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Abstract
Planning in robotics is often split into task and motion planning. The task planner
decides what needs to be done, while the motion planner fills up geometric de-
tails. However, such a decomposition is not effective in general as the symbolic
and geometrical components are not independent. This dissertations shows that
it is possible to compile combined task and motion planning problems (CTMP)
into classical planning problems; i.e., planning problems over finite and discrete
state spaces with a known initial state, deterministic actions, and goal states to be
reached. Motion planners and collision checkers are used for the compilation, but
not at planning time. What makes our approach effective is 1) a fully compila-
tion of CTMP problems into classical planning problems, 2) expressive classical
planning languages for representing compiled problems, using functions and state
constraints, 3) general planning algorithms capable of finding plans for CTMP
problems using domain-independent heuristics.

Resum
La planificació en robòtica es divideix en planificació de tasques i planificació de
moviments. El planificador de tasques decideix que és el que s’ha de fer, mentre
el planificador de moviments s’encarrega dels detalls geomètrics. Aquesta des-
composició no és efectiva, ja que els components simbòlics i geomètrics no són
independents. En aquesta tesi, demostrem que és possible compilar problemes de
planificació de tasques i moviments a problemes de planificació clàssica, és a dir,
problemes sobre un espai d’estats finit, amb coneixement de l’estat inicial i ac-
cions deterministes. En aquesta proposta, els planificadors de moviments només
s’utilitzen durant la compilació, no durant la cerca. El que fa aquesta tesi robusta
és: 1) un procés de compilació de problemes de planificació de tasques i mo-
viments a problemes de planificació clàssica, 2) uns llenguatges expressius per
representar problemes compilats, utilitzant funcions i restriccions d’estats, 3) al-
gorismes de cerca amb heurı́stiques independents del domini.
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Preface
Classical planning is the problem of finding a sequence of actions that maps the
initial state to the goal state. Classical planning assumes complete knowledge of
the environment, deterministic actions and a finite state space. It belongs to what
is known as task planning or symbolic reasoning. Classical planning can be seen
as the problem of searching in an implicit defined direct graph, where nodes are
states and edges represent actions. Modern classical planners rely on the use of
heuristics search [8, 48, 45, 94], which have proven to perform well on recent
planning competitions. Heuristics are usually computed from a relaxation of the
original planning problem. Another class of search is width-based search, which
does not compute heuristics from the problem representation, but instead performs
a novelty test in every reached state. Some forms to represent planning problems
in a standard form have been developed in the past years. One of them, STRIPS,
is a widely used language to represent classical planning problems, which are en-
coded using the Planning Domain Definition language (PDDL).

Motion planning is the problem of finding a collision-free trajectory, which re-
spects the kinematics of the robot, in a continuous space. Task planning assumes
a discretized search space. However, search on a exact representation of the con-
tinuous space is not feasible, as the space, referred as configuration space, is large
to scale up. For this reason, motion planning requires for methods to sample the
configuration space. While these methods sacrifice the notion of completeness,
motion planning algorithms based on sampling has demonstrated to perform well
in problems that involve manipulation tasks. This type of planning is also referred
as continuous planning or geometric reasoning.

Task planning works well for large state spaces and motion planning do also for
continuous spaces. However, task planning cannot deal with a continuous rep-
resentation of the space, required for robot motions, and motion planners cannot
support high level goals. Combined Task and Motion Planning (CTMP) is the
problem of finding a feasible sequence of actions for solving long term goals that
involve motions in the continuous space. Feasible actions are actions which do
not produce any collision. The problem of interleaving task and motion plan-
ning is well known in robotics literature. Although there have been several efforts
for efficiently integrate task and motion planners [53, 105, 78, 41], there is not a
general approach for solving CTMP problems and neither a common or standard
language to represent them.
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In Part I of this dissertation we introduce what is Combined Task and Motion
Planning and the problems it presents, and the motivation to propose an approach
that integrates task and motion planning. We review classical planning, its se-
mantics and syntax. We then analyze the main computational approaches that
we use for classical planning: heuristic search and width-based search. These
computational approaches are relevant for the methods we propose. We then de-
fine Functional STRIPS, which is an expressive language which we use to show
how to encode CTMP problems in a compact form. We review a second type
of planning which is crucial for this dissertation: Motion planning. We define the
geometric model and we review some state-of-the-art motion planning algorithms.

In Part II we introduce a novel integration of task and motion planning, where
both types of planning are addressed in combination. We introduce a formulation
of task and motion planning in Functional STRIPS with state constraints. This
integration and model is the starting point of this dissertation. In the first chapter
of this part we extend the FSTRIPS language with the ability to include state con-
straints, which are not a standard feature of classical planners. We show how state
constraints are used to compute heuristics. We present how to model 2D CTMP
problems in this expressive language. We then present two different computation
approaches: The first one is a translation of CTMP problems in FSTRIPS with
state constraints, to STRIPS. The second computation approach is width-based
search. We then present and model Pick-and-Place problems in 3D. We make
use of a simulated robot with a 7 degrees of freedom manipulator. We propose
a way to fully compile CTMP problems in FSTRIPS with state constraints. The
modeling assumes this crucial preprocessing stage. We then present a planning al-
gorithm that computes heuristics which are not fully domain-independent, but the
approach consolidate the base for a general approach for representing and solving
CTMP problems.

In Part III we address the limitations of previous part and we propose a general
and fully automatic preprocessing stage which assumes an input language to fully
compile different types of CTMP problems. We propose a formal language to
represent CTMP problems which involves objects of different shapes. The pre-
processing stage computes a base and arm graph for representing the robot base
and arm motions, and a set of tables encoding overlaps constraints and grasping
poses, for fast lookups. These data structures are used during planning time and
avoid the external calls to motion planners and collision checkers, which are only
used during the preprocessing stage. We then show how we model different types
of problems that involve symbolic and geometric reasoning. These problems can-
not be solved using only one type of planning. Finally, we present a general algo-
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rithm which is domain-independent and makes use of state constraints to compute
useful heuristics. For this, two different sets of atoms R and C are computed on a
IW (k) preprocessing while relaxing the state constraints. The set R contains the
relevant atoms obtained from the initial state to each goal. The set C contains the
no good atoms, which are the atoms that violate a state constraint.

Overview of Dissertation
Chapter 1 introduces what is combined task and motion planning and the moti-
vation to develop an efficient and general approach.

Chapter 2 introduces classical planning and the Functional STRIPS planning lan-
guage. We also review some state-of-the-art computational approaches.

Chapter 3 introduces motion planning as planning in continuous space. It presents
the problem of combining task and motion planning for robotics manipulation.

Chapter 4 extends the FSTRIPS language with the ability to handle state con-
straints to avoid collisions. It shows how to model CTMP problems in FSTRIPS
and a translation to STRIPS.

Chapter 5 presents a compilation of CTMP problems into FSTRIPS with state
constraints and a general width-based search algorithm capable of finding plans
over a huge combinatorial state space by computing weak heuristics.

Chapter 6 introduces a formal language to fully and automatically compile CTMP
problems into classical planning problems. A general algorithm which compute
domain-independent heuristics for handling state constraints is presented and re-
sults evaluated on a number of experiments.

Chapter 7 describes the planner, the whole architecture and the different mod-
ules used of the shelf.

Chapter 8 presents a summary of the contributions of this dissertation and discuss
the current and future work in CTMP.

The different approaches and results presented in this dissertation appear in the
following articles:

xi



“tesi˙jonathan˙ferrer˙mestres” — 2018/3/20 — 12:44 — page xii — #12

• Ferrer-Mestres, Jonathan, Guillem Frances, and Hector Geffner. ”Plan-
ning with state constraints and its application to combined task and mo-
tion planning.” Proc. of Workshop on Planning and Robotics (PLANROB)
2015 [28]. [Chapter 4].

• Ferrer-Mestres, Jonathan, Guillem Francès, and Hector Geffner. ”Com-
bined Task and Motion Planning as Classical AI Planning.” arXiv preprint
arXiv:1706.06927 (2017) [29] [Chapter 5]

• Ferrer-Mestres, Jonathan and Hector Geffner. ”General Architecture and
Use Cases for Combined Task and Motion Planning”. In preparation. [Chap-
ter 6]

xii



“tesi˙jonathan˙ferrer˙mestres” — 2018/3/20 — 12:44 — page xiii — #13

Contents

Abstract vii

Resumen vii

Preface ix

List of Figures xix

List of Tables xxii

I Background 1

1 Introduction 3
1.1 Combined Task and Motion Planning . . . . . . . . . . . . . . . 3
1.2 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Classical Planning 9
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.5 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.6 Planning Domain Definition Language . . . . . . . . . . . . . . . 13
2.7 Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.8 Computational Approaches for Classical Planning . . . . . . . . . 14

2.8.1 Classical Planning as Heuristic Search . . . . . . . . . . . 15
2.8.2 Classical Planning as SAT . . . . . . . . . . . . . . . . . 16
2.8.3 Width-based Search . . . . . . . . . . . . . . . . . . . . 17

xiii



“tesi˙jonathan˙ferrer˙mestres” — 2018/3/20 — 12:44 — page xiv — #14

2.9 Functional STRIPS . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.9.1 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.9.2 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.9.3 Example . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.10 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Motion Planning 23
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Planning in Continuous Space: Motion Planning . . . . . . . . . . 24

3.2.1 Geometric Model . . . . . . . . . . . . . . . . . . . . . . 25
3.2.2 Sampling-based Motion Planning . . . . . . . . . . . . . 27
3.2.3 Sampling Methods . . . . . . . . . . . . . . . . . . . . . 28
3.2.4 Collision Checkers or State Validation . . . . . . . . . . . 28
3.2.5 Single-query and multiple-query models . . . . . . . . . . 29
3.2.6 Example . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

II Combined Task and Motion Planning 37

4 Basic Model for Combined Task and Motion Planning in 2D 39
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2 Computation of the Heuristics . . . . . . . . . . . . . . . . . . . 40
4.3 Functional STRIPS Model with State Constraints . . . . . . . . . 41

4.3.1 Syntax and Semantics . . . . . . . . . . . . . . . . . . . 41
4.4 Heuristics for Handling State Constraints . . . . . . . . . . . . . 42
4.5 Example with State Constraints . . . . . . . . . . . . . . . . . . . 42
4.6 Modeling Task and Motion Planning . . . . . . . . . . . . . . . . 44
4.7 Computation 1: Translations to STRIPS . . . . . . . . . . . . . . 49
4.8 Computation 2: Heuristic and Width-based Search . . . . . . . . 50
4.9 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . 51

4.9.1 Validation and Use of Plans . . . . . . . . . . . . . . . . 55
4.10 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5 Pick and Place Tasks in 3D 59
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.2 Compiling Abstract Model in Functional STRIPS . . . . . . . . . 61
5.3 Planning for Pick-and-Place Tasks: Modeling and Computation . . 64
5.4 Planning Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . 70
5.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

xiv



“tesi˙jonathan˙ferrer˙mestres” — 2018/3/20 — 12:44 — page xv — #15

III Generality on Combined Task and Motion Planning 75

6 Flexible Algorithms for Combined Task and Motion Planning 77
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
6.2 Input Language . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.3 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.3.1 Constructing the base graph . . . . . . . . . . . . . . . . 82
6.3.2 Constructing the arm graph . . . . . . . . . . . . . . . . . 82
6.3.3 Constructing lookup tables . . . . . . . . . . . . . . . . . 86
6.3.4 Complexity . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.4 Modeling CTMP Problems . . . . . . . . . . . . . . . . . . . . . 94
6.4.1 Modeling Pick-and-Place Problems . . . . . . . . . . . . 96
6.4.2 Modeling Blocks World Problems . . . . . . . . . . . . . 98
6.4.3 Modeling Structure Building Problems . . . . . . . . . . 100

6.5 General Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.6 Extensions of BFWS(R) for Handling State Constraints . . . . . . 102
6.7 Extensions and Optimizations . . . . . . . . . . . . . . . . . . . 104

6.7.1 Additional Features and Heuristics . . . . . . . . . . . . . 104
6.7.2 Extending the Input Language and the Compilation Process 105

6.8 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . 108
6.9 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
6.10 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

7 The Planner 121
7.1 General Architecture . . . . . . . . . . . . . . . . . . . . . . . . 121
7.2 Execution of plans . . . . . . . . . . . . . . . . . . . . . . . . . 125
7.3 Modules Used Off-the-Shelf . . . . . . . . . . . . . . . . . . . . 125
7.4 Implementation and Low Level Details . . . . . . . . . . . . . . . 126

IV Conclusions 129

8 Conclusions 131
8.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
8.2 Ongoing and Future Work . . . . . . . . . . . . . . . . . . . . . 132

V Appendix 137

Bibliography 139

xv



“tesi˙jonathan˙ferrer˙mestres” — 2018/3/20 — 12:44 — page xvi — #16



“tesi˙jonathan˙ferrer˙mestres” — 2018/3/20 — 12:44 — page xvii — #17

List of Figures

1.1 An instance of a problem which requires task and motion inte-
gration. The goal is to place the blue box in the left-most empty
table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 A simple classical planning problem representation, where a robot R
located in position p1 has to pick-up a box B , which is position p5, and
place it in position p9. . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 PDDL domain encoding for illustrating a Classical Planning Problem in
STRIPS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 PDDL instance encoding of the robot domain. . . . . . . . . . . . 15
2.4 PDDL model fragment for illustrating the Classical Planning Problem in FSTRIPS

of the previous example. . . . . . . . . . . . . . . . . . . . . . . . . 22
2.5 PDDL instance encoding for illustrating the Classical Planning Problem in

FSTRIPS of the previous example. . . . . . . . . . . . . . . . . . . . . 22

3.1 A configuration space C with a trajectory connecting qI and qG
while avoiding Cobs. The image has been extracted from [68]. . . . 26

3.2 Piano Mover’s Problem using RRT. The image has been produced
using OMPL [104] . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3 RRT execution after 500, 1500, 2500 and 5000 iterations. . . . . . 31
3.4 A simple 2D environment with the initial and goal configurations.

The OMPL [101] has been used to generate these environments. . 34
3.5 RRT and RRT-Connect traces. In Fig. 3.5a the red lines represent

the tree as it has been grown from qI . In Fig. 3.5b green lines
represent the tree build from qI while blue lines represent the tre
built from qG. The orange trace represents the intermediate con-
figurations along the trajectory. These plans have been obtained
using OMPL [101] . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.6 PRM trace. The orange trace represents the intermediate configu-
rations along the trajectory. These plans have been obtained using
OMPL [101] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

xvii



“tesi˙jonathan˙ferrer˙mestres” — 2018/3/20 — 12:44 — page xviii — #18

4.1 Three task and motion instances considered with the initial state
shown on the left and the final state where goal is true shown on
the right. MOVING (M) domain in which a robot has to reach a
target configuration, and a number of obstacles need to be picked
up and moved to get them out of the way. The other two domains
considered are CLUTTER (C), where robot has to pick up an ob-
ject obstructed by other objects, and TIDYING-UP (T) where ob-
jects have to be transported to a target area. Tables below show
features of the encodings and results obtained by running six plan-
ners. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.2 Task and motion planning in Functional STRIPS. The six fixed func-
tion symbols denote actual functions defined through external proce-
dures that are sensitive to the fixed environment and discretization used. 48

4.3 PDDL domain encoding for illustrating the Classical Planning Problem in STRIPS
of the previous example. . . . . . . . . . . . . . . . . . . . . . . . . 49

5.1 CTMP Model Fragment in Functional STRIPS: Action and state constraint
schemas. Abbreviations used. Symbols preceded by “@” denote procedures.
All objects assumed to have the same shape. Initial situation provides initial
values for the state variables Base, Arm (resting), Traj (dummy), andConf(o)

for each object. Goals describe target object configurations. State constraints
prevent collisions during arm motions. Motion planners and collision checkers
used at compilation time, not at plan time, as detailed in the Preprocessing section. 66

5.2 Manipulating objects in a 3-table environment, initial (left) and
goal (right) situations. The objective is to put the blue objects on
the rightmost table and the red objects on the leftmost table. . . . 69

6.1 All possible permutations assuming that x, y is always the same
and λ = 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.2 Five different grasping poses for a block. . . . . . . . . . . . . . . 87
6.3 Inputs and outputs for preprocessing stage. . . . . . . . . . . . . . 89
6.4 Planning scene with relative object configurations after prepro-

cessing stage. Each relative object configuration denotes an object
with some shape. Configurations are relative to the robot base.
Each configuration is inside the robot workspace. . . . . . . . . . 90

6.5 General CTMP Model Fragment in Functional STRIPS: Action and state con-
straint schemas. Abbreviations used. Symbols preceded by “@” denote pro-
cedures. State constraints prevent collisions during arm motions. This model
fragment is general for all the exposed domains. . . . . . . . . . . . . . . 94

6.6 CTMP Model Fragment for Pick-and-Place in Functional STRIPS: Actions
Pick-up and Place schemas which extend the general model fragment. . . . . 96

xviii



“tesi˙jonathan˙ferrer˙mestres” — 2018/3/20 — 12:44 — page xix — #19

6.7 CTMP Model Fragment for Blocks World in Functional STRIPS: Action schemas
Unstack and Stack, extend the general model fragment. . . . . . . . . . . . 98

6.8 CTMP Model Fragment for Structure Building in Functional STRIPS: Action
schemas Unstack and Stack, extend the general model fragment. . . . . . . . 100

6.9 Pick-and-Place problem in a 3-table environment, initial (left) and
goal (right) situations. The objective is to put the blue objects on
the rightmost table and the red objects on the leftmost table. . . . 106

6.10 An instance of Blocks World problem. The goal is to stack all
blocks. Left image shows the initial state. Right image shows the
goal state. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.11 An instance of Structures Building problem. The left image shows
the initial state, with two blocks, one cylinder an one tray. The
goal is to reach a specific altitude for the cylinder. Right image
shows the goal state. The two blocks must be placed closely to
become a stable base for the tray. . . . . . . . . . . . . . . . . . . 107

6.12 An instance of Pick-and-Place problem with an obstacle in the
middle of the table . . . . . . . . . . . . . . . . . . . . . . . . . 107

7.1 General architecture of the system . . . . . . . . . . . . . . . . . 122
7.2 A fragment of a plan for a Blocks World problem. . . . . . . . . . . . . . 124

xix



“tesi˙jonathan˙ferrer˙mestres” — 2018/3/20 — 12:44 — page xx — #20



“tesi˙jonathan˙ferrer˙mestres” — 2018/3/20 — 12:44 — page xxi — #21

List of Tables

4.1 Data of the 15 planning instances. Columns show number of valid ob-
ject configurations, configuration pairs that overlap (robot-object and
object-object), ground actions, state constraints, and state variables. –
M– means that STRIPS planners died at preprocessing before reporting
the numbers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2 Performance of STRIPS planners on the 15 instances from Table 4.1.
The STRIPS planners are FD, FF, and LAMA. For each instance, the
columns show plan length, number of expanded nodes, and runtime in
seconds. Time and memory outs shown as –T– and –M–. In most in-
stances, the memory failure occurs at preprocessing. Time and memory
bounds are 1800 seconds and 8GB respectively. . . . . . . . . . . . . 53

4.3 Performance of Functional STRIPS planners on the 15 instances from
Table 4.1. The Functional STRIPS planners are FS0, IW, and BFWS.
For each instance, the columns show plan length, number of expanded
nodes, and runtime in seconds. Time and memory outs shown as –T– and
–M–. Time and memory bounds are 1800 seconds and 8GB respectively. 54

5.1 Compilation data for one and three tables. Columns show the number of
tables, total number of arm trajectories, arms configurations, base con-
figurations, total number of robot configurations, virtual object configu-
rations, number of virtual grasping poses, relative object configurations,
total number of real object configurations and overall compilation time. 71

5.2 Per-instance results of Pick-and-Place problem for one table. . . . 72
5.3 Per-instance results of Pick-and-Place problem for three tables. . . 73

6.1 Space complexity per each data structure. Space complexity shows
the size of each graph and table in worst case. . . . . . . . . . . . 93

6.2 Time complexity per each data structure which is constructed by
making calls to MoveIt!. . . . . . . . . . . . . . . . . . . . . . . 93

6.3 Description of previously defined notation. . . . . . . . . . . . . . 93

xxi



“tesi˙jonathan˙ferrer˙mestres” — 2018/3/20 — 12:44 — page xxii — #22

6.4 Compilation data for different domains. Pick-andPlace problems with
one and three tables. Pick-and-Place with an obstacle. Blocks World for
different levels and Structures Building. . . . . . . . . . . . . . . . . 108

6.5 Compilation parameters for different domains. It shows the dis-
cretization parameters provided as input to the system. . . . . . . 110

6.6 Pick-and-Place problem using set R G[1] . . . . . . . . . . . . . 112
6.7 Pick-and-Place problem using set R G[2]. . . . . . . . . . . . . . 113
6.8 Pick-and-Place problem with three tables using the extend version

of BFWS(R) with set R G[2] . . . . . . . . . . . . . . . . . . . . 114
6.9 Pick-and-Place problem with an obstacle in the middle of the ta-

ble, using the extend version of BFWS(R) with set R G[2] . . . . 115
6.10 Blocks World problem with towers of 3 and 4 levels and 3 tow-

ers of 3 blocks in the initial situation. The used algorithm is the
extended version of BFWS(R) with R G[2]. . . . . . . . . . . . . 116

6.11 Blocks World problem with towers of 5 blocks, using the extended
version of BFWS(R) with R G[2]. . . . . . . . . . . . . . . . . . 117

6.12 Structures Building problem with 2 cubes, cylinders and trays. . . 118

xxii



“tesi˙jonathan˙ferrer˙mestres” — 2018/3/20 — 12:44 — page 1 — #23

PART I

Background

1



“tesi˙jonathan˙ferrer˙mestres” — 2018/3/20 — 12:44 — page 2 — #24



“tesi˙jonathan˙ferrer˙mestres” — 2018/3/20 — 12:44 — page 3 — #25

CHAPTER 1

Introduction

1.1 Combined Task and Motion Planning
Combined Task and Motion Planning (CTMP) is a well known problem in robotics.
CTMP problems involve robots that can move and rotate, objects that have geo-
metrical dimensions and constraints for avoiding collisions. These problems are
thought to be outside the scope of standard AI planners and are normally ad-
dressed through a combination of two types of planners: task planners that handle
the high-level, symbolic reasoning part, and motion planners that handle motion
and geometrical constraints [64, 105, 65, 78, 99].

Task planning performs well for large state spaces but it cannot deal with a contin-
uous representation of the space, which is required for robot motions. On the other
hand, motion planning performs well for continuous spaces, but it cannot support
high level goals. Hence, an integration of task and motion planning is required for
solving these types of problems. Combined Task and Motion Planning (CTMP) is
the problem of finding a feasible sequence of actions for solving long term goals
that involve motions in the continuous space. Feasible actions are actions which
do not produce any collision.

Consider an autonomous robot that can move around and manipulate objects lo-
cated on top of a table. In order to achieve high level tasks like picking up objects
and placing them on top of another table, the robot must be able to interleave high
level planning for long term goals and motion planning to compute arm and base
motions and to check for motion feasibility. Motion planners work well for large
continuous spaces and task planners do also for large discretized state spaces.
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However, task planning cannot deal with geometric details and motion planners
cannot support symbolic tasks. For this reason, we require to combine both types
of planning for solving large manipulation high level tasks. Task planning can
decide where each object must be placed, while motion planning decides how to
approach to these objects and how to grasp them based on their geometric de-
tails. The symbolic and geometrical components, however, are not independent.
Hence, by giving one of these two parts the secondary role of verifying feasibility
and filling up the geometric details, approaches based on task and motion decom-
position tend to be ineffective, resulting in lots of backtracking. The problem of
excessive backtracks is well known in constraint satisfaction when constraints are
used passively to prune the search for solutions [79, 18].

1.2 Example

Let’s suppose the problem of Fig. 1.1. There are two tables: one with three dif-
ferent boxes on top of it and the second table is empty. There is a robot which
can move its base and arms. The goal is to place the blue box on top of the empty
table. However, the red and yellow boxes are obstructing the path to the blue box
and they have to be moved out of the way before grasping the blue box. If we rely
on a classical planning representation, we can have high-level actions like move,
pick-up and place. The task planner reasons at the symbolic level, so it cannot
deal with the geometric representation of this problem. A possible solution given
by a task planner could be: 1) move to a discretized position close to the table
where the boxes are, 2) pick-up the blue box, 3) move to a position close to the
left-most table, 4) place the blue box on the left table. However, when the robot
tries to pick-up the blue box, the motion planner tries to compute a collision-free
trajectory, which is not possible since the yellow box is obstructing the path to
the blue box. After the task planner has been notified, it can replan to move the
yellow box out of the way. However, the robot cannot pick-up the blue box yet, as
the motion planner will find again a collision, this time with the red box. The fact
of using the motion planner to verify feasibility causes lots of backtracking. On
the other hand, a motion planner cannot deal with high-level goals like place the
blue box on the left-most table. Finding a solution for this problem requires for a
combination of task and motion planning. A possible and good solution could be:

• move to a position close to the table containing the boxes.

• pick-up the yellow box.

• place the yellow box in another no-obstructing location.
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• pick-up the red box.

• place the red box in another no-obstructing location.

• pick-up the blue box.

• move to the left-most table.

• place the blue box in the left-most table.

Figure 1.1: An instance of a problem which requires task and motion integration. The
goal is to place the blue box in the left-most empty table.

1.3 Motivation
The problem of interleaving task and motion planning is well known in robotics
literature. Although there have been several efforts for efficiently integrate task
and motion planners [11, 105, 78, 41], there is not a general approach for solving
CTMP problems and neither a common or standard language to represent them.
An efficient combination is crucial for problems which require symbolic and geo-
metric reasoning.

In this dissertation we propose a novel approach where CTMP problems are fully
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compiled into classical planning problems and state constraints are used to pre-
vent collisions. We define a formal input language to describe CTMP problems.
Moreover, we avoid the use of calls to motion planners and collision checkers dur-
ing planning time and we propose a flexible planning algorithm which computes
domain-independent heuristics to deal with state constraints.

1.4 Thesis Outline
In chapter 1 of this thesis we have already explained the problem of combin-
ing task and motion planning. We presented an example which requires a robust
integration of both types of planning in order to avoid backtracking. We have
introduced our motivation to develop a novel and general method to efficiently
combine task and motion planning by, given an input language, compile CTMP
problems into classical planning problems with state constraints.

In chapter 2 we review classical planning and planning problems in STRIPS and
FSTRIPS. We also mention some of the computational approaches for classical
planning: heuristic search and width-based search algorithms, which are exten-
sively used in this work.

Chapter 3 defines what is motion planning. We review different methods used
for planning in continuous space, focusing on sampling-based motion planning.
We describe some sampling methods. We then explain some state-of-the-art mo-
tion planning algorithms, such as Rapidly Exploring Random Tree (RRT) and
Probabilistic Roadmap (PRM), and we show some examples of motion planning
for solving geometric problems.

Chapter 4 introduces a Functional STRIPS model with state constraints to avoid
collisions. We also introduce heuristics to handle state constraints and we show
how the computation of heuristics is affected by the introduction of such con-
straints. Further, we demonstrate the modeling of 2D CTMP problems with
FSTRIPS and state constraints. We introduce two computational approaches for
solving these CTMP problems. The first approach is a translation of a CTMP
problem with state constraints from FSTRIPS to STRIPS and we use state-of-the-
art heuristic search to finding plans. The second computational approach does not
use heuristics at all, but width-based search algorithms based on a novelty test.
The experiments presented in chapter 4 show a robot arm in a 2D world and are
far from trivial.

In Chapter 5 we scale up to more challenging problems, involving Pick-and-Place
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tasks in a 3D world. We present a compilation which is independent of the number
of objects and allows us to compute suitable tables for fast lookups during search
process. Computing such tables avoids expensive calls to motion planners and
collision checkers, which are only used at compilation time and not during plan-
ning time. We then present the model of pick-up and place CTMP problems in
FSTRIPS using state constraints to avoid collisions, and we present an approach
which uses such state constraints to compute heuristics.

In Chapter 6 we develop a general approach for combined task and motion plan-
ning, which makes use of recent advances of modern classical AI planning al-
gorithms. We show how to model a number of CTMP problems in FSTRIPS,
moving away from the classical Pick-and-Place domain, and we present two new
problems which require symbolic and geometric reasoning: Blocks World and
Structures Building. Finally, the main contributions of this chapter are 1) the def-
inition of an input formal language, 2) a fully and automatically compilation of
task and motion planning problems to classical planning problems and 3) a flex-
ible and general planning algorithm which is domain-independent and computes
heuristics from the FSTRIPS and state constraints encoding.

In Chapter 7 we present the planner that we have developed which combines task
and motion planning, the pipeline of our architecture, the modules used off the
shelf and the implementation details.

Finally, in Chapter 8 we present the conclusions along with the main contribu-
tions of this work. Finally, we review ongoing work and future possibilities.
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CHAPTER 2

Classical Planning

2.1 Introduction

Classical planning is the problem of finding a plan, which is a squence of de-
terministic actions that when applied, maps an initial state into a goal state. The
environment is only affected by the actions performed by a single agent, which has
full knowledge of the current state of the environment. The challenge of classical
planning is computing such plans efficiently. Classical AI planners are currently
able to solve problems over large state spaces. State-of-the-art methods rely on the
use of heuristics, which are derived automatically in order to guide a state-space
search or on translations into propositional satisfiability. [96, 40, 38]. Classical
planning techniques have proven to be efficient, as we can see in the International
Planning Competition, as well as in translation approaches, where a problem of a
different planning model is translated to a classical planning problem that allows
the use of approaches developed for classical planning. For example, translations
from conformant planning to classical planning [86, 87], contingent planning to
classical planning [1] or temporal planning to classical planning [52].

