockets of the same protein
among all 2809 cavities in the data-set using one cavity as query. Figure 3.27
shows average F-measures obtained on the whole data-set (A) as well as two
extreme examples (B,C) to highlight the variability one encounters in auto-
matically predicted cavities. The F-measure is maximised (0.75 ±0.15) at a
score around 0.4 considering all cavities. The variability is calculated using
each cavity in the data-set as query to retrieve all cavities in the known cluster
of the same pocket on different structures.
An example for a pocket that is well identified by fpocket without major vari-
ations is the binding site of β-glucosidase A (figure 3.28 B). Thus the variation
on similarity predictions is minor around the maximum F-measure (figure 3.27
B). On the contrary, β-lactamase is an example of a very open and solvent ex-
posed cavity (3.28 A) yielding variable pocket predictions with fpocket (figure
3.27 C). As a result, average and also individual F-measures are penalized.
From this analysis two observations can be made: (i) the pocket similarity
measure is capable of retrieving varying, but similar pockets detected on other
structures from a pool of binding sites, (ii) the similarity threshold for re-
trieving similar cavities appears to be approximately 0.4. The exact value of
the threshold can be discussed especially seen the layout of the analysis here.
However, it gives a sound reference for later analyses. The threshold is very
likely to be under-estimated. Given the fact that the layout of this experi-
ment considers that binding sites of one protein like trypsin are fundamentally
different to FXa while retrieving all trypsin binding sites can be a source of
error. Indeed several serine proteases are part of the data-set and are similar
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Figure 3.27: F-measure versus different similarity thresholds. Black thick curves:
average values, grey shaded area: average ± standard deviation of values,A: Average
F-measure for all cavities on all proteins in the data-set, B: Average F-measure for β-
glucosidase A, dashed lines are results for individual cavities, C: Average F-measure
for β-lactamase (y axis the same as in B), dashed lines are results for individual
cavities.

Figure 3.28: Example binding sites of (A) a solvent exposed binding site of β-
lactamase and (B) a buried pocket in β-glucosidase

between each other. Thus they can introduce noise and lower the perceived
optimal threshold. As discussed earlier, another source of error likely to reduce
the perceived best threshold is the fact that we consider that all conformations
of a cavity and all automatic pocket detection results should be treated as a
consistent ensemble representing equally well the same pocket. Pocket confor-
mations and especially detection results can vary substantially, reducing the
perceived similarity and thus reducing the best perceived similarity threshold
extracted from this analysis.

Validation all against all

An all against all comparison of every pocket in the data-set has been per-
formed with the method described previously. Usually, results of such a study
are represented as a dendrogram, but networks are becoming more and more
common in the scientific literature to represent clustering results and we have
chosen this representation too.
One node in such a network is a pocket, and two pockets (nodes) are connected
by an edge if the similarity between them is above a given threshold (0.45 here).
The advantage of such network representations is that powerful layout engines
can be used to naturally dispatch the information in a 2D or 3D representation.
Thus visual analysis is more straightforward, if the network is not too complex.
Results extracted from the analysis carried out here are shown on the following
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page. Nodes have been coloured by protein name and most important clusters
of binding sites of proteins are labelled on the network.

Same pockets on different structures As a first important result it can
be observed that all binding sites from the same protein usually cluster together
into rather dense clusters. The density of such a cluster is directly related to (i)
the number of connections one pocket has to all others of the same cluster of
pockets, and to some extent (ii) the number of outbound connections to other
pocket clusters from other proteins. This result is in good agreement with the
previous analysis using the F-measure, showing good predictivity identifying
the same pocket on different structures. While this is of limited interest for the
pocketome project itself it has important technical and theoretical implications.
First, it implicitly validates the pocket similarity measure and, second, it could
be used to reduce the size of the pocketome efficiently.

Similar pockets on related proteins More challenging to analyse are re-
sults on interrelations of binding sites of similar as well as unrelated proteins in
this graph. The data-set contains proteins that are related. For example one
can find several kinases (CDK2, CHK1, P38) as well as endopeptidases and
glutamate receptors. In this comparison a clear cluster for endopeptidases can
be pointed out (trypsin, urokinase-type plasminogen activator - uPA, factor Xa
and factor VIIa). A part from sharing a common function these proteins have
similar sequences and folds. While previous validations proved that the pocket
comparison protocol can identify the binding site on the same proteins but dif-
ferent structures, these results suggest that binding sites with minor variations
are also found to be similar. This is furthermore highlighted by the cluster
formed by kinases Chk1, CDK2 and P38. Interestingly, Chk1 is not part of the
same kinase sub-family as CDK2 and P38, but similarities between all ATP
binding sites are found. Another well known relationship exists between the
androgen and estrogen receptor (AR, ER), both nuclear hormone receptors.
The hormone binding sites used in this evaluation form a tight cluster showing
the high structural similarity between the two pockets. The results shown so
far can be of high interest when analysing proteins with related function or sig-
nificant sequence similarity. Thus, the pocket similarity measure can be used
to help and guide protein function prediction efforts in combination with other
methods.

Similar pockets on unrelated proteins The analysis of the all against all
comparison also reveals connections of proteins that are unrelated in function,
sequence and fold. One of such a relation exists between HSP90 and CHK1.
Although HSP90 is known to bind ATP in its active site, it has a very different
topology compared to kinases like CHK1.
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Despite this fact, similarities are found between the two binding sites, known
to bind ATP. More striking however are relations between three occurrences of
the binding site of HSP90 and nuclear hormone receptors (NHR).
On first sight, known NHR binders share few common characteristics with
HSP90 inhibitors or ATP. A structural superimposition of both binding sites
shows that the pocket lumen is of approximately the same size and shape.
Furthermore both cavities share some common hydrophobic patches. Interest-
ingly, in a recently published work by Zhao et al., 4-hydrotamoxifen (4OHT),
a known estrogen receptor binder, was systematically docked using computa-
tional docking software into 4403 known redundant binding sites of different
proteins. Within the top 15 targets identified for 4OHT using this approach, 12
corresponded to estrogen hormone binding sites. Furthermore, 3 ATP binding
sites of HSP90 [Zhao et al., 2010] are found. Given these unexpected results
the authors verified the binding site similarity between the estrogen receptor
hormone binding site and the HSP90 ATP binding site using SuMo [Jambon
et al., 2003], a well known pocket comparison method. No significant similarity
was found. In subsequent experimental analyses the authors show that 4OHT
and tamoxifen activate HSP90 activity. Unfortunately, the exact interaction
site of 4OHT on HSP90 could not be verified experimentally. This encouraging
result shows how the introduction of uncertainty about atom positions can help
to identify unforeseen relationships that cannot be spotted using more restric-
tive algorithms such as SuMo.
Despite these results several other links between unrelated proteins can be
observed (streptavidin, glutamate receptor) where verification needs more in
depth analysis and experimental proof. Analysing similarities on unrelated
proteins is a challenging task especially if a putative relation is not known
yet. However, discovery of relationships between unrelated proteins is of high
interest in drug safety, but also in drug design itself. In the following para-
graphs, several examples show the putative applications of the pocket compar-
ison method presented here.

Screening the pocket database

Until now it has been shown that the method is able to identify similarities be-
tween pockets above a certain threshold. However, it is not known yet if higher
similarities relate to higher likelihood to find the same pocket and lower similar-
ities to find similar pockets on unrelated proteins. To investigate the behaviour
of the score in this regard, a PDB wide cavity comparison was performed using
one or multiple occurrences of a known binding site of a set proteins as query.
Resulting similar cavities were ordered by score and for known binding sites
among them (with cognate ligand) the cavities were classified in (i) the same
cavity, (ii) a related cavity in a related protein, (iii) and unrelated cavity but
known to bind ligands that share similarity with cognate ligands of the query
pockets and (iv) unrelated cavities on supposedly unrelated proteins. The clas-
sification was done by hand and cavity by cavity, thus allowing only assessment
of a limited amount of targets and resulting cavities given the important num-
ber of results.
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Figure 3.29: Binding site screening results for (A) Penicillopepsin, (B) Casein
kinase 2 and (C) Acetylcholinesterase. Histrograms show all cavities (occupied or
empty) found to be similar to query pockets. The coloured bar plot shows hits (one
line corresponds to one pocket) of binding sites containing ligands. These hits have
been classified by hand according to the relation to the query pocket.

Classifying the same pockets on the same protein but other structures as such
is straightforward, thus there is no error to be expected from such a by-hand
classification. Second, classifying a pocket as of being on a related target can
yield a few errors. In the examples shown here, related targets were all kinases
for example, if a kinase was used as query protein. For acetylcholinesterase,
only the butyryl cholinesterase was considered to be related.
Last, the classification of an unrelated protein binding a similar ligand is highly
subjective in this study. I would like to emphasize on the fact that this limita-
tion is known and an automated and systematic way of classification has to be
found. Here ligands were deemed similar if their global scaffold or shape were
considered to be similar after ocular inspection. Despite these limitations the
manual classification should prove sufficiently accurate to see global trends in
the resulting screen.
Figure 3.29 illustrates results obtained during this screen. First, the penicil-
lopepsin active site (one single structure) was compared to all cavities in the
pocket database. Results shown on figure 3.29 A show that only few hits have
been found. The pocket comparison method is however capable of retrieving
the same binding site on other structures as highest scoring pockets (green bars
on the left). While lowering similarity related binding sites are found (yellow
bars), like endothiapepsin, penicillin binding protein 2X and saccharopepsin
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binding sites. It is also notable in this example that below the similarity thresh-
old of 0.4 a significant amount of pockets from apparently unrelated proteins
are found.
Second, fourteen casein kinase ATP binding sites have been used as query
against the pocket database. Figure 3.29 B shows the results of this screen.
Here again the pocket comparison method is able to predict the same pock-
ets (green) with higher similarities (most of them above 0.45). However, the
fact of using more query cavities enables us to retrieve more results than in
(A). The kinase space is also structurally very well represented in the PDB,
explaining the abundance of identified similar cavities. Several related binding
sites (yellow) can be found on other Ser/Thr kinases. Thus, the most similar
cavities identified are the ATP binding sites of Pim-1, CDK2, c-Abl, adenylate
kinase, rhodopsin kinase, rho-associated protein kinase, tyrosine protein kinase
Fes/Fps, Braf, the insulin receptor and Chk1. Therefore, various kinase fami-
lies covering Ser/Thr as well as Tyr kinases are found with similarities above
0.45. This result is in stark contrast with a study on functional classification of
protein kinase binding sites using Cavbase [Kuhn et al., 2007]. In this work the
authors use Cavbase to compare a set of 285 kinase binding sites and cluster
them by similarity. It was found that this procedure was able to cluster gen-
erally protein kinases from the same family together. Results obtained here,
screening only for Casein kinase 2 suggest that at least for this particular tar-
get the method is able to retrieve structurally similar kinases, but of a broader
scope than Cavbase. This difference is very likely to be due to differences in
the pocket representation (level of uncertainty) between the two methods.
Interestingly among the first 10% of hits towards casein kinase one can find
unrelated proteins binding similar ligands, like a hypothetical dUTPase, serum
albumin and a GFP like non-fluorescent. While dUTPase can be expected
to be found as it is co-crystallized with nucleotides, the later two hits seem
less obvious at first sight. Serum albumin is known to bind a large variety
of molecules like DNA, fatty acids, hormones and also drugs [Sjöholm et al.,
1979]. However, 2 tyrosine kinase inhibitors were found to bind to serum al-
bumin [Chandrasekaran et al., 2010]. The similarity with GFP like and other
green fluorescent proteins is a probably the less obvious. It is a very good ex-
ample of the level of uncertainty of the method. Comparing the ligand found
in the crystal structure of GFP (PDB code: 1oxf) one can observe that the
ligand shares the overall topology of adenosine, while replacing adenin by a
amino-indol ring and the ribose by an imidazole. This result seems rather
counter intuitive but it reflects a wished behaviour of the pocket comparison
algorithm.
Given the multitude of similar pockets found with respect to Casein kinase 2
they cannot be discussed here in detail. Shortly, several other kinases are found
at lower similarities but also unrelated proteins binding ATP & ADP. Interest-
ingly, also here we can identify HSP90 as being similar while not sharing the
fold nor the function of Casein kinase 2.

In a last test case, 32 occurrences of the acetylcholinesterase binding site were
screened and results are shown on figure 3.29 C. An important amount of acetyl-
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cholinesterase active sites are gathered with high similarities (green bars on the
left). Also with very high similarity, the active site of butyryl cholinesterase, a
closely related protein to acetylcholinesterase, is found. A first unexpected hit
is the renin binding site. However, tacrin an acetylcholinesterase inhibitor and
derived compounds are very similar to a part of the carbazole of the ligand in
PDB structure 2g1o of renin. This ligand is known to bind with an IC50 in
the submicromolar range. Here again, the pocket comparison method identifies
sub-matches of the binding site, as the whole renin binder would not fit into the
acetylcholinesterase active site. More intriguing is the appearance of similar
cavities binding nucleotide like ligands. Unfortunately in literature, binding of
such ligands is not reported on acetylcholinesterase or these are reported not
to bind. However it has been published that cycloSal pronucleotides bind and
show activity on butyryl-cholinesterase [Meier et al., 2004] already shown to be
similar to the query protein. This is a very interesting result, showing that the
pocket comparison can (i) identify pockets that are further away in similarity,
with lower similarities, and identify relations between pockets that do not seem
closely related but are through an intermediate.
In conclusion these results indicate that screening for similar pockets among
350.000 cavities yield positive hits on the same protein, allow to retrieve similar
pockets on known related proteins with similar functions and most interestingly
pockets on proteins without apparent relation but with ligands sharing similar
scaffolds or global topologies. This shows that the fuzziness of the method
allows to relate pockets that are different from a structural point of view,
but share global shape and distribution of physicochemical features inside the
pocket. The analysis also pointed out a difficulty for interpreting, navigat-
ing and representing these results. Interpretation is especially hindered when
known binding sites appear without apparent relation. Given the ultimate
objective to relate all pockets with all pockets regardless of the fact if they
are known to bind small molecules an easy to use navigation tool needs to be
developed.

Creation of the pocketome

What is the similarity between all pockets found on all structures in the PDB?
Although data and methodologies exist to answer this question, currently no
freely accessible tool exists to answer it. While theoretically it can seem
straightforward to tackle this problem, the complexity and amount of data ren-
ders this task practically very difficult. While previous attempts in the same
direction focused on known binding sites with cognate ligands, no systematic
pocket comparison between binding sites and uncharacterised pockets has been
performed yet, although around 80% of all pockets in the PDB do not contain
a small molecule. The main objective of this work is to get a first insight into
interrelations between all cavities in the PDB, albeit known binding sites or
uncharacterised pockets, eurcaryote or pro-caryote.
Practically this means to perform a pocket comparison of around 350.000 cav-
ities with each other resulting in 61.0 109 comparisons. Currently one com-
parison can be done in the millisecond range situating the cavity comparison
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algorithm among the fastest in the field. If only a single CPU machine was
used calculation time can be estimated to be of approximately 2 years. Using
distributed computing on 128 CPU’s calculation time could be downscaled to
a week, however this ecologically very questionable strategy was not followed
here. Instead, prior to calculation, a step of reduction of data redundancy
was performed. Information in the PDB is very redundant, so are pockets on
protein structures. As already seen on previous results the pocket comparison
method is able to identify the same pockets on different structures. Thus the
method can be used to detect clusters of very similar pockets (i.e. similarity
threshold of 0.55) on one protein. These clusters have been identified and were
used to derive an average pocket representing all individual pockets that are
part of the cluster. This averaging of pockets can be easily achieved using
RIPrs as explained previously. After averaging all pockets into average pocket
clusters (APC) only non singleton clusters are considered for entering the final
comparison versus all other clusters. Finally, only 28.000 APCs needed to be
compared with each other to establish a similarity matrix as basis of the pock-
etome.
Another important argument for using pocket averaging prior to an all against
all comparison is the obvious reduction of the results. Practically, handling,
storing and analysing 400 million pairwise similarities is more tractable than
150 fold more.
Ultimately all APCs have been compared between each other. The resulting
similarity matrix was analysed and similar pairs of APCs written to flat files if
the similarity between them was above 0.4.
The pocketome derived previously is highly complex and contains a multitude
of interrelations. To help analysing this data here again a network or graph
based solution has been considered. In such a solution one APC corresponds
to one node in a graph. An edge is traced between two nodes if they have a
similarity above 0.4. This graph is augmented with various information coming
from the pocket database. For example, if ligands are co-crystallised in pockets
composing an APC, a ligand is added as a node to the graph and connected via
an edge to the APC. Different attributes are stored onto both ligand and APC
nodes, like protein and ligand names, Smiles and Uniprot accessions, organisms
etc. Such a network or graph can then be easily distributed and used within
popular graph visualisation software. It should be noted that these results show
for the first time a map of interrelations between pockets and ligands associated
with pocket-pocket similarities including unknown and uncharacterised pockets
for the whole PDB.

Navigating the pocketome

As stated previously analysing the pocketome is highly complex and out of the
scope of the work presented here or the work one single person could do. To
ease the analysis, the pocketome can be visualised using Cytoscape [Shannon
et al., 2003], a reference software for complex network visualisation and analysis
in the systems biology community. Cytoscape is free and can be downloaded
from http://www.cytoscape.org. The pocketome will be distributed as a col-
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lection of flat files, but also a ready to use Cytoscape session is provided that
can directly be loaded with Cytoscape. Figure 3.30 shows an example session

Figure 3.30: Graphical user interface of Cytoscape with the pocketome. (1) In
the main window, nodes (average pockets and ligands) can be shown and coloured
by various attributes. (2) By clicking on a pocket node, actual pocket details can
be retrieved from the pocket database. A click on one particular pocket opens the
structure and pocket definition in an independent PyMol session (3).

using Cystoscape with the open pocketome. By default, no visualisation is
activated as visualising the whole pocketome is very complex. The user has
to focus on a particular protein or ligand. These can be easily selected using
filters. Once done, all connected nodes (pockets and ligands) can be selected,
thus extending the selection within the pocketome. Finally, the selection can
be extracted as sub-network. Such a sub-network is easier to visualise and
handle (part 1 of figure 3.30.
On figure 3.30 a part of the estrogen receptor sub-network is shown. All
pocket nodes are interactive and upon a click the user can connect to the
pocket database to retrieve which PDB structure and cavity corresponds to
the APC seen in the graph. This is done via a purpose built plugin for Cy-
toscape, Cypockets, developed by Vincent le Guilloux. Details retrieved from
the pocket database are loaded into the bottom of the window (part 2), showing
PDB codes and pocket properties derived from fpocket. Each pocket line here
is also interactive and again by a simple click on such a line, information from
the pocket database is retrieved and the corresponding structure is opened in
PyMol highlighting the pocket of interest.
The solution adopted here for distribution and visualisation of the pocketome
allows to disseminate the results of the PDB wide pocket comparison very ef-
ficiently. The user does not need a local pocket database, or installed PDB.
Furthermore, it has several advantages over popular web-server based publi-
cation of methods and results. Cytoscape and the pocketome can be used as
standalone application and use is thus anonymous. The fact that Cytoscape
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was chosen to represent the pocketome and navigate it allows the user to take
advantage of other functionalities that can be directly linked to the pocke-
tome. Such functionalities include extraction of known PPI networks data of
a protein of interest. Furthermore the software is purpose built for complex
network analysis and thus various functionalities available ease the navigation
and analysis of the pocketome.

Applications

In this last section two application examples are shortly presented. These
intend to show basically two intertwined aspects connected to the usage of the
pocketome. In the first example it is shown how the pocketome can be used
to characterise an uncharted binding site and identify putative ligands. In a
second example an application very close to drug-repurposing or drug-recycling
is outlined.

Characterisation of an unknown pocket in GSK3-β Glycogen-synthase-
kinase 3 (GSK3) β, is a serine/threonine kinase that is part of the CMGC
family together with well known kinases like P38α and CDK2. In an inde-
pendent project we analysed all conserved pockets identified on the surface of
this kinase. Among physico-chemical, druggability and conseration analysis of
several pockets on this protein, a last analysis related to the pocketome was
done.
A systematic screen of all pockets of GSK3-β was performed in a very similar
way than the validation experiments performed on acetylcholinesterase, and ca-
sein kinase II presented earlier. While some of the several cavities investigated
yielded no significant hits in the pocketome, one pocket showed intriguing re-
sults. Figure 3.31 B shows GSK3-β and the pocket investigated (grey circle).
The screen for similar binding sites to this pocket yielded several results and
other cavities in which known ligands bind. A striking result is its similarity to
the ADP binding site on the Dha-kinase subunits DhaM and L. Interestingly,
this binding site does not show the same architecture as known kinase ATP
binding sites situated between a small beta strand lobe and a large alpha helix
lobe.
Furthermore, this result is interesting, as already one known ATP binding site
exists in this kinase. Here we identify that the investigated pocket resembles
to an ATP binding site, a putative secondary ATP binding site. The superim-
position between both, GSK3-β (green) and DhaM& DhaL shows several areas
where backbone and side chain positions are highly similar between both pock-
ets (circles). The arrow indicates a common termination of the helix lining the
binding site. Naturally, seeing such important overlap in a sub-pocket arises
the question if ATP or similar molecules could potentially bind there.
Unfortunately this question could not be answered via experimental nor com-
putational techniques and is thus open for speculation. However, recently Shan
and colleagues published an interesting work on very long MD simulations of
self guided binding of known inhibitors to Src kinase. Results from this report
are presented here in figure 3.31 A. Here red spots correspond to places where
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Figure 3.31: A: figure 1 taken from [Shan et al., 2011], showing hot spots identified
via free MD of dasatinib with Src kinase. These results show a secondary binding site
(G-loop site) for molecules known to bind to the ATP binding site. B: Structure of
GSK3-β in the same orientation as Src kinase. The investigated pocket is contoured
in grey.

Figure 3.32: Superimposition of the investigated GSK3 pocket (green carbons)
and the ADP binding site of Dha-kinase subunits DhaM and DhaL (white carbons).
Intriguing matches are contoured by different colours.

desatinib was found to transiently stay on the pocket surface. It was found
that next to the known binding site (ATP site) another location was identified
(G-loop site). These findings are very much in line with what we can observe
on GSK3-β. It can thus be postulated that the pocket that was investigated
here might be able to transiently bind ATP or similar molecules.

These results arise important questions. How frequently can one find such
a pocket redundancy on a protein and what role do these pockets have? The
pocketome will be a resource of tremendous value to investigate such observa-
tions.

