QF “ExempleUsPlantillaB5” — 2016/9/1 — 8:56 — page i — #1

Gene expression variation and
constraint across organs and species

Alessandra Breschi

TESI DOCTORAL UPF / ANY 2016

DIRECTOR DE LA TESI

Prof. Roderic Guigd

DEPARTMENT OF BIOINFORMATICS AND GENOMICS AT
CENTER FOR GENOMIC REGULATION (CRG)

Universits R
upf | et () CRG

re
» for Genomic
Barcelona o




“‘ExempleUsPlantillaB5” — 2016/9/1 — 8:56 — page ii — #2



“ExempleUsPlantillaB5” — 2016/9/1 — 8:56 — page iii — #3

To Annarita



“ExempleUsPlantillaB5” — 2016/9/1 — 8:56 — page iv — #4



“ExempleUsPlantillaB5” — 2016/9/1 — 8:56 — page v — #5

Abstract

Mice are the premier model organisms to study human biology and
disease, but there is still debate about the extent to which molecu-
lar mechanisms are conserved between human and mouse. With
the advance of next-generation sequencing technologies, compara-
tive transcriptomics can be carried out at unprecedented resolution.
In this thesis we confirm findings that human and mouse transcrip-
tomes are globally conserved and we identify and characterize the
properties of a core set of genes with constrained expression betwe-
en the two species. Additionally, we show that clustering of gene ex-
pression across humans, mice and other vertebrates across multiple
tissues depends on which genes and samples are included. Finally,
we analyze gene expression of primary cells in human to understand
how functional units of organs contribute to the expression of an or-
gan as a whole. Indeed, profiling entire organs constitutes one of the
main limitations of current comparative studies.

Resumen

Los ratones son los principales organismos modelos para estudiar
la biologia y las enfermedades humanas, pero aun esta en debate
el nivel de conservacién molecular entre humanos y ratones. Con el
progreso de las tecnologias de secuenciacion masiva, la transcrip-
tébmica comparativa ha llegado a una resolucién sin precedentes. En
esta tesis confirmamos que los transcriptomas de humano y ratén
estan globalmente conservados y identificamos y caracterizamos las
propiedades de un conjunto de genes con expresion parecida entre
las dos especies. Ademas, demostramos que diferentes tejidos de
humanos, ratones y otros vertebrados se agrupan en base a su ex-
presién génica segon los genes y las muestras incluidas en el anali-
sis. Finalmente, analizamos la expresion génica de lineas celulares
primarias humanas para investigar como las unidades funcionales de
los 6rganos afectan la expresién de todo un érgano entero. De he-
cho, los estudios comparativos actuales tienen como limitacion que
se basan en datos de érganos enteros.
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Preface

The laboratory mouse is currently the most clinically relevant model
organism to study human biology and diseases. Although decades
of mouse research have consolidated the knowledge that many bi-
ological processes and molecular mechanisms are conserved with
human, a full understanding of the extent of conservation between
the two species is still lacking.

Thanks to the recent technological advancements in next-generation
sequencing, the mouse ENCODE consortium generated hundreds
of functional genomics data in several mouse tissues and cell lines,
including RNA-seq, histone marks and transcription factors ChlIP-
seqg and DNase-seq (Chapter 1). At all the molecular levels, there
were both similarities and differences between humans and mice. At
the transcriptional level, in particular, we showed that many factors
should be taken into account when comparing gene expression pro-
files across several organs in two different species. In fact, we report
that the conservation of expression is stronger for some organs which
have more tissue-specific genes, such as brain and testis, while
it is more attenuated for others, which has fewer distinctive genes
(Chapter 1). Consistently, genes with high variation across organs,
but relatively low variation between species, have a stronger pattern
of expression conservation, while genes with high variation across
species, but relatively low across organs, show a lower degree of
expression conservation (Chapter 1). This is also the case when ad-
ditional vertebrate species are included in the analysis (Chapter 3).
Moreover, we showed that also the normalization strategy can influ-
ence conclusions on the extent of conservation in gene expression
programs (Chapter 1 and 3).

On a global scale, however, we observed very correlated levels of
expression between the human and mouse, even when very different
sample types, are analyzed, such as human cell lines and mouse
tissues (Chapter 2). By filtering for expression variation across very
heterogeneous samples, we could define a set of about 6,000 genes
with constrained expression between humans and mice (Chapter 2).

However, the vast majority of comparative transcriptomics studies
has been conducted on whole organs, which are composed of a mix-
ture of very diverse cell types, possibly each one with very distinct
expression profiles. In fact, by analyzing RNA-seq data for over 50
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human primary cell lines, we showed that cell type specific transcrip-
tional programs can be identified and play a major role in shaping
the transcriptional profile of entire organs (Chapter 4). Thus, gene
expression differences between the same organs in two or more
species, or even within the same species, can be the result of dif-
ferent cellular composition (Chapter 4).

The work presented in this thesis represents a useful contribution to
understanding the level of transcriptional similarities between mice
and men, and constitutes a valuable resource to study transcriptional
variation across species and across organs.

List of publications during the thesis:

1. Breschi A, Djebali S, Gillis J, Pervouchine DD, Dobin A, Davis
CA, Gingeras TR, Guigd R. Gene-specific patterns of expres-
sion variation across organs and species. Genome Biology.
2016 Jul 8;17(1):1.

2. Pervouchine DD*, Djebali S*, Breschi A*, Davis CA*, Barja
PP, Dobin A, Tanzer A, Lagarde J, Zaleski C, See LH, Fastuca
M. Enhanced transcriptome maps from multiple mouse tissues
reveal evolutionary constraint in gene expression. Nature com-
munications. 2015 Jan 13;6.

3. Lin S, LinY, Nery JR, Urich MA, Breschi A, Davis CA, Dobin A,
Zaleski C, Beer MA, Chapman WC, Gingeras TR. Comparison
of the transcriptional landscapes between human and mouse
tissues. Proceedings of the National Academy of Sciences.
2014 Dec 2;111(48):17224-9.

4. ChengY, Ma Z, Kim BH, Wu W, Cayting P, Boyle AP, Sundaram
V, Xing X, Dogan N, Li J, Euskirchen G. Principles of regulatory
information conservation between mouse and human. Nature.
2014 Nov 20;515(7527):371-5.

5. Yue F*, Cheng Y*, Breschi A*, Vierstra J*, Wu W*, Ryba T*,
Sandstrom R,* Ma Z*, Davis C*, Pope BD*, Shen Y*. A com-
parative encyclopedia of DNA elements in the mouse genome.
Nature. 2014 Nov 20;515(7527):355-64.

6. Chen L, Kostadima M, Martens JH, Canu G, Garcia SP,
Turro E, Downes K, Macaulay IC, Bielczyk-Maczynska E, Coe

viii



“ExempleUsPlantillaB5” — 2016/9/1 — 8:56 — page ix — #9

S, Farrow S. Transcriptional diversity during lineage commit-
ment of human blood progenitors. Science. 2014 Sep
26;345(6204):1251033.



“ExempleUsPlantillaB5” — 2016/9/1 — 8:56 — page x — #10



“‘ExempleUsPlantillaB5” — 2016/9/1 — 8:56 — page xi — #11

Contents

INTRODUCTION 1
[Mouse as a model for humanbiology]. . . . ... ... ... 1
['he human and mouse genomes and gene sets| . . . . . . 3

|Protein codinggenes|. . . .. .. ... ... ...... 4
[Long non-coding BRNAs| . . . . .. ... ... ... .. 5
|[Conservation of human and mouse transcriptomes| . . . . . 6
[Microarray studies| . . ... ... ... ......... 6
[RNA-seq and multiple species| . . . . ... ... ... 8
[IncHNA expression conservation| . . . . .. ... ... 9
|[Expression and sequence conservation| . . . . .. .. 10
[Comparative gene regulation| . . . . ... .......... 10
[Intraspecies variation in expression In humans and mice| . . 13
[Cellular complexity of mammalian organs| . . . .. ... .. 15
1 Encyclopedia of mouse elements 17

[CHAPTER 2 Transcriptional comparison of human and mouse |

[ genomes | 39

[CHAPTER 3 Gene-specific patterns of expression variation |

| across specles and organs | 51

4 Conserved transcriptional programs in human

[ primary cells | 65

DISCUSSION| 89
[Improving annotation of transcripts and genes|. . . . . . . . 90

iology and big data: filling inthe matrix| . . . . .. ... .. 92

ICONCLUSIONS! 95

BIBLIOGRAPHY 97

Xi



“‘ExempleUsPlantillaB5” — 2016/9/1 — 8:56 — page xii — #12



“ExempleUsPlantillaB5” — 2016/9/1 — 8:56 — page 1 — #13

INTRODUCTION

Mouse as a model for human biology

The laboratory mouse (Mus Musculus) has been for decades the pre-
ferred model organism to study human biology and diseases. Hu-
mans and mice share a very similar genetic background, with over
90% of both genomes that can be partitioned into regions of con-
served synteny (Chinwalla et al., 2002). Although other organisms,
such as yeasts, worms and flies are excellent models for studying
basic biological processes, mice are far better tools for probing the
complex physiological systems that are shared among mammals.
Through years of growing experience (Adams and van der Weyden,
2008, Bedell et al., [1997) and technological advances (Singh et al.,
2015) to create mutated mouse strains, several mouse models are
currently available to mimic many human diseases, even the ones
that are not naturally developed in mice.

Thus, mice are exploited in several fields of biology, from neuro-
science, to physiology, from behavioural to cancer research. As
mice can be housed in small and controlled spaces, very manage-
able behavioural tests have been creatively devised to reproduce
major human behavioural patterns. Examples of application of be-
havioural tests include studies of anxiety (Schweinfurth and Lang,
2015, [Steimer, 2011), substance abuse and addiction (Lynch et al.|
2010) and diet (Ellacott et al., 2010). In the context of neuroscience,
specific mutant mice are particularly attractive as models of common
neurological disorders, such as Alzheimer’s disease (Onos et al.,
2016), Down syndrom (Rueda et al., 2012) and autism (Silverman
et al.,|2010).

Mice have also been widely used in experiments related to aging
(Vanhooren and Libert, 2013), which is a very complex multifacto-
rial process, where it is crucial to be able to account for one individ-
ual factor at a time. Cancer research has benefitted largely from the
generation of genetically engineered mice ((Bock et al., 2014)), which
shed light on several aspects of tumor biology and profiling, drug re-
sponse and biomarker discovery ((Cheon and Orsulic, [2011)). How-
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ever useful mice have been proven to advancing our knowledge and
treatment strategies of cancer, their application as xenograft models
is still controversial (Aparicio et al., 2015, Morgan, 2012, |Richmond
and Su, 2008), one of the main concerns being that the mouse re-
sponse is not always well predictive of the human one. As with mouse
models of human tumours, many differences exist, such as the cell
duplication time, lifespan and cancer susceptibility, which can affect
the experimental use of mouse to study the intricacy of human cancer
pathogenesis (Rangarajan and Weinberg, 2003).