2.2 Model

A classical planning problem can be seen as a search problem in a directed graph
where nodes represent states and edges between nodes are actions. A plan is a
path from a node representing the initial state, to a node representing a goal state.
The classical planning model can be described as follows:
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Definition 2.2.1 (Classical Planning Model). The Classical Planning Model is a
tuple Π = 〈S, s0, SG, A, f, c〉 where:

• S is a finite and discrete state space

• s0 ∈ S is the initial know state

• SG ⊆ S is the set of goal states

• A(s) ⊆ A is the set of actions A that are applicable in each state s ∈ S

• f(s, a) is a deterministic transition function where applying an action a in
a state s results in state s′

• c(s, a) is the positive cost of applying action a in state s

A plan π for a classical planning model, is a sequence of actions a0, a1, . . . , an,
such that, when applied in the initial state s0, produces a sequence of states
s0, s1, . . . , sn+1 such that ai is an action applicable in state si and sn+1 is a goal
state.

In this work we assume that costs are uniform. Meaning, the cost of applying
an action a to some state s is always the same. The total cost of a plan is the sum
of action costs

c(π) =
n∑
i=1

c(ai).

Thus, the cost is the plan length |π|. A plan is said to be optimal (π∗) if the total
cost is the minimum, among all possible plans. In other words, a plan π is optimal
if there is not shorter plan than π.

2.3 Syntax
The most extensively used language to describe classical planning models is STRIPS[30],
which consists of boolean variables called fluents and atoms. The states are de-
scribed through these variables, which domain is {true,false}. Then, a state is
defined by the conjunction of the truth values of all the variables in that state.

Definition 2.3.1 A classical planning Problem in STRIPS is a tuple P = 〈F,O, I,G〉
where:

• F is the set of all boolean variables or atoms

10
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• O is the set of all actions or operators

• I ⊆ F is the initial situation

• G ⊆ F is the goal situation

Every action a ∈ O is represented by three lists:

• A Precondition list Prec(a) ⊆ F . It represents the set of atoms that must
be true in order to apply the action a.

• An Add list Add(a) ⊆ F . It represents the set of atoms that will become
true after applying the action a.

• A Delete list Del(a) ⊆ F . It represents the set of atoms that will become
false after applying the action a.

2.4 Semantics
Given a classical planning problem P = 〈F,O, I,G〉, the corresponding state
model is S(P ) = 〈S, s0, SG, A, f, c〉 consists of:

• Each state s ∈ S is a subset of atoms from F

• The initial state s0 is I

• The goal states s are such that G ⊆ s

• The actions a applicable in s, A(s) are operators in O such that A(s) =
o|Prec(o) ⊆ s.

• The transition function f(s, a) results in new state s′ = (s
⋃
Add(a))\Del(a).

• Action costs are always uniform. The total cost of a plan π is the sum of the
cost of all applied actions.

2.5 Example
Consider a problem in which an N ×N grid, with N = 3, contains a robot. The
robot R is at some position pi. There is a box B at position pj with i 6= j. The
goal is for the box B to be at position pk, where i 6= j 6= k. Assume that initially
the robot is at position p1 and the box is at position p5, and the goal is to have
the box at position p9. The Figure 2.1 illustrates the problem. We can model this
problem as a classical planning Problem using STRIPS as P = 〈F,O, I,G〉:

11
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Figure 2.1: A simple classical planning problem representation, where a robot R located
in position p1 has to pick-up a box B , which is position p5, and place it in position p9.

• Fluents F : {at R(pi), at B(pi), holding, adj(pi, pj)}, for any i, j in [1, N ×
n], with at R(pi), at B(pi) denoting the position of the robot and the box
respectively, holding denoting whether the robot has the box or not, and
adj(pi, pj), denoting if a connection (adjacency) exists between two any
positions.

• Initial I: at R(p1), at B(p5), adj(p1, p2), adj(p2, p3), adj(p1, p4), adj(p2,
p5), adj(p3, p6), adj(p4, p5), adj(p5, p6), adj(p4, p7), adj(p5, p8), adj(p6,
p9), adj(p7, p8), adj(p8, p9), adj(p2, p1), adj(p3, p2), adj(p4, p1), adj(p5,
p2), adj(p6, p3), adj(p5, p4), adj(p6, p5), adj(p7, p4), adj(p8, p5), adj(p9, p6),
adj(p8, p7), adj(p9, p8).

• Goal G: at B(p9).

• Operators O:

– move(pi, pj) for any i, j ∈ [1, N ×N ].

∗ Precondition(o): at R(pi), adj(pi, pj)
∗ Add(o): at R(pj)
∗ Delete(o): at R(pi)

– pick-up(pi) for any i ∈ [1, N ×N ].

∗ Precondition(o): at R(pi), at B(pi)
∗ Add(o): holding

12



“tesi˙jonathan˙ferrer˙mestres” — 2018/3/20 — 12:44 — page 13 — #35

∗ Delete(o): at B(pi)

– place(pi) for any i ∈ [1, N ×N ].

∗ Precondition(o): at R(pi), holding)
∗ Add(o): at B(pi)
∗ Delete(o): holding

A possible plan π for this problem is the following:

π =
{move(p1, p2),move(p2, p5), pick up(p5),move(p5, p8),move(p8, p9), place(p9)}

In this example, it does not exist a shorter plan than π. Then, we say that the plan
is optimal π∗. The total cost of this plan is given by the number of applied actions,
which is the plan length |π| = 6.

2.6 Planning Domain Definition Language
Classical Planning Problems in STRIPS, are usually encoded using the Plan-
ning Domain Definition Language (PDDL) [81]. The planning community has
standardized planning with the introduction of PDDL and its extensions [31].
The PDDL support for the International Planning Competition (IPC) allowed for
benchmark planning problems, proposed to be addressed by the planning com-
munity. The original fully deterministic planning challenges, have been com-
plemented by planning and learning domains, as well as uncertainty challenges
(where the effects of the actions are uncertain and usually modeled by some prob-
ability distribution of the outcomes).

For the purpose of this work, it is sufficient to show a PDDL encoding in STRIPS
for a fully deterministic problem. Figure 2.2 shows the encoding in PDDL for the
problem domain defined in the previous section, while figure 2.3 shows the encod-
ing of a problem instance. PDDL encodings are usually defined in two separate
files, called domain and instance.

2.7 Complexity
Determining if there exists a valid plan π for an arbitrary problem instance, in
the propositional STRIPS planning model is decidable and has been shown to
be PSPACE-complete [9]. This is the class of problems that can be solved us-
ing memory which is polynomial to the input size and has no restrictions in the
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(define (domain Pick-up-Place)
(:requirements :strips :typing)
(:types position)
(:predicates (at R ?p - position) (at B ?p - position)

(adj ?p1 ?p2 - position) (holding)))

(:action Move
:parameters (?p1 ?p2 - position)
:precondition (and (at R ?p1) (adj ?p1 ?p2))
:effect (and(not(at R ?p1) (at R ?p2)))

(:action Pick-Up
:parameters (?p - position)
:precondition (and(at R ?p)(at B ?p))
:effect (and(not(at B ?p) (holding)))

(:action Place
:parameters (?p - position)
:precondition (and(at R ?p)(holding))
:effect (and(not(holding) (at B ?p)))

)

Figure 2.2: PDDL domain encoding for illustrating a Classical Planning Problem in
STRIPS.

amount of time. Other case, is undecidable for infinite state spaces. In the case
of planning with costs, the problem of finding an optimal plan π∗ for an arbi-
trary problem instance is also PSPACE-complete. These classes of problems can
be solved in polynomial space with no restrictions on running time. As in the
worst-case planning problems are intractable, planning approaches are measured
in terms of performance regarding time and space, on a set of benchmarks.

2.8 Computational Approaches for Classical Plan-
ning

Classical AI planners are currently able to solve problems over large state spaces.
In classical planning, the initial state is fully known and actions have determinis-
tic effects. State-of-the-art methods rely on the use of heuristics that are derived
automatically in order to guide a state-space search or on translations into propo-
sitional satisfiability.
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(define (problem pickup-place)
(:domain Pick-up-Place)
(:objects p1 p2 p3 p4 p5 p6 p7 p8 p9 - position)
(:init (at R p1) (at B p5) (adj p1 p2) (adj p2 p3) (adj p1 p4)

(adj p2 p5) (adj p3 p6) (adj p4 p5) (adj p5 p6) (adj p4 p7)
(adj p5 p8) (adj p6 p9) (adj p7 p8) (adj p8 p9) (adj p2 p1)
(adj p3 p2) (adj p4 p1) (adj p5 p2) (adj p6 p3) (adj p5 p4)
(adj p6 p5) (adj p7 p4) (adj p8 p5) (adj p9 p6) (adj p8 p7)
(adj p9 p8))

(:goal (at B p9)))

Figure 2.3: PDDL instance encoding of the robot domain.

Given a classical planning problem P and its state model S(P ), where in the
associate graph nodes represent states and edges represent actions between nodes,
a graph-search algorithm can be used to find a plan from an initial state to a goal
state. Although any graph-search algorithm could be used among these graphs,
blind-search algorithms like Dijkstra [19], Depth First Search (DFS) or Breath
First Search (BrFS) do not perform well due the size of the state space of plan-
ning problems. On the other hand, there are more effective methods who have
been proven to be successful:

2.8.1 Classical Planning as Heuristic Search

Heuristic search algorithms are extensively used in state-of-the-art planners and
have demonstrated good results in classical planning benchmarks. A heuristic
function is an approximation of the solution cost, which is used to guide the
search, and is derived directly from the problem representation. One example
is a navigation problem. which could be seen as a graph, where nodes represent
cities and edges represent a path between cities. A heuristic estimator is used on
every reachable state s ∈ S, where a possible heuristic function h could be the
straight distance between cities. One search algorithm which relies on a heuris-
tic estimator is A∗, where node expansions depend on an evaluation function:
f(n) = g(n)+h(n), where g(n) is the total accumulated cost from the initial node
and h(n) is the output of the heuristic function; Greedy Best First Search (GBFS),
where node expansion only depends on the heuristic function f(n) = h(n). Some
algorithms like A∗ are optimal, in the sense that an optimal plan π∗ is guaranteed,
only when the heuristic is admissible. A heuristic h is admissible when h ≤ h∗,
where h∗ is the optimal heuristic. The optimal heuristic h∗ is the exact cost from
a state s to a goal state. However, depending on the heuristic function,A∗may not
feasible for large state space problems. Then, heuristics is not only related to find
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optimal solutions, but computing informative heuristics, together with heuristic
search algorithms have been demonstrated to find optimal and suboptimal solu-
tions for problems with a large state space.

The recent International Planning Competition (IPC) have been dominated by the
planners which rely on heuristics such as: HSP [8], FF [48], Fast-Downward [45]
and LAMA [94]. Among with different versions and improvements of these citet
planners [46, 21]. These heuristics are automatically extracted from the prob-
lem representation [8, 82], by using different relaxations on the original problem.
These heuristics are domain-independent. A relaxation is a simplified form of
an original problem. For example, the FFplanner computes a delete relaxation,
where negative effects of actions are not taken into consideration, and it computes
a heuristic based on the length of the relaxed plan called hFF . Other heuristics
which come from the relaxation of a problem are the well known additive heuris-
tic hadd and the maximum heuristic hmax [8, 20]. Another well known heuristic
planner is LAMA, which use landmark heuristics. A landmark is an atom p that is
made true by all plans. Then, landmark heuristic just counts the number of land-
marks that have not been achieved yet in some state s. Landmarks have been used
in several approaches [94, 55].

2.8.2 Classical Planning as SAT
Planning as Satisfiability [56] determines whether there is a truth assignment that
satisfies a propositional logical formula or a set of clauses obtained from a clas-
sical planning problem translation. In other words, it determines if a Conjunctive
Normal Form (CNF) formula is satisfiable or not. If the planning problem is un-
solvable, the SAT formula will be unsatisfiable. The logical formula captures the
representation of the planning problem like the initial state, goal state and actions.
SAT solvers take a set of clauses and a horizon N , starting from N = 0. The
algorithm proceeds by generating appropriate logical values assignments and in-
creasing N until a plan is found. Given a STRIPS problem P and a horizon N , a
CNF formula which include propositions for each atom and actions, is satisfable
if there is a plan that solves problem P in at most N steps. SAT problem has been
shown to be NP-complete[97], so there is no polynomial time algorithm known
yet, but exponential worse-case algorithms. However, SAT solvers manage to
solve problems with a huge amount of variables and clauses.

2.8.3 Width-based Search
While heuristic based search relies on extracting heuristics automatically from the
problem representation, another approach is based on the structure of the problem.
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Pure width-based search algorithms [72, 73] are exploration algorithms and do
not rely on goal directed heuristics. The simplest such algorithm is Iterated Width
or IW, which is a sequence of calls IW (i) for i = 1, 2, . . . where IW (i) is a
plain breadth-first search with one change: the states generated in the search are
pruned when they are not the first state in the search to make true some tuple (set)
of i atoms or less. Thus, IW (i) for i = 1, i.e., IW (1), is a breadth-first search
where a newly generated state s is pruned when there is no new atom X = x
made true by s, IW (2) is a breadth-first search where a newly generated state s
is pruned when there are no atoms X = x and Y = y such that the pair of atoms
〈X = x, Y = y〉 is true in s and false in all the states generated before s, and so
on. More generally, IW (k) is a breath-first search where newly generated states
are pruned if they don’t pass the novelty test, meaning, if its novelty is greater
than k. The novelty of a state s is the size of the smallest tuple of atoms t that is
true in s and false in all previously generated states s′.
A key property of the algorithm is that while the number of states is exponential in
the number of atoms, IW(i) runs in time that is exponential in i only. In particular,
IW(1) is linear in the number of atoms, while IW(2) is quadratic. Furthermore,
the work seen in [72] define a general width measure for classical problems P and
prove that IW(i) solves P when the width of P is no greater than i. Moreover
in such a case, IW(i) solves P optimally (i.e., it finds a shortest solution). As a
result, all such problems can be solved in quadratic time by IW(2) although the
number of states is exponential.

IW (k) has proven to perform really well in instances of many of the standard
benchmark domains. In most of these instances the algorithm solved them in
(low) polynomial time, provided that the goal is atomic. IW is a complete algo-
rithm but it does not perform well with multiple goal atoms [72, 73]. For this
reason, another algorithm called Serialized IW (SIW) has been developed. SIW
achieves a goal atom one at a time, by doing multiple calls to IW algorithm. How-
ever, it is an incomplete algorithm that can get trapped into dead-ends.

On the other hand, Best-first width search (BFWS) is a best-first search algorithm
that combines width-based measures with an implicit form of goal serialization.
BFWS tracks two measures: the number of atomic goals that are true in s, and
the size of the smallest tuple of atoms t that is true in s and false in all the states
generated before s that have the same number of true goals as s. The evalua-
tion function f(s) in BFWS is given by the second measure, called the novelty
measure (smaller is better), with ties broken by favoring states with a maximum
number of true goals.
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Width based search algorithms have been used more recently for playing Atari
video games [4], and video games in the General Video Game AI Competition
[88], achieving in both cases state-of-the-art results [76, 39].

2.9 Functional STRIPS
Functional STRIPS (FSTRIPS) is a simple but expressive classical planning lan-
guage based on the variable-free fragment of first-order-logic, where action a
have preconditions Pre(a), where Pre(a), as well as goals G, can be variable-
free, first-order formulas, and f(t) and t′ are terms with f being a fluent symbol.
FSTRIPS involves constant, function and relational or predicate symbols but no
variable symbols. We review it following [37].

2.9.1 Syntax
Definition 2.9.1 (FSTRIPS Planning Problem) A problem in FSTRIPS is a tuple
P = 〈S, I, O,G〉 where:

• S is the set of non-standard symbols (fixed and fluent) and their types

• I provides the initial unique denotation s0 of such symbols

• O stands for the actions

• G is the goal

A plan for a problem P = 〈F, I, O,G〉 is a sequence of applicable actions
from O that maps the unique initial state where I is true into one of the states
where G is true.

Functional STRIPS assumes that fluent symbols, whose denotation may change
as a result of the actions, are all function symbols. Constant, functional and re-
lational (predicate) symbols whose denotation does not change are called fixed
symbols, and its denotation must be given either extensionally by enumeration, or
intentionally by means of procedures as in [23]. Among them, there is usually a
finite set of object names, and constant, function, and relational symbols such as
‘3’, ‘+’ and ‘=’, with the standard interpretation.

For example, typical Blocks world atoms like on(a, b) can be encoded in FSTRIPS
as on(a, b) = true, by making on a functional symbol, or in this case, more conve-
niently, as loc(a) = b where loc is a function symbol denoting the block location.
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Terms, atoms, and formulas are defined from constant, function, and relational
symbols in the standard way, except that in order for the representation of states
to be finite and compact, the symbols, and hence the terms are typed. A type is
given by a finite set of fixed constant symbols. The terms f(t) where f is a fluent
symbol and t is a tuple of fixed constant symbols are called state variables, as the
state is actually determined by the value of such “variables”.

2.9.2 Semantics

From a semantic point of view, states represent logical interpretations over the lan-
guage of FSTRIPS. The denotation of a symbol or term t in the state s is written
as ts, while the denotation rs of terms made up only of fixed symbol, and which
does not depend on the state, is written as r∗. The denotation of standard fixed
symbols like ‘3’, ‘+’, ‘=’ is assumed to be given by the underlying programming
language, while object names c are assumed to denote themselves so that c∗ = c.
The denotation of fixed (typed) function and relational symbols can be provided
extensionally, by enumeration in the initial situation, or intensionally, by attaching
actual functions (i.e. external procedures) to them [23]. The states s thus just need
to encode the denotation f s of the functional fluent symbols, which as the types
of their arguments are all finite, can be represented as the value [f(c)]s of a finite
set of state variables f(c), where f is a functional fluent and c is a tuple of fixed
constant symbols. The denotation [f(t)]s of a term f(t) for an arbitrary tuple of
terms t, is then given by the value [f(c)]s of the state variable f(c) where c∗ = ts.
The denotation es of all terms, atoms, and formulas e in the state s follows in the
standard way.

An action a is applicable in a state s if [Pre(a)]s = true, and the state sa that
results from the action a in s satisfies the equation f sa(ts) = ws for all the up-
dates f(t) := w that the action a triggers in s, and otherwise is equal to s. This
means that the action a changes the value of the state variable f(c) to ws in the
state s iff there is an effect C → f(t) := w of action a such that Cs = true and
ts = c. For example, if X = 2 is true in s, the update X := X + 1 increases the
value of X to 3 without affecting other state variables. Similarly, if loc(b) = b′ is
true in s, the update clear(loc(b)) := true is equivalent to clear(b′) := true.
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2.9.3 Example

A simple planning problem involving a set of integer variables X1, . . . , Xn and
actions that allow us to increase or decrease the value of any variable by one
within the [0, n] interval, can be modeled in Functional STRIPS by treating the
variables Xi as 0-arity fluent functional symbols with values ranging in the [0, n]
interval. These Xi symbols represent the state variables in the problem. If I =
{X1 = 0, . . . , Xn = 0}, and G = {X1 < X2, . . . , Xn−1 < Xn}, the problem is
about changing the value of the Xi variables from 0 to final values that increase
monotonically with i. The precondition-free action increment(Xi) has the effect
Xi := min (Xi + 1, n), and decrement(Xi) has the effect Xi := max (Xi − 1, 0)

Another example is the well known Blocks world domain. The action of mov-
ing a block b onto another block b′ can be expressed by an action stack(b, b′) with
precondition clear(b) = true ∧ clear(b′) = true, and effects loc(b) := b′ and
clear(loc(b)) := true. In this case, the terms clear(b) and loc(b) for blocks b
stand for state variables; the term clear(loc(b)) is not a state variable, as loc(b) is
not a fixed constant symbol. The goal of placing block b1 on top of block b2 is
expressed as loc(b1) = b2, while more interestingly, the goal of building a tower,
any tower, with all the blocks b1, . . . , bn can be expressed with the conjunction
of atoms loc(bi) 6= loc(bk) for every pair of blocks bi and bk, i 6= k. A model
fragment of Blocks World domain can be seen in Fig. 2.4 and an example of an
instance is shown in Fig. 2.5.

2.10 Summary

A classical planning problem can be seen as a search over a directed graph where
nodes represent states and edges represent actions between states. A plan is a path
in the graph that connects the initial state with a goal state. Classical planning be-
longs to what is known as task planning, which represent the symbolic reasoning
of an agent along a finite state space. There are a number of graph search algo-
rithms. Blind Search algorithms have been proven to not perform well on large
state problems, while heuristic search algorithms have demonstrated a good per-
formance on classical planning benchmarks. Deriving heuristics from the problem
representation is a crucial process to guide search, not only for optimal plans, but
for suboptimal and satisfactory solutions. There are several well known classical
planners that compute heuristics with different approaches. Delete relaxation or
landmark heuristics are an example of what state-of-the-art classical planners use
to solve challenging benchmarks. Heuristics search compute heuristic from the
problem representation, another class of algorithms, called width-based search al-
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gorithms, like IW (k) and SIW (k), compute a type of pseudo-heuristics from the
problem structure. Width-based search algorithms have a relevant importance in
this thesis, as they have demonstrated to produce good and quality results on very
challenging problems.

For representing classical planning Problems, we have mentioned two languages.
STRIPS language is the most extended one in the planning community. It has
been used in the International Planning Competition to represent well known
benchmarks. On the other hand, we propose the use of another language, called
FSTRIPS, which is more expressive and it is based on the variable-free fragment
of first order logic. We have defined and example in PDDL of how to represent
a simple problem in both STRIPS and FSTRIPS. The next chapter of this thesis,
introduces another well known type of planning used in the robotics community,
called motion planning.
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(define (domain blocksworld-fn)
(:types place - object

block - place)
(:constants table - place)
(:predicates (clear ?b - place))
(:functions (loc ?b - block) - place)

(:action stack-to-block
:parameters (?b - block ?from - place ?to - block)
:precondition (and (clear ?b)

(clear ?to)
(= (loc ?b) ?from)
(not (= ?b ?to))
(not (= ?b ?from))
(not (= ?from ?to)))

:effect (and (assign (loc ?b) ?to)
(clear ?from)
(not (clear ?to)))

(:action stack-to-table
:parameters (?b ?from - block)
:precondition (and (clear ?b)

(not (= ?b ?from))
(= (loc ?b) ?from))

:effect (and (assign (loc ?b) table)
(clear ?from))

Figure 2.4: PDDL model fragment for illustrating Blocks world classical planning Prob-
lem in FSTRIPS.

(define (problem two-blocks)
(:domain blocksworld-fn)
(:objects b1 b2 - block)
(:init (clear b2) (= (loc b1) table)

(= (loc b2) b1) (clear table) )
(:goal (= (loc b1) b2))

)

Figure 2.5: PDDL instance encoding for illustrating the Blocks world classical planning
Problem in FSTRIPS.
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CHAPTER 3

Motion Planning

3.1 Introduction

Motion Planning is widely used in robotics community [66, 58, 57]. A robot navi-
gation problem involves a robot moving in an environment with possible presence
of obstacles. But finding a collision free trajectory between an initial configu-
ration qI and a goal configuration qG does not only involve planar navigation.
Manipulating objects with a robot arm, with a number of degrees of freedom, re-
quires efficient motion plans. For instance, a manipulation problem with a robot
arm with 7 degrees of freedom (7-DOF), that has to interact in a large continuous
configuration space to pick-up and place objects. Problems that involve long term
tasks, such as picking up objects, tidying-up a room, or the classical planning
problem Blocks world, requires both task and motion planning.

In chapter 2 we discussed the problem of classical planning, which falls into cate-
gory of task planning or symbolic reasoning. Task planning answers the question
of, what should be done?. While motion planning, also known as continuous
planning or geometric reasoning answers the question of, how should be done?
As represented in Fig. 1.1, the robot can compute a trajectory for how to pick up
the box, but not what to do with that box. Task planner can be used to specify
symbolic goals such as place box blue on top of table 2. To accomplish this, we
rely on classical planning. However, to compute a collision-free trajectory for a
robot manipulator we require for motion planning. In this chapter we define what
is motion planning, we discuss some of the methods to sample the continuous
space and we review some motion planning algorithms.
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3.2 Planning in Continuous Space: Motion Planning

Motion planning determines what motions a robot has to do in order to reach a
goal configuration state without colliding into obstacles, and respecting the prop-
erties of the robot itself. Motion planning is also referred to as planning in contin-
uous space, where the state space is referred as the configuration space.

One of the best known methods for addressing the motion planning problem is
sampled-based motion planning. This method avoids the construction of the en-
tire configuration space and instead, it relies on defining a set of samples along
the space. It has been successful in recent years for robotics manipulation. There
are several techniques for sampling which will be reviewed in following sections.
Sampling a configuration space requires the use of collision detector, which is
considered as a black box. Sampling based methods sacrifice completeness by the
notion of probabilistic completeness. This will be covered more extensively in
the corresponding section, where we will describe the state-of -the-art sampling-
based motion planning algorithms.

Another method is known as combinatorial motion planning, which leads us to
completeness, building and exactly and discrete representation of the configura-
tion space. This means that for any problem instance a combinatorial motion
planning algorithm will either find a solution or will report that no solution exists.
However, sampling-based approach is more used in the robotics motion planning
research, due to the complexity and difficulties of the combinatorial motion plan-
ning. One of the reasons of using combinatorial motion planning is solving spe-
cific planning problems. For example a simple 2D world with a robot that can
only perform simple actions.

Another current approach is the search-based planning [12, 13], where they use
heuristic search-based algorithms based on sets of motion primitives that have
been pre-defined, and the search is done over a constructed graph. This method
has been demonstrated in mobile manipulation problems using 7-DOF robots.
It is a complete approach but not necessary optimal. One of the advantages of
this approach, is the fact that they can use the same motion primitives in similar
cases, where, on the other hand, in the sampling-based motion algorithms, dif-
ferent outputs can be obtained from the same, or similar input. However, in high
dimensional spaces, the search can become slow.
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3.2.1 Geometric Model
In this section we define each element that compose a geometric model. We use
the notation defined by [68].

Let’s define the world as W , either in 2D, in which W = R2 or 3D world, in
whichW = R3.

The obstacle region O is a static portion of the world defined as the set of all
points in W that lie in one or more obstacles: O ⊆ W . There are several ways
to represent O. For example as polygonal models, semi-algebraic models, 3D
triangles meshes or bitmaps represented as occupancy grids. For example an ob-
stacle region O, can be represented as a polygon composed by a set of vertices
and edges between these vertices. And obstacle polygon can be represented as a
sequence of points (x1, y1), (x2, y2), . . . , (xm, ym) and edges between them. In
order to check if a robot configuration lies in an obstacle region we need to use
what is called collision checkers. These methods are used for motion planning but
are not included as a motion-planning algorithm itself. There are several choices
for collision detection and O representation.

Let’s denote a rigid robot as A. A robot is transformed in W mapping every
point of A intoW preserving the distance between each pair of points of A and
its orientation θ. If we have a robot A occupying a 2D region in W , the trans-
lation of A is done by translating each point (xi, yi) for (xi + xt, yi + yt). The
same for the rotation movements, where A can be rotated a θ value. With this
representation, in a 2D world, A has three degrees of freedom corresponding to:

• Two for translation (x, y).

• One for rotation θ.

In a 3D world, A has six degrees of freedom corresponding to:

• Three for translation (x, y, z).

• Three for rotation (θ, ψ, φ), known as pitch, roll and yaw.

This definition is valid for a rigid body composed by a boundary representa-
tion. We can have the case of a robot composed by a set of links: A1,A2,. . . ,Am,
where m is the total number of links. A link Ai is attached to a link Ai+1 by a
joint j. Each joint between links has motion constrains, that must be specified, in
order to represent the kinematics of the robot and to avoid self-collision problems.
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The state space S term used in planning literature, is named as configuration space
C in motion planning [77]. The configuration space C is the set of all possible con-
figurations that could be applied to a robot.

So, let’s suppose a world W , a configuration space C, and a robot A. The robot
A is at configuration q ∈ C, where q = (xt, yt, θ). In addition, ifW contains an
obstacle regionO, this is represented as: Cobs = {q ε C | A(q) ∩ O 6= ø }. So, Cfree
is defined as Cfree = C \ Cobs. Fig. 3.1 represents a configuration space C with the
obstacle region Cobs. Now, we can formally define a Motion Planning Problem,
also called the Piano Mover’s Problem 3.2:

Figure 3.1: A configuration space C with a trajectory connecting qI and qG while avoid-
ing Cobs. The image has been extracted from [68].

Definition 3.2.1 (Motion Planning Problem) A Motion Planning Problem is de-
fined as a tuple P =<W ,O,A, C, Cfree, Cobs, qI , qG >, where:

• W is a world eitherW = R2 orW = R3.

• O is the obstacle region such that O ⊂W

• A is a robot. A robot can also be a collection of m links, such that: A1, A2,
. . . , Am.

• C is the set of all possible configurations of A.

• Cobs ⊆ C is the set of configurations which collide with the obstacle region.

• Cfree ⊆ C is the set of configurations which does not collide with the obsta-
cle region.

• qI ∈ Cfree is the initial configuration.

26



“tesi˙jonathan˙ferrer˙mestres” — 2018/3/20 — 12:44 — page 27 — #49

• qG ∈ Cfree is the goal configuration.

A solution to a Motion Planning Problem is a collision-free continuous path τ :
[0, 1]→ Cfree, where τ(0) = qI and τ(1) = qG.

