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Abstract

Digital music is becoming a major part of the user experience with computers
and mobile devices. Automatically organizing this content is a huge challenge.
In this work, we focus on automatically classifying music by mood. For this
purpose, we propose computational models using information extracted from
the audio signal. The foundations of such algorithms are based on techniques
from the fields of signal processing, machine learning and information retrieval.
First, by studying the tagging behavior of a music social network with dimen-
sionality reduction techniques, we find a relevant model to represent mood.
We believe that this new methodology can be applied to other domains as
well. Then, we propose a method for automatic music mood classification and
detail the results for different types of classifiers. We analyze the contributions
of audio descriptors and how their values are related to the observed mood,
trying to find explanation from psychology and musicology. We also propose a
multimodal version of our algorithm using lyrics information, contributing to
the field of text retrieval with a new model based on key words differentiating
categories. Moreover, after showing the relation between mood and genre, we
present a new approach using automatic music genre classification. We demon-
strate that genre-based mood classifiers give higher accuracies than standard
audio models. Finally, we propose a rule extraction technique to explicit the
strategy behind our models. This method allows to make sense of the classifiers
and to understand how they can predict the musical mood. All the proposed
algorithms are evaluated with user data. Our audio based approaches, adapted
to the context, have been evaluated in international evaluation campaigns.
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Resumen

La música en formato digital forma parte de nuestras vidas. Automatizar la
organización de estos datos es un gran desafío. En esta tesis, nos centramos
en la clasificación automática de música a partir de la detección de la emoción
que comunica. Para conseguirlo, proponemos modelos usando informaciones
extraídas de la señal de audio mediante técnicas de procesamiento de señales,
aprendizaje automático y recuperación de información. Primero, estudiamos
como los miembros de una red social utilizan etiquetas y palabras clave para
describir la música y las emociones que evoca. Con una técnica para reducir
la complejidad dimensional de este problema, encontramos un modelo para re-
presentar los estados de ánimo. Luego, proponemos un método de clasificación
automática de emociones y detallamos los resultados para distintos tipos de
clasificadores. Analizamos las contribuciones de descriptores de audio y cómo
sus valores están relacionados con los estados de ánimo, intentando encontrar
explicaciones desde un punto de vista psicológico y/o musicólogico. Propone-
mos también una versión multimodal de nuestro algoritmo, usando las letras
de canciones con un nuevo método de clasificación basado en las palabras cla-
ves para distinguir categorías de emociones. Finalmente, después de estudiar la
relación entre el estado de ánimo y el género musical, presentamos un método
usando la clasificación automática por género. Mostramos que clasificadores
basados en el género obtienen mejores resultados que otros métodos estándar.
A modo de recapitulación conceptual y algorítmica, proponemos una técnica de
extracción de reglas para entender como los algoritmos de aprendizaje automá-
tico predicen la emoción evocada por la música. Nuestros algoritmos han sido
evaluados con datos de usuarios y en concursos de evaluación internacionales.
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Preface

Back in 2006, when I started this research, I remember Perfecto Herrera listing
several possible topics, leaving it open to other ideas. There was no doubts, I
was fascinated by the topic I just picked: Music, Machine Learning and Emo-
tions ! There had been a very few works published on this at that time, and
no clear path had been traced to start on a solid basis. This led to a lot of
questions that made be discovering the literature about mood and emotions
in many disciplines, also attending to conferences more psychology or neuro-
science oriented. Even if there was some solid research done, unfortunately,
there was no clear or widely adopted theory to be completely confident in.
Should emotions be represented as categories, or dimensions, and which ones?
Should they be represented in another way? How? One of this thesis contri-
bution is to summarize these approaches and to offer a new perspective based
on a large online community analysis.
After several years and challenges, I must say it was not an easy topic. Many
times I wished I could work on a subject with reliable and completely objective
basis. Nevertheless, after learning a lot about emotions and machine learning,
I am still fascinated by both topics and I am proud that they could meet in
this work.
What you are about to read has been published in several international confer-
ences, a journal and a book chapter. Our approaches have been proved to be
within the highest accuracies in an international evaluation campaign. Also,
European projects and commercial products are using the direct outcomes of
this research. I hope you enjoy the reading.
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CHAPTER 1
Introduction

"If I were not a physicist, I would probably be a musician. I often think in
music. I live my daydreams in music. I see my life in terms of music. ... I
get most joy in life out of music." Albert Einstein

1.1. Motivation

Music is ubiquitous in everyday life. But why do we listen to music ? Why
do people enjoy music? Why is music so important in our lives ? There are
many explanations at different levels of interpretation and one of them is that
music easily induces strong emotions. This emotional experience is one of the
main factors explaining people’s passion about music. Stating that music and
emotions have a close relationship is no revelation. An obvious motivation for
music composers to compose is to express their sentiments. Performers like to
interpret musical pieces to induce feelings to the audience (and to themselves).
People often listen to music to feel something, from a small arousal to strong
emotions. The relation between music and emotion have fascinated human
beings since antiquity. However the mechanisms behind are still poorly un-
derstood. With the development of machine learning algorithms and content
analysis, it has become possible to automatically analyze and annotate music
using audio data. For instance, automatic genre classification has been studied
for several years and current algorithms are considered as satisfying (see Guaus
(2009)). In that context, can we similarly develop algorithms that are capable
of detecting emotions in music? How a computer can be able to "perceive"
emotions? Will this reflect precisely human perception? How can we deal with
the subjectivity of emotions? What can be the applications of such systems?
These are the main question we start to answer in this thesis.
At first glance, studying emotions can be somehow frightening. First, because
it seems very complex, and also because it involves mechanisms that can be
used for undesired purposes such as intrusive advertisement. But it is also truly
fascinating. It can have applications in treating people using smart music
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therapy. Indeed, machines with musical abilities can select, play and even
compose music conveying targeted emotions. The technology we will explore
in this thesis will enable to detect emotions from raw audio material, which
is directly from the digital signal. We will also investigate how to represent
emotions, based on data generated by an online community of music listeners.
Lyrics will also be considered as a source of emotional information and finally
we will use the musical genre to build better computational models.

1.2. Outline of the thesis

This thesis aims at developing methods to automatically classify music by
mood. The basic information we start with is the audio signal. Consequently,
we use techniques from signal processing to extract relevant information from
this signal. To make computational models of emotions in music, we employ
machine learning algorithms with a supervised learning approach, meaning
that we base our models on examples. While the main focus is on audio,
using low-level (close to the signal) and high-level (close to human perception)
features, we also make experiments using lyrics, with text retrieval techniques.
For this research, and because a few has been done on this topic, we follow
a general discipline of simplicity, trying to makes things work for a general
purpose.
In Chapter 2, we review the literature related to this thesis. We first summa-
rize the definitions of emotion and mood, showing perspectives from different
disciplines. After clarifying the terminology, we define the mood and emo-
tion in the musical context. We also detail how emotions can be represented,
following the literature from psychology and what are the important musical
features. Then, we proceed with an explanation of the basic techniques for mu-
sic classification, from extracting audio features to building classifiers. Finally,
we review the literature about music mood classification.
In Chapter 3, we make a study that will serve as a basis for the remainder
of the thesis. We analyze mood tags from a large online music community to
understand what would be a relevant mood representation to use in our compu-
tational models. From the huge amount of tags, we create a useful space that
we call the "Semantic Mood Space", representing the relationships between
mood tags. This is generated based on the co-occurrence of tags that users
associate with musical tracks and text retrieval techniques for dimensionality
reduction. We evaluate how well-known representations fit into that semantic
space, and demonstrate that basic emotion clusters directly emerge from the
social network data.
In Chapter 4, we propose a technique to create a dataset of examples (ground
truth) based on a large community of music listeners (crowd) and few listeners
that we trust (experts). This first step shows the relevance to manually validate
the data with listeners, not taking the tags for granted. From this ground truth,
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we study the importance of several key audio features, trying to explain why
there are related to particular moods. We detail how to build a classifier that
we evaluate in accuracy and robustness. As a main result, we show that we
are able to build reliable mood classifiers with high accuracies, and we validate
our approach achieving good results in international evaluations.
In Chapter 5, we add another source of information: lyrics. Using text retrieval
techniques, we show that we can obtain higher accuracies mixing audio and
lyrics data. A new method is proposed, called "Language Model Differences",
interesting by its relative simplicity to implement. This approach also gives us
a clear indication on the terms that are especially important to discriminate
between emotions.
In Chapter 6, we first analyze the relation between mood and genre. We show
a clear relation, and based on this observation, we propose a method to exploit
this information. We obtain a new genre-based mood classification algorithm,
significantly increasing the accuracy of the original model.
Chapter 7 provides a summary of contributions and perspectives for future
research on music mood classification. It also concludes this thesis.





CHAPTER 2
Literature Review

"Everyone knows what an emotion is, until asked to give a definition. Then,
it seems, no one knows" Fehr & Russell (1984).

2.1. Introduction

The literature review is divided into four main parts. First, we discuss about
the definition of mood and emotion from different perspectives and we decide
about what terminology to use. Then, we focus on the musical case. In
particular, we detail the representation models that appear in the literature
and how some musical features are related to emotions. The third section is
devoted to the music classification problem and to the methods used to extract
audio features and classify musical pieces. This is mainly about explaining the
principles of supervised learning, signal processing for audio feature extraction,
machine learning technique to build classifiers and measures to evaluate their
accuracies. Finally, we give an overview of the related works in music mood
classification.

2.2. What are Moods and Emotions?

What are emotions? This is the first question we will try to answer. And
what about similar words such as "mood" or feeling"? The terms "emotion",
"mood" or "feeling" are often employed in everyday’s life. However, clear
definitions of those words are rarely stated. Moreover, the perceived difference
between those words is vague. If we look at the Oxford American Dictionary,
emotion is a "natural state of mind deriving from one’s circumstances, mood
or relationship with others, any of the particular feeling that characterize such
a state of mind". In the same dictionary, mood is a "temporary state of mind
or feeling" and feeling is defined as an emotion. Dictionaries are, by definition,
self referencing and it is hard from those explanations to differentiate between
these three terms. If emotion and feeling appear to be synonyms, we identify
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a slight difference with "mood". Indeed the definition of mood includes a
temporal aspect, but we need a deeper semantic analysis.

2.2.1. Definitions

Emotions are difficult to define and measure. Emotion can be defined as an
everyday concept ("folk-theory") but also as a scientific theory. The common
assumption is that there are emotions that make us feel good and others bad.
Also, it is commonly accepted that some people are more "emotional" than
others, as pointed out by Sloboda (2001).
But who should be the expert to talk about emotions? Who can clearly define
what it is? Looking at the scientific literature, there are many studies com-
ing from psychology but also neuroscience (with sub-fields such as affective
neuroscience), sociology, philosophy, anthropology and biology.
An emotion could be defined as an intense mental state arousing the nervous
system and invoking physiological responses. According to Damasio (1994),
emotions are a series of body state changes that are connected to mental im-
ages that have activated a given brain subsystem (e.g., the music process-
ing subsystem). So emotions involve physiological reactions but also they are
object-oriented and provoke a categorization of their object: "if the emotion is
one of fear its object must be viewed as harmful" (Davies (2001), p. 26). Emo-
tions also induce an attitude towards the object. Moods could be considered
as lasting emotional states. They are not object oriented and take into account
quite general feelings. Moods and emotions can be considered as very similar
concepts in some cases, for instance happiness, sadness and anger can be seen
as both moods and emotions. However some emotions can only be considered
as transient, such as surprise (if we consider surprise as an emotion).
After reviewing of 92 definitions, Kleinginna & Kleinginna (1981) proposed the
following one trying to reach the best agreement:
"Emotion is a complex set of interactions among subjective and objective fac-
tors, mediated by neural/hormonal systems, which can (a) give rise to affec-
tive experiences such as feelings of arousal, pleasure/displeasure; (b) generate
cognitive processes such as perceptually relevant effects, appraisals, labeling
processes; (c) activate widespread physiological adjustments to the arousing
conditions; and (d) lead to behavior that is often, but not always, expressive,
goal-directed, and adaptive.".
Studying emotions is problematic. The experimental settings are complex in
order to avoid influencing the emotional experience of a subject. Moreover
there is a great variability among subjects and also across time for the same
person. In psychology, there are three main possibilities to gather evidence
about emotions: physiological measurements, self-report and expressive be-
havior. The most commonly used being self-report. Results from this field
yielded to different observations that we summarize here.
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Emotions are functional. Although there is no direct link between feeling emo-
tions and the achievement of goals (phenomena called non-instrumentality by
Frijda (1986)), a certain behavior is observed when experiencing particular
emotions (with a great variability among subjects and contexts). There is a
common view that the key function of emotions is to guide behavior. The
behavior provoked by emotions has been developed with regards to successful
interaction with the environment, serving functions that are not always con-
scious are rarely intentional.

Emotions induces physiological changes. Findings by Pike (1972) suggest that
emotional responses to music includes stable moods, transient emotions and
feelings of pleasure. Other studies have shown that, like in other contexts,
experiencing emotions induces physiological changes like heart rate or even
triggers intense responses like ’thrills’ or ’chills’.

Emotions are social. Even if emotions can be experienced alone, it seems that
they provoke more intense reactions when other people are present. Emotions
are contagious, others emotional expressions influences our behavior. There
is an interesting paradox here, when considering the western-culture attitude
when attending public performances of "serious" music (classical, baroque,
contemporary, even jazz). The typical behavior is to be silent and avoid any
emotional expression, although self-report studies demonstrated that strong
emotions are perceived (see Gabrielsson (2001)). This is however not applica-
ble to any music. During rock concerts, people tend to express their emotions
and to share them with other people from the audience. However, in classical
music or event opera (which is historically surprising), a silent behavior would
be well considered or even required by the audience.

Emotions are universal and cultural. This contradictory statement reveals both
aspects of emotions (common to all human being and specific to some cultures)
and reflects many research results, like the ones summarized by Wierzbicka
(1999). The main problem is to sort out the culture-specific from the universal.

2.2.2. Terminology

Scientists have used many different related terms to explain similar phenomena:
affect, emotion, mood, feeling, arousal etc... Looking at the literature those
terms are often employed interchangeably. This confusion is most probably
due to the fact that there are no clear or standardized definitions of those
terms. However, we can note some differences. Affect is often defined as
more general than emotion (Oatley & Jenkins (1996), p124) and seems to be
more related to the positive and negative aspects (usually called "valence").
Moods are considered to last longer than emotions (or to be an emotion that
lasts) and to have a less clear stimuli. Davidson (2001) suggest that "emotion
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bias action whereas moods bias cognition". However, in the case of music,
the behavioral influence of emotions is unclear. It is not set that emotions
experienced in music will directly bias actions more than moods could. Meyer
(1956) talks about mood as a long lasting emotional state. Most psychology
research seems to prefer the term emotion, since they usually focus on the
human responses to emotion stimuli. However, if we are interested to classify
music, we should focus on aspects that are less objective than what emotion
the listener feels. We would rather be interested in which mood is carried by
the music. This is why we would prefer using the term mood classification
than emotion classification. However, as emotion and mood are very related,
and as also noted by Kim et al. (2010), used interchangeably in the literature,
we will simplify our terminology by using both emotion and mood for the same
idea.

2.3. The Musical Case

Why does music convey emotion? Emotion and expressive properties of musical
elements have been studied since the time of ancient Greece (see Juslin &
Laukka (2004)). The fact that music induces emotions is evident for everyone.
However we do not intuitively apprehend why. Emotions are mostly said to
be complex and to involve a complicated combination of cognition, positive or
negative feeling changes, appraisal, motivation, autonomic arousal, and bodily
action tendency or change in action readiness.
Although emotions have been studied in psychology for decades, music was
rarely mentioned. Emotional reaction to music seems to be considered as less
important, probably because its potential vital role in daily life is not perceived.
Also, its relation to aesthetic has not been judged as worth studying by a
majority of scientists (as well as for other arts like paintings, drama, cinema
etc...). Nevertheless the tendency is changing and there is a recent important
growth in number of studies about emotions and music (see Sloboda (2001)).
Understanding how music conveys emotion is not trivial. Kivy (1989) gives
two such hypotheses. The first might be a "hearing resemblance between the
music and the natural expression of the emotion". Some musical cues can
induce emotions because of their similarity to speech. One example is "anger"
where the loudness and the spectral dissonance (derived from frequency ratios
and harmonic coincidence in the sound spectrum and based on psychoacoustic
tests) are two components we can find in both an angry voice and music.
However it might not always be that simple. The second hypothesis Kivy
gives is the "accumulated connotations a certain musical phenomena acquire in
a culture". In that case, we learn in our culture which musical cues correspond
to which feeling. Most probably, both hypotheses are valid. Frijda (1986)
argues for a notion of emotions as action tendencies where "various emotions
humans or animals can have - the various action readiness modes they may
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experience or show - depends upon what action programs, behavior systems,
and activation or deactivation mechanisms the organism has at its disposal.".
As pointed out by Nussbaum (2007), this correlates with results in neuroscience
from scientists such as Damasio (1994).
Grewe et al. (2007) demonstrated that the intensity of the emotion induced by
music could vary depending on personal experience and musical background. If
a musician knows and has studied the piece for a performance, he/she is more
likely to rate the intensity of the emotion higher. This is an auto-reinforcement
by training. We can also imagine that listening to a musical piece too many
times can create the opposite behavior. Almost everyone has experienced the
fact of being bored, or less and less sensitive to a musical piece they used
to love. Consequently, the emotion induced by the same song on the same
subject fluctuates a lot in time, also depending on the current mental state
of the listener. Besides, it is important to notice that emotions in music are
not restricted to adults or musically trained people. The emotional processing
of music starts at an early age. Four-months-old children have a preference
for consonant (pleasant) over dissonant (unpleasant) music (see Trainor et al.
(2002)). At five years old, they can distinguish between happy and sad music
using the tempo (sad = slow, happy = fast), but at six, they use information
from the mode (sad = minor, happy = major) such as adults do (Dalla Bella
et al. (2001)).
Studies in neuroscience, exploiting the current techniques of brain imaging also
give a hint about the emotional processing of music, with some schemas of the
brain functions involved (see Koelsch et al. (2006)). Gosselin et al. (2005)
demonstrated that the amygdala, well established to have an important role in
the recognition of fear, is determinant in the recognition of scary music. Blood
& Zatorre (2001) revealed that music creating highly pleasurable experience
like "shivers-down-the-spine" or "chills" activate regions in the brain involved
in reward and motivation. It is worth noticing that these areas are also active
in response to other euphoria-inducing stimuli like food, sex and drugs. Huron
(2006) simply states that music making and listening are primarily motivated
by pleasure and that the contrary is biologically implausible (p. 373). Meyer
(1956) describes the importance of expectation as a tool for the composer to
create emotions. This work has been continued and formalized as the ITPRA1
theory by Huron (2006). One important way to control the pleasure in a
musical piece is to play with this feature by delaying expected outcomes and
fulfilling our expectation.
Additional research by Menon & Levitin (2005) seems to have also found the
physical connections between music and mood alteration by means of antide-
pressants: the latter act on the dopaminergic system which has one of its main
centers in the so-called nucleus accumbens, a brain structure that also receives
a dramatic degree of activation when listening to music. These results are co-
herent with the work from Lazarus (1991), when he argues that emotions are
evolutionary adaptations, to evoke behaviors that improve chances for survival
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and procreation, and with Tomkins (1980) view that emotions can be under-
stood as "motivational amplifiers". It links music with survival related stimuli.
Often, damages to emotional controls limiting the normal functionability of the
emotional behavior are disastrous for people (Damasio (1994)). Moreover peo-
ple who did not develop social emotions seem incapable of appreciating music
(Sacks & Freeman (1994)). However, this evolutionary adaptation theory can
be balanced by the fact that most emotional responses to music are neither
used to achieve goals, nor practically related to survival issues. This argument
is used by researchers who assume that music cannot induce basic survival emo-
tions, but more "music-specific emotions" (Scherer & Zentner (2001), p. 381).
Nonetheless, other notable researchers, in Panksepp & Bernatzky (2002),affirm
about music that it is "remarkable that any medium could so readily evoke all
the basic emotions of our brain". This is one of the multiple contradictions
we can observe in current research on music and emotions. As pointed out
by Juslin & Västfjäll (2008), the literature presents a confusing picture with
conflicting views. Nevertheless there is no doubt that music induces emotion
because of the related context. It evokes emotions from past events because it
is associated in our memory to emotional events.
When talking about emotion and music, one important distinction to make is
the difference between induced and perceived emotions (see Juslin & Laukka
(2004)). That is what we could define as "emotion in music" and "emotion
from music". The former represents the intended emotion and the latter the
emotion felt while listening to a musical piece. One is the emotion recognized
and the other the emotion felt. A typical example of differentiation between
both is the expression of anger. When someone else is angry, people might
recognize anger and feel scared or defensive. The induced emotion is radically
different from the perceived one in this case. Different factors can influence
both types, for instance the symbolic aspect or the social context of a song will
influence more the induced emotion (like for a national anthem). As noticed
by Bigand et al. (2005) both aspects are not strictly independent and there will
always be an influence of the induced emotion on someone asked to judge the
perceived one. Nevertheless it should be observed that people tend to agree
more on the perceived emotion than on the induced emotion( Juslin & Laukka
(2004)). This property is very important for our work as we want to reach the
best consensus to build our computational models.
It is also worth noticing that a relevant part of the emotion in songs comes
from the lyrics. Psychological studies have shown that part of the semantic
information of songs resides exclusively in the lyrics (see Besson et al. (1998)).
This means that lyrics can contain relevant information to express emotions
that is not included in the audio. Indeed, Juslin & Laukka (2004) reported that
29% people mentioned the lyrics as a factor of how music expresses emotions.
Although there is an increase in research about the causal links between mu-
sic and emotion, there still remain many open questions (Patel (2007)). In
addition to the biological substrate, there are important links related to the
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musical features that are present or absent when perceiving or feeling a given
music-related emotion. In Section 2.3.2, we give some results about these mu-
sical features, but first we will discuss the different representations of musical
emotions that arise from psychological studies.

2.3.1. Emotion Representations

One of the first question that comes to mind to formalize emotions is how
to representation them. From the literature in music psychology, there are
two main paradigms to represent emotions. This distinction is quite general,
it is not only about musical emotions, but studies were designed specifically
to test and refine these models for music. The first one is the categorical
representation that distinguishes among several emotion classes. The other
one is the dimensional representation defining an emotional space. We detail
here the main theories using both approaches and we make explicit the special
case of musically-related emotional representations.

Categorical representation

The categorical representation aims to divide emotions in categories, where
each emotion is labeled with one or several adjectives. The most canonical
model is the concept of basic emotions where several distinct categories are the
basis of all possible emotions (see Section 2.3.1).A lot of psychologists propose
that their emotion adjective set is applicable to music. One of the most relevant
works in this domain is the study by Hevner (1936) and her adjective circle
shown in figure 2.1. Hevner’s adjective list is composed of 67 words arranged
into eight clusters. From this study each cluster includes adjectives that have
a close relationship. This similarity between words of the same cluster enables
one to work at the cluster level reducing the taxonomy to eight categories.
Farnsworth (1954) modified Hevner’s list into ten clusters. These categories
were defined by conducting listening tests and subjective answers. Moreover,
we should note that most of these studies were conducted using classical music
from the western culture and mainly of the baroque and romantic periods.
We can imagine that the emotions evoked by popular music are different. A
problem of the categorical approach is that classifying a musical piece into one
or several categories is rather difficult sometimes, as pointed out by Hevner
(1936). For instance in one of her studies, based on a musical piece called
"Reflections on the water" by Debussy was rated to belong to all the clusters
unless a continuous measure was considered. Although it was argued that a
word list could not describe the variety of possible emotions in music, using a
reduced set helps to achieve an agreement between people (even if it gives less
meaning) and offers the possibility for automatic systems to model the general
consensus of musical pieces.
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Figure 2.1: Hevner (1936) model with adjectives grouped into eight clusters.

The Basic Emotion Theory

A mentioned previously, the basic emotion theory states that there is a basic
set of universal emotions. This set is considered as the basis of all possible
emotions. In a similar way that primary color can compose any color, basic
emotions could compose any emotion. This concept is particularly illustrated
by Ekman’s basic emotion theory, developed for facial expression, distinguish-
ing between anger, fear, sadness, happiness and disgust (Ekman (1992)). Each
basic emotion has a functional goal that can be defined as key appraisals re-
viewed in Juslin & Sloboda (2001) p 76. and presented here in Table 2.1.
The basic emotion theory has been criticized, especially because researchers
proposed different sets of basic emotions. Looking at the literature, we note
that it mainly depends on how emotions are defined. If we consider that ba-
sic emotions should be universal, inducing distinct feelings, having different
functionalities and contributing to survival triggering different physiological
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Emotion Juncture of plan Core relational theme

Happiness Subgoals being achieved Making reasonable progress
towards a goal

Anger Active plan frustrated A demeaning offense against
me and mine

Sadness Failure of major plan or Having experienced an
loss of active goal irrevocable loss

Fear Self preservation goal threatened Facing an immediate, concrete, or
or goal conflict overwhelming physical danger

Disgust Gustatory goal violated Taking in or being close to an
indigestible object or idea
(metaphorically speaking)

Table 2.1: Key appraisals for basic emotions adapted from Sloboda (2001).

changes, there is a reasonable consensus on the set exposed in Table 2.1 :
happiness, anger, sadness, fear, and disgust.

Dimensional representation

In a dimensional representation, the emotions are classified along axes. Most
of the proposed representations in the literature are inspired by the Russell
(1980) "circumplex model of affect", using a two-dimensional space spanned
by arousal (activity, excitation of the emotion) and valence (positivity or neg-
ativity of the emotion). In Figure 2.2, we represent this bipolar model with
the different adjectives placed in this emotional space. In this two-dimensional
space, a point at the upper-right corner has high valence and arousal, which
means happy with a high activity such as "excited". Opposite to this one,
the lower-left part is negative with low activity like "bored" or "depressed".
Several researchers such as Thayer (1989) applied this dimensional approach
and developed the idea of an energy-stress model. Other studies propose other
dimensional representations. However, they all somehow relate to the models
previously presented, as in the case of Schubert (1999) two-dimensional emo-
tion space (called 2DES), with valence on the x-axis and arousal on the y-axis
with a mapping of adjectives from different psychological references. The main
advantage of representing emotion in a dimensional form is that any emotion
can then be mapped in that space. It allows a model where any emotion can be
represented, within the limitation of these dimensions. One common criticism
of this approach is that very different emotions in terms of semantic meaning
(but also in terms of psychological and cognitive mechanisms involved) can be
close in the emotional space. For instance, looking at the "circumplex model
of affect" in Figure 2.2, we observe that the distance between "angry" and
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"afraid" is small although these two emotions are quite different.

Figure 2.2: "Circumplex model of affect" with arousal and valence dimensions,
adapted from Russell (1980)

2.3.2. Musical features and emotions

Several studies investigated musical features and their relations to particular
emotions. However, most of the available research is centered on the western
musical culture and mainly from classical music. Note that both composers
and performers use these musical features. In Figure 2.3, we report on the main
mapping between musical features and emotion categories found in the litera-
ture. In parenthesis is the quadrant number in Russell’s dimensional space (see
Figure 2.2)1. Each independent feature is probably not sufficient to conclude
about one emotion; on the contrary this may require a rich set of musical de-
scriptors. It is interesting to notice that these features correlate with research
made on speech by Scherer (1991). Of course the comparison is limited to only
a small set of attributes useful for speech like the pitch, the loudness and the

11 is positive valence and high arousal, 2 is negative valence and high arousal, 3 is negative
valence and low arousal, 4 is positive valence and low arousal
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tempo (which would be speed in speech). From the list shown in Figure 2.3,
we observe that some features can be automatically extracted from polyphonic
audio content with existing technologies developed in this document2. These
features are marked with an asterisk. For instance the tempo can be estimated
by locating the beats. Of course it would work better on music with evident
tempo and prominent percussion on beats (rock or techno for example). The
results are less reliable for music with a smooth and subtle rhythm (such as
classical music). From audio content the reliability of these features is not
always optimum but still it makes sense to use them, as they are informa-
tive. The key and the mode can also be extracted with a satisfying correctness
(see Gómez (2006)) by analyzing frequency distributions and comparing with
tonal profiles. Other attributes are more difficult to extract from a complex
mix of instruments and would be reliable only on monophonic tracks (one in-
strument). They are marked with two asterisks. For example, the vibrato or
the singer formant changes can be detected if we work on audio information
containing just the singer’s voice (such as a monophonic recording), but it
becomes too complex on a mix containing all the instruments. Other musi-
cal cues should be informative about emotions, for instance a measure of the
tonal induction (see Toiviainen & Krumhansl (2003)), predictability or tension
(like studied by Farbood (2006); Krumhansl (1996); Lerdahl (1996); Lerdahl &
Krumhansl (2007)) as it also correlates with physiological and neural responses
(see Steinbeis et al. (2006)). From these results, can we seriously think about
automatically predicting the emotion from music? Can machines have an emo-
tional understanding close to ours? In the recent years, research in machine
learning and signal processing has allowed one to extract relevant and robust
audio and musical features with techniques we will detail in the next section.