It is not surprising that mouse is the most commonly used species for
scientific purposes. The most recent official statistics from the Euro-
pean Committee (http://eur-lex.europa.eu/legal-content/EN/
TXT/PDF/?7uri=CELEX:52013DC0859&from=EN) report that just un-
der 11.5 million animals were used Europe in 2011, 60.96%
of which were mice. While a UK governmental report shows
1.16 million mice were used in the United Kingdom in 2014,
60% of the 1.93 million experimental procedures completed that
year (https://www.gov.uk/government/uploads/system/uploads/
attachment_data/file/469508/spanimalsi4.pdf), with consistent
figures from 2005.

Clinical trials rely heavily on non-human organisms, especially mice,
before testing a drug on patients, as proven efficiency in in vivo pre-
clinical studies is essential for a drug to enter further clinical phases.
Nonetheless, as with xenografts, drugs often fail along the phases
of clinical trials. A recent work by BioMedTracker, an institutional re-
search service that identifies investment opportunities in the biotech
and pharmaceutical industry by assessing the relative strength of
companies’ clinical drug pipelines, reports that 60% of the drugs be-
tween 2003 and 2011 did not proceed to the second phase of testing,
while only 10.4% are likely to get FDA approval (Hay et al.,[2014). Al-
though few examples of failed clinical trials initiated after successful
preclinical studies are mentioned in the literature (Mak et al.,[2014), a
comprehensive view of such cases is lacking due to incomplete and
unorganized reporting of the outcomes.

All this highlights that despite many core biological processes and ge-
netic elements being conserved between human and mouse, other
biological features leading to phenotypic differences and poorly cor-
related physiological responses diverged substantially. Such features
can be genomic differences, like retrotransposition events, gene ex-
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pansions and deaths, genomic rearrangements, or differences in ge-
nomic regulation, like gene expression and alternative splicing di-
vergence, active and silenced enhancers, chromatin domains, struc-
tural elements, and ultimately differences in protein expression and
posttranslational modifications. As the cost and the technical chal-
lenges of high-throughput sequencing technologies are continuously
decreasing, there has been a growing effort to functionally charac-
terize the human and mouse genomes, and identify what is shared
and what diverged. To this end, research consortia started a series
of large-scale projects, in a vast array of human and mouse samples,
both to understand the principles of genomic regulation across differ-
ent conditions and to compare it between the two species. These in-
clude, but are not limited to, the Genotype-Tissue Expression (GTEXx)
project (Lonsdale et al., 2013), which aims at establishing a resource
database and associated tissue bank to study the relationship be-
tween genetic variation and gene expression in human tissues, the
Roadmap Epigenomics project (Kundaje et al., 2015), which aims at
building a public resource of human epigenomic data, the FANTOM
project (Consortium et al., 2014), which focused mostly on CAGE
profile of human and mouse tissues and cell lines, and the human
and mouse ENCODE projects (Consortium et al., 2012, Yue et al.,
2014), whose scope is to catalogue all functional elements in the hu-
man and mouse genomes.

In particular, characterizing gene expression profiles across multi-
ple samples and species is really instrumental to reveal to what ex-
tent the biology of a given organism can be extrapolated to another,
since much of the organism and organ/tissue biology is determined
by regulated production of RNA. Thus, | will center this introduction
on presenting an overview of the main findings of comparative stud-
ies between human and mouse, with a special focus on comparative
transcriptomics. | will also review how this comparison has been ex-
tended to multiple species. Finally, | will put these in the context of
new emerging technologies, in order to increase our knowledge as to
when mouse is a good model for human biology.

The human and mouse genomes and gene sets

As a reflection of its importance as a model organism, the mouse
was, in the early 2000s, the second mammalian species to have

3
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its genome sequenced after human (Chinwalla et al., 2002, [Lander
et al., 2001, \Venter et al., 2001). The most recent genome assem-
blies (GRC38) include 3.1 Gb and 2.7 Gb for human and mouse,
respectively, with the murine genome being 12% smaller than the
human one. Over 90% of each genome can be partitioned into con-
served syntenic regions and 40% of the nucleotides in human can be
aligned to mouse (Chinwalla et al., [2002).

Protein coding genes

According to the latest release of GENCODE annotation (Harrow
et al., [2012) (v25, Ensembl85), which recently started to curate also
the mouse genome (Mudge and Harrow, |2015) (vM10, Ensembl85),
the human genome encodes 58,037 genes, of which about one third
are protein coding (19,950) and 198,093 transcripts, compared to
48,440 genes, of which about one half are protein coding (22,021),
and 117,667 transcripts encoded in the mouse genome. For both
species, the current number of protein coding genes is about ten
thousand less than it was estimated from the early drafts of the
genome assemblies (Chinwalla et al., 2002, Lander et al., [2001).

The discrepancy in the total number of annotated genes between the
two species it is unlikely to reflect underlying biology, and it can be
mostly attributed to the less advanced state of the mouse annotation.
The number of protein coding and long non coding RNAs encoded in
the human and mouse genomes is expected to be very similar, and
differences in the total genome length do not obey to differences in
the number of genes, but most likely to differences in the lengths of
introns and intergenic space (Chinwalla et al., |2002). Indeed, when
including predicted gene models from RNA-seq and Cap Analysis of
Gene Expression (CAGE) data, the mouse annotation is expanded
to a similar size as the human one (Pervouchine et al., 2015).

There is a high degree of gene orthology between human and
mouse: 80% of human and 72% of mouse protein coding genes
have a one-to-one orthologous relationship in the automatically de-
rived Ensembl Compara (Herrero et al., 2016) (15,874). A number
which is highly similar to the 15,736 orthologous genes derived af-
ter extensive curation efforts by the ENCODE consortium (Yue et al.,
2014).
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Long non-coding RNAs

Evidence for the importance of long non-coding RNAs (IncRNASs) is
constantly growing and an increasing number of IncRNAs related to
diseases is discovered every year (Esteller, 2011, [Shi et al., 2013
Wapinski and Chang, [2011). Identifying the possible mouse orthol-
ogous of human IncRNAs would largely contribute to uncover their
biological role. Currently, there are 15,767 and 9,856 IncRNAs an-
notated by GENCODE in human and mouse, respectively (Harrow
et al., 2012, |[Mudge and Harrow, |2015) the discrepancy, again, a con-
sequence of the less complete state of the annotation of the mouse
genome. In addition, IncRNAs are usually expressed at a lower level
than protein coding genes and often in a very tissue-specific fash-
ion, which penalizes a comprehensive annotation (Cabili et al., 2011,
Derrien et al., [2012). However, finding orthologous relationships and
conservation estimates for IncRNAs is more challenging than for pro-
tein coding genes, since their sequence is less conserved (Derrien
et al., 2012) and not constrained by amino-acid translation. While
RNA secondary structure might be useful to identify short non-coding
RNAs and their degree of conservation, only few IncRNAs have dis-
tinct structural domains as defined in Rfam (Nawrocki et al., 2014/,
Pignatelli et al., 2016). Thus, orthology annotation of INcRNAs is still
limited as widespread resource (Pignatelli et al., 2016) and the devel-
opment of methods to identify INcRNA orthology constitutes an active
field of investigation.

A number of papers in the past few years attempted to identify novel
IncRNAs in mice and other species and call their orthologs in humans
(Hezroni et al., 2015, |Necsulea et al., 2014, |Pervouchine et al., (2015,
Washietl et al., [2014). Although the gene sets may vary amongst the
different studies, there is a consistent estimate of approximately one
to two thousands orthologous INcCRNAs between human and mouse.
Necsulea et al. (Necsulea et al., 2014) report the highest number
of human-mouse orthologous IncRNAs, 2,720, based on sequence
similarity of both novel and annotated transcripts, while Washietl et
al. (Washietl et al., 2014) identify 1,100 orthologous IncRNAs based
on UCSC chain alignments. Pervouchine et al. (Pervouchine et al.,
2015) reported 851 IncRNAs orthologs based on a mixed approach
including both genome alignments and sequence homology. A more
recent study based on de novo transcript reconstruction and se-
quence similarity identifies 813 orthologs (Hezroni et al., 2015). How-
ever, the overlap between these sets is quite low: Pervouchine and
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colleagues (Pervouchine et al., 2015) computed that only 189 orthol-
ogous IncRNAs are in common between their study and Necsulea et
al. (Necsulea et al., 2014). In all the studies, orthologous IncRNAs
still represent a small fraction of all the annotated IncRNAs in both
species, especially when compared to protein coding genes. Since
most comparative studies have been so far based on orthologous
protein coding genes, and IncRNAs are likely to be heavily under an-
notated, this may have led to an overestimation of the transcriptomic
similarities between human and mouse, and overall of the biological
similarities between these organisms. Because of poor orthology,
the biology encoded in the IncRNA complement is likely to be very
different in human and in mouse.

Conservation of human and mouse transcrip-
tomes

Similarities in the gene sets between two species do not neces-
sarily reflect transcriptomic similarities, since the expression pattern
of a gene across tissues and conditions may be very different in
the two species. Since the early development of microarray tech-
nologies, and of RNA-seq later, made possible for the first time the
genome wide survey of the transcriptional activity of genes, there has
been much interest in understanding to what extent the patterns of
gene expression have been globally conserved between human and
mouse.

Microarray studies

Most of the early microarray studies focused primarily on the expres-
sion of orthologous protein coding genes in a variety of homologous
tissues. Under the assumption that mouse is a good model of human
biology, we would expect more similarity of expression in the same or-
gans between the species, than in the different organs from the same
species (Zheng-Bradley et al.,2010) (e.g. human liver would have an
expression profile closer to mouse liver than to human heart). Global
transcriptome relationship between multiple RNA samples are usu-
ally visually presented using methods related to hierarchical cluster-
ing, where samples are the leaves of a tree, which is built based on a
given similarity measure between transcriptomes (usually euclidean

6
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distance between individual gene expression levels or correlation co-
efficient across all genes between samples), or to dimensionality re-
duction, such as principle component analysis (PCA) or multidimen-
sional scaling (MDS), which project samples on a 2-3 dimensional
space where their distance is related to their global transcriptome
similarity. However, these statistical methods are heavily dependent
on the quality of the input data, how much variation there is between
and within samples and how the values are distributed. Indeed, the
importance of proper filtering and normalization prior to secondary
analysis has been very much stressed for microarray data, which are
known to be subject to several technical biases; studies who empha-
size a proper use of normalization methods report a high conserva-
tion of expression between human and mouse (McCall et al., 2011},
Zheng-Bradley et al., 2010). Inaccurate normalization, on the other
hand, for instance failing to account for species specific systematic
bias in signal intensity values in microarray probe sets, has been
shown (Liao and Zhang, 2006a) to spuriously exacerbate differences
between species (Yanai et al., 2004).