Figure 3.2: Piano Mover’s Problem using RRT. The image has been produced using
OMPL [104].

3.2.2 Sampling-based Motion Planning

Sampling-based motion planners approximate the connectivity of a configuration
search space with a graph structure, avoiding the construction of Cobs. The con-
figuration space is sampled using sampling-based methods that we will review
in following sections. Edges between sampled configurations represent collision
free trajectories. For this reason, sampling-base motion planning requires a colli-
sion detector that checks if a sampled configuration or a trajectory yields in Cobs.
In case that a sampled configuration collides with the obstacle region, then q is
not taken into consideration. The same happens with trajectories connecting two
configurations q and q′. For checking a collision along a trajectory,

Sampling-based motion planners sample the configuration space with a deter-
mined resolution, sacrificing the notion of completeness, which says that for any
input, the algorithms reports if there is a solution in a finite time. On the other
hand, with sampling-based motion algorithms, we move into the notion of proba-
bilistic complete, which means that with enough sampling points, the probability
to find an existing solution converges to one if a solutions exists. Sampling-based
motion planning is composed by these following components:
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• A Configuration Space C. For example, for a flying robot, the configura-
tion space consist of all posible translations and rotations.

• Control space: Required only for systems with dynamics and system changes.
For example The game of Koules [62].

• State sampling: It is done by a sampler. Configurations need to be selected
in an infinite space in order to search over them.

• Collision checkers: Check if a configuration is colliding with the obsta-
cle region. Also check if a trajectory between a pair of configurations is
collision-free. For this purpose, the trajectory is divided intom intermediate
configurations. If not one yields in the obstacle region, then the trajectory
is collision-free.

We have defined what is the configuration space, so now, we are going to
review some sampling methods and what are collision checkers.

3.2.3 Sampling Methods
The configuration space C is infinite, so a method to sample C is required in order
to search over C. Some of these sampling methods are:

• Random sampling: Where samples are chosen over C randomly.

• Obstacle-based sampling: It consist to interpolating configurations be-
tween invalid and valid samples and take the last valid configuration before
an invalid one (very useful for narrow passages or problems where motions
have to be done close to obstacles).

• Gaussian sampling: It starts sampling a random configuration and contin-
ues following a Gaussian distribution.

• Low-dispersion sampling: It samples large uncovered areas in order to
make these uncovered areas as small as possible.

3.2.4 Collision Checkers or State Validation
Sampling-based motion planning avoids the construction of Cobs. Over the gen-
erated samples, a collision detection module is used in order to validate these
samples. A sampled configuration q is valid if q ∈ Cfree.A collision detection
can be done by a logical predicate ø : C → {TRUE,FALSE}. So, if we sam-
ple a configuration q such that, q ∈ Cobs, then ø(q) = FALSE. In other words,
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configurationq is an invalid configuration. In addition motion validation has to
check if the interpolation between two configurations q1 and q2 is valid, although
both of them are located in the Cfree space. Meaning, we have to check if τ ⊂
Cfree. This is called motion validation or path checking. Collision checkers are
a crucial part of motion planning, as the aim of a motion planners is to find a
collision free trajectory that respect the robot kinematics.

3.2.5 Single-query and multiple-query models
To describe some state-of-the-art motion planning algorithms, it is important to
distinguish between single-query and motion-query models.

Single-Query Models

The single-query models are greedy algorithms that don’t explore all the Cfree
space, only the parts that are relevant or that depend on some bias. A valid bias
could be to explore the configuration space towards a goal configuration. These
algorithms can take a long time to build a search structure, but then can deeply
dive into a solution. Given a graph G(V,E), and starting with a vertex v that
represents an initial configuration qI , the usual process is as follows:

1. Select a vertex q ∈ V .

2. For a sampled vertex qnew ∈ Cfree, try to construct and edge τ from q to
qnew, using the required collision detection methods.

3. Insert τ to E and qnew in V (if it was not already).

4. Check if solution exists.

5. If solution not found, then come back to point 1.

Algorithm 1 illustrates the basic procedure to build a Rapidly-Random Explor-
ing Tree (RRT) [67]. This algorithm is one of the most well known and extended
tree build process. Given an initial configuration qI , a number of iterations K and
a metric ∆q it builds a graphGwhere each node is a collision-free sampled config-
uration and edges between nodes are collision-free trajectories. Per each iteration,
the procedure selects a random configuration q ⊆ C. Step 4 selects the nearest ver-
tex qnear in G to qrand; Then, on step 5, it selects a new configuration qnew which
is computed by moving from qnear to qrand using a metric ∆q. Finally, The new
configuration qnew and the edge from qnear to qnew are added to the graph G. After
a number of K iterations the tree has been built. One may notice that there is no a
collision checking process along the tree building. Procedures RAND CONF ()
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Algorithm 1 Rapidly-Exploring Random Tree.

1: procedure BUILD RRT(qI , K , ∆q)
2: G.init(qI);
3: for i = 1 to K do
4: qrand ← RAND CONF ();
5: qnear ← NEAREST V ERTEX(qrand, G);
6: qnew ← NEW CONF (qnear,∆q);
7: G.add vertex(qnew);
8: G.add edge(qnear, qnew);

return G;

and NEW CONF (qnear,∆q) could be replaced by RAND FREE CONF ()
and NEW FREE CONF (qnear,∆q). However, collision checkers are usually
represented decoupled to motion planning algorithms, so we follow the same con-
vention. Fig. 3.3 illustrates the process of building a RRT after a number of it-
erations, being K = 500, 1500, 2500, 500 and the sampling method is random
sampling. These images have been obtained using the code in [69].

For the experiments related in this thesis, we are going to use a variation of RRT.
This variation is an algorithm called Rapidly-Exploring Random Tree Connect
(RRT-Connect) [60]. This algorithm 2 works generating two trees one towards
the other, attempting to connect both trees. This algorithm has demonstrated to be
useful for environments with narrow passages. The algorithm starts building two
separates trees. The first tree called Ta is constructed from the initial configuration
qI and the other tree Tb from the goal configuration qG; In each iteration, Ta is
grown as a normal RRT. If a new vertex qs is added to Ta, then the algorithm
attempts to extend Tb towards qs. This means that Tb tries to be extended towards
Ta. If both trees Ta and Tb are finally connected, then there is a path from qI to qG
through both trees, which now are represented as a single graph.

Multiple-Query Models

On the other hand, multiple-query models work by sampling C as much as they
can, constructing what is known as a roadmap. Once the roadmap is built, any
query represented as a pair (qI , qG) can be used on the same roadmap, without
the requirement of constructing a new tree or graph, as in RRT family algorithms.
These algorithms cover a wide space with uniformity, but needs lots of sampling
to cover the space. The most well known example of a multi-query algorithm is
the Probabilistic Roadmap (PRM) [58]. The basic process to build a roadmap is
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(a) RRT with 500 iterations. (b) RRT with 1500 iterations.

(c) RRT with 2500 iterations. (d) RRT with 5000 iterations.

Figure 3.3: RRT execution after 500, 1500, 2500 and 5000 iterations.
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Algorithm 2 Rapidly-Exploring Random Tree Connect

1: procedure BUILD RRT-CONNECT(qI , qG, K)
2: Ta.init(qI);
3: Tb.init(qG);
4: for i = 1 to K do
5: qrand ← RAND CONF ();
6: qnear ← NEAREST V ERTEX(qrand, Ta);
7: qs ← STOPPING CONFIGURATION(qnear, qrand);
8: if qs 6= qn then
9: Ta.add vertex(qs);

10: Ta.add edge(qnear, qs);
11: q′near ← NEAREST V ERTEX(Tb, qs);
12: q′s ← STOPPING− CONFIGURATION(q′near, qs)
13: if q′s 6= q′near then
14: Tb.add vertex(q′s);
15: Tb.add edge(q

′
near, q

′
s);

16: if q′s = qs then return SOLUTION
17: if |Ta| > |Tb| then SWAP (Ta, Tb)

return FAILURE

shown in algorithm 3. A PRM starts sampling a number n of configurations in the
configuration space. Only good configurations are taken, where good configura-
tions those ones which are collision-free. Once the state space has been sampled,
the algorithm builds the map attempting to connect each configuration q in V with
the k-nearest configurations qnear in V . If the new pair (q, qnear) does not exist in
E and both configurations q and qnear can be connected, then this edge is added
to the graph. At the end, the procedure returns the whole constructed graph. A
Probabilistic Roadmap Planner consists of two phases:

• Preprocessing phase: It builds the graph G following the algorithm 3

• Query phase: Given a pair (qI , qG), a search algorithm tries to find a path
from qI to qG;

It is easy to see that in single-query algorithms, solutions can be very different for
the same or similar input. On the other hand, in multiple-query algorithms, the
solution for the same input will be the same, unless the roadmap is not changed in
any way. There are a number of other motion planning algorithms like KPIECE
[103], PDST [62], EST [50] and variations of well know algorithms like RRT*
and PRM* [54], Lazy-RRT and Lazy-PRM [7].
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Algorithm 3 Probabilistic Roadmap

1: procedure BUILD PRM(n, K)
2: G.init(∅);
3: V ← ∅
4: E ← ∅
5: while |V | < n do
6: qrand ← RAND CONF ();
7: V ← V

⋃
qrand

8: for all q ∈ V do
9: Qnearest ← K NEAREST (q, V,K)

10: for all qnear ∈ Qnearest do
11: if edge(q, qnear 6∈ E and CONNECT (q, qnear) then
12: E ← E

⋃
edge(q, qnear)

return G

3.2.6 Example

Consider a motion planning problem where a rigid robot A must be moved from
an initial configuration to a goal configuration qG in a 2D worldW whose dimen-
sion areN×M , whereN = 660 andM = 440. The obstacle regionO is denoted
by the yellow marks. The configuration space C represents the set of possible
robot configurations as triplets 〈x, y, theta〉. Cfree denote the configurations in
C which are collision free, while Cobs denote those configurations which collides
with O. The initial configuration as stated in Fig. 3.4a is qI = 〈35,−169, 0〉 and
the goal configuration is qG = 〈604,−312, 90〉 as represented in Fig. 3.4b. The
goal is to find a collision-free trajectory τ between qI and qG.

Fig. 3.5 shows the results of applying RRT and RRT-Connect to the motion plan-
ning problem described before. Notice that the trajectories are different, where
the RRT-Connect is the shorter one. Both algorithms are single query, so the tree
needs to be rebuilt, after each execution.

Fig. 3.6 illustrates the results after applying the PRM algorithm. Fig. 3.6a shows
the valid configuration samples while Fig. 3.6b contains the whole roadmap with
edges connecting the samples. Notice that preprocessing phase for PRM, samples
the configuration C substantially more than RRT or RRT-Connect.

A possible solution to the problem depicted by Fig. 3.4 using RRT-Connect is
a collision-free trajectory of the form:
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(a) Rigid body with its initial configuration. (b) Rigid body with its goal configuration.

Figure 3.4: A simple 2D environment with the initial and goal configurations. The
OMPL [101] has been used to generate these environments.

(a) RRT trace. (b) RRT-Connect trace.

Figure 3.5: RRT and RRT-Connect traces. In Fig. 3.5a the red lines represent the tree as
it has been grown from qI . In Fig. 3.5b green lines represent the tree build from qI while
blue lines represent the tre built from qG. The orange trace represents the intermediate
configurations along the trajectory. These plans have been obtained using OMPL [101].
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(a) Configuration samples using PRM. (b) The whole PRM.

Figure 3.6: PRM trace. The orange trace represents the intermediate configurations
along the trajectory. These plans have been obtained using OMPL [101].

τ = {〈35.2,−169.4, 0.0〉, 〈37.2,−163.7,−0.008〉, . . . , 〈604.2,−312.4, 1.6〉},

where each tuple represents a configuration of the form 〈x, y, θ〉.

3.3 Summary
Combined Task and Motion Planning is the problem of integrated symbolic rea-
soning with geometric reasoning. While task planning can specify long term tasks
and high-level goals, motion planning can reason over the geometry on the con-
tinuous space. It can solve manipulation problems like moving an arm to place an
end effector in a feasible pose for grasping an object, or where to move the base
to have a feasible grasping pose.

Sampling-based motion planning is the most extended method, which relies on
sampling the configuration space using different methods. Motion planning al-
gorithms are divided into single-query and multiple-query algorithms. The first
ones build a tree for a single problem, attempting to connect the initial configu-
ration and the goal configuration. The second ones try to sample as much of the
configuration space and creates a graph where basic search algorithms can be ap-
plied to find a trajectory for different queries. The aim of a motion planner is to
find a collision-free trajectory from the initial to the goal configurations. Collision
checkers must be used in order to avoid collisions during sampling and connection
phase. In both cases, these algorithms cannot solve per se, the different problems
proposed in this thesis. CTMP problems are challenging and require a robust and
efficient integration to avoid backtracking. For the rest of this work, motion plan-
ners and collision checkers are used off-the-shelf to compute both, base and arm
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trajectories and to avoid collisions.
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PART II

Combined Task and Motion
Planning
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CHAPTER 4

Basic Model for Combined Task and
Motion Planning in 2D

4.1 Introduction
The aim of this chapter is to provide a novel integration of task and motion plan-
ning where the symbolic and geometrical components in robot planning are ad-
dressed in combination, with both parts playing an active role in the search for
plans. Unlike recent works that have a similar motivation [100, 34], our integra-
tion results in problems that can be solved with classical planners off the shelf.
For this, we discretize the configuration space and introduce first a formulation
of task and motion planning in Functional STRIPS with state constraints.1 Func-
tional STRIPS is an expressive first-order planning language that accommodates
constraints, functions, and numerical variables for which a powerful heuristic-
search planner has been developed recently [32]. State constraints are used to
prevent collisions and while they are not supported in Functional STRIPS, we
show how they can be handled.

The state constraints are formulas that must be true in all states encountered
throughout the execution of a plan, and are used to prevent collisions. The func-
tions are used in turn for encoding the changes, taking into account the geomet-
rical dimensions of objects and their poses. State constraints are not a standard
feature of planning languages, although their convenience has been thoroughly

1State constraints should not be confused with state invariants: a state constraint enforces a
formula to be true in all reachable states, while a state invariant is a formula that holds in all
reachable states.
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discussed in the literature on reasoning about actions [71, 98]. They are not part
of Functional STRIPS, but We will show that it is not difficult to add them to the
language and computational model.

The combined problem of task and motion planning expressed in FSTRIPS with
state constraints can be solved with the Functional STRIPS planner FS0 [32], that
performs a greedy best-first search from the initial state, using an informed heuris-
tic that is a variation of the relaxed planning graph heuristic introduced by FF
[49]. In addition, since the Functional STRIPS heuristic is expensive, we consider
two alternatives. The first is to compile these Functional STRIPS representations
into standard STRIPS for enabling the use of state-of-the-art STRIPS planners.
The second is the use of width-based planning algorithms [72], that have been
shown to be effective and do not use any heuristic. Width-based algorithms have
been used to achieve state-of-the-art results in classical planning [72], in the Atari
video-games [76], and the games of the general-video game AI competition [39].
As we will see, they also appear to be competitive for combined task and motion
planning.

4.2 Computation of the Heuristics
The FS0 planner solves problems in Functional STRIPS under two restrictions:
first, precondition, condition, and goal formulas are limited to be conjunctions of
literals; second, terms featuring nested fluents are excluded. These problems are
solved using a greedy best-first search from the initial state, guided by a heuristic
that is a departure from generalizations of relaxed planning graph heuristic in FF
[49] that follow the so-called value-accumulating semantics [47, 42, 51]. In such
an interpretation, each fact layer k of the relaxed planning graph (RPG) keeps for
each state variable X a set Xk of possible values that grow monotonically with k.
A conjunction of atoms in a precondition, condition, or goal, is satisfied in a layer,
potentially triggering new effects, if each atom in the conjunction appears in the
layer.

This interpretation is adequate for propositional settings, but too weak for the
first-order setting of Functional STRIPS where for example, a conjunction like
(X1 < X2) ∧ (X2 < X3) will be deemed as satisfied in a layer k if the set of
possible values in that layer are Xk

1 = Xk
2 = Xk

3 = {0, 1}. Indeed, there are then
logical interpretations that can make each of the two atoms true, but no logical
interpretation that can make both atoms true at the same time.

The main departure in the computation of the relaxed planning graph in Func-
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tional STRIPS is that the sets Xk of possible values for the state variables X in
layer k are used to determine whether a condition, precondition, or goal formula
A is satisfiable in layer k by following the rules of first-order logic; namely, A
is satisfiable if there is at least one state s compatible with the variable domains,
i.e., where Xs ∈ Xk for each state variable X , such that As = true. If A is a
conjunction of atoms p1(t1) ∧ · · · ∧ pn(tn) and fluents do not appear nested, the
problem of determining the satisfiability ofA in layer k maps into a constraint sat-
isfaction problem (CSP) where the variables are the state variableX with domains
Xk, and the constraints are given by atoms. The problem can be solved in FS0
either exactly or approximately. In the first case, the CSP is solved fully, which
can be fast, although it is exponential in the worst case; in the second, effective
but polynomial constraint propagation algorithms are used instead, and A is taken
to be satisfiable if the propagation does not prove inconsistency.

To complete the construction of the relaxed planning graph in FS0, a value c′ 6∈
Xk is added to the domainXk+1 of state variableX = f(c) in the next layer k+1,
supported by effect C → f(t) := t1 of action a, iff there is state s compatible with
the possible values of the variables in layer k such that Pre(a)s = Cs = true,
ts = c, and ts1 = c′. This last condition actually amounts to testing the satisfiabil-
ity of a CSP with variables X , domains Xk, and the constraints Pre(a) = true,
C = true, t = c, and t1 = c′. Likewise, the graph construction ends in layer k
if the goal G is then satisfiable. Like in FF, the heuristic value h(s) stands for the
number of actions in the plan extracted backward from the first layer where G is
satisfiable.

4.3 Functional STRIPS Model with State Constraints
Due to the ability of Functional STRIPS to handle functions and constraints, it is
rather simple to express problems where the goal involves geometrical constraints.
It is less direct, however, to enforce such constraints throughout the execution of
plans, which is critical in robotics for avoiding collisions. We show how to achieve
this by extending Functional STRIPS with state constraints [71, 98].

4.3.1 Syntax and Semantics
Definition 4.3.1 (FSTRIPS Planning Problem with state constraints) A FSTRIPS
planning problem with state constraints is a tuple P = 〈S, I, O,G,C〉 where:

• S is the set the non-standard symbols (fixed and fluent) and their types.

• I provides the initial unique denotation s0 of such symbols.
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• O stands for the actions.

• G is the goal.

• C stands for a set of formulas expressing the constraints.

The syntax for these formulas is the same as for those encoding the goal G
but their semantics are different. State constraints are used for encoding implicit
preconditions. Namely, an action a is deemed applicable in a state s when both
[Pre(a)]s = true and the state sa that results from applying a to s is such that
cs = true for every state constraint c ∈ C. In other words, an action a is non-
executable in s if its execution leads to a state sa that violates a state constraint.

4.4 Heuristics for Handling State Constraints
State constraints affect the construction of the relaxed planning graph and the
resulting heuristic, but the required changes are minor. We had before that a value
c′ 6∈ Xk is added to the domain Xk+1 of state variable X = f(c) in the next layer
k+1 of the planning graph, supported by an effect C → f(t) := t1 of action a, iff
there is state s compatible with the possible valuesXk of the variables x in layer k
such that Pre(a)s = Cs = true, ts = c, and ts1 = c′. The change in the presence
of state constraints is that such states smust satisfy all the state constraints as well.
Indeed, the states that are possible according to the sets Xk of possible values of
each state variable X but which do not satisfy a state constraint are pruned, and
never considered in the construction of the planning graph. In particular, the goal
G is satisfied in layer k if an interpretation s compatible with the possible values
Xk satisfies both G and the state constraints. As an example, an action effect like
X > 2 → Y := X + 1 can support the values Y = 4 and Y = 5 in layer k + 1
if the set of possible values for X in layer k is Xk = {3, 4}. On the other hand,
if X < 4 is a state constraint, only the first of the two Y values will get support,
as the interpretations where X = 4 is true will be pruned. Likewise, a goal like
X > 3 will not be satisfiable then in layer k either.

4.5 Example with State Constraints
We illustrate next the usefulness of state constraints both in terms of modeling and
computation with a couple of examples, reporting their running times as well.

The Missionaries and Cannibals (M&C) problem has received wide attention
since the early days of AI [2] as a toy problem that is nevertheless representative
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of a wider class of transportation-under-constraints problems.

In its standard version, the problem places three missionaries and three cannibals
on the left bank of a river which they all want to cross. A single boat is available
that can hold only two people at a time, regardless of whether they are missionar-
ies or cannibals. Apparently, the missionaries do not want to be outnumbered by
the cannibals, be it on either bank of the river or inside of the boat, for fear of the
cannibals exercising their defining inclination.2 The goal is to find an appropriate
schedule of river crossings that transports everyone to the right bank of the river
in a safe manner.

We model a generalization of the problem for n missionaries and n cannibals
(n ≥ 3) on a complete graph. There are fixed symbols l1, . . . , lm representing the
locations, and state variables nc(l) and nm(l) representing the number of canni-
bals and missionaries at each location l. In addition, the 0-ary functional symbol
X represents the current location of the boat. The actions move(c,m, l), with
0 ≤ c,m ≤ 2, c + m ∈ {1, 2}, move c cannibals and m missionaries in one boat
trip from the current location to l. Their preconditions are c ≤ nc(X ) and m ≤
nm(X ), and their effects are X := l, nc(l) := nc(l) + c, nc(X ) := nc(X ) − c,
and analogously for the missionaries. Finally, the restriction on cannibals not out-
numbering missionaries in a location l is modeled by the binary state constraint
nm(l) ≥ nc(l) ∨ nm(l) = 0. The “inside of the boat” restriction is encoded as
part of the move action.

As a second example, consider a simple navigation problem with geometrical
obstacles in which an n × m grid contains a robot that has to reach a goal cell
while avoiding obstacles. For simplicity, let us assume for now a point robot
with no geometry, and rectangular shape obstacles o which can be represented by
a couple of coordinate points (xo, yo) and (x′o, y

′
o), with xo < x′o and yo < y′o

(obstacles having other shapes can be thought of as a combination of smaller rect-
angles). The location of the robot is represented by two 0-arity fluent functional
symbols x and y with values in [1, n] and [1,m]. The actions move(dx, dy) with
dx, dy ∈ [−1, 1] move the agent to adjacent locations, including diagonals, with
effects x := max(0,min(x+ dx, n)) and y := max(0,min(y + dy,m)). Avoid-
ance of obstacles o in any plan can then be represented succinctly through the state
constraints ¬(xo ≤ x ≤ x′o∧yo ≤ y ≤ y′o) that say that the robot cannot be inside
one of the rectangles. The problem has as many state constraints as obstacles, and

2A historically more accurate version of the problem has it that it is the cannibals that do
not want to be outnumbered by the missionaries for fear of being converted, but we restrict our
discussion to the first version for the sake of tradition.
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each constraint involves the coordinates of a rectangle and the coordinates of the
robot. The extension of the FS0 planner with state constraints can handle prob-
lems such as this, with a linear number of geometrical obstacles, in less than 0.1
seconds for 10× 10 grids, and in less than 15 seconds for 50× 50 grids with 2500
cells.

We have actually tested the planner on a number of randomly generated instances
of increasing size for each of these two domains.3 In the case of the M&C do-
main, the planner scales up pretty well, handling problem sizes of 20-node loca-
tion graphs and 12 missionaries plus 12 cannibals with relative ease: an instance
with a 10-node graph and 9 + 9 missionaries and cannibals is solved in 80 sec. by
finding a plan of length 49 after expanding 637 nodes. An instance with 20 nodes
and 12 + 12 individuals takes 379 sec. and 183 node expansions to find a plan of
length 45. Similarly, the planner handles navigation problems with a linear num-
ber of geometrical obstacles in less than 0.1 sec. for 10 × 10 grids and less than
15 sec. for 50× 50 grids.

4.6 Modeling Task and Motion Planning
We consider a more general type of problems where there is a robot (gripper)
that can translate, rotate, pick up objects, and drop them. The domain encoding in
Functional STRIPS with constraints is shown in Figure 4.2, and the instances to be
considered are shown in Figure 4.1. For convenience, the encoding distinguishes
actions for translations and rotations with an object being held and without, as
in the former case the action changes the configuration of both the robot and the
object being held. The main state variables in the problem represent the config-
urations conf(r) and conf(o) of the robot and the different movable objects o.
Symbols like translated and rotated denote fixed functions.

Symbol conf is a functional fluent, and r and o are constant symbols represent-
ing the robot and each one of the objects. The other state variable represents the
status of the gripper: hand = o means that the object o is being held, and hence
that it will move with the robot, and hand = free that the gripper is empty.
The pick up and drop actions just change the state of the gripper, and for the
robot to pick up an object, the gripper must be empty and the tip of the grip-
per must be sufficiently close to the object, something that is captured by a fixed
boolean symbol graspable whose denotation is an actual function that determines
if the robot and the object are in a configuration where the robot can grasp the

3 Problem encodings for which empirical results are discussed are available at https://
goo.gl/67Zibk.
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object. The other fixed function symbols used are translated, rotated, orotated,
no overlap, and valid. They are used to capture the configuration changes that
result from the actions, and the state constraints. The function denoted by the
symbol translated is used to update the robot configuration when the robot trans-
lates in a certain direction, and to update an object configuration when the robot
translates while holding an object. The symbol rotated denotes a function that
captures the robot configuration that results when the robot rotates in an angular
direction, and orotated represents a function that captures the object configura-
tion that results when the robot rotates while holding the object. The difference
between rotated and orotated arises because the robot, which is actually a robot
gripper, rotates over its center of mass which is not the center of mass of the ob-
ject being held, that is closer to the tip of the gripper. Likewise, the fixed symbol
no overlap denotes a boolean procedure that accepts as arguments a robot and a
movable object, or two objects, along with their configurations, and determines
whether they overlap in space. Finally, the boolean function denoted by the sym-
bol valid takes a configuration as an input and check if it is valid. Actually, there
is a single non valid configuration that is the null configuration, denoted ⊥. The
functions that compute updated configurations output the null configuration when
the resulting configuration is not physically possible (part of the object gets out
of the grid or overlaps a fixed obstacle). While the no overlap state constraints
take care of collisions among pairs of movable objects (including the robot), the
valid state constraints take care of collisions of one movable object with the fixed
environment.

In the 2D grid worlds that we consider, configurations are triplets 〈x, y, θ〉 where
x and y capture the center-of-mass position of the object or robot, and θ its ori-
entation. The 2D space is discretized according to a varying resolution parameter
r into a grid of size r × r for r ∈ {10, 30, 50}, while angles are discretized into
ra = 8 values. Thus the possible number of configurations for each object and
robot is in the order of #c = ra × r2, and since the gripper can be in n + 1
states, where n is the number of objects, the total size |S| of the state space is
(n+ 1)×#cn+1, which for n = 5 and r = 50 is |S| = 6∗ (8∗502)6 = 384∗1025.
This is pretty large, but precisely the appeal of classical planners is that their per-
formance is not tied to the size of the state space, as they can often search for
plans by considering a tiny fraction of the states.

Given the discretization of the configuration space, the fixed functions (proce-
dures) translated and rotated, accept a robot or object configuration in the dis-
cretized space, and a direction (angular for rotations), and return the resulting
configuration that is also in the discretized space. There are 8 possible transla-
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(a) (b)

(c) (d)

(e) (f)

Figure 4.1: Three task and motion instances considered with the initial state shown on
the left and the final state where goal is true shown on the right. MOVING (M) domain
in which a robot has to reach a target configuration, and a number of obstacles need to
be picked up and moved to get them out of the way. The other two domains considered
are CLUTTER (C), where robot has to pick up an object obstructed by other objects, and
TIDYING-UP (T) where objects have to be transported to a target area. Tables below show
features of the encodings and results obtained by running six planners.
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tion directions and each one moves the robot (and the object being held if any)
to the corresponding neighboring cell in the r × r grid, by adding +1, 0, or −1
to the x and y coordinates. The angular directions are just two: clockwise and
counter-clockwise, and they add or substract 45 degrees to the orientation angle.
The procedure orotated that updates the configuration of the object being held
after a rotation is the only one that may result in a configuration that is not in
the discretized space. In the planning encoding, this is avoided by mapping the
resulting object configuration into the nearest discretized configuration.

