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Introduccio

L’analisi estocastica és una branca de les matematiques especialitzada en la reso-
lucié de problemes que evolucionen al llarg del temps de manera aleatoria. El seu
objectiu principal és modelitzar i descriure aquests fenomens, anomenats processos
estocastics. L’interes per aquesta disciplina va comencar als anys setanta del segle
passat en els ambits de la financa i I'economia amb el proposit de modelitzar
I’evolucio al llarg del temps dels preus de les accions.

Entre els temes en que se centra ’analisi estocastica hi trobem els processos Gaus-
sians. Es tracta de processos estocastics tals que tota subcol-leccié finita de vari-
ables aleatories té una distribucié gaussiana multivariant, de manera que es poden
descriure com a generalitzacions de la distribucié de probabilitat normal a dimensié
infinita.

El procés Gaussia més conegut és el moviment Brownia, també anomenat procés
de Wiener. Es un procés estocastic que comencga al zero amb trajectories quasi
segurament continues i que té increments independents i amb distribucié normal.
Inicialment va ser implementat per simular el moviment fisic de particules de
pol-len observat el 1827 per Brown i descrit al segle XX per Bachelier a [Bachelier,
1900] 1 Einstein a [Einstein, 1905]. Més enlla de les seves aplicacions en els camps de
la fisica, la biologia i ’economia, només per citar-ne alguns, el moviment Brownia
juga un paper important tant en matematica pura com aplicada, on s’utilitza per
definir i estudiar processos estocastics més complicats.

En aquest sentit, hi trobem el moviment Brownia fraccionari: un procés Gaussia
centrat, la covariancia del qual és una generalitzacié de la del procés de Wiener.
La regularitat de les seves trajectories i les seves propietats venen determinades
per un parametre H, anomenat parametre d’Hurst, que pren valors a l'interval
(0,1). Aquest procés va ser descrit i estudiat per primer cop per Mandelbrot i
Van Ness a [Mandelbrot and Van Ness, 1968]. Els autors es van inspirar en les
idees proposades per Hurst in [Hurst, 1951] per simular fenomens que no poden
ser modelitzats pel moviment Brownia.

En aquesta tesi es presenten tres treballs relacionats amb els processos Gaussians

esmentats. En el primer, treballem també amb un procés estocastic que pertany a
la familia dels processos de salt: el procés de Poisson. Els processos de salt tenen
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Introduccid

un nombre numerable d’estats i temps d’arribada aleatoris. Entre ells, el procés
de Poisson es caracteritza per comencgar al zero i tenir increments independents i
amb distribucié de Poisson.

El nostre objectiu és trobar una aproximacié del moviment Brownia complex, que
és 'equivalent a C del procés de Wiener. Per aquest fi estudiem unes generalitza-
cions dels processos considerats per Kac a [[Kac, 1974] per la solucié de 'equaci6
telegrafica. La convergencia feble d’aquests processos al moviment Brownia estandard
va ser demostrada per primera vegada per Stroock a [Stroock, 1982]. La nostra
extensié del resultat de Kac-Stroock es mou en dues direccions: d’'una banda, de-
mostrem la convergencia en un sentit més fort que la convergencia en llei, d’altra
banda, afeblim les condicions dels processos aproximadors. En aquest sentit, con-
struim una familia de processos complexos que depenen d’un parametre 6 € (0, 27)
i es defineixen a partir d’un tinic procés de Poisson i una serie de variables aleatories
independents amb distribucié de Bernoulli Ber(%).

En el cas general quan 6 € (0,7) U (7, 27), demostrem que aquesta familia con-
vergeix en llei a un moviment Brownia complex i trobem realitzacions d’aquests
processos que convergeixen quasi segurament a un moviment Brownia complex d-
dimensional, uniformement en l'interval de temps (0, 1), per d tan gran com volem.
A més, deduim la velocitat de convergencia. La convergencia feble s’estableix de-
mostrant que la familia de processos és ajustada i identificant la llei de tots els
possibles limits febles, mentre que la demostracié de la convergencia quasi segura
es basa en un resultat de Skorokhod i es inspirada en el treball de Griego, Heath
i Ruiz-Moncayo [Griego et al., 1971]. El calcul de la velocitat de convergencia
segueix les idees de Gorostiza i Griego contingudes a [Gorostiza and Griego, 1979
i [Gorostiza and Griego, 1980]. Un dels aspectes més atractius d’aquest estudi és
que els processos aproximadors sén funcionalment dependents, ja que es constru-
eixen a partir d’un tnic procés de Poisson, pero, en el limit, s’obtenen processos
independents.

En el segon treball presentat en aquesta tesi, considerem la integracié respecte a
un moviment Brownia fraccionari amb parametre d’Hurst H < % La integral es
defineix com el limit en probabilitat d’'una serie de sumes de Riemann construides a
partir d’'una mesura simetrica a l'interval [0, 1], que és una mesura de probabilitat
invariant respecte al mapa t — 1 —¢t. En [Gradinaru et al., 2005], Gradinaru,
Nourdin, Russo i Vallois demostren que, per valors d’H estrictament més grans que
un valor critic dependent de la mesura, aquesta integral existeix. S’ha demostrat
que aquesta cota inferior pel parametre d’Hurst és optima.

Estem interessats a estudiar la integral estocastica quan el parametre d’Hurst pren
el valor critic. En aquest cas, demostrem que les sumes de Riemann convergeixen
en distribucio i el limit es pot expressar en termes d’una integral estocastica respec-
te a un moviment Brownia independent del moviment Brownia fraccionari. Com
a conseqiiencia, derivem una férmula de canvi de variable en llei. Aquest fenomen
ha sigut estudiat per a determinades mesures simetriques. Per exemple, el cas de
les ”Midpoint Riemann sums” ha estat considerat per primera vegada per Nourdin
i Réveillac a [Nourdin and Réveillac, 2009]. A [Nourdin et al., 2010] i a [Harnett
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and Nualart, 2012], s’ha estudiat el cas de les sumes de Riemann corresponents
a la "Trapezoidal rule”, mentre que el cas de les "Simpson’s rule sums” ha estat
investigat per Harnett i Nualart a [Harnett and Nualart, 2015]. Nosaltres trobem
un resultat més general que es pot aplicar a tota mesura simetrica que satisfa les
condicions requerides pel resultat obtingut a [Gradinaru et al., 2005].

Mitjancant la féormula de Taylor i les propietats de la mesura simetrica, la in-
tegral dirigida pel moviment Brownia fraccionari es pot expressar com suma de
tres termes diferents. A [Gradinaru et al., 2005], els autors demostren que dos
d’aquests termes convergeixen a zero en probabilitat, de manera uniforme en con-
junts compactes, per valors del parametre d’Hurst estrictament més grans que el
valor critic. Per demostrar el nostre resultat, considerem la mateixa representacié
de la integral estocastica. D’una banda, provem que un dels termes convergeix a
zero en probabilitat, uniformement en conjunts compactes, també quan H assoleix
el valor critic. D’altra banda, demostrem que un dels altres termes convergeix
en llei a una integral dirigida per un moviment Brownia independent del movi-
ment Brownia fraccionari. Aquesta ultima part és la més innovadora i la que més
atencié necessita. Per demostrar-la apliquem un metode basat en “small blocs
/ big blocs” i obtenim una extensié d’un lema demostrat per Harnett i Nualart
a [Harnett and Nualart, 2015] aplicable al nostre cas. Les tecniques del calcul
fraccionari no sén suficients per provar aquest resultat i es requereix ’aplicacio de
formules d’integracié per parts derivades del calcul de Malliavin.

En I'altim treball, estem motivats per I'estudi d’una equacié diferencial estocastica
dirigida per un moviment Brownia fraccionari amb parametre d’'Hurst H € (%, %)
En literatura, trobem molts estudis sobre equacions diferencials estocastiques di-
rigides per un moviment Brownia, pero les extensions al moviment Brownia frac-
cionari sén escasses. Les tecniques per investigar aquestes equacions son diferents
i depenen del valor del parametre d’Hurst i de la dimensié de '’equacié. Un dels
metodes consisteix en estudiar equacions diferencials deterministes dirigides per
una funcié Holder continua i després aplicar els resultats obtinguts al cas estocastic.

Seguint aquest cami, considerem 1’equacio diferencial amb retard:

t t
ry = 1o —|—/ b(u,x!) du—i—/ o(z;_,.) dy,, t€[0,7],
0 0

Ty = M te[-r0),

onn : [—r,0] — R? és una funcié continua i y és una funcié Hélder continua d’ordre
B € (0,1). L’interes per equacions diferencials amb retard sorgeix de la necessitat
de modelitzar sistemes on la dinamica esta sotmesa a retard de propagacio.

El cas en que 8 > % ha estat ampliament estudiat i s’han aconseguit diversos
resultats sobre existencia i unicitat de solucié i convergencia, juntament amb al-
gunes extensions. Nosaltres estem interessats a estudiar el cas en que § € (%, %)
Quan [ agafa valors més petits o iguals que %, les notacions incomodes i les noves
dificultats que apareixen fan que treballar amb equacions diferencials sigui més

complicat en aquest cas i els resultats son escassos.
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Nosaltres demostrem que quan 3 pren valors a l'interval (3, 5) la solucié de
I’equacié diferencial amb retard convergeix quasi segurament en la norma infinit a
la solucié de 'equacié diferencial sense retard

t t
Ty =1+ / b(u, ) du + / o(xy) dyu, t €[0,7],
0 0

quan el retard tendeix a zero. L’existencia i unicitat de solucié han estat garantits
per Hu i Nualart a [Hu and Nualart, 2009] per I'equacié diferencial sense retard,
i per Neuenkirch, Nourdin i Tindel a [Neuenkirch et al., 2008] per 1'equacié dife-
rencial amb retard. Per provar la convergencia forta, seguim el metode utilitzat
per Hu i Nualart a [Hu and Nualart, 2009] i treballem amb una férmula explicita
per integrals del tipus f o(xy,)dy, en termes de z, y and z ® y, on £ ® y és un
funcional multiplicatiu.

Aquesta tesi s’estructura de la segiient manera.

Després d’aquesta introduccio, al capitol 1, definim els processos estocastics amb
els quals treballem: el procés de Poisson, el moviment Brownia i la seva extensié
al pla complex i el moviment Brownia fraccionari. També descrivim les seves
propietats principals.

El capitol 2 conté alguns preliminars sobre el calcul estocastic. Es dedica a des-
criure la integracié estocastica respecte al moviment Brownia fraccionari, amb
particular atencio al cas en que el parametre d’Hurst pren valors a l'interval ( 35 2)
Els tres capitols seglients contenen els treballs innovadors d’aquesta tesi. Al capitol
3 trobem aproximacions fortes del moviment Brownia complex donades per una
familia de processos estocastics construits a partir d’un tnic procés de Poisson i
d’una serie de variables aleatories independents amb distribucié de Bernoulli. Part
dels resultats d’aquest capitol apareix a [Bardina et al., 2016].

Al capitol 4 establim la convergencia feble, a la topologla de I'espai de Skorohod,
de les sumes simetriques de Riemann del moviment Brownia fraccionari quan el
parametre d’Hurst pren un valor critic i derivem una férmula de canvi de variable
en llei. El contingut d’aquest capitol apareix a [Binotto et al., |.

Finalment, al capitol 5 demostrem que la soluci6 d’ equacions diferencials amb
retard dirigides per una funcié Holder continua d’ordre 3 € (% 3 2) convergeix quasi
segurament en la norma infinit a la solucié de I'equacié diferencial sense retard
quan el retard tendeix a zero.
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Introduction

Stochastic analysis is a branch of mathematics specified in solving problems which
evolve in time according to a random behavior. Its aim is to simulate and describe
these phenomena, known as stochastic processes. The interest for this discipline
began in the seventies of the last century in the fields of finance and economics to
model the evolution in time of stock prices.

Among the various topics on which stochastic analysis is focused, we find the
Gaussian processes. They are stochastic processes such that any finite subcol-
lection of random variables has a multivariate Gaussian distribution, so they can
be described as generalizations of the normal probability distribution to infinite
dimension.

The most known of them is the Brownian motion, also called Wiener process. It
is a stochastic process starting at zero with almost surely continuous paths and
such that its increments are independent and Gaussian distributed. Firstly it
was employed to model the physical movement of particles observed in 1827 by
Brown and described in the twentieth century by Bachelier in [Bachelier, 1900]
and Einstein in [Einstein, 1905]. Beyond its applications in applied fields, among
them physics, biology and economics to mention but a few, Brownian motion plays
an important role in pure and applied mathematics, where it is used to define and
study more complicated stochastic processes.

In this direction, we come across the fractional Brownian motion: a centered Gaus-
sian process whose covariance function is a generalization of that of the Wiener
process. It depends on a parameter H € (0, 1), called Hurst parameter, that con-
trols the roughness of its paths and also determines its properties. This process
was described and studied for the first time by Mandelbrot and Van Ness in [Man-
delbrot and Van Ness, 1968]. The authors were inspired by the ideas proposed by
Hurst in [Hurst, 1951] to model phenomena that cannot be described by Brownian
motion.

In this thesis we present three works related with the Gaussian processes we men-

tioned.
In the first work, we deal also with the Poisson process, which belongs to a class
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Introduction

of phenomena, called jumps processes, that have a countable number of states
and random arrival times. It starts at zero and has independents increments with
Poisson distribution.

Our aim is to find an approximation to a complex Brownian motion, that is the
equivalent on C of the Wiener process. We study generalizations of the processes
considered by Kac in [Kac, 1974] for the solution of the telegraph equation. The
weak convergence of these processes toward a standard Brownian motion was first
proved by Stroock in [Stroock, 1982]. Our extension of the Kac-Stroock result
moves in two directions: on one hand, we prove the convergence in a stronger
sense that the convergence in law, on the other hand, we weaken the conditions
of the approximating processes. In this sense, we construct a family of complex
processes that depend on a parameter 6 € (0,27) and are defined from a unique
Poisson process and a sequence of independent random variables with common
Bernoulli distribution Ber(%).

In the general case when 6 € (0, 7)U(7, 27) , we prove that this family converges in
law to a complex Brownian motion and we find realizations of these processes that
converge almost surely to a d-dimensional complex Brownian motion, uniformly
on the unit time interval, for d as large as we want. Moreover, we derive a rate of
convergence. The weak convergence is established proving tightness and the iden-
tification of the law of all possible weak limits, while the almost sure convergence
is based on a result of Skorokhod and inspired by the work of Griego, Heath and
Ruiz-Moncayo [Griego et al.; 1971]. The computation of the rate of convergence
follows the ideas of Gorostiza and Griego contained in [Gorostiza and Griego, 1979]
and [Gorostiza and Griego, 1980]. One of the most attractive aspect of this study
is that the approximating processes are functionally dependent because they are
constructed from a single Poisson process but, in the limit, we obtain independent
processes.

The case when the parameter takes the value # = m is also considered. In this
case, the processes are real-valued and we show that there exist realizations of the
above process on the same probability space of a standard Brownian motion.

In the second work presented in this thesis, we consider the integration with respect
to a fractional Brownian motion with Hurst parameter H < % The integral is
defined as the limit in probability of a sequence of Riemann sums built from a
symmetric measure in the interval [0, 1], that is a probability measure invariant
with respect to the map ¢t — 1—¢. In [Gradinaru et al., 2005], Gradinaru, Nourdin,
Russo y Vallois prove that, for values of H strictly bigger than a critical value
dependent of the measure, the integral exists. It has been proved that this lower
bound for the Hurst parameter is sharp.

We are interested in studying the stochastic integral when the Hurst parameter
takes the critical value. In this case, we prove that the Riemann sums converge in
distribution and the limit can be expressed in terms of a stochastic integral with
respect to a Brownian motion independent of the fractional Brownian motion. As a
consequence, we derive a change-of-variable formula in law. This phenomenon has
already been studied for particular symmetric measures. For example, the case of
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the ”Midpoint Riemann sums” has been first considered by Nourdin and Réveillac
in [Nourdin and Réveillac, 2009]. In [Nourdin et al., 2010] and [Harnett and
Nualart, 2012] the case of the Riemann sums corresponding to the ”Trapezoidal
rule” has been studied, while the case of the ”Simpson’s rule sums” has been
investigated by Harnett and Nualart in [Harnett and Nualart, 2015]. We find a
more general result that can be applied to all symmetric measure that satisfies the
conditions required in the result obtained in [Gradinaru et al.; 2005].

Using Taylor’s formula and the properties of the symmetric measure, the integral
driven by the fractional Brownian motion can be expressed as a sum of three
different terms. In [Gradinaru et al., 2005], the authors prove that two of them
converge to zero in probability, uniformly in compact sets, for values of the Hurst
parameter strictly bigger than the critical value. To prove our result, we consider
the same representation of the stochastic integral. On one hand, we show that
one of the term converges to zero in probability, uniformly in compact sets, also
when H reaches the critical value. On the other hand, we prove that another
term converges in law to an integral driven by a Brownian motion independent
of the fractional Brownian motion. This last part is the most innovative and the
one that requires more attention. We apply a method based on ”"small blocks
/ big blocks” to obtain an extension of a lemma proved by Harnett y Nualart
in [Harnett and Nualart, 2015] and applicable to our case. Its proof cannot be
established using fractional calculus techniques and it requires the application of
integration-by-parts formulas from Malliavin calculus.

In the last work, we are motivated by the study of a stochastic differential equa-
tion driven by a fractional Brownian motion with Hurst parameter H & (%, %)
In literature, there are a lot of references about differential equations driven by
a Brownian motion, but the extensions to the fractional Brownian motion are
scarce. The approaches to investigate these equations are different and depend
on the value of the Hurst parameter and the dimension of the equation. One of
them consists in studying deterministic differential equations driven by a Holder
continuous function and then applying the results obtained to the stochastic case.

Following this method, we consider the differential equation with delay:

¢ ¢

xry, = 770+/ b(u,x!) du—i—/ o(x; ) dy,, t € [0,7],
0 0

xy o=, t €[-r0),

where 7 : [-r,0] — R? is a continuous function and y is a Holder continuous
function of order 5 € (0, 1). The interest for differential equations with delay rises
from the need to model systems where the dynamics are subjected to propagation
delay.

The case when g > % has been widely studied and results on existence and
uniqueness of solution and convergence, together with some extensions, have been
achieved. We are interested in studying the case when g € (%, %) When g takes
values less or equal to %, cumbersome notations and new difficulties make more
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Introduction

complicated to work with differential equations in this case and the results are
scarce.

We prove that, when g takes values in the interval (%, %), the solution of the
differential equation with delay converges almost surely in the supremum norm to

the solution of the differential equation without delay

t t
Ty = Mo + / b(u, ZL’u) du + / 0<xu) dyu7 te [07 T]’
0 0

when the delay tends to zero. The existence and uniqueness of the solution have
been ensured by Hu and Nualart in [[Hu and Nualart, 2009] for the differential
equation without delay, and by Neuenkirch, Nourdin and Tindel in [Neuenkirch
et al., 2008] for the differential equation with delay. To prove the strong conver-
gence, we follow the approach of Hu and Nualart in [Hu and Nualart, 2009] and
we work with an explicit formula for the integrals of the type f; o(z,) dy, in terms
of z, y and r ® y, where x ® y is a multiplicative functional.

This thesis is structured in the following way.

After this introduction, in Chapter 1 we define the stochastic processes we deal with
in this dissertation: the Poisson process, the Brownian motion and its extension
to the complex plane and the fractional Brownian motion. We also describe their
main properties.

Chapter 2 contains some preliminaries on stochastic calculus. It is dedicated to
describe the stochastic integration with respect to the fractional Brownian motion,
with special attention to the case when the Hurst parameter takes values in the
interval (1, 1).

The following three chapters contain the innovative works of this dissertation. In
Chapter 3 we find strong approximations of the complex Brownian motion given
by a family of stochastic processes constructed from a unique Poisson process and
a sequence of independent random variables with common Bernoulli distribution.
Part of the results of this chapter appears in [Bardina et al., 2016].

In Chapter 4 we establish the weak convergence, in the topology of the Skorohod
space, of the symmetric Riemann sums of the fractional Brownian motion when
the Hurst parameter takes a critical value and derive a change-of-variable formula
in distribution. The contents of this chapter appears in [Binotto et al., .

Finally, in Chapter 5 we prove that the solution of a delay differential equations
driven by a Holder continuous function of order g € (%, %) converges almost surely
in the supremum norm to the solution of the differential equation without delay
when the delay tends to zero.

18



Definitions

A stochastic process is a phenomenon which evolves in time in a random way. In
everyday life there is a huge variety of these phenomena and stochastic processes
have been studied in many disciplines, such as physics, biology, economics and
telecommunication, just to name a few. In this thesis we work with some of the
most relevant of them: the Poisson process, the standard and complex Brownian
motion and th fractional Brownian motion. This chapter is devoted to introduce
them and describe their main properties.

1.1 The Poisson process

Many processes involve only a countable number of states and depend on a discrete
time parameter, that is, events occur only at fixed epochs n = 0,1,.... On the
contrary, the Poisson process represents those phenomena where events occur at
any time. Some examples are telephone calls, radioactive disintegration of atoms
and chromosome breakages. More in general, the Poisson process is applied in
various fields such as astronomy, biology, ecology, geology, physics, economics,
image processing, and telecommunications.

The underlying physical assumption is that the forces and influences governing the
process remain constant so that the probability of any particular event is the same
for all time intervals of duration ¢ and is independent of the past development of
the process. In any case, all occurrences are assumed to be of the same kind and
are represented by points on the time axis.

In mathematical terms, we have the following definition of Poisson process:

Definition 1.1.1. A stochastic process {N;, t > 0} is a Poisson process of rate
A > 0 if it fulfills the following properties:

it) For any n > 1 and for any 0 <ty < --- < t,, the increments

Ny, Nyy — Ny oo oy Ny, — Ny

19



Chapter 1. Definitions

are independent random variables.

iii) For any 0 < s < t, the increment Ny — Ny has a Poisson distribution with
parameter \(t — s), that is,

D=9

P(N, — N, = k) = e A3 o

for k € N.

Condition i) is a convention: we suppose that at time ¢ = 0 no event has occurred.
Condition ii) states that the number of events occurred during the sequence of
intervals [to, t1], . .., [tk—2, tx—1] have no influence on the amount of events occurred
during [tx_1, tg].
Condition iii) means that the quantity N, obeys the Poisson distribution with
parameter \t, so

E(N;) = Var(N;) = At.

Thus A is the expected number of events in an interval of unit length, or in other
words, A is the event rate. On the other hand, the expected time until a new
occurrence is % In Figure 1.1.1 we see an example of the sample path of a Poisson
process.

Figure 1.1.1: Sample path of a Poisson process of rate A = 0.05.

Observe that the process N; counts the number of events occurred up to time ¢
starting from 0, while the increment N, — N, counts this amount in the interval
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1.1. The Poisson process

M may be interpreted as the probability that no

—M s also the

(s,t). Also, its zero term e~
event occurs within a time interval of fixed length ¢. But then e
probability that the waiting time for the first events exceeds t, and so we are
indirectly concerned with a continuous probability distribution on the time axis.

In the following N will denote a Poisson process of rate \. We give the following
definition:

Definition 1.1.2. Let N be a Poisson process. The arrival times for N are the

random variables
T, =inf{t > 0: N, = k}

for k € N\ {0}.

1.1.1 Properties of the Poisson process

Let us present some interesting properties of the Poisson process.

Exponential time differences.
The following proposition states that the time between two consecutive events is
exponentially distributed:

Proposition 1.1.3. Let Ty, Ts, ..., Ty, ... be the arrival time for a Poisson process
N. Then, for any k > 1,
Ty — Ty—1 ~ Exp(N),

that is, for any x > 0,

P(Ty—Tpy <z)=1—e"

Conditioning on the number of arrivals.

In the following proposition we see that, given that in the interval (0,¢) the number
of arrivals is N; = k, these k arrivals are independently and uniformly distributed
in the interval.

Proposition 1.1.4. Let 11,15, ..., T}, ... be the arrival times for a Poisson pro-
cess N. Then, the joint distribution of (Ty,...,Ty) given { Ny = k} is the same of
k independent random variables with uniform distribution U(0,1).

Superposition.
First we give the following definition:

Definition 1.1.5. Let {N}, t > 0} and {N?, t > 0} be two independent Poisson
processes with respective rates Ay and Ay. The process obtained from their sum,
{N} + N2, t > 0} is called the superposition of the processes N' and N2.
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The following proposition describes the distribution of the superposition of two
independent Poisson processes:

Proposition 1.1.6. Let {N}, t > 0} and {N?, t > 0} be two independent Poisson
processes with respective rates Ay and \y. Then, their superposition N' 4+ N? is a
Poisson process of rate Ay + Xs.

Random selection.
The following result explains what happens when we split randomly a Poisson
process into two different processes.

Proposition 1.1.7. Let N be a Poisson process with rate X. Let {Xy}ren be a
sequence of independent random variable with Bernoulli distribution of parameter
p, that is, for any k € N,

PXy=1)=p and P(Xy=0)=1—-p=q.

Define the processes
N
M=o
k=1

Ny

MP = (1—Xp).

k=1

and

Then, the processes M* and M?* are two independent Poisson processes with rates
Ap and \q respectively.

1.2 Brownian motion

Brownian motion is the name given to the random movement of particles of pollen
immersed in a liquid observed by the Scottish botanist Robert Brown in 1827.
This physical phenomenon remained unexplained for several years. In 1900, in his
doctoral thesis " Théorie de la spéculation” ([Bachelier, 1900]), the French math-
ematician Louis Bachelier worked out a model for the variation of the prices of
assets, like stocks and bonds. This is considered the first work which uses advanced
mathematical methods to model financial markets. The equations he obtained cor-
respond to the results that in 1905 Albert Einstein, who as far as we know never
heard of Bachelier, explained in terms of statistical mechanics in his celebrated
paper [Einstein, 1905]. Einstein was the one who began to develop a physical the-
ory of the phenomenon observed by Brown. The mathematical theory of Brownian
motion as a stochastic process was later formalized by Norbert Wiener. In 1923, in
[Wiener, 1923], he proposed a rigorous mathematical construction using harmonic
analysis techniques. For this reason, in mathematical terms, we refer to Brownian
motion also as Wiener process.
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1.2. Brownian motion

The range of application of Brownian motion is not limited to the study of mi-
croscopic particles in suspension and includes modeling of physical, biological,
economic and management systems. It is also applied to quantum mechanics and
physical cosmology. Moreover, the Wiener process plays an important role in both
pure and applied mathematics. In a pure contest, it is essential in the study of
continuous time martingales and diffusion processes, in stochastic calculus and as a
key tool to define more complicated stochastic processes. In applied mathematics,
it is used in the representation of the integral of a white noise Gaussian process and
in the mathematical theory of finance, in particular in the Black—Scholes option
pricing model.

The mathematical definition of Brownian motion is the following:

Definition 1.2.1. A Brownian motion or Wiener process is a stochastic
process {Wy, t > 0}, on some probability space (2, F, P), with these properties:

i) The process starts at 0:

it) For all 0 =ty < t; < --- <t,, the increments
Wiy Wi, =Wy, oo W, =W,
are independent.
iii) For 0 < s <t, the increment Wy — W has normal distribution N(0,t — s).

iv) The process has continuous trajectories: for each w, Wi(w) is continuous in t
and Wy(w) = 0.

Let briefly describe the physical interpretation of this stochastic process. Imagine
a particle suspended in a fluid and bombarded by molecules in thermal motion.
The particle will perform a random movement, as the one described by Brown.
Consider a single component of this motion, imagine it projected on a vertical axis
and denote by W;, the height at time ¢ of the particle above a fixed horizontal
plane.

Condition i) is merely a convention: the particle starts at 0. When this condition
is fulfilled we refer to W as standard Brownian motion.

Condition ii) reflects a kind of lack of memory. It means that during the intervals
[to,t1], ..., [tk—2, tk—1] the displacements Wy, — Wy, ..., Wy, — W, _, of the par-
ticle do not influence the displacement W; — W, | occurred during [tx_1,tx]. So,
although its future behavior depends on its present position, it does not matter
how the particle got there.

In condition iii), the zero mean of the displacement W; — W reflects the fact that
the particle is as likely to go up as to go down. The variance grows as the length of
the interval [s, t], this means that the particle tends to walk away from its position
at time s and it is not forced to restore that position.
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Figure 1.2.1: Sample path of a standard Brownian motion.

Given that the Wiener process wants to represent the motion of a particle, condi-
tion iv) is just a natural requirement.
In Figure 1.2.1 we see an example of a sample path of a standard Brownian motion.