Nonetheless, it is still under debate whether these results, obtained
in a limited number of samples, are generally applicable to any type
of samples and on the whole transcriptome. As an example, while
induction and repression of major transcriptional regulators of ery-
thropoiesis are conserved, at a global level significant extent of tran-
scriptional divergence has been detected between the two species
(Pishesha et al., [2014). In another study, it has been shown that
murine transcriptional responses to different inflammatory stresses,
including trauma, burns and endotoxemia, have a poor correlation
with the human ones, although human responses to them are quite
similar (Seok et al., |2013), posing serious questions whether mouse
is a good clinical model to study such conditions. These conclusion
was challenged by a reanalysis of the same data but restricting only
on a smaller set of genes with conserved changes between the hu-
man and mouse responses (Takao and Miyakawa, [2015). It has been
noted that this approach introduces a bias in the results, and that the
low percentage of genes with conserved changes (12%) may itself
be indicative of poor reproducibility of the human response in mice
(Shay et al., 2015} Warren et al., 2015).
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RNA-seq and multiple species

The introduction of RNA-seq technology, which allows for more sen-
sitivity, larger dynamic range and annotation-independent detection
of RNA abundances (Mortazavi et al., 2008), prompted more com-
parative transcriptomics studies at a deeper resolution and including
larger numbers of species (since RNA-seq does not depend on a
species-specific previously spotted microarray surface, see (Romero
et al.l 2012) and (Necsulea and Kaessmann, 2014) for reviews). A
series of early works concluded that transcriptional patterns are more
similar between orthologous organs of different species than be-
tween different organs from the same species (Barbosa-Morais et al.|
2012, Brawand et al., 2011, [Merkin et al., 2012). Regarding specif-
ically mouse, the ENCODE consortium (Stamatoyannopoulos et al.,
2012) has been collecting around one hundred RNA-seq datasets for
a range of mouse tissues and cell types, in order to create a compre-
hensive reference for future studies (Yue et al.,|2014).

As in the case of microarrays, clustering of mouse and human gene
expression profiles from homologous tissues strongly depended on
the normalization applied (Yue et al.,|2014). However, as human data
from comparable experimental conditions was not available, since
the bulk of human ENCODE transcriptome data was obtained in cell
lines (Consortium et al., 2012) and the mouse in primary tissues,
and they were sequenced in different labs, it is hard to disentangle
the gene expression variation attributable to the species, to other
biological factors, or to technical effects (Yue et al., 2014). However,
simultaneous analysis of the human and mouse RNA data uncovered
a large fraction of orthologous protein coding genes (about 50%) with
relatively constrained expression independent from the cell type in
both human and mouse (Pervouchine et al., 2015).

Analysis of human and mouse gene expression from a more ho-
mogeneous experimental setting, on the other hand, argumented
that different conclusions can be drawn depending on which organs
are profiled: organs with more distinct signatures of tissue-specific
genes, such as brain, testis, heart, liver and kidney show strong
conservation between the two species (Chan et al., 2009, Lin et al.,
2014, |Su et al., 2002, [Sudmant et al., 2015). On the other hand, by
using a larger panel of organs in the analysis, that include organs
expressing less tissue specific genes, Lin et al. (Lin et al., [2014)
show that transcriptional patterns have overall diverged substantially
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between human and mouse, separating the species more than the
organs. This conclusion led to another highly charged debate, where
other possible factors and biases were taken into account (Gilad and
Mizrahi-Man, [2015).

Individual genes, however, exhibit strong differences in their patterns
of expression variation. Therefore, rather than trying to quantify the
overall transcriptome similarity between two or more species, Breschi
et al. attempted to characterize the pattern of expression variation
across tissues and species for each gene individually, between hu-
man and mouse only (Yue et al., |2014) and across multiple species
(Breschi et al., [2016). Thus, a subset of genes was identified that
vary a lot across tissues, but little across species, as well as a set of
genes that vary a lot across species, but little across tissues (Breschi
et al, 2016). Vertebrate (mouse) models of human biology may
be particularly appropriate for the genes in the former set (Hardi-
son, 2016)). Remarkably, these genes are more likely to be associ-
ated with diseases than are genes whose expression varies predom-
inantly across species.

All this raises the more general issue that although some commonal-
ities exist, global responses as a whole might differ, as it is known to
be the case for the immune system (Mestas and Hughes, 2004), and
that caution should be applied in carefully matching as many factors
as possible when mouse models are applied (Shay et al., 2015).

IncRNA expression conservation

Most of the large-scale comparative studies of gene expression
are centered on orthologous protein coding genes. Only in the
last decade, comparative surveys of non-coding transcriptomes are
emerging, as the annotation of IncRNAs is constantly expanding
(Harrow et al., 2012, Mudge and Harrow, [2015). Globally, ortholo-
gous IncRNAs between human and mouse have conserved levels of
expression (Hezroni et al., 2015, |Pervouchine et al.,2015). However,
clustering analysis and PCA based on IncRNAs show more rapid
evolution of expression patterns compared to protein coding genes
(Necsulea et al., 2014). In addition, the breadth of expression is
also conserved not only between human and mouse but also in other
mammals: ubiquitously expressed IncRNAs in human are ubiquitous
across all species and tissue-specific IncRNAs in human are tissue

9
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specific in all species (Hezroni et al., 2015, Washietl et al., 2014).
However, these results may be influenced by the relatively low num-
ber of orthologous IncRNAs (less than 10% of annotated IncRNASs)
with respect to orthologous protein coding genes (75%). Most IncR-
NAs appear to be testis-specific in both species (Hezroni et al., 2015,
Washietl et al., 2014), especially the less conserved ones (Necsulea
et al.,[2014). This is hypothetically related to a more permissive chro-
matin conformation during spermatogenesis (Soumillon et al., 2013),
which could potentially contribute to the rapid evolution of testis tran-
scriptomes. Therefore, organ-specific evolutionary rates of gene ex-
pression must be considered to evaluate if the mouse transcriptome
is a good model of the human transcriptome.

Expression and sequence conservation

A key question in understanding the evolution of gene expression
is how it is related to the evolution of sequences and whether con-
servation of gene expression is reflected in sequence constraints;
which regulatory sequences evolved for those genes with a highly
conserved transcript sequence but diverging expression patterns.
Overall, average gene expression levels are well correlated between
human and mouse: highly expressed genes in humans are also
highly expressed in mice (Liao and Zhang,[2006b,|Wang and Rekaya,
2009), even when very heterogeneous samples are considered (Per-
vouchine et al., [2015). This is to some extent reflected at the se-
quence level in the gene body (Koonin and Wolf, 2010, Liao and
Zhang, 2006b). On the other hand, promoter sequences have di-
verged more, although there is some variation in the reported degree
of the divergence (Wang and Rekayal, 2009, Weirauch and Hughes,
2010). One possibility is that compensatory mechanisms act on reg-
ulatory regions to maintain conserved gene expression (Vakhrusheva
et al., 2013, Weirauch and Hughes| [2010).

Comparative gene regulation

Over the past five years, comparative studies have tried to move be-
yond characterizations of differences in gene expression levels within
and between species to studying variation in regulatory mechanisms
(Pai and Gilad,[2014). However, the combinatorial complexity of gene
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regulatory factors, e.g. histone modifications and transcription factors
(TFs), and sample types (tissues/cell lines), and the difficulties in as-
sociating specific regulatory regions to the regulated genes, which
may be distal, makes it really challenging to reach a comprehensive
genome-wide map of regulatory elements. Comparative experiments
between human and mouse were usually confined to a handful of
TFs in a few cell types (Johnson et al., 2009, Kunarso et al., 2010,
Odom et al., 2007, Schmidt et al., 2010). Nonetheless, they revealed
principles of cis-regulation which were subsequently confirmed by
larger studies. The mouse ENCODE consortium has been collecting
hundreds of ChlP-seq data of histone modifications and transcrip-
tion factor (TF) binding site, DNA-seq data for chromatin accessibility
sites and replication timing data for chromatin domains for different
mouse tissue/cell types (Yue et al., 2014). Although chromatin states
inferred from histone modifications (Ernst and Kellis|, [2012) and chro-
matin domains were highly similar between the two species, pat-
terns of transcription factor binding, as measured by ChlP-seq and
inferred from DNase hypersensitive sites, are more diverged (Yue
et al., 2014).

The primary consensus sequence motif for orthologous TFs is virtu-
ally the same in human and mouse (Cheng et al., 2014} /(Odom et al.,
2007), but the secondary moitif is often different (Cheng et al., [2014).
Thus, the most represented motifs discovered in one species may
be used in the other species, with the caution that motif alone is not
indicative of actual binding.

Depending on the sample and the TF, between half and two-thirds of
the binding sites in one species can be aligned to an homologous se-
quence on the other species (Cheng et al.,|2014/ [Denas et al., 2015|,
Vierstra et al., |2014) and widely share the same relative distance to
TSS (Cheng et al., 2014). Yet, only 10-20% of the TF-bound sites in
one species are also bound in the other species (Cheng et al., 2014,
Vierstra et al., 2014). Species-specific binding sites may arise from
species-specific innovations or losses. It has been proposed that
novel TF binding sites and enhancers may arise from transposition of
repeated elements (Bourque et al., 2008, |Kunarso et al., 2010, [Yue
et al., [2014) or by DNA exaptation (Villar et al., 2015). Surprisingly, it
has been shown that up to 40% of TF binding sites lost in human, but
present in mouse, have an unchanged sequence (CEBPA, (Schmidt
et al., 2010)). On the other hand, the loss of TF binding occupancy
in aligned regions is half of the times compensated by another active
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site within 10kb (Schmidt et al.,[2010), so the main regulatory circuits
of gene regulatory networks are maintained. In addition, TF binding
sites in one species are repurposed in the other species; it has been
computed that 47-57% of sites that are bound in one species in one
sample are bound in the other species in another sample (Denas
et al., 20195). In addition binding sites with non conserved occupancy
tend to be more tissue-specific and are usually in a non-permissive
chromatin state in the species where they are inactive (Cheng et al.,
2014).