2For a review on automatic extraction of audio features, see Herrera et al. (2005) and
Gouyon et al. (2008)



16 CHAPTER 2. LITERATURE REVIEW

Musical Features Happiness (1) Sadness (3) Anger (2) Fear (2) Tenderness (4)

Tempo* Fast, small 
variability

Slow Fast, small 
variability

Fast, large 
variability

Slow

Mode* Major Minor Minor Minor Major

Harmony* simple and 
consonant

dissonant atonality, 
dissonant

dissonant consonant

Loudness* medium-high, 
small variability

low, moderate 
variability

high, small 
variability

low, large level 
variability, rapid 
changes

medium-low, 
small variability

Pitch** high, much 
variability, wide 
range, ascending

low, narrow range, 
descending

high, small 
variability, 
ascending

high, ascending, 
wide range, large 
contrasts

low, fairly narrow 
range

Intonation** rising flat, falling accent on tonally 
unstable notes

- -

Singer’s formant** raised lowered raised - lowered

Intervals** perfect 4th and 
5th

small (minor 2nd) major 7th and 
augmented 4th

- -

Articulation** staccato, large 
variability

legato, small 
variability

staccato, moderate 
variability

staccato,large 
variability

legato, small 
variability

Rhythm* smooth and 
fluent

ritardando complex, sudden 
changes, 
accelerando

jerky -

Timbre* bright dull sharp soft soft

Tone attacks** fast slow fast soft slow

Timing variability* small large (rubato) small very large moderate

Vibrato** medium-fast rate, 
medium extent

slow, small extent medium-fast rate, 
large extent

fast rate, small 
extent

medium fast, small 
extent

Contrast between 
long and short 
notes**

sharp soft sharp - soft

Micro-structure* regularities irregularities irregularities irregularities regularities

Others pauses spectral noise pauses accents on tonally 
stable notes

Table 1, Most frequent musical features mapped with  the  emotion categories. *=can be  extracted from 
audio content, **=can be extracted only from monophonic audio content (one instrument)

Figure 2.3: The most frequent musical features mapped with the emotion categories
based on Juslin & Laukka (2004). An asterisk (*) means that some information can
be extracted from polyphonic audio content; two asterisks (**) means that it can be
extracted only from monophonic audio content (one instrument), in both cases using
state-of-the-art technology.
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2.4. Music Classification

The research on music classification from audio signal has been studied in the
MIR field. MIR stands for "Music Information Retrieval". In this section, we
want to explain the basic concept and schema of music classification commonly
used in MIR. First, we want to describe the building blocks of a music clas-
sification system using supervised learning. Supervised learning is a machine
learning task using training data to infer a function. In simple terms, a clas-
sifier using supervised learning is an algorithm that can learn categories from
examples.
There are four main steps in supervised learning:

Dataset Collection or Ground truth

Audio features extraction

Classification

Evaluation

2.4.1. Ground Truth

The quality of the training dataset (or ground truth) is crucial. It also has to
be defined in terms of taxonomy. To construct the dataset, we need to consider
different aspects : the number of categories, the number of instances and the
length of our audio excerpts. A good compromise needs to be found in order
to be able to construct a reliable dataset of representative instances.

2.4.2. Audio Feature Extraction

Audio files are decoded as a succession of digital samples representing the
waveform. From this data, audio features or descriptors can be extracted. The
main objective is to have a compact representation of audio representing key
facets of music. Descriptors are often divided into low-level (close to the signal)
and high-level (close to human semantics). Orio (2006) summarized the most
important facets of music as: timbre, orchestration, acoustics, rhythm, melody,
harmony and structure. Audio features try to represent some aspect of these
facets.
A digital audio signal is commonly converted to a general format (such as
PCM 16 bits), with a sampling rate (from 5 to 44.1Khz). The audio signal is
cut into frames. The frame rate is the number of frames per second. Then,
a window function (Gaussian or Hanning window) is applied, to minimize the
discontinuities at the beginning and end of each frame. A hop size is usually
defined and is equal to the frame rate minus the overlap we want between
consecutive frames (for a smoother analysis). Also, many features are derived
from a spectral representation of audio. The spectrum is obtained from each
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frame by applying a Discrete Fourier Transform, most often with the Fast
Fourier Transform (FFT). Gouyon et al. (2008) gives a detailed explanation
on how most common audio descriptors are computed. Once the features are
extracted frame by frame, they are summarized using statistics such as mean,
variance and derivatives. Then, in most cases, dimensionality reduction is
applied as feature extraction can provide a large amount of data and part
of it is not useful for classification. Indeed this can be considered as noise
and decrease the performance (both in time and accuracy) of a classification
algorithm. In Chapter 4, we will detail the audio features techniques and
analyze those that are relevant for music mood classification.

2.4.3. Classification

Classification is a learning procedure based on the statistical learning theory.
A classifier is a system that performs a mapping from a feature space X to a set
of labels (also called classes) Y . A classifier assigns a pre-defined class label to
a sample. In a supervised-learning context classes are pre-defined and samples
from these classes are given. The classifier goal is then to model the observed
data (called ground truth) to classify new instances with the highest accuracy
possible. The classifier aims at discovering relationships between descriptors
of samples from the ground truth and the class labels. Classifiers are trained
on positive (and sometimes negative) examples of the to-be-learned class and
tested on new unknown data. In the following part of this section, we present
the most common classification algorithms, covering a good range of classifier
types.

k-Nearest Neighbor (k-NN)

The K-Nearest neighbor method is a standard supervised classification method
(Fix & Hodges (1951)). This is probably the simplest classifier. For each new
observation, the k-NN algorithm looks for a number k of its closest training
samples to decide on the class to predict. It classifies according to the most
common class in the k nearest neighbors, where k is a positive integer.
Given each training sample x labelled as f(x), given a query instance xq, look
at the k closest instances from the training examples (x1...xk) and using a
distance function d, the classification is made as follows:

f̂(xq)← argmaxv∈V

k∑
i=1

d
(
v, f(xi)

)
(2.1)

where f̂(xq) is an estimator of f(xq). The result relies mostly on the choice
of distance function (which might not be trivial in our case), and also in the
choice of k. In our experiments, we tested different values of k (between 1 and
20) with the Euclidean distance function :
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d(xi, xj) =

√√√√ p∑
r=1

(xir − xjr)2 (2.2)

with xi = (x1i, x2i, ..., xpi) is the p-dimensional feature vector.

Decision Trees

The decision tree algorithm splits the training dataset into subsets based on
a test attribute value. This process is repeated on each subset in a recursive
manner (recursive partitioning). Decision trees classify instances by sorting
then down the tree from the root to a lead node which provides the classification
of the new instance, and each branch descending from that node is one of the
possible values for this attribute. We can see the decision tree algorithm as a
method for approximating discrete-valued target functions in which the learned
function is represented by a decision tree (see Mitchell (1997)). These trees,
once learned, can be easily implemented using sets of if − then rules. We used
an implementation of the C4.5 decision tree from Quinlan (1993) (called J48
in the Weka software3 and in Table 4.6). To optimize the parameters of the
decision tree, we performed a grid search on the two main parameters: C (the
confidence factor used for pruning, i.e limiting the tree growth) from 0.1 to
0.5 in 10 steps and M (the minimum number of instances per leaf) from 2 to
20. In Figure 2.4, we show a typical example of a decision tree from Mitchell
(1997).

Figure 2.4: Decision tree for classifying if the day is a good day to play tennis.
Figure from Mitchell (1997)

3See Witten & Frank (1999). http://www.cs.waikato.ac.nz/ml/weka/

http://www.cs.waikato.ac.nz/ml/weka/
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Random Forests

The random forest classifier uses several decision trees in order to improve the
classification rate. The basic concept behind this algorithm is common to other
classifier strategies. It is the idea of combining weak learners (decision tree in
this case), to build better models. As Breiman (2001) proposed, to classify a
new object from an input vector, we put the input vector down each of the trees
in the forest. For the kth tree, a random vector Θk is generated, independently
of the previous vectors Θk−1, ...,Θ1 but with the same distribution. There are
different options to create these random vectors (see Breiman (2001) for more
details). Then a decision tree is created using the training set and the vector
Θk, resulting in the classifier h(x,Θk), where x is an input vector. The random
forest is a classifier based on the collection of trees: {h(x,Θk), k = 1, ...n}
Each tree returns a classification decision (considered as a "vote") and the
forest chooses the classification having the most votes (over all the trees in the
forest). We used the implementation in Weka for this algorithm.

Support Vector Machines (SVMs)

Support Vector Machine (Boser et al. (1992)), is a widely used supervised
learning classification algorithm. It is known to be efficient, robust and to give
relatively good performance in benchmarking studies (Baesens et al. (2003)).
Indeed, this classifier is widely used in MIR research. In the context of a two-
class problem in n dimensions, the idea is to find the "best" hyperplane sepa-
rating the points of the two classes. This hyperplane can be of n-1 dimensions
and found in the original feature space, in the case that it is a linear classifier.
Otherwise, it can be found in a transformed space of higher dimensionality
using kernel methods (non-linear), the kernel trick making it computationally
feasible. The position of new observations compared to the hyperplane tells us
in which class belongs the new input.
More formally, given a set of N data points {(xi, yi)}Ni=1 with input data (also
called features or descriptors values) xi ∈ Rn and their corresponding binary
class labels yi ∈ {−1,+1}, the SVM classifier follows these conditions:{

wTϕ(xi) + b ≥ +1, if yi = +1
wTϕ(xi) + b ≤ −1, if yi = −1

(2.3)

which is equivalent to:

yi[w
Tϕ(xi) + b] ≥ 1, i = 1, ..., N (2.4)

where ϕ(xi) is a nonlinear funcion mapping the input space to a higher-
dimensional space and b is a bias, an adjustable parameter. In this feature
space, the equations 2.3 and 2.4 construct a hyperplane wTϕ(x) + b = 0 sep-
arating the two classes. The objective of the classifier is to minimize wTw so
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that the margin between both classes is maximized. This problem is illustrated
in figure 2.5.
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Figure 2.5: SVM optimization problem, adapted from Martens et al. (2009).

Maximizing the margin is maximizing 1/||w||, which is equivalent to minimizing
||w||. In primal weight space, the classifier is as shown here:

y(x) = sign[wTϕ(x) + b] (2.5)

To evaluate the classifier, we can optimize the problem using the Lagrangian,
which leads to a solution and a classifier as follows:

y(x) = sign
[ N∑
i=1

αiyiK(xi, x) + b
]

(2.6)

whereK(xi, x) = ϕ(xi)
Tϕ(x) is a kernel function satisfying the Mercer theorem

(Mercer (1909)). The Lagrange multipliers αi are calculated according to this
optimization problem:

maxαi −
1

2

N∑
i,j=1

yiyjK(xi, xj)αiαj +

N∑
i=1

αi (2.7)

where { ∑N
i=1 αiyi = 0

0 ≤ αi ≤ C, i = 1, ..., N
(2.8)
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with C ∈ R+ as a tuning parameter. The problem is a convex quadratic
programming problem in αi.
The kernel functions that are typically used are the following:

Linear kernel: K(x, xi) = xTi x

Polynomial kernel: K(x, xi) = (1 + xTi x/c)
d

Radial basis function kernel (RBF): K(x, xi) = exp{−||x− xi||22/σ2}

Sigmoid kernel: K(x, xi) = tanh(κxTi x+ θ)

For our evaluations, we tried the different kernel methods: linear, polynomial,
radial basis function (RBF) and sigmoid respectively called SVM linear, SVM
poly, SVM RBF and SVM sigmoid, as shown in Table 4.6. To find the best
parameters in each case we used a 10 times 10-fold cross-validation method on
the training data (see 2.4.4 for more details on cross-validation). For the linear
SVM we looked for the best value for the cost C (penalty parameter), and for
the others we applied a grid search to find the best values for the pair (C, γ)
Boser et al. (1992). For C, we used the range [2-15,215] in 31 steps. For γ, we
used the range [215,23] in 19 steps. In the other cases than the linear SVM,
once we have the best pair of values (C, γ), we conduct a finer grid search on
the neighborhood of these values. We used an implementation of the Support
Vector Machines called libsvm4 by Chang & Lin (2001).

Logistic Regression

Logistic regression can predict the probability of occurrence of an event by
fitting data to a logistic curve. It is a generalized linear model used for binomial
regression. It tries to model the data into the logistic function:

f(z) =
ez

ez + 1
=

1

1 + e−z
(2.9)

estimating z as:

z = β0 + β1x1 + β2x2 + β3x3 + · · ·+ βkxk (2.10)

with a constant β0 and β1,β2,β3...βk as regression coefficients of corresponding
feature values: β1,β2,β3...βk. In the classification context the logistic curve
models the relationship between a set of variables and a binary response ex-
pressed as a probability. This binary value is the classifier output. We use the
implementation in Weka inspired from Le Cessie & Van Houwelingen (1992).

4http://www.csie.ntu.edu.tw/~cjlin/libsvm/

http://www.csie.ntu.edu.tw/~cjlin/libsvm/


2.4. MUSIC CLASSIFICATION 23

Gaussian Mixture Models (GMMs)

A GMM is a linear combination of Gaussian probability distributions. This
approach assumes that the likelihood of a feature vector can be expressed with
a mixture of Gaussian distributions. GMMs are universal approximations of
density, meaning that with enough Gaussians, any distribution can be esti-
mated. In the training phase, the parameters of the Gaussian mixtures for
each class are learnt using the Expectation-Maximization algorithm, which it-
eratively computes maximum likelihood estimates (Dempster et al. (1977)).
The initial Gaussian parameters (means, covariance, and prior probabilities)
used by the EM algorithm are generated via the k-means method (Duda &
Hart (1973)).

2.4.4. Evaluation

To evaluate the quality of a classifier, we usually compare its prediction with
ground truth data. When comparing the predicted value by the classifier to
the annotated value, there are four possibilities:

True Positive (TP), If a relevant item is expected, the system indeed
classifies it as relevant.

True Negative (TN), It occurs when a system that should classify an item
as non-relevant does so.

False Negative (FN), If the system should classify an item as relevant,
but does not.

False Positive (FP), If the system should classify an item as non-relevant,
but does not.

From those term, there are several evaluation measures that can be used, in
particular:

Precision, the number of relevant items retrieved in proportion to the
total number of items retrieved. Precision = TP

TP+FP

Recall, the ratio between the number of the relevant items retrieved over
the total number of relevant items. Recall = TP

TP+FN

F-Measure, which is a weighted combination of precision and recall

Accuracy, the ration between correctly classified items and the total num-
ber of items. Accuracy = TP+TN

TP+TN+FP+FN
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Cross-Validation: A standard technique to validate a classification approach
is the K-fold cross-validation. This allows to evaluate the predictive power of
a model without having to annotate new data. The original dataset is split
into K equally distributed sub-samples from which K−1 are used for training
and the remaining for testing. This is repeated K times, with each sub-sample
used once as the testing data, and we measure the average precision, recall and
accuracy over all the splits.

2.5. Mood Classification

2.5.1. State of the Art

Several studies have demonstrated that musical emotions are not too subjec-
tive or too variable to deserve a mathematical modeling approach ( Bigand
et al. (2005); Juslin & Laukka (2004); Krumhansl (1997); Peretz et al. (1998)).
Indeed, within a common culture, the emotional responses to music can be
highly consistent within and between listeners, but also accurate, quite im-
mediate and precocious (Vieillard et al. (2008)). This stated, it opens the
door to reproduce this consistent behavior with machines. Our purpose is to
automatically classify music by mood.
In the literature other results are available and can be of interest, especially if
the approach is different. Basically almost every scientific contribution differs
in at least one key aspect. Several consider the category representation based
on basic emotions (Laurier & Herrera (2007); Lu et al. (2006); Shi et al. (2006);
Sordo et al. (2007)), while others treat the categories in a multi-labeling ap-
proach like Wieczorkowska et al. (2005). The basic emotion approach gives
simple but relatively satisfying results with accuracies around 80-90% depend-
ing on the data and the number of categories. The lower accuracies for the
MIREX approach detailed in the next section might be due to an overlap in
the concepts included in the class labels like noted by Hu et al. (2008). It could
also be due to a stricter evaluation on more data than the other mentioned
works. The latter (multi-labeling) suffer from a difficult evaluation in general,
as the annotated data needed should be much larger. Indeed if we want to use
precision and recall in an appropriate way, we need to annotate all the data we
evaluate with all categories (presence or absence), otherwise we might consider
wrong results that are actually correct. Li & Ogihara (2003) extracted timbre,
pitch and rhythm features and trained Support Vector Machines. They used
13 categories, 10 from Farnsworth (1954) and 3 additional ones. However the
results were not satisfying (it was one of the very first studies of mood classifi-
cation), with low precision (around 0.32) and recall (around 0.54). This might
be due to the small dataset labeled by only one person, and to the large adjec-
tive set. Another similar work should be mentioned; Skowronek et al. (2007)
used spectral, tempo rhythm, tonal and percussive detection features together
with a quadratic discriminant analysis to model emotions. They made a mood



2.5. MOOD CLASSIFICATION 25

predictor with 12 categories, considered as binary, with an average accuracy
around 85%. Other studies concentrated on the dimensional representation.
Lu et al. (2006) used Thayer (1996) model based on the energy and stress
dimensions and modeled the four parts of the space: contentment, depression
exuberance and anxious. They modeled the different parts of the space us-
ing Gaussian Mixture Models. The system was trained with 800 excerpts of
classical music and the system achieved around 85% accuracy (trained with
three fourths and tested on the remaining fourth of the data). Although it was
based on a dimensional system the prediction was made on the four quadrants
as exclusive categories. However, another relevant study by Yang et al. (2008b)
used Thayer’s arousal-valence emotion plane, but with a regression approach,
to model each of the two dimensions. They used mainly spectral and tonal
descriptors together with loudness features. With these tools, they modeled
arousal and valence using annotated data and regression functions (Support
Vector Regression). The overall results were very encouraging and demon-
strated that a dimensional approach is also feasible. In another work worth
to be mentioned here, Mandel et al. (2006) designed a system using MFCCs
and SVM. The interesting aspect of this work is the application of an active
learning approach. The system learns according to the feedback given by the
user. Moreover the algorithm chooses the examples to be labeled in a smart
manner, hence reducing the amount of data needed to build a model achieving
a similar accuracy with a standard method.
Similarly to what we can observe in psychology, there is no agreement for a
common representation in the Music Information Retrieval (MIR) community.
This makes arduous the comparison between mood classifiers because they all
differ in many aspects including the representation model. In Table 2.2, we
summarize the music mood classification literature in a chronological way. We
note that most of the approaches are categorical (probably because simpler to
annotate that dimensional), and Support Vector Machines seem also to give
good results. We do not show accuracies in the Table because each approach
uses different taxonomies, databases and even evaluation methods.

2.5.2. MIREX

With the objective of systematically evaluating state-of-the-art algorithms for
Music Information Retrieval (MIR) systems, the Annual Music Information
Retrieval Evaluation eXchange (MIREX) created an Audio Mood Classifica-
tion (AMC) task for the first time in 2007. MIREX, as the largest evaluation
event in the MIR community, built an audio dataset and ground-truth for au-
dio mood classification to facilitate collaborations and evaluations among MIR
researchers. A ground-truth set of 600 tracks distributed across five mood cate-
gories was built based on metadata analysis and human assessments. The AMC
task adopted the set of five mood clusters. These clusters have been derived
from data found in the popular music website AllMusicGuide.com, where the
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reviews are labelled with 179 possible different moods. Hu & Downie (2007)
grouped the mood labels by albums and songs and, with an agglomerative
hierarchical clustering, could reduce the mood space into a manageable set.
We list the five mood clusters in Table 2.3. The words in each cluster col-
lectively define the "mood spaces" associated with the cluster. However, Hu
et al. (2008) showed that these clusters might not be optimal as we observe
some semantic overlap between categories. Also the limited agreement between
human annotators while making the ground truth shows the limitation of the
dataset and the taxonomy employed. Nevertheless, this work was the first and,
up to redaction of this document, the only effort to compare mood algorithms
in a common context. Moreover, a very few work on this topic involves more
than one annotators and the means employed to involve many people (15) in
the annotation process is worth noticing. Also, it has stimulated a lot of work
around the topic and many researchers could tried their generic classification
algorithm on this task. However, we should also note that this categorical rep-
resentation has not been adopted by researchers yet, to our knowledge only a
very few uses this taxonomy outside from the MIREX context (Bischoff et al.
(2009)). In the next Chapters, we will detail the MIREX results and compare
with our algorithms and submissions.

Clusters Mood Adjectives

Cluster 1 passionate, rousing, confident, boisterous, rowdy
Cluster 2 rollicking, cheerful, fun, sweet, amiable/good natured
Cluster 3 literate, poignant, wistful, bittersweet, autumnal, brooding
Cluster 4 humorous, silly, campy, quirky, whimsical, witty, wry
Cluster 5 aggressive, fiery, tense/anxious, intense, volatile, visceral

Table 2.3: Clusters of mood adjectives used in the MIREX Audio Mood Classification
task.

2.6. Conclusion

From this multidisciplinary literature review, we can make several conclusions
for our research. First, we will use interchangeably the terms "mood" and
"emotion". Then, we observed that there was no clear representation emerging
from the literature review in music psychology, but rather a list of possible
standard ones. Categorical representations (using a standard taxonomy like
reviewed previously) or dimensional representations (with arousal and valence)
are widely used and both proved to be effective. Moreover, Eerola & Vuoskoski
(2011) demonstrated that for users, both representations give very compatible
ratings. Reviewing the literature in automatic music mood classification both
paradigms are used, but with a majority for the categorical approach. Finally,
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to avoid confusions and optimize the consensus while annotating the data, we
will focus on emotions recognized in music instead of experienced or induced
emotions.



CHAPTER 3
Representation Models from

Social Tags

"I just want people to be moved by the music. If you’re not moved by the music,
then everything else falls away ... It is the part of music that is the hardest to
talk about, and I do not spend much time talking about it. But it is the bottom
line." Steve Reich.

3.1. Introduction

Before making any computational model of musical emotions, we need to find
a relevant representation model. This is our first main dilemma in this thesis.
Indeed, it is fundamental and will highly influence all the work that will follow
this crucial choice. Looking at the literature review, summarized in the pre-
vious chapter, it is ambiguous and confusing as no clear or easy decision can
be taken. On the one hand, all of the previously mentioned representations
are criticized and none is really widely accepted. But on the other hand, all
are used and can be considered as somehow valid. Partial evidence for and
against each one can be found, making our choice difficult. We tried differ-
ent approaches thinking also about how people would have to describe music
using each chosen representation. We made small scale experiments with our
colleagues trying different categorizations. We set up a web survey that ran
internally and among friends. The conclusions, to be taken as intuitive but not
rigorous, were that dimensional representations were quite difficult to use and
annotate. The results were not very consistent even between users themselves
at different times. Using categories seemed easier, but we could not really
conclude on which categories to use. Another doubt raised by the literature is
the kind of music employed in the experiments. We would rather work with
mainstream popular music and the experiments validating representation the-
ories use almost exclusively classical music. Inspired by other works comparing
experts representations with wisdom of the crowds (Sordo et al. (2008)), we
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decided to try to extract valuable information from user generated data, and to
contrast it with experts models. This lead to our first experiment reported in
this thesis, finding a relevant representation based on knowledge from experts
and a large amount of people.

3.2. Experiment 1: Representations Models from
Social Tags

3.2.1. Objectives

This experiment aims at analyzing how do a large community of users represent
their music collection with moods. We aim to understand how do people label
their music by mood and to find the underlying model behind, comparing it
to the existing models from the literature.
In this experiment, we want to address our problem using data collected in an
"everyday life" context (not in controlled laboratory settings like in most of
psychological studies), studying mood representations with a bottom-up ap-
proach, from a community point of view. With this perspective, we do not
control all the variables (such as the bias of the sample) but also we do not in-
fluence the participants. From this data, we want to create a semantic space for
mood. In Sordo et al. (2008), the authors studied the agreement between ex-
perts and a community for genre classification. Levy & Sandler (2007) studied
how tags can be used for genre and artist similarity, and proposed a visualiza-
tion of certain words in an emotion space. Both studies inspired our approach
of using social tags to compare the semantics of the wisdom of crowds with
expert knowledge. The goal of this experiment is to create a semantic mood
space where we can represent mood and compare it with existing representa-
tions in the literature. There are two main expected outcomes for this study.
First we aim to verify if the knowledge extracted from social tags and the
knowledge from the experts (psychologists, musicologist or others) converges.
Then, we want to decide on a mood representation that will serve as a basis
for creating music mood classification models, the main goal of this thesis.

3.2.2. Dataset

Our approach is to obtain a mood representation from social tags. It can be
seen as transforming a tag space into a mood space. For this purpose, we need
tags related with music pieces. A music social network is the perfect dataset
candidate for this experiment.

Social Network Data

For this study, we want to observe the way people use mood words in a social
network. We selected words related to emotions based on the main articles in
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music and emotion research. We included words from different psychological
studies like Hevner (1936) or Russell (1980). We also added words representing
basic emotions and other related adjectives (Juslin & Sloboda (2001)). Finally
we aggregated the mood terms mostly used in MIR (Laurier & Herrera (2009))
and the ones selected for the MIREX task (Hu et al. (2008)). At the end of
this process, we obtained a list of 120 mood words.
Last.fm1 is a music recommendation website with a large community of users
who are very active in associating tags with the music they listen to. With
over 30 million users in more than 200 countries2, this social network is a
good candidate to study how people tag their music. We crawled 6,814,068
tag annotations from 575,149 tracks in all main genres. From those, 492,634
tags were distinct. This huge dataset contains tags of any kind. From the
original 120 mood words, 107 tags were found in our dataset. However some
of them did not appear very often. We decided to keep only the tags that
appeared at least 100 times, resulting in a list of 80 words. We also chose to
keep the tracks where the same mood tag had been used by several users. This
subset contains 61,080 tracks. We observe that the mood tags mostly used
are sad, fun, melancholy and happy. For instance, the tag sad has been used
11,898 times in our dataset. On the contrary, the least used tags are rollicking,
solemn, rowdy and tense, applied in less than 150 tracks. In average, a mood
tag is used in 754 tracks.

Semantic Mood Space We aim at comparing mood terms by their co-
occurences in tracks. Intuitively happy should co-occur more often with fun
or joy than with sad or depressed. This co-occurence information included
in the data we crawled from last.fm is embodied in a document-term matrix
where the columns are track vectors representing tags. The main problem we
have when dealing with this matrix is its high dimensionality and its spar-
sity. To solve this problem, we use a classical technique in text analysis that
is Latent Semantic Analysis (LSA) (Deerwester et al. (1990)), with Singular
Value Decomposition (SVD). This technique allows to project the data into a
space of a given lower dimensionality, while maintaining a good approximation
of the distances between data points. LSA is indeed a common technique to
map words and documents in a "concept space", mapping the document-term
matrix (or in our case track-tag matrix) into a reduced conceptual space, that
we call the "Semantic Mood Space". LSA filters out noise and imposes some
simplifications:

Concepts, the new dimensions in the mapped space, are represented as
patterns of tags that appear together in tracks

1http://www.last.fm
2http://blog.last.fm/2009/03/24/lastfm-radio-announcement

http://www.last.fm
http://blog.last.fm/2009/03/24/lastfm-radio-announcement
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Tags are assumed to have only one meaning. Choosing only words about
mood or emotions does not prevent polysemy. We should be aware of
this limitation while analyzing the results

Tracks are represented as "bag of tags", without considering how many
times the were used in the document. However we did use this informa-
tion to filter the tracks were a tag was not used by several users

Considering our track-tags matrix X, as for any rectangular matrix, it can be
decomposed into the product of three other matrices using the singular value
decomposition:

X = Tags ∗ S ∗ TracksT (3.1)

where S is a diagonal matrix of eigenvalues and Tags and Tracks matrices are
the left and right singular vectors. This is only another representation of the
same matrix X using orthogonal dimensions. However, we can use reduced
rank singular value decomposition, keeping k largest singular values. This
results in the best k-dimensional approximation to the original matrix, in a
least square sense:

X = Tagsk ∗ Sk ∗ TrackskT (3.2)

A schema of the whole procedure is shown in Figure 3.1. This technique has
been shown to be very efficient to capture tag representations for genre and
artists similarity (Levy & Sandler (2007)). We decided to use a dimension k
of 100, which seems to be good trade-off for similarity tasks like pointed out
by Levy & Sandler (2007). In the following experiments, we tried to change
this dimension parameter (from 10 to 10 000 on a logarithmic scale), with no
significant impact on the outcomes except less relevant results when selecting
a too low or too high dimensionality.
One of the most interesting outcomes of this transformation, is that it enables
to easily compare tags. Once we have the data into this semantic space, we can
compute a common distance between terms, the cosine distance. The cosine
distance dcos of two vectors of terms frequencies A and B is computed using a
dot product and the magnitude like follows:

dcos(A,B) =
||A|| ||B||
A.B

(3.3)

or more explicitly:

dcos(A,B) =

√∑n
i=1Ai

2
√∑n

i=1Bi
2∑n

i=1AiBi
(3.4)
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Figure 3.1: Schema of the transformation applied to the raw tag data (LSA).

where n is the number of dimensions. As the term frequency can not be
negative, the angle between two vectors can not exceed 90 degrees and, conse-
quently, the distance values are included in the range [0, 1].

Here are some examples of distances between mood tags:

dcos(happy, happy) = 0
dcos(happy, sad) = 0.99
dcos(cheerful, sleepy) = 0.97
dcos(restless, calm) = 0.99
dcos(scary, fun) = 0.99
dcos(tense, serene) = 0.98
dcos(anger, aggressive) = 0.06
dcos(calm, relaxed) = 0.03
dcos(sleepy, calm) = 0.09
dcos(melancholy, plaintive) = 0.04
dcos(exciting, playful) = 0.04

Obviously the distance between one term and itself is equal to 0. We observe
that happy and sad are quite far from each other, as well as cheerful and sleepy.
On the other hand, we note that anger is close to aggressive and that calm is
similar to relaxed. Even if we show here some prototypical examples, values
in the whole distance matrix intuitively make sense. This distance measure
(and so similarity) is a useful tool to extract information from this semantic
mood space and to compare it with other proposed representations from the
literature.
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3.2.3. Categorical Representations

To study the categorical mood representations, we first derive a folksonomy
(community-based taxonomy) representation by means of unsupervised clus-
tering from the social data. This will give us the "natural" clusters that emerge
from the data itself. Then, we evaluate how the expert taxonomies fit into our
semantic mood space.

Folksonomy representation

From our semantic space, we want to infer a relevant categorical representation
modeling the distance between mood tags (and so the way people tag music
by mood). To achieve this goal, we apply an unsupervised clustering method
using the Expectation maximization (EM) algorithm from Dempster et al.
(1977) (and its implementation in Weka by Witten & Frank (1999)).
The EM algorithm do not requite a training phase. It consists of an iterative
algorithm, which aims at finding the parameters of the probability distribution
that has the maximum likelihood of its attributes. The first step is the Ini-
tialization, followed by the Expectation and the Maximization, both repeated
iteratively until convergence.

Initialization Considering K clusters, each class j (forming a cluster Cj)
is composed by a parameter vector λj constituted by the mean µj and the
covariance matrix Pj , representing the features of the Gaussian probability
distribution. At the initial (t = 0), we generate random values for µj and Pj

λ(0) = {µj(0), Pj(0)}, j ∈ {1...K} (3.5)

Expectation (E-step) In this step, we estimate the probability of each
element to belong to each cluster Cj .