Discovery of cavities for drug-repurposing Once the pocketome naviga-
tion facilities within Cytoscape were finished I was able to take full advantage
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of the easiness for exploring the pocketome. To validate the visualisation and
pocket comparison I particularly focused on the sub-pocketome of nuclear hor-
mone receptor binding sites.
Estrogen receptor (ER) was used as entry point into the pocketome and the
network was increased by two levels to include similar pockets to ER pockets
but also putative ligands of ER and these similar pockets. In the network,
connected to the hormone binding site cluster of ER, Caspase 3 was found.
After structural cross validation, the binding site identified is situated between
the two peptides forming a dimer, p12 and p17. Figure 3.33 shows where the

Figure 3.33: A: Overview of caspase-3. The p17 subunit is coloured in light blue
and the p12 in orange. The active site is facing the observer. The newly identified
cavity in caspase-3 is shown as red surface. B: RMSD of a compound identified via
docking. 5 replicas of 20ns each were run to see if the protein (black curve) and the
ligand (orange curve) are stable. RMSD calculated compared to the crystal structure
with the docked ligand.

pocket is situated on the p12, p17 dimer. It is placed buried between both
polypeptidic chains. Interestingly, this cavity was empty in the original crystal
structure (1rhq). Next, it was investigated if the pocket is conserved among
other structures of caspase 3. Systematically, small hydrophobic pockets are
found in this same region on all other investigated structures, however the
pocket identified in 1rhq is the biggest.
Based on the observation that this pocket is deemed similar to ER a very simple
protocol has been adopted. We have taken estradiol as reference ligand for ER.
Estradiol was used as input to the ZINC database [Irwin and Shoichet, 2005]
to identify all molecules with a Tanimoto similarity above 0.7. The resulting
molecules (around 500) were then systematically docked to this apo site using
rDock [Morley and Afshar, 2004]. Importantly no relaxation of the binding
site was previously done. Thus resulting binding poses were sterically very
restricted. Despite these limitations, one compound was identified with a very
promising binding pose.
This compound was then further assessed for stability in the pocket during
molecular dynamics trajectories. A stable molecule in a flexible protein envi-
ronment, surrounded by explicit solvent can give indications about the suit-
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ability of a potential ligand for a target. The preliminary results from this MD
analysis are shown on figure 3.33 B. Here the RMSD of the ligand (orange) and
the protein (black) were tracked compared to the docking pose in the crystal
structure. Five replicas of 20 ns each did not show any indication on possible
instabilities of the molecule in this pocket.

These very encouraging results are currently experimentally validated with our
collaborators. Given that the cavity seems naturally unoccupied, the fact of
binding a small molecule and thus filling the cavity could have an important im-
pact on the stability of the p12, p17 dimer. Caspase 3 has a very short half-life
in its functional form (shown in figure 3.33 A). Thus stabilising the interaction
between p12 and p17 could have a beneficial effect and alter the turnover of
this enzyme that plays a central role in apoptosis [Porter and Jänicke, 1999].

Novelty

Here the first all against all comparison of putative binding sites on the whole
PDB is presented. For the first time a pocket comparison is validated and
carried out on automatically identified binding sites.
The method presented here uses a very abstract representation of the pocket
allowing to compare structures that are very distant. The resulting pocketome
is distributed in a novel, lightweight and intuitive to use manner and will be
free to access for everyone.

Limitations

The pocket comparison measure shows very promising results in this prilim-
inary study. However, validating such a method for relations that are non-
obvious and where no experimental proof is available is very complex. Thus,
a more systematic way to validate results from systematic pocket-comparisons
has to be identified. While the fuzziness of the pocket representation allows
retrieval of unforseen similar pocket pairs, it might hinder detailed studies of
structural motives responsible for specificity of a given target towards a series
of molecules.

A first unofficial version of the pocketome as Cytoscape session is available
as supplementary material on the CD of the thesis. The pocketome folder on
this CD contains a manual and the CyPockets plugin, such as that the members
of the thesis tribunal can install, test and critically evaluate the resource. Note,
that you need a working internet connection to run the CyPockets plugin.
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Chapter 4

Conclusions

The work presented in this document has a manifold of possible applications.
Before resuming conclusions of this work a short analysis of the impact this
research had so far in the scientific community is presented.

Impact analysis

On the web

The fpocket project and all subsequent developments are presented via a web-
site accessible on the internet. Such a website allows tracking traffic and the
origins of this traffic. Figure 4.1 displays statistics tracked using Google Ana-
lytics and Sourceforge web-traffic tracking tools. Website access statistics are
extracted for the URL http://fpocket.sourceforge.net. On this figure a clear

Figure 4.1: Number of visits on the fpocket website and fpocket downloads since
june 2009. On the right, geolocalisation of visitors on the fpocket website. Statistics
gathered with Google Analytics and Sourceforge.

trend of augmenting monthly web-traffic can be seen since the creation of the
fpocket project. Furthermore, the publication of two fpocket related papers
is indicated on the time-line and clearly shows the impact the papers had on
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monthly visits and downloads of the program. On the right the geo-localisation
shows that fpocket and connected projects yielded interest all over the world.
Thus, it is not only a Spanish-French localised project, but universities and
pharmaceutical companies mainly in countries like the US, Japan, Germany,
United Kingdom, China, India and Russia seem to show interest in the project.
Universities and institutions that have shown most interest in fpocket are the
Moscow state university, the university of Barcelona and Paris Diderot, the uni-
versity of Cambridge, the university of California Irvine, the Eberhard Karls
Universität and several more. Among top visiting institutions are also phar-
maceutical companies like Merck, Novartis and Hoffmann LaRoche Inc.
Analysing the number of calculations run on the fpocket online version hosted
by the RPBS in Paris we noticed that in year 2010 alone around 4100 fpocket
jobs, 500 mdpocket and 100 hpocket jobs were run. Interestingly, most job-
requests came from China. Till today, fpocket has been downloaded nearly
2000 times.
Another interesting impact had the presentation of the fpocket project at
the Wellcome Trust sponsored MIOSS workshop (Molecular Informatics Open
Source Software) in Hinxton (UK). The fpocket project was invited as the only
pocket prediction and characterisation tool to present itself together with well
known and established projects in chemo-informatics, like RDkit, CDK, Open-
babel, KNIME, Taverna etc. This was a first confirmation that the project is
among the main-players in open-source pocket prediction.

In literature

Next to web-traffic, several papers were published related to fpocket, all of
which are part of this thesis. The original fpocket paper is often cited (30
citations in Google scholar) and stated as highly accessed in BMC Bioinfor-
matics. The method is also shown to still perform well in recently published
benchmarks.
The article on druggability, that appeared in J Med Chem in summer 2010 had
probably the highest impact in literature. The paper was in the Top 5 most
accessed papers of the journal in Q3 of 2010. The importance of the contribu-
tion to the field made by that paper has also recently been acknowledged in
a review published by a group at Pfizer around Enoch Huang (http://www.
sciencedirect.com/science/article/pii/S1367593111000895). Here, this
work was cited as being of outstanding interest to the field and the importance
of collaborative data curation was highlighted, as well as the importance of
polar atoms in druggable cavities.

Druggability predictions

• A novel data-set for training and validating structure based druggability
methods has been derived

• A collaborative web-based platform called Druggable Cavity Directory
was proposed to further develop and discuss the data-set with the com-
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munity

• For the first time properties of polar atoms in binding sites are related
to druggability. Polar atoms were found to make themselves available in
druggable binding sites, although they are generally in an apolar envi-
ronment

• A novel druggability score has been trained on the newly established data-
set. This score was validated and compared to commercial state-of-the
art prediction software

• The resulting score was implemented into the fpocket project and is dis-
tributed free of charge

Structure kinetics relations

• A special type of polar atoms was discovered to potentially play a central
role in protein-ligand binding kinetics. These almost buried polar atoms
(ABPAs) were found to act as kinetic traps on the protein surface

• A simple rule was derived saying that if the surface area of the polar atom
is in the range of 2 to 10 Å and ΔA is negative then the atom is likely to
behave as kinetic trap in apolar environments. This rule can be seen as
the first general structure kinetic relationship.

• The concept was then validated on a concrete example of ligand opti-
misation. Two pairs of known HSP90 binders were analysed for their
interaction with an ABPA in the binding site. It was shown that the
interaction with the ABPA improves residence time of the ligand. Fur-
thermore shielding an interaction with an ABPA is shown to be beneficial
for the stability of the compound.

Protein pocket prediction on conformational en-
sembles

• A new protocol was developed to identify and characterise cavities on
conformational ensembles of proteins

• The program called MDpocket is shown to produce visually easy to in-
terpret pocket frequency and density maps

• Application use-cases are shown for transient channel predictions on Myo-
globin MD trajectories. MDpocket is able to detect stable and transient
channel openings

• The method is also shown to be of usefulness in the selection of protein
conformations for ensemble docking. Here the mean local hydrophobic
density of a cavity was shown to be predictive of a putative outcome of
ligand docking on a given receptor conformation
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• MDpocket is included in the fpocket project and is thus freely available

The pocket database & the pocketome

• A PDB wide cavity database was constructed. This database contains
all pockets identified with fpocket, as well as their properties

• Supplementary data-sources were integrated to complete the pocket database.
These sources include Uniprot, Kegg, PISA and PDB to Uniprot map-
pers.

• A protocol was derived to retrieve automatically druggable cavities on
protein-protein complexes. These pockets are now further investigated
for their ability to bind protein-protein interaction stabilisers.

• A comprehensive GUI was developed. This interface allows easy and
intuitive navigation in the pocket database.

• A novel pocket comparison method was developed. This method repre-
sents the cavity as an abstract ensemble of interaction feature pairs.

• The pocket comparison method was validated for the first time on au-
tomatically detected pockets. It is shown to be very efficient and can
be used to screen the whole pocket database, representative of the whole
PDB.

• The method is shown to significantly enrich comparison results with sim-
ilar binding sites.

• An all against all pocket comparison was performed on the whole pocket
database. The result of this comparison was used to the derive the pock-
etome, relating similar pockets to each other and to known ligands

• Last, two promising examples of possible applications of the pocketome
are shown

• The pocketome will be published free of charge and can be visualised in
state-of-the art systems biology software Cytoscape.
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*equal contribution, BMC Bioinformatics, 2009, 10(168)



BioMed Central

Page 1 of 11
(page number not for citation purposes)

BMC Bioinformatics

Open AccessSoftware
Fpocket: An open source platform for ligand pocket detection
Vincent Le Guilloux†1, Peter Schmidtke†2 and Pierre Tuffery*3,4

Address: 1ICOA – Institut de chimie organique et analytique – UMR CNRS 6005, Div. of chemoinformatics and molecular modeling, University 
of Orléans, Orléans, France, 2Dpto Fisicoquimica, Fac Farmacia, Univ Barcelona, Barcelona, Spain, 3Molécules Therapeutiques in silico, INSERM, 
UMR-S 973, University Paris Diderot – Paris 7, Paris, France and 4Ressource Parisienne en Bioinformatique Structurale, University Paris-Diderot, 
Paris, France

Email: Vincent Le Guilloux - vincent.le-guilloux@univ-orleans.fr; Peter Schmidtke - pschmidtke@mmb.pcb.ub.es; 
Pierre Tuffery* - pierre.tuffery@univ-paris-diderot.fr

* Corresponding author    †Equal contributors

Abstract
Background: Virtual screening methods start to be well established as effective approaches to
identify hits, candidates and leads for drug discovery research. Among those, structure based virtual
screening (SBVS) approaches aim at docking collections of small compounds in the target structure
to identify potent compounds. For SBVS, the identification of candidate pockets in protein
structures is a key feature, and the recent years have seen increasing interest in developing
methods for pocket and cavity detection on protein surfaces.

Results: Fpocket is an open source pocket detection package based on Voronoi tessellation and
alpha spheres built on top of the publicly available package Qhull. The modular source code is
organised around a central library of functions, a basis for three main programs: (i) Fpocket, to
perform pocket identification, (ii) Tpocket, to organise pocket detection benchmarking on a set of
known protein-ligand complexes, and (iii) Dpocket, to collect pocket descriptor values on a set of
proteins. Fpocket is written in the C programming language, which makes it a platform well suited
for the scientific community willing to develop new scoring functions and extract various pocket
descriptors on a large scale level. Fpocket 1.0, relying on a simple scoring function, is able to detect
94% and 92% of the pockets within the best three ranked pockets from the holo and apo proteins
respectively, outperforming the standards of the field, while being faster.

Conclusion: Fpocket provides a rapid, open source and stable basis for further developments
related to protein pocket detection, efficient pocket descriptor extraction, or drugablity prediction
purposes. Fpocket is freely available under the GNU GPL license at http://fpocket.sourceforge.net.

Background
In the recent years, in silico structure based ligand design
(SBLD) has become a major approach for the exploration
of protein function and drug discovery. It has been proven
to be efficient in the identification of molecular probes, in

investigation of molecular recognition, or in the identifi-
cation of candidate therapeutic compounds (see for
instance [1,2]). Whereas SBLD encompasses a wide range
of aspects, one approach of importance is structure based
virtual screening (SBVS). In SBVS, one searches, given the
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structure of a protein, to dock candidate compounds to
identify those likely to bind into a candidate ligand bind-
ing site (see for instance [3] and references included).

The identification and characterization of pockets and
cavities of a protein structure is a key issue of such process
that has been the subject of an increasing number of stud-
ies in the last decade. Several difficult aspects have to be
considered among which: (i) the candidate pocket identi-
fication itself [4-26]. Here, one needs methods to identify
and delimit cavities at the protein surface that are likely to
bind small compounds. (ii) pocket ranking according to
their likeliness to accept a small drug-like compound as
ligand, for instance. Since often several pockets are
detected at a protein surface, it is necessary to have some
characterization of them in order to select the relevant
ones. Although the largest pocket tends to frequently cor-
respond to the observed ligand binding site (e.g. [18]),
this rule cannot be generalised. Different studies have
tackled this problem, see for instance [18,19,21,27,28]. It
has in particular been shown that the use of evolutionnary
information such as residue conservation helps re-ranking
the pockets [19,21]. (iii) Last, but not least, there is often
an adaptation – the so called induced fit – of the pocket
geometry to the formation of a complex with the ligand
(see for instance [29-32]). This last point creates several
issues in terms of pocket detection – the pocket could or
could not be properly detected in absence of ligand – and
in terms of scoring since scoring functions are strongly
dependent on the quality of the pocket identification and
delimitation, but also are sensitive to conformational
changes. Here, we focus on the primary but central aspect
of candidate pocket identification from structure.

It is not easy to summarise the diversity of approaches that
have been proposed so far for candidate pocket identifica-
tion. Roughly, some are based on pure geometric analysis
of the surface of the protein [4-15,18,20,22-26], whereas
some others involve energy calculations [16,17]. Another
way of distinguishing between the various approaches is
to consider the detection algorithms. These can be classi-
fied as grid-based, and grid-free approaches. Grid based
approaches [4,11,15-17,19,20,23] cover the proteins with
a 3D grid and then search for grid points that are not situ-
ated within the protein and that satisfy some condition.
For instance, POCKET [4], and the derived LigSite [11]
search for protein-solvent-protein (PSP) events on the
grids to identify pockets as positions enclosed on both
sides by the protein. Pocket-Picker [23] uses a buriedness
index to identify clusters of grid points likely to corre-
spond to ligand binding pockets. Laurie and Jackson [17]
position a methyl probe at grid points and calculate an
interaction energy with the protein. An et al. [16] calculate
a grid potential map of the Van der Waals force field using
a carbon atom probe. Grid free approaches encompass
(non exhaustive) probe (or sphere) based approaches as

well as methods using the concepts of Voronoi diagrams.
Sphere or probe approaches are based on the positioning
of probe spheres at protein surface and to identify clusters
of spheres having some property representative of candi-
date pockets. SURFNET [8,21] positions gap spheres
between any pairs of atoms, reduces their radii so that
they do not intersect any atom, and retains spheres with a
radius more than a given threshold. PASS coats the pro-
tein using small probes positioned from unique triplets of
atoms, and then identifies candidate pockets using a "bur-
ial count" – a number of protein atoms within a distance
of the probe – to exclude convex parts of the surface. Iter-
ative coating of remaining buried parts further allows the
detection of "active site points" that represent the centres
of potential pockets. More recently, both Nayal et al. and
Kawabata & Go have proposed approaches using two dif-
ferent probe sizes to identify cavities. Small probes are
used to identify a collection of positions at protein surface
whereas large probes are used as a means to select the
small probes located in depressions at protein surface.
Among approaches related to Voronoi diagrams, CAST
[13] and APROPOS [10], extract from the Delaunay trian-
gulation of the convex hull the so called alpha-shape – a
subset of the triangulation from which Voronoi vertices
and edges outside the molecule are omitted. The commer-
cial package SiteFinder [33] uses the concept of alpha
spheres – spheres that contact four atoms and do not con-
tain any atom (see concepts) – to identify cavities. Finally,
Kim et al. [26] have recently proposed another approach
based on the identification of "pocket primitives" from
Voronoi diagrams.

In terms of availability, several of these approaches can be
accessed via web servers (e.g. [34-36]), but very few pack-
ages are available for distribution. Some have been
released as binaries (e.g. [14]), and for instance only the
recently released PocketPicker [23] and LigSite(csc) [19]
are available as open source softwares. There are a lot of
research topics for which the availability of a free method
can be of interest. Concerning this precise field, a part
which is of major interest is development of scoring func-
tions. These functions enable ranking of cavities when
compared to each other. They are trained usually on
descriptors of the binding pocket. Next, one has to assess
rapidly the performance of these scoring functions. Still
today, extraction of relevant pocket descriptors as well as
assessment of scoring functions is an issue. One generally
has to develop automatisation protocols for assessment.
Available free tools performing these tasks might fasten
discovery in computational binding site and drugability
prediction. Besides, there are several scopes in which flex-
ible software adaptation from source code might be
required. For instance, the search for catalytic site pockets
might differ from the search for protein-protein interac-
tion effectors or carbohydrate-protein binding sites.
Finally, speed remains an issue, in a context where the
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pocketome size keeps increasing. In a general manner, the
user should also be able to freely complexify the algo-
rithm, in order to improve its performance and repropose
the modifications freely to the scientific community.
Thus, fast, accurate and high performing development
based on a community willing to share their improve-
ments might lead to a leading edge software package for
pocket identification. PocketPicker makes one step in this
direction. However, it was developed in Python and is
specially adapted for visual purposes within PyMol. Thus
PocketPicker seems adapted for punctual visual pocket
detection, but not really adapted for large scale evalua-
tions, especially due to execution speed limitations.

In this paper, we introduce a free pocket detection soft-
ware called fpocket. It is based on the alpha sphere theory,
an approach that relies on Voronoi tessellation that is
among others the basis of the commercial software Site-
Finder available within MOE from Chemical Computing
Group [33]. It has several inherent advantages such as
computational efficiency, the direct identification of the
atoms of the proteins involved in a pocket, and promising
possibilities to combine pocket detection and docking
using a unified framework [37]. Using this approach, we
propose a modular package to organise large scale pocket
detection, descriptor extraction and benchmarking.

Implementation
Concepts
Fpocket relies on the concept of alpha spheres, introduced
by Liang and Edelsbrunner [13] and also used by Chemi-
cal Computing Group in the SiteFinder software [33].

Briefly, an alpha sphere is a sphere that contacts four
atoms on its boundary and contains no internal atom. By
definition the four atoms are at an equal distance (sphere
radius) to the alpha sphere centre. Alpha sphere radii
reflect the local curvature defined by the four atoms: 4
atoms in a plane would correspond to an alpha sphere of
infinite radius, and conversely, 4 atoms packed at the apex
of a tetrahedron would lead to a value of radius close to
that of the Van der Waals radius. For a protein, very small
spheres are located within the protein, large spheres at the
exterior, and clefts and cavities correspond to spheres of
intermediate radii. Thus, it is possible to filter the ensem-
ble of alpha spheres defined from the atoms of a protein
according to some minimal and maximal radii values in
order to address pocket detection. In practice, alpha
sphere identification can be related to Voronoi decompo-
sition of space: the centre of alpha spheres correspond to
Voronoi vertices – points at which Voronoi regions inter-
sect.

Once having identified a filtered ensemble of alpha
spheres, another property of interest is that candidate
regions of interest such as clefts at protein surface have

larger occurrence of alpha spheres. Thus, the search for lig-
and pockets can be turned as the search for clusters of
alpha spheres of proper radius. Finally, the knowledge of
the spheres also comes with the identification of the
atoms of the protein involved. It is thus easy to type the
spheres according to some properties depending on the
atomic types – such as for instance hydrophobicity – in
order to filter the clusters. Conversely, knowing a pocket,
it is also possible to extract properties for the atoms defin-
ing it.

Algorithm
The fpocket core can be resumed by three major steps.
During the first step the whole ensemble of alpha spheres
is determined from the protein structure. Fpocket returns
a pre-filtered collection of spheres. The second step con-
sists in identifying clusters of spheres close together, to
identify pockets, and to remove clusters of poor interest.
The final step calculates properties from the atoms of the
pocket, in order to score each pocket.

Voronoi tessellation and alpha sphere detection
Voronoi tessellation is performed using the qhull package
and more precisely the program qvoronoi [38]. Qhull's
source code is freely available on http://www.qhull.org.
Fpocket submits the heavy atom set for Voronoi tessella-
tion to Qhull. In return Fpocket receives a set of coordi-
nates of Voronoi vertices, atomic neighbours and vertex
neighbours. This list of Voronoi vertices is then pruned
according to two parameters: a maximum size of alpha
spheres and a minimum size. Pruning the alpha spheres
set by this maximum size and minimum size enables the
elimination of solvent inaccessible alpha spheres and too
exposed alpha spheres. Finally, only alpha spheres
defined by zones of tight atom packing are retained and
all the other alpha spheres are discarded.

Alpha spheres are then labelled according to the atom
type they contact. Fpocket defines alpha spheres as apolar
when they are contacting at least 3 atoms with a low elec-
tronegativity (< 2.8), typically carbons and sulfur in pro-
teins. Subsequently, polar alpha spheres contact 2 or more
polar atoms (typically oxygen or nitrogen).

Clustering of alpha spheres
This step has to be performed on several tenth of thou-
sands of alpha spheres. Three different clustering steps are
applied to the set of alpha spheres. The first one is a rough
segmentation pass. In order to perform this step in a rea-
sonable calculation time, fpocket uses the neighbour lists
output from Qhull that indicates Voronoi vertices con-
nected to each other by an edge. Fpocket checks if these
interconnected vertices are close to each other and identi-
fies a first set of clusters using a simple distance criterion.
After this first pass, all clusters having only one sphere –
generally large spheres situated at the protein surface – are
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removed, and the centre of mass of each cluster is calcu-
lated. The next clustering step consists in the aggregation
of clusters having proximate centres of mass. This way,
small clusters of alpha spheres, especially on the surface
are aggregated into one single cluster. Reducing complex-
ity of an alpha sphere cluster on one single barycentre pro-
vides a rapid approach in order to group small clusters
together, without performing a loop on all alpha spheres.
Finally, a step based on a multiple linkage clustering
approach is carried out in order to perform final fine clus-
tering. During this step, all vertices of one cluster are com-
pared to vertices of another cluster. If a certain number of
alpha spheres of one cluster are near a certain number of
alpha spheres of another cluster, both clusters are merged
together.

