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Abstract 

Neurophysiological brain processes during perceptual decision-

making have mainly been investigated under the simplified conditions of 

two-alternative forced-choice (2AFC) tasks. How do established 

principles of decision-making, obtained from these simple binary tasks, 

extend to more complex aspects like multiple choice-alternatives and 

changes of mind? Here, we first address this question theoretically: based 

on recent experimental findings, we extend a biophysically realistic 

attractor model of decision-making to account for multiple choice-

alternatives and choice reevaluation. Moreover, we complement our 

computational approach by a psychophysical experiment, exploring how 

changes of mind depend on the number of choice-alternatives. Our results 

affirm the general conformance of attractor networks with higher-level 

neural processes. In particular, we found evidence for the physiological 

relevance of a so far unregarded bifurcation. Furthermore, our findings 

suggest an advantage of a pooled multi-neuron representation of choice-

alternatives, and a negative correlation between reaction time and changes 

of mind, possibly regulated by the decision threshold. Finally, we gained 

testable predictions on neural firing rates during changes of mind and 

propose future experiments to distinguish nonlinear attractor from linear 

diffusion models.  
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Resumen 

Los procesos neurofisiológicos que tienen lugar en el cerebro durante 

la toma de decisiones basadas en fenómenos de percepción han sido 

investigados, principalmente, en condiciones simplificadas, en particular, 

de tareas con dos alternativas y elección forzada (2AFC). ¿Cómo 

podemos extender los principios establecidos sobre la toma de decisiones 

obtenidas a partir de estas tareas simples y binarias, a aspectos más 

complejos como decisiones con alternativas múltiples y los cambios de 

opinión? En esta tesis, en primer lugar, abordamos esta cuestión de 

manera teórica: a partir de resultados experimentales recientes, 

extendemos un modelo de toma de decisiones, que es un modelo con 

atractores realista desde el punto de vista biofísico, con el objetivo de 

explicar la elección con alternativas múltiples y la reevaluación de la 

elección. Además, complementamos nuestro enfoque computacional con 

un experimento psicofísico, explorando cómo los cambios de opinión 

dependen del número de alternativas. Nuestros resultados refuerzan la 

tesis de que existe una correspondencia general entre las redes de 

atractores y los procesos neuronales superiores. En particular, revelan  la 

importancia fisiológica de una bifurcación que hasta ahora ha pasado 

inadvertida. Además, sugieren la ventaja de representar las alternativas de 

elección con múltiples neuronas, y la existencia de una correlación 

negativa entre el tiempo de reacción y los cambios de opinión, 

posiblemente regulada por el umbral de decisión. Finalmente, 

proporcionamos predicciones comprobables sobre las tasas de disparo 

neuronal durante los cambios de la opinión y proponemos experimentos 

futuros para distinguir los modelos no lineales con atractores de los 

modelos de difusión lineal. 
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Preface 

How do we make decisions? A comprehensive answer to this 

multifaceted question cannot be given within the scope of one single 

scientific discipline. Fields from philosophy to economic sciences aim to 

shed light on particular aspects of decision-making, approaching the topic 

from different perspectives: Philosophers first of all seek definitions of the 

terms “decision” and “choice”, but are eventually concerned with the 

existence, or role, of free will and consciousness in the decision process. 

Economists take a value-based approach, intending to solve the problem 

of utility maximization, i.e. the question of what method would lead to the 

largest reward rate. This is closely related to mathematical decision 

theory, where Bayesian inference provides a decision rule for optimal 

choice based on uncertain evidence. By contrast, psychologists strive for 

phenomenological models describing human and animal decision 

behavior, which often approximates optimality in the mathematical sense, 

but can also be (apparently) irrational (Bogacz et al., 2006). Finally, 

neuroscientists try to gain insights into the actual brain processes during 

decision-making and to answer how mathematical and psychological 

concepts are eventually implemented in the brain. With this thesis, we aim 

to contribute to elucidating this latter problem from a computational point 

of view: by using mathematical and numerical methods we translate 

conceptual models of decision-making into biophysically realistic 

systems. These neural network models are then used to simulate and 

predict neural activity during the choice process.  

Before getting started by reviewing state of the art experimental and 

modeling approaches on decision-making, it is necessary to define and 

delimit the kind of decisions we will deal with in the course of this thesis. 

In all experimental tasks described below, “perceptual” decisions are 

formed based on evidence in the form of sensory stimuli, which leads to a 

choice for one of two or more alternative actions. Consequently, 

“decision” and “choice” here go hand in hand. Generally, however, there 

is a distinction between the two terms: whereas a choice is the 

commitment to an alternative, which is indicated by an action made for a 

certain purpose, a decision refers to the internal deliberation about the 

alternatives, preceding the choice (Schall, 2001). Interestingly, it is still an 

open issue to what extent the brain distinguishes decisions and choices in 

this terminological sense. For perceptual decisions, it is not entirely clear 

yet, whether or not the decisions are represented on an abstract level, 

independent of response modality, i.e. independent of the movement that 

communicates the internal decision. In macaque monkeys, the very same 

neural populations that are involved in movement preparation show 

decision-related activity prior to a choice that leads to the respective 

motor response. For instance, single cell activity in the posterior parietal 
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cortex depends on whether the choice is indicated by a hand or an eye 

movement, in an otherwise identical sensory discrimination task (Cui and 

Andersen, 2007). On the other hand, a recent fMRI study on humans 

(Heekeren et al., 2006) revealed a candidate brain region for abstract 

representation of perceptual decisions, the left posterior dorsolateral 

prefrontal cortex (DLPFC). This invites to the speculation that humans, 

unlike nonhuman primates, may have evolved a more abstract decision-

making circuitry, allowing for higher flexibility between decision and 

action (Heekeren et al., 2008). Nevertheless, decision-related neural 

activity recorded in monkeys has been remarkably consistent with 

neuroimaging studies in humans, despite the differences in techniques 

(invasive and non-invasive). In both species sensory evidence is 

accumulated in lower-level sensory regions and compared further down-

stream in higher-level brain areas. In sum, insights on neural computations 

obtained from invasive recordings in monkeys do allow for conclusions 

on the basics of human decision-making.  

This strong similarity across species, as well as our attempt to 

simulate decision-making and related brain activity using computational 

models, naturally touches delicate philosophical issues. Yet, we will 

dismiss this matter here by confining our study to choices solely 

attributable to the sensory input to - and the assumed properties of - the 

decision-making unit. Several other factors, such as attention, prior 

probability of the decision alternatives, or the expected reward, can bias 

perceptual decisions towards one of the alternatives, but were not 

explicitly included in any of the experimental or model designs treated 

here. Instead, this thesis builds on decades of research on the simplest 

case: basic forced choice tasks with two alternatives. The behavioral and 

neurophysiological data gained from these simple binary tasks has largely 

motivated and constrained current models of decision-making. To date 

there is broad consent that the brain implements (time consuming) 

perceptual decisions with some sort of integration-to-threshold 

mechanism, where sensory evidence is accumulated over time until a 

decision criterion is reached. The details of this decision mechanism, 

whether it is linear or nonlinear, with more emphasis on early or late 

evidence, and the way it is actually implemented in the brain, are, 

however, still open to debate. In order to enhance the understanding of the 

neural mechanisms underlying perceptual choices, the focus of recent 

experimental as well as modeling studies shifted to more complex aspects 

of decision-making, such as multiple choices and changes of mind.  

Based on this groundwork (see Chapter 1 and 2), the present thesis 

means to complement current knowledge of perceptual decision-making 

by combining theory and experiment in a study of the neural computations 

behind multiple-choice decision-making, changes of mind, and their 

combination.   
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1 GENERAL INTRODUCTION 

Decision-making generally refers to the process of deliberation in an 

internal debate about possible choice-alternatives. The criteria that 

determine the desirability or preference of certain choices are versatile and 

can differ substantially between individuals. Economic limitations, 

subjective taste, and previous experience are just a few examples of 

factors that bias our considerations. Some of them we take into account 

consciously, others influence us unconsciously.  

In order to comprehend the cognitive processes during decision-

making, it is important to control causal and subjective factors as much as 

possible. Therefore, compared to “real-life” decisions, for instance what to 

choose for lunch, or which shirt to wear, decision-making in 

psychophysical and neurophysiological experiments is typically reduced 

to highly simplified conditions.  

Here, we are particularly concerned with sensorimotor decisions, a 

special type of “perceptual classification judgments”, where one of several 

motor responses has to be chosen based on some form of sensory evidence 

in favor or in contra of the possible response alternatives. In the context of 

sensorimotor choices, the decision process thus corresponds to the 

translation of perception into action.  

Until recently, the basic principles underlying this process have been 

investigated predominantly in the framework of two-alternative forced-

choice (2AFC) tasks. Subjects performing 2AFC tasks must make a 

choice between two alternatives, which is evaluated based on choice 

accuracy and reaction speed (Bogacz et al., 2006). The amount of sensory 

evidence available to the subject determines the task difficulty and 

influences the behavioral performance. Typically, these parameters are 

interrelated in the sense that more evidence can be gathered if the decision 

time is longer and more evidence leads to more accurate choices. Time 

will improve the probability to make the correct choice, particularly when 

a perceptual decision has to be made based on noisy, moving, or 

ambiguous sensory evidence. This time-accuracy relation, termed “speed-

accuracy tradeoff”, can be investigated in “free response” tasks, where the 

decision-maker autonomously terminates the evidence accumulation. In 

this case, some internal decision criterion determines the end of the 

decision process and elicits the respective motor response.  

The notion of gathering noisy sensory evidence over time, until a 

decision criterion (or “bound”) is reached, is termed “accumulation-to-

bound” principle. It is incorporated in a class of phenomenological 

decision-making models summarized as “sequential sampling models”, 

which view the decision process as a decision variable evolving in time 
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until it hits a decision threshold (e.g., Stone, 1960; Laming, 1968; 

Vickers, 1970; Ratcliff and Smith, 2004). Before decision-related 

neurophysiological data from 2AFC studies became available, these 

formal mathematical models aimed at providing mechanistic explanations 

of the still obscure neural process, restricted by behavioral data from 

psychophysical 2AFC experiments (Luce, 1991; Ratcliff and Smith, 

2004).  

A now classic experimental paradigm, designed specifically to test 

for neural implementations of the “accumulation-to-bound” models, is the 

random-dot motion (RDM) discrimination task. Strikingly, single-cell 

recordings from several brain areas along the visuomotor pathway of 

behaving monkeys indeed revealed potential neural correlates of the 

theoretical decision variable (reviewed in Opris and Bruce, 2005; Gold 

and Shadlen, 2007).  

Neurophysiological findings further helped to distinguish redundant 

phenomenological models from biologically plausible models of the 

neural dynamics underlying decision-making (Ratcliff et al., 2003; Schall, 

2003; Smith and Ratcliff, 2004). Moreover, they motivated the 

development of mathematical models with explicit analogy to neural 

mechanisms, which aim to account for behavioral and neurophysiological 

data at once (Wang, 2002; Mazurek et al., 2003; Ditterich, 2006b; Wang, 

2008). To date, two models of decision-making proved particularly 

successful to account for a vast amount of behavioral and 

neurophysiological data recorded during 2AFC paradigms: the conceptual 

“drift-diffusion” model (DDM) (Ratcliff and Rouder, 1998), and a 

biologically-inspired nonlinear attractor model (Wang, 2002). 

All in all, behavioral data gained from sensorimotor 2AFC tasks, 

together with complementary single-neuron recordings, motivated, 

constrained and advanced models of decision-making during the past 

decades. This body of experimental and modeling studies forms the 

groundwork of the present thesis and will be reviewed in Chapter 2. 

 

2AFC tasks, nevertheless, by definition neglect important features of 

real-life decision-making. First, everyday decisions mostly involve the 

need to select between not two, but multiple alternatives. Second, 

decisions are not necessarily absolute but may occasionally be adjusted if 

we have changed our mind.  

The purpose of this thesis is to shed light on the neuronal 

computations underlying decision-making beyond the limitations of 2AFC 

tasks. In particular, we ask how established decision models and 

fundamental concepts like the accumulation-to-bound principle extend to 

more complex aspects of decision-making, such as multiple choice-

alternatives and change of mind. Experimentally, this question has been 
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addressed just recently, in the context of the RDM task (Churchland et al., 

2008; Niwa and Ditterich, 2008; Resulaj et al., 2009).  

Using the behavioral and neurophysiological data gathered in these 

experiments as restrictive evidence, our first objective was to analyze the 

physiologically realistic attractor model of decision-making in the light of 

changes of mind and multiple choice-alternatives. 

 Chapter 3 of this thesis is dedicated to our theoretical account on 

changes of mind. By making explicit use of the model‟s nonlinear 

attractor properties, we were able to replicate psychophysical findings on 

changes of mind between two alternatives (Resulaj et al., 2009). What is 

more, as the model is implemented in a biologically-detailed network of 

spiking neurons, we gained neurophysiological predictions on neural 

activity during the change process.  

In Chapter 4 we will turn to multiple-choice decision-making. There, 

we propose an extension of the binary attractor model to up to four 

choice-alternatives. In particular, we increased the number of discrete 

neural populations, which represent the choice-alternatives in the model. 

In this way, we could explain all relevant observations from an 

experimental study that compared decision-related behavior and neural 

activity of monkeys given two and four choice-alternatives (Churchland et 

al., 2008). To that end, we analyzed how the network‟s competition 

regimes could be brought into accord for different numbers of 

alternatives. In doing so, it proved beneficial to represent the choice-

alternatives by larger neural populations. 

While Chapters 3 and 4 treat changes of mind and multiple choices 

separately, in Chapter 5 we combine these two extensions of classic 2AFC 

tasks for the first time. In a novel psychophysical experiment and 

complementary computational analyses, we address the question of how 

changes of mind depend on the number of choice-alternatives. In short, 

with more choice alternatives, choice corrections became less likely. 

Moreover, we found a negative correlation between changes of mind and 

mean reaction times across participants.  An attractor model that combines 

key features of the model versions applied in Chapter 3 and 4 could 

explain our behavioral results and even accounted for between subject 

variations through adaptation of the decision threshold. 

Finally, in Chapter 6 we deal with a somewhat puzzling side effect in 

our participants‟ behavior during the multiple-choice/changes of mind 

experiment of Chapter 5, which has previously been omitted for clarity. 

By means of the attractor model, we could trace this observation back to a 

visual illusion in the visual motion stimulus. With the additional 

assumption of an “illusion bias” in the sensory evidence we were able to 

simulate the participants‟ behavior in more detail. This further confirms 

the explanatory power of the physiologically realistic attractor model. 
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Following our theoretical and experimental findings, Chapter 7 is 

devoted to a general discussion about the aptitude of our theoretical 

approach to describe real cortical processes. There, we highlight common 

implications of our findings with respect to attractor dynamics and discuss 

the plausibility of our predictions, considering the models‟ necessarily 

limited physiological accuracy.  

We conclude this dissertation with a summary of our most relevant 

results and an outlook on future objectives and challenges in Chapter 8. 
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2 “2AFC” DECISION-MAKING 

Binary choices are certainly a simplification of most situations we 

encounter in our daily lives. Nevertheless, they are representative of many 

ordinary decision problems, e.g. whether to turn left or right at a crossing, 

etc. (Bogacz et al., 2006). Throughout the last century, a large collection 

of psychophysical data has been gathered from 2AFC tasks (e.g., Hill, 

1898; Luce, 1991). Based on this groundwork, mechanistic models have 

been developed to enhance the understanding of still covert neural 

decision processes by replicating experimentally observed behavior (e.g., 

Stone, 1960; Laming, 1968; Vickers, 1970; Ratcliff and Smith, 2004).  

With recent advances in electrophysiology, in vivo single-cell 

recordings from primates performing 2AFC decision tasks have become 

feasible (reviewed in Opris and Bruce, 2005; Gold and Shadlen, 2007). 

The resulting neurophysiological data further constrained established 

mechanistic models and motivated sophisticated biologically plausible 

models of neural processes during decision-making.  

In this chapter, we will review experimental and theoretical studies on 

2AFC decision-making, which set a precedent to all current attempts to 

extend our knowledge of perceptual decision-making. 

2.1 Experimental Basis 

Among all neural systems, sensory and motor circuits are probably 

the most studied in neuroscience in general. Therefore, it is not surprising, 

that perceptual decisions, and, in particular, sensorimotor choices, also 

form the prime subject of study in neuroscientific research on decision-

making. Of all senses, primates, including humans, particularly rely on 

vision to guide their behavior (Opris and Bruce, 2005). In order to react 

appropriately to a visual scene, we typically need to combine different 

visual cues, which naturally comprise some uncertainty. This notion gave 

rise to a now classic visual motion discrimination paradigm, which forms 

the experimental basis of our work.    

2.1.1 Visual motion discrimination task 

The so-called “random-dot motion” (RDM) discrimination task is a 

well-established psychophysical paradigm, designed to study the time 

course of slow perceptual decision-making (Britten et al., 1992; Roitman 

and Shadlen, 2002; Palmer et al., 2005; Churchland et al., 2008).  

Subjects performing this task have to decide on the net direction of 

motion in a patch of moving dots (Fig. 2.1). While most dots are moving 
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randomly, a certain percentage of dots coherently travels in one of several 

potential directions. The amount of coherent motion thereby controls the 

quantity of sensory evidence and, thus, the task difficulty. The possible 

direction alternatives are specified by response targets (R-targets) prior to 

the onset of the random-dot stimulus. In other words, if more dots are 

moving towards one of the R-targets, it is easier to detect the correct 

motion direction. Typically, the subject indicates its choice by a saccadic 

eye movement to the R-target located in the corresponding direction.  

In one version of the RDM task, the “fixed duration”, or 

“interrogation” paradigm, the experimenter determines the end of a trial, 

instructing the subject to make a choice after a specified time interval. 

Another more common way to conduct the RDM task, is the “free 

response” paradigm, where subjects indicate their decision, as soon as 

they have gathered enough evidence to make a choice. All RDM 

experiments presented in Chapters 3-6 were carried out in this way. On 

top of choice accuracy, i.e. whether the correct or wrong R-target was 

chosen, the free response paradigm allows to measure reaction time (RT) 

as a second variable to evaluate behavioral performance. Reaction times 

are generally determined by the onset of the subjects‟ motor response. In 

the case of the RDM task, reaction times are usually long, in the order of 

several hundred milliseconds, with faster responses to stronger coherent 

 
 

Fig. 2.1 Random-dot motion discrimination task 

While the subject is fixating on a central spot, the possible alternatives (R-

targets) are indicated. During simultaneous neurophysiological recordings, one 

of the R-targets (red dots) is located in the response field (RF) of the recorded 

neuron. After a random delay, a patch of moving dots appears. A certain 

percentage of these dots are directed towards on of the R-targets, while the others 

move randomly. The subject reports its choice with a saccade to the 

corresponding R-target. 
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motion (Roitman and Shadlen, 2002; Palmer et al., 2005; Churchland et 

al., 2008).  

Importantly, the RDM task directly implements the notion of 

perceptual decision-making as a temporal integration of noisy sensory 

evidence until a decision criterion is reached, the so-called “accumulation-

to-bound” principle. Due to the randomly moving dots, the momentary 

amount of coherent motion is subject to stochastic fluctuations. The 

correct direction of motion can thus be inferred more reliably the longer 

the motion stimulus is viewed. Consequently, the reaction time and 

accuracy of a decision are not independent of each other (Palmer et al., 

2005). This relation is generally known as the “speed-accuracy tradeoff” 

(SAT). 

Recently, the RDM task has been modified independently in several 

ways: Churchland et al. (2008) and Niwa and Ditterich (2008) extended 

the RDM task from binary to multiple choices. In particular, Churchland 

et al. (2008) compared monkeys' behavioral and neurophysiological 

responses between a 2- and 4-alternative version of the RDM 

discrimination task. Reaction times and error rates for four alternatives 

were found to be longer and higher, respectively, consistent with earlier 

studies on multiple-choice decisions (Hick, 1952). Notably, the 

experiments of Churchland et al. (2008) provided the first electro-

physiological data of a 4-alternative decision task. We will present their 

results in detail in Chapter 4, as they provide the experimental comparison 

for our multiple-choice modeling efforts.  

Niwa and Ditterich (2008) tested human participants on a 3-

alternative version of the RDM task with a multicomponent RDM 

stimulus, which was comprised of up to three coherent motion 

components instead of just one direction of coherent motion. This 

additional feature allowed them to control the amount of sensory evidence 

for all three choice-alternatives, creating situations with identical choice 

performance but different reaction times. For example they found that for 

identical motion strength in all three directions responses were faster than 

without coherent motion, although the net evidence was the same, namely 

zero, leading to chance level performance. The multicomponent 

experiment might prospectively help to distinguish modeling approaches, 

especially in combination with neurophysiological recordings (see 2.3 and 

3.4.1).  

Finally, Resulaj et al. (2009) modified the RDM task in order to study 

“changes of mind” due to further processing of available information after 

an initial decision. Instead of responding with a saccade to the chosen 

target, as in the standard RDM task, human participants were asked to 

move a handle to a left or right target. The reason is that only with a 

continuous movement changes of mind could directly be observed in the 

movement trajectory. A saccade, on the other hand, is a rather ballistic 
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movement. This experiment will be presented in detail in Chapter 3 as a 

basis for our theoretical account of changes of mind.  

2.1.2 Neural correlates of decision-making 

To identify possible neural correlates of the accumulation-to-bound 

concept, the psychophysical RDM paradigm was combined with 

simultaneous recordings of decision-related single-cell activity. Taking 

visual motion discrimination as a prototype for perceptual decision-

making has the advantage that anatomical and functional properties of the 

visuomotor pathway are particularly well determined. During the last two 

decades, several studies successively targeted brain areas along the 

cognitive link between visual sensation and saccadic movement in search 

of neurons that might encode a decision variable (reviewed in Schall, 

2003; Smith and Ratcliff, 2004; Opris and Bruce, 2005). Fig. 2.2 shows a 

simplified schematic diagram of the cortical and subcortical neural areas 

involved in the processing of visual information (colored in blue) and the 

execution of saccadic eye movements (colored in orange).  

Generally, visual information arriving in the primary visual cortex 

(V1) is further processed via two specialized pathways: first, the ventral 

stream associated with forms and colors, involved in “what” tasks like 

object recognition, and, second, the dorsal stream, which is processing 

“where” information necessary for motion detection. More precisely 

however, the visual areas form a complex network and also the two main 

processing pathways are strongly interconnected. As motion information 

is the only relevant stimulus feature in the RDM task described above, in 

the following we will focus on characterizing the cortical areas along the 

dorsal stream. 

The first cortical region down-stream of the visual cortex, which 

holds information about the direction of motion, is the middle temporal 

area (MT) (Fig. 2.3A, inset in C). Area MT encodes the absolute amount 

of visual motion. Neurons in MT have direction-sensitive tuning curves 

with one preferred direction of motion. Presented with a RDM stimulus, 

MT neurons will fire more, the higher the coherent motion in their 

preferred direction and less, for coherent motion in their null direction. In 

many MT neurons this relation between firing rate and motion coherence 

is approximately linear (Britten et al., 1992, 1993). 

The absolute motion information present in area MT is still 

insufficient to explain a subject‟s motor response. Instead, neural activity 

from area MT might act as the source of evidence upon which further 

down-stream areas base their choice. This view was further confirmed by 

electrical stimulation of MT neurons from monkeys performing the RDM 

task. The monkeys‟ choices were biased towards the preferred direction of 

the stimulated MT neurons (Salzman et al., 1992; Ditterich et al., 2003). 
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Stimulation thereby shifted the psychometric function, the dependence of 

accuracy on motion coherence. Strikingly, it also affected reaction time: 

choices in the neurons‟ preferred direction were speeded up by electrical 

stimulation, while choices in their null direction were slowed down. 

Stimulated neural activity in MT thus influences decision behavior in the 

same way as additional visual evidence would. 

Next in line along the dorsal stream and directly innervated by area 

MT, lies the lateral intraparietal area (LIP) within the posterior parietal 

cortex (PPC). The activity of most neurons in PPC is both sensory- and 

 

Fig. 2.2  Neural circuitry engaged in visual discrimination tasks 

Visual signals from the retina arrive in the primary visual cortex (V1) through the 

lateral geniculate nucleus (LGN). V1, V2, V3, and V4 are primary, secondary, 

tertiary, and quaternary visual areas. “What” information about visual stimuli, 

like form and color, is further processed via the ventral stream, passing through 

V4 and the inferior temporal (IT) cortex. “Where” information necessary for 

motion detection is sent from V1 over the middle temporal area (MT) to the 

lateral intra-parietal area (LIP) located in the posterior parietal cortex (PPC). 

Information from the two pathways is combined in the prefrontal cortex (PFC), in 

particular in the frontal eye field (FEF), the supplementary eye field (SEF) and 

the dorsolateral prefrontal cortex (dlPFC). The command to execute a saccade 

from PFC or LIP is passed through the superior colliculus (SC) to the brainstem 

(BS), which activates the ocular muscles. Adapted from (Opris and Bruce, 2005). 
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motor-related and can be associated with the formation of intentional 

motor plans (reviewed in Andersen, 1995). In particular, LIP neurons fire 

prior to a saccade directed into their “response field” (RF), but also 

respond to static visual stimuli located in their RF.  

Based on these initial findings, Shadlen and colleagues first combined 

the RDM paradigm with single-cell recordings from area LIP of behaving 

monkeys (Shadlen and Newsome, 2001; Roitman and Shadlen, 2002). In 

their experiments, one of the visual response targets (R-targets), which 

indicate the possible motion directions, was always placed in the RF of 

the recorded LIP neuron. Thereby, single-cell activity of LIP neurons has 

been found to increase gradually during motion viewing if the monkey 

subsequently chose the R-target inside the response field, and to decline 

comparably if the opposite R-target was chosen. Moreover, the slope of 

this activity build-up depends on task difficulty, i.e. the amount of motion 

coherence (Fig. 2.3B,C)1. LIP neurons thus seem to accumulate, or 

integrate incoming information about motion direction according to 

choice behavior. In contrast to more up-stream areas, LIP neurons hence 

show all signs of a potential neural decision variable.  

Besides, strikingly consistent with the accumulation-to-bound 

principle, LIP activity suggests a fixed firing rate threshold, as it reaches a 

uniform level about 40-80 ms prior to the saccade, independent of 

response time, difficulty, and even the number of alternatives (Fig. 2.3D) 

(Roitman and Shadlen, 2002; Churchland et al., 2008). How this decision 

threshold might be regulated or read out in the brain is still largely 

unknown. Recent theories about possible neural substrates of the decision 

threshold involve cortico-collicular and cortico-basal ganglia circuits (Lo 

and Wang, 2006; Bogacz and Gurney, 2007).  

Decision-related build-up activity during the RDM paradigm was also 

found downstream of LIP, in the dorsolateral prefrontal cortex (dlPFC) 

and the superior colliculus (SC) (Horwitz and Newsome, 1999; Kim and 

Shadlen, 1999). Interestingly, neurons that exhibit such ramping activity 

characteristically also show persistent neural firing in delayed memory or 

decision tasks (Gnadt and Andersen, 1988; Schall, 2001).  

Whether any or all of these areas (LIP, dlPFC and SC) take an active 

role in the sensorimotor decision process is still unknown. Some cortical 

regions might simply reflect the integration of evidence performed in 

another part of the brain. Furthermore, response preparation might be an 

alternative explanation for ramping activity, especially for areas further 

down-stream the oculomotor pathway. In that sense area LIP takes a 

                                                      
1
 Note that with “ramping activity” we refer to the average activity across trials. 

Whether single trial activity builds up gradually, or changes rather abruptly is 

hard to determine. Future multiunit recordings might provide information on how 

the population average across neurons in a single trial compares to the trial 

average of a single neuron.  
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special role, because it is the first region in the visuomotor chain that 

exhibits ramping activity, and, in contrast to other regions, a large 

proportion of its neurons actually show the gradual activity build-up and 

spatially selective persistent activity (Shadlen and Newsome, 2001; 

Roitman and Shadlen, 2002; Churchland et al., 2008). 

 

Fig. 2.3 Activity of MT and LIP neurons during the RDM task.  

(A) Response of direction selective MT neuron aligned to motion onset (Britten et 

al., 1992). The RDM stimulus was placed in the receptive field of the neuron. (B) 

Response of LIP neuron aligned to saccade onset (Roitman and Shadlen, 2002). 

One choice target was always placed in the response field of the neuron. (A,B) 

adapted from (Mazurek et al., 2003). (C) Responses of 54 LIP neurons shown for 

three levels of difficulty and grouped by direction of choice, as indicated. Shaded 

inset shows average responses from direction selective MT neurons. (D) 

Responses grouped by RT (only Tin). All trials reach a stereotyped firing rate 

~70 ms before saccade initiation. (C,D) adapted from (Gold and Shadlen, 2007). 
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A major component of our approach is to replicate and predict 

decision-related neural activity during extended versions of the RDM task. 

With a physiologically plausible spiking-neuron model of decision-

making we aim to simulate the entire time course of LIP activity during 

the different RDM trial phases, as described in (Shadlen and Newsome, 

2001; Roitman and Shadlen, 2002; Churchland et al., 2008; Kiani et al., 

2008). In the following list we recapitulate the essential points: 

 LIP receives direct input from direction selective MT neurons, 

which fire monotonically as a function of motion coherence. 

 LIP neurons strongly respond to the appearance of the visual R-

target in their response field. 

 With the onset of the RDM stimulus, a “dip” in firing rate occurs, 

possibly due to divided attention or a top-down reset of activity. 

 Starting with a latency of ~190 ms after RDM onset, LIP firing 

rates gradually rise or decline according to choice-behavior and 

motion coherence.  

 A stereotyped level of activity is reached ~40-80 ms before 

saccade onset. 

 LIP neurons show persistent activity in delayed decision tasks. 

With respect to changes of mind, it is worth emphasizing that the 

neural activity described above and in the following chapters is not 

confined solely to LIP neurons. As mentioned in the last section, in the 

RDM experiments on changes of mind (Chapter 3 and 5), participants 

performed arm movements instead of saccades to indicate their choice.  

Yet, LIP neurons are mostly associated with saccadic motor responses. 

Nevertheless, other areas in PPC, especially the parietal reach region 

(PRR) involved in the preparation of arm movements, share the neural 

characteristics listed above. More precisely, neurons in PRR show 

sustained activity during delayed reach to target tasks and also exhibit 

huge responses to the appearance of a visual reach target in their response 

field, very similar in size and time course to LIP neurons for saccades in 

the same paradigm (Snyder et al., 1997; Cui and Andersen, 2007; 

Andersen and Cui, 2009). Besides, Cui and Andersen (2007) reported that, 

although generally LIP seems to respond more to eye and PRR more to 

arm movements, if monkeys are free to choose the motor response, a 

substantial number of LIP neurons responded preferably to arm 

movements for instructed motor responses. In sum, the assumptions and 

predictions on neural activity presented in this section apply generally to 

both LIP and PRR. 
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As a final note before turning to the theoretical basis of our work, it 

has to be clarified that, although in this thesis we focus on the RDM 

paradigm and visual motion discrimination to represent sensorimotor 

decision-making, the same general principles apply to other sensory 

modalities and 2AFC paradigms. Aside from the RDM literature, there is 

a second, immensely rich body of work in the field of perceptual decision-

making, gathered by Romo and colleagues, which addresses sequential 

decision-making in a tactile discrimination paradigm (reviewed in Romo 

and Salinas, 2003; Hernandez et al., 2010). There, contrary to motion 

discrimination, the evidence for or against the two choice-alternatives is 

not presented at the same time, in parallel, but one after the other with a 

time delay of several seconds between the two tactile stimuli. The 

decision process in this sequential setting consequently involves keeping 

the first stimulus in working memory and deciding based on stored and 

ongoing sensory information. Apart from this additional complication, the 

processes underlying the final choice can be described by the similar 

theoretical concepts as for parallel decisions, which will be reviewed in 

the following. 

2.2 Theoretical Basis 

Corresponding to the characteristics of the RDM paradigm, 2AFC 

models typically make the fundamental assumptions that noisy evidence, 

subject to random fluctuations, is integrated over time for each alternative, 

until sufficient evidence has accumulated to make a decision (Bogacz et 

al., 2006). In the following, we will review the most common models of 

2AFC decision-making and their theoretical origins. Thereby, we will 

start with basic, linear, conceptual models, which successfully capture 

decision-behavior (2.2.1), followed by attempts to implement these 

models in a physiologically plausible way (2.2.2). Finally, we will turn to 

nonlinear attractor models and describe a biophysically inspired 

implementation of an attractor model with spiking neurons (Wang, 2002), 

which forms the basis of the models presented in this thesis (2.2.3). Our 

objective is to provide an intuitive overview. Consequently, we restrict 

our formal presentation to basic equations and characteristic model 

features and refer to the original publications for detailed theoretical 

analysis.  

2.2.1 Sequential-sampling models 

Present conceptual models of decision behavior considering noisy 

evidence build on “signal detection theory” (SDT), developed to describe 

categorical choices under uncertainty (Tanner and Swets, 1954; Green and 

Swets, 1966). SDT typically assumes fixed, short stimulus times that are 
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out of the subject‟s control. The class of models summarized as 

“sequential sampling models” forms the logical extension of SDT to 

temporally stretched streams of (noisy) data (Wald, 1947; Stone, 1960). In 

addition to the probability of correct responses, these models give 

predictions on subjects‟ reaction times in “free response” 2AFC 

paradigms. To form a decision, evidence for each of the two alternatives is 

integrated over time. Whether an independent integration for each 

alternative (e.g. race model), or an integration of the difference in 

evidence (e.g. drift diffusion model) gives a better account of 

experimental 2AFC data, is, however, still open to debate, although the 

latter seems to fit a wider set of experimental observations (Ratcliff et al., 

2003; Ratcliff and Smith, 2004; Bogacz et al., 2006). 

a) Signal detection theory and the SPRT 

In simple perceptual 2AFC tasks, subjects are often faced with 

problems such as: “Has a dim light been flashed or not?” Or: “Which of 

two similar images has been presented?” Signal detection theory (SDT) 

provides a prescript for these kind of decisions, where one of two 

hypotheses has to be chosen on the basis of a single observation in the 

presence of uncertainty, or noise (Gold and Shadlen, 2007). If the sensory 

observation is informative about the hypotheses, it provides “evidence” 

favoring one alternative. We will generally refer to information which is 

indicative of a choice as evidence e. The two hypotheses H1 and H2 stand 

for the two choice-alternatives. The conditional probability p(e|H1) 

denotes the probability of observing evidence e if H1 is true.  

Depending on the signal-to-noise ratio (µ/ ) and the similarity of the 

hypotheses (µ1-µ2), the probability density functions (PDFs) of the two 

alternatives overlap to some degree (Fig. 2.4). The smaller the signal-to-

noise ration, the higher the overlap of the PDF. Likewise, the more 

distinguishable the stimuli, the smaller the overlap. In the case of sensory 

stimuli the PDFs are often assumed to be normally distributed with means 

µ1  µ2 and standard deviations 1 = 2. 

The a posteriori probability p(H1|e) that hypothesis H1 is true given 

the evidence e can be determined according to Bayes‟ theorem from the 

conditional probability p(e|H1), the prior, or a priori probability of the 

hypothesis p(H1), and the total probability of the evidence p(e): 

.     (2.1) 

The prior p(H1) thereby denotes the probability that H1 is true before any 

evidence has been obtained. If equal priors are assumed for both 

alternatives, H1 is more likely to be correct than H2 if the “likelihood 

ratio” LR(e) = p(e|H1)/ p(e|H2) is larger than 1.  
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Choosing H1 if LR > 1 is the optimal strategy, in the sense that it 

provides the lowest overall error rate. In the case of equal rewards or 

costs, it also indicates the optimal choice in terms of the highest reward. 

For some decisions, however, the consequences of a false alarm, for 

example, are negligible compared to missing a signal. Because of the 

noise, mistakes are inevitably. Still, the kind of errors, i.e. false alarms or 

misses, can be adjusted by the decision criterion (Fig. 2.4). Generally, the 

desired level of accuracy for one of the alternatives determines the 

decision threshold, or bound, B. For unequal prior probabilities, but 

identical rewards, H1 should be chosen if LR(e) > B = p(H2)/p(H1) (Green 

and Swets, 1966). In sensorimotor tasks, unequal priors arise for instance 

if one stimulus is presented more often than the other. 

If not just one, but multiple pieces of evidence e1…eN are available 

over time, as for instance in the random-dot motion (RDM) task, the 

likelihood ratio has to be updated with each new sample of evidence. With 

the simplifying assumption that all evidence samples e1…eN are 

independent, the likelihood ratio extends to  

.   (2.2) 

A decision bound B = 1 again minimizes the error rate, as it determines 

the most likely hypothesis (Neyman and Pearson, 1933). From the 

perspective of 2AFC problems, Eq. 2.2 applies to the “interrogation” 

paradigm, where the decision is based on a fixed sample of evidence.  