Maximization (M-step) This step is responsible to estimate the parame-
ters of the probability distribution of each class for the next iteration (going
back to the E-step if the convergence test fails).

Convergence test This is the final step if the convergence is reached (or a
maximum number of iteration). After each iteration of the E and M steps, a
convergence test is performed. It verifies if the difference between the two last
attribute vectors (at t and t− 1) is below a certain error tolerance ξ.

if(||λ(t+ 1)− λ(t)|| < ξ)
then−−−→ stop (3.6)

The first important question to be answered is how many clusters should we
consider. As we want this number to be inferred by the data itself, we used the
v-fold cross validation algorithm. We divided the dataset in v folds, training
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on v−1 folds and testing on the remaining one. We measure the log-likelihood
computed for the observations in the testing samples. The results for the v
replications are averaged to yield a single measure of the stability of the model.
In Figure 3.2, we show the results of this process, displaying an average cost
value (in our case twice the negative log-likelihood of the cross-validation data).
Intuitively the lower is the value, the better is the cluster. To choose the "right"
number of clusters, we look at the cost value while increasing the number of
clusters. Practically, we stop when the mean cost value stops decreasing and
select the current number of clusters.

Figure 3.2: Plot of the cost values (2 times the negative log-likelihood) depending
on the number of clusters.

We observe that the cost rapidly decreases with the number of clusters until
four clusters. After that, it is stable and even increases, meaning that the data
is overfitted. Consequently, the optimal number K of clusters is four. Using
this number for the EM algorithm, we obtained the clusters listed in Table 3.1.
These four clusters are very similar to the categories posed by the main ba-
sic emotion theories as reviewed by Juslin & Sloboda (2001). Moreover, these
clusters represent the four quadrants of the classical arousal-valence plane from
Russell like shown in Figure 3.3:

Cluster 1: angry (high arousal, low valence)
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Cluster 1 Cluster 2 Cluster 3 Cluster 4
angry sad tender happy
aggressive bittersweet soothing joyous
visceral sentimental sleepy bright
rousing tragic tranquil cheerful
intense depressing good natured happiness
confident sadness quiet humorous
anger spooky calm gay
exciting gloomy serene amiable
martial sweet relax merry
tense mysterious dreamy rollicking
anxious mournful delicate campy
passionate poignant longing light
quirky lyrical spiritual silly
wry miserable wistful boisterous
fiery yearning relaxed fun

Table 3.1: Folksonomy representation. Clusters of mood tags obtained with the EM
algorithm. For space and clarity reasons, we show only the first tags.

Cluster 2: sad, depressing (low valence, low arousal)
Cluster 3: tender, calm (high valence, low arousal)
Cluster 4: happy (high arousal, high valence)

The label for the clusters have been chosen because they were close to the
cluster centroid.
To summarize, the semantic space we created is relevant and coherent with
existing basic emotion approaches. This result is very encouraging and as-
sesses a certain quality of this semantic space. Moreover, it confirms that the
community uses mood tags in a way that converges with some theories of basic
emotions from psychology.

Agreement between experts and community

Having this semantic space modeling the social network, we can evaluate how
well common representations from the literature fit into that space. In the fol-
lowing part, we measure the agreement between experts and our community-
based representation. To do so, we performed a coarse-grained similarity,
where we measured how separable the expert-defined mood clusters are in
our semantic space. First, we computed the LSA cosine similarity among all
moods within each cluster (intra-cluster similarity) and then we computed the
dissimilarity among clusters, using the centroid of each cluster (inter-cluster
dissimilarity). The expert representations we selected for this experiment are
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Figure 3.3: "Circumplex model of affect" with arousal and valence dimensions,
adapted from Russell (1980), mapping the clusters found from the semantic mood
space.

the eight clusters from Hevner where we could match more than 50% of the
tags and the five clusters from the MIREX taxonomy where all 31 tags were
matched (see previous chapter for more details on these taxonomies). The
matched words for these representations are shown in Table 3.2 for the Hevner
clusters and in Table 3.3 for the MIREX clusters.

Intra-cluster similarity For each cluster of the expert representations, we
compute the mean cosine similarity between each mood tag in the cluster.
Considering a cluster of size n as X = x1, x2, ...xn, the intra-cluster similarity
can be formalized as follows:

1

n2

n∑
i=1

n∑
j=1

dcos(xi, xj) (3.7)

The results for intra-cluster similarity are presented in Figure 3.4 for the
Hevner representation and in Figure 3.5 for the MIREX clusters.
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Clusters Hevner Mood Adjectives

Cluster 1 spiritual, sacred
Cluster 2 pathetic, sad, mournful, tragic, melancholy, depressing, gloomy, heavy, dark
Cluster 3 dreamy, tender, sentimental, longing, yearning, plaintive
Cluster 4 lyrical, serene, tranquil, quiet, soothing
Cluster 5 humorous, whimsical, playful, delicate, light
Cluster 6 merry, joyous, gay, cheerful, bright
Cluster 7 restless, passionate,exciting
Cluster 8 martial, majestic

Table 3.2: Matched mood adjectives in Hevner model

Clusters MIREX Mood Adjectives

Cluster 1 passionate, rousing, confident, boisterous, rowdy
Cluster 2 rollicking, cheerful, fun, sweet, amiable, good natured
Cluster 3 literate, poignant, wistful, bittersweet, autumnal, brooding
Cluster 4 humorous, silly, campy, quirky, whimsical, witty, wry
Cluster 5 aggressive, fiery, tense, anxious, intense, volatile, visceral

Table 3.3: Matched mood adjectives in MIREX model

In the results for the Hevner clusters, we note a high intra-cluster similarity
value for cluster 1, which is the one including spiritual and sacred (please look
at Figure 2.1 for the complete list). Cluster 6 performs also quite well (joyous,
bright, gay, cheerful, merry). However we have poor intra-cluster similarity for
cluster 8, which includes martial and majestic. This might be because these
words are also some of the less used in our dataset, but we hypothesize that
they are less descriptive today than when the taxonomy was created (1936).
Moreover, these words were selected for classical music which is not the main
content of the lasf.fm music. The rest of the intra-cluster similarity values are
in average quite low, meaning that this representation is not optimal in the
semantic mood space.
For the MIREX clusters, we remark that the lowest intra-cluster similarity is
for cluster 2 (sweet, good natured, cheerful, rollicking, amiable, fun). Maybe
is it quite clear that this category is about happy music, however the words
used are not so common and may lower this value. In average, the intra-cluster
similarity value is quite high for this representation. For comparison purpose,
we note that the intra-cluster similarity of the folksonomy representation has
an average intra-cluster similarity value of 0.82. We summarize the results with
the mean values in Table 3.7. Obviously, as the folksonomy representation was
made from the semantic space itself, it has better results than the other models.
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Figure 3.4: Intra-cluster cosine similarity for Hevner’s representation.

It is made to optimize the cluster consistency.

Mood Taxonomy Intra-cluster similarity
Hevner 0.55
MIREX 0.73
Folksonomy 0.82

Table 3.4: Intra-cluster similarity means for each mood taxonomy.

In this part, we have looked at the consistency inside each cluster, however it
is also crucial to look at the distances between clusters to evaluate the quality
of the clustering representations.

Inter-cluster dissimilarity To measure how separable are the different
clusters, we compute the mean cosine distance from each cluster centroid (mean
of all cluster points) to the other cluster centroids. If we look at our folkson-
omy representation clusters from Section 3.2.3, the cosine distance between
centroids of clusters are all quite high (0.9 in average, see Table 3.7). This
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Figure 3.5: Intra-cluster cosine similarity for MIREX representation.

is not very surprising as the representation was designed with this data thus
to optimize a good separation between clusters. However, to better analyze
the results, we need a baseline. To measure it empirically from our data, we
randomly generated clusters of mood terms and computed the inter-cluster
dissimilarity. We repeated and averaged this procedure over 1000 iterations.
This gives us a solid basis to compare representations to what a random one
could achieve. This measure is increasing with the number of clusters like
plotted in Figure 3.7.
In Table 3.5, we show the confusion matrix of the inter-cluster dissimilarity for
the MIREX clusters. We notice that the lowest value is between cluster 1 and
cluster 5, meaning that these clusters are quite similar. This finding correlates
with the results from the MIREX task, in which the confusion between these
two classes was found significant (see Hu et al. (2008)). However the confusion
between clusters 2 and 4, also relevant in the analysis from Hu et al. (2008),
is not reflected in our case. Additionally, we observe that the most separated
clusters (5 and 2), are also the less confusing in the MIREX results. Looking
at the confusion matrix for the Hevner clusters in Table 3.6, we remark many
high values like highlighted in the Table (for instance between clusters 1 and
2, 1 and 6, 1 and 7, 2 and 8 etc...). On the contrary, the lowest value (0.09)
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Figure 3.6: Intra-cluster cosine similarity for the mood semantic space representation

is between clusters 1 and 4. Indeed both clusters have words than can appear
similar like spiritual (cluster 1) and serene (cluster 4) for instance. Also, we
observe a low value (and so a high confusion) between clusters 5 and 7. Again
in that case, we note several semantic similarities, such as between playful
(cluster 5) and restless or exciting (both from cluster 7). We summarize the
results of both intra and inter-cluster measures for the different taxonomies in
Table 3.7 together with the random baseline averages.

C1 C2 C3 C4 C5
C1 0 0.74 0.128* 0.204 0.108*
C2 0.74 0 0.859 0.816 0.876
C3 0.128* 0.859 0 0.319 0.265
C4 0.204 0.816 0.319 0 0.526
C5 0.108* 0.876 0.265 0.526 0

Table 3.5: Confusion matrix for the inter-cluster dissimilarity for the MIREX clusters
(C1 means cluster 1, C2 cluster 2 and so on). The values marked with an asterisk are
the most similar and in bold are the less similar values (below 0.2).
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Figure 3.7: Inter-cluster dissimilarity baseline with different number of random clus-
ters

H1 H2 H3 H4 H5 H6 H7 H8
H1 0 0.99* 0.32 0.09 0.85 0.98* 0.97* 0.57
H2 0.99* 0 0.93 0.74 0.89 0.86 0.72 0.96*
H3 0.32 0.93 0 0.31 0.83 0.93 0.96* 0.17
H4 0.09 0.74 0.31 0 0.67 0.81 0.83 0.56
H5 0.85 0.89 0.83 0.67 0 0.42 0.14 0.75
H6 0.98* 0.86 0.93 0.81 0.42 0 0.63 0.65
H7 0.97* 0.72 0.96* 0.83 0.14 0.63 0 0.96*
H8 0.57 0.96* 0.17 0.56 0.75 0.65 0.96* 0

Table 3.6: Confusion matrix for the inter-cluster dissimilarity for the Hevner clusters.
The values marked with an asterisk are the most similar (above 0.95) and in bold are
the less similar values (below 0.2).

In a nutshell, the Hevner clusters are less consistent but are more separated
than the MIREX ones. Indeed, even if the latter have more intra-cluster sim-
ilarity, they suffer from confusions between some categories as reflected in our
results.
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Mood Taxonomy Inter-cluster dissimilarity baseline
Hevner 0.70 0.62 (8 clusters)
MIREX 0.56 0.56 (5 clusters)
Folksonomy 0.9 0.51 (4 clusters)

Table 3.7: Inter-cluster dissimilarity means for each mood taxonomy and its random
baseline for comparison

3.2.4. Dimensional representation

Dimensional representation is an important paradigm in emotion studies. We
provided several examples in the previous chapter. To visualize our dataset
in a comparable way, we decided to project our semantic mood space into
a bi-dimensional space. To achieve this goal, we used the Self-Organizing
Map algorithm (SOM), also called by its inventor Kohonen map (see Kohonen
(1982)). This data transformation technique reduces the dimension of an input
space through the use of self-organizing neural networks. An artificial neural
network is trained using unsupervised learning to construct a low-dimensional
representation of the input space samples (usually between 1 and 3 dimen-
sions to allow a visual representation). We can consider SOM as a non-linear
generalization of principal component analysis (PCA).
Considering x a point from the input space, we aim at mapping it to a point (x)
in the output space. Also each point I from output space will map to a point
w(I) in the input space. The main characteristic of this algorithm is the use of
a discrete output space made with connected neurons. Initially the connection
weights are initialized with small random values. The SOM algorithm can be
divided in five major steps:

Initialization: Initialize a map (called topographic map) with random val-
ues for the initial weight vectors wj

Sampling: Select a sample training input vector x from the input space

Matching: Find the winning neuron I(x) with weight vector closest to the
selected input vector x

Updating: Apply the weight update equation:
∆wji = (t)Tj,I(x)η(t)(xi − wji), where Tj,I(x) is a Gaussian neighborhood and
η(t) is the learning rate

Continuation: Go to Sampling step until convergence
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In our case, we want to visualize the semantic mood space in 2 dimensions. We
decided to use SOM for its topology properties and because it stresses more
on the local similarities and distinguishes groups within the data. Because less
than half of the Russell’s adjectives are present in our dataset, we prefer to
compare qualitatively more that quantitatively the expert and the community
models. We trained a SOM and mapped each tag onto its best-matching unit
in the trained SOM. In Figure 3.8, we plot the resulting organization of mood
tags (for clarity reasons, we show here a subset of 58 tags).

 aggressive aggressive  rowdy  intense  bittersweet

 boisterous boisterous  autumnal  plaintive

 majestic  sad  rousing rousing  fiery  amiable
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Figure 3.8: Self-Organizing Map of the mood tags in the semantic space.

We observe in the 2D projection four main parts. At the top-left, terms re-
lated to aggressive, below calm and other similar words, at the top-right tags
related to sad and below words close to happiness. We notice the four clus-
ters corresponding to the basic emotions and our folksonomy representation
mentioned in Section 3.2.3. This is somehow expected as we already got these
clusters from the semantic space. However, having the same results with a sec-
ond technique confirms our findings. Comparing with Russell’s dimensions, we
find that the diagonal from top-left to bottom-right is of high arousal. On the
contrary, the diagonal from top-right to bottom-left is of low arousal. The ver-
tical axis represents the valence dimension. Even though the 2D representation
is not equal, there is a correlation (although difficult to quantify) between the
community and the experts when framing the problem into two dimensions.
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3.2.5. Hierarchical representation

The semantic mood space can be visualized in many different ways. In this
subsection we experimented hierarchical clustering techniques to produce a
tree diagram (dendrogram). In hierarchical clustering the data points are not
assigned to a cluster in a single step. Alternatively, the data is partitioned
by aggregating or dividing sample sets. In the agglomerative method, more
commonly used, the samples are grouped by series of fusions, obtaining a hi-
erarchical tree representation also called dendrogram. The divisive method
reaches the same result by successively separating the sample sets into smaller
groups. There are several ways to define distance between clusters. The single
linkage, or nearest neighbors, defines the cluster distance as the distance be-
tween the closest pair of samples. The complete linkage technique, also called
farthest neighbor, is the opposite of the single linkage. Cluster distances are
defined as the distance between the most distant pair of objects of each group.
Taking two clusters X and Y , with x and y respectively from cluster X and
Y , the distance with the complete linkage technique is defined as:

D(X,Y ) = max(d(x, y)) (3.8)

We applied a common agglomerative hierarchical clustering method with a
complete linkage (Xu & Wunsch (2008)) and the same cosine distance applied
previously. We used the hcluster3 implementation to conduct this analysis.
With the 20 most used tags in our dataset, we computed the clustering and
plot the resulting dendrogram in Figure 3.9 .
Although there exists some dendrogram representation of emotions in the psy-
chology literature (see Juslin & Sloboda (2001)), the comparison is complex
because many of the terms employed there are not present in our dataset and
also because finding the right metric to measure the similarity between both
is not trivial.
The hierarchical clustering starts with two branches. Looking at the tags of
this first branching, we observe a very clear separation in arousal with dreamy
and calm on the left and angry and happy on the right. Then the two following
branching (resulting in four clusters) represents the four basic emotions also
found as the best categorical representation in Section 3.2.3 (in order in the
dendrogram: calm, sad, angry and happy, highlighted in Figure 3.10). This
confirms another time our findings about the relevance of these four clusters.
Moreover, we notice that the clearest separation is related to arousal, often
considered as the most important dimension. The remaining branches group
together similar terms like angry and aggressive or sad and depressing.

3http://code.google.com/p/scipy- cluster
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Figure 3.9: Dendrogram of the 20 most used tags.

3.3. Conclusion

This chapter presented convergent evidence about mood representations by
means of analyzing data from a social network. We created a semantic mood
space based on a community of users from last.fm. We derived different rep-
resentations from this data and compared them to the expert representations
taken from literature on psychology and emotions. We demonstrated that the
basic emotions, that can be summarized as: happy, sad, angry and tender,
are very relevant to the social network. We also found that the arousal and
valence dimensions are pertinent both using a dimensional reduction and a hi-
erarchical clustering. Moreover we have shown that both Hevner’s and MIREX
representations have advantages and limitations when evaluated in the seman-
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Figure 3.10: Dendrogram of the 20 most used tags. We highlighted the branching
corresponding first to arousal and then valence. The result after the second branching
are shown as clusters very related to previously found basic emotions

tic mood space. The former having better separated clusters and the latter
having more consistent clusters. Observations on the confusion and similarity
between MIREX clusters confirmed results from previous analysis (Hu et al.
(2008)), and support the idea that it may not be an optimal representation.
We also presented a dendrogram visualization using hierarchical clustering,
validating again the basic emotion postulate (with happy, sad, angry and calm
), and offering a new representation of the mood space. All these findings show
the relevancy of using a mood semantic space derived from social tags. We
believe that this approach can be generalized to find other domain-specific rep-
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resentations and would allow to find validation for other theories. We should
however keep in mind the limitations of this approach. Even if we benefit from
the huge amount of data a social network like last.fm provides (especially com-
pared to traditional studies), we must be aware of the bias it introduces. The
community contributing to this social network is made of young people (but
also many psychological studies are conducted on students only), technology
and music enthusiasts, mostly listening to western mainstream music. This is
also a explanation why Hevner’s approach does no fit into the semantic mood
space. It is not a recent study and it was conducted using classical music. In
our goal to find a representation model, we are confident in using the basic
emotions naturally found from the data of our experiment. However, we prefer
not to limit the model to mutually exclusive categories and to consider each
mood category against its complementary in a binary approach.



CHAPTER 4
Mood Classification from

Audio

"The advantage of the emotions is that they lead us astray, and the advantage
of science is that it is not emotional" Oscar Wilde.

4.1. Introduction

Can an algorithm decode the emotions a music contains? This is the main
question we want to answer here. This Chapter is about adapting existing
approaches in music classification (reviewed in Chapter 2) to our case of mood
classification from audio. As deduced from the literature review, we will con-
straint our approach focusing on the emotion evoked, not the emotion induced.
We define the problem as classifying the mood, or lasting emotion contained
in a musical piece. With this approach, we make the problem more objective
taking into account the intended emotion and not the induced emotion. In
this part of the thesis, we propose to explore the possibilities of using the raw
audio signal a unique source of information.
To classify music by mood, we frame the question as an audio classification
problem using a supervised learning approach as explained in Chapter 2 (Sec-
tion 2.4). In Figure 4.1, we present a schema of the approach. This method is
divided into 4 main components:

Ground truth creation: selecting examples to train our classifier.

Audio Feature extraction: extract audio descriptors from the signal that
will be mapped to the class we want to predict with the classifier.

Training and Classification: choose the classification method to obtain
the trained model.

Evaluation.

49
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We base our learning approach on examples and consequently our first phase
is to build a ground truth (a dataset of examples of the positive and negative
categories to be learned by a classifier). From the previous chapter, we find
that four main emotions clusters are particularly relevant: happy, sad, angry
and relaxed1. This approach is following both the basic emotion theory and
the folksonomy that emerged from the music social network tags. We decide
to consider these unambiguous categories to allow for a greater understand-
ing and agreement between people (both human annotators and end-users).
We build the ground truth to train machine learning models on both social
network knowledge (wisdom of crowds) and experts validation (wisdom of the
few), as explained in the next section of this chapter (Section 4.2). Then we
extract a rich set of audio features that we describe in Section 4.3, analyzing
the distribution of their values according to the mood categories. We apply
classification techniques that we evaluate in Section 4.4. Once the best algo-
rithm is chosen, we evaluate the contribution of each descriptor type in 4.4.2
and the robustness of the model as reported in Section 4.5.

4.2. Ground Truth

For this study we use a categorical approach to represent the mood. We focus
on the following categories: happy, sad, angry, and relaxed. The reason for
this choice has been motivated by the results detailed in the previous chapter.
As we do not want to be restricted to exclusive categories, we consider the
problem as a binary classification task for each mood. One song can be happy
or not happy, but also independently angry or not angry and so on.
The main idea of the present method to collect ground truth is to exploit
information extracted from both a social network and several experts validating
the data. To do so, we have pre-selected the tracks to be annotated using
last.fm2 tags (textual labels). Last.fm is a music recommendation website
with a large community of users (30 million active users in more than 200
countries3) that is very active in associating tags with the music they listen to.
These tags are then available to all users in the community. In Figure 4.2, we
show an example of a "tag cloud", which is a visualization of the tags assigned
to one song with the font size weighted by the popularity of the tag for this
particular song.
In the example shown in 4.2, we can see that happy is present and quite highly
weighted (which means that many people have used this tag to describe the
song). In addition to happy, we also have "cheerful", "joy", "fun" and "up-
beat". To gather more data, we need to extend our query made to last.fm with
more words related to mood. For the four chosen mood categories, we gener-

1We will use synonym of calm, relaxed in the remainder of this document
2http://www.last.fm
3March 2009. http://blog.last.fm/2009/03/24/lastfm-radio-announcement

http://www.last.fm


4.2. GROUND TRUTH 51

Figure 4.1: Method for Music Mood classification: Supervised learning

ated a set of related semantic words with the help of Wordnet4, a large lexical
database of English words with semantic relationships (such as synonyms), and
looked for the songs frequently tagged with these terms. For instance "joy",
"joyous", "cheerful" and "happiness" are grouped under the happy category
to generate a larger result set. We query the social network to acquire songs
tagged with these words and apply a popularity threshold to select the best
instances (we keep the songs that have been tagged by many users).
Note that the music for the "not" categories (like not happy) was evenly se-
lected using both music tagged with antonyms (also using Wordnet), and a
random selection to create more diversity. Afterwards, we asked 17 listeners

4http://wordnet.princeton.edu

http://wordnet.princeton.edu
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Figure 4.2: Tag cloud of the song "Here comes the sun" from the Beatles. The tags
recognized as mood tags are underlined. The bigger the tag is, more people have used
it to define that song.

(mainly students and researchers at the Music Technology Group) to validate
this selection. We considered a song to be valid if the tag was confirmed by,
at least, one listener, as the pre-selection from last.fm granted that the song
was likely to deserve that tag. We included this manual tag confirmation in
order to exclude songs that could have received the tag by error, to express
something else, or by a "following the majority" type of effect. The listeners
were given only 30 seconds of the songs to avoid, as much as possible, changes
in the mood and to speed up the annotation process. Consequently, only these
30 second excerpts have been included in the final dataset. In total, 17 dif-
ferent evaluators participated and an average of 71% of the songs originally
selected from last.fm was included in the training set. We observe that the
happy and relaxed categories have a higher validation rate (ratio of musical
pieces validated over discarded ones) than the angry and sad categories. This
might be due to confusing terms in the tags used in the social networks for
these latter categories or to a better agreement between people for "positive"
emotions (happy and relaxed are considered of positive valence (See Russell
(1980))). These results indicate that the validation by experts is a necessary
step to ensure the quality of the dataset. If we would have just blindly fol-
lowed the tags assigned by the community of last.fm users, around 29% of
errors, on average, would have been introduced. This should be considered as
an important advice for other research. It is not safe to blindly trust tags,
mainly because we do not know the context and the intention of the person
who attached it to a particular track. Our method is relevant to pre-selecting
a large number of tracks that potentially belong to one category. In Figure 4.3,
we present a schema summarizing the overall ground truth creation process.
At the end of the song selection process, the database was composed of 1000
songs excerpts divided between the 4 categories of interest plus their comple-
mentary categories ("not happy", not sad, not angry and not relaxed), i.e. 125
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Figure 4.3: Schema of the method employed to create the ground truth

songs per category. The audio files are 30-second stereo clips at 44khz in a
128kbps mp3 format.
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4.3. Audio Feature Extraction

We call audio features or audio descriptors those variables we extract from the
audio signal describing some aspect of the information it contains. This is a
key phase in audio classification in general, as these descriptors are what the
classifiers will use as input. Indeed, we extracted a rich set of audio features
based on temporal and spectral representations of the audio signal. This has
been done using our library called Essentia (Wack (2010)). It contains most of
the standard audio descriptors (please refer to Peeters (2004) and Guaus (2009)
for more details on particular descriptors). To extract these descriptors, for
each audio excerpt, we merge the stereo channels into a mono mixture. Then
its frame-based features are summarized with their component-wise statistics
across the whole song. In Table 4.1, we present an overview of the extracted
descriptors by category.

Type Features

Timbre Bark bands, MFCCs, pitch salience, hfc, loudness, spectral: flatness, flux,
rolloff, complexity, centroid, kurtosis, skewness, crest, decrease, spread

Tonal dissonance, chords change rate, mode, key strength
tuning diatonic strength, tristimulus

Rhythm bpm, bpm confidence, zero-crossing rate, silence rate, onset rate

Table 4.1: Overview of the audio features extracted by category. See Peeters (2004),
Gouyon et al. (2008), Logan (2000) and Guaus (2009) for a detailed description of the
mentioned features.

Following this procedure, for each excerpt of the ground truth, we obtain
a total of 200 feature statistics (minimum, maximum, mean, variance and
derivatives), that we standardize across the whole music collection values. In
the next sections, we describe some of the most relevant descriptors for this
mood classification task, with results and figures based on the training data.

4.3.1. Experiment 2: Correlation between audio features and
mood categories

We would like to know which audio descriptors are relevant and correlates with
the mood of a song. When possible, we also aim at finding explanations or
hypotheses justifying these relations. In this section, we present comparisons
of descriptor distributions for different categories. We have chosen here to
show the most discriminative descriptors and the clearest results we obtain
analyzing our ground truth. Note that with our approach, we have always two
categories: c and not_c (for instance happy and not happy). The selection
technique to decide which descriptor to consider for this analysis is based on
the following rule: considering descriptor values xc for n songs of class c as:
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xc = [x1c, x2c, ...xnc], we compute means and standard deviations for xc and
xnot_c as µc, µnot_c, σc and σnot_c. Then we consider the descriptor as relevant
if:

|µc − µnot_c| > σc + σnot_c (4.1)

This criterion ensures that the descriptor distributions are quite different be-
tween the category and its complementary. While observing the comparison
between descriptors in the next part, we also explicit how each feature is com-
puted.

Mel Frequency Cepstral Coefficients (MFCCs)

MFCCs Logan (2000) are widely used in audio analysis, and especially for
speech research and music classification tasks. The method employed is to
divide the signal into frames. For each frame, we take the Cepstrum, defined
as the Inverse Fourier Transform of the logarithm of the amplitude spectrum:

c[n] =
1

N

N−1∑
k=0

log10|X[k]|j
2π
N
kn, 0 < n < N − 1 (4.2)

where X[k] is the spectrum of the input signal and N its length in samples.
Then we divide it into bands and convert it to the perceptually-based Mel
spectrum (based on the mel scale). The mel scale tries to map the per-
ceived frequency of a tone onto a linear scale that approximates the frequency
resolution of our hearing:

melfrequency = 2595 · log10
[
1 +

f

700

]
(4.3)

Finally we take the discrete cosine transform (DCT). The number of output
coefficients of the DCT is variable, and is often set to 13, as we did in the
present study. Intuitively, lower coefficients represent spectral envelope, while
higher ones represent finer details of the spectrum but most of them are not
directly interpretable. In Figure 4.4, we show the mean values of the MFCCs
for the sad and not sad categories. We note a difference in the shape of the
MFCCs. This indicates a potential usefulness to discriminate between the two
categories. This is also the case for other mood categories and in particular
angry versus not angry (also in Figure 4.4). It is probably less clear for the oth-
ers, happy and relaxed in Figure 4.5. However, this way of visualizing the data
is not so informative to intuitively understand and interpret the differences.

Bark bands

The Bark band algorithm computes the spectral energy contained in a given
number of bands, which corresponds to an extrapolation of the Bark band
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Figure 4.4: MFCC mean values for coefficients between 2 and 13 for the sad and
angry categories of our annotated dataset.

Figure 4.5: MFCC mean values for coefficients between 2 and 13 for the happy and
relaxed categories of our annotated dataset.
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scale (see Peeters (2004) and Smith & Abel (1999)). Barks correspond to
bandwidths of human auditory filters (Zwicker & Terhardt (1980)). Here is
how to convert frequency into Bark:

bark = 13 · arctan
(

0.76

100
f

)
+ 3.5 · arctan

((
f

7500

)2)
(4.4)

For each Bark band (27 in total) the power-spectrum is summed. In Figure
4.6, we show an example of the Bark bands means for the sad category.

Figure 4.6: Bark band mean values for coefficients between 1 and 27 for the sad and
not sad categories of our annotated dataset.

As with the MFCCs (these approaches are similar), the Bark bands appear to
have quite different shapes for the two categories, indicating a probable utility
for classification purposes. Again, except its potential to classify sad against
not sad (and the same for other categories) there is no particular interpretation
we could deduce from these results. For this reason too, we do not plot the
other categories.
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Zero Crossing Rate

This one of the simplest time domain descriptor. It measures the rate in which
the waveform changes its sign (crossing zero). Kedem (1986) and Saunders
(1996) defined it as a measure of the weighted average of the spectral energy
distribution.

ZCR =
1

2

N∑
n=1

|sign(x[n])− sign(x[n− 1])| (4.5)

This descriptor has been used a lot in music information retrieval (but also
in speech recognition) because it is easy to compute and partially reveals the
noisiness of an audio excerpt. Figure 4.7 shows the box-and-whisker plots of
the zero crossing rate standardized means for the relaxed, not relaxed, angry
and not angry categories. These results are based on the entire training dataset
(this is true also for all the similar plots of this section). We plot these two
comparison because the separation is not that clear for the other categories.
A key to interpret the values is that this descriptor would give higher values
for noisy sounds and lower values for more periodic sounds. Looking at our
results, this would mean that angry music is more noisy than relaxed music.
We will study better these differences using more precise descriptors of the
spectral shape in 4.3.1. We will also observe similar results with the spectral
complexity descriptor in the next paragraph.