Let make some observations about the process we have just described.

Remark 1.2.2. Brownian motion is a Gaussian process. In fact, for 0 = t; <
ty < -+ < tp, the joint distribution of the vector (Wy,, Wi, — Wy, ..., Wy, =W, )
is the product of the corresponding normal density, because its components are
independent and normal. The vector (W;,,...,W;, ) is a linear transformation of
the vector (W, , Wy, =Wy, ..., W, —W,;_ _,), so its joint distribution is also normal.

Remark 1.2.3. The increments of the Brownian motion are stationary in the
sense that the distribution of W, — W, depends only on the difference ¢t — s. Since
Wy = 0, the distribution of these increments is described by saying that W, is
normally distributed with mean 0 and variance ¢, so

E(W,)=0 and E(W?) =t

If 0 < s <t, by the independence of the increments, we easily obtain the covari-
ance:

E(W,W;) = E(W, (W, — Wy)) + E(W?2) = s = min(s, t).
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1.2. Brownian motion

Remark 1.2.4. As the increment W; — W, has normal distribution N(0,¢ — s),
for any natural number k, the even moments of the increment are given by

E[(W, — W,)*] = (2252!! (t — s)k. (1.2.1)

1.2.1 Properties of the Brownian motion

Now we present some properties of the Brownian motion, that make it so a mean-
ingful process. In what follow, we denote with W = {W,,t > 0} a standard
Brownian motion.

Symmetry.
The following property is easy to check:
Proposition 1.2.5. The process

—W ={-W,, t >0}

1s also a Brownian motion.

Self-similarity.

Proposition 1.2.6. For any ¢ > 0, the process

1
{_ W02t7 t 2 O}
c
1s a Brownian motion.

Observe that the time scale is contracted by the factor ¢?, but the other scale
only by the factor ¢. The fact that this transformation preserves the properties
of Brownian motion implies that the paths, although continuous, must be highly
irregular, as we will see below.

Time reversal.
For the next property, we need to restrict the time parameter to a bounded interval
of the form [0, 7] where T > 0:

Proposition 1.2.7. Define the process
Vii=Wpr — Wrp_y

fort € [0,T]. Then, V; is distributed as Wy fort € [0,T].

Time inversion.
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Proposition 1.2.8. Consider the transformation

Wt/: tW% Z:ft>0
0 ift =0.

Then, {W{,t > 0} is also a Brownian motion.

Time inversion is a useful tool to relate the properties of Brownian motion in a
neighborhood of time ¢ = 0 to properties at infinity. The following proposition
is a result about the long-term behavior obtained from a trivial statement at the
origin:

Proposition 1.2.9. Almost surely

i) irtlf Wy =—o00 and supW; =400,
t

4%
i) tlgglo Tt =0 [Law of Large Numbers for Brownian motion]

ii1) lim sup W _ +oo and liminf% = —00.

t—00 \/E t—o0 \/¥
Using time-inversion, from statement i) we deduce that W’ has upper and lower
right derivatives of +00 and —oo at ¢ = 0 and the same must be true for every
Brownian motion. This reasoning is useful to prove the nowhere differentiability
of Brownian motion, as we will see below.
Statement ii) asserts that Brownian motion grows slower than linearly, while state-
ment iii) shows that the limsup growth of W, is faster than NG

Continuity properties.
The definition of Brownian motion requires the sample paths to be continuous
almost surely. This implies that on the interval [0, 1] (or any other compact inter-
val) the sample functions are uniformly continuous, that is, there exists a random
function ¢ with limp, ;o ¢(h) = 0 called a modulus of continuity of the function
W :]0,1] — R such that

R0 0<t<1—h o(h) -

For the Brownian motion we can extend that to a nonrandom modulus of conti-
nuity. First we find an upper bound and a lower bound for |W;, — W

Proposition 1.2.10. There exists a constant C > 0 such that, almost surely, for
every sufficiently small h > 0 and all t € [0,1 — h],

[Win — Wil < Cy/hlog(1/h).
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1.2. Brownian motion

Proposition 1.2.11. For every constant ¢ < \/2, almost surely, for every e > 0
there exist 0 < h < e and t € [0,1 — h] such that

(Wisn — Wi > ey/Rhlog(1/h).

It turns out that the value ¢ = v/2 is optimal. Therefore, we have the following
result due to [Lévy, 1937]:

Theorem 1.2.12 (Lévy’s modulus of continuity). Almost surely,

\Wipn — Wi

limsup sup —m———==1

hlo  o<t<i—h \/2hlog(1/h)

Regularity of the trajectories.

Proposition 1.2.13. Almost surely, the sample paths of the Brownian motion are
y-Holder continuous with v € (0, 3).

In other words, for all € > 0 there exists a random variable G 1 such that
W, — Wi| < Gegrlt — 527,

for all s,t € [0, 7.
Regularity is consequence of identity (1.2.1) and the Kolmogorov’s continuity cri-
terion:

Proposition 1.2.14 (Kolmogorov’s continuity criterion). Let {X;,t > 0} be
a stochastic process. Suppose that there exist positive constants o, § and C' such
that

E(|X; — X,|*) < Ot — s|'*7.

Then, almost surely, the sample paths of the process are ~v-Holder continuous with
v< £

Observe that the exponent v = % above is sharp. In fact, fixed v € [%, 1}, al-
most surely the sample paths of {W;,¢t > 0} are nowhere Holder continuous with
exponent .

Nowhere differentiability.

Brownian motion is somewhat regular and erratic at the same time. One manifes-
tation of the last aspect is that the paths of Brownian motion have no intervals of
monotonicity:

Proposition 1.2.15. Almost surely, for all 0 < s < t < oo, Brownian motion is
not monotone on the interval [s,t].
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In order to discuss differentiability of Brownian motion one can make use of the
time-inversion trick, which allows relating differentiability at ¢t = 0 to a long-term
property. The following result was shown by [Paley et al., 1933], and [Dvoretzky
et al., 1961]:

Theorem 1.2.16. Almost surely, Brownian motion is nowhere differentiable.

A nowhere-differentiable path represents the motion of a particle that at no time
has a velocity. Since a function of bounded variation is differentiable almost ev-
erywhere, W.(w) is almost surely of unbounded variation, as we will see in the
following paragraph.

Variation and quadratic variation.
Let us define first the variation and the quadratic variation of a real-valued func-
tion.

Definition 1.2.17. Consider a function f : R — R. Its quadratic variation
over the interval [0,t] is

n

U, D= 1im Y (f(t) — flte))?,

|7|—0
k=1

where m = {0 =ty <t < --- < t, =t} is a partition of the interval [0,t] and its
norm is defined by |7| = sup; <<, (tr — tr—1).

Definition 1.2.18. Let f : R — R be a continuous function. Its variation on
[0,¢] is

Vi(t) = sgpz |f(te) = f(te—1)l,

where the supremum is taken over partitions m = {0 =1ty <ty < --- <t, =t}.
If the supremum is infinite, f is said to be of unbounded variation.

For Brownian motion W (or any other stochastic process), we can similarly define
its variation and quadratic variation. In such case, they are both random variables.

Definition 1.2.19. The quadratic variation of the Brownian motion W
over the interval [0,1] is
(W)= lim Y (W, — W, )%, (1.2.2)

|7|—0
k=1

where m = {0 =ty < t; < --- < t, = t} is a partition of the interval [0,¢], its
norm is defined by |m| = sup <<, (te — tx—1) and the limit is in L*(9).

Then, we have the following estimate for this random variable:
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1.2. Brownian motion

Proposition 1.2.20. The quadratic variation of a standard Brownian motion W
18

(W) =t.

In other words, Proposition 1.2.20 states that the sequence { S (W =W, )2n >
1} converges in L*(Q) to ¢, that is,

(Zn:(wtk — Wi ) — t>2] = 0.

k=1

lim E

|7|—0

The previous proposition means that the Brownian motion accumulates quadratic
variation at rate one per unit time.

The limit in the definition of quadratic variation can be taken in sense of any LP
convergence. However, in the sense of almost sure convergence, the limit does not
exist unless additional condition on 7 is assumed, such as, |7| = o(1/+/Togn).

Proposition 1.2.20 together with the continuity of the sample paths of Brownian
motion yields the following corollary:

Corollary 1.2.21. Let W be a standard Brownian motion. Then, almost surely
W has infinite variation. That is,
Vo= supz (Wi, — Wi, | =00 a.s.
T k=1

where m = {0 =ty <t; <--- <t, =t}

Physically, the previous result represents the motion of a particle that in its wan-
derings back and forth travels an infinite distance in finite time.

Martingale property.

First, we give the definitions of filtration and martingale.

Definition 1.2.22. A family {F;,t > 0} of sub o—fields of F is a filtration if
1. Fy contains all the sets of F of null probability,
2. Forany 0 < s <t, Fs C Fy.

Moreover, if Ny~ Fu = F for anyt > 0, the filtration is said to be right-continuous.

Definition 1.2.23. A stochastic process { Xy, t > 0} is a martingale with respect
to the filtration {F;,t > 0} if each variable belongs to L'(Q2) and moreover

1. X, is Fy-measurable for any t > 0,

2. E(Xy|Fs) = X for any 0 < s <t.
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In the last condition, if the equality is replaced by < (respectively, >), we have a
supermartingale (respectively, a submartingale).

Consider the natural filtration of the Brownian motion, that is,
Fi=0{W,,0<s<t}.
We have the following result:

Proposition 1.2.24. Brownian motion is a martingale with respect to its natural
filtration.

This property is a consequence of the following identity:
E(W, — W,|Fs) = E(W, — W) =0,
for any 0 < s <'t.

Moreover, we define a local martingale:

Definition 1.2.25. Let F be a filtration and X = {X,t > 0} be a stochastic
process adapted to the filtration F. Then, X is called a local martingale with
respect to the filtration F if there exists a sequence of almost surely increasing
F-stopping times {1y }ren that diverges almost surely such that the process

X7 = Xinr,
1s a martingale with respect to F for every k.
We have the following result due to Lévy:

Theorem 1.2.26 (Lévy’s characterization theorem). Let (M;);>o be a con-
tinuous local martingale such that

1. MOZO,

Then, the process (My)i>o is a standard Brownian motion.

1.3 Complex Brownian motion

Complex Brownian motion is the equivalent on C of the Brownian motion.

In this context, dimension 2, that is C & R?, is sometimes considered as critical.
Let us explain which is the reason of this terminology. In R, Brownian motion is
strongly recurrent in the sense that it hits every point x almost surely and it also
returns to each x infinitely many times. In R? and higher dimensions, Brownian
motion is transient. In fact, for each x different from the origin there is positive
probability that, for some ¢ > 0, it does not even hit the ball B(z,¢) centered in
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1.3. Complex Brownian motion

x and with radius €. In C = R?, it oscillates between transience and recurrence:
almost surely it does not hit any given point z, unless it starts there, but the
closure of the Brownian path is almost surely the entire complex plane. This
unusual mixture makes complex Brownian motion an extraordinary object.

Mathematically speaking, the definition of complex Brownian motion is the fol-
lowing;:

Definition 1.3.1. A complex valued stochastic process Z = {Z;t > 0} is a
complex Brownian motion if 7 = X + 1Y, where X = {X;,t > 0} and
Y = {Y;,t > 0} are independent real Brownian motions. For simplicity, we as-
sume that Zy = 0 with 0 € C.

This definition is equivalent to say that the vector (X,Y’) is a Brownian motion
in R%2. An example of a sample path of this process is given in Figure 1.3.1.

Figure 1.3.1: Sample path of a complex Brownian motion.

Remark 1.3.2. If z € C and Z is a complex Brownian motion with Z; = 0, then
7' = z+ Z is a complex Brownian motion with Zj = z.

1.3.1 Properties of the complex Brownian motion

On one hand, complex Brownian motion preserves many properties of the Brown-
ian motion, such as, self-similarity, time reversal and time inversion. On the other
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hand, it presents other distinguished aspects.

Rotation invariance.
The following property is true for all complex Brownian motions:

Proposition 1.3.3. For every complex number ¢ such that |c| = 1, the process
Z"=A{cZ,t > 0}

s another complex Brownian motion.

Martingale property.
Let M' and M? be continuous square integrable martingales. We define the fol-
lowing operator:

)M, — M)

tk—1

(MY, M2) o= Tim 3 (M, — M,
k=1

where the limit is in probability and 7 = {0 =ty < t; < -+ < t, = T} with
|| = supy, |ty — tk—1| — 0 as n — oo.

We extend the definition of martingale given in Definition 1.2.23 to the case of a
complex-valued process:

Definition 1.3.4. A complex-valued stochastic process is called a martingale, if
its real and tmaginary parts are martingales.

Definition 1.3.5. A continuous complex martingale M, is a conformal mar-
tingale if (M, M), = 0.

Now we can state the following result:
Proposition 1.3.6. Complex Brownian motion is a conformal martingale.

Moreover, we have an extension of Lévy’s characterization theorem, also due to
Lévy:

Proposition 1.3.7. Let Z; be a complex valued continuous adapted process. Then,
Zy 18 a complex Brownian motion if and only if

1. Z; is a conformal local martingale
2. (Z,Z), =2t
where Z is the conjugate of Z.
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1.4. Fractional Brownian motion

Conformal invariance.

Analytic functions are the complex equivalent of what, in real analysis, would
be simply called differentiable functions. In fact, it can be shown that analytic
functions are smooth, that is, they are infinitely differentiable in the sense exposed
in the following definition:

Definition 1.3.8. Let D C C be an open set. A function f: D — C is analytic

if the limit

w—z w — z
exists for all z € D. An analytic function f : C — C is said to be an entire
function.

At first glance analytic functions may appear unrelated to Brownian motion, but
it turns out that there is a surprising connection between the two, namely the
conformal invariance of complex Brownian motion:

Proposition 1.3.9. Let f : C — C be a non-constant entire function and let Z
be a conformal local martingale. Suppose that (Z,Z) is strictly increasing. Then,
there ewists a strictly increasing time change T such that f(Z;.)) is a complex
Brownian motion.

Recurrence.

As we explained above, the complex Brownian motion is neighborhood-recurrent
but does not visit a specific point. This fact is expressed in more technical terms
in the following proposition:

Proposition 1.3.10. Let Z; be a planar Brownian motion started at zy € C.
Then, for all open U C C, the set

{Z, € U,t > 0}
is almost surely unbounded. Moreover, for all w # zy,

{Zy=w,t >0} =10 a.s.

1.4 Fractional Brownian motion

At the beginning, Brownian motion was employed in the study of physical and hy-
drological phenomena, such as Einstein’s study of particles in a liquid. Kolmogorov
and then other mathematicians understood that not all natural phenomena trace
random paths which can be represented as Brownian motion trajectories, and that
different events could not be explained by the same law.

On this basis, in the middle of twentieth century the British hydrologist Harold
Edwin Hurst, who was working in Egypt to determine the intensity of the floods
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Chapter 1. Definitions

of the Nile River, obtained an important result according to which the annual
variations of the flow of the Nile were not statistically independent as in the model
of Bachelier, but that the evolution of hydrogeological phenomena have a positive
dependence with what happened in the past.

In 1968, motivated by the research of some applications in hydrology, telecommu-
nications, queueing theory and mathematical finance, Mandelbrot and Van Ness
studied a way to describe processes that cannot be explained by standard Brown-
ian motion. In their seminal paper [Mandelbrot and Van Ness, 1968], they define
a stochastic process that depends on a parameter H € (0,1), called Hurst index
as a tribute to the British hydrologist, and coined the term fractional Brownian
motion.

Let us explain the reason of this term. The fractional Brownian motion B can
be represented as an integral with respect a to Brownian motion W;, as follows

BtH—/ [(t — )72 — (—s)T2] dWS+/O<t—s)HédWs, (1.4.1)

and this form is reminiscent to the fractional integrals, that are generalizations of
the n-fold iterated integral formula

/ dt,_ 1/n by s - / dtl/ s)ds = n—ll) /t(t—s)”_lg(s)ds,

for arbitrary values of n.

The mathematical definition of the fractional Brownian motion is the following:

Definition 1.4.1. A stochastic process B = { Bt < 0} is a fractional Brow-
nian motion (fBM) of Hurst parameter H € (0,1) if it is a centered Gaussian
process with covariance functions

%(SQH + 27 |t — 5. (1.4.2)
The Hurst parameter controls the roughness of the paths: the higher H is, the
smoother the trajectory will be. It also determines which kind of process the
fractional Brownian motion is. Particularly, we will distinguish between three
cases: WhenO<H<— when H = —andwhen—<H<1

In Figure 1.4.1 and Flgure 1.4.2 we can compare the sample paths of three frac-
tional Brownian motions whose Hurst parameters take values in the intervals men-
tioned above. One can easily observe that the process is rougher when the Hust
parameter is smaller.

Ru(t,s) =E(B,'B/) =

Observe that, when H = %, the covariance is
R, (t,s) =sAt
and B2 is a standard Brownian motion.

In what follows, we use the notation B to denote a fractional Brownian motion
with Hurst parameter H. As a convention, we assume that Bf = 0.
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Figure 1.4.1: Sample paths of three different fractional Brownian motions. In the second
figure the Hurst parameter is H = %, so the process is a standard Brownian motion. In
the first and in the third figures, the Hurst parameter takes values in (0, %) and (%, 1),
respectively.

1.4.1 Properties of the fractional Brownian motion

In this section we present the principal properties of the fractional Brownian mo-
tion.

Self-similarity.

Proposition 1.4.2. For any constant a > 0, the processes {a 2B t < 0} and
{BE t <0} have the same distribution.

This property is an immediate consequence of the fact that the covariance function
is homogeneous of order 2H:

E(a B2 a " BY) = E(a *" BEBY) = E(B/ BY).

Stationary increments.
From the covariance function we deduce that the variance of an increment of the
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0.0 0.2 0.4 0.6 0.8 1.0
t

Figure 1.4.2: Sample paths of three different fractional Brownian motions with Hurst
parameter H = 0.2, H = 0.5 (Brownian motion) and H = 0.8.

fractional Brownian motion in an interval [s, ¢] is
Var(|B{" — BI'|) = |t — s|*".
Then, we can state the following proposition:

Proposition 1.4.3. Fractional Brownian motion has stationary increments, that
is, for any 0 < s < t, the increment B! — B has the same distribution as BE .

Continuity of the trajectories.

Deﬁnitign 1.4.4. Let X = {X;,t > 0} be a stochastic process. We say that the
process X = {X;,t > 0} is a version of X if, for allt > 0,

P(Xt == )Z't) = 1.
We have the following result:

Proposition 1.4.5. Fractional Brownian motion has a version with continuity
trajectories.
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1.4. Fractional Brownian motion

This property is a consequence of the Kolmogorov’s continuity criterion (Proposi-
tion 1.2.14). For example, when H > %, given that

E(|B" - B,']") = [t — 5",
we deduce that the constants of the Kolmogorov’s continuity criterion (Proposition
1.2.14) are « =2, =2H — 1 and C' > 1.
Regularity of the trajectories.

Proposition 1.4.6. The sample paths of a fractional Brownian motion with Hurst
parameter H are ~y-Holder continuous with v < H.

In other words, for every € > 0 and T > 0, there exists a nonnegative random
variable G. r such that E(|G.r|?) < oo for all p > 1, and

B — BY| < G 7|t — 5|75,

for all s,t € [0,7].

This property explains how the parameter H controls the regularity of the trajec-
tories and can be deduced from the Garsia-Rodemich-Rumsey Lemma (see [Garsia
et al., 1971]).

Nowhere differentiability.
Fractional Brownian motion conserve the following property of the Brownian mo-
tion:

Theorem 1.4.7. Almost surely, sample paths of the fractional Brownian motion
are nowhere differentiable.

Dependence and independence of the increments.
The correlation between the increments of fractional Brownian motion depends on
the value of the parameter of Hurst:

Proposition 1.4.8. o [fH = %, BH has independent increment.
o IfH > %, the increments are positively correlated.

o [fH < %, the increments are negatively correlated.

As we know, if H = %, B2 is a standard Brownian motion, so the first statement
is trivial. When H # %, the increments of B are not independent and their
correlation can be easily checked observing that, for k,n > 1,

BBl — BL(BLL, — Blla)] = lln+ 1D 4 (n = 177 — 2n27).
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(Non) Martingale property.

The following result is another important property that differentiates standard
Brownian motion from fractional Brownian motion with H # % Before giving the
statement we introduce some definitions.

Definition 1.4.9. We say that a stochastic process X = {X;,t > 0} is adapted
to the filtration F; if, for all t, the random variable X, is F;-measurable.

Definition 1.4.10. A process X = {X;,t > 0} is cadlag if its trajectories are
right-continuous and have left limits.

Definition 1.4.11. A real valued process X = {Xi,t > 0} defined on the fil-
tered probability space (2, F, (Ft)i0, P) is called a semimartingale if it can be
decomposed as

Xi = M; + A

where M is a local martingale and A is a cadlag adapted process of locally bounded
variation.

Therefore, we can state the following result:

Proposition 1.4.12. Fractional Brownian motion is not a semimartingale for
H 4L
The result is obtained studying the p-variation of the process over a partition

T={0=ty <t <---<t, =t} of the interval [0,¢]:

n

T H H
V, = }rllr_I:O; B — B/ |, (1.4.3)
where || = sup;<;<,(tx — tx—1) is the norm of the partition. Particularly, the
quadratic variation on an interval [s, ] equals
n 0o i H<1/2
Vo=1lim Y (Bf -Bf 2= t—s ifH=1/2
|7|—0 k k=1 .
k=1 0 itH>1/2

where convergence holds uniformly with probability 1 if H # % and in the mean
squared if H = 1.
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This chapter is devoted to give some preliminary results on stochastic calculus
that are useful to read the following chapters. In particular, our aim is to describe
the stochastic integration with respect to fractional Brownian motion.

In literature the development of the theory of integration with respect to this
process moved in several directions: from one side, stochastic differential equations,
optimal filtering, financial applications and statistical interference, and from the
other side, a lot of theoretical problems and applications.

Semimartingales provide the most general class of stochastic processes for which a
stochastic calculus has been developed. Except the case when the Hurst parameter
is H= %, when it is a Wiener process, fractional Brownian motion cannot form
a semimartingale so that the classical stochastic integration introduced by Ito
does not work. Therefore, we need to construct a stochastic calculus for values of
the Hurst parameter different from % The Gaussian property together with the
Holder continuity of its trajectories permits us to create an interesting and specific
integration theory for this process.

Different approaches have been used in the literature to achieve this aim. This

chapter is devoted to explain three of them:

i) The stochastic calculus of variations, also called Malliavin calculus, for the
fractional Brownian motion, exhaustively illustrated in [Nualart, 2006].

ii) The stochastic calculus concerning symmetric, forward and backward inte-
grals, introduced by Russo and Vallois in [Russo and Vallois, 1993].

iii) The fractional calculus developed by Zahle in [Ziahle, 1998] and meticulously
illustrated in [Samko et al., 1993].

In the literature we find several works on stochastic calculus for fractional Brow-
nian motion with Hurst parameter H > % Given that all the innovative results
contained in this memory concern the case when H < %, we focus our attention on
the extension of the integration theory to this case. This expansion is not trivial
and new difficulties appear.
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Chapter 2. Preliminaries

Before illustrating the different techniques we mentioned above, we introduce some
notions that we will use along this chapter.

Let u7 be the Lebesgue measure on R™ and denote by du the integration with
respect to pp(du). Let a,b € R, with a < b. Let p > 1 and denote by LP(a,b) the
usual space of Lebesgue measurable functions f : [a,b] — R for which || f|[zr@p) <
00, where

(PlfP ). #1<p <o

ess sup |f(t)], if p=o0
te(a,b]

1 fllze(ap) =

where ess sup,i, |f()] is the essential supremum of |f(¢)| defined by

ess sup |f(t)| :=1nf{M > 0: pr{t:|f(t)] > M} = 0}.

te€(a,b]

Fix 8 € (0,1). Denote by C?(a,b) be the space of 3-Holder continuous functions
on the interval [a,b], that is, the set of continuous functions f : [a,b] — R such

that
|f(t) = £(s)]
ap) = SUp ————— < 0
”fHﬂ( Y a<s<It)<b (t—s)P
Let Ar :={(a,b) : 0 <a<b<T}. Forany (a,b) € Ar and for any g: Ay - R
we set

lolls = sup IO
Ble, scu<v<t (U —u)P

2.1 Malliavin calculus

Malliavin calculus is the calculus of variations of finite dimension in the Wiener
space, introduced by Malliavin in [Malliavin, 1978]. Since fractional Brownian
motion is a Gaussian process, we can develop the Malliavin calculus for this pro-
cess. We refer to [Nualart, 2006] for an exhaustive and detailed description of this
technique.

Let $) be a real separable infinite-dimensional Hilbert space and denote by || - ||5
and (-, ) the norm and the scalar product of $), respectively. Let X = {X(h) :
h € $} be an isonormal Gaussian process over £). This means that X is a centered
Gaussian family, defined on some probability space (€2, F, P), with a covariance
structure given by

EX(h)X(9)] = (h,9)5, h,g €.

We assume that F is the o-algebra generated by X.
For any integer ¢ > 1, let H®? and H®? denote, respectively, the gth tensor product
and the ¢th symmetric tensor product of $.
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2.1. Malliavin calculus

Definition 2.1.1. Let {e,, n > 1} be a complete orthonormal system in $). Given
feNP geNn® andr €{0,...,pAq}, the rth-order contraction of f and g
is the element of HEPHI=2") defined by

oo

F@ug= D> (fen ®...@e;)n0 @ (g6, ®...Q€;,)ger, (2.1.1)

114yl =1

where f @ g = f ®g and, forp=q, f @9 = (f,9) g

Notice that f ®, ¢ is not necessarily symmetric. We denote its symmetrization by
férg c 5®(p+q*27“)'

Definition 2.1.2. The qgth Wiener chaos of X, denoted by H,, is the closed lin-
ear subspace of L*(2) generated by the random variables {Hy(X (h)), h € 9, ||h||4 =
1}, where H, is the qth Hermite polynomial defined by
z2 d? g2
H,(z) = (=1)% /Q@(e 2. (2.1.2)
For ¢ > 1, let I,(-) the generalized Wiener-Ito6 multiple stochastic integral. It is

known that the map
I,(h®%) = H, (X (h)) (2.1.3)

provides a linear isometry between $®¢ (equipped with the modified norm v/q! ||| g4)
and H, (equipped with the L?(Q2) norm). For ¢ = 0, we set by convention Hy = R
and Iy equal to the identity map.

Let S be the set of all smooth and cylindrical random variables of the form

F=g(X(¢1),...,X(on)),

where n > 1, g : R® — R is an infinitely differentiable function with compact
support, and ¢; € .

Definition 2.1.3. The Malliavin derivative of F with respect to X s the
element of L*(£2,9)) defined as

DF =3 2L (X (1), X(60)) 6

By iteration, we can define the qth derivative DIF for every q > 2, which is an
element of L*(Q2, $H°9).

For ¢,p > 1, let D?? denote the closure of S with respect to the norm || - ||pe.r,
defined as

q
|1EIBar = E[IFF] + ) E(IDFl}s) -

=1
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More generally, for any Hilbert space V', we denote by D%?(V') the corresponding
Sobolev space of V-valued random variables.

The Malliavin derivative D fulfills the following chain rule. If ¢ : R® — R is con-
tinuously differentiable with bounded partial derivatives and if F' = (F},..., F},)
is a vector of elements of D2 then ¢(F) € D"? and

Do(F) = F)DF;.
o(F) ;1 8%( )
We now define the adjoint of the operator D and its multiple version:

Definition 2.1.4. We denote by § the Skorohod integral, also called the diver-
gence operator, that is the adjoint of the operator D. Namely, 0 is an unbounded
operator on L*($2, $) with values in L*($)) such that:

i) The domain of 9, denoted by Domd, is the set of $H-valued square integrable
random variables u € L*(€), $) such that, for all F € D2,

where ¢, 1s a constant depending on u.

i) If u € Dom §, then the random variable §(u) € L*(Q) is defined by the duality
relationship

E(F5(u)) = E((DF, u)s)

for any F € DY2. This equality is sometimes called the Malliavin integration-
by-part formula.

Definition 2.1.5. For q > 1, the multiple Skorohod integral is defined itera-
tively as

0%(u) = 8(0*" (u)),
with 0°(u) = u.
From the last definition, for any u € Dom ¢ and any F' € D%2, we have
E(F6'(u)) = E((D'F,u) g, )- (2.1.4)

Moreover, for any h € 9,
§7(h) = 1,(h).