Taken together these findings suggest that although the relationships
TF-target are conserved between human and mouse, the activity of
specific regulatory DNA elements, enhancers and TF binding sites,
in one species cannot be inferred from sequence homology and con-
sensus motif alone in the other species. In fact, only functional val-
idation experiments can confirm the reliability of the cross-species
predictions (Visel et al.,|2008). Pennacchio and colleagues (Pennac-
chio et al., [2006) developed a method to screen for testing in vivo
activity of enhancers using transgenic mouse embryos, which also
allows to observe their tissue-specificity. During the years, they col-
lected a database with the result for almost 3,000 tested enhancers,
orthologous between human and mouse (Visel et al., [2007), as a
freely available resource for the scientific community.

Ultimately, enhancers and TF binding sites in mouse can be a good
proxy to find functional genomic regions implicated in human traits,
for instance related to genome-wide association studies (GWAS)
(Welter et al., 2014). Indeed, TF occupied sites conserved between
human and mouse harbor significatively more GWAS SNPs com-
pared to background (Cheng et al., 2014). Promisingly, more than
four thousands single nucleotide Polymorphisms (SNPs) from human
GWAS studies can be mapped uniquely onto the mouse genome.
As an encouraging example, SNPs associated to traits related to the
liver function, such as HDL cholesterol and alcohol dependence re-
side in liver-specific mouse enhancers, and SNPs associated traits
related to urate levels reside in kidney-specific mouse enhancers
(Yue et al., 2014). Thus, mouse could be a useful model to gain
better insights into the causality of human GWAS SNPs.
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Intraspecies variation in expression in humans
and mice

Between 4 and 5 million SNPs differentiate each person from the hu-
man reference genome (Consortium et al., [2015a) and a conserva-
tive estimate postulates that the genomes of two individuals differ by
at least 0.5% (Levy et al., 2007). How this variation impacts molecu-
lar features, such as gene expression, and ultimately phenotypes, is
currently a topic of active research, especially within consortium-led
projects like the Geuvadis (Lappalainen et al., |2013) and the GTEx
projects (Consortium et al., 2015b). The major stratification of varia-
tion within the human species is at the level of populations, which
is strongly related to people’s geographic distribution (Consortium
et al.,|2015a). This leads to relatively small changes in gene expres-
sion affecting only 1% of coding and noncoding genes, especially
when compared with approximately 10% genes which change their
expression as a function of age (Melé et al., |2015).

The concept of interindividual variation in the laboratory mice is less
straightforward, since the Mus musculus species have multiple lay-
ers of stratification due to human intervention. Three major wild sub-
species with distinct geographical ranges, M. m. domesticus, M. m.
musculus and M. m. castaneus, are the ancestors of most mouse
laboratory strains (Wade et al., [2002), while M. m. molossinus sub-
species resulted from hybridization between M. m. musculus and
M. m. castaneus in Japan (Wade et al., 2002). Laboratory strains
can be classified into classical inbred strains and wild-derived strains
depending on their origin (Yang et al., 2011). Inbred strains are, by
definition, derived after twenty or more consecutive generations of
brother-sister matings, which brings to at least 98.6% homozygous
loci in each mouse (Beck et al., 2000). Classical inbred strains are
mosaics of a handful of haplotypes derived from fancy mice gener-
ated from wild subspecies (Wade et al., 2002), with more than 90% of
their genetic background coming from M. m. domesticus (Yang et al.|
2007, 2011). The laboratory mouse which is most commonly exper-
imentally employed and whose DNA was the first mouse DNA se-
quenced belongs to the strain C57BL/6J (or black-6 where J stands
for the center of origin, The Jackson Laboratory) (Chinwalla et al.,
2002). It was bred in the early 20s by Clearance C. Little for studies
of the genetics of substance preference given its increased prefer-
ence for alcohol and narcotics (Beck et al., 2000).
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To quantify the genetic variation between strains the Mouse
Genomes Project sequenced and catalogued a number of classi-
cal inbred and wild-derived strains (Keane et al., 2011). Variation
within the reference genome strain is negligible as it is virtually in-
distinguishable from the sequencing error rate (Wade et al.| [2002).
Also the variation between mice of the same strain but created from
different centers, is very low (less than 10,000 SNPs (Keane et al.|
2011)), although phenotypic differences in behaviour have been re-
ported (Kiselycznyk and Holmes, [2011, Matsuo et al., 2010). Inter-
strain variation, instead, is more pronounced, with around 4-5 million
SNPs between the mouse reference genome and any other classi-
cal inbred strain (Keane et al., 2016, 2011); considering that these
SNPs are limited only to the 85% of accessible genomic sequence
and that the mouse genome size is smaller than human, this varia-
tion is higher than interindividual variation amongst humans. Finally,
the mouse reference genome differs from other wild-derived strain by
at least 17 million SNPs, with the exception of strains derived from
M. m. domesticus (Keane et al., |[2011).

Comparatively, there is relatively little variation in terms of gene ex-
pression both between classical inbred strains (Holgersen et al.,
2015, [Turk et al., |2004) and within the same strain (Pritchard et al.,
2001), in different tissues. These differences are not necessarily
related to the diverse genetic background, as many environmen-
tal factors (e.g. progressive removal of littermates from the cage)
could temporarily alter gene expression profiles of individual mice
(Pritchard et al., 2001). Thus, it is really important to select a
good mouse population to understand murine intraspecific varia-
tion, possibly from outbred wild-caught mice, and compare it to hu-
man. The use of inbred strains to uncover relationships between
genotype and gene expression is more suited for experiments on
allele-specific expression. In hybrid mice between two distinct in-
bred strains, maternal and paternal genotypes can be readily tracked.
In fact, with more than 450 inbred strains (Beck et al., |2000), care-
fully annotated by the Jackson Laboratory (Bult et al., [2016) (http:
//www.informatics. jax.org), RNA production from only one allele
can be easily detected and compared across multiple tissues (Deng
et al., 2014, Keane et al., [2011).
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Cellular complexity of mammalian organs

A vast proportion of transcriptomics studies in human and mouse, es-
pecially the comparative ones, has been mostly focused on profiling
gene expression at the organ/tissue level. Thus, organs have been
regarded as the functional units of organisms, each one with its own
distinct transcriptional pattern. However, organs are composed by an
organized mixture of different cell types, whose concerted genomic
activity establishes the proper functioning of organs as a whole. Cur-
rently, it is unknown how many different cell types compose mam-
malian organisms. So far, more than 400 human cell types have
been classified (Vickaryous and Hall, 2006), based on multiple crite-
ria including morphology and biochemistry. The diverse composition
and relative proportion of cell types within an organ can be a poten-
tial source for unwanted variation in gene expression between organs
and between species. In fact, theoretically, even two distinct samples
from the same biopsy, but from different histological sections, can ex-
hibit distinct gene expression profiles, due to the diversity in cell type
composition. Clustering analysis revealed that populations of human
and mouse primary cells of a given type have distinctive expression
profiles (Hume et al. 2010, Mabbott et al., 2013). Therefore, it is
extremely important to deconvolute qualitatively and quantitatively
which cell populations contribute to the global expression patterns
of organs (Lee et al., 2013).

Most transcriptomics studies on mammalian primary cells are based
on meta-analyses of mostly microarray data from disparate sources,
which, albeit with normalization methods, carries technical noise and
reduced sensitivity. The FANTOM consortium released the largest
organized atlas of promoter (and gene) expression data (Consortium
et al.l |2014) in hundreds human and mouse primary cells and tis-
sues. However, to the best of our knowledge, a systematic compara-
tive analysis between the two species is still lacking at the resolution
of cell populations. This could shed light on cell-type-specific differ-
ences between human and mouse that are masked by the average
behaviour of whole organs. For instance, two genes expressed in
pancreatic islets in both human and mouse, group-specific compo-
nent (vitamin D binding protein) GC and DLK1, specific of alpha cells
and beta cells, respectively, in human have opposite cell-specific ex-
pression in mouse (Li et al., 2016).

Expression data of purified populations of primary cells provide
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higher resolution than whole tissue transcriptomes and is more ro-
bust to stochastic variability between single cells (Saliba et al., 2014).
On the other hand, with the recent advancements in single-cell tran-
scriptomics (Kolodziejczyk et al., 2015, [Macosko et al., 2015), single-
cell RNA-seq allows to obtain gene expression data for rare cell
types, whose signal is usually masked at the population level, to iden-
tify novel cell types with previously unknown markers, and to charac-
terize cell differentiation stages (Trapnell, 2015). Due to noticeable
experimental challenges in disaggregating solid tissues, especially in
human, most single-cell RNA-seq research focused on mouse solid
tissues, including brain (Zeisel et al., |2015), lung (Treutlein et al.,
2014), intestine (Grun et al., 2015), while fewer studies analyzed hu-
man samples from pancreatic islets (Li et al., 2016)), brain (Darmanis
et al.l |2015) and blood (Jaitin et al., 2014, |Paul et al) 2015). Ad-
ditionally, single-cell RNA-seq has been applied to investigate RNA
dynamics over time, especially in the early stages of life, just days
after fertilization (Ohnishi et al., 2014, Scialdone et al., [2016).

Notwithstanding the growing bulk of projects employing single-cell
RNA-seq, as with cell population data, very few compare human and
murine single-cell expression. Possibly, one complication being the
intrinsic difficulty of obtaining comparable samples from homologous
organs or identifying homologous dynamic processes. Xue and col-
leagues compared the genetic programs of human and mouse early
embryos, in the developmental stages between oocytes and morula,
and observed that while global gene expression profiles are con-
served, the actual timing differs between the two species (Xue et al.,
2013). Eventually, comparing human and mouse transcriptomes at
the single-cell level can help identifying previously undescribed con-
served cell types, overcome the biases of different cell type compo-
sition and understand conserved and diverged elements of temporal
dynamics. Albeit promising, this will possibly require the develop-
ment of specific computational methods which would deal with the
complexity of single-cell data and integrate it with the additional di-
mension of cross-species comparison.

16



“ExempleUsPlantillaB5” — 2016/9/1 — 8:56 — page 17 — #29

CHAPTER 1
Encyclopedia of mouse DNA elements

Similar to the ENCODE project, the Mouse ENCODE project aims
at functionally characterize and annotate the mouse genome. A
comparative approach has been pursued to identify common and di-
verged functional elements between the two species. To this end,
the Mouse ENCODE consortium is collecting a huge amount of
Next-Generation Sequencing data (over 1,000 data sets), in several
mouse tissues and cell types, including RNA-seq, ChIP-seq of chro-
matin marks and transcription factors, replication and DNAse-seq.
The integrative analysis of gene expression profiles, chromatin status
and trans-acting regulators revealed a variable landscape of conser-
vation. Although gene expression is largely conserved, some genes
have dissimilar profiles, and while chromatin states and transcription
factor networks are relatively stable between the two species, cis-
regulatory sequences seem to be less evolutionarily constrained.