Figure 4.7: Box-and-whisker plot of the standardized zero crossing rate mean value
for relaxed / not relaxed, and angry / not angry.
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Spectral Complexity

The spectral complexity descriptor is based on the number of peaks in the
input spectrum. We apply peak detection on the spectrum (between 100Hz and
5Khz) and we count the number of peaks. This feature describes the complexity
of the audio signal in terms of frequency components. In Figures 4.8, we show
the box-and-whisker plots of the spectral complexity descriptor’s standardized
means for the relaxed, not relaxed, happy and not happy categories. In Figures
4.9, we plot the same results but for the angry and sad categories. These
plots illustrate the intuitive result that a relaxed song should be less "complex"
than a non-relaxing song. Moreover, Figure 4.8 tells us that happy songs are
on average spectrally more complex. On the contrary, we observe that angry
song are more "complex" which is also a very intuitive result (and the logical
opposite for relaxed). We note that sad and relaxed have similar distributions
in terms of spectral complexity.

Figure 4.8: Box-and-whisker plot of the standardized spectral complexity mean
feature for relaxed / not relaxed, and happy / not happy.

Spectral Shape

The spectral centroid, skewness, kurtosis and rolloff descriptors, as reported
by Peeters (2004) are descriptions of the spectral shape (as well as others such
as spread or decrease). MFCCs and Barkbands detailed before could also be
considered in that category.
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Figure 4.9: Box-and-whisker plot of the standardized spectral complexity mean
feature for angry / not angry, and sad / not sad.

Spectral Centroid: the spectral centroid is the barycenter of the spectrum,
which considers the spectrum as a distribution of frequencies. It can be ex-
pressed as:

SpectalCentroid =

∑
fiai∑
ai

(4.6)

where fi is the frequency value of each FFT bin and ai its amplitude.

Spectral Skewness: the spectral skewness measures the asymmetry of the
spectrum’s distribution around its mean value. If the skewness is negative,
more data is on the left of the mean than on the right. If it is positive, more
data is on the right of the mean. The skewness of a distribution is expressed
as follows:

Skewness =
E(x− µ)3

σ3
(4.7)

where x are the observed data (normalized amplitude values), µ is the mean
of x, σ its standard deviation and E(x) the expected value of x.
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Spectral Kurtosis: the kurtosis of a distribution is a measure its flatness
around its mean value. It is defined as:

Kurtosis =
E(x− µ)4

σ4
(4.8)

where x are the observed data (normalized amplitude values), where µ is the
mean of x, σ its standard deviation and E(x) the expected value of x. A
normal distribution has a kurtosis of 3. Values lower than 3 indicated a flatter
distribution and values greater than 3 a peaker distribution.

Spectral Roll-Off: the spectral roll-off is the frequency that splits the signal
energy in two parts using a threshold in energy. It can be computed as defined
by Tzanetakis & Cook (2002):

SpectralRFt = max
{
f
∣∣ f∑
n=1

Mt[n] < TH ·
N∑
n=1

Mt[n]
}

(4.9)

where Mt[n] the magnitude of the Fourier transform at frame t and frequency
bin n. TH is the energy threshold, typically 0.95, meaning that the spectral
roll-off is the frequency point where 95% of the signal energy contained is be-
low. In some sense, this descriptor is correlated to the harmonic/noise cutting
frequency like pointed out by Peeters (2004). In Figure 4.10 we plot the spec-
tral centroid’s box-and-whisker plot for angry and the spectral skewness for
sad. It shows a higher spectral centroid mean value for angry than not angry,
which intuitively means more energy in higher frequencies. For the spectral
skewness, the range of mean values for the sad instances is bigger than for the
not sad ones. This probably means that there is a less specific value for the
centroid. In any case, it seems to have on average a lower value for the not sad
instances.
In Figure 4.11 we plot the same analysis for the spectral kurtosis and roll-off
descriptors respectively for the relaxed and sad categories. It is worth noticing
the peaky distribution of not relaxed category compared to relaxed which is
much broader. This descriptor is most probably very useful to discover not
relaxed instances. Sad songs seems to have a lower spectral roll-off, with more
energy in the lower part of the spectrum like we can also see in figures from
the analysis of the MFCCs and Bark bands (Figures 4.4 and 4.6).

Spectral Flatness dB

This descriptor is based on the mean of the power spectral density components,
in each critical band, for the input signal. It is defined by the ratio of its
geometrical mean to the arithmetical mean as follows (converted to decibels,
as detailed in Johnston (1998)):
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Figure 4.10: Box-and-whisker plot of the standardized spectral centroid mean for
angry and not angry and of the standardized spectral skewness mean for sad and not
sad.

SpectralF latnessDB = 10 · log10
Gm
Am

(4.10)

where Gm is the geometrical mean and Am the arithmetical mean. Izmirli
(1999) describes how to compute this descriptor. We can interpret its value as
a sort of "tonality" in the sense that a high value would describe a signal that
is tone-like, and a low value a signal that is totally noise-like.
In Figure 4.12, we compare the relaxed and angry moods by means of spectral
flatness. As expected, angry is more noisy and relaxed more tonal. This also
correlates with the results shown about the spectral complexity descriptor.
However we do not see anything significant for happy (which is only a bit more
noisy that the not happy category) and sad which has spread values and a
distribution with no particularity and hence is not plotted.

Dissonance

The dissonance feature (also known as "roughness", see Sethares (1998)) is
defined by computing the peaks of the spectrum and measuring the spacing of
these peaks. Consonant sounds have more evenly spaced spectral peaks and,
on the contrary, dissonant sounds have more irregularly spaced spectral peaks.
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Figure 4.11: Box-and-whisker plot of the standardized spectral kurtosis mean for
relaxed and not relaxed and of the standardized spectral roll-off mean for sad and not
sad.

This descriptor is also described as "Harmonic Spectral Deviation" by Peeters
(2004):

Dissonance =
1

H

∑
h

a(h)− SE(h) (4.11)

where H is the number of harmonics, a(h) the amplitude of the harmonic h
and SE(h) the amplitude of the spectral envelope at frequency f(h).

In Figure 4.13, we compare the dissonance distributions for the relaxed and
angry categories. These figures show that angry is clearly more dissonant than
not angry. Listening to the excerpts from the training data, we noticed many
examples with distorted sounds like electric guitar in the angry category, which
seems to be captured by this descriptor. Moreover this observation correlates
with the spectral flatness and spectral complexity descriptor results. These
findings also relate to psychological studies stating that dissonant harmony
may be associated with anger, excitement and unpleasantness (Hevner (1936),
Wedin (1972)). Our analysis goes in the same direction and confirms these
results from psychology.
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Figure 4.12: Box-and-whisker plot of the standardized spectral flatness mean value
for relaxed / not relaxed, and angry / not angry.

Figure 4.13: Box-and-whisker plot of the standardized dissonance mean for relaxed
and not relaxed, and for the angry and not angry categories
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Mode

In Western music theory, there are two basic modes: major and minor. Each
of them has different musical characteristics regarding the position of tones
and semitones within their respective musical scales. Gómez (2006) explains
how to compute an estimation of the mode from raw audio data. The signal is
first pre-processed using the direct Fourier transform (DFT), filtering frequen-
cies between 100 Hz and 5000 Hz and locating spectral peaks. The reference
frequency (tuning frequency) is then estimated by analyzing the frequency
deviation of the located spectral peaks. Next, the Harmonic Pitch Class Pro-
file (HPCP) feature is computed by mapping frequency and pitch class values
(musical notes) using a logarithmic function (Gómez (2006)):

HPCP (n) =
nPeaks∑
i=1

w(n, fi) · a2i n = 1...N (4.12)

The global HPCP vector is the average of the instantaneous values per frame,
normalized to [0,1] to make it independent of dynamic changes. The resulting
feature vector represents the average distribution of energy among the different
musical notes. Finally, this vector is compared to minor and major reference
key profiles based on music theory (Krumhansl (1997)). The profile with the
highest correlation with the HPCP vector defines the mode. In Figure 4.14, we
represent the percentages of estimated major and minor music in the happy and
not happy categories. We note that there is more major music in the happy
than in the not happy pieces. In music theory and psychological research,
the link between valence (positivity) and the musical mode has already been
demonstrated (Juslin & Laukka (2004)). Having empirical data from an audio
feature automatically extracted showing the same tendency is an interesting
result. We note also that the proportion of major music is also high in the not
happy category, which is related to the fact that the majority, 64%, of the whole
dataset is estimated as major. However, a strange fact is that sad music is not
especially minor as one could expect. On the contrary sad music seems more
major than not sad music (Figure 4.15), we do not find any explanation for
this but the reader should note that this difference is low. Another noticeable
result is what we can observe for the angry category: it is definitely more
minor than major (Figure 4.17). This confirms the theory that the mode is
related with the valence as angry is a more a "negative" mood. The relaxed
category (Figure 4.16), confirms this theory, being more major than the not
relaxed category.

Onset rate, Chords change rate

From psychological results, Juslin & Laukka (2004) cite rhythm as an impor-
tant musical feature when expressing different mood types (generally, faster
means more arousal). The basic measure/element of rhythm is the onset,
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Figure 4.14: Bar plot of the estimated mode proportions (in percentage) for the
happy and not happy categories.

Figure 4.15: Bar plot of the estimated mode proportions (in percentage) for the sad
and not sad categories.
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Figure 4.16: Bar plot of the estimated mode proportions (in percentage) for the
relaxed and not relaxed categories.

Figure 4.17: Bar plot of the estimated mode proportions (in percentage) for the
angry and not angry categories.
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which is defined as "changes" in the audio. Onsets are properties of notes,
noises, or any other acoustic event. They are often the beginning of notes or
attacks. The onset times are estimated by looking for peaks in the amplitude
envelope (see Gouyon (2003)). First, the energy of each non-overlapping frames
is calculated. The onset will be detected when the energy of the current frame
is superior to a specific percentage (i.e. 200%) of a fixed number (i.e. 8) of the
previous frames energy average. It is assumed that there is a minimum gap of
60ms between onsets and a weighting factor is applied to each onset accord-
ing to the number of consecutive onsets whose energy satisfies the mentioned
threshold. The onset rate is simply the number of onsets in one second. This
gives us an estimation of the number of events occurring per second, which is
related to a perception of the speed.
Another related descriptor is the chords change rate. It is an estimator of the
number of chord changes per second. Chords are estimated using the above
mentioned HPCP descriptors. In Figure 4.18, we compare the onset rate
values for the happy and not happy categories. It shows that happy songs
have higher values for the onset rate, which confirms the observation made by
Juslin & Laukka (2004) from psychological studies that happy music is fast. In
Figure 4.18, we look at the chords change rate, which is higher for angry than
for not angry. This is also a confirmation of the studies previously mentioned,
associating a higher arousal with faster music.

Figure 4.18: Box-and-whisker plot of the standardized onset rate value mean for the
happy and not happy categories. Box-and-whisker plot of the chords change mean for
the angry and not angry categories.
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Summary of results

In Table 4.2, 4.3, 4.4 and 4.5, we summarize the results previously mentioned
for the categories angry, sad, relaxed and happy. In these table, we only men-
tion the descriptors that show a significant difference between the category
and its complementary, ">" meaning that the descriptor values are positively
correlated with the category, and "<" positively correlated with its comple-
mentary.

angry / not angry
Zero Crossing Rate >
Spectral Complexity >
Spectral Centroid <

Spectral Flatness dB <
Dissonance <

Mode = Minor >
Onset Rate >

Table 4.2: Summary of the descriptor correlation with a category or its complemen-
tary (angry).

sad / not sad
Spectral Complexity <
Spectral Skewness >
Spectral Roll-Off <
Mode = Major >

Table 4.3: Summary of the descriptor correlation with a category or its complemen-
tary (sad).
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relaxed / not relaxed
Zero Crossing Rate <
Spectral Complexity <
Spectral Kurtosis >

Spectral Flatness dB >
Dissonance <

Mode = Major >

Table 4.4: Summary of the descriptor correlation with a category or its complemen-
tary (relaxed).

happy / not happy
Spectral Complexity >

Mode = Major >
Onset Rate >

Table 4.5: Summary of the descriptor correlation with a category or its complemen-
tary (happy).

4.4. Classification

Classification is a learning procedure based on the statistical learning theory.
We reviewed the basic concept, models and applications in music classification
in Section 2.4.3.
We have mentioned in the previous section some of the most relevant features
showing their potential to individually discriminate between categories. How-
ever, we keep all the descriptors in our "bag-of-features"; those that are not
obviously useful could be significant when combined with others in a linear or
non-linear way. To capture these relationships, we use feature selection algo-
rithms and build the model, trying several kinds of classification algorithms
that we evaluated. A common technique to validate a classification approach
is the K-fold cross-validation (see Section 2.4.4). This allows to evaluate the
predictive power of the classifier without having to validate the classification
on new unknown data.

4.4.1. Classifiers

Once the ground truth created and the features extracted, we performed a
series of tests with 8 different classifiers. We evaluated the classifiers using 10
runs of 10-fold cross-validation to account for the chance of splitting the data
in easier ways than others. Next, we list the different classifiers we employed.
We chose the most typical algorithms, capturing the diversity of criteria to
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build classifiers: k-Nearest Neighbor, Decision trees (J48, also known as C4.5),
Random Forests, Support Vector Machines, Logistic Regression and Gaussian
Mixture Models. Details about these classifiers can be found in the Literature
Review, Section 2.4.3.

4.4.2. Experiment 3: Mood classification, comparison of
classifiers and audio features

After independent parameter optimization for each classifier, the evaluation
was made with 10 runs of 10 fold cross-validation. For comparison purposes,
we show the mean accuracies obtained for each mood category and algorithm
configuration separately in Table 4.6. Each value in a cell represents the mean
value of correctly classified data in the test set of each fold. Considering that
each category is binary (for example, angry vs. not angry), the random clas-
sification accuracy is 50%. The SVM algorithm with different kernels and
parameters, depending on the category, achieved the best results. The accu-
racies we obtained using audio-based classifiers are quite satisfying and even
exceptional when looking at the angry category with 98%. All four categories
reached classification accuracies above 80%, and two categories ("angry" and
relaxed) peaked above 90%. Even though these results might seem surprisingly
high, this is coherent with similar studies by Skowronek et al. (2007).

Angry Happy Relaxed Sad Mean
SVM linear 95.79% 84.57% 90.68% 87.31% 89.58%
SVM poly 98.17% 84.48% 91.43% 87.66% 90.44%
SVM RBF 95.19% 84.47% 89.79% 87.52% 89.24%

SVM sigmoid 95.08% 84.52% 88.63% 87.31% 88.89%
J48 95.51% 80.02% 85.25% 85.87% 86.66%

Random Forest 96.31% 82.55% 89.47% 87.26% 88.90%
k-NN 96.38% 80.89% 90.08% 85.48% 88.21%

Logistic Reg 94.46% 73.60% 82.54% 76.38% 81.75%
GMMs 96.99% 79.91% 91.13% 86.54% 88.64%

Table 4.6: Mean classification accuracy with 10 runs of 10-fold cross-validation, for
each category against its complementary. In bold is the highest accuracy for each
category.

Audio feature contribution

Here, we evaluated the contribution of the audio features described in 4.3. To
achieve this goal, we chose the best overall classifier for each category and we
made 10 runs of 10-fold cross-validation with only one descriptor type statis-
tic. We show in Table 4.7 the resulting mean accuracies for each configuration
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compared to the best accuracy obtained with all the features in the first row.
We observe that most of the descriptors give the worst results for the happy
category. This reflects also the results with all features, with a lower accuracy
for happy. Moreover, some descriptors like the spectral centroid and the chords
change rate do not seem to contribute positively for this category. In general,
with the lowest accuracy, this happy category seems difficult to model. Never-
theless, we note that the mode helps to discriminate between happy and not
happy (at 64.73%), like also seen in Figure 4.14. It is even more relevant for the
angry category (at 71.43%). It is also worth noticing that individual descrip-
tors can give relatively high accuracies. For instance, very simple descriptors
such as the zero crossing rate give surprisingly high results. We should keep
in mind that this is a binary classification tasks, so the random baseline is
50%. A result below 80% is relatively not that high. Finally, we find that
spectral complexity, spectral centroid, dissonance and spectral flatness help a
lot for categorizing the angry and relaxed categories. In particular, spectral
complexity or dissonance alone can classify angry with an accuracy above 90%.
Anyhow, the global model combining all the features is the most accurate.

Angry Happy Relaxed Sad
All features 98.17% 84.57% 91.43% 87.66%

ZCR 84.03% 71.53% 80.73% 77.41%
MFCCs 89.47% 57.59% 83.87% 81.74%

Bark bands 90.98% 59.82% 87.10% 83.48%
Spectral complexity 95.86% 55.80% 88.71% 86.52%
Spectral centroid 89.47% 50% 85.48% 83.04%
Spectral skewness 77.44% 52.23% 73.38% 73.48%
Spectral flatness 85.32% 72.58% 84.58% 74.59%
Spectral roll-off 85.55% 71.84% 79.68% 77.93%
Spectral kurtosis 58.79% 63.53% 64.73% 66.26%

Dissonance 91.73% 62.05% 82.66% 79.57%
Onset rate 52.63% 60.27% 63.31% 72.17%

Chords change rate 74.81% 50% 69.35% 68.26%
Mode 71.43% 64.73% 52.82% 52.08%

Table 4.7: Mean classification accuracy with 10 runs of 10-fold cross-validation, for
each category against its complementary with feature sets made of one descriptor
statistic.

4.5. Robustness

The concept of robustness refers to those factors that can impact on the accu-
racy of a classifier. A typical example would be a modification of the quality
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(and especially a degradation), compared to the expected quality. In this part
we want to evaluate the quality of these models estimating their robustness
to audio quality degradation. The objective is to know how well they would
behave, even if we had audio files with less quality.

4.5.1. Method

The best models we have found previously are SVM optimized models for
each mood category. Since the goal is also to use the models in real-world
conditions, they should be able to deal with different audio quality, especially
different encodings artifacts. In particular, we want to test the robustness
of the mood models to low quality encodings. The original encodings of the
training set were mp3 at 128 kbps (kilobits per second). We generated two
modified versions of the dataset, lowering the bit rate to 64 kbps and 32kbps.
We then measured the accuracy degradation of the classifier trained with the
entire dataset and test on the same one with the previously mentioned low-rate
encodings. We decided to train and test with full datasets to test the model
trained with the maximum data.

4.5.2. Results

Please note that the accuracies are different from the cross-validation results
simply because in this case we are not performing cross-validation (this because
we train and test with the entire dataset). In Figure 4.19, we represent the
accuracy degradation of the classifier trained with the entire dataset and tested
on the same one with the previously mentioned low-rate encodings.
We observe degradation due to encoding at a lower bit rate. However, in
all cases, this does not seem to have a strong impact. The degradation, in
percentage, compared to the original version at 128 kbps is acceptable. For
instance, we observe that for the angry category, at 32 kbps, only 0.7 percent
points of the dataset is no longer correctly classified as before. We also notice
that the highest percentage of degradation is 3.6 percent points obtained for
the relaxed category (with 32 kbps). Even though there is a slight drop in the
accuracy, the classification still gives satisfying results and can be used also
with audio files with strong encodings.
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Figure 4.19: Robustness of mood models.

4.6. Evaluations: Audio Mood Classification at
MIREX

4.6.1. Description

With the goal of systematically evaluating state-of-the-art algorithms for Music
Information Retrieval (MIR) systems, the Annual Music Information Retrieval
Evaluation eXchange (MIREX) included an Audio Mood Classification (AMC)
task for the first time in 2007. MIREX, as the largest evaluation event in the
MIR community, is a good venue to build an available audio dataset and
ground-truth for AMC and to facilitate collaborations among MIR researchers
around the world. A ground-truth set of 600 tracks distributed across five mood
categories was built based on metadata analysis and human assessments (see
Hu et al. (2008)). A small dataset, not included in the evaluation ground-truth,
has been published in order to illustrate the categories and give examples to the
researcher working to build a submission to this task. It also served as a basis
for the human assessors of the ground-truth set. The AMC task adopted the set
of five mood clusters proposed in Hu & Downie (2007) which effectively reduce
the mood space into a manageable set. For clarity purposes, we reproduce the
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mood clusters in Table 4.8. The words in each cluster collectively define the
"mood spaces" associated with the cluster.

Clusters Mood Adjectives

Cluster 1 passionate, rousing, confident, boisterous, rowdy
Cluster 2 rollicking, cheerful, fun, sweet, amiable/good natured
Cluster 3 literate, poignant, wistful, bittersweet, autumnal, brooding
Cluster 4 humorous, silly, campy, quirky, whimsical, witty, wry
Cluster 5 aggressive, fiery, tense/anxious, intense, volatile, visceral

Table 4.8: Clusters of mood adjectives used in the MIREX Audio Mood Classification
task.

In the rest of this section, we present our different algorithms submitted to the
evaluation. We should notice that the models we proposed to be evaluated are
not directly the one described before in this thesis. Indeed, the mood taxonomy
and the clusters differ from our approach. Consequently, the submitted models
have been trained using a different ground-truth that is not available to the
public (to avoid overfitting and allow a fair comparison between algorithms).
The evaluation was performed using a 3-fold cross-validation. Nevertheless,
these evaluations show the high potential of our features and classification
methods compared to other state-of-the-art systems. The dataset used to
evaluate the algorithms remained the same across the years.

4.6.2. MIREX 2007

Feature Extraction

The system submitted to the first MIREX Audio Music Mood Classification
task in 2007 used a set of 133 descriptors and a Support Vector Machine to
predict the mood clusters. All the features used in this submission were se-
lected based on results obtained empirically with the exemplar set provided
and our databases. Using several feature selection methods in WEKA (Prin-
cipalComponent, InfoGainAttributeEval, CfsSubsetEval, SVMAttributeEval)
we sorted out 133 features of different kinds:

Spectral: spectral centroid, crest, flux, rolloff, skewness, strong peak,
high frequency content, MFCC, Bark bands, energy band ratio, flat-
nessDB

Loudness: RMS, loudness from Bark bands, dynamic complexity

High level: tonality, mode, key strength

Temporal: zero crossing rate, onset rate, beats per minute
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Most of these features are extracted using windowing. Afterward we com-
pute statistics of these values (min, max, mean, variance, derivative variance,
second-derivative variance). The decision to keep or not each value is made
using feature selection methods in WEKA as previously mentioned.

Classification

Once the features extracted and normalized, we trained a Support Vector Ma-
chine model. We used the libsvm library by Chang & Lin (2001). According
to preliminary tests, the best results were achieved by the C-SVC method with
the RBF kernel (Radial Basis Function). Consequently we used this configu-
ration in our algorithm. Then to decide which values to choose for the cost
C and the γ of the kernel function, we implemented a grid search algorithm
like one suggested in Hsu et al. (2003). We kept the parameters that obtained
the best accuracy using a 10-fold Cross Validation on the training set. Finally
when the optimal parameters were found, we trained a SVM model and used
it to predict the mood categories.

Results and Discussion

Overall classification: in Table 4.9 , we show the results of the different
submissions in terms of mean accuracy over the 3-fold cross validation per-
formed by the MIREX team.

Participant Accuracy

George Tzanetakis 61.50%
Cyril Laurier, Perfecto Herrera 60.50%
Lidy, Rauber, Pertusa, Iñesta 59.67%
Michael Mandel, Dan Ellis 57.83%
IMIRSEL M2K svm 55.83%
Michael Mandel, Dan Ellis 55.83%
Kyogu Lee 1 49.83%
IMIRSEL M2K knn 47.17%
Kyogu Lee 2 25.67%

Table 4.9: Classification average accuracies over the three train/test folds.

Confusion Matrix: to better understand the strong and weak points of the
algorithm, Table 4.10 shows the confusion matrix.
We notice that the best predictable categories are cluster 3 and 5, which corre-
spond roughly to sad and aggressive. The other clusters were more difficult to
predict as one can expect by listening to the examples provided. Consequently



4.6. EVALUATIONS: AUDIO MOOD CLASSIFICATION AT MIREX 77

all the algorithms perform better with this two clusters. The category with
the worse accuracy is cluster 1 often predicted as cluster 5. This makes sense
as there are some acoustic similarities. Both are energetic, loud and many of
both use electric guitar. Looking at the other submissions the same confusion
appears. Moreover there is a clear confusion between cluster 2 and 4. Looking
at the mood adjectives of these clusters, we can notice a possible semantic
overlap. For example, using Wordnet5 , we find that fun (from cluster 2) and
humorous (from cluster 4) share the synonym : amusing. Besides humorous is
a synonym of funny. We can observe this confusion also in the other algorithms
results.

Truth/Predicted 1 2 3 4 5
Cluster 1 45.8% 11.7% 5.0% 17.5% 20.0%
Cluster 2 10.8% 50.0% 11.7% 27.5% 0.0%
Cluster 3 1.7% 11.7% 82.5% 4.1% 0.0%
Cluster 4 10.0% 31.7% 4.2% 53.3% 0.8%
Cluster 5 18.3% 1.7% 2.5% 6.7% 70.8%

Table 4.10: Confusion matrix with mean values over the 3 cross-validation folds for
our algorithm.

To sum up we can argue that there are three main shortcomings in the proposed
clusters :

Cluster 3 and 5 are the most predictable

There is a problem to predict Cluster 1 because it is close to Cluster 5
(acoustic similarities)

There is a confusion between Cluster 2 and 4 (semantic similarities)

This first participation at MIREX confirmed we were ranked among the best
classification approaches with most probably state-of-the-art audio descriptors
and a good classification method. At least, with the above mentioned limita-
tion of the dataset, we can consider our algorithm as state-of-the-art. We can
criticize the limitations of the MIREX approach openly because we actively
participated in its creation (for this Mood task). We believe that, to cope with
the confusion between clusters, the organizers should revise the taxonomy and
build another dataset. However, even if not perfect, the MIREX Audio Mood
Classification task is the best available tool for comparing mood classification
approaches.

5http://wordnet.princeton.edu/
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4.6.3. MIREX 2009

We did not submit any algorithm to the MIREX 2008 evaluation, where the
same conclusion than for MIREX 2007 remain valid. The best approach
reached an accuracy of 63,67% with an original approach modeling the classes
in two steps: a frame-statistical model followed by a track-statistical model
(Peeters (2008)). For MIREX 2009, we had more features and different ap-
proaches to try and compare.

Feature Extraction

The algorithms submitted to this task in 2009 were coded in C++ and python.
For the feature extraction part, we used an internal library of the Music Tech-
nology Group already mentioned before called Essentia (Wack (2010)). This
library contains many descriptors mentioned previously in this thesis and sum-
marized below. All frame-based statistics were aggregated using: mean and
derivatives until second order, variance and derivatives until second order, min-
imum and maximum.
In Table 4.11, we list the set of features that performed the best in our pre-
liminary experiments made on our genre, artist and mood databases. Many of
them were already present in our set submitted in 2007 but had been revised
and pre-selected.

Type Features

Low level barkbands spread, skewness, kurtosis, dissonance, hfc
pitch and confidence, pitch salience, spectral complexity
spectral crest, spectral decrease, energy, spectral flux
spec spread/skewness/kurtosis, spec rolloff, strong peak
ZCR, barkbands, mfcc

Rhythm bpm, beats loudness, onset rate
Sound FX inharmonicity, odd2even, pitch centroid, tristimulus
Tonal chords strength (frame), key strength(global), tuning freq

Table 4.11: Feature set for all our classifiers.

Classification

The three classification algorithms are also coded in C++ and python. They
are implemented using Gaia, a library for manipulating dataset and computing
similarity distances (Wack (2010)). Each algorithm has the option to look for
its best parameters with a grid-search cross-validation approach on the training
data. We submitted different algorithms using: Support Vector Machine, Soft
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Independent Modeling of Class Analogies, and Relevant Component Analysis
(described bellow).

Soft Independent Modeling of Class Analogies (SIMCA): the Ma-
chine Learning (ML) and Music Information Retrieval (MIR) communities have
developed a pool of applications: Weka (Witten & Frank (1999)), Marsyas
(Tzanetakis (2007)), jMIR (Mckay (2010)), MIRtoolbox (Lartillot & Toivi-
ainen), R6, etc...). Focusing on the supervised approach, most of the techniques
implemented in these packages try to find a unique classifier that predicts all
the categories proposed in a taxonomy, or a pool of classifiers that individu-
ally propose an output to the whole problem and apply a policy to gather all
the obtained results by the different techniques (voting schema, grading, etc.).
In some cases, the presented problem requires independent analysis for their
categories (p.e. different families of descriptors or different temporal scope).
The use of binary classifiers are a first approach to solve these problems. They
set m specific classifiers, being m the number of categories, in a 1-against-all
architecture, or C2

m = m!
(m−2)!2! classifiers in a 1-against-1 architecture. By us-

ing these configurations, each classifier is independently trained providing a
specific classifier for each category.
In the case of music, the extracted descriptors can be grouped into different
families, related to the musical facet they represent. In a specific problem
(p.e. genre or mood classification), categories may be described by different
families of descriptors. The 1-against-all architecture seems adequate to gather
these particularities, but we need to include an automatic feature selection
algorithm at the input stage of each classifier that properly selects the audio
descriptor that best represents that specific category. Principal Component
Analysis creates a linear combination of the existing descriptors (eigenvectors)
ordered in descending order according to the covered percentage of variance
for each combination (eigenvalues). By selecting only the most representative
combinations, we ensure that only the representative audio descriptors will be
used, and the other ones will be discarded. Our proposed methodology consists
in a set of m 1-against-all classifiers, being m the number of categories, with a
PCA analysis at the input stage of each individual classifier.
This approach for classification is known as the SIMCA method (Soft Indepen-
dent Modeling of Class Analogies proposed by Wold (1976). More information
can be found in Vanden & Hubert (2005) and the first application to MIR
problems in Guaus (2009).