 

Fig. 2.4 Signal detection theory in 2AFC tasks. 

Because of uncertainty the PDFs of the two alternative hypotheses overlap. A 

choice is made depending on the desired level of accuracy for one of the 

alternatives. Comparing the likelihood ratio LR to 1 minimizes the total number 

of errors.  
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In the “free response” paradigm, where the decision-maker is allowed 

to control the decision time autonomously, she or he is faced with the 

additional problem when to end the evidence accumulation. Accordingly, 

optimality in free response tasks is often assessed as the strategy that 

yields the shortest expected reaction time (RT) for a given error rate.  

The sequential probability ratio test (SPRT) provides a solution to 

this specific optimality problem (Wald, 1947). Here, the momentary 

likelihood ratio LR(e) is again calculated as in Eq. 2.2, but instead of one, 

there are now two decision bounds B1 and B2 and the sampling process 

continues as long as  

.    (2.3) 

In other words, if B1 is crossed, alternative 1 is selected, if B2 is 

crossed, alternative 2 is selected, and while the evidence for both 

alternatives is insufficient, meaning below a certain level of significance, 

the decision process continues. Interestingly, a decision rule equivalent to 

Eq. 2.3 can be obtained using any quantity that is monotonically related to 

the LR if B is scaled appropriately (Green and Swets, 1966). Hence, by 

taking the logarithm of Eq. 2.2 and 2.3, the decision process can be 

written as a simple addition: 

.  (2.4) 

Moreover, the temporal evolution of the log-likelihood ratio (logLR) 

can be described as a discrete decision variable V, starting at V0  = 0, 

which is subsequently updated at each time step, according to: 

.     (2.5) 

Using the logLR to express the SPRT has the further advantage, that 

evidence in favor of H1 intuitively adds to V with a positive value, while 

evidence supporting H2 contributes negatively. In that sense, the trajectory 

of the decision variable V(t) for noisy evidence is analogous to a one-

dimensional “random walk” bounded by a positive and negative threshold. 

In the limit of infinitesimally small time steps, equivalent to 

continuous sampling, the discrete SPRT/random walk model converges to 

the drift diffusion model (DDM) described in the next section. For a more 

detailed theoretical description of optimality, also in the case of unequal 

priors, and the continuum limit of the SPRT please refer to (Bogacz et al., 

2006). 

Before we turn to the DDM, we briefly discuss how the theory 

presented above might relate to real neural computations during decision-

making and the RDM task in particular. As we have seen in Section 2.1.2, 

decision-related neural activity in area LIP is consistent with the notion of 
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an “accumulation-to-bound”, while area MT encodes the absolute amount 

of visual motion present in the RDM stimulus and might consequently 

provide decisive evidence to LIP. Could LIP activity actually correspond 

to a neural decision variable in the mathematical sense of the SPRT? 

As the brain hardly stores the complete distribution of possible neural 

responses to every encountered stimulus, it probably has no access to the 

PDFs of the neural populations, which would be necessary to infer the 

likelihood ratio LR (Gold and Shadlen, 2001; but see Ma et al., 2006).  

However, motivated by the apparent analogy between the trajectory 

of V and LIP firing rates, Gold and Shadlen (2001, 2002, 2007) argued 

that a quantity approximating the logLR could indeed be computed in the 

brain. More precisely, knowledge about the PDFs would not be explicitly 

necessary to implement a decision rule approximating the optimal SPRT, 

if output firing rates of two antagonistic sensory neurons or neural 

populations were used as evidence. One example would be the responses 

I1 and I2 of two populations of MT neurons, one selective for rightward, 

the other for leftward motion, which respond to their preferred and null 

direction with the mean firing rates µ1 > µ2, and roughly equal variance . 

In that case, the optimal logLR decision rule will depend only on the 

firing rate difference I1-I2, apart from a scaling factor.  

This largely hold true for a variety of possible PDFs (Gold and 

Shadlen, 2001). In particular: 

,   (2.6) 

if I1 and I2 are sampled from normal distributions, which is a plausible 

assumption for the average firing rate of a neural population. Yet, 

responses of single neurons might better be described by a Poisson 

distribution. In that case:  

.   (2.7) 

Knowing the sign of the difference I1-I2 in MT activity would hence be 

sufficient for downstream areas like LIP to elicit a left or right saccade 

according to an SPRT optimal rule.  

Furthermore, a study by Platt and Glimcher (1999) revealed that both, 

the prior probability of getting a reward, and the expected magnitude of 

the reward could modulate LIP activity, affirming the suggestion that LIP 

activity might be a neural correlate of the decision-variable V (Eq. 2.5). 

As a final note on the SPRT, the argument of Gold and Shadlen 

(2001, 2002, 2007) can also be extended to multiple alternatives, or neural 

populations, which results in a comparison between the neural population 

with the highest rate and the average rate of the other populations (“max-

vs-average test”) (Ditterich, 2010). However, contrary to the 2-alternative 

case, the resulting statistical test is not optimal. Interestingly, the optimal 
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algorithm for decisions between more than two alternatives is still 

unknown (McMillen and Holmes, 2006). The multihypothesis (M)SPRT 

was shown to approximate optimality for small error rates (Dragalin, 

1999). For moderate error rates, the physiologically plausible max-vs-

average test performs almost as well as the MSPRT (Ditterich, 2010). 

b) The drift-diffusion model (DDM) 

The continuum limit of the SPRT represents the most basic form of 

the DDM. A continuous decision variable v(t) is accumulating the 

evidence difference between the two choice-alternatives, or hypotheses 

(Stone, 1960; Laming, 1968; Ratcliff, 1978). In the unbiased case with 

equal prior probabilities, v(t) is integrated over time according to 

    (2.8) 

with symmetric decision bounds b1 = -b2, and the accumulation time 

interval dt (assumed to be very small). Eq. 2.8 is the continuous extension 

of Eq. 2.5. The right side of Eq. 2.8 denotes the new noisy evidence 

obtained during dt. It is composed of a constant drift µdt, with drift rate µ, 

and the diffusion term2  dW, which represents white noise drawn from a 

Gaussian distribution with mean 0 and variance 2dt. The correct 

alternative is determined by µ, which, in the case of the RDM task, can be 

interpreted as the amount of coherent motion. Using the terminology of 

the SPRT, if µ > 0, H1 is correct; if µ < 0, H2 is correct. Which alternative 

is eventually chosen by the DDM, however, is also subject to noise, 

depending on , and the height of the decision bounds b1 and b2. Still, the 

DDM, as a continuous implementation of the SPRT, solves 2AFC 

problems optimally: it will on average return a decision in the shortest 

possible time for a specified level of accuracy (Bogacz et al., 2006).  

Solutions of Eq. 2.8 are normally distributed with probability density 

p(v,t) = N(µt, t), if the decision bounds are ignored (Gardiner, 1985). 

Consequently, the variance across trials of the temporal evolution of v 

increases linearly with t. This can be appreciated in Fig. 2.5, where  

several example trials of v and their variance are displayed.   

Due to the threshold nonlinearity of the decision bounds, the reaction 

time distributions of correct and error trials are typically left-skewed, with 

equal means (Fig. 2.5B). Treated as a so called “first-passage time 

problem” (Ratcliff, 1978; Bogacz et al., 2006), error rates (ER) and mean 

RTs of the basic DDM can be expressed as: 

,      (2.9) 

                                                      
2
 dW is proportional to N(0,1)· dt, as the variance of uncorrelated stochastic  

random variables is additive with successive time steps, which leads to a square-

root behavior for the standard deviation (Usher and McClelland, 2001). 
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,    (2.10) 

where tND denotes the “non-decision” time (e.g. the time related to sensory 

and motor processes which add to RT).  

Contrary to the theoretical predictions of the basic DDM, error 

responses in 2AFC tasks can have significantly different mean RTs than 

correct responses, depending on experimental specifications, e.g. stressing 

accuracy or speed, or the difficulty of a condition, (Luce, 1991; Ratcliff 

and Smith, 2004; Pleskac and Busemeyer, 2010). A more general, 

extended version of the DDM includes trial-to-trial variability in the drift 

rate and the starting point (Ratcliff and Rouder, 1998; Ratcliff and 

McKoon, 2008). A normally distributed drift rate with mean µ and 

standard deviation sµ leads to longer RTs on error trials, as errors will 

occur more often in trials where the drift µ is small. Drawing the starting 

point v(0) from a uniform distribution ranging from –sv to sv produces on 

average shorter error RTs, because errors are more likely for a bias 

 

Fig. 2.5 Basic drift diffusion model.  

(A) 100 example traces of the time evolution of v(t). Three correct trials were 

labeled in blue, one error trial in orange. (B) Left-skewed RT Histograms of 

correct and error choices from 50,000 trials. (C) The variance of v increases with 

time. The distribution of v for 50,000 trials is given for t =20 ms, 100 ms and 200 

ms (bold to narrow lines). Model parameters: µ = 0.07,  = 1, dt = 1ms, b=20. 
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towards bound b2 and hence reach the threshold faster. Physiologically, 

this variability can be explained by trial-to-trial differences in attention, 

premature sampling, or other variable perceptual biases. 

The extended DDM version is hardly tractable analytically. RT 

distributions and ERs can only be obtained numerically. Typically, the 

DDM is fitted to a particular set of behavioral data by minimizing the 

deviation between a simulated data set and the experimental data set 

(Vandekerckhove and Tuerlinckx, 2007).  

A simplified deterministic version of the DDM has also been 

proposed by Reddi and Carpenter (2000). Their “LATER” model 

produces variability in reaction times by varying the drift rate across trials, 

without any within-trial noise. For the RDM task, where the stimulus 

itself is explicitly stochastic, this might not seem a plausible model. 

Within-trials noise, however, is no essential property to fit behavioral data 

of 2AFC tasks (Brown and Heathcote, 2008).  

Yet, the DDM has the advantage that reaction times and accuracy are 

directly related over the decision threshold. In experiments, more pressure 

for speed typically leads to faster RTs and lower accuracy. This negative 

correlation is known as the “speed-accuracy tradeoff” (SAT). By adjusting 

the decision bounds, the DDM can reproduce the negative SAT 

correlation (Palmer et al., 2005). Absent noise, as for the LATER model, 

the threshold has no effect on accuracy.  

The reverse conclusion of the SAT is that perfect accuracy could be 

achieved with unlimited processing time. Accordingly, the DDM 

implements perfect integration of the evidence difference in the sense that 

no information is “forgotten” or overly emphasized. Nonetheless, 

participants‟ accuracy as a function of RT often reaches an asymptote, 

especially in difficult tasks and the assumption of perfect integration 

might not holds true for neural systems. This discrepancies can be solved 

by introducing a “leakage” term v to the drift rate in Eq. 2.8. Information 

loss over time is modeled according to: 

   (2.11) 

with  < 0, corresponding to a stable Ornstein-Uhlenbeck (O-U) process  

(Busemeyer and Townsend, 1993). This can be pictured by a diffusion of 

v in a curved instead of a flat landscape, where v approaches a stable fixed 

point v* = -µ/ , where dv = 0. In the opposite case of  > 0 both mean 

and variance of v grow exponentially, as v is repelled from the now 

unstable fixed point (unstable O-U process). 

c) The race model 

While in the DDM a single integrator accumulates the evidence 

difference between two alternatives, in the race model (Vickers, 1970, 

1979) separate integrators v1, v2 are used for each alternative:  
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   (2.12) 

I1 and I2 denote the average incoming evidence, respectively. As for the 

DDM, white noise is sampled from a normal distribution, N(0, 2dt). In 

the free-response mode, a decision is made as soon as one of the two 

integrators exceeds a threshold B3. The two integrators thus perform a 

“race to threshold” against each other.  

The race model is not equivalent to the DDM and thus not optimal  

(Bogacz et al., 2006). Nevertheless, other than the DDM, it can easily be 

extended to multiple-choice decisions, simply by adding more integrators.  

Moreover, in the race model, v can be interpreted as the population 

activity of two neural pools, receiving inputs from distinct populations of 

up-stream sensory neurons. For the DDM, however, it remains unclear 

how the difference in evidence might be computed physiologically.  

This problem has been addressed in subsequent “connectionist” 

models of 2AFC decision-making (Fig. 2.6). These abstract neural 

network models implement the diffusion process with inhibition between 

two integrators and will be reviewed in the following section.  

2.2.2 Biologically-motivated rate models 

As we have seen, the DDM is an intuitively appealing model of 

2AFC decision-making and, moreover, achieves optimality according to 

the SPRT. But, is there a way to implement this drift-diffusion concept in 

a physiologically plausible manner?  

                                                      
3
 We again assume equal prior probabilities. Therefore both integrators have the 

same decision bound B.  

 

Fig. 2.6 2AFC decision models with two integrators. 

Blue color denotes excitatory connections and populations, orange inhibitory. 

Adapted from (Bogacz et al., 2006). 
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Several models have been proposed, which effectively compute 

evidence subtraction with different inhibitory mechanisms (Fig. 2.6). 

Although these models all exhibit two separate integrators just like the 

race model, dynamically they are more closely related to the DDM 

(Bogacz et al., 2006). 

a) Feedforward inhibition (FFI) 

Mazurek et al. (2003) proposed a feedforward inhibition (FFI) model 

directly motivated by neural activity from MT and LIP during the RDM 

motion task (Britten et al., 1993; Shadlen and Newsome, 2001). The 

model instantiates the hypothesis that two populations of movement-

sensitive MT neurons provide evidence in favor or against the opposed 

motion directions, which is then integrated in area LIP (Fig. 2.6B). A 

decision is made, when the pooled activity reaches a threshold. The two 

LIP populations thus correspond to the response units, which receive 

excitatory inputs from one population of MT neurons and inhibitory 

inputs from the other, according to:  

 (2.13) 

where u denotes the inhibitory FF connection weight. In this simple 

version of the FFI model, integration is perfect without leak.  

Just as the basic DDM model, the FFI model cannot account for the 

slower error RTs found experimentally in the RDM task without further 

extensions. Ditterich (2006a; 2006b) consequently suggested that a time-

variant version of the FFI, including for example a within-trial increase of 

the input gain, could account quite well quantitatively for both behavioral 

and neural data of Roitman and Shadlen (2002). An additional leak term 

further improved the fit to the neural data.  

Besides, Niwa and Ditterich (2008) successfully applied a 3-

alternative version of the FFI model to their RDM experiment with three 

possible directions of motion (see 2.1.1). Theoretically, the FFI model can 

be extended to any number of choice-alternatives, if the inhibitory weights 

are adapted accordingly. This assumption might be plausible in an 

experiment where trials with different numbers of alternatives are present 

in separate blocks of trials. By contrast, if the different trials are randomly 

interleaved, as in the experiment we present in Chapter 5 and (Churchland 

et al., 2008), sufficient neural plasticity to adapt the connection weights is 

hardly practical in the short time between trials.  

b) Lateral inhibition and the leaky competing accumulator 

Apart from feedforward inhibition, also lateral inhibition between the 

two integrators, here the two LIP populations, could effectively render a 

diffusion process through competition within LIP (Fig. 2.6C). This picture 
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is consistent with the established assessment that long range cortical 

connections are mostly excitatory and inhibition thus acts locally within a 

cortical column (e.g. Lund et al., 2003). Usher and McClelland (2001) 

proposed a model called the “leaky competing accumulator” (LCA) 

model, which in its simplest form it can be written as: 

 (2.14) 

Here, k > 0 is the decay rate, or leak, equivalent to  < 0 in the Ohrnstein-

Uhlenbeck model (Eq. 2.11), and w denotes the inhibitory connection 

strength between the integrator units. Usher and McClelland (2001) 

further incorporated nonlinearity in their model in the form of a threshold-

linear activation function, which prevents that firing rates drop below 

zero. The LCA model accounts for correct and error RT distributions 

without the need of trial-to-trial, or within-trial variability.  

Notably, the authors also addressed multi-choice decision-making 

with the LCA model and found that the model captures the positive log-

linear relation between reaction time and number of alternatives, known 

as Hick‟s law (Hick, 1952).  

 

To conclude, Bogacz et al. (2006) have demonstrated that for a 

particular parameter range, namely large and balanced leak and inhibition, 

the dynamics of the LCA and the FFI model approximate a one-

dimensional linear diffusion process equivalent to the DDM with perfect 

integration. Moreover, the LCA and consequently also the basic DDM are 

approximated by a more physiologically plausible connectionist model 

with pooled inhibition and recurrent excitation, if self-excitation balances 

the decay and inhibition is strong (Fig. 2.6D). Yet, whether the brain 

actually works in a parameter regime of perfect integration has recently 

been called into question by a RDM study with time-varying evidence 

(Huk and Shadlen, 2005; Wong and Huk, 2008). For an accurate 

description of real neural dynamics, nonlinear attractor states that arise 

from strong recurrent connections might not be negligible. 

2.2.3 Attractor models  

Neural networks with interconnected neurons, such as the pooled 

inhibition model displayed in Fig. 2.6D, form nonlinear dynamical 

systems, whose long-term behavior is determined by “fixed points”, or 

“steady states”. These fixed points can be attractive or repellent and their 

existence depends on different parameters of the system, here for example 

the recurrent connection weights, or the inputs to the neural network. A 

useful analogy of the system‟s trajectory through state space is a particle 
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that moves on an energy landscape with valleys, corresponding to 

attractors or stable fixed points, and hills, corresponding to unstable, 

repellent fixed points (Fig. 2.7).  

Decision-making can be implemented in an attractor network with at 

least two stable fixed points (“bistability”), representing the two choice-

alternatives. The decision process is then regarded as the transition from 

an initial starting point towards one of the two attractors. Once such a 

decision-attractor is reached, this state will persist except for high levels 

of noise or perturbations and can thus be associated with persistent neural 

activity.   

In the pooled inhibition model, decision-attractors emerge through 

strong recurrent connections, which form positive feedback loops of 

activity in the excitatory neural populations. Runaway activity is averted 

through negative feedback from the inhibitory neural population.  

The biophysically realistic attractor model that forms the basis of our 

theoretical work, is a spiking-neuron implementation of the pooled 

inhibition model (Wang, 2002). Due to the nonlinear response properties 

of the spiking neurons, the full model can sustain a state of low 

spontaneous activity for a physiological range of background activity 

(Amit and Brunel, 1997). Therefore, depending on the amount of sensory 

inputs and the strength of the recurrent connections, the model can work 

in three different dynamical regimes: (1) only the spontaneous state of low 

firing is stable, (2) a bistable regime of categorical decision-making, and 

(3) a “multistable” regime, where the spontaneous and the decision 

attractors are stable (Fig. 2.7). In the multistable regime, transitions from 

the spontaneous state to a decision-attractor can happen due to noise 

fluctuations that are large enough to drive the system across the “hill”, or 

unstable fixed point, into the “basin of attraction” of one of the decision-

attractors.  

 

Fig. 2.7 Schematic of possible attractor configurations in the attractor 

network of binary decision-making. 

Depending on the network parameters and inputs, one, two or three attractors 

can be simultaneously stable. 
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a) Biophysically realistic attractor model with spiking 
neurons 

Although the connectionist models discussed in Section 2.2.2 

schematically describe neural processes in area MT and LIP, they still 

lack a direct connection between model variables and real neural 

parameters. This is different in the biophysically detailed implementation 

of the pooled inhibition model proposed by Wang (2002), where single 

neurons are modeled as leaky integrate-and-fire (LIF) neurons (Tuckwell, 

1988) with conductance-based synaptic responses, described by realistic 

synaptic kinetics. The model was initially developed to account for 

(persistent) neural activity of PFC neurons during working memory tasks 

(Brunel and Wang, 2001). Its application to decision-making was inspired 

by the experimental observation that neurons, which exhibit ramping 

activity, characteristically show persistent neural firing in delayed 

memory or decision tasks (Gnadt and Andersen, 1988; Shadlen and 

Newsome, 2001). Wang (2002) successfully applied the spiking-neuron 

attractor model to behavioral and neurophysiological decision-making 

data measured from primates performing a binary RDM discrimination 

task (Roitman and Shadlen, 2002). In this context, the attractor network 

can again be viewed as the representation of a local microcircuit in area 

LIP (or PPC in general).  

Physiological neural firing rates are obtained by averaging over the 

simulated action potentials, or output “spikes”, of distinct neural 

populations of LIF neurons in the network. Each LIF unit is characterized 

by its subthreshold membrane potential 

,   (2.15)  

with resting potential VL, membrane capacitance Cm, membrane leak 

conductance gm. Isyn is the total synaptic current flowing into the cell. 

When the membrane potential V of a LIF neuron reaches the firing 

threshold Vth, it is reset to Vreset and a spike is emitted to all connected 

neurons with a subsequent absolute refractory period of ref. Accordingly, 

LIF neurons do not explicitly model action potentials, but give a realistic 

account of the subthreshold membrane potential. Excitatory synaptic 

currents between LIF neurons are mediated by fast AMPA and slow 

NMDA glutamate receptors, inhibitory synaptic currents by GABAA 

receptors. The total synaptic current is given by the sum:  

. (2.16) 

The attractor network is organized into separate populations of LIF 

neurons, termed “pools”, which share common inputs and connectivities 

(Fig. 2.8A). As in the connectionist version, the spiking-neuron model 

contains one homogenous pool of inhibitory neurons, globally connected 
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to all network neurons. The two integrator units are implemented by two 

“selective pools” of excitatory neurons, which are thought to respond 

selectively to one of the two possible directions of coherent motion and, 

hence, reflect the possible choice-alternatives in the RDM task (S1, S2 in 

Fig. 2.8A). 

 

Fig. 2.8 Biophysically realistic attractor network of slow perceptual decision-

making. 

(A) Schematic representation of the network. The excitatory neurons are 

organized in three pools: the nonselective neurons (NS) and the two selective 

pools (S1, S2) that receive the inputs encoding each stimulus (with rate νin). An 

additional bias (νbias) can be applied to one of the two selective pools. All neurons 

also receive an input (νext) that simulates the spontaneous activity in the sur-

rounding cerebral cortex. (B) Stable (solid lines) and unstable (dotted lines) fixed 

points depend on the external sensory input, They were calculated with the mean-

field approximation of the network (Brunel and Wang, 2001). (C,D) Single trial 

(colored traces) and mean firing rate evolution (black, averaged over 20 trials) of 

the selective pools for different inputs, denoted by the gray bars (νbias = 0). (C) 

Noise induced transition from spontaneous to decision state (low inputs, 

multistable regime). (D) Input-driven transition (bistable regime). Simulations 

were performed with a synaptic strength of +=1.68 within selective populations; 

all other parameters were taken from (Wang, 2002). 
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 Moreover, a third excitatory pool of “nonselective” neurons 

represents activity of surrounding LIP neurons that are not selective to 

either direction. 

All neurons in the network receive an external background input 

simulated by uncorrelated, stochastic Poisson spike trains applied 

independently to the individual neurons. This background activity 

determines the spontaneous firing rate of all network neurons and is the 

main source of noise in the network together with finite-size effects due to 

the limited number of neurons. Here, the term “finite-size noise” describes 

the variance in the recurrent inputs, which tend to zero when the size of 

the network is increased. 

In addition to the background input, the selective pools further 

receive time-dependent external inputs, corresponding, for instance, to the 

sensory stimuli in the RDM experiment, the visual R-targets and the 

motion stimulus. 

As explained above for the general case, decision-attractors emerge in 

the network due to the strong recurrent connectivity ω+ of neurons within 

one selective pool, while the connections between the two selective pools 

are weaker than average ω- < 14. Fig. 2.8B displays an example of a 

typical attractor landscape for strong ω+ as a function of increasing 

external inputs applied equally to both selective pools.  
Without any external sensory inputs to the selective pools (0 Hz), the 

system will naturally rest in its spontaneous state with similarly low firing 

rates in all excitatory neural pools.  
If a sensory stimulus is applied to the model, which increases the 

external inputs to the selective pools sufficiently (> 10 Hz), the 

spontaneous state becomes unstable in a “subcritical pitchfork 

bifurcation” leading to bistability between the decision attractors (gray 

area in Fig. 2.8B). The network then operates in a region of categorical 

decision-making, where one selective pool will settle at the upper decision 

branch with high firing rate (“winner”), the other will decay to the lower 

branch (“loser”). In this case, the transition from the spontaneous state to 

the decision state is “input-driven” and can be gradual, in the order of 

several hundred milliseconds, even in single trials (Fig. 2.8D). These 

gradual transitions between attractor states, corresponding to the decision 

process, are a distinguishing feature of the biophysically realistic attractor 

model and rely on the slow kinetics of the NMDA receptors ( NMDA,decay = 

100 ms). Consequently, the network‟s behavior is not just dominated by 

its steady states, it also exhibits prolonged responses to momentary 

sensory inputs, with a characteristic time constant of up to a second, 

                                                      
4
 This is consistent with a Hebbian rule, as the activity of neurons that are 

selective for the same feature has supposedly been correlated in the past, while 

neurons encoding opposite directions rather fired in an anticorrelated manner. 
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during which the model effectively integrates the incoming inputs (Wang, 

2008).  

As depicted schematically in Fig. 2.7, also in the multistable regimes 

decision-making is possible. There, the transition from the spontaneous or 

symmetric state to a decision state is induced by noise fluctuations and 

can be rather sharp in a single trial (Fig. 2.8C). Yet, the trial-averaged 

activity builds up slowly, as observed experimentally in decision-related 

neurons (see 2.1.2). This ramping activity is, however, obtained in a 

conceptually different way compared to the bistable regime: here, the 

gradual build-up is an artifact of averaging across abrupt transitions at 

random times (Marti et al., 2008).  
For sufficiently strong connection weights ω+, as in the example of 

Fig. 2.8, the network can exhibit persistent activity, meaning that the high 

firing rates of the “winner” population can be sustained even after all 

external sensory inputs are switched off. This is because at 0 Hz, with 

only background activity, the system is already in the multistable regime, 

where the decision states are stable in addition to the spontaneous state. 

Under these conditions, the decision states would only destabilize if 

negative inputs were applied to the selective populations. Persistent 

activity is a characteristic feature of all biophysically realistic attractor 

models that we will explore in this thesis. Therefore, the bifurcation 

between the multistable regime at low inputs and the bistable regime is the 

first bifurcation with relevance to our purposes.  
In the vicinity of this “first bifurcation”, slow integration is enhanced 

above the intrinsically slow kinetics mediated by the NMDA receptors, as 

the effective time constant of the system exceedingly increases close to 

the bifurcation (Wong and Wang, 2006; Roxin and Ledberg, 2008). 

Therefore, in this dynamical region performance is high and reaction 

times are rather long, because of long stimulus-integration times. For this 

reason, previous analyses of the binary attractor model particularly 

concentrated on the dynamics in the proximity of this first bifurcation, 

where the spontaneous state destabilizes (Wang, 2002; Wong and Wang, 

2006; Marti et al., 2008).  

On this note, exploring the network dynamics at the other end of the 

bistable regime is one of the main objectives of this thesis. For sufficiently 

high external sensory inputs, the network again enters a multistable 

regime. Crossing the “second bifurcation”, a symmetric “double-up” state 

becomes stable, where both selective pools fire with intermediate, 

elevated rates. This double-up symmetric state has recently been deployed 

to explain LIP responses to static visual stimuli, as for example the 

response targets in the RDM paradigm (Wong et al., 2007; Furman and 

Wang, 2008). Assuming high selective inputs with R-target onset, the 

high firing rates of LIP neurons prior to the motion stimulus (Roitman and 

Shadlen, 2002; Huk and Shadlen, 2005; Churchland et al., 2008; Kiani 
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and Shadlen, 2009) can be reproduced with the attractor model in the 

double-up state.  

Across the bistable regime, in-between the two bifurcations, higher 

external inputs to both selective populations lead to faster reaction times 

and less accuracy, congruent with a speed–accuracy tradeoff (Wong and 

Wang, 2006; Roxin and Ledberg, 2008). This dependency of decision-

behavior on the amount of unbiased external sensory inputs to both 

selective populations explicitly arises from the nonlinearity of the attractor 

model. In linear models, such as the DDM, changes in the common 

sensory evidence to both decision alternatives would not affect decision 

behavior. This is obvious in the case of the DDM, as the DDM 

characteristically accumulates only the evidence difference of the two 

alternatives. We will see in Chapter 3 that input-dependent decision 

behavior might provide means to distinguish between linear and nonlinear 

modeling approaches.  
 As a final note, the decision-attractor would automatically provide an 

upper bound for the neural activity of the winning selective population. 

Nevertheless, the model‟s decision is typically determined by a fixed 

firing rate threshold independent of the applied amount of sensory inputs, 

in line with neurophysiological evidence from LIP neurons (see 2.1.2). 

How this decision threshold is read out or adjusted by down-stream areas 

is not explicitly included in the attractor model. Yet, possible extensions 

have been suggested, which implement the decision threshold involving 

cortico-collicular and cortico-basal ganglia circuits (Lo and Wang, 2006; 

Bogacz and Gurney, 2007).  

Taken together, the characteristic features of the biophysically 

realistic spiking-neuron attractor model are: 

 strong recurrent connections within the selective neural 

populations, which generate attractor states, 

 global feedback inhibition enabling winner-take-all competition, 

 stochasticity because of finite-size effects and random Poisson 

inputs to the network, 

 a long synaptic time-constant (NMDA) facilitating the 

integration of incoming neural activity. 

A detailed mathematical description of the neural dynamics is given 

in the Appendix (A.1), together with all parameters and specifications of 

the different model variants and extensions that we implemented in this 

dissertation.  

b) Model reductions  

Simulating populations of individual and realistic neurons as 

described above is necessary to simulate realistic neuronal dynamics, 
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physiological responses and behavior. Nevertheless, to gain an analytical 

understanding of the population dynamics, a reduced, mathematically 

tractable description can yield deeper insights into the essential, collective 

model behavior.  

Mean-field approximation. Taking a mean-field approach, Brunel 

and Wang (2001) considerably reduced the state variables of the network 

by replacing the different populations of spiking neurons with an 

approximation of their average population activity. Because of the 

recurrent connections in the network, the population firing rates have to be 

determined self-consistently based on the input currents to the neural 

pools, which in turn depend on the firing rates. Equalizing the pre- and 

postsynaptic activity, the possible fixed points or steady states of the 

population firing rates can be obtained.  

Several approximations have to be assumed in order to arrive at a 

closed system of one nonlinear equation for each population in the 

network. First, postulating that individual neurons fire spikes 

independently, according to a stationary Poisson process, the net input is 

treated as a Gaussian random process. This assumption generally holds in 

the limit of infinitely large networks, where each neuron receives a large 

number of presynaptic currents, which each deflect the membrane 

potential only minimally compared to the voltage distance between the 

resting and threshold potential. Second, only fast AMPA-mediated 

external inputs are assumed to contribute to the fluctuations in the 

synaptic current. Fluctuations in the NMDA and GABA currents are 

neglected as they are supposed to filter out, due to the longer synaptic 

time constants.  

Finding a self-consistent solution for the population rates is further 

complicated by the nonlinear properties of the NMDA receptors. 

Therefore, NMDA saturation is approximated by calculating the average 

NMDA gating variable as a nonlinear function of the presynaptic rate. In 

addition, the voltage dependence of the NMDA conductance is linearized 

around the average neural potential.  

The final set of mean-field equations obtained through the above 

approximations is given in Appendix A.1.2. For a detailed mathematical 

derivation we refer to the original publications (Brunel and Wang, 2001) 

and (Renart et al., 2003). Solving the mean-field equations is 

computationally much less intense than running simulations with the full 

spiking network. The mean-field analysis thus allows calculating the 

steady state firing rates of the attractor model for a wide range of 

parameters. This makes it feasible to scan the parameter space in order to 

find a parameter set matching experimental findings.  

In sum, by solving the mean-field equations for a set of initial 

conditions (here the initial firing rates of each neural population) one 

obtains the approximated average firing rate of each pool when the system 
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has settled into a stationary state after the period of dynamical transients. 

The mean-field reduction, however, does not provide an accurate 

description of the temporal dynamics.  

Two-dimensional reduction. Based on the mean-field approach, 

Wong and Wang (2006) further reduced the biophysically realistic 

spiking-neuron model to a two-variable system. In particular, they fitted a 

simplified input-output function to the complex first-passage time formula 

used in the mean-field to describe the output firing rates as a function of 

the mean synaptic inputs. With the assumption that the network dynamics 

are dominated by the slow NMDA receptors, they further set the firing 

rate of the nonselective pool to a constant mean firing rate (2 Hz) and 

linearized the input-output relation of the inhibitory neurons. Thereby, 

inhibition could be incorporated into the selective populations as mutual 

negative inputs. The nonselective and interneurons could thus be 

eliminated, leaving two neural units with self-excitation and effective 

mutual inhibition.  

The two-dimensional reduction is particularly useful to perform 

phase-plane analyses in order to elucidate the different dynamical regimes 

of the network. To simulate the noisy temporal evolution of the spiking 

neural network, Wong and Wang (2006) explicitly added a noise term to 

the external inputs, described by an Ohrnstein-Uhlenbeck process (white 

noise filtered by a short, AMPA synaptic time constant). The two-

dimensional reduction can thus be viewed as a closely related 

connectionist version of the full spiking model. In this way, it can also 

account for decision-related behavior and neural activity, albeit without 

explicit analogy to real neural parameters (Wong et al., 2007). 

Nonlinear diffusion. Instead of a two-component system of rate 

equations as in (Wong and Wang, 2006), Roxin and Ledberg (2008) 

derived a one-dimensional nonlinear diffusion equation to describe the 

asymptotic behavior of winner-take-all models in the proximity of the 

bifurcation to bistability, where the spontaneous state destabilizes. Their 

reduction is universally valid for all winner-take-all models, but also 

allows to relate the variables of the nonlinear diffusion process to those of 

the full spiking-neuron model and thus to neurobiologically meaningful 

quantities. In the last section, we already mentioned a particularly relevant 

prediction based on this nonlinear one-dimensional reduction, namely, 

that the speed-accuracy tradeoff can be implemented by changes in the 

common inputs to both selective neural populations, instead, or in 

addition, to an adaptation of the decision threshold. We will confirm this 

relation between selective inputs and the speed-accuracy tradeoff with the 

full spiking model in Chapter 3 (see in particular 3.4.2).  
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2.3 Distinguishing model approaches5 

As we have seen, models on the accumulation of noisy evidence, as 

for instance in the random-dot motion paradigm, come in a huge variety 

of flavors. Although they differ in fundamental features, such as network 

structure and connectivity, in practice, it may be very difficult to 

distinguish between them on the basis of just behavioral data or mean 

firing rates (Bogacz et al., 2006; Ditterich, 2010).  

Ratcliff and Smith (2004) evaluated four types of sequential sampling 

models and the LCA model against three sets of psychophysical 2AFC 

experiments. In particular they compared the three models we presented in 

Section 2.2.1, the DDM, the O-U and the race model, and a so-called 

“Poisson counter”6 model (Townsend and Ashby, 1983), all with trial-to-

trial variability in drift, starting point and non-decision time.  

Of all models considered, only the Poisson counter model failed to 

match the empirical data and faster mean errors still resulted problematic 

for the race model. The Poisson counter model also proved inferior to the 

DDM when compared to the neural activity of superior colliculus build-up 

neurons from macaque monkeys performing a 2AFC task (Ratcliff et al., 

2003). The activity pattern predicted by the DDM, however, resembled 

the observed neural firing rates, suggesting that build-up cells in the 

superior colliculus might participate in a diffusion-like decision process.  

Because of the mutual mimicry between models (Ratcliff and Smith, 

2004; Bogacz et al., 2006), finding new analytical methods and 

intelligently designed experiments to distinguish the different approaches 

is a major future challenge in the field of perceptual decision-making.  

One approach along that line was conducted by Huk and Shadlen 

(2005). By adding brief motion pulses to a standard RDM stimulus, they 

first of all provided strong physiological support for a temporal integration 

in LIP. However, their findings revealed a departure from perfect 

integration, as the effect of the motion pulse decreased with its onset time. 

Later motion pulses thus influenced behavior and neural activity less than 

earlier motion pulses. Neither a perfect DDM, nor leaky integrators could 

reproduce this experimental finding, while the time-varying dynamics of 

the attractor model explained both behavioral and neural data (Wong et 

al., 2007; Wong and Huk, 2008). Still, time-varying effects such as 

                                                      
5
 Part of the review presented in this section is adapted from a discussion 

published in Masquelier T, Albantakis L, Deco G (2011) The timing of vision - 

how neural processing links to different temporal dynamics. Front Psychol 2:151. 
6
 The Poisson counter model resembles the race model, with the difference that 

evidence is counted in discrete units, delivered at random times, with 

exponentially distributed intervals. Therefore, it can be interpreted as an 

independent accumulation of two spike trains. 
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decreasing decision bounds or an “urgency” signal might produce 

decreased sensitivity to later perturbations also in the DDM and LCA.  