The following results concerning the multiple Skorohod integral were proved in
[Nualart, 2006] and [Nourdin and Nualart, 2010].

Lemma 2.1.6 (Meyer inequality). Forp > 1 and integers k > q > 1, the operator
67 is continuous from DFP(§99) to D¥=9P and, for all u € D*P(H%9),

167 (W)lle-ar < crpllullpesioon, (2.15)

where ¢y 15 @ positive constant.
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2.1. Malliavin calculus

Lemma 2.1.7. Let p,q > 1. Let u € H®? and v € H®1. Then,
< (P (1
SP ()54 — ! §pta—2z ;
wre) =3 (7))o,

where ®, is the contraction operator defined in (2.1.1).

2.1.1 Malliavin calculus for fractional Brownian motion

Let B¥ = {BF;t > 0} denote a fractional Brownian motion with Hurst parameter
H. Remember that B is a centered Gaussian process, defined on a complete
probability space (€2, F, P) with covariance given by (1.4.2), that is,

1
Ru(t,s) = B(BIBE) = S (s + £ — [t — ™),

We assume that F is generated by BY and we suppose that H < %
We denote by & the set of R-valued step functions on [0, 00). Let $) be the Hilbert
space defined as the completion of £ with respect to the scalar product

(o dpo.s)) 5 = B(s,1).

The mappingljy — B/ can be extended to a linear isometry between the Hilbert
space $) and the Gaussian space spanned by BY. In this way {Bf(h),h € $} is
an isonormal Gaussian process as in the previous section. Our goal is to interpret
Bf(h) as the Wiener integral of h € §) with respect to Bf and to write

B (h) = /OTthH. (2.1.6)

As described in [Nualart, 2000], the fractional Brownian motion has the following
integral representation:

t
Bj' = / Kp(t,s)dW,,
0

where W = {W;,t > 0} is an ordinary Wiener process and Ky (t, s) is the Volterra
kernel given by

H-1 t
t 2 H-—1 1 1 H-3 -1
Ky(t,s) =cg|| - (t—s) 2—(H—§>s2 u T2 (u—s)" T2 dul,
S S
where ¢y is the normalized constant

C:¢@H—9H%%D

I'(4+H)T(2-2H)
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if s <tand Kg(t,s) =0 if s > ¢. This kernel satisfies

tAs
Rut,s) = / K (t,u)K (s, u) du,
0

where the function Ry (t,s) is the covariance of the fractional Brownian motion
defined in (1.4.2). Moreover, the linear operator K} : & — L?([0,T}]), defined by

(K5h)(s) :== Ky (T, s)h(s) + / (h(u) — h(s)) 8§LH (u, s) du, (2.1.7)

satisfies

(Kjlpy)(s) = Ku(t,s). (2.1.8)
Thus, K7j; is a linear isometry that can be extended to the Hilbert space $. In
fact, using (2.1.6) and (2.1.8), for any s,t € [0,7] we have

<KI*{]I[O,t]7 K;‘-I]I[O,S}>L2([O’T]) = <KH(t7 ')7 KH<S7 .>>L2([0,T])

tAs
:/ Kyu(t,u)Kg(s,u)du
0
RH(taS)
= (Mol -

As we will see in the following sections, this operator plays a basic role in the
construction of a stochastic calculus with respect to BY.

2.2 Symmetric, forward and backward integrals

A pathwise approach that involves the symmetric, forward and backward integrals
was built up by Russo and Vallois. Some of their works are [Russo and Vallois,
1993], [Russo and Vallois, 1995], [Russo and Vallois, 1996] and [Russo and Vallois,
2000]. The aim of the authors was to develop a calculus relatively simple and be-
yond the barrier of semimartingales, which includes the case of Gaussian processes
that have an infinite quadratic variation as fractional Brownian motion with Hurst
parameter H < %

The concepts and the definitions illustrated in this section are based on the regu-
larity of the sample paths of the processes we consider. For further details we refer
to the works [Biagini et al., 2007], [Nualart, 2002] and [Russo and Vallois, 2000].

A natural way to introduce a stochastic integral with respect to the fractional
Brownian motion is to consider the so-called Riemann sums:

Z f(tk) (BiJrl B Bi)’
k=1

where {0 =ty < t; <--- <t, =T} is a partition of the interval [0, 7], and then to
investigate the conditions on f under which the convergence of this quantity holds
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2.2. Symmetric, forward and backward integrals

at least in probability. We will begin introducing the notions of symmetric, forward
and backward integrals for two generic stochastic processes X and Y. Then, we
will consider these integrals with respect to the fractional Brownian motion with
Hurst parameter H € (0,1). Finally, we will focus on the case H < %

Let X be a continuous process and Y be a continuous locally bounded process.
We give the following definitions:

Definition 2.2.1. The symmetric (Stratonovich) integral of Y with respect
to X is defined as

T 1 T
/ Y, d°X, = lim —/ Yo (Xuse — Xu_e) du, (2.2.1)
0 0

e—0 2¢
provided the limit exists uniformly on compacts in probability (ucp).

Definition 2.2.2. The forward integral of Y with respect to X is defined as

T 1 T
/ Yod X, =lim = [ Yo(Xupe — Xu)du, (2.2.2)
0

e—=0 £ 0
provided the limit exists uniformly on compacts in probability.

Definition 2.2.3. The backward integral of Y with respect to X is defined as

T 1 T
/ Y,d* X, :=lim = [ Yy(X.— X, .)du, (2.2.3)
0

e—0 € 0
provided the limit exists uniformly on compacts in probability.

In order to clarify the relation between the forward and the symmetric integral,
we define the (generalized) covariation:

Definition 2.2.4. Let X and Y be two continuous processes. Suppose that Y is
locally bounded. Their covariation is defined as the limit

t

1
(X)) :=1lim - [ (Xys: — Xo)(Yuse = Y,) du

e—0 ¢ 0
if the limit exists uniformly on compacts in probability.

If X and Y are as above, the following relation among the symmetric integral and
the forward integral holds:

t t
/YudoXu:/ Yy d™ X, + (X, Y)s, (2.2.4)
0 0

provided that two of these three terms exist. Recall that the quadratic variation
is the random variable

t

1
(X, X)) :=1lim = [ (Xyse — Xu)? du.
e—=0 ¢ 0
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Definition 2.2.5. If X is such that (X, X); exists for allt, then X is called finite
quadratic variation process. Moreover, if (X, X); = 0 for all t, then X will
be called zero quadratic variation process.

If X is a finite quadratic variation process and if f € C*(R), then the following
[t6’s formula holds:

1

) = 100 + [ )X+ XX (225)

Hence, formulas (2.2.4) and (2.2.5) give the following [t6-Stratonovich formula:

X = 10 + | (X)X, (2.2.6)

We are interested in the case when X is a fractional Brownian motion with Hurst
parameter H € (0,1), that is X = B”. When H = 1, B: is the standard Brownian
motion and, as we asserted in Chapter 1.2, its quadratic variation is (B 2, B %>t = 1.
On the other hand, from Proposition 1.2.13 we have that the sample paths of B
are Holder continuous of order strictly less than H. This implies that, if H > %,

then B is a zero quadratic variation process, as we stated in Chapter 1.4. Hence,
Ito-Stratonovich formula (2.2.6) holds for H > 1.

Since the quadratic variation is infinite for the fractional Brownian motion when

H < %, a substitution tool is needed. The following paragraph is dedicated to

define the pathwise integrals in this case.
2.2.1 Symmetric integrals for the case H < %

We want to establish when the integrals introduced in the previous section can be
defined in the case of a fractional Brownian motion with Hurst parameter H < %
We follow the approach of [Cheridito and Nualart, 2005].

As we said in the previous section, the definition of a pathwise integral for fractional
Brownian motion with Hurst parameter H < % is rather delicate. For example,

the forward integral
T
/ BYd-BH
0

does not exist in the sense of Definition 2.2.2 when the limit (2.2.2) is meant in
the L2-sense, as it is shown in the following example provided in [Nualart, 2002].

Example 2.2.6. Given a partition ¢t; = %T of the interval [0, T], the expectation

of the Riemann sums .
H H H
Z Btj—l (Btj - Btj—l)
j=1
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diverges

n

> E[B (B - Bl

j=1

(57 =31 — (t; — ;1))

=1

T2H(1 o n172H)

N~ N~

when n goes to infinity if H < % However, notice that the symmetric sums

1 n
52 (Bl =Bl
j=1

have finite expectation:

] — 1 1
3 Y E[(B! - B )(Bf-B! )= 3 > ot —t0)H = §T2H.
j=1

In order to establish when the symmetric integral is well-defined for H < %, recall
that the operator K7}, defined in (2.1.7) induces an isometry between the Hilbert
space §), introduced in Section 2.1.1, and L*([0,T]). We have that

a@%(t, s) = cy (H — %) (é)H_é(t — )3,

that can be estimated as follows, for s < t,

< en @ _ H> (t— )3,

Njw

0Ky
7(@ s)

Consider the following seminorm on the set &€ of step functions on [0, T):

2

Il = | " (KT ) dut / ' ( / o) — o)l — w? dv) du.

We denote by $)x,, the completion of £ with respect to this seminorm. The space
Kk, is continuously embedded in $).

The following proposition, involving the divergence operator 6 and the Malliavin
derivatives D, defined in Definition 2.1.4 and Definition 2.1.3 respectively, gives
sufficient conditions for the existence of the symmetric integral:

Proposition 2.2.7. Let v = {v,t € [0,T]} be a stochastic process in the space
DY2(Hy,,). Suppose that the trace, defined as limit in probability

T
TrDv := lim (Dvy e use]) s du,

e—0 0
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exists and

E( /0 U (T — - 1)du>

E(/OT/OT(DQUUV(MH—W(T u)* =) dude)

Then, the symmetric integral fOT v, d°BH of v with respect to the fractional Brow-
nian motion BY defined as the limit in probability

e H H
lim —/ vu(Byy. — B,_.) ds,

e—0 26

exists and

T
/ v, d° B = §(v) + TrD .
0

We can compute the trace in the particular case of the process v; = f(B[), where
[ € C*(R) satisfies the growth condition

max{|f (@), |f'(z)],|f" (2)|} < ee™, (2.2.7)

where ¢ and A are positive constants such that A < 1/(47%%). If 1 < H < 1, then
the process v; = f(B}?) belongs to D*(Hg,, ), the trace TrDv exists and

T
TrDv = H / (B du.
0
As a consequence, we get
T T
/ f(BIYd°BI = 5(f(B™)) +H/ F(BHu* " du.
0 0
Now we want to consider a wider class of integrands with respect to the one
consider in (2.2.7). We recall a result of [Cheridito and Nualart, 2005], in which

the authors proved that the symmetric integral of a general smooth function of
BH with respect to B exists in L? if and only if H > %.

Note that if A : R — R is a continuous function, then
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2.3. Fractional integrals and derivatives

Hence, it follows that, for all H € (0,1) and for s < ¢,

(B = (BJ)?]

DO | —

D Y L H
21_13(1] 2_€/sBu (Bu—i-a_Bu—a)du_

almost surely.
Since for H > %, B has finite quadratic variation process, Theorem 2.1 of [Russo
and Vallois, 1995] shows that for all H > % and g € C*(R)

/ g(Bd*BY = G((BI'?) — G((BI)2), (2.28)

where G is given by
G(z) := / gly)dy, zeR.
0

In Theorem 4.1 of [Russo and Vallois, 1996] it is proved that, for H = %, formula
(2.2.8) even holds if g € L} (R).

For H < %, the sample paths of B are rougher than the sample paths of Brownian

motion. However, it was shown in [Alos et al., 2001] that, if % < H < %, then

formula (2.2.8) is still true for g € C'(R), while in Theorem 4.1 of [Gradinaru et al.,
2003] the formula is proved for H = % and g € C*(R). The most general result in
this direction is contained in Theorem 5.3 of [Cheridito and Nualart. 2005], where
they show that for g € C*(R), H = ¢ is the critical value for the existence of the
symmetric integral in (2.2.8):

Proposition 2.2.8. Let g € C3(R). Then, the following results hold:

1. For every H € (3,3),

/ g(Byd* B = G((BM)?) — G((BM)?),

where G(z) = [} g(y) dy, for z € R.
2. On the other hand, if H € (0, 3], then

t
JRCARS

does not exist.

2.3 Fractional integrals and derivatives

Another pathwise approach to define a stochastic integral with respect to a frac-
tional Brownian motion is the fractional calculus. Fractional integrals and deriva-
tives generalize the ideas of integration and differentiation of integer order.
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Recall that the n-fold iterated integral formula is the following identity:

/ dt,,_ 1/ dt,_o - / dtl/ s)ds = n—ll) /t(t—s)"lg(s)ds,

easily proved by induction. Since (n—1)! = I'(n), it is natural to look for a meaning
for arbitrary values of n, not only integer. Moreover, fractional integrals and
derivatives arise from certain requirements in applications and have connections
with problems of function theory, integral and differential equations and other
branches of analysis.

The fractional integrals are connected with the Abel’s integral equation for a real

function ©:
i o= [ e,
TT(@) Sy G-y

that is solvable if and only if f;_,, defined by

0w
ool = £ |, o

is absolutely continuous in the interval [a, b] and f1_,(a) = 0. Under these condi-
tions, the solution is unique.

This section is devoted to give some notions of fractional calculus together with the
main properties of fractional integrals and derivatives. For a detailed explanation
of this theory, we refer to [Samko et al., 1993] and [Zahle, 1998].

The fractional integrals were first considered by Riemann and Liouville, hence the
name fractional Riemann-Liouville integrals:

Definition 2.3.1. Let f € L'(a,b) and o > 0. The left-sided and right-sided
fractional Riemann-Liouville integrals of f of order a are defined for almost
all't € (a,b) by

19, f () = ﬁ/j(t—u)a—lf(u) ds (2.3.1)
and o

o f(t) = (lj(l;) /t (= ) f(w) du (2.3.2)
respectively, where (—1)~* = e ™ and (o) = [ u* e "du is the Gamma
function.

Let I, (LP) the image of LP(a,b) by the operator Ig, and Ij* (L?) the image of
LP(a,b) by the operator I;* . The fractional integrals fulfill the following formulas:

1. Composition formula (semigroup property for fractional integration): For
a, 3> 0 and for all f € L'(a,b),

(10 f) =137 1,
I f) =17
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2.3. Fractional integrals and derivatives

2. First formula for fractional integration by parts: For 0 < o < 1, if f €
LP(a,b) and g € L(a,b) with p,q > 1 such that % + é <1+ a, we have

/ F(u)I%, g(u) du = (~1)° / g()I f(u) du. (2.3.3)

It is natural to introduce the fractional differentiation as an operation inverse to
fractional integration. To this aim, we define the fractional derivatives:

Definition 2.3.2. Let f € I$ (LP), respectively f € I (LP), and 0 < a < 1.
Then, the Weyl derivatives

1

De, f(z) = i ((xf_(xi)a +a / ’ % dy) loy(z)  (2.3.4)

and, respectively,

—1)« T b T) —
Dy f(x) = r§1 1_>a) ((bf_( x))“ —|—oz/x %dy) law(z)  (23.5)

are defined for almost all x € (a,b) and the convergence of the integrals at the
singularity y = x holds pointwise for almost all x € (a,b) if p = 1 and moreover
in LP-sense if 1 < p < oo.

The fractional integrals fulfill the following formulas:

1. Composition formula for fractional derivatives: Let a, 8 > 0 be such that
a+ B <1 Forall felId(LY,

D3‘+(Df+ )= ngrrﬁf’
and for all f € IZF7(LY),

Dy (D] f)=Dy*"f.

2. Second formula for fractional integration by parts: For 0 < o < 1,if f €
I¢ (LP) and g € I (L?) with p,q > 1 such that }D + % <1+ a, we have

b b
[ rDg gty du = (-1 [ gD f(w) d

The relationship between fractional integrals and fractional derivatives as inverse
operations is confirmed by the following inverse formulas:
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e Forall f e I? (L),
I (DG f) = 1,
and for all f € I* (LP),
I (Dy_f)=f.

e For f € L'(a,b)

D (g4 1)

f7
Dy (I f) = f

Moreover, the following statements are true:

p

e For ap <1 and g = ap’

19,(17) = I (LP) € L9(ab).

e For ap > 1,
1
Ig (LAY U Iy (LP) € C* 7 (a,b).

2.3.1 Generalized Stieltjes integrals

This section is devoted to recall the definitions and the results of Zahle contained
in [Zahle, 1998] about the generalization of the classical Lebesgue-Stieltjes integral

f; f dg of real-valued functions on a finite interval (a,b) to a large class of func-
tions of unbounded variation. We work with the composition formulas and the
integration-by-part rules for fractional integrals and Weyl derivatives.

Before extending the Lebesgue-Stieltjes integral, we enrich our notation.
Let f(a+) = limp f(a+¢) and g(b—) = lim. o g(b—¢€). Suppose that the limits
exist and are finite. Define

fa—i—(x) = (f(l’) - f((l+)) ]l(a,b) (.I),

9o~ () = (9(x) = 9(b=)) Lap)(2)-

The composition formulas for fractional derivatives and the second formula for
fractional integration by parts suggest the following notion for the fractional inte-
gral:

Definition 2.3.3. Suppose that f and g are functions such that
i) fla+), g(a+) and g(b—) ewist,

i) for € 12, (LP) and g, € I}~*(L9) for some p,q > 1 such that % +% <1 and
for some 0 < a < 1.
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2.3. Fractional integrals and derivatives

Then, the (fractional) integral of f with respect to g is defined by

/ fdg = (—1)° / D2, fur(2) DI gy () d + f(a)lg(b—) — g(at)]
(2.3.6)

Remark 2.3.4. For ap < 1, we have that f,, € I (L?) ifand only if f € I$, (LP),
and f(a+) exists. In this case,

DGy far(x) = Dgi(f = fardap)(2)

o 1 flat)
= Do) - ['(l—a)(x—a)

Lo (2)
and (2.3.6) can be written as

/a fdg=(— / DY f(z) Dy~“gy—(z) du, (2.3.7)

which is determined for general functions f € I (L) and g, € I}~*(L9). For
a =0 and a =1 the integral (2.3.7) may be transform into

[ s f i

/ f(z) dg(a / f'(@)g(x) dz + f(b-)g(b-) — f(a+)g(a+)

which are the corresponding Lebesgue-Stieltjes integrals, respectively.

and

In [Zdhle, 1998] it was also proved that, in the special case of Holder continuous
functions f and g of summed order greater than 1, the integral defined by (2.3.6)
correspond to the Riemann-Stieljes integral:

Theorem 2.3.5. If f € C*(a,b) and g € C*(a,b) with A + pu > 1, the Riemann-

Stieljes integral fab f dg exists and coincides with the integrals defined in Definition
2.3.83 and Remark 2.5.4.

The fractional integral defined in (2.3.6) can also be called forward integral
of f with respect to g. Its construction is controlled by the choice of left-sided
derivatives of f and right-sided derivatives of g. In a similar way, we introduce the
backward integral:

Definition 2.3.6. Suppose that f,_ € I (L) and go, € 1,;*(L9) for some p,q >
1 such that ]lo + % <1 and for some 0 < a < 1. Then, the backward integral of
f with respect to g is defined by

b b
/dg(w)f(x) = (—1)“‘/ DY fy () DX%gay (x) dz + f(0—)[g(b—) — g(a+)).
(2.3.8)
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One can also prove the backward version of (2.3.7) using arguments analogous
to those of the forward case. Moreover, as we see in the following proposition,
for indicator functions f or smooth functions f or g the forward and backward
integrals agree and we can deduce an integration-by-part formula:

Proposition 2.3.7. If f and g satisfy the conditions of Definition 2.3.3 and Def-
wnation 2.3.6, then we have

1. Forward-backward identity: fab fdg = f; dg f,

2. Integration-by-part formula: ff fdg = f(b—)g(b—) — flat+)g(a+) — ffgdf-

2.3.2 Compensated fractional integrals and derivatives

Let f : R — R™ be a continuously differentiable function. We are interested in
defining the integral

b d b '
/ f) dy =Y / Ji(wa) dy (2.3.9)

when x and y are two vector-valued S-Holder continuous functions with 5 € (%, %)

Observe that, in this case, the definition of the fractional integral given by (2.3.7)
cannot be used to define the integral (2.3.9) because the fractional derivative
D¢, f(x) is not well-defined in this case. For this reason, we use an additional

tool and we recall the construction of the integral ff f(z,) dy, given by Hu and
Nualart in [Hu and Nualart, 2009] using fractional derivatives.

Fix % < fB< % Following [Lyons, 1998] we introduce the following definition:

Definition 2.3.8. We say that (z,y,x ®y) is a (d, m)-dimensional 5-Hélder
continuous multiplicative functional if:

1. 2:00,T] = R and y : [0,T] — R™ are B-Hoélder continuous functions,

2. 2@y : Ar — RE® R™ is a continuous function satisfying the following
properties:

a) (Multiplicative property) For all s < u <t we have
(@ Y)su + (T @ Y)ug + (L0 — 75) @ (Y — Yu) = (T D Y)s-

b) For all (s,t) € Ap
(2 ® y)sal < clt — s,

We denote by M a/’i (0,7 the space of (d,m)-dimensional S-Holder continuous
multiplicative functionals. Furthermore, we will denote by M 57 (@, b) the obvious
extension of the definition M 5 .(0,T) to a general interval (a,b).
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2.3. Fractional integrals and derivatives

Fix a real number « such that 1 — § < o < 28 and a < 221 Observe that such
a number exists because 33 > 1 and 22 2+ L — 6. We need to introduce the
following notions.

Definition 2.3.9. Let f : R — R™ be a continuously differentiable function
such that f' is locally \-Hdélder continuous, where A > % — 2. The compensated

fractional derivative for u € (a,b) is defined as

Na - 1 f(xw)
Do f(xa) = I'(1-a) (u—a)
f(xa) = f(wg) = D00, 0if (o) (w7, — wp)
o [ (-~ 0o ")

(2.3.10)

This derivative is well-defined under our hypotheses, because there exists a con-
stant K such that for all u, 6 € (a,b), with < u, we have

|f(zu) — f(zp) — Z?ll 0y f (o) (), — 9519)’ < K(u— 9)(1+)\)ﬁfa71
(u—@)ott -

and (1+ )3 —a > 0since a < 22 < (1 +1)8.
We also need to extend the fractlonal derivative to the multiplicative functional

(z®y):

Definition 2.3.10. Let (z,y,2®y) € Mim(O,T). For u € (a,b), the extension
of the fractional derivative to (x ®y) is defined as

Dy (x @ y)(u) = (_Fl()a) - (((; f?uy)zﬁl; +(1-a) / —((ffi%);_’z ds). (2:3.11)

By Lemma 6.3 of [Hu and Nualart, 2009], for any 0 < a < b < T, we have that
1D, =%(2 @ Y)lls@p) < K@pan(x,y)(b— a)”* 7,
where the constant K depends on « and 8 and
s0)(2,9) = |7 @ Yllapany + 12l stan) 1Yl 8- (2.3.12)
This implicates that the function D)~ *(z ® y)(u) is S-Holder continuous.
Now we have all the ingredients to define the integral fab f(zy) dyy:

Definition 2.3.11. Let (z,y,2 @ y) € M}, (0,T). Let f : R® - R™ @ R? be
a continuously differentiable function such that f' is locally \-Hélder continuous,
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where/\>%—2. Fix o > 0 such that 1 — f < a < 20, anda<@. Then, for
any 0 <a <b<T, we define

[ feddn = 13 [ Do) D )

2a IZZ/ D2a 1afj xu) Dl apl a( ®y)l,3<u>du

=1 j=1

(2.3.13)

Observe that the fractional derivatives D;~®y)_(u) and D}=* D}=“(x @)™ (u) are
well-defined because the functions 3/ and D}~ *(z ® y)* (u) are S-Holder continu-
ous.

2.4 Relation between fractional and stochastic
calculus

We have described distinctive ways to define a stochastic integral with respect to
a fractional Brownian motion. Now we want to study the relation between the
different definitions.

In Section 2.2.1 we show how to use the Malliavin calculus to define the symmetric
integral when the Hurst parameter is H < % In this section we study the link

between the forward integral and the fractional calculus using the approach of
[Zéhle, 1999].

We introduce the following definition:

Definition 2.4.1. Let (hy)ico,r) be a stochastic process. We define the extended
forward integral of h with respect to B¥ as

_ BH
/ h,d B = lim r_/ / B, )dudv (2.4.1)
0 E—

if the limit exists in ucp as a function of t € [0,T].

The previous definition provides an extension of the definition of forward integral
for fractional Brownian motion given in Definition 2.2.2. In fact, the existence of
the limit

1 t

lim = [ ho(B_— B du.
0

e—0 g ute

in uniform convergence in probability implies the existence of the extended forward
integral defined in (2.4.1). In what follows, we show that Definition 2.4.1 is the
key to describe the link between stochastic and fractional calculus.

Let f and g be two deterministic function on [0, 7] satisfying the conditions of
Definition 2.3.3. For 0 < a < b < T, the fractal integral fab f dg is the one defined
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by (2.3.6) and (2.3.7). Then, the following approximation property of the integral

holds: , ,
[ rda =t [ 1 rdg

Recall that g, (x) = Iap)(g(z) — g(b—)). By the first formula for fractional inte-
gration by parts (2.3.3), we obtain that

b 1 r b —(u+v)—gp—(u
/a[;fdg:m/o UEI/Gf(u)gb( +v) = g )dudv.

v

This formula is valid if the degrees of differentiability of f and g sum up at least
1 —e¢. By using the previous identity, we extend the definition of fractional integral
provided in Definition 2.3.3 as

LT e (u ) — gy (u)
[ =t ) : e

whenever the limit on the right-hand side is determined. In this way, we obtain
the natural extension of fractional calculus to the stochastic case.
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Strong limit of processes
constructed from a Poisson
process

The stochastic processes

X(t) = v/ot(—l)N“(“) du,

where a,v > 0 and N, = {N,(t), ¢ > 0} is a Poisson process of intensity a, were
extensively studied in literature, starting with Kac and Stroock. In this chapter
we extend the processes X (f) in order to find approximations of the complex
Brownian motion. More in detail, we construct a family of processes, from a single
Poisson process, that converges in law to a complex Brownian motion. We also
find realizations of these processes that converge almost surely to the complex
Brownian motion, uniformly on the unit time interval. Finally, we derive the rate
of convergence.

The chapter is organized as follows. In the following section we illustrate the
path that bring us to study approximations of the complex Brownian motion. In
Section 3.2 we define the stochastic processes we deal with and we describe the
main results of the chapter. Section 3.3 and Section 3.4 are devoted to prove the
weak and strong convergence of the stochastic processes defined in Section 3.2,
respectively. In Section 3.5 a rate of convergence is derived. Finally, Section 3.6
complete the chapter with the study of a particular case.
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Chapter 3. Strong limit of processes constructed from a Poisson process

3.1 Introduction and motivations

Consider the equation given by

10°F B PF  2a0F

vorr  oxr  w ot
with a,v > 0. It was introduced to describe the propagation of electrical signals
traveling along a transmission cable. Adding the initial conditions, we have that
a differential equation of the form

10°F O?F  2a0F

vorr Yoz v ot

(3.1.1)

F(.’B,O) = 90($),
0
aF(CL’,t) tzo =0, (3.1.2)

where p(x) is an arbitrary function and a is a dissipation coefficient, is denoted
as telegraph equation. It is a hyperbolic partial differential equation and, as we
will see, is a generalization of the wave equation, where we consider additionally
a dissipation term. Moreover, if the first term of the telegraph equation vanishes,
we observe the diffusion equation.

A stochastic version of the telegraph equation was illustrated by Kac in [Kac,
1974]. We describe the method he used. Suppose we have a lattice of equidistant
points. Consider a particle in the origin x = 0. The particle can move either in
the positive or in the negative direction, always with speed v. Each step is of
duration At and covers a distance Az, so we have the relation Ax = vAt. Assume
that the particle starts moving in the positive direction. Each time we arrive at a
lattice point there is a probability of reversal of direction. Assume that aAt is this
probability and, of course, 1 — aAt is the probability that the direction of motion
will be maintained. The particle oscillates from one direction to another. The
problem consists in finding the probability that after a certain time t the particle
is at a certain interval.