Relevant Component Analysis and Nearest Neighbours: Relevant
Component Analysis (RCA) is a supervised transformation which aims at max-
imizing the global variance of a dataset while reducing the intra-class variance
(representing unwanted variability). The algorithm is split in two parts: the

6http://www.r-project.org/
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first part is the dimensionality reduction that consists in applying a modified
version of the Fisher Linear Discriminant (FLD) where we only use part of the
classified vectors for training. This transformation amounts to resolving the
following estimator:

max
A∈MP×Q

AtStA

AtSwA
(4.13)

transforming from a space with P dimensions to a space with Q dimensions
where A is the searched transformation matrix,MP×Q is the space of all trans-
formations, St is the total covariance matrix and Sw is the inner-class covari-
ance matrix.
The second part consists in applying the actual RCA transformation, which
scales down those dimensions that have great variability within our classes by
whitening the resulting feature space. We first calculate the covariance for all
the centered data-points:

Ĉ =
1

p

k∑
j=1

nj∑
i=1

(xji − xj)(xji − xj)t (4.14)

where p is the total number of points in the chunklets and xj is the mean of
the data-points of the chunklet j. Finally we obtain the whitening matrix:

W = Ĉ−
1
2 (4.15)

so the new feature space is given by:

xnew = Wx (4.16)

Our classification algorithm is made of a K-nn classifier using a weighted dis-
tance based on two distances. One is from the reduced space mentioned previ-
ously where we use the euclidean distance. The other is the Kullback-Leibler
distance applied to MFCCs.

Dist(a, b) = α(KLMFCC(a, b)) + (1− α)(EuclideanRCA(a, b)) (4.17)

We optimize the weight α between both distances with a cross-validation tech-
nique on the training set.

Results and Discussion

In Table 4.12, we present the accuracy of our different submissions. There were
33 submissions from 16 different research groups (including our 5 submissions).
In Table 4.13, we show the comparison of the accuracies of the best submission
of each group (in decreasing order).
The best results is obtained with our submission with the SVM classifier, with-
out any grid search to optimize the parameters. It seems that the grid search is
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ID Algorithm Grid search Accuracy

1 RCA No 57.67%
2 RCA Yes 57.5%
3 SIMCA No 59.83%
4 SIMCA Yes 59.33%
5 SVM No 62.83%
5 SVM Yes 59.5%

Table 4.12: MIREX2009: Accuracies of our submissions.

Submission Accuracy

CL1 65.67%
GP 63.67%
MTG5 62.83%
HW2 61.67%
LZG 61.67%
GLR1 60.83%
FCY1 60.33%
VA2 60.17%
XZZ 60.00%
BP2 59.67%
GT1 59.33%
SS 58.83%
HNOS1 58.67%
XLZZG 57.00%
TAOS 56.83%
RK1 53.17%
ANO 50.67%

Table 4.13: MIREX 2009: Comparison with other submissions.

not efficient in this case because it does not perform better either with the other
classifiers. This might be due to a problem when implementing it, but we were
not able to identify the reason at the moment of submitting the algorithms.
Another possibility is that the grid search could have overfit the parameter
space, it could be advisable to select some near but not optimal value to be
protected over that. In any case, we note that the best result is using SVM,
same conclusion than with our database presented in this thesis. Compared to
our first submission in 2007, we increased the accuracy to 62.83% (2.3 percent
points), which is ranked in the top results with no statistical significance with
the other top-ranked results.
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4.7. Conclusion

In this chapter, we have presented our approach to build a pure audio content-
based mood classifier. We employed an original approach to build the ground
truth, taking advantage of the wisdom of crowds as well as experts. This
method is recommended for other problems because it eases a lot the anno-
tation phase to create a dataset of examples: we involved directly less people
(which is often the costly and limiting part of the method), we coped with
the cultural and social bias in the sample (keeping in mind the bias of the
social network itself), and finally, we combined the validation from many peo-
ple and the accuracy of experts. An important conclusion from the dataset
creation method is that tags should not be trusted as ground truth. Indeed the
manual validation is an necessary step to verify that the tags are not wrong
and above all that we are understanding and using them in the correct way
for our purpose. In our case, this process allowed to avoid 29% of error. We
have demonstrated the importance of some of the audio descriptors, comparing
their value distributions across mood categories, and their influence in the clas-
sification task. We conclude from these experiments that surprisingly, single
descriptors can already classify quite well some categories. The most typical
example being the spectral complexity classifying at 95.86% the angry cate-
gory. A similar result is found with the dissonance supporting the idea that
arousal is related somehow to how dissonant or complex the spectrum is. Also,
results about the mode and its relation to valence are also worth noticing even
if the sad category is not following that theory. Anyhow, we also proved that
the sum of all these descriptors give the best results, which are quite high with
accuracies above 84% for all and reaching 98.17% for angry music. To balance
this conclusion, the happy category (84.57% of accuracy) is the most difficult
to classify, showing us that happiness, even in music, is difficult to predict or
notice.
Also, with the goal of proving the stability of the classification models, we
tested the robustness of the classifiers (and consequently the audio descrip-
tors) towards audio quality degradation. This has been done applying strong
encoding and on the audio signals. A very small drop in accuracy was observed,
meaning that our mood classifiers are robust to these transformations.
Finally, we reported on external evaluations and comparisons with other ap-
proaches at MIREX, showing that our method is state-of-the-art and ranked
among the best results. Nevertheless, we believed that this approach can be
improved using additional information from the audio content (with high-level
features such as genre) and also from other sources of information (such as
lyrics). This is what we will study in the following chapters.



CHAPTER 5
Mood Classification with

Lyrics

"The important thing about lyrics is not exactly what they say, but that they
lead you to believe they are saying something." Brian Eno (1981).

5.1. Introduction

The mood of a song is expressed by means of musical features of different type
such as rhythm, tonality or timbre such as detailed in Chapter 4. Even if
instrumental music convey strong emotions, we should not discard the power
of words in songs. Indeed, a relevant part of the sentiments also seems to be
conveyed by the lyrics. In this chapter, we study how adding lyrics analysis
to our system helps to categorize music by mood. Of course, in this context,
we discard instrumental music and concentrate on songs. With this idea of
studying the importance of lyrics, we derive a bit from our original goal which
is to use only audio signals as a source of information. However, this hybrid
approach, using both audio and text data, evaluates the potential of a possible
future system that would extract the lyrics directly from the audio signal.
Maybe it would not be that accurate, but at least knowing how lyrics would
help in the best scenario is a very valuable information. Moreover, it can also
be seen as a real use case for music classification, as lyrics for known songs can
be found automatically online. In the following experiments, we demonstrate
that, as one could expected, lyrics help to classify by mood, adding useful
information to models based only on audio signals.
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5.2. Experiment 4: Mood Classification using
Audio and Lyrics

5.2.1. Summary

In this experiment, we study music mood classification using audio and lyrics
information. We evaluate each factor independently and explore the possibility
to combine both, using Natural Language Processing and Music Information
Retrieval techniques. We show that using standard method such as Latent
Semantic Analysis (LSA) (see Deerwester et al. (1990) and Chapter 3 for more
details) is able to classify the lyrics significantly better than random, but the
performance is still quite inferior to that of audio-based techniques. We then
introduce a method based on differences between language models that gives
performances closer to audio-based classifiers. Moreover, integrating this in a
multimodal system (audio+text) allows an improvement in the overall perfor-
mance. We demonstrate that lyrics and audio information are complementary,
and can be combined to improve a classification system.

5.2.2. Related Work

Although there is existing work dealing with mood detection in text (Alm
et al. (2005); Cho & Lee (2006)), until recently, only very little has been done
to address the automatic classification of lyrics according to their mood. Fewer
works addressed the problem of combining both audio and lyrics information.
Prior to our contribution, an early work from Yang & Lee (2004) combined
audio and lyrics bag-of-features to disambiguate emotion categories when clas-
sifying, but with a rather small dataset of 145 songs. Another early work from
Mahedero et al. (2005) reported promising results in using lyrics for thematic
categorization suggesting that a mood classification from lyrics is feasible. Neu-
mayer & Rauber (2007) have shown the complementarity of audio and lyrics
in the context of genre classification. Later, Mayer et al. (2008a,b) introduced
several new lyrics features such as rhyme, style, word per minute, to be used
for the same purpose of genre classification. Logan et al. Logan et al. (2004)
have investigated the properties of lyrics using Latent Semantic Analysis. They
discovered natural genre clusters and their conclusion was also that lyrics are
useful for artist similarity searches but the results were still inferior to those
achieved using acoustic similarity techniques. However, they also suggested
that both systems could profitably be combined as the errors of each one were
different.
More recently, van Zaanen & Kanters (2010) experimented td.idf (in a com-
parable way as we do in the first experiment of this Chapter) with promising
results. Another work on lyrics only, by He et al. (2008), compared bag-of-
words features and found that the combination of word unigrams, bigrams
and trigrams together with tf.idf weighting gave the best results (see 5.2.5 for
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a description of tf.idf). The particularity of this approach was also the use of
only two categories: "lorn" and "lovelorn" which means respectively of "lonely
and abandoned" and "unhappy because of unrequited love" . Nonetheless, Hu
et al. (2009b) showed a method to classify songs in Russell’s bidimensional
plane (Russell (1980)) using an affective lexicon and a clustering method.
Finally, from another field, studies in cognitive neuropsychology from Peretz
et al. (2004) demonstrated the independence of both sources of information
and so the potential complementarity of both melody and lyrics in the case of
emotional expression can be foreseen.

5.2.3. Database

For this study we use our categorical approach to represent the mood, as
justified in Chapter 3, with the following categories: happy, sad, angry, relaxed.
Our collection is based on the one described in Chapter 4. We have pre-selected
the tracks using last.fm1 tags, generated a synonym set using Wordnet2 and
looked for the songs mostly tagged with these terms. Then we asked 17 listeners
to validate this selection by mood. We considered a song to be valid if the tag
was confirmed by at least one listener, as the pre-selection from last.fm granted
that the song was likely to deserve that tag. We included this manual tag
confirmation in order to exclude songs that could have gotten the tag by error,
to express something else, or by a "following the majority" type of effect. The
annotators listened to 30 seconds excerpts, first to avoid as much as possible
changes in the mood, and then to speed up the annotation process. Therefore
they could not listen to the whole lyrics and some excerpts may not contain
lyrics all length, all the time, thus their judgment had to be biased toward
an analysis of the audio. This might influence negatively the results if the
mood of the lyrics is not coherent with the mood expressed by the music. In
many cases both would match, in other cases it would introduce some error
in the system that we cannot detect. All lyrics are in English and extracted
from LyricWiki3. The database is composed of 1000 songs divided between
4 categories of interest plus their complementary categories (i.e “not happy”,
“not sad”, “not angry” and “not relaxed”). We have used an equal distribution
of these binary classes.

5.2.4. Audio Classification

To classify music by mood, we used the supervised learning approach described
previously (see Chapter 4 for more details).
In order to classify the music from audio data, we first extracted audio features
of different kinds: timbral (for instance MFCC, spectral centroid), rhythmic

1http://www.last.fm
2http://wordnet.princeton.edu
3http://lyricwiki.org

http://www.last.fm
http://wordnet.princeton.edu
http://lyricwiki.org
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(for example tempo, onset rate), tonal (like Harmonic Pitch Class Profiles)
and temporal. All these features are standard and derived from state-of-the-
art research in Music Information Retrieval and described in Chapter 4. For
each song, their 200 frame-basis extracted features were summarized with their
average and variance.
As mentioned previously, we use Support Vector Machines (SVM) to classify
music by mood. SVM are known to be efficient in many classification tasks
and we have shown in Chaper 4 that they were the best classifier for this pur-
pose. We obtained the results shown in Table 5.1 using Weka (Witten & Frank
(1999)) and 10 runs of 10-fold cross-validation. We report here the accuracies
obtained using Support Vector Machines, the best kernel between linear, poly-
nomial and RBF, and the optimized parameters using a grid search. We also
tried other classifiers shown here for comparison with optimized parameters,
but Support Vection Machines performed better than others.

Angry Happy Relaxed Sad
SVM 98.17% 84.57% 91.43% 87.66%
J48 95.51% 80.02% 85.25% 85.87%

Random Forest 96.31% 82.55% 89.47% 87.26%
k-NN 96.38% 80.89% 90.08% 85.48%

Logistic Reg 94.46% 73.60% 82.54% 76.38%
GMMs 96.99% 79.91% 91.13% 86.54%

Table 5.1: Classification accuracy using audio features, for each category against its
complementary

The performances we obtained using audio-based classifiers are quite satisfy-
ing and even exceptional when looking at the “angry” category with more than
98%. All four categories reached classification accuracies above 80%, and two
categories (“angry” and “relaxed”) even above 90%. As we deal with binary
comparisions on a balanced dataset, the random baseline is 50%. Even though
these results can seem surprisingly high, this is coherent with other similar
studies (Skowronek et al. (2007)) and the fact that we are using relatively
“simple” categories, with which a consensus is either to obtain. Also our ap-
proach considering the emotion intentions (evoked, not perceived) makes the
problem much more objective.

5.2.5. Lyrics classification

In addition to the results from the audio analysis, lyrics can provide valuable
information about the mood of a song. In this section we report three ex-
periments. In the first one we used similarity between lyrics, in the second
feature vectors based on Latent Semantic Analysis dimensional reduction, and
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in the third one we propose a technique to select the most discriminative terms
looking at the differences between language models.
The first two approaches treat the text in an unsupervised way, where the rep-
resentation in vector space is independent of the categories we are interested in.
In the third approach, we use our categories (in a supervised process) to select
an appropriate representation of the lyrics before addressing the classification
task.

Experiment 4.1: Classification based on similarity using Lucene

Our first approach was based on the assumption that songs that are “similar”,in
a general sense, are most likely similar for specific relevant aspects, such as
genre, mood, etc.
We defined the similarity between different songs in a way commonly used in
document retrieval tasks. The representation of the songs is reduced to a bag
of words, i.e. the set of words or terms used in a song as well as their frequency.
This is then used, with the help of the Lucene document retrieval system4, to
rank documents by their similarity. The similarity measure used by Lucene
essentially corresponds (with some performance tweaks) to the very common
vector model of information retrieval (see Salton (1971)), with tf.idf weighting
in order to attribute more importance to those terms that are frequent in the
given song, but less frequent overall in the collection. tf stands for "term
frequency" and idf for "inverse document frequency". idf is defined as:

idf(t) = log
|D|

|{d : t ∈ d}|
(5.1)

where |D| is the total number of documents and |{d : t ∈ d}| the number
of documents where the term t appears. Note that this is defined only for a
corpus where t appears. Then, the tf.idf weight of a term t in a document d is
given by:

tf-idf(t, d) = tf(t, d)× idf(t) (5.2)

We decided against using some of other techniques frequently used in docu-
ment retrieval such as stemming, given that our focus is quite different from
typical retrieval tasks. Word stemming (reducing a word to its root) would
fail or produce unpredictable results in many cases as song lyrics often contain
colloquial versions of words (with spellings that do not fit well with the rules
used). In addition, we are not interested in uniformization of the language,
but we want to exploit the information provided by linguistic particularities.
Document retrieval systems focus more on extracting the words that are rele-
vant for the general thematic of a document and therefore they tend to neglect
aspects relating to the personal communication aspect.

4http://lucene.apache.org/

http://lucene.apache.org/
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The most classic approach for using similarity to classify is the k-NN classifier
(described in 2.4.3). Based on a source item (in our case a song) for which
the class is unknown, the k most similar items from the annotated collection
are retrieved. Each of these provides a class label, and the majority label (the
most represented one) is chosen as the predicted class of the source item.
It is important to note that this approach is very sensitive to unbalanced
collections, i.e. overrepresentation of one class over the others. The increased
a-priori probability that an item belongs to that class greatly increases the
probability that many of the k retrieved items belong to that class, and may
therefore excessively reduce the chance of predicting one of the minority classes.
All experiments reported here were conducted with balanced datasets to avoid
such bias.

Results: we conducted experiments with varying numbers of similar docu-
ments (k) to be taken into account. In general, a low k provides less stability,
as the predicted label depends strongly on individual examples from the col-
lection. Large ks on the other hand can mean that examples are taken into
account that are not actually very similar (and thus representative) of the one
that is to be classified. The optimal k value depends on the application and
the distribution of the datapoints and can not be easily predicted a-priori.
While better than the random baseline for most of the moods (the baseline is
50%), the prediction power of the similarity-based approach for lyrics remains
limited, with averaged accuracy around 60% as shown in Table 5.2. The most
predictable category is “angry” and the least predictable is “sad”.

jority label (the most represented one) is chosen as the pre-
dicted class of the source item.

It is important to note that this approach is very sensi-
tive to unbalanced collections, i.e. overrepresentation of
one class over the others. The increased a-priori proba-
bility that an item belongs to that class greatly increases
the probability that many of the k retrieved items belong
to that class, and may therefore excessively reduce the the
chance of predicting one of the minority classes. All experi-
ments reported here were conducted with balanced datasets
to avoid such bias.

5.1.1. Results

We conducted experiments with varying numbers of simi-
lar documents (k) to be taken into account. In general, a
low k provides less stability, as the predicted label depends
strongly on individual examples from the collection. Large
ks on the other hand can mean that examples are taken into
account that are not actually very similar (and thus repre-
sentative) of the one that is to be classified. The optimum
depends on the application and the distribution of the data-
points and can not be easily predicted a-priori.

While better than the random baseline for most of the
moods (the baseline is 50% as we are dealing with binary
classification), the prediction power of the similarity-based
approach for lyrics remains limited, with averaged accuracy
around 60% as shown in Table 2. The most predictable cat-
egory is “angry” and the least predictable is “sad”.

k=3 k=5 k=7 k=9 k=11
Angry 69.5% 67.5% 69.0% 68.5% 67.0%
Happy 55.9% 57.4% 60.9% 64.5% 64.1%
Sad 55.0% 52.8% 58.9% 54.5% 55.0%
Relaxed 61.8% 65.8% 61.0% 59.8% 59.1%
Mean 60.5% 60.9% 62.5% 61.8% 61.3%

Table 2. Classification accuracies for each
category using k-NN with a tf.idf-based dis-
tance on lyrics and with different values of
k

5.1.2. Limitations

Due to the very different way that similarities are calcu-
lated for audio and for lyrics it is difficult to directly in-
tegrate the results from both approaches. While on the
audio side, the feature vectors can be used with different
classification algorithms, this is not as easily the case for
the lyrics. The typical sparse vector-of-terms representa-
tion of the lyrics generates a very high dimensionality, as

the length of the vector is the full size of the vocabulary
used in the entire collection. On our relatively small an-
notated collection the vocabulary size already reached over
7000 words, while more complete collections (e.g. the full
LyricWiki) reach vocabulary sizes of several hundred thou-
sand distinct words. Some classifiers do not deal very well
with the sparseness of the data, and are unable to handle the
high dimensionality. As we will see in Section 6, combining
lyrics with audio in that case can be achieved by voting.

5.2. Experiment 2: Classification using Latent Se-
mantic Analysis (LSA)

One approach to deal with the dimensionality prob-
lem is to project the lyrics into a lower-dimensional space
that is manageable by generic classifiers. The most com-
mon method for this is Latent Semantic Analysis (LSA,
[5]) which, similar to approaches like Principal Component
Analysis (PCA), projects the data into a space of a given
dimensionality, while maintaining a good approximation of
the distances between data points.

In combination with tf.idf weighting, LSA allows us to
obtain a low-dimensional representation of the data. The
resulting dimensions tend to relate to clusters of similar
documents, and the most significant terms contributing to
those dimensions typically reflect the common vocabulary
of groups of semantically related documents.

We calculated the LSA projection using the full
LyricWiki collection (approximately 400,000 songs at that
time) as that should provide a more accurate model. We
note, however, that significantly smaller subsets yielded
very similar results in our experiments.

We conducted experiments to determine the impact of
the number of dimensions used in the Latent Semantic
Analysis on classification performances. As could be ex-
pected, performance (using lyrics alone) is very low for
extremely low dimensionality and tends to improve with
a greater number of dimensions. The peak performance
(which remains quite moderate) is obtained at different
numbers of dimensions for the different categories, in some
cases at around 20-30 whereas in others it tends to further
improve with a greater number of dimension.

5.2.1. Results

In Table 3 we show the results from this experiment. The
accuracies presented here are averaged over the 10 runs of
10-fold cross-validation. The use of LSA does not dramat-
ically improve performance compared to our first experi-
ment, depending on the category it can even be worse. The
reduction in dimensionality does, however, provide more
flexibility, as different types of classifiers can be used on
the resulting representation. The results shown here use a
reduction to 30 dimensions.

4

Table 5.2: Classification accuracies using k-NN with a tf.idf-based distance on lyrics
for different values of k

Limitations: it is difficult to directly integrate the results from both ap-
proaches as similarities for audio and lyrics are calculated in different ways.
While on the audio side, the feature vectors can be used with different clas-
sification algorithms, this is not as easily the case for the lyrics. The typical
sparse vector-of-terms representation of the lyrics generates a very high dimen-
sionality, as the length of the vector is the full size of the vocabulary used in
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the entire collection. On our relatively small annotated collection the vocab-
ulary size already reached over 7000 words, while more complete collections
(e.g. the full LyricWiki) reach vocabulary sizes of several hundred thousand
distinct words.

Experiment 4.2: Classification using Latent Semantic Analysis
(LSA)

One approach to deal with the dimensionality problem is to project the lyrics
into a lower-dimensional space that is manageable by generic classifiers. The
most common method for this is Latent Semantic Analysis (LSA) (see 3.2.2),
which, similar to approaches like Principal Component Analysis (PCA), projects
the data into a space of a given dimensionality, while maintaining a good ap-
proximation of the distances between data points.
In combination with tf.idf weighting, LSA allows us to obtain a low-dimensional
representation of the data. The resulting dimensions tend to relate to clusters
of similar documents, and the most significant terms contributing to those
dimensions typically reflect the common vocabulary of groups of semantically
related documents.
We calculated the LSA projection using the full LyricWiki collection (approx-
imately 400,000 songs at that time) as that should provide a more accurate
model. We note, however, that significantly smaller subsets yielded very simi-
lar results in our experiments.
We conducted experiments to determine the impact of the number of dimen-
sions used in the Latent Semantic Analysis on classification performances. As
it could be expected, performance (using lyrics alone) is very low for extremely
low dimensionality and tends to improve with a greater number of dimensions.
The peak performance (which remains quite moderate) is obtained at different
numbers of dimensions for the different categories.

Results: in Table 5.3 we show the results from this experiment. The accu-
racies presented here are averaged over the 10 runs of 10-fold cross-validation.
The use of LSA does not dramatically improve performance compared to our
first experiment, depending on the category it can even be worse. The reduc-
tion in dimensionality does, however, provide more flexibility, as different types
of classifiers can be used on the resulting representation. The results shown
here use a reduction to 30 dimensions.

Experiment 4.3: Classification using Language Model Differences
(LMD)

While distances between songs based on lyrics cannot separate our mood cat-
egories very well, lyrics convey other types of information to be exploited in
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SVM Logistic RandForest
Angry 62.1% (9.1) 62.0% (10.2) 61.3 (11.5)
Happy 55.2% (10.3) 54.1% (12.5) 54.8 (10.7)
Sad 66.4% (9.7) 65.3% (11.0) 56.7 (12.1)
Relaxed 57.5% (8.2) 57.3% (9.1) 56.8 (9.79)
Mean 61.3% (9.3) 59.7% (10.7) 57.4% (11.0)

Table 3. Classification accuracies using LSA
(30 dimensions) on lyrics. In parenthesis is
the standard deviation.

If our mood categories, as seems to be the case, do not
relate to clusters of songs that would be considered sim-
ilar according to the metrics used in document retrieval,
this severely limits the potential of any approaches that are
based on document distances with tf.idf weighting. LSA
does not overcome this problem, as the distances between
data points in the projected space directly reflect their tf.idf-
based distance used as a basis for the transformation.

5.3. Experiment 3: Classification using Language
Model Differences (LMD)

While distances between songs based on lyrics cannot
separate our mood categories very well, lyrics convey other
types of information to be exploited in pursuing their sepa-
ration according to mood. In order to assess that potential,
we analyzed the language models corresponding to the dif-
ferent categories ([16]). Figure 1 shows document frequen-
cies (i.e. the proportion of documents containing a given
term) for the 200 most frequent terms in the ”angry” cate-
gory, compared to the frequencies in the ”not angry” class
(results are similar for the other mood categories). As can
be expected, frequencies for many of the top-ranked terms
coincide, as those are for the most part function words (such
as ”and”, ”the”, etc.) that are not related to a specific seman-
tic content. However, there are very important differences
for quite a number of other terms.

Due to the very high dimensionality of the language
models, some classifiers or feature selection techniques can
have difficulties in exploiting this information. We there-
fore decided to extract a reduced list of relevant terms exter-
nally, while using the Weka framework to perform the clas-
sification. This is done by comparing the language models
generated by the different categories an choosing the most
discriminative terms from this comparison.

When comparing two language models, the simplest ap-
proach is to calculate the difference in document frequency
for all terms. This can be computed either as an absolute
difference, or as a relative change in frequency. Both of
these, however, have important drawbacks. The absolute
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Figure 1. Document frequencies (P (t)) of
terms in "angry" and "not angry" category
where t is the term id.

difference favors high-frequency terms, even when the rel-
ative difference in frequency is not very big. The relative
difference on the other hand tends to favor low-frequency
terms, especially those that do not occur at all in one of the
language models (which results in a difference of 100%).

Example of terms ranked by absolute difference:

• aggressive: world, die, death, control, ...

• not aggressive: me, love, i’m, can, could, so, but, ...

Example of terms ranked by relative difference:

• aggressive: realms, dissolution, bear, four, thirst, per-
verted, evermore, ...

• not aggressive: chillin, nursery, hanging, scheming, at-
tentive, lace, buddy, sweetest, endings, ...

We are interested in terms with a large relative difference
(document frequency in one class being multiple times that
in the other class), but that are quite frequent in order to
cover a large amount of songs. Therefore, we need to find a
measure that provides a good mixture of absolute and rela-
tive difference. This also has the effect of providing stable
results for the selected top-ranked terms, as their frequency
is sufficiently high to reduce to effect of chance variations
in occurrence counts.

The measure (3) we settled on is a compromise between
absolute difference (1) and relative difference (2).

∆abs(t) = abs(P (t|LM1)− P (t|LM2)) (1)

∆rel(t) =
abs(P (t|LM1)− P (t|LM2))
max(P (t|LM1), P (t|LM2))

(2)

5

Table 5.3: Classification accuracies using LSA (30 dimensions) on lyrics (with stan-
dard deviation)

pursuing their separation according to mood. In order to assess that poten-
tial, we analyzed the language models corresponding to the different categories
(Ponte & Croft (1998)). Figure 5.1 shows document frequencies (i.e. the pro-
portion of documents containing a given term) for the 200 most frequent terms
in the "angry" category, compared to the frequencies in the "not angry" class
(results are similar for the other mood categories). However, there are very
important differences for quite a number of other terms.
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Figure 5.1: Document frequencies (P (t)) of terms in "angry" and "not angry" cat-
egory where t is the term id.

Due to the very high dimensionality of the language models, some classifiers or
feature selection techniques can have difficulties in exploiting this information.
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We therefore decided to extract a reduced list of relevant terms externally,
while using the Weka framework to perform the classification. This is done
by comparing the language models generated by the different categories and
choosing the most discriminative terms from this comparison.
When comparing two language models (in our case one from the category and
one from its complementary), the simplest approach is to calculate the differ-
ence in document frequency for all terms. This can be computed either as an
absolute difference, or as a relative change in frequency. Both of these, how-
ever, have important drawbacks. The absolute difference favors high-frequency
terms, even when the relative difference in frequency is not very big. The rela-
tive difference on the other hand tends to favor low-frequency terms, especially
those that do not occur at all in one of the language models (which results in
a difference of 100%).
Example of terms ranked by absolute difference (extracted from the lyrics):

angry: world, die, death, control, ...

not angry: me, love, i’m, can, could, so, but, ...

Example of terms ranked by relative difference (extracted from the lyrics):

angry: realms, dissolution, bear, four, thirst, perverted, evermore, ...

not angry: chillin, nursery, hanging, scheming, attentive, lace, buddy,
sweetest, endings, ...

We are interested in terms with a large relative difference (document frequency
in one class being multiple times that in the other class), but that are quite
frequent in order to cover a large amount of songs. Therefore, we need to find a
measure that provides a good mixture of absolute and relative difference. This
also has the effect of providing stable results for the selected top-ranked terms,
as their frequency is sufficiently high to reduce to effect of chance variations in
occurrence counts.
The measure (5.5) we settled on is a compromise between absolute difference
(5.3) and relative difference (5.4).

∆abs(t) = abs(P (t|LM1)− P (t|LM2)) (5.3)

∆rel(t) =
abs(P (t|LM1)− P (t|LM2))

max(P (t|LM1), P (t|LM2))
(5.4)

∆mixed(t) =
abs(P (t|LM1)− P (t|LM2))√
(max(P (t|LM1), P (t|LM2)))

(5.5)

where P (t|LMi) is the probability of term t occurring in a document repre-
sented by the language model LMi, which is estimated as the document fre-
quency of the term in the corresponding category (normalized by the number
of documents).
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Using this measure ∆mixed gives us a nice list of terms that cover a good
percentage of the songs, with very different distribution between the two cat-
egories, and that clearly make sense semantically:

angry: death, control, die, dead, god, evil, hell, world, pain, fate, ...

not angry: love, could, heart, can, i’m, were, blue, today, then, need, ...

Results: for each category, we selected the n terms with the highest ∆mixed.
We obtained a vector representation with n dimensions that can be used with
different classifiers. We made 10 runs of 10-fold cross-validation (this includes
the creation of the model and the term selection, to avoid overfitting) and
tried different values n. Depending on the categories the accuracy dropped
under a certain value of n. For n = 100, we had relatively good results with no
significant increase by changing its value for any of the categories. In Appendix
B, we list the 100 terms for each mood category. Classification performance is
significantly better than with the distance based approaches, with accuracies in
the 80% range using SVM as shown in Table 5.4. These results are also closer
to those obtained using audio based descriptors. We ran the tests with several
other classifiers (decision trees, kNN, logistic regression, random forest ...),
some of which obtained good results also, but SVMs performed best overall.
We therefore used the SVM classifier with this kind of data for our further
experiments.

where P (t|LMi) is the probability of term t occurring in a
document represented by the language model LMi, which
is estimated as the document frequency of the term in the
corresponding category (normalized by the number of doc-
uments).

Using this measure ∆mixed gives us a nice list of terms
that cover a good percentage of the songs, with very differ-
ent distribution between the two categories, and that clearly
make sense semantically:

• angry: death, control, die, dead, god, evil, hell, world,
pain, fate, ...