Recently, also multiple-choice decision task received increasing 

attention in the context of model distinction (Leite and Ratcliff, 2009; 

Ditterich, 2010; Purcell et al., 2010; Churchland et al., 2011).  

Analyzing higher-order statistical properties of neurophysiological 

data from their 2- and 4-alternative RDM task, Churchland et al. (2008; 

2011) were able to distinguish between models categorized by their 

different sources of variability. Models with just one source of variability, 

such as the LATER model (2.2.1b) and a model by Cisek et al. (2009) 

with fixed slope, but a random distribution of firing rates at each time-

step, failed to account for the higher-order measures, although they agreed 

with behavior and mean firing rates. On the other hand, all different model 

implementations of a stochastic accumulation-to-threshold tested in 

Churchland et al.‟s (2011) study could account for variance and within-

trial correlations, in addition to behavioral data and first-order firing rates. 

In particular, the tested models included the drift–diffusion model 

(Ratcliff and Rouder, 1998), a model based on probabilistic population 

codes (Beck et al., 2008), and the reduced version of the attractor model 

by Wong et al. (2007).  

Based on human behavioral data from a RDM task with three 

alternatives and three motion components, Ditterich (2010) intended to 

distinguish more detailed aspects of conceptual accumulation-to-bound 

models with regard to their goodness of fit and their neurophysiological 

predictions. Perfect integrators were compared to leaky, saturating 

integrators, with either feedback or feedforward inhibition. As we have 

seen, in the case of two alternatives, most of the discussed models proved 

equivalent to the DDM for certain parameter ranges (Bogacz et al., 2006). 

Therefore, it might not be too surprising that none of the models could be 

excluded based only on the fits to behavioral data of a 3-alternative RDM 

task (Niwa and Ditterich, 2008). Yet, the models differ substantially in 

their neurophysiological predictions on how the integrator states should 

evolve over time (see Table 2 in Ditterich, 2010). Invasive neural 

recordings from monkeys performing the same task will hopefully soon 

settle the dispute. Moreover, feedforward and feedback inhibition 

respectively suggest either negative or positive correlation between the 

integrator units, which might be tested with multi-electrode recordings. 

Finally, in the case of an equal amount of motion coherence in all three 

directions, Niwa and Ditterich (2008) measured faster mean reaction times 

for higher coherence levels. While models with feedforward inhibition 

require a scaling of the variance of the sensory signals in order to account 

for this effect, conceptual models with feedback inhibition could explain 

the result just with a change of the mean input (Ditterich, 2010).  
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Considering all the current evidence presented in this chapter, so far 

two types of decision-making models have proven particularly successful: 

on the one hand, the extended drift-diffusion model and its connectionist 

implementations account for a vast range of behavioral data. They also 

conceptually represent neural activity during the decision-making period. 

On the other hand, Wang‟s (2002) physiologically-detailed attractor 

model and its reductions (Wong and Wang, 2006), which mimic real 

neural dynamics, accurately simulate behavioral data and LIP activity 

during the RDM task. Moreover, they account for persistent activity and 

the nonlinear, time-dependent effects of motion pulses.   

In the following three chapters, we intend to confirm the accordance 

of attractor dynamics to higher-level cortical processes in general, and 

changes of mind and multiple-choice decision-making in particular. What 

is more, we will compare extensions of the attractor model to other, more 

phenomenological, modeling approaches, and propose new ways to 

distinguish between them. 
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3 CHANGES OF MIND IN AN ATTRACTOR 
NETWORK OF DECISION-MAKING 

The work presented in this chapter is published in PLoS 

Computational Biology.7  

3.1 Introduction 

Some of the decisions we have to make in our lives are irretrievable. 

Once an alternative was chosen, it cannot be undone. Often, however, our 

decisions are not strictly binding. We might be granted a second chance to 

decide and a previous choice can then be adjusted if we have changed our 

minds.  

As we have seen in the last chapter, the decision process is 

traditionally regarded as a decision variable evolving in time, until a 

termination criterion is reached. Correspondingly, the lateral intraparietal 

(LIP) cortex was identified as a possible candidate for a neural decision 

variable. This is due to the fact that firing rates of LIP neurons gradually 

increase during motion-viewing in the RDM task and correlate with 

subjects‟ choices and reaction times (2.1.2). Moreover, recordings from 

LIP neurons provide evidence for a fixed decision threshold: if the 

monkey chose the target in the response field of the recorded neuron, the 

firing rate variation across trials reached a minimum shortly before 

saccade onset (Roitman and Shadlen, 2002; Churchland et al., 2008). This 

means that on each trial about 80 ms before the saccade, the neurons fired 

at an approximately stereotyped rate, indicating a decision threshold. The 

chosen motor response, typically a saccade, then marked the end of the 

decision-trial.  

With this established concept of a decision threshold, how could a 

change of mind be induced after a first decision was already made? Or 

more generally: What happens in our brains if we change our mind?  

To elucidate these questions, Resulaj et al. (2009) developed a 

psychophysical RDM task, where human participants had to indicate their 

choice by moving a handle towards a left or right target (Fig. 3.1A). 

Because this hand movement is continuous, contrary to ballistic saccades 

or pressing a button (Palmer et al., 2005), occasionally changes of mind 

could be observed directly by recording the handle traces. Changing 

improved the overall accuracy, but depended on task difficulty: most 

                                                      
7
 Albantakis L and Deco G. (2011) Changes of mind in an attractor network of 

decision-making. PLoS Comput Biol 7, e1002086. 

doi:10.1371/journal.pcbi.1002086. 
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correcting changes, meaning changes from the incorrect to the correct 

side, were observed at intermediate levels. Erroneous changes from the 

correct to the wrong side, however, increased monotonically with 

difficulty.  

These findings pose a challenge for attractor models. This class of 

models implements decision-making by diffusion in a nonlinear landscape 

of stable fixed points, which act as decision-attractors. Once a decision-

attractor is reached, this state will persist except for high levels of noise or 

perturbations and is thus rather counterintuitive to a change of mind. On 

the other hand, due to the stable attractors, those models account for 

persistent activity frequently observed in decision-related neurons (see 

2.2.3).  

In this chapter we show that changes of mind (after a first decision) 

are entirely consistent with attractor dynamics. In particular, they arise 

naturally during the itinerant transients following sensory perturbation, if 

the system lies close to a bifurcation (or phase boundary) that separates a 

neuronal state of categorical decision-making from a multi-stable region. 

There, the decision process is impeded by a second attractor, where both 

populations encoding the possible alternatives fire at high rates. This 

facilitates changes of mind. Moreover, by replicating the psychophysical 

data of Resulaj et al. (2009) with a biophysically realistic attractor model 

with spiking neurons, we gained neurophysiological predictions on neural 

firing rates during the change process. In all, our results offer testable 

predictions on the attractor concept and general principles of decision-

making like the speed-accuracy tradeoff and a fixed decision threshold.  

Our main results are the following: 

 Despite their fixed-point stability, attractor models can account 

for changes of mind. 

 Low decision thresholds and high incoming activity (speed 

pressure) favor changes. 

 The model fits the experimental data best close to a bifurcation 

point at high inputs. 

 We predict a switch in neural activity during changes of mind, 

which might be indicative of the neural decision threshold. 

 We further suggest that the brain operates over the whole range 

of inputs, which enable decision-making. 
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Fig. 3.1 Experimental design, network architecture and stimulation protocol.  

(A) RDM paradigm with manual indication of choice as in Resulaj et al. (2009). 

(B) Diagram of the binary attractor model for decision-making (Wang, 2002). 

Unlabeled arrows denote a synaptic weight of 1. The model is fully connected. 

(C) Time course of target and motion input to the selective populations in order 

to model the experimental design of the RDM task.  
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3.2 Methods 

With the objective to gain understanding of the actual brain processes 

during changes of mind, in the following we apply a biologically-inspired 

attractor model of decision-making to the psychophysical findings of 

Resulaj et al. (2009). The general network structure of the biophysically 

realistic attractor model we present here (Fig. 3.1B), is identical to the 

two-alternative attractor model first introduced by X.J. Wang (2002) and 

described in Section 2.2.3. The specific network parameters and inputs, 

however, were adapted in order to account for changes of mind. Table A.1 

and A.2 with all default parameter values and the full network details can 

be found in the Appendix A.1.3, together with specification of the mean-

field analysis. The simulation parameters of the diffusion model we used 

for the model comparison in Section 3.3.6 are described in Appendix 

A.1.4. 

3.2.1 Experimental paradigm 

The experimental task sequence used by Resulaj et al. (2009) is 

illustrated in Fig. 3.1A. Three human participants were tested. While the 

participants were holding a handle at the starting position, a patch of 

randomly moving dots appeared after a random delay (0.7-1.0 s). 

Depending on the trial difficulty, a certain percentage of these dots were 

moving coherently to the left or right. The subjects had to decide within 

2 s on the net direction of dot-motion and to report their choice by moving 

the handle in the corresponding direction towards a response target (R-

target, Fig. 3.1A, red dots). They were asked to respond as quickly and 

accurately as they could. Once they initiated the hand movement, they had 

to reach the R-target within a time limit of 700 ms.  

In the majority of trials the subjects moved the handle directly to one 

of the R-targets. Some trajectories, however, revealed a change of mind 

during the movement: they started towards one direction but terminated at 

the opposite R-target. Importantly, the moving-dot display was switched 

off when the handle left the starting position. Participants thus 

occasionally changed their mind on the way towards the R-target, 

although the motion stimulus was no longer visible. 

Three dependent variables were evaluated in the psychophysical 

experiment: (1) reaction times (RTs), which correspond to the time of 

movement initiation, when the handle left the starting position; (2) the 

participants‟ accuracy, or “performance”; (3) the probability of a change 

of mind, obtained from the hand-movement trajectories.  

For trials including changes of mind, the initial performance is given 

by the initial direction of the hand movement, while the final performance 

is determined by the finally selected R-target. Moreover Resulaj et al. 
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(2009) distinguished between correcting changes of mind, initially 

directed towards the incorrect R-target, but then changed to the correct R-

target, and erroneous changes, which turned from the correct to the wrong 

choice. 

3.2.2 Attractor network for changes of mind 

a) Network structure 

In brief, the network consists of two subpopulations (pools) of 

excitatory pyramidal neurons, which implement the two decision 

alternatives (Fig. 3.1B, red). Each of them is selective for one of the two 

target directions. A nonselective excitatory population represents activity 

of surrounding neurons that are not selective to either direction. 

Competition arises in the network due to global feedback inhibition by a 

population of inhibitory neurons. To accurately simulate neural activity, 

the 1,000 network neurons are modeled as integrate-and-fire neurons with 

synaptic currents mediated by AMPA, NMDA and GABAA receptors with 

biophysically realistic conductances and time constants (Table A.1). The 

strong recurrent connections between neurons from the same selective 

pool ( +), together with the long synaptic time constant of the NMDA 

currents enable the model to integrate incoming activity and sustain 

elevated firing rates for several hundred ms. 

b) Network inputs 

During the simulation, each neuron individually receives stochastic 

excitatory Poisson inputs from several external sources. The noise 

fluctuations around the mean external input applied to each neural 

population thus depend on the amount of neurons in the respective pool 

and would be zero for an infinite number of neurons (“finite size” effect). 

For the two selective populations (consisting of 160 neurons in the present 

network) the standard deviation is 17 Hz given a total external input of 

about 2.4 kHz (see below 3.3.3). These 2.4 kHz, equal to 800 afferent 

neurons firing at 3 Hz, simulate the spontaneous activity in the cerebral 

cortex outside the local network.  

On top of this background activity, an external target and motion 

input are applied to the selective neural populations only (Fig. 3.1C). They 

correspond to the sensory stimuli during the RDM experiment: the 

visually shown R-targets and the random-dot motion respectively.  

Target input. In Resulaj et al.‟s (2009) experiment the two possible 

R-targets were visible throughout the trial. During neurophysiological 

single cell recordings combined with the RDM task, one target is always 

placed in the response field of the recorded LIP neuron. Thus, the 

selective populations are supposed to respond not only to the motion 

evidence in favor of one of the two target directions, but also to the R-
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targets themselves. The time course of the target input aims to replicate 

the evolution of LIP firing rates after R-target presentation. In previous 

neurophysiological studies, LIP firing rates have been found to rise 

steeply with the appearance of the possible targets, followed by a “dip” in 

activity at the onset of the motion stimulus (Huk and Shadlen, 2005; 

Churchland et al., 2008; Kiani and Shadlen, 2009). Correspondingly, in 

the simulations the target input (Fig. 3.1C, red) is composed of initially 

high activity with a subsequent decline of input activity. Specifically, 

 (3.1) 

with ttarget = 400 ms and tmotion = 1,300 ms plus an assumed latency of 

100 ms and 200 ms, respectively, for the signals to arrive in area LIP 

(Churchland et al., 2008). The initial exponential decay τ1 = 100 ms can 

be explained by short term adaptation. Due to the exponential decrease of 

the target input with τ2 = 15 ms, starting with a latency of 80 ms after 

motion-stimulus onset, the target input is already decaying for 120 ms, 

before the motion input arrives in LIP with a latency of 200 ms. This 

causes the dip of firing rate in the simulations. Physiologically, this dip 

might be explained by an attentional shift or upstream inhibition of the R-

target signal with the onset of the motion-stimulus (Wong et al., 2007; 

Furman and Wang, 2008). 

Note that the specific parameters of the target input are irrelevant as 

long as, first, the initial inputs are high enough to shift the network from 

the spontaneous to the symmetric state with high firing rates in both 

selective populations and, second, the target input is reduced sufficiently 

with motion onset to allow competition (see attractor landscape in Fig. 2.8 

and Fig. 3.6). What is more, the model is generally capable of decision-

making and changes of mind even in the absence of a target signal (Fig. 

3.A.1). 

Motion input. The motion input represents activity of middle 

temporal (MT) area neurons projecting to PPC. MT neurons fire 

dependent on the amount of coherent motion towards their preferred 

direction (Britten et al., 1993). Accordingly, the different motion 

coherence levels are translated into a positive bias of motion input to one 

of the selective populations, balanced by a motion-input reduction in the 

other:  

,     (3.2) 

with a time invariant rate of νmotion = 70 Hz for 0% coherence. Thus, for 

0% coherence in the RDM stimulus, both selective pools receive the same 
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amount of motion input (70 Hz, Fig. 3.1C blue), while for 100% 

coherence only one pool would receive the maximum motion input (140 

Hz). We simulated six coherence levels: c = 0%, 3.2%, 6.4%, 12.8%, 

25.6%, and 51.2%.  

In the following we refer to both the target and motion input as 

“selective inputs”. Both selective inputs are present until the end of the 

simulation (3,500 ms). 

c) Decision threshold and simulated changes of mind 

With the start of the motion input the system dynamically evolves 

towards the decision state, where one of the two selective pools fires at a 

high rate, the other at a low rate. During this transition, a (first) decision is 

made when one of the firing rate transients crosses the decision threshold 

(44 Hz) with the additional condition that the difference between 

populations is at least 10 Hz. A trial was considered a change of mind, if 

the firing rate of the initially losing selective pool exceeded the (same) 

decision threshold after the first pool crossed, and their rates differed 

again by 10 Hz or more. Our main motivation to use a difference criterion 

in addition to the fixed threshold was to avoid very occasional joint 

threshold crossings to count as decisions (see example in Fig. 3.A.2E). As 

fluctuations in the firing rate of the selective populations are rather 

anticorrelated because of the global feedback inhibition and typically 

larger than 10 Hz, given the amount of noise present in the network, that 

constraint has only little effect on the simulation results. 

d) A time-out for changes of mind 

The motion stimulus in the experiments was turned off when the 

handle left the starting position. During the time of motor preparation and 

initiation, new evidence could already have arrived in LIP that was not 

taken into account for the first decision (~ 180 ms, Snyder et al., 1997; 

Cui and Andersen, 2007). In addition, the last evidence shown to the 

subject would reach LIP only after a sensory latency of about 200 ms 

(Roitman and Shadlen, 2002; Churchland et al., 2008). In total, after the 

first decision, new, yet unprocessed evidence on the motion direction, was 

possibly available to LIP for a time equivalent to the non-decision time 

tND = 380 ms of a trial, i.e. for the duration of motor initiation, plus the 

latency for the evidence to arrive in LIP. The assumed tND value of 380 ms 

for the non-decision time is in agreement with the fit of a simple 

accumulation-to-bound model to the experimental data of the three 

participants (Resulaj et al., 2009). Resulaj et al. (2009) indeed found, that 

random fluctuations in the motion stimulus during this time period 

correlated with changes of mind, indicating that the new evidence caused 

the subjects to change. In the model, a change of mind without motion 

input is very unlikely (see 3.3.5). As we were interested in the further 
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progression of the transients to the attractor states and for computational 

and analytical reasons, the motion input in the model lasted until the end 

of the trial simulation (3,500 ms). Therefore, we imposed a time-out of tND 

for changing after the first threshold crossing, which implements the 

experimental time limit for new evidence, caused by switching off the 

motion stimulus at movement initiation. Note that the simulations are still 

perfectly congruent with the experiment up to the first threshold crossing 

plus tND, and also thereafter, as neither in the model nor in the experiment 

further changes (or threshold crossings) are expected. 

The robustness of the model simulation to variations in the decision 

criteria and the non-decision time is shown in Fig. 3.A.2. 

3.3 Results 

3.3.1 Comparison to behavioral data  

Generally, the simulated reaction times and percentages of correct 

choices fit the experimental results well for the applied amount of sensory 

inputs. This can be appreciated in Fig. 3.2 where the model‟s simulated 

behavior is compared to one participant from Resulaj et al. (2009)8. In the 

experiment the reaction time was set by the initiation of the hand 

movement. Accordingly, the simulated reaction time is composed of the 

time of first threshold crossing, plus the non-decision time tND = 380 ms.  

Moreover, the model also replicated the frequency of changes 

observed experimentally (Fig. 3.2, right panel). Taking the changes of 

mind into account improves the performance, as correcting changes from 

wrong to correct choice are more frequent for all coherence levels, but 

especially for intermediate motion strengths (Fig. 3.2A, left panel, red 

line). Erroneous changes to the wrong alternative, however, decayed 

monotonically with increasing motion coherence. They are most frequent 

for low motion strengths and do not occur for high motion coherence.  

In comparison to the experimental findings, the model predicts 

slightly more changes to correct and less to the wrong choice, which also 

explains the larger difference of performance with and without changes 

(see 3.4 Discussion).  

Resulaj et al. (2009) further noted that a seemingly optimal strategy 

to opt for or against a change would be to always wait until the end of tND 

after the first decision and, thus, to consider all possibly available 

evidence. This, however, was not consistent with their experimental 

observations. 

                                                      
8
 See (Resulaj et al., 2009) for further comparison with their other two 

participants. 
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Along that line, we analyzed the time distribution of changes of mind 

in the attractor model (Fig. 3.3). In the simulations, the changes are 

broadly distributed across tND, with the exception that hardly any changes 

occur during the first 50 ms after the first decision. The distribution peak 

depends on the motion coherence level, with earlier changes for higher 

coherences (Fig. 3.3B). Interestingly, the time difference between 

threshold crossings for erroneous changes is not considerably shorter than 

for correcting changes, although there is more evidence in favor of 

changing in the case of an initially wrong choice. Erroneous changes just 

become overall less frequent with increasing coherence. 

Moreover, in the simulation in at most 1.6% of the trials two changes 

occurred during tND (Fig. 3.2 right panel, dashed line). The second change 

was then neglected. Notably, these double-changes were indeed 

occasionally found in the experiments (M.N. Shadlen, personal 

communication). In summary, although we did not aim for a perfect 

quantitative fit to the experimental data, the psychometric functions 

 

Fig. 3.2 Simulated psychometric functions, RTs and rates of changes 

compared to experimental data.  

(A) Simulation data. For comparison, the experimental performance of Subject S 

from Resulaj et al. (2009) is shown in (B). (Left panel) Initial performance (black 

trace corresponding to choice at movement initiation) and final performance (red 

trace, corresponding to the finally chosen target). (Middle panel) Reaction times. 

(Right panel) Changes of mind. Erroneous changes are displayed in black, 

correcting changes in red (solid lines). Double changes in the simulations are 

shown on a ten times smaller timescale (right) (open circles, dashed lines). Black 

(red): proportion of erroneous (correcting) changes that switched a second time. 

Simulated psychometric functions were fitted by a logistic function (Eq. A.34), 

RTs by a hyperbolic tangent function (Eq. A.35). 
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obtained by our model simulations match the experimental observations 

very well in all relevant aspects.  

3.3.2 Predictions on neural activity  

Due to its biophysically realistic properties, the theoretical model 

offers predictions on neural firing rates during changes of mind. In 

Fig. 3.4A and E single trial examples of network simulations are 

displayed with and without changes of mind. In the trials with identical 

inputs to both selective pools (0% motion coherence), the decision which 

population activity will rise or decay is stochastic due to the Poisson 

inputs and finite-size noise fluctuations. The general temporal structure of 

the network activity matches single neuron recordings of primate LIP 

 

Fig. 3.3 Distribution of change times.  

(A) Histogram of the time difference between the first and second threshold 

crossing (change of mind) for all change trials. The change times are broadly 

distributed from about 50 ms after the first decision to the time-out tND for 

changing. (B) Same as (A) separated into coherence levels. All changes are 

shown in dark grey. The correcting changes are overlaid in red, except for 0% 

coherence, where changes are neither correcting nor erroneous.   



 

 45 

neurons with a high response to the target signals (from 500 to 1,300 ms), 

a subsequent dip of activity and a build-up of the firing rate after the onset 

of the moving dots (1,500 ms) (Huk and Shadlen, 2005; Churchland et al., 

2008; Kiani and Shadlen, 2009). After an initial joint build-up during 

which the transients compete for the higher attractor state, the slope of the 

ramping activity is steeper with higher motion coherence (Fig. 3.4C,D 

average of correct trials at first threshold crossing).  

Except for the highest motion coherence, this firing rate build-up is 

biphasic: after an initial steep increase independent of motion strength, the 

slope of the ramping activity decreases with lower motion coherence. To 

obtain sufficient changes of mind in the model simulations, the decision 

threshold was set relatively close to the divergence of the mean build-up 

activities for different motion coherences, which led to rather small 

differences in reaction times between the easiest and more difficult trials 

(see 3.4 Discussion). Nevertheless, the firing rate slopes clearly diverge 

with motion strength already before the threshold is reached (Fig. 3.4D).  

In Fig. 3.4F we averaged all simulation trials with changes of mind, 

aligned to the first threshold crossing, which, if a constant non-decision 

time is assumed, corresponds to aligning to reaction time in the 

experiments. Thus, we show that the predicted rise and fall of activity 

during changes of mind might actually be observed experimentally, even 

if neural activities obtained in single cell recordings need to be averaged 

over trials to obtain reliable firing rates. In fact, even for a normally 

distributed non-decision time with moderate standard deviation, the 

switch in firing rates should still be discernible in neurophysiological 

experiments (see Fig. 3.A.2H). 

3.3.3 Input fluctuation analysis  

In the last section, the model‟s output firing rates were aligned to the 

first threshold crossing in order to predict neural activity during changes 

of mind. In the same way, the average firing rate input to the network after 

the first threshold crossing can give insights about the size of fluctuation 

necessary to evoke a change of mind.  

In the simulations as well as in the experiment the mean coherence 

level, and thus the net evidence for or against one direction, does not 

change during a particular trial. Nevertheless, as most of the dots in the 

experimental RDM stimulus are moving randomly, the actual momentary 

level of coherent motion towards one target direction fluctuates around the 

set mean coherence. A measure of these stimulus fluctuations with respect 

to the monkeys‟ choices, the “motion energy”, was found to support the 

initial decisions as well as the change of mind (Resulaj et al., 2009). More 

precisely, the fluctuations in the first 150 ms after stimulus onset acted as 

additional evidence in favor of the first decision (positive motion energy). 
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Fig. 3.4 Model prediction of LIP firing rate.  

(A,E) Simulated temporal evolution of population-averaged firing rates for single 

trials. The dotted lines mark times of threshold crossings. The black line at 44 Hz 

indicates the threshold. (A) Example for a regular trial without change. (C, D) 

Mean of correct trials from 1,000 network simulations, shown for all motion 

coherences (Color code according to B). For each motion strength the firing 

rates were averaged according to the “winners” and “losers” of the first 

decision. (D) Blow up of dotted rectangle from (C). (E) In some cases the initially 

winning population (first threshold crossing) is overtaken by the other transient, 

which is counted as a “change of mind” trial. (F) Mean of all trials with changes 

(correct and error trials, all motion coherences) aligned to the first threshold 

crossing (dotted vertical line). Black: initially winning selective pool, red: finally 

winning selective pool. 
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In change trials the motion energy subsequently became negative, 

indicating that stimulus fluctuations played a causal role in switching 

through weakening or even reversing the preceding evidence, which 

favored the initial choice.  

In the model simulations, the Poisson noise around the mean input 

rate corresponds to the experimental stimulus fluctuations. Fig. 3.5 shows 

the variation from mean input difference of the selective populations 

aligned to first threshold crossing and changes of mind (insets). In line 

with the experimental motion energy, the average input fluctuations across 

all change trials became negative after the first threshold crossing. Input 

fluctuations thus act as evidence against the initial choice. Note however, 

that for high coherence levels the changes do not depend on random 

fluctuations of the input, since it is mostly initial errors that are reversed 

by the designated input bias to the correct selective population. 

Interestingly, the fluctuation strength necessary to reverse a decision is in 

general not substantially higher than that causing the initial decision. 

3.3.4 Mean-field analysis indicates proximity to 
bifurcation  

As seen above, input fluctuations contribute to changes of mind in the 

attractor model. Whether such a fluctuation in incoming activity is large 

enough to elicit a change of mind, however, depends on the working point 

of the network in the attractor landscape. Keeping all other network 

parameters fixed, the working point can be adjusted by the mean inputs to 

the selective population in the network. While the model can match the 

experimentally obtained reaction times and performances for a large range 

of selective inputs, if the threshold is adapted accordingly (Fig. 3.A.3), the 

feasible range of network inputs is greatly reduced by the additional 

constraint to match the changes of mind.  

Using a mean-field approximation of the model (Brunel and Wang, 

2001), we analyzed the dynamical behavior of the network as a function 

of the selective input amplitude for the parameters that fit the changes of 

mind (see 2.2.3 and A.1.3). Simulating populations of individual and 

realistic neurons as described above is necessary to simulate realistic 

neuronal dynamics, physiological responses and behavior. However, to 

understand the underlying attractor and dynamical structures prescribing 

the behavior of population dynamics, we had to use a simpler model that 

summarized the average activity of these populations. The number of 

integration variables in the mean-field approximation is reduced to one for 

each neural population. Thus, it can be solved much more quickly and the 

parameter space can be scanned (Fig. 3.6A). Clearly, this obliged us to 

check the consistence of the mean-field calculations with the simulated 
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activity of the full spiking network. We did this by running both sorts of 

simulations with the same parameters at key points in their parameter 

space (see 3.3.5). 

By solving the mean-field equation for a set of initial conditions (here 

the initial firing rates of each neural population) one obtains the 

approximated average firing rate of each pool, when the system has settled 

into a stationary state. These stationary states correspond to the stable 

states or attractors of the system (Fig. 3.6A, thick black lines). The 

 

Fig. 3.5 Influence of input noise on changes of mind.  

The variation from mean input difference of the selective populations, signed 

according to which pool first crossed the decision threshold, was averaged 

aligned to the first threshold crossing for all trials and all change trials. The 

insets show the input variation for change trials aligned to the second threshold 

crossing. (A) Mean across all coherence levels. (B) Separated by motion 

coherence.  
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unstable fixed points denote the border of the “basins of attraction” of the 

stable states (Fig. 3.6A, dotted black lines).  

The present model has three qualitatively different dynamical regions 

across the range of symmetric inputs to the selective populations from 0 to 

200 Hz. These dynamical regions are separated by fixed-point 

bifurcations, where a stable fixed point becomes unstable or vice versa. 

For small inputs the spontaneous state (↓↓), where both selective pools 

fire at low firing rates, is still stable (Fig. 3.6A, blue shaded region). At 

about 20 Hz the system crosses the first bifurcation and the spontaneous 

state becomes unstable. The network then operates in a region of 

categorical decision-making, where only the decision state (↓↑) is stable. 

There, one selective pool will settle at the upper branch, the other will 

decay to the lower one. With sufficiently high selective inputs (> 125 Hz) 

a symmetric “double-up” state becomes stable (↑↑), where both selective 

populations fire with intermediate, elevated rates (Fig. 3.6A, grey shaded 

region). Because of the strong recurrent connections within the selective 

populations, the decision state is stable over the whole range of inputs 

shown and the spontaneous- and symmetric-state bifurcations are 

“subcritical pitchfork bifurcations”.  

The above conclusions still hold if, instead of symmetric selective 

inputs as in Fig. 3.6A, biased inputs are applied, favoring one selective 

population against the other. In that case the double-up state still exists, 

but the pool with positive bias will fire at a higher rate than the one with 

negative bias. The higher the bias, the more will the firing rates of the two 

selective populations differ in the double-up state. In addition, the basin of 

attraction of the decision state grows for the favored population at the 

expense of the other, making wrong choices less likely (Wong and Wang, 

2006; Wong et al., 2007). 
The mean-field approximation in general provides an accurate 

qualitative picture of the attractor landscape. Nevertheless, also 

quantitative conclusions can be drawn from the analysis. However, there 

is typically a shift of the predicted fixed points in comparison to the 

attractors of the spiking network, mainly due to the additional finite size 

effects in the spiking network (Brunel and Wang, 2001; Marti et al., 

2008). To obtain a measure for this discrepancy, we performed network 

simulations to determine the fixed points of the full spiking model for 

some discrete selective input amplitudes (see A.1.3), shown as blue 

crosses in Fig. 3.6A. At 150 Hz selective inputs the symmetric state was 

first found to be stable for more than 3,000 ms in 9 out of 100 trials. The 

real second bifurcation point of the spiking network is thus shifted by 

about 25 Hz to higher inputs (i.e. to the right) with respect to the mean-

field predictions. The input amplitude of the spiking simulation for which 

changes of mind can be obtained with the attractor model (155 Hz) lies 

close to this second bifurcation point. Note that in the spiking simulation 
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the dip of firing activity at motion onset marks the start of the transition to 

the decision state. The initial firing rates of the selective populations 

(about 25-30 Hz) are therefore located close to the symmetric attractor. 
As a consequence of the proximity to the symmetric attractor, the 

decision process is prolonged (Wong and Wang, 2006; Roxin and 

Ledberg, 2008), making changes of mind more probable. A change of 

 

Fig. 3.6 Proximity to bifurcation is important to obtain changes of mind.  

(A) Mean-field analysis of attractor network. For the parameters used in the 

spiking model simulation, the stable (solid black line) and unstable (dotted black 

line) fixed points were calculated with the mean-field approximation over a range 

of external inputs, applied symmetrically to both selective pools (0% coherence) 

from 0 to 200 Hz in steps of 1 Hz, in addition to the background input of 2.4 kHz 

to all neurons. The blue crosses show the fixed points of the spiking-neuron 

model for several discrete selective input amplitudes. (B, C) Changes of mind and 

single trial examples for lower (B) and higher (C) network inputs (yellow and 

orange lines in (A)). All parameters and the motion input were the same as in the 

other simulations, only the target input after motion onset was set to 25 Hz for 

(B) and to 125 Hz for (C). Dashed lines in the left panels give changes of mind 

from Fig. 3.2A for comparison. Red: changes to correct, black: changes to wrong 

choice. Color of single trial firing rates are the same as in Fig. 3.3.  
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mind is possible until one pool crosses the unstable fixed point (Fig. 3.6, 

dotted line between symmetric state and the decision branches) and falls 

too deep into the basin of attraction of the decision state, where only 

strong input fluctuations can pull it out again. Note also that the double-up 

symmetric state lies below the decision threshold (44 Hz, horizontal 

dashed line) while the upper branch of the decision attractor (“winner”) 

lies above. Taking the shift between the mean-field and spiking-network 

attractors into account, the decision threshold of 44 Hz coincides 

approximately with the unstable fixed point and thus with the border 

between the basins of attraction of the double-up and the decision state. A 

change of mind can consequently be interpreted as a transient that comes 

very close to or even surpasses the unstable fixed point, but, because of 

contrary evidence or fluctuations, does not escape towards the upper 

decision state and eventually loses the competition.  

3.3.5 Verification of mean-field prediction by spiking 
simulations  

Although the above-presented notion of changes of mind is consistent 

with the mean-field attractor picture, the accuracy of the approximation is 

known to be especially weak close to bifurcation points (Brunel and 

Wang, 2001; Marti et al., 2008). The mean-field conclusions on the 

frequency of changes of mind thus have to be validated by simulations 

with the full spiking network.  

Therefore, we performed spiking simulations for all coherence levels 

for different selective inputs to further demonstrate the importance of the 

system‟s proximity to the symmetric-state bifurcation (Fig. 3.6B,C, 

yellow and orange lines in Fig. 3.6A). All network parameters and the 

motion input were kept identical to the simulations presented above. The 

selective inputs were changed by varying the target input after motion 

onset. The decision thresholds were adjusted so that the model with 

altered selective inputs fit the experimental reaction times and 

performances (Fig. 3.A.3). For 25 Hz target input (and thus a total 

selective input of 95 Hz at 0% motion coherence), considerably less 

changes of mind were obtained, especially for low motion strength, 

despite the low decision threshold of 30 Hz. By contrast, with a target 

input of 125 Hz the model predicted too many changes at low motion 

coherence. More importantly, in most of the low coherence trials with 

high target input the selective pools did not leave the symmetric state (Fig. 

3.6C, Fig. 3.A.3B). Contrary to the concept of using the attractor states to 

determine the decision outcome, here, even large fluctuations do not 

necessarily lead to a transition towards the decision attractors. By contrast, 

close to the bifurcation point, fluctuations will eventually lead to an 

escape from the symmetric state. 
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These additional simulations also justify the use of tND as a time-out 

for changes: turning the motion stimulus off with movement initiation 

would correspond to stopping the motion input in the simulations at tND 

after the first decision. The remaining symmetric target input of 85 Hz 

would be even lower than the selective inputs in the 95 Hz simulations 

with symmetric inputs (Fig. 3.6B). Thus, even if changes of mind were 

possible after tND they would be very unlikely. 

Apart from the input to the selective populations, changing other 

network parameters will affect the location of the bifurcations. The 

general shape of the attractor landscape, however, is robust to gradual 

parameter changes. For example increasing (decreasing) the inhibitory 

connectivity ωI shifts the whole attractor landscape to the right (left), 

which has a similar effect as decreasing (increasing) the selective inputs 

(Fig. 3.6) and likewise leads to fewer (more) changes (Fig. 3.A.4 and 

3.A.5). This further confirms the crucial role of the symmetric state 

bifurcation for changes of mind in the attractor network. 

3.3.6 Model predictions on bidirectional random-dot 
motion  

As shown above, the frequency of changes of mind, as well as the 

simulated reaction times and performance of the attractor model, depend 

on the amount of common external input applied to both selective 

populations (Fig. 3.6). In Fig. 3.7 we give a more detailed analysis of 

simulated behavior with respect to common and biased external inputs, if 

the decision threshold is fixed at the standard decision criteria (44 Hz, 10 

Hz difference). More precisely, we performed additional network 

simulations starting from various levels of equal external baseline inputs 

to both selective pools, indicated by different colors in Fig. 3.7: from 

120 Hz in steps of 8.75 Hz to 155 Hz (the standard input close to the 

second bifurcation, used above to model the experimental changes of 

mind). On top of that, we varied the bias between the selective 

populations, again in steps of 8.75 Hz from 0 to 43.75 Hz (abscissa). In 

this input scheme, the pink and red dots correspond (approximately) to the 

standard input parameters used above at 0% and 25.6% motion coherence 

(here actually 25%). Increasing the baseline inputs leads to faster reaction 

times and overall more changes. Performance is less affected, but still 

decreases uniformly regardless of input bias.  

An experimental equivalent for higher inputs to both selective 

populations might be obtained by increasing the overall dot density, or, 

alternatively, with bidirectional random-dot motion, similar to the three-

alternative experiment by Niwa and Ditterich (2008). Independent 

coherent motion in two opposed directions allows comparing differences 

in the total sensory input while keeping the bias fixed. As an example, in 
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the case of 10% dots moving to the right and 20% to the left, fewer 

changes, larger reaction times and higher performance would be expected 

than for 30% of dots to the right and 40% to the left. Such an experiment 

should generally help to distinguish the nonlinear attractor model from 

linear diffusion models as used by Resulaj et al. (2009), which implement 

the accumulation of evidence as a single decision variable, encoding only 

the difference in sensory evidence, but not the absolute value for each 

direction. Still, changes in the input variance might affect the diffusion 

model in a similar way as changes in the baseline input affect the attractor 

network (Fig. 3.8). Less variance in the input to the diffusion model leads 

to fewer changes, higher reaction time and better performance. Thus, to 

unambiguously distinguish the two types of models based on behavioral 

data, the experimental stimulus fluctuations should be controlled for. 