Now suppose that = stands only for abscissas of discrete points, that are the lattice
points. We denote by S,, the displacement after n steps, that is the displacement
after time nAt. This displacement can be constructed as follows. Consider a
sequence of independent identically distributed random variables €1, ..., €, 1 with
Bernoulli distribution Ber(1 — aAt), that is, for all k,

P(Ek = 1) = 1-— aAt,
P(ep, =0) = aAt.
For all k, the random variable ¢ tells us if at step k we change direction (e = 1)

or not (e = 0). The number of changes of direction after &k time steps is given by
the random variable

Np=er+-+e1
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3.1. Introduction and motivations

with N; = 0. The displacement S,, can be derived by the number of changes as
follows:

S =vALY (=1)M
k=1

Consider an arbitrary function ¢(x) and the average (o(x + S,)).

Example 3.1.1. The simplest case is when ¢(x) is the characteristic function of
a uniform random variable on an interval. In that case, the average (p(z +S,)) is
the probability of finding the particle in that interval after n steps if it started at
the point .

To find a solution for the telegraph equation (3.1.2), we have to pass from the
discrete case to the differential equation considering the limit At — 0. Then,
averaging the initial function ¢, we obtain the following solution of the equation
(3.1.2) for a time t # 0:

. 1 1
Pla) = Jim {30+ 5.} + Jlolo - 5) |
Given that S, is the displacement after a time nAt, if we want this time to be
zero, we get that the solution becomes F(x,0) = ¢(x), as required by the initial
conditions of (3.1.2).

We observe two particular cases.

When the dissipation coefficient is a = 0, the case is extremely easy. The particle

starts moving in one direction and never stops, so there are no reversal of direction

and no random variables. The differential equation becomes the wave equation:
O*F ,O*F

o~ 0a?

and the solution F(x,t) is given by

F(z,t) = % [o(z + vt) + p(z — vt)].

Another interesting case is when both parameters a and v tend to infinity in such
a way that the quotient z—g remains constant and equal to %. Here the telegraph
equation converges to the heat equation:
1 0F O*F
—_—— = (3.1.3)
D ot 0x?

Consider again the general case. In [Kac, 1974], Kac obtained a solution for the
telegraph equation in terms of a Poisson process. We describe his result.

Consider a Poisson process N, of parameter a. Recall from Definition 1.1.1 that
N, is a stochastic process starting at zero, with independents increments and such
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Chapter 3. Strong limit of processes constructed from a Poisson process

that, for 0 < s < ¢, the increment N,(t) — N,(s) has a Poisson distribution of
parameter a(t — s). Imagine that my particle is subjected to collisions and, every
time it suffers a collision, the particle changes direction. The number of collisions
my particle undergoes up to time t is the Poisson process N,(t).

The velocity of the particle is related to the Poisson process because it changes
sign at each collision. So, the velocity at time ¢ is given by the formula

v(t) = v(=1)N),

Notice that, from this definition, after an even number of collisions the particle has
its old velocity, while after an odd number it reverses direction. The displacement
X (t), that is the continuous version of S,,, is given by the process

X(t) = /Otv(u) du = v/ot(—mNa(u) du.

Then, Kac proved that the solution of the telegraph equation (3.1.2) is given by

F(z,t) = %<g0(x + v/ot(—l)NaW) du)> + %<g0<x - v/ot(—l)Na(““ du> >

Let X.(t) be the processes considered by Kac with a = E% and v = %, that is,

X. = {Xs(t) - 1/Ot(—nNz%("’ du, te [O,T]} . (3.1.4)

3

Doing a change of variables, these processes can be written as

X, = {Xg(t) ;26/5(_1)““) du, te [O,T]},

where {N(t), t > 0} is a Poisson process with parameter 1.

Notice that the parameters a and v satisfy that i—‘; is constant and D = % From
(3.1.3), we get the equation

28F O*F

R

whose solution is a standard Brownian motion.
In [Stroock, 1982], Stroock proved that the processes X. converge in law to a
standard Brownian motion. That is, if we consider (P¢) the image law of the
process X, in the Banach space C([0,7]) of continuous functions on [0,77], then

(P*) converges weakly, when ¢ tends to zero, towards the Wiener measure.

In the mathematical literature we find generalizations of the Stroock result which
can be channeled in three ways:

i) modifying the processes x. in order to obtain approximations of other Gaus-
sian processes,
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ii) proving convergence in a stronger sense that the convergence in law in the
space of continuous functions,

iii) weakening the conditions of the approximating processes.

Following the approach i), a first generalization is also made by Stroock in [Stroock,
1982], who modified the processes X. to obtain approximations of stochastic dif-
ferential equations.

In [Yugiang and Hongshuai, 2011] an approximation to the fractional Brownian
motion by 2-parameter Poisson processes is found. In [Delgado and Jolis, 2000] this
approximation is extended to a general class of Gaussian processes: the authors
prove that every Gaussian process of the form

Y(t) = /0 Kt u)div,,

where W is a standard Brownian motion and K a sufficiently regular deterministic
kernel, can be weakly approximated by the family of processes

U

YE(t) = é/o Kt u)(—1)"2% du.

In [Bardina et al., 2010b] a diffusion approximation result is shown for stochastic
differential equations driven by a fractional Brownian motion with Hurst parameter
H € (3,%). In [Bardina ct al., 2010a] and [Deya ot al., 2013], the authors extend
the Kac-Strook result to approximations of the stochastic heat equation driven by
Gaussian white noise and the Stratonovich heat equation, respectively.

Toward direction ii), in the literature we find studies on the strong convergence of
the so called uniform transport processes. Since the approximations always start
increasing, we have to consider a modification of the form

1

2) independent of the Poisson process

where A has a Bernoulli distribution Ber(
N.

In [Griego et al., 1971], Griego, Heath and Ruiz-Moncayo show that these processes
converge strongly and uniformly on bounded time intervals to Brownian motion. In
[Gorostiza and Griego, 1979], Gorostiza and Griego extend the result to diffusions.
A rate of convergence is obtained by the same authors in [Gorostiza and Griego,
1980] and by Csorgé and Horvéth in [Csorgo and Horvath, 1988].

In [Garzon et al., 2009], Garzén, Gorostiza and Ledn define a sequence of processes
that converges strongly to fractional Brownian motion uniformly on bounded in-
tervals, for any Hurst parameter H € (0, 1), and compute the rate of convergence.
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In [Garzon et al., 2011] and [Garzon et al., 2013] the same authors deal with
fractional stochastic differential equations and subfractional Brownian motion.

In [Garzon et al., 2012], Garzén, Torres and Tudor give a strong approximation of
the Hermite process of order ¢ = 2, also called Rosenblatt process, that is, a second
iterated integral with respect to a standard Brownian motion of a deterministic
function with 2 variables, and derived a rate of convergence.

Finally, in the way iii), given that
(—1)NW = N — cos(r N (u)),

the question that if the convergence is also true with other angles appears. In
[Bardina, 2001], Bardina show that, if we consider the processes

2t

_ e2 .
Z0(t) = 8/ "N ds, (3.1.5)
0

where 0 # 0, 7, their laws converge weakly towards the law of a complex Brownian
motion, i.e., the laws of the real and imaginary parts

2t

— 2
X0t = 5/ cos(0Ny) ds
0

and
2t

Y(t) = 5/62 sin(6N;) ds,
0

converge weakly towards the law of two independent Brownian motions. The ap-
proximating processes are functionally dependent because they are constructed
from a single Poisson process but, in the limit, we obtain two independent pro-
cesses. In [Bardina and Rovira, 2013], Bardina and Rovira prove that, despite
using only one Poisson process, the processes

(X2, ... X2(2), YL (2), ... Y1),

for different angles 6, converge in law towards d independent Brownian motions.
In [Bardina and Rovira, 2016], the same authors extend the previous results to a
sequence of approximations constructed from a Lévy process instead of a Poisson
process.

In this chapter we present an extension of the Kac-Stroock result in the directions
ii) and iii). we define modifications of the processes Z. that depend on a parameter
0 € (0,7) U (m,27) and are defined from a unique Poisson process and a sequence
of independent random variables with common Bernoulli distribution Ber(%). We
obtain results concerning weak and strong convergence and a rate of convergence.
For simplicity’s sake, we only consider § € (0,7) U (m, 27) for which it does not
exist any m € N such that cos(m#f) = 0 or sin(m#) = 0.

Throughout the chapter K and C' will denote any positive constant, not depending
on ¢, which may change from one expression to another.
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3.2 Definitions and main ideas

Let {M;,t > 0} be a Poisson process of parameter 2. Recall from Chapter 1.1
that M is a stochastic process starting at zero, with independents increments,
such that, for 0 < s < t, the increment M; — M, has a Poisson distribution with
parameter 2(t — s).

We define {N;,t > 0} and {N/,t > 0} two other counting processes that, at each
jump of M, each of them jumps or does not jump with probability %, independently
of the jumps of the other process and of its past.

Remark 3.2.1. N and N’ are Poisson processes of parameter 1 with independent
increments on disjoint intervals. We check this statement.

First, we prove that N is a Poisson process of parameter 1, checking that the
conditions of Definition 1.1.1 are fulfilled:

i) Clearly Ny = 0.

ii) Let k; € NU {0} for j = 1,...,n. By the independence of increments of the
Poisson process M, for any n > 0 and for any 0 < ¢; < --- < t,41, it holds

that
(ﬂ Nte+1 - - kﬂ m Mte/+1 Mté/ - mg’)
=1
H P( Nt;+1 - Ny, = kj|Mtj+1 - M;; = m;)
j=1
so we have
P < (N — Ny, = kg>
(=1

o0

Z

<ﬂ Ni,., — Ny, = kg

m Mt£’+1 Mt[/ - mf’)

=1

X P( ﬂ Mte'ﬂ - M, = mf’)]

=1

=[] PV, — N, = k)
7j=1

Then, the increments N, — Ny, ..., N;
variables.

w1 — Vi, are independent random
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Chapter 3. Strong limit of processes constructed from a Poisson process

iii) For any 0 < s <t and for k € NU {0},

o0

P(N,—N,=k) = Y P(N,—N,=k|M,— M, =n)P(M, — M, = n)
n=~k

LS L RO
k) 2k 2n-k n!

n=~k

s ()

k

—o(t—s t—8)F o= (t—s)vFk
ol k!) Z<(n—)k)!
(t—s)"

k!

n=~k

Then, the increment N; — N, has a Poisson distribution of parameter t — s.

Hence, N is a Poisson process with parameter 1. One can prove that N’ is also a
Poisson process with parameter 1 with identical arguments.

Now we verify that N and N’ have independent increments on disjoint intervals.
Let k,j e NU{0}. For 0 <s<t<u<w,

P(N;,— Ny=k,N, — N, = j)

=> > P(Ny— N, =k N, - N, =j| M~ M, =n,M,— M, =m)

x P(M, — M, = n, M, — M, =m)
ziiP(Nt—Ns:MMt—MS:n)P(Mt—Ms:n)

xP(N, — N, = j| M, — M, = m)P(M, — M, =m)
= P(N, = N, = k)P(N, = N, = j)

as we wanted.

For 6 € (0,27), consider the following processes:

2t

{Zf(t):(—1)Ge/062(—1)N& "N dy, te[O,T]} (3.2.1)

where N and N’ are defined above and G is a random variable, independent of N
and N’, with Bernoulli distribution of parameter %, that is, P(G = 0) = P(G =
1) =1
We can write the process Z%(t) as

ZZ(t) = XI(t) + Y (1),
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where
2t

X2(t) = 5/62(—1)N{L+G cos(ON,,) du (3.2.2)

€

and
2t

YO(t) =« /52(—1)N&+G sin(ON,) du (3.2.3)

)

are the real part and the imaginary part, respectively.
Moreover, notice that with a change of variable we obtain

2 t / )
Z0(t) = - (—1)¢ / (= 1) 2use2Nouse2 gy, (3.2.4)
0

Figure 3.2.1 shows the simulation of the trajectories of the real and imaginary
parts of Z% for a fixed € and 6, while Figure 3.2.2 and Figure 3.2.3 represent the
trajectories of the processes X? and Y, respectively, for different values of 6.

=
=}
u
=R
=
2 \M
[=]
[Ty
=3
q’
T
0.000 0001 00{}2 0003 0004 00{}5

t

Figure 3.2.1: Trajectories of the processes X? and Y for the values of the parameters
€= ﬁ and 0 = 2.

When 6 € (0, 7)U(, 27) and it does not exist any m € N such that cos(m#f) = 0 or
sin(m#f) = 0, we are able to construct approximations to d standard independent
Brownian motions for d as large as we want and to deduce a rate of convergence.
In more detail, in the following sections we deal with results in three directions:
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2
=

w0

=l

=

g_ l\"‘v“'. WANT A
Y LA LT
Vhn aod Wy W WY \
Y1 AU Iy
¥ \;‘, J|I e . |
g.— W j-'w, no I'i""',n /
< "l\lf\.m,'.' \f .
e
< — B=2
— B=7
g=11
B2
9 T T T T T T
0.001 0.002 0.003 0.004 0.005 0.006
t

Figure 3.2.2: Trajectories of the processes X? for ¢ = ﬁ and different values of 6.
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Figure 3.2.3: Trajectories of the processes Y for ¢ = 500
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1. Weak convergence: we prove that the process Z? converges in law to a com-
plex Brownian motion and that, for a suitable set {61,0s,...,6,,}, the law
of (X0, ... X% YO .. . Y%) converges weakly to the joint law of 2m in-
dependent Brownian motions.

2. Strong convergence: we show that there exist realizations of the process 29
on the same probability space of a complex Brownian motion.

3. Rate of convergence: we study how fast the realizations of the process Z’
converge to a complex Brownian motion.

On the other hand, when 6 = 7, the process Z/(t) is

2t

=

(—1)NetNu dy,

25 = (-1 |

0

In the last part of the chapter we prove that there exist realizations of the above
process on the same probability space of a standard Brownian motion.

As usual, the weak convergence is established proving tightness and the identifi-
cation of the law of all possible weak limits. For instance, we refer to [Bardina,
2001] and [Bardina and Rovira, 2013].

The almost sure convergence is inspired by [Griego et al., 1971] and is based on
the following result due to Skorokhod:

Theorem 3.2.2 (Skorokhod’s Theorem). Suppose that &1, &, ..., &, are indepen-
dent random variables such that E(&) = 0 and Var(&) < oo, for all k, and
that W (t) is a standard Brownian motion. Then, there exist non-negative random
variables 1, o, ..., T, for which the variables

n n—1
W(n), W(n +7) —W(n),..., W (Z rk> -W (Z Tk>
k=1 k=1
have the same joint distribution as &1, &s, ..., &,. Moreover,
1. E(rp) = Var(&) for all k.
2. There exists Ly, such that E[(1)™] < L,,E[(&)*™].
3. Fors € S0 7o, Sopti ), if €| < h, then [W(s) — W (Sr_, m)| < h.
We refer to [Skorokhod, 1965, Chapter 7] for a complete description of this result.

The computation of the rate of convergence follows the method given in [Gorostiza
and Griego, 1979] and [Gorostiza and Griego, 1980).
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Chapter 3. Strong limit of processes constructed from a Poisson process

Along the Chapter we use some well-known results that we state hereunder.

The first statement is a technical result of Feller (see [Feller, 1966, (5.6) page 54])
that gives us information about the law of sums of a random number of independent
identically distributed random variables:

Lemma 3.2.3. Let { Xy}, be a sequence of independent identically distributed

random variables with exponential law of parameter «, that is, Xy ~ Exp(«a) for
all k. Assume that N is a random variable with distribution N ~ Geom(p), that

~

is, for alln € N, P(N =n) = (1 —p)p"~'. Consider the sum
Sg=X1+---+Xj5
with the random number N of terms. Then, its density is

fs.(2) = (1 - p)aeltper,

The following result is a powerful method, due to Skorokhod, of studying the dis-
tribution of a partial sum of independent identically distributed random variables
with zero mean and finite variance:

Theorem 3.2.4 (Skorokhod’s second embedding theorem). Suppose that &1, &, ..., &,
are independent and identically distributed random variables with mean 0 and finite
variance, and put S, =& +---+&,. Let W(t) be a Brownian process. There is a
nondecreasing sequence Ty, Te, ... of stopping times such that the W, has the same
joint distribution as S, and Ty,To — T, T3 — To, ... are independent and identically
distributed random variables satisfying

1. B(ry — 11) = E(€3),
2. E[(7, — m-1)?] < 4E[(&1)1]-
We refer to [Billingsley, 1995, Theorem 37.7] to the proof of this result.

The following lemmas state two inequalities that we find useful in the proof of the
strong convergence and the rate of convergence:

Lemma 3.2.5 (Doob’s martingale inequality). Let X; be a submartingale taking
non-negative real values. For every ¢ > 0 and every p > 1,

1
C

0<t<T

Lemma 3.2.6 (Kolmogorov’s inequality). Let X1, ..., X, be independent random
variables defined on a common probability space (0, F,P), with ezxpected value
E(X%) =0 and variance Var(Xy) < oo for k=1,...,n. Then, for each m > 0,

1 1 <
P (max |Sp| > m) < WV(LT’(SH) =— g Var(Xg),
k=1

1<k<n m

where S, = X1+ -+ X}
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3.3 Weak convergence

Let 6 € (0,7) U (7, 27). Consider the processes defined in (3.2.1):

2t
2

Z0(t) = (~1)%¢ / (—1)Ne N gy,

0

This section is devoted to illustrate some results on weak convergence of this
process. These results are based on the two lemmas hereunder:

Lemma 3.3.1. Let N and N’ the Poisson process defined in Section 3.2. For any
0 S Ty S Zg,

E[(_1)N:’C2—N;1eiG(NZQ—Nzl)} — 20@—m1)

Proof. From the definition of N and N’ it follows that

E [(—1)N!“2_N9,v1 ew(sz *Nﬂn)}

- Z Z(_l)nezemP(Nﬂ/% - N;u =n, NJ»‘Q - N:C1 = m)

n=0 m=0 k=n " "
P(Mm - Mﬂﬁl = k)
S A (RN EN 1 1 [2(my — xp)]Fe2(@2mm)
— -1 n _if0m .
2y 3 0w 7 z
00 k k k
_ —2(zp—x1) T2 — 1 l k _1\n k Om

By |e?™|] < 1 and Z]:L:o (Z) = Zﬁl:O (:1) = 2% it easy to see that the series is
absolutely convergent. Moreover, notice that Zi:o (:)(—1)” = 0 when k& # 0,
therefore the above expression is different from zero only when £ = 0 and, as a
consequence, when n = 0 and m = 0. Hence, as the series is absolutely convergent,

]E[(_1)]\/;27]\[;1eiG(Nx2—Nx1)j| — 6—2($2—$1)

)

as we wanted to prove.
[

Using Lemma 3.3.1, we can also get a version of Lemma 3.2 in [Bardina, 2001]
well adapted to our processes:

Lemma 3.3.2. Consider {F:°} the natural filtration of the processes Z9. Then,
for any s < t and for any real {F°}-measurable and bounded random variable Y,
we have that, for any 6 € (0,7) U (7, 27),
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Chapter 3. Strong limit of processes constructed from a Poisson process

627]5 x2 ’ 82 4
(I) 52/ / ]E[(—l lee 9(N12_Nz1)} dxlde — (t — S) + _(6*6*2(1‘/78) _ 1)
2s 2s
2 73

4
b) lim |e / / E[(—1)Nea™Ne1 W2t Ne) Y] dpy divy| = 0.
e—0 %;

Proof. The lemma is proved following the same ideas of [Bardina, 2001] and using
Lemma 3.3.1.

a) By lemma 3.3.1 and developing the integral, we get

o .
/ / E [(—I)N@_Nél 0Nz =Nay ] dxidxs
2 2s

=2 2@2=21) oy
25 25

(t—s)+z( =079 ),

b) Recall that E[e?®Nt] = ¢~#(1-¢") By Lemma 3.3.1 and using that Poisson process
has independent increments, we have

/ / N/ +N’ . eiH(Nz2+NI1)Y:| dxldl‘z
2s 2s

— 52/52 / QE[(_l)Na,cz_szcl .eie(N127N11):|]E|:e2i9(NzliN2s/52)]

2(z2—x1) (zl 25/e2)(1—e%19) d$1dl’2

27
= /2/ 2(xw2—21) *(931 2s/e%)(1—cos(26)) dl'lde

2t
Ke? /57 e —(x1—25/€2)(1—cos(26)) dl’l
2 2

IN

that converges to zero as € tends to zero.
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3.3. Weak convergence

Now we are ready to state our first result on weak convergence to a complex
Brownian motion:

Theorem 3.3.3. Let P? be the image law of Z° in the Banach space C([0,T],C)

of continuous functions on [0,T]. Then P’ converges weakly when € tends to zero

to the law P on C([0,T),C) of a complex Brownian motion.

Proof. The proof consists in checking first that the family P? is tight and then
that the law of all possible limits of P is the law of a complex Brownian motion.

Tightness. Let {X(t),t > 0} and {Y’(t),t > 0} be the processes defined by
(3.2.2) and (3.2.2), respectively. We need to prove that the laws corresponding to
these two processes are tight. Using Billingsley criterion and that our processes
are null in the origin, it is sufficient to check that there exists a constant K such
that, for any s < t,

We follow the ideas of the proof of lemma 2.1 in [Bardina, 2001]. We denote by Z

the 4-dimensional cube [3—5, 52—5]4, then we have

2t 4 2t 4
E <g /  (—1)M cos(ON,) da:) +E <g / 7 (—1)™ sin(6N,) dx)

£

2 N, +N; +N,. +N,
=24¢ E/]I{CB1SZ2§:L"3§$4}<_1) @ TNy T g TV ry
z

x [ cos(0N,) cos(ON,,) cos(ON,,) cos(ON,, )
+sin(0N,,) sin(0N,) sin(ON,, ) sin(6N,, )] @, dz;

=12 €4E/I]l{x1§$2§1,3§$4} (—1)N9’54_Nﬂlﬂ (_1)N;2—N;1
x 08 (0(Ny, — Nyy)) cos (0(Ny, — Ny )) ®iy da;
+12 84 E /]l{x1§12§w3§m4} (—1)N9/J4+N3,33 (—1)Na,c2+Na’:1
T

x 08 (0(Ny, 4+ Nay)) cos (0(Ng, + Nyy)) @iy da
=1+ 1
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Using that the Poisson process has independent increments, we get

!

I = 1284 Aﬂ{xlﬁzzéwaﬁx4}E[(_1)]\[%4_]%3 COS (Q(Nm - NIS))}

XE[(—1)"e27o1 cos (O( Ny, — Noy))] @1 dog
12 62/ ]l{x1<12}
(%]

12 82/[5

IN

E[(_l)NéfNél cos (6(Ny, — Nyy)) ] ‘ dx, d352>

IN

2 ]1{$1 <za}

2
T2
/ e~ 2z2—w1) dxq d:v2>
2

2
E[(_DN;Q—NG’H . ez‘e(szNzl)} ‘ dz, dx2>

IN
—_
[\
O]
[\o}
m‘ga\
B

To prove the bound for I, we use again that Poisson process has independent
increments, so we obtain:

B (= 1) (1) ¥4 cos (0(Na, + Nay)) cos ((Ney + Ny)|
_E [(_1)N;4+N;3 (_1)N;2+N;1
x 08 [0((Nyy — Niy) + 2(Nay — Nay) + 2N,,)] cos [0(N,, + Nm)]]
= B [(~1)¥47s cos [B((Ns, — Nay) + 2Nz, — Noy))] |

xE [(—1)N9’02+N41 cos (2N, ) cos [0(N,, + le)ﬂ

]
]
|
Il

—E [(=1)™ % sin [6((Na, = Nay) + 2(Ney — Ney)

~—

<F [(_1)N;2+N;1 sin (2Nx2) cOS [Q(Nm + N,

< ’]E [(—1)N54_Nﬂ?3 €08 [0((Ney = Nuy) + 2(Nay = Nao))]

N—" —

+’E [(_1)N;4—N;3 sin [0((Nyy — Nay) + 2(Nyy — Noy)
< (JE[(~ 1% cos (B(Ns, — N.y)]|
+’E[(_1)N;4—N;23 sin (9(Nx4 - Nxs))} ‘)

% (|E[cos (20(Noy — Noo))]| + [E[sin (20(N,,, = No.)]|)
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Integrating with respect to x5 and x3, we obtain the following bound for Is:

L, < 4884 /]l{x1<12<x3<x4}|E[(—]_)Nﬂln4N;:3 . eie(Nﬂf4_Nx3)H
a

X ‘E[B%Q(N%_N“?)] | dry...dzy

IN

IN

4 4 T4
8e / / dl‘ldl’4
2(1 = cos(20)) Sz Jz
4

48¢ El 2s
~ 2(1 —cos(20)) /:? (:c4 a ?) ds

48(t — s)*
1 — cos(20)

48 84 /]l{z1<x2<x3<x4} 6—2(x4—z3) e—(z3—:v2)(1—c0s(20)) day ... dxy
’ 2t
)
2t
)

2t 4 4
2 , 2 /
sup E(s/ (—1)Net@ cos(@]\@dx) + E(s/ (—1)"=Tsin(ON,) dx)
c 2 2

<12(1+ %OS(%Q@ _ )2

So the family of laws is tight.

Identification of the limit law. Consider a subsequence, which we will also denote
by {P?}, weakly convergent to some probability P?. We want to prove that the
canonical process 2% = {Z%(t),t > 0} is a complex Brownian motion under P?,
that is the real part Re[Z’] and the imaginary part Im[Z?] of this process are
two independent Brownian motions. Using Paul Lévy’s characterization theorem
(Theorem 1.2.26) it is sufficient to prove that, under P?, Re[Z°] and Im[Z?] are
both martingale with respect to the natural filtration {F;} with quadratic variation
< Re|Z%, Re[Z9] >,=t, < Im[Z°], Im[Z°] >;= t and null covariation.

To prove the martingale property with respect to the natural filtration {F;}, fol-
lowing the ideas of Section 3.1 in [Bardina, 2001], it is enough to see that, for any
51 <859 < -+ <5, <s<tand for any bounded continuous function ¢ : C* — R,

2t

2

E{@(Zg(sl),...,Zg(sn»g/ZS

(_1)G+N; ewN”” dx]
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converges to zero as ¢ tends to zero. We have

2t
£2

2s
2

(_ 1)G+N; ei@Nz d$:|

E[@(Zf(sl),...,Zf(sn))a/
~ [Bo(ZEo0). o 22 (1) N ]

xe [ TB[(-)Y e 0 g

that converges to zero as € tends to zero. Therefore, martingale property is proved.
To prove that < Re[ZY], Re[Z%] >i= t and < Im[Z°], Im[Z°] >;= t, we check
that, for any s; < --- <5, < s < t and for any bounded continuous function
p:C" >R,

E[p(Z2(s1); .. 22(50)) (X2(6) = X2(s))? = (¢ = 5) |

and
E[p(Z(s1).- .+ Z20s0) (Y2 (1) = Y2()) = (¢ = 5)) |

converge to zero as € tends to zero. Notice that, in our case,

E[p(20(51). ... Z2(s)) (X2 () = XX(5)) ]

=E (p(Zg(Sl), cee Zf(sn)) <g /2:2 (_1)Nalc cos(ON,) dl’>

_ 92 / / E[p(Z(s1). ... 2%(s,)
g (= 1)+ Nes cos(ON,,) cos(eNm)} dday
_ g2 / / E[(Z0(s). ... Z2(51)]
8 xE[(—m%—Nél cos (6(N,, — Nzl))} dzdzs
e [0 [TE[p(220. 0 22e)
X (=1)NeaNar cos (O(N,, + le))] dzdzs.
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The last expression is equal to

E[p(Z(s1), ..., Z(sn))]

x Re { / / 2Ny -ew(szNzl)} dxldm}
2s 2s
+Re{e / / (Z2(s1), ..., Z%(sn))

) (=1)Nea# N,y 'eiO(NIQ+Nz1):| dl’ldl'g}
= F1 -+ FQ

By Lemma 3.3.2 a), we can write Fj as follows

B = B[ (220, 226))) (0= 5) + e 200 - )

It clearly converges to E[p(Z%(s1),...,Z%(sn))](t — s) when € tends to zero.

By Lemma 3.3.2 b), F, converges to zero when ¢ tends to zero.

Then, the quadratic variation of the real part is computed. The imaginary part
can be done similarly.