My main contribution has been the analysis of transcriptomics data,
which showed that clustering of human and mouse homologous or-
gans is heavily dependent on the normalization method and on the
set of genes. In a separate paper, to which again | contributed with
clustering analysis of human and mouse homologous organs from
a different datasets, it is shown that clustering is also dependent on
the organs; organs with the highest number of tissue-specific genes
drive an organ-dominated clustering and their expression profiles are
the most conserved between the two species
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CHAPTER 2

Transcriptional comparison of human and
mouse genomes

Although some genes show different expression profiles, a s dis-
cussed in Chapter 1, human and murine transcriptomes are largely
conserved. By comparing RNA-seq data from mouse tissues and
human cell lines, we identified a core set of constrained genes which
exhibit conserved expression patterns, even between such hetero-
geneous sample types as tissues and cell lines. Naturally, this set
of genes constitutes a substantial fraction of the total RNA produc-
tion and are involved in housekeeping processes common to all cell
types. We also showed that these genes are associated to strong
phenotypes and, consistently, to constrained epigenetic marking. In
addition, the outstanding sequencing depth of the mouse dataset al-
lowed us to detect novel transcripts and genes, thus enriching the
current annotation status.

My main contribution to this work has been the analysis of novel tran-
scripts, conservation of gene expression and antisense transcription
and functional characterization of genes with constrained expression
and their epigenetics regulation.
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CHAPTER 3

Gene-specific patterns of expression variation
across species and organs

A highly charged debate exists as to what extent transcriptomes are
conserved between humans and mice across multiple organs. In
Chapter 1 it is shown that different sets of genes and different sets of
samples have distinct weights to answer this question. Here, we ap-
plied variance decomposition of gene expression, similarly to Chap-
ter 1, to a previously published dataset including RNA-seq exper-
iments from multiple organs across six mammals and chicken. We
show that genes with high variability in expression across tissues, but
low variability across species, drive to a more tissue-dominated clus-
tering, while genes with high expression variability across species,
but low across tissues, drive to a more species-dominated cluster-
ing. Genes from the former set, which are more conserved amongst
species, might be more suitable to extirapolate experimental data
from mouse to human (Hardison, 2016).
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CHAPTER 4

Conserved transcriptional programs in human
primary cells

Mammalian organs are composed of a very heterogeneous mixture
of several cell types. In this chapter, we present the analysis of RNA-
seq data from 53 human primary cell lines of different types and iso-
lated from various anatomical locations. We identify four major tran-
scriptional programs which define four major types of cells: endothe-
lial, epithelial, melanocytes, and mixed cells, which include fibrob-
lasts, smooth muscle cells and mesenchymal stem cells. We found
2,873 genes, including 48 very correlated transcription factors, that
distinguish these major programs. With the hypothesis that different
proportions of these cell types, and consequently of their expression
signatures, contribute to shape the expression profile of complex or-
gans, we built a linear model which deconvolutes cellular composition
from whole organ expression data. The model shows that each or-
gan has its own distinctive cellular composition and that the same
organ can have different cellular compositions, depending on the his-
tological section from which RNA was extracted, which is reflected
on its gene expression profile.

Breschi A, Davis CA, Djebali S, Pervouchine DD, Gillis J, Dobin A, La-
garde J, Vlasova A, Gingeras TR, Guig6é R. The molecular anatomy
of the human body (in preparation).
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Abstract

The adult human body is composed of billions of cells belonging to a yet undefined number of cellular
types and subtypes. How the transcriptional profiles of individual cell types are regulated to achieve organ
complexity is still under investigation. Here, we present the analysis of RNA-seq data from 53 human pri-
mary cell lines extracted from different anatomical regions. We identify four major transcriptional signatures
that clearly distinguish endothelial cells, epithelial cells, melanocytes and a mixed set of cells, including fi-
broblasts, smooth muscle cells and mesenchymal stem cells. About 3,000 genes show distinct patterns of
expression between these major cell types. We found that the cell topological origin has little impact on
the transcriptome compared to the cell type and there is little overlap between cell type-specific genes and
tissue-specific genes. By analysing the expression of cell type specific genes in whole tissue sections from
the GTEx consortium, we were able to detect sample-specific differences in cellular composition due to dif-
ferent histological cuts. This study represents the larger collection of RNA-seq of human primary cells to

date and it constitutes a great resource to understand organ complexity at the cellular level.
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Regulated production and processing of RNA underlies cellular differentiation, and defines cell pheno-
type and function. Massively parallel sequencing technologies, as well as earlier DNA microarrays, have
been extensively used to monitor the transcriptomes of tissues and cell lines, across multiple individuals
(healthy and diseased) and species [1-3]. Transcriptomes are usually monitored from RNA extracted from
samples including millions of cells (10°> — 107). Because tissues and organs are highly heterogeneous struc-
tures made from cells of dozens of primary cell types (i.e. populations of cells with common phenotype and
biological function), the transcriptomes obtained from tissue samples represent only the average behavior
of genes across these heterogeneous cellular collections. A human heart, for instance, is composed of at
least seven major cell types [4], while a human lung is composed of at least five major cell types [5], and
more cell sub-types exist depending on their differentiation status and anatomical sublocation [6]. Changes
in gene expression between tissue samples (for instance, healthy and diseased), therefore, may not neces-
sarily reflect changes in the transcriptional activity of genes in specific cell types, but changes in the cellular
composition of the tissues [7].

Recent technological advances in microfluidics and others have made possible the isolation of individ-
ual cells from which RNA can be extracted and sequenced. Single-cell RNA sequencing, mostly so far on
hematopoietic derived cell populations [8], has revealed larger cellular heterogeneity than expected, leading
to the identification of previously unknown cellular types [9—11]. Because of the large number of cells (e.g.
10'1 cells in liver [12]), and of the substantial stress to which they are subjected during organ disaggrega-
tion, single-cell RNA-seq studies of solid human tissues are scarce. Moreover, it is unclear to what extent
the biological function is exerted by individual cells or by groups of functionally equivalent cells working in
concert. If the latter, the consensus transcriptome of primary cells may be the most biologically relevant.

Here, we monitored by RNA-seq the transcriptome of 53 human primary cell lines from multiple body lo-
cations and embryological origins (Fig. 1A, Table S1). Primary cells were obtained from PromoCell (http:
//www.promocell.com/) and ScienCell (http://www.sciencellonline.com/) providers, and iso-
lated using FACS analysis of surface markers or morphological and functional assays. Total long RNA
(>200bp) was ribo-depleted, and deeply sequenced in two bio-replicates using lllumina to an average of 156
million paired-end 101 bp reads per replicate. Reads were mapped to the human genome hg19 using STAR
[13] and mapped reads were used by Flux Capacitor [14] (Supplementary Information, Table S1) to infer
quantification of the genes and transcripts annotated in GENCODE v19 [15]. We believe that the transcrip-
tome of the primary cells monitored here is a key resource to understand tissue biology, serving as interface
between tissue and single cell transcriptomes.

We clustered the primary cells based on the filtered expression of protein coding genes (14,475 genes),
long non-coding RNAs (IncRNAs, 1,618 genes) and pseudogenes (1,347 genes, Fig. 1B, Supplementary
Information). Primary cells do not cluster by body location (or embryological origin), but form quite well de-
fined clusters depending on the broader cell type to which they belong: endothelial, epithelial, melanocytes,
and a mixed set of cell types including fibroblasts and mesenchymal and muscle cells. Modularity analysis

quantitatively supports the clustering by cell types over body location (or embryological layer, Fig. 1C, Sup-
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plementary Information). We recapitulate essentially the same clustering using gene expression quantifica-
tions obtained in 107, partially unrelated, primary cells using Cap Analysis of Gene Expression (CAGE)-tags
by the FANTOM project [16] (Fig. 1D, Supplementary Information).

These results suggest that cellular transcriptomes adhere to a few basic transcriptional programs, or,
in other words, that not any transcriptome is compatible with cellular life. These programs are refined and
modulated in the primary cells that constitute organs and tissues, conferring extraordinary cellular hetero-
geneity. Body location may partially contribute to this modulation, but it is not the primary determinant of the
transcriptome of the primary cells. Using linear models we found that the body location explained on average
only 4% of the total variance in gene expression across primary cells (Fig. S1).

We identified 2,873 genes that were specific to each of the four transcriptional programs or cell types
above (Fig. 2A, Table S2, Fig. S2). The functions of these genes closely match the expected biology of the
broad cell types (Fig. S3). As expected, since most tissues include cells from all cell types, there is little
overlap between cell type specific genes and tissue specific genes, as inferred from data from the GTEx
project (Fig. 2B, Tables S3-4, Supplementary Information). Actually, many cell type specific genes are found
expressed in many tissues (Fig. 2C). That tissues are made of cells belonging to a reduced number of
common transcriptional programs may explain the finding that there are very few genes that are exclusive to
a given tissue [2].

Among cell type specific genes, we identified 156 Transcription Factors (TFs, out of a total of 1,544 TFs
annotated in the human genome [17]), 48 of which show strong co-expression patterns (Fig. 2D). These
TFs include known cell type-specific transcriptional regulators, such as ERG, which was shown to regulate
endothelial cell differentiation [18], and TP63, which is an established regulator of epithelial cell fate and is
often altered in tumor cells [19]

The cellular RNA content is the product of both primary RNA transcription and subsequent post-processing
to mature functional RNAs—the species mostly monitored through RNA-seq. Among the post-processing
steps, splicing is often assumed to play a fundamental role in defining cellular type. However, among cell
type specific genes, there is strong depletion of RNA binding proteins (only 45 out of 1,541 [20]). To further
disentangle the relative contribution of transcriptional versus post-transcriptional regulation in defining cell
type, we estimated for each gene the proportion of the variation in isoform abundance between cell types
than can be simply explained by variation in gene expression [21], and found this to be on average 67% (Fig.
2E). In contrast, considering all samples together, we found that variation in gene expression explains only
55% of the variation of isoform abundance between primary cells. All these results strongly suggest that
regulation of primary transcription plays the fundamental role in defining the broad transcriptional programs
within the human body, while post-transcriptional regulation plays a comparatively more important role in re-
fining the specific cellular transcriptomes of primary cells within each program. In further support of this, we
found that the proportion of differentially expressed genes compared to differentially included exons is sig-
nificantly larger when comparing primary cells within cell types, than when comparing primary cells between

cell types (8.2 vs 7.0, p-value=1.159e-39, Mann-Whitney test, Fig. 2F, Supplementary Information). Cell type
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specific genes belong mostly, as expected, to the class of genes with unconstrained expression as defined in
Pervouchine et al. [22] (Fig. 3A). There are notable differences in the patterns of evolution, both of sequence
and expression, between cell type specific genes and protein coding genes overall, and between cell type
specific genes themselves depending on the type. First, cell type specific genes are relatively ancient within
vertebrate evolution compared to protein coding genes overall (Fig. 3B). Indeed, a larger proportion of them
were present in amphibians and birds than protein coding genes overall (70-75% compared to 60%). Epithe-
lial specific genes are an exception, since comparatively many of them appear to arise early in mammalian
evolution. In contrast, the expression of cell type specific genes is overall less conserved than that of protein
coding genes (Fig. 3C). Epithelial specific genes show the lowest conservation of expression.