After these three clustering steps, a pruning of uninterest-
ing alpha sphere clusters can be performed. At this stage,
small and essentially polar clusters can be dropped from
the protein surface. User defined minimum number of
alpha spheres and apolar spheres are used in order to
influence removal of rather hydrophilic or small putative
binding pockets. Note that this facility proposed to users
is not used in the present study.

Characterization and ranking of the pocket
Last, clustered pockets were characterised in order to rank
pockets according to their ability to bind small molecules.
Note that the current ranking of pockets does not reflect
drugability. It simply reflects the putative capacity of the
pocket to bind a small molecule, that might be drug-like,

but might also be a sugar, cofactor or coactivator. This
rather basic but successful scoring scheme was derived
using Partial Least Squares (PLS) fitting to some of the cur-
rently implemented pocket descriptors in fpocket.

Core programs
The fpocket package is made of three components:
fpocket (Finding pockets) to perform the pocket identifi-
cation, as described previously. Tpocket (Testing pockets)
is provided in order to organise the benchmarking of the
pocket detection algorithm over collections of structures,
and dpocket (Describing pockets), designed to extract
descriptors from collection of pockets from multiple
structures. A flowchart of each is reported figure 1. Note,
that the core of tpocket and dpocket is fpocket, exactly the
same as the standalone fpocket program. Simply a layer of
large scale statistical analysis was added to these two pro-
grams, in order to facilitate high throughput pocket detec-
tion and assessment of scoring performance.

Fpocket
Figure 1a illustrates the workflow of Fpocket (finding
pockets), as well as the structure of the input and the out-
put. This program will take as input a protein structure
(PDB format) or a list of pdb files and return information
about candidate pockets, numbered by rank. Fpocket will
usually discard all atoms of the input file tagged as hetero
atoms (including solvent and ligands). Nevertheless,
cofactors like hemes should be kept during cavity detec-
tion, as they are usually part of the functional unit of a
protein. Thus, fpocket maintains a list of cofactors

Fpocket (A), Tpocket (B) and Dpocket (C) flowchartsFigure 1
Fpocket (A), Tpocket (B) and Dpocket (C) flowcharts.

A B C
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accepted as part of the protein during pocket detection.
The algorithm is controlled by several parameters that can
be adjusted by the user:

- Alpha sphere filtering parameters are related to the
minimum (resp. maximum) size of alpha spheres: the
minimum (resp. maximum) size an alpha sphere
might have during alpha sphere docking on Voronoi
vertices. Alpha spheres beneath (resp. above) this size
are discarded from clustering.

- Alpha sphere clustering parameters: Three parame-
ters control the three consecutive clustering steps of
fpocket: (i) the maximum distance between Voronoi
vertices for the 1st clustering step, (ii) the maximum
distance between two cluster centroids for clustering
step 2, and (iii) the maximum distance between two
alpha sphere centres (Voronoi vertices) for the multi-
ple linkage clustering step.

- Pocket pruning parameters: It is controlled by three
parameters: (i) The minimum number of alpha
spheres in a putative binding pocket, to prune too
small clusters, (ii) the minimum ratio of apolar alpha
spheres over the total number of spheres to prune too
hydrophilic pockets – currently not in use.

On exit, fpocket will return different files containing
information about the identified pockets. First, it will
return a PDB file containing all atoms used for pocket
detection from the input PDB file (ligands are discarded
on input unless explicitely notified), supplemented by the
positions of all alpha sphere centres (Voronoi vertices)
retained after pocket detection. Voronoi vertice positions
are added as HETATM in the PDB file. The residue name
associated to these vertices is STP (for SiTePoint). Residue
numbers are given according to the pocket numbering
and thus ranking. One can distinguish two types of Voro-
noi vertices (encoded by the atom type column of the PDB
convention) in the PDB output: (i) APOL, for apolar ver-
tices and (ii) POL, for polar vertices. Second it returns a
file using the PQR convention that contains only the
alpha sphere centres and radii. Again, residue numbers
correspond to pocket ranks. Third, a file containing statis-
tics about each pocket is provided. It lists different charac-
teristics and scores of pockets identified on the surface of
the protein. Fourth, scripts are provided, intending to
render easier visualisation of putative binding pockets
using PyMol or VMD. Finally, a per pocket series of files is
also provided. For each pocket, a PDB file containing only
the atoms defining the pocket and a PQR containing only
the alpha spheres of the pocket are written.

Tpocket
Tpocket (Testing pockets) has been designed as a frame-
work for the evaluation of the performance of the pocket

detection algorithm and the accuracy of the implemented
scoring function: Users trying to implement their own
scoring functions can easily assess their performance
using tpocket. The general workflow of this framework is
presented on figure 1b. Generally one wants to assess a
scoring function on a collection of PDB structures for
which the binding site is known. In addition, it can be of
importance to compare the performance of pocket detec-
tion for both apo and holo forms of the same protein.
Tpocket can manage both constraints using an input list
file, where each line should contain the information
about one pair of related apo/holo structures:
"path_to_the_apo_structure
path_to_the_bound_structure name_of_the_ligand " and
the name of the ligand is specified using the same 3 letter
code (residue name) as in the PDB file. Note that when
assessing the performance of fpocket using a set of apo/
holo structures, the two forms should be superposed prior
to the analysis.

The tpocket output is split up in two files. First, global per-
formance for all available evaluation criteria described
later is provided in a simple text file. Second, more
detailed information about pocket detection is written in
a separate text file for each structure, including the total
number of pockets retained, all evaluation criteria imple-
mented, the rank of the actual pocket detected by fpocket
for each criteria, and some other values such as ligand and
pocket volume evaluation, number of atoms in the
pocket... Among other things, this file allows the identifi-
cation of structures for which the fpocket detection failed
(either because the pocket found has a low rank or was
not found at all) for each evaluation criteria.

The fpocket prediction performance presented in this
paper are based on tpocket results. Consequently, besides
careful manual inspection of pocket evaluation results,
they were further validated by an external evaluation
script. A SVL (Scientific Vector Language) script was devel-
oped using the Moe Software from the CCG. This script
evaluates fpocket performances based on fpocket output
only. Tpocket and the SVL script gave both exactly the
same result.

Dpocket
Dpocket (Describing pockets) is designed to organise
descriptor collecting from a series of co-crystallized com-
plexes. It accepts a list of structures to analyse using a file
containing the information about one structure per line,
on the form:

"path_to_the_structure name_of_the_ligand1"

For each structure, dpocket extracts several simple descrip-
tors using atom, amino acid and alpha sphere informa-
tion. Currently, the set of descriptors implemented is
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related to (i) alpha spheres (number, polarity, density, ...)
(ii) protein atoms (electronegativity, ...) (iii) residues (res-
idue type occurrences, hydrophobicity, ...) (iv) volume.
Additionally, some of these descriptors are normalised
between 0 and 1 to allow comparison between pockets of
different proteins. Although many of these descriptors are
basic, users can easily implement more sophisticated
analysis of pocket properties. Besides, the current scoring
function shows impressive performance and is based on
only 5 of these simple descriptors.

Dpocket provides three different output files. First,
descriptors extracted from alpha spheres next to the lig-
and, are written in a separate text file. Second, descriptors
for correctly identified binding pockets are extracted. Last,
descriptors for other pockets found by fpocket are
extracted in a separate text file. Detailed information on
each descriptor used in the current version can be found
in the full documentation.

Parameter optimisation
In order to determine optimal parameters for fpocket, a
data set based on the protein test set used by An et al. in
2005 [16] for the evaluation of PocketFinder was used.
The set described by An et al., composed of 5616 protein
ligand complexes and 11510 apo forms is rather redun-
dant, despite the fact that 5616 complexes are composed
of the combination of 4711 unique proteins and 2175
unique ligands. The structural redundancy was eliminated
allowing a maximum sequence identity of 50% between
different proteins of this set. The PDB blastclust file, avail-
able on the PDB website was used for this purpose ftp://
ftp.wwpdb.org/pub/pdb/derived_data/NR/blastclust/
pdbS50bF.out. This first filter resulted in 307 proteins that
we further validated by hand, in order to perform training
on well defined binding pockets. Monomers and homo-
multimere containing more than one single binding
pocket for the same ligand were removed. No particular
filters were applied to the ligand type, as the druglike con-
cept is still a matter of debates. During training, all hetero
atoms were dropped from the PDB structure and pocket
detection was performed not taking into account hydro-
gen atoms. Only structurally important HETATM record-
ings, like hemes, zinc etc. were kept in order to detect a
"biologically" available binding pocket. A complete list of
kept HETATM recordings is available in fpocket manual.

Currently, fpocket contains standard parameters deter-
mined by an semi combinatorial/empirical optimisation
step using this training set. Basically, the fpocket parame-
ters allow enough flexibility to obtain many small pockets
as well as few very large pockets. During this optimisation,
our goal was to clearly identify the pockets using two
main pocket identification criteria (e.g. a good ligand cov-
erage and a low distance value according to the Pocket-

Picker distance criterion). Pockets found by the algorithm
should be neither too small nor too large. To do so, it was
intended to obtain a good relative overlap (e.g. size of the
pocket found by fpocket/size of the actual pocket). Addi-
tionally, we attempted to minimise the number of pockets
returned by the algorithm. The resulting fpocket standard
parameter values are an alpha sphere minimum (resp.
maximal) size of 3.0 (resp. 6.0) Å, a minimum connection
distance 1 (resp. 2, 3) of 1.73 (resp. 2.5 and 4.0) Å, a min-
imum number of alpha spheres of 35.

Scoring function
Fpocket currently uses a simple 3 component PLS derived
scoring function. This scoring function makes use of the
ligand coverage as the dependant variable, and of the five
following descriptors implemented in dpocket as inde-
pendent variables: (i) the normalised number of alpha
spheres, (ii) the normalised mean local hydrophobic den-
sity, (iii) the normalised proportion of apolar alpha
sphere, (iv) the polarity score (sum of polarity over all
amino acids involved in a given pocket using a binary
scheme, e.g. 1 for polar, 0 for non polar) and (v) the alpha
sphere density, defined as the mean value of all alpha
sphere pair to pair distances in the binding pocket.

Note that the normalisation here means that the basic
descriptor was scaled to a 0–1 range, so that for example
the largest and the smallest pocket within a given protein
would have a normalised number of alpha spheres of 1
and 0, respectively.

The model was trained using the dpocket output statistics
run on the training dataset previously defined. No addi-
tional normalisation of descriptors (such as mean cen-
tring) was used as no difference was shown in terms of
prediction accuracy.

Site identification assessment
In order to assess pocket prediction performance, one has
to compare identified pockets to the real binding pocket.
Different approaches exist in order to do so. Fpocket
implements different methods to assess whether a bind-
ing pocket was found or not.

PocketPicker criterion (PPc): This is the criterion used
in the PocketPicker [23] study. Here the geometric
centre of the pocket is calculated. If the position of this
centre is within 4 Å from any atom of the ligand, the
binding site is considered correctly identified.

Mutual Overlap criterion (MOc): This criterion con-
siders a pocket successfully identified if at least 50% of
the ligand atoms lies within 3 Å of at least one alpha
sphere, AND if at least 20% of the pocket alpha
spheres lie within 3 Å of the ligand. In other words, the
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first condition ensures that the ligand is at least half
covered by the pocket, and the second condition
allows the pocket to be quite large, but not too much
as a significant proportion of probe still has to lie next
to the ligand. Note that pockets larger than the effec-
tive region of interaction with the ligand have to be
considered since several ligands may bind to different
regions of the pocket (see Figure 2).

The MOc is introduced for two main reasons: (i) to further
validate fpocket and see if it's performance remains
acceptable using a rather different evaluation criterion
and (ii) to address two issues related to the PPc.

Firstly, PPc does not ensure that a reasonable fraction (e.g.
one half) of the ligand lies within the pocket identified.
For example, a small cluster of probes (alpha spheres for
fpocket) next to the ligand could be considered as a suc-
cessful identification of the pocket even if none of the lig-
and atoms actually lies within the pocket volume.
Secondly, large pockets generally cannot be considered as
successfully identified using this criterion. Although it
ensures that very large pocket (e.g. the whole protein), are
considered as failure, we believe that this criterion is too
restrictive, especially (i) when the ligand is small and/or
not located at the centre of the pocket found, (ii) when the
pocket is simply very large (large protein, multimer...) and
(iii) when the pocket does not have a simple globular
form.

Figure 3 illustrates differences between the two criteria.
Here, pockets are considered as successfully (1esa PDB
entry) and unsuccessfully (1w1p PDB entry) identified by
PPc, respectively. However, for the 1esa case, one cannot
consider the pocket as successfully identified, as only a
small part of the ligand is covered by the pocket; the MOc
considers this case as a failure since less than 50% of the
ligand is covered by the pocket. For 1w1p, PPc fails,
mainly because the ligand is not located at the centre of
the pocket, and because the pocket is rather large; the
MOc considers this case as a successful one, as the ligand
is covered at 100% and 25% of the alpha spheres lie next
to the ligand.

Results
Evaluation of pocket prediction accuracy
Table 1 presents fpocket performance on 3 different data
sets. The first one consists in a collection of 48 proteins
[23] already used in a previous study for which results of
several methods on the bound and unbound conforma-
tions are reported. In order to keep the comparison valid,
we haven't modified this dataset, although we identified
several cases of multiple binding sites that should be
removed in a rank-based evaluation. The second one was
derived from a contribution by Alan C Cheng & al. [39].

They used a set of 63 structure representing 27 pharma-
ceutical targets, including 23 targets with marketed drugs
or drugs in Phase II or above. We have selected randomly
one protein-ligand complex for each of these targets to
avoid redundancy, and the same filters as those used or
the parameter optimization set were applied, resulting in
a set of 20 pdb files. Finally, the recently defined Astex
diverse set [40] was used. This dataset consists of 85
diverse high resolution protein-ligand crystal structures
retrieved from the PDB using newly developed analysis
and classification techniques. This last dataset has been
built using the following filters: (i) the ligand is drug-like;
23 of the ligands are approved drugs and 6 are currently in
clinical trials (ii) no particular target is represented more
than once (iii) the proteins are all drug discovery or agro-
chemical targets (iv) only high quality structures are
included for which the ligand electron density supports
the entire ligand binding mode (v) no structures are
included where the ligand is in contact with protein atoms
of crystal symmetric units After applying our filtering pro-
cedure, 82 proteins were kept. For sake of comparison,
results obtained using the Pocket Picker criterion (PPc)
are first discussed. From the proteins in complex with the
ligand, fpocket correctly identifies 83% (resp. 92%) of the
actual pockets within the top 1 and top 3 ranked pockets,
a performance better than other approaches. From the
unbound conformations of these proteins, the corre-
sponding results are of 69% and 94%, respectively. At
rank 1, similarly to other approaches, fpocket perform-
ance decreases, but remains however better than all meth-
ods evaluated on this dataset, except LIGSITE (csc) that
shows a slightly better performance (2%) and Pocket-
Picker for which fpocket reaches similar score. At rank 3,
fpocket outperforms by far all other approaches except
possibly LIGSITE (csc) for which no result at this rank is
available. This would indicate that fpocket's pocket detec-
tion is particularly efficient, and that further filtering on
pocket drugability (for instance) could be used to re-rank
the top 3 pockets. In order to test the robustness of fpocket
depending on the dataset, we also present the results of
fpocket and Pocket Picker on two other sets. At rank 1, we
observe for fpocket scores of 75 and 67% on the Cheng
and Astex diverse sets, respectively. Fpocket scores better
than Pocket Picker by 5 and 8% respectively. In addition,
again one could note that the fpocket performance at rank
3 remains by far higher.

In Table 1 are also listed the fpocket performances using
the mutual overlap criterion (MOc) introduced in this
paper. Compared to the PPc, no significant differences are
observed in terms of performance measures for the Pocket
Picker set, but slightly smaller (resp. better) performance
measures on the Cheng (resp. Astex diverse) set. However,
on average, the performance at rank 3 remains more sta-
ble, close to 90% using the MOc. Looking more in detail,
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the 5% difference of observed for the Cheng set only rep-
resent one protein, due to the low number of structures in
this set. The Astex diverse set contains 6 proteins for which
the MOc and PPc disagree, and for all of them, the MOc
detects the pocket correctly while the PPc does not. Pocket
size seems to be the major issue. In the Astex dataset, the
mean number of atoms per pocket is 91 (defined as all
unique atom contacted by alpha spheres within the
pocket). For the 6 cases mentioned previously, this
number ranges between 116 and 281. This illustrates a

better behaviour of the MOc on larger pockets for which
PPc seems unadapted – see methods.

Examples of successful identification of binding sites
Figure 2a shows the successful identification (rank 1) of
the acarbose binding pocket on alpha amylase (PDB code
7taa). Acarbose is represented in coloured surface and the
fpocket identified binding pocket as transparent hull
around the ligand. This rather long and large pocket has a
buried and a more solvent exposed part. Despite this het-
erogeneity within the whole binding pocket, fpocket iden-
tifies the whole pocket with a reasonable pocket volume
around the ligand.

On figure 2b another interesting feature about fpocket is
shown. Here the binding pocket of HIV1 protease is
depicted in complex with the Dupont Merck inhibitor
DMP450 (PDB code 1dmp). For representative reasons
the protein structure was omitted and only the surface of
the pocket is shown (alpha sphere surface) with the
embedded ligand. The small interconnected spheres are
the alpha sphere centres. Orange alpha spheres are polar
alpha spheres, white alpha spheres are apolar. The same
colour code was used for the colouring of the pocket sur-
face. Here, one can notice that the positions of alpha
sphere centres follow surprisingly well the topology of the
ligand (grey). Note, however, that this is not a general
property of Voronoi vertices. Next, physicochemical prop-
erties of the ligand are reflected by the sourrounding bind-
ing pocket. The pocket identified by fpocket seems far
longer than the actual binding position of the ligand.
However other drug like molecules (yellow) are known to
make interactions also with residues situated on the edge
of the pocket (top and bottom here).

These examples show that fpocket is able to detect solvent
exposed and very buried binding sites, that bind ligands
of a very different nature (oligosaccharide, drug)

Last an example of cyclooxygenase-2 indomethacin com-
plex (PDB code 4cox) is depicted on figure 2c. The bind-
ing pocket identified using PocketPicker is represented as
yellow halo. As red halo one can find the fpocket identi-
fied binding pocket. Both binding pockets include the
actual space of the pocket occupied by the ligand, but the
PocketPicker yields a far bigger pocket, including sour-
rounding channels.

Examples of unsuccessful identification of binding sites
Figure 2d depicts one example of a binding site that was
not correctly identified according to the PPc (see meth-
ods). These structures are part of the PocketPicker data set.
Here the acetylcholinesterase active site gorge was success-
fully identified and ranked on the holo form (PDB code:
1acj). The pocket is represented as red envelope. The same
pocket on the apo form (PDB code: 1qif) depicted in yel-

Examples of pocket detection using fpocketFigure 2
Examples of pocket detection using fpocket. top left: 
Rank 1 pocket on the alpha amylase (7TAA). Acarbose in 
surface/coloured/opaque representation, the binding site is 
represented as yellow transparent hull. Alpha sphere centres 
are depicted as small red points. top right: Rank 1 pocket of 
the HIV1 Protease DMP450 complex (PDB Code: 1DMP). 
DMP450 is depicted in grey CPK representation and the 
binding pocket as transparent hull. Superposed are other 
known inhibitors (yellow) binding in the same pocket (PDB 
Codes: 1Z1H, 2UY0, 2P3B). Alpha sphere centres are 
depicted as small interconnected spheres. Alpha spheres and 
the pocket are coloured according to polar (orange) and 
apolar (white) character. bottom left: Cyclooxygenase-2 
indomethacin binding site: (red) pocket identified by 
fpocket,(yellow) pocket identified by PocketPicker. bottom 
right: Acetylcholinesterase rank 1 predicted binding pocket 
by fpocket. Red: pocket of the holo structure with tacrine 
(1ACJ), yellow: pocket of apo structure (1QIF). Pockets are 
represented as a hull resulting from the union of the alpha 
spheres.
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low in figure 3a shows a completely different shape com-
pared to the holo form. This is due to the fact, that the
binding pocket is very buried and upon closure of the
binding site entry a longer binding pocket was identified.
According to the PocketPicker criterion fpocket did not
identify well the pocket in the apo form, although the
identified binding pocket overlaps nearly completely the

previously identified holo pocket. This example shows the
limits of the criterion used by PocketPicker to distinguish
correctly identified binding sites from others. The MOc
overlap criterion presented here and used in similar ways
in other studies shows better accordance to visual results
than the simple distance criterion used by PocketPicker.

Table 1: Fpocket performance

Dataset Algorithm Rank 1 Rank 3

unbound bound unbound bound

Pocket Picker
Fpocket 69 (67) 83 (85) 94 (92) 92 (92)

PocketPicker 69 72 85 85
LIGSITE(CS) 60 69 77 87

LIGSITE 58 69 75 87
CAST 58 67 75 83
PASS 60 63 71 81

SURFNET 52 54 75 78
LIGSITE(CSC) 71 79 - -

Cheng et al.
Fpocket - 75 (70) - 95 (90)

PocketPicker - 70 - 80

Astex Diverse set
Fpocket - 67 (73) - 82 (88)

PocketPicker - 59 - 67

Comparison of results obtained for fpocket and other approaches. For sake of comparison, scores are reported using the PPc, and we present 
scores at rank 1 and 3 (true pocket in the top 3 pockets proposed by fpocket). For the Pocket Picker dataset, results are taken from [23] for all but 
fpocket. For fpocket, numbers within parentheses correspond to scores obtained using the MOc.

Pocket detection limitsFigure 3
Pocket detection limits. Left: Example of PDB entry 1esa. A large part of the ligand is outside the pocket detected by 
fpocket. Despite this fact, a criterion such as the PocketPicker criterion would accept the pocket as successfully identified, and 
the Mutual Overlap criterion not. Right: Example of PDB entry 1w1p. The identified pocket is large compared to the ligand. Its 
centre of mass is too far from any atom of the ligand for the Pocket Picker criterion to accept it as successfully identified. Lig-
ands are represented using a ball and sticks representation. Alpha sphere centres are represented as small spheres, and their 
envelope is depicted in brown.

AA B
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Computational performance
The algorithm was assessed on a Intel Celeron M 1.6 Ghz,
1 Gb RAM architecture and performed roughly one struc-
ture per less than one to three seconds, depending on the
size of the structure. For the sake of completeness, per-
formance of LigSite and PASS was compared on the same
structures. LigSite performed pocket detection on one
structure in 5 seconds, PASS in 4 to 5 seconds. Thus,
fpocket appears particularly well suited for large scale
evaluations and is situated among the fastest algorithms
in the field.

PocketPicker performs roughly one structure in several
hours of calculation depending on the size of the struc-
ture.