Finally, we have to prove that < Re[Z°)],Im[Z°] >;= 0. It is sufficient to show
that, for any s; < -+ < 5, < s < t and for any bounded continuous function
p:C" =R,

E[p(Z(s1). .-, Z(s0)) (X2(1) = X2(s)) (Y () = YZ(5))]

converges to zero as € tends to zero. We obtain this convergence using similar
calculations and statement b) of Lemma 3.3.2.
O

We can also get the following extension of Theorem 3.3.3, that is the equivalent of
the result obtained in [Bardina and Rovira, 2013] for our processes.

Theorem 3.3.4. Consider 01,05, ...,0,, such that for all v # j, 1 < 4,7 < m,
0;,0; € (0,m) U (m,2m), 0, + 0; # 2w and 6; # 0;. Then the laws of the processes

(X0 X0 YO Y

€

converge weakly, in the space of the continuous functions, towards the joint law of
2m independent Brownian motions.

Proof. Taking into account the proof of Theorem 3.3.3, it only remains to check
that for i # j, and 6;, 0; in the conditions of Theorem 3.3.4, < Re[Z%], Re[Z%] >,=
0, < Im[Z%),Im[Z%] >= 0 and < Im[Z%], Re[Z%] >;= 0. We prove that
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following the proof of Theorem 2 in [Bardina and Rovira, 2013] and taking into
account our Lemma 3.3.1.

To prove that < Re[Z%], Re[Z%] >;= 0 it is sufficient to show that for any s; <
.- <5, < s < tand for any bounded continuous function ¢ : C?* — R,

E[p(Z(s1), . Z2(50)) (X2 () = X2 (5)) (X2 () — X22(9))]

converges to zero as € tends to zero. The last expression can be written as

2t

E [o(Z(s1),...,Z(s0)) (5 Lez (=1)™= cos(6,N,) dx)

s

€

X (8 L:Qé(—l)Nﬂ/” cos(GgNz)dx)]

2
(o ) 9
:gQAS 5 ]E[w(Zs(sl),...,ZE(sn))

X (—1)N561+N;2 sin(0; N,,) sin(ﬁgNm)] dxydzs

+€2/:Lle[(p(Zg(sl),,,.,Zf(sn))

x (—1)Ner tNe2 sin (0, N, sin(02Nx2)] dxidzs

Using the identity sin(a)sin(b) = (cos(a — b) — cos(a + b)) /2, we have

1 BN A
=t [ stz
2 2

x (—1)Ne2=No1 cos (0N, — GQNIZ)} dxidxs

_1o /25 /m E[gp(zf(sl), o Z8(s0))

x (—1)Ne2=Ner cos(0y N, + 92N22):| dxidxs
= Gu— G

By Lemma 3.3.1 and using the independence of the increments of the Poisson
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process and E(e?N) = e~#1-¢"") e obtain a bound for G:
2t
1 R , , :
GH = §R€ {82 E [@(Zf(sl), ey Zg(sn)) . (—1)N12_N11 . 61(91_02)]\[25/62
2s 2s
A

<. |:€i(91—92)(Nzl—N25/52)] o) |:(_1)N§:2*N£1 . 6—i6’2(Nx2—Na:1)] d!Elde‘g}

VAN

2t
2 72 i
K€2 / / |e—(xl—23/52)(1—51(91792))| . 6—2(902—3[:1) de’ldiL‘g
2s 2s
2 2

2
— K€2 /52 / 2 6_(;1:1—23/52)(1—003(01—02)) . 6—2(12—11) dl‘ldl’g
2s 2s
2 2
Ke&?

= 2(1 — cos(0; — 92)) '

The last bound is obtained as in the proof of the Lemma 3.3.2 b). At this point,
clearly G1; converges to zero when ¢ tends to zero for 6; # 6. Replacing 65 by
—05, we obtain a bound for G5 with a similar computation:

Ke? 1
2 1—cos(by +62)

Gio <

For 61,05 such that 6, + 6, # 2m, it also converges to zero when ¢ tends to zero.
Therefore, the proof for GGy is completed.

On the other hand, G5 is equal to G'; under interchanging the roles of 6; and 65,
so we have the following bound

G < Ke? 1 n 1
2= 2 \1—cos(b—6,)  1—cos(b;+65))"
that also converges to zero when ¢ tends to zero for 6, # 6, such that 6, 46, # 27.

The proof of < Im[Z%],Im[Z%] >= 0 and < Im[Z%], Re[Z%] >;= 0 is done
similarly.

[]

3.4 Strong convergence

Let 6 € (0, 7) U (7, 2m). Consider again the processes defined in (3.2.1):

2t
2

Z0(t) = (—1)%¢ / (—1)Ne N gy,

0
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Chapter 3. Strong limit of processes constructed from a Poisson process

This section is devoted to state and prove the following result on strong convergence
to a complex Brownian motion:

Theorem 3.4.1. There exists realizations of the process Z° on the same probability
space as a complex Brownian motion {Z(t),t > 0} such that

lim max | Z%(t) — Z(t)| =0 a.s. (3.4.1)

e—00<t<1

Proof. Recall that X? is the real part of the processes Z?, defined by (3.2.2) as

/

2 t N27‘
Xf(t):g(—l)a/o (~1)" % cos (6Nz) dr.

We study the strong convergence of X? to a standard Brownian motion {X (¢),t €
[0,1]} when € tends to 0. More precisely, we prove that there exist realizations
{X9(t), t > 0} of the above process on the same probability space of a standard
Brownian motion {X(¢),¢ > 0} such that

lim max |[X?(t) - X(#)| =0 a.s. (3.4.2)

e—0 0<t<1

The convergence of the imaginary part of Z. to another standard Brownian motion
{Y(t),t € [0,1]}, independent of {X(¢),t > 0}, follows the same proof. We refer
to the method used in [Griego et al., 1971] to prove the strong convergence to a
standard Brownian motion. We will divide the proof in five steps.

Step 1: Definition of the processes. Let (2, F, P) be the probability space for a
standard Brownian motion {X(¢),t > 0} with X(0) = 0 and let us define:

1. for each ¢ > 0, {€,}m>1 a sequence of independent identically distributed
random variables with law exponential of parameter g, independent of the
Brownian motion X,

2. {Nm}m>1 a sequence of independent identically distributed random variables
with law Ber(3), independent of X and {5 },,,>1 for all €.

3. {km}m>1 a sequence of independent identically distributed random variables
such that P(k; = 1) = P(k; = —1) = 3 , independent of X, {5, }m>1 and
{€, }m>1 for all e.

From these random variables, we are able to introduce the following ones:

L. {bm}m>0 such that by = 0 and b,, = ZTZI n; for m > 1. Clearly b, has
a Binomial distribution of parameters (m, %) and, for all n € {0,1,...,m},
P(bys1 = nlby, =n) = P(byi1 =n+ 1|b, =n) = 1.

2. {&89} 51 = {| cos (by_10)|€5, }m>1 . This family of random variables is clearly
independent of X.
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3.4. Strong convergence

Let 2 be the o-algebra generated by {b;}m>1. The sequence of random variables
{km&E0Y 50 satisfies

E (k€| %) = 0,
2

Var (k| %) = E[(&))| %) = 2[008(% 10)]*.

By Skorokhod’s theorem (Theorem 3.2.2), for each ¢ > 0 there exists a sequence
{05%},>1 of nonnegative random variables on (€, F,P) so that the sequence
205, 2(09% +057), ..., has the same distribution as k&7, k€57 + k&5, .., and,

for each m,
g2

(0, |%) = Var(kn&.'| %) = 2[008(bm 10)]".

For each ¢, we define 78’0 = 0 and, for each m,
m—1

x () -x (So)
§=0

2
[l = gcos(bm 10).

550‘ 1

?

0
where ;7 = 0 and

Then, the random variables {’yl }m>1 are independent with common exponential
distribution with parameter . Indeed, for any 0 < n < m and for any z,y € R,

0 0
P(%iﬂ <z %ZH < y)

n j+(m—n)

—Z Z P < a5 < ylbn =G, bm = k) P(by = §, by = k)

n j+(m—n)

~ 0= 3 S P = = 8

0
= P73y < 2) P33 S v);
using that, when b,, and b, are known, %813(21 and fyf,fH are independent.

Now, we define X?(t),t > 0 as a piecewise linear process satisfying

X! (Z 7;9> =X (Z aj.ﬁ) ,  m>1 (3.4.3)
j=1 j=1

and X?(0) = 0. Observe that the process X’ has slope #|3%¢| in the interval

m—1 ,0 m ,0
Do o

Let p5? be the time of the mth change of the absolute values of 56078 i.e. the
time when 5] = 2cos|[(m — 1)6] and B = 2cos(m#), that is when the slope
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Chapter 3. Strong limit of processes constructed from a Poisson process

of 2%(-) changes from +2|cos[(m — 1)0]| to £2|cos(mf)|. Then the increments
ped — pf,;il,m > 1, with pg,e = 0, are independent and exponentially distributed
with a parameter 6% The proof is similar to the case 8 = 7. Indeed, since

P(Bf,’f) — gcos(nﬁ) Bl = gcos[(n — 1)9]) = %

for every n =0,1,--- ,m, we can write pi’e = 7?’9 +---+ 7]%9, where P(]V =n)=

2" for n € N and N is independent of {7?’0}]»21. Therefore, by Lemma 3.2.3,

p]” has an exponential distribution with parameter 6% Likewise, each increment

pef — pi’f_l has an exponential distribution with parameter 6% and the increments
are independent since they are sum of disjoint blocks of the 75/’s.

On the other hand, let 77, be the time of the mth change of the sign of the
slopes. Following the same arguments for the times p5? we get that the increments
To, — To_1, for each m, with 7§ = 0, are independent and exponentially distributed
with a parameter 6% Moreover, the increments are sum of disjoint blocks of the

€,0°
VoS-

Thus, X? is a realization of the process defined by (3.2.2).
Step 2 : Decomposition of the convergence. Now we focus on the proof of (3.4.2).

Recalling that 5 = 05 = 0, by (3.4.3) and the uniform continuity of Brownian
motion on [0, 1], we have that, almost surely,

. "] . _ . 0 ;,0 _ ;,0
fy gue PO =X O] =ty e, | (Z 1”) X(E” )
— — & J: ]:

m m
: 0 0
= hII(l) max | X g o7 | =X E o
E—
0smscz j=1 j=1

This reduces the proof to check that

2
€
lim max (Y4 4420 —m=—| =0 as, (3.4.4)
e—0 1§m§8i2 4
and that ,
3
lim max |65+ - 40 —m—| =0 as. (3.4.5)
e—0 1§m§;4§ 4

The first limit (3.4.4) can be obtained easily by Borel-Cantelli lemma since, by
Kolmogorov’s inequality, for each @ > 0, we have

€
Wt —m

P max
1§m§57
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3.4. Strong convergence

In order to deal with the second limit (3.4.5), we can use the decomposition

m

Z 59

=1

2

2:69
O’ —

j=1

max
1<m<ﬁ

< gg%

(3.4.6)
where &;,9 = E(aj.’e]%’) = Z[cos(b;_10)]>. The second term on the right side of
the last inequality can be written as:

" £2 m 22 ) 2
> i =m—| = |y S leos(b0) —m
j=1 j=1
£?| «—
= 7 Z [1+ cos(2b,_10)] —m
j=1

m

82
- Z Z 2bj 19

=1

(3.4.7)

For a fixed m, consider the random variable n := b,,_1 — 1. Then, fixed m, notice
that

Z cos(2b;_10) = Z (T, cos(2k0) + Zyr cos[2(n + 1)6]). (3.4.8)
j 0<k<n
Bm

where B, :={k € {0,...,n} s.t. To+---+T5 <m, To+---+Thy1 > m}, Ty are
independent identically dlstrlbuted random variables with T}, ~ Geom(Q) for each
k=0,1,2,..., that is P(T}, = j) = 277 for j > 1 and E(T}) = Var(T}) = 2, and
0 < Zit1 < Thyr. Hence, putting together (3.4.6), (3.4.7) and (3.4.8), it follows
that

< max E (0?’6 - ozj’g) + max — E Ty, cos(2k0)
1<m< 4 | “— 1<m< % 4
2 | =1 0<k<n
e? :
+1<ma<x 1 Zy1 cos2(n + 1)0]‘

m

= L5+ L5 4 L,
and reduces the proof of (3.4.5) to check that lim._,o(L] + L5 + L§) = 0 a.s.

Step 3: Study of Lj. Let
M, = Z(oj’e — ozj’e).

J=1
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Chapter 3. Strong limit of processes constructed from a Poisson process

Let B,, denote the o- algebra generated by {4, O'ke, k < n}. Clearly, M, is B,-
measurable and, since E(o5? — a5f| %) = 0, E(M,|B,_1) = M,_1. So |M,] is a
submartingale. By Doob’s martingale inequality (Lemma 3.2.5), for each o > 0

P( max [ M,, |>a> < —E(|Mp4 ), (3.4.9)
l<m<— 52

where [v] is the integer part of v. On one hand, fixed b;’s, {cr;?’e}’s are independent,
and so, for j # k,

E((05" — a5") (07" — o)) = E[E(05’ — o | B)E (07’ — o}’ |8)] =

J J J

(3.4.10)
On the other hand

E[05%a5’] = E[E(05°a5’|8)] = E[aS"E(05°|B)] = E[(a5”)?]. (3.4.11)

Using (3.4.10) and (3.4.11), we get that

2 [E%] ,0 0 542 52 6’ % 6 ,0
E([Mpy)") = DBl - o +2Z > El0] - a5") (07" — o7
) Jj=1 j=1 k=j+1
El ; El ;
= Z (@57 = "E[(a”)?]. (3.4.12)
=1 j=1

Recalling that, by Skorokhod’s theorem (Theorem 3.2.2), there exists a positive
constant C] such that

£,0\2 €,0\4 _ ] E 4 ) 4
Ef(0;7)"|#] < CLE[(&;7)"|#] = Cidl( 5 ) [cos(b-10)]",
Equation (3.4.12) can be bounded by

[ 14
) D Eleos(v;10)'] = (5) D Eleos(b;-10)']

Jj=1 j=1
]

= C¢t E[cos(b;_10)"]
1

e
o

N ™

s(f) < i

.—.
U

J

< 4C¢?,

where C' is a positive constant. So, from (3.4.9) we obtain that, for any «,

4Ce?
P(max |M]>oz>§ 28,
1<m<4 «
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3.4. Strong convergence

and by Borel-Cantelli lemma it follows that lim._,o L] = 0 a.s.

Step 4: Study of L5. Since n < m — 1, we have

2 n
€
L5 < max — T;. cos(2k0
2 = 0<n§i;—l 4 ; i cos(2k6)
€ =0
£ | £? | &
< 0<71;I;ai2<_12 Z(Tk—Z) cos(2k0) +0§nm§a%<_1§ Zcos(?k@)
€ k=0 € k=0
= L5 + L.

We first prove that L5, vanishes when ¢ goes to 0. Let F" denote the o-algebra
generated by T}, for £ < n. Define

n
52

My = ’;(Tk — 2) cos(2k8).

It is easy to see that M/ is a martingale. By Doob’s martingale inequality (Lemma
3.2.5), for each a > 0,

1
Pl max |[M)|>al| < —ZE(‘M'4 |2>
0<n< -1 a (2]

= iIE é [fg]_l(T — 2) cos(2k0)
I BT
_1e [i]_lE[(T — 9)2] cos?(2k0)
a2 16 pre F

1 &* 8 g2

< — 2 ==
— a?2l1l6e2 202

where we have used that (T} — 2)’s are independent and centered. Therefore, by

Borell-Cantelli lemma lim. o L5, = 0 a.s.
On the other hand, since for any n, we get that

Z cos(2k0) = <Z e'2k0 Z 61%0)
k=0 k=0 k=0

1— 61'2(71—i—1)0 1 — 6—i2(n+1)9
< 1 — €i26) + 1— e—i20 >

— cos (2(n + 1)8) + cos(2nb)
(1 - 1 — cos(20) > '

N~ DN~ DO |

Thus,

< % (1 + %5(29)) , (3.4.13)

Z cos(2k0)
k=0
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Chapter 3. Strong limit of processes constructed from a Poisson process

and it yields that lim._,o L5, = 0 a.s.

Step 5: Study of L5. Since n <m — 1 and Zj41 < T,

g2 g2

L5 < max_ —Thi1 < max o Dnr. (3.4.14)
1<m< % 0<n< %1
B,
Thus, it is sufficient to see that
T
lim max — =0 a.s.

n—oo 1<k<n n

It is enough to observe that

max —
1<k<n n

( Tk>2<le+...+T3
n n

and apply the strong law of large numbers.

Thus, the proof is completed.

3.5 Rate of convergence

This section is devoted to prove the rate of convergence of the processes Z(t).
Before stating our result, for completeness we recall a technical lemma of [Gorostiza
and Griego, 1980, (page 298)]:

Lemma 3.5.1. Let F(k,n) = number of ways of putting k balls into n bozes so
that no box contains exactly one ball, 1.e.,

F(k,n) = Z _ K

ol oyl
a1 +...+ap==k 1 n
a; #1Vi

Then,
F(k,n) < 2FkIn/?

Jor k < 2+log4/log[l +2(1/n — 1/n?)z2].

A rate of convergence of the processes Z/(t) is given in the following theorem:

Theorem 3.5.2. For all ¢ > 0,

ot

01 — * o3 1 _ (4
P(gxgl%xl|25(t) Z(t)] >a"e <10g6) )-0(5 ) as €—0

where o is a positive constant depending on q.
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3.5. Rate of convergence

Proof. Although the proof follows the structure of part b) of Theorem 1 in [Goros-
tiza and Griego, 1980], some terms appearing have to be computed in a new way.
To prove the theorem it is sufficient to check that, for any ¢ > 0,

Njn

O\ i 1 — (1
P(gggngXe(t) X(t)| > ae (log€> >—o(5) as €—0

and

ot

00t — > l _ (1
P(OII%?SXID/‘S@) Y(t)| >d'e (1og€) )-o(e) as €—0

where v and o are two positive constants depending on q. We will analyze the
rate of convergence for the real part. The results for the imaginary part can be
obtained by similar computations.

Recall that 75’ = 05 = 0 and define

m m
ref = E ”yj’e and  AZY = E Jj-’e.
j7=0 7=0

Set
J*= max  max | X2+ 5) — X (T + 5)|.

4 £,
0Sm<—5 0<s<y,00

Since X? is piecewise linear and using the definition of 75, notice that
0
X2(Ih) — X230
0 0
an—i—l =TI
0
X (M) — X(A3)
€,0 S
’-Ym—&-l

= XA+ 18] sgn (X (A% = X(A50))s.

XUrl+s) = XAT50) + E

= XA+

Thus,
< max [X(AS) - X[+ max |85
0<m< 1<m< G +1

+ max  max ’X(Ff{f) — XI5 + )|

4 ,0
Oﬁmﬁg Ogsg'yth
me?

w1 (%)

+ max  max ’X(Ff,f) — X(ngf + S)‘ + max Iﬁ,if\’yf,f

4 0 4
ogmgg OSSSV;H 1<m< 52—1-1

= T J5 4 5+ T

2
;wAﬁy—X(Ti)Lknmx

4 0<m< %
1>

IN

max
0<m< %
£
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Chapter 3. Strong limit of processes constructed from a Poisson process

and for any a. > 0,

4

PS> a) <3 P(J; >

Jj=1

Qe € € € €
Z) S Ny

We will study the four terms separately.

1. Study of the term I5. Since $5¢ = 2cos(b,,_16) and 75’s are independent

z m
exponentially distributed variables with parameter ;%, we get

Qg

I - P( max m:fwz;%z)

1<m< 441
1>

a-€
P max 50 > —
1<m< 441 8

ac | 2 +1
_ 1—(1—e*i)5 .

IN

We prove that

_ac\ S 41
liml_(l_6 25)62+

e—0 e4

=0 a.s. (3.5.1)

for a. of the type « 2 (log %)B, where o and 3 are positive arbitrary fixed constants.
If f and g are two functions such that f(z) < g(x), then

4 4
1= (1—e /@)= > 1 (1 —es@)="
Given that, for small ¢, % > ae™? with o = %, we only have to verify that
€

1= (1— et Byt

lim =0 a.s.
e—0 c4
Applying L’Hopital’s rule we have
1 4
1— (1 —eae2)t!
lim ( )
e—0 e4
1 b | (L 1) ez L1
= — lim (1 —e “° §)€2+1 (52 1) + 877 % Jog (1 —e “F j)
q 0 2 (ea*a*? _ 1)

On one hand, applying again LL’Hopital’s rule we obtain

lim log [(1 — e_o‘*ef%)f%ﬂ] =0

e—0
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3.5. Rate of convergence

and then

_1 4
lim (1 — e e ?)?H =1.
e—0

On the other hand, if k is a positive constant,

E_k

lim —— =0
e—0 1 __ea*5_7

and, by L’Hopital’s rule,

lime ™" log (1 — ea*a_%) =0.

e—0

Therefore, the limit (3.5.1) is verified and so I = o(¢9). Particularly, the result is
true for a. of the type ae? (log %)ﬁ with g = g

2. Study of the term I7. Recall the random variables we defined in the previous
Section:

o o5 = E(0:]8) = £ oosl )

® N = bm—1_17

e T} are independent identically distributed random variables with T}, ~ Geom(%)
for each k =0,1,2,...,

o 0< Zyp1 <Thp,
e BB, = {ke{O,,ﬁ} s.t. T0+---+Tﬁ<m, Tg+"'+Tﬁ+12m}.

Let 6. > 0. From the definition of I{ we have

2

X(2 e - x(2)- %)

>5E>.

Using the same decomposition that in the previous Section (see (3.4.7) and (3.4.8)),

I < P(max max

0<m< % Is|<de

AcO me?
m 4

+P ( max

1§m§§

89



Chapter 3. Strong limit of processes constructed from a Poisson process

we can write

I; < P(max max

0<m<4 |s|<ée
- —e€

4
+P | max i(aa-’e—ofe) > %
1<m<-4 = J J 2
+P max — T (2k0
1<m< 4 Z kCOS )
0<k<n
g2 . J.
+P | max —|Zsqqcos[2(n+ 1)8]‘ > —
1§m§§2
B

=0 Iy + 1, + Iy + +14,
We study again the four terms separately.

2.1. Study of the term I5,. In Section 3.4 we have seen that [M,| = | > im0 o
aj’g)‘ is a submartingale, so by Doob’s martingale inequality (Lemma 3.2.5),

. “ 20
I, = <1<n7}1a<x7 ;(62 - — 2[cos(bj_10)] ) > 6—2>
onw [ (e o
e,0 2
< (§> E mZ:l <§am — 2[cos(by_16)] ) . (3.5.2)
for any p > 1.
Set 1
Yo, = gafn@ 2[cos(by,—10)]
Using Holder’s inequality, we obtain
[4/€2] 2p 9
2|(Z%) | = X (D))
lul=2p
um#1LVm
2p 2p\1u1/2p 2 Upye2)/2P
< X () EE e )
lul=2p
um#LVYm
(3.5.3)
where v = (u1,...,uu/2)) With |u| = ug + - - + upy -2 and

2p\ _  (2p)!
U ul!"'U[4/82]!'
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3.5. Rate of convergence

Notice thatuin the first equality we have used that if u,, = 1 for any m, then
E(Yf” . -1/[4}1/;]2]) = 0. Inded, assume that u,, = 1, then

B V)

u Ug/e2
[E(YI Y

)|

[E(Yf‘l |B) - BVt | B)E (Y| B)E (Y| B) - E (Y @)}

that is clearly zero since we have used that fixed {b;}’s, {o;}’s are independent
and E(Y;,|%) = 0. On the other hand, by Skorokhod’s theorem (Theorem 3.2.2),

we have

=K
=K

E[(0;")*] = E|E[(0:))¥]4]]

< E[220)E[(he5)] )]

< 2(219)”1*3[(419)! (5)" (cos(bm_lé))4p]

e\ 4r

< 2020)! (49)!(5)

So, using the inequality |a + b|*? < 2?P(|a|* + |b|*?), we obtain

(02) = #|(2) et ]

IN

92 (é) 2132(219)! (4p)! <§>4p + 2%

2°7[2(2p)! (4p)! + 2%]

22771 2(2p)! (4p)!

4 - 2% (2p)! (4p)! (3.5.4)
log 2

log [1+¢(1— 82/4)%] ’

> (25) < 2% (2p)! (é)p. (3.5.5)

|ul=2p
u; #1Vi

Therefore, for p as above, putting together (3.5.2), (3.5.3), (3.5.4) and (3.5.5) and
applying Stirling formula, k! = /27 kk%e*keﬁ, with 0 < a < 1, we obtain

I, < 4(8.)7%7e%2%((2p))” (4p)!

IAIA

Finally, Lemma 3.5.1 yields that, for p <1+

a 2 a
< 4(5,) et [\/27r(2p)2p+%e—2pem] [\/2%(4p)4p+%e_4pe@]
_ (55)7213 £2p 9l6p+4 (27r)% o8Pt i5 i p8p+%
< KD (0) 7 p
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Chapter 3. Strong limit of processes constructed from a Poisson process

where K is a constant.

Now we impose K7 (3.)72P g2 pPP+3/2 = £24 and p = [log %] is the integer part of
log % Observe that p = [log ﬂ fulfills the condition on p of inequality (3.5.5). We
get

1 44-3/(4[log 1/¢])
] , (3.5.6)

5. — K, el-a/los1/e {10g 1
15

where Ky = /K is a constant. Clearly, with this J., it follows that I7, = o(¢9).

2.2. Study of the term I{;. As in Section 3.4, since n < m — 1, we can write
2
€ -
I, < P max — > —
= <0§n§:2—1 4 8)

g2 J.
P — > —
+ ( max 9 3

ognggf
Oe
> J—
8

n

Z(Tk — 2) cos(2k0)

k=0

n

Z cos(2k0)

k=0

3

IN

(T — 2) cos(2k0)

2

€
P max —
o<n< -1 4

+]1{

e
i
o

2| 5on_g cos(2k0)] >%}

11121)(()SHS;4271
=I5 + s,
We begin studying I§5,. By (3.5.6) and (3.4.13),

1532 < ]1{

2
K>?

£~ Oe
2 8

{%K>% cl—aq/[log1/e] [bg %]4+3/(4[10g 1/5])}

1
{5—1—(1/[10g 1/e] [log %]4"'3/(4[1% 1/5])<%} )

and clearly I, = 0 for small ¢.
On the other hand, since M) := % Y peo(Tk — 2) cos(2k0) is a martingale, as we
see in Section 3.4, by Doob’s martingale inequality (Lemma 3.2.5),

)
Is = P max > —
131 0<nt -1 922

()5 (S o)

k=0

n

Z(Tk — 2) cos(2k0)

k=0

IN

Set Uy, := (T} — 2) cos(2kf). Clearly, Uy’s are independent and centered random
variables. Moreover, by Holder’s inequality, we have

[4/e%]-1 2p
E ( Z Uk> < Z <25) [E(ng)}uo/%,,,[E(U&;EQ]A”u[4/52]71/2p_
k=0

|u|=2p
u; #1Vi
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3.5. Rate of convergence

Let us recall that Tj, ~ Geom(3). It is well-known that T, = [T%] + 1 where
Ty ~ Exp(log2). Hence
= = 2p)!
E(I?) < E[(Te + 1)%] < 22 [B(T) + 1] < 22 | -2 1] < 2 (2p)1 (ap)!
and it follows that
E(U,fp) < 2% [E[(Tk cos(2k9))2p} 4 2% [COS(?]{,‘Q)}%}
< 2%[cos(2k0)]” (B(T?) 4 2%)
< 4-27(2p)! (4p)!
Some inequalities are very crude, but they are helpful since we get the same bounds
that in the study of I5,. Thus, with . as in (3.5.6) we get that If;; = o(e9).

2.3. Study of the term Ij,. Since T}’s are independent identically distributed
random variables with T}, ~ Geom(%) for each k, by (3.4.14),

. e’ 0 J.
]14 S P <0<7111ia§2(1 ZTn+1 > Z) =1-P (1283242 Tn S g_2>

ST 6:/2%) 4/
_ 1—P[<Tng€—2)] :1_<Z ?>

k=1

[56/52] 4/52 )
— 11— (1 - (%) > —1- <1 _6_10g2[55/52]>4/a

e \ 4/6%41
< 1-(1-e¥)

Notice that in the last inequality we have used that 3= < log 2[5—;]. The bound for
I3, is the same that we get in the study of I]. So, by the same arguments, we can
conclude that I§, = o(&9).