• not angry: love, could, heart, can, i’m, were, blue, to-
day, then, need, ...

5.3.1. Results

For each category, we selected the n terms with the high-
est ∆mixed. We obtained a vector representation with n
dimensions that can be used in Weka with different clas-
sifiers in order to make predictions. We made 10 runs of
10-fold cross-validation (this includes the term selection, of
course) and tried different values n. Depending on the cat-
egories the accuracy dropped under a certain value of n.
For n = 100, we had relatively good results with no signifi-
cant increase by changing its value for any of the categories.
Classification performance is significantly better than with
the distance based approaches with accuracies in the 80%
range using SVM as shown in Table 4. These results are
also closer to those obtained using audio based descriptors.
We ran the tests with several other classifiers (decision trees,
kNN, logistic regression, random forest ...), some of which
obtained good results also, but SVMs performed best over-
all. We therefore used the SVM classifier with this kind of
data for our further experiments.

SVM Logistic RandForest
Angry 77.9%(10.3) 60.6%(12.0) 71%(11.5)
Happy 80.8%(12.1) 67.5%(13.3) 70.8%(11.4)
Sad 84.4%(11.2) 83.9%(7.0) 75.1%(12.9)
Relaxed 79.7%(9.5) 71.3%(10.5) 78.0 (9.5)
Mean 80.7%(10.8) 70.8%(10.7) 73.7%(11.3)

Table 4. Classification performances using
the 100 most discriminant terms. In paren-
thesis the standard deviation.

6. Combining Audio and Lyrics information

Numerous articles report the glass-ceiling problem of
classification based on audio content [2]. One potential so-

lution to that is to incorporate context information. In our
case, the lyrics are potentially a complementary information
to the audio as mentioned in Section 2.

We used two approaches to integrate these two informa-
tion sources. The first one used separate predictions for
audio and lyrics and combines them through voting. The
second approach was to combine both in the same space,
having a vector composed of both audio and lyrics features.
Concatenating the features in one vector allowed to use au-
dio and lyrics information within one classifier.

6.1. Voting

The most general approach to combining different
sources of predictions is through voting. Given that the un-
derlying predictors are completely independent, this allows
for the integration of very different systems. E.g. our first
approach for lyrics based classification (Lucene+kNN) is
quite different from the approach used for the audio (feature
vectors used with SVMs), but as both output predictions, we
combine them through voting.

For the Lucene and the LSA based approaches the com-
bined performance did not clearly improve over the purely
audio based predictions. This was somehow expected, as
the audio-based classification accuracy was dramatically
better than the lyrics-based classification performance. The
hybrid system using the language model approach, how-
ever, produces very interesting results, especially for the
“sad” category, as can be seen in Table 5.

Audio Lyrics Voting
Lucene:Angry 98.1%(3.8) 69.5% 96.6%
LSA:Angry 98.1%(3.8) 62.1% (9.1) 96.8%(4.2)
LMD:Angry 98.1%(3.8) 77.9%(10.3) 98.2%(4.29)
Lucene:Happy 81.5%(11.5) 64.5% 81.6%
LSA:Happy 81.5%(11.5) 55.2% (10.3) 81.2%(10.1)
LMD:Happy 81.5%(11.5) 80.8%(11.2) 85.4%(10.6)
Lucene:Sad 87.7%(11.0) 58.9% 86.9%
LSA:Sad 87.7%(11.0) 66.4%(9.7) 89.6%(7.7)
LMD:Sad 87.7%(11.0) 84.4%(11.2) 92.6%(8.7)*
Lucene:Relaxed 91.4%(7.3) 62.5% 89.9%
LSA:Relaxed 91.4%(7.3) 57.5% (8.2) 90.0%(5.91)
LMD:Relaxed 91.4%(7.3) 79.7%(9.5) 91.6%(6.12)

Table 5. Classification accuracies of audio,
lyrics and hybrid classifiers using voting. ’*’
means that the increase compared to the best
of the other methods is significant (p < 0.05)

6

Table 5.4: Classification performances using the 100 most discriminant terms (see
Appendix B for the complete list), in parenthesis is the standard deviation

5.2.6. Combining Audio and Lyrics information

Both audio and lyrics can help in estimating the mood of a song. As these
two modalities are quite different and potentially complementary, we chose
to combine them in order to create a hybrid classification system. We used
two approaches to integrate these two information sources. The first one used
separate predictions for audio and lyrics and combined them through voting
(using the mean of the two classifiers probabilities to take a decision). The
second approach was to combine all features in the same space, having a vector
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composed of both audio and lyrics features. This allowed to use audio and lyrics
information within one classifier.
As Table 5.5 shows, the combination of the language model differences with
the audio descriptors yielded relatively good results. For each category we
show the accuracy of the SVM classifier for the audio analysis, for the lyrics
analysis, and for the multimodal approach combining both. Mixed stands for
the technique of having a vector with both audio and lyrics features mixed and
Voting is for taking the classification decision based on the mean probability of
the lyrics and audio classifiers. As in the previous experiments, the accuracies
shown in Table 5.5 are averages over the 10 runs of 10-fold cross-validation.

Audio Lyrics Mixed Voting
Angry 98.2%(3.8) 77.9%(10.3) 98.3%(3.7) 95.0% (4.3)
Happy 84.6%(11.5) 80.8%(11.2) 86.8%(10.6)* 86.5% (10.8)
Sad 87.7%(11.0) 84.4%(11.2) 92.8%(8.7)* 95.6% (8.2)*
Relaxed 91.4%(7.3) 79.7%(9.5) 91.7%(7.1) 93.4% (6.7)*

Table 5.5: Classification accuracies using audio features, lyrics with language model
differences, the voting and mixed feature approach for merging both. We used SVM
and in parenthesis is the standard deviation. ’*’ means that the increase of a hy-
brid approach compared to the best of the individual methods (Audio or Lyrics) is
statistically significant (p < 0.05)

These hybrid methods give significant improvements over both individual ap-
proaches, leveraging the complementary information available from audio and
lyrics, at least for three of the four categories: “happy”, “sad” and “relaxed”,
with all a significant (p < 0.05 using a Paired t-Test) overall increase. For
the angry categories there is a slight increase in classification performance.
However, the extremely high baseline of over 98% accuracy on audio alone
limits the benefits of using a hybrid method. We should also notice that the
multimodal approach reduces the standard deviation of the accuracies between
folds, which means that the systems are more robust.

5.3. Conclusion

The results obtained with the different methods presented above are very en-
couraging, and the level of performance is more than sufficient for many prac-
tical applications. Our multimodal approach increases the performances for
all the mood categories. We note very interesting results particularly for the
“happy” , “sad” and “relaxed” categories, in which the complementarity of lyrics
and audio significantly increases the overall accuracy. Performance using au-
dio purely is already very high for the “angry” category, limiting the potential
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impact of a multimodal approach. These results show that audio and lyrics
information combined led to a better music mood classification system.
We should also comment that we have obtained the same trend in our results
as Cho & Lee (2006) who were working on affect recognition but using a tech-
nique based on a manually-built affect lexicon. They reported better results
on “happy” and “sad” lyrics than on “violent” (which could be related to our
“angry” category). The results we presented here confirm the relevance of the
lyrics to convey emotions or at least that the mood expressed in music and
acoustical data is correlated with information contained in the text.
Posterior results from our contribution showed comparable results where lyrics
enhanced the results. Yang et al. (2008a) evaluated unigram and bigram bag-
of-features lyrics features with three methods for combining lyrics and audio
information on 1,240 songs divided into four categories (the same as ours) and
also in two dimensions, arousal and valence (based on Russell (1980)). The
conclusion of this work was that lyrics could improve classification accuracy
over audio-only classifiers. Hu et al. (2009a) validated our approach with an-
other dataset. Their study described a method to build a ground truth of
songs classified by mood based on last.fm tags. The approach is rather similar
to the one we exposed in Chapter 4, except that they do not manually listen
and validate each song. They compare different approaches for classification
and lyrics description using text features such including bag-of-words (like
we used in the first experiment of this Chapter), part-of-speech (Pang & Lee
(2008)) and functions words (also called stopwords). The audio features were
extracted using MARSYAS (Tzanetakis (2007)). This work was conducted
with 18 mood categories. The results showed that our hybrid method based
on Language Model Differences (LMD) outperforms lyric and audio features in
nine categories among all combined feature sets. It also outperforms all other
methods in five mood categories and achieves significantly better results than
spectral features in three other mood categories. A worth noticing result from
this work, more detailed in Hu & Downie (2010a,b) is also that in some cat-
egories (romantic, cheerful, hopeful, angry, aggressive, exciting and anxious),
using lyrics alone gives better results than the classification with only audio
features. However, we should keep in mind that this comparison may not be
fair for audio systems, as they compare advanced text analysis against a rather
basic audio classification with only spectral features.
In the future it will be interesting to compare our results to other approaches
in affect recognition from text, like the methods based on common-sense or
affective lexicons (Cho & Lee (2006)), and to investigate more advanced mul-
timodal techniques. Besides the lyrics, the fine grain analysis of the voice itself
using source separation techniques would be a very interesting research topic.
And if we can then extract the lyrics from the voice signal (like proposed in
Hosoya et al. (2005)), the technique we exposed in this chapter could be used
directly on the transcription from the audio. It would also be worth studying
the way the lyrics are related to the beat. Like discussed by Levitin (2006),
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in the same vein that note syncopation is an important concept related to ex-
pectation and surprise, the words’ rhythm and position in the measure should
affect the way people perceive the lyrics and thus the emotion they convey.
Moreover, supposing we could extract the lyrics and the melody, studying the
position of the words in the measure (like in the work by Nichols et al. (2009))
would most probably enrich our system.





CHAPTER 6
Mood Classification using

Genre

"It is with the heart that one sees rightly; what is essential is invisible to the
eye" Antoine de Saint-Exupéry. Le petit prince.

6.1. Introduction

In cognitive science, there is a debate about the universality of emotional ex-
pressions in all aspects, including music. Some of the important musical fea-
tures used by humans to categorize emotions (see Chapter 2 for more details),
could be considered as universal. However, it is very complicated to prove this
universality as listeners not exposed to western musical culture are very rare
on the planet and also because most of the work on emotions are in a com-
mon language (english) and imposes a western type of analysis (see Wierzbicka
(1999)). Fritz et al. (2009) report on cross-cultural studies with participants
from a native African population (Mafa) and Western participants. It shows
that the Mafa listeners can detect basic emotions better than random but not
at the level of Western listeners. For people heavily exposed to western music
as the author (and probably most of the readers) of this thesis, it is difficult to
differentiate between innate cues that could be "built-in" our cognitive process,
and cultural cues that are learned by exposure. Nevertheless, one very clear
example to illustrate this learning of emotional expression is the Indian musical
culture. In Indian raagas of South-Indian classical (Carnatic) music, emotions
(called rasas) are formalized in the music with very particular cultural codes
that only experts and highly educated indian people can apprehend and enjoy
completely (Koduri & Indurkhya (2010)). Moreover, even in what we call the
western musical culture, we believe that these codes could be dependent on the
genre. The verification of this hypothesis goes beyond the scope of this thesis.
Despite that, we want to verify if genre information is somehow associated with
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mood and if it could help to classify music by mood. For instance, "ambient"
music may be mostly relaxed and "heavy metal" most probably angry.
Actually, the first work experimenting mood classification from audio includes
a related preliminary observation from their data. Li & Ogihara (2003) noticed
that segmenting their dataset by genre and training on these subgroups, they
obtained better accuracies than training with mixed genres. They mentionned
that the "use of genre information might improve emotion detection". In op-
position to this idea, Hu & Downie (2007) analyzed the co-occurences of mood
and genre labels in music review and stated that there is "strong evidence that
genre and mood are independent of each other". However they also provided
some associations that suggest a possible relation. Lin et al. (2009) showed a
correlation between emotions and genre labels but, according to our analysis,
with an error-prone approximation, applying mood labels from an album to
all its tracks. These works leads us towards a first step which is to verify and
validate if there is a correlation between mood and genre. Then, a second step
would be to exploit this information for mood classification.
This Chapter is divided into four main parts. We first explore the relation
between genre annotations and our mood models, using reliable genre anno-
tations (Section 6.2). After demonstrating a significant correlation between
genre and mood, we design a Genre-based Mood Classifier and compare its
accuracy to our previous results (Section 6.3). Then, we analyze mood classi-
fiers to extract rules and to interpret their behavior (Section 6.4). Finally, in
Section 6.5, we detail our related submission to MIREX 2010, which exploited
the idea being discussed here and the results obtained.

6.2. Experiment 5: Association Mood / Genre

6.2.1. Objectives

In this experiment, we want to study the relationship between mood and genre.
Hu & Downie (2007) explored these relationships based on datasets from All-
MusicGuide1 (AMG) and showed some association between mood and genre.
In Table 6.1, we summarize the associations found in this study. Our first ob-
servation from this table is the rich set of mood adjectives employed, which is
hard to compare with our models based on basic emotions (happy, sad, angry,
relaxed). Our objective is to analyze the relationship between mood and genre
by selecting a reliable genre dataset that we will then classify with our mood
models. We will analyze the correlation between our mood classifications and
a reliable genre annotation.

1http://www.allmusicguide.com. AllMusicGuide is a reference in music review, it
claims to be "the most comprehensive music reference source on the planet"

http://www.allmusicguide.com
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Genre Moods
RnB sensual
Rap street smart, witty
Jazz fiery

Electronica hypnotic, fun
Blues gritty, rollicking
Vocal sentimental

Country sentimental
Gospel spiritual, joyous
Comedy silly
Folk earnest, wistful
Latin spicy, rousing
World hypnotic, confident
Reggae outraged, druggy

Soundtrack atmospheric, theatrical
Easy listening soothing, fun

Table 6.1: Summary of the significant genre-mood pairs found in the AMG dataset.
Adapted from Hu & Downie (2007).

6.2.2. Dataset

The dataset is originally composed of 84677 song excerpts of 30 seconds anno-
tated with genre. The reference for the genre annotation is the iTunes music
store2. This dataset was chosen for two main reasons: i) because we had enough
audio data to make an experiment at a large scale, ii) the genre annotation is
made by professional of the music business (probably not musicologists, but we
believe they take care about a useful categorization for their sells). The com-
plete list of genre includes: ’Rock’, ’Jazz’, ’RnB/Soul’, ’Alternative’, ’Pop’,
’Country’, ’Blues’, ’Vocal’, ’Reggae’, ’Latin’, ’Hip Hop/Rap’, ’Folk’, ’Elec-
tronic’, ’Classical’, ’Soundtrack’, ’Holiday’, ’Dance’, ’World’, ’Inspirational’,
’Disney’, ’Children’s Music’, ’New Age’, ’Opera’, and ’Spoken Word’. How-
ever, in this long list, some labels appear in a very few cases only. To obtain
more reliable results, and to avoid genres not used in enough cases, we decided
to keep only the genres appearing in at least 1% of the songs (meaning at least
in more than 900 songs). Our final dataset is composed of 81749 songs excerpts
divided in 15 genres shown in Table 6.2. From table, we see that 34.49% is
Rock, which is a standard issue in genre labeling, this genre category having
very debatable limits (see Guaus (2009)).

2http://www.apple.com/itunes/
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Genre Songs Percentage
Rock 28196 34.49%
Jazz 11986 14.66%

RnB/Soul 6663 8.15%
Alternative 5516 6.75%

Pop 5409 6.62%
Country 5171 6.33%
Blues 4526 5.54%
Vocal 3495 4.28%
Reggae 2293 2.80%
Latin 2022 2.47%

Hip Hop/Rap 1623 1.99%
Folk 1543 1.89%

Electronic 1443 1.77%
Classical 950 1.16%

Soundtrack 913 1.12%

Table 6.2: Distribution of genres in our dataset.

6.2.3. Method

To study the relationship between mood and genre, we apply our mood models
to classify the songs from this genre dataset. For each mood, we use the best
classifier obtained in Section 4.4.2 (i.e. Support Vector Machines with the
best parameters for each category). At the end of the process, each song has
an annotated genre and a set of mood classes. For each genre, we want to
observe if each predicted mood occurs significantly more or less than in other
genres, looking for some relevant relationships. To test for significance, we
chose the Fisher’s Exact Test (FET) like in Hu & Downie (2007). FET is a test
used to examine the statistical significance of association/dependency between
two variables and can work with small sample size and with unbalanced data
(Fisher (1922)). This test is useful to verify if two classifications are associated.
In our case, we want to verify if a genre is more significantly of a certain
mood than the other genres. For instance, if we take the genre rock and the
mood angry, we want to test if rock is "angrier" than other genre categories.
Considering the 2x2 contingency table shown in Table 6.3:
Fisher demonstrated that the probability p of obtaining these values is:

p =
(a+ b)!(c+ d)!(a+ c)!(b+ d)!

a!b!c!d!n!
(6.1)

If the p-value p is lower than 0.05 (p < 0.05), it means that the hypothesis "rock
and angry are independent" is less than 5% likely. We use this threshold to
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Rock Others Total
Angry a b a+b

Not Angry c d c+d
Total a + c b + d n

Table 6.3: 2x2 contingency table for the genre rock and the mood angry.

consider a statistical significance. Consequently in this example, if p < 0.05,
rock and angry have a high probability of being related, we would consider
them significantly correlated. To quantify better how strong this association
is, we choose to apply another measure of the distribution divergence. The
odds ratio describes the strength of the association between two data values.
The closer it is to one, the more independent are the values (see Cornfield
(1951)). In our case, if we want to calculate it on Table 6.3, we would have
the following value:

oddsratio =
a
c
b
d

(6.2)

{
ifoddsratio ≥ 1 signedoddsratio = oddsratio
ifoddsratio < 1 signedoddsratio = −1

oddsratio

(6.3)

6.2.4. Results

In Table 6.4, for each genre we show if each mood is significantly more rep-
resentative with "+" and with "-" if the complementary (the "not" category)
is significantly more representative. For instance rock songs are significantly
more angry significantly less "sad" than the rest of songs. If the result is not
statistically significant (p >= 0.05), it is shown by a 0.
One of the first comments we can make looking at the result is the strong
association between genre and mood. Almost all genres are significantly cor-
related with mood categories (either positively of negatively). Moreover most
of the associations seem intuive. For instance rock is mostly angry and happy,
blues is sad and relaxed, pop and reggae are mainly happy. The only genre
that have one mood category uninformative is latin which is not significantly
more sad or not sad than the rest of the dataset. Also, some particular cases
are interesting. Rap for instance, is mostly angry, not sad, not relaxed and
not happy. Moreover country music, like blues or jazz is not angry, sad and
relaxed but, on the other hand, it also has a particularity with a significant
component of happiness. In a nutshell, we note here a clear association between
mood and genre, with quite intuitive and logical results. However, we would
like to study this phenomenon in more details with a quantitative measure.
In Tables 6.5, 6.6 and 6.7, for each genre we show the signed odds ratio for
each mood category. These plots can be understood as mood profiles for each
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Genre Angry Sad Relaxed Happy
Rock + - - +

Alternative + - - +
Rap + - - -

Electronic + - - -
Blues - + + -
Folk - + + -
Jazz - + + -

Classical - + + -
Soundtrack - + + -

Vocal - + + -
Country - + + +
Reggae - - - +
Pop - - - +

RBSoul - - - +
Latin - 0 - +

Table 6.4: Significant mood for each genre.

genre. In fact, the greater the value of the odds ratio, the more correlated the
moods with the genre. If the odds ratio is negative, the mood that is mostly
associated is the "not" category. For instance, rap is the most "not relaxing"
genre. The "happiest" are pop, reggae and country, while the saddest is def-
initely classical. "Angriest" genres are rock and alternative, genre categories
where most probably we can find metal or hard rock styles that do not have
a representative category in this taxonomy (see Section 6.4 for more insights).
The most neutral genre in mood are soundtrack and pop. The former is most
probably a mix of very different genres but used in a movie context. The same
conclusion for the latter, which is also quite logical, pop music having a very
vague meaning can represent very different music and, as it seems, all kind of
moods. An analysis would not be fair without pointing out counter-intuitive
results such as for reggae, observed mostly not relaxed. Again, this is relative,
so this means to the whole music database is seen by the mood classifier as
more relaxed than the particular case of reggae. This quite evident relation
between genre and mood is motivating the next part, in which we will use
genre to make a better mood classifier than the previous model (using mostly
low-level features) detailed in Chapter 4.
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Table 6.5: Signed odds ratio of mood categories for rock, alternative, rap, electronic
and blues.
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Table 6.6: Signed odds ratio of mood categories for folk, jazz, classical, soundtrack
and vocal
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Table 6.7: Signed odds ratio of mood categories for each country, reggae, pop,
RnB/Soul,latin
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6.3. Experiment 6: Genre-based Mood Classifier
(GMC)

6.3.1. Objectives

In the previous Section, we have shown that there is a significant association
between mood and genre. Our hypothesis is that genre information would be
very useful to classify music by mood. The objective of this experiment is to
verify this hypothesis, defining a method to exploit genre information and to
obtain better classification results than with the standard method (described
in Chapter 4).

6.3.2. Method

Based on the evidence that genre and mood are related (see results in 6.2),
we propose a Genre-based Mood Classifier (GMC). The main objective is to
exploit genre information for classification. Keeping the objective of using
audio data only, we need to produce genre information from the data itself.
Consequently, we aim at extracting genre probabilities from the audio data
using genre classification methods (see Guaus (2009) for more details). A
schema of the GMC is shown in Figure 6.1.

Low-level Feature 
Extraction

Genre Prediction 
(Pre-trained SVM 

Models)

Mood Prediction
(SVM Trained on

Low-level 
features)

Mood Prediction
(SVM Trained on
Genre features)

Audio File Decision Function
Mood classification

Mood probabilities

Figure 6.1: Schema of the Genre-based Mood Classifier (GMC)

The principle is to base the classification on two models: a standard model
based on "low-level" features and a genre model based on genre features. Both
models give a prediction in terms of probability that a decision function merges
into one. Note that the upper branch follows the method from Chapter 4
that will serve as a baseline to compare with. Lin et al. (2009) proposed
a comparable approach but only taking into account the genre predictions
to build the mood classifiers. It is encouraging that this strategy already
led to better results. In our method, we also consider, as important, other
information from the audio descriptors not encoded by genre classifiers. For
this experiment, we use our same mood dataset as described in Chapter 4, but
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before evaluating our approach we will specify the new blocks: genre prediction
with the genre descriptors and the decision function.

Genre prediction

In the next paragraphs, we detail the genre datasets that we used to train our
genre classifiers.

Tzanetakis: This dataset was created by Tzanetakis & Cook (2002). It
contains 1000 audio excerpts of 30 seconds distributed in 10 musical genres
(blues, classical, country, disco, hip-hop, jazz, metal, pop, reggae, rock). This
dataset has been used by many authors (Li & Ogihara (2005),Holzapfel &
Stylianou (2007)).

Dortmund: We call "Dortmund" a dataset based on Garageband 3. Garage-
band is an online community that allows to download free music from artists
that upload their work to the platform. Users download music, rate it and write
comments to the artists. Students manually classified part of the music avail-
able (1886 songs) into 9 musical genres (alternative, electronic, funk/soul/rnb,
pop, rock, blues, folk/country, jazz, rap/hiphop) and computed descriptors to
perform audio classification experiments (Homburg et al. (2005); Mierswa &
Morik (2005)). Information on the detailed dataset is available online4.

Electronica: The Electronica dataset is based on a work by Sesmero (2008).
It is specific to eletronic music and aims a classifying its sub-genres. Never-
theless, this type of music has very eclectic styles and this can help at a more
general level. It consist of 250 audio files distributed in 5 genres: ambient,
drum and bass, house, techno and trance.

Rosamerica: This dataset was created internally at the Music Technology
Group by a musicologist (see Guaus (2009) for more details) and is made of
400 audio songs for 8 genres: classical, dance, hiphop, jazz, pop, rhythm and
blues, rock, and speech (which is more a type of audio than a musical genre).

For each collection, we build the best SVM classifier using the same approach as
described in Chapter 4 for the mood classifiers. In Table 6.8, we summarize the
databases used to train SVM models and show the accuracy of the best models,
obtained using cross-validation. Even if, compared to the mood accuracies,
they seem quite lower, this is not really the case, as these genres are considered
as mutually exclusive. For instance, this means that the baseline of a random

3http://garageband.com
4http://www-ai.cs.uni-dortmund.de/audio.html
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classifier for the Tzanetakis collection is around 10%. In that context, 77.74%
is a satisfying result.

Genre DB Categories Accuracy
Genre (Tzanetakis) blues, classical, country, disco, hip-hop 77.74%

jazz, metal, pop, reggae, rock
Genre (Dortmund) alternative, electronic, funk/soul/rnb, pop 60.29%

rock, blues, folk/country, jazz, rap/hiphop
Genre (Electronica) ambient, drum and bass, house 89.33%

techno, trance
Genre (Rosamerica) classical, dance, hiphop, jazz, pop, 88.22%

rhythm and blues, rock, speech

Table 6.8: Genre ground-truth collections used to train our genre classifiers and the
accuracy, in percentage, of the genre model we trained for each.

Genre descriptors

We call collection-based genre descriptors each prediction probability for each
genre category. For instance, given a song, its probability to be blues given by
the Tzanetakis-based genre model is one descriptor (between 0 and 1). Thus,
from these collections of genre ground truths, we obtain 32 classifiers and
consequently a set of 32 descriptors. Here is an example of a genre descriptor
vector for a given song:
Please note that we extract the genre descriptors for new songs applying the
pre-computed SVM models on the whole audio files (in our case 30s excerpts).

Decision function

To merge the decision between the two models (low-level model and genre-
based model), we applied a simple multi-criteria analysis method: the weighted
sum model. This model makes sense in our case because our data (output
probabilities of two classifiers) are comparable (same unit and same range).
The general model of the weighted-sum method is defined as follows:

score =
n∑
j=1

wjaj (6.4)

where wj is a weight coefficient and aj a value, in our case a classifier proba-
bility. In our particular case of two elements it becomes:

score = wgenrePgenre + wstdPstd (6.5)
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Table 6.9: Example for a collection-based genre descriptors vector.

where wgenre is the weight applied to the genre-based model output probabil-
ity and wstd the same for the standard model. Note that for normalization
purposes and to have score in the same range as a probability value (between
0 and 1), we have wgenre = 1− wstd, obtaining:

score = wgenrePgenre + (1− wgenre)Pstd (6.6)

Other decision functions could have been considered but would have needed
parameter tuning. Indeed, we were afraid of adding here a possibility of overfit-
ting disguised as another parameter optimization. For this reason, we applied
this simple model and a balanced weight value wgenre = 1

2 .

6.3.3. Results

In Table 6.10, we show the results of the 10 run of 10-fold cross validation
evaluation made with our GMC model and compared with:

STD: The standard model from Chapter 4, "bag-of-feature" approach
with the best SVM classifier. This is the upper branch of our GMC
model. It is also equivalent to the GMC model using wgenre = 0 in the
decision function.
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GOM: Genre-only model, classifying also with a SVM but only using
genre descriptors. This is the lower branch of our GMC model. It is also
equivalent to the GMC model with wgenre = 1.

GMIX: instead of separating especially genre and other features, we
"mix" the genre features adding them to the "bag-of-feature" from the
STD model.

Category STD GOM GMIX GMC
Angry 98.17% 97.18% 97.51% 99.12%*
Relaxed 91.43% 87.02% 89.21% 93.54%*
Happy 84.57% 80.43% 85.32% 88.51%*
Sad 87.66% 82.21% 87.73% 91.30%*

Table 6.10: Accuracies of 10 runs of 10-fold cross validation for the different meth-
ods: standard (STD), genre-only (GOM), genre descriptors mixed with other features
(GMIX) and our genre model (GMC).’*’ means that the increase in accuracy compared
to the other results is statistically significant.

We note that the GMC method gives the best results and that the accuracies
obtained are statistically significantly greater than the standard models (at
p < 0.05). This is also the case comparing with the model mixing all features
including the genre descriptors. These results were obtained using a decision
function for the GMC model with wgenre = 1

2 , but trying other values for this
weight did not lead to significant changes (no significant higher values than
the accuracies in Table 6.10). This confirms that genre information, even if
extracted automatically (and thus not perfect) is a very valuable information
for mood classification. Conceptually, this is also an interesting result, because
the genre features are computed from the same low-level features. However, as
they contain an expert knowledge, this step adds information related to human
categorization. This is quite encouraging and we can make the hypothesis that
the more high level feature swe add, the better we will be able to automatically
classify music in general, and by mood in particular, supposing these high level
features are related to mood.

6.4. Experiment 7: Making sense of the classifiers:
Rules extraction

6.4.1. Objective

In this experiment, we want to understand our classification models better.
SVMs are quite complex to interpret, however we are interested in under-
standing their behavior. In particular, we want to grasp the reasons why our
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models would consider one song to belong to a certain mood or not. Using
our genre-based model, we want to extract rules from low level audio features
and genre descriptors. This would help the comprehensibility of the SVM
classification criteria and could give some insights about specificities of mood
classification.

6.4.2. Method

For this experiment, we will perform rule extraction to understand the clas-
sification made by the support vector machine models (employed previously
mainly as a black-box). Rule extraction from Artificial Neural Networks (ANNs)
has been investigated in many studies (see Huysmans et al. (2006) for a full
overview). The common techniques use the trained models as an oracle to
classify new training examples that are later used by a symbolic learning algo-
rithm. The main idea behind this technique is the assumption that the trained
model can better represent the data than the original dataset (Martens et al.
(2009)). Consequently, instead of using our ground truth, we will use the pre-
dictions made from our models on our dataset. Once the prediction on our
data is performed, we will apply a tree induction technique (C4.5) to extract
rules. C4.5 induces decision trees in a top-down approach, based on informa-
tion theoretic concepts. We can summarize our rule extraction technique as
follows:

SVM Rule Extraction Algorithm:

1 - Tune SVM with a grid search using cross-validation

2 - Train SVM with the best parameters on all the data

3 - Change class label of the training data to the SVM predicted class

4 - Tune a C4.5 decision tree varying the M parameter (minimum number
of instances per leaf) using cross-validation

5 - Train a C4.5 decision tree with the best parameter M on all the data

The rules extracted from the SVMs are then summarized in the trees produced
in the last step of the algorithm (step 5). The accuracy obtained in step 4,
tells us how well the tree represents the SVM.