Conclusion
We have introduced fpocket, a new open source pocket
identification platform. Compared to other approaches of
the field, Fpocket performs well on state of the art data
sets. From the complexed protein conformations, fpocket
reaches the best performance at rank 1. On the ligand free
structures, similarly to other approaches, fpocket perform-
ance drops at rank 1, but is much better at rank 3, outper-
forming other approaches by more than 9%, opening the
door to further pocket drugability filtering approaches.
Interestingly, fpocket is among the fastest algorithms in
the field. This makes fpocket particularly well suited for
high throughput pocket detection and construction of
cavity databases. Next, fpocket comes with its underlying
programs, tpocket and dpocket, providing powerful
research tools for a large scale assessment of own pocket
scoring functions and properties of binding pockets,
respectively. Its open source character provides a useful
contribution to the scientific community willing to fur-
ther develop and research in the pocket identification and
specific molecular binding field.

Availability and requirements
Fpocket source code (Linux) is freely available under the
GNU GPL license at http://fpocket.sourceforge.net. The
required Qhull package is shipped and compiled together
with fpocket in the official fpocket release.
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1   INTRODUCTION  
Modern drug discovery starts with the selection of a target biological component, usually a 

protein, whose activity is associated with the condition for which a therapy is sought. Target 

selection involves a thorough revision of the biological and pathophysiological data, sometimes 

involving a target validation stage during which the therapeutic potential of the target is assessed 

[1]. By nature, the target selection and target validation processes focus on molecular biology 

aspects, but it must also consider the ability of drug-like molecules to bind and to alter the 

biological activity of the target (target druggability). Most known drugs act on a handful of target 

types (Fig. 1) and protein classification is often taken as an indication of druggability. However, 

such an approximation may lead to the exclusion of valid targets (e.g. certain protein-protein 

interactions) or to the prioritization of targets that turn out to be intractable; for instance, 50% of 

drug discovery programs targeting enzymes at GSK failed to produce viable leads [2]. The latter 

situation results in a major waste of resources, whereas the former leads to a loss of 

opportunities. Understanding and predicting when a target will be druggable is therefore of the 

utmost importance in pharmaceutical research. In the next two sections, the determinants of 

target druggability are discussed. We then proceed to present experimental and computational 

means to predict or assess this property. This is followed by the presentation of a test case that 

enables us to illustrate some of the concepts introduced. Finally, the main points are reviewed 

and a perspective is offered.  
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2   DRUGGABILITY: LIGAND PROPERTIES 
The physical and chemical properties of small organic molecules determine, to a large 

extend, their fate in a biological system. In the case of drugs, an adequate administration, 

distribution, metabolization and excretion (ADME) profile is essential to reach the site of action. 

Considering that oral administration is the most desirable route (and the most difficult to 

achieve) the properties of oral drugs have been thoroughly investigated and they set the gold 

standard for drug candidates. As initially proposed by Lipinski and co-workers, drug absorption 

and permeability are more likely for molecules with molecular weight below 500Da, LogP (a 

measure of lipophilicity) below 5, number of hydrogen bond acceptors less than 10 and number 

of hydrogen bond donors less than 5 [4]. The so-called rule of five has gained widespread 

acceptance and is supported by more recent and detailed studies that reinforce the idea that 

increased molecular weight or excessive lipophilicity are a handicap for oral drug candidates [5-

8]. As drugs must achieve tight binding (often below 10 nM), a high level of complementarity 

must exist between the ligand and the receptor. This usually requires that the latter wraps around 

the former, thus increasing the contact area. Considering the rules of molecular recognition, the 

physical and chemical properties of druggable binding sites must mirror those of drugs [9]. In 

summary, to be druggable, a binding site must consist of a surface that grants maximal shape 

complementarity (i.e. concave) and it must present a balance of polar and apolar features 

matching those of a drug-like ligand.  

3   DRUGGABILITY: LIGAND BINDING 
Most biomacromolecules have a tendency to interact with other organic molecules (proteins, 

nucleic acids, metabolites, etc.), but this property is unevenly distributed over the protein 

surface. Surface patches with a larger interaction potential are known as ‘hot spots’, a concept 

originating from alanine scanning experiments that probed the interface between protein-protein 

complexes. These studies revealed that most of the binding free energy is contributed by a few 

residues only [10,11]. The O-ring theory, initially introduced by Bogan & Thorn, suggests that 

hot-spot residues are easily desolvated because the local environment induces solvent-exclusion 

[12-14]. Although structurally different, ligand binding sites display the same behaviour: some 

regions in the binding area interact very favourably with particular functional groups, while the 

rest may provide the right shape and solvent exclusion capacity [15]. The presence of hot spots 

is, therefore, necessary for binding to occur, but what are the distinct properties of druggable 
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binding sites? This has been investigated in parallel with the development of druggability 

prediction methods. 

As expected from the properties of drug-like ligands (see above), closed and lipophilic 

binding sites are more likely to be druggable. This is supported by the usefulness of related 

parameters to obtain predictive models following inductive [16,17] or deductive [18] reasoning. 

Binding site curvature relates to the necessity to maximize the contact surface area between the 

ligand and the protein, while the positive correlation of apolar surface area with druggability 

would presumably suggest that binding potency is entirely due to hydrophobic interactions. This 

was justified on the basis that electrostatic interaction and desolvation energies act in opposition, 

resulting in an overall negligible contribution [16,18]. However, this contradicts the empirical 

observation that polar interactions often constitute anchoring points, featuring predominantly in 

pharmacophoric models of binding sites. In fact, the contribution of polar interactions is context 

dependent, and a single hydrogen bond can contribute as much as 1.8 kcal/mol [19], comparable 

to the hydrophobic gain provided by the side-chain of a Val residue [20]. The increased 

proportion of apolar surface area in druggable binding sites compared to non-druggable (70% vs. 

50%) can, actually, be reconciled with the importance of polar interactions: polar atoms in 

druggable binding sites are less solvent exposed and have a predominantly hydrophobic 

environment, resulting in lower dielectric environment that potentiates electrostatic interactions. 

This effect has been quantified in proteins, demonstrating that hydrogen bonds can be up to 1.2 

kcal/mol stronger in hydrophobic environments [21]. This clearly indicates that – beyond the 

obvious gain in hydrophobic potential – a decrease in the polar surface ratio can have the 

paradoxical effect of increasing the hydrogen bonding potential of the binding site. 

An intriguing property of druggable binding sites is that, in spite of being mostly buried, 

polar atoms protrude more from the cavity surface than apolar atoms [17]. In such disposition 

they are readily available to interact with incoming ligands, providing anchoring or selectivity 

points. It has been suggested that this type of environment can also transform polar atoms into 

kinetic traps. The molecular mechanism consists in a simple decoupling of the ligand/water 

exchange processes due to the steric impediments imposed by the local environment. In such 

circumstances, protein-ligand hydrogen bonds must start to break before a water molecule can 

mediate the process (and vice-versa), thus penalizing the exchange process and slowing down 

diffusion rates (Schmidtke et al., submitted). This might stabilize transient encounter complexes, 

facilitating their mutual recognition [22] and, once formed, lock the binding mode of the 

interacting molecules. 
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4   DRUGGABILITY PREDICTION BY PROTEIN CLASS 
An inspection of Figure 1 suggests that enzymes and receptors are druggable targets, while 

other protein classes are difficult to undruggable. This is generally a good assumption because 

these protein classes have evolved to interact with small organic molecules (substrates, 

hormones, neurotransmitters, etc.), which means that drugs can compete in equal terms and 

achieve high affinity for the binding site. Depending on the type of natural substrate, their 

difficulty as targets will also vary: proteins binding bona fide small molecules (e.g. class A 

GPCRs, kinases) are more druggable than those binding non-druglike ligands, such as peptides 

(e.g. classes B and C GPCRs, proteases). The influential paper by Hopkins and Groom and other 

works estimating the size of the so-called “druggable genome” [3,23] relied on protein domain 

annotations (e.g. from PFAM [24]) to predict the number of proteins containing domains 

experimentally known to be targeted by small-molecule drugs. A support vector machine method 

has also been developed to predict protein druggability based on amino acid sequence 

independent of sequence similarity [25]. However, the financial disclaimer “past performance is 

no guarantee of future results” also applies here and, while those approaches may be valid at a 

statistical level, the chances of success when selecting a particular target becomes a probability 

game. Another weakness of such approaches is that they potentially ignore some mechanisms of 

action that are not linked to a particular sequence or domain topology. Allosteric modulation [26] 

and protein-protein inhibitors [27,28] are two examples of target types that, although each 

individual structure has a low probability of being druggable, their ubiquity and abundance 

(current estimates for the human interactome are 130,000 protein-protein pairs [29]) warrants 

many new therapeutic opportunities. 
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Figure 1. Targets of small-molecule drugs classified by function or protein family. Data taken 

from reference [3]. 

 

5   DRUGGABILITY PREDICTIONS: EXPERIMENTAL 

METHODS 

5.1   High-Throughput Screening 
In theory, the most rigorous form of assessing druggability is to test the ability of drug-like 

compounds to modify the biological activity of the target of interest. In this regard, examining 

the rate of success of high-throughput screening (HTS) results is very informative. In 2006, 

Macarron published a retrospective analysis of HTS campaigns at GlaxoSmithKline, grouping 

the results by target families. The analysis is particularly interesting because success was defined 

as the ability to produce a confirmed hit (i.e. activity in a biologically relevant assay with a 

tractable chemical structure and an initial indication of SAR such that a chemical optimization 

effort can begin). As expected, some target families offer very good results (e.g. a lead could be 

identified from HTS in >70% of Nuclear Hormone Receptors and Ion channels), whereas the 

success rate was only 33% for targets not belonging to the main classes [2]. Gupta et al., from 

AstraZeneca also published a retrospective analysis of HTS on 22 enzymes (identified by 
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function), but in this case the hit rate (i.e. percentage of compounds with read-outs about a 

certain threshold) was reported as a measure of success [30]. The values reported range from 

0.06% to 3.85% for a common collection of 37,275 compounds. As pointed out by Macarron, 

one of the limitations of these retrospective analyses is that it is not possible to know if failure 

happens because the target is undruggable or because the collection of compounds tested does 

not cover the adequate chemical space: a 30% of al targets that failed when tested on a subset of 

the historical collections turned out to be tractable when tested against the unified GSK 

collection [2]. Considering the vastness of the drug-like molecular space (estimated at 1020-1024 

synthetically accessible compounds [31]), this is an important issue and suggests that success 

with novel target types is partly limited by the composition of current historical collections. It 

also raises questions about the usefulness of hit rates as druggability predictions. One should also 

be aware of the limitations of the specific assay, for instance, a binding assay may not be the 

most suitable to identify allosteric modulators.  

5.2   Fragment Screening 
Fragment screening was initially described in 1996 [32], adopting new detection methods and 

becoming an extremely popular hit identification strategy in the 2000s [33-36]. Its main 

advantage is the superior ability to detect binders because it explores much simpler compounds 

than HTS [37]. Considering that the number of possible chemical compounds grows as a 

quadratic function with the number of atoms [38], even if the number of compounds tested is 

usually 3 orders of magnitude smaller than HTS, it can in fact explore a much larger proportion 

of the corresponding chemical space. In consequence, the fragment screening hit rates may be 

more informative about the druggability of a given protein than those coming from HTS. Abbot 

and Vernalis have published data for 23 and 12 targets, respectively [16,39], and in both cases 

there is a good correlation between poor hit rates and the difficulty to obtain high affinity 

ligands. This is a strong indication that fragment screening may be a suitable method to detect 

good binding sites for small molecules. Once the necessary infrastructure and know-how is in 

place, the cost of fragment screening and the time needed to set up the experiment is much lower 

than the corresponding HTS assay, so carrying out a fragment screening experiment before 

launching a full drug discovery project may be a wise and feasible approach for small and large 

pharmaceutical companies. One potential limitation of this approach is that it is difficult to 

predict the drug-likeness of future ligands based on the chemical structure of the fragment hits. 

In other words, the method seems adequate to detect targets that do not offer binding 

opportunities, but does not warrant that hits can be developed into drugs. 
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5.3   Multiple Solvent Crystallographic Screening 
Before the fragment screening era, it was detected that organic solvents have a large 

propensity to interact with binding sites of proteins both in solution and in crystals [40,41]. This 

raised the possibility of using ‘solvent-mapping’ to detect and characterize binding sites, 

something that has been achieved for a few systems [40,42,43]. In perspective, this can be seen 

as an extreme form of fragment screening: as the ligands tested are smaller, they are more likely 

to bind and fewer compounds need to be tested, but more sensitive methods are needed to detect 

binding. The detection method is precisely the limitation of this approach: few proteins form 

crystals sufficiently stable to withstand the high concentrations of organic molecules necessary 

to carry out Multiple Solvent Crystallographic Screening. It is, however, conceivable that current 

methods in fragment screening could be adapted to test simpler and weaker ligands with the 

specific aim of predicting druggability. 

6   DRUGGABILITY PREDICTIONS: 

COMPUTATIONAL METHODS 

6.1   Cavity Detection Algorithms 
Due to the shape complementarity requisite, the binding site of ligands correspond to protein 

surfaces with inward curvature. Deep pockets are generally assumed to play a functional role 

and, in consequence, cavity detection algorithms have long been used to predict ligand binding 

sites. A large range of computer programs have been developed to identify pockets and to predict 

their likelihood to act as ligand binding sites (reviewed in [44]). The algorithms can roughly be 

classified into geometric or energetic approaches. In the first class –which is the most common– 

the protein shape is directly probed to detect void spaces surrounded by protein atoms. In the 

second approach the interaction energy of chemical probes (ranging from a simple sphere with 

van der Waals parameters to a diverse set of chemical fragments with van der Waals, hydrogen 

bonding and electrostatic potentials) is mapped on the three-dimensional space of the protein and 

ligand binding sites are identified on the basis of interaction energy profiles. 

The main objective of those programs is to distinguish the true ligand binding site from the 

rest of cavities in a protein structure. As ligand binding sites often coincide with the largest 

protein pocket [15,45], size alone is a good predictor but most methods use a combination of 

parameters to rank the pockets, which in some cases also include information on residue 
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conservation. Success rates for the most recently published methods are close to 70% for the 

highest ranked pocket and 90% when the top 3 pockets are considered [46-48]. 

Achieving a representation of pockets that matches the space occupied by the ligands in an 

automated manner is far from trivial, because the ligand binding site is usually part of a larger 

network of pockets on the protein surface. However, cavity detection algorithms have a long 

history and have reached a fair level of maturity. At the same time, these programs are evolving 

to incorporate new functionalities that can be extremely useful in drug design [44]. These include 

consideration of pocket flexibility, pocket comparison algorithms and pocket druggability, which 

is discussed in the next section. 

6.2   Empirical models 
The first druggability prediction methods were developed at Abbott Laboratories [16] and 

Pfizer [18] to fulfil an unmet need in the pharmaceutical research industry. These and a number 

of more recently published methods build on cavity detection algorithms to extract pocket 

surface descriptors for druggability predictions. However, they differ in two main points from 

their parent methods: 1) pockets are compared not only within, but also across protein structures; 

and 2) instead of distinguishing binding sites from non-binding sites, their goal is to predict the 

likelihood that the pocket displays high affinity for drug-like ligands. Naturally, they require a 

completely new parameterization based on a distinct training set. In fact, obtaining a sufficiently 

large set of binding sites encompassing a wide range of druggability scores has been one of the 

main factors limiting progress in the field. It should also be noted that binding site druggability is 

a complex and somewhat fuzzy concept that can be defined in more than one way. As the 

predictions will be –at most– as good as the dataset on which the method has been trained, 

attention should be paid to the precise definition of druggability and to the composition of the 

training set. For this reason, here we focus only on published approaches that use a manually 

curated training set.  

6.2.1   Training sets 
The first druggability prediction method was trained to reproduce NMR fragment screening 

hit rates. The dataset consisted of 28 binding sites on 23 different proteins, on which 10,000 

compounds were tested. Using heteronuclear NMR, perturbations anywhere on the protein can 

be detected and ligands with KD values as high as 5 mM can be identified [32]. The 

physicochemical properties of the screening library conform to the definition of fragments 

(average molecular weight of 220 and an average cLogP of 1.5) and, being tested at high 
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concentrations (0.5 – 1.0 mM), they are highly soluble. The hit rates –ranging from 0.01% to 

0.94%– were used as a measure of druggability [16]. As demonstrated in the paper, high 

correlation is observed between the experimental NMR hit rate and the ability to identify high-

affinity (KD < 300 nM) ligands. In line with this approach, researchers at AstraZeneca have used 

the HTS hit-rates as a measure of druggability. Using a set of 22 undisclosed targets, they obtain 

predictive models [30]. However, this definition of druggability presents two main limitations: 

1. Ligand drug-likeness implicitly derives from the composition of the screening library, but 

its physicochemical properties can be very different from typical drugs, particularly in the 

case of fragments. 

2. A major practical bottleneck is that screening data is proprietary, expensive to obtain and 

rarely made publically available. Additionally, extension of published datasets would 

require using the same screening library and methodology, limiting its transferability 

across organizations.  

 

In 2007 Cheng and co-workers presented an alternative view of druggability, defined as the 

maximal affinity that a drug-like ligand (ideally an orally bioavailable compound) can achieve 

for a binding pocket [18]. This definition also presents some limitations, such as the fact that the 

druglikeness of a compound is sometimes difficult to assess or that the classification of a target 

may change over time. Obtaining good quality data can also be difficult, particularly when it 

comes to undruggable binding sites, because they can only be classified as such after substantial 

research efforts have been invested and negative data is often not published. However, the 

definition is useful in decision-making, because it can distinguish between targets that are likely 

to have a successful outcome (i.e. deliver an orally bioavailable lead) and those that are more 

likely to prove very challenging and may require other approaches (e.g. a pro-drug strategy). 

Subsequent druggability prediction methods have mostly adhered to this definition. 

In order to facilitate further developments and to establish a benchmark that could be used in 

prediction performance, the initial set of 27 targets presented by Cheng et al. was extended by 

Schmidtke and Barril [17] with 1070 structures representing 70 different targets.  The set was 

obtained crossing a list of oral drugs with information from the PDB [49] and the DrugBank 

[50], followed by visual inspection. The unified catalogue is publically available as the 

Druggable Cavity Directory (http://fpocket.sourceforge.net/dcd), a resource that can also be used 

to extend the dataset or to reassess target classification in a collaborative manner. 

6.2.2   Applicability and prediction performance 
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Some of the published druggability prediction methods are difficult to apply because they 

used a combination of algorithms that included commercial and proprietary software that any 

potential user would have to reimplement [16,18,30]. An additional limitation of those methods 

is that cavity definition may also involve a manual procedure, which precludes their applicability 

in an unsupervised and high-throughput manner. Fortunately, more recent contributions can be 

used out of the box. Particularly noticeable in this regard are SiteMap, from Schrödinger, which 

includes a druggability score trained on Cheng’s dataset [18] and the open source program 

fpocket [46], which provides a druggability score trained and tested on the afore-mentioned 

extended druggability dataset. Both can be used in an unsupervised manner and applied to large 

collection of structures to screen for druggable cavities, delivering similar performance[17]. For 

such applications, computational performance is also an important consideration and the Voronoi 

tessellation shape-based algorithm in fpocket is clearly superior to the grid-based interaction 

energy algorithm in SiteMap (2-4 seconds compared to several minutes).  As different 

crystallographic structures of the same binding site may correspond to different conformations, 

the reproducibility of the druggability score must be assessed. With the exception of closed and 

rigid cavities, predictions may be substantially different due to changes in the properties of the 

cavity or to variability introduced by the automated cavity definition algorithm. However, both 

the mean values and the values of the top scoring cavities are clearly different between druggable 

and non-druggable cavities, suggesting that confidence in druggability predictions may increase 

when multiple structures are considered [17]. 

6.3   Physical chemistry predictions 
Computational methods based on the principles of physical chemistry can be used to predict 

the interaction free energy between a ligand and a protein binding site. As this property is 

intimately linked to the druggability concept, molecular simulations offer an alternative to 

empirical approaches. The main difficulty in predicting binding free energies is that they are the 

end result of multiple terms of large and opposing magnitude. Consequently, accurate 

predictions are computationally very demanding and extremely hard to achieve[51]. The concept 

has nevertheless been used successfully in energy-based binding site detection methods, which 

rely on extremely crude but very fast approximations [44]. With increasingly rigorous 

approaches, it is theoretically possible to carry out the in silico equivalent of experimental 

druggability prediction methods. For instance, Huang and Jacobson have demonstrated that hit 

rates in docking-based virtual screening experiments correlate with the experimental hit rates 

obtained by NMR [52]. Other methods that also combine exhaustive sampling of the ligand-
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receptor configurational space with severe approximations on the interaction energy predictions 

have proven useful to identify and characterize the most druggable binding sites of a target 

protein with a reasonable computational cost [53,54]. Obtaining quantitative predictions, 

however, requires more rigorous approaches that take into account often neglected terms such as 

solvation or entropy. This is achieved by the druggability index developed by Seco et al., which 

predicts the maximal binding affinity that a drug-like compound could achieve for a binding site 

from molecular simulations based on first principles [55]. Initially, the method reproduces a 

solvent-mapping experiment, in which the protein is exposed to a certain concentration of an 

organic solvent. Both NMR and crystallographic experiments have demonstrated that organic 

solvents tend to localize on binding sites[40,42,43], which is a natural consequence of the 

tendency of binding hot-spots to become desolvated (see above). Molecular dynamics 

simulations using 20% isopropyl alcohol (IPA) as solvent reproduce this behaviour, correctly 

identifying the experimentally determined IPA binding sites. Knowing that the method provides 

a correct sampling of the protein-ligand space, the collection of configurations generated by 

molecular dynamics can be subjected to a statistical treatment leading to binding site 

identification and druggability predictions. The process is illustrated in Fig. 2 and summarized 

here: 

1. A grid encompassing the whole of the simulation box is generated and the number of 

times that a solvent atom type (IPA-OH, IPA-CH3, Water-O) falls within each grid 

element is counted. Comparing the observed population (Ni) with the expected value 

(No), the associated free energy can be obtained using Eq. 1, where kB is the Boltzmann 

constant and T the temperature at which the simulation was run. 

ΔGi = -kBT ln(Ni/No)       (1) 

2. The points with the best interaction free energies are identified, taking care that all points 

are separated by –at least–the distance of a covalent bond. 

3. Points corresponding to IPA atom types (OH and CH3) are considered transferable to 

aliphatic and polar neutral features of drug-like compounds, respectively. They are 

clustered together to form binding sites of maximal binding efficiencies. 
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Figure 2. Detection of binding sites and estimation of the maximal binding free energy that a 

drug-like ligand can achieve, following the procedure by Seco et al. [55]. 

 

7   A TEST CASE: PTP1B 
The protein phosphatase 1B (PTP1B) is a target for the treatment of type II diabetes and 

obesity that has proven extremely challenging. Many inhibitors acting on the phosphotyrosine 

binding site have been described [56], but potency is heavily dependent on the presence of a 

negative charge, which greatly damages its pharmacokinetics properties [57]. In consequence, its 

druggability classification is debatable: it has been considered druggable based on fragment 

screening hit rates [16] and success in hit identification motivated a sustained effort by many 

groups [58], but turning inhibitors into drugs has not been possible and an “undruggable” 

classification seems more appropriate. Empirical methods reproduce the prediction for which 

they have been trained, so it is considered druggable by Hajduk et al. [16] but undruggable by 

the other published methods [17,18,59]. A prediction based on first principle methods reveals 

that there is not a single hot spot for lipophilic or neutral polar features around the 
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phosphotyrosine binding site, which not only classifies it as undruggable, but also explains the 

total dependency of the charge to achieve potency [55]. 