2.4. Study of the term I§;. As in Theorem 1 in [Gorostiza and Griego, 1980], for
small £ and using a Doob’s martingale inequality for Brownian motion (Lemma

3.2.5), we get
4/ me me? a

fos Xp (w7 )X () )

Qe

_ (é + 1)P (Islllggi X(s)| > Z)

2p ( max X(s) > %)

e2 0<s<d, 4
32 (aE)Q 1
2 P\ T\1 ) 2.

_ 32 _(a)?
2 PP T, )

2

IN

IN
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Chapter 3. Strong limit of processes constructed from a Poisson process

Condition 3—3 exp <—%> < 32¢% yields that

1 2+3/8[log 1 /] 1 1/2
a. > Kyet/? gma/2loe /el [1og g] (10g E) ,

where K3 is a constant depending on ¢. Notice that, for small ¢,

5/2
a —ael/Z(lo 1) /
e = g )

e
where « is a constant that depends on ¢, satisfies such a condition. Thus, with o,
as in (3.5.6), it follows that I, = o(g?).

3. Study of the term I5. For our . > 0, we have

2 2

X2 - x () 4)

2
o me
ped I >55)

5 < P(max max

0<m< % [s|<oe
€

P
+ (max 1

0<m<i2
- — €

On one hand, observe that 15, = I5,, thus 15, = o(&9).
On the other hand, it is easy to check that ZTZO(V;’G — %) is a martingale. So,
applying Doob’s martingale inequality (Lemma 3.2.5),

- 4 €,0 455
> (45m-1)| - %)

5, = P( max

vsms 4 |
g2\ % V= v
< _ E T AE0 1
< (&) = (X )
Set V,, = ;%'yﬁf — 1. Notice that V,,’s are independent and centered random

variables with

E(v) < 22p<<§> E[(729)2p]+1>
< 2%((2p)!+1)
< 2% (2p)!
< 4-2%(2p)! (4p)).

Then, using an inequality of the type of (3.5.3) and following the same arguments
that in the study of I§,, we get that I5, = o(&?).
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3.5. Rate of convergence

4. Study of the term I5. For 6. > 0 defined in (3.5.6) and a. of the type
5

ae? (log1)?, we have

- 0<m< 4 [r[<6e 4

I; < P( max max|X(I‘f;f)—X(Ff;L9+r)}>%>

1<m< 4 +1
€

+P ( max 57 > 55>
=0 I3 + I3

On one hand, I5; = o(€?) is proved in the same way as I7;.
On the other hand,

2 (4/€2)+1
Iy =1- [Py < 0)] V" =1 (142 .
Thus I5, = o(e9), similarly as we have proved for 5.

We have checked that all the terms in our decomposition are of order 7. More

5
precisely, we have proved that, for a, = ae? ( log %) 2 and q > 0,

4 c,
0Sm< 5 0<r<y, %

E:=P ( max =~ max X2+ ) — XT3 + )| > a6> = o(e?).
Fix 0 < v < 1. Then,

0 —
P <0§I£1£1X—v |X2(t) — X (t)] > a€>

<P < max |XZ(t) — X(t)| > a., ri’/‘; >1-— U) +P (ijEQ <1- v)

0<t<1l-v

= E1 + EQ.

On one hand, since Ey < E, we get that F; = o(¢). On the other hand, for small
€7

,0 m€2
red 2
4

E2§P<max

ogmgé

> v) < I5,.
Thus, Ey = o(e9).

We have given a rate of convergence in the interval [0, 1 —v], but we can extend the
argument for any compact interval. So, the proof of Theorem 3.5.2 is completed.
O
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Chapter 3. Strong limit of processes constructed from a Poisson process

3.6 The case § =7

In the previous sections we studied the general case when 6 € (0, 7) U (7, 27). For
completeness, now we take § = 7 and we study realizations of the process Z(t)
in this case.

When 6 = 7, the process Z(t) is defined by

2t

Z7(t) = (-1)C¢ /062(—1)1%’ du, (3.6.1)

where N” = N + N’ is the superposition of the Poisson processes N and N’ and,
as we claimed in Section 1.1.1, it is a Poisson process of rate 2.
With a change of variable, we obtain

"
N2

2 u
& du. (3.6.2)

Z5(t) = (~1)° 2 / (1)

€

Notice that Z7(t) is a process that switches between uniform velocity +§ and —g
at the jump times of a Poisson process with intensity ;%.

The process Z7(t) is a real-valued process. It is well-known that it converges in
law to a standard Brownian motion. In the following result we prove that the
strong convergence is also verified:

Theorem 3.6.1. There exist realizations of the process {ZI(t), t > 0} defined by
(3.6.1) and (3.6.2) on the same probability space of a standard Brownian motion
{W(t), t > 0}, so that we have

lim max |Z7(t) —W(t)]=0 a.s.

e—0 0<t<1

Proof. The proof is an adaptation of the one given by Griego, Heath and Ruiz-
Moncayo in [Griego et al., 1971]. It consists of two steps.

Step 1: Definition of the processes. Let (£, F, P) be the probability space of a
standard Brownian motion {W (¢),t > 0}. Define

1. for each € > 0, {&,}m>1 a sequence of independent identically distributed
random variables with an exponential distribution with parameter g, inde-
pendent of the Brownian motion W,

2. {km}m>1 a sequence of independent identically distributed random variables
such that P(k,, = 1) = P(k,, = —1) = % for each m > 1, independent of W
and {&, }m>1 for all e.
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3.6. The case § =

Consider the sequence of the independent, identically distributed random variables
{km&, tm>1. It easy to see that

2

E(kmé) =0
9

Var(hnés) = El(hn&s)) = 5
By Skorokhod’s theorem (Theorem 3.2.2), for each € > 0 there exists a sequence
{0, }m>1 of nonnegative independent identically distributed random variables on
(Q, F, P) so that the sequence W (o§), W(of + 05), ..., has the same distribution
as k&5, k&5 + k&5, ..., and, for each m,
2
E(o:,) = Var(kn&,) = 3

For each e, we define v = 0 and, for each m,

w(55) (&)

where 0§ = 0. The random variables {7% },,>1 are independent identically dis-
tributed with exponential law of parameter 8%. In fact, by Skorokhod’s theorem
(Theorem 3.2.2), for each m, 7%, has the same distribution as

m m—1
Dok =D k&
j=0 j=0

)

3
7m2

€ € € 8
< k £ < E )

Now, we define {Z7(t),t > 0} as a piecewise linear process satisfying

Zg(Zy;) = W(Za;?> (3.6.3)
=1 =1
and Z7(0) = 0. Observe that Z7(-) has slope +2 or —2, as desired. In fact,

Zg(z;,”:ly;.) —&(Z;’;lv?) ) W(Z;-n:off}?) _W<Z;n=51”§> _ .2
S s w(sme) - w(Sme)|

2

€

We denote by 7, the time of the mth discontinuity of the right-hand derivative
of ZT(-) and we assume that 7§ = 0. To claim that the process Z7 that we have
constructed is a realization of the process defined by (3.6.1) and (3.6.2), we only
have to check that, for each m, the increments 7, — 77,_; are independent and
identically distributed with exponential law of parameter ;%. Observe that the

probability that W (3 7" 05) — W(Z;ﬂ;ol 0%) is positive is 1, independently of the
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Chapter 3. Strong limit of processes constructed from a Poisson process

m—

past up to time »_ 3:01 o5. Therefore, we can write the random variable 77 as a
partial sum of {72 },,>1 in this way:

TR PR

~

where P(N = m) = 27™, for each m. By Lemma 3.2.3, 7§ has an exponential
distribution with parameter g%. In the same way, each increment 7., — 7, _; is
identically distributed as 77. The increments are independent since they are sum
of disjoint blocks of the 77 ’s.

Thus, we obtained a realization of the process defined by (3.6.1) and (3.6.2).

Step 2: Decomposition of the convergence. Recalling that 4§ = of = 0, by (3.6.3)
and the uniform continuity of Brownian motion on [0, 1], we have that, almost
surely,

lim max |27() ~W(0)] = lm max |2 (27) -W (2%)‘
m<y |0\ & pm

= 1l i <
-t (£ ()

To conclude the proof, we only have to check that

2
lim max |77+ +7;, — m% =0 a.s. (3.6.4)

e—0 1§ms%
€

and
2

i Sy 1 _mE|=
lli% 1224% o+ -+ o, mg 0 a.s. (3.6.5)

On one hand, by Kolmogorov’s inequality (Lemma 3.2.6), for each o > 0, we have

| L& )
e 15
za>§—5 Var(y,) <

«

2
5
Nt mg

P| max
1<m< S
€

and, by Borel-Cantelli lemma, the limit (3.6.4) vanishes.
On the other hand, by Kolmogorov’s inequality (Lemma 3.2.6) and Skorokhod’s
second embedding theorem (Theorem 3.2.4), for each o > 0, we have

Sa?’
m=1

2
af+---+0fn—m§

m

[ ]
1< E 23¢2
> Oé) < ? E VCW(U ) <

Pl max
1<m< 8
€

and again, by Borel-Cantelli lemma, the limit (3.6.5) vanishes.
Therefore, the proof is completed.

m=1
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Weak symmetric integrals

Consider a symmetric probability measure v, that is, v is invariant with respect
to the map ¢t — 1 — ¢, and a continuous function ¢ : R — R. The v-symmetric
Riemann sums for the function g of the fractional Brownian motion in the interval
[0,t] are given by

[nt]—1

1
Site.)= > (B~ BY) [ g(BY + a(Blhs ~ BY)) v(da).
n n 0 n

- n n
j=0

It is proved by Gradinaru, Nourdin, Russo and Vallois in [Gradinaru et al., 2005]
that the limit in probability of these v-symmetric Riemann sums exists for values
of the Hurst parameter strictly bigger than the critical value H = (4(+2)~!, where
¢ =1{(v) > 1is the largest natural number satisfying

I 1
/ ?y(da) = —
0 2j+1

forall j=0,...,¢0—1.

This chapter is devoted to establish the weak convergence, in the topology of the
Skorohod space, of these v-symmetric Riemann sums when the Hurst parameter
takes the critical value H = (4¢ + 2)~1. As a consequence, we derive a change-of-
variable formula in distribution, where the correction term is a stochastic integral
with respect to a Brownian motion that is independent of the fractional Brownian
motion.

The chapter is organized as follows. In the following section we give the motivations
that bring us to the study of weak symmetric integrals. In Section 4.2 we state
the main result of the chapter. In the two sections that follow we present some
preliminary lemmas and some technical results obtained using the properties of
fractional Brownian motion and the Malliavin calculus. Finally, in Section 4.5 we
prove the main result.
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Chapter 4. Weak symmetric integrals

4.1 Introduction and motivations

Suppose that X is a finite quadratic variation process and f € C*(R). In Section
2.2, according to the definitions given by Russo and Vallois, we have defined the
forward integral

/0 X)X,

and the symmetric (Stratonovich) integral

/0 X)X,

(see Definition 2.2.1 and Definition 2.2.2, respectively). We have also seen that
the fundamental equality (2.2.4) between this two integrals and the [t6’s formula
(2.2.5) give the Ito-Stratonovich formula (2.2.6):

f(Xy) = f(Xo) + /Ot F(X,) d°X,.

This formula does not apply for a fractional Brownian motion B with Hurst
parameter H < %, because the quadratic variation of the process B is not defined,
so we need to find a substitution tool. For this reason we introduce the notation
of symmetric measure and symmetric integral:

Definition 4.1.1. A probability measure v on [0, 1] is called symmetric if v(A) =
v(1 — A) for any Borel set A C [0,1].

Let denote by ¢(v) > 1 the largest positive natural number such that

1
: 1
2j = i=0.1,... —1. 4.1.1

The definition of v-integral for a probability measure is given for the first time by
Yor in [Yor, 1977, page 521]:

Definition 4.1.2. Let v be a probability measure. Suppose that g : R — R is a
locally bounded function. The v-integral of g(Bf) with respect to B

t
/ g(BH)d’BY
0

is the limit in probability, provided it exists, of the following sums:

—

n—

1
(Bl — B{j)/ g (B{j +a(Bl - B{j)) v(da).
0

<
Il
o
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4.1. Introduction and motivations

In [Gradinaru et al., 2005, Proposition 3.5] it is proved, for example, that if v is
the Lebesgue measure on [0,1] and if ¢ = f" with f € C'(R), then the integral
fo (BH) d”BY exists and we have:

(B = F(BI) + / g(B) "B,

Actually the result is more general, since it is proved for any continuous process,
not only for fractional Brownian motion.

In [Gradinaru et al., 2005], Gradinaru, Nourdin, Russo and Vallois prove that the
Ité—Stratonovich formula (2.2.6) can be extended to a fractional Brownian motion
with H > ¢. Moreover, if H < , it is still possible to expand f(BH) through a
pathwise type It6 formula. Thelr result is the following theorem:

Theorem 4.1.3. 1. If H > L and f € CO(R), then the integral [, f'(BI)d”BY
exists for any symmetric probability measure v and we have

f(B) = f(BY) + / f(BHyaBY.

2. Let r > 2 be an integer. If (2r + 1)H > 1 and f € C*(R), then the integral
P (BHEY AV BH egists for any symmetric probability measure v verifyin
Jo F'(BE b y sy p y ying

1 1
Ma; ::/ oy (da) =
0

27+1
Moreover, we have

Vi=0,1,...,r— 1.

f(BFY = f(BE) + / (B aBY.

Observe that the symmetric probability measure 1(dy + 6;) satisfies my; = 1 for
any integer 7 > 1. Consequently, the second part of theorem does not apply.

However, by the first part, we have, for H > l and f € C%(R),

F(BI) = f(BE) + / (B & B,

This explains why H = l is a sharp barrier for the validity of Ito-Stratonovich

formula.

The proof of the second part of Theorem 4.1.3 consists first in establishing the
following identity:

n—1 1
FBr) = SO+ 3B =Bl [P+ a(B, — Bl
j=0
n—1 m-—1 H
Bff + Bf
£ do (T) (B, — B
j=0 h=£(v)
n—1
+) (B B (B[, - B, (4.1.2)
j=0
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Chapter 4. Weak symmetric integrals

where ¢(v) is defined by (4.1.1), k,; are suitable constants, C € C(R?) verifies
C(a,a) = 0 and m is a positive natural number bigger than ¢(v).

The proof follows providing that the last two terms converge in probability uni-
formly on bounded intervals (cup) to zero, for some m > ¢(v), namely

—_

n—

C(B{, Bl (B!

i1 ti+1

—BH)2m — 0 (cup)

n—oo

1
o

and

- BH)™t — 0 (cup).

n—oo

n—1 m—1
1
k 2h+1 (2<BH—|—BH )) (BH
=0 h=L(v)

[ZES] tjt1
J

The results obtained by Gradinaru, Nourdin, Russo and Vallois in [Gradinaru
et al., 2005] bring us to a natural question: what happens when the Hurst pa-
rameter takes the critical value H = m? It is shown in the same paper
and also by Cheridito and Nualart in [Cheridito and Nualart. 2005] that in this
case the v-symmetric integral does not converge in probability for f(z) = z%. In
literature, for some particular probability measures, the v-symmetric integral has
been proved to be a limit in law of suitable sums when the Hurst parameter takes

the critical value H = m Here there are some examples.

Example 4.1.4. If v = %50 + %51, consider the trapezoidal Riemann sums:

[nt

> (ot - ) [ (o) (1)

In this case /(v) = 1 and v-symmetric integrals exist for H > %. When the Hurst
parameter is the critical value H = é Nourdin, Réveillac and Swanson prove in
[Nourdin et al., 2010] that, if f € C*(R),

S0 =5

SU(f 1) 5 F(BI) = £(0) + K, / (B aw,,

n—oo

where W = {W;,t > 0} is a Brownian motion independent of B¥ K, is a suit-
able constant and the convergence holds in the topology of the Skorohod space
D([0, 00)).

In [Harnett and Nualart, 2012], Harnett and Nualart extend these results to a
general class of Gaussian processes.

Example 4.1.5. In the case v = %50 + %(51/2 + %(51, consider the Simpson Riemann
sums:

[nt]—1

sirn =g 3o (8t ) [r () v ar (3ot + 12)  r(51)]

J=0
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4.2. Main result

It is easy to check that ¢(v) = 2, so the results contained in [Gradinaru et al., 2005]
state that the V—symmetric integrals exist for H > —0 When the Hurst parameter
is the critical value H = 10, Harnett and Nualart prove in [Harnett and Nualart,
2015] that under suitable conditions on smoothness and boundness of f and for

t>0,

Sﬂf¢>isfaﬂd—ﬂm+4@[fﬂwBﬁdw;

n—oo

where W = {W;,t > 0} is a Brownian motion independent of B¥ K, is a suit-
able constant and the convergence holds in the topology of the Skorohod space
D([0, 00)).

Example 4.1.6. If v = (5%, we deal with the midpoint Riemann sums:

Lntj 1

st =4S (s g) (o)

In this case the critical value of the Hurst parameter is H =
first studied by Nourdin and Réveillac in [Nourdin and Réveillac,
that, when f is sufficiently smooth,

The case was
( 9], who prove

| ol

t
S 5 HBI - 10) 4 K [ /B,
o 0

where W = {W;,t > 0} is a Brownian motion independent of B¥ Kj is a suit-
able constant and the convergence holds in the topology of the Skorohod space
D([0, ).

These results are extended to a family of processes with fourth order local scaling
properties by Burdzy and Swanson in [Burdzy and Swanson, 2010], to a family of
Gaussian stochastic processes under certain conditions on the covariance function
by Harnett and Nualart in [Harnett and Nualart, 2013] and to the case of a 2D
fractional Brownian motion by Nourdin in [Nourdin, 2009].

Looking at these examples, we can observe that they have a pattern in common
This gave us the ideas to study the v-symmetric integral when H = W for
a generic symmetric measure v and obtain a more general result. As we will show
in the rest of the chapter, the v-symmetric integral satisfies a change of variable
formula with a correction term that is a standard Ito integral with respect to
Brownian motion independent of the fractional Brownian motion B,

4.2 Main result

Let B = {B}f;t > 0} be a fractional Brownian motion with Hurst parameter H
and assume that H < % Consider a continuous function g : R — R.
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Chapter 4. Weak symmetric integrals

Definition 4.2.1. We say that a function g : R — R has moderate growth if
there exist positive constants A, B and o < 2 such that |g(z)| < AP for all
z € R.

Suppose that v is a symmetric probability measure on [0, 1], meaning that it is
invariant with respect to the map ¢ —— 1 — ¢ (see Definition 4.1.1). Recall that
¢(v) > 1 is the largest positive natural number such that

1
, 1
/OOé V(dOC) 2]_'_1 vj 07 ) 7€(V)

Let ¢t € [0,T]. We consider the partition {0 =to <t; < - <t < by =t}
of the interval [0,¢] with t; = £ for j = 0,1,..., [nt] — 1, where n > 1 is an integer
and |z| denotes the integer part of x for any = > 0.

Definition 4.2.2. Given a continuous function g : R — R, the v-symmetric
Riemann sums of g(Bf) in the interval [0,t] are the sums defined by

[nt]-1 1
Sile.)= Y (Bl — B [ g(BY +a(BL. - B)) v(da)
0 0 "

n n n n

For the sake of simplify, we introduce the following notation:
A'B" = B, — BY. (4.2.1)

So the v-symmetric Riemann sums are given by

[nt]—1

1
Si(g.t)= > A'B" /O g(Bg + oA} BT (da).

J=0

As we have seen in the previous section, when H < %, in [Gradinaru et al., 2005]

Gradinaru, Nourdin, Russo and Vallois consider the v-symmetric integral

t
| ot esl
0

defined in Definition 4.1.2 and prove that this integral is the limit in probability
of the v-symmetric Riemann sums as n tends to infinity, namely,

t
/gwﬁwﬁf:mnxww
0 n—oo

They show that this integral exists for g = f’ with f € C*®+2(R), if the Hurst

parameter satisfies > -L—. Moreover, in this case the integral [, f'(BT)d" B

40(v)+2
satisfies the chain rule
¢
F(BI) = 1)+ [ 7B B
0
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4.2. Main result

As we have mentioned above, the lower bound m for the Hurst parameter is
sharp and we are interested in studying this case. The following is the main result
1

of this chapter. It proves that, when H = )72 the v-symmetric Riemann sums

converge in distribution and a change-of-variable formula in law is derived:

Theorem 4.2.3. Fiz a symmetric probability measure v on [0, 1] with { := {(v) <
oo defined in (4.1.1). Let BY = {B t > 0} be a fractional Brownian motion with
Hurst parameter H = ﬁ. Consider a function f € C?°*5(R) such that f and its
derivatives up to the order 200 + 5 have moderate growth. Then,

Sy(f't) % f(Bh —f(O)—cy/tf(%“)(Bf)dWS, (4.2.2)

n—oo 0

where W = {W;, t > 0} is a Brownian motion independent of BY | ¢, is a constant
depending only on v, and the convergence holds in the topology of the Skorohod
space D([0, 00)).

The value of the constant ¢, in (4.2.2) is ¢, = k, 404, where

1 1 ! 1\*
kyo = o0l |2is or _/o (a— 5) V(da)] (4.2.3)
and
0% = E[(BH)4+2] + 2 Z]E[(BlH (B, - B! ))”“} . (4.2.4)

J=1

The statement of Theorem 4.2.3 can be interpreted as a change-of-variable formula
in law. Indeed, although the sequence of v-symmetric Riemann sums S¥( f’,t) fails
in general to converge in probability and the v-symmetric integral [, f'(B)d”BY
does not exist in the sense introduced above, this sequence converges in law and
we can still call the limit (which is defined only in law) the v-symmetric integral,
and denote it by f; f(BE)d”BH. In this way, we can write

FBI =10+ [ BB e [ e aw,
0 0

where this formula has to be understood in the sense that the random variables
[y £/(BHYdBI and f(BI) — f(0) — ¢, [, fE*V(BH)dW, have the same law.

Before of giving the proof of Theorem 4.2.3, in the following sections we prove
some bounds for the fractional Brownian motion and some technical lemmas.

Throughout the chapter Cr and C' will denote any positive constants depending
or not on 7T respectively; they may change from one expression to another.
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Chapter 4. Weak symmetric integrals

4.3 Bounds for fractional Brownian motion
Recall the definition of A?B™ given by (4.2.1)

A'BY = B, — BY

and define )
BY = §(Bf + BL,). (4.3.1)
Moreover, set
9 =l
& = ]l[o,t}
and
- 1 1
8% = 5(8% +€j#) = 5(]1[07%] —|—]l[0,j#]).

The fractional Brownian motion with Hurst parameter H satisfies
E[(A}B")?] = (0,0: ), =n"", (4.3.2)

Moreover, using the fact that the function z — 22/

any t > 0 and any integer 7 > 0, we obtain

is concave for H < %, for

[E[(ATBT)B]| = [(0s,e0) | < n7*". (4.3.3)

The following lemma is proved in [Harnett and Nualart, 2015, Lemma 2.6].
Lemma 4.3.1. Let H < % and let n > 2 be an integer. Then, there exists a
constant C' not depending on T such that:

a) For any t € [0,T],

[nT|—1

dj,¢ < C|nT | n=2H,
|< Ly t>3§|— L J

Jj=0

b) For any integers r > 1 and 0 <i < |nT| — 1,

|nT|—1
> [05,0:) ] < Cn7H, (4.3.4)
j=0
and consequently
|nT|—1
Y [0:,05) | < ClnT]n>. (4.3.5)
j,i=0

The next result provides useful estimates when we compare two partitions. Its
proof is based on computing telescopic sums.
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4.3. Bounds for fractional Brownian motion

Lemma 4.3.2. We fiz two integers n > m > 2, and for any j > 0, we define
k= k(j) =sup{i > 0: = < L} The following inequalities hold true for some
constant Cr depending only on T':

[nT|—1
> [(0s,€8) | < Com! 2T, (4.3.6)
j=0
[nT|—1
> 01,8 —ewn)y| < Cpm!™H (4.3.7)
7=0
and, for any 0 <1i < |[nT|—1,
[nT|—1
> 0,8 —era) | < Crm™*. (4.3.8)
7=0

Proof. Let us first show (4.3.6). We can write

|nT]-1 [nT]-1
Z ‘<aa,5k(1)>ﬁ‘ = Z ‘E[<B]+1 BLH)B@H
7=0 J=0 ! "
n n m n m

I_nTJ 1

n-2H Z []+1 ]2H]
1LnTJ—l i1 k(q 2H k(i 2H
P (%‘%) %%‘%)

=0

<

l\DI»—t

The first term is a telescopic sum and it is easy to show that
—2H - on _ 2H] _ 1 oy 2H 1-2H
n Z (G +1) 7 = on ([nT])*" < Cr < Crm .

For the second term, observe that, for a fixed k = 0,..., |mT| + 1, the sum of the
terms for which k(j) = k is telescopic and is bounded by a constant times m =2,
Summing over all possible values of k, we obtain the desired bound Cpm!~—2#.

The inequality (4.3.7) is an immediate consequence of (4.3.6) and the following
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easy fact:

[nT]—1

> 0580,

J=0

1LnTJ71
= 5 Y [E[(BL: - BY) (B + BY)]|
j:
oy nT]-1
= (G + 1) = 27
7=0
1
= G (|nT))
< Cr
S C’Tml_QH.

Let us now proceed with the proof of (4.3.8). We can write

[nT]-1
Z ‘<al7g%_€@>ﬁ‘
= "
EGR
=5 2 [E[(BL - BB+ B 21|
=0
1 [nT]—1
<3 > [B[(st - B (B2 - 5]
=0 !
1 [nT]—1
D (R
=0
= A1+A2.

Let us first consider the term A;.

nonpositive if j > i or 5 < jg, for some index jg dependlng on . Then the sums
lescopic and can be easily estimated. Finally, it suffices

with 7 >4 or j < jp are te
to consider the remaining

where

2H

3| .
S |~.
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summands. Proceeding in this way, we write

1I_nTj—l
A =g > [Hjl,
j=0
L Y R VORI R S L]
n n m n m n

The main idea to estimate this term is to use
the fact that the covariance between the increments B]+1 — BH and BY — B 50) is



4.3. Bounds for fractional Brownian motion

Taking into account that k(@) < %, it follows that, for j >4

. (z_z)”_<j+1_z)”+(j_+1_@)”_(1_@)”
o
n n n n n m n m
. . 2H—-1 . .\ 2H-1
(l+x—M) —(lI—:z:—l) ]dasgo.
n m n n

On the other hand, if jj is the largest integer j > 0 such that 3%1 < %, then, for
j S jO?

) G )

Consider the decomposition

) jo i1 [nT]-1 1
s g (e 2 I 2 M) = e )
= =70 =7

For the terms A;; and A;3, we obtain, respectively

Jo

An = D (—Hj)

IA
[\
7 N
S|
|
5
=12
N————
[N}
=

IN

Q

3I
E

and

[nT]-1
Ay = > (—H))

I
7 N
s

I

| =
N——

[
=

I
7 N\
=15

I

w
=12
N——
[
T

_l_
/N
3|

I

oy
=12
N———
N
T

IN
A/~

IN
S
=
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Finally, for the term A5, we have

i 1\
n n

i+l ROV (kO
n m n m

The term Ao is a telescopic sum which produces a contribution of the form

i— i1 2H
( Jo ) S CTm_QH

n

Jj=jo+1
= Ajo + Aia.

and the term Ai92 can be bounded as follows

+2 Kk +1 k@) *
Az < Jo*2 —i ]—O M9
n m n m
s (' @)”_(z_@ﬂ
n m n m
Jj=jo+2
< Com-2 C(h+2 KGN
B n n m
S CTm*

The term A, can be treated in a similar way. This completes the proof.
m

For the following result we use Malliavin calculus and we recall some definitions
and identities introduced in Section 2.1.

Let I,(-) be the generalized Wiener-It6 multiple stochastic integral. We will use
the following lemma.

Lemma 4.3.3. For any odd integer r > 1, we have

AnBH ZCTun_2uH Ir— u(@@r Qu),

where C,.,, are some integers.

Proof. By (4.3.2), we have ||A?B"||2q) = n~". For any integer ¢ > 1, let Hy(x)
denotes the Hermite polynomial of degree g defined by (2.1.2) in Section 2.1. Using
an inductive argument coming from the relation H,1(z) = vH,(z) — gH,—1(z), it
follows that

5]

x = CruH,—9y(x), (4.3.9)

u=0

N3
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4.4. Technical lemmas

where C,,, is an integer. Recall identity (2.1.3):
I,(h®") = Hy(X (h)).
Applying this identity to h = n29;, that is,

A"BH
X(h) = ——d—— = pTATBH,
W) = A B ey ;

we can write

H,(n"A?B") = I, (n""05"). (4.3.10)

n

Substituting (4.3.10) into (4.3.9), yields

5]
(AnBH Z OT W 2u( r— 2u)Ha®r 2u)

u=0

which implies the desired result.