Since our results suggest that most cells within a particular tissue belong to one of the basic transcrip-
tional programs uncovered here, we used the patterns of expression of cell type specific genes to infer the
broad cellular composition of human tissues using the GTEx tissue transcriptome data. We employed con-
strained linear models to infer the proportion of melanocytes, epithelial, endothelial and mixed cell types in
each tissue sample based on the expression of cell type specific genes in the sample (Fig. 4A, Supplemen-
tary Information). The estimated proportions reflect the known cellular composition of the tissues (Fig. 4B).
We clustered the GTEx samples according to the estimated proportion of cell types. The clustering (which
is based in only five values per sample), recapitulates tissue type as strongly as clustering based on gene
expression, according to modularity analysis (Fig. S4).

Among all tissues, stomach shows a clear bimodality in the proportion of epithelial and mixed cell types,
suggesting sample heterogeneity (Fig. 4C). The GTEx stomach samples are all from the gastric body, the
walls of which consist of two broad layers, the mucosa (and submucosa), which is mostly epithelial, and the
muscularis, which is mostly smooth muscle tissue (Fig. 4D). GTEx stomach samples do not include these
two layers in a consistent proportion, being dominated either by the mucosa or by the muscularis. We used
the histological images of the stomach samples, to score them as mostly muscularis or mostly mucosa (Fig.
4D, Supplementary Information). This restored the transcriptome unimodality within each set of samples
(Fig. 4C). Then we investigated the patterns of gene expression of the cell type specific genes. We first
used the projection score to identify the genes that most contribute to the separation of the samples (this
is an unsupervised method, which does not take into account the inferred proportion of cell types in each
sample). We observed that, among these genes, epithelial specific genes were exclusively expressed in the
mucosa and mixed type specific genes were exclusively expressed in muscularis (Fig. 4E). Even though the
cell type specific genes were obtained from the transcriptomes of primary cells, none of which originated
from the stomach, their expression pattern when independently measured in heterogeneous tissue samples,
such as stomach in GTEY, is indicative of the underlying cellular composition of the tissues. This constitutes
a strong validation of our hypothesis that tissues are generally conglomerates of primary cells belonging to
a few basic cell types.

The data collected here represents the largest collection to date of RNA-seq experiments in human pri-

mary cells. We believe this constitutes a great resource for the scientific community as it is at an intermediate
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resolution of complexity between single cells and whole organs. We identify a set of about three thousand
genes whose expression define cell type specific signatures. Finally, we have shown that transcriptional
profiles of complex organs can be reconstructed by the expression levels of cell type specific genes. Ex-
tending the variety of profiled cell types and integrating expression data with epigenetics data from matching
samples will certainly enrich our understanding of how different cells are regulated to shape the fascinating

complexity of entire organs.
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Supplementary Tables and Figures

Supplementary tables S1-3 can be found at:
http://public-docs.crg.es/rguigo/Data/abreschi/ENCODE/prCells/subm/SupplTables.x1sx

Table S1. List of ENCODE samples used in this study, with ENCODE ids and GEO ids. Although for some the GEO id is
not available, all the data can be accessed through the ENCODE portal http://www.encodeproject.org.

Table S2. List of cell type cluster-specific genes.
Table S3. List of randomly selected pairs of GTEx samples. Ids are SRA run ids.

Table S4. List of tissue-specific genes derived from GTEx samples.
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Fig. S1. Estimation of proportion of variance explained by the factors body location, cell type, cell cluster, germ layer and
organ.
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Fig. S2 Distribution of 2,873 cell type cluster specific genes by cell type and gene biotype.
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Fig. 83 GO term enrichments for cell type specific genes. Only the 10 most significant terms for each cell type are shown.
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Fig. S4 Network modularity of GTEx samples. The network of GTEx samples is created for increasing network densities,
which depend on different thresholds of pairwise Pearson’s correlation coefficients. Network densities are measured
as the percentage of edges over the total number of possible edges. Correlation coefficients are computed over gene
expression (EXPR) or over the estimated coefficients from the constrained linear model (LSQLIN). The network modularity

is computed both with respect to organs (SMTS) or to organ subregions (SMTSD).
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Supplementary Information

1 RNA isolation, Library Construction and Sequencing

For each cell type to be made into a library we obtained cell pellets that were stored in RNAlater (Thermofisher) as
catalogue items from PromoCell. We ordered 3 vials per cell type per donor for a total of 3 million cells. The 3 vials were
combined together and we isolated Total RNA from them using the Ambion mirVana miRNA Isolation kit (cat #AM1561).
The rRNA was removed using the RiboZero Gold Protocol (cat #RZG1224). The libraries are made using a homebrew
“dUTP” protocol per PMC2764448, which generates stranded libraries. They were sequenced on the lllumina platform
in mate-pair fashion and processed though the data processing pipeline at the ENCODE DCC. Additional, information

about each of these steps, metadata and files can be found at: https://www.encodeproject.org/.

2 RNA-seq processing pipeline

Raw reads from the 106 RNA-seq libraries (see Table S1 for a list of ENCODE library ids and https://www.encodeproject.or¢
for submitted fastq files) were aligned with STAR v2.3.1z [1] to the human genome assembly hg19. Reads mapping to
more than 20 multiple positions were discarded. Read counts for all long genes annotated in GENCODE v19 [2] were
computed with Flux Capacitor v1.6.1 [3]. Since for most of the analyses we average expression values for a given pair
of replicates and sometimes the two biological replicates are from donors of opposite sex, we remove genes on chro-
mosome Y. The lack of an enrichment step for polyadenylated transcripts preserves the presence of some short biotype
genes, which are still longer than 200bp. Thus, we remove genes with at least one transcript annotated as short RNA in
GENCODE (16 genes, ENSG00000243819.3, ENSG00000270141.2, ENSG00000249352.3, ENSG00000270123.2,
ENSG00000228439.3, ENSG00000253143.2, ENSG00000251867.2, ENSG00000254144.2, ENSG00000269900.2,
ENSG00000259001.2, ENSG00000258486.2, ENSG00000261519.2, ENSG00000260682.2, ENSG00000264932.2,
ENSG00000225978.2, ENSG00000232512.2). These genes are often of repetitive nature which makes the quantifica-
tion of their expression problematic, this is why we decided to remove them. Read counts which are not reproducible
between two replicates (npIDR>0.1 [4]) are set to 0. After filtering for reproducibility, read counts are normalized to
a slightly modified version of RPKM (reads per kilobase of exon model per million mapped reads [5]). Specifically,
read counts were first normalized to cpm (counts per million), where the library sizes are the TMM (trimmed mean of
M values [6]) scaled sums of exonic reads, and then normalized by gene length. Finally, RPKM values from the two
replicates were averaged, and genes with RPKM<1 in all samples were discarded, resulting in 17,440 genes, including
14,475 protein coding, 1,618 long non-coding RNAs and 1,347 pseudogenes. As the samples were prepared and se-
quenced in three known distinct batches, we used the removeBatchEffect() function from R limma package [7] to build
a linear model with the batch information and the cell types on log10-transformed RPKM (with a pseudocount of 0.01),

and we regressed out the batch variable.
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3 Gene expression analyses

3.1 Hierarchical clustering

Hierarchical clustering based on gene expression (Fig. 1B) was performed on log10-transformed RPKM (with a pseu-
docount of 0.01) after filtering and batch correction. Complete linkage clustering algorithm is applied to the vectors of
Pearson’s correlation coefficients between each pair of samples. The distance between two vectors is computed as

abs(1-cc), where cc is again the Pearson’s correlation coefficient between the vectors.

3.2 Network modularity

Modularity was computed similarly to what was described in Breschi et al. [8]. Briefly, we built a graph where vertices (or
nodes) are samples and where two vertices, samples, are connected if the Pearson’s correlation coefficient between
the corresponding samples, computed on the gene expression values, is higher than a certain threshold (excluding
connections of a sample with itself). Like in hierarchical clustering, gene expression values are log10-transformed
RPKM after adding a pseudocount of 0.01. The vertex types on which the modularity is computed are either the organ,
the body location, the germ layer or the cell type. To compute the modularity we used the modularity() function from

the igraph v0.7.1 R package, which implements the following definition [9]:

Q= o e NNy — e ) @
i J

2m

where m is the number of edges, A;; is the element of the adjacency matrix A in row i and column j (corresponding to
vertices 7 and j respectively), k; is the degree of 4, k; is the degree of j, ¢; is the type (or component) of 4, ¢; that of j,

the sum goes over all i and j pairs of vertices, and é(z,y) = 1 if = y and é(z,y) = 0 otherwise.

3.3 Estimation of proportions of explained variance

To estimate the proportion of variance explained by the factors cell type, body location, cell cluster, germ layer and
organ, we built a separate linear model for each gene and factor. The proportion of explained variance is usually
defined as the ratio of the variance across levels of a factor over the total variance. However, to account for different
number of levels in each factor, for a gene ¢ and factor f, we compute wgf, which takes into account also the degrees

of freedom of that factor:
5 S5S;— DFy« MSE
W2, = 2P )
af SST + MSE

where S5 is the sum of squares for factor f, DFy is the degrees of freedom of factor f, M SE is the mean squared

()

residual variance and SST is the total variance.

3.4 Identification of cell type cluster-specific genes

Cell cluster specificity was surveyed with the edgeR package [10]. Since edgeR relies on a negative binomial model
which requires discrete read counts, for this analysis we used the read counts of the filtered 17,440 genes, and kept the
counts for individual samples without averaging the replicates. To find genes specific of each major cell type cluster,

endothelial, epithelial, melanocytes, and mixed, we performed pairwise differential expression between samples of
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a given cluster and all the others. Genes with FDR<0.01 and at least 4-fold change were considered cell-cluster-
specific. The number of cell cluster-specific genes changes depending on the cluster: 635 in the endothelial cluster,

951 epithelial, 353 melanocytes and 935 mixed (2,873 in total).