Although the target is objectively difficult, development of an oral drug can never be ruled 

out. In fact, there have been two interesting developments that illustrate the importance of 

protein flexibility –one of the major challenges in drug design [60]– and the need to consider 

additional mechanisms of action. Two distinct conformations had been described for the so-

called WPD loop (residues 179-184), which lines the catalytic site of PTP1B. In the apo form, 

this loop adopts an open conformation, whereas substrate binding induces a closing of the loop, 

thus reducing the size of the cavity that now fits tightly around the phosphotyrosine [61] (Fig. 3). 

Interestingly, this conformational change is coupled to a larger amplitude transition in the α7-

helix (residues 287-295), located some 20Å away. In the WPD-closed conformation this helix is 

ordered and in contact with the α3-helix, but in the WPD-open form it is disordered and 

separated from the rest of the protein. Researchers at Sunesis discovered non-ionic inhibitors that  

 

Figure 3. Superposition of active (pale grey) and inactive (dark grey) conformations of PTP-1B. 

In the active form, the catalytic site WPD loop (dashed circle) is closed and the α7-helix (box) is 
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packet against the rest of the protein. In the inactive form, the loop is open, leaving a large and 

shallow binding site. Allosteric inhibitors bind to a pocket that opens upon movement of the α7-

helix, thereby overstabilizing the inactive conformation. 

 

bind to a hydrophobic pocket that appears upon displacement of W291 (part of the α7-helix). 

Occupation of this pocket stabilizes the inactive WPD-open conformation and results in 

allosteric inhibition. In addition to providing a completely different chemotype with good cell 

permeation, the allosteric binding site is poorly conserved amongst phosphatases, making these 

compounds highly selective for PTP1B [62]. The druggability of this site is difficult to assess at 

present because, although the ligands are drug-like, they are weak binders (low μM). The 

empirical method based in fpocket identifies this binding site, but assigns a borderline 

druggability value [17] while the physics-based method predicts a maximal Kd of 500nM [55]. 

Very recently, the WPD-open conformation (inactive form) has been exploited to identify 

non-competitive inhibitors. Although they bind to the phosphotyrosine binding site, rather than 

competing with the substrate, they simply stabilize the inactive conformation, reducing the 

concentration of the catalytically competent enzyme, a mode of action known as conformational 

trapping [63]. Unlike most direct inhibitors, these molecules do not bear a negative charge, can 

cross membranes and achieve cellular activity [64]. 

 

8   OUTLOOK AND CONCLUDING REMARKS 
Formal investigation of the causes of druggability has only started in recent years. Sitting at 

the interface of pharmacokinetics, molecular recognition and biomolecular structure, this 

incipient knowledge area builds on previous methods and understanding about drug-likeness, 

binding site identification and structure-based drug design, amongst others. Driven by a real 

necessity from the pharmaceutical industry, significant progress has been achieved. Of particular 

note is the existence of a small but diverse set of druggability prediction methods and the 

creation of a catalogue of systems with various degrees of druggability against which new 

methods can be trained and tested. Future challenges include explicit consideration of protein 

flexibility and achieving more quantitative and informative predictions. 

Druggability prediction methods are expected to have two seemingly opposed consequences: 

on the one hand they will help concentrate on those targets offering better prospects, but they 

will also raise awareness about less obvious binding sites that may be used to exert a biological 

effect through non-standard mechanisms such as protein-protein inhibition [65], protein-protein 
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stabilization [66], target chaperoning [67], conformational trapping [63] and allosterism in 

general [26].     
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A large-scale evaluation and comparison of four cavity detection algorithms was carried out. The algorithms
SiteFinder, fpocket, PocketFinder, and SiteMap were evaluated on a protein test set containing 5416
protein-ligand complexes and 9900 apo forms, corresponding to a subset of the set used earlier for
benchmarking the PocketFinder algorithm. For the holo structures, all four algorithms correctly identified
a similar amount of pockets (around 95%). SiteFinder, using optimized parameters, SiteMap, and fpocket
showed similar pocket ranking performance, which was defined by ranking the correct binding site on rank
1 of the predictions or within the first 5 ranks of the predictions. On the apo structures, PocketFinder especially
and also SiteFinder (optimized parameters) performed best, identifying 96% and 84% of all binding sites,
respectively. The fpocket program predicts binding sites most accurately among the algorithms evaluated
here. SiteFinder needed an average calculation time of 1.6 s compared with 2 min for SiteMap and around
2 s for fpocket.

INTRODUCTION

The number of known protein three-dimensional (3D)
structures in the public and private domains is constantly
on the rise. For drug discovery purposes these structures are
of great interest, as they can be exploited in the search for
small molecules that bind to them and modulate their
function. Of particular importance are the cavities at the
protein surface, as they provide the best environment for
anchoring small molecules.
In many cases cavities can be identified by the presence

of natural substrates, a cofactor or a ligand. However some
proteins are crystallized without any partner. Detecting
cavities at the surface of these proteins can help in finding
the natural substrate binding site, identifying binding pockets
or allosteric sites to start the design of small-molecule ligands
of therapeutic effect. Moreover, given a cavity in one protein,
the detection of similar cavities in other proteins may provide
hints to anticipate issues, such as selectivity or toxicity.
A first step toward exploitation and comparison of pockets

as well as cavity-based annotation of proteins is therefore
the comprehensive scanning of protein 3D structures with
the aim of detecting all cavities of interest. These cavities
can subsequently be analyzed and compared with novel
programs, such as SuMo1 or FLAP.2 Given that these
programs take surface shape and property into account, they
are well suited for the task of cavity/pocket comparison, as
opposed to programs that analyze protein backbone and
topology,suchasSARF2,3VAST,4,5DALI,6,7andFATCAT.8,9

Over the past years a number of different approaches have
been developed to correctly predict binding sites on the

protein surface. One can distinguish two different types of
cavity finding algorithms: (i) evolutionary- and (ii) structure-
based algorithms. The second category can be subdivided
in geometry- and energy-based algorithms.

The most popular example of geometry-based algorithms
in the public domain is putative active sites with spheres
(PASS).10 Other well-known geometry-based algorithms are
SURFNET11 and LIGSITE12,13 (improved version of
POCKET).14 APROPOS15 and CAST16 are based on alpha
shape analysis.17,18 The recently published fpocket19 uses
similar properties derived as alpha spheres, already employed
by the SiteFinder20 algorithm.
Energy-based algorithms like PocketFinder,21 the method

introduced by Bliznyuk and Gready,22 the computational
mapping from the Vajda group,23,24 the multiscale approach
from Glick,25 and the method developed by Ruppert,26 or
SuperStar27 simulate the interactions of a solvent molecule
on the protein surface in order to detect local surface
properties of a cavity. Some of these methods still use a
geometry-based step in order to measure the extent of the
cavity, by tracing rays from grid points in the cavity.
Nevertheless approaches like the multiple solvent mapping
developed by the Vajda group are fully based on interaction
energy calculations.

The accuracy of most of the cavity finding algorithms has
not been evaluated on large data sets. Only the PocketFinder
algorithm21 published in 2005 provided a large-scale evalu-
ation using a data set of 17.626 proteins from the Protein
Data Bank (PDB). This evaluation included an assessment
of the algorithms’ capacity to recognize binding sites on apo
forms as compared to the corresponding ligated proteins.

In the present study, a large scale evaluation of four cavity
finding algorithms has been carried out. Two of them are
implemented in two major molecular modeling packages:
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SiteFinder, which is implemented in the Molecular Operating
Environment (MOE) software provided by the Chemical
Computing Group (CCG),28 and SiteMap,29,30 provided by
Schrödinger31 and accessible through the Maestro graphical
user interface or through the command line. To our knowl-
edge, no evaluation of SiteFinder has been published up to
now and a data set of 297 proteins29,30 has been used for
the development and optimization of SiteMap. Furthermore,
PocketFinder and fpocket are compared to the previous two.
PocketFinder, falling also in the category of energy-based
algorithms, was chosen because it had previously been
evaluated on the data set used in this study. Fpocket, a
geometry-based algorithm, similar to SiteFinder, was in-
cluded as a sole open source alternative to the previously
cited methods.
The main criteria in the evaluation of all algorithms was

success rate and accuracy of binding site identification as
well as computational performance. Ease-of-use, such as
scripting facilities and accessibility of results, were also
considered. In the following, the methods evaluated are being
described in more detail.

SiteFinder. SiteFinder falls into the category of geometric
methods, since no energy models are used. Relative positions
and accessibility of the receptor atoms are considered along
with an approximate classification of chemical type. The
method is based on the identification of regions of tight atom
packing on the protein, filtering of exposed regions, hydro-
phobic/hydrophilic classifications, and the use of a definition
of hydrophilicity that is invariant to protonation state.
No grid-based method is used for SiteFinder, this way the

method is invariant to rotation of atomic coordinates, and
less memory is required for the calculation.
The SiteFinder methodology is based upon alpha shapes

which are a generalization of convex hulls developed by
Edelsbrunner.17 A collection of 3D points is triangulated
using a modified Delaunay triangulation. For each resulting
simplex (collection of four points), there is an associated
sphere called alpha sphere (Figure 1). These spheres have
different radii.
The collection of alpha spheres is pruned by eliminating

those that correspond to inaccessible regions of the receptor
as well as those that are too exposed to solvent. In addition,
only small alpha spheres are retained since these correspond
to locations of tight atom packing in the receptor. Each alpha

sphere is classified as either “hydrophobic” or “hydrophilic”,
depending on whether the sphere is in a good hydrogen-
bonding spot on the receptor. Hydrophilic spheres that are
far from hydrophobic spheres are eliminated. All alpha
spheres are clustered using a single linkage clustering
algorithm. A key feature is that each cavity consists of one
or more alpha spheres and at least one hydrophobic alpha
sphere. Resulting cavities are ranked using the number of
contacts with hydrophobic atoms of the receptor.

fpocket. The fpocket algorithm is based on very similar
principles as SiteFinder. Using Voronoi tessellation through
the free computational geometry library Qhull, fpocket filters
Voronoi vertices and their corresponding alpha spheres
according to alpha sphere minimum and maximum radii. The
next three clustering steps are performed to aggregate nearby
alpha spheres to form a pocket (set of alpha spheres). Each
cluster of alpha spheres forms a putative pocket. Each pocket
is scored based on a knowledge-based SiteScore, and the
final pocket list is ranked using this score.

Compared to SiteFinder, fpocket is currently a command
line driven open source cavity detection algorithm. Next to
basic pocket prediction, fpocket integrates several tools for
easy extraction of pocket descriptors and for testing scoring
function. A druggability prediction score has recently been
integrated as well.32

SiteMap. SiteMap is an energy-based cavity finding
algorithm. It identifies probable binding sites through three
main steps: (i) detection of cavities, (ii) characterization of
detected cavities, and (iii) evaluation of characterized cavities.

In the first step, a 1 Å grid of site points is built around
the entire protein; points overlapping the protein atoms are
deleted. Then the algorithm filters out the site points located
too far from the protein or displaying a low degree of
“enclosure” within the receptor. The “enclosure” of site
points is computed using rays traced in all directions. The
number of rays cutting the protein surface at a certain
distance is used to estimate the relative “enclosure” of the
grid point. The points that fulfill these criteria are clustered
into site point groups. Groups of site points are merged if
the distance between them is below a predefined threshold
and occurs in a solvent-exposed region. The default maxi-
mum distance between two grid points to be merged into
the same group is 6.5 Å. The ratio of the distance between
the centroids of the groups to their effective size (default
value is 5) determines whether the groups are considered
for merging.

During the second stepsthe mapping processsvarious
properties of the cavity are calculated using the remaining
site points. Hydrophobic and hydrophilic potentials are
generated using van der Waals and electric field grids.
SiteMap then partitions the accessible space in each site into
hydrophobic, hydrophilic, and “neither/nor” regions. The
hydrophilic map is further divided into hydrogen-bond donor
and acceptor maps. The last step of the SiteMap cavity
detection procedure is the site evaluation. Various scores are
calculated by SiteMap. The main score (SiteScore) is based
on a weighted sum of the following criteria:
• Number of site points: the number of grid points
necessary to define the cavity.

• Exposure/enclosure: the property to measure how open
the cavity is to the solvent.

Figure 1. Example of an alpha sphere. The alpha sphere is displayed
in red, and the three contacted atoms (2D) are in gray.
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• Hydrophobic/hydrophilic character and balance: the
measure of the relative hydrophobic/hydrophilic char-
acter of the cavity. Balance is the ratio hydrophobic/
hydrophilic score.

• Donor/acceptor character: the estimated hydrogen-bond
donor intensity of a putative ligand in the cavity.

PocketFinder. The algorithm, published by An et al. in
2005, falls into the category of energy-based pocket detection
algorithms. It makes use of a transformed Lennard-Jones
potential calculated on the protein structure using an aliphatic
carbon atom as a probe placed on a 1.0 Å spaced grid over
the protein. Next, the grid is smoothed to emphasize regions
with a consistently low Lennard-Jones potential over a given
region in space. Out of these isolated regions, envelopes are
created and further filtered for envelopes having a volume
bigger than 100 Å3. Finally, the resulting binding sites are
ranked by volume.

MATERIALS AND METHODS

To carry out the comparison of the algorithms, a two-step
procedure was applied. First, a preliminary study was
performed on a small calibration data set with a view to
eventually optimizing some of the parameters determining
the cavity detection. Second, the algorithms with the assessed
search parameters were used to check their ability to correctly
identify binding sites on a large evaluation data set.

Preliminary Study. The calibration data set consists of
370 protein-ligand complexes obtained by X-ray diffraction
with a resolution better than 2.5 Å. These structures are part
of a MOE sample database (complex.mdb file shipped with
MOE) with structures cleaned from water and crystallization
additives, which could alter search results on the protein
surfaces. No hydrogen atoms were considered for pocket
detection with SiteFinder. Both cavity finding algorithms
were applied in the absence of the ligand in the investigated
binding site and tested for their performance on the following
criteria:
• Percentage of found binding sites ranked as first (ac-
cording the algorithm score).

• Percentage of found binding sites ranked within the first
five positions.

The aim of the calibration step was to minimize: (i) the
percentage of not found binding sites; (ii) the percentage of
binding sites split up in multiple pockets, and (iii) the mean
rank and standard deviation of the rank of a correctly detected
binding site.

SiteFinder. Optimization was performed on three param-
eters of the SiteFinder algorithm (default values in brackets):
• Connect Dist (2.5 Å): connection distance between two
alpha spheres, used to cluster alpha spheres into a
common group (cavity).

• Minrad (2.0 Å): minimum threshold distance between
the alpha spheres of a cluster and the centroid of this
cluster.

• Da Dist (3.0 Å): maximum distance between hydrophilic
alpha spheres and the nearest hydrophobic alpha sphere.

Connect dist and minrad, tuning the clustering procedure,
were optimized with a combinatorial procedure. Da dist was
thereafter optimized using the optimum values of the former
parameters.

In addition, small cavities can be filtered out with the site
minsize (3) parameter, referring to the number of alpha
spheres in a site.

SiteMap. This algorithm makes use of 16 parameters that
can be modified. The results obtained in the preliminary study
with the default values of these parameters were satisfying.
Moreover calculations on 370 structures using a single set
of parameters took several days on a two-processor Linux
workstation, thus it was not feasible performing an exhaustive
parameter optimization within a reasonable amount of time.
Therefore no parameter optimization was undertaken by us.
The MOE database previously compiled for the evaluation

of SiteFinder was used to export receptor and ligand, each
into separate files in PDB format. PDB receptor files were
further converted into MAE file format (pdbconvert script
provided by Schrödinger). Hydrogen atoms were then added
to the receptor (applyhtreat script provided by Schrödinger),
followed by an atom-typing step required to perform the
energy calculation.
SiteMap does not handle structures with missing atoms.

In order to overcome this issue, PrimeFill (Schrödinger) was
used to build and refine the missing protein regions on the
calibration data set. This process was however too long to
be used on the evaluation data set. Thus, the evaluation step
of SiteMap was performed only on structures prepared
automatically using the prepwizard program provided by
Schrödinger. Structures that could not be treated by SiteMap
were excluded from the analysis for all algorithms.
No evaluation of the influence of different protonation

states on the pocket prediction results is performed here, as
one of the main objectives of this evaluation is to assess the
suitability of SiteMap for high-throughput pocket prediction.

fpocket. No further calibration was carried out for fpocket.
PocketFinder. Also for this algorithm, no calibration was

performed, as the results published by An et al.21 were taken
for this comparison.

Evaluation Study. The evaluation data set consisted
initially of the 17 126 structures, with a resolution lower than
2.5 Å, generated to evaluate PocketFinder and to compute
the so-called Pocketome.21 When the present study was
performed this data set was available on the Web site http://
abagyan.ucsd.edu/index.html. It is the largest data set ever
used to evaluate cavity finding algorithms. To our knowledge,
so far, only PocketFinder has been evaluated with this data
set. The set contains 5616 protein-ligand complexes and
11 510 apo structures on which the binding site location is
known. At least one holo structure can be found among the
5616 complexes for each apo structure, thus enabling to
assess whether the experimentally observed cavities in the
complex structures can also be found in the apo structures.
An et al. used data deposited in the PDB from October

30, 2003. Between this date and today, major changes have
been made for a multitude of the PDB structures in this data
set. For some structures, PDB accession codes simply
changed. For others, the known ligand molecule identifier
changed. Also, a few PDB structures have been deleted from
the PDB since then. For all the previously cited reasons, only
5416 structures out of the initial 5616 holo structures were
retained for this study. New chain assignments and the
previously cited reasons reduced the apo data set to 9900
structures. This data set reduction is also due to the fact that
for example SiteMap could not run successfully (in an
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automated manner) on some structures. Thus, to guarantee
integrity of the whole data set for the different methods, the
data set size was reduced by the structures that SiteMap
cannot analyze. The final data set is provided as additional
text files (c.f. Supporting Information).
First, a test on the 5416 holo proteins was performed in

order to evaluate the ability of the four algorithms to identify
the ligand binding site. Next, a second test was performed
on the 9900 apo structures.
The criteria to evaluate the performance of both algorithms

are:
• Percentage of correctly identified binding sites.
• Accuracy of the prediction.
• Correlation between results obtained on the holo and
apo forms of the protein structures.

• Calculation time.
• Ease of use.
In the present analysis, structurally important cofactors,

like hemes, biopterins, or chlorophyls, were considered as
part of the receptor in order to build a functional unit. Thus
these cofactors were included during binding site search. As
some of the small molecules in the initial data set by An et
al. correspond to this category of molecules, these structures
were taken out of the data set. The final data set used on all
algorithms is provided as csv files in the Supporting
Information.

Definition of a Correctly Identified Ligand Binding
Site. The definition of when a binding site is correctly
identified is crucial in evaluations, such as the ones carried
out here. In order to obtain results comparable to An et al.,
the same evaluation criterion as in the PocketFinder evalu-
ation was used. This criterion, called relative overlap (RO)
is defined as follows: RO ) (AL ∩ AE)/AL), where AL is the
solvent-accessible area of the receptor atoms within 3.5 Å
from a bound ligand, and AE is the solvent-accessible area
of the receptor atoms within 3.5 Å from the predicted pocket
envelope. A total mis-prediction would have RO ) 0,
whereas a perfect prediction would have RO ) 1.0.
Whether the algorithm has detected correctly, a ligand

binding site is determined by the overlap between the surface
of the cavity atoms and the surface of the actual binding
site atoms. If the RO is at least about 0.5, then the cavity
will be assessed as “correctly identified”.
In apo structures, the ligand binding site is defined by

analogy with the holo structure after protein superposition.
Assessing the Accuracy of the Pocket Prediction. An

et al. used the RO criterion to assess the accuracy of the
pocket prediction. However, the accuracy of a prediction can
be defined in various ways. The inherent disadvantage of
using a criterion like the RO is that the bigger a predicted
pocket gets, the more chance one has to reach a RO close to
one, covering completely the known ligand binding site. If
the purpose of a pocket prediction algorithm is however to
propose reasonably sized binding pockets, then the RO alone
is not enough to assess the accuracy of a prediction. Thus,
a second criterion, called mutual overlap criterion (MOC)
is introduced in this study. It is based on the same principle
as the RO but is defined as: MO ) (AL ∩ AE)/AE). Similarly
to RO, if the MO gets close to 1, then it is an indicator the
predicted pocket is covering only the surface of the actual
overlap between the ligand and predicted binding sites.

Associating both RO and MO, one could get an estimate of
the accuracy of pocket prediction.

Comparing Geometry-Based Methods with Energy-
Based Methods. This evaluation intends to compare two
energy-based pocket identification algorithms (SiteMap and
PocketFinder) with two geometry-based algorithms (fpocket
and SiteFinder). As the pockets are represented in very
different ways such a comparison is not straightforward. Both
PocketFinder and SiteMap use a grid to delimit the binding
site. Thus a binding site can be represented as either an
envelope or a set of grid points in the pocket. SiteFinder
and fpocket produce more sparsely spaced alpha spheres. In
order to assess if a binding site was correctly identified, the
solvent accessible surface area of the pocket has to be
calculated, and this can be done using a 3.5 Å distance from
all grid points of the pocket or all alpha sphere centers. As
grid points are more densely packed than alpha sphere
centers, this would result in an underestimation of the
correctly identified pocket surface for geometry-based methods.
In order to address this, a grid intended to be very similar

to the SiteMap grid is packed into the alpha spheres of
fpocket and SiteFinder. The general amber force field
(GAFF) was used to assign van der Waals parameters to all
atoms of the protein. Next, a 0.7 Å spaced grid is placed
over the pocket. In these calculations, the radius and the well
depth of the Lennard-Jones probe particles are taken to be
1.5 Å and 0.13 kcal/mol, respectively, as used by Halgren
in SiteMap.30 Finally, only those grid points within the alpha
spheres were retained that are equal or further than the closest
van der Waals equilibrium distance of the probe in the
pocket. In all subsequent surface calculations, these retained
grid points represent the pocket, on the contrary to the
previously used alpha sphere centers (and volume).
PocketFinder uses a very similar representation of pockets

and results obtained with SiteMap, and both geometry-based
methods using the transformation presented in the previous
paragraph are thus considered comparable.