6.4.3. Results

We applied our SVM Rule Extraction Algorithm for each of our mood category.
In the following figures (from 6.2 to 6.5 for low-level descriptors-based models
and from 6.6 to 6.7 for genre models), we show the trees induced by the C4.5
algorithm for each mood. M is the parameter of the decision tree algorithm,
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used to defined the minimum number of instances per leaf. The accuracy is
the accuracy of the decision tree (using the same M parameter), on the data
labeled by the SVMs, in a 10-folds cross validation manner.

Rules extracted from Audio-based Classifiers

In this part, we only consider audio descriptors. We predict the mood with
our trained genre-based SVM model (the one performing better for each class).
For each mood we apply a decision tree algorithm to observe the underlying
rules that could make sense. Obviously, these results are a simplification of the
problem, but they help to understand better the way our classifier behaves.
We can deduce from these results similar conclusions about the correlations
between audio descriptors and mood categories than in Chapter 4 (Section 4.3).
For instance the angry predictions of our SVM classifier are described with
95.49% accuracy by a tree shown in Figure 6.2. It confirms the importance of
descriptors such as dissonance and spectral complexity (if a music is dissonant
or spectrally complex, it is mostly considered as angry). For relaxed, we also
observe the same similarities. It needs a low spectral flux or dissonance mean to
be classified as relaxed. Sad can also be expressed at a high percentage (88.76%)
with a few descriptors. But, in that case, it includes not only spectral features
but also the onset rate: sad is slower (or with less events per seconds) than not
sad. Happy is more complex to model with an accuracy of this tree of 78.95%.
However it is interesting to note that in order to be happy, a music should have
a high spectral centroid, low dissonance, major key and high spectral changes
(spectral flux). Having explained in Chapter 2 and 4 the details of these audio
descriptors, the extracted rules seem quite reasonable and logical.

Figure 6.2: Audio descriptors rules extracted for the angry category
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Figure 6.3: Audio descriptors rules extracted for the relaxed category

Figure 6.4: Audio descriptors rules extracted for the happy category
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Figure 6.5: Audio descriptors rules extracted for the sad category
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Rules extracted from Genre-only Classifiers

In this part, we only use genre descriptors that are prediction probabilities
made with pre-trained SVM models. The goal is to express mood only in
terms of genre and to have results that can be easily interpreted in that context.
Please note that, in this case, we are inverting the logical order of causality
(genres are probably not used to cause moods). The results are shown in the
following figures and confirm previous observations about association between
moods and genres. One striking example is the angry category, we observe
that it is very much related to the genres rock and metal. With only one of
these genres we cover 95.49% of the Support Vector Machine model results.
Another simple result (more surprising) is what we observe for sad. It is very
much related to the electronic music genre descriptors called ambient. This
descriptor alone explains 92.70% of the SVM predictions. We could explain
this because most of the not sad cannot be classified as ambient, but most
of the sad music can. We also observe the strong relation between jazz and
sad. The relaxed category is a bit more complex. In order to be relaxed, a
music has to be mostly jazz or neither metal nor dance. Finally happy is again
the most difficult to represent, with a tree only explaining 77.23% of the SVM
predictions. However it is still interesting to see that, in order to be happy, a
music should not be jazz, electronic nor metal.

Figure 6.6: Genre descriptors rules extracted for the angry category
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Figure 6.7: Genre descriptors rules extracted for the sad category

Figure 6.8: Genre descriptors rules extracted for the relaxed category
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Figure 6.9: Genre descriptors rules extracted for the happy category
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6.5. Evaluation: MIREX 2010

In 2010, the MIREX team ran the same evaluation for audio mood classifica-
tion described in Chapter 4 (Section 4.6). We detail here the algorithms we
submitted, one of them based on the findings previously presented.

Features

We divide our features in two main categories. The "base" or low-level features
which are state-of-the-art MIR features (see MIREX 2009 in Section4.6 of
Chapter 4 for the detailed "base" features) and the "high-level" features that
we detail in the next paragraph. These high-level features are divided into
3 groups: genres, moods and other high level descriptors (such as gender,
acoustic, perceptual speed etc...).

High-Level features: one of the originality of our approach is the integra-
tion of high-level (or semantic) descriptors. High-level concepts encapsulate
different pattern of low-level descriptors into a compact representation that
can add useful information. Based on this idea, we added high level features
of different categories. This approach is similar to the one explained previ-
ously with genres as high-level descriptors. We added here more descriptors
using trained classifiers on other categorizations. Indeed, these models are pre-
trained algorithms using Support Vector Machines that are added to the "bag
of features". They are trained on curated ground truth databases (detailed
in Bogdanov et al. (2011)). We consider them as other features with value
between 0 and 1 corresponding to the SVM model prediction probability. In
Table 6.11 we list the different models used. The first mood collection (Mood 5
classes) is a dataset we built on the same model as the MIREX collection (using
the same taxonomy). The other mood collections are the ones we described in
this thesis with: angry, relaxed, happy and sad. The genre datasets are those
that we presented in Section 6.3.25, except Genre (5) which is a collection of
ballroom styles. The rest of the ground-truth comes from collections developed
internally. More information about the culture descriptor can be found in the
related work by Gómez (2008).

Classification

For classification, we used different Support Vectors Machine classifiers for four
descriptors sets: moods, genre, low-level, high-level. In a similar fashion that
for our Genre-based Mood Classifier (GMC), we used a decision function with
a weighted-sum approach like the one presented in Section 6.3.2. At the end
we have implemented three configurations, MTG-Mood, MTG-Genre MTG-

5 (1) Tzanetakis, (2) Dortmund, (3) Electronic, (4) Rosamerica.
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Type Classes

Mood (5 classes) 5 classes similar to the mirex clusters Hu & Downie (2007)
Mood (Happy) happy, not happy
Mood (Sad) sad, not sad
Mood (Relaxed) relaxed, not relaxed
Mood (Angry) angry, not angry
Genre (1) blues, classical, country, disco, hiphop, jazz,

metal, pop, reggae, rock
Genre (2) alternative, electronic, funk/soul/rnb, pop, rock,

blues, folk/country, jazz, rap/hiphop
Genre (3) ambient, drum and bass, house, techno, trance
Genre (4) classical, dance, hiphop, jazz, pop,

rhythm and blues, rock, speech
Genre (5) cha cha cha, quickstep, rumba-international,

rumba-american, rumba-misc, tango, waltz,
samba, viennese waltz, jive

High-Level Perceptual Speed fast, medium, slow
High-Level Timbre bright, dark
High-Level Culture western, non western
High-Level Gender male, female
High-Level Acoustic acoustic, not acoustic
High-Level Electronic electronic, not electronic

Table 6.11: High-level features including Mood and Genre. Types and classes of the
SVM models are trained on reference databases (see Bogdanov et al. (2011)).

Mood-Baseline and their respective decision functions, with weights defined
during cross-validation experiments:

scoreMTG−Mood = 0.5Pmood + 0.25Pgenre + 0.125PlowLevel + 0.125PhighLevel
(6.7)

scoreMTG−Genre = 0.143Pmood + 0.57Pgenre + 0.143PlowLevel + 0.143PhighLevel
(6.8)

scoreMTG−Mood−Baseline = Pmood (6.9)

We also submitted another approach (MTG-RCA) using Relevant Component
Analysis (RCA) and a custom distance measure combining a Kullback-Leibler
distance applied to MFCCs and an Euclidean distance on the RCA compo-
nents. The RCA technique was the same submitted to MIREX 2009 and
further explained in section in Chapter 4, Section 4.6.3.
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Results and Discussion

Submission Accuracy

WLJW2 64.17%
SSPK1 63.83%
CH3 63.50%
GP1 63.17%
MTG-Genre 63.00%
MTG-Mood 63.00%
CH1 63.00%
CH2 63.00%
CH4 62.67%
RRS1 61.67%
TS1 61.00%
FE1 60.83%
GR1 60.67%
FCY1 60.17%
FCY2 59.50%
BRPC2 59.00%
BRPC1 58.67%
MTG-Mood-Baseline 57.67%
TN4 57.50%
MTG-RCA 55.55%
TN1 55.55%
RJ1 54.83%
RK1 54.83%
BMPE2 54.67%
HE1 54.17%
MBP1 54.00%
MW1 54.00%
WLJW1 53.83%
JR4 51.17%
JR2 51.17%
RJ2 50.17%
RK2 50.17%
TN2 48.58%
JR3 46.83%
JR1 46.33%
MP2 36.17%

Table 6.12: MIREX 2010: Comparison with other submissions.
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In Table 6.12, we report the results of the evaluation6. Our submission ranks
among the topmost accuracy results, with no statistically significant difference
with the first one and followers. Again in this 2010 evaluation, like in previous
editions, all the submissions with the best accuracy use Support Vector Ma-
chines. A surprising fact is the dramatical drop for our baseline submission
(MTG-Baseline), with classifiers having much lower accuracies than in previ-
ous years. In our different algorithms, we note a slight increase in accuracy
between the algorithm with genre and high-level descriptors compared with our
submissions from 2009, using the same low-level features (62.83% of accuracy).
This difference is rather small but still shows a potentially better classifier. It
is worth noticing the results of the mood-only classifier (MTG-Mood-Baseline).
This classifier, trained only with our mood descriptors, achieved a relatively
high result of 57.67%. This means that these mood descriptors are quite rel-
evant even used in a different context. It is however true that the database
emulating the MIREX classes must have helped to get this result (even if quite
small with only 218 files in total). The distance-based method (MTG-RCA),
using a K-NN classifier, gave worst results that the others. If we look back
at the first edition of this evaluation task, the best results achieved were al-
ready quite comparable to the 2010 best results with 61.5% of accuracy. This
remains to be calculated, but improvements do no seem to be significant and
this "glass-ceiling" may be due, on one hand, to the limitation produced by the
model and the dataset (Hu et al. (2008)) but also on the other hand to a more
general glass-ceiling problem in Music Information Retrieval (Aucouturier &
Pachet (2004)). In a nutshell, we improved our results with a voting approach
on the high-level descriptors such as genre and shown that our mood classifiers
are quite relevant achieving a satisfying accuracy while used alone. In Figure
6.10, we plot the MIREX results we obtained in 2007, 2009 and 2010 together
with the best and worst accuracies, a random baseline and the mean of the
best half submissions.

6see the MIREX website for more details: http://nema.lis.illinois.edu/nema_out/
9b11a5c8-9fcf-4029-95eb-51ed561cfb5f/results/evaluation/summary.html

http://nema.lis.illinois.edu/nema_out/9b11a5c8-9fcf-4029-95eb-51ed561cfb5f/results/evaluation/summary.html
http://nema.lis.illinois.edu/nema_out/9b11a5c8-9fcf-4029-95eb-51ed561cfb5f/results/evaluation/summary.html
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Figure 6.10: Summary of results for the Audio Mood Classification task at MIREX
2007, 2009, 2010. We plot our best results together with the lowest and highest
accuracies, the random baseline and the mean of the best first half accuracies.
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6.6. Conclusion

To the best of our knowledge, no previous work have studied the correlation
and usefulness of genre information to classify music by mood as deeply as
this work. In this Chapter, we demonstrated a clear relation between mood
and genre and shown that genre helps to better classify music by mood. We
proposed a method that achieved statically significantly better results. This
also has been validated by high accuracy results in the MIREX mood evalu-
ation. We also proved in 2010 MIREX evaluation that using only our mood
models, we can achieve good results on a another database with a different
taxonomy and mood representation. We can make the hypothesis that the
better genre classification, the better results we can get. However, we believe
we are reaching the limit of the approach we took by choosing a basic emotion
type of representation and a generic ground truth. Indeed, the accuracies ob-
tained by our classifier reach very high values meaning that we have succeeded
in modeling simple mood categories, but challenges remain like we will discuss
in the concluding chapter.





CHAPTER 7
Conclusions and suggestions

for further work

"We know too much and feel too little. At least, we feel too little of those
creative emotions from which a good life springs" Bertrand Russell.

7.1. Introduction

When we started this research, only a few preliminary works were available
with no particular evidence that mood classification could work at the level
we reached in this thesis. First, in Chapter 2, we reviewed the literature
about emotions and previous work in music mood classification. In Chapter
3, we studied how people in an online music community tag music by mood,
helping to understand which representation could be used. In Chapter 4, we
demonstrated that we could design algorithms to automatically classify music
by mood from the audio signal, explaining the contribution of individual audio
features. In Chapter 5, we showed more advanced methods using lyrics. In
Chapter 6, we analyzed the relation between mood and genre and proposed a
model reaching higher accuracies with genre information, also automatically
extracted from the audio signal. Finally, can we say that computers could
feel emotions while listening to music? No, but we proved that computers are
starting to recognize emotions in music.

7.2. Summary of contributions

It is, to the best of our knowledge, the first publicly available thesis fo-
cusing on automatic audio music mood classification analyzing the con-
tribution of high-level audio features.

It exposes the complexity of the emotion problem and explains how to
simplify several aspects to make generic music mood classification possi-
ble.

125
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WORK

It analyzes how a large online community uses emotion labels, compares
it with well-known models and, from this results, proposes a useful rep-
resentation.

It shows a new method to create reliable music collections based on both
the wisdom of crowds and experts.

It provides a new method to use lyrics information obtaining higher ac-
curacies and contributing to text retrieval.

It demonstrates the relation between mood and genre and details a new
algorithm using automatic genre descriptions for mood classification.

We should also notice that our approaches, adapted to the MIREX evaluation,
were ranked among the best results. The mood classifiers presented in this
thesis have been implemented in the European project PHAROS and several
demonstration prototypes (see Appendix A). Please also note that our mood
algorithms are part of products commercialized by BMAT1. The outcomes of
the research detailed in this thesis have been published in the form of several
papers in international conferences, journal and a book chapter. We list these
publications in Appendix C.

7.3. Future perspectives

Obviously, we are still far from being able to model all the subtleties of emo-
tions, especially because many aspects are not contained in the audio signal
or in the lyrics. Also, we are conscious about the limitations of our methods
limited to a generic approach, focused on the consensus and biased to a main-
stream type of western music. But to conclude, we want to mention specific
research directions for future works.

Personalized Models. The algorithms we designed are for a general pur-
pose, working with most of people, with the drawback of being sometimes
prototypical. In order to go into more details, we would need to put the user
in the loop. This is the most exciting perspective as a continuation of the
present work. Now that we have a solid basis for a simple emotion taxonomy,
we can start to personalize these models and to adapt them to each user. We
believe that with active learning, we can tune the current mood models to be
more precise or to create new personalized models from scratch. The subjective
part of emotions we tried to avoid with a generic purpose needs to be tackled
in future works.

1Barcelona Music and Audio Technologies. http://www.bmat.com
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More and Better Audio Descriptors. There are many musical cues as-
sociated with emotions that we cannot detect because of a lack of descriptors.
Looking at the literature review in Chapter 2 (Section 2.3.2), we can easily
identify audio features that would help a lot in mood classification: pitch (for
each instrument, or at least the main melody), singer’s formant, intervals or
vibrato to name a few. We hope that results from source separation will enable
to isolate different parts of a track and in particular the main melody and the
singer’s voice. Actually, this would probably be useful for any audio music
classification task. Moreover, there is a need to consider the time variations
of audio features. Descriptors such as the tonal evolution of a musical piece
should be very informative.

Improved Machine Learning Algorithms. Even if very complex and ad-
vanced machine learning algorithms are available, we believe that there will
be some improvements in this domain too. Especially, we expect models as
accurate as Support Vector Machines but that are more flexible to changes in
time, that easily allow active learning and that are not too sensitive to unbal-
anced datasets. Another improvement would be to have learning algorithms
that could easily manage feature vectors time series.

Complex Representations. By complex representations, we mean that
there is a theoretical need to formalize emotion representations in a way that
is more related to human perception. We believe that we are using simplis-
tic representation when considering only a few categories or dimensions. This
also helps to get a consensus. But, more music-specific or even user-specific
representations should be investigated.

Cognitive models. Related to the previous point, we can investigate rep-
resentations that are based in how we perceive emotions. But moreover, the
way we build our current models is not close to the way we listen to, perceive
or categorize music. Using computational models inspired by cognitive studies
could lead to better results.

I hope you enjoyed reading this thesis.





Bibliography

Alm, C. O., Roth, D., & Sproat, R. (2005). Emotions from Text: Machine
Learning for Text-based Emotion Prediction. In Proceedings of Human
Language Technology Conference and Conference on Empirical Methods in
Natural Language Processing, pp. 579–586. Vancouver, British Columbia,
Canada: Association for Computational Linguistics.

Aucouturier, J. J. & Pachet (2004). Improving Timbre Similarity: How high
is the sky? Journal of Negative Results in Speech and Audio Sciences, 1 (1).

Baesens, B., Van Gestel, T., Viaene, S., Stepanova, M., Suykens, J., & Van-
thienen, J. (2003). Benchmarking State-of-the-Art Classification Algorithms
for Credit Scoring. The Journal of the Operational Research Society, 54 (6),
627–635.

Besson, M., Faita, F., Peretz, I., Bonnel, A. M., & Requin, J. (1998). Singing
in the Brain: Independence of Lyrics and Tunes. Psychological Science, 9 (6),
494–498.

Bigand, E., Vieillard, S., Madurell, F., Marozeau, J., & Dacquet, A. (2005).
Multidimensional scaling of emotional responses to music: The effect of
musical expertise and of the duration of the excerpts. Cognition & Emotion,
19 (8), 1113–1139.

Bischoff, K., Firan, C., Paiu, R., Nejdl, W., Laurier, C., & Sordo, M. (2009).
Music Mood and Theme Classification a Hybrid Approach. In Conference of
the International Society for Music Information Retrieval (ISMIR). Kobe,
Japan.

Blood, A. J. & Zatorre, R. J. (2001). Intensely pleasurable responses to music
correlate with activity in brain regions implicated in reward and emotion.
Proceedings of the National Academy of Sciences, 98 (20), 11818–11823.

Bogdanov, D., Serra, J., Wack, N., Herrera, P., & Serra, X. (2011). Unifying
Low-Level and High-Level Music Similarity Measures. Multimedia, IEEE
Transactions on, 13 (4), 687–701.

Boser, B. E., Guyon, I. M., & Vapnik, V. N. (1992). A training algorithm
for optimal margin classifiers. In COLT ’92: Proceedings of the fifth annual
workshop on Computational learning theory, pp. 144–152. New York, NY,
USA: ACM.

Breiman, L. (2001). Random Forest. Machine Learning, 45, 5–32.

129



130 BIBLIOGRAPHY

Chang, C.-c. & Lin, C.-J. (2001). LIBSVM: a Library for Support Vector
Machines. Software available at http://www.csie.ntu.edu.tw/˜cjlin/libsvm.

Cho, Y. H. & Lee, K. J. (2006). Automatic Affect Recognition Using Natural
Language Processing Techniques and Manually Built Affect Lexicon. IEICE
- Trans. Inf. Syst., E89-D(12), 2964–2971.

Cornfield, J. (1951). A method of estimating comparative rates from clinical
data; applications to cancer of the lung, breast, and cervix. Journal of the
National Cancer Institute, 11 (6), 1269–1275.

Dalla Bella, S., Peretz, I., Rousseau, L., & Gosselin, N. (2001). A develop-
mental study of the affective value of tempo and mode in music. Cognition,
80 (3), 1–10.

Damasio, A. (1994). Descartes’ Error: Emotion, Reason, and the Human
Brain. New York: Harper Perennial.

Davidson, R. J. (2001). On Emotion, mood, and related affective constructs.
Oxford University Press.

Davies, S. (2001). Philosophical perspectives on music’s expressiveness. Oxford
University Press.

Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K., & Harshman,
R. (1990). Indexing by Latent Semantic Analysis. Journal of the American
Society for Information Science, 41, 391–407.

Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum Likelihood
from Incomplete Data via the EM Algorithm. Journal of the Royal Statistical
Society. Series B (Methodological), 39 (1), 1–38.

Duda, R. O. & Hart, P. E. (1973). Pattern Classification and Scene Analysis.
John Wiley & Sons Inc.

Dunker, P., Nowak, S., Begau, A., & Lanz, C. (2008). Content-based mood
classification for photos and music: a generic multi-modal classification
framework and evaluation approach. In Proceeding of the 1st ACM interna-
tional conference on Multimedia information retrieval, MIR ’08, pp. 97–104.
New York, NY, USA: ACM.

Eerola, T., Lartillot, O., & Toiviainen, P. (2009). Prediction of Multidimen-
sional Emotional Ratings in Music from Audio using Multivariate Regression
Models. In Proceedings of ISMIR 2009, pp. 621–626.

Eerola, T. & Vuoskoski, J. K. (2011). A comparison of the discrete and dimen-
sional models of emotion in music. Psychology of Music, 39 (1), 18–49.



BIBLIOGRAPHY 131

Ekman, P. (1992). An argument for basic emotions. Cognition & Emotion,
6 (3), 169–200.

Farbood, M. M. (2006). A quantitative, parametric model of musical tension.
Ph.D. thesis, MIT Media Lab.

Farnsworth, P. R. (1954). A study of the Hevner adjective list. The Journal
of Aesthetics and Art Criticism, 13 (1), 97–103.

Fehr, B. & Russell, J. A. (1984). Concept of emotion viewed from a prototype
perspective. Journal of Experimental Psychology: General, 113 (3), 464–486.

Fisher, R. A. (1922). On the Interpretation of X2 from Contingency Tables,
and the Calculation of P. Journal of the Royal Statistical Society, 85 (1),
87–94.

Fix, E. & Hodges, J. L. (1951). Discriminatory analysis, nonparametric
discrimination: Consistency properties. US Air Force School of Aviation
Medicine, Technical Report 4.

Frijda, N. H. (1986). The emotions. Cambridge University Press ; Editions de
la Maison des Sciences de l’homme.

Fritz, T., Jentschke, S., Gosselin, N., Sammler, D., Peretz, I., Turner, R.,
Friederici, A. D., & Koelsch, S. (2009). Universal recognition of three basic
emotions in music. Current biology : CB, 19 (7), 573–576.

Gabrielsson, A. (2001). Emotions in strong experiences with music, pp. 431–
449. Oxford University Press.

Gómez, E. (2006). Tonal description of music audio signals. Ph.D. thesis,
Universitat Pompeu Fabra.

Gómez, E. (2008). Comparative Analysis of Music Recordings from Western
and Non-Western traditions by Automatic Tonal Feature Extraction.

Gosselin, N., Peretz, I., Noulhiane, M., Hasboun, D., Beckett, C., Baulac,
M., & Samson, S. (2005). Impaired recognition of scary music following
unilateral temporal lobe excision. Brain, 128 (3), 628–640.

Gouyon, F. (2003). Towards Automatic Rhythm Description of Musical Audio
Signals. Representations, Computational Models and Applications.

Gouyon, F., Herrera, P., Gómez, E., Cano, P., Bonada, J., Loscos, A., Ama-
triain, X., & Serra, X. (2008). Content Processing of Music Audio Signals,
chap. 3, pp. 83–160. Berlin: Logos Verlag Berlin GmbH.



132 BIBLIOGRAPHY

Grewe, O., Nagel, F., Kopiez, R., & Altenmüller, E. (2007). Emotions over
time: Synchronicity and development of subjective, physiological, and facial
affective reactions to music. Emotion, 7 (4), 774–788.

Guaus, E. (2009). Audio content processing for automatic music genre clas-
sification: descriptors, databases, and classifiers. Ph.D. thesis, Universitat
Pompeu Fabra.

He, H., Jin, J., Xiong, Y., Chen, B., Sun, W., & Zhao, L. (2008). Language
Feature Mining for Music Emotion Classification via Supervised Learning
from Lyrics. In Proceedings of the 3rd International Symposium on Advances
in Computation and Intelligence, ISICA ’08, pp. 426–435. Berlin, Heidelberg:
Springer-Verlag.

Herrera, P., Bello, J., Widmer, G., Sandler, M., Celma, O., Vignoli, F., Pam-
palk, E., Cano, P., Pauws, S., & Serra, X. (2005). SIMAC: Semantic interac-
tion with music audio contents. In Proceegins of the 2nd European Workshop
on the Integration of Knowledge, Semantics and Digital Media Technologies,
pp. 399–406. London, UK.

Hevner, K. (1936). Experimental studies of the elements of expression im
music. The American Journal of Psychology, 48 (2), 246–268.

Holzapfel, A. & Stylianou, Y. (2007). A Statistical Approach to Musical Genre
Classification using Non-Negative Matrix Factorization. pp. II–693–II–696.

Homburg, H., Mierswa, I., Morik, K., Möller, B., & Wurst, M. (2005). A
Benchmark Dataset for Audio Classification and Clustering. In Proc. ISMIR,
pp. 528–531.

Hosoya, T., Suzuki, M., Ito, A., Makino, S., Smith, L. A., Bainbridge, D.,
& Witten, I. H. (2005). Lyrics Recognition from a Singing Voice Based on
Finite State Automaton for Music Information Retrieval. In in Proc. ISMIR,
2005, pp. 532–535.

Hsu, C.-W., Chang, C.-C., & Lin, C.-J. (2003). A Practical Guide to Support
Vector Classification. Tech. rep., Department of Computer Science, National
Taiwan University.

Hu, X. & Downie, J. (2007). Exploring mood metadata: Relationships with
genre, artist and usage metadata. In Proceedings of the 8th International
Conference on Music Information Retrieval, pp. 23–27.

Hu, X. & Downie, J. S. (2010a). Improving mood classification in music digital
libraries by combining lyrics and audio. In Proceedings of the 10th annual
joint conference on Digital libraries, JCDL ’10, pp. 159–168. New York, NY,
USA: ACM.



BIBLIOGRAPHY 133

Hu, X., Downie, J. S., & Ehmann, A. F. (2009a). Lyric Text Mining in Music
Mood Classification. In 10th International Society for Music Information
Retrieval Conference (ISMIR 2009), pp. 411–416.

Hu, X. & Downie, S. (2010b). When lyrics outperform audio for music mood
classification: A feature analysis. In Proceedings of the11th International
Society for Music Information Retrieval Conference (ISMIR 2010).

Hu, X., Downie, S. J., Laurier, C., Bay, M., & Ehmann, A. F. (2008). The 2007
MIREX audio mood classification task: Lessons learned. In Proceedings of
the 9th International Conference on Music Information Retrieval, pp. 462–
467. Philadelphia, PA, USA.

Hu, Y., Chen, X., & Yang, D. (2009b). Lyric-Based Song Emotion Detection
with Affective Lexicon and Fuzzy Clustering Method. In Proceedings of the
9th International Conference on Music Information Retrieval (ISMIR 2009).

Huron, D. (2006). Sweet Anticipation: Music and the Psychology of Expecta-
tion. Cambridge: The MIT Press, 1 edn.

Huysmans, J., Baesens, B., & Vanthienen, J. (2006). Using Rule Extraction
to Improve the Comprehensibility of Predictive Models .

Izmirli, O. (1999). Using Spectral Flatness Based Feature for Audio Segmen-
tation and Retrieval. Tech. rep., Department of Mathematics and Computer
Science, Connectucut College.

Johnston, J. D. (1998). Transform coding of audio signals using perceptual
noise criteria. IEEE Journal on Selected Areas in Communications, 6 (2),
314–323.

Juslin, P. N. & Laukka, P. (2004). Expression, Perception, and Induction
of Musical Emotions: A Review and a Questionnaire Study of Everyday
Listening. Journal of New Music Research, 33 (3), 217–238.

Juslin, P. N. & Sloboda, J. A. (2001). Music and Emotion: Theory and Re-
search. Oxford: Oxford University Press.

Juslin, P. N. & Västfjäll, D. (2008). Emotional responses to music: The need
to consider underlying mechanisms. Behavioral and Brain Sciences, 31 (5).

Kedem, B. (1986). Spectral Analysis and Discrimination by Zero-Crossings.
Proc. of the IEEE, 74.

Kim, Y. E., Schmidt, E. M., Migneco, R., Morton, B. G., Richardson, P.,
Scott, J., Speck, J. A., & Urnbull, D. (2010). Music Emotion Recognition:
a State of the Art Review. In J. S. Downie & R. C. Veltkamp (Eds.) 11th
International Society for Music Information and Retrieval Conference.



134 BIBLIOGRAPHY

Kivy, P. (1989). Sound Sentiment: An Essay on the Musical Emotions. Temple
University Press.

Kleinginna, P. R. & Kleinginna, A. M. (1981). A categorized list of motivation
definitions, with a suggestion for a consensual definition. Motivation and
Emotion, 5 (3), 263–291.

Koduri, G. K. & Indurkhya, B. (2010). A behavioral study of emotions in
south indian classical music andits implications in music recommendation
systems. In Proceedings of the 2010 ACM workshop on Social, adaptive and
personalized multimedia interaction and access, SAPMIA ’10, pp. 55–60.
New York, NY, USA: ACM.

Koelsch, S., Fritz, T., Cramon, D. Y. V., Müller, K., & Friederici, A. D. (2006).
Investigating emotion with music: an fMRI study. Human Brain Mapping,
27 (3), 239–250.

Kohonen, T. (1982). Self-organized formation of topologically correct feature
maps. Biological Cybernetics, 43, 59–69.

Krumhansl, C. L. (1996). A perceptual analysis of Mozart’s piano sonata K.
282: Segmentation, tension, and musical ideas. Music Perception, 13, 401–
432.

Krumhansl, C. L. (1997). An exploratory study of musical emotions and psy-
chophysiology. Canadian journal of experimental psychology, 51 (4), 336–353.

Lartillot, O. & Toiviainen, P. (). Mir in matlab (ii): A toolbox for musical
feature extraction from audio.

Laurier, C. & Herrera, P. (2007). Audio music mood classification using sup-
port vector machine. In Proceedings of the 8th International Conference on
Music Information Retrieval. Vienna, Austria.

Laurier, C. & Herrera, P. (2009). Automatic Detection of Emotion in Music:
Interaction with Emotionally Sensitive Machines, chap. 2, pp. 9–32. IGI
Global.

Laurier, C., Meyers, O., Serrà, J., Blech, M., Herrera, P., & Serra, X. (2010).
Indexing Music by Mood: Design and Integration of an Automatic Content-
based Annotator. Multimedia Tools and Applications, 48, 161–184.

Laurier, C., Sordo, M., Bozzon, A., Brambilla, M., & Fraternali, P. (2009a).
Pharos: An Audiovisual Search Platform using Music Information Retrieval
Techniques. In Conference of the International Society for Music Informa-
tion Research (ISMIR), Demo session. Kobe, Japan.