3.5 Relative contribution of gene expression to variability in isoform abundances

Gene expression contribution in the transcript abundance variation across all samples was computed following the
methodology presented in Gonzalez-Porta et al. [11] and further improved in Melé et al. [12]. In a nutshell, for
each gene, samples are represented in a multidimensional space using their transcript abundances as coordinates.
The contribution of gene expression in the transcript abundance variation is computed by the variation of transcript
abundance after projecting the samples into a model of constant splicing (a line in the multidimensional space) divided
by the total variation of transcript abundance without projection. If this ratio is close to 1, projecting into the "no splicing”
model didn’t reduce the transcript variation, pointing at mainly gene expression contribution. Inversely, if close to 0,
alternative splicing is mostly responsible for the major part of the transcript variation.

A generalization of this approach allows to estimate the effect of a given factor, in this case the cell type, to the
contribution of gene expression in transcript abundance variation. Precisely, we asked how much of the transcript
variation attributed to tissue is due to changes in gene expression. In practice we compare the proportion of varia-
tion explained by the tissue classification after and before projecting the samples into the “no splicing” model. The
proportion of variance explained by tissue classification is derived from the classical ANOVA decomposition. The “no
splicing” model is represented by a line in the multidimensional space formed by the different transcripts abundances.
Like in the analysis across all samples, a value around 1 means that the projection didn’t affect the estimate of variance
explained, supporting a full contribution of gene expression. A ratio around 0 means that the variance explained was

greatly reduced after projection, supporting a major contribution of alternative splicing.

4 Conservation of cell type cluster specific genes

4.1 Sequence conservation

As a measure of sequence conservation of cell type cluster specific genes, we computed the fraction of genes in each
set which have a one-to-one orthology relationship with human and other ten vertebrates. The list of orthologous genes
was retrieved from Ensembl Compara [13] v75, which is compatible to Gencode v19 (http://feb2014.archive.
ensembl.org/biomart/martservice). As a control, the fraction of orthologs was computed also for all protein
coding genes (20,731 genes) and for the set of already defined orthologous genes in Barbosa et al. [14] and filtered in
Breschi et al. [8]. As this latter set of orthologous genes was from a previous version of Ensembl, we used a subset of
them which are retained through the version 75 (6,268 out of 6,283).

4.2 Expression conservation

Using a similar approach to what is described in Breschi et al. [8], expression conservation was measured as the
Pearson’s correlation coefficient between expression in human and any other vertebrate species in each organ for the

different gene sets. Expression data were obtained from Breschi et al. [8, 14]. Only cell type cluster specific genes
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with orthologous genes in that dataset were used: 207 of 635 endothelial genes, 277 of 950 epithelial, 130 of 353
melanocyte, 295 of 935 mixed.

5 Analysis of Cap Analysis of Gene Expression data (CAGE)

Gene expression data from CAGE in human primary cells was obtained using FANTOM5 CAGE data [15] and through
a private collaboration. Read counts for each gene were obtained by summing up the read counts for all the promoters
of that gene and then normalized to cpm. To make it comparable to our RNA-seq dataset, we used only cell lines
belonging to a cell type present in our dataset (107 cell lines with multiple biological replicates). Two biological replicates
were selected at random, when more than two were available for a given cell line. We applied npIDR filtering [4] on read
counts between two replicates and set to 0 the cpm values when the read counts were not reproducible (npIDR>0.1),
and averaged the cpm between replicates. Genes with cpm<1 in all samples were discarded, resulting in 21,282
genes, which were intersected with the filtered 17,440 genes of our dataset, leading to a final set of 15,489 genes.
Samples were clustered based on the expression of these genes (Fig. 1D) using log10-transformed cpm after adding
a pseudocount of 1. Average linkage clustering algorithm is applied to the vectors of Pearson’s correlation coefficients
between each pair of samples. The distance between two vectors is computed as abs(1-cc), where cc is again the
Pearson’s correlation coefficient between the vectors.

6 Splicing
6.1 Computation of exon inclusion levels

Exon inclusion levels, measured as percent spliced-in (PSI) values [16], were computed for 439,779 internal exons with
IPSA Splicing Analysis Pipeline (https://github.com/pervouchine/ipsa). PSI values were computed only for
splicing events supported by at least 10 reads. PSI values for exons with an absolute difference in PSI values larger
than 0.1 between two replicates were set to NA in both samples. PSI values were averaged between replicates, when
available.

6.2 Gene Expression vs Exon inclusion

We compared the differences of gene expression and of exon inclusion within and between cell types. The difference of
gene expression within and between cell types was computed as the number of genes differentially expressed (edgeR
[10], FDR<0.01, log2-fold-change>2) between each pair of samples belonging to the same or different cell types,
respectively. The difference of exon inclusion within and between cell types, instead, was computed as the number of
genes containing at least one exon differentially included between pairs of the same or different cell types, respectively.
We defined an exon as differentially included between two samples if the absolute difference between its PSls in the
two samples was larger than 0.2. Finally, we computed the ratio between the number of differentially expressed genes
(DE genes) and the number of genes with differentially included exons (DS genes) for each pair of samples. As there
was evident bias between PSI values from the first two batches compared to the third, we restricted the analysis to the

first and the second batches, which include enough representative samples for the different cell types (Fig. 2F).
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7 Analysis of GTEx data

7.1 Identification of tissue-specific genes

Tissue-specific genes were defined from the GTEx consortium RNA-seq data [17]. To have a comparable approach to
the one used here, we randomly selected a pair of donors for each tissue subregion, with similar sequencing depth,
and reprocessed the raw reads through our pipeline (see Table S3 for a list of SRA run ids). Again, we used edgeR [10]
to perform differential expression between samples of a given tissue and the others. This time and because of the high
discrepancy in the number of samples between each pairwise differential expression test, we used a quite stringent
criteria for differential expression and defined a gene as tissue-specific if its FDR was lower than 0.01 and its log2-fold

change was larger than 4. A list of the 2,697 tissue-specific genes and FDR is provided in Table S4.

7.2 Constrained linear model

In this analysis we wanted to estimate the proportion of the four major cell type clusters described so far in whole
organs by gene expression data from the GTEx consortium [17]. Thus, we built a linear model for each individual GTEx
sample, which uses the average expression of cell type cluster specific genes to estimate the coefficient of each cell
type cluster. By constraining the sum of the coefficients to 1, and not allowing negative coefficients, we use these
coefficients as a proxy for the relative abundance of a cell type in a given sample. Constrained linear models are
implemented with the Isglin() function from octave optim package. In many cases, we do not expect cell type specific
genes to be informative of a certain tissue, e.g. we do not expect high coefficients for blood samples, since we have no
blood cells in our dataset. To account for this, we introduce, in each model of a given tissue, the expression of the set of
genes specific to that tissue. As an example, when building a model for a blood sample, we add blood-specific genes
(see previous section on how we define tissue-specific genes), which are not in the initial set of cell type cluster specific
genes. In addition, we add an artificial cell type ("Others”), which in this example would mimic some blood-specific cell
type, where the expression of cell type cluster specific genes is 0 (with a pseudocount of 0.1) and the expression of
blood-specific genes is the mean of log10-transformed RPKMs (plus a pseudocount of 0.1) across all blood samples.

Specifically, the model we build for each sample is:
Ys = Qendo * Xendo + Qepi ¥ Xepi + Cnet * Xonel 4 Qmiz * Xmiz + Qoth * Xoth ()

where Y} is the vector of RPKMs for sample s, «; is the coefficient for cell type ¢ and X; is the average vector of RPKMs
for cell type i. The coefficients for each cell type in all GTEx tissues from all donors are shown in Fig. 4A. Tissues
can be represented on a three-dimensional space where the axes are the coefficients for the major cell type clusters,
endothelial, epithelial and mixed cells, showing that each tissue has its own characteristic cellular composition (Fig.
4B). The matrix of RPKM values for tissues was downloaded from the GTEx portal (http://www.gtexportal.
org/home/datasets/, file: GTEx_Analysis_v6_RNA-seq RNA-SeQCvl.1l.8_gene_rpkm.gct.gz) for 8,555

samples and 56,319 genes of the v6 release.

7.3 Classification of histological samples

Histological images for the corresponding samples with RNA-seq data can be publicly found on the Biospecimen
Reasearch Database website (https://brd.nci.nih.gov/brd/image-search/searchhome). Images of his-

tological slides of stomach sections were classified based on the presence of the mucosa (mc) and muscularis (ms)
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layers (Fig. 4D). To each slide we manually assign two binary vectors, one for the mucosa and one for the muscularis
layer, where 1 and 0 indicate presence or absence of the layer, respectively. The length of the vectors depends on
the number of tissue sections on the slide, and the order reflect the order of the tissue sections from left to right and
from top to bottom. Then, we computed the proportion of sections with a given layer and rounded the proportion to be
binary. Thus, each slide will have one of the following possible compositions: mc1ms1, mc1ms0, mcOms1, mcOmsO0.

Finally, we focussed on the samples with either one or the other layer, i.e. mc1ms0 and mcOms1.

7.4 Identification of variable genes among stomach samples

To find the genes at the base of the transcriptional differences we observed amongst stomach samples, we selected
in a unsupervised fashion the most variable genes, by using the projection score [18]. We identified 500 most variable
genes which maximize the projection score for the first three principal components. Of these, 96 are cell type cluster
specific, according to our definition. The expression of these 96 genes clearly discriminates stomach samples with only
mucosa or muscularis layer (Fig. 4E).
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DISCUSSION

The rise of next-generation sequencing technologies in the past
years advanced considerably the field of comparative genomics, tran-
scriptomics and epigenomics. This is particularly important to study
the evolution of gene regulation in model organisms, to gain deeper
insights on the degree of conservation with human. A consider-
able amount of work, including efforts from international consortium
projects such as Mouse ENCODE (Yue et al., 2014) and FANTOM
(Consortium et al., 2014), have been especially centered on the lab-
oratory mouse given its indisputable relevance as model for human
biology and diseases.

As presented in Chapter 1, within the Mouse ENCODE consortium
we analyzed a vast panel of tissue RNA-seq data in mouse and com-
pared them to human. The conservation of gene expression between
the two species is not equivalent for all tissues/organs and genes,
and it is heavily dependent on the normalization approach (Gilad and
Mizrahi-Man, 2015, [Lin et al., 2014, Yue et al., [2014). Organs with
more tissue-specific genes, like testes, brain and heart, have more
conserved gene expression signatures and clustering the samples
based on expression quantification is tissue-dominated (Lin et al.,
2014, |Sudmant et al.,[2015). Extending the analysis to more samples
with fewer distinctive tissue-specific genes leads to a more species-
dominated clustering (Lin et al., 2014, Sudmant et al. 2015). As
presented in Chapter 3, by including more species (human, mouse,
macaque, chimpanzee, opossum, platypus and chicken) we decom-
posed the variance of gene expression across multiple organs into
the relative contributions of organ or species and residual variance
to the total variance (Breschi et al., 2016). Genes with high propor-
tion of variance across tissues and low proportion of variance across
species, which are more tissue-specific, lead to a tissue-dominated
clustering. Conversely, genes with high proportion of variance across
species and low proportion of variance across tissues have more
housekeeping features and lead to a species-dominated clustering.