Scripting and Statistical Analysis. Automation of cavity
finding was scripted using the programming environment of
each molecular modeling package. The Scientific Vector
Language (SVL) was used in MOE (version 2006-2008).
This scripting language is the proprietary MOE language and
provides a flexible platform for users willing to develop their
own methods.
In the Maestro molecular modeling suite, the Maestro

Command Language is interfaced with Python. Versions 7.5
and 8.0 of Maestro were used in this study (see Results
Section).
Analysis was performed using R statistical software

version 2.2.133 and SpotFire DecisionSite 8.0.
All calculations were performed on biprocessor (2 × 3.6

Ghz) and 2 Gb RAM workstations, running under a RHEL
WS release 3 distribution.
Results for pocket prediction for fpocket were taken from

a precomputed pocket database (in-house). The transforma-
tion from alpha sphere-based pockets to grid-based pockets
was performed using several Python based in-house libraries.

RESULTS

SiteFinder Preliminary Study. In order to evaluate
SiteFinder with its maximum performance, all search pa-

2194 J. Chem. Inf. Model., Vol. 50, No. 12, 2010 SCHMIDTKE ET AL.



rameters were first optimized during the preliminary study.
These calculations led to notable adjustments of minrad,
connect dist and da dist values. Minrad was modified from
2.0 (default) to 1.8 Å(optimized), connect dist from 2.5
(default) to 4.6 Å(optimized), and da dist from 3.0 (default)
to 4.0 Å(optimized).
In Figure 2A notable increase of correctly identified

binding sites ranked on the first rank is observed with
increasing connect dist value. Using default parameters (in
brackets optimized parameters), SiteFinder ranks about 54
(65%) of identified binding sites on the first rank, 86 (92.7%)
within the 5 first ranks. SiteFinder, with default parameters
was not able to identify 3.2 (1.6%) of all binding sites during
this optimization run on 370 protein structures. This opti-
mization step was performed using a fixed value of 5 for
site minsize parameter. Figures 2 and 3 show that cavity
detection and ranking performance could be theoretically
further enhanced by increasing the connect dist and the da
dist values. However, care must be taken with further
increasing these values. Considering, for instance, the connect
dist parameter with its optimized value fixed at 4.6 Å, a
further increase of this value would result in one single cavity
at the protein surface. Therefore, connect dist and da dist
were not increased further for the purposes of this study.

SiteFinder Full-Scale Evaluation. First, the evaluation
step on SiteFinder was performed on the 5416 protein-ligand
complexes full data set using default (in brackets optimized)

parameters. Figure 4 illustrates that more than 75 (95%) of
all binding sites are identified with a RO close to 1. At the
threshold of a well-identified binding site, 95 (98%) of all
binding sites are found. As shown in Figure 5, 70 (77%) of
all found binding sites are ranked as first. Considering all
binding sites found on ranks 1-5, the total would amount
to 95 (98%) of all found binding sites.
The impressive increase in the percentage of found binding

sites with an RO near 100% from SiteFinder with default pa-
rameters to the percentage found with optimized parameters
shows that the RO alone is not a good enough criterion to
evaluate the accuracy of a binding site prediction algorithm.
Figure 6 depicts the MO of both parameter sets for SiteFinder,
and one can observe a clear shift in accuracy from default to
optimized parameters. This important shift toward lower MO
values for optimized parameters clearly indicates that, although
the RO is very high for most of the found binding sites, this
comes at the cost of prediction of far too big binding sites.
Second, SiteFinder using default parameters (optimized

parameters in brackets) was evaluated on 9900 apo structures.
Here, more contrasted results were obtained. The algorithm was
able to retrieve around 40 (65%) of all binding sites with a RO
near 1, as shown in Figure 4. This corresponds to a drop of 35
(20%) compared to results obtained on holo structures. Also
for ranking performance, a drop in the predictive power can be
observed. SiteFinder ranks 42 (62%) of all found binding sites
on rank 1 and 83 (98%) within the top five ranks.

Figure 2. Optimization of SiteFinder parameters. (A) % of correctly identified binding sites ranked on the first rank in function of minrad
and connect dist. (B) % of correctly identified binding sites found on the first five ranks in function of minrad and connect dist. Green and
blue arrows represent default and optimized parameters, respectively.

Figure 3. Optimization of SiteFinder parameters. (A) % of correctly identified binding sites ranked within the first five ranks as a function
of da dist. (B) % of correctly identified binding sites ranked on the first rank as a function of da dist. (C) % of binding site not found by
SiteFinder as a function of da dist.; Green and blue lines represent default and optimized parameters, respectively.
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The average calculation time per protein for SiteFinder
was 1.6 s.

SiteMap Preliminary Study. During the preliminary
study, the systematic binding site search was performed on
315 proteins out of 370. By default, SiteMap returns only
the first five cavities. All binding sites from the 315 proteins
were in this set of cavities. A total of 68% of actual binding
sites were ranked as first, while 87% of them bind ligands
with molecular weights (MW) larger than 250. Thus the
SiteMap scoring function used to rank identified cavities
performed well for our purpose, as all actual binding sites
were retrieved in all cases. Also, the results indicated that
no optimization of the search parameters of SiteMap was
necessary.
The SiteMap process stopped during the atom-typing step

for the remaining 55 proteins, with incomplete coordinates.
Missing residues were modeled using Prime, a Schrödinger
module that performs homology modeling and side chain
and loop prediction. However this process was very time-
consuming and did not succeed for all proteins, so it was
not applied to the structures used in the full-scale study.

SiteMap Full-Scale Evaluation. As alluded to in the
Materials and Methods Section, because SiteMap can handle
only complete structures (no missing atoms or residues),
structures that cannot be treated by SiteMap in an automated
manner (the prepwizard program from Schrödinger was used
to prepare the structures) were omitted from the data set.
By default, the output of the SiteMap algorithm is limited
to the five top-ranked cavities. To enable a relevant com-
parison with SiteFinder, the SiteMap output set was enlarged
to 20 cavities. It should be noted that this modification had
an influence on the cavity delimitation, resulting in some
cases in the splitting of large cavities.
Figure 4 illustrates that around 85% of all binding sites

were found with a relative overlap close to 1. At the threshold
of a correctly identified binding site (RO > 0.5) SiteMap
gave good predictions for 95% of all binding sites. Consider-
ing the ranking performance (Figure 5) of the score
implemented in SiteMap, it managed to retrieve around 78%
of found binding sites on the very first rank and around 97%
within the top five ranks.

Figure 4. The prediction accuracy measured by the RO between the predicted binding patch AE, defined as the solvent-accessible surface
of the receptor atoms within 3.5 Å from the predicted envelope, and the observed binding patch AL, defined as the solvent-accessible
surface of the receptor atoms within 3.5 Å from the bound ligand. The results of 5416 binding sites from protein-ligand complexes and
9900 binding sites from uncomplexed structures were sorted separately by RO. SiteFinder using default parameters is red; SiteFinder with
optimized parameters is orange; fpocket with default parameters is blue; PocketFinder (taken from An et al.)21 is green; and SiteMap using
default parameters is purple.

Figure 5. Cumulative percentage of binding sites among found binding sites (RO > 0.5) versus the ranking of those. For all methods, more
than 95% of the identified binding sites are found among the first 5 ranks on holo structures.
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As illustrated in Figures 4 and 5, SiteMap allowed to
predict about 73% of all 9900 apo binding sites correctly,
while 61% of these were ranked on rank 1 and 96% within
the top five ranks.
The preliminary calculations were performed with Maestro

7.5 suite, and the average calculation time was about 13 min
per structure, including system preparation. Variations in
calculation time were rather large, from 2 min to several
hours in a few cases, due to the atom-typing procedure. The
large-scale evaluation was performed with Maestro 8.0. No
difference in terms of cavity detection performance was
observed between both versions. However, the computation
time was noticeably improved, down to about 2 min per
structure.

Fpocket Full-Scale Evaluation. On the set of 5416 holo
structures, fpocket was able to retrieve more than 75% of
binding sites with a RO around 1. Similar to the other
methods evaluated here, at an RO > 0.5 around 95% of all
binding sites could be retrieved. As shown on Figure 5,
although being a pure geometry-based method, fpocket has
a very similar ranking performance to SiteMap, ranking 78%

of all found binding sites on the top rank and 97% within
the top 5 ranks.

Considering the set of 9900 apo structures, fpocket
managed to correctly identify 82% of all binding sites (Figure
4), ranking 42% of those on rank 1 and 86% among the top
5 ranks (Figure 5). Here again, a drop in ranking performance
can be seen compared to the results obtained on holo
structures.

Calculation time with fpocket varied between 1 to 3 s per
structure.

PocketFinder Evaluation. The results published by An
et al. have been taken directly to compare PocketFinder to
the other three methods evaluated here. As the initial data
set published by An et al. has been slightly modified, these
modifications were taken into account in the results presented
here.

PocketFinder is able to retrieve around 55% of all holo
binding sites with a RO close to 1 and 97% of all binding
sites with a RO > 0.5. Although solely volume based, the
ranking performance of PocketFinder appears to be generally

Figure 6. Introduction of mutual overlap, a second measure of prediction accuracy, entitled MO. MO is defined as the ratio between the
overlapping ASA between predicted and known pockets and the total predicted pocket ASA. The higher the MO, the more accurately the
pocket is predicted. SiteFinder using default parameters is red; SiteFinder using optimized parameters is orange; fpocket using default
parameters is blue; and SiteMap using default parameters is purple.
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better than the other methods, allowing retrieval of 82% of
found binding sites on the top rank and 99% on the top five
ranks.
Next to the RO for measuring accuracy of pocket predic-

tion, An et al. introduced in their evaluation two other
measures extending the assessment of accuracy. The first is
the ratio between the binding site and the ligand volumes,
and the second is the ratio of the predicted binding patch
with respect to the whole protein surface. Neither of these
two criteria is used in the present study but rather the MO
criterion. As all the results for PocketFinder were directly
taken from the publication of An et al., no further calculation
of the MO criterion was possible.
On the apo structure data set, PocketFinder identifies about

95% of all binding sites. Also the ranking performance of
PocketFinder appears to be satisfying, ranking 80% of all
found binding sites on the top rank and nearly 100% within
the to 5 ranks.

Comparison between SiteFinder, SiteMap, Pocket-
Finder, and fpocket. Evaluation results for all four algo-
rithms on holo structures are summarized in Figures 4-6.
Regarding the capacity of all algorithms to actually find the
known binding site, the difference between them is rather
small. SiteFinder (default parameters), fpocket, and SiteMap
predict around 95% of the known binding sites with a RO
above 0.5 (Figure 4). This result is rather interesting given
that some of the methods are based on rather different
methodologies. A significant improvement in predictive
power can be observed for SiteFinder using optimized
parameters.
Big differences in performance between SiteFinder (default

parameters) and all other algorithms and parameters sets can
be seen with respect to ranking of the binding sites. Figure
5 illustrates clearly that the predictiveness of SiteFinder is
around 5% lower than the one of the other methods. The
results obtained for fpocket, SiteMap, and SiteFinder (op-
timized parameters) are very similar. PocketFinder shows a
slightly better ranking performance, although the ranking is
simply based on the pocket volume.
Having observed the big performance increase between

the default parameter set and optimized parameter set for
SiteFinder as illustrated in Figure 4, one can state neverthe-
less that the accuracy of the prediction is influenced by
changes of these parameters. As shown in Figure 6, the MO
for SiteFinder (optimized parameter) is clearly lower than
for all other methods. Comparing SiteFinder (default pa-
rameters) with fpocket and SiteMap another interesting
observation could be made. Although both SiteFinder and
fpocket are pure geometry-based approaches, they (especially
fpocket) appear to predict binding sites slightly more
accurately than SiteMap. This concurs with the smaller RO
values obtained for fpocket and SiteFinder around RO ) 1,
indicating that both geometry algorithms generally produce
smaller pockets than SiteMap.
Using all algorithms with the standard parameters, SiteMap

clearly outperforms SiteFinder, fpocket, and PocketFinder
regarding full coverage of the actual binding sites. Taking a
half-covered binding site as correctly identified (as considered
here), all methods perform well with a comparable level
of predictiveness. Regarding ranking performance, only
SiteFinder shows a clearly lower predictive power.

Considering accuracy of prediction, fpocket appears to
propose pockets with better MO compared to all other
methods.
The evaluation of predictive power of all methods on apo

structures allows for the identification of further differences
between the four algorithms. First of all, it should be pointed
out that PocketFinder results were again taken directly from
An et al. As the study on apo structures involves notably a
step of structural alignment, it could be a source of variations
in pocket definitions using the ligand present in the super-
imposed holo structure. In the present study, PyMOL’s align
function was applied on the chains known to hold the apo
and holo binding sites. As the structural alignment procedure
used by An et al. was not specified in the paper, we simply
assumed that the method employed here produced compa-
rable results. However, at least for fpocket, SiteMap, and
SiteFinder, the very same protocol was applied, allowing a
straightforward comparison between those algorithms.
Bearing these limitations in mind, one can observe that

PocketFinder performs better than all other methods regard-
ing accurate prediction of the binding site and the ranking.
However, one should bear in mind that the comparison
between the other methods and PocketFinder could be
skewed. Among the other three methods SiteFinder with
optimized parameters performs best, with the caveat that this
comes at the cost of reduced accuracy and the prediction of
very large binding sites. Among the algorithms with default
parameters, fpocket performs best regarding accuracy of
binding site prediction, while SiteMap clearly outperforms
the other methods regarding ranking of binding sites.

DISCUSSION

A large-scale evaluation of four pocket prediction algo-
rithms, SiteFinder, SiteMap, fpocket, and PocketFinder was
performed. All algorithms were able to correctly predict
binding sites in almost all proteins for the holo structures.
The algorithm with default parameters that allowed the most
binding sites with a high RO to be retrieved is SiteMap. By
optimizing search parameters, SiteFinder outperforms all
other methods at the cost of producing very big binding sites.
Although this has no obvious primary sense, such a very
comprehensive binding site detection can prove useful in
cases where a pocket database is established for comparison
of subpockets against other pockets/subpockets. SiteFinder’s
parameter set allows the construction of a representative
collection of cavities containing entire binding sites, that is
a cavity database. When exploiting such a database, one must
bear in mind that the potential ligands may be smaller than
the actual cavity.
Interestingly, SiteFinder using optimized parameters,

SiteMap and fpocket show a surprisingly similar performance
in ranking binding sites, although all three methods use
completely different approaches. Solely SiteFinder (default
parameters) appears to exhibit lower ranking performance
compared to the latter. Another surprising finding is that both
geometry-based methods (using default parameters) tend to
produce more accurate binding sites than SiteMap, indicating
that SiteMap predicts slightly bigger pockets than SiteFinder
and fpocket.
A major performance drop was observed for predictions

on apo structures. Assuming that a straightforward compari-
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son between PocketFinder and the other algorithms is
possible, PocketFinder outperforms all other algorithms. For
the other three algorithms, using default parameters, fpocket
performs best on accurate binding site prediction, while
SiteMap performs best on ranking. Here again, both geometry-
based algorithms appear to produce more accurate binding
sites (cf., Figure 6). This finding, and the results shown in
Figure 4, are at odds with the general idea that geometry-
based criteria can only identify well-defined pockets as, for
example, mentioned by T. Halgren.30

Based on our results it can be postulated that the concave
curvature or high degree of burial is a common hallmark of
all protein surface patches binding small molecules tightly.
Compared to macromolecular interactions, this burial appears
to be a necessity to provide sufficient shielding from solvent
for a stable interaction to be possible. Furthermore, this will
increase the number of contacts that a small molecule can
make with the macromolecule and will therefore increase
its binding efficiency at this site compared to locations on
the macromolecule. Also, one can expect the local water
structure to be more ordered within a small, concave, pocket.
Release of these molecules into the bulk water upon binding
of the ligand provides an entropic gain. Overall, relatively
simple geometric rules are sufficient to account for these
characteristics, and therefore, a corresponding algorithm can
perform well at predicting and ranking binding sites.
Importantly, the herein used data set is not restricted with

respect to the characteristics of the ligand molecules. Thus
binding of physicochemically different small molecules
(sugars, drugs, pro-drugs, etc.) requires generally a concave,
solvent-shielded, portion of the protein surface.
Looking at the results published for the Cheng et al. data

set34 regarding the druggability of binding sites, it appears
that there is a correlation between size as well as hydropho-
bicity and druggability (larger binding site, and increased
hydrophobicity favoring druggability). Although the algo-
rithm in SiteFinder does not explicitly target druggability, it
is apparent that the way the alpha spheres are calculated and
used for scoring implies as well that binding sites are ranked
with respect to size and hydrophobicity. These characteristics,
common to the different algorithms, also correspond to
chemical intuition and to the trends very often observed in
medicinal chemistry optimization programs, where larger and
more hydrophobic molecules tend to have higher affinity.
Nevertheless, optimizing molecules solely according to this
criterion must be treated with caution because other proper-
ties, such as physicochemical and ADMET properties, tend
to deteriorate at the same time.

Practical Considerations for Creating a Pocket Data-
base. Both geometry-based algorithms have some inherent
advantages over energy-based pocket prediction methods.
First, the calculation time is about 90 times faster. Second,
both geometry algorithms are robust against structural
variations or missing atoms/residues that can occur in PDB
files, as no atom-typing step and adding of H-atoms needs
to be performed. Care must be taken, however, that the
missing atoms or residues do not have an effect on the
binding sites that are to be detected, which can be the case
with geometry-based methods. In case of a detailed study
of a system, where protonation states of all side chains in
and around the binding site are known, energy-based pocket
predictions can be very useful. However, this type of

assignment on a high-throughput level is not realistic. If the
task is the creation of a pocket database for the whole PDB
or a large in-house databases, then geometry-based methods
have a clear advantage.
In terms of userfriendliness, working environment, and

informatics skills required, the algorithms cater to different
tastes. Regarding the working environment, SiteFinder can
be used through the very powerful SVL programming
language available in the MOE or within the GUI itself. For
SiteMap, the user can interact with the software through the
graphical user interface available in Maestro or through the
command line. Also, Maestro allows accessing molecular
information through a Python-based API. However, for both
of these algorithms a certain amount of effort in programming
and automation has to be spent to adapt them for the creation
of a pocket database, while working with SVL appears to
be more straightforward, although it requires some knowl-
edge of the SVL programming language. A very convenient
algorithm for creation of a putative pocket database creation
is fpocket. In essence it is standalone C code executable,
and given that it is command line driven, it makes extraction
of pocket scores, ranks, and descriptors very easy via a few
command line flags. This information can then be organized
using the tools the user prefers and is most comfortable with
and not a preimposed working environment that the user has
to adapt to.

CONCLUSIONS

In general, the binding site detection algorithms considered
in this study exhibit a very good performance. Over 95% of
all binding sites are retrieved within the 5 best ranked binding
pockets. Considering the trade-off between speed and quality
of the results, geometry-based methods like SiteFinder (using
optimized parameters) or fpocket appear to be slightly more
appropriate for creating a large cavity database for further
use by cavity comparison algorithms.
Regarding SiteMap, it would be desirable to improve the

treatment of structures with missing atoms or residues, in
particular, if it is intended to be used for a systematic study
or the preparation of a cavity database. This has been partly
accomplished by the prepwizard program provided by
Schrödinger. Nevertheless, it adds another intermediate step
before pocket prediction using SiteMap.
Given that during the cavity detection process already a

number of descriptors for the binding sites are calculated,
possible extensions of the binding site algorithms would be
the inclusion of a druggability score. Such druggability scores
can be based on relatively simple descriptors,34 as published
in recent papers on SiteMap30 and on fpocket,32 and provide
additional valuable information for the user. In the same vein,
the calculated characteristics of a given binding site could
be used in order to choose those molecules that should be
screened first against the site of interest. Here one could
imagine translating the binding site characteristics into a
query for shape-based and/or pharmacophore-based screen-
ing, in order to identify molecules that are complementary
to the binding site characteristics.
Combining the binding site detection algorithms with a

binding site comparison tool would allow for the prediction
of ligands likely to bind to a new binding site if the ligands
for a similar binding site are known.
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With the advent of systems biology and pathway- or
network-based drug discovery,35 binding site detection and
characterization may gain additional importance, in particular
if the idea to interfere at the same time with several
targetssrepresenting key players in a pathway or networks
gains traction. In this case it might be necessary to find and
compare binding sites on several different proteins in a given
network with a view to identifying ligands that can bind to
these proteins simultaneously, albeit with lower affinity.
Binding site detection algorithms that are fast and efficient
could prove invaluable for such an undertaking.

Note Added after ASAP Publication. This paper was
published ASAP on September 9, 2010 with minor text errors
and a corrected version was published on November 12,
2010. The version published ASAP on November 12, 2010
had an error in the optimized and default minrad values. The
corrected version was published ASAP on November 17,
2010.

Supporting Information Available: Two files are pro-
vided, and both are in csv format and contain the PDB codes
of the holo structures (LP_SETFinal.csv) used in this
evaluation with corresponding ligand accessions. Another file
named UP_SETFinal.csv contains the apo data set used in
this study. This information is available free of charge via
the Internet at http://pubs.acs.org/.
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The increasing number of nonsymbiotic plant hemoglobins discovered in genomic studies in the past decade
raises intriguing questions about their physiological role. Among them, the nonsymbiotic hemoglobin AHb1
from Arabidopsis thaliana deserves particular attention, as it combines an extremely high oxygen affinity
with an internal hexacoordination of the distal histidine HisE7 to the heme iron in the absence of exogenous
ligands. In order to gain insight into the structure-function relationships of the protein, the ligand binding
properties of mutants of two conserved residues of the distal cavity, HisE7 f Leu and PheB10 f Leu, were
investigated by experimental and computational studies and compared to results determined for the wild type
(wt) protein. The Fe2+-deoxy HisE7 f Leu mutant exists, as expected, in the pentacoordinated form, while
a mixture of penta- and hexacoordinated forms is found for the PheB10 f Leu mutant, with an equilibrium
shifted toward the pentacoordinated form with respect to the wt protein. Spectroscopic studies of the complexes
of CO and CN- with AHb1 and its mutants show a subtle interplay of steric and electrostatic effects by distal
residues on the ligand binding to the heme. Moreover, stopped-flow and flash photolysis experiments reveal
substantial kinetic differences triggered by those mutations, which are particularly manifested in the enhanced
geminate rebinding and bimolecular association rate. These findings are discussed in light of the drastic
alterations found by molecular dynamics simulations in the nature and distribution of internal cavities in the
protein matrix of the mutants, revealing an extremely large sensitivity of the protein structure to changes in
distal HisE7 and PheB10 residues. Overall, data are consistent with the putative NO-dioxygenase activity
attributed to AHb1.