The configuration triplets are represented by suitable identifiers, and for efficiency
purposes, all the functions operating on configurations are precompiled so that ap-
plying a function is retrieving an entry from a table. This means that a function in-
vocation like translated(r, conf(r), d) becomes a table lookup that returns a con-
figuration id, so that an effect like conf(r) := translated(r, conf(r), d) simply
sets the state variable conf(r) to id. Similarly, the boolean procedures no overlap
and graspable take configuration id’s as arguments, and return a boolean value by
a table lookup. In addition, no overlap takes also the object id’s, as it needs to
have access to the object and robot geometries, that can be arbitrary. The robot and
object geometries (shapes) are given as tables that are visible only to these fixed
procedures. The fixed physical environment (walls and non-movable obstacles)
are compiled into these procedures, and actions that overlap fixed objects result in
the null configuration. The function valid actually just checks if its argument is
the null-configuration or not.
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types: dir, adir, conf, obj, robot, thing

fixed function symbols:
translated(t:thing, c:conf, d:dir): conf
rotated(r:robot, c:conf, d:adir): conf
orotated(o:object, c1,c2:conf, d:adir): conf
graspable(c1, c2: conf): bool
no overlap(t1, t2:thing, c1, c2:conf): bool
valid(c1:conf): bool

fluents:
conf(t: thing): conf
hand: {free} U object

action translate(d: dir)
prec: hand = free
eff conf(r) := translated(r,conf(r),d)

action rotate(d: adir)
prec: hand = free
eff conf(r) := rotated(r,conf(r),d)

action translate-with-obj(o: obj, d: dir)
prec: hand = o
eff conf(r) := translated(r,conf(r),d)
eff conf(o) := translated(o,conf(o),d)

action rotate with obj(o: obj, d: adir)
prec: hand = o
eff conf(r) := rotated(r,conf(r),d)
eff conf(o) := orotated(o,conf(o),conf(r),d)

action pickup(o: obj)
prec: graspable(conf(r),conf(o))= true
prec: hand = free
eff hand := o

action drop(o: obj)
prec: hand = o
eff: hand := free

state constraints:
no overlap(t, t’: thing, conf(t), conf(t’))
valid(c: conf)

Figure 4.2: Task and motion planning in Functional STRIPS. The six fixed function
symbols denote actual functions defined through external procedures that are sensitive to
the fixed environment and discretization used.
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We will consider three families of task and motion planning instances all based
on this domain encoding: one where the robot has to move to a target destination
by moving objects that are on the way, one where objects have to be moved to
destinations, and a third, where an object has to be grasped by moving blocking
objects. All of the problems combine elements from task and motion planning.
Some instances are shown in Figure 4.1.

4.7 Computation 1: Translations to STRIPS
Instances of the domain above can be solved by running a Functional STRIPS
planner. Yet, the encodings do not exploit the full power of the language, and sug-
gest a simple compilation into STRIPS. Since there are very good STRIPS plan-
ners, we describe the compilation below and report the results obtained by running
state-of-the-art STRIPS planners too. The compilation into STRIPS involves two
parts: compiling the functions away, and compiling the state constraints away.
The first part is simple: since the effects of STRIPS actions are state-independent,
we make the configurations mentioned in an action schema into arguments of the
action schema, and ground these arguments to each of their possible values. Then
one must check that these values are in the right relation, and use them to estab-
lish the action precondition, add, and delete lists. This allows us to compile away
the fixed functions. In addition, atoms X = f(Y ) and assignments X := f(Y )
where f is a fluent, like hand and config, are converted into relations f(X, Y ).
For example, the Functional STRIPS schema rotate with obj(o : obj, d : adir)
maps into the STRIPS ground actions:

action rotate with obj(c1r, c2r, c1o, c2o, o, d)
precondition: hand(o), conf(r,c1r), conf(o,c1o)
add: conf(r,c2r), conf(o,c2o)
del: conf(r,c1r), conf(o,c1o)

Figure 4.3: PDDL domain encoding for illustrating the Classical Planning Problem in
STRIPS of the previous example.

where o is an object, d is an angular direction (clockwise, counter-clockwise),
and the c’s are configurations in the table that must obey the relations c2r =
rotated(r, c1r, d) and c2o = orotated(o, c1o, c1r, d). Since graspable(cr, co)
must be true when hand(o) becomes true, and remains true as long as the object
is being held, the arguments of the action must also satisfy graspable(c1r, c1o) =
true. The number of ground actions rotate with obj(c1r, c2r, c1o, c2o, o, d) ends
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up being linear in the total number of configurations and not quartic.

Additional action preconditions and effects result from the compilation of state
constraints. The compilation of the valid constraint is direct: the grounding is
limited to object and robot configurations that are valid (i.e., that do not over-
lap walls or fixed obstacles). For compiling the no overlap constraint, new atoms
free(cell) are added and used in the preconditions and delete effects of all (ground)
actions where the robot or an object would end up occupying cell after the action.
Likewise, free(cell) atoms are included in the add list of actions that make cell
free after the action. Recall that state constraints encode action preconditions im-
plicitly: an action a is not deemed to be applicable in a state s when the resulting
state violates a state constraint. For compiling these constraints into STRIPS, we
need to convert such implicit preconditions into explicit preconditions. Proposi-
tional state constraints A, are actually, a particular type of temporal extended goal
or LTL formula of the form “always A” [3], and methods have been devised for
compiling such goals into STRIPS and variations [26]. In our setting, the ground
formulas A take the form ¬(conf(r, o1)∧ conf(o2, c2)) where o1 is an object (or
robot) and o2 is an object.

4.8 Computation 2: Heuristic and Width-based Search
We consider a second computational approach, width-based search [72] that has
been developed in the context of classical planning and uses no heuristic at all.

Width-based algorithms [72, 73] are simple but not that well known, so it’s worth
reviewing them briefly. An expression X = x where X is a state variable and x a
value, is called an atom, and a state s is said to make the atom X = x true if X
has value x in the state s. Similarly, s is said to make a tuple t (set) of atoms true
if s makes each atom in t true.

Iterated Width or IW is a sequence of calls IW(i) for i = 1, 2, . . . where IW(i) is
a plain breadth-first search with one change: the states s generated in the search
are pruned when they are not the first state in the search to make true some tuple
(set) of i atoms or less. Thus, IW(i) for i = 1, i.e., IW(1), is a breadth-first search
where a newly generated state s is pruned when there is no new atom made true by
s, IW(2) is a breadth-first search where a newly generated state s is pruned when
there is no new atom pair made true by s, and so on.

Best-first width search (BFWS) is a best-first search algorithm that combines
width-based measures with an implicit form of goal serialization. BFWS tracks
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two measures: the number of atomic goals that are true in s, and the size of the
smallest tuple of atoms t that is true in s and false in all the states generated be-
fore s that have the same number of true goals as s. The evaluation function f(s)
in BFWS is given by the second measure, called the novelty measure (smaller is
better), with ties broken by favoring states with a maximum number of true goals.
We use the implementation of these algorithms in the planning toolkit LAPTK
that supports width-based search for problems expressed in STRIPS, and more
recently in Functional STRIPS [92].

4.9 Experimental Results
We evaluated 6 planners on 5 instances combining task and motion planning as-
pects that are beyond the scope of motion planners alone. Using three resolutions
that partition the 2D square grid into 10x10, 30x30, and 50x50 cells, the 5 in-
stances result into 15 planning problems. The instances correspond toMOVING
(M) and CLUTTER, where a robot (gripper) must reach a target or grasp an object
by moving objects out of the way, and TIDYING-UP (T) where objects must be
transported to a destination (set of configurations).

Reach a target configuration, is a common motion planning problem, but the in-
clusion of objects which can be moved by the robot introduce a task component
which is no trivial since the possible obstructions must be captured by the mo-
tion planner while the decision about which object must be moved, by the task
planner, producing the commented backtracking. Our approach shows that state
constraints allows to produce plans which no overlap in space in a reasonable
time, even with a huge number of possible overlaps between objects, being more
than 500k in some instances and even more than a million in T with 50x50 and 3
objects.

The instances are referred to as X-r-k where X is the instance class, r the res-
olution, and k the number of movable objects. The STRIPS planners are FF,
FD with lazy evaluation, and LAMA [49, 45, 94], while the Functional STRIPS
planners are FS0 [32], IW, and BFWS [72]. The initial and goal configura-
tions of one of the problems is shown in Figure 4.1. We do not report empir-
ical comparisons with other approaches to combined task and motion planning
due to the lack of shared languages, benchmarks, and software. The planners
that we use are all available, while our Functional STRIPS encodings, STRIPS
translations, and videos illustrating the resulting plans can be found on the web
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Problem FSTRIPS STRIPS
Name #C R-O O-O #A #Cs #V #A #F

M-10-4 244 1.5k 896 58 15 10 4.3k 3k
M-10-5 244 1.5k 896 58 21 12 5.3k 3.1k
M-30-4 1.3k 86k 82.6k 58 15 10 33.5k 5.3k
M-30-5 1.3k 86k 82.6k 58 21 12 41.2k 6.2k
M-50-4 3.3k 553.4k 608k 58 15 10 –M–
M-50-5 3.3k 553.4k 608k 58 21 12 –M–
C1-10-7 166 1320 512 94 36 16 5.2k 3421
C1-30-7 1k 107k 66.4k 94 36 16 109k 7.5k
C1-50-7 2.7k 762k 536k 94 36 16 –M–
C2-10-5 158 1.2k 996 70 21 12 3729 3209
C2-30-5 1k 94.1k 62.8k 70 21 12 56.8k 5.6k
C2-50-5 2.5k 656k 502.5k 70 21 12 –M–
T-10-3 222 1.8k 704 64 10 11 4.3k 4.2k
T-30-3 1.4k 167.5k 92.4k 64 10 11 96.2k 6k
T-50-3 3.5k 1.2m 761.8 64 10 11 –M–

Table 4.1: Data of the 15 planning instances. Columns show number of valid object
configurations, configuration pairs that overlap (robot-object and object-object), ground
actions, state constraints, and state variables. –M– means that STRIPS planners died at
preprocessing before reporting the numbers.
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Problem FD LAMA FF
Instance L E T L E T L E T
M-10-4 19 20 0.08 19 41 0.04 20 24 0.0
M-10-5 20 22 0.1 20 37 0.04 21 32 0.1
M-30-4 39 46 3.4 39 59 2.82 57 464 11.73
M-30-5 44 55 2.36 44 68 3.74 75 2K 92.97
M-50-4 -M- -M- -M-
M-50-5 -M- -M- -M-
C-10-7 18 42 0.08 18 62 0.04 17 221 0.08
C-30-70 51 470 55.76 52 702 176.04 -T-
C-50-7 -M- -M- -M-
C2-10-5 9 16 0.06 10 22 0.02 11 33 0.01
C2-30-5 16 16 2.56 17 20 1.66 16 26 1.35
C2-50-5 -M- -M- -M-
T-10-3 58 186 0.16 53 411 0.36 68 637 0.29
T-30-3 -M- -M- -M-
T-50-3 -M- -M- -M-

Table 4.2: Performance of STRIPS planners on the 15 instances from Table 4.1. The
STRIPS planners are FD, FF, and LAMA. In most instances, the memory failure occurs
at preprocessing.

https://goo.gl/67Zibk.

Table 4.1 shows data for the planning instances determined by the resolution pa-
rameters. As expected, the Functional STRIPS encodings are compact, while the
STRIPS compilation tend to be large, involving in some cases thousand of atoms
and tens of thousands of ground actions.

Aside from the resolution parameter and number of movable objects, the table
shows the number of valid configurations for an object, and the number of robot-
object and object-object configuration pairs that overlap in space. It then shows
the number of ground actions, state constraints, and state variables in the Func-
tional STRIPS encodings, and the number of ground actions and fluents in the
STRIPS encodings. The symbol –M– is used to show cases where the compila-
tion in STRIPS failed due to memory. As expected, the encoding in Functional
STRIPS are compact, while those for STRIPS can be very large, resulting in thou-
sand of atoms and tens of thousands of ground actions (more than 100k ground
actions in C-30-7).

Table 4.2 shows the results of the three STRIPS planners and table 4.3 shows
the results of the three FSTRIPS planners. For each instance, the columns show
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Problem FS0 IW BFWS
Instance L E T L E T L E T
M-10-4 24 42 2.11 18 1.5k 0.076 24 645 0.01
M-10-5 21 36 2.43 18 1.2k 0.072 24 534 0.02
M-30-4 -T- 38 30k 1.9 38 14k 0.59
M-30-5 -T- 42 19k 1.73 52 12k 0.69
M-50-4 -T- 59 64k 5.6 74 30k 1.49
M-50-5 -T- 66 51k 5.08 79 32k 2.03
C-10-7 23 115 1.82 15 1.6k 0.12 15 1.2k 0.07

C-30-70 35 308 34.33 37 55k 5.95 37 39k 2.9
C-50-7 -T- -T- -T-

C2-10-5 12 23 0.2 8 262 0.01 8 86 0.0
C2-30-5 35 308 35.52 16 2.5k 0.2 16 349 0.03
C2-50-5 124 2778 416.4 23 9.6k 1.02 23 1.3k 0.12
T-10-3 62 538 18.2 41 42k 1.81 38 37k 1.12
T-30-3 -T- 65 1.2m 80.7 75 224k 8.73
T-50-3 -T- -M- -M-

Table 4.3: Performance of Functional STRIPS planners on the 15 instances from Ta-
ble 4.1. The Functional STRIPS planners are FS0, IW, and BFWS. In most instances,
the timeout occurs with the heuristic planner FS0. Width-based search planners performs
well in most of the problem instances.
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plan length, number of expanded nodes, and runtime in seconds. Time and mem-
ory outs shown as –T– and –M–. Time and memory bounds are 1800 seconds
and 8GB respectively. The STRIPS planners solve 9 out of the 15 planning in-
stances, with runtimes that do not go beyond 1 minute except in one case. This is
quite remarkable as some of these problems, like C-30-7, involve a huge number
of ground actions (more than 100k). There are no significant differences among
the STRIPS planners, with FF missing one more instance than FD and LAMA
(precisely C-30-7). It turns out that the Functional STRIPS planner FS0 doesn’t
do better: it solves 8 of the problems, the same as FF and one less than FD and
LAMA. Since the heuristic of FS0 is informative but expensive, however, FS0
doesn’t run out memory (8Gb) but out of time (1800 seconds). FS0 solves one
instance that STRIPS planners do not: C2-50-5. Width-based algorithms IW and
BFWS come on top: they solve almost all of the instances, 13 out of 15, in a
few seconds, with the exception of T-30-3 that is solved by IW in 80 seconds.
Moreover, the plans computed by IW tend also to be the shortest. Width-based al-
gorithms expand many more nodes than the heuristic search algorithms, but they
do so much faster. Actually, in these problems, STRIPS planners expand few
nodes and the extra overhead in the computation of the heuristic in FS0 does not
pay off.

4.9.1 Validation and Use of Plans
In a different set of experiments, using the robot simulator Gazebo with the physics
on and a bump detector, we checked the validity of the plans. The encodings en-
sure that the resulting plans are collision-free after each of the actions in the plan
but this doesn’t ensure the absence of collisions during the execution of the ac-
tions. We thus wanted to test if, as expected, fine discretizations exclude collisions
during the execution of actions, which we call internal collisions, as for fine dis-
cretizations internal collisions result in “external” collisions; i.e., collisions at the
end of the action execution.

Focusing on the plans obtained by IW and BFWS only, there are 28 plans to
check as there are 5 task and motion problems and 3 resolutions, which results in
15 problems for each of the two algorithms, with one problem, T-50-3, not solved
by either one. Interestingly, the resolutions 10x10 and 30x30 result in plans that
produce an internal collision at some point; indeed, 9 of the 10 plans for the 10x10
resolution and 7 of the 10 plans for the 30x30 resolution feature at least one such
collision during an action execution. On the other hand, for the 50x50 resolution
just 1 out of the 9 plans found by IW and BFWS was invalid in this sense. This
means that fine space resolutions can be used to exclude all collisions and that
plans for such resolutions can actually be computed, even if the combinatorics is
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very high.

Actually, from a computational point of view, it is not necessary or convenient to
use the same resolution over the whole space to ensure collision-free plans. One
can apply a plan-simulate-refine-replan cycle where the resolution is increased
over the areas of the space where the simulations detect internal collisions un-
til no such collisions are found. It is important to emphasize that this iterative
approach is different than both hierarchical approaches that decouple task and ge-
ometry planning, and replanning approaches where failed simulated executions
are used to revise the symbolic task model [100].

The key difference is that our scheme takes geometry into account while comput-
ing the plans. The need for replanning is not for checking geometrical feasibility
but to make the geometrical reasoning sound by increasing the resolution over the
relevant parts of the configuration space.

4.10 Discussion
We have proposed an alternative integration of task and motion planning where
the symbolic and geometrical components are addressed in combination, with nei-
ther part taking the back seat. For this, we have built on an expressive planning
language, Functional STRIPS, that supports constraints, functions, and numeri-
cal variables, and on the planner FS0, which supports a large fragment of this
language in the specification of problems and is crucially able to exploit its ex-
pressivity in the computation of heuristics.

We have extended this language and computational model with state constraints:
logical formulas that must hold true in every state of a plan. In order to address
motion and task planning problems, we use functions for encoding the geometri-
cal dimensions of objects and their poses, and state constraints to express that no
two objects, including the robot, can overlap in space. The experiments reported
are preliminary but illustrate the feasibility of the approach.

There is a lot of room for improving performance and for exploring the possibili-
ties that are afforded by this integration of motion planning into task planning. In
particular, scaling up well in the presence of large grids and many objects remains
a challenge. In principle, however, there is no need for the grids to be regular:
it’d be more natural to use higher resolutions around the current robot configura-
tion and lower resolutions elsewhere. Alternatively, maps obtained from random
configuration sampling, as in probabilistic roadmaps, could be used instead. The
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strength of the integration proposed is that it is very general and independent of
these choices.

We have shown that existing STRIPS and Functional STRIPS planners can be
used for solving problems that combine task and motion planning. We used the
STRIPS planners off-the-shelf, and introduced a domain-independent extension
of Functional STRIPS for managing state constraints that are used to prevent col-
lisions. The STRIPS encodings are obtained from a simple compilation.

The problems considered are not fully realistic but are far from trivial. The state
space in some of the problems is huge. With a 50x50 discretization, there are
2500 cells, and 8×2500 = 20, 000 object configurations which in some problems
result in more than 1025 states. These are problems that are solved by width-based
algorithms in a few seconds. While the approach, does not exclude the possibility
of collisions during the execution of actions, as opposed to collisions at the end,
we have seen that such collisions can be avoided by using fine discretizations,
and used a robot simulator to prove that only 1 of the 9 plans found by either
IW or BFWS for the 50x50 resolution was invalid in this sense. We discussed
also ways for using the approach in a plan-simulate-refine-replan cycle to create
non-uniform discretizations.
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CHAPTER 5

Pick and Place Tasks in 3D

5.1 Introduction
Planning problems in robotics involve robots that move around, while manipulat-
ing objects and avoiding collisions. These problems are thought to be outside the
scope of standard AI planners, and are normally addressed through a combination
of two types of planners: task planners that handle the high-level, symbolic rea-
soning part, and motion planners that handle motion and geometrical constraints
[11, 41, 10, 105, 78, 53]. These two components, however, are not independent,
and hence, by giving one of the two planners a secondary role in the search for
plans, approaches based on task and motion decomposition tend to be ineffective
and result in lots of backtracks [65].

In recent years, there have been proposals aimed at addressing this combinatorial
problem by exploiting the efficiency of modern classical AI planners. In one case,
the spatial constraints are taken into account as part of a goal-directed replanning
process where optimistic assumptions about free space are incrementally refined
until plans are obtained that can be executed in the real environment [100]. In an-
other approach [35], geometrical information is used to update the heuristic used
in the FF planner [49]. Other recent recent approaches appeal instead to SMT
solvers suitable for addressing both task planning and the geometrical constraints
[85, 14].

The work done in this chapter aims at exploiting the efficiency of modern clas-
sical AI planning algorithms but departs from prior work in two ways. First, task
and motion problems are fully compiled into classical planning problems so that
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the classical plans are valid robot plans. Motion planners and collision checkers
[68] are used in the compilation but not in the solution of the classical problem.
The compilation is thus sound, and probabilistically complete in the sense that
robot plans map into classical plans provided that the number of sampled robot
configurations is sufficient. In order to make the compiled problems compact,
we move away from the standard PDDL planning language and appeal instead
to Functional STRIPS [37], a planning language that is expressive enough to ac-
commodate procedures and state constraints. State constraints are formulas that
are forced to be true in every reachable state, and thus represent implicit action
preconditions. In the CTMP planning encoding, state constraints are used to rule
out spatial overlaps. Procedures are used in turn for testing and updating robot
and object configurations, and their planning-time execution is made efficient by
precompiling suitable tables. The size and computation of these tables is also effi-
cient, and allows us to deal with 3D scenarios involving tens of objects and a PR2
robot simulated in Gazebo [59].

The second departure from prior work is in the classical planning algorithm itself.
Previous approaches have built upon classical planners such as FF and LAMA
[49, 94], yet such planners cannot be used with expressive planning languages
that feature functions and state constraints. The Functional STRIPS planner FS
[32] handles functions and can derive and use heuristics, yet these heuristics are
expensive to compute and not always cost-effective to deal with state constraints.
For these reasons, we build instead on a different class of planning algorithm,
called best-first width search (BFWS), that has been recently shown to produce
state-of-the-art results over classical planning benchmarks [74]. An advantage of
BFWS is that it relies primarily on exploratory novelty-based measures, extended
with simple goal-directed heuristics. For this work, we adapt BFWS to work with
Functional STRIPS with state constraints, replacing a Functional STRIPS heuris-
tic that is expensive and does not take state constraints into account by a fast and
simple heuristic suited to Pick-and-Place tasks.

Given that classical AI planning is planning over finite and discrete state spaces
with a known initial state, deterministic actions, and a goal state to be reached
[38], it is not surprising that the combined task and motion planning can be fully
compiled into a classical planning problem once the continuous configuration
space is suitably discretized or sampled [68]. Moreover, modern classical planners
scale up very well and like SAT or SMT solvers are largely unaffected by the size
of the state space. If this approach has not been taken before, it is thus not due to
the lack of efficiency of such planners but due to the limitations of the languages
that they support [83]. Indeed, there is no way to compile non-overlap physical
constraints into PDDL in compact form. We address this limitation by using a
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target language for the compilation that makes use of state constraints to rule out
physical overlaps during motions, and procedures for testing and updating physi-
cal configurations. This additional expressive power prevents the use of standard
heuristic search planning algorithms [49, 94] but is compatible with a more recent
class of width-based planning methods that are competitive with state-of-the-art
heuristic search approaches [75, 74].

5.2 Compiling Abstract Model in Functional STRIPS
The planning encoding shown in Fig. 5.1 assumes a crucial preprocessing stage
where the base and arm graphs are computed, and suitable tables are stored for
avoiding the use of motion planners and collision checkers during planning time.
This preprocessing is efficient and does not depend on the number of objects,
meaning it can be used for several problem variations without having to call col-
lision checkers and motion planners again. Indeed, except for the overlap tables,
the rest of the compilation is local and does not depend on the possible robot base
configurations at all.

To achieve this, we consider the robot at a virtual base B0 = 〈x, y, θ〉 with
x = y = θ = 0 in front of a virtual table whose height is the height of the actual
tables, and whose dimensions exceed the (local) space that the robot can reach
without moving the base. By considering the robot acting in this local virtual
space without moving from this virtual base B0, we will obtain all the relevant
information about object configurations and arm trajectories, that will carry to
the real robot base configurations B through a simple linear transformations that
depend on B. The computation of the overlap tables is more subtle and will be
considered later.

First of all, the x, y space of the virtual table is discretized regularly into D po-
sition pairs xi, yi. If the height of the objects is h′ and the height of the tables
is h, then the virtual object configurations are set to the triplets 〈xi, yi, z〉 where
z = h + h′/2. Each virtual object configuration represents a possible center of
mass for the objects when sitting at location xi, yi over the virtual table. For each
such configuration C = 〈xi, yi, z〉, k grasping poses AjC are defined from which
an object at 〈xi, yi, z〉 could be grasped, and a motion planner (MoveIt) is called
to compute k′ arm trajectories for reaching each such grasping pose Ajc through
k′ different waypoints from a fixed resting pose and the robot base fixed at B0.
This means that up to k × k′ arm trajectories are computed for each virtual object
configuration, resulting in up toD×k×k′ arm trajectories in total and up to k×D
grasping poses. For each reachable grasping pose AjC , we store the pair 〈AjC , C〉
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in a hash table. The table captures the function vplace that maps grasping poses
(called arm configurations here), into virtual object configurations. The meaning
of vplace(A) = C is that when the robot base is atB0 in front the virtual table and
the arm configuration is A, an object on the gripper will be placed at the virtual
object configuration C.

The arm graph has as nodes the arm configurations A that represent reachable
grasping poses A = AjC in relation to some virtual object configuration C, in
addition to the resting arm configuration. The arm trajectories that connect the
resting arm configuration A0 with an arm trajectory A provide the edge in the
arm graph between A0 and A. The graph contains also the inverse edges that
correspond to the same trajectories reversed. Grasping configurations that are not
reachable with any trajectory from the resting arm configuration are pruned and
virtual object configurations all of whose grasping poses have been pruned, are
pruned as well.

The base graph is computed by sampling a number of configurations NB near
the tables and calling the MoveIt motion planner to connect each such configura-
tion with up to kB of its closest neighbours. The number of robot configurations
results from the product of the number of arm configurations k×D and the num-
ber of base configurations NB. In the experiments we consider numbers that go
from tens to a few hundred and which thus result into thousands of possible robot
configurations. The computation of the base and arm graphs defines the proce-
dures used in the MoveBase and MoveArm actions that access the source and
target configuration of each graph edge.

The set of (real) object configurations are then defined and computed as follows.
The virtual object configuration C = 〈x, y, z〉 represents the 3D position of the
object before a pick up or after a place action, with the arm at configuration A
and the robot base at the virtual base configuration B0 = 〈0, 0, 0〉. As the robot
moves from this “virtual” base to an arbitrary base B in the base graph, the point
C determined by the same arm configuration A moves to a new point C ′ that
is given by a transformation TB(C) of C that depends solely on B. Indeed, if
B = B0 + 〈∆X ,∆Y ,∆θ〉 with ∆θ = 0, then TB(C) = 〈x+ ∆X , y + ∆Y , z〉.
More generally, for any ∆θ:

TB(C) = 〈x′, y′, z〉. (5.1)

Where x′ and y′ are computed as follows:

x′ = ∆X + (x−∆X)cos(∆θ)− (y −∆Y )sin(∆θ). (5.2)
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y′ = ∆Y + (x−∆X)sin(∆θ) + (y −∆Y )cos(∆θ). (5.3)

The set of actual object configurations is then given by such triplets TB(C) =
〈x′, y′, z〉 for which 1) B is a node of the base graph, 2) C is a virtual object con-
figuration, and 3) the 2D point x′, y′ falls within a table in the actual environment.
That is, while the virtual object configurations live only in the virtual table with
the base fixed at B0, the actual object configurations depend on the virtual object
configurations, the base configurations, and the real tables in the working space.
We will write TB(C) = ⊥ when C and B are such that for TB(C) = 〈x′, y′, z′〉,
the 2D point x′, y′ does not fall within a table in the actual environment. In such a
case, TB(C) doesn’t denote an actual object configuration.

Given the linear transformation TB and the function vpose(A) defined above, that
maps an arm configuration into a virtual object configuration that is relative to the
virtual base B0, the procedures denoted by the symbols @graspable, @placeable,
and @pose in the planning encoding are defined as follows:

@pose(B,A) = C ′ iff C ′ = TB(vpose(A))

@graspable(B,A,C ′) = true iff C ′ = @pose(B,A)

@placeable(B,A) = true iff @pose(B,A) 6= ⊥ .

We are left to specify the compilation of the tables required for computing the
@nonoverlap procedure without calling a collision checker at planning time. This
procedure is used in the state constraints @nonoverlap(B,Traj,Conf(o),Hold)) for
ruling out actions that move the arm along a trajectory Traj such that for the cur-
rent base configuration B and content of the gripper Hold, will cause a collision
with some object o in its current configuration Conf(o). For doing these tests at
planning time efficient, we precompile two additional tables, called the holding
and non-holding overlap tables (HT, NT), which are made of pairs 〈Tr, C〉 where
Tr is a trajectory in the arm graph, andC is what we will call a relative object con-
figuration different than both the virtual and real object configuration. Indeed, the
set of relative object configurations is defined as the set of configurations T−1B (C)
for all bases B and all real object configurations C, where T−1B is the inverse of
the linear transformation TB above. If C is a real 3D point obtained by mapping
a point C ′ in the virtual table after the robot base changes from B0 to B, then
C ′′ = TB′(C) for B′ = B is just C ′ but for B′ 6= B, it denotes a point in the
“virtual” space relative to the base B0 that may not correspond to a virtual object
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configuration, and may even fail to be in the space of the virtual table (the local
space of the robot when fixed at base B0). Relative object configurations C ′′ that
do not fall within the virtual table, are pruned. The holding overlap table (HT)
contains then the pair 〈Tr, C〉 for a trajectory Tr and a relative object configura-
tion, iff the robot arm moving along trajectory Tr will collide with an object in the
virtual configuration C when the robot base is at B0 and the gripper is carrying
an object. Similarly, the pair 〈Tr, C〉 belongs to the non-holding overlap table
(NT) iff the same condition arises when the gripper is empty. Interestingly, each
of these two tables is compiled by calling a collision checker (MoveIt) a number
of times that is given by the total number of arm trajectories. Indeed, for each
trajectory T , the collision checker tests in one single scan which relative configu-
rations C are on the way.

The procedure @nonoverlap(B,Tr,Conf(o),Hold) checks whether trajectory Tr
collides with object o in configuration Conf(o) when the robot base is B. If
Hold is None, this is checked by testing whether the pair 〈Tr, T−1B (Conf(o))〉 is
in the NT table, and if Hold is not None, by testing whether the pair is in the HT
table. These are lookup operations in the two (hash) tables NT and HT, whose size
is determined by the number of trajectories and the number of relative object con-
figurations. This last number is independent of the number of objects but higher
than the number of virtual configurations. In the worst case, it is bounded by the
product of the number NB of robot bases and the number of real object configu-
rations, which in turn is bounded by NB×NC , where NC is the number of virtual
object configurations. Usually, however, the number of entries in the overlap ta-
bles NT and HT is much less, as for most real object configurations C and baseB,
the point T−1B (C) does not fall into the “virtual table” that defines the local space
of the robot when fixed at B0. The size of the hash table 〈Tr, C〉 precompiled for
encoding the function vpose(Tr) above is smaller and given just by the number
of arm trajectories Tr, to the number of edges in the arm graph, which in turn is
equal to 2×D × k × k′, where D is the number of virtual object configurations,
k is the number of grasping poses for each virtual object configuration, and k′ in
the number of trajectories for reaching each grasping pose.