In Chapter 2 we compared transcriptomes from human cell lines and
mouse tissues, to characterize global properties which are conserved
despite the heterogeneity of the samples (Pervouchine et al., [2015).
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We identified a set of genes with constrained expression, defined as
genes whose expression vary less than two orders of magnitude, and
we characterized their properties. We noticed that constrained genes
are similar to previously described human and murine housekeeping
genes, have constrained epigenetic marking and play important roles
in determining organismic phenotype.

One of the main limitations of current works on comparative tran-
scriptomics is that entire organs are profiled and analyzed. However,
organs are made of mixtures of several cell types and it is possible
that a variable cellular composition underlies transcriptional discrep-
ancies between human and mouse homologous organs. Indeed, in
Chapter 4 we report a substantial level of gene expression inconsis-
tency amongst samples of the same organ from different patients due
to different histological cuts, which favoured one or another cell type.
Moreover, in Chapter 4 we describe how certain human primary cells,
i.e. endothelial, epithelial, melanocytes and "stromal" cells, includ-
ing fibroblasts, mesenchymal stem cells (MSCs) and muscle cells,
have their own characteristic expression signature, shared amongst
cells of the same type, but residing in various anatomical locations.
Comparing these transcriptional programs to the mouse ones, al-
beit certainly relevant and accessible with microarray data, is more
challenging with RNA-seq because of the lack of centrally organized
datasets and metadata. The FANTOM consortium generated over a
thousand CAGE datasets for human and mouse tissues and primary
cells (Consortium et al., [2014), but, to our knowledge, no extensive
comparative analysis has been described.

Improving annotation of transcripts and genes

In Chapter 2 we have shown how RNA-seq can help improving the
current annotation status of coding and noncoding genes, novel iso-
forms and splicing events. Indeed, having a complete genome anno-
tation is crucial to establish comprehensive orthologous relationships
between two genomes. While orthologous protein coding genes are
relatively easy to detect thanks to the coding sequence constraints,
orthologous noncoding RNAs are more challenging to find. In the
past five years several studies, including the one in Chapter 2, re-
ported many novel noncoding transcripts in both the human and the
mouse genomes with approximately one thousand orthologous long
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noncoding RNAs, based on expression levels, sequence homology
and synteny (Hezroni et al., 2015, [Necsulea et al.,|2014, |Pervouchine
et al.,|2015, \Washietl et al., 2014). However, discovery of novel IncR-
NAs is often hindered by their low abundance in the cells. This is re-
cently being addressed by RNA capture techniques, which enrich for
targeted sequences and, thus, enhance their coverage (Clark et al.,
2015). Targeted RNA-seq of annotated IncRNA loci in human (Clark
et al.,[2015) and mouse (Bussotti et al., 2016) revealed more complex
isoform structures, extended transcript boundaries, and connected
previously sparse genes.

Exon structure and splicing are very similar between humans and
mice (Abril et al., 2005, [Modrek and Lee, [2003), although alterna-
tively spliced exons tend to be less conserved (Modrek and Lee)
2003). As we also describe in Chapter 2, exon inclusion levels
are highly correlated between the two species even across very dis-
tant sample types. However, comparative analyses of exon inclu-
sion are usually limited to a few hundred conserved exons (Barbosa-
Morais et al., 2012, [Merkin et al., [2012) and are tight to local splicing
events, not considering the whole isoform structure. Novel transcrip-
tomics sequencing strategies, e.g. synthetic long-read sequencing
(SLRs) (Tilgner et al., 2015) and single-molecule long-read sequenc-
ing (Sharon et al., 2013), enable detection of full-length transcripts
and preserve the relationship between distant exons. These tech-
niques, possibly coupled with targeted approaches for lowly abun-
dant loci, will improve the accuracy of isoform detection and might
provide new insights on the conservation of isoform usage regula-
tion.

MicroRNAs (miRNAs) are short (approximately 22 nucleotides) non-
coding RNA molecules that promote messenger RNA (mRNA) degra-
dation or translational repression, through binding to complementary
sequences in target MRNAs (Carthew and Sontheimer,[2009). There
is constantly growing evidence that alterations in miRNA expression
may lead to several diseases (Li and Kowdley, 2012), including can-
cer (Lin and Gregory, [2015), thus the use of specific mouse models
to understand the mechanisms of miRNA involvement in diseases
will certainly be beneficial (Park et al., 2010). Currently, almost three
and two thousand miRNAs are annotated in the human and mouse
genome, respectively (Kozomara and Griffiths-Jones, 2010). How-
ever, only a small fraction (300 miRNAs) of them has a defined or-
tholog in the other species (Landgraf et al., 2007) and comparison
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of their expression profiles is still limited to a few studies (Meunier
et al.,[2013, |Roux et al., [2012). We believe that expanding the anno-
tation status and quality of miRNAs in both species can help improv-
ing comparative studies and guide the use of mouse as models for
miRNA biology.

Biology and big data: filling in the matrix

The development and continuous improvements of high-throughput
sequencing technologies pushed forward the field of genomics, and
led biology into the expanding world of big data. After the sequencing
of the human and mouse genomes, the ENCODE project aimed at
determining the function of each sequence in the genome. To do so,
the ENCODE and Mouse ENCODE consortia generated a wealth of
genome-wide screenings for surveying different functional elements
in a plethora of human and mouse samples and conditions (Ecker
et al., 2012). These can be seen as a matrix, where each row is a
sample in a given condition and each column is an assay (Maher,
2012), with a third dimension representing the species. Although
thousands of experiments have been carried out by the ENCODE
consortium, by other consortia and by other smaller teams world-
wide, one could argue that completing such a matrix would require
infinite amount of time, since an infinite number of conditions could
be portrayed (Maher, |2012).

Even if the amount of data is steadily growing and more and more
cells in this matrix are filled in, integrating all this data is still a cur-
rent unsolved computational challenge (Libbrecht and Noble| 2015,
Ritchie et al) 2015). Indeed, the development of more sophisti-
cated algorithms with optimized performances and the creation of
new ways of visualizing highly dimensional data are fields of active
research. In addition, not all experiments might need to be physically
performed, as new computational methods are emerging to impute
whole genome data for new assays or samples from existing ones
(Ernst and Kellis, [2015).

Ultimately, the final output of genomic regulation is protein produc-
tion, which, of course, cannot be assayed with DNA sequencing tech-
nologies: therefore, albeit mass-spectrometry allows for large-scale
profiling of protein expression, the throughput and the sensitivity of
the assay are still inferior to next-generation sequencing (Kim et al.,
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2014). It has been reported that 10,000-12,000 and 6,000-8,000
proteins are detected in a given human or mouse tissue, respec-
tively (Huttlin et al., 2010, ({Uhléen et al., 2015, Wilhelm et al., [2014).
Like at the other molecular levels, differences and similarities have
been found in human and mouse proteomes of very specific sam-
ples (Gharib et al., |2010), however, a comprehensive proteomics
comparison between the two species is still lacking, to the best of
our knowledge.

Most comparative studies of functional genomics are limited to en-
tire organs or populations of cells, whereas it would be relevant to
investigate the relationships between single cells within a population
or a complex organ. While single-cell genomics has advanced really
fast in terms of experimental procedures and bioinformatics analy-
sis and allows to study multicellular structures at an unprecedented
resolution, new methodologies are emerging, which preserve spa-
tial information about the tissue context or subcellular localization of
analysed nucleic acids (Crosetto et al.,|2015). Although spatial tran-
scriptomics is still in its very early days (Chen et al., 2015, Satija
et al., 2019), it carries the promise of revolutionizing the way multi-
cellular complexes, e.g. organs, are studied and might reveal new
insights into the conservation of how these complexes are organized
between human and mouse.

Finally, we could think of adding yet another dimension to this ideal
matrix of samples, experiments and species: time. Adding a tem-
poral dimension, such as response to a treatment or differentiation
time-courses, to already known steady states could unravel unknown
patterns of conservation between humans and mice, and could be
especially important for clinical studies, e.g. to study the time of phys-
iological responses to drugs or the progression of a disease.

In the uprising era of precision medicine, each individual will likely
have his/her genome sequenced and possibly multiple genomics as-
says in different anatomical sites and at different life stages. Thus, we
can envision that human-mouse comparisons will eventually be done
on a person-by-person base and customized mouse models can be
tailored in a personalized fashion.

Since both similarities and differences exist between humans and
mice, it is not trivial to conclude in absolute terms whether mice are
good models for humans. This changes depending on the specific
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factors (e.g. biological conditions, physiological processes and re-
sponses, sample types) that are considered and not all organs and
genes showed the same degree of conservation between the two
species. We hope the work presented in this thesis contributed to
frame this question in a way that moves beyond a global perspec-
tive but takes into account some of these specific factors. Other
studies besides gene expression comparison, like co-expression net-
work comparison, and comparative proteomics as well as compara-
tive processing dynamics are potential avenues of further research.
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CONCLUSIONS

The work presented in this thesis discusses the relevance of the lab-
oratory mouse as a model organism for human, especially at the
transcriptional level, and tries to investigate how cellular composition
affects gene expression programs of complex organs.

Here is a summary of the main contributions of this thesis:

e Human and mouse transcriptomes have both conserved and
diverged patterns.

e Conservation of human and mouse transcriptomes depends on
many factors:

— Number of tissue-specific genes in each organ

— Gene-specific expression variation across organs and be-
tween species

— Normalization procedures

e These factors affect conservation patterns of expression also in
comparisons with more mammals and birds, i.e. chimpanzee,
macaque, opossum, platypus, chicken.

e Human and mouse gene expression and splicing are globally
conserved even across very heterogeneous sample types, e.g.
human cell lines and mouse tissues.

e We defined a set of 6,000 genes with constrained expression
both across samples and between human and mouse.

e Constrained genes have stronger epigenetics markings in both
species and their perturbations are associated with significant
phenotypes including embryonic lethality and cancer.

e RNA-seq analysis of 53 human primary cells shows that similar
cell types from different anatomical locations share the same
transcriptional programs. In particular, we identified four major
programs in this dataset: endothelial, epithelial, melanocytes,
and a mixed set of cell types, including fibroblasts, smooth mus-
cle cells and mesenchymal stem cells.
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e We defined a set of almost 3,000 genes which clearly distin-
guish these major groups.

e Gene expression profiles of many organs can be reconstructed
based on the expression of these 3,000 genes, and relative
cellular composition within the organs can be estimated.
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