Introduction

Class 1 nonsymbiotic hemoglobins (nsHbs) are found in a
variety of plants, including rice,1 barley,2 maize,3 tomato,4 and
Arabidopsis thaliana.5,6 These globins exhibit a very high O2
affinity mainly due to a low O2 dissociation constant, which
means that O2 is stabilized after binding.7 This finding suggests
that they are are unlikely to be, in ViVo, O2 sensors, carriers, or

storage molecules, since they would remain oxygenated even
at very low O2 concentrations. Moreover, their high redox
potential also argues against a functional role in electron
transport.8,9 Several environmental factors induce expression of
type 1 nsHbs. In particular, expression of AHb1 in Arabidopsis
thaliana is induced by low levels of O25 and exposure to nitrate10

in both roots and rosette leaves, this latter response resembling
the behavior of barley Hb.11 Recently, AHb1 has been suggested
to participate in NO detoxification by acting as a NO scavenger,
thus reducing NO levels under hypoxic stress.12-14

Even though no X-ray crystallographic structure is available
for AHb1 yet, it is known that Fe2+-deoxy AHb1 is partly
hexacoordinated, with the distal histidine, His69(E7) (hereafter
simply denoted as HisE7), occupying the sixth coordination of
heme iron in around 60% of the molecules.15 Moreover,
resonance Raman studies of CO complexes of AHb1 support
the involvement of polar or hydrogen-bonding interactions in
ligand stabilization, which could arise from HisE7 and
Phe36(B10) (denoted as PheB10 in the following) residues.15

Similar interactions have also been noticed in rice type 1 nsHb,16

* Corresponding author. Mailing address: Dipartimento di Fisica, Università
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which is partially associated as a homodimer under physiological
conditions and crystallizes as a dimer.17 In this protein, the distal
histidine hexacoordination is accompanied by a bend in the
E-helix, the lack of a D-helix, and a disordered CD-region.18

Although PheB10 pushes the distal histidine toward the heme
propionates, HisE7 is close enough to the Fe atom to form a
strong hydrogen bond with bound ligands, as judged from the
low CO stretching frequency.16 Moreover, mutations of PheB10
increase the binding constant of HisE7 to the heme iron and
the auto-oxidation rate, suggesting that this residue is critical
in affecting hexacoordination and promoting stabilization of
bound exogenous ligands by HisE7.16 Though the conservation
of PheB10 might be important for stabilization of the oxy-ferrous
complex,16 this fact is of little help in assessing the functional
role of nsHbs, as such stabilization is in fact needed for both
O2 transport and NO scavenging. However, the slower autoxi-
dation rate and lower hexacoordination affinity constant con-
ferred by PheB10 are not shared by other hexacoordinated Hbs
such as neuroglobin, cytoglobin, or Synechocystis Hb.3

In order to establish the functional role of the two key amino
acids, HisE7 and PheB10, mutants of AHb1 were investigated
by combining experimental and computational studies. Elec-
tronic absorption spectroscopy and resonance Raman were used
to explore the influence of these mutations on the distal cavity.
Moreover, stopped-flow and laser flash photolysis were used
to characterize the reactivity with CO, while steady state and
time-resolved spectroscopies were performed to evaluate the
effect on hexacoordination stability and ligand binding. Finally,
information about the structural changes promoted by those
mutations in the internal cavities was gained from extended
molecular dynamics simulations. The results support the crucial
role played by HisE7 and PheB10 not only in assisting ligand
binding but also in modulating ligand migration pathways
through the protein matrix. Altogether, these findings shed light
onto the functional properties of AHb1, which is a prerequisite
to understand its physiological role as a NO scavenger in
Arabidopsis thaliana and, more generally, of nsHbs in plants.

Materials and Methods

Recombinant Protein Production and Purification. The
cDNA encoding AHb1 was inserted into pET11a (Novagen)
and used to transform E. coli BL21(DE3). The expression of
recombinant proteins was carried out in the presence of 30 μM
hemine chloride at 24 °C. Recombinant AHb1 was purified by
chromatography on a Q-Sepharose Fast Flow (GE Healthcare)
column eluted with a 100 mM Tris buffer at pH 7.2. The protein
was then loaded on a Q-Sepharose High Performance (GE
Healthcare) column, and a linear gradient of NaCl from 0 to
0.1 M in 20 mM Tris buffer at pH 8.5 was used for elution.
The coding sequence for AHb1, cloned in the vector pGEM-T
Easy (Promega), was used as a template to introduce mutations
Phe36B10 f Leu and His69E7 f Leu by means of a Quik-
Change II mutagenesis kit (Stratagene) following the manufac-
turer’s protocol. The mutants were expressed and purified as
described for the wt protein. The yield of mutant proteins was
comparable with that of wt AHb1.

Sample Preparation. The deoxy wt AHb1 and its mutants
were prepared for stopped-flow experiments by diluting the
concentrated stock of proteins with a deoxygenated buffer
containing 100 mM sodium phosphate, 1 mM EDTA pH 7.0 to
a final concentration of 20-30 μM. Sodium dithionite was added
to a final concentration of 2 mM. The protein solution was mixed
in the stopped-flow apparatus with the same deoxygenated buffer
solution, containing 2 mM dithionite, equilibrated with nitrogen/

CO mixtures of known CO partial pressure. For flash photolysis
experiments, hemoglobin solutions were diluted in deoxygenated
100 mM sodium phosphate buffer, 1 mM EDTA, pH 7.0 to a
final concentration ranging from 60 to 70 μM. Before the
experiment, solutions were equilibrated with nitrogen/CO
mixtures of known CO partial pressure and sodium dithionite
was added to a final concentration of 2 mM.
CO complexes for RR spectroscopy were prepared by first

flushing the protein solutions (30 μM) with nitrogen, then
flushing with 12CO (Rivoira) or adding 13CO (FluoroChem), and
finally adding dithionite (Fluka Chemicals) to reach a final 20
mM concentration. CN complexes were prepared by adding a
few microliters of a diluted solution of potassium cyanide to
the protein ferric form.

Resonance Raman. RR spectra were obtained at room
temperature with excitation from the 413.1 nm line of a Kr+

laser (Coherent). The backscattered light from a slowly rotating
NMR tube was collected and focused into a triple spectrometer
(consisting of two Acton Research SpectraPro 2300i and a
SpectraPro 2500i in the final stage with a 1800 or 3600 grooves/
nm grating) working in the subtractive mode, equipped with a
liquid nitrogen cooled CCD detector (Roper Scientific Princeton
Instruments). The spectra were calibrated to an accuracy of 1
cm-1 for intense isolated bands with indene, acetone, acetoni-
trile, and CCl4 as standards. The grating was 3600 grooves/
mm, with a spectral resolution of 1 cm-1, for the low frequency
region and 1800 grooves/mm, with a spectral resolution of 3
cm-1, for the high frequency region.

Kinetic Studies. Stopped-flow experiments at a single
wavelength were carried out using a temperature-controlled
apparatus (SX.18MV, Applied Photophysics) using a 75 W Xe
lamp as the light source and a photomultiplier as the detector.
The instrumental dead time was 1.5 ms.
Flash photolysis was carried out with the circularly polarized

second harmonic (532 nm) of a Q-switched Nd, YAG laser,
and a CW Xe arc lamp as a probe source. The transient
absorbance traces were measured at 436 nm through a 0.25 m
spectrograph with a 5 stage photomultiplier (the experimental
setup has been described elsewhere).15,19 The cuvette had an
optical path length of 2 mm. The repetition rate was about 0.3
Hz to allow for full sample recovery between laser flashes.

Kinetic Analysis of CO Rebinding Kinetics. A maximum
entropy method (MEM)20,21 was used to retrieve model-
independent lifetime distributions, as described previously.19,22

We have followed the minimal model previously proposed for
CO rebinding to AHb1 solutions15,19,23 to describe the rebinding
kinetics (see Scheme 1). The differential equations correspond-
ing to Scheme 1 (Vide infra) were solved numerically, and the
rate constants appearing in the equilibrium were optimized to

SCHEME 1: Relevant Chemical Equilibria for the
Reaction of CO with AHb1 or Its Mutants (Hb) to Form
the CO Complex (HbCO)a

a Penta- and hexacoordinated species were indicated by the suffix p
and h, respectively. (Hbp:CO) indicates primary docking sites with CO
still inside the distal pocket, while (Hbp:CO)1 indicates a site in which
the photodissociated ligand is docked into an internal hydrophobic
cavity, accessible from the primary docking site.
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obtain a best fit to the experimental data. Numerical solutions
were determined by using the function ODE15s within Matlab
7.0 (The MathWorks, Inc.). Fitting of the numerical solution to
experimental data (and optimization of microscopic rate con-
stants) was obtained with a Matlab version of the optimization
package Minuit (CERN).
In order to improve the retrieval of microscopic rate constants,

data from flash photolysis and stopped flow monitored at the
same temperature using different CO concentrations (at 0.1 and
1 atm) were simultaneously fitted. This global analysis was
repeated at different temperatures between 10 and 40 °C. The
activation parameters for the microscopic rate constants were
determined from the resulting linear Eyring plots (see Table
2).

Molecular Dynamics.MD simulations were run for wt AHb1
in the hexacoordinated (6c) form and in the deoxy and oxy states
of the pentacoordinated form (5c-deoxy and 5c-oxy, respec-
tively). Additional simulations were also run for the 6c form of
the PheB10 f Leu mutant and for the oxy state of 5c for the
PheB10 f Leu and HisE7 f Leu mutants.
Starting models of 6c and 5c forms were built with the

homology modeling program MODELLER (http://salilab.org/
modeller/), using as templates the X-ray crystallographic
structures of rice (PDB code 1D8U)18 and barley (PDB code
2OIF)24 hemoglobins, respectively (AHb1 shows a sequence
identity close to 70% in both cases). The original CN group
bound to the heme iron in the barley template was replaced
with O2. The orientation of side chains was adjusted using Sybyl
tools (www.tripos.com), and the models were further checked
with PROCHECK.25 The standard protonation state at physi-
ological pH was assigned to ionizable residues. Specifically,
with the sole exceptions of proximal HisF8 and distal HisE7
residues, all histidines were maintained in the default tautomeric
(Nε-H) state. For HisF8, which occupies the fifth coordination
position of the heme iron, the Nδ-H tautomeric form was used.
In the 6c form, HisE7 was also modeled using this latter
tautomer, but the Nε-H form was used in the 5c-oxy state in
order to allow the formation of a hydrogen bond with heme-
bound O2. Finally, in the 5c-deoxy state, HisE7 was modeled
in the two tautomeric (HID, HIE) states.
The starting structures were immersed in a preequilibrated

octahedral box of TIP3P26 water molecules. The final systems
contained around 7700 waters for 6c forms of AHb1 and its
PheB10 f Leu mutant and 10100 waters for 5c forms of the
wt protein and its PheB10 f Leu and HisE7 f Leu mutants.
MD simulations were run using the parmm99 force field and
the Amber-9 package.27 The heme parameters were developed
and tested in previous works.28,29 The SHAKE algorithm was
used to keep bonds involving hydrogen atoms at their equilib-
rium length, in conjunction with a 1 fs time step for the
integration of Newton’s equations. Trajectories were collected
in the NPT (1 atm, 298 K) ensemble using periodic boundary
conditions and Ewald sums (grid spacing of 1 Å) for long-range
electrostatic interactions. The systems were minimized using a
multistep protocol, involving first the adjustment of hydrogens,
then the refinement of water molecules, and finally the
minimization of the whole system. The equilibration was
performed by heating from 100 to 298 K in four 100 ps steps
at 150, 200, 250, and 298 K. Finally, for each simulated system,
50 ns production trajectories were run, collecting frames at 1
ps intervals.
The FPOCKET program30 was used to detect internal cavities

in 800 snapshots taken regularly from the last 40 ns of the
trajectories. The identified cavities were superposed in time and

space, and a density map was generated from this superposition.
High density cavities correspond to stable cavities found during
the trajectory, while low density cavities are transient or nearly
nonexistent in the MD simulation. In addition, the most feasible
ligand migration pathway was explored for the same set of
snapshots using GRID-MD.31 For each snapshot, the van der
Waals and Poisson-Boltzmann electrostatic energies between
the protein and a rigid ligand probe were calculated at every
point of a grid (0.5 Å spacing) that enclosed the whole protein
using a probe particle corresponding to a carbon atom with 1.8
Å radius. The calculation of the potential energy was extended
to the whole set of snapshots by Boltzmann averaging of the
energies computed at the grid points determined for each
snapshot. Finally, the trajectories followed by the probe particle
(at 298 K) were sampled using Brownian dynamics. For the
5c-oxy state, the probe was located around the sixth coordination
position (after removing the heme-bound O2 ligand). All
calculations were performed in theMareNostrum supercomputer
at the Barcelona Supercomputing Center.

Results and Discussion

Electronic Absorption Spectroscopy. The absorption spec-
trum of Fe2+-deoxy wt AHb1 reveals a mixture of a hexaco-
ordinated and a pentacoordinated form, the former showing
spectroscopic features similar to those of neuroglobin32 and rice
Hb1.16 As expected, the mutation of distal histidine to leucine
leads to the shift in the Soret band to 429 nm and to a broadband
in the visible region centered at about 560 nm, features typical
of a pure pentacoordinated high-spin state (5cHS; Figure 1A).
In contrast, the absorption spectrum of the Fe2+-deoxy form of
mutant PheB10 f Leu (Figure 1A) shows peaks at 424 nm
(Soret band) and at 558 and 529 nm (R and � bands,
respectively).15 A broadening of the red side of the Soret band
and of the R and � bands with respect to the spectra of pure
hexacoordinated globins indicate for this mutant, as for wt
AHb1, an equilibrium between an hexacoordinated and a
pentacoordinated form. Noteworthy, the 5cHS species is more
populated in the mutated protein.
Using the absorbance spectra of Fe2+-deoxy AHb215 and

Fe2+-deoxy HisE7 f Leu mutant as references for pure
hexacoordinated low-spin (6cLS) and 5cHS species, respec-
tively, the fraction of 5cHS species in Fe2+-deoxy PheB10
f Leu is estimated to be around 63%, with an equilibrium
constant of ∼0.59 (Supporting Information). For comparison,
the equilibrium constant for wt AHb1 is ∼1.12 under the
same experimental conditions (Supporting Information). Thus,

Figure 1. Absorbance spectra of the Fe2+-deoxy (A) and CO-bound
(B) forms of wt AHb1 (red line), PheB10f Leu (blue line), and HisE7
f Leu (green line) mutants. T ) 20 °C.
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hexacoordination is apparently favored by PheB10, and
removal of this residue weakens the tendency of HisE7 to
bind the heme Fe. This finding is fairly surprising, as the
results determined for several B10 mutants of rice Hb1 show
the opposite trend. In particular, for rice type 1 nsHb, the
ratio A555/A540, taken as an indicator of the degree of heme
hexacoordination, showed that replacement of PheB10 with
leucine favors the formation of a pure 6cLS species.16

For CO complexes of wt AHb1 and mutated proteins (Figure
1B), the Soret band (417 nm in the wt protein) is almost
unaffected in the PheB10f Leu mutant (418 nm). However, a
clear red shift (420 nm) is found for the HisE7 f Leu mutant.
Similarly, the peaks corresponding to R and � bands (569 and
538 nm in wt AHb1) shift to 568 and 538 nm in PheB10 f
Leu and to 569 and 539 nm in HisE7 f Leu. Since CO
complexes of heme proteins do not display absorption bands in
the 600-700 nm range (due to the absence of charge transfer
transitions for low-spin heme proteins in this region), a weak
band at 610 nm in the spectrum of PheB10 f Leu is peculiar
and likely reflects a small amount of an impurity (weak bands
at this wavelength could often be seen in the spectra of CO
complexes of heme proteins).33,34

Resonance Raman Spectroscopy. RR spectroscopy of Fe2+-
deoxy (data not shown) confirmed that the HisE7 f Leu
mutation leads to a pure 5cHS species, while the PheB10 f
Leu mutant preserves the partial hexacoordination observed in
the wt protein,15 though with a slight shift of the equilibrium
toward the 5cHS species.
RR spectra of CO complexes of wt AHb1 and mutated

proteins were examined to gain insight into the electrostatic
interactions with distal cavity residues (Figure 2). For the wt
protein, bands at 533 and 1923 cm-1 have been previously
assigned to the ν(FeC) and ν(CO) modes, respectively, on the basis
of 12C/13C isotopic substitution.15 It is well established that ν(FeC)
and ν(CO) frequencies are inversely correlated, owing to dπ

electron back-donation from Fe to CO, and that high ν(FeC)
frequencies together with low ν(CO) frequencies indicate a polar
environment around the bound CO.35 This is the case for wt
AHb1, for which the distal histidine is proposed to strongly
interact with CO through polar or hydrogen-bonding interac-
tions. In contrast, single ν(FeC) and ν(CO) bands at 501 and 1964
cm-1 for the CO complex of mutant HisE7 f Leu indicate a
reduced polarity in the distal cavity of the mutated protein,36

thus confirming that the distal histidine is the residue that mainly
provides the H-bond to the heme-bound CO in wt AHb1. The
effect of the HisE7f Leu mutation on the CO liganded species
is similar to what was recently reported for the analogous
mutation (His73 f Leu) in rice nsHb1.16

Two CO conformers are observed for the PheB10 f Leu
mutant. The less populated conformer is characterized by ν(FeC)
and ν(CO) at 493 and 1965 cm-1 (490 and 1921 cm-1 in the
13CO complex, respectively), which are typical of CO complexes
where polar interactions between CO and the protein matrix
are minimal because of either the distance or low polarity of
the surrounding residues.36 However, the main effect of the
PheB10 f Leu mutation is a shift of the ν(FeC) frequency from
533 to 519 cm-1 (515 cm-1 in the 13CO complex). Surprisingly,
the ν(CO) frequency stays unaltered at 1923 cm-1 (1880 cm-1 in
the 13CO complex) upon mutation, whereas an upshift would
have been expected according to the Fe back-donation mech-
anism. A similar situation is found in the RR spectra of CO
complexes of wt AHb1 and AHb2,15 but conversely, the PheB10
f Leu mutation in rice Hb1 shifts ν(CO) from 1926 to 1937
cm-1 (ν(FeC) frequencies are not available for rice Hb1).16

There are several examples of Phe mutations in the distal
cavity of heme proteins where the Fe-CO electron back-
donation, and consequently the vibrational frequencies, are
influenced in a similar way. For example, substitution of Phe43
with valine in sperm whale myoglobin37 shifts the main ν(CO)
peak from 1945 to 1954 cm-1. The CO complex of C. cinereus
peroxidase displays ν(CO) and ν(FeC) at 1930.5 and 519 cm-1,
while the corresponding bands in the Phe46 f Val mutant are
at 1944 and 508 cm-1.38 All of these observations could reflect
a decreased polarity of the CO environment upon Phe mutation
(in fact, the side chain of Phe has a high quadrupole moment).39

Alternatively, the decreased back-bonding in the PheB10f Leu
mutant could reflect a change in the position of the distal
histidine due to the reduced steric hindrance of leucine, which
could then be less favorable for an electrostatic interaction in
the PheB10f Leu mutant than in the wt protein. The interaction
between PheB10 and HisE7 could also be the origin of the
observed change in the 5c S 6c equilibrium in the PheB10 f
Leu mutant (see results from electronic absorption spectroscopy
and ligand binding kinetics).
Additional information can be obtained from the RR spectra

of Fe3+-CN- complexes. The Fe3+-CN- adduct experiences
much less backbonding than the Fe2+-CO complex, and the
FeCN bond has mainly σ-bonding character. Accordingly, it is
scarcely affected by the polarity of the surrounding medium
and the spread of frequencies is small.40-42 Nevertheless, the

Figure 2. Top: RR spectrum of the CO complex of wt AHb1 (laser
power was 2 mW, accumulation times were 140 and 40 min,
respectively, for the low and high frequency regions). Middle: RR
spectrum of 12CO and 13CO complexes of the PheB10 f Leu mutant
(12CO: laser power was 2 mW, accumulation times were 40 and 180
min, respectively, for the low and high frequency regions; 13CO: laser
power was 2 mW, accumulation times were 40 and 110 min,
respectively, for the low and high frequency regions). Bottom: RR
spectrum of 12CO and 13CO complexes of the HisE7 f Leu mutant
(12CO: laser power was 2 mW, accumulation times were 40 and 80
min, respectively, for the low and high frequency regions; 13CO: laser
power was 5 mW, accumulation times were 60 and 50 min, respectively,
for the low and high frequency regions).
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Fe3+-CN- adduct can be easily bent, and RR frequencies give
valuable information about distal interactions of bent forms.43

Thus, the ν(FeC) band shifts to lower wavenumbers when
sterically encumbering groups are in close contact with the
bound CN-. For example, ν(FeC) of the CN- complex of C.
eugametos Hb44 shifts from 440 cm-1 in the wt protein to 452
cm-1 when the distal residue Gln is replaced by Gly. Moreover,
for a series of cyanoporphyrins with a progressively “tighter”
distal side ν(FeC) shifts from 451 cm-1 in the unhindered
porphyrin to 445 cm-1 in the most hindered complex.45

The ν(FeC) band of the CN- complexes of wt AHb1 (454 cm-1)
and its PheB10f Leu (439 cm-1) and HisE7f Leu (457 cm-1)
mutants was isolated from the shift promoted upon isotope
substitution (Figure 3; see also Figures S2 and S3 in the
Supporting Information). No additional isotope-sensitive bands
were detected in the 200-600 cm-1 range. The small but
significant difference in ν(FeC) found between wt AHb1 and the
HisE7 f Leu mutant reflects the steric hindrance in the distal
side, which would deviate the FeC bond from the axis normal
to the heme plane. In fact, inspection of the X-ray structure of
the CN- complex with barley nsHb (Figure 3)24 suggests that
the deviation from linearity of the FeCN group could be larger

upon replacement of PheB10 by leucine, thus justifying the
reduction in ν(FeC) in the CN- complex of PheB10 f Leu.
Comparison with the observations made on the CO complexes

reveals the different effects of protein structural changes on the
FeC vibrational frequencies in either case (Table 1). Tilting and
bending of the FeCX unit has little impact in the case of FeCO,35

whereas the effects of the environment polarity are evident and
relatively well understood. The opposite seems to occur for the
FeCN- adduct, although the relationship between spectral and
structural properties is less clear. Substitution of HisE7 by
leucine strongly influences the RR spectra of the CO complex
due to loss of polarity but has a small effect on the spectra of
the CN- complex. On the other hand, the PheB10 f Leu
mutation markedly changes the ν(FeC) frequency of the CN-

complex, whereas its effects on the spectra of the CO complex
are less dramatic than for the HisE7 f Leu mutation.

Ligand Binding Kinetics. Flash photolysis and stopped-flow
experiments were carried out to determine the effect of mutations
at PheB10 and HisE7 on the microscopic rates for CO binding
and the competitive reaction of the endogenous His residue.
Our previous stopped-flow experiments of CO binding to wt
AHb1 had shown a biexponential kinetics due to binding to
the 6cLS and 5cHS species (see also Figure 4 for a representa-
tive kinetic trace).15 A biexponential relaxation is also found
for the reaction with the PheB10 f Leu mutant (blue curve in
Figure 4). In this case, however, a larger fraction of the reaction
progress is lost in the instrumental dead time (1.5 ms) due to
the high binding rate to the 5cHS species, in agreement with
the shift of the equilibrium toward the 5c species evidenced
in the RR and absorption spectra. Stopped-flow experiments
for the HisE7f Leu mutant show a single exponential kinetics
(green curve in Figure 4), as expected for the existence of a
single molecular species (5cHS) reacting with CO with a rate
higher than that observed for the wt protein. In this case, most
of the kinetics is lost within the instrumental dead time.
The CO rebinding kinetics to wt AHb1 and to the mutants

after nanosecond laser photolysis at two temperatures are
compared in Figure 5. In all cases, the increase in temperature
reduces the amplitude of the geminate rebinding phase and

Figure 3. Top: RR spectra of the CN complexes of wt AHb1 (laser
power 25 mW, accumulation time 80 min), the PheB10 f Leu
mutant (laser power 12 mW, accumulation time 75 min), and the
HisE7 f Leu mutant (laser power 12 mW, accumulation time 60
min). Bottom: Structure of the CN- complex of barley nsHb1 (PDF
entry 2OIF) showing the location of HisE7 and PheB10 residues
(distances in Å).