5.3 Planning for Pick-and-Place Tasks: Modeling
and Computation

We consider CTMP problems involving a robot and a number of objects located
on tables of the same height. The tasks involve moving some objects from some
initial configuration to a final configuration or set of configurations, which may

64



“tesi˙jonathan˙ferrer˙mestres” — 2018/3/20 — 12:44 — page 65 — #87

require moving obstructing objects as well. The model is tailored to a PR2 robot
using a single arm, but can be generalized easily.

The main state variables Base, Arm, and Hold denote the configuration of the
robot base, the arm configuration, and the content of the gripper, if any. In ad-
dition, for each object o, the state variable Conf(o) denotes the configuration of
object o. The configuration of the robot base represents the 2D position of the
base and its orientation angle. The configuration of the robot arm represents the
configuration of the end effector: its 3D position, pitch, roll, and yaw. Finally,
object configurations are 3D positions, as for simplicity we consider object that
are symmetric, and hence their orientation angle is not relevant. There is also a
state variable Traj, encoding the last trajectory followed by the robot arm, which
is needed for checking collisions during arm motions. All configurations and tra-
jectories are obtained from a preprocessing stage, described in the next section,
and are represented in the planning encoding by symbolic ids. When plans are
executed, trajectory ids become motion plans; i.e. precompiled sequences of base
and arm join vectors, not represented explicitly in the planning problem.

The encoding assumes two finite graphs: a base graph, where the nodes stand
for robot base configurations and edges stand for trajectories among pairs of base
configurations, and an arm graph, where nodes stand for end-effector configura-
tions (relative to a fixed base), and edges stand for arm trajectories among pairs
of such configurations. The details for how such graphs are generated are not rel-
evant for the planning encoding and will be described below. As a reference, we
will consider instances with tens of objects, and base and arm graphs with hun-
dreds of configurations each, representing thousands of robot configurations.

A fragment of the planning encoding featuring all the actions and the state con-
straints is shown in Figure 5.1. Actions MoveBase(e) take an edge e from the
base graph as an argument, and update the base configuration of the robot to the
target configuration associated with the edge. The precondition is that the source
configuration of the edge corresponds to the current base configuration, and that
the arm is the resting configuration ca0. Actions MoveArm(t) work in the same
way, but the edges t of the arm graph are used instead.
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(:action MoveBase
:parameters (?e - base-graph-traj-id)
:prec (and (= Arm ca0)

(= Base (@source-b ?e))
:eff (and (:= Base (@target-b ?e))))

(:action MoveArm
:parameters (?t - arm-graph-traj-id)
:prec (and (= Arm (@source-a ?t))
:eff (and (:= Arm (@target-a ?t))

(:= Traj ?t)))

(:action Grasp
:parameters (?o - object-id)
:prec (and (= Hold None)
(@graspable Base Arm (Conf ?o)))

:eff (and (:= Hold ?o)
(:= (Conf ?o) c-held)))

(:action Place
:parameters (?o - object-id)
:prec (and (= Hold ?o)

(@placeable Base Arm)
:eff (and (:= Hold None)

(:= (Conf ?o)(@place Base Arm)))

(:state-constraint
:parameter (?o - object-id)
(@non-overlap Base Traj (Conf ?o) Hold))

Figure 5.1: CTMP Model Fragment in Functional STRIPS: Action and state constraint
schemas. Abbreviations used. Symbols preceded by “@” denote procedures. All objects
assumed to have the same shape. Initial situation provides initial values for the state vari-
ables Base, Arm (resting), Traj (dummy), and Conf(o) for each object. Goals describe
target object configurations. State constraints prevent collisions during arm motions. Mo-
tion planners and collision checkers used at compilation time, not at plan time, as detailed
in the Preprocessing section.

There are also actions Grasp(o) and Place(o) for grasping and placing objects o.
Grasp(o) requires that the gripper is empty and @graspable(Base,Arm,Conf(o)) is
true, where the procedure denoted by the symbol @graspable checks if the robot
configuration, as determined by its base and (relative) arm configuration, is such
that object o in its current configuration can be grasped by just closing the gripper.
Likewise, the atoms Hold = o and @placeable(Base,Arm,Conf(o)) are precondi-
tions of the action Place(o) .
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The total number of ground actions is given by the sum of the number of edges in
the two graphs and the number of objects. This small number of actions is made
possible by the planning language where robot, arm, and object configurations do
not appear as action arguments. The opposite would be true in a STRIPS encoding
where action effects are determined solely by the action (add and delete lists) and
do not depend on the state. The number of state variables is also small, namely,
one state variable for each object and four other state variables. Atoms whose
predicate symbols denote procedures, like @graspable(Base,Arm,Conf(o)), do
not represent state variables or fluents, as the denotation of such predicates is
fixed and constant. These procedures play a key role in the encoding, and in the
next section we look at the preprocessing that converts such procedures into fast
lookup operations.

The only subtle aspect of the encoding is in the state constraints used to prevent
collisions. Collisions are to be avoided not just at beginning and end of actions,
but also during action execution. For simplicity, we assume that robot-base moves
do not cause collisions (with mobile objects), and hence that collisions result ex-
clusively from arm motions. We enforce this by restricting the mobile objects to
be on top of tables that are fixed, and by requiring the arm to be in a suitable rest-
ing configuration (ca0) when the robot base moves. There is one state constraint
@nonoverlap(Base,Traj,Conf(o),Hold) for each object o, where Traj is the state
variable that keeps track of the last arm trajectory executed by the robot. The
procedure denoted by the symbol @nonoverlap tests whether a collision occurs
between object o in configuration Conf(o) when the robot arm moves along the
trajectory Traj and the robot base configuration is Base. The test depends also
on whether the gripper is holding an object or not. As we will show in the next
section, this procedure is also computed from two overlap tables that are precom-
piled by calling the MoveIt collision-checker [102] a number of times that is twice
the

5.4 Planning Algorithm
The compilation of task and motion planning problems is efficient and results in
planning problems that are compact. Yet, on the one hand, standard planners like
FF and LAMA do not handle functions and state constraints, while planners that
do compute heuristics that in this setting are not cost-effective [32]. For these
reasons, we build instead on a different class of planning algorithm, called best-
first width search (BFWS), that combines some of the benefits of the goal-directed
heuristic search with those of width-based search [72].
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Width-based algorithms such as IW and SIW do not require PDDL-like planning
models and can work directly with simulators, and thus unlike heuristic search
planning algorithms, can be easily adapted to work with Functional STRIPS with
state constraints. The problem is that by themselves, IW and SIW are not power-
ful enough for solving large CTMP problems. For such problems it is necessary
to complement the effective exploration that comes from width-based search with
the guidance that results from goal-directed heuristics. For this reason, we ap-
peal to a combination of heuristic and width-based search called Best-First Width
Search (BFWS), that has been shown recently to yield state-of-the-art results over
the classical planning benchmarks [74]. BFWS is a standard best-first search with
a sequence of evaluation functions f = 〈h, h1, . . . , hn〉 where the node that is
selected for expansion from the OPEN list at each iteration is the node that min-
imizes h, using the other hi functions lexicographically for breaking ties. In the
best performing variants of BFWS, the main function h = w computes the “nov-
elty” of the nodes, while the other functions hi take the goal into account.

For our compiled CTMP domain, we use BFWS with an evaluation function f =
〈w, h1, . . . , hn〉, where w stands for a standard novelty measure, and h1, . . . , hn
are simple heuristic counters defined for this particular domain. The novelty w is
defined as in [74]; namely, the novelty w(s) of a newly generated state s in the
BFWS guided by the function f = 〈w, h1, . . . , hn〉 is i iff there is a tuple (conjunc-
tion) of i atoms X = x, and no tuple of smaller size, that is true in s but false in
all the states s′ generated before s with the same function values h1(s′) = h1(s),
. . . , and hn(s′) = hn(s). According to this definition, for example, a new state s
has novelty 1 if there is an atom X = x that is true in s but false in all the states
s′ generated before s where hi(s′) = hi(s) for all i.

For the tie-breaking functions hi we consider three counters. The first is the stan-
dard goal counter #g where #g(s) stands for the number of goal atoms that are
not true in s. The second is an slightly richer goal counter hM that takes into ac-
count that each object that has to be moved to a goal destination has to involve two
actions at least: one for picking up the object, and one for placing the object. Thus
hM(s) stands for twice the number of objects that are not in their goal configura-
tions in s, minus 1 in case that one such object is being held. The last tie-breaker
used corresponds to the counter #c(s) that tracks the number of objects that are in
“obstructing configurations” in the state s. This measure is determined from a set
C of object configurations C computed once from the initial problem state, as it is
common in landmark heuristics. The count #c(s) is i if there are i objects o for
which the state variable Conf(o) has a value in s that is in C. The intuition is that
a configuration is “obstructing” if it’s on the way of an arm trajectory that follows
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Figure 5.2: Manipulating objects in a 3-table environment, initial (left) and goal (right)
situations. The objective is to put the blue objects on the rightmost table and the red
objects on the leftmost table.

a suitable relaxed plan for achieving a goal atom. More precisely, we use a single
IW(2) call at preprocessing for computing a plan for each goal atom in a problem
relaxation that ignores state constraints (i.e., collisions). These relaxed problems
are “easy” as they just involve robot motions to pick up the goal object followed
by a pick up action, more robot motions, and a place action. The search tree con-
structed by IW(2) normally includes a plan for each goal atom in this relaxation,
and often more than one plan. One such relaxed plan “collides” with an object
o if a MoveArm(t) action in the plan leads to a state where a state constraint
@nonoverlap(Base,Arm,Conf(o),Hold) is violated (this is possible because of the
relaxation). In the presence of multiple plans for an atomic goal in the relaxation,
a plan is selected that collides with a minimum number of objects. For such an
atomic goal, the “obstructing configurations” are the real object configurations C
such that a state constraint @nonoverlap(Base,Arm,C,Hold) is violated in some
state of the relaxed plan where Conf(o) = C for some object o. We further
consider as obstructing those configurations that in a similar manner obstruct the
achievement of the goal of holding any object o that is in an obstructing configu-
ration in the initial state, recursively and up to a fixpoint.

The set C is then a union of the sets of “obstructing configurations” for each atomic
goal, and #c(s) is the number of objects o for which the value C of the state vari-
able Conf(o) in s belongs to C. Note that unlike the other two heuristics #g and
hM , which must have value zero in the goal, the #c(s) counter may be different
than zero in the goal. Indeed, if a problem involves exchanging the configuration
of two objects, #c(s) will be equal to 2 in the goal, as the two goal configurations
are actually obstructing configurations as determined from the initial state. The
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set C of obstructing configurations is computed once from the initial state in low
polynomial time by calling the IW(2) procedure once. The resulting #c(s) count
provides an heuristic estimate of the number of objects that need to be removed in
order to achieve the goal, a version of the minimum constraint removal problem
[43] mentioned in [35].

The counters hM and #c used in the BFWS algorithm for CTMP planning can
be justified on domain-independent grounds. Indeed, hM corresponds roughly to
the cost of a problem where both state constraints and preconditions involving
procedures have been relaxed. So the plans for the relaxation are sequences of
pickup and place actions involving the goal objects only. The counter #c is re-
lated to landmark heuristics under the assumption that the goals will be achieved
through certain motion plans.

The third element in the BFWS algorithm is the extension of the problem states
with two extra Boolean features graspable*(o) and placeable*(o) associated with
each object o. The features graspable*(o) and placeable*(o) are set to true in a
state s iff the preconditions of the actions Grasp(o) and Place(o) are true in s re-
spectively. These features are needed as there are no state variables related to the
preconditions (@graspable B A Conf(o)) and (@placeable B A) of those actions,
as the predicate symbols of these atoms denote procedures. That is, the terms B,
A, andConf(o) in these atoms denote state variables but the relations themselves,
denoted by the symbols @graspable and @placeable, are static.

Finally, for the experimental results we have found useful to add an extra precon-
dition to the action MoveArm(t). This precondition requires that @target-a(t)
is the resting configuration ca0 or that @placeable(Base,@target-a(t)) is true. In
other words, the arm is moved from the resting position to configurations where an
object could be picked up or placed. This restriction reduces the average branch-
ing factor of the planning problem, in particular when the number of arm motions
in the arm graph is large.

5.5 Experimental Results
We test our model on two environments having one and three tables, the charac-
teristics of which are shown in Table 5.1. As explained above, the virtual space of
the robot is discretized into D = 15 position pairs or virtual configurations, with
k = 4 grasping poses per virtual configuration and k′ = 4 arm trajectories for each
of those grasping poses, obtained from MoveIt!. Thus, the maximum number of
(virtual) grasping poses will be D × k = 60, of which those for which no motion
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compilation #traj. #arms #bases #confs #virt. #GP #rel. #real T(s)
1-table 268 43 124 5332 15 42 1081 136 5
3-tables 268 43 323 13889 15 42 3379 393 13

Table 5.1: Compilation data for one and three tables. Columns show the number of
tables, total number of arm trajectories, arms configurations, base configurations, total
number of robot configurations, virtual object configurations, number of virtual grasping
poses, relative object configurations, total number of real object configurations and overall
compilation time.

plan is found get pruned. In our benchmark environments, the total number of
virtual grasping poses is 42. In turn, the maximum number of arm trajectories is
D × k × k′ = 240 in each direction, i.e. 480, while in both of our environments
we have a total of 268 such trajectories, since again no feasible motion plans are
found for the rest.

The number of sampled bases is 124 for the one-table environment and 323 for
the three-table environment, while each robot base in the base graph is connected
to a maximum of 12 closest base configurations.

Importantly, the output of the precompilation phase, which takes 5 min. (13 min.)
for the one-table (three-tables) environment, is valid for for all instances with that
number of tables, regardless of number of objects, initial robot and object config-
urations, and particular goals of the problem.

For each environment, we generate a number of semi-random instances with in-
creasing number of objects, ranging from 10 to 40, and increasing number of
goals, ranging from 2 to 8, where a problem with e.g. 4 goals might require that
4 different objects be placed in their respective, given target configurations.The
initial and goal states of a sample problem instance are shown in Fig. 5.2, where
the robot needs to place all blue objects in one table and all red objects in another.
Tables 5.2 and 5.3 show the results of the BWFS planner on each generated in-
stance, running with a maximum of 30 minutes and 8GB of memory on an AMD
Opteron 6300@2.4Ghz. Each row shows results for one instance. Three leftmost
columns report instance characteristics. #o denotes number of objects on the ta-
ble, #g number of different goals, #c is a proxy for the number of objects that
initially obstruct the achievement of the goal, as described in the text. Remain-
ing columns report length of the computed plan (L), number of nodes expanded
during the search (E), and, in seconds, preprocessing, search and total time. TO
and MO denote time- and memory-outs. The planner uses ROS [91], Gazebo [59],
and MoveIt [102], in the preprocessing and in the simulations, but not at planning
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time. Videos showing the execution of the computed plans in the Gazebo simula-
tor, for some selected instances, can be found in https://goo.gl/67Zibk,
as well as encodings.

#objects #goals #c Length Expanded Prep.(s.) Search(s.) Total(s.)
10 1 4 38 700 2.4 0.08 2.48
10 2 6 67 5.7k 2.42 0.64 3.06
10 3 8 73 6.1k 2.22 0.72 2.94
15 1 6 49 778 3.4 0.1 3.5
15 2 8 81 9.8k 3.76 1.27 5.03
15 3 10 80 7.7k 4.13 0.97 5.1
20 1 12 86 39k 5.44 4.46 9.9
20 2 14 122 63.3k 5.85 9.42 15.27
20 3 22 159 49.2k 5.66 7.26 12.92
25 1 4 22 206 7.42 0.03 7.45
25 2 4 45 39.1k 7.29 5.54 12.83
25 3 18 MO - - - -
30 1 4 22 67.6k 9.21 10.16 19.37
30 2 38 MO - - - -
30 3 38 TO - - - -

Table 5.2: Per-instance results of Pick-and-Place problem for one table.

The results show that our approach is competitive and scales well with the num-
ber of objects in the table. The length of the obtained plans ranges from 22 to 220
steps. Problems with up to 20 objects, both for one and three tables, for example,
are solved in a few seconds and requiring only the expansion of a few thousands
of nodes in the search tree.

Problems with a up to 30 and even 40 objects are solved with relative ease in
the environment with three tables, but as expected become much harder when we
have one single table, because the objects clutter almost all available space, mak-
ing it harder for the arm robot to move collision-free. Indeed, the results show that
the key parameter for scalability is #c, which in a sense indicates how cluttered
the space is in the initial situation. When this number is not too high, as in the
three-table environment, our approach scales up with relative ease with the num-
ber of different specified goals.

Finally, preprocessing times scale up linearly with the number of objects, regard-
less of the number of goals, thanks to the low-polynomial cost of the IW(2) pass
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on which the preprocessing is based, as detailed above.

#objects #goals #c Length Expanded Prep.(s.) Search(s.) Total(s.)
10 2 6 54 1.3k 8.1 0.23 8.33
10 4 2 101 3.9k 8.1 0.8 8.9
10 6 2 121 3.9k 7.18 0.6 7.78
10 8 2 150 4.5k 8.26 0.91 9.17
20 2 4 65 6.2k 19.19 1.32 20.51
20 4 4 89 9.6k 17.9 2.29 20.19
20 6 6 130 3.1k 17.66 0.73 18.39
20 8 8 141 5.9k 18.42 1.26 19.68
25 2 8 46 1.1k 23.74 0.23 23.97
25 4 8 80 2.3 24.44 0.54 24.98
25 6 10 120 3.5k 27.04 0.91 27.95
25 8 12 158 3.4k 23.74 0.69 24.43
30 2 4 MO - - - -
30 4 2 74 1.6k 30.37 0.4 30.77
30 6 8 123 2.6k 30.09 0.64 30.73
30 8 10 161 3.5k 32.22 0.86 33.08
40 2 4 52 1.3k 45.64 0.33 45.97
40 4 14 114 55.5k 45.65 13.12 58.77
40 6 10 178 166k 47 41.36 88.36
40 8 14 220 201k 46.46 55.57 102.03

Table 5.3: Per-instance results of Pick-and-Place problem for three tables.

5.6 Discussion

The presented work is closest to [34, 100]. What distinguishes our approach is
that combined task and motion planning problems are fully mapped into classi-
cal AI planning problems encoded in an expressive planning language. Motion
planners and collision checkers are used at compile time but not at planning time.
The approach is sound (classical plans map into valid executable robot plans) and
probabilistically complete (with a sufficient number of configurations sampled,
robot plans have a corresponding classical plan). For the approach to be effective,
three elements are essential. First, an expressive planning language that supports
functions and state constraints. Second, a width-based planning algorithm that can
plan effectively for models expressed in such a language without requiring the use
of accurate but expensive heuristic estimators. Third, a preprocessing stage that
computes the finite graphs of robot bases and arm configurations, the possible ob-
ject configurations, and the tables that allow us to resolve procedural calls into
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efficient table lookups. We have shown that the compilation process is efficient
and independent of the number of objects, that the compiled problems are com-
pact, and that the planning algorithm can generate long plans effectively.

For the experiments, we have considered the type of pick and place problems
that have been used in recent work [34, 100]. For these problems, it is sufficient
to sample robot base configurations that are close to the physical tables, and arm
trajectories that can pick up and place objects in the local space of the robot at
a height that corresponds to the height of the tables. This part of the problem is
not modeled explicitly in the Functional STRIPS planning encodings, which im-
plicitly assume a finite graph of robot bases and one of robot arm configurations
computed at preprocessing. In the future, we want to represent this information
explicitly in the planning encoding so that the preprocessing stage can be fully
general and automatic. This requires a general representation language for CTMP
problems so that the compilation will be a mapping between one formal language
and another. Unfortunately, there are no widely accepted and shared formal mod-
els and languages for CTMP, which makes it difficult to compare approaches em-
pirically or to organize “ CTMP competitions”, that in the case of AI planning
or SAT solving have been an essential ingredient for progress. We believe that
Functional STRIPS can actually serve both roles: as the basis for a general, in-
tegrated representation language for CTMP problems and as a convenient target
language of the compilation representations. This work is a first step towards this
goal where we have shown that the compilation is indeed feasible and effective
both representationally and computationally.
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PART III

Generality on Combined Task and
Motion Planning
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CHAPTER 6

Flexible Algorithms for Combined
Task and Motion Planning

6.1 Introduction
On chapter 5 we presented an approach to fully compile CTMP problems into
classical planning problems. We have also shown how to model Pick-and-Place
problems in FSTRIPS using state constraints to avoid collisions. Lastly, we pre-
sented a planning algorithm to solve these problems that uses a BFWS search
algorithm with an evaluation function f = 〈h, h1, . . . , hn〉 where tie breaking is
done through three different counters: #g, hM and #c, where hM and #c are not
fully domain-independent. Although the experiments have shown good results,
this approach has some limitations which we address one by one:

1. There is no explicit an specific language for specifying CTMP problems.

2. We have only shown how to model a Pick-and-Place problem in FSTRIPS
with state constraints.

3. The instances that we reported have only one type of shape: a cylinder.

4. The planning algorithm is not completely general and not fully domain inde-
pendent. It relies in the computation of some domain-dependent heuristics.

Broadly, there have been several efforts to efficiently combine task and mo-
tion planning. However, to the best of our knowledge, these approaches are not
general and relies on the continues usage of motion planners, collision checkers
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and computing domain-dependent heuristics.

The aim of our work is to develop a general approach for combined task and
motion planning which can make use of recent advances of modern classical AI
planning algorithms. For this purpose, in this chapter we propose the following to
address the limitations of chapter 5

1. We present a general language to specify and to automatically compile a
CTMP problem into a classical planning problem.

2. We show how we can model different types of CTMP problems, extend-
ing the model of Pick-and-Place problem seen in section5.3, where actions
MoveBase and MoveArm are common to all proposed problems. These ac-
tions assume the previous computation of a base and arm graph.

3. We show how to define different object shapes, their allowed poses and
grasping poses.

4. Finally we propose a general algorithm which is domain-independent and
heuristics derive from the FSTRIPS model with state constraints. We in-
troduce a method to deal with state constraints during search time using a
computed set of no good atoms. These no good atoms are atoms that vio-
lates a state constraint. This set is used to compute the novelty of a state.

The chapter is organized as follows:

1. We propose and define an input language to specify CTMP problems. This
language specifies the geometric information of the environment, as well
the geometric details of each different 3D-shape object.

2. We review and describe the preprocessing stage without the limitations of
chapter 5. We show step by step how based on an input, we construct graphs
and tables containing overlaps and grasping poses.

3. We show how to model different CTMP problems. Starting from a gen-
eral encoding which assumes the compilation of two different graphs: base
graph and arm graph. We model problems which fully requires to interleave
task and motion planning.

4. We present a general and domain-independent planning algorithm that avoid
the specific computation of previous domain-dependent heuristics. Instead,
it relies on the problem structure and the state constraints to compute the
novelty of a state.
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5. We show how search can be improved by explicitly defining boolean fea-
tures.

6. We show some extensions and optimizations for both the compilation pro-
cess and the planning algorithm.

7. We report the experimental results of different types of problems involving
a number of objects of different shapes.

8. Finally we discuss the general approach.

6.2 Input Language
To compile a CTMP problem into a classical planning problem our method re-
quires a set of parameters. We specify the object geometries, robot kinematics and
a set of discretization parameters. The planning encoding is based on a prepro-
cessing stage where graphs and tables are precomputed. Computing these graphs
and tables depend on the following specifications: 1) an environment with static
elements and their geometric properties (support surfaces and their sizes), 2) mov-
able objects with geometric properties (size, shapes, graspable components), 3) a
robot with its kinematic model and geometric properties, 4) a set of parameters
used to sample/discretize and 5) a set of constraints. Specifically:

• We specify a static world, which is represented by a continuous 3-dimensional
space with objects that cannot be manipulated by the robot. Surfaces where
object configurations and end-effector poses are discretized are known as
support surfaces, like tables. Each support surface must be specified in
terms of width, length and height (w × l × h) and its absolute position.

• Our method requires as input the description of which objects can be ma-
nipulated by the end-effector. For these movable objects, our method needs
as part of its input the geometric details for each different 3D-shape in the
environment. Our current implementation of this input accepts cylinders
described by height and radius, and for prism with a square face the side of
the square and the height of the prism. For other objects with more complex
shapes, our current implementation accepts trays and cups, but for such ob-
jects the implementation requires details on how is graspable by the robot:
for example a tray is graspable by the edge but not the middle.

• We specify the robot kinematic details, as well as its base size and end-
effector size. MoveIt! takes the kinematic model to compute motion plans
and to check for collisions.
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• We define a set of parameters to discretize the configuration space, object
poses, grasping poses and base and end-effector poses.

• We explicitly define constraints expressing joint limits and tolerance.

Our preprocessing process requires as input a worldW , a set of manipulable ob-
jects O per each different shape of a movable object, the kinematic model K of
a robot, a set of joint constraints J and a vector of discretization parameters D.
Formally,

Definition 6.2.1 The input for compiling a CTMP problem into a classical plan-
ning problem is Ip = 〈W ,O,K,J ,D〉, where:

• A world is defined asW = 〈Q, E〉, where:

– Q defines boundaries of the robot workspace. Is specified as a pair
〈X, Y 〉 where X and Y specifies a rectangle.

– E is a finite set of static elements E = {e1, e2, . . . , en}, such that each
static element ei = 〈i, pi, µi〉, where

∗ i is the unique identifier of ei.
∗ pi is the absolute position (xi, yi, zi, θi) with respect to the world

frame.
∗ µi are the geometric properties of element ei, such that µi =
〈wi, li, hi〉, where
· wi is the width of ei.
· li is the length of ei.
· hi is the height of ei.

• O is a set of manipulable objects, such that each os = 〈s, µs, As, Gs〉, where

– s is the unique identifier of os. The identifier represents the type
(shape) of the object. For example an object can be a box, a cylin-
der or a tray.

– µs represents the geometric properties of object os, such that µs =
〈ws, ls, hs, rs〉, where,

∗ ws is the width of os.
∗ ls is the length of os.
∗ hs is the height of os.
∗ ri is the radius of os.
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– As is the set of allowed rotations for each object type, specified in
terms of θ, ψ, φ for pitch, roll and yaw. Rotation poses are speci-
fied in radians. For example, a block with the allowed rotation poses
(0.7853, 0.0, 0.0) and (1.57, 0.0, 0.0) means that for any valid (x, y, z),
the object can have the configurations (x, y, z, 0.7853, 0.0, 0.0) and
(x, y, z, 1.5708, 0.0, 0.0).

– Gs is a set of grasping poses for os, specified in terms of relative
end-effector poses, such that gs = 〈x, y, z, θ, ψ, φ〉. For example, a
grasping pose for any os could be gs = 〈0.15, 0.0, 0.07, 0.0, 0.0, 1.57〉,
which means that the robot’s end-effector pose must be located in gs
to be able to grasp an object os. Notice that the pose is relative to the
object frame, it is not an absolute pose.

• K is the definition of the kinematic model of the robot.

• J is a set of constraints expressing joint limits and joint tolerance. J can
be empty.

• A set of discretization parameters D = {ε, α, β, kB, σ, λ,∆} where,

– ε is the granularity used for sampling bases along x and y coordinates.

– α is the discretization of bases orientation along the θ coordinate.

– β is the orientation tolerance for the robot base. This tolerance denotes
the maximum absolute orientation towards a support surface.

– kB is the k nearest neighbors for each discretized robot base B.

– σ is the discretization of the support surfaces in terms of possible ob-
ject configurations.

– λ denotes the maximum levels on top of the support surfaces. Maxi-
mum level values larger than one mean that objects can be stacked.

– ∆ is the set of directions from where the end-effector approaches the
object. Each direction is given as a vector where the end point is the
grasping pose.

6.3 Preprocessing
First, to encode a CTMP problem we need a crucial compilation process step
where the base and arm graphs are computed, as well as tables for lookup op-
erations at planning time. These tables are computed using motion planners and
collision checkers, only at preprocessing time. The compilation process is fast and

81



“tesi˙jonathan˙ferrer˙mestres” — 2018/3/20 — 12:44 — page 82 — #104

efficient, and does not depend on the number of objects. This means that a single
compilation can be used for several instance problems without the requirement to
recompute any table or graph. For this reason we avoid the extra calls to motion
planners and collision checkers during search.

As described in the previous section, a CTMP problem is compiled to a classical
planning problem given a defined input Ip. Once the input is given, our prepro-
cessing method works as follows: we consider the set of support surfaces E , where
E = {e1, e2, . . . , en} and the workspace Q specified in the worldW . Each static
element is defined by a tuple ei = 〈i, pi, µi〉 where i is the unique identifier of ei,
pi is the absolute position (xi, yi, zi, θi) with respect to the world frame, and µi
are the geometric properties of element ei, composed by the width wi, the length
li and the height hi.