4.4 Technical lemmas

This section is devoted to state and prove a couple of technical lemmas. Let first
introduce the notation we will use.

Definition 4.4.1. Let h € N and assume that f : R — R is a C*"*! function. We
define the process

[nt]—1
(I) {q)h Z f(2h+1 (BH>(AnBH)2h+1 te [0 T]}
7=0

where BY and ATBY have been defined in (4.2.1) and (4.3.1) respectively.

The following lemma gives an estimation of the fourth moment of the increments
of the process ®":

Lemma 4.4.2. Consider the process ®" defined in Definition 4.4.1. Then, for
any 0 < s <t <T we have

4
E “q)Z(t) Z |nt] — Nn—QNH(2h+1)’

N=2

where the constant Cr depends only on T.
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Proof. The proof of this lemma consists in expressing the product of increments
H?ZI(A;?Z_ BM)2h+1 a5 a linear combination of multiple stochastic integrals and ap-
plying the duality relationship between multiple stochastic integrals and the iter-
ated Malliavin derivative.

For any 0 < s <t < T we can write

[nt]—1

E[loh(t) - ols)] = Y

j17j27j37j4:Ln5J

ﬁ( (2h+1) Bf{ (AnBH)2h+1>] ‘

i=1
By Lemma 4.3.3 we obtain

(A7, B = Zczhmn " Dopg1-a (9521 7),

n

which leads to

4 h 4

n pH\2h+1 __ —2lu|H ®(2h+1—2u;)
H(AJ’,B ) = E C'h,un [ul H <]2h+1—2ui (aL ) )
i=1 u1,u2,u3,us=0 i=1 "

where C), is a constant depending on h and the vector u = (uq, us, us, uys) and
we use the notation |u| = uy + us + uz + ug. To simplify the notation we write
2h+1—wu; =v; fori =1,2,3,4.

Recall the product formula for multiple stochastic integrals introduced in Defini-

tion 2.1.1: g
L()I,(9) =D 2! (p> (Z) Lyig—2:([®:9), (4.4.1)

z
z=0
where p,q > 1 and ®, is the contraction operator. This formula allows us to write

4
[T (7 (9.7 DEDII | GRCHEIM S NN (3@” e

n

i=1 a€A 1<i<k<4
V212324 U3 T3 23734 V4T 142434
® 0% ® 0% ® 0% > ,
TL n 7L

where |v| = vy + vg + v3 + vg = 8h +4 — |u|, A is the set of all multiindices
a = (o2, a3, Q14, Q23 Qag, (i34) With oy > 0, such that

ap a3 +ayy < vy
g+ aoz3 ey < vy
Q13+ o3 +agy < U3
Qg+ g +azy < vy

For a‘HYj = (j17j27j37j4>7 LTLSJ S jl S LntJ - ]-7 we set
4

Y, = Hf(2h+1) (gg)’

i=1 "
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and

B o a@”l Q- 3— gy ®a®v2 a2 —ag3 -0y ®8®”3 a13—ag3—agg ®6®”4 14— 04— Q34
j,o v .

Applying the duality formula defined in (2.1.4),
E(qu(u)) = E( (DF, u>5®q ),
to F'=Yj, u= hj.v and ¢ = |v| — 2|c|, we obtain
E[Yiljvi-2jai (hj.an)] = E[(DYIT2NY5, By 0 o) gyivi—2ial].

Therefore, we have shown the following formula

E[|®L(t) - ZZC an N O,

a€eA
( H <8;Z,8gk a,k> [( D= 2|a|Y h‘]OéV>’}-[®|V|*2|O“:|7
1<i<k<4

where the components of j satisfy |ns| < j; < [nt|] — 1 and 0 < u; < h. Finally,
the inner product (DIVI— 2|a|Y , hjav)yevi-2al can be expressed in the form

Z CDB H <ah ) ~Jk >5“C
perl 1<i,k<4

where the random variables ®4 are linear combinations of products of the form
[T, f@) (B2 ), with 2h+1 < w; <2k + 1+ |v[ = 2[a] and 3 = (Bix)1<ik<a is a

matrix with ngnnegative entries such that

4
E Blk = V1 — 012 — Q13 — Q14
k=1

4

E ﬁzk = Vg — Qg2 — Qg3 — Qg4
k=1

4

E Bsr = U3 — 3z — Qo3 — Qi3
k=1

4

E 54k = Vg — Qg — Qg4 — O34
k=1

Notice that |3] = Zik:l Bir = |v| — 2||. This leads to the following estimate

E[|®(t) — Pu(s)l']
<0TZZ Tnad D) DN | IR

a€A BeT 1<i<k<4 1<i k<4

‘<8j1 z >ﬁm
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Consider the decomposition of the above sum as follows
E[|®,(t) — ,(s)|'] < O7 (AD + AP + AF)) |

where Aq(ll) contains all the terms such that at least two components of o are
nonzero, A® contains all the terms such that one component of « is nonzero and
the others vanish, and A% contains all the terms such that all the components of
Qv are zero.

Step 1. Let us first estimate AP, Without any loss of generality, we can assume
that cv;o > 1 and ay3 > 1. From inequality (4.3.4) in Lemma 4.3.1 with r = 1, we

obtain
[nt|—1

3 ‘(a%ﬁ%%{’ < CnH (4.4.2)
J1=|ns]

and
[nt]—1

Z ‘(&;, 8J73>H’ < Cn_2H.
jz=|ns]
We estimate each of the remaining factors by n=2#. In this way, we obtain a bound

of the form
A,(}) < C(|nt] — LnSJ)Zn—2H(IuI+\aI+IBD_

Taking into account that |a| < 3|v|, we can write

ul +[al + 18] = |u|+|a]+|v| -2l

lu| + [v] — o]
> \u\—|—|v—|
- 2

u|
— 4p42- W
+ 2

> 4h+2,

and, as a consequence,

AW < O(|nt] — |ns|)? n tHEHD, (4.4.3)

Step 2. For the term ASE’, we can assume that a1o > 1 and all the other components
of a vanish. In this case, we still have the inequality (4.4.2). Then, we estimate
each of the remaining factors by n=2%. In this way, we obtain a bound of the form

Agf) < C(|nt] — |ns])? n2H(lul+lal+8])

Taking into account that |o| = e < vy =2h+ 1 —uy < 2h + 1, we can write
lul +la+[8] = |ul+|af+[v]—2|a]

luf + [v| — o

> |u|+|v|]-2h -1

= 6h+ 3,
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and, as a consequence, we obtain

A® < O(|nt] — |ns|)®n tHEHD, (4.4.4)

2H

Step 3. For the last term, estimating all terms by n™", we get

AS’) < C(|nt] — Lnsj)4n_2H(‘“|+|5‘).

We have
lu| + (8] = [u] + |v[ = 8h + 4,

and, as a consequence, we obtain
A® < C(|nt] — |ns])* n 8HEHHD, (4.4.5)

In conclusion, from (4.4.3), (4.4.4) and (4.4.5), we obtain the desired estimate.
This completes the proof of the lemma.
0

The following lemma is a variation of [Harnett and Nualart, 2015, Lemma 3.2]. Tts
proof is based on the techniques of Malliavin calculus and the application of the
small blocks/big blocks technique.

Let n > m > 2 be two integers. As in Section 4.3, for any j > 0, we define

k:::k(j)zsup{iZO:i < l}

m - n
Lemma 4.4.3. Let r =1,3,5,... and n >m > 2 be two integers. Let ¢ : R — R
be a C* function such that ¢ and all derivatives up to order 2r have moderate
growth. Then, for any ¢ > 2 and any T > 0,

Int|—1 2

sup E (6(BY) = o(Bu) ) (A7 B™) | | < Crl =",

t€[0,T) =0

where Cp is a positive constant depending on q, r, H and T, and

Lpo = s sup [ (BY) =6 (BIL) [
0<w<2r 0<j<|nT| -1 " m
(w) EH 2 —2H 2H-1, 2—4H
+0§ggmgjg%_l\\¢ (BI)[[ g (m >+ n2 = m2 )

w6 B 6 (B) = 6 (B

0<w<2r 0<4,j<|nT|—1

x (1 4 n2H 124,
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Proof. The proof is based in the methodology used to show Lemma 3.2 in [Harnett
and Nualart, 2015]. To simplify notation, let Y;(¢) := ¢(BY) — ¢(B1,)), and set

2
[nt]—1
L=E || ) Y(0)(a;B")
7=0
From Lemma 4.3.3 we obtain

[nt]—1

Z Oruorvn_2H u+v) Z E[Y I 2u(a®r Qu) L v(@@r 21;)}

u,v=0 i,j=0 n

2 [nT|—1
< C Z n—2H (utv) Z ‘E[Y;(qﬁ)Y}(gb) T_Qu(a®r 2u) - 2v(8®r zv)”‘
u,v=0 4,7=0 n n

Recall again the product formula for multiple stochastic integrals (2.1.1):

L)L) =S () ()it (4.46)

z
z=0
where p,q > 1 and ®, is the contraction operator. We apply this formula in order

to develop the product of two multiple stochastic integrals and we end up with

L J (r—2u)A(r—2v) [InT]—1

nos oy Y ey E[¥i(0)Yi(0)

X Iy, 2t v)— 2Z<a®r 2u—z a@r 2u— z) <al 7>;H

n

[nT|-1

- 03w S Bl s 07507

u,v=0 ,7=0 " "

L J (r—2u)A\(r—2v) [InT]—1

D VD DAY E[Yi(6)Y;(0)

u,v=0 1,7=0
X Lor_9(utv)—22 <a®g_2u_zéa§r_2v_z> <8%-, 8% >;} ‘
= C(Dl + Dg)

We first study term Do, that is when z > 1. On one hand, by Lemma 2.1.7 we get

r 2u— z||aj ||r 2u— z)

Ty sy 2s (07202507 22)

n

e < C(l10:
La/(a=2)(Q)

_ CHal H2T‘ 2 u+v)
= (O 2wz (4.4.7)
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On the other hand, using (4.3.5), we obtain

[nT|—-1

> [(@:.9:0;

1,J=0

< Onpt#H (4.4.8)

Thus, from (4.4.7) and (4.4.8) and using Hélder’s inequality, we deduce that the
term D5 is bounded by

L%J (r—2u)A(r—2v)
D, < CZ Z n 2@ g ‘|Y}<¢)H%q(g)n*ZH(rfufvfz)nle,zH
u,v=0 z=1 0<j<|nT] -1
< O sup  |[Yi(9)|[ a2

0<G<|nT |1
Now, let us study term D, that is when z = 0. Applying the duality formula
(2.1.4), that is

E(Fd(u)) = E((DF, u)gs, ),

to our case, we obtain

E[Yi(0)Y;(0) L (072 @07 )|

— [B[(D 0 (i(0)Y;(6)), 052 EOT ) ]|

Write s = 2(r — u — v). By definition of Malliavin derivative and Leibniz rule,

J is a subset of {1,...,s}, |J] denotes the cardinality of J and u; = (u;)ic;.
Without loss of generality, we may fix J and assume that a = |J| > 1. By our

assumptions on ¢ and the definition of Malliavin derivative, we know that

D“(Yi(¢)) = (B!

, and, for each a < 2r, we have
s — a and with a slight abuse of

3
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notation, it follows that
E|( D2, (Yi9)) Dl (¥(9)), 09 @ 07 72) oo
<NV 2@ 1Y (6 220 ‘ <€§§ (uy) ® 6%71;) (wse), 8?’”_2“ ® 8§T_2”>5®5
+HY¢(<Z5(“))HL2(9)||¢(I’)(§§)HL2(Q)

X <5 (A‘fb — 5%8) ) (ae), 8%@’"*2“ ® 8§T’2”>ﬁ®5

+lo' (BH)HLz @ 156|220
X ( La Ek(z)) uJ) ® 5% (ch)aanEr_Qu ® 8§T_2v>5®5
IO B) 200 16O (B 170

X <(g§a - 5%5) ) (UJ) ® (g?b %(l;) ) (uJC), agr—zu (9 5§T_2v>

GER

n

=Dy + Dig + D13 + Dyy.

Consider first the term Dy;. By (4.3.3), we have either
Duy < Ol )y | 07D sup  sup  [15(6) ey
mon 0<w<2r 0<;<|nT|—1

or

Dll < C’ Ek(z),a >J")‘ (a+b 1) 0<Su£2 SFPJ H}/}(¢(w))H%2(Q)
Sw2r 0<5j<|nT -1

By Lemma 4.3.1 a)

[nT|—-1
3 ‘<5%,3%>ﬁ‘ <C (4.4.9)
=0

and by (4.3.6),

|nT|—1 [nT]—1

As a consequence, inequalities (4.4.9) and (4.4.10) imply

H(aL 5 ‘<C’Tm ~AH, (4.4.10)

[nT]-1
E : anH u+v) § : Dll
u,v=0 ,7=0

I

2 [nT|-1

<C sup sup ||Y ¢(w ||L Z Z n~2H (utvtatb—1)

0<w<2r 0<j<|nT|-1

’lL'U_
+Cp  sup sup  ||Yi(¢ ||L Z - 2H(uAvratb=1) 2H o 2—4H
0<w<2r 0<j<|nT |1 Byt
<Or s sup V(60 (14 2t

0<w<2r 0<j<|nT|-1
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where we used that u+v+a+b—1=2r—(u4+v)—1>r, sinceut+v+1<
2 L%J + 1 = r for any odd integer r.
We apply the same calculation to D5 and D3, and we similarly obtain that

5] [nT]-1
Z n—2H(u+v) Z (D12 + D13)
u,v=0 4,7=0

<Cr sup sup ([0 (Bi)ll2y  sup 150" 2o
0<w<2r 0<j<[nT|~1 " 0<5<[nT )1

% (1 4 n172H m274H) nl*QT‘H.

Now we study term Di4. Inequalities (4.3.7) and (4.3.8) state that

[nT|—1
> |(Es —er, 01)y| < Crm2
=0
and
[nT]-1
Z ‘<g% — €k7(r:') , 8%>5’ < CTm1*2H.
=0

Then, with the same arguments as those used for D;;, we obtain

T

5] [nT -1

Z n—2H(u+v) Z Dy,

u,v=0 4,7=0

SCr s sup OBy 4 ) i
0<w<2r 0<j<|nT -1 n

The proof is now concluded.

4.5 Proof of the main result

This section is devoted to prove the main result of the chapter
Recall that, for ¢t € [0,T7,

[nt]—1
(I)Z(t) _ Z f(2h+1)(Bg)(A;zBH)2h+l

=0
where Ef and A?B" have been defined in (4.2.1) and (4.3.1) respectively.

In order to give the proof of Theorem 4.2.3, we first prove the following proposition:

Proposition 4.5.1. Let { < oo be a natural number and B¥ = {BF t > 0} be a

fractional Brownian motion with Hurst parameter H = ﬁ. Consider a function
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f € CP*5(R) such that f and its derivatives up to the order 20045 have moderate
growth. Then,

Pt (t = /f%“ (BH)aw, (4.5.1)

where W = {W,,t > 0} is a Brownian motion independent of B2, o is the con-
stant defined in (4.2.4), and the convergence holds in the topology of the Skorohod
space D(]0,00)).

Observe that the process ®! is a weighted sum of the odd powers (A?B)2*,
When H = ﬁ, the sums of these odd powers converge in law to a Gaussian
random variable. More precisely, the following stable convergence holds

[nt]—1

S (BN Bt >0] 5 (oW Bt >0), (4.5.2)

- n—00
Jj=0

The proof of the convergence for a fixed t follows from the Breuer-Major Theorem,
which shown that the central limit theorem holds for some non-linear functionals
of stationary Gaussian fields if the correlation function of the underlying field
tends fast enough to zero (see [Breuer and Major, 1983]). Nourdin and Peccati
in [Nourdin and Peccati, 2012, Chapter 7] and Corcuera, Nualart and Woerner
n [Corcuera et al.. 2006] proved this result using the Fourth Moment theorem,
proved by Nualart and Peccati in [Nualart and Peccati, 2005], which states that
the convergence in law of a normalized sequence of multiple Wiener-Ito integrals
towards the Gaussian law N'(0,0?) is equivalent to the convergence of just the
fourth moment to 36 (see also [Nourdin, 2013]).
Then the convergence of ®¢ follows from the methodology of small blocks/big
blocks used, for instance in the works [Corcuera et al., 2014] and [Corcuera et al.,
2006]. However, unlike the above references, the convergence cannot be established
using fractional calculus techniques because H < = 2, and it requires the application
of integration-by-parts formulas from Malliavin calculus.

Proof of Proposition 4.5.1. In order to show Proposition 4.5.1, we will first prove
that the sequence of processes {®(t),t > 0} is tight in D(][0,0)), and then that
their finite dimensional distributions converge to those of

t
{ag/ A (BH) dWS,tzo}.
0

Notice that the tightness of the sequence ®¢ is a consequence of Lemma 4.4.2.
Indeed, this lemma implies that for any 0 < s <t < T, there exist a constant Cr
depending on 7', such that

el ki1 < o3 (L= )

N=2
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4.5. Proof of the main result

It remains to show the convergence of the finite-dimensional distributions. Fix
a finite set of points 0 < t; < --- <ty < T. We want to show the following
convergence in law, as n tends to infinity:

(PL(t),. .., D (ta)) > (Va,..., V), (4.5.3)

n—oo

where

t;
Yi:ag/ fEEY(BEYaw,, i=1,....d,
0

W = {W;,t > 0} is a Brownian motion independent of B¥ and oy is the constant
defined in (4.2.4).

Taking into account the convergence (4.5.2), the main ingredient in the proof of
the convergence (4.5.3) is the methodology based on the small blocks/big blocks.
This method consists in considering two integers 2 < m < n and let first n tend
to infinity and later m tend to infinity. For any & > 0 we define the set

k

. j k+1

m

The basic ingredient in this approach is the decomposition

mt; |
CI)E Z Z f(2€+1 BH)(AnBH)%Jrl
k=0 jelj
|mt; |
£ S [£E B - (B (arpT)
k=0 jeI " m

= AR+ AT
From Lemma 4.4.3 with r = 204 1 and ¢ = f@) we can write, for any ¢ > 2,

E[(AZ)’]

) S 2
<Cr  sup sup (B = £ B oy
0<w<3(26+1) 0<j<|nT)—1 n
w 2 - _
+Cr  sup sup Hf( )(BlH)HLQ( m 2 L)
0<w<3(204+1) 0<5< |nT|—1 n
+CT sup sup Hf(w)<BiH)HL2(Q)Hf(w)<Bf) - f(w)<Bk(J) HLQ
o<w<3(2e+1) 0<i,j<|[nT|~1 n n
x (1 4 n?H~ty2=4H)
< Cp |m—2H 4 21,240
B+ B,

X (1 + sup sup
0<w<3(24+1) seelo.1]
lt—s|< L



Chapter 4. Weak symmetric integrals

where k := k(j) = sup{i > 0: L < L}, This implies

K2
m

. i - w w 2
hmsupE[(Ag’;n))Z] < OT<m My sup sup Hf( )<BSH)_f( )(BtH)HL2(9)>7
n—00 0<w<3(20+1) s:t€[0.T]

[t—s|<:7

which converges to zero as m tends to infinity.
On the other hand, from (4.5.2) we deduce that the vector (A%l,;,lz), . ,A%{;ﬁ?) con-
verges in law, as n tends to infinity, to the vector with components

|_mt,-J

50 S S (BE) (Wi~ W),
k=0

i =1,...,d, where W is a Brownian motion independent of B¥. Each of these
components converges in L*(Q) to the stochastic integral o, [,* fC“D(BH) dW,
as m tends to infinity. This completes the proof.

]

Now we have all the elements to prove the main result of the chapter.

Proof of Theorem 4.2.3. The proof consists of two steps. First, using Taylor’s
formula and the properties of the symmetric measure v, we determine a decompo-
sition for the r-symmetric Riemann sums. Secondly, we study the convergence of
the terms of the decomposition when n tends to infinity.

Step 1. The first ingredient of the proof is the following expansion, established
in [Gradinaru et al., 2005], based on Taylor’s formula and the properties of the
measure v:

f) = fla)+(b—a) / f(a+ a(b - a)) v(da)

2/

b

+ 3k fOMY (%) (b — ) + (b — a)**%C(a, b),
h=¢

(4.5.4)

where a,b € R and C(a,b) is a continuous function such that C(a,a) = 0. The

constants k,j, are given by
1 L 1\*"
— - = da)| .
(2h + 1)4* /0 (O‘ 2> ! O‘)]

Observe that these constants are the same ones defined in (4.2.3).

1
(2h)!

kl/,h =
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4.5. Proof of the main result

Applying identity (4.5.4) to a = B¥ and b = BE,,, it yields

[nt]—1 1
FBL) - f0) = Y Arpn / J'(BY + aATB" v(da)
=0 0 "
20 |nt]—1

+Z Z ku,h f(2h+1) (Ef)(A?BH)2h+1
h=¢ j:0 "
[nt]—

+ Z C B?aBJ+1)(A§LBH)4E+2>
7=0

where éf and A?B" have been defined in (4.2.1) and (4.3.1) respectively. The

last decomposition can be written as

f(BLntJ) f(0) = Sy(f,t) "‘Zkth) )+ R,(t), (4.5.5)

where, for each h = ¢, ..., 2/,

[nt]—1
(I)h Z f (2h+1) (BH)(AnBH)2h+1 (456)

7=0
is the process defined in Definition 4.4.1 and

[nt]—1
C B? ,Bﬁl (A;LBH)““
7=0

is the residual term.

Step 2. Let us consider the convergence of the terms in the decomposition (4.5.5).

Convergence of R,(t). The residual term R, (t) is a weighted sum of the powers
(A7 BM)4+2 with coefﬁc1ents that converge to zero as n tends to infinity. Taking
into account that H = 4@ 5, it is not difficult to show that R, (f) converges to
zero in probability, uniformly in compact sets. Indeed, for any 7" > 0 and for any
K,e > 0, we can write

P ( sup |R,(t)] > e)

0<t<T
1 [nT]—1
<P| sup [CBI BN >—|+P| > (ATB")*2 > Kel|. (457)
s,t€[0,T] K jZO /

1
‘t_5|§ﬁ
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Chapter 4. Weak symmetric integrals

Since H = ;-5 and using (4.3.2), we can write
[nT]—1
T] _ Thaeso
jgo (A757) “V="Ke n = Ke~ ( )

where p; denote the kth moment of the standard Gaussian distribution. From
(4.5.7) and (4.5.8), letting first n — oo and then K — oo it follows that for any
e>0and T > 0,

lim P < sup |R,(t)| > e) = 0.

n—o0 0<t<T

Convergence of ®". In Lemma 4.4.2, we have shown that for any h = ¢, ..., 2¢,
the moment of order four E[|®"(t) — ®"(s)|*] can be estimated by

4 N
Cy Z oL (Lntj ; LnsJ) 7

N=2

for any 0 < s <t < T. As a consequence, the terms ®" with h = ¢ +1,...,2(
converge to zero in the topology of D([0,00)) and do not contribute to the limit.
Therefore, the only nonzero contribution to the limit in law of the v-symmetric
Riemann sums S¥(f’,t) is the term

[nt]—1
Fue ®(8) = ke Y fETD(BE)(A] B

n
Jj=0

Proposition 4.5.1 proved that this term converges in law in the topology of the
Skorohod space D(]0,00)), as n tends to infinity, to

t
Cl// f(2€+1)<B£[) dWS,
0

and this completes the proof.
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Delay differential equations

driven by a Holder continuous

function of order 3 € (%, %)

Consider the following differential equation with delay:

t t
xry = 770+/ b(u,xi)du—i—/ o(z;_,.) dy,, t€[0,7],
0 0

A te[-r0),

where 7 : [—r, 0] — R? is a smooth function and y is a Holder continuous function
of order 8 € (%, %) It is proved in [Hu and Nualart, 2009] that there exists a
unique solution of this equation. In this chapter we prove that it converges almost
surely in the supremum norm to the solution of the differential equation without

delay
t ¢
Ty = 1Mo +/ b(u, xy,) du +/ o(xy) dyy, t €[0,7],
0 0

when the delay tends to zero. Our approach is based on the techniques of the
classical fractional calculus and it is inspired by [[Hu and Nualart, 2009].

In a future work we will apply these results to some stochastic process as the
fractional Brownian motion with Hurst parameter H & (%, %)

The chapter is organized as follows. The following section is devoted to contex-
tualize our result and explain the results that have been achieved in the study of
differential equations with and without delay driven by a Holder continuous func-
tion. In Section 5.2 we describe our main result. Section 5.3 contains technical
estimates for the study of the integrals. In Section 5.4 we define the equations and
the solutions we work with and we give some estimations. Finally, the last section
is dedicated to the proof of the main result.
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Chapter 5. Delay differential equations

5.1 Introduction

The classical integration theory in stochastic analysis introduced by It6 is focused
mainly on semimartigales. In Chapter 1 we see that fractional Brownian motion is
not a semimartingale except when the Hurst parameter is H = %, that is, when the
process is a Brownian motion. Starting from that, great efforts have been made
to develop a stochastic calculus for fractional Brownian motion when H # % In
Chapter 2 we describe some methods to establish the stochastic integration with
respect to this process. After these studies, stochastic differential equations driven
by fractional Brownian motion have been considered and, depending on the value
of the Hurst parameter and the dimension of the equation, different approaches has
been adopted. An efficient method to investigate these stochastic differential equa-
tions consists in studying deterministic differential equations driven by a Holder
continuous function and then applying the results obtained to the stochastic case.

Consider the differential equation

t t
T = xo + / b(u, x) du + / o () dyu, t e (0,17, (5.1.1)
0 0

where y is a -Holder continuous function for some 8 € (0,1) and the hereditary
term b(u, z) depends on the path {z;, 0 < s < u}.

In [Nualart and Ragcanu, 2002] Nualart and Ragcanu study the dynamical systems

dxy = f(xt) dyy,

where f(x) and y are Holder continuous of order larger than %, and the Riemann-

Stieltjes integral f; f(zy) dy, can be expressed as a Lebesgue integral using frac-
tional derivatives. They prove existence and uniqueness of solution using a con-
traction principle and they also show that the solution has finite moments. As
an application, they extend the results to a stochastic differential equation driven

by a fractional Brownian motion B¥ with Hurts parameter H > . They use

2
a pathwise approach and define the integral with respect to B¥ as a pathwise
Riemann-Stieltjes integral, thanks to the results given by Young in [Young, 1936]
and Zahle in [Zihle, 1998].

When y is a g-Holder continuous function with g < %, important results are

obtained by Lyons in [Lyons, 1998]. He proves that the integral equations
n=ao+d [ Fa)dd,  telT)
j=1"0

where ¢/ are continuous functions with bounded p-variation on [0,7] for some
p € [1,2) and with a Holder continuous derivative of order a« > p — 1, have a
unique solution in the space of continuous functions of bounded p-variation.
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5.1. Introduction

In [Hu and Nualart, 2009] Hu and Nualart establish the existence and uniqueness
of solution for the dynamical system

dr, = f(il?t) dy,

where y is a Holder continuous function of order § € (3, 1). Recall from Definition
2.3.8 that, given A := {(a,b) : 0 < a < b < T}, the tern (z,y,z ® y) is called
a (d, m)-dimensional S-Hélder continuous multiplicative functional, and we write

(Z’, Yy, x ® y) € Méﬁm(O, T), if:
1. 2:[0,T] = R4 and y : [0, 7] — R™ are S-Hélder continuous functions,

2. 2®y : Ar - R?® R™ is a continuous function satisfying the following
properties:

a) (Multiplicative property) For all s < u < ¢, we have
(I’ ® y)s,u + (iL‘ ® y)u,t + (xu - xs) ® (yt - yu) = (IE ® y>s,t-

b) For all (s,t) € Ar,
(& ® y)sel < cft —s*7.

Hu and Nualart prove an explicit formula for integrals of the form fab f(xy) dy, in
terms of z, y and x ® y, transform the dynamical system dz; = f(z;)dy, into a
closed system of equations involving only z, * ® y and = ® (y ® y) and solve it
using a classical fixed point argument. Finally, they apply these results to solve
stochastic differential equations driven by a multidimensional Brownian motion.
Given that the fractional Brownian motion B¥ has locally bounded p-variation
for p > 1/H, in [Coutin and Qian, 2002] Coutin and Qian follow the approach
of Lyons to establish the existence of strong solutions for stochastic differential
equations driven by a fractional Brownian motion with parameter H > ;11.