Nevertheless, the two scenarios, input variation in the attractor model 

versus variance changes in the diffusion model, also differ in their 

predictions on the variance of the output firing rates across trials (compare 

Fig. 3.7D with Fig. 3.8D). While the variance across trials in the diffusion 

 

Fig. 3.7 Model predictions for different levels of common selective inputs. 

The baseline external input, common to both selective populations, as well as the 

Mean reaction times (A), performance (B) and changes to correct (C, solid lines) 

and wrong (C, dashed line) alternative are plotted against the input bias between 

the selective populations. The decision threshold was fixed at the standard 

decision criteria (44 Hz, 10 Hz difference). 1,000 trials were simulated for each 

data point. (D) Evolution of the mean firing rate variance across trials for one 

selective population, starting from shortly before motion input onset (1,500 ms).  
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model intuitively increases with increasing input variance, in the attractor 

model it actually decreases with higher baseline inputs to the selective 

populations. The reason is again the vicinity to the second bifurcation, 

which impedes the escape to the decision attractors more the higher the 

inputs, leading to smaller variation in firing rate across trials. 

Neurophysiological recordings could thus distinguish the two mechanisms 

based on this higher order measure. 

3.4 Discussion 

Given the previous success of attractor models to simulate and 

explain behavioral and neurophysiological data of the RDM task (Wang, 

2002; Wong et al., 2007; Albantakis and Deco, 2009) and decision-

making in general (Deco and Rolls, 2006; Wang, 2008), here we made use 

of a binary attractor model with biophysically realistic neural dynamics to 

shed light on brain processes during changes of mind. We showed that, 

despite their fixed-point stability, attractor models are capable of 

capturing the essential aspects of changes of mind during the dynamic 

 

Fig. 3.8 Modifying the variance in the drift diffusion model. 

Behavioral predictions of an extended linear accumulator-to-bound model, as 

used in Resulaj et al. (2009) for three different levels of input variance (0.7, 1.0, 

1.3). Increasing the input variance leads to faster mean reaction times (A), worse 

performance (B) and more changes of mind (C). (C) Solid lines indicate changes 

to the correct alternative, dashed lines erroneous changes. 10,000 trials were 

simulated for each data point. (D) Evolution of the output variance with time. 
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transitions to the steady states. Moreover, a mean-field analysis revealed 

that the working point of the network, which fitted the experimentally 

observed changes of mind, is located close to a bifurcation, where a 

symmetric elevated state becomes stable. In the following we will discuss 

this and further model predictions on brain dynamics during changes of 

mind. 

3.4.1 Distinction against alternative concepts for changes 
of mind  

The presented attractor model offers a simple, yet biologically 

detailed, explanation for changes of mind with predictions on 

physiological recordings and the dynamical state of the brain region 

involved in the decision-making process. As in the bounded-accumulation 

model of Resulaj et al. (2009), a threshold crossing determines the initial 

choice, which can then be reversed by further processing of the remaining 

available information. Importantly, the linear accumulator model is not a 

reduced one-dimensional version of the attractor model. The mechanism 

behind the changes of mind is quite different. The attractor model is 

highly nonlinear: once the transient falls into the basin of attraction of the 

decision state, it is captured by the attractor and a change of mind is no 

longer possible, except for very strong fluctuations.  

a) Comparison with previous studies of the attractor model  

The original publication by X.J. Wang (2002) discussed decision 

reversal in the attractor model due to signal reversal, i.e. by explicitly 

inverting the motion input to the network. Similarly, Wong et al. (2007) 

studied the model behavior if short (100 ms) motion pulses were applied 

to the selective populations enhancing or weakening the coherent motion. 

There are two crucial differences between the “changes of mind” observed 

by Resulaj et al. (2009), which we dealt with in this chapter, and the 

previous approaches on “choice reversal”: first, changes of mind here 

arise without explicitly inverting the motion evidence, solely by noise 

fluctuations in the RDM stimulus or, for the simulations, in the external 

selective input. Second, the inverted inputs in Wang (2002) and Wong et 

al. (2007) acted mainly before the decision threshold was crossed a first 

time and thus affected primarily performance. For a “true” change of 

mind, i.e. a first decision with a subsequent second threshold crossing, 

reversing inputs had to surmount the initial motion coherence 

substantially (Wang, 2002). In the present study, the input fluctuations 

inducing changes of mind are of about the same size as the fluctuations 

preceding the first threshold crossing (Fig. 3.5). This can be explained by 

the proximity to the second bifurcation, which delays the ultimate 

transition to the decision attractors and allows for initial fluctuation in the 
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output firing rate. Changes of mind, without explicitly reversing the input 

to the selective populations, are therefore not self-evident in the attractor 

model and occur only rarely, except for the dynamical regime close to the 

second bifurcation.  

b) Comparison with the diffusion model  

In order to reduce the free parameters and for physiological 

considerations, we set the non-decision time tND as time-out for changing 

after the first decision and used the same threshold for the first choice and 

a change of mind. By contrast, Resulaj et al. (2009) imposed a second 

independent threshold and an adaptable time-out for changes to fit their 

experimental results with an extended diffusion model. Thereby, they 

could account well for the participants‟ behavior and the frequency of 

changes. The predictions on neural activity by the one-dimensional model 

are, however, quite limited. In turn, we did not attempt a perfect 

quantitative fit to the data, but provided a neurodynamical explanation for 

changes of mind, based on the shape of the attractor landscape, which is 

robust to gradual parameter changes. Still, the simulated behavior fits the 

experimental data well. The attractor model only predicts slightly less 

erroneous changes and, hence, a larger difference in performance with and 

without changes in comparison to the participants' behavior and the 

diffusion model. This minor discrepancy might be accounted for by 

modifying the implementation of motion coherence: for simplicity we 

modeled coherent motion with a balanced input bias that affects both 

selective populations equally and grows linearly with increasing 

coherence (Eq. 3.2). Nonetheless, an unbalanced more positive bias, or a 

nonlinear increase with coherence (initially less for low coherence and 

more for higher coherence levels) would be plausible alternatives (Britten 

et al., 1993) that could provide a closer fit to the experimental data, 

without changing any of the predictions or conclusions presented in this 

study.  

Although the validity of the two models cannot be distinguished 

based on their fits to the behavioral data of Resulaj et al. (2009), a slightly 

modified version of the RDM task with independent coherent motion in 

two opposed directions (Niwa and Ditterich, 2008), which allows 

comparing differences in the total sensory input while keeping the 

difficulty fixed, might give more information in that regard. The proposed 

attractor model predicts that the frequency of changing increases with 

higher sensory evidence for both alternative directions.  

Apart from that, both of the above models assume that the brain 

continues to process incoming information after the initial decision. This 

hypothesis still needs to be verified by electrophysiological recordings. 

Another plausible mechanism is a reset of neural activity after the first 

threshold crossing. In the attractor model that would cause more changes 
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of mind. This can be understood easily for the 0% motion coherence case: 

a reset there means starting the decision process from scratch with again 

equal probability for both choices, while, in order to change decision for 

continuous processing, the transient first has to escape from the initial 

attractor. Moreover, resetting neural activity necessarily involves further 

mechanisms from external brain regions. In this study, however, we aimed 

to explain the changes of mind as an intrinsic feature of the decision-

making process, based on nonlinear evidence accumulation with typical 

noise fluctuations. 

3.4.2 Two mechanisms for speed emphasis to obtain 
changes of mind  

One requirement for intrinsic changes of mind in the attractor model 

is a relatively low (first) decision threshold. A low threshold implies fast 

reaction times and comparatively low performance and thus corresponds 

to an emphasis on speed against accuracy (Ratcliff and Smith, 2004; 

Palmer et al., 2005; Lo and Wang, 2006). Indeed, Resulaj et al. (2009) 

suggest that time pressure induces changes of mind, as fewer changes 

were observed when participants were instructed to perform more slowly. 

Moreover, a low threshold in the attractor model leads to the experimental 

prediction of a bimodal build-up of the mean firing rates (Fig. 3.4C). After 

an initial uniform ramping activity that terminates already close to the 

threshold, the slopes of the average firing rates diverge rapidly for the 

various motion coherences. As coherence-dependent differences in mean 

ramping activity only set in near the decision threshold, differences in 

reaction time with motion strength are rather small. The reaction times of 

the three participants from Resulaj‟s experiments are in fact very fast and 

differ by less than 150 ms between 0% and 51.2% motion strength in 

comparison to over 400 ms in previous studies with well-trained monkeys 

(Roitman and Shadlen, 2002) or human subjects without explicit 

instructions on speed or accuracy (Palmer et al., 2005). More generally, 

neurophysiological recordings along the lines of our predictions in 

Fig. 3.4F could yield further experimental evidence on the existence and 

value of an absolute decision threshold in LIP.  

Apart from the decision boundaries, the speed-accuracy tradeoff can, 

theoretically, be controlled by a second mechanism: Roxin and Ledberg 

(2008) showed that, in a reduction of the attractor model to a one-

dimensional nonlinear diffusion equation, higher common inputs to both 

selective populations lead to a decrease in performance and reaction times 

(Fig. 3.7)9. Supporting experimental evidence comes from several recent 

                                                      
9
 Strictly speaking, the one-dimensional reduction, and hence also the monotonic 

dependence of the mean input to speed and accuracy, are analytically only valid 
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fMRI studies, where an increase in the activity of neural integrators was 

observed with speed emphasis (reviewed in Bogacz et al., 2010). The 

mean-field analysis and complementary simulations with different 

selective inputs (Fig. 3.6) revealed that, in order to explain the frequency 

of changes found by Resulaj et al. (2009), high common inputs to the 

selective pools are required in addition to a low threshold. Therefore, we 

suggest that, physiologically, both mechanisms to implement a speed 

emphasis are essential to explain the experimentally observed changes of 

mind: high selective inputs and a low decision threshold.  

3.4.3 Physiological relevance of the bifurcation between 
decision-making and double-up state  

Previous analyses of the binary attractor model for decision-making 

(Wang, 2002; Wong and Wang, 2006; Marti et al., 2008) all focused on a 

region in the vicinity of the first bifurcation, where the spontaneous state 

becomes unstable. There, performance is high and reaction times are 

rather long, because of long stimulus-integration times. Recently, also the 

“double-up” symmetric state gained relevance in connection with target 

presentation (Wong et al., 2007; Furman and Wang, 2008; Albantakis and 

Deco, 2009), since consistent experimental evidence was found for high 

firing rates just before stimulus presentation (Roitman and Shadlen, 2002; 

Huk and Shadlen, 2005; Churchland et al., 2008; Kiani and Shadlen, 

2009). Assuming high selective inputs with target onset, the double-up 

state can explain neural activity prior to the decision-making period. 

Furthermore, in (Soltani and Wang, 2009) cue inputs that arrive while the 

system is in the symmetric up-state add up to determine the network‟s 

starting point for subsequent decision-making, thereby implementing 

probabilistic inference. 

If neural activity in decision-related areas actually evolves according 

to an attractor landscape, as proposed by this and previous studies 

(reviewed in Wang, 2008), the dynamical system has to cross a 

bifurcation in order to switch between the double-up state, effective 

during target presentation, and the decision-making regime, during 

random-dot motion. Yet, experimental indications that would suggest any 

physiological relevance of this second bifurcation for brain dynamics 

during decision-making have been lacking. 

                                                                                                                         
close to the first network bifurcation, where the spontaneous symmetric state 

becomes unstable (Roxin and Ledberg, 2009). In the presented model, the optimal 

working point of the system in order to account for the experimental data, 

however, lies close to the other bifurcation, where the symmetric state reappears 

with elevated firing rates in both selective pools (Fig. 3.6A). Nevertheless, the 

mean-field analysis and complementary simulations showed that the monotonic 

speed-accuracy relation to the selective inputs apparently still holds. 
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In this study, we found that the attractor model best captures the 

behavioral data and changes of mind observed in the experiments of 

Resulaj et al. (2009), if the system lies in the proximity of the second 

bifurcation. We thus proved that all input regimes of the binary attractor 

model are consistent with particular aspects of the decision-making 

process and thereby confirmed the suitability of the attractor model to 

describe neural dynamics. Consequently, we predict that the brain 

operates over the whole range of inputs that enable decision-making, 

dependent on the pressure for speed or accuracy, instead of switching 

between two discrete input levels for decision-making and target 

representation. This could be tested pharmacologically by gradually 

blocking inhibition in the decision-related brain areas: decreasing 

inhibition shifts the working point of the system closer to the bifurcation 

(Fig. 3.A.5). Thus, decreasing reaction times, lower accuracy and more 

changes would be expected, until the double-up symmetric state becomes 

stable, where decision-making might consequently be impaired 

completely for low coherence levels. 

  

Taken together, we showed that changes of mind arise naturally in an 

attractor model of perceptual decision-making by emphasizing reaction 

speed against accuracy. We suggest that this speed-accuracy tradeoff is 

physiologically implemented by both, threshold adaptation and increasing 

symmetric inputs. Moreover, we found evidence for the physiological 

relevance of a so far unregarded bifurcation in the binary attractor model 

and thereby confirmed the general accordance of attractor networks with 

neural processes. Finally, we provided predictions on a new experimental 

paradigm, which might help to distinguish between nonlinear attractor and 

linear diffusion models. 

3.A Chapter appendix 

3.A.1 Network simulations without target stimulus 

To investigate the network‟s behavior without a time-dependent 

target signal, we performed additional simulations with the same network 

parameters as in the main text of Chapter 3, but without the initial phase 

of the target signal (1,000 trials for each motion coherence). Thus, at 500 

ms an input of 85 Hz was applied together with the motion signal (70 Hz 

± bias). The network is nevertheless capable of decision-making, although 

with about 50 ms larger reaction times (Fig. 3.A.1A). The first-choice 

performance is unaffected by the missing initial target signal. Changes of 

mind still occur, albeit fewer, which leads to less performance 

improvement with changing (Fig. 3.A.1B). 
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The slightly longer reaction times and fewer changes are expected 

without the high initial target input, as in that case the firing rate transients 

evolve from the spontaneous state with very low firing rates in both 

selective populations. Therefore, the transients are more distant to the 

decision state and double-up state at the start of the motion signal. The 

match to the experimentally observed reaction times and changes of mind 

might be improved with threshold adaptation. However, if no targets are 

presented during the task, the subjects‟ behavior is likely to differ as well 

to some extent. Nevertheless, the fact that, even without the initial target 

signal, changes of mind still occur repeatedly in the model, due to the 

proximity of the second bifurcation, further strengthens the robustness of 

our findings.  

 

 

Fig. 3.A.1 Simulations without target stimulus.  

(A) Reaction time. (B) Initial (black) and final (red) performance. (C) Changes of 

mind. (A-C) Results from the main text are shown in gray for comparison. 

(D) Mean firing rate of changes of mind trials aligned to first threshold crossing. 

(E) Single 0%-motion coherence trial with change of mind. (F) Mean firing rates 

of all motion coherences (color legend displayed above). Colors as in Fig. 3.2 

and Fig. 3.4. 
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3.A.2 Robustness of simulation results to variation in 
decision parameters 

The influence of the difference criterion on the variables of interest, 

reaction time, performance and changes of mind, is shown in Fig. 3.A.2 

A-C. With respect to the standard decision and change criteria (a 44 Hz 

threshold and a difference of 10 Hz between the firing rates of the 

selective populations), a smaller difference criterion (5 Hz) (but the same 

threshold) leads to faster reaction times and somewhat more changes. A 

larger difference has the opposite effect. If, in addition to a smaller 

difference, the threshold is slightly adapted to 45.5 Hz, the results from 

the standard criteria are fully recovered. With respect to the time 

distribution of the changes of mind, the difference criterion affects mostly 

the amount of early changes, if the threshold is not adapted (Fig. 3.A.2D). 

In Fig. 3.A.2E an example trial is displayed where, during the initial joint 

 

Fig. 3.A.2 Robustness of simulation results to variation in decision 

parameters.  

(A-E) Influence of the difference criterion. (F-H) Variability in the non-decision 

time. (H) Examples of simulated mean activity for change trials as in Fig. 3.4F. 

Here, however, the non-decision time in each trial is drawn randomly from a 

normal distribution with mean 380 ms and a standard deviation of 20 ms (light 

blue) or 50 ms (dark blue). The trials were aligned to first threshold crossing plus 

the deviation from the mean non-decision time. 
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increase of activity in the selective populations, both pools briefly cross 

the decision threshold. Due to the difference criterion this first joint 

crossing is not taken into account.  

Varying the non-decision time mainly affects changes at low 

coherences levels. Even if the non-decision time in each trial is drawn 

randomly from a normal distribution, the switch in firing rates between 

the two selective populations should still be observable experimentally 

(Fig. 3.A.2H). Deducing a quantitative value for the decision threshold is 

however somewhat impeded by a broad distribution of non-decision 

times. 

3.A.3 Varying the selective inputs 

Keeping all other network parameters fixed, the network‟s working 

point depends on the mean inputs to the selective populations. 

Nevertheless, the attractor model can theoretically fit experimental 

reaction times and performance for a large range of selective inputs, if the 

threshold is adapted accordingly (Fig. 3.A.3).  

With a target input of 25 Hz after motion onset, the decision threshold 

has to be lowered to 30 Hz to return approximately the same reaction 

times and performance as for the standard simulations with 155 Hz of 

selective inputs and a decision threshold of 44 Hz (Fig. 3.A.3A, grey lines 

in left and middle panel). As there are only very few changes, the 

performance with and without changes is very similar. For 125 Hz target 

 

Fig. 3.A.3 Reaction times, performance and mean firing rate for different 

selective inputs.  

(A) Reduced target input of 25 Hz and thus 95 Hz of total selective inputs with a 

decision threshold of 30 Hz. (B) Increased target input of 125 Hz and thus 195 Hz 

of total selective inputs with a decision threshold of 50 Hz. Colors as in Fig. 3.2 

and Fig. 3.4.  
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input, the threshold has to be increased to 50 Hz to match the values 

obtained with 85 Hz target input (155 Hz total selective input). Note that 

the mean firing rates of correct trials up to 6.4% of motion coherence do 

not show a build-up to the decision attractor (right panel). A threshold 

crossing therefore is mainly caused by large fluctuations around the 

symmetric state and depicts a decision based on evidence integration only 

for higher motion strength. 

3.A.4 Varying inhibition 

Increasing inhibition has similar effects as decreasing the selective 

input, because the attractor landscape is effectively shifted to the right, 

towards higher selective inputs. This sets the network input (155 Hz) to 

the left of the spiking network bifurcation point, equivalent to lower 

inputs with the original inhibitory connection weights (see Fig. 3.6A).  

In the same way, decreasing inhibition has similar effects as 

increasing the selective input. The attractor landscape is effectively shifted 

to the left, towards lower selective inputs, which sets the network input 

(155 Hz) to the right of the spiking network bifurcation point, 

corresponding to higher inputs with the original inhibitory connection 

weights. 

The threshold has to be adjusted to 38 Hz and 50 Hz, respectively, to 

obtain comparable reaction times and performance at first choice. The 

simulations from the main text with ωI = 1.125 are displayed in grey in 

Fig. 3.A.4 and 3.A.5 for comparison. As for lower (higher) inputs (Fig. 

3.6 A and B) increasing (decreasing) the inhibitory connections leads to 

fewer (more) changes especially at low motion coherence.  
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Fig. 3.A.4 Spiking simulation with increased inhibition. 

(A) Mean-field analysis of network with higher inhibition (ωI = 1.425 ωI = 0.825 

instead of 1.125, all other parameters and inputs as before). (B-D) Simulated 

behavior. (E) Single trials with 0% motion coherence and change of mind. (F) 

Mean firing rates for correct first choices. Colors as in Fig. 3.2 and Fig. 3.4. 

 

Fig. 3.A.5 Spiking simulation with decreased inhibition.  

(A) Mean-field analysis of network with lower inhibition (ωI = 0.825 instead of 

1.125, all other parameters and inputs as before). (B-D) Simulated behavior. (E) 

Single trials with 0% motion coherence and change of mind. (F) Mean firing 

rates for correct first choices. Colors as in Fig. 3.2 and Fig. 3.4. 
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4 THE ENCODING OF ALTERNATIVES IN 
MULTIPLE-CHOICE DECISION-MAKING 

The work presented in this chapter is published in PNAS 

(Proceedings of the National Academy of Sciences of the United States of 

America)10. An abstract was published at the CNS 2009 conference11. 

4.1 Introduction 

In the last chapter, we have been concerned with the applicability of 

attractor-networks to the process of choice-reevaluation and thus focused 

on a temporal extension of binary perceptual decision-making to the time 

after the initial choice. Here, we take another step and address the 

extension from binary to multiple-choice decision-making.  

Already decades ago decision-making between multiple alternatives 

was the subject of psycho-physical reaction-time studies, which revealed 

an increase in reaction times with the number of choices (Hick, 1952). 

With the objective of shedding light upon the neural mechanisms that 

underlie decision-making, experimental and theoretical studies sub-

sequently focused on the simplest case of binary choices (Smith and 

Ratcliff, 2004; Gold and Shadlen, 2007; Wang, 2008).  

This led to the identification of the lateral intraparietal area (LIP) as a 

candidate for bounded integration in the decision process. As stated 

above, the neural activity in this cortical area correlates with the choices 

and reaction times of monkeys performing the random-dot motion (RDM) 

task (Fig. 4.1A), the established paradigm to test for accumulation and 

integration of evidence during decision-making (Shadlen and Newsome, 

1996, 2001; Roitman and Shadlen, 2002). 

The biophysically realistic spiking-neuron model of LIP proposed by 

Wang (2002) successfully simulated behavioral and physiological data 

from the binary RDM task. It is based on attractor dynamics and winner-

take-all competition of two discrete selective populations of neurons 

(pools), each representing one alternative. In this chapter, we propose a 

possible extension of the binary attractor model to multiple alternatives. 

Several basic connectionist models of neural networks already 

addressed choice behavior regardless of the number of alternatives (Usher 

                                                      
10

 Albantakis L, Deco G (2009) The encoding of alternatives in multiple-choice 

decision making. Proc Natl Acad Sci U S A 106: 10308–10313. 
11

 Albantakis L, Deco G (2009) The encoding of alternatives in multiple-choice 

decision making. Eighteenth Annual Computational Neuroscience Meeting: 

CNS*2009 Berlin - BMC Neuroscience 10(Suppl 1):P166. 
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and McClelland, 2001; McMillen and Holmes, 2006; Bogacz et al., 2007; 

Niwa and Ditterich, 2008). Yet, it is difficult to relate these rate models to 

explicit physiological processes during multiple-choice decision-making. 

Only recently, experimental studies extended the RDM paradigm to 

more than two alternatives (Churchland et al., 2008; Niwa and Ditterich, 

2008). In particular, Churchland et al. (2008) compared behavioral data 

and recordings from single LIP neurons of macaque monkeys performing 

a 4-choice RDM task with the original 2-alternative task. Reaction times 

and error rates for four alternatives were found to be longer and higher, 

respectively, consistent with earlier studies (Hick, 1952). In an additional 

control condition with two response targets (R-targets) separated by 90º 

(90º-case), monkeys needed longer to decide than in the standard (180º) 2-

alternative case, but performed with the same accuracy. Notably, the 

experiments of Churchland et al. (2008) provided the first electro-

physiological data on a 4-alternative decision task. 

Two theoretical studies (Beck et al., 2008; Furman and Wang, 2008) 

subsequently proposed continuous models of multiple-choice decision-

making. Both models can account for important findings of Churchland et 

al. (2008). One, by Beck et al. (2008), focused on the implementation of 

probability distributions and optimality, while the model of Furman and 

Wang (2008), like our model, features high biophysical detail. It combines 

Wang‟s (2002) discrete 2-alternative model with a hypercolumn model 

(Ben-Yishai et al., 1995), where a ring of neurons represents continuous 

directions of motion. However, it cannot account for the condition with 

two R-targets spaced 90º apart. What is more, their model requires 

regulatory mechanisms depending on the number of alternatives, like an 

adaptation of the target input and an external top-down control signal 

during the decision-making period. 

Here, we propose a different approach to extend the biophysically-

based binary decision model (Wang, 2002). Instead of a continuous 

representation we increased the number of discrete neural populations that 

encode the possible alternatives (Fig. 4.1B,C). Previously, networks with 

discrete populations have been adjusted to exhibit winner-take-all 

competition for one particular set of choice alternatives (Wang, 2002) or 

memory states (Brunel and Wang, 2001). In our study, we analyzed how 

the network‟s competition regimes could be brought into accord for 

different numbers of alternatives. With a common parameter set for the 2-, 

4- and 90º-case, we successfully simulated all experimental paradigms 

tested by Churchland et al. (2008), without the need of any number-of-

choice dependent mechanism. Besides, we found that encoding decision 

alternatives by populations of neurons with a big relative pool size, a high 

“coding level”, favors a common decision regime for two and four 

choices. Taken together, our results indicate a physiological advantage of 

a pooled, multi-neuron representation of choice-alternatives. 
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Fig. 4.1 Experimental design, network architecture, and stimulation 

protocol. 

(A) The multiple-choice RDM task as in (Churchland et al., 2008). (B) Diagram 

of the spiking neural network model. (C) Connectivity between selective 

populations shown representatively for one pool. Synaptic weights to and from 

neighboring pools are additionally enhanced by a value T. (D) Time course of 

input to the selective pools. Depending on the number of alternatives a target 

input was applied to either two or four pools.  
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Summarized, our main findings are: 

 The discrete attractor model with spatially graded connectivity 

accounts for the all experimental conditions tested in a 2- and 4-

choice RDM task (Churchland et al., 2008).  

 No extra top-down regulation mechanisms are necessary to adapt 

the network to the number of choices. 

 The network‟s capacity for choice-number independent decision-

making is higher the more neurons encode each choice-

alternative. 

4.2 Methods 

4.2.1 Experimental Paradigm 

Churchland et al. (2008) tested two macaque monkeys on a multiple-

choice version of the RDM task (Fig. 4.1A) and measured the primates‟ 

decision-behavior (reaction times and performance), as well as the 

decision-related single cell activity of LIP neurons.  

As in the classic 2-alternative RDM task, the monkey initially fixated 

on a central spot, while the R-targets indicated the possible alternatives for 

the direction of coherent dot-motion (Fig. 4.1A, red dots). The R-targets 

continued to be present throughout the full trial. One of the R-targets was 

always located in the response field (RF) of the recorded LIP neuron. 

After a delay, a patch of dynamic random dots appeared, with a proportion 

of dots moving coherently toward one of the R-targets. The remaining 

dots were moving randomly. The amount of coherence controlled the task 

difficulty. The monkeys had to decide on the net direction of motion and 

to report their choices by a saccadic eye movement to the corresponding 

R-target. 

Three experimental condition were compared, differing in the number 

and configuration of possible motion directions indicated by the R-targets: 

Either two opposing R-targets, four R-targets (90º apart) or two R-targets 

with an angular distance of 90º (90º-case) were presented to the monkey 

before the motion signal started. Given two alternatives, the monkeys 

either had to distinguish between opposing or perpendicular motion 

directions. The latter (90º-case) served as a control to distinguish the 

effects of different numbers of alternatives from the effects of a smaller 

angular distance.  
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4.2.2 Multi-alternative attractor network 

a) Network structure and connectivity 

As in the last chapter, the general network structure of our model for 

multiple-choice decision-making is based on the binary attractor network 

first presented by X.J. Wang (2002) (see 2.2.3). Nonetheless, two 

important modifications have to be noted: first, instead of just two 

selective populations, the excitatory neurons in the network are now 

subdivided into four selective populations, encoding the four possible 

motion directions (Fig. 4.1B,C, red). Each of the four selective pools 

contains f·NE neurons, where f is termed the “coding level” of the selective 

pools and NE = 1,600 the total number of excitatory neurons in the 

network. To fit the experimental data we used a coding level of f = 0.2. In 

order to analyze the effects of the size of the neural populations, which 

encode the possible choices, we varied the coding level in the mean-field 

analysis presented in Section 4.3.3.  

As a second modification, we introduced a spatial connectivity 

component between the selective populations. As before, the recurrent 

connectivity ω+ of neurons within a selective pool is higher than the 

connectivity ω- between selective pools (Fig. 4.1C). On top of that, each 

selective pool in our model is thought to have two “neighboring” selective 

pools, corresponding to its two perpendicular R-targets, and one 

“opposing” pool, representing the R-target at 180º angular distance. We 

increased the connectivity between pools that represent neighboring R-

targets by the weight ωT, assuming a slightly higher correlation between 

the neighboring pools than between the anticorrelated opposing pools 

(Fig. 4.1C). Modeling the circular spatial distribution of the R-targets with 

T allowed us to account for the observed experimental differences 

between the standard (180º) 2-choice condition and the 90º-case (see 4.3). 

Without T, the model would not be able to distinguish between the two 

conditions. 

Finally, a (fifth) nonselective pool of excitatory neurons emulates 

activity in the surrounding brain areas and a homogeneous pool of 

inhibitory neurons, connected to all excitatory neurons in the network, 

mediates global inhibition. For a detailed description of the network 

connectivity, dynamics and parameters please refer to the Appendix, in 

particular A.1.5.  

b) Network inputs 

As in Chapter 3, all neurons in the network receive an excitatory 

stochastic background input with a rate of 2,4 kHz. Moreover, in the 

present biophysically realistic attractor model, the four selective pools are 

thought to represent the populations of neurons in LIP where the spatial 

information about one respective R-target and the motion directed towards 
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this R-target are combined. Accordingly, we modeled the R-target and 

motion stimuli presented to the monkeys as shown in Fig. 4.1D. 

Target input. Depending on the number and location of the R-targets 

in the different experimental conditions, the neurons of either all four 

selective pools, the two opposing pools or, in the 90º-case, two 

neighboring pools receive the same target input during the model 

simulation. We assume that the target input is passed on to the respective 

pools as a Poisson spike train with a time dependent firing rate of: 

 (4.1) 

where ttarget = 400 ms and tmotion = 1,300 ms denote the onset times of the 

target and the motion stimulus, respectively. The initial exponential decay, 

τ1 = 100 ms can be explained by short term adaptation. The dip in the 

firing rate is modeled by an exponential decrease of the target input with 

τ2 = 15 ms, starting with a latency of 80 ms after motion stimulus onset 

(Wong et al., 2007; Furman and Wang, 2008). 

Motion input. The motion stimulus without coherent motion (0% 

coherence) was simulated as a Poisson spike train with a time invariant 

rate of νmotion = 20 Hz to all selective pools starting at 1,500 ms. Coherent 

motion was modeled as a positive bias to one selective pool, balanced by a 

reduction of the motion input in the other three selective pools to keep the 

total motion input to the network constant. A motion coherence of 100% 

thus corresponds to a bias of 60 Hz to one selective pool, resulting in a 

motion input of 80 Hz to this particular pool and 0 Hz to the other 

selective pools. We simulated 10 motion coherences: 0%, 1.67%, 3.33%, 

5%, 8.33%, 12.5%, 25%, 50%, 75% and 100%. 

Importantly, the motion input is received by all selective neurons in 

the network, whereas the target input is just applied to the particular pools 

corresponding to the possible choices. Again, this means that for four 

alternatives all four selective pools receive the target input, for the 

standard 2-choice condition pools 1 and 3 receive the target input, and for 

the 2-choice 90º-case the target input is applied to selective pools 1 and 2. 

Therefore, the target input is what distinguishes the different experimental 

conditions in the model simulations.  

Our network is generally capable of decision-making even without 

the initial target signal before the onset of the motion input (Fig. 4.A.1). If 

the external input lies within the range of decision-making, the shape of 

the target input affects reaction times, but not the network‟s capacity of 

decision-making. 
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c) Decision threshold and network simulations 

A decision is reached in the model when one selective pool crosses a 

threshold of 50 Hz and surpasses the other selective pools by at least 5 Hz. 

The reaction time (RT) is calculated as the time difference between the 

motion input onset (1,500 ms) and the time the threshold is reached, plus 

an additional non-decision time tND = 280 ms to account for saccade 

initiation and execution, and the signal latency of the RDM stimulus to 

arrive in LIP (Roitman and Shadlen, 2002; Churchland et al., 2008). 

4.3 Results 

4.3.1 Comparison to behavioral data 

Churchland et al. (2008) measured the accuracy and speed of the 

monkeys‟ choices for several motion coherences (Fig. 4.2B, D). Fig. 4.2A 

and C show the reaction times and performance, i.e., the fraction of 

correct choices obtained by the model simulations. 

In the experiments and also in the simulations the RTs were longer 

for four possible alternatives than for two12. RTs in the 2-alternative 90º-

case were intermediate, with larger differences at lower motion strengths.  

Starting at chance level (50% for two and 25% for four alternatives), 

the accuracy increased until it reached 100% for high motion strengths 

(Fig. 4.2C,D). Except for very high coherences, choices between four 

alternatives were less accurate than binary decisions, also in comparison 

with the 90º-case. There, the monkeys performed as well as in the 

standard two-choice case. In the simulations, the accuracy in the 90º-case 

resembles the standard binary case (Fig. 4.2C), with somewhat higher 

values at intermediate motion coherence.  

In summary, although we did not attempt a perfect quantitative fit to 

the experimental data, the psychometric functions obtained by our model 

simulations match the experimental observations very well in all relevant 

aspects.  

4.3.2 Comparison to neurophysiological recordings 

Behavioral differences between the 2- and 4-alternative and the 90º-

case must be based on differences in the temporal evolution of the firing 

rates during the decision process. The proposed attractor network can 

generally be viewed as representing a local microcircuit in area LIP. In 

                                                      
12

 At low motion coherence some simulated trials had to be excluded in the four-

alternative condition (at most 2%) and in the 90º-case (at most 5%), because they 

failed to reach a decision within the simulation time of 4,000 ms. 
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Fig. 4.3 the temporal evolution of the simulated firing rates is displayed 

for single trials and trial averages at zero motion coherence for each 

condition (2-, 4- and 90º-case).  

The stochastic nature of the network due to finite-size effects and 

Poisson inputs allows decision formation even for unbiased inputs (Deco 

and Romo, 2008). The spike raster-plot (Fig. 4.3A) displays a four-choice 

trial with 0% motion coherence where all selective neurons receive the 

same input (10 sample neurons are shown from each selective pool, 

labeled 21 to 60). Eventually (at about 2,000 ms) the symmetry is broken 

and, in this case, the activity of the left pool (purple) shifts to an attractor 

state with increased activity (up-state).  

The time course of the simulated neural activity is in good agreement 

with the experimental observations of LIP neurons (Huk and Shadlen, 

2005; Churchland et al., 2008; Kiani et al., 2008): Throughout the target 

period, between target input and motion stimulus onset, the selective pools 

representing the possible direction alternatives exhibit elevated firing 

rates, followed by a “dip” to lower activity after motion onset and 

 

Fig. 4.2 Speed and accuracy of simulated decisions and comparison to 

experimental data.  

(A) Simulated mean RTs of correct trials as a function of motion coherence, fitted 

by a hyperbolic tangent function (Eq. A.35). (B) Mean reaction times of two 

monkeys performing the RDM task. (C) Simulated psychometric functions, fitted 

by Weibull functions (Eq. A.36). 1,000 trials were simulated for each data point. 

(D) Experimentally observed performance of monkeys in the RDM task. (B, D) 

Adapted with permission from Churchland et al. (2008). Please note that the 

scales of the simulated and experimental data are identical. For better 

assignment in (A, C) the simulated motion coherence values are used as labels. 
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subsequent ramping activity. With the arrival of the motion signal the 

integration process starts and a decision is finally made, characterized by 

an activity build-up in the winning pool. 

 

 

Fig. 4.3 Simulated temporal evolution of firing rates at 0% motion 

coherence.  

(A) Spike raster plot for sample neurons of each network pool in a four-choice 

trial (the same as shown in B, middle panel): 20 inhibitory neurons (red, top), 20 

nonselective neurons (black, bottom) and 10 neurons of each selective pool 

colored according to the schematic illustration of the R-target locations (right). 

(B, C) Population averaged firing rates for single trials (B) and trial average 

over 1,000 network simulations (C). Red and black lines denote inhibitory and 

nonselective pools. Selective pools for single trials are colored as neurons in (A). 

For the trial average, the “winning” neural pools were averaged (cyan). 