6.3.1 Constructing the base graph

Constructing the base graph follows the same process as described in section 5.2,
but now it depends in the input parameters. The base graph is computed by dis-
cretizing base configurations (x, y, θ) around support surfaces. x and y are dis-
cretized according to ε meters and θ according to α radians. Valid base config-
urations are only those for which θ orients the base towards the closest support
surface, the maximum orientation tolerance is given by β. Afterwords, we call
the MoveIt! motion planners to connect each such configuration with up to kB of
its closest neighbours. MoveIt! checks for collisions between the discretized base
configurations and the static objects. The base graph consists of base configura-
tions and trajectories between them. Given 〈〈bi, e〉 : bj〉, where bi and bj are the
source and target nodes connected by edge e and i 6= j. The maximum number of
bases is given by

NB =
X × Y
ε
× 2π

α
. (6.1)

6.3.2 Constructing the arm graph

Constructing the arm graph is similar to the construction of the arm graph that we
have seen in section 5.2. However, there are some subtle differences that makes
the preprocessing stage to be more general and independent on object types. The
virtual configurations are discretized on top of a virtual table according to the in-
put parameters and each object os ∈ O. Virtual configurations now depend on the
objects type os, the allowed poses As and grasping poses Gs.
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To remind the reader, in order to compute the arm graph we consider the robot on
a virtual base B0 = 〈x, y, θ〉 with x = y = θ = 0 in front of a virtual table whose
height is the height of the actual tables, and whose dimensions exceed the robot
arm work space, which is the (local) space that the robot can reach without mov-
ing the base. By considering the robot acting in this local virtual space without
moving from this virtual base B0, we will compute all object configurations and
feasible grasping poses and arm trajectories.

Computing the virtual object configurations

Virtual object configurations are discretized on top of the virtual table. The x, y
space of the virtual table is discretized regularly into D position pairs xi, yi. D
depends on a discretization parameter σ, which is in meters, on top of the virtual
table. If the height of the objects is h′ and the height of the tables is h, then the z
coordinate of the object’s center of mass is z = h+h′/2. Notice that problems like
Blocks World or Structures Building involve configurations not only right above
the support surfaces, but at different levels l above them. In addition, virtual ob-
ject configurations are discretized per each different object type.

The discretization of virtual object configurations at different altitudes depends
on which are the support object types, which are the objects under the virtual con-
figuration to be discretized. For each object type, we compute the zl = h + h′/2
plus the sum of the heights of each possible permutation of support objects with
1 ≤ l ≤ λ, where λ is the maximum number of levels in top of the support sur-
face and l is the current level from which we are computing the virtual object
configuration. Meaning that a compilation with λ levels will have virtual object
configurations per each different object type with a maximum value of zλ. For
example, assume we have two different object types (blocks and cylinders), and
λ = 2. The height of a block is hb and the height of a cylinder is hc. Let’s sup-
pose we are discretizing virtual object configurations for a block at some position
(x, y) and level l = λ = 2. The possible virtual object configurations at level 2
are given by the possible permutations of the support objects at level 1 . If l = 2,
then z12 = h + hb/2 + hb and z22 = h + hb/2 + hc. Thus, the possible virtual
object configurations for a block at position (x, y) are C1 = 〈x, y, z1, θ, ψ, φ〉,
C2 = 〈x, y, z12 , θ, ψ, φ〉 and C3 = 〈x, y, z22 , θ, ψ, φ〉, where the virtual object con-
figuration C1 is a configuration at level 1. Notice that problems like Pick-and-
Place the maximum level is λ = 1, so z1 = h + h′/2. Figure 6.1 shows the
possible permutations assuming that (x, y) is always the same for each discretized
virtual configuration, and assuming that λ = 2. You can notice that there ex-
ists different z values depending on the object type, the level and which is the
support object. For each different type of object os, the orientation angles are
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also discretized according to As per each xi, yi, zl, where As is given as input
and it is a set representing the allowed rotations of an object being at any center
of mass (x, y, z). Then, each virtual object configuration is a tuple of the form
〈xi, yi, zl, θ, ψ, φ〉.

Figure 6.1: All possible permutations assuming that x, y is always the same and λ = 2.

Let us calculate the maximum number of virtual object configurations NC .
Before that, we have to calculate the maximum number of virtual object con-
figurations of one given object type os. If λ = 1, it means that there are only
discretized virtual object configurations right above the table. As an object type
os can have different rotation poses As in one position par (x, y), the number of
virtual object configurations of and object of type os is Ns = D × |As|, where D
are the discretized positions pairs (x, y) and |As| is the number of possible orien-
tation poses. If λ > 1, then we have to calculate all the possible virtual object
configurations based on which are the support objects. If we refer again to Fig-
ure 6.1, we see that a block can be in 3 different virtual configurations per each
pair (x, y): One right above the table, the other one on top of another block which
is above the table, and the third one on top of a cylinder which is above the table.
Let’s define the equation to compute the number of virtual object configurations
of an object os independently on the value of λ:

Ns =


D × |As| if λ = 1[
|As|+

(
l=λ∑
l=2

|As| ×
(|O|+ L− 1)!)

L!× (N − 1)!

)]
×D if λ > 1.

(6.2)

Where |O| the number of object types, and L = l − 1.
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Notice that with this equation we avoid repetitions of computed virtual config-
urations. For example, if λ = 3, and there are two different types of objects:
blocks and cylinders, the discretized virtual object configurations for a block on
level l = λ = 3 are the same if the support objects are a cylinder and a block or a
block and a cylinder in levels 1 and 2 respectively.

Thus, the maximum number of virtual object configurations is

NC =
∑
os∈O

Ns. (6.3)

Computing grasping poses and trajectories

Each virtual object configuration represents a possible center of mass for the ob-
jects when sitting at location xi, yi, zl over the virtual table. For each such config-
uration C = 〈xi, yi, zl, θ, ψ, φ〉, k grasping poses Gj

C are computed from which an
object at 〈xi, yi, zl, θ, ψ, φ〉 could be grasped, and a motion planner (MoveIt!) is
called to compute k′ = |∆| arm trajectories for reaching each such grasping pose
Gj
C through a set of different waypoints from a fixed resting pose and the robot

base fixed at B0. Per each different object type os ∈ O, we define a set of Gs

grasping poses, from where the grasping poses Gj
C are obtained. Fig. 6.2 shows

five different grasping poses for a block type object. Gs defines the grasping poses
relative to an object type s located at C0 = 〈x = y = z = θ = ψ = φ = 0〉. When
a new virtual object configuration is generated, the grasping poses Gs are trans-
formed to the new virtual object configuration. The k′ trajectories depend on the
direction approaches to each grasping pose. ∆ is the set of direction approaches
for the end effector from the resting pose to a grasping pose. A resting pose is an
end effector pose with the arm being at some configuration which do not collide
with anything while the robot is moving its base.

Formally, let’s define the total number of grasping poses per each object type.
On equation (6.2) we show how to compute the number of virtual object configu-
rations Ns for an object of type s. Each object type has defined a set of grasping
poses Gs when an object located at C0. The number of grasping poses per each
object type s is N s

gp = Ns × |Gs|. Finally, the total number of grasping poses is

NGP =
∑
os∈O

N s
gp. (6.4)

Definition 6.3.1 A virtual object configuration C is valid iff there exists at least
one feasible grasping pose Gj

C from where the end effector can grasp the object
located at C.
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Definition 6.3.2 A grasping pose Gj
C for a virtual object configuration C is valid

iff there exists at least one feasible trajectory to reach Gj
C .

NGP is the total number of grasping poses and k′ the number of trajectories per
each grasping pose resulting in up to NTraj = NGP × k′ arm trajectories in total.
Moreover, each grasping pose Gj

C does not depend only on C, but on the object
type s of the virtual object. Meaning that two virtual objects with different shapes
with the same virtual configuration C could not be grasped with the same grasp-
ing pose Gj

C . In addition, grasping poses are not only used to grasp an object, but
to place the object in any other configuration. For this purpose, we keep track of
how the object o has been grasped. This is the relative pose between the object
configuration and the gripper which we call ro.

A feasible grasping pose is an end effector pose. The arm graph has as nodes
the end effector poses A. In addition to the resting arm configuration A0, which
is an end-effector pose with the arm joints being at some position which does not
interfere the robot movement. The arm trajectories that connect the resting arm
configuration A0 with an end-effector pose A are provided by the edges in the
arm graph between A0 and A. The graph contains also the inverse edges that cor-
respond to the same trajectories reversed. Grasping poses that are not reachable
with any trajectory from the resting arm configuration are pruned. Virtual object
configurations whose all grasping poses have been removed, are pruned as well.
In other words, we cannot have a virtual object configuration without a feasible
trajectory to a grasping pose for an object being at that configuration. The graph
is encoded as 〈〈ai, e〉 : aj〉, where ai and aj are the source and target nodes con-
nected by edge e with i 6= j.

The number of robot configurations results from the product of the number of
valid end effector poses NGP and the number of base configurations NB. In the
experiments we consider numbers that go from tens to a few hundred and which
thus result into thousands of possible robot configurations. The computation of
the base and arm graphs are required by the procedures defined in the MoveBase
and MoveArm actions that access the source and target configuration of each
graph edge.

6.3.3 Constructing lookup tables

After constructing the base and the arm graph, a number of tables are computed.
These tables allow fast lookup operations and avoid the expensive calls to motion
planners and collisions checkers during planning time.
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Figure 6.2: Five different grasping poses for a block.

Constructing the Grasping/Placing Table

For each reachable grasping pose Gj
C , we store the tuple 〈Gj

C , s, ro, C〉, where
s denotes the object type of an object os ∈ O, in a hash table called grasp-
ing placing poses. The table maps end effector poses (grasping poses) into virtual
object configurations, depending on the object type and how it has been grasped,
which is denoted by ro.

Being Q the triplet 〈A, s, ro〉, a function called vplace maps Q into virtual ob-
ject configurations. The meaning of vplace(Q) = C is that when the robot base
is at B0, in front of the virtual table, and the end effector pose is A, then an object
with type s being grasped with relative pose ro will be placed at the virtual object
configuration C.

Computing Real Object Configurations

The virtual object configurations are those configurations from where an object
located on them, can be grasped by the robot being at base B0. However, vir-
tual object configurations do not represent the total set of configurations where
objects can be located. The set of real object configurations are then defined and
computed as in chapter 6. The configuration C moves to a new pose C ′ that is
given by a transformation TB(C) as defined in equation (5.1). As now object
poses are represented as a six coordinates system , the virtual object configura-
tions C = 〈x, y, z, θ, ψ, φ〉 are now transformed into actual object configurations
given by such triplets TB(C) = 〈x′, y′, z, θ′, ψ′, φ′〉. Again, we only take as valid
those real object configurations which fall within a support surface in the actual
environment. Thus, the maximum number of real object configurations is

NR = NB ×NC . (6.5)

This process produces a table called real to virtual. This table is composed by
tuples of the form 〈B, TB(C), C〉 and captures which is the corresponding virtual
configuration C given a base B and a real object configuration TB(C). Being
V the tuple 〈B, TB(C)〉, where B is the current base configuration and TB(C) is
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a real object configuration, the function real virtual maps V into virtual object
configurations. The meaning of real virtual(V ) is that when the robot base is
at B and some object os is at the real object configuration TB(C), then this ob-
ject is at virtual object configuration C. Having C, the planner can check which
are the grasping poses required for pick-up or place operations looking at table
grasping placing poses.

Computing Relative Object Configurations

We precompute tables to prevent collisions for avoiding the use of collision check-
ers during planning time. Overlap tables are accessed by procedures each time that
the robot performs an arm translation action. For this purpose we define state con-
straints of the form non−overlap(B, Traj, C,Hold). Non overlaps are used to
express that moving the arm along trajectory Traj when the robot current base
configuration is B, while the gripper is holding Hold, will cause a collision with
some object being at configuration C.

Similar as in chapter 5, performing these collision tests during planning time re-
quires to precompile two additional tables called HT and NT. The table HT cap-
tures the fact that the robot is holding an object with its gripper, while the table NT
assumes nothing is being held. The differences between these tables and the ones
computed in chapter 5 is that now overlaps take into consideration that we can
have different object types, while previously we assumed that we had one object
type. Overlap tables are made of tuples 〈Tr, sh, so, C〉 where Tr is a trajectory
in the arm graph, sh is the type of the object being held if any, so is the type of
the object which produces a collision, and C now is what we will call a relative
object configuration.

To review, relative object configuration are different than both virtual and real
object configurations. Relative object configurations are defined as the set of con-
figurations T−1B (C) for all basesB and all real object configurationsC, where T−1B

is the inverse of the linear transformation TB in (5.1). We compute a new structure
called real to relative composed by tuples of the form 〈B,C, T−1B (C)〉 to get the
relative configuration given the robot base B and the real object configuration C.
The maximum number of relative configurations is

Nrel = NB ×NR. (6.6)

Being W the tuple 〈B,C〉, where B is current base configuration and C is a real
object configuration, the function realrelative maps W into relative object con-
figurations. The meaning of realrelative(W ) is that when the robot base is at
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Figure 6.3: Inputs and outputs for preprocessing stage.

B and some object os is at the real object configuration C, then this object is at
relative object configuration T−1B (C). So during planning time we have constant
access to check which is the relative configuration of an object at any state s. In
other words, being C a real 3D object configuration obtained by mapping a point
C ′ in the virtual table by applying transformation [formula T B(C)], then C ′′ de-
notes a point in the “virtual” space relative to the base B0. Again, relative object
configurations C ′′ that do not fall within the virtual table, are pruned. Fig. 6.4
shows each relative object configuration C ′′ obtained from applying transforma-
tion T−1B (C) to real object configurations C.

Constructing the overlap tables and checking for collisions

Constructing overlap tables requires a set of relative object configurations and
arm trajectories. Overlap tables contain the information about collisions while the
robot performs a trajectory. The HT contains the tuple 〈Tr, sh, so, C〉 for a tra-
jectory Tr and a relative object configuration C, iff the robot arm moving along
trajectory Tr will collide with an object of type so in the relative configuration C

89



“tesi˙jonathan˙ferrer˙mestres” — 2018/3/20 — 12:44 — page 90 — #112

when the robot base is atB0 and the gripper is carrying an object of type sh. Simi-
larly, the tuple 〈Tr, sh, so, C〉 belongs to the non-holding overlap table (NT) iff the
same condition arises when the gripper is empty, where sh and so are the object
types of the object being held and the object which causes a collision, respectively.

The number of calls to MoveIt! is given by the number of trajectories. For each
trajectory Tr, the collision checker tests in one single scan which relative con-
figurations C are on the way. Given the set of relative object configurations, and
for all computed trajectories, MoveIt! checks which of those trajectories collides
with an object of some type being at some relative object configuration. As rel-
ative object configurations denote a point in the “virtual” space relative to the
base B0, collisions are only checked while the robot is in B0. As an example,
the figure 6.4 show the relative object configurations and the robot being at base
configuration B = B0. All trajectories are checked from B0 and not from any
other base B = B′. Using overlap tables during planning time allows to check for
collisions in constant time.

Figure 6.4: Planning scene with relative object configurations after preprocessing stage.
Each relative object configuration denotes an object with some shape. Configurations are
relative to the robot base. Each configuration is inside the robot workspace.

A state constraint is a formula of the form non−overlap(B, Tr, C,Hold). It de-
notes whether trajectory Tr collides with and object in a real configuration C
when the robot base is B. If Hold is None, this is checked by testing whether the
tuple 〈Tr, sh, so, T−1B (C)〉 is in the NT table, and if Hold is not None, by testing
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whether the pair is in the HT table, where T−1B (C) is the inverse transformation of
a real configuration and denotes a relative configuration.These are lookup opera-
tions in the two (hash) tables NT and HT. Being NTraj the number of arm trajec-
tories, Nrel the number of relative object configurations andNT = |O| the number
of object types, then the maximum size of overlap tables isNTraj×Nrel×NT

2×2.
This last number is independent of the number of objects but higher than the num-
ber of virtual configurations. As before, in the worst case, it is bounded by the
product of the number NB of robot bases and the number Nr of real object con-
figurations, which in turn is bounded by NB × NC , where NC is the number of
virtual object configurations. Usually, however, the number of entries in the over-
lap tables NT and HT is much less, as for most real object configurations C and
base B, the point T−1B (C) does not fall into the “virtual table” that defines the
local space of the robot when fixed at B0.

To summarize, the preprocessing stage provides a number of compiled tables and
two graphs: A base graph and an arm graph from base and arm robot transitions;
a table grasping placing poses that maps grasping poses into virtual object con-
figurations depending on object geometry and the way that has been grasped; a
table real to virtual that captures which is the corresponding virtual configuration
C given a base B and a real object configuration TB(C); a table real to relative to
get the relative configuration given the robot base B and the real object configura-
tion C; and two overlap tables (HT and NT) capturing whether a given trajectory
produces some collision. The figure 6.3 shows the inputs and outputs of the pre-
processing stage. Each box is a different function. Outputs are tables and graphs.
Symbols denoted by @ are the procedures which make use of them.

6.3.4 Complexity
We analyze the space and time complexity of constructing each table and graph.
The space complexity shows how graphs and tables grow in size. The time com-
plexity of constructing the graphs (base and arm), it depends on the number of
calls to MoveIt!, for computing motion plans. Similarly, the time complexity of
computing overlap tables depends on the number of calls to MoveIt!, for checking
for collisions. Table 6.3 shows a summary of the previously defined notation.

Considering the space complexity of graphs and tables, we refer to Table 6.1.
More specifically, for graphs:

• The space complexity for the base graph depends on the number of dis-
cretized bases NB, the number of connections kB from each base times 2,
as each considered trajectory is counted twice, for both directions.
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• The space complexity for the arm graph, depends on the maximum number
of arm trajectories NTraj times 2, as trajectories are counted twice. One
from the resting pose to another end effector pose, and the other way around.

Regarding constructed tables:

• The size of the table capturing grasping and placing poses is the maximum
number of grasping poses NGP .

• The maximum size of the real to virtual table depends on the total number
of discretized basesNB and the total number of virtual object configurations
NC .

• The maximum size of the real to relative table depends on the total num-
ber of discretized bases NB and the total number of real object configura-
tions NR. Being NR = NB ×NC .

• The maximum size of overlap tables is NTraj ×Nrel ×NT
2 × 2.

Regarding time complexity, we are going to analyze arm and base graphs, and
overlap tables as the number of calls to MoveIt!. The processes to construct the
base and the arm graph call MoveIt! to compute motion plans (trajectories) be-
tween configurations. On the other hand, constructing overlap tables requires calls
to MoveIt! for checking for collisions between previously computed arm trajecto-
ries and objects being at relative object configurations. Table 6.2 shows the time
complexity.

• Constructing the base graph requires a maximum number of calls to MoveIt!
given by the total number of discretized bases NB and the total maximum
number of connections kB.

• Constructing the arm graph requires a maximum number of calls to MoveIt!
given by the total number of virtual object configurationsNC , the total num-
ber of k grasping poses per virtual object configuration and the total number
of k′ trajectories per each grasping pose.

• Checking for overlaps requires a number of calls to MoveIt! which depend
on the number of trajectories NTraj and the number of object types NT , as
trajectories are checked while the robot is holding the different object types
using a bounding box for the different possible orientations of the object
inside the gripper.
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Data Structure Space Complexity
Base Graph O(NB × kB × 2)
Arm Graph O(NTraj × 2)
Grasping/Placing Poses O(NGP )
Real to Virtual O(NB ×NC)
Real to Relative O(NB ×NR)
Overlaps HT O(NTraj ×Nrel ×NT

2 × 2)
Overlaps NT O(NTraj ×Nrel ×NT

2 × 2)

Table 6.1: Space complexity per each data structure. Space complexity shows the size of
each graph and table in worst case.

Data structure Time Complexity
Base Graph O(NB × kB)
Arm Graph O(NC × k × k′)
Overlaps(HT and NT) O(NTraj ×NT )

Table 6.2: Time complexity per each data structure which is constructed by making calls
to MoveIt!.

Notation Description
NC Maximum number of virtual object configurations
NB Maximum number of base configurations
NGP Maximum number of grasping poses
NR Maximum number of real object configurations
Nrel Maximum number of relative object configurations
NTraj Maximum number of trajectories
NT Number of different object types
kB Number of closest bases
k Number of grasping poses per each object at some virtual configuration
k′ Number of trajectories per each grasping pose.

Table 6.3: Description of previously defined notation.
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6.4 Modeling CTMP Problems

In section 5.3 we saw how to model Pick-and-Place tasks in FSTRIPS. In this
chapter we show how we can model different CTMP problems and how we can
solve them using general and domain independent algorithms. The considered
CTMP problems involve: 1) a robot with a seven degrees of freedom manipula-
tor that can move around a 3D space and 2) a number of 3D objects of different
types(shapes) located on top of support surfaces (tables). The robot is a PR2 using
a single arm, but can be generalized easily to any robot or manipulator.

(:action MoveBase
:parameters (?e - base-graph-traj-id)
:prec (and (= Arm ca0)

(= Base (@source-b ?e))
:eff (and (:= Base (@target-b ?e)))
)

(:action MoveArm
:parameters (?e - arm-graph-traj-id)
:prec (and (= Arm (@source-a ?e))
:eff (and (:= Arm (@target-a ?e))

(:= Traj ?t))
)

(:state-constraint
:parameter (?o - object-id)
(@non-overlap Base Traj Hold (Conf ?o)))

Figure 6.5: General CTMP Model Fragment in Functional STRIPS: Action and state constraint
schemas. Abbreviations used. Symbols preceded by “@” denote procedures. State constraints
prevent collisions during arm motions. This model fragment is general for all the exposed domains.

A fragment of the planning encoding featuring MoveBase and MoveArm ac-
tions and the non−overlap state constraint, is shown in Figure 6.5. This model
fragment is common to all of our modeled CTMP problems. These two actions
are exactly the same as in chapter 5. It assumes the two finite and directed graphs
obtained from the preprocessing stage: the base graph and the arm graph. Nodes
represent base configurations or end effector poses respectively, while edges rep-
resent base or arm trajectories.
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To remind the reader, state variables Base and Arm represent the base configu-
rations (x, y, θ) of the robot base and the end-effector poses (x, y, z, θ, ψ, φ). The
last performed arm trajectory is represented by the state variable Traj, which is
required to check for collisions not only at the beginning and the end of the arm
action, but during the whole motion. The state variable Hold denotes if an object
is being held, and which object is that. Finally, Conf(o) denotes the current real
object configuration of object o. A current real object configuration is represented
by a tuple of the form (x, y, z, θ, ψ, φ). To remind reader, procedures (@source−b
?e) and (@source−a ?e) check on the previously computed graphs that the cur-
rent base configuration or end effector pose is the source node of edge e, while
(@target−a ?e) and (@target−b ?e) return which is the target node of edge e
and update the base and arm configurations. All base, arm and object configura-
tions, which are represented by symbolic ids, have been computed previously in
the preprocessing stage. Base and arm trajectories are motion plans which have
been also computed during the graphs construction.

Finally, state constraints are used to prevent collisions during arm trajectories.
Collisions are to be avoided not only at the beginning and at the end of the motion,
but also during the trajectory execution. For simplicity we assume that collisions
result exclusively from arm motions and not from base motions. It can be easily
extended using the same procedure with state constraint formulas. Collisions may
occur between arm motions and movable objects, not with static objects. This
is because mobile objects are located in top of support surfaces which are static.
Base and arm motions are precomputed taking static objects like support surfaces
into account. In addition, we enforce the arm to be in a resting configuration (ca0)
when the robot moves its base.

To review, there is one state constraint denoted by the procedure @nonover-
lap(Base,Traj,Conf(o),Hold) for each object o. Base is the current robot base,
Traj is the last executed arm motion, Conf(o) is the current object o configu-
ration and Hold denotes the object being held, or it returns empty. So, the state
constraint non-overlap checks if a collision occurs between object o being at con-
figuration Conf(o) and the robot moves the arm following trajectory Traj while
being at base configuration Base. The test depends also on whether the gripper is
holding an object or not and the type of the object if being held. As we have shown
in section 6.3, this procedure is also computed from two overlap tables that are
precompiled by calling a motion planner using MoveIt! and a collision-checker.
If Hold = ∅ the procedure checks in table NT. On the other hand, if Hold 6= ∅ the
procedure checks in table HT. The overlap tables encode collisions between tra-
jectories and relative object configurations, depending on the shape of the objects
involved in the collision. The procedure @nonoverlap(Base,Traj,Conf(o),Hold)
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takes as an argument the real object configuration Conf(o). In order to check in
the overlap tables, first the real configuration must be converted to the correspond-
ing relative configuration. Having the base Base and the real object configuration
Conf(o), the function real relative checks which is the corresponding relative
configuration.

6.4.1 Modeling Pick-and-Place Problems

Pick-and-Place problems involve moving some objects of different types from
some initial configuration to a final configuration or set of configurations, which
may require moving obstructing objects as well.

(:action Pick-up
:parameters (?o - object-id)
:prec (and
(= Hold None)
(@graspable ?o))

:eff (and
(:= Hold ?o)
(:= (Conf ?o) c-held))
(:= (Conf-g ?o)

(@pose-gripper Base Arm (Geom ?o) (Conf ?o))
)

(:action Place
:parameters (?o - object-id)
:prec (and
(= Hold ?o)

(@placeable ?o)
:eff (and (:= Hold None)

(:= (Conf ?o)
(@pose Base Arm (Geom ?o) (Conf-g ?o)))

(:= (Conf-g ?o) None)
)

Figure 6.6: CTMP Model Fragment for Pick-and-Place in Functional STRIPS: Actions Pick-up
and Place schemas which extend the general model fragment.

The new additions with respect the modeling presented in section 5.3 are the state
variables Conf-g(o) and Geom(o), which represent the pose of the object relative
to the gripper and the object type, respectively. Conf-g(o) is computed by taking
into consideration the object pose and the end effector pose when the object is
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grasped. The object type includes different shapes: cylinders, cubes or trays, and
it can be extended to different shapes as described in section 6.2.

Modeling a Pick-and-Place problem is similar to the one we saw in section 5.3.
However, there are some differences. Previously, we assumed to use only one
type of object (cylinders). Now we can extend these, and the rest of the problems,
by having different object types (shapes) which can be located in different ori-
entations. For this reason, the semantics of procedures @graspable, @placeable
and @pose have a significant difference. The procedure denoted by the symbol
@graspable checks if the robot being at some base and arm configuration, can
grasp an object o of some specific type, determined by its shape by just closing the
gripper. The procedure first converts the current object configuration in a virtual
configuration. Given the current base Base and the current real object configu-
ration Conf(o) of object o, using function real virtual we can check on table
real to virtual which is the corresponding virtual configuration C. The proce-
dure continues by checking if it exists a tuple 〈Arm,Geom(o), Conf − g, (o), C〉
in the table grasping placing pose, where Arm is the current end effector pose,
Geom(o) is the type of object o, Conf−g(o) is the relative object-gripper config-
uration and C is the virtual configuration.

The Pick-up action effect updates the holding state variable Hold to the object
that has been grasped. The configuration of object o is set up to a specific id
which represents that o is being held (c-held). Finally, Conf−g(o) is updated
through the procedure denoted by the symbol @pose-gripper. This procedure re-
turns the relative object configuration respect to the robot gripper.

The procedure denoted by the symbol @placeable checks if the robot being at
some base Base and arm configuration Arm, can place and object o of some
specific type and with a relative object-gripper configuration Conf−g(o) by just
opening the gripper. This procedure needs to know the type of the object. For ex-
ample, a cylinder can be placed on the corner of the table with some configuration,
but a tray would fall if it is placed in the same configuration. It works similar to
the @graspable procedure. As effects of the Place action, the state variable Hold
is updated toNone, as well as Conf−g(o). This is because now the object has no
relative object-gripper configuration. Finally, the object configuration is updated
through the procedure @place(Base Arm Geom(o) Conf-g (o)). Given the robot
base and arm configurations, the type of the object and the relative pose between
the object and the gripper, it gives the resulting object configuration after open the
gripper. These procedures update state variables by doing fast lookup operations
on precomputed tables. The number of state variables remains the same, with the
addition of only one extra state variable, Conf−g(o).
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The initial situation provides initial values for the state variables Base, Arm (rest-
ing), Traj (dummy), Conf-g(o), Geom(o) and Conf(o) for each object. Goals de-
scribe target object configurations.

6.4.2 Modeling Blocks World Problems
Blocks World problem is the classical Blocks World planning problem but mod-
eled as a CTMP problem. Initially all blocks are located on top of the table or on
top of other blocks, composing one or different towers. The goal is to stack or
unstack blocks to compose one or more towers.

(:action Unstack
:parameters (?o - object-id)
:prec (and
(= Hold None)
(@graspable ?o)
(@clear ?o))

:eff (and
(:= (Hold) ?o)
(:= (on ?o) no object)
(:= (Conf ?o) c-held))
(:= (Conf-g ?o)

(@pose-gripper Base Arm (Geom ?o) (Conf ?o))
)

(:action Stack
:parameters (?o ?o’ - object-id )
:prec (and
(= Hold ?o)
(@placeable ?o)
(@stable

(@pose Base Arm (Geom ?o) (Conf-g ?o)) ?o’) )
:eff (and
(:= (Hold) None)
(:= (on ?o) ?o’)
(:= (Conf ?o)
(@pose Base Arm (Geom ?o) (Conf-g ?o)))
(:= (Conf-g ?o) None)
)

Figure 6.7: CTMP Model Fragment for Blocks World in Functional STRIPS: Action schemas
Unstack and Stack, extend the general model fragment.

The general model fragment seen in section 6.4 is extended with actions Un-
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stack(o), for unstacking an object o, and Stack(o, o’) for stack an object o on
top of another object o′. The Unstack action requires that the gripper is empty
and that @graspable(o) is true, which is the same procedure as in Pick-and-Place
domain. The only difference is that object o must be clear. The procedure de-
noted by the symbol @clear(o), checks if there is any other object on top of o
that prevents to grasp o. Notice that procedures @graspable(o) and @nonover-
lap(Base,Traj,Conf(o),Hold) have different functionality than @clear. While the
first checks if an object can be grasped by just closing the gripper and the second
ensures that there is no collision during the arm motion, @clear(o) ensures that
the object can be raised without compromise the stability of the stack.