Now consider the differential equations with delay

t t
r, = 1o +/ b(u,z") du+/ o(x;_.) dy,, t € (0,7,
0 0

Ty = M te[-r0], (5.1.2)
where r denotes a strictly positive time delay and 7 : [—7,0] — R? is a smooth
function. Here again y is S-Holder continuous for some 5 € (0,1) and the heredi-

tary term b(u,x) depends on the path {zs, 0 < s < u}.

Delay differential equations rise from the need to study models that behave more
like the real processes. They find their applications in dynamical systems with af-
tereffects or when the dynamics are subjected to propagation delay. Some examples
are epidemiological models with incubation periods that postpone the transmis-
sion of disease, or neuronal models where the spatial distribution of neurons can
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Chapter 5. Delay differential equations

cause a delay in the transmission of the impulse. Sometimes the delay avoids some
usual problems, but in general it adds difficulties and cumbersome notations.

The existence and uniqueness of solution in the case when [ > % is proved by
Ferrante and Rovira in [Ferrante and Rovira, 2010]. They extend the results of
Nualart and Ragcanu contained in [Nualart and Ragcanu, 2002] to deterministic
equations with delay and then they easily apply the results pathwise to stochastic
differential equations with delay driven by a fractional Brownian motion with Hurst
parameter H > % Moreover, they prove that the solution is bounded.

With a different approach based on a slight variation of the Young integration
theory, called algebraic integration, Leén and Tindel prove in [Ledn and Tindel,
2012] the existence of a unique solution for a general class of delay differential
equations driven by a Hdélder continuous function with parameter greater that %
They obtain some estimates of the solution which allow to show that the solution
of a delay differential equation driven by a fractional Brownian motion with Hurst

parameter H > % has a C*°-density.

In the case when § < % more difficulties appear and in literature we find results
only up to the value § > %, eventually extended to 5 > %.

In [Neuenkirch et al., 2008], the authors consider a finite sequence of discrete delays
satisfying 0 < r; < --- <1, < oo and study the following differential equation:

t
T = 770+/ 0T, Ty s+ Ty ) A t € (0,7,
0

Ty = M t e [—rg0],

where y is a f-Holder continuous function with g > % and n is a weakly controlled
path on y. The hereditary term vanishes to avoid cumbersome notations. The
authors show the existence of a unique solution for these equations under suitable
hypothesis. Then, they apply these results to a delay differential equations driven
by a fractional Brownian motion with Hurst parameter H > % These results are
extended by Tindel and Torrecilla in [Tindel and Torrecilla, 2012] to the deter-
ministic case of order > 1 and the corresponding stochastic case with Hurst

4
1
parameter H > ;.

In literature variations of the differential equation (5.1.2) are also considered. We
take as example the differential equations with delay and positivity constraints on
R? of the form:

t t
T, = Mo —|—/ b(u, z") du—l—/ o(z,_,) dy, + 2, t e (0,77,
0 0
ZIZ': = T, te [—T,O], (513)
where n : [-r,0] — R? is a deterministic nonnegative smooth function and z

is a vector-valued non-decreasing function which ensures that the non-negativity
constraints on z" are enforced.
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5.2. Main results

In [Besali and Rovira, 2012], Besali and Rovira prove that, when y is a (-
Holder continuous function with 8 > %, equations (5.1.3) admit a unique solution
with bounded moments. The authors follow the ideas contained in [Nualart and
Ragcanu, 2002] and [Ferrante and Rovira, 2010].

In [Besalt et al., 2014], Besali, Méarquez-Carreras and Rovira extend the previous
results to the case § € (3,3), following the methodology introduced in [Hu and
Nualart, 2009].

In both papers, as an application the authors study stochastic differential equations
with delay and nonnegative constraints driven by a fractional Brownian motion
with Hurst parameter H € (%, 1) and H € (%, %), respectively.

In this chapter we consider the following deterministic differential equation with
delay

¢ ¢

Ty = 770+/ b(u,xi)du—l—/ o(zl_,) dyu, t e [0,7],
0 0

xy = n, te[-r0),

where y is a Holder continuous function of order 5 € (3, 3). We are interested in
studying the strong convergence of the solution when the delay tends to zero.

The case when 5 > % is studied by Ferrante and Rovira in [Ferrante and Rovira,
2010]. They prove that the solution of the delay equation converges, almost surely
and in L, to the solution of the equation without delay and then apply the result

pathwise to fractional Brownian motion with Hurst parameter H > %

5.2 Main results

Let 8 € (3, 3). Consider the following hypothesis:

(H1) 0 :R? — R¥xXR™ is a bounded and continuously twice differentiable function

such that ¢’ and ¢” are bounded and A-Holder continuous for A > % — 2.

(H2) b: [0,7] x R — R? is a measurable function such that there exists by €
Lr(0,T;RY) with p > 2 and VN > 0 there exists Ly > 0 such that:

(1) |b(t, ) = b(t,y)| < Lnlzy — y|, Va,y such that |z,] < N, |y < N
vVt € (0,77,

(2) [b(t, ze)| < Lo|xe] +bo(t), Vte[0,T].
(H3) o and b are bounded functions.

Consider the following differential equation on R? with delay:

¢ ¢
xr;, = n0+/ b(u,xZ)dqu/ o(z)_,.) dy., t € 0,7T],

0 0
T, = 1, te[-r0), (5.2.1)
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Chapter 5. Delay differential equations

where z and y are Holder continuous functions of order 5 € (%, %), 7 is a continuous
function and r denotes a strictly positive time delay.

As we will see, conditions (H1) and (H2) are a particular case of the hypothesis
for the proof of existence and uniqueness of solution of the delay equation (5.2.1),
while condition (H3) is necessary to prove that the solution is bounded.

On one hand, in [Neuenkirch et al., 2008], the authors consider the equation

¢
T 770+/ a(xz,mz_m,...,xz_rk)dyu, t € (0,7],
0

ry = n, t €[k, 0],

where 0 < r; < .-+ < 1, < o0 is a finite sequence of discrete delays and o is a
bounded smooth function, and prove that there exists a unique solution (2", y, 2" ®
y) €M 5 (0, 7). In their paper, the hereditary term vanishes to avoid cumbersome
notations.

On the other hand, following the ideas contained in [Besalii et al., 2014], it is easy
to show that there exists a unique solution (2", y, 2" ® y) € Mim(o, T) of the de-
lay equation (5.2.1) when the hereditary term does not disappear. This is proved
assuming that o and b satisfy the hypothesis (H1) and (H2), respectively, with
p> ﬁ, (N, Yy M RY) € Mdﬁ,m((),r) and (Y., y, y.—r®y) € MJ  (r,T). Assum-
ing also that hypothesis (H3) is satisfied, we obtain that the solution is bounded.
Although Besali, Marquez-Carrera and Rovira study a differential equation with
positive constraints, their ideas can be easily applied to show these results also for
our equation. Actually, the previous results are obtained under more general con-
ditions for o and b and hypothesis (H1) and (H2) are none other than a particular
case.

On the other side, we denote by (z,y,z ® y) € Mﬁm(O,T) the solution of the
stochastic differential equation on R? without delay:

t t
Xy =10 + / b(u, x,) du + / o(zy) dyu, t €10,T7. (5.2.2)
0 0

In [Hu and Nualart, 2009], Hu and Nualart prove under the assumptions that
o :R? = R?x R™ is a continuously differentiable function such that ¢’ is A-Hélder
continuous, where A > %—2, o and ¢’ are bounded, and (y,y, y®y) € MP  (0,T),
that there exists a bounded solution (z,y,x ® y) € M 5 (0, T) for the differential
equation

t
Ty =1 +/ o(xy,) dy,, t€[0,T].
0

Moreover, if ¢ is twice continuously differentiable with bounded derivatives and
0" is A-Holder continuous, where A > % — 2, the solution is unique. Here again the
authors consider the equation without the hereditary term, but the results can be
easily extended to the case when the hereditary term does not vanish.
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5.2. Main results

Before stating the main result of the chapter, we introduce the following functional
on Mjm(O,T) for a,b € Ar:

Dya) (7, 9) = |2 @ Yllasap) + |12ls@n 19l sa)- (5.2.3)
Moreover, if (z,y,2 ® y) and (y, z,y ® z) belongs to Mf,m(O,T) we define

Do) (@, 9:2) = |zllp@plvlls@nlzlls@y + 12s@p |z @ yll2s.p)
+||95||ﬁ(a,b)||y ® Z||25(a,b)- (5.2.4)

From these definitions it follows that
|| (.CC ® y)',bHﬁ(aJ)) S ®ﬁ(a,b) (ZU? y) (b - a’)ﬁ (525)

and
|z ® (y® z).,me(a’b) < K ®ppapy (7,9, 2) (b — a)” (5.2.6)

that are equations (3.29) and (3.30) of [Hu and Nualart, 2009] respectively. We
refer to [Hu and Nualart, 2009] and [Lyons, 1998] for a more detailed presentation
on -Holder continuous multiplicative functionals.

Let (z,y,z®y) and (2", y, 2" ®y) be the solutions of equations (5.2.2) and (5.2.1)
respectlvely Let g € (3, 2) and set ' = f—¢, where € > 0 is such that §—2¢ > 0

and A > ,8_—5 — 2. The main result of the chapter is the following theorem:

Theorem 5.2.1. Suppose that (z,y,z ®y), (2", y,2" @ y) and (v._,y,T._, R Y)
belong to Mjm(o, T), (y,y,y®y) belongs to Mim(o, T) and (y.—r,y,y.—Qy) belongs

to Mim(r, T). Assume that o and b satisfy (H1) and (H2) respectively, and both
satisfy (H3). Assume also that ||1||g(—r0 < 00 and sup,<,, Psor)(1n.—r,y) < 00
and suppose that ||(y — y.—) @ Yl2a ¢y — 0 and |ly—r @ (y — y—r)|l2567) — 0
when r tends to zero. Then,

: T
113(1)”30 e =0 a.s.

and
lim (2 @) — (2 @yl =0 as.
r—0

To define the integral fab f(xy) dy, where 0 < a < b <T and f satisfies hypothesis
(H1), we recall the construction of the integral given by Hu and Nualart in [Hu
and Nualart, 2009]. They are inspired by the work of Zélhe [Zihle, 1998] and use
fractional derivatives. Fix a > 0 such that 1 — B <a<28,and a < ’\B +1  Then,

b m b )
[ feddn = =003 [ D DI ()
d

—(—1)% IZZ/ D710 fi(wy) Dy Dy~ (2 @ y)* (u) du,

i=1 j=1

(5.2.7)
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where

A S A (RN ()
D210 = iy (G o oyt ) Bt

. 0 (S S-S
D110 = o (e o L Gyt @) lenl®

are the Weyl derivatives introduced in Definition 2.3.2,

and

D f@) = F(ll—a (f(_xiﬁ |
o [ L) S - Ty Ouf (), ~ o) )

is the compensated fractional derivative defined in Definition 2.3.9 and

Pt = (s + 0o [ )

is the extension of the fractional derivative described in Definition 2.3.10. This
definition of the integral is Definition 2.3.11 given in Chapter 2. We refer to Section
2.3 of this dissertation for a better explanation.

In the sequel, K denotes a generic constant that may depend on the parameters
B,a, A and T and vary from line to line.

5.3 Estimates of the integrals

We begin this section recalling Propositions 3.4 and Proposition 3.9 from [Hu and
Nualart, 2009].

Proposition 5.3.1. Let (z,y,2 ® y) be in Mgm(O,T). Assume that f : R? —
R™ is a continuous differentiable function such that f' is bounded and \-Hélder
continuous, where \ > % — 2. Then, for any 0 < a < b < T, we have
b
’/ fled)dya| < Klf(@a)l [9llsan (b —a)’ + K @ (@, y)
< (I lloo + F A2 30,0 (b = @)*) (b — a)*?,

where Py (v, y) is defined in (5.2.3).

Proposition 5.3.2. Suppose that (z,y, 2®y) and (y, z,y®z) belong to Mgm(O, T).
Let f : R — R™ be a continuously differentiable function such that f' is \-Hélder
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continuous and bounded, where A > % — 2. Then, the following estimate holds:

b
[ e diye )
< K |f(2a)| @piap (Y, 2) (b — a)*
A K (1 lloo + 1 N2 1B (0 = @)) @papy(x,y, 2)(b— a)*?,
where ®gqp) (2, y, 2) is defined in (5.2.4).

The following propositions give some estimates useful for the proof of Theorem
5.2.1.
First we give a result for a function b that fulfills conditions (H2).

Proposition 5.3.3. Assume that b satisfies (H2). Let z,7 € C(0,T;R?) such
that ||z||ec < N and ||Z||ee < N. Then, for 0 <a<b<T,

< Ly(b—a)l|z — Z||oc(ap)-

‘ / b, 24) — b, )] d

Proof. For sake of simplicity, we assume d = 1. Using the hypothesis (H2), we
obtain

b
< LN/ |Ty — Ty| du
a

< Ly(b— a)l|z — Flsogan).

‘ / b, 22) — b, )] d

]

Now we give some results for a function f under conditions (H1). The first result
is Proposition 6.4 of [Hu and Nualart, 2009]:

Proposition 5.3.4. Suppose that (x,y, x®y) and (z,y, T&y) belong to Mgm((), T).
Assume that f satisfies (H1). Then, for0 <a<b<T,

b
] [ 1) = 1@ | € G (2. 520) 0 0~ T

+G,%’(a,b)(f7 Z, Fj? y) (b T a)26’|$ - Eg”ﬂ(fl’b)
+Ga (£,7) (b= ) ||(z = ) @ Yll2pan),

where

Chian (2 Fy) = K[ Illa 17 oo + (15" oo + 17U 3y + 1) (B = @)
X (@0 (@) + Iolls | Fe)]

Chlan(F2.8.9) = K |[ylls 1 e + 1"l (Pstarn(@: 1) + [9lls 17l 30) (6 = 0)°],

(5.7 = K[ o+ 17 Tl (0 — ).
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We can also deduce the following estimate:

Proposition 5.3.5. Suppose that (z,y,x ® y) and (x._.,y,x._, @ y) belong to
M;m(O, T). Assume that f satisfies (H1). Then, for 0 <a <b<T,

b
/ [f(zn) = f@us)] dyu| < Gl (frz, 20 y) (b= @) Iz — 2. [lo(as)

+ G%(a,b) (f7 Ly To—r, y) (b - CL)2B||ZL‘ - J7~—r||,8(a,b)

+Ghap (f2—r) (0= a)|[(z — 2.—1) @ Yll2p(as);
(5.3.1)

where G'E(a’b)(f,x,x._r,y), G%(ayb)(f,x,x._r,y) and G%(mb)(f, x._.) are defined in
Proposition 5.3.4.

Proof. The proposition is a particular case of Proposition 5.3.4 with x = x._,.
]

From the previous results it is possible to prove the following two propositions:
Proposition 5.3.6. Suppose that (z,y,x®vy), (T,y,T®y) and (y,z,y R z) belong
to Mim(O,T). Assume that f satisfies (H1). Then, for every 0 <a <b<T,

b
[ 0w = @) dy s ). (532)

< Gé(a,b)(f? Z, f? Y, Z) (b - a)35||$ - f||C>O(a,b)
_'_G%(a,b)(f? Z, 57 Y, Z) (b o (]J>3B||gj - EHﬂ(‘ﬁ’)
+ G ([, 7.2) (0 — ) [|(z = F) @ yll2p(as)

(5.3.3)

where

K |[1F @00 (: )
(1 o + 1 In Ny + 103 (0 — @)
% (®ata (29, 2) + [T 500 ot (v, 2)) |
Ghon(F 2 752) = K| (1F o+ 17 Iocl 0y (0 = @)°) @ty (v 2)
£ oo @pta (3, 2) (b — @)
Gg(a,b)(f,i",Z) = KG%(a,b)(.ﬁg) ||2’Hﬂ(a7b)

Gé(@b) (fv Z, 57/) Y, Z)

for G%(a,b)(ﬁ x) defined in Proposition 5.3.4.
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5.3. Estimates of the integrals

Proof. To simplify the proof we will assume d = m = 1. Observe that from
inequalities (5.2.5) and (5.2.6) we obtain

Dpan) (2, @ 2) < KOs(apy (2,9, 2) (b — a)” (5.3.4)
and

[z =2)® Y ®2)bllp0p < K Potan(y:2)(b = a) llz = Tl pas)

+K | 2]l gtan) (b — @)° [|(z — %) @ yll25(a,0)-
(5.3.5)

The proof of the proposition is obtained applying Proposition 5.3.4 and using
inequalities (5.2.5), (5.2.6), (5.3.4), (5.3.5).
O

Proposition 5.3.7. Suppose that (z,y,x ®vy), (x._.,y, 2., ®Yy) and (y,z,y ® 2)
belong to Mgm(O, T). Assume that f satisfies (H1). Then, for 0 <a <b<T,

b
‘ / (@) = f(2us)] duly @ 2).p (5.3.6)
< G%(a,b)(fﬂ T, Lery Y, Z) (b - a)3ﬁl|m - l‘~—7‘||oo(a,b)
+ G%(a,b)(ﬁ T, T—r, Y, Z) (b - a)?)ﬁ”x - x-—r”ﬁ(a,b)
+ Gg(a,b)(f7 Ty, Z) (b - a)SB”@ - x'—"”) & y”2,3(a,b)
(5.3.7)

where.Gé(%b)(f,.m.,x._r,y, z), Gg(mb)(f,x,x._r,y,z) and Gg(a’b)(f,x._r,z) are de-
fined in Proposition 5.5.6.

Proof. The proposition is a particular case of Proposition 5.3.6 with z = z._,.

O
We conclude this section with a general result on S-Holder functions:
Lemma 5.3.8. Let y : [0,T] — R™ be a B-Hélder continuous function and ' =
B —¢e fore >0, then
1Y — Y—rllooirr) lylls . (5.3.8)

<
1y = y—rllpory < 2lyllsre
Proof. On one hand,

Yt — Yir| 8 8
T

Hy - y~—T||OO(T,T) = sup
te[r,T]
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Chapter 5. Delay differential equations

On the other hand, we have

}(y - y~—7")t - (y - y~—r)s’

sup ;
s<te[r,T) (t - 8)'3
t—s<r
ly: —ys|  (t— S)ﬁ Yt — Yor| (t— S)ﬂ
< sup : ; + sup : ;
s<tefrr) (E=8)7 (t=38)"  ciepry (t—8)P  (t—s)f
t—s<r t—s<r
<2[lyllsr*
and
sup }(y - y~—r>t - (y B yv—r)s‘
s<te[r,T) (t - 8)6,
t—s>r
’yt - yt77°| rﬁ ‘ys - ysfr| TB
< sup : 7+ sup : ;
s<te[r,T| 7P (t - S)ﬁ s<te[r,T) r8 (t - S)’B
t—s>r t—s>r
< 2|lyllg7*,
SO
ly = y—rllprrry < max | sup = yr)i = (%,_ yor| :
s<te[r,T) (t - 5)
t—s<r
- (Y= y—r)e = (y = Yr)s]
s<te[r,T) (t - 8>/B/
t—s>r
< 2lyllsre

5.4 Estimates of the solutions

Let 1 be a non-negative bounded function such that (n._,,y,n._,®vy) € Mim(o, T).
Recall the differential equation (5.2.2):

t t
0 0

and consider its solution. If (y,y, y®y) € MJ,.(0,T), the main idea is to consider
the (z,y,x ® y), where

(2@ y)us = / (4 — ya)blus, 2,) ds + / o(22) duly © y).. (5.4.1)
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5.4. Estimates of the solutions

Indeed, by definition, a solution of equation (5.2.2) is an element of M 5 (0,7
such that (5.2.2) and (5.4.1) hold.

Analogously, recall the differential equation (5.2.1):

t t
xry = 770+/ b(u,xZ)du—i—/ o(z;_,.) dy,, t € 10,7,
0 0

Ty = M te[-r0).

Let (2", y,2" ®y) € Mim(—r, T) be its solution, where (z" ® y)s; is defined as
follows:

o for s <te[-r0),
t
($T ® y)s,t = (77 ® y)sﬂf = / (yt - yu) dﬁu, (542)
e for s € [-r,0) and t € [0, 7],

t
(" g = (@Yo + / (e — ya)blu, %) du
0

+/0 o(@)_) du(y @Y). e+ (10 — 1) @ (e — Yo),
(5.4.3)

o for s <t el0,7],

(" ®y)s: = / (Yt — Yu)b(u, z) du + / o(z,_,)du(y®@y).4.
(5.4.4)

For t € [0, 7], by definition
t t
(x—2") = / [b(u, z,) — bu, 27,)] du +/ [o(24) — o(2),_,)] dyu(5.4.5)
0 0
and we can express (r — x"); in this way
t t
(x —a"), = / [b(u, xy) — b(u, xZ)} du +/ [J(:Eu) — a(xZ)] dy.
0 0

+/0 [0(37;) — o(xz_r)} dy,,. (5.4.6)

137



Chapter 5. Delay differential equations

Following the ideas in Section 4 of [Besalii et al., 2014], let us define ((z—2")®y)
for s,t € [0,T:

s,t

(=10, = [ 0= ) b)) d
+ [ lotw) — o) duly @ .
+ /St lo(2]) —o(2),_,)] du(ly ®y).p.  (5.4.7)
Moreover, if " is the solution of (5.2.1), then we define z] = x}_,, that is,

t—r t—r
T, = 1o —i—/ b(u, x,) du—l—/ o(z)_,) dy, telrT],
0 0
o= g, telor) (5.4.8)
We define (" ® y)s+ as follows:

e for s <tel0,r),
O = (00 O = [ (= v (5.49)
e for s €[0,r) and t € [r, T,
@ = 0@+ [ gl - T

+/ o(@y_) du(Y—r @ Y)ot + (10 = Ns—r) @ (Y1 — Yr),
(5.4.10)

o for s <terT],

t t
F @ y)es = / (e — ya)blu — r,3) du + / o(F_) dulys ® ).
(5.4.11)

Now we need to distinguish two cases to define (2" — 27);:

e fort e [0,r),
t t
(" =2") =m0 — M—r +/ b(u,x)) du +/ 0 (Mu—r) AYu, (5.4.12)
0 0
o forte[rT],
t t
(" — 7), = / b(u, 2") du + / (@) dya. (5.4.13)
t—r t—r
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5.4. Estimates of the solutions

As a consequence, we define

o for s <tel0,r),

t t
(xr - fT)t - (xr - /x\T)s = Ns—r — Nt—r + / b(“v x:;) du + / ‘7(77u*r> dyu,
(5.4.14)

o for s € [0,7) and t € [r,T],
(" =2") = (" —=2")s = Ns—p — Mo+ /t b(u, z,) du — /08 b(u,x)) du
t—r
+ /tt o(xy_,) dy, — /Osa(nur) dyu, (5.4.15)
o for s <telrT],
(" =2") — (" =2")s = /t b(u,x)) du — /S b(u,z]) du
t—r s—r
+f ol dy, - | ot )dna0
t—r s—r

t t—r
= /b(u,xZ)du—/ b(u,x)) du

t t—r
+ / o(Ty_y) dyu — / o(x!_.) dy,(5.4.17)

Finally, following the ideas in Section 4 of [Besali et al., 2014], we define
(2" =) ®y),, = (" @Y — (T @ Y)ss,
that is:
e for s<tel0,r),

(@ =20), = [ =t [ = wbtus) do
+ /: o (Nur) du(y @ )., (5.4.18)
e for s € [0,r) and £ € [r, T,
(=20), = [(—wedis [ @ )dme).,
—(Nr @ Y)sr — [(yt — g )b(u— 7,7 du

- / @) du(gor D)ot — (0 — 1) ® (e — 92,
(5.4.19)
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Chapter 5. Delay differential equations

o for s <terT],

(@ - 00), = [(-vheades [ 0w, dlo).
—/X%—%ww—naMu—/a@g»%wq®w¢

— /(yuw—yu)b(u’%) du

(5.4.20)

Let€>0besuchthat6—2s>0and)\>ﬁ—?. Recall that 5/ = 8 — &.

Before giving further results, we will prove that the norms ||z"||s and ||2" ® y||2s
are bounded and their upper bound does not depend on r. To this aim, the
following lemma will be useful:

Lemma 5.4.1. Let (n._,,y,n._,Qy) € Mgm(o,r) and (Y.—r, Y, Y.—r®Y) € Mgd(r, T).
Let (2", y,2" ®vy) € Mgm((), T) be the solution of the equation (5.2.1). Then,

12"l < 2"l gr0) + 12 [ 57 ) (5.4.21)
and
12" @ yllapr < 17" @ yll2gro.) + 177 @ Yllogrerry + Il —roylyllg. (5.4.22)

Proof. On one hand, observe that

lat - @ G-zl o BT
||§T||,3/ S max sup ! / ) sup t—s, , Sup ¢ /
o<s<ter (t—8) T o<sar<i<r (t— )P " r<sci<r (6 — 5)8
and
A T oo
sup |xt s/ S sup |$t xr/| + sup |wr $S/|
o<s<r<t<T (t — 5)P o<s<r<t<T (t — 5 o<s<r<t<T (t —5)
D
su su
N T’Sth (t - T)ﬁl Ogsgr (7" - 3)6,
|7} — Ty |7} — 77
< sup — 4+ sup ——.
TSS<£)§T (t —s)” 0§8<£)<7' (t —s)?
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5.4. Estimates of the solutions

So we easily get (5.4.21).
On the other hand, observe that from the multiplicative property we obtain

= Sr r
N Y R I[C. Y W B g
o<s<r<t<r (t — 8)% o<s<r<t<tT | (t—5)%° (t —s)?8
(@ — 7)) ® (ye — yr)|
(t —s)%# ’
and using the same argument as before (5.4.22) follows easily. O

Now we can give the following result:

Proposition 5.4.2. Let (n._.,y,n_, @ y) € Mdﬁ’m(O,r) and (Y—r, Y, Yy Q Y) €
Mc/zd(r, T). Assume that o and b satisfy (H1) and (H2) respectively, and both

satisfy (H3). Let (2", y,2" ® y) € Mf’m(O,T) be the solution of the equation
(5.2.1). Assume also that ||n||s—r0) < 00 and sup,<,, [|n.—r ® yll2p0r) < o0.
Then, for r < rg, we have the following estimates:

||/:L‘\T||OO(O,T+T) < Mn,ya (5423)
7 o < Kpppohy(1+2M,,), (5.4.21)

1

12" ® y||2ﬁ/(0,T+r) < Kpppoly (2 + (T + TO)(Kpn,b,aAy)B)a (5.4.25)

where K > 1 and

v = 201ll8r00) T [0l + [[0]]o + l0"]l00 + o[, (5.4.26)
Ay = Nlylls + max(1, ly[|3 + lly ® yll2s), (5.4.27)

and 1
My = [nol + (T +710) (K pypoly)? + 1. (5.4.28)

Proof. To simplify the proof we will assume d = m = 1. Assume also that r < ry.

First we observe that, if ||9||g—r.0 < C and sup,.,, [[7.—r ® yll2p0,s) < C’, with
C and C' two positive constants, then ||1]s(—rp0) < Cr§ and sup,,, [[1.—» ®
yHgﬁv(o,,«) < 0/7’88.

Secondly, notice that by definition (5.4.9)

t
| f (Y — Yu) dnufr|
= < =T ' < —T N
=) < In=rllsonlylls < lInllsroollylls

17—+ @ yll2500,) = sup
s,t€[0,r)

If n is differentiable and monotone and ||9|g(—r,,0) < 00, then
17— ® yll2p0.) < 00
Moreover, for all 8 < 3, it is true that ||1]|g/(—ry0) < 0o and
17— @ yll2s00) < 10ll3r(=ro.0)[[9llg < 00
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Chapter 5. Delay differential equations

To prove the result we will follow the ideas of Theorem 4.1 of [Besali and Nu-
alart, 2011]. Consider the mapping J : Mﬁl(O,T +7r) — Mfil(O,T + r) given
by J(z",y, " ® y) = (J1,y,J2) where J; and Jy are the right-hand sides of the
definition of " (see equation (5.4.8)) and (" ® y) (see equations from (5.4.9) to
(5.4.11)) respectively:

Mt—rs 0<t<r

t—r t—r
mt [ b )duk [ o