BIBLIOGRAPHY 135

Laurier, C., Sordo, M., & Herrera, P. (2009b). Mood Cloud 2.0: Music Mood
Browsing based on Social Networks. In International Society for Music In-
formation Research Conference (ISMIR). Kobe, Japan.

Laurier, C., Sordo, M., Serrà, J., & Herrera, P. (2009c). Music Mood Repre-
sentations from Social Tags. In International Society for Music Information
Retrieval (ISMIR) Conference, pp. 381–386. Kobe, Japan.

Lazarus, R. S. (1991). Emotion and Adaptation. Oxford: Oxford University
Press.

Le Cessie, S. & Van Houwelingen, J. C. (1992). Ridge Estimators in Logistic
Regression. Applied Statistics, 41 (1), 191–201.

Lerdahl, F. (1996). Calculating Tonal Tension. Music Perception, 13 (3), 319–
364.

Lerdahl, F. & Krumhansl, C. L. (2007). Modeling Tonal Tension. Music
Perception, 24 (4), 329–366.

Levitin, D. J. (2006). This Is Your Brain on Music: The Science of a Human
Obsession. Dutton Adult.

Levy, M. & Sandler, M. (2007). A Semantic Space for Music Derived from
Social Tags. In 8th International Conference on Music Information Retrieval
(ISMIR 2007).

Li, T. & Ogihara, M. (2003). Detecting emotion in music. In Proceedings of the
4th International Conference on Music Information Retrieval, pp. 239–240.
Baltimore, MD, USA.

Li, T. & Ogihara, M. (2005). Music genre classification with taxonomy. pp.
197–200.

Lin, Y.-C., Yang, Y.-H., Chen, H. H., Liao, I.-B., & Ho, Y.-C. (2009). Exploit-
ing genre for music emotion classification. In Multimedia and Expo, 2009.
ICME 2009. IEEE International Conference on, pp. 618–621.

Liu, D., Lu, L., & Zhang, H. J. (2003). Automatic Mood Detection from
Acoustic Music Data.

Logan, B. (2000). Mel Frequency Cepstral Coefficients for Music Modeling.
In Proceeding of the 1st International Symposium on Music Information
Retrieval. Plymouth, MA, USA.

Logan, B., Kositsky, A., & Moreno, P. (2004). Semantic Analysis of Song
Lyrics. In IN PROC IEEE INTL CONF ON MULTIMEDIA AND EXPO,
pp. 827–830.



136 BIBLIOGRAPHY

Lu, L., Liu, D., & Zhang, H.-J. (2006). Automatic mood detection and track-
ing of music audio signals. Audio, Speech, and Language Processing, IEEE
Transactions on, 14 (1), 5–18.

Mahedero, J. P. G., MartÍnez, A., Cano, P., Koppenberger, M., & Gouyon,
F. (2005). Natural language processing of lyrics. In MULTIMEDIA ’05:
Proceedings of the 13th annual ACM international conference on Multimedia,
pp. 475–478. New York, NY, USA: ACM.

Mandel, M., Poliner, G., & Ellis, D. (2006). Support vector machine active
learning for music retrieval. Multimedia Systems, 12 (1), 3–13.

Martens, D., Baesens, B., & Van Gestel, T. (2009). Decompositional Rule
Extraction from Support Vector Machines by Active Learning. Knowledge
and Data Engineering, IEEE Transactions on, 21 (2), 178–191.

Mayer, R., Neumayer, R., & Rauber, A. (2008a). Combination of Audio and
Lyrics Features for Genre Classification in Digital Audio Collections. In
ACM Multimedia.

Mayer, R., Neumayer, R., & Rauber, A. (2008b). Rhyme and style features
for musical genre classification by song lyrics. In Proceedings of the 9th
International Conference on Music Information Retrieval (ISMIR 2008).

Mckay, C. (2010). Automatic Music Classification with jMIR.

Menon, V. & Levitin, D. J. (2005). The rewards of music listening: response
and physiological connectivity of the mesolimbic system. Neuroimage, 28 (1),
175–184.

Mercer, J. (1909). Functions of positive and negative type and their connection
with the theory of integral equations. Philos. Trans. Roy. Soc. London.

Meyer, L. B. (1956). Emotion and Meaning in Music. Chicago: University Of
Chicago Press.

Mierswa, I. & Morik, K. (2005). Automatic Feature Extraction for Classifying
Audio Data. Machine Learning Journal, 58, 127–149.

Mitchell, T. (1997). Machine Learning. The McGraw-Hill Companies, Inc.

Neumayer, R. & Rauber, A. (2007). Integration of text and audio features
for genre classification in music information retrieval. In ECIR’07: Proceed-
ings of the 29th European conference on IR research, pp. 724–727. Berlin,
Heidelberg: Springer-Verlag.

Nichols, E., Morris, D., Basu, S., & Raphael, C. (2009). Relationships between
lyrics and melody in popular music. In Proceedings of ISMIR 2009 10th
International Conference on Music Information Retrieval.



BIBLIOGRAPHY 137

Nussbaum, C. O. (2007). The Musical Representation: Meaning, Ontology,
and Emotion. Cambridge: The MIT Press, 1 edn.

Oatley, K. & Jenkins, J. M. (1996). Understanding emotions. Blackwell Pub-
lishers.

Orio, N. (2006). Music retrieval: a tutorial and review. Found. Trends Inf.
Retr., 1 (1), 1–96.

Pang, B. & Lee, L. (2008). Opinion Mining and Sentiment Analysis. Now
Publishers Inc.

Panksepp, J. & Bernatzky, G. (2002). Emotional sounds and the brain: the
neuro-affective foundations of musical appreciation. Behavioural Processes,
60 (2), 133–155.

Patel, A. D. (2007). Music, Language, and the Brain. Oxford: Oxford Univer-
sity Press, 1 edn.

Peeters, G. (2004). A large set of audio features for sound description (simi-
larity and classification) in the CUIDADO project. Tech. rep., IRCAM.

Peeters, G. (2008). A Generic Training and Classification System for MIREX08
Classification Tasks: Audio Music Mood, Audio Genre, Audio Artist and
Audio Tag.

Peretz, I., Gagnon, L., & Bouchard, B. (1998). Music and emotion: percep-
tual determinants, immediacy, and isolation after brain damage. Cognition,
68 (2), 111–141.

Peretz, I., Gagnon, L., Hébert, S., & MacOir, J. (2004). Singing in the Brain:
Insights from Cognitive Neuropsychology. Music Perception, 21 (3), 373–390.

Pike, A. (1972). A Phenomenological Analysis of Emotional Experience in
Music. Journal of Research in Music Education, 20 (2), 262–267.

Pohle, T., Pampalk, E., & Widmer, G. (2005). Evaluation of Frequently Used
Audio Features for Classification of Music into Perceptual Categories. In
Proceedings of the Fourth International Workshop on Content-Based Multi-
media Indexing (CBMI’05.

Ponte, J. M. & Croft, W. B. (1998). A language modeling approach to informa-
tion retrieval. In Proceedings of the 21st annual international ACM SIGIR
conference on Research and development in information retrieval, SIGIR ’98,
pp. 275–281. New York, NY, USA: ACM.

Quinlan, J. R. (1993). C4.5: programs for machine learning. San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc.



138 BIBLIOGRAPHY

Russell, J. A. (1980). A circumplex model of affect. Journal of Personality
and Social Psychology, 39 (6), 1161–1178.

Sacks, O. & Freeman, A. (1994). An Anthropologist on Mars. Journal of
Consciousness Studies, 1 (2), 234–240.

Salton, G. (1971). The SMART Retrieval System—Experiments in Automatic
Document Processing. Upper Saddle River, NJ, USA: Prentice-Hall, Inc.

Saunders, J. (1996). Real-Time Discrimination of Broadcast Speech/Music.
Proc. ICASSP, pp. 993–996.

Scherer, K. R. (1991). Emotion expression in speech and music, pp. 146–156.
London: MacMillian.

Scherer, K. R. & Zentner, M. R. (2001). Emotional Effects of Music: Produc-
tion Rules, pp. 361–392. Oxford: Oxford University Press.

Schubert, E. (1999). Measurement and Time Series Analysis of Emotion in
Music. Ph.D. thesis, University of New South Wales.

Sesmero, J. (2008). Electronic dance music genre classification.

Sethares, W. A. (1998). Tuning Timbre Spectrum Scale. Springer, 1 edn.

Shi, Y.-Y., Zhu, X., Kim, H.-G., & Eom, K.-W. (2006). A Tempo Feature via
Modulation Spectrum Analysis and its Application to Music Emotion Classi-
fication. In Proceedings of the IEEE International Conference on Multimedia
and Expo, pp. 1085–1088. Toronto, Canada.

Skowronek, J., McKinney, M., & van de Par, S. (2007). A Demonstrator for
Automatic Music Mood Estimation. In Proceedings of the 8th International
Conference on Music Information Retrieval, pp. 345–346. Vienna, Austria.

Sloboda, J. A. (2001). Psychological perspectives on music and emotion,
chap. 4, pp. 71–105. Oxford: Oxford University Press.

Smith, J. O. & Abel, J. S. (1999). Bark and ERB bilinear transforms. Speech
and Audio Processing, IEEE Transactions on, 7 (6), 697–708.

Sordo, M., Celma, O., Blech, M., & Guaus, E. (2008). The Quest for Musical
Genres: Do the Experts and the Wisdom of Crowds Agree? In Proceed-
ings of the 9th International Conference on Music Information Retrieval.
Philadelphia, USA.

Sordo, M., Laurier, C., & Celma, O. (2007). Annotating Music Collections:
How content-based similarity helps to propagate labels. In Proceedings of the
8th International Conference on Music Information Retrieval, pp. 531–534.
Vienna, Austria.



BIBLIOGRAPHY 139

Steinbeis, N., Koelsch, S., & Sloboda, J. A. (2006). The Role of Harmonic Ex-
pectancy Violations in Musical Emotions: Evidence from Subjective, Phys-
iological, and Neural Responses. J. Cogn. Neurosci., 18 (8), 1380–1393.

Thayer, R. E. (1989). The biopsychology of mood and arousal. Oxford: Oxford
University Press.

Thayer, R. E. (1996). The Origin of Everyday Moods: Managing Energy,
Tension, and Stress. Oxford: Oxford University Press.

Toiviainen, P. & Krumhansl, C. L. (2003). Measuring and modeling real-time
responses to music: The dynamics of tonality induction. Perception, 32,
741–766.

Tomkins, S. S. (1980). Affect as amplification: some modifications in theory.
New York: Academic Press.

Trainor, L. J., Tsang, C. D., & Cheung, V. H. W. (2002). Preference for
sensory consonance in 2- and 4-month-old infants. Music Perception, 20 (2),
187–194.

Tzanetakis, G. (2007). Marsyas-0.2: a case study in implementing music infor-
mation retrieval systems. In Intelligent Music Information Systems. Intelli-
gent Music Information Systems.

Tzanetakis, G. & Cook, P. (2002). Musical Genre Classification of Audio
Signals. IEEE Transactions on Speech and Audio Processing, 10 (5).

van Zaanen, M. & Kanters, P. (2010). Automatic mood classification using
tf*idf based on lyrics. In Proceedings of the 11th International Society for
Music Information Retrieval Conference (ISMIR 2010).

Vanden & Hubert, M. (2005). Robust classification in high dimensions based
on the SIMCA method. Chemometrics and Intelligent Laboratory Systems,
79, 10–21.

Vieillard, S., Peretz, I., Gosselin, N., Khalfa, S., Gagnon, L., & Bouchard,
B. (2008). Happy, sad, scary and peaceful musical excerpts for research on
emotions. Cognition & Emotion, 22 (4), 720–752.

Wack, N. (2010). Essentia & Gaia: audio analysis and music
matching C++ libraries developed by the Music Technology Group.
http://mtg.upf.edu/technologies/essentia.

Wedin, L. (1972). A multidimensional study of perceptual-emotional qualities
in music. Scandinavian journal of psychology, 13 (4), 241–257.



140 BIBLIOGRAPHY

Wieczorkowska, A., Synak, P., Lewis, R., & Raś (2005). Extracting Emotions
from Music Data. In M.-S. Hacid, N. V. Murray, Z. W. Raś, & S. Tsumoto
(Eds.) Foundations of Intelligent Systems, Lecture Notes in Computer Sci-
ence, vol. 3488, chap. 47, pp. 456–465. Berlin, Heidelberg: Springer-Verlag.

Wierzbicka, A. (1999). Emotions across languages and cultures diversity and
universals.

Witten, I. H. & Frank, E. (1999). Data Mining: Practical Machine Learning
Tools and Techniques with Java Implementations (The Morgan Kaufmann
Series in Data Management Systems). Morgan Kaufmann, 1st edn.

Wold, S. (1976). Pattern recognition by means of disjoint principal components
models. Pattern Recognition, 8 (3), 127–139.

Xu, R. & Wunsch, D. (2008). Clustering (IEEE Press Series on Computational
Intelligence). Wiley-IEEE Press, illustrated edition edn.

Yang, D. & Lee, W. (2004). Disambiguating music emotion using software
agents. In Proc. Int. Conf. Music Information Retrieval, pp. 52–58.

Yang, Y. H. & Chen, H. (2010). Ranking-Based Emotion Recognition for
Music Organization and Retrieval. IEEE Transactions on Audio, Speech,
and Language Processing.

Yang, Y.-H., Lin, Y.-C., Cheng, H.-T., Liao, I.-B., Ho, Y.-C., & Chen, H.
(2008a). Toward Multi-modal Music Emotion Classification. In Y.-M.
Huang, C. Xu, K.-S. Cheng, J.-F. Yang, M. Swamy, S. Li, & J.-W. Ding
(Eds.) Advances in Multimedia Information Processing - PCM 2008, Lecture
Notes in Computer Science, vol. 5353, chap. 8, pp. 70–79. Berlin, Heidelberg:
Springer Berlin / Heidelberg.

Yang, Y. H., Lin, Y. C., Su, Y. F., & Chen, H. H. (2008b). A Regression
Approach to Music Emotion Recognition. IEEE Transactions on Audio,
Speech, and Language Processing, 16 (2), 448–457.

Yang, Y. H., Liu, C. C., & Chen, H. H. (2006). Music emotion classification:
a fuzzy approach. In Proceedings of the 14th annual ACM international
conference on Multimedia, MULTIMEDIA ’06, pp. 81–84. New York, NY,
USA: ACM.

Zwicker, E. & Terhardt, E. (1980). Analytical expressions for critical-band
rate and critical bandwidth as a function of frecuency. J. Acoust. Soc. Am,
68 (5), 1523–1525.



Appendix A: Demonstrations

Introduction

In this appendix, we present our work in devising demonstrations using the
mood classification techniques detailed previously in this thesis. First of all, we
explain how we integrated our mood classifier in the context of a search-engine
project, funded by the European Union (PHAROS2). Then, we describe our
two Mood Cloud demonstrations of real time prediction of mood, followed by
another integration in a personalized music television prototype (MyMTV).

PHAROS: Mood annotation in a search engine

One of the most important application of our mood classifiers has been their
integration into the PHAROS platform (Laurier et al. (2009a)). We developed
a webservice delivering mood annotation (classification and probability values)
for indexing music in an audiovisual search platform.

The PHAROS project

PHAROS was an Integrated Project funded by the European Union under the
Information Society Technologies Programme (6th Framework Programme)
with a strategic objective defined as "Search Engines for Audiovisual Con-
tent". PHAROS aimed to advance audiovisual search from a point-solution
search engine paradigm to an integrated search platform paradigm. One of the
main goals of this project was to define a new generation of search engine, de-
veloping a scalable and open search framework that lets users search, explore,
discover, and analyze contextually relevant data. Part of the core technol-
ogy included automatic annotation of content using integrated components of
different kinds (visual classification, speech recognition, audio and music an-
notations, etc...). In our case, we implemented and integrated an automatic
music mood annotator based on the work previously described in this thesis.

Integration of the mood annotator

As a search engine prototype3, PHAROS uses automatic content annotation to
index audiovisual content. However, there is a clear need to make the content

2Platform for searcHing of Audiovisual Resources across Online Spaces.
http://www.pharos-audiovisual-search.eu, http://mtg.upf.edu/research/projects/pharos

3Unfortunately, no version of the PHAROS search engine is available since the project
ended
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analysis as efficient as possible (in terms of accuracy and time). To integrate
our mood annotator into the platform, we first created an implementation in
C++, based on the MTG feature extraction library Essentia (see Wack (2010))
to extract audio features together with the libsvm library for Support Vector
Machines (Chang & Lin (2001)). The SVMs were trained with full ground
truth datasets and optimal parameters. The representation format was an
XML standard candidate defined during the project and based on a MPEG-7
derivative called DAVP4. We wrapped our implementation into a webservice
compatible with the framework, which could be directly accessed by other
modules of the PHAROS platform. Furthermore, exploiting the probability
output of the SVM algorithm, we provided a confidence value for each mood
classifier. This probability value has been used for ranking the results of a
query by the annotation probability (for instance from the least to the most
happy). This has also been employed to increase the precision of the system
by showing only the results with high confidence values. Finally, it allowed to
make hybrid annotators called "fusion annotators" mixing different annotators
to get multimodal annotations. For instance, we implemented an audiovisual
mood annotator, using both music and images of a video clip to predict its
mood. We built this prototype merging our prediction with an image mood
annotator by Dunker et al. (2008). We presented a demonstration of the results
at ISMIR 2009 (Laurier et al. (2009a)).
The resulting annotator extracts audio features and predicts the music mood
at a sufficient speed to index the content used in the project, with the same
performance level than what was presented in the previous chapters (using the
exact same ground truth). This annotator contributes to the overall system
by allowing for a flexible and distributed usage. In our tests, using a cluster of
8 quad-core machines, we could annotate 1 million songs (using 30-seconds of
each) in around 10 days. The mood annotation is used to filter automatically
the content according to the needs of users and helps them to find the content
they are looking for. This integrated technology can lead to an extensive set
of new tools to interact with music, enabling users to find new pieces that are
similar to a given one, providing recommendations of new pieces, automatically
organizing and visualizing music collections, creating playlists or personalizing
radio streams. Indeed, the commercial success of large music catalogs nowadays
is based on the possibility of allowing people to find the music they want to
hear.

User evaluation

In the context of the PHAROS project, user evaluations have been conducted
with Orange Labs. The main goal of these evaluations was to assess the us-

4DAVP: Digital Audiovisual Profile, http://iiss039.joanneum.at/cms/index.php?id=119
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ability of the PHAROS platform and, in particular, the utility of several an-
notations.

Protocol

26 subjects participated in the evaluation. They were from the general public,
between 18 and 40 years old (27 in average), all of them self-declared eager
music listeners and last.fm users. The content processed and annotated for
this user evaluation was made of 2092 30-second music videos. After a presen-
tation of the functionalities on site, the users were then directly using an online
installation of the system accessible from their home. During 4 weeks, they
could test it with several tasks they were asked to do every two days. The task
related to our algorithm was to search for some music and to refine the query
using a mood annotation. One query example could be to search for "music"
in the whole system and then to refine the search with the content-based mood
annotation "relaxed". They had to answer a questionnaire at the end of the
study:

"Do you find it interesting to use the mood annotation to refine a query
for music?"

"Do you find the "mood" annotation innovative?"

"Does the use of the mood annotation correspond to your way of search-
ing for audiovisual information?"

Results

As a general comment, there is a difficulty for users to understand directly a
content-based annotation. Some effort and thinking has to be done to make
it intuitive and transparent. For instance what does "sad=0.58" (music anno-
tated sad with a confidence of 0.58) mean? Is it really sad? Is it very sad?
The confidence, or probability, value of one annotation is quite relative to other
instances and most of all to the training set. This can be used for ranking or
filtering the results but should not be shown to the end-user directly. They
would prefer nominal values like "very sad" or "not sad" for instance. Another
important point seen when analyzing the comments from the users is the need
to focus on precision. Especially in the context of a search engine, people will
only concentrate on the first results and may not go to the second page (like
the vast majority of google users). Instead, they are more likely to change their
query. Several types of musical annotations were proposed to the user (genre,
excitement, instrument, color, mode and key). From this list, mood was ranked
as the second best in utility, just after musical genre (which is often given as
metadata). Users had to rate on a scale from 0 to 10 their answer to several
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Figure 1: Screenshot of the PHAROS interface used for the user evaluation.

questions (0 would be "I strongly disagree" and 10 "I strongly agree"). We
summarize here the answers to the questions related to the mood annotation:

"Do you find it interesting to use the mood annotation to refine a query
for music?" Users answered positively with a mean of 8.66, standard
deviation of 1.85, showing a great interest to use this annotation.

"Do you find the "mood" annotation innovative?" The mean of answers
was also positive with 6.18 in average (standard deviation 3.81).

"Does the use of the mood annotation correspond to your way of search-
ing for audiovisual information?" Here users agreed with an average of
6.49 (standard deviation 3.47).

In all cases the mood annotation and its integration into the PHAROS plat-
form was greatly appreciated and highly considered by users. They also rated
it as the most innovative musical annotation overall. In Figure 1, we show
a screenshot of the version of the PHAROS platform running the user eval-
uation. In this screenshot, the user is searching for "relaxed" music. They
enter "relaxed" as a keyword and are browsing the musical results. The ones
shown here were rated as "relaxed" (respectively 100% and 99%) thanks to the
automatic music mood annotator we describe in this article.
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Mood Cloud

Presentation

The objective of this work is twofold. Firstly, to make people understand
how well an automatic model could work. Secondly, to verify empirically if
predicting mood on shorter segments that the one used to train would make
sense. Mood Cloud is therefore a demonstrator of automatic music mood pre-
diction from audio content visualized in real time. While playing a song, we
visualize the prediction probabilities of five mood categories : "happy", "sad",
"aggressive", "relax" and "party". Each mood is represented by a colored bar
graph with text, dynamically resized according to the mood probability. Con-
sequently, each bar represents a mood model and its prediction. The resulting
application is a dynamic visualization of the mood predictions, demonstrating
the performance of current state of the art techniques in automatic mood clas-
sification. The "party" category, not mentioned previously in this document,
was added even though it is rather situational than emotional. Party is not
considered as a mood but as a scenario (a party) where you would want a par-
ticular kind of music, mainly upbeat and danceable. Nevertheless it has been
created and trained using the same approach described in this thesis for the
other mood categories. This visualization tool pre-computes the mood evolu-
tion by means of a supervised learning approach, using a feature set designed
for this task and a SVM algorithm. To estimate the mood probabilities, we
used SVM models trained on our ground truth data. The predictions are com-
puted within windows of several seconds to show the evolution of the mood
prediction. While playing a music, bar graphs representing each mood are
resized according to the predicted probability value on the current audio seg-
ment. Empirically, a chunk size of 3 to 5 seconds gave relevant results while
having a sufficient change frequency.

Technical details

The Mood Cloud demo is divided in two parts. The first part is the pro-
cessing module (back-end) that extracts the features, classifies and outputs
probabilities for each segments. It uses the libsvm library with SVM models
precomputed on our ground truth. The processing module is made in Python
and C++ and is cross-platform. The second part is the visualization mod-
ule, created with Adobe Flash5. It can be run on any platform if an Internet
browser with Flash player is installed. The interaction between both modules
is achieved via XML.

5http://www.adobe.com/products/flash/
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Figure 2: Screenshot of Mood Cloud for the song "Karmapolice" by Radiohead.

Conclusion

The Mood Cloud application provides an intuitive and understandable visu-
alization of automatic mood classification algorithms. This tool helps to un-
derstand the potential and the limitations of such techniques. It would be
interesting to integrate it as a plug-in for music players for desktop or mobile
devices. No evaluation was made using this demo although it would be in-
teresting to compare the time changes of the model predictions with human
perception.

Mood Cloud 2.0

Presentation

Mood Cloud 2.0 is a demonstration that allows to visualize and browse music
by mood. With the first version of Mood Cloud (see citeLaurier:MoodCloud),
we could visualize at playing time the mood prediction of different Support
Vector Machine models (one for each ’basic’ mood). This helped to under-
stand how accurate can the mood evolution be predicted. Mood Cloud 2.0
enables a new 2D visualization based social network data (see Laurier et al.
(2009c) for more details) and adds retrieval features. In this representation, we
can visualize one’s collection, observe the mood evolution of a song in time, and
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draw a path to make a playlist or retrieve a song based its time evolution. This
2D space is flexible, one can choose between different templates. the most in-
teresting one probably being the representation extracted from social networks
called semantic mood space (see Chapter 3 and Laurier et al. (2009c)). The
2D semantic mood space was obtained using Self-Organizing Maps on tag data
from last.fm. Each song of one’s collection is mapped into the semantic mood
space using its tags. Other modes and representations are proposed. If the
tags are not available, we can use the autotagger function, which automatically
adds tag to the piece and so place it in the semantic space. This technique is
also used to evaluate the mood evolution of one song dividing it in segments
of a few seconds. Additionally, pre-computed audio mood models are avail-
able (the updated models from Mood Cloud 1.0), which are state-of-the-art
mood classification algorithms. For these models, the 2D representation can
be changed using different axis. We allow the user to change the two dimen-
sions, selecting between the existing audio models in Mood Cloud 1.0 (happy,
sad, aggressive, relax and party). One can visualize his collection in the agres-
sive/sad or relaxed/happy spaces for instance. With both the autotagger and
the mood models, any collection can be mapped and browsed into a 2D space.
By analyzing the songs in windows of a few seconds and keeping the trace of
the result, we can visualize, in the same space, the instantaneous mood and
its evolution during the song.

Figure 3: Screenshot of Mood Cloud 2.0 with the different tags in the 2D space.
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Figure 4: Screenshot of Mood Cloud 2.0 for the song "Smooth Criminal" by Alien
Ant Farm.

Technical Details

This demo is coded in C++ and python for the back-end using libraries of
the Music Technology Group (Essentia & Gaia). The analysis of the collection
is stored in XML files. The front-end GUI is made with Macromedia Flash.
As it is a Flash application, it can be either local or online. This demo was
presented at ISMIR 2009 (See Laurier et al. (2009b)).
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MyMTV

MyMTV has been developed with the objective of making full integrated ap-
plication to demonstrate how would look a personalized and smart television,
using both content-based and collaborative filtering techniques. MyMTV is
an Interactive TV which adapts to one’s habits, tastes and moods: A music
recommendation channel, tailored to the user’s tastes. Users create a person-
alized channel of music videos by selecting a song or an artist they like. The
system identifies and log what music video the user is watching. Based on this
information, the system builds a user profile to improve the quality of future
recommendations. Both audio features and collaborative filtering are used for
recommendation. Users can rate the songs and this information is employed
to improve the recommendation quality. This prototype was developed during
the EU ITEA project CANTATA 6. Our mood models, presented in this thesis,
are integrated into this prototype as mood annotations, which helps the user
to find the content he would like and that fit to his mood.

Figure 5: MyMTV Flash Interactive GUI

6CANTATA: Content Aware Networked systems Towards Advanced and Tailored As-
sistance. European Research Program sponsored via Eureka under the ITEA programme.
http://www.itea-cantata.org/.





Appendix B: Lyrics
differentiating mood

categories

We list here the term that our Language Model Differences (LMD) model
(presented in Chapter 5, Section 5.2.5) detects as important to discriminate
between the mood, in each case the category against its complementary, for
instance happy against not happy. These results are given when applying the
methods on all our training data. We note that if some of these words are
obviously informative others are artifacts that could be filtered out in future
improvements of our technique.

angry
love, could, heart, death, control, die, dead, can, i’m, were, god, evil, hell,
world, pain, blue, today, fate, then, need, tell, rain, baby, there, so, much,
change, fast, trees, stars, sun, fucking, killing, things, lies, me, , lost, but,
too, had, knew, seems, sweet, oh, come, was, say, beyond, days, mine, breathe,
truth, sorry, walked, places, half, worry, though, singing, wind, someone, mind,
how, hate, fuck, soon, sing, talk, soul, blood, free, path, eternal, scream, burns,
til, power, knows, whole, choose, took, my, door, we, night, long, watch, stop,
give, song, miles, yours, guess, kind, fly, hours, lovers, girls, both
relaxed
out, get, die, got, wanna, this, keep, try, made, lies, hell, for, going, rain, yeah,
control, eyes, oh, , face, evil, fate, god, better, am, mind, our, you’ve, flow, al-
right, hatred, earth, fly, though, half, yourself, dead, fine, flesh, getting, death,
forget, chorus, truth, years, free, skin, good, voices, silent, kiss, feel, four, spit,
deadly, filled, fuck, cannot, killing, sight, step, eleven, pushing, disease, stars,
worth, whole, used, love, a, he, mean, care, show, wonder, spell, lie, man, an,
find, tell, about, hide, please, meet, little, comes, stop, ain’t, on, each, morn-
ing, singing, hands, second, shining, kissing, strike, split, kingdom
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sad
get, own, lonely, rest, coming, up, hurt, tu, hold, here, give, street, holding,
forget, soon, she’s, kiss, world, down, then, were, young, boy, fight, beyond,
train, remember, en, seems, te, sometimes, le, que, should, man, live, wanna,
repeat, watching, love, without, find, got, her, first, tomorrow, money, tonight,
la, alive, mind, an, driving, listen, cuz, everybody’s, x2, knows, ready, lips,
toast, before, eyes, could, ground, put, looking, lies, hey, hit, set, back, right,
away, blue, poison, we’d, ghosts, spinning, bitter, de, somehow, juntos, sign,
mal, name, flowers, angel, estas, memories, shadow, isn’t, para, sweet, y, un,
beneath, empty, every, far

happy
out, got, live, well, again, chorus, yeah, gonna, oh, sleep, pain, getting, world,
phone, dead, fine, you’ve, want, end, gone, can, looking, gotta, sky, tell, down,
looks, em, bright, calls, two, done, yesterday, words, things, been, better,
together, friends, keep, lost, best, verse, whole, repeat, but, up, something,
worth, work, fit, fields, rock, living, everyday, longer, u, alright, pass, lie,
sometimes, half, with, baby, we’ll, then, hand, going, man, little, always, her,
why, desire, dying, 2, knows, ask, once, own, fall, street, call, breathe, room,
we’d, message, ten, wasted, twice, against, three, mother, shoulder, bury, pres-
ence, lies, mold, holding, none
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