Hold = o and @placeable(o) are preconditions of the action Stack(o, o’) as in
Pick-and-Place domain. There is also a new precondition @stable(Conf(o), o’).
The procedure denoted by the symbol @stable checks if the whole structure is
stable when placing object o. For this purpose, a stability test is done not only
between o and o′, but between all other objects on top of or under o. The stability
test consist to check if all the stack is aligned with the base center of mass within
a margin that depends on the object geometry.

Finally, initial situation provides initial values for the state variables Base, Arm
(resting), Traj (dummy), Conf-g(o), Geom(o), and Conf(o) for each object. Goals
describe the target location of each block, denoted by fluents on(o, o’).
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6.4.3 Modeling Structure Building Problems

(:action Unstack
:parameters (?o - object-id)
:prec (and
(= Hold None)
(@graspable ?o)
(@clear ?o))

:eff (and
(:= (Hold) ?o)
(:= (Conf ?o) c-held))
(:= (Conf-g ?o)

(@pose-in-gripper Base Arm (Geom ?o) (Conf ?o))
)

(:action Stack
:parameters (?o)
:prec (and
(= Hold ?o)
(@placeable ?o)
(@stable

(@pose Base Arm (Geom ?o) (Conf-g ?o)) ?o’) )
:eff (and
(:= (Hold) None)
(:= (Conf ?o)

(@pose Base Arm (Geom ?o) (Conf-g ?o)))
(:= (Conf-g ?o) None)
)

Figure 6.8: CTMP Model Fragment for Structure Building in Functional STRIPS: Action
schemas Unstack and Stack, extend the general model fragment.

Structure Building problems involve moving objects of different types to build
a structure with a given altitude. Initially, objects are placed in top of a table.
The initial situation specifies the initial values for the state variables Base, Arm
(resting), Traj (dummy), Conf-g(o), Geom(o), and Conf(o) for each object. Goals
describe altitudes for any object, denoted by the procedure @object altitude(o,
a). The procedure @object altitude(o, a) checks if object o is at some altitude
range a, where a is a symbolic type to identify a range of altitudes. Specifically, a
denotes a range of the form z1 ≤ a ≤ z2. Where z1 < z2 are real values.

The model fragment does not differ too much from Blocks World model. Un-
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stack(o) action schema is identical. The only difference is on action Stack(o),
which now has only one object as parameter. The reason is that an object o can be
stacked on top of more than one object. For example, a tray can be placed on top
of two or more blocks. For this purpose, the stability procedure differs from the
one seen in Blocks World Model. The procedure denoted by the symbol @stable
is a collection of physical tests among the objects involved in the structure. For
this purpose we define a set of geometric constraints depending on the different
object types that compose the structure. A cube or a cylinder can be placed on
top of any other object if the stability test is satisfied. Also, these objects can be
on top of a tray if they don’t exceed the tray boundary. On the other hand, a tray
can only be placed on top of another tray if it is aligned with the center of mass as
seen before, or can be placed on top of two or more objects if their height is the
same and the distribution of them compose a stable base. This last criteria means
that at least two base objects must be at a sufficient distance and correct alignment
to act as a support for the tray.

6.5 General Algorithm
The compilation of task and motion planning problems is efficient, does not de-
pend on the number of objects and results in planning problems that are compact.
Moreover, motion planners and collision-checkers are only used at compilation
time and not during search.

We rely on the use of width-based search with a planning algorithm that is called
Best First Width Search (BFWS). BFWS is a best-first search algorithm that com-
bines width-based measures to compute novelty [72], with an implicit form of
goal serialization and some benefits of the goal directed heuristic search. BFWS
has been shown to have a very good performance on the classical planning bench-
marks [74]. BFWS is a standard best-first search with a sequence of evaluation
functions f = 〈h, h1, . . . , hn〉 where the node that is selected for expansion from
the OPEN list at each iteration is the node that minimizes h, using the other hi
functions for breaking ties. The novelty of a new generated state s, is the size
of the smallest tuple of atoms that is true in s, but false in all previous gener-
ated states s′ that have the same hi values. It is shown in [33] a general BFWS
algorithm adapted to planning with simulations called BFWS(R). Planning with
simulations ignore the action structure and has only access to the structure of states
and goals only. Indeed, the results of applying some action a to a state s can be
obtained from external descriptions, as a black box procedure.

The algorithm BFWS(R) is a best first search algorithm where R is a set of atoms
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which is computed once from the initial state s0 during preprocessing step on the
simulation process, and then it is used to compute novelty during the search. A
set R contains all the atoms that are made true from s0 to each subgoal. In other
words, R is subset of potential, intermediate subgoals, in the way to the top goals.
Following the different sets R in [33], we consider the set RG. This set is goal-
oriented, meaning that it contains all atoms made true by computed plans, from s0
to each subgoal. These plans are computed in a preprocessing stage using IW (1)
or IW (2) from s0. In other words, RG is a goal oriented version of set R[k]. A set
R[k] contains the set of atoms that are true in states reached from s0 by running
an Iterated Width algorithm IW (k), where k = {1, 2}. First, IW (1) is run. If
IW (1) finds plans that satisfies all goals, then R is the set of atoms made true by
such plans. Following the definition of IW (k), if IW (1) does not find a solution
for all goals, then IW (2) is run from s0. If IW (2) finds plans that satisfies all
problem goals, then R is the set of atoms made true by such plans.

The algorithm BFWS(R) uses an evaluation function f = 〈#r,#g〉 for com-
puting the novelty of a state s. Ties are broken by using #g for a state s, where
#g(s) is the number of goals that have not been achieved yet in s, and the accu-
mulated cost. The value of #r in a state s, denoted as #r(s) is a counter of the
number of atoms in the set R that are made true at some point from s0 to s. R is
computed during the IW (k), and it is used at search time to compute #r(s).

6.6 Extensions of BFWS(R) for Handling State Con-
straints

CTMP problems require solutions that avoids collisions between objects and be-
tween objects and the robot. For this reason we make use of state constraints in
order to prune nodes whose actions violate a state constraint. We propose a new
domain independent computational approach to deal with state constraints during
search time as a form of heuristic. For this purpose, our extended BFWS(R) uses
a new counter #g′(s) to take into consideration those implicit subgoals that result
from state constraints.

We define a set C of atoms which is computed using the same preprocessing
IW (k) for k ∈ 1, 2, used to compute R. The set C contains what we call no good
atoms.

Definition 6.6.1 An atomX = x is a no good atoms iff the action plan that makes
this atom true violates a state constraint.
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During the IW (k) preprocessing we get a plan for each problem goal. For each
of such plans, we add to the set C all atoms that are no good for those goals, and,
recursively, for those subgoals of each no good atom which is true in s0.

Formally, we have a state constraint of the form ¬ (p1& . . .&pn) for atoms pi =
(X = x), and a plan for each literal p and ¬p computed during the IW pre-
processing while ignoring state constraints. A state constraint of the form ¬
(p1& . . .&pn) in our case comes from @non−overlap(p1& . . . pn). Then, we say
that 〈p1, . . . , pn〉 is a no good iff there is a state constraint of the form¬(p1& . . .&pn).
An atom pk : X = x is a basic no good atom for goal G if 〈p1, . . . , pk, . . . , pn〉 is
a no good made true by some preprocessing plan for G and pk ∈ s0. We say that
a no good 〈p1, . . . , pn〉 is a support of atom pk, where pk may have more than one
support.

We define two different closures added to these basic no good atoms forG. LetG′

be a minimal set that includes G and goals ¬p for each basic no good atom for G.
The extended no good atoms for G are defined as basic no good atoms for such
G′, which is uniquely defined. i.e. We initially collect basic no good atoms p for
G, then we add ¬p to G and compute the basic no good atoms for the new goals
G′, until covered. Again as before, each no good atom p has at least one support.
A support is a no good where p appears. There is no need to add ¬p as a features
or atom in the language, since ¬p is achieved in first state where p is not true.

If pk : X = x is an extended no good atom forGwith no good 〈p1, . . . , pk, . . . , pn〉,
then p′k : X = x′ is also an extended no good atom for G if 〈p1, . . . , p′k, . . . , pn〉 is
also a no good. The final set C of no good atoms is the resulting set of extended
no good atoms for G.

From this set C we can obtain another counter #c(s). The counter #c(s) repre-
sents the number of atoms in C that are false in s. Meaning, #c(s) is the number
of variables X appearing in C, such that all atoms X = x in C are false in s.
Notice that if C contains k atoms X = x in C for the same state variable X , then
either k or k − 1 of these atoms will always be false. This is because if X = x is
true in s, then X = x′ for x′! = x will be false. The extended BFWS(R) uses an
evaluation function given by novelty measures w〈#r(s),#g′(s)〉, where #g′(s) =
#g(s) + #c(s) and breaking ties using the #g(s) counter and accumulated costs,.

A key element in our BFWS algorithm is the extension of problem states with
the extra Boolean features defined explicitly when modeling a problem. Extra
features are procedures with a specific symbol, exactly as the rest of the proce-
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dures. The difference is that they play an active role for computing the novelty.
In addition, the set R is computed based on problem state variables, so it does
not take extra boolean features into account. For this reason, we modify the set
of atoms R to include those extra features. The set R now contains those atoms
achieved from s0 to each subgoal plus those achieved boolean features during the
IW (k) preprocessing. Similarly, now the counter #r(s) is a counter of the num-
ber of atoms and the number of extra features in the set R that are made true at
some point from s0 to s.

6.7 Extensions and Optimizations
As detailed in section 5.4, extra boolean features play an active role when com-
puting the novelty. The fact of computing the novelty of a state s due #r(s) and
#g′ makes a partition of search space in different subproblems. The value of
these extra features can make a significant difference in width-based search. In
this section we define which extra boolean features has been added.

6.7.1 Additional Features and Heuristics
For Pick-and-Place and other domains, we define a set of extra boolean fea-
tures. They are the ones denoted by symbols @graspable*, @placeable*, @rest-
ing object and @holding at base. As seen in section 5.4, @graspable* and @place-
able* are needed as there are no state variables related to preconditions @gras-
pable(o) and @placeable(o), as these symbols denote procedures. The features
@resting object and @holding at base partition the search space into different
subproblems.

We will now define these extra boolean features. We have seen that set C con-
tains the no good atoms. An atom X = x belongs to C iff the action plan that
makes this atom true violates a state constraint. If we denoteConf(o) = c as atom
p, then the procedure @graspable*(o) returns true iff graspable(o)∧ (p 6∈ C). In
other words, graspable*(o) returns true iff graspable(o) is true and Conf(o) = c
is not a no good atom. placeable*(o) is true if object o is placeable, o is a goal ob-
ject and the procedure @place( Base Arm (Geom ?o) (Conf-g ?o)) returns a goal
object configuration. Also it returns true if o is placeable, o is not an obstructing
object and Conf(o) = @place( Base Arm (Geom ?o) (Conf-g ?o)) 6∈ C. @rest-
ing object(o) returns true iff Hold = o ∧ Arm = resting. @holding at base(o,
b) returns true iff Hold = o ∧Base = b.

For Blocks World domain, there is one new defined extra boolean feature, which
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is used as action precondition and has been described in section 6.4.2: @clear(o).

For Building Structures Problem, two new extra features have been defined: @clear(o),
as in Blocks World problem and @object-altitude(o, a) as described in section 6.4.3.
Examples of how extra features are defined and computed can be found in https:
//goo.gl/67Zibk.

In addition, we have added another improvement which is a slight modification of
the domain independent counter #c. Defining the #c counter as #c(s) = 2 * # of
atoms is C that are true in s + 1 if object being held, produces better results on
planning time. The planning algorithm is still general and domain-independent.
This modification of the #c counter is added as an additional extension.

6.7.2 Extending the Input Language and the Compilation Pro-
cess

The preprocessing stage seen in section 6.3 that compiles a CTMP problem to
a classical planning problem is efficient and compact. However, the initial and
goal configurations depend on a discretized ”virtual grid”. The experiments that
we report in section 6.8 are generated randomly by setting the initial and goal
configurations for both robot and objects, from the set of precomputed real ob-
ject configurations. In order to define a CTMP problem with the initial and goal
configurations of robot and objects, we propose to extend the input language as
follows:

We extend the input language Ip defined in section 6.2 by adding the initial and
goal (real) configurations for both robot and objects.

Definition 6.7.1 (Extended Input Language) The extended input of a preprocess-
ing stage is Ip = 〈W ,O,R,J ,D〉 where:

• A worldW is defined asW = 〈Q, E〉 as before.

• O is a set of manipulable objects, such that each os = 〈s, µs, As, Gs,m,QI , QG〉,
where the new components stand for:

– m is the number of objects of type s.

– QI is the set on initial configurations of objects of type s, such that
each qi = (x, y, z, θ, ψ, φ), where i = 1, . . . ,m.

– QG is the set of goal configurations of objects of type s, such that each
qi = (x, y, z, θ, ψ, φ), where 1 ≤ i ≤ m.
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• A robotR is a tuple of the formR = 〈rI , rG,K〉, where:

– rI is the robot base initial configuration rI = (x, y, θ). If rI is empty,
the initial base configuration is not taken into consideration.

– rG is the robot base goal configuration rG = (x, y, θ). If rG is empty,
the goal base configuration is not taken into consideration.

– K is the definition of the kinematic model of the robot, as before.

• J is the set of constraints expressing join limits, as before.

• D is the set of discretization parameters. The same parameters as described
in chapter 6.

Figure 6.9: Pick-and-Place problem in a 3-table environment, initial (left) and goal
(right) situations. The objective is to put the blue objects on the rightmost table and
the red objects on the leftmost table.

Figure 6.10: An instance of Blocks World problem. The goal is to stack all blocks. Left
image shows the initial state. Right image shows the goal state.
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Figure 6.11: An instance of Structures Building problem. The left image shows the initial
state, with two blocks, one cylinder an one tray. The goal is to reach a specific altitude for
the cylinder. Right image shows the goal state. The two blocks must be placed closely to
become a stable base for the tray.

Figure 6.12: An instance of Pick-and-Place problem with an obstacle in the middle of
the table

6.8 Experimental Evaluation
We evaluate our planning algorithm in a set of different domains: Pick-and-Place,
Blocks World and Structures Building. All domains involve either one or three ta-
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bles. Table 6.4 shows all relevant data about compilation process. Columns show
the name of the compiled domains: Pick-and-Place with 1 table and 3 tables, and
with an static obstacle (obs) in the middle of the table, Blocks world with 3, 4
and 5 levels, and Structures Building with 3 levels. The other columns show the
total number of arm trajectories, arms configurations, base configurations, total
number of robot configurations, virtual object configurations, number of virtual
grasping poses, relative object configurations, total number of real object config-
urations and overall compilation time. Pick-and-Place with different variations,
Blocks World for different maximum levels and Structures Building have indepen-
dent compilations. However, it is feasible to do just one compilation and use it for
each different domain. For example, the compilation done for Structures Build-
ing domain can be used to generate Pick-and-Place problems, as well as Blocks
World problems. For illustration purposes, we also show the results of each com-
pilation process individually. As the instances have been generated randomly, we
show the planning stats on preprocessed problems using an independent compi-
lation for each type of problem. The CTMP problems are compiled in a timeslot
between half a minute and three and a half minutes. The only exception is Struc-
tures Building problem, which takes almost 24 minutes. The most part of the time
is mostly due to overlap tables computation. Checking collisions for more than
a thousand arm trajectories in a planning scene with a thousand relative object
configurations of different shapes requires a lot of time for MoveIt!. Methods for
reduction compilation time of these types of problems are an interesting avenue
for future work.

compilation #traj. #arms #bases #confs #virt. #GP #rel. #real T(s)
pick-place-1t 129 40 118 4720 13 39 599 99 72
pick-place-3t 373 40 309 12360 13 39 784 300 182
pick-place-obs 143 45 118 5310 13 44 939 112 102
blocksworld-3l 101 54 31 1674 34 101 232 106 33
blocksworld-4l 318 164 118 19352 102 318 4646 768 138
blocksworld-5l 236 137 119 16303 94 236 6512 802 210
structures-3l 1199 213 31 6603 143 938 960 288 1429

Table 6.4: Compilation data for different domains. Pick-and-Place problems with one
and three tables. Pick-and-Place with an obstacle. Blocks World for different levels and
Structures Building.

The number of trajectories refer to the total number of computed arm trajectories.
These trajectories have been computed by MoveIt! [102]. The arm configurations
are end-effector poses. The base configurations are sampled and each one is con-
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nected to kB nearest configurations. We select those base configurations which
are oriented towards the tables. Thus, the total number of robot configurations are
#arm confs × #base confs. To review, as defined in section 6.3, the maximum
number of virtual object configurations is NC . There are a maximum number of k
grasping poses per each virtual configuration and k′ trajectories per each grasping
pose. Thus, the maximum number of virtual grasping poses are NGP and up to
NGP × k′ arm trajectories. A virtual grasping pose is a grasping pose with the
robot located at base B0 = 〈0, 0, 0〉 that can grasp or place an object located at
the related virtual configuration. Thus, the real object configurations are com-
puted using the transformation TB(C) defined previously. The maximum number
of real object configurations are given by the total number of bases multiplied by
the total number of virtual object configurations. The real object configurations
which do not yield inside a table are pruned. The set of relative object configura-
tions are computed following the transformation T−1B (C) for all bases B and all
real object configurations C. The maximum number of relative object configu-
rations are given by the number of robot bases multiplied by the number of real
object configurations. Times from the results are reported in seconds. For each
compilation we can generate a number of problem instances. All the reported
problem instances have been generated randomly. Unlike the approach presented
in chapter 5, we can use objects of different shapes, we can define the allowed
rotations and the grasping poses per each different object type. For simplification,
in these experiments we assume that objects can be rotated in yaw axis, and pitch
and roll are always 0. However, it is easy to define rotation poses for pitch and
roll. Experiments without this simplification are reserved for future work.

Table 6.5 defines the discretization parametersD used per each compilation. From
left to right, ε is the base (x, y) discretization, α the base orientation discretiza-
tion, β denotes the maximum absolute orientation of the robot towards a table, kB
is the k nearest neighbors for each discretized base B, σ is the discretization on
top of the virtual grid (virtual table), λ denotes the maximum possible number of
stacked objects and |∆| is the number of direction approaches (trajectories) to a
given grasping pose. For all Pick-and-Place compilations, all parameters are the
same. Notice that λ = 1, as Pick-and-Place compilation only discretizes config-
uration right above the support surface. For Blocks World and Structures domain,
λ changes to the number of stacking levels. If λ = 3, 4, 5 then the maximum
number of stacked objects are 3,4 and 5. The number of direction approaches |∆|
changes from the Pick-and-Place, being |∆| = 4 to Blocks World and Structures
being |∆| = 1, 2. The reason is that having more direction approaches is more
suitable for cluttered environments like Pick-and-Place.
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compilation ε α β kB σ λ |∆|
pick-place-1t 0.5 0.2618 0.6109 12 0.15 1 4
pick-place-3t 0.5 0.2618 0.6109 12 0.15 1 4
pick-place-1t-obs 0.5 0.2618 0.6109 12 0.15 1 4
blocksworld-3lvls 0.5 0.2618 0.6109 12 0.15 3 1
blocksworld-4lvls 0.5 0.2618 0.6109 12 0.15 4 2
blocksworld-5lvls 0.5 0.2618 0.6109 12 0.2 5 1
structures-3lvls 0.5 0.2618 0.6109 12 0.2 3 1

Table 6.5: Compilation parameters for different domains. It shows the discretization
parameters provided as input to the system.

We evaluate our model in a set of different domains with one and three tables. For
each domain we generate a number of random instances with increasing number
of objects and goals. The first domain is Pick-and-Place. We show per instance
result in tables 6.6, 6.7, 6.8 and 6.9. Each column shows statistics regarding the
use of BFWS(R). The leftmost column shows instance characteristics: Number of
objects - number of goals - instance id, |R| is the size of set R, |C| is the size of
set C. Remaining columns are the number of expanded nodes, the plan length,
simulation time (Prep), search time (Search) and total time (Total). The initial and
goal states for a sample problem instance are shown in Fig. 6.9 where the robot
needs to place all blue objects on one table and all red objects on another table. Ta-
ble 6.6 and table 6.7 show the results of our BFWS planner for the Pick-and-Place
domain with one table, using sets R G[1] and R G[2] respectively. The first one,
computes setR using a goal oriented IW (1) preprocessing that prunes nodes with
novelty greater than 1. Adding additional features: @graspable*, @placeable*,
resting object and @holding at base allows to solve each subgoal with width 1
during preprocessing time. Preprocessing time is shown to be fast as IW runs in
time exponential in the problem width. We have set a search time limit of 100
seconds. There are four instances that time out, however BFWS with set R G[2]
performs very well during search. Preprocessing time is increased as IW (2) now
prunes nodes with novelty greater than 2. This means that nodes with novelty 2
are also expanded. However, not computing boolean features resting object and
@holding at base makes the node expansion faster during search. In both cases,
results show to be competitive and scale well with the number of objects. Ta-
ble 6.8 shows the results of manipulating objects in an environment with 3 tables.
Table 6.9 shows the results in Pick-and-Place domain with a different variation:
there is a small blocking obstacle in the middle of the table as shown in Fig. 6.12.
Most of the instances are solved in a few seconds and require only the expansion
of a few thousands of nodes in the search tree.
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For Block World and Structures Building tables, each column shows statistics
regarding the use of BFWS(R) with set R G[2]. Preprocessing prunes nodes
with novelty greater than 2. The leftmost column reports instance characteris-
tics: Number of objects - number of levels - instance id. Remaining columns are
the number of expanded nodes, the plan length, simulation time (Prep), search
time (Search) and total time (Total).

Table 6.10 and table 6.11 shows the results in Blocks World domain. There are
k = {3, 4, 5} blocks and a maximum stacking level of λ = k. This means that
there can be up to 3, 4 or 5 blocks forming towers of 3 to 5 blocks. Table 6.10
shows results of Blocks World with 3 and 4 levels. Moreover, some instances have
3 towers of 3 blocks each one in the initial configuration. The goal is to set a
new tower of 3 blocks. Table 6.11 shows the problems with 5 blocks and 5 lev-
els. Our BFWS performs well with these problems. There are 3 different types of
subproblems involving 5 blocks and up to 5 levels:

1. In the first subproblem the goal is to stack all blocks in a tower.

2. The second subproblem is exactly the opposite: There is a stack of blocks
in the initial state and the goal is to unstack all of them and place them on
top of the table.

3. In the third subproblem all blocks are initially stacked as a tower. The goal
is to stack all blocks composing another tower. This type of problem is the
most challenging one for our approach.

Table 6.12 shows the results of Structure Building domain. There are 3, 4 and 5
objects of different shapes (cylinders, blocks and trays). The goal is to reach a
given altitude with some of these objects. The robot must arrange the different
objects in order to create a stable structure. Fig. 6.11 shows the initial and goal
states of one of the instances. There are two blocks, one cylinder and one tray.
The cylinder must be located at some altitude. For this purpose, the robot has
moved the blocks in order to place them forming a stable base to stack the tray
on top of them. At the same time, the tray composes a stable base to stack the
cylinder at the desired altitude.

The Functional STRIPS encodings, tables and videos illustrating the results are
available in https://goo.gl/67Zibk.

111

https://goo.gl/67Zibk


“tesi˙jonathan˙ferrer˙mestres” — 2018/3/20 — 12:44 — page 112 — #134

o-g-id |R| |C| Expanded Length Prep. (s.) Search(s.) Total(s.)
10 1 1 8 28 3159 32 1,43 3,01 4,44
10 1 2 8 37 1776 21 0,98 2,77 3,75
10 1 3 10 36 567 36 0,68 0,28 0,96
10 1 4 8 21 593 32 0,64 0,27 0,91
10 1 5 10 72 640 41 1,42 0,32 1,74
10 2 1 13 66 8729 51 1,15 5,77 6,92
10 2 2 11 39 2934 58 1,7 1,74 3,44
10 2 3 13 64 10832 60 1,44 7,51 8,95
10 2 4 9 23 2589 25 0,76 1,25 2,01
10 2 5 0 0 0 0 0 >100 0,00
10 3 1 16 45 1458 71 1,48 0,67 2,15
10 3 2 16 87 14347 63 1,26 10,16 11,42
10 3 3 14 32 5454 83 1,36 7,25 8,61
10 3 4 14 50 12940 73 0,87 11,31 12,18
10 3 5 14 53 8311 64 1,48 8,07 9,55
15 1 1 8 43 4684 47 3,02 10,01 13,03
15 1 2 8 21 1590 26 1,56 2,84 4,40
15 1 3 8 26 1199 22 1,62 0,66 2,28
15 1 4 14 64 672 52 3,09 0,39 3,48
15 1 5 4 0 1157 17 2,89 0,59 3,48
15 2 1 0 0 0 0 0 >100 0,00
15 2 2 0 0 0 0 0 >100 0,00
15 2 3 0 0 0 0 0 >100 0,00
15 2 4 21 107 32174 99 2,95 49,61 52,56
15 2 5 15 39 3010 57 2,45 1,62 4,07
15 3 1 18 82 21947 75 3,01 19,75 22,76
15 3 2 0 0 0 0 0 >100 0,00
15 3 3 14 20 14749 76 2,92 24,47 27,39
15 3 4 0 0 0 0 0 >100 0,00
15 3 5 0 0 0 0 0 >100 0,00
20 1 1 0 0 0 0 0 >100 0,00
20 1 2 0 0 0 0 0 0,02 0,02
20 1 3 14 75 476 28 5,69 0,65 6,34
20 1 4 10 19 1255 15 5,13 1,58 6,71
20 1 5 12 83 1147 47 4,82 1,51 6,33
20 2 1 0 0 0 0 0 >100 0,00
20 2 2 23 145 19137 125 4,92 16,21 21,13
20 2 3 0 0 0 0 0 0,00 0,00
20 2 4 0 0 0 0 0 >100 0,00
20 2 5 19 108 22576 108 4,22 22,80 27,02
20 3 1 0 0 0 0 0 >100 0,00
20 3 2 0 0 0 0 0 >100 0,00
20 3 3 0 0 0 0 0 >100 0,00
20 3 4 0 0 0 0 0 >100 0,00
20 3 5 0 0 0 0 0 >100 0,00

Table 6.6: Pick-and-Place problem using set R G[1].
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o-g-id |R| |C| Expanded Length Prep. (s.) Search (s.) Total (s.)
10 1 1 8 28 542 25 3,22 0,14 3,36
10 1 2 8 37 473 21 0,88 0,12 1,00
10 1 3 10 36 1054 36 0,46 0,39 0,85
10 1 4 8 21 775 32 0,38 0,19 0,57
10 1 5 10 72 1179 41 4,38 0,28 4,66
10 2 1 13 66 84749 54 1,8 22,42 24,22
10 2 2 11 39 3987 47 3,97 0,91 4,88
10 2 3 13 64 95070 73 1,77 24,41 26,18
10 2 4 9 23 1064 25 0,48 0,25 0,73
10 2 5 11 56 33641 71 4,41 8,71 13,12
10 3 1 16 45 1670 76 4,38 0,38 4,76
10 3 2 16 87 71074 82 2,11 18,47 20,58
10 3 3 14 32 72868 86 2,9 20,82 23,72
10 3 4 14 50 103887 73 0,44 27,60 28,04
10 3 5 14 53 3233 77 4,37 0,78 5,15
15 1 1 8 43 3447 47 6,14 1,01 7,15
15 1 2 8 21 2806 37 0,77 0,82 1,59
15 1 3 8 26 767 22 1,04 0,21 1,25
15 1 4 14 64 1445 50 7,26 0,38 7,64
15 1 5 4 0 287 17 5,79 0,10 5,89
15 2 1 - - - - - >100 >100
15 2 2 9 62 76881 53 0,33 23,86 24,19
15 2 3 17 132 54630 75 2,02 16,84 18,86
15 2 4 21 107 53196 111 6,38 15,55 21,93
15 2 5 15 39 1619 57 2,96 0,41 3,37
15 3 1 18 82 8214 75 6,58 2,12 8,70
15 3 2 14 21 206391 105 5,65 64,35 70,00
15 3 3 14 20 5849 76 5,89 1,60 7,49
15 3 4 - - - - - >100 >100
15 3 5 10 72 3611 49 5,4 1,02 6,42
20 1 1 12 46 44726 74 0,21 15,79 16,00
20 1 2 0 0 0 0 0 0,01 0,01
20 1 3 14 75 814 28 4,56 0,25 4,81
20 1 4 10 19 519 33 3,22 0,16 3,38
20 1 5 12 83 511 47 2,51 0,17 2,68
20 2 1 13 49 133505 68 1,76 44,95 46,71
20 2 2 23 145 35013 107 7,71 10,98 18,69
20 2 3 27 160 247957 239 9,85 86,97 96,82
20 2 4 17 90 16634 90 0,83 5,57 6,40
20 2 5 19 108 92173 96 3,82 32,66 36,48
20 3 1 24 85 228286 128 7,1 78,00 85,10
20 3 2 - - - - - >100 >100
20 3 3 - - - - - >100 >100
20 3 4 16 61 265053 112 3,27 92,98 96,25
20 3 5 20 49 41443 111 8,47 14,31 22,78

Table 6.7: Pick-and-Place problem using set R G[2].
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o-g-id —C— —R— Expanded Length Prep. (s.) Search (s.) Total (s.)
10 1 1 4 21 1027 17 17,78 0,99 18,77
10 2 2 4 0 694 10 0,33 0,66 0,99
10 3 3 10 0 1609 58 116,31 1,57 117,88
10 4 4 15 40 10853 106 96,59 9,63 106,22
15 1 5 4 0 430 13 1,28 0,90 2,18
15 2 6 7 0 1135 43 61,70 1,26 62,96
15 3 7 12 8 3841 78 150,09 4,05 154,14
15 4 8 15 19 4415 86 118,54 4,19 122,73
20 1 9 6 22 1101 24 15,28 1,21 16,49
20 2 10 7 15 14362 35 9,90 17,26 27,16
25 3 11 18 52 5352 115 96,03 6,27 102,30
25 4 12 - - - - - >100 -
30 1 13 6 15 10921 38 65,34 27,43 92,77
30 2 14 11 25 11784 52 17,16 31,06 48,22
30 3 15 24 107 23860 126 206,36 60,94 267,30
30 4 16 - - - - - >100 -

Table 6.8: Pick-and-Place problem with three tables using the extend version of
BFWS(R) with set R G[2].
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o-g-id —R— —C— Expanded Length Prep. (s.) Search (s.) Total (s.)
10 1 1 14 68 162 19 0,19 0,05 0,24
10 1 2 4 11 458 14 0,78 0,11 0,89
10 1 3 4 0 57825 28 0,41 15,44 15,85
10 1 4 4 22 470 12 0,16 0,13 0,29
10 1 5 6 44 594 12 0,18 0,14 0,32
10 1 6 6 21 34041 22 0,05 9,05 9,10
10 1 7 8 27 4958 40 0,94 1,23 2,17
10 1 8 6 18 516 22 0,48 0,12 0,60
10 1 9 4 0 154 12 0,2 0,04 0,24
10 1 10 6 52 303 18 0,14 0,08 0,22
15 1 1 10 53 548 26 0,4 0,15 0,55
15 1 2 6 21 517 21 0,69 0,15 0,84
15 1 3 8 62 12686 36 0,39 4,11 4,50
15 1 4 6 6 555 23 1,87 0,15 2,02
15 1 5 20 154 49582 159 0,79 19,47 20,26
15 1 6 10 26 1209 45 5,72 0,31 6,03
15 1 7 8 57 851 33 5,33 0,23 5,56
15 1 8 16 141 1457 42 1,35 0,38 1,73
15 1 9 10 107 1059 37 0,37 0,28 0,65
15 1 10 12 74 2940 65 1,53 0,81 2,34
20 1 1 12 74 43725 67 4,39 16,17 20,56
20 1 2 12 34 1148 39 10,12 0,4 10,52
20 1 3 10 13 1195 52 8,65 0,35 9,00
20 1 4 8 24 850 30 4,04 0,26 4,30
20 1 5 12 102 1661 46 2,3 0,49 2,79
20 1 6 14 92 441907 72 2,72 174,21 176,93
20 1 7 20 125 275291 112 6,23 105,72 111,95
20 1 8 8 69 38932 46 2,42 13,3 15,72
20 1 9 10 61 784 26 0,14 0,24 0,38
20 1 10 12 101 42749 64 0,31 15,04 15,35

Table 6.9: Pick-and-Place problem with an obstacle in the middle of the table, using the
extend version of BFWS(R) with set R G[2].