Respectively, the “loosing” pools were averaged according to their inputs and 

relative R-target location with respect to the winning population.  
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In the model simulations, the initial dip in the firing rate is caused by 

a reduction of the target input with an assumed latency of only 80 ms 

before the motion signal is supposed to arrive in LIP with a latency of 

200 ms (Eq. 4.1). Possible physiological origins for the dip in neural 

activity are divided attention or upstream inhibition of the target signal 

caused by the onset of the random-dot motion (Wong et al., 2007; Furman 

and Wang, 2008).  

A major discovery of Churchland et al. (2008) was that, regardless of 

the number of R-targets and motion coherence, the decision process is 

terminated at one stereotyped activity threshold. Differences between the 

2- and 4-choice cases were instead observed during the target phase and in 

the early motion epoch. For four choices, the target response was on 

average 16.1 ± 1.6 Hz lower than for two choices, a difference that largely 

remained during the dip in firing rate at the onset of the motion stimulus 

(Churchland et al., 2008).  

The attractor model matches these findings well, even quantitatively. 

The average firing rates during the target phase for four alternatives are 

about 20 Hz lower than for two possible choices (Fig. 4.3B,C, 57 Hz in 

the 2-choice and 90°-case compared to 36 Hz in the 4-choice case). As all 

network parameters are identical for the different task conditions, the 

differences in firing rate are caused solely by the shared feedback 

inhibition. The population activity of the inhibitory neurons, averaged 

over the time interval from 800 to 1,300 ms, is 32 Hz in the 4-choice 

condition compared to 22 Hz for the 2-choice and 90º-case. This can be 

explained by the higher total excitatory inputs from the selective pools for 

four alternatives: there, the target input is applied to all four selective 

pools, while for the 2-alternative case only two selective pools receive the 

target signal (pool 1 and 3 from Fig. 4.1C in the standard 2-choice case). 

In turn, the interneurons inhibit the activity of the pyramidal neurons more 

for four alternatives. As in the experiments, the conditional differences in 

firing rates persist during the initial dip after motion onset. Hence, the 

accumulation of evidence starts at lower values for four alternatives.  

As can be seen in the trial average (Fig. 4.3C), the slope of the 

ramping activity for correct trials is similar for the 2- and 4-choice 

conditions. In the simulations, in accordance with the experimental 

findings (Churchland et al., 2008), a decision is reached when the 

population activity of one selective pool crosses a threshold of 50 Hz. The 

longer reaction times in the 4-choice task are therefore explained by the 

larger excursion of the neural activity to a common threshold, both, in 

experiment and simulations. 

The 90º-condition is displayed in the lower panels of Fig. 4.3B,C. 

Firing rates during the target phase are similar to the standard two-choice 

case and slightly higher during the dip after motion onset. Interestingly, in 

the 90º-case the simulated average build-up activity is less steep than in 
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the other two conditions (Fig. 4.3C, lower panel). Therefore, longer RTs 

in the 90º-case must have a different cause than in the 4-choice case: as 

shown in the lower panel of Fig. 4.3B the initial symmetric state with high 

firing rates in both selective pools at ~1,500 ms is prolonged in the 90º-

case compared to the standard 2-choice case. The reason is a stronger 

attraction of the symmetric state in the 90º-case due to the slightly higher 

connectivity T between neighboring selective pools. This impedes 

competition between the selective populations and consequently leads to a 

smaller slope of average ramping activity towards the threshold and thus 

to longer reaction times. A shallower slope in the 90º-case was also 

observed experimentally (Churchland et al., 2008). The prolonged 

symmetric state, however, would hardly be measurable as the effect is lost 

in the trial average. 

Moreover, these theoretical findings on conditional differences in the 

build-up activity without coherent motion further extend to biased motion 

coherence (Fig. 4.4). For all experimental conditions, the population 

averaged activity build-up is steeper with increasing motion coherence, 

which corresponds to decreasing task difficulty. This explains faster 

reaction times with higher coherence, as we have noted in the reaction 

time curves in Fig. 4.2A. Yet, even for higher levels of motion coherence, 

the ramping slope in the 90º-case remains less steep compared to the 

standard 2- and 4-choice cases, which have similar slopes.  

Besides, the attractor model is capable of persistent activity due to the 

strength of its recurrent connections (Fig. 4.A.2), consistent with LIP 

neurons during working memory tasks (Shadlen and Newsome, 2001; 

Churchland et al., 2008; Kiani et al., 2008).  

 

Fig. 4.4 Population averaged temporal evolution of firing rates at different 

motion strengths. 

The average across all correct trials of each motion coherence level is shown for 

the three different experimental conditions. Different colors denote different 

motion coherence (see legend).  
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In sum, although all parameters in the network are independent of the 

number of possible alternatives, the attractor model can explain the lower 

firing rate prior to the activity build-up in the 4-choice condition due to 

the higher global inhibition. Longer reaction times in the 90º-case have a 

different origin: they are caused by stronger attraction of the symmetric 

state leading to a shallower slope in the 2-choice 90º-case compared to the 

standard 2-choice condition.  

In the next section we will further elucidate the origin of the 

conditional differences in simulated behavior and neural activity with a 

mean-field analysis of the network‟s attractor states.  

4.3.3 Mean-field approximation and range of decision-
making  

As already stressed, other than the respective number of pools 

receiving the target input, neither network parameters nor inputs in our 

model depend on the number of alternatives. The network thus exhibits 

categorical decision-making for two and four choices for the same range 

of external input ν.  

To investigate how this overlap of decision regimes for two and four 

alternatives depends on different network parameters, we used a mean-

field approximation of the attractor model (Brunel and Wang, 2001) (see 

also 2.2.3 and A.1. With this approximation the computational cost of 

scanning the parameter space can be drastically decreased, as the number 

of dynamical variables is reduced to one for each neural population. By 

solving the mean-field equation one obtains the approximated average 

firing rate of each neural population when the system has settled into a 

stationary state. Consequently, starting from different initial firing rates, 

the fixed points of the firing rates can be calculated for the selective 

neural populations. There are three qualitatively different network states, 

whose existence and stability depend on the parameter configuration 

(Wong and Wang, 2006): the spontaneous state, with all pools firing at 

low rates; the decision state, where exactly one pool shows considerably 

higher activity than the others; and mixed states with two or more pools 

firing at high rates. The four different initial conditions we used cover the 

possible firing rates at different temporal stages of the spiking simulation. 

They are described in detail in Appendix A.1.5. The range of external 

inputs where, for all initial conditions and both experimental paradigms, a 

decision is reached, i.e. one pool lapses into an up-state of high firing rate, 

was termed “range of decision-making”. It defines a region of multistable 

decision states. 

To explore the effect of the relative size of the selective pools on the 

range of decision-making, we performed the mean-field analysis for 

different coding levels. The coding level is defined as the fraction of 
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excitatory neurons in the network selective for one target direction, and 

thus determines the relative size of the neural populations representing a 

specific choice (selective populations).  

Fig. 4.5A shows an example of the stable fixed points, the attractors, 

of the firing rates of the selective populations for the parameters used in 

 

Fig. 4.5 Common range of decision-making for two and four alternatives in a 

mean-field approximation of the network. 

(A, B) For the parameters used in the spiking model simulations (except ωI = 1.1 

instead of 1.125), the stable fixed points were calculated with the mean-field 

approximation for the two- and four-choice condition and for four different initial 

conditions. Red: one pool starting at 120 Hz, the rest at 0 Hz. Green: two 

opposite pools 30 Hz, the rest 0 Hz. Blue: all four pools 30 Hz. Black: all four 

pools 0 Hz. (A) Stable firing rate fixed points ( T = 0.015). (B) Starting and end 

points of decision states for the different initial conditions depend on the spatial 

connectivity ωT between neighboring selective pools. (C) Dependence of the 

connectivity ω+ on the coding level f in order to achieve equal fixed-point firing 

rates. (D) Optimal range of decision-making increases linearly with the coding 

level. For each coding level, the optimal ωT was determined as shown in (B) and 

the broadness of the yellow region, the range of decision-making, was plotted 

against the coding level. The black line is a linear fit to the data. 
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the spiking simulations (coding level of 0.2, ω+ = 1.48 and ωT = 0.015). 

The different colors denote different initial conditions. At lower external 

inputs, for some initial conditions all pools stay in their spontaneous state, 

while for higher external inputs (from ν ≈ 50 Hz) a mixed “double-up” 

state emerges. In the decision state, exactly one pool is firing at a high 

rate, in the double-up state two pools. The traces of all other pools firing 

at low rates (≈ 2 Hz) overlap. For four alternatives all pools receive the 

input ν, which causes two possible double-up states: one with neighboring 

pools (e.g. 1+2) firing at high rates, the other with opposing pools (e.g. 

1+3) firing at high rates. In the 2-choice case, the input ν is applied only to 

two opposing selective pools (1+3) and thus only these pools will fire at 

high rates. 

Increasing the external inputs even more will result in mixed states 

with three and four pools firing at high rates, as observed for example 

during the target phase (not shown). The yellow regions in Fig. 4.5A and 

B depict the overlap of decision states for the two- and four-choice case, 

where for all initial conditions one pool wins the competition and a 

categorical decision is made (the range of decision-making). 

Fig. 4.5B shows the dependence of the range of decision-making (i.e. 

the width of yellow region, coding level = 0.2) on ωT, the additional 

spatial connectivity component between neurons from neighboring 

selective pools. As one can see in Fig. 4.5B, there is an optimal value of 

ωT for a given parameter set (*black arrow). Fig. 4.5A is a horizontal cut 

through Fig. 4.5B at ωT = 0.015, the optimal value for a coding level of 

0.2, as used in the spiking simulations. 

When changing the coding level, the connectivity ω+ has to be 

adapted as shown in Fig. 4.5C to keep the firing rates of the up-state at the 

values obtained for the spiking simulation parameters (≈ 60-80 Hz, Fig. 

4.5A), which match the experimental observations (Churchland et al., 

2008). The range of decision-making was then measured at its optimal ωT 

value and plotted against the coding level (Fig. 4.5D). Interestingly, we 

found the range of decision-making to increase linearly with the coding 

level. For a coding level smaller than 0.125 no common decision state can 

be found for the 2- and the 4-choice task, regardless of the spatial 

connectivity ωT. The linear relation of the coding level to the optimal 

range of decision-making was also found for a smaller AMPA/NMDA 

ratio than that used in the simulations, for the same and higher 

connectivity ω+, confirming the generality of the outcome (Fig. 4.A.3).  

4.4 Discussion 

In this chapter, we presented a biophysically realistic spiking-neuron 

model for decision-making with two and four alternatives. Notably, all 

network parameters and inputs in our network are independent of the 
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number of possible alternatives we tested. Differences in firing rates and 

psychometric functions are solely based on the number of possible R-

targets presented, which in the network corresponds to the number of 

pools receiving the target input. Moreover, we not only extended Wang‟s 

(2002) model to more than two choice-alternatives, but also analyzed how 

the size of the neural populations that encode the choice alternatives 

affects the network‟s capacity for multiple-choice decision-making. In a 

mean-field approximation of the network we found a linearly increasing 

relation between the relative size of the selective pools (the coding level) 

and the range of decision-making. This implies that pooling over many 

neurons favors decision-making independent of the number of choices. 

4.4.1 Network properties and parameters  

The presented network is an extension of Wang‟s (2002) model for 

binary decision-making to four alternatives. Like the original models 

(Brunel and Wang, 2001; Wang, 2002), it is capable of storing 

information by exhibiting persistent activity, because of slow recurrent 

excitation, which also enables the accumulation of sensory information 

(Fig. 4.A.2). Categorical decision-making in the network is based on 

attractor state dynamics and feedback inhibition, which mediates 

competition. Besides modifying the number of selective pools 

representing the possible choices from two to four, we introduced an 

additional spatial connectivity component ωT between neighboring pools 

to model the circular location of the targets in the experiment, assuming a 

slightly higher correlation between pools 90º apart than between 

anticorrelated pools 180º apart. Quantitatively the connectivity between 

neighbors is only increased by 1.7% in our simulations, but ωT proved 

essential to regulate the range of decision-making (Fig. 4.5B). It is 

generally advantageous to optimize the overlap between the competition 

regimes for different numbers of alternatives, as this minimizes the need 

for additional regulation mechanisms like top-down signals from other 

brain areas. An adaptation of the network connectivity during the learning 

phase to optimize the range of decision-making is therefore a plausible 

process. 

4.4.2 Discrete or continuous representation?  

Extending decision-making to more than two alternatives finally 

amounts to the question about continuous alternatives. At present, there 

are no experimental results on a RDM task with more than four discrete or 

continuous alternatives. Thus, it is still not clear when subjects reach their 

limit to distinguish possible motion directions, or how accurately they can 

determine motion direction in a continuous task. Infinite precision may 
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not be needed to obtain the final resolution of the cognitive and motor 

systems (Churchland et al., 2008). A discrete network model with a finite 

number of selective neural populations might thus be sufficient to account 

even for continuous choices. 

In the following, we will discuss our results in comparison with the 

recently proposed continuous models (Beck et al., 2008; Furman and 

Wang, 2008) of multiple-choice decision-making. Furman and Wang‟s 

(2008) model, like ours, is a biophysically detailed attractor model. Their 

network consists of directionally tuned neurons whose preferred directions 

cover a full circle. Excitatory neurons are connected according to a 

Gaussian curve depending on their difference in preferred directions. This 

continuous approach allows for testing eight R-targets spaced 45º apart. 

However, for eight alternatives, in 49% of the trials no categorical 

decisions could be made, because activity around adjacent R-targets 

tended to merge. In addition, their continuous model could not account for 

the differences in reaction time observed between the standard 2-choice- 

and the 90º-case (Churchland et al., 2008). The two conditions resulted in 

identical outcomes in their simulations (Furman and Wang, 2008).  

Our discrete model with spatially tuned connections between the 

selective pools could account very well for all tested paradigms, including 

the 90º-case. Additionally, we were able to explain the intermediate RTs 

of the 90º-case, based on a prolonged symmetric state of the two selective 

populations. Thus, pooling over many neurons and introducing a graded 

spatial connectivity between the pools might represent the physiological 

conditions of neurons in LIP more accurately than a ring structure where 

each neuron encodes one particular direction.  

Beck et al. (2008) took a distinct, parallel approach with respect to 

the biophysically realistic attractor models. Their model is focused on 

possible probabilistic properties of neurons. It fits Churchland et al.‟s 

(2008) data well. However, in contrast to the experimental findings, 

different activity thresholds were used in the 2- and 4-alternative case to 

terminate the decision. The probabilistic approach so far accounts well for 

single cell data. Yet, to verify if populations of LIP neurons really encode 

probability distributions as predicted, future multiunit recording 

experiments are required (Beck et al., 2008).  

4.4.3 The importance of pool size  

Apart from successfully accounting for all experimental paradigms, 

the pool structure of our model extension entails an important advantage 

regarding the network‟s dynamics: the presented network operates in a 

range of categorical decision-making, independent of the three tested 

conditions. In Furman and Wang‟s (2008) model, the simulations needed 

to be controlled by inputs dependent on the number of possible R-targets, 
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which were supposed to originate from unknown higher level brain areas 

or normalization processes. They introduced an adaptation of the target 

input and an external control signal during the decision-making period as 

mechanisms to regulate the dynamical range of decision-making for the 

respective numbers of alternatives.  

In contrast, in the discrete model there is no need to adapt neither 

parameters nor inputs to the number of choice-alternatives. Using a mean-

field approximation, we found that the overlap of decision regions for two 

and four choices increases linearly with the relative size of the selective 

populations that encode the choice-alternatives (the coding level). A 

possible explanation of this effect might be given based on the recurrent 

connectivity. To keep the fixed-point firing rates of the model constant 

while increasing the coding level, the recurrent connectivity of the 

network has to be adapted nonlinearly, as shown in Fig. 4.5C. In turn, if 

more neurons encode a choice-alternative, each neuron in that pool will 

receive higher recurrent inputs. In fact, we observed that the recurrent 

activity a single neuron receives increases linearly with the coding level. 

We believe that this increase of recurrent activity stabilizes the decision 

state.  

Furman and Wang (2008) suggested that their top-down signal could 

also serve to control the speed-accuracy tradeoff. In the discrete network 

an input-based control of the speed-accuracy tradeoff could be 

implemented with the advantage of being independent of the number of 

possible choices, following the study of Roxin and Ledberg (2008), where 

increasing the inputs was found to decrease reaction times and 

performance monotonically. 

Although the network structure of Furman and Wang‟s (2008) model 

generally offers the possibility to simulate any number of alternatives and 

angular locations, a biophysically realistic model accounting for all 

experimental paradigms and more than four choice alternatives is still an 

objective for future research.  

 

Taken together, our results indicate the benefit of a pooled, multi-

neuron representation of choice-alternatives. We suggest that a bigger 

pool size, apart from the obvious advantage of redundancy in case of 

neural loss, or of averaging out noise by pooling across inputs, enables the 

network to exhibit relatively stronger recurrent inputs useful for 

stabilizing decision states.  
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4.A Chapter appendix 

4.A.1 Network simulations without target stimulus 

To investigate the network‟s behavior without the target input, we 

performed two additional sets of simulations: one with a motion signal of 

20 Hz and one with 45 Hz applied to the four selective pools. All other 

network parameters are identical to the main simulations in the results 

section (4.3) of this chapter.  

For a 20 Hz motion signal (Fig. 4.A.1B) and small coherence levels 

(up to 12.5%), the input to the selective populations is too low to induce 

decisions. In most of the trials with small coherences, all pools stay in 

their spontaneous states (see also Fig. 4.5A, main text: The black line 

represents the mean-field initial condition where all pools start at 0 Hz. 

For 20-Hz external input, the network stays in its spontaneous state). For 

 

Fig. 4.A.1 Network simulations without target stimulus. 

(A) Time course of external input. (B) 20 Hz motion input. The number of trials 

with decisions is shown with the blue bars (right ordinate). Reaction times are 

displayed as red dots (left ordinate). (C) Single trial at 0% coherence for a 

motion signal of 45 Hz. The integration process starts at 500 ms, a decision is 

reached at ~2,000 ms. (D) Speed and accuracy of the 45-Hz simulations. Red (left 

ordinate): reaction times of correct trials as a function of motion coherence, 

fitted by a hyperbolic tangent function (Eq. A.35). Blue (right ordinate): 

Psychometric function, fitted by a Weibull function (Eq. A.36). 1,000 trials were 

simulated for each data point. 
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higher coherence levels, however, the model is capable of reaching a 

decision in almost all trials and with realistic reaction times. At these high 

coherence levels, the model only takes correct decisions.  

Fig. 4.A.1D shows the simulated behavior with 45 Hz motion input. 

For lower coherences, decisions take longer than with the target input 

(compare Fig. 4.2). This is realistic, because the random-dot motion task 

is more difficult without knowledge about the possible R-targets. 

Accuracy starts at chance level, as with the target input, and reaches 100% 

for higher coherence levels. At low motion coherence, at most 4% of the 

trials had to be excluded because they failed to reach a decision within the 

simulation time of 4,000 ms.  

Our simulations show that for a strong enough motion signal, our 

network is capable of decision-making without the target input. This 

corresponds to possible experiments where subjects have to decide on the 

direction of coherent motion without being shown any R-target 

possibilities. However, it must be noted that our model is restricted to its 

four selective populations. To model continuous decision-making, a 

higher number of pools would be needed (see 4.4.2). 

4.A.2  Attractor network is capable of persistent activity 

Due to the strength of its recurrent connections, the presented 

attractor model is generally capable of displaying persistent activity. For 

the parameter set used to fit the experimental data of Churchland et al. 

(2008), the selective population that „„won‟‟ the competition is able to 

sustain its activity at about 48 Hz in all trials, even if all selective inputs 

are switched off at 4,000 ms (Fig. 4.A.2). 

In Fig. 4.A.2C the stable attractor states of the network calculated in 

the mean-field approximation are shown for different values of the 

recurrent connectivity +. Persistent activity can be sustained by the 

network, if the decision state is stable at 0 Hz, that is without any selective 

external inputs to the selective populations. From + = 1.44, the decision 

state exists and is stable even for zero external input. For smaller values of 

+, a decision state with high firing rates occurs only at higher external 

inputs. In the main simulations, we used = = 1.48 and, therefore, reliably 

obtained persistent activity. For the mean-field calculation shown in Fig. 

4.A.2C one pool was initialized at 120 Hz, the other three pools at 0 Hz, 

which corresponds to the situation when one pool has already „„won‟‟ the 

decision. 
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4.A.3 Range of decision-making for smaller AMPA/NMDA 
ratio. 

A linear relation between the range of decision-making and the 

coding level was also found for the original AMPA/NMDA ratio used in 

the model of Brunel and Wang (2001) (  = 0 in Eq. A.10). We tested two 

conditions: first, all network parameters were identical to those used in 

Fig. 4.5 and the spiking simulations, except for a smaller AMPA/NMDA 

 

Fig. 4.A.2 Network exhibits persistent activity after the external inputs are 

switched off. 

(A and B) Displayed are a single trial (A) and the trial average over 1,000 

simulated trials (B) at zero motion coherence for the 2-choice case (colors as in 

Fig. 4.3; red and black lines denote inhibitory and nonselective pools). (C) Stable 

attractor states of the network were calculated in the mean-field approximation 

(A.1.5b) for different values of the recurrent connectivity +.  
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ratio (Fig. 4.A.3A,B). In this case, the up-state fixed-point firing rates are 

lower than the firing rates found in the experiments. The connectivity + 

was adapted as in Fig. 4.5C, so that the up-states deviated by less than 2 

Hz from the up-state firing rate value at + = 1.48, the connectivity weight 

used in the spiking simulations. The optimal range of decision-making  

still increases linearly with the coding level (compare Fig. 4.5D).  

Next, we again used the original AMPA/NMDA ratio, but increased 

the connectivity + in order to increase the up-state firing rates to about 

the same range as in the spiking simulations and experiments (Fig. 

4.A.3C,D). The range of decision-making again increased linearly with 

the coding level. However, due to the higher + values, the resulting 

optimal range of decision-making was much smaller, and already for a 

coding level of 0.175, no common decision state could be found for the 2- 

and 4-choice task. 

 

 

Fig. 4.A.3 Range of decision-making for smaller AMPA/NMDA ratio. 

(A,B) Smaller AMPA/NMDA ratio. The up-state firing-rates were adapted to the 

value at += 1.48. (C,D) To compensate the smaller AMPA/NMDA ratio, the 

recurrent connectivity was increased, in order to fit the experimentally observed 

firing rates with the smaller AMPA/NMDA ratio. Increasing + leads to a much 

smaller range of decision-making. 
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5 A MULTIPLE-CHOICE TASK WITH CHANGES 
OF MIND 

The work presented in this chapter is currently prepared for 

submission. An abstract was published at the SfN 2010 conference13. 

5.1 Introduction 

Compared to the decisions we are faced with every day, decision-

making in psychophysical experiments is typically reduced to the highly 

simplified conditions of two-alternative forced-choice (2AFC) tasks 

(Luce, 1991; Bogacz et al., 2006). Nevertheless, the behavioral data 

gained from these perceptual tasks, together with complementary 

evidence from single-cell recordings (Roitman and Shadlen, 2002; 

Ratcliff et al., 2003), motivated and constrained formal models of 

decision-making (Smith and Ratcliff, 2004; Wang, 2008).  

Still, 2AFC tasks, by definition, neglect important features of real-life 

decision-making such as choices between multiple alternatives and choice 

reevaluation after an initial decision. As we have seen in the last two 

chapters, several authors have recently extended the RDM paradigm and 

investigated these more complex aspects of decision-making 

independently. On one hand, Churchland et al. (2008) and Niwa and 

Ditterich (2008) augmented the RDM task from binary to multiple 

choices. In particular, Churchland et al. (2008) tested monkeys on a 4-

alternative RDM discrimination task and compared their behavioral and 

neurophysiological responses to the standard binary task. On the other 

hand, Resulaj et al. (2009) considered “changes of mind” which are 

thought to arise through further processing of available information after 

an initial decision has been made. Instead of a saccadic response to the 

chosen R-target, as in the standard RDM task, human participants had to 

move a handle to a left or right response target. The continuous hand 

movement allowed observing the subjects' behavior after their first 

decision. Indeed, participants occasionally switched from one direction to 

the other, thus "changing their mind".  

Here, we combined these two paradigms in order to explore how 

changes of mind depend on the number of choice-alternatives (Fig. 5.1). 

When presented with four possible alternatives, our naive human 

participants committed more initial errors (i.e. choosing the wrong 

                                                      
13

 Albantakis L, Branzi FM, Martin C, Costa A, Deco G (2010) Changes of mind 

during binary and multiple-choice decision-making. 40th Annual Meeting Society 

for Neuroscience: SfN*2010 San Diego. Poster 503.5/KKK55 
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response) than in 2-choice trials. A higher number of possible motion 

directions leads to more confusion between choices. Therefore, one might 

also anticipate more changes of mind for four than for two alternatives. 

Yet, the percentage of trials with changes of mind did not significantly 

differ for the different numbers of alternatives. In fact, slightly fewer 

changes were observed in the case of four possible choices. Particularly 

the probability of “correcting” changes of mind, from the wrong to the 

correct choice, was lower for four than for two alternatives.  

Furthermore, our experimental results could be fit by an attractor 

model of decision-making. This model was constructed by merging the 

two biophysically realistic attractor models for decision-making presented 

in the previous two chapters, which explained choice behavior, neural 

activity and changes of mind of the two preceding experimental studies 

(Albantakis and Deco, 2009, 2011). What is more, the attractor model 

could also account for between-subject variations by an alteration of the 

decision threshold. A lower threshold in the model caused faster reaction 

times and more changes of mind. This corresponds to the negative 

correlation we found between the mean reaction times of individual 

participants and their tendency to change their minds. Finally, the 

computational model suggests, that extensive training might enhance 

behavioral differences in reaction time and changes of mind between the 

different experimental conditions. This prediction could be tested with 

over-trained human participants and maybe also with monkeys trained on 

the 2- and 4-choice task. 

Our main results are: 

 Choice corrections are less probable for more choice alternatives. 

 Across individuals changes of mind correlate negatively with 

mean reaction times. 

 An attractor model can explain the changes of mind dependence 

on condition and reaction time. 

 We predict that extensive training might enhance differences 

between conditions. 



 

 89 

5.2 Methods 

5.2.1 Experimental paradigm 

In the following we will describe the general experimental procedure 

of the 2- and 4-choice RDM task with changes of mind. Further details 

can be found in Appendix A.3. 

a) Experimental task and visual stimuli 

The random-dot motion discrimination task is illustrated in Fig. 5.1. 

In this task, 15 human participants were presented with a RDM stimulus. 

 

Fig. 5.1 Experimental paradigm: setup, time course and conditions. 

(A) Participants had to indicate their choice on the net direction of motion by 

moving a computer mouse pointer towards the respective visual R-target on the 

computer screen in front of them. Yellow dots denote the R-targets. (B) 

Illustration of the three possible R-target arrangements in the 2- and 4-choice 

experiment and the 2-top control. (C) Experimental time course. (D) Example 

traces from one participant (4-choice condition). In the majority of trials the 

subjects moved directly to one of the visual R-targets (black traces). Some 

trajectories, however, revealed a change of mind during the movement: they 

started towards one, but terminated at another R-target. Changes could be 

observed between adjacent (green) and opposite (red) R-targets. 
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The stimulus varied in the percentage of direction-coherent moving dots. 

Participants were asked to decide as fast and accurately as possible on the 

net direction of motion in the stimulus. They had to indicate their choice 

by moving a mouse pointer to the related response target (R-target) 

aligned with the identified motion direction. In each trial, there were 

either two or four possibilities for the direction of coherent motion.  

Each trial began with the presentation of a gray circle of 2º diameter 

in the screen center with a small fixation-cross in the middle (the so-called 

“start-target”). To start the trial, participants had to click on the start-target 

with the mouse, and the potential response options (R-targets) appeared 

on the screen. The yellow R-targets indicated the possible directions of 

coherent motion. They could appear either: 

a) in each of the four corners of a virtual square (4-choice trials), or  

b) in just two of the four corners (2-choice trials).  

The two presented R-targets could be either 180º apart, and thus 

symmetrically located with respect to the fixation-mark, or 90º apart, and 

therefore contiguous on one side of the screen (Fig. 1B, top and bottom 

left panel respectively). The R-targets remained present on the screen until 

the end of the trial.  

Due to the R-targets, participants knew prior to the onset of the 

motion stimulus how many choice-alternatives they had and which 

coherence directions were eligible for each given trial. After a random 

delay14, the fixation disappeared and was replaced by the RDM display. 

Upon the presentation of the RDM stimulus, participants were free to 

respond by moving the mouse towards the preponderant direction of 

motion, and clicking into the corresponding R-target. Until they decided 

to respond, participants had to keep the mouse pointer within a 2º 

diameter around the fixation-cross. The RDM stimulus was extinguished 

as soon as subjects moved the mouse device out of this area. The time 

limit to leave the starting position was 2 s (time-out #1). Once they moved 

out of the starting position, the subjects had 1 s (time-out #2) to click on 

one of the R-targets15. Only trials where one of the R-targets had been 

clicked within these time-outs were counted as “valid trials”.  

b) Experimental sessions 

Our participants underwent four experimental sessions of 30 minutes 

each, all the same day, separated by a time interval of two hours. In the 

first three sessions, we tested the participants on the combined 2- and 4-

alternative task explained above. In these sessions trials with two and four 

alternatives were randomly presented, but with the same total number of 

                                                      
14

 The delay time was sampled from a truncated exponential distribution (range 

0.7–1.0 s; mean 0.82 s). 
15

 More precisely they had to hit a square area of 3º edge length around the R-

target. 
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trials for each of the three conditions (2-choice 180º, 2-choice 90º, and 4-

choice condition). We used a set of eight different coherence levels (0%, 

3.2%, 6.4%, 12.8%, 25.6%, 51.2%, 76.8% and 100%), which were 

presented 16 times each, except for 0% which was presented four times16. 

This resulted in a total of 348 trials per session. After the first half of trials 

participants could have a small break. In the beginning of each session we 

also included 87 practice trials to familiarize the participants with the task 

and to assure a satisfactory level of performance.  

In the fourth experimental session, we replicated the visual 

arrangement used by Resulaj et al. (2009) as a control to compare our 

simpler setup with the original binary changes of mind paradigm (“2-Top 

control”). Here, participants had to decide whether the coherent motion 

was horizontally right or left. Hence, in this fourth session participants 

were always presented with the same two possible motion directions and 

the following R-target configuration: the start-target was located at the 

bottom, 14º below the center, and the two R-targets at the top of the 

screen, 19.8º from the center, on the edges of a virtual triangle (Fig. 5.1.B, 

bottom right panel). Accordingly, in this configuration, the R-targets were 

not perfectly aligned to the possible motion directions. In the 2-top control 

we used only the first six coherence levels, and a total of 440 trials 

preceded by 88 practice trials, time-out #1 was 2 s, time-out #2 was 0.7 s. 

Except for that, the 2-top control was conducted in the same way as the 2- 

and 4-choice task described above.  

Task instructions were always first given verbally and afterwards 

repeated visually on the video-screen. The subjects were not explicitly 

informed that they could change their decision during the motion 

response. 

c) Data analysis 

In the analysis of our experimental data, three dependent variables 

were of special interest. First, we measured reaction times (RT), 

corresponding to the time taken by the participants to initiate their 

response. More precisely, it denotes the time between the onset of the 

RDM stimulus and the moment when the mouse pointer left the start-

target area. Second, we measured the accuracy of the responses, i.e. the 

percentage of correct trials. The percentage of trials in which the correct 

R-target was selected determined the “final performance” of the 

participant. Third, and more importantly for our purposes, we measured 

the mouse pointer trajectory at 75 Hz. Based on the mouse pointer 

trajectories, we determined whether subjects changed their initial decision. 

If a trajectory was initially directed towards one R-target, but then crossed 

                                                      
16

 To avoid frustrating participants with unsolvable trials, the 0% coherence level 

was only presented four times for each R-target condition. For 0% coherence the 

“correct” target was defined randomly.  
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the horizontal or vertical axes and ended at another target, this trial was 

counted as a change of mind. As in Chapter 3, we further distinguished 

between “correcting changes”, which were responses that started towards 

an incorrect R-target, but then turned to the correct R-target, and 

“erroneous changes”, which turned from the correct to a wrong choice. 

The initial direction of the trajectory was interpreted as the participants‟ 

“initial performance”. Trajectories of trials without changes were typically 

straight to the target (see Fig. 5.1D). The initial direction and changes of 

mind could thus be determined reliably by the deviation from the diagonal 

between the center and the chosen R-target (see Appendix A.3.2).  

In this chapter, we focus on comparing the performance and changes 

of mind between two and four alternatives. Therefore, in the analysis of 

our experimental results, we collapsed all 2-choice trials across the 

different target locations, and the 90º- and 180 º-cases. Initially, we 

included the 90º-case as a control condition to tell apart whether 

differences in behavior indeed resulted from the different number of 

alternatives, or rather from the smaller angular distance in the 4-choice 

case (Churchland et al., 2008). Nevertheless, we combined both 2-

alternative conditions here, because in the 4-choice condition confusion 

between different alternatives could also occur between adjacent and 

opposite R-targets. For a fair comparison, the 2- choice trials should thus 

also include both angular distances (90º and 180º). The minor differences 

we found between the 2-choice 90º- and 180º-cases will be treated in 

Chapter 6. 

5.2.2 Computational model 

In Chapter 4 we showed that biologically-inspired attractor models 

can account for primate decision behavior and neural activity in a 

multiple-choice RDM task. Furthermore, they also match human choice 

behavior and changes of mind in a binary RDM paradigm (Chapter 3). In 

this chapter, we assess the conformity of a modified version of the 

multiple-choice model presented in Chapter 4 with the present set of 

psychophysical results. The network characteristics and kinetics are again 

summarized in Appendix A.1 and Table A.5. All default simulation 

parameters are listed in Table A.6. 

a) Network structure and connectivity  

In short, the network consists of 500 leaky integrate-and-fire neurons 

with conductance-based synaptic responses (400 excitatory pyramidal 

cells and 100 inhibitory interneurons).  

The network structure is sketched in Fig. 5.2A. Excitatory neurons 

are subdivided into four selective populations or “pools” (each 80 

Neurons), encoding the four possible motion directions, and a fifth pool of 
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nonselective neurons. The latter emulates the activity of surrounding 

neurons that are not selective to any of the four R-target directions. All 

excitatory neurons are connected to one pool of inhibitory neurons, which 

regulates the overall activity by implementing competition in the network.  

The recurrent connections between neurons within one selective pool 

are stronger (ω+ = 1.48) than between selective pools and from the 

nonselective to selective pools (ω- = 0.88). Other than in the multiple-

choice model presented in Chapter 4, there is no spatial connectivity 

component here (discussed in Section 5.5.3). 

 

Fig. 5.2 Computational model: populations, connectivity and input. 

(A) Diagram of the attractor model for decision-making between up to four 

choice alternatives. Unlabeled arrows denote a connectivity of 1 (baseline). 

(B) Time course of target and motion input to the selective populations in order to 

model the experimental design of the RDM task. (C) Example trial with “change 

of mind” for two alternatives at 12.8% coherence. The initially winning 

population (first threshold crossing) is overtaken by the other firing rate 

transient. The horizontal black line at 38 Hz indicates the threshold. Dotted 

vertical lines mark times of threshold crossings.  
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As before, we used a mean-field reduction of the full spiking-neuron 

model to initially locate the working point of the network with respect to 

the two crucial bifurcations that contain the range of categorical decision-

making (Fig. 2.8 and Fig. 3.6).  

b) Simulation of sensory inputs  

Three types of external inputs were applied to the neural network as 

noisy uncorrelated Poisson spike trains. First, all neurons received a 

background input of νext = 2.4 kHz, equivalent to 800 excitatory 

connections from external neurons firing at 3 Hz. Furthermore, two 

“sensory” inputs mimicking the task-relevant visual stimuli, namely the 

R-targets (νtarget) and the random-dot motion stimulus (νmotion) were applied 

to the selective populations only (Fig. 5.2B).  

Target input. As in Chapter 4, the target input νtarget was applied to 

two of the selective pools in the 2-choice condition, and to all four 

selective pools in the 4-choice condition, corresponding to the 

experimental R-target stimuli. Departing from the target input used in the 

last two chapters, here we did not include the initial phase of high inputs. 

Instead, the target input was mostly constant in time, with only modest 

initial adaptation: 

 ,  (5.1)  

where 500 ms is the onset time in the simulation and τ = 100 ms the 

adaptation decay time constant. We will comment on this and other 

differences between the present and previous implementations of the 

attractor model in more detail in the results and discussion sections.  