TABLE 1: Vibrational Frequencies (cm-1) of the Fe-C-X
Unit in CO and CN- Complexes of wt AHb1 and Its
Mutants

ν(Fe-CO) ν(CO) ν(Fe-CN)

wt AHb1 533 1923 454
PheB10 f Leu 519 1923 439
HisE7 f Leu 501 1964 457

Figure 4. Stopped-flow CO binding kinetics to wt AHb1 (red), PheB10
f Leu AHb1 (blue), and HisE7 f Leu AHb1 (green) at 5 °C and 0.1
atm CO.
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enhances the apparent rate of the bimolecular phase. The
amplitude of geminate rebinding to both mutants is larger than
for the wt protein. The effect of temperature on this kinetic phase
is modest for the PheB10 f Leu mutant, while the HisE7 f
Leu mutant exhibits slightly higher temperature sensitivity. This
finding may suggest that HisE7 is slightly more relevant than
PheB10 in modulating the dynamics of the distal pocket, as far
as the ligand rebinding is concerned. However, it might also
occur that the HisE7 f Leu mutation exposes an exchange
pathway with higher temperature sensitivity. Both mutations
appear to disfavor ligand exit to the solvent phase, as demon-
strated by the increased geminate recombination with respect
to the wt protein. Another striking feature is the much higher
apparent bimolecular rebinding rate in the mutants relative to
the wt AHb1. This is not unexpected for the HisE7 f Leu
mutant, which only populates the 5cHS form. However, a
similar, though smaller effect is found for the PheB10 f Leu
mutant, suggesting that ligation and detachment of the distal
His occurs with higher rates/lower yield for this mutant. Finally,
the CO concentration dependence of the rebinding kinetics
(shown in Figure 5 for representative CO concentrations at 30
°C) shows a clear-cut separation between geminate and bimo-
lecular rebinding, as previously noted for the wt protein.19

Following our previous work,15 the rebinding kinetics has
been interpreted in the framework of Scheme 1, which was well
suited for the rebinding kinetics to wt AHb1 in solution. For
the HisE7 f Leu mutant, the species Hbh and (Hbh:CO) were
removed, since the heme is purely pentacoordinated in the
absence of exogenous ligands. We have simultaneously analyzed
the rebinding kinetics at different CO concentrations to improve

the reliability of the retrieved parameters. This simultaneous
analysis was performed at each temperature, and the activation
parameters were determined from the temperature dependence
of the rate constants. As an example, Figure 6 reports sample
fits to the CO rebinding curves under selected conditions. A
remarkably good agreement was obtained under all experimental
conditions, thus showing that the model is robust and can be
used to characterize the response of wt AHb1 to point mutations.
The results are reported in Table 2 along with the activation
enthalpies and entropies determined from Eyring plots of the
microscopic rate constants.
The binding (kb) and dissociation (k-b) rates for the distal

His are increased in the PheB10 f Leu mutant, with the
equilibrium constant between 6cLS and 5cHS species (KH ≈
0.5) being reversed with respect to the wt AHb1 (KH ≈ 1.6),
leading to a lower fraction of 6cLS species (33%) in the mutant
relative to the wt protein (61%). These findings are in keeping
with the fractions estimated from absorbance spectra (Figure 1
and Supporting Information).
The increase in geminate recombination in the mutated

proteins with respect to wt AHb1 seems to arise from different
processes. While k-1 is scarcely influenced by the PheB10 f
Leu mutation, it is slightly increased in the HisE7f Leu mutant.
The absence of thermal activation for k-1 in the temperature
range examined here is shared by all of the samples. The exit
rate k2 is decreased ∼3.5-fold by the two mutations, with
comparable effects on the activation enthalpy and entropy. The
rate k-2 is dramatically increased (∼7-fold) for the HisE7 f
Leu mutant, with strongly reduced activation parameters. A
reduction in the activation parameters is also observed for the

Figure 5. Left: Comparison between CO rebinding kinetics to wt AHb1 (short dashed), PheB10 f Leu (solid), and HisE7 f Leu (dotted) at 10
°C (black) and 30 °C (red). Solutions were equilibrated with 1 atm CO. The protein concentration was 60-70 μM. Right: Comparison between
rebinding kinetics to AHb1 mutants PheB10 f Leu (60 μM, solid) and HisE7 f Leu (80 μM, dotted) at 30 °C for solutions equilibrated with 1
atm CO (red) and 0.1 atm CO (black).

Figure 6. Analysis of the CO binding kinetics to the PheB10 f Leu (left) and HisE7 f Leu (right) mutants at 0.1 atm CO and 10 °C. The fit
(yellow line) is superimposed to the experimental data (black open circles). The time course of relevant species in Scheme 1 is also shown: (Hbp:
CO), red; (Hbp:CO)1, green; Hbp, blue; Hbh, cyan.
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PheB10 f Leu mutant, but the increase in the rate is not as
large. Finally, it is worth noting the large difference found for
the rebinding process from a secondary docking cavity to the
primary distal cavity (k-c), which is increased ∼30-fold and
14-fold for the PheB10 f Leu and HisE7 f Leu mutants,
respectively, compared to wt AHb1.
Overall, the effects on the rate constants result in a substantial

increase for kON (≈k-2k-1/k2+k-1), which is 1.22 × 106 M-1

s-1 for the wt AHb1 at 20 °C, and becomes 5.17 × 106 M-1

s-1 for PheB10 f Leu and 3.66 × 107 M-1 s-1 for HisE7 f
Leu. By comparison, the rate constant for CO binding to wt
rice Hb is 7 × 106 M-1 s-1 and increases to 9 × 106 M-1 s-1

for the PheB10 f Leu mutant.16

Molecular Modeling. In order to examine the structural
features of cavities or tunnels potentially implicated in the
migration of diatomic ligands through the protein matrix, a series
of MD simulations were performed for wt AHb1 and the
mutants. In all cases, inspection of the profiles determined for
time evolution of the potential energy and root-mean-square
deviation (rmsd) along the trajectories supported the stability
of the MD simulations and the validity of homology models
(see Figure S4 in the Supporting Information). In particular,
fluctuations in the rmsd, mainly due to changes in CD and EF
loops, were found along the first 10 ns. Stable rmsd values
ranging from 2.0 to 2.7 Å relative to the energy-minimized
structure of the protein were determined for the rest of the
trajectory (see the Supporting Information). Accordingly, the
analysis of the simulations was limited to the snapshots sampled
in the 10-50 ns region.

In the 6c state, the distal cavity (defined by residues Leu35,
Leu36, Ile39, Phe50, Leu66, Ala70, Val73, Ala117, and Leu121)
remains stable along the trajectories sampled for AHb1 and its
PheB10f Leu mutant. In the wt protein, two cavities are found
above the heme surrounding the coordinated distal His, while
those cavities are connected in the mutant as a consequence of
the mutation of the distal Phe (Figure 7). Few water molecules
were found in the interior of the heme cavity along the trajectory,
a fact that supports the accessibility from the aqueous solvent,
in agreement with the biexponential kinetic behavior found for
the hexacoordinated forms (see above).
The nature and distribution of cavities in the 5c-deoxy form

of wt AHb1 were examined considering the distal His in two
tautomeric states (Figure 8). A distal cavity was constantly
present along the trajectories sampled for the wt protein using
the HIE and HID tautomeric forms of HisE7. Moreover, in the
two cases, an additional small cavity lined by residues Cys77,
Cys78, Ala81, Trp141, Ala144, Tyr145, and Leu148 was found
in the protein matrix but without an apparent, permanent linkage
with the distal cavity. On the other hand, the increased flexibility
of the distal His leads to larger fluctuations of the dihedral angles
of the side chain compared to the 6c state. In particular, a drastic
conformational change was observed in the case of the HID
tautomer after the first 15 ns of the trajectory (Figure 9; see
Figure S5 in the Supporting Information). Noteworthy, such
conformational rearrangement mimics the opening of the distal
histidine gate observed in carbonmonoxymyoglobin,46 which
would thus facilitate the formation of a path that connects the
distal site with the exterior.

TABLE 2: Microscopic Rate Constants and Activationa Enthalpies (kcal mol-1) and Entropies (cal mol-1 K-1) Determined for
wt AHb1 and Mutated Proteins from the Global Fit of Flash Photolysis (at 1 and 0.1 atm CO) and Stopped-Flow (at 0.05 atm
CO) Data at 20 °C

wtb PheB10 f Leu HisE7 f Leu

k ΔSq ΔHq k ΔSq ΔHq K ΔSq ΔHq

k-1 (106 s-1) 5.13 5.2 8
k2 (107 s-1) 9 -12.9 ( 0.6 2.7 ( 0.1 2.6 -16 ( 3 2.4 ( 0.9 2.7 -14.8 ( 0.9 2.8 ( 0.3
k-2 (107 M-1 s-1) 2.26 26 ( 2 14.7 ( 0.6 3.1 4.8 ( 0.4 8.5 ( 0.1 16 4.8 ( 1.5 7.6 ( 0.4
kb (s-1) 23.5 8 ( 4 18 ( 1 44.2 12 ( 5 18 ( 1
k-b (s-1) 14.5 12 ( 4 19 ( 1 79.6 18 ( 2 19.9 ( 0.6
kc (107 s-1) 2.07 1.48 3.5
k-c (107 s-1) 0.25 7.53 3.5

a Activation enthalpies ΔHq and entropies ΔSq were estimated from Eyring plots for each rate constant ki in the temperature range 10-40
°C, according to the equation ln(hki/kBT) ) ΔSq/R - ΔHq/RT, where R is the gas constant, h is Planck’s constant, and kB is the Boltzmann
constant. b Data from ref 19.

Figure 7. Representation of the cavities found from FPOCKET computations in the 6c state of AHb1 (left) and its PheB10 f Leu mutant
(right).
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Distinct trends concerning the shape and volume of the
internal cavities are found in the 5c-oxy state of wt AHb1. Thus,
FPOCKET results show the formation of a secondary cavity
delineated by residues Cys77, Cys78, Ser80, Ala81, Leu84,
Val90, Trp141, Ala144, His147, and Leu148, which is tran-
siently accessible to the bulk solvent through rearrangements
of the side chain of His147 (Figure 10). In fact, accessibility
was confirmed by the presence of two water molecules along
the simulation. More importantly, there is a direct connection
between the distal cavity and the secondary one, which seems
to be modulated by residues Cys77, Cys78, Leu121, and
particularly by the side chain of Tyr145. Thus, in the 6c- and
5c-deoxy states, Tyr145 exhibits little fluctuations, as the
orientation of the side chain is largely fixed by a hydrogen bond
withthecarbonylgroupofPhe114(average(Phe114)O · · ·O(Tyr145)
distance of 2.9 Å for wt AHb1 in the 6c state, and between 3.1
and 3.3 Å in the 5c-deoxy form). In contrast, this interaction is
more labile in the 5c-oxy form (average distance: 5.24 Å), and
breaking of the Phe114-Tyr145 interaction is sometimes
associated with the formation of a hydrogen bond between
Tyr145 and Cys77 (see Figure S6 in the Supporting Informa-
tion). Noteworthy, the formation of a transient pathway in the
5c-oxy state of wt AHb1 is supported by GRID-MD computa-
tions, which confirmed the feasibility of the channel for ligand
migration (see Figure 10). Overall, these findings are in

agreement with the results coming from laser flash photolysis
experiments, which showed a very low fraction of geminate
rebinding for wt AHb1, as expected from the presence of a
channel connecting the distal heme cavity with the exterior.15

The analysis of the trajectory sampled for the oxy state of
the PheB10 f Leu mutant reveals some analogies with wt
AHb1, but also some differential trends. First, the interaction
between Phe114 and Tyr145, which was maintained along the
6c PheB10 f Leu trajectory (average distance: 2.83 Å), is
broken, and leads to temporary hydrogen-bond interactions
between Tyr145 and Cys78 (see Figure S7 in the Supporting
Information). These changes not only affect the size and shape
of the distal cavity but also lead to the formation of new cavities.
In particular, a large cavity lined by residues Cys77, Ser80,
Val92, Leu100, Phe114, Ala117, Tyr145, Leu148, and Ile152
is formed under the heme (Figure 10), which is transiently
connected to the distal cavity. Even though this new cavity
partially overlaps with the secondary cavity found in oxy wt
AHb1, it is enclosed in the interior of the protein and no direct
connection with the bulk solvent was detected. Noteworthy, the
presence of this alternative docking site agrees with the sig-
nificant increase in geminate rebinding observed for the PheB10
f Leu mutant, since small ligands could be trapped in the
internal cavities close to the heme and then released into the
distal pocket.

Figure 8. Representation of the cavities found from FPOCKET computations for the 5c-deoxy state of wt AHb1 considering HE7 in its HIE (left)
and HID (right) tautomeric states.

Figure 9. Representation of the orientations of the distal His in snapshots taken at 10 and 40 ns in the simulations of wt AHb1 in the 5c-deoxy
state considering HIE (left) and HID (right) tautomeric forms.
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For the oxy form of the HisE7f Leu mutant, a small cavity
lined by residues Ala81, Trp141, Gly142, and Ala144 was
formed mimicking the secondary cavity observed in the wt
protein (Figure 10). Again, the formation of this cavity was
related to fluctuations in the side chain of Tyr145, which was
transiently hydrogen-bonded to Phe114 (distances ranging from
2.4 to 6.6 Å; see Figure S8 in the Supporting Information).
Furthermore, a second cavity (lined by residues Leu100, Val109,
Phe114, Val149, Ile152, and Met156) was found below the
heme, which at some extent overlaps with that found in the
PheB10 f Leu mutant. Again, this pocket can act as a
temporary site for diatomic ligands, thus explaining the larger
geminate rebinding observed relative to the wt protein.

Functional Implications. All of the experimental and
computational data discussed in the preceding sections reveal
a delicate balance of structural effects related to the presence
of HisE7 and PheB10 residues in the distal cavity of wt AHb1.
As expected, mutation of distal HisE7 to leucine leads to the

formation of a protein that exists as a pure pentacoordinated
species. In contrast, a mixture of penta- and hexacoordinated
forms is observed for the PheB10f Leu mutant, thus reflecting
the crucial role played by this residue in mediating the
equilibrium between 5cHS and 6cLS species. However, whereas
the wt protein predominates in the hexacoordinated form, the
reverse is found for the PheB10 f Leu mutant. Thus, the
equilibrium constant between 5cHS and 6cLS species changes
from 1.12 for the wt AHb1 to around 0.59 for the PheB10 f
L mutant. These findings point out a subtle but significant role

played by PheB10 in modulating the equilibrium between 5cHS
and 6cLS species in wt AHb1, as the replacement of this residue
by leucine weakens the tendency of HisE7 to bind the heme
Fe. In turn, the interplay between HisE7 and PheB10 likely
explains the much higher apparent bimolecular rebinding rate
in the mutants relative to the wt AHb1. Clearly, this finding is
not unexpected for the HisE7 f Leu mutant, as it is found to
populate the pentacoordinated species. However, the increased
rate of the bimolecular phase in the PheB10f Leu mutant can
be explained by the enhanced preference for the pentacoordi-
nated form, suggesting that ligation and detachment of the distal
His occurs with higher rates/lower yield for this mutant.
The subtle interplay between HisE7 and PheB10 is also

revealed upon inspection of the spectroscopic data collected for
CO and CN- complexes of AHb1 and its mutated proteins. The
differences in the ν(FeC) and ν(CO) frequencies observed for the
wt protein and its HisE7 f Leu mutant provide clear evidence
for the direct involvement of HisE7 in assisting the heme-bound
CO through the formation of a hydrogen bond in wt AHb1. On
the other hand, the role played by PheB10 is less apparent. Thus,
spectral data for CO complexes suggest the involvement of two
conformers characterized by different trends in the ν(FeC) and
ν(CO) frequencies: while in one case ν(FeC) and ν(CO) frequencies
at 493 and 1965 cm-1 are indicative of reduced polar interactions
between CO and the surrounding distal residues, in the other
case, there is a shift of the ν(FeC) frequency to 519 cm-1, which
unexpectedly is not accompanied by a concomitant upshift of
the ν(CO) frequency. These findings suggest the occurrence of a

Figure 10. Top: Representation of the cavities found from FPOCKET computations for the oxy state of wt AHb1 (left) and pathway found for
ligand migration from MD-GRID computations (right). Bottom: Superposition of the cavities found for the oxy forms of AHb1 (in dark red) and
its PheB10 f Leu (left) and HisE7 f Leu (right) mutants. For the sake of clarity, helix E is not shown.
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subtle rearrangement of the distal His relative to the heme arising
from the reduced steric hindrance of leucine in the PheB10 f
Leu mutant, leading to a weakening of the electrostatic
interaction with the heme-bound ligand. In turn, it can be
suggested that PheB10, besides affecting the 5c S 6c equilib-
rium through interaction with HisE7, could contribute to the
stabilization of the heme-bound ligand by indirect assistance
to the formation of the hydrogen bond with HisE7.
The enhanced geminate rebinding phase observed in the two

mutants compared to the wt protein can be interpreted from
the rearrangements observed in the internal cavities from MD
simulations. In particular, it is worth noting that simulations
carried out for the oxyferrous form of wt AHb1 clearly delineate
a tunnel leading from the distal cavity to the bulk solvent. In
contrast, Figure 10 reveals the existence of a series of discon-
nected cavities in the two mutants, which would thus disfavor
migration of ligands through the protein matrix to the solvent
compared to the wt protein. Rather, the ligand might be easily
trapped in those cavities, which would facilitate recombination
with the heme. Figure 10 also shows that the nature of those
cavities is not identical for the two mutants. In particular, the
cavity found below the heme appears to be more isolated in
the HisE7 f Leu mutant than the corresponding cavity in the
PheB10 f Leu one. If one assumes the temporary occupancy
of these sites by the photodissociated ligand, the location of
this cavity would likely explain the different temperature
sensitivity of the geminate phase in the two mutants. Thus, the
closer proximity of the cavities in the PheB10 f Leu mutant
would facilitate migration of the ligand to the distal cavity, as
suggested by the higher value of k-c observed for the PheB10
f Leu mutation. In contrast, the larger separation of the cavity
observed for the HisE7 f Leu mutant implies a smaller value
of k-c (Table 2).
Finally, it is worth discussing the preceding findings in the

context of the putative NO detoxification role recently suggested
for AHb1, which would act as a NO scavenger. The results
suggest that the distal residues HisE7 and PheB10 might have
a direct implication in mediating the balance between penta-
and hexacoordinated species but also in assisting ligand binding
to the heme. NO levels increase in response to hypoxia in
plants.9 This increase appears to be modulated by levels of
AHb1, which also increase in abundance in response to
hypoxia.5,6 Keeping in mind the extremely high affinity of AHb1
for oxygen (Kd ∼2-10 nM) and the expression of AHb1
induced by low levels of oxygen,5,6 which then stimulates
production of NO, it can be hypothesized that the interplay of
interactions between distal residues HisE7 and PheB10 acts in
a synergic way in order to ensure functional activation of AHb1
only under those conditions. Even if the protein tends to rest
under latency due to the preference toward the hexacoordinated
species, the high O2 affinity facilitates detachment of the distal
His from the sixth coordination position of the heme and
displacement toward the pentacoordinated species even under
hypoxic conditions, thus rendering the actiVe oxyferrous species
able to scavenge NO. Binding of O2 would facilitate the opening
of the tunnel, leading to the solvent through the secondary cavity
(Figure 10), thus allowing the migration of NO as an incoming
ligand from the bulk solvent to the heme-bound O2 in the distal
cavity, or involving the formation of a Cys-NO adduct, as
suggested by Perazzolli and co-workers.12

According to this mechanism, it might be suggested that the
subtle interplay between HisE7 and PheB10 has been designed
to ensure the access of NO after oxygenation of wt AHb1, thus
enabling the protein to accomplish the NO scavenging role.

Interestingly, a conceptually related functional mechanism has
been recently proposed for the NO dioxygenase activity of
truncated hemoglobin N (trHbN) from M. tuberculosis. This
protein has been hypothesized to facilitate access of NO to the
heme cavity in the oxygenated state, as binding of O2 to the Fe
would trigger the opening of the gate (played by the PheE15
residue) that modulates migration of diatomic ligands through
a hydrophobic tunnel.47,48 Therefore, in spite of the notable
structural dissimilarities observed between AHb1 and trHbN,
it seems that their structures have evolved in order to facilitate
migration of NO to the heme cavity only when the protein is
ready to accomplish the dioxygenase role. Overall, the preserva-
tion of this functional mechanism in stress-induced hemoglobins
could reflect a strategy designed by evolution to enhance the
efficiency of the NO scavenging activity.
As a final remark, present results trigger challenging questions

about the potential role played by distal residues HisE7 and
PheB10 in mediating the balance between penta- and hexaco-
ordinated species. The sequence identity between AHb1 and
other hexacoordinated proteins, such as neuroglobin and cyto-
globin, is very low (around 19 and 24%, respectively), which
reflects the evolutionary divergence between these proteins. It
has been suggested that the intrinsic conformational flexibility
of the CD-D region in globins capable of heme endogenous
hexacoordination can be related to the ability of exploiting the
5cS 6c equilibrium for the control of O2 diffusion to/from the
heme.49,50 In this context, future studies addressing specifically
the differences in the dynamical behavior of wt AHb1 and its
PheB10f Leu mutant might be valuable to shed light into the
structural basis and functional roles associated with heme
hexacoordination.

Conclusions

The analysis of experimental and computational results
reveals the critical influence played by HisE7 and PheB10
residues in the distal cavity on the structure and function of
AHb1. Thus, the delicate interplay between HisE7 and PheB10
residues appears to be crucial to modulate the balance between
penta- and hexacoordinated forms of the wt protein. Moreover,
they would also affect the binding of the exogenous ligand (e.g.,
O2), which in turn would facilitate, upon binding, the formation
of a passage through the protein matrix leading from the distal
cavity to the bulk solvent, thus opening an easier access to a
second reactant (e.g., NO). Overall, these findings are consistent
with the putative NO detoxification role proposed for AHb1.
The synergism between HisE7 and PheB10 would thus be
conceived as a subtle mechanism to modulate activation of the
protein only when the level of oxygen has surpassed a threshold
value, making the oxyferrous form able to perform NO
scavenging.
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