115



“tesi˙jonathan˙ferrer˙mestres” — 2018/3/20 — 12:44 — page 116 — #138

b-l-id Expanded Length Prep. (s.) Search (s.) Total (s.)
Init: All blocks in top of the table
Goal: All blocks in a stack
3 3 1 653 38 0,05 0,05 0,1
3 3 2 14248 101 0,05 1,18 1,23
3 3 3 1156 35 0,05 0,11 0,16
3 3 4 368 19 0,01 0,03 0,04
3 3 5 515 20 0,06 0,04 0,1
3 3 6 2603 27 0,06 0,21 0,27
3 3 7 652 45 0,06 0,05 0,11
3 3 8 7351 39 0,05 0,59 0,64
3 3 9 633 38 0,05 0,05 0,1
3 3 10 40761 23 0,06 3,26 3,32
4 4 1 5221 42 16,78 6,51 23,29
4 4 2 5795 37 17,93 7,74 25,67
4 4 3 15452 54 5,26 23,33 28,59
4 4 4 50628 49 28,42 79,93 108,35
4 4 5 2302 50 8,43 2,14 10,57
4 4 6 7734 37 3,61 11,05 14,66
4 4 7 6240 53 13,60 8,76 22,36
4 4 8 121497 64 15,23 234,72 249,95
4 4 9 6148 28 0,94 8,77 9,71
4 4 10 73596 68 10,82 121,38 132,20
Init: 3 tower of 3 blocks each one
Goal: A new tower of 3 blocks
3-3-1 18626 56 114,10 133,73 247,83
3-3-2 86130 44 476,49 585,98 1062,47
3-3-3 - - - - >2000
3-3-4 11097 32 65,85 17,26 83,11
3-3-5 17086 65 438,62 36,10 474,72
3-3-6 218396 50 319,42 1422,71 1742,13
3-3-7 129321 52 682,72 783,02 1465,74
3-3-8 - - - - >2000
3-3-9 - - - - >2000
3-3-10 235368 56 473,75 1448,50 1922,25

Table 6.10: Blocks World problem with towers of 3 and 4 levels and 3 towers of
3 blocks in the initial situation. The used algorithm is the extended version of
BFWS(R) with R G[2].
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b-l-id Expanded Length Prep. (s.) Search (s.) Total (s.)
Init:All blocks on top of the table
Goal: All blocks in a stack
5 5 1 51856 64 51,54 64,21 115,75
5 5 2 69189 77 80,81 83,97 164,78
5 5 3 49147 74 23,36 61,24 84,60
5 5 4 19816 69 91,62 20,24 111,86
5 5 5 39308 61 37,71 49,25 86,96
5 5 6 16658 54 38,34 17,31 55,65
5 5 7 73449 70 29,16 98,28 127,44
5 5 8 32443 54 35,99 33,26 69,25
5 5 9 86572 70 13,13 132,18 145,31
5 5 10 78363 92 13,96 92,63 106,59
Init: All blocks in a stack
Goal: All blocks in top of the table
5 5 11 608 35 119,40 0,35 119,75
5 5 12 450 26 97,08 0,32 97,40
5 5 13 461 29 127,67 0,35 128,02
5 5 14 480 30 113,08 0,32 113,40
5 5 15 459 29 45,46 0,28 45,74
5 5 16 542 32 110,51 0,36 110,87
5 5 17 571 30 119,33 0,4 119,73
5 5 18 587 33 128,64 0,4 129,04
5 5 19 553 34 129,44 0,37 129,81
5 5 20 414 28 91,18 0,32 91,50
Init: All blocks in a stack
Goal: All blocks in a different stack
5 5 21 23198 48 249,22 29,73 278,95
5 5 22 527953 70 3,20 948,66 951,86
5 5 23 253562 39 2,77 454,33 457,10
5 5 24 787154 69 324,85 1559,04 1883,89
5 5 25 1042781 82 248,24 1899,31 2147,55
5 5 26 593516 80 253,20 1069,94 1323,14
5 5 27 767364 87 59,35 1247,66 1307,01
5 5 28 190432 39 2,86 278,10 280,96
5 5 29 193339 51 133,86 378,36 512,22
5 5 30 465769 89 316,24 852,55 1168,79

Table 6.11: Blocks World problem with towers of 5 blocks, using the extended version
of BFWS(R) with R G[2].
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o-g-id Expanded Length Prep. (s.) Search (s.) Total (s.)
3 1 1 2192,44 12 8,16 5,39 13,55
3 1 2 1169,70 15 19,68 5,9 25,58
3 1 3 2366,90 12 6,97 5,63 12,6
3 1 4 2366,90 12 6,97 5,63 12,6
3 1 5 2366,90 12 6,97 5,63 12,6
4 1 6 1524 18 27,27 7,16 34,43
4 1 7 49061 25 4,62 272,44 277,06
4 2 8 3249 21 22,24 19,70 41,94
4 1 9 1524 18 27,27 7,16 34,43
4 1 10 49061 25 4,62 272,44 277,06
5 2 11 3249 21 22,24 19,70 41,94
5 2 12 20609 24 21,16 138,67 159,83
5 2 13 20583 24 21,25 142,01 163,26
5 2 14 13174 21 16.35 89.17 105.52
5 2 15 13174 21 16.35 89.17 105.52

Table 6.12: Structures Building problem with 2 cubes, cylinders and trays.

6.9 Related Work

Combined task and motion planning for grasping and manipulation is an open
research problem at the intersection of planning and robotics. It is not easy to
compare empirical results, as there is a lack of standarization regarding a com-
mon language to define CTMP problems and common benchmarks to compare
different approaches. However, some efforts have been done in order to propose a
common set of benchmarks [63].

There are several approaches which addresses the combination of task and mo-
tion planners [10, 11, 41, 80, 78, 36], where the decomposition of task and mo-
tion planning is not independent, being the task planner influenced by the motion
planner. However, approaches based on task and motion decomposition tends to
cause lots of backtracking. Problems caused by backtracking and the resulting
high number of calls to the motion planner are adressed in [65, 64, 6]. External
procedures have also been used to avert the difficulty of performing geometric
reasoning within a logically oriented planning language [22, 24, 84], as well as
to predict the effects of actions involving complex physics [61]. The integration
however is still hierarchical as the interaction between the planner and the external
procedures is limited.

The use of classical planners off-the-shelf appears in [100] within a plan-simulate-
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revise-replan cycle where failed simulated executions are used to revise the sym-
bolic model and where off-the-shelf classical and motion planners are integrated
through the use of a planner-independent interface layer. This idea is very ap-
pealing but it is far from clear how to make such revisions in general. The errors
in the motion planning goals have to be identified and fed back to the symbolic
planner in the form of logic predicates, the main challenge being the proper iden-
tification of the offending atoms that prevent the enactment of specific high-level
actions. FFRob [35] does not use the FF planner off-the-shelf [49] but adapts
the computation of the heuristic to the presence of objects using the geometri-
cal information, together with the symbolic information, exploiting a conditional
reachability graph as a form of a probabilistic roadmap conditioned to the object
configurations.

Hierarchical Task Network [27] approaches are explored in [53], where a hierar-
chical regression-based schema is developed that combines task and motion plan-
ning and in [105], where Hierarchical Task Networks are used to tackle robotic
manipulation problems by modeling the bottom actions of the hierarchy with mo-
tion planning. Other Hierarchical approaches that control backtracking are ad-
dressed in [16, 17, 15].

The use of LTL specification to define hight levels tasks have also been addressed
in [89] and [44], where the LTL languages specifies complex task to be performed
by motion planners. The idea of using temporal logic specifications it is also ad-
dressed for motion planners in [90, 5].

In the aSyMov planner [11, 41], the integration between the symbolic and geo-
metric components is performed after each step of the planning process. Other
models appeal to SMT solvers for addressing both task planning and the geomet-
rical constraints [85, 14].

A key characteristic of our approach is the use of a classical planner that do not
need to decouple the problem into symbolic and geometric components.

6.10 Discussion
We have proposed a novel approach to fully an automatically compile CTMP
problems into classical AI problems. We have proposed a formal language to eas-
ily specify task and motion problems. The preprocessing stage understands this
language as input and compiles a set of graphs and tables which are directly used
during planning time. The fact of compiling such tables, avoids the calls to mo-
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tion planners and collision checkers during search. We show how to model three
different task and motion planning problems: Pick-and-Place, Blocks World and
Structures Building, starting from a general encoding which assumes the previous
computation of a base and arm graph. The work developed in this chapter extends
in several ways the proposed approach of chapter 5: First, the compilation is based
on an input which specifies the task and motion problem. We can easily specify
the world, the static and the 3D-shape movable objects, the allowed rotation poses
and the possible grasping poses per each object type and the discretization param-
eters to compile the CTMP problem. Second, we show how can based on this
compilation, we can model different task and motion problems. Third, we have
developed a planning algorithm which is general and domain independent and it
makes use of state constraints to compute a set C of no good atoms, which is used
to compute the novelty of a state. In addition, we extended the set R of relevant
no good atoms seen in [33] to take extra boolean features into consideration. The
results have demonstrated the performance of our general algorithm.
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CHAPTER 7

The Planner

7.1 General Architecture
Our planner architecture relies on our own developed software and on some off-
the-shelf modules which will be described in the following sections. The system
architecture shown in Fig. 7.1 describes each component of the architecture and
the process work flow. With our proposed input language defined in section 6.2
we start specifying a CTMP problem, which is compiled into a classical planning
problem with FSTRIPS and state constraints. We define step by step how our
method works:

Input
First, we define an Input (1). This input file is defined as a JSON extension file
and specifies the object, robot and world geometries, as well as the discretization
parameters, following the input language defined in chapter 6.

The main component of our architecture is defined as a ROS package. The pack-
age called CTMP pkg (2) contains different ROS nodes with different function-
ality each one.

Preprocessing Node
Our main node is called Preprocessing (3), and given an input it compiles a
CTMP problem as a classical planning problem. The preprocessing node starts
the compilation process calling MoveIt! (4) to compute motion plans for both
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Figure 7.1: General architecture of the system
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arm and base movements, and to check for collisions. Once the compilation be-
gins we create what is called a planning scene. The planning scene represents the
environment with the kinematic model of the robot and the rest of the elements, i.e.
movable and static objects. A virtual table representing the robot arm workspace
is added to the planning scene. The virtual table is discretized according some pa-
rameters specified in the input file. MoveIt! computes both arm trajectories while
avoiding collisions with the virtual table and the robot itself and base trajectories
while avoiding collisions with the real tables. This step computes two graphs:
A base graph and an arm graph. For both graphs, nodes represent configurations,
and edges represent trajectories between them. A graph is denoted by a data struc-
ture composed by tuples 〈〈ci, t〉 : cj〉, where ci is and cj are configurations and t
is a valid trajectory between them. The preprocessing stage also computes a set
of tables which will be used during search. The Preprocessing node takes this
input and generates a set of serialized tables per each compilation process. These
tables are used for the planner and accessed through external procedures in order
to update robot and object configurations, as well to deal with overlaps defined
by the state constraints. To compute state constraints, Moveit! uses its Collision
Checker (5) to check for collisions between previous computes trajectories and
relative object configurations, and returns a set of collision pairs.

MoveIt!

Basically, MoveIt! acts as a black box. It creates a planning scene with all the
relevant information: Robot, virtual table and support surfaces when computing
the base and arm graphs, and objects on relative object configurations when com-
puting overlaps. During the computation of base and arm trajectories, MoveIt!
receives queries with the initial and goal configurations for both, base and end-
effector. If a motion plan is successfully found, MoveIt! returns a collision-free
trajectory. When computing overlaps, we exclusively check for collisions be-
tween the computed arm trajectories and objects in relative configurations. For
this purpose, the planning scene with the virtual table and the robot is updated
to include all objects in relative configurations. Figure 6.3 illustrates a planning
scene, with a PR” robot and all the possible objects in relative configurations. All
previously computed arm trajectories are checked for collision with the planning
scene. MoveIt! returns whether a trajectory collides with some element of the
planning scene, and if so, which are the elements in collision. The overlap tables
are filled with these collisions.

123



“tesi˙jonathan˙ferrer˙mestres” — 2018/3/20 — 12:44 — page 124 — #146

Instance Generator Node
The Instance Generator (6) node takes from the configuration file the type of in-
stance to be generated. This means the number of objects and their shapes and/or
the maximum levels for Blocks World and Structures Building problems and it
generates a number of random instances. In order to specify the init and goal con-
figurations, the Instance Generator node takes the computed object configurations
generated by the Preprocessing node.

Planner
Once our system has generated graphs, tables and the instances, and the problem
has been modeled as a domain.pddl file, our Planner (7) computes a solution.
This solution is composed by a plan file containing symbolic actions. Fig. 7.2
contains a fragment of a plan for the Blockworld problem.

transition_base(e218)
transition_base(e10650)
transition_arm(t232)
unstack(o5)
transition_arm(t10232)
transition_arm(t45)
stack(o5)
transition_arm(t10045)
transition_arm(t228)
unstack(o4)
transition_arm(t10228)
transition_arm(t121)
stack(o4)

Figure 7.2: A fragment of a plan for a Blocks World problem.

Validation Node
The Validator (8) node takes the plan and the trajectories computed by MoveIt!
for both the base and the arm graph. The plan actions are translated into robot
commands to be understood by the controllers of a simulated robot in Gazebo (9).
In other words, the Validator translates planning actions to robot actions and dis-
play them in Gazebo through ROS messages. An action like transition arm(t232)
means that the robot having the arm at some configuration has to perform an arm
trajectory which has as an identifier t232. It is analogous for base trajectories.
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Gazebo Simulator
Gazebo (9) simulates an environment with a PR2 robot. Robot actions given by
the planner are translated to robot actions by the Validator node. These robot
actions are performed on the simulated PR2. The instance generator spawns the
initial set of objects configuration in the simulated environment, as well as the
initial robot base and arm configuration.

7.2 Execution of plans
Plans are real robot plans. This means that given a plan π, this plan is exe-
cuted on a simulated robot. Fig. 7.1 shows the pipeline of the whole process.
When the Planner(6) finds a solution, the Validator(7) node translates the high-
level planning actions into low level actions or robot commands. These com-
mands are send as ROS messages to a simulated PR2 robot. As detailed be-
fore, any ROS-compatible robot with a manipulator can be used. The transla-
tion of actions is simple and straight-forward. When the graphs are computed,
we store two data structures, one for the arm trajectories and the other one for
the base trajectories. Both of them map the trajectory ids to a vector of joint
values. The structure for arm trajectories is a function of the form Traj(id) :=
{〈j11 , j12 , . . . , j1n〉, . . . , 〈jm1 , jm2 , . . . , jmn 〉}, where n is the number of joints and m is
the joint vector index. On the other hand, the structure for base trajectories is a
function of the form Traj(id) := {〈x1, y1, θ1〉, . . . , 〈xm, ym, θm〉}. An example
of a base trajectory is τ(10) = {〈35.2,−169.42, 0.0〉, . . . , 〈604.2,−312.42, 1.571〉},
where each tuple represents a configuration base of the form 〈x, y, θ〉. For pick-
up, place, stack and unstack actions, the corresponding robot command is to open
or close the gripper, using a feedback-loop-control to ensure the feasibility of the
action.

7.3 Modules Used Off-the-Shelf
In this work, we used a number of tools, libraries and external software. In this
section we explain how each of these modules have been used, and why:

• Robot Operating System (ROS): ROS [91] is a set of tools and libraries
that are widely adopted by the robotics community to develop software for a
range of robotic platforms. ROS is an attempt to standarize software devel-
opment for robotics. It provides a communication system through messages
and services, as well as a hardware abstraction and device drivers. It also
allows for an easy and direct integration with Gazebo, as well with other
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simualtors like Morse [25] or V-Rep [95]. The software developed for this
dissertation is composed by a ROS package with different nodes. Each ROS
node has a different functionality. We used ROS Indigo version on Ubuntu
14.10. The compilation process as well as the visualization have been per-
formed on a simulated PR2 robot in a 3D world and can be easily extended
to other robots.

• MoveIt!: It is a motion planning framework. It is a software for arm manip-
ulation, kinematics, navigation and control. There are a number of robots
which are MoveIt! [102] compatible. MoveIt! is ROS compatible and it is
composed by a set of packages and nodes. The main node is Move Group
and it provides an intuitive interface to use motion planning algorithms in
a constructed planning scene with different robot models. It also provides
the tools to monitor the planning scene, check trajectories and collisions in
a representation of a simulated or real environment. MoveIt! offers a set
of motion planning algorithms using the OMPL [104] as external library
for motion plans, as well as other planners such as Search-Based Planning
Library (SBPL) [70] and other IK solvers.

• Open Motion Planning Library (OMPL): The OMPL [104] is a library
that contains implementations for the state-of-the-art sampling-based mo-
tion planning algorithms. It is integrated with MoveIt!.

• Gazebo Simulator: Gazebo [59] is a ROS compatible robotics simulator.
It is widely used by robotics community as it can simulate precise environ-
ments with complex robot systems like the PR2. Through and intuitive tag
language, SDF, which allows for creation of new elements. It is a powerful
physics-engine, recommended for grasping and manipulation tasks with a
number of features like sensor data, 3D graphs and the facility to the de-
velop custom plugins. We used Gazebo 2.2 version, which is compatible
with ROS Indigo.

7.4 Implementation and Low Level Details
The planner is a set of developed tools that compile a CTMP problem into a clas-
sical planning problem. The system has been implemented as a ROS package,
where the main ROS node performs the compilation. The planner (solver) is a
modified version of the planner presented in [33]. All the implementation of the
planner have been done in C++.

The input is provided in JSON format. The Preprocessing computes graphs and
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tables and store them in a compact and serialized form. The Planner deserialize
and loads in memory these graphs and tables, to be accessed by external proce-
dures during search. External procedures are those ones denoted by the symbol
@. Each procedure is implemented as a C++ function. Graphs and tables are
computed as C++ maps or sets of integers, where each integer represents an id.
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PART IV

Conclusions
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CHAPTER 8

Conclusions

In this dissertation we presented a novel computational approach that is based in
a compilation process of CTMP problems to classical planning problems. We
extended the FSTRIPS language to be able to handle state constraints and we
proposed a formal input language to describe CTMP problems. We introduced a
general and domain independent planning algorithm that can deal with state state
constraints, independently of the CTMP problem, by computing weak heuristics
from the FSTRIPS and state constraints problem.

8.1 Contributions

In this section we outline the main contributions of this thesis:

1. We proposed a novel integration of task and motion planning where the
symbolic and geometrical components are addressed in combination, with
neither part taking the back seat. We extended Functional STRIPS with
the ability to incorporate state constraints, which are formulas for encoding
implicit preconditions. We then presented how an expressive language like
FSTRIPS can encode problems which involve symbolic and geometric rea-
soning, using state constraints to avoid collisions. We proposed a translation
of FSTRIPS to STRIPS, by compiling away functions and state constraints.
As state constraints encode implicit preconditions, we showed how these
state constraints are converted in explicit preconditions for STRIPS encod-
ing.
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2. We have presented a framework to fully and automatically compile CTMP
problems as classical AI planning problems, given a formal input language
to describe problems that require task and motion planning. The compi-
lation process is sound and probabilistic complete, it is independent in the
number of objects, and generates a set of graphs and tables, which are being
used during the planning stage for avoiding calls to motion planners during
search. We showed how to model a set of CTMP problems starting from
a general model fragment which assumes a base and arm graph computed
during the compilation process.

3. Finally, we presented a general and flexible computational approach based
on a domain independent planning algorithm to solve the proposed CTMP
problems. The algorithm is a BFWS(R) extended to handle state constraints.
The algorithm relies in a IW (k) preprocessing on top of a relaxed version
of the original problem where state constraints have been removed. We
compute a set C of what we call no good atoms, which are atoms that vi-
olate a state constraint. During the IW (k) preprocessing we get a plan for
each problem goal and we add to C all no good atoms. We showed how
we compute domain-independent heuristics from a problem encoded with
FSTRIPS and state constraints. Moreover, we extend the set of relevant
atoms taking into consideration the addition of extra boolean features de-
fined on the model of the problem.

8.2 Ongoing and Future Work

Integration of task and motion planning is a wide area in planning and robotics.
This dissertation suggests a number of improvements and optimizations, which
yield to new lines of research. We are currently working on some of them, while
other ones are reserved for future work.

Preprocessing and Compilation Process

The preprocessing process defined in section 6.3 is what we define as an indepen-
dent compilation, since it does not depend on the initial and goal configurations
of both objects and robot. When creating instances, the init and goal is taken
from the set of precomputed configurations. Given the extended input language
of section 6.7, now we can compile a CTMP problem taking into consideration
the initial and goal configurations. The process is really simple, and we propose
two new compilation types:
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• Init&Goal Preprocessing: The preprocessing takes the initial and goal
configurations for both, objects and robot. Meaning that the compilation
process includes these configurations as real configurations. The process
works as follows:

– The initial and goal base configurations, if any, are considered as dis-
cretized base configurations and added to the base graph by following
the same process as described in section 6.3.

– Given the set of discretized bases B and all the (real) initial and goal
object configurationsC, we apply transformation T−1B (C) to obtain the
corresponding relative object configurations C ′. These relative object
configurations are added to the virtual grid as virtual object config-
urations. Then, we continue by generating grasping poses and arm
trajectories per each discretized and new virtual object configuration
C ′, as usual.

The preprocessing works normally. The only differences are two: (i) con-
nect the initial and base configurations to the base graph and (ii) transform
the init and goal real object configurations to be represented as virtual object
configurations. Then the preprocessing continues as described in chapter 5.

• Incremental Preprocessing: Extends a previous compilation with a new
pair of init/goal object configurations and init/goal base configurations. The
base and arm graphs are extended with the new configurations, and previ-
ously computed tables are also extended. The incremental preprocessing
works as follows:

– Similarly, the init and goal base configurations are connected to the
base graph.

– Once all bases are generated, the init and goal (real) object configura-
tions are transformed using T−1B (C) to obtain the virtual object con-
figurations, as defined in previous extension. Then, we generate new
grasping poses and arm trajectories per each new virtual object config-
uration, as usual. Notice that these new set of virtual object configura-
tions is added to the previous compiled set. The table grasping poses
is extended with the new generated grasping poses for those new vir-
tual object configurations. The arm graph is extended with the new
computed trajectories.

– The rest of the compilation process works as described in section 6.3.
Overlap tables are extended in two ways: 1) checking all trajectories
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with the new relative object configurations and 2) checking new tra-
jectories with previously computed relative object configurations.

Additionally, with our approach the robot can grasp an object through different
grasping poses and using a number of trajectories, from at least one base config-
uration. We propose a new method to extend the number of base configurations
from where an object can be grasped or placed:

Base Extension: Compiles a new CTMP problem or extends a previous com-
pilation process with the ability to compute new bases from where to grasp and
object o being at some configuration conf(o). The idea behind this extension is to
be able to grasp and object from more than one base configuration. For this, given
the set of real object configurations and the set of grasping poses, we compute new
bases from where and arm trajectory yields to a valid grasping pose. The process
is repeated k times per each real object configuration. Meaning that there are up
to k bases from where the robot can grasp an object. New bases are connected to
the base graph. As new bases have been generated, more overlaps are computed.

Finally, preprocessing has demonstrated to be efficient and fast. However, prob-
lems which involve a large number of relative object configurations and arm tra-
jectories, like Structures Building problems, seems to slow down during overlap
checking. We want to address this problem by exploring new methods of comput-
ing overlaps. One immediately approach would be to use a general shape for all
object types and bounding boxes, to reduce the number of collision checks.

Planning Algorithm
The proposed planning algorithm in chapter 6 is general and fully domain-independent.
The reported experiments are far from trivial and show a good performance of the
extended BFWS(R) algorithm, being able to handle state constraints when com-
puting novelty. The most of the reported instances are solved in a few seconds
at most, even in less than a second for the Pick-and-Place problems and some of
the Blocks World instances. However, there are some challenging problems which
require further exploration. Problems involving one or more towers of blocks in
the initial state, which goal is to compose another tower, are the most hard ones.
The addition of extra boolean features makes a partition of the search space in
subproblems and have an impact on the computation of the novelty. Exploring
new ways for modeling these type of problems and exploiting the use of new ex-
tra boolean futures could improve the results.

Planning with simulations using BFWS(R) algorithm has only access to the struc-
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ture of states and goals only, while ignoring the action structure. Action effects
are returned by an external procedure, as a black box. We want to explore the
use of physical simulators and motion planners as a black box. Given a simulated
environment and the description of actions with signatures move-base, move-arm,
grasp and place, a physical simulator can return the feasibility of these actions.
This can be fulfilled by applying a width-based search algorithm, without PDDL
encoding. The procedures for performing the actions on the simulated environ-
ment can simulate robot actions using motion planners, collisions checkers or
physic libraries. We have preliminary results in 2D worlds which have not been
reported on this thesis because are related to a different approach. There is a wide
way for exploring this approach. However, we have to deal with some limitations,
as avoiding expensive calls to motions planners and collision checkers per each
node expansion.

Validation and Plan Execution
It is known that task and motion planning requires solutions for long term goals,
where actions are robot actions. The validation of a plan in a non-deterministic
simulator or in board of a real robot may fail as result of accumulated error or
external noise. This makes that a previous computed trajectory may fail. Grasping
an object of some type is complicate and delicate in the sense that grasping must
be really accurate. This dissertation does not focus and does not contribute to
grasping motion, but we want to extend our approach to incorporate plan-execute-
refine-replan cycle, which will allow to refine arm and base trajectories for better
graspable poses. The fact of performing an arm translation action ensures that
the trajectory is collision-free, and the arm ends up in a pose where the robot can
grasp the object by just closing the gripper. In a real robot, if the end effector is
not in a proper grasping pose due to some deviation, the grasping (placing) action
may fail. Performing a refinement by adjusting the end effector pose with an extra
call to a motion planner when the feasibility of the action is not sure would solve
the problem.

Experimentation
We reported a number of experiments on different types of problems, for both 2D
worlds and 3D worlds. The Pick-and-Place, Blocks World and Structures Building
domains are interesting from the integration of task and motion planning point of
view. We want to extend the experiments in three different ways:

• Extending the object types with different shapes like other prisms, cups
(where the robot has to grasp the object from the handle) or cutlery, to rep-
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resent more daily environments. Additionally, we want to incorporate more
allowed poses for the different object types and use dual arm manipulation
for moving the orientation poses of objects.

• We want to extend our problem set with new problem domains. Some
challenges, like the ones performed on the Robocup@Home competition[]
would be interesting from the experimentation point of view. Setting-up a
table or cleaning-up a room are real problems which could be performed
with our approach.

• Finally, the experiments have been performed with a simulated robot. We
want to apply our approach on a physical robot in a real environment. This
requires to adapt our approach with a plan-execute-refine-replan cycle.
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PART V
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