Motion input. Other than the target input, the RDM input νmotion was 

always applied to all four selective populations for the 2- and 4-choice 

condition. Coherent motion was simulated as a positive bias to one 

selective pool, balanced by a reduction of the motion input in the other 

three selective pools:  

, . (5.2) 

Thereby, the total motion input to the network was kept constant. A 

motion coherence of 100% thus corresponds to a bias of 90 Hz to one 

selective pool, resulting in νmotion,1 = 160 Hz applied to the first selective 

pool and νmotion,2-4 = 40 Hz to the other selective pools.   

c) Decision threshold and network simulations 

A (first) decision was reached in the simulations, when the activity of 

one selective pool crossed a fixed decision threshold and surpassed the 

other pools by at least 5 Hz. The same conditions applied for a change of 

mind. The threshold was assumed to be independent of motion coherence 

and the number of choice alternatives (Roitman and Shadlen, 2002; 
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Churchland et al., 2008). To fit the mean behavioral data averaged across 

all 15 participants, we used a threshold value of 38 Hz. To account for the 

participants‟ behavior grouped according to their total number of changes, 

we respectively used 32 Hz, 38 Hz and 42 Hz for the groups with most, 

middle, and least changes on the same simulated trials. All threshold 

values were selected by hand with a resolution of 1 Hz, based on the 

overall best fit to experimental reaction times, performance, and changes 

of mind.  

Reaction times were calculated as the time of threshold crossing plus 

a non-decision time tND = 350 ms (Niwa and Ditterich, 2008), which also 

set the time limit for changes of mind (see Section 3.2.2 for a detailed 

discussion of this time-out). A tND of 350 ms is in accordance with an 

assumed afferent signal latency of about 200 ms for the motion signal 
(Roitman and Shadlen, 2002; Churchland et al., 2008), plus 150 ms to 

account for movement initiation and execution (Cui and Andersen, 2007; 

Snyder et al., 1997).  

5.3 Experimental results 

To study the relation of changes of mind to the number of choice 

alternatives, we asked naive human subjects to perform a random-dot 

motion (RDM) discrimination task with two and four possible directions 

of motion (Fig. 5.1).  

In addition, we intended to replicate preceding findings on changes of 

mind (Resulaj et al., 2009) with our simpler experimental setup. 

Therefore, we ran a separate block of trials with two alternatives in the “2-

top” control condition, where the response targets (R-targets) were 

arranged as in (Resulaj et al., 2009). The results of the 2-top control are 

summarized in Fig. 5.A.1 and will be compared to the main 2- and 4-

choice experiment, in the discussion. 

In all experimental conditions, we recorded the participants‟ choices, 

the time between the onset of the motion stimulus and movement 

initiation (reaction time or “RT”), and the movement trajectories of the 

mouse pointer. Changes of mind were generally defined as those traces 

starting towards one R-target but then changing the direction and crossing 

the horizontal or vertical axes. Such trajectories could be observed 

occasionally in all experimental conditions. Notably, in the 4-choice 

condition subjects not only changed between adjacent R-targets, but also 

across the diagonal (Fig. 5.1D). In the following we will first report the 

pooled data from all 15 participants, but will show subgroups and 

individual results later. 
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5.3.1 Reaction times and choice accuracy 

As shown in Fig. 5.3, the RTs in correct trials decreased as motion 

coherence increased. This effect ranged from about 950 ms for the most 

difficult coherence condition (0%) to 500 ms for the easiest one (100%) 

(Fig. 5.3A). In other words, the more dots move in the same direction the 

faster the response is taken. More interesting perhaps is the fact that 

participants needed more time to decide in the 4-choice than in the 2-

choice trials. 

To test this statistically, we performed a within-subject ANOVA on 

the reaction times of all correct trials (collapsing the three sessions), 

excluding changes of mind, with the factors “number of choices” (two vs. 

four choices) and “coherence” (eight levels of coherence: 0%, 3.2%, 

6.4%, 12.8%, 25.6%, 51.2%, 76.8% and 100%). The results revealed a 

main effect for both, “coherence” (F(7,98)=45.88, p<.001) and “number 

of choices” (F(1,14)=22.03, p<.001). Moreover, the interaction between 

“number of choices x coherence” was also found to be significant 

(F(7,98)=2.39, p<.05). The difference between 2- and 4-choice trials was 

specifically significant for the following coherence levels: 0%, 12.8%, 

76.8% and 100% (p<.05). Besides, the difference between RTs in the 

condition without coherent motion (0%) and other coherence levels 

started to become significant with 25.6% coherent motion (p<0.5).  

Coherence also affected accuracy in a similar way: the higher the 

coherence, the higher the percentage of initially correct choices (“initial 

performance”) (Fig. 5.3B). As expected, accuracy started at chance level 

for 0% coherent motion and reached close to perfect performance for the 

 

Fig. 5.3 Mean reaction times and initial performance.  

(A) Reaction times decreased with increasing coherent motion and were longer 

for four alternatives. (B) Initial performance, that is the percentage of initially 

correct choices, started at chance level (50% for two and 25% for four choice 

alternatives) and increased to almost perfect accuracy for 100% coherent motion.  
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highest coherence levels. Also at intermediate coherence levels accuracy 

was lower in the 4-choice than in the 2-choice condition, which reflects 

the lower prior probability of each choice given four alternatives. 

5.3.2 Changes of mind 

As explained above, changes of mind were defined as mouse 

trajectories that were initially directed towards one R-target, but then 

turned to another. They occurred in all experimental conditions, at all 

coherence levels, and could lead to a correct or an incorrect final choice. 

In Fig. 5.4 A and B, correct and erroneous changes of mind are plotted for 

each motion coherence level as percentage of all valid trials. Intuitively, 

changes to the correct response (Fig. 5.4A) were most frequent at 

intermediate difficulty (25.6%). This is because for low coherences, there 

is only little sensory evidence which might induce a change from the 

initial decision. Then again, at high coherences participants already 

initially chose the right direction of motion. Hence, only intermediate 

conditions left room to find a substantial number of changes (Resulaj et 

al., 2009). Erroneous changes generally decreased with increasing motion 

coherence17 (Fig. 5.4B).  

Considering all coherence levels, participants changed somewhat 

more in the 2-choice than in the 4-choice condition (black and red lines in 

Fig. 5.4A,B respectively). This difference is more evident if we consider it 

in the context of the different accuracy levels of the two conditions. Given 

four possible motion directions and low coherence levels, our participants 

committed about twice as many initial errors than in the 2-choice 

condition (Fig. 5.3). They might thus also have corrected their choice 

more often. Yet, we observed the opposite. Fig. 5.4C and D show the 

same data as Fig. 5.4A and B, but here we considered accuracy (i.e. the 

fraction of correct choices). Instead of dividing by the total number of 

valid trials, the number of changes was respectively divided by the initial 

errors or initially correct trials. More precisely, the correcting changes 

were divided by the number of initial errors from which they could have 

originated. Similarly, the erroneous changes were divided by the number 

of initially correct trials. Plotted in this way, it becomes clearer that the 

probability to make a correcting change was actually much lower when 

subjects were presented with four alternatives than for just two. However, 

the probability of changing from the initially right choice to a wrong R-

target (Fig. 5.4D) was very similar in the two conditions.  

                                                      
17

 Note that at 0% coherence the total number of changes was divided by the 

number of choice alternatives. As without coherent motion there was no initially 

right or wrong choice, changes there could neither be counted as correcting nor 

erroneous. 
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Finally, in the 4-choice condition, participants also changed between 

two wrong alternatives (Fig. 5.4B,D dashed line). Except for noise 

fluctuations the visual stimuli neither presented evidence for, nor against 

these changes. Note also that wrong-to-wrong changes do not affect the 

final performance. 

All in all, changes of mind nevertheless improved participants‟ 

accuracy (Fig. 5.5), with the exception of the lowest coherent motion level 

(3.2%) in the 4-choice condition. There, the higher number of erroneous 

changes compared to correcting changes could be expected. That is 

because there are more distracters than correct R-targets and the evidence 

 

Fig. 5.4 Comparison between changes of mind for two and four alternatives. 

(A) Correcting changes and (B) erroneous changes are shown as percentage of 

all valid trials. Given four choice-alternatives, also changes between two wrong 

R-targets occurred (w  w, dashed line in B). (C,D) The same data as in (A,B), 

but considering the different accuracies  (see Fig. 3B). Correcting changes (C) 

and changes from wrong to wrong (dashed line B,D) were divided by the number 

of initial errors, changes from correct to wrong by the number of initially correct 

trials. Thus (C) and (D) show the probability to change from an initially correct 

or from an initial erroneous choice respectively. Note that we plotted changes 

scaled by initial errors (C) only up to 25.6 % coherence, because for higher 

coherent motion the number of initial errors became very small (leading to 

division by small values and thus uninformative probabilities). 



 

 99 

for changing was weak compared to the noise fluctuations in the visual 

stimuli.  

In summary, there are two empirically relevant observations: first, 

erroneous changes of mind are equally probable in the 2- and 4-choice 

condition. The probability to dismiss a correct choice decreases with 

higher coherence, but is apparently not influenced by more distracters. 

Second, correcting changes of mind do depend on the number of possible 

choices. They are less frequent for more alternatives. 

5.3.3 Correlations between changes of mind and mean RT 
for individual participants 

Another interesting observation in our study refers to the individual 

differences in the tendency to make changes of mind. These individual 

differences can only be detected in experiments in which a relatively large 

sample of participants is tested and, perhaps, for that reason have not been 

addressed in detail in previous studies (Palmer et al., 2005; Niwa and 

Ditterich, 2008; Resulaj et al., 2009).  

Participants who made more changes tended to have faster reaction 

times. This can be appreciated in Fig. 5.6A, where the overall number of 

changes (ONC) is negatively correlated with the mean reaction time of all 

valid trials (Pearson correlation coefficient R = -0.63, p < 0.05, N=14, 

excluding the one outlier).  

Furthermore, there was a trend towards a positive correlation between 

overall accuracy and reaction times (Fig. 5.6B), namely the slower the 

responses the higher the accuracy (R = 0.48, p = 0.085, N = 14). This 

trend is consistent with the general notion of the speed-accuracy tradeoff. 

 

Fig. 5.5 Performance improvement through changes of mind. 

(A) Absolute difference of initial and final performance (considering changes of 

mind). (B) Relative performance difference, i.e. the performance difference shown 

in (A) divided by the initial performance. 



 

 100 

We also analyzed the correlation between the participants‟ overall 

accuracy and their ONC, but found no effect there (Pearson correlation 

coefficient R = -0.23, p = 0.418, N=14).  

Taken together, as expected, faster reaction times led to lower 

performance, but also increased the probability to change the initial 

choice. We will return to the relation between changes of mind, reaction 

speed and accuracy in Section 5.4.2. Beforehand, we will describe the 

computational model and its fit to the subjects‟ average choice behavior in 

the next section. 

5.4 Theoretical results 

The experimental paradigm we used here to investigate changes of 

mind in the light of multiple alternatives is the combination of two recent 

experimental studies (Churchland et al., 2008; Resulaj et al., 2009). In the 

last two chapters, we showed that the results found in both of these studies 

can be explained by separate versions of a biophysically realistic decision-

making model with attractor dynamics, based on the work of Brunel and 

Wang (2001; Wang, 2002). A critical question is whether the same 

theoretical concepts can now also account for the 2- and 4-choice RDM 

results we presented above. 

 

Fig. 5.6 Correlation between absolute number of changes, mean reaction 

time, and initial performance of individual participants.  
(A) The overall number of changes is plotted against the mean reaction time 

(mRT) of all valid trials (2- and 4-choice condition together) for each participant 

(colored dots and circles). The red star denotes the one outlier subject that was 

excluded in the linear fits (red lines) and correlation analyses. (B) Relation of 

overall fraction of correct choices to mean reaction time. Individual subjects are 

marked as in (A). On average, participants with longer reaction times changed 

significantly less (A) and tended to be more accurate (B). 
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Generally, attractor models implement the decision process by 

diffusion in a nonlinear landscape of stable fixed points, which act as 

decision-attractors. The decision alternatives correspond to sub-

populations, or “pools”, of excitatory neurons, which are selective for the 

respective motion directions (Fig. 5.2A, red). This means that they receive 

additional inputs if there is motion in their preferred direction. The output 

firing rates of these selective neural pools act as decision variables. 

Initially, they all fire at equal rates. With the onset of the motion input, 

which corresponds to the experimental RDM stimulus, the system 

dynamically evolves towards the decision state. In this network state, one 

of the selective pools fires at a high rate (winner), and the others are 

suppressed to low rates (losers). This “winner-take-all” competition arises 

through global inhibition, which is implemented by a population of 

inhibitory neurons connected to all neurons in the network. 

The specific model we present here (Fig. 5.2), was developed by 

modifying the multiple-choice model with four selective pools presented 

in Chapter 4. As we have seen, with this model we already accounted for 

primate decision-making behavior and neural activity in an experimental 

paradigm with two and four alternatives, which was very similar to our 2- 

and 4-choice task, but without changes of mind (Churchland et al., 2008). 

Notably, all parameters in that model are independent of the number of 

choice alternatives. Solely the target input distinguishes between 

conditions in the model, in the same way as the visual R-targets 

determined the possible motion directions in the experiment. For two 

choice-alternatives the target input was applied to two selective 

populations, while for four alternatives, all four selective pools received 

the target input. Corresponding to the random-dot stimulus, the motion 

input was always applied to all four selective populations, independent of 

the number of alternatives (Eq. 5.2). A (first) decision was noted in the 

model, when one of the firing-rate transients crossed the decision 

threshold (38 Hz). If the firing rate of an initially losing selective pool 

subsequently exceeded the same decision threshold and surpassed the 

other pools by at least 5 Hz, that trial was considered a change of mind 

(see Fig. 5.2C for an example trial). 

5.4.1 Model fit to average choice behavior 

As can be appreciated in Fig. 5.7, the model matches the 

experimental reaction times and accuracy well for the different coherence 

levels. In comparison to the primate study (Churchland et al., 2008), the 

differences in reaction time between experimental conditions were less 

pronounced for our human participants and their accuracy was somewhat 

worse (see Fig. 4.2 for comparison). To adapt the model accordingly, we 

primarily changed three parameters: first, as we did not distinguish 
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whether two choices had a spatial distance of 180º or 90º, the connection 

strength between the selective pools now has no spatial component and is 

equal to - for all selective pools. Second, the target input before motion 

onset (500 to 1,500 ms) was set much smaller, which lessened the 

difference between the 2- and 4-choice conditions. Third, the number of 

neurons in the network was reduced from 2,000 to 500. This mainly 

decreased the performance to a level comparable with our subjects‟ 

accuracy (Fig. 5.7B). Still, the model slightly overestimated the difference 

in reaction time between the 2- and 4-choice trials and the simulated 

performance slightly exceeded the experimentally observed accuracy. 

Nevertheless, these model adjustments can give insights into what might 

have caused the discrepancies between human and primate behavior. 

Roughly speaking, the model adaptations described above are congruent 

with less practice (see 5.5.3).  

Most importantly for our purposes, the multiple choice model is able 

to produce changes of mind in the same way as the 2-alternative model 

(Chapter 3), which was used to fit the binary RDM experiment of (Resulaj 

et al., 2009), namely with a comparatively high motion input and a low 

decision threshold. Both, high inputs and a low decision threshold, 

generally lead to faster reaction times and less accuracy in the attractor 

model and thus correspond to pressure for speed in the experiment. 

Indeed, with a mean-field reduction of the full spiking-model, we have 

shown in Chapter 3 that this input-dependent speed-accuracy tradeoff 

arises from a shift of the dynamical working point in the attractor 

landscape of the network (Fig. 3.6). With higher inputs the system shifts 

closer to a bifurcation where a new attractor appears, which allows for 

 

Fig. 5.7 Comparison between simulated and experimental reaction times and 

accuracy.  

(A) Simulated RTs include a non-decision time (tND) of 350 ms. (B) Accuracy of 

the attractor model. For comparison the experimental data from Fig. 5.3 is 

shown again in lighter colors. Error bars of simulated data (SEM) are mostly 

hidden behind the dot markers. 
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two neural populations firing at elevated rates. This means that after this 

bifurcation, decision-making is no longer unambiguous. The system there 

shows multi-stability between the decision attractors (corresponding to 

specific decisions) and the ambiguous, symmetric attractor (corresponding 

to two neural populations firing at elevated rates). Interestingly, as a 

consequence more changes of mind emerge the further the system is 

pushed towards this bifurcation. This is because in the proximity of the 

bifurcation, for high inputs, it becomes more likely that two selective 

populations reach firing rates close to the decision threshold, which 

facilitates changes of mind.  

 Importantly, this principle applies in the same way for the 4-

alternative version of the attractor model. Notably, the 2-and 4-choice 

model predicts overall fewer changes for four choice-alternatives than for 

two. Thereby, it confirms our experimental results (Fig. 5.8, first column). 

Fewer changes of mind for more alternatives can theoretically be 

explained by the global inhibition in the network. If the target input is 

applied to four and not just two pools, inhibition and thus competition in 

 

Fig. 5.8 Simulated changes of mind. 

A model trial was counted as a change of mind, if, after the initial threshold 

crossing (first choice), the firing rate of an initially losing selective pool 

surpassed the other pools and crossed the decision threshold. (A,B, first two 

columns) Changes of mind as percentage of all valid trials for two (A) and four 

(B) alternatives. The experimental results of Fig. 5.4 and Fig. 5.5 are plotted in 

lighter colors for comparison. 
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the model increases. More competition has the opposite effect as higher 

inputs: it becomes less likely that two selective neural pools both reach 

firing rates close to the decision threshold, which is required for a change 

of mind. 

What is more interesting is the fact that even the coherence 

dependence of the simulated changes matches that of the experimental 

changes of mind (Fig. 5.8). Also the relative difference between the 2- and 

4-choice conditions in the performance improvement is captured by the 

computational model (Fig. 5.8, right column). Just for low coherences the 

absolute performance improvement is somewhat overestimated by the 

computational model. This is because for low coherences slightly more 

correcting changes were predicted by the model in the 2-choice trials, 

while in the 4-choice trials fewer erroneous changes occurred in the 

simulations than in the experiment.  

In sum, our experimental results, including the changes of mind, are 

nevertheless in good accordance with the attractor model of decision-

making and thus explained by the same theoretical concepts as the two 

preceding studies. 

5.4.2 Participants grouped by ONC 

Another benefit of the theoretical model is that it can help to elucidate 

the source of variability across individual subjects. In the following, we 

divided the 15 participants into three groups of 5 according to their 

readiness to change, i.e. their overall number of changes (ONC). 

Especially for low coherence levels, reaction times varied considerably 

between groups (see Fig. 5.9A and C for the 2- and 4-choice condition 

respectively). The group with most changes of mind responded most 

rapidly and vice versa, corresponding to the negative correlation between 

ONC and mean RTs that we found across individual participants (Fig. 

5.6). Again similar to the analysis of individual subjects, hardly any trend 

was found in the grouped percentage of initially correct choices (Fig. 5.9, 

middle row). The overall percentage of correcting and erroneous changes 

for the three subgroups is displayed in the bottom row of Fig. 5.9 A,C.  

Notably, in the computational model an adaptation of the decision 

threshold was enough to capture all subgroup differences described above 

(Fig. 5.9 B,D). The same threshold (38 Hz) that was used to fit the 

average across all participants also fitted the subgroup with an 

intermediate number of changes (Fig. 5.9, solid thin line). The simulated 

data for this group is thus identical to that shown in Fig. 5.7 and Fig. 5.8. 

Decreasing the threshold to 32 Hz produced faster RTs and more changes 

of mind in the 2- and 4-choice condition. Increasing the threshold to 

44 Hz had the opposite effect. Moreover, this simple adjustment 

simultaneously fitted the quantitative differences of reaction times and 
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changes of mind between groups remarkably well. In addition, varying the 

decision threshold had only minor effects on the model‟s accuracy, in line 

with the experimental performance, which hardly differed between 

participant subgroups. Nevertheless, the group with most changes was the 

initially least accurate. 

A further interesting detail can be noted in the coherence dependence 

of the changes of mind for the different subgroups (Fig. 5.A.2). Correcting 

changes in the model were particularly reduced for low coherences, if the 

decision threshold was set high. Interestingly, we observed the same effect 

in the experiment: The subgroup with least overall changes of mind did 

make correcting changes in the 4-choice condition, but only for high 

coherence levels, not for low motion coherence (Fig. 5.A.2, top right). In 

the model, this effect can be explained due to the nonlinear decision 

attractors. If the threshold is higher, it lies closer to the decision attractor. 

In the vicinity of the attractor, a first decision will only be reversed if the 

contrary evidence is strong enough to pull the transient out of the basin of 

attraction again. Therefore, initial errors will be corrected for high 

 

Fig. 5.9 Threshold variation accounts for differences in choice behavior of 

participants grouped according to their tendency to change. 

(A,C) Experimental data. (B,D) Simulated data.(Top row) Reaction times. 

(Middle row) Initial performance. (Bottom row) Overall percentage of correcting 

and erroneous changes. Apart from the decision threshold, all other model 

parameters were kept constant. For a comparison of changes of mind for the 

different coherence levels see Fig. 5.A.2. 
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coherence levels even if the decision threshold is high, but not necessarily 

for lower coherences with weak evidence for a change of mind. This 

observation further affirms the connection between the decision threshold 

and the changes of mind we propose here. 

Taken together, solely by an alteration of the decision threshold the 

nonlinear attractor model can explain the “changes-speed-accuracy” 

relation we observed experimentally in the behavioral variability of 

individual participants and subgroups.  

5.5 Discussion 

In this chapter, we presented human behavioral data from a 2- and 4-

alternative random-dot motion discrimination task. Our participants 

reported their choice by moving a mouse pointer on the computer screen 

from a central start-target to one of the up-to-four response targets in the 

screen corners. In this setting, we were able to observe occasional changes 

of mind in the participants‟ movement trajectories. These changes of mind 

are supposedly based on information that was still unprocessed at the time 

of the first decision (Resulaj et al., 2009). A multi-alternative attractor 

model for decision-making that incorporates such further processing of 

evidence after the initial decision reproduced the experimental changes of 

mind and the general choice behavior of our participants. 

In the following we will discuss our results with respect to the 

preceding studies that built the groundwork for our experiment. In 

particular, we will focus on our findings on differences between two and 

four alternatives, individual participants, and human versus primate choice 

behavior: 

 Participants made more initial errors and less correcting changes 

for four than for two choices. 

 The number of changes of individual participants negatively 

correlated with their reaction times. 

 Despite behavioral differences, human and primate decision-

making are explained by the same theoretical model. 

  Furthermore, we will consider other concepts and modeling 

approaches, which might account for this set of results.  

5.5.1 Comparison to binary changes of mind 

Our findings on changes of mind in the 2- and 4-choice experiment 

are consistent with all relevant aspects of the original study on binary 

changes of mind (Resulaj et al., 2009). Changes leading to correct 
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responses were most frequent for intermediate coherences, erroneous 

changes decreased with higher coherent motion, and accuracy improved 

with changing. The present study thus showed that the general principles 

underlying changes of mind extend to multiple-choice decision-making. 

Under closer inspection, however, in comparison to the three 

participants tested by Resulaj et al. (2009), our participants changed less 

often, had longer reaction times and showed much more between-subject 

variability. These quantitative behavioral differences can be explained by 

two alterations in the experimental setup: first, the 2- and 4-choice task 

was per se more difficult because of the different numbers of choice 

alternatives. Similarly, the dot-motion here ran along the diagonals, in 

direction of the R-targets and not simply to the left or right. Second, we 

simplified the experimental setup compared to (Resulaj et al., 2009). 

Instead of moving the handle of an elaborate vBOT manipulandum 

(Howard et al., 2009), our subjects used a standard computer mouse to 

indicate their choice.  

To distinguish the effects of the simplified setup from actual task 

differences, we tested our subjects on the 2-top control (Fig. 5.A.1). 

There, they were presented with the same target configuration as in 

(Resulaj et al., 2009) and horizontal dot-motion. This led to ~250 ms 

faster RTs for low coherences and more correcting changes of mind 

compared to the 2-choice condition of the main experiment, which was 

randomly mixed with 4-choice trials (Fig. 5.A.1).  

Interestingly, the participants‟ accuracy and erroneous changes of 

mind in the 2-top condition were basically identical to the 2-choice 

condition of the main experiment. 

In the 2-top control our participants still changed on average less than 

those of Resulaj et al. (2009) and also the variability between subjects was 

higher. Both of these effects might result from less pressure to respond 

fast. Shifting the computer mouse involves only a very slight hand 

movement compared to moving a handle in space. The same time-out to 

start the motion response might thus have been less urging in our 

experimental protocol. Nevertheless, all of our participants responded 

substantially faster and less accurately than subjects which performed a 

similar 3-alternative RDM task and were free to respond without time 

limit (Niwa and Ditterich, 2008).  

In sum, a variable number of alternatives with coherent dot-motion 

along the diagonals led to longer reaction times and less correcting 

changes of mind. Still, the basic principles of changes of mind extend to 

the case of multiple alternatives. 
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5.5.2 The “change-speed-accuracy” tradeoff 

Due to the large number of participants we tested, we were able to 

evaluate the correlation between accuracy, reaction time, and changes of 

mind quantitatively (Fig. 5.6 and Fig. 5.9). Resulaj et al. (2009) already 

noted that their participants changed less when they were asked to respond 

more slowly. Indeed, we found a negative correlation between the overall 

number of changes and the mean reaction time across participants. This 

correlation was significant and thus even stronger than the negative trend 

we found between mRTs and the mean accuracy, which corresponds to 

the established concept of a speed-accuracy tradeoff. Grouping the 

participants by their overall number of changes revealed the same trends. 

 Notably, the theoretical model could explain the subgroup 

differences with different decision thresholds. The flexibility to reevaluate 

an initial choice might thus be regulated via the decision threshold. This is 

in line with our theoretical findings of Chapter 3, where we showed that 

changes of mind arise in the binary attractor model for high selective 

inputs and low decision thresholds. In theoretical models of decision-

making threshold adaptation is usually associated with the speed-accuracy 

tradeoff (Palmer et al., 2005; Lo and Wang, 2006; Wong and Wang, 2006; 

Bogacz et al., 2010). Here, we added changes of mind to this relation: fast 

reaction times lead to more changes of mind, while changes of mind and 

accuracy seem to be barely linked with each other.  

5.5.3 Comparison of human and primate choice behavior 

In their groundbreaking study on multiple-choice decision-making, 

Churchland et al. (2008) measured the neural activity of macaque 

monkeys performing a multi-alternative RDM task. Here, we adopted 

their combined 2-and 4-choice paradigm, except that our participants were 

asked to indicate their choice by a continuous movement instead of a 

saccade, in order to observe changes of mind. 

Interestingly, the primates showed substantial differences in reaction 

time for the different task conditions (Churchland et al., 2008). More 

precisely, while the monkeys‟ RTs were significantly slower in the 2-

choice 90º than in the 2-choice 180º case, and slowest for four choices, we 

did not observe this dependence on the spatial angle for the human 

participants (compare Fig. 5.3 with Fig. 4.2). In fact, accuracy and RTs of 

the human subjects were similar for both 2-choice cases (90º and 180º), 

which is why we combined them here for comparison with the 4-choice 

condition. Moreover, also RT-differences between different numbers of 

alternatives were less pronounced for humans (The conditional differences 

in choice behavior are treated in more detail in Chapter 6). 
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In that respect, the computational model can help us to understand 

how the behavioral differences between the two species might arise, 

although decision-making in the RDM task should be based on the same 

principles. Notably, the model suggests, that training effects can largely 

explain the distinct behavior between species. This can be concluded from 

differences in crucial network parameters between the model 

implementation we used here, and the version that we applied to the 

monkey data in Chapter 4. There, we showed that a multi-alternative 

attractor model could account for all relevant aspects of Churchland et 

al.‟s (2008) findings, including the differences in neural activity between 

two and four choice alternatives. The “monkey model” fitted the 

behavioral differences between the 2-choice 90º- and 180º-case observed 

for primates by assuming graded spatial connectivity: the connection 

weights between the selective neural populations that encode 

perpendicular motion directions were slightly stronger than between those 

selective pools that encode opposite motion directions. Monkeys are 

usually trained for months on a psychophysical task, before the final 

experiment is conducted. Such a spatial connectivity component might 

thus emerge during training through Hebbian learning, assuming that 

neural populations that encode more similar motion directions have been 

firing more correlated in the past.  

In contrast, to fit the behavior of the untrained human participants we 

had to drop this spatial connectivity component. Moreover, to 

approximate the somewhat worse performance of our human subjects, we 

reduced the network size from 2,000 to 500 neurons, which increased 

finite size noise in the model and thereby reduced its accuracy. With 

training, more neurons might be recruited to encode possible motion 

directions.  

Overall, the comparison of the computational models revealed that 

human and primate decision-making can be accounted for by the same 

theoretical mechanisms. Accordingly, our results generally agree with 

Churchland et al.‟s (2008) findings for primates, despite deviating 

behavioral observations. What is more, the theoretical model provides a 

testable prediction on primate behavior regarding changes of mind. The 

monkey-model (Chapter 4) would predict more changes of mind between 

R-targets at a spatial angle of 90º than for 180º, due to the stronger 

connection between the selective pools, and even fewer changes for four 

than for two choices. It would be interesting to see if the overall frequency 

of changes of mind in trained monkeys, or overtrained humans, indeed 

varies more between the different experimental conditions. 
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5.5.4 Intuition and possible models for changes of mind 

One might have suspected that the overall probability to make a 

change of mind would be higher for four alternatives because of more 

confusion between more possible motion directions. Added to this, the 

prior probability to choose a particular direction without further evidence 

is 50% for two and 25% for four alternatives, if all directions are assumed 

equal. Yet, while accuracy was indeed lower for four alternatives 

according to the different prior probabilities, changes of mind seem to 

occur more often the easier the task is.  

Moreover, the different a priori probabilities make it difficult to form 

an intuition about the dependency of correcting and erroneous changes on 

the number of alternatives. Strikingly, the probability to discard an 

initially correct R-target seems to depend only on the given level of 

evidence, which here means the coherence level in the motion stimulus: 

Erroneous changes of mind occurred independent of the number of 

alternatives and target locations relative to the motion direction (Fig. 5.4D 

and Fig 5.A.1G). By contrast, the probability to correct an initial error was 

much higher for two alternatives than for four, and even higher for easier 

left/right choices (Fig. 5.4C and Fig. 5.A.1E, respectively). Even if the 

prior probabilities are taken into account, there is no simple intuitive 

explanation for these findings.  

Notably, the attractor model of decision-making produced the 

changing behavior of the 2- and 4-choice experiment through its global 

inhibition, while the threshold and all other network parameters were 

identical across conditions.  

Attractor models are however not the only decision-making models 

that are generally capable of producing changes of mind. Resulaj et al. 

(2009) extended a linear diffusion model by an independent second 

threshold that determined changes of mind. This model could then be 

fitted to their experimental findings on changes between two alternatives 

(left/right). Because in the diffusion model it is the difference in evidence 

between two choices that is integrated, an extension to more than two 

alternatives is not straightforward. Yet, Churchland et al. (2008) could 

account for their 2- and 4-choice data by a race between two independent 

diffusion models and (Niwa and Ditterich, 2008) implemented a diffusion 

process between three alternatives through weighted feedforward 

inhibition. It is probable, that a similar 4-alternative version of these 

diffusion models could also reproduce our experimental observations, 

especially, if the threshold for changes of mind were a free parameter as in 

(Resulaj et al., 2009). Note again, that in the physiologically-inspired 

attractor model the change threshold is the same as the decision threshold. 

It would be very interesting to see how our experimental results on 

changes of mind between multiple alternatives would constrain the above 
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and other existing multiple-choice decision models (Beck et al., 2008; 

Furman and Wang, 2008).  

 

Taken together, we have discovered that more alternatives lead to 

more initial errors and a lower probability to improve the initial choice. 

Through the combined approach of experiment and theoretical model, we 

were able to further establish and explain a relation between changes of 

mind, reaction speed, and accuracy over the decision threshold. Changes 

of mind in multiple-choice decision-making might further help to 

distinguish between theoretical models in the future.  

5.A Chapter appendix 

5.A.1 Choice behavior in the 2-top control condition 

In a separate block of trials we replicated the experimental design of 

Resulaj et al. (2009) with two R-targets at the top of the screen and the 

starting point at the bottom (“2-top” condition) with our simpler setup 

using a computer mouse instead of a handle.  

While the reaction times in the 2-top condition were much faster, than 

for two alternatives in the 2- and 4-choice paradigm, performance is 

basically identical. Note that in the 2-top condition, the possible motion 

directions were always horizontal (left or right), while in the main 

experiment coherent dots moved along the diagonals. Correcting changes 

were more frequent in the 2-top condition than for two alternatives in the 

main experiment. Erroneous changes, however, happened with the same 

frequency. Thus, the performance improvement was greater in the 2-top 

condition. 

5.A.2 Model with adapted thresholds matched frequency 
distributions of changes for participants grouped 
by ONC 

A threshold of 32 Hz was used to fit the choice behavior of the group 

with most changes and 44 Hz for the group with least changes. For the 

middle group the same threshold (38 Hz) was used as in Fig. 7 and 8 in 

the main text to match the average across all subjects. All other network 

parameters were kept constant. Note that in the attractor model the 

number of correcting changes (B,D, top row) decreased by increasing the 

threshold, especially for low coherence values. The change distributions 

thus became flatter. That is because, as the threshold approaches the 

nonlinear decision attractor, a first decision will only be reversed if the 

contrary evidence is strong enough to pull the transient out of the basin of 
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attraction again. Interestingly, we observed the same effect in the 

experiment (A,C, top row). 

 

 Fig. 5.A.1 2-top control condition. 

(A) Target configuration. (B) Reaction times and (C) performance averaged 

across all 15 participants. The 2-alternative condition from the main text is 

plotted in gray for comparison. (D-G) As Fig. 5.4. (D,F) Changes of mind as 

percentage of all valid trials. (E,G) Probability to change, i.e. the same data as in 

(D,E) but divided by the number of initially correct or error trials the changes 

could have originated from. (H,I) as in Fig. 5.5. (H) Absolute difference of initial 

and final performance (considering changes of mind). (I) Relative performance 

difference, i.e. the performance difference shown in (H) divided by the initial 

performance. 
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Fig. 5.A.2 Threshold adaptation explains distribution of changes for 

different participant groups. 

(A,C) Frequency of correcting (top row) and erroneous (middle row) changes of 

participants grouped according to their overall number of changes (ONC) as 

percentage of all valid trials. (B,D) Simulated change distributions for three 

different decision thresholds. 
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6 A VISUAL ILLUSION IN THE RDM-TASK? 

6.1 Introduction 

In the last chapter, we have presented our experimental and 

theoretical results on the question how changes of mind depend on 

different numbers of choice-alternatives. We approached this topic in a 2- 

and 4-choice random-dot motion discrimination task, in which human 

subjects had to indicate their choice by moving a computer mouse to the 

selected response target on the screen. In fact, our experiment combined 

the two RDM protocols used by Resulaj et al. (2009) and Churchland et 

al. (2008) to study changes of mind and multiple-choice decision-making 

independently (Chapter 3 and 4).  

In the RDM task, more choice-alternatives automatically imply a 

smaller spatial angle between the possible directions of coherent motion. 

According to Churchland et al. (2008), for an accurate comparison of two 

and four alternatives, we thus included a third experimental condition with 

two alternatives at an angular distance of 90º, in addition to the standard 

2-choice condition with 180º angular distance, and the 4-choice condition. 

The decision behavior of our human participants resulted quite similar in 

the 2-choice 90º- and 180º-cases. As we have discussed in Section 5.5.3, 

this is contrary to the decision behavior observed in monkeys performing 

the 2- and 4-choice RDM task, which needed significantly longer to 

decide between 2-choice targets at the smaller angle of 90º (Churchland et 

al., 2008). To filter the actual effects of the different numbers of 

alternatives from influences of the different spatial angles, we thus 

collapsed the 2-choice 90º-case and the 2-choice 180º-case, with the 

additional benefit of a greater sample size for comparison to the 4-choice 

case.   

Here, we elaborate on our experimental results, considering the 

different experimental conditions in further detail. We first deal with a 

small but significant difference in performance between the two 

conditions with two choice-alternatives. With a slight modification of the 

network inputs to the attractor model of Chapter 5, we could account for 

this directional difference of 2-choice performance. In particular, we 

introduced heterogeneity in the motion bias that would correspond to a 

visual illusion of reversed coherent motion in the perception of the RDM 

stimulus. Based on this “illusion bias”, we could further explain some 

initially puzzling observations in the 4-choice condition, regarding the 

direction of errors and changes of mind with respect to the direction of 

coherent motion. More precisely, we found that errors and changes of 

mind to the R-target 180º opposed to the correct R-target were relatively 
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more frequent than expected by chance. On the one hand the findings 

presented here affirm the explanatory power of the biophysically realistic 

attractor model. On the other hand, they send a note of caution with regard 

to the precision of the perceived motion coherence in RDM experiments. 

Nevertheless, our main experimental conclusions on how changes of mind 

depend on the number of choice-alternatives (Chapter 5) are not subject to 

the apparent visual illusion.  

The main results of this chapter are: 

 The attractor model can account for performance differences in 

the 2-choice 90º- and 180º-cases assuming an illusion bias in the 

motion input. 

 The illusion bias also elucidates the disproportional frequency of 

180º-errors and changes of mind in the 4-choice condition. 

 The assumed illusion does not affect the overall dependence of 

changes of mind on the number of alternatives.  

6.2 Methods 

The experimental data set we describe and discuss in this chapter is 

the same as that presented in Chapter 5. In a 2- and 4-choice RDM 

paradigm, we tested 15 human subjects in three different experimental 

conditions, regarding the number of choice-alternatives and the relative 

position of the response targets, which indicate the possible directions of 

coherent motion. The participants were either presented with two choice-

alternatives at an angular distance of 180º, two alternatives at an angle of 

90º, or four choice-alternatives that were equally distributed with 90º 

angular distance (Fig. 5.1B). The experimental paradigm is described in 

detail in Section 5.2.1 and Appendix A.3.1.  

Also the computational model we employ here, to account for our 

experimental findings is identical to the biophysically realistic attractor 

model of Chapter 5, endowed to simulate changes of mind in a decision-

making task with up to four choice-alternatives. Its general characteristics 

are summarized in Fig. 5.2 and Section 5.2.2. More details are given in the 

Appendix A.1 and Table A.5. All default simulation parameters are listed 

in Table A.6. 

The only alteration between the model simulations we report here and 

that of Chapter 5 concerns the motion input applied to the selective 

populations, which corresponds to the experimental RDM stimulus. In 

order to simulate the effects of the proclaimed visual illusion of reversed 

coherent motion, we introduced a heterogeneity in the negative input bias 

applied to the unfavored selective pools. The total motion input to the 
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network is still the same for all coherence levels, but instead of Eq. 5.2, 

we used the following motion input: 

,    

, and  (6.1) 

.  

The “illusion factor”  that was added to the negative bias of selective 

pools 2-4 determines the inequality in motion bias received by selective 

pool 3 compared to pools 2 and 4. In the following we used either  = 0.2 

or  = 0.4. Note that  = 1 would correspond to the original motion input 

used in Chapter 5 (Eq. 5.2). For  < 1, selective pool 3, with direction 

preference opposite to the direction of coherent motion, receives a less 

negative bias than selective pools 2 and 4, whose direction preference is 

perpendicular to the coherent motion. In this way, we implemented our 

hypothesis that the net direction of motion perceived by the participants 

could sometimes be opposite of the actual direction of coherent motion, 

due to a visual illusion. As a consequence of the illusion factor , the 

maximal difference between the sensory inputs (target and motion input) 

to the selective pools now depends on the R-target locations (Fig. 6.2). 

The implications of this heterogeneous motion bias on the simulated 

decision behavior will be presented in the following.  

For statistical tests, we used within subject ANOVAs on the initial 

performance and reaction times of all correct trials, excluding changes of 

mind, with the factors “angular distance” (2-choice 90º vs. 2-choice 180º) 

and “coherence” (eight levels of coherence: 0%, 3.2%, 6.4%, 12.8%, 

25.6%, 51.2%, 76.8% and 100%). 

6.3 Results 

6.3.1 Behavioral differences in the 2-choice 90º- and 
180º-cases 

The mean reaction times and initial performances of the two 2-choice 

conditions from our 2- and 4-choice RDM discrimination task are 

displayed separately in the left column of Fig. 6.1. Participants responded 

somewhat more accurately in the 90º-case, while their mean reaction 

times did not differ substantially for the two 2-choice conditions. 

Statistical tests on reaction times and the percentage of correct responses 

revealed the main effects of “angular distance” (F(1,14) =9.862, p < .007) 
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and “performance” (F(1,14) =8.309, p < .012). A second level analysis 

showed that the performance in the 90º-case was specifically better than in 

the 180º-case for the following intermediate coherence levels: 12.8% (p < 

.001), 25.6% (p < .021) and 51.2% (p < .039). The mean RTs were not 

significantly different between the 90º- and the 180º-cases, except for 0% 

motion coherence (p < .003).  

 Curiously, the better performance and equal mean RTs would 

suggest that the 2-choice 90º-case was actually easier for our human 

subjects, contrary to Churchland et al.‟s (2008) findings for monkeys, 

which needed longer to respond in the 90º-case with the same level of 

accuracy as in the 180º-case (compare Fig. 4.2B,D).  

In line with this inconsistency, we were not able to reproduce the 

better performance in the 90º-case with the 2- and 4-choice attractor 

model, while at the same time accounting for similar reaction times and 

changes of mind in both 2-choice conditions. A first hint for an alternative 

explanation of the better 90º-case performance came from the comments 

 

Fig. 6.1 Performance and mean RTs for the 2-choice 90º- and 180º-case. 

(A,D) Experimental Data. For intermediate motion coherence the initial 

performance was better in the 90º-case. Mean RTs did not differ significantly for 

the two conditions. (B-D) Model simulations with illusion factor  = 0.2 or  = 

0.4. With increasing heterogeneity in the motion bias (smaller ), the 

performance of the 180º-case becomes worse, while mean RTs are basically 

unaffected. The combined 2-choice case and the model simulations of Chapter 5 

(  = 1) are plotted in gray for comparison. 
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of a few participants after performing the experiment: When asked if they 

observed anything remarkable during the experiment, some participants 

stated that occasionally they clearly perceived coherent motion in the 

direction opposite to the correct direction.  

Based on the participants‟ observations, we hypothesize that a visual 

illusion of reversed coherent motion might cause the performance 

difference in the 2-choice conditions. In particular, we assume that, at the 

onset of coherent motion, especially for intermediate coherence levels, 

one might get the illusory impression that the coherent dots were 

stationary, while the randomly moving dots seem to shift into the opposite 

direction. Moreover, this illusion might affect responses more in the 180º-

case than in the 90º-case, as the direction opposed to coherent motion is 

not a valid option in the 90º-case (there is no response target located in the 

illusionary direction). 

We tested our hypothesis with the biophysically realistic attractor 

model of Chapter 5, which accounts for choice behavior including 

changes of mind for two and four choice-alternatives, if the 90º- and 180º-

cases are combined. To implement the visual illusion in the model 

simulations, we introduced an “illusion factor”  that produced an 

inequality in the negative motion bias (Eq. 6.1). Previously, we subtracted 

the same motion bias (coh·30 Hz) from each of the three “unfavored” 

selective pools (selective pools 2-4; preferred direction of selective pool 1 

was set to correspond to the direction of coherent motion). In the context 

of the illusion factor, a uniform negative bias equates to  = 1.  

In Fig. 6.1B-D the simulated initial performance and mean RTs of the 

attractor model with illusion bias are shown for  = 0.4 and  = 0.2. 

Indeed, with decreasing  the performance in the 180º-case deteriorates 

compared to the 90º-case. Furthermore, as in the experimental data, mean 

RTs are still basically identical for the 90º- and 180º-case. Reaction time 

is thus not affected by the illusion bias. 

What causes this conditional difference in performance in the 

computational model? In Fig. 6.2 we show an illustrative example of the 

target inputs and the motion bias for  = 0.4. An illusion factor of  < 1 

effectively leads to a less negative motion bias applied to selective pool 3, 

which encodes motion that is 180º opposed to the direction of coherent 

motion. The perpendicular selective pools 2 and 4, on the other hand, 

receive even more negative input biases. Through the respective target 

inputs, the relative location of the R-targets now determines the difference 

between the total sensory input received by selective pool 1 and the 

second highest input to one of the other selective pools. In the 180º-case, 

the input difference between the correct alternative and the second 

alternative is smaller than in the 90º-case. To make this more clear, in Fig. 

6.2, below the respective selective pools, we indicated the sum of the 

motion bias plus target input for 100% coherent motion. The smaller 
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difference in total sensory input to the two choice-alternatives explains 

why performance in the 180º-case is worse than in the 90º-case.  

In sum, the illusion bias together with the target input gives rise to 

conditional differences, based on different total sensory inputs to the 

choice alternatives. By simulating a visual illusion of reversed motion 

coherence in the RDM stimulus we could thus account for the 

experimentally observed performance difference between the 90º- and 

180º-case. 

The left column of Fig. 6.3 shows the changes of mind for two 

choice-alternatives, separated into the 90º- and 180º-case. Overall, the 

frequency of changes of mind with respect to motion coherence did not 

differ substantially for the two 2-choice conditions, neither for correcting 

changes (from an initially wrong choice to the correct R-target), nor for 

erroneous changes (from the correct to the wrong choice). Consequently, 

averaging across the 90º- and 180º-case, as we have done in Chapter 5, 

neither has distorted the overall frequency of changes of mind, nor their 

dependence on the amount of coherent motion. Only for 25.6% motion 

coherence we observed more correcting changes of mind in the 180º-case.  

In line with this, the attractor model with illusion bias (  = 0.4) 

produced somewhat more correcting changes of mind in the 180º-case 

 

Fig. 6.2 Input differences in the 2-choice 90º- and 180º-case for  = 0.4. 

Red, numbered circles depict the four selective pools. The red and blue arrow-

boxes indicate the target input and motion bias for the case of coherent motion 

into the preferred direction of selective pool 1. In brackets below the respective 

selective pools, the absolute amount of target input + motion bias is given for 

100% motion coherence. 
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than in the 90º-case (Fig. 6.3, right column). This effect again results from 

the smaller difference in total input between selective pool 1 and pool 3 in 

the 180º-case compared to the difference between pool 1 and 2 in the 90º-

case. If the input difference between selective pools is smaller, a change 

becomes more likely. Changes from the correct to the wrong alternative 

occurred with about equal frequency in both 2-choice conditions. 

Moreover, it has to be noted that the simulated frequency of changes 

of mind from Chapter 5, without illusion bias (  = 1), was mostly 

intermediate between the 90º- and 180º-case for  = 0.4. Consequently, at 

least in the model, the simulated visual illusion did not affect the overall 

probability of changes of mind for two choice-alternatives.  

 

Fig. 6.3 Comparison between changes of mind in the 2-choice 90º- and 180º-

case. 

(A) Correcting changes (B) and erroneous changes are shown as percentage of 

all valid trials for experimental data (left column) and model simulation (right 

column). (C) Performance improvement with changes of mind (absolute 

difference of initial and final performance).  
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Before turning to the 4-choice condition, we briefly return to the peak 

in correcting changes of mind for the 180º-case at 25.6% coherent motion. 

The computational model gave one explanation for a higher number of 

correcting changes in the 180º-case. Another (additional) possibility 

would be that the visual illusion might vanish shortly after motion onset, 

leading to a change of the perceived motion direction from the illusionary 

to the actual direction of coherent motion, which could cause more 

changes of mind.  

6.3.2 A closer look at the 4-choice condition 

Perhaps the most convincing experimental evidence for the existence 

of the hypothesized visual illusion can be found in the direction of errors 

in the 4-choice condition. In the RDM stimulus, the dots that are not 

moving coherently are moving around randomly. Hence, in the 4-choice 

condition, errors should be equally distributed across the three incorrect 

R-targets. The chance probability for an error trial, in which a R-target 

perpendicular to the correct choice was selected, should thus be 67%. 

Accordingly, errors to the R-target opposed to the correct choice should 

constitute 33% of the total number of errors. The attractor model without 

illusion bias (  = 1) naturally exhibits this chance distribution of errors, as 

all distracters (selective pools 2-4) receive the same amount of sensory 

inputs and are also otherwise identical (Fig. 6.4, dashed line). 

The thin solid lines in Fig. 6.4 depict the actual, experimentally 

observed fractions of perpendicular and diametrical errors (“90º- and 

180º-errors”). For small coherence levels (≤ 6.4%) errors are still 

approximately partitioned according to chance. At 25.6% motion 

coherence, 180º-errors occurred with slightly higher frequency as 90º-

errors. For even higher coherence levels probabilities for 90º- and 180º-

errors were actually reversed. 

The attractor model with illusion bias (  = 0.4) could reproduce the 

experimental dependence of error direction on motion coherence 

remarkably well (Fig. 6.4, thick solid lines). Decreasing the illusion factor 

further, would lead to a reversal of the probabilities for 90º- and 180º-

errors already at lower motion coherence (not shown).  

Analogous to the directionality of errors, also changes of mind in the 

4-choice condition can either be directed to a perpendicular, or to the 

opposite R-target, with respect to the initial choice (90º- and 180º-

changes). Fig. 6.5 shows the experimental and simulated percentage of 

90º- and 180º-changes of mind for four choice-alternatives. Note that a 

correcting 90º-change must have originated from an initial 90º-error. In 

that way, the proportion of correcting 90º- and 180º-changes of mind 

directly depends on the respective proportion of 90º- and 180º-error trials. 

Accordingly, for intermediate coherence levels correcting 180º-changes 
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occurred more frequently than would be predicted by chance (Fig. 6.5A, 

left panel). As for the errors, this behavior is captured by the attractor 

model with illusion bias (  = 0.4), but not without the illusion bias (  = 1) 

(Fig. 6.5A, middle and right panel). Moreover, the same logic as for error 

trials applies to erroneous changes of mind. By chance, 67% of changes 

from the correct to a wrong target should be 90º-changes, 33% 180º-

changes (see simulation with  = 1; Fig. 6.5B, right panel). While for high 

coherences all erroneous changes are indeed 180º-changes, congruent with 

the attractor model with illusion bias, we strangely did not observe the 

same effect at intermediate coherence levels.  

For wrong-to-wrong changes illusion effects are hard to detect, as 

both with and without the hypothetical illusion most wrong-to-wrong 

changes should be 90º-changes. Without the visual illusion this is because 

of chance, with the illusion there are more initial 180º-errors which 

relatively increase the number of 90º wrong-to-wrong changes.  

Overall, as for the 2-choice case, the total percentage of change-of-

mind trials and its dependence on motion coherence in the model were not 

affected by the simulated visual illusion. Only the relative proportion of 

90º- and 180º-changes were altered by the illusion bias.   

 

Fig. 6.4 Direction of errors relative to the correct choice in the 4-choice case. 

Thin solid lines denote the experimental percentages of error trials directed to a 

R-target with 90º (blue) or 180º (black) angular distance from the correct R-

target. They are at chance level (67% and 33%) for low coherences, but become 

reversed for high coherence levels. The model with illusion motion bias replicates 

these experimental findings (bold solid lines), while for uniform negative biases 

(  = 1, dashed lines) the fractions of 90º- and 180º-errors naturally stay at 

chance level. Note that error bars increase for higher coherence as the total 

number of errors decreases.  
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Despite the amount of initially puzzling observations that could be 

resolved by incorporating the visual illusion, a few points in the 

experimental data remain unclear. In particular, the peak in the percentage 

of wrong-to-wrong changes of mind for 12.8% coherent motion could not 

be explained by the model. In fact, the frequency of wrong-to-wrong 

changes of mind would be expected to decrease monotonically with 

increasing coherence, in the same way as for erroneous changes. This is 

because large random fluctuations in the RDM stimulus, which might 

cause such changes, also become less likely with increasing coherence.  

Moreover, the model still predicts to few erroneous and wrong-to-

wrong changes in the 4-choice condition. One way to increase the number 

 

Fig. 6.5 90º- and 180º-changes of mind in the 4-choice condition. 

(A) Correcting, (B) erroneous, and (C) wrong to wrong changes are shown as 

percentage of all valid trials for experimental data (left column) and model 

simulations with  = 0.4 and  = 1 (middle and right column). The total 

percentage of changes is displayed in red. For experiment and model simulation 

with  = 1 it is the same as shown in Fig. 5.4 and Fig. 5.8, respectively.  
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of changes in the 4-choice relative to the 2-choice condition might be to 

add a top-down input dependent on the number of alternatives (Furman 

and Wang, 2008).   

Nevertheless, apart from these minor issues, the biophysically 

realistic attractor model captures all relevant aspects of our experimental 

data. Indeed, the fact that we could explain unexpected experimental 

observations by simulating an assumed visual illusion, convincingly 

affirms the general validity of the attractor model.  

6.4 Discussion 

In this chapter, we continued the account of our psychophysical 2- 

and 4-choice RDM experiment with changes of mind, which we 

introduced in Chapter 5. While the last chapter was dedicated to 

experimental observations directly relevant to perceptual decision-

making, here we focused on more subtle aspects of our 2- and 4-choice 

RDM data set. In particular, we treated the two 2-choice conditions, the 

90º- and 180º-case, separately, and also considered errors and changes of 

mind in the 4-choice condition with respect to their directionality (90º or 

180º from correct choice or initial decision). We further showed that 

several minor observations that could not be accounted for by the 2- and 

4-choice attractor model described in Chapter 5 could eventually be fit if 

an “illusion bias” was added to the sensory motion input. Thereby, the 

attractor model affirmed our hypothesis that a visual illusion of reversed 

coherent motion might be responsible for the observed discrepancies in 

our experimental data. 

In the following, we will discuss the implications of the proclaimed 

visual illusion in the random-dot motion stimulus with respect to the 

results presented in Chapter 5 and preceding studies on visual-motion 

discrimination. Beforehand, in the next section we briefly address the 

implementation of the hypothesized illusion in the attractor model. 

6.4.1 Simulating the visual illusion 

A few of our participants reported that on a small fraction of trials 

they actually perceived coherent motion towards the response target 180º 

apart from the correct response target. This illusionary impression might 

arise at the onset of coherent motion for intermediate coherence levels, if 

the coherently moving dots were perceived as stationary. In that case, the 

randomly moving dots would seem to shift jointly into the opposite 

direction as the coherent dots.  

With the computational model we aimed to assess the influence of 

this illusionary impression on our behavioral findings. In particular, we 

were interested whether the assumed visual illusion might resolve 
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remaining discrepancies between our model simulations of Chapter 5 and 

several minor peculiarities in the decision behavior of our participants.  

To simulate the visual illusion, we introduced an “illusion bias” in the 

model input that effectively increased the sensory evidence for the 

direction 180º opposed to coherent motion, while it decreased the 

evidence in favor of the perpendicular directions18. The strength of the 

illusion bias in the model was regulated by the “illusion factor” , which 

was arbitrarily adjusted to match our experimental observations. For 

simplicity we used the same  for all coherence levels. Furthermore, all 

particular characteristics of the proclaimed visual illusion, such as the 

percentage of trials that are affected by the illusion, are combined in this 

illusion factor and not further explored here.  

Regardless of our simplifying assumptions, by adding the illusion 

bias to the model, we could account for most of the minor behavioral 

discrepancies. Indeed, despite our efforts and the large number of 

parameters, we did not succeed to fit the model without illusion bias to the 

difference in performance between the 2-choice 90º- and 180º-cases, in 

addition to the remaining decision behavior. This fact further shows that 

the attractor model cannot simply reproduce any virtual decision behavior, 

as it is restricted by its physiological construct. As a consequence the 

model can postulate additional, initially unregarded influences, such as the 

proclaimed visual illusion.   

6.4.2 Implications of the visual illusion on the validity of 
our behavioral results 

In Chapter 5, we have presented our findings on changes of mind 

during multiple-choice decision-making based on the 2- and 4-choice 

RDM discrimination task. The results of the current chapter, however, 

suggest that the RDM stimulus used in this task lead to a visual illusion 

which affected the perceived amount of coherent motion. Even if only a 

small portion of trials was subject to this visual illusion, it nevertheless 

raises the question, whether the conclusions drawn in Chapter 5 can be 

sustained in the light of this experimental contamination.  

Here, the theoretical model provides reassuring evidence that the 

assumed visual illusion did not affect the main experimental conclusions 

presented in Chapter 5. A moderate change in the model‟s input bias was 

                                                      
18

  It has to be noted that in this way, we did not actually implement the visual 

illusion itself, but rather its perceptual effect of reversed coherent motion. In other 

words, we assume that sensory activity in area MT might be altered by the visual 

illusion. As before, the attractor network represents a local microcircuit in area 

LIP, which receives sensory inputs from area MT that is subject to the illusionary 

percept. 
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sufficient to capture most of the previously unexplained observations with 

the attractor model. This already indicates that the assumed visual illusion 

could not have dramatic effects on the overall decision behavior. In fact, 

simulated reaction times were basically unaffected by the illusion bias 

(Fig. 6.1). Furthermore, the overall number of changes for two and four 

choice-alternatives did not depend on the illusion factor. More precisely, 

although the illusion bias in the model lead to somewhat more changes of 

mind in the 2-choice 180º-case compared to the 90º-case, the average 

percentage of changes across the two conditions was the same for  = 0.4 

and  = 1.  

Moreover, the attractor model suggests that the experimentally 

observed differences in performance between the 2-choice 90º- and 180º-

cases can be attributed to the visual illusion. This further affirms our 

conclusion of Section 5.5.3 that the decision behavior of our naive human 

participants was indeed not affected by the different angular distances 

between the R-targets in the 2-choice 90º- and 180º-case, contrary to the 

behavior of trained monkeys (Churchland et al., 2008).  

In all, with respect to changes of mind, the illusion bias only 

influenced the relative proportions of 90º- and 180º-changes, but not the 

total amount of changes for the different numbers of alternatives. 

Therefore, we conclude that none of the results presented in Chapter 5 

was distorted by the visual illusion. 

6.4.3 Could previous experiments have been influenced 
by the illusion? 

In the last section we have argued that our findings on changes of 

mind in relation to the number of choice alternatives are almost certainly 

not affected by the proclaimed visual illusion. Yet, it had an influence on 

other more detailed aspects of our data, like the performance in the two 2-

choice conditions. As the RDM task is a widely used paradigm, one has to 

ask whether previous studies might also have been subject to this visual 

illusion. 

In that regard, it first has to be said that the visual stimuli we used in 

our experiment were very similar to preceding studies (Palmer et al., 

2005; Churchland et al., 2008; Niwa and Ditterich, 2008; Resulaj et al., 

2009). We used standard parameters for the motion stimulus (a dot speed 

of 6.0º/s, dot density of 16.7 dots/(deg2 s) and a circular aperture of 5.0º 

diameter), and the size and distance to center of the R-targets was adopted 

from Resulaj et al. (2009). Consequently, the possibility exists that a 

visual illusion might have emerged in previous experiments.  

As reviewed in Section 2.1, until recently psychophysical and neuro-

physiological studies on visual motion discrimination with random-dot 

motion stimuli were conducted as 2AFC tasks. With only two choice-
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alternatives 180º apart, effects of the visual illusion would hardly be 

noticeable in the data. Accordingly, also in our data set the visual illusion 

became apparent only through a comparison of the performance between 

the 2-choice 90º- and 180º-cases and the 4-choice condition. Nonetheless, 

even in 2AFC tasks human subjects might have noticed the visual illusion, 

if they received feedback on the accuracy of their choice after each trial. 

Yet, to our knowledge no other study so far mentioned any illusion effects 

during the RDM task.  

As for 2AFC tasks, also in the 3-alternative experiment of Niwa and 

Ditterich (2008) a visual illusion would barely become apparent. In their 

task, the three response targets were equally spaced 120º apart. Even if 

there had been a visual illusion in their RDM stimuli, the illusionary 

motion direction was not available as a possible choice. 

The situation is different in the 2- and 4-choice experiments of 

Churchland et al. (2008). It would be very interesting to examine the 

monkeys‟ error responses in the 4-choice condition according to the 

relative proportions of 90º- and 180º-errors as in Fig. 6.4. Without the 

visual illusion, the 90º-errors should constitute 67% of the total errors for 

all coherence levels, as predicted by the attractor model without illusion 

bias (  = 1). 

One experimental characteristic that might have facilitated the visual 

illusion particularly in our case, concerns the distance of the response 

targets to the central fixation point. In most previous RDM studies, except 

for (Resulaj et al., 2009), subjects indicated their choice with a rather 

abrupt motor response, such as saccades or pressing a button. In order to 

observe change of mind, in our experiment and that  of Resulaj et al. 

(2009) participants responded with a continuous hand movement. To 

allow for longer movement trajectories, R-targets were located further 

away from the central fixation point. If the R-targets in previous 

experiments were located close enough to the motion stimulus, they might 

have acted as reference points with respect to the dot motion. In this way, 

the illusionary impression that coherently moving dots seem stationary, 

while the randomly moving dots shift in the opposed direction, could have 

been impeded.  

Resulaj et al. (2009) investigated changes of mind for two choice-

alternatives. As stated above, there is little chance to find evidence of a 

hypothetical visual illusion in the 2-alternative data. One peculiarity in 

Resulaj et al.‟s (2009) data might yet be indicative of the visual illusion: at 

3.2% coherence all three tested subjects changed more from the correct to 

the wrong alternative than vice versa (see Fig. 3.2 for Subject S, where the 

effect was most pronounced). Note that for changes of mind based on 

random fluctuations in the motion evidence, erroneous changes are always 

less probable than correcting changes, at least for two choice-alternatives. 
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In sum, we cannot exclude the possibility that our particular 

experimental protocol and the combination of stimuli parameters, such as 

the more peripheral R-targets, might have provoked the visual illusion of 

reversed coherent motion. Nevertheless, our findings call attention to the 

general possibility of a visual illusion in the random-dot motion stimulus 

and care should be taken to avoid illusionary perceptions in future 

experiments.  

 

Taken together, by means of the attractor model we showed that a 

hypothetical illusion of reversed coherent motion could have created the 

minor discrepancies that we encountered in the decision-behavior of our 

participants. By introducing a heterogeneous “illusion bias” in the model, 

we could account for the better performance in the 2-choice 90º-case 

compared to the 180º-case, and disproportional percentages of 180º-versus 

90º- errors and changes of mind, without distorting any of the conclusions 

presented in the previous chapter. Finally, our findings imply that caution 

is required in future RDM experiments, especially in the context of 

decision-making beyond 2AFC tasks. 
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7 GENERAL DISCUSSION 

In the last chapters we presented our investigations and findings on 

the neural computations that underlie sensorimotor decision-making with 

changes of mind and multiple choice-alternatives. Our universal approach 

was to apply biophysically realistic attractor models to behavioral and 

neurophysiological data of human and non-human primates performing 

different versions of the random-dot motion (RDM) task. Thereby, we 

encountered several common conditions and implications on the network 

states and dynamical regimes that enabled the models to reproduce the 

experimental observations. Here, we want to highlight these common 

findings and discuss general issues of our approach. In particular, we 

address the following questions: Are attractor states just a theoretical 

concept that provides explanations for observed neural dynamics, or is the 

brain really a dynamical system determined by neural attractors? Does the 

“biophysically realistic” attractor model include sufficient biological 

detail and is it accurate enough that its predictions can be taken seriously? 

7.1 Are there attractors in the brain? 

7.1.1 Findings in favor of attractor states 

With this thesis we have confirmed the general applicability of 

attractor models to neural processes during decision-making, including 

changes of mind and multiple-choices. Apart from being congruent with 

the overall behavioral and neurophysiological findings, the attractor 

models could explain several experimental observations as direct 

consequence of their nonlinear attractor properties and the shape of the 

attractor landscape. In particular, for the 2-alternative model we found that 

the emergence of changes of mind was facilitated close to the “second 

bifurcation” between the region of bistability and the multi-stable regime 

(Fig. 3.6). There, the symmetric state becomes stable, in which both 

selective pools have high firing rates just below the decision threshold 

(Chapter 3). In Chapter 5 we confirmed this link between attractor states 

and changes of mind for multiple choices. Interestingly, the second 

bifurcation also played a role in accounting for Churchland et al.‟s (2008) 

findings in the 2- and 4-alternative RDM task (Chapter 4). The longer 

reactions times and the shallower build-up activity that was observed 

experimentally in the 90º-control condition compared to the standard 

binary condition could be reproduced by the model with slightly stronger 

connections between neighboring selective pools. In that case, the 
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symmetric state for two neighboring pools is more attractive than between 

opposing pools, which delays the categorical decision in the 90º-case.  

As we have discussed in Section 2.3, the attractor model also proved 

particularly appropriate to explain the nonlinear, time-dependent effects of 

motion pulses revealed in the experiments of Huk and Shadlen (2005), 

while DDM and LCA models could only explain the stronger influence of 

earlier motion pulses if explicit time-varying effects would be added to 

the decision threshold.  

Similarly, in an RDM experiment in which the viewing duration was 

controlled by the experimenter, Kiani et al. (2008) found that neural 

activity and behavioral performance reached a plateau value for long 

stimulus times. Contrary to perfect integration, these findings can still be 

explained within the accumulation-to-bound framework if fixed decision 

thresholds are assumed to terminate the decision process as well in the 

interrogation paradigm. Here, the attractor model offers a complementary 

implicit explanation: when the system reaches a steady state, the decision 

attractor, the integration associated with neural build-up activity stops 

naturally at the plateau firing rate of the decision state.  

7.1.2 A comprehensive account of diverse temporal 
dynamics 

The above examples already indicate that attractor states are more 

than just an abstract theoretical concept for actual cortical processes. 

Moreover, unlike more phenomenological models such as the drift 

diffusion model, the biophysically realistic spiking-neuron attractor model 

aims at simulating realistic neural firing rates. In the context of the RDM 

task, simpler linear accumulation models can account for the build-up of 

activity observed in monkey LIP neurons during motion viewing prior to 

the motor choice (Ditterich, 2006b). Yet, LIP neurons, and decision-

related neurons in general, display a variety of temporal dynamics during 

the time course of a RDM trial and also exhibit persistent activity in 

delayed decision tasks (e.g. Shadlen and Newsome, 2001). These 

seemingly peripheral aspects of LIP responses are not captured by 

phenomenological decision-making models (Mazurek et al., 2003), but 

provide important constraints on any model that attempts to give a 

comprehensive account of real neural computations (Wong and Huk, 

2008).  

As an exception among existing models of decision-making, attractor 

models can exhibit different modes of activity dependent on their current 

network state and dynamical regime. We have seen in Chapters 3 and 4, 

for the binary and multiple-choice case, that stable attractor states can be 

created and destroyed dependent on the inputs to the network (Fig. 3.6 and 

Fig. 4.5). If the attractor model is driven into the bistable regime, it 
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performs winner-take-all decision-making with slow transients to the 

decision-attractors. Moreover, the attractor model is capable of 

reproducing persistent activity with sufficiently strong recurrent 

connections, as in this case the model is in the multistable regime even 

without receiving any sensory inputs (see Fig. 2.8 and Fig. 4.A.2). Wong 

et al. (2007) further suggested that the symmetric state obtained for very 

high input currents to the selective populations, can explain LIP firing 

rates during the initial target phase before the onset of the RDM stimulus. 

In Chapter 4 we extended this idea to the case of four alternatives. 

Notably, the 2- and 4-choice attractor model accounted even 

quantitatively for the experimental finding that LIP activity during the 

target phase is lower if four R-targets are presented rather than just two.  

Importantly, changes in the selective, sensory inputs are sufficient to 

shift the network from one dynamical regime to another and to induce 

transitions between stable states. Therefore, the same attractor network 

can subserve different functions during the time-course of a single trial, 

simply responding to the presented sensory stimuli (Wang, 2008).  

What is more, this virtue of the attractor model is not restricted to the 

RDM paradigm. With a single line-attractor model Machens et al. (2005) 

could reproduce the graded delay activity and the subsequent categorical 

decision activity of PFC neurons during the different phases of a 

sequential vibrotactile discrimination task (see 2.1.2). The external signals 

in each task epoch automatically reconfigured the attractor landscape in 

such a way that it accounted first for working memory and subsequently 

for the decision computation.  

Besides, working memory is in general strongly associated with self-

sustained population activity patterns. In that context, stimulus-selective 

attractor states that arise through strong recurrent excitation form a 

leading candidate mechanism for the generation of mnemonic persistent 

activity (Amit, 1995; Wang, 2001; Brunel, 2003).  

In sum, attractor models can comprehensively explain various 

temporal dynamics that have been observed in decision-related neurons by 

adopting different dynamical states. More importantly, transitions 

between these dynamical states can be induced in a way that is easily 

implementable in the brain, namely by increasing or decreasing the 

network inputs.  

7.1.3 Adapting behavior through input 

Along the same lines, in the attractor framework the brain could also 

make use of input changes to adjust decision-behavior, such as reaction 

times, accuracy, and changes of mind. Roxin and Ledberg (2008) showed 

for the reduced attractor model that in the proximity of the first bifurcation 

the speed-accuracy tradeoff could be controlled by changes in the 
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common input to both selective populations (Fig. 2.8 and Fig. 3.6). In 

Chapter 3 we verified this relation of faster reaction times for higher 

common inputs in the spiking-neuron model for the whole range of 

categorical decision-making, that is, the bistable regime. Moreover, with 

higher selective inputs the system approaches the second bifurcation 

where changes of mind are facilitated due to the symmetric state of 

elevated activity in both selective pools, which is consistent with our 

subsequent observation that faster reaction times correlate with more 

changes of mind (Chapter 5).  

In the context of real cortical processes, the possibility to regulate the 

dynamical state and decision-behavior by means of the inputs to involved 

neural populations is particularly intriguing, as it offers a convenient 

explanation on how internal factors like attention, emotion, and reward 

expectancy might influence our decisions: Top-down inputs from higher-

level brain regions could affect decision-making and, besides, also 

working memory in the same way as bottom-up sensory inputs (Deco and 

Rolls, 2005; Grabenhorst and Rolls, 2011).  

7.1.4 Alternative approaches 

Viewing the brain as a dynamical system with attractor states thus 

yields a comprehensive and physiologically implementable account for a 

wide range of cortical functions. Nevertheless, alternative approaches to 

working memory and decision-making have been suggested and 

implemented with spiking-neuron models. Mongillo et al. (2008), for 

instance, proposed a model of working memory based on short-term 

synaptic facilitation, where information can be maintained in memory in 

synaptic form without persistent activity. Yet, also in their model 

persistent activity can be obtained by making use of bistable attractor 

states. Hence, synaptic facilitation is not contrary, but rather 

complementary to the idea of attractors (see also Deco et al., 2010).  

In the context of multiple-choice decisions, Beck et al. (2008) 

developed a continuous decision-making model based on probabilistic 

population codes, which we briefly discussed in Chapter 4. Although in 

their model the integration of evidence in layer LIP is performed linearly 

without attractor dynamics, attractors are employed for subsequent action 

selection. 

7.1.5 Clinical implications  

Whether attractor states play a crucial role in real neural processes, as 

suggested in this dissertation, could further be tested in pharmacological 

studies by impairing recurrent excitation or inhibition (see Section 3.3.5). 

On that note, it has been suggested recently that disorders in the stability 
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of neural attractor states underlie certain neural pathologies, like 

schizophrenia (Loh et al., 2007; Rolls et al., 2008b) and obsessive-

compulsive disorder (Rolls et al., 2008a). Strikingly, pathological 

alterations in NMDA and GABA efficacies, which lead to shallower 

basins of attraction, i.e. to less stability, could collectively explain many 

seemingly inconsistent symptoms of schizophrenia from impaired 

working memory to hallucinations. Overstability of attractor states, on the 

other hand, could be related to repetitive actions and difficulties in 

switching to new actions, common to patients with obsessive-compulsive 

disorder. All in all, attractor states do seem to be essential for the proper 

functioning of cortical processes.  

7.2 Is the attractor model realistic enough? 

In the previous section we summarized a substantial number of 

indications that the brain indeed acts as a dynamical system with attractor 

states of neural activity. Even so, the biophysically realistic attractor 

networks we deployed in this thesis are still far from resembling a cortical 

region in all its details, with respect to both its basic neural units and 

network connections. This raises the question, whether and to what extent 

these models describe and predict neurophysiological processes 

adequately. 

Aiming at a minimal representation of a cortical area, one could ask if 

spiking neurons are necessary at all in order to address our scientific 

objectives. Indeed, mean-field and firing-rate reductions of the attractor 

network with leaky integrate-and-fire (LIF) neurons have been proposed, 

as reviewed in Section 2.2.3 (Brunel and Wang, 2001; Wong and Wang, 

2006; Roxin and Ledberg, 2008). These reductions can give valuable 

analytical insights. Yet, if the goal, as in our case, is to characterize and 

draw physiological conclusions about true dynamics of a finite-sized, 

noisy cortical network, there is no way around a spiking-neuron 

implementation (Deco et al., 2009).  

7.2.1 Sparse connectivity and heterogeneous firing rates 

At the network level, the presented spiking-neuron attractor models 

are subsampled reductions of real cortical networks, fully connected, and 

absolutely homogenous within one neural population. This has the 

computational advantage that fewer neurons have to be simulated. Yet, 

subsampling can also distort the network dynamics, for example by 

leading to artificial synchronization (Djurfeldt et al., 2008a). Just recently, 

the effect of sparse neural connections was tested by Rolls and Webb 

(Rolls and Webb, 2011), comparing the fully connected attractor model 

(Wang, 2002) to an otherwise identical model with diluted connectivity of 
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0.25 and 0.1 in the selective populations. They found that sparse networks 

are somewhat more stable, as dilution reduces finite size noise in the 

sparse networks, similar to increasing the number of neurons. The same 

authors also investigated how a graded, exponential firing-rate distribution 

within a neural population influences network properties (Webb et al., 

2011). Interestingly, distributed heterogeneous firing rates have the 

opposite effect as sparseness: they increase stochasticity in the network. 

Nevertheless, in both cases the general dynamical properties and average 

population firing rates were very similar to the homogeneous, fully 

connected model and opposing effects on noise and stability in the 

network might even cancel out. 

7.2.2 Physiological detail of neural units 

In line with “Occam‟s razor”, the attractor models we implemented 

take the approach to include as much physiological details as necessary to 

reproduce experimental findings, while at the same time keeping the 

model as simplistic as possible. Therefore, also the basic units, LIF 

neurons, are immense simplifications of real cortical pyramidal cells and 

interneurons to point-neurons without dendrites or ion channels. 

Generally, the desired degree of physiological detail in a network depends 

on the scientific questions posed. Here, we have been interested primarily 

in the dynamical properties and neural coding during decision-making, but 

not in any electrophysiological or pharmacological influences. In that 

case, threshold neuron models such as the LIF proved sufficient, as they 

give a very good account on the spike-timing of single neurons and neural 

assemblies (Sakai et al., 1999; Gerstner and Kistler, 2002; Gerstner and 

Naud, 2009).  

In contrast to our “top-down” approach on modeling cortical 

processes, several projects have recently been launched with the objective 

to model entire cortical columns, or even whole brain areas, with as much 

neural detail as currently available from electrophysiological and imaging 

studies (Sporns et al., 2005; Markram, 2006; Izhikevich and Edelman, 

2008; Deco et al., 2011). The hope of these projects is to capture 

functional properties by “reverse engineering” a full cortical column in all 

its known detail. Obtaining a mechanistic understanding of these models 

is almost as challenging as understanding the real brain. However, in 

contrast to the real tissue, an artificial cortical column could be 

investigated simply by changing parameters and observing the effects on 

the network‟s activity, i.e. running “virtual experiments”. Yet, the 

computational load produced by these simulations still requires the latest 

massively parallel supercomputers.  

Another problem of these “ultra-large-scale” models is that many 

important parameter values are still unknown. This in mind, it has to be 
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noted that a more detailed network is not necessarily more realistic: more 

parameters also introduce more uncertainty and more experimental data is 

required to constrain them. When empirical data is still missing, 

hypotheses from more abstract models can provide additional constraints 

(Djurfeldt et al., 2008a). As an example, the group of Prof. Anders 

Lansner takes a combined approach of bottom-up and top-down modeling. 

They investigate memory attractor states in increasingly detailed, full-

scale models of large patches of cortical layers II/III, which are comprised 

of multi-compartment Hodgkin-Huxley neurons (Djurfeldt et al., 2008b; 

Lansner, 2009). These model neurons explicitly simulate spike dynamics 

based on different ionic currents. Using this type of neurons thus allows 

testing pharmacological, chemical and temperature effects on memory 

function. 

  

Taken together, the type of “biophysically realistic” attractor models 

that we used in this thesis are minimalistic models, including 

physiological details with a functional purpose. They successfully account 

for neurophysiological processes, but are still sufficiently abstract to allow 

tracing the dynamics and understanding the general mechanisms at work. 

On that note, the visual illusion in the RDM task (Chapter 6), which we 

revealed with the help of the attractor model, is a nice example of the 

models‟ explanatory power.  
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8 CONCLUSION AND OUTLOOK 

In this thesis we have combined several studies with the common 

purpose of investigating neuronal computations behind perceptual 

decision-making, beyond the usual restriction to two-alternative forced-

choice tasks. Our special focus was on sensorimotor decisions with 

multiple choice-alternatives and the possibility for changes of mind. As an 

overall conclusion of our work, we confirmed that established decision-

making models and, in particular, biophysically realistic attractor models, 

can be extended to account for these more complex aspects of decision-

making.  

Furthermore, we were able to show that the experimental findings 

from random-dot motion discrimination tasks with changes of mind and 

multiple choices provide additional constraints to existing theoretical 

models of decision-making and are thus informative about the neural 

decision process in general. Especially the way how the speed-accuracy 

tradeoff and changes of mind are interrelated and depend on the decision 

threshold, shared sensory inputs, and the number of choice-alternatives, 

might further be exploited to distinguish linear from nonlinear modeling 

approaches in future experiments.  

The 2- and 4-alternative RDM experiment of Churchland et al. 

(2008), for instance, indicated that the decision threshold is independent 

of the number of choice-alternatives. Longer reaction times in the case of 

four alternatives seem to be caused by a lower initial level of neural 

activity just prior to the gradual activity build-up associated with evidence 

accumulation. Previously, theoretical models reproduced increasingly 

longer reaction times for more choice-alternatives with different decision 

thresholds (Usher and McClelland, 2001; Usher et al., 2002). The discrete 

2- and 4-choice attractor model we presented in Chapter 4, however, 

accounts for the conditional differences in activity before motion onset. 

For the condition that the regime of categorical decision-making coincides 

for the different numbers of alternatives, global inhibition in the network 

proved sufficient to reproduce the neurophysiological findings in the 2- 

and 4-alternative condition. The model further suggests that a larger 

population size of the selective pools, which represent the choice-

alternatives, is advantageous in order to obtain the postulated overlap of 

decision regimes without further top-down mechanisms. What is more 

relevant, resulting from its particular nonlinear attractor properties, our 

discrete 2- and 4-choice attractor network is so far the only proposed 

model that captures the experimental observation of the 90º-control case, 

using the same decision threshold as for the standard 2- and 4-choice 

conditions. 
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Besides, up to now, the neural decision threshold in LIP neurons 

during the RDM task has been estimated by the neural activity with least 

variability across trials just prior to the saccadic motor response. In 

Chapter 3 we have proposed that also the mean neural activity from 

changes-of-mind trials might be used to assess the decision threshold. 

More precisely, the biophysically realistic attractor model predicts a 

switch in neural activity during changes of mind, which could be tested 

experimentally and might be indicative of the neural decision threshold 

(Fig. 3.4). 

Furthermore, the decision threshold is also involved in adjusting the 

speed-accuracy tradeoff. Interestingly, a relation between changes of mind 

and the speed-accuracy tradeoff was found experimentally and for the 

attractor model for binary and multiple choices. In Chapters 3 and 5 we 

demonstrated that speed pressure leads to more changes of mind and 

reaction times are negatively correlated with the number of changes. 

While in linear, phenomenological models, such as the drift-diffusion 

model, only the decision threshold regulates the speed-accuracy tradeoff, 

in nonlinear attractor models the speed-accuracy tradeoff can also be 

adjusted by the synaptic input to the selective populations (see Chapter 3 

and Roxin and Ledberg, 2008). In the bistable regime of categorical 

decision-making, higher common inputs lead to faster reaction times. 

Higher inputs also shift the dynamical working point of the system closer 

towards the second bifurcation at the border to the multistable regime 

where the symmetric state is stable (Fig. 3.6). Notably, we found that it is 

just close to this second bifurcation that changes of mind arise naturally in 

the biophysically realistic attractor model (Chapter 3). Correspondingly, 

we showed that in the attractor model the number of changes can be 

controlled in the same two ways as the speed-accuracy tradeoff: more 

changes of mind can be obtained through a lower decision threshold and 

higher common inputs.  

Given these dependencies between the network input and decision 

behavior, we suggest that the brain could take advantage of the whole 

range of inputs, which enable categorical decision-making, in order to 

adjust decision speed, accuracy, and flexibility in the form of changes of 

mind.  

As we have noted in our model review in Section 2.3, one of the great 

future challenges in the field of perceptual decision-making is to design 

novel experiments in order to distinguish between competing modeling 

approaches. In this dissertation, we have shown that extensions of classic 

2AFC paradigms, in experiment and theory, can yield substantial new 

insights into the neural implementation of decision-making. Moreover, 

our findings allowed us to propose future experiments with the aim to 

further evaluate the validity of the attractor model and to distinguish 

between the linear drift-diffusion model and the nonlinear attractor model. 
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In particular, in Chapter 3 we have proposed a RDM experiment with 

independent coherent motion in two opposed directions to distinguish 

between the two models. In this way, the total amount of sensory evidence 

for both decision alternatives could be altered, while keeping the bias 

fixed. It is important to note that, contrary to the attractor model, the 

decision behavior of the linear drift-diffusion model would not be affected 

if the evidence in favor of both alternatives was increased by the same 

amount. Due to differences in the input variance, it might still be difficult 

to exclude one of the models based on behavioral data alone. Yet, the two 

models make clearly distinguishable predictions on the neuro-

physiological level (Fig. 3.7 and Fig. 3.8). 

Another promising future endeavor would certainly be to extend the 

investigations on the relation between changes of mind and the number of 

choice-alternatives. To this point, we have demonstrated that choice 

corrections, and, possibly, changes of mind in general, become less likely 

with more choice alternatives, in accordance with the attractor model 

(Chapter 5). More significant relations, based on larger conditional 

differences, might be gained if participants with extensive training were 

tested on the same, or a similar, experiment as reported in Chapter 5. 

Interactions between experimental conditions, changes of mind, and the 

number of choice alternatives could further confirm and challenge current 

modeling approaches.  

To conclude, the neurophysiological and behavioral findings, 

theoretical/computational explanations and predictions, and also the 

further experimental evaluations that we have presented in this thesis 

complement and extend our current understanding of perceptual decision-

making. Indeed, we believe that this study reflects the timely necessity to 

turn from the most basic and phenomenological models of decision-

making to more realistic models, with an increasing degree of 

neurophysiological detail, in order to advance our understanding of the 

processes underlying decision-making.  
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A APPENDIX 

A.1 Theoretical Framework 

A.1.1 Detailed mathematical description of general model 
characteristics 

The attractor model with spiking neurons and biophysically realistic 

synaptic conductances and receptors was first introduced by Brunel and 

Wang (2001). It was originally intended to model object working memory 

and persistent activity, but also successfully simulated behavioral and 

neurophysiological data obtained during a binary RDM task (Wang, 2002) 

and perceptual decision-making in general (Deco and Rolls, 2006; Wang, 

2008).  

a) Network 

Single neurons are modeled as leaky integrate-and-fire neurons (LIF) 

with conductance-based synaptic responses (see below). They are 

connected by three types of receptors that mediate the synaptic currents 

flowing into them: AMPA, NMDA glutamate, and GABAA receptors, 

which are described by realistic synaptic kinetics (Eq. A.3-9).  

The network is fully connected and divided into a population of 

excitatory neurons (80%) and inhibitory neurons (20%) (Abeles, 1991). 

Some of the excitatory neurons are thought to respond selectively to one 

of the possible directions of coherent motion used in the experiment and, 

hence, reflect the possible alternatives. Thus, the excitatory neurons are 

subdivided into several “selective” neural populations (pools) and one 

further pool of nonselective neurons. The nonselective pool emulates the 

activity in the surrounding brain areas. Each selective pool contains f = NE 

neurons. The fraction f is called the „„coding level‟‟ of the selective pools. 

Neuronal pools generally are defined as groups of neurons sharing the 

same inputs and connectivities. The inhibitory pool is homogeneous and 

regulates the overall activity by implementing competition in the network. 

b) Synaptic weights 

The synaptic efficacies are assumed to be already formed and, 

therefore, kept fixed during the simulation. They are consistent with a 

Hebbian rule: the synapse between two cells is strong if their activity was 

correlated in the past, low if it was anticorrelated. The baseline connection 

weight between uncorrelated excitatory populations is set to 1. Cells 

within one selective pool have stronger recurrent connection weights 

(ω+ > 1), as their activity is thought to be more correlated. Cells between 
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selective pools and from the nonselective to selective pools with rather 

anticorrelated activity have weaker connection weights (ω- < 1). The total 

incoming connections to each selective neuron are normalized to 1 by 

adjusting ω- relative to + and the coding level f  (A.1.3 and A.1.5). In 

this way, the overall excitatory recurrent synaptic drive remains constant 

in the spontaneous state, despite changes in the network parameters 

(Brunel and Wang, 2001). Inhibitory connections are denoted by a weight 

ωI. The specific connection weights used in the different model versions 

are summarized in Table A.1-6. For simplicity, we used instantaneous 

synapses without delays. 

c) Spiking dynamics 

Neurons. LIF neurons (Tuckwell, 1988) do not explicitly model 

action potentials, or “spikes”, but give a realistic account of the sub-

threshold membrane potential, characterized by the following equation: 

,    (A.1) 

with resting potential VL, a membrane capacitance Cm and a membrane 

leak conductance gm. Isyn is the total synaptic current flowing into the cell.  

When the membrane potential of a LIF neuron reaches the firing 

threshold Vth, a spike is registered and the membrane potential is reset to 

Vreset, and clamped there during an absolute refractory period of ref.  

Synapses. Recurrent excitatory post-synaptic currents (EPSCs) are 

mediated by fast AMPA and slow NMDA glutamate receptors, inhibitory 

post-synaptic currents (IPSCs) by GABAA receptors. External inputs are 

assumed to arrive only via fast AMPA receptors. The total synaptic 

current is thus given by the sum:  

. (A.2) 

Individual synaptic currents are defined by: 

 (A.3) 

(A.4) 

  (A.5) 

, (A.6) 
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with excitatory and inhibitory reversal potentials VE, VI, and synaptic 

weights j. Sums add over all synapses formed by presynaptic neuron j. 

 The NMDA current is potential dependent, controlled by the 

extracellular concentration of magnesium [Mg2+] = 1 mM (Jahr and 

Stevens, 1990). The fraction of open channels or gating variable sj for 

AMPA and GABAA receptor mediated currents is described by 

,    (A.7) 

 where the rise time constants have been neglected because they are 

smaller than 1 ms. This is not possible for NMDA mediated currents with 

a rise time constant of NMDA,rise = 2 ms. There sj is determined by: 

,  (A.8) 

,    (A.9) 

with  = 0.5 kHz. The sums over k represent a sum over the spike train tk 

with -Peaks (t) emitted by presynaptic neuron j at time tj
k. The values 

for the decay time constants are AMPA = 2 ms for AMPA synapses, 

NMDA,decay = 100 ms for NMDA synapses (Hestrin et al., 1990; Spruston et 

al., 1995) and GABA = 10 ms for GABA synapses (Salin and Prince, 1996; 

Xiang et al., 1998). 

The neuronal and synaptic capacities and time constants of our model 

are taken from the original model of persistent activity (Brunel and Wang, 

2001). The conductances there were calibrated in order to obtain a 

physiological spontaneous firing rate of 3 Hz for excitatory neurons and 

9 Hz for inhibitory neurons in the unstructured network. As we used 

different total numbers of neurons in each model version, the recurrent 

conductances used by Brunel and Wang (2001) had to be scaled by a 

factor of 1000/#neurons to keep the mean recurrent input constant. In 

addition, in the model of Brunel and Wang (2001), recurrent excitation is 

largely mediated by NMDA receptors, taking advantage of their slower 

synaptic dynamics to stabilize the sustained activity state. In our model 

versions we could accomplish better approximations to the experimental 

data by slightly increasing the amount of AMPA relative to NMDA. 

Because in the original model the effective NMDA/AMPA ratio near 

firing threshold is 10 in terms of charge entry, a decrease in gNMDA has to 

be compensated by a tenfold increase in gAMPA in order to preserve the 

spontaneous firing rate: 

.  (A.10) 
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d) Network inputs 

External inputs are generally modeled as uncorrelated Poisson spike 

trains applied independently to the individual neurons in the network. All 

neurons receive a background input of νext = 2.4 kHz, equivalent to 800 

excitatory connections from external neurons firing at 3 Hz. It simulates 

spontaneous noisy background activity from outside the local network and 

sensory information processed by other brain areas. In all our simulations, 

the network is given 500 ms, where it receives only the background 

inputs, to adjust from the initially set firing rates to the true spontaneous 

state.  

Subsequently, on top of the background activity an external target and 

motion input are applied to the selective neural populations only. They 

correspond to the sensory stimuli during the RDM experiment: the 

visually shown R-targets and the random-dot motion respectively. The 

specific input functions are described in detail for each model version in 

Sections A.1.3,5 and 6. 

e) Decision threshold and non-decision time 

According to recent experimental findings (Roitman and Shadlen, 

2002; Churchland et al., 2008), we assumed fixed decision thresholds 

independent of motion coherence.  

Reaction times were calculated as the time of threshold crossing plus 

a non-decision time tND, which consists of the latency the motion signal 

needs to arrive in area LIP (or PCC in general), and the duration of 

movement initiation and execution. We generally assumed a motion signal 

latency of 200 ms (Roitman and Shadlen, 2002; Churchland et al., 2008). 

To simulate the time for hand movements in Chapter 3 and 5 we used a 

value of 180 ms (Snyder et al., 1997; Cui and Andersen, 2007), for 

saccade initiation and execution in Chapter 4 we used 80 ms according to 

(Roitman and Shadlen, 2002; Churchland et al., 2008). In the simulations 

that included changes of mind, the non-decision time also set the time 

limit for the changing. 

A.1.2 Mean-field approximation 

In the mean-field approximation the number of integration variables 

is reduced to one for each neural population (Brunel and Wang, 2001). 

Solving the mean-field equations provides the fixed points of the 

population firing rates, i.e. the stationary states of the populations after the 

period of dynamical transients. As this can be done much more quickly 

than integrating the full spiking model, scanning the parameter space in 

order to find a parameter set matching the experimental findings becomes 

feasible.  
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In the mean-field formulation the potential of a neuron is calculated 

according to: 

    (A.11) 

where V(t) is the membrane potential, x labels the populations, x is the 

effective membrane time constant, μx is the mean value the membrane 

potential would have in the absence of spiking and fluctuations, x 

measures the magnitude of the fluctuations and  is a Gaussian process 

with exponentially decaying correlation function and time constant AMPA. 

The quantities μx and x
2 are given by: 

 
(A.12) 

   (A.13) 

where ext is the external incoming spiking rate, I is the spiking rate of 

the inhibitory population, m = Cm/gm with the values for the excitatory or 

inhibitory neurons depending of the population considered. The other 

quantities are given by: 

 (A.14) 

       (A.15) 

     (A.16) 

     (A.17) 

     (A.18) 

(A.19) 

 (A.20) 

     (A.21) 

     (A.22) 

     (A.23) 
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      (A.24) 

    (A.25) 

      (A.26) 

      (A.27) 

  ,    (A.28) 

where p is the number of excitatory populations, fx is the fraction of 

neurons in the excitatory population x, j,x the weight of the connections 

from population x to population j, x is the spiking rate of the excitatory 

population x,  = [Mg2+]/(3.57 mM),  = 0.062 mV-1 and the average 

membrane potential Vx  has a value between -55mV and -50 mV. 

The mean field approximation finally yields a set of n nonlinear 

equations describing the average firing rates of the different populations in 

the network as a function of the defined quantities μx and x: 

,     (A.29) 

where  is the transduction function of population x, which gives the 

output rate of a population x in terms of the inputs, which in turn depend 

on the rates of all the populations. 

 (A.30) 

 
(A.31) 

,     (A.32) 

with erf(u) the error function and rp the refractory period which is 

considered to be 2 ms for excitatory neurons and 1 ms for inhibitory 

neurons. To solve the equations defined by Eq. A.29 for all x, we 

numerically integrate Eq. A.28 and the differential equation below, whose 

fixed-point solutions correspond to solutions to Eq. A.29: 

     (A.33) 

To find the possible fixed points that coexist for a given parameter 

set, Eq. A.33 has to be integrated for different initial conditions of 

population firing rates over a range of external inputs. Generally, the 

firing rates obtained by the mean-field approximation would be exact if 
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the number of neurons was infinitely large and the unitary postsynaptic 

potentials elicited by presynaptic spikes were infinitesimally small. 

A.1.3 Model specifications for binary changes of mind 

The attractor network presented in Chapter 3 has the same general 

structure as the original study on binary decision-making (Wang, 2002). 

The network kinetics are summarized in Table A.1. With two selective 

pools in the network and a coding level of f = 0.2, ω- is calculated as -

 = (1 - f +)/(1 - f). To account for changes of mind in the binary RDM 

task (Resulaj et al., 2009), we adapted the weight parameters and inputs 

within biologically plausible boundaries (see below). All default 

simulation parameters are listed in Table A.2. Compared to the original 

studies (Brunel and Wang, 2001; Wang, 2002), the AMPA/NMDA ratio 

was increased according to Eq. A.10 with  = 0.08.  

a) Simulation and analysis details 

1,000 trials of 3,500 ms with different random seeds were run for 

each parameter set and motion coherence.  

Decision thresholds. In the main simulations of Chapter 3, a (first) 

decision was reached when one selective pool crossed a threshold of 

44 Hz and surpassed the other by at least 10 Hz. The same conditions 

applied for a change of mind. To confirm the conclusions from the mean-

field approximation, additional simulations were run with different target 

inputs after motion input onset (from 1,500 ms on 25 Hz and 125 Hz 

instead of 85 Hz), and also for higher and lower inhibitory weights (ωI = 

1.425 and ωI = 0.825 instead of 1.125 as in the standard simulations). The 

respective threshold values were: 30 Hz for 25 Hz target input, 50 Hz for 

125 Hz target input, 38 Hz for the simulations with ωI = 1.425 and 50 Hz 

for ωI = 0.825. All threshold values used were determined within 1 Hz 

accuracy in order to match the experimental reaction times and percentage 

of correct choices of (Resulaj et al., 2009).  A threshold alteration of 

±1 Hz roughly corresponds to a ±3% variation in reaction time and about 

∓10% in the frequency of changes). For the simulations shown in Fig. 3.7 

of Section 3.3.6, the standard threshold parameters were used (44 Hz with 

10 Hz difference). The additional condition of a minimal difference of 

10 Hz between the firing rates of the two selective populations avoids 

occasional joint crossings to count as decisions or changes (Fig. 3.A.2).  

Fluctuation analysis. The input firing rates for the fluctuation 

analysis of the external Poisson inputs (Section 3.3.3) were determined by 

filtering the external input spikes in the same way as the output spikes 

when calculating population firing rates, namely by averaging over a 50 

ms time window, shifted with a time step of 5 ms.  
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Table A.1 Binary attractor model for changes of mind 
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The “variation from mean input difference” (Fig. 3.5) was calculated 

by subtracting the mean input rate across trials from each selective 

population. The remaining input difference between the selective 

populations in each trial was then signed with respect to the first pool that 

crossed the decision threshold. 

Fixed points in the spiking network. To obtain the stable states of the 

standard spiking-neuron model in comparison to the mean-field analysis 

(Fig. 3.6A, blue crosses), we simulated 100 trials each, without target 

inputs, but for constant symmetric inputs to the selective populations, 

ranging from 0 to 200 Hz in steps of 10 Hz for 3,500 ms. The stable fixed 

points of the decision state were found by averaging the last 500 ms of all 

trials in which the decision attractor was reached. For (very) low and high 

inputs, in some (most) of the trials the symmetric spontaneous or double-

up state was stable and no decision was formed. The mean firing rate from 

1,000 to 2,000 ms of these trials determined the fixed point of the 

respective symmetric state.  

b) Mean-field analysis 

As the mean-field approximation provides the fixed points of the 

attractor network, it enabled us to analyze the location of the network‟s 

working point with respect to the two crucial bifurcations that contain the 

range of categorical decision-making. Thereby, it also helped to find a 

parameter set to replicate the behavioral data on changes of mind (Resulaj 

et al., 2009). 

Stable fixed points were found by terminating integration when the 

firing rates did not differ by more than 10-8 from the mean over the last 

40 ms. Unstable fixed points were determined by the boundary of the 

basins of attraction between two stable states, searched by iterating the 

initial values between two stable branches to find the change of dynamic 

flow towards one or the other stable state. To find all possible fixed points 

that coexist for a given parameter set, we integrated Eq. A.33 with 

different initial conditions of population firing rates over a range of 

external inputs from 0 to 200 Hz in steps of 1.0 Hz. 

A.1.4 Diffusion model for binary changes of mind 

The results shown in Fig. 3.8 (Section 3.3.6) were obtained by 

numerically integrating19 a diffusion model with an added second 

threshold and time-out for changing as described in (Resulaj et al., 2009). 

For the drift and boundary parameters, we used the average fitted values 

of Subject S from Resulaj et al. (2009): a drift rate µ = coh k, with k = 0.3, 

a first decision bound B = 13.2, tND = 324 ms and B∆ = 23.3, without any 
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 We used the Euler method with a step size dt of 1 ms.  
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bias in starting point or drift (µ0 = 0, y0 = 0). The increments of evidence 

were obtained from normal distributions with several variance levels. To 

obtain the predictions on alterations in input variance, we simulated 

10,000 trials for each of the six coherence levels, with input variances of 

0.7, 1.0 and 1.3, respectively, at time steps of 1 ms. 

A.1.5 Multiple choice model for primate data 

In Chapter 4, we extended the binary attractor model of decision-

making to up-to-four possible choice-alternatives (Fig. 4.1B). Instead of 

two, there are now four selective populations, encoding the four possible 

directions of coherent motion. In the standard simulations fitting the 

experimental data of Churchland et al. (2008) the coding level is f = 0.2. 

Moreover, in order to model the spatial distribution of the R-targets in the 

experiments, we introduced a spatial connectivity component T , which 

was added to the recurrent connection-weights between “neighboring” 

selective populations (Fig. 4.1C).  

Consequently, ω- is calculated as - = 1 - f(2 T + + - 1)/(1 – f) to 

normalize the overall excitatory recurrent weights towards each neuron. 

The neural and synaptic equations for the 4-alternative model are identical 

to Eq. A.1-9. All other model details are summarized in Table A.3. All 

default simulation parameters are listed in Table A.4. Compared to the 

original studies (Brunel and Wang, 2001; Wang, 2002), the 

AMPA/NMDA ratio was increased according to Eq. A.10 with  = 0.1.  

Table A.2 Parameter set of the binary attractor model for changes of mind 
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a) Simulation details 

Each trial in the network was run for a total of 4,000 ms. For each 

parameter set a block of 1,000 trials with different random seeds was 

simulated. A decision was reached when one selective pool crossed a 

threshold of 50 Hz and surpassed the other selective pools by at least 

5 Hz. For the 4-alternative condition in some cases, for small coherence 

levels, no decision was reached within the 4,000-ms simulation, as all 

selective pools stayed in the spontaneous state of low firing rate (at most 

20 of 1,000 trials). These trials were discarded as failed trials and 

excluded from the average. In the 90°-case on the other hand, some trials 

had to be excluded, because the two neighboring selective pools stayed in 

a symmetric double state of enhanced activity and no decision was made 

(at most 54 of 1,000 trials, for low coherence levels). 

b) Mean-field approximation  

In the multiple-choice model, the mean-field approximation allowed 

us to determine the conditions where the competition regimes for the 2- 

and 4-choice cases overlap. To find all of the possible fixed points that 

coexist for a given parameter set, we integrated Eq. A.33 with different 

initial conditions of population firing rates. We used four initial conditions 

spanning the possible firing rates at different temporal stages of the 

spiking simulation and the different experimental conditions: 

1. all selective pools with an initial firing rate of 0 Hz, 

2. one selective pool 120 Hz, the other 3 pools 0 Hz, 

3. two opposing selective pools 30 Hz, the other 20 Hz, 

4. all selective pools with 30 Hz. 

For our modeling purpose, decision-making between 2- and 4- 

alternatives, we intended to find a region of multistability with 

competition, so that always just one selective pool would terminate in an 

up-state of high firing rate. For specific sets of model parameters, the 

stable fixed points were calculated over a range of external inputs from 0 

to 100 Hz in steps of 0.5 Hz for the 2- and 4-choice condition (Fig. 4.5A). 

The range of external inputs where for all initial conditions and both 

experimental paradigms a decision is reached, i.e., one and just one pool is 

in an up-state, was termed „„range of decision-making.‟‟ Keeping the 

other parameters fixed, the value of the neighboring connectivity T with 

the optimal, i.e., broadest, range of decision-making was determined by 

performing the fixed-point analysis explained above for T = 0…0.1 with 

steps of 0.0025 (Fig. 4.5B). To explore the relation between the coding 

level f and the range of decision-making, the optimal value of T was 

determined for 11 different values of f  from 0.1 to 0.225.  

When changing the coding level, the network connectivities have to 

be adapted (Fig. 4.5C) to keep the up-state fixed-point firing rates at the 
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same values. Thus, the connectivity + was adjusted in steps of 0.0025 

until the up-state fixed points matched the values for the parameters of the 

spiking simulation (f = 0.2 and + = 1.48) (Fig. 4.5A). 

For the final values of + for the respective coding levels, the up-state 

fixed-point values deviated by less than 2 Hz in the range of external 

inputs from 20 to 60 Hz. Note, that with changing + also - changes, 

because of the normalization condition. In Fig. 4.5D the optimal range of 

decision-making was plotted against the coding level and fitted by a linear 

function. 

 

Table A.3 Multiple-choice attractor model for primate data 

 



 

 155 

 

 

A.1.6 Specifications of multiple-choice model for changes 
of mind 

The multiple-choice attractor model used to fit and explain our 

psychophysical findings on changes of mind in a 2- and 4-choice RDM 

task (Chapter 5), was constructed by merging the relevant features of the 

binary changes of mind model (Chapter 3) with the multiple-choice model 

that accounted for the monkey data (Chapter 4). The general network 

structure is similar to the 2- and 4-choice model described in the last 

section, except that there is no spatial connectivity component ( T = 0).  

All default simulation parameters are listed in Table A.6. Compared 

to the original studies (Brunel and Wang, 2001; Wang, 2002), the 

AMPA/NMDA ratio was increased according to Eq. A.10 with  = 0.08. 

1,000 trials of 3,500 ms with different random seeds were run for 

each parameter set and motion coherence. 

 

 

 

 

 

Table A.4 Parameter set of multiple-choice attractor model for primate data 
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Table A.5 Multiple-choice attractor model for changes of mind. A, and D-F as in Table A.3. 

 

Table A.6 Parameter set of multiple-choice model for changes of mind 
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A.2 Numerical simulation and data analysis  

For each simulated trial in the full spiking network, the coupled 

differential equations that describe the dynamics of all cells and synapses 

(Eq. A.1-9) were integrated numerically using a second-order Runge-

Kutta routine with a time-step of 0.02 ms.  

Population firing rates were calculated by counting all spikes over a 

50 ms window and dividing this sum by the number of neurons in the 

population and the window size. The time window was shifted with a time 

step of 5 ms. 

The numerical integration of the mean-field equations was performed 

using either the Euler method, for the mean-field analysis presented in 

Chapter 4, or a second-order Runge-Kutta routine, for Chapters 3 and 5, 

with a time-step of 0.1 ms. 

Both, the mean-field analysis described below and the spiking 

simulations were implemented in custom-made C++ programs (available 

upon request). Custom-made MATLAB programs were used for later 

analysis, fits of the simulation results and the numerical integration of the 

diffusion model (A.1.4). 

Wherever present, error bars denote SEM over all correct trials for 

simulated reaction times. In the case of probabilities for correct choice and 

changes of mind the theoretically estimated SEM was calculated 

according to  with n = 1,000 trials. 

 

A.2.1 Fits to simulated behavioral data for binary changes 
of mind 

Psychometric functions (Fig. 3.2, left panel) were fitted by a logistic 

function: 

,  (A.34) 

with motion coherence coh, and α and β as free parameters. The reaction 

time curve (Fig. 3.2, middle panel) was fitted by:  

 ,    (A.35) 

with the free parameters A, k and tR. 

A.2.2 Fits to simulated “primate” multiple-choice data 

The psychometric functions shown in Fig. 4.2 were fitted by a 

Weibull function: 



 

 158 

,   (A.36) 

where C is set as the chance level (0.25 and 0.5 for two and four 

alternatives, respectively), motion coherence coh, and α and β as free 

parameters. Reaction times were fitted as in Eq. A.35. 

A.3 Detailed experimental paradigm of multiple-
choice changes of mind  

A.3.1 Experimental setup 

a) Human subjects 

Fifteen healthy young adults (10 female; mean age 22, range 19-27), 

right-handed and with normal vision participated in this study. None of 

the participants had any previous experience with visual psychophysics. 

Each participant underwent four experimental sessions during one day.  

b) Experimental setup 

The subjects sat in a dark room in front of a 21 inch flat-screen 

cathode ray tube video monitor (Sony Trinitron Multiscan CPD-G520 21). 

Viewing distance from the computer screen was 40 cm (Fig. 1A). 

Participants placed their head on a chin-and forehead-rest, which was 

calibrated for each participant before each experimental session. The 

visual stimuli were generated and data were collected using MATLAB 

(Mathworks, Natick, MA) and the Psychophysics toolbox-3 (Brainard, 

1997; Kleiner et al., 2007) on an ASUS P5K SE/EPU computer running 

Microsoft Windows XP at a frame rate of 75 Hz. 

c) Visual stimuli 

The visual stimuli presented in this task were constructed in the 

following way. The RDM stimulus consisted of a multi-component 

pattern of small white moving dots (small filled squares with an edge 

length of 2 pixels). The dots appeared within a circular aperture (diameter 

= 5.0º) at the center of the screen. The percept of apparent dot-motion was 

created as follows: The stimulus consisted of three independent streams of 

dots that were alternately presented every three frames. With the next 

presentation of a particular set of dots three frames later, these dots were 

displaced as follows. Dependent on the respective amount of coherent 

motion, a certain percentage of dots were shifted in a particular direction, 

while the other dots were replaced at a random location. In that way, the 

dot positions of frame 3 for example were correlated with those of frame 

6, but not with frame one, two, four, or five (Palmer et al., 2005; Roitman 

and Shadlen, 2002; Shadlen and Newsome, 2001). The coherently moving 
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dots had a speed of 6.0º/s. Dot density was 16.7 dots/(deg2 s). We used a 

set of eight different coherence levels (0%, 3.2%, 6.4%, 12.8%, 25.6%, 

51.2%, 76.8% and 100%).  

The R-targets were constructed as yellow circles (diameter = 2.0º) 

located at the corners of a virtual square around the central fixation-mark 

(edge length 28º, and thus 19.8º distance to the center). The location of the 

R-targets indicated the possible directions of coherent motion in each trial.  

They could appear either: 

a) in each of the four corners of the virtual square (4-choice trials), or  

b) in just two of the four corners (2-choice trials).  

The two presented R-targets could be either 180º apart and thus 

symmetrically located with respect to the fixation-mark, or 90º apart, and 

therefore contiguous on one of the virtual square‟s sides20 (Fig. 1B, top 

and bottom left panel respectively). The R-targets remained present on the 

screen until the end of the trial.   

d) Feedback 

After each trial, participants received visual feedback (“error”, 

“good”) according to their performance. They also received a “time out” 

alert message whenever they exceeded time-out #1 or #2. “wait for cue!” 

appeared if the mouse pointer was moved out of the start-target before the 

RDM stimulus had appeared. Finally, “no target hit!” was displayed 

every time participants were not accurate in selecting the start target or an 

R-target area properly. These trials were excluded. 

A.3.2 Detection of changes of mind 

The criteria for a change of mind were: (1) the area between the 

mouse trajectory and either the horizontal, or vertical axis had to exceed 

2100 pixel2 in a screen quadrant other than the finally selected. (2) The 

trajectory excursion had to exceed the start-target area by 20 pixels in a 

quadrant other than the finally chosen. This quadrant then denoted the 

initial choice. We further rechecked the accuracy of the selection 

algorithm by visual inspection. 

                                                      
20

 In the 90º-case, the second adjacent target was chosen randomly as +/- 90º from 

the correct R-target. 
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List of Abbreviations 

2AFC 2-alternative forced-choice 

AMPA -amino-3-hydroxy-5-methyl-4-isoazoleproprionic acid 

DDM drift diffusion model 

dlPFC dorso-lateral prefrontal cortex 

EPSC excitatory post-synaptic current 

ER  error rate 

FEF frontal eye-field 

FF  feedforward 

FFI feedforward inhibition 

GABA -aminobutyric acid 

IPSC inhibitory post-synaptic current 

LCA leaky competing accumulator 

LIF  leaky integrate-and-fire  

LIP  lateral interaparietal cortex 

LR  likelihood ratio 

MT middle temporal area 

NMDA  N-methyl-D-aspartate acid 

O-U Ornstein-Uhlenbeck 

PDF probability density function 

PFC prefrontal cortex 

PPC posterior parietal cortex 

PRR parietal reach region 

RDM random-dot motion 

RF  response field 

R-target response target 

RT  reaction time 

SAT speed-accuracy tradeoff 

SC  superior colliculus 

SDT  signal detection theory 

SPRT sequential probability ratio test 

 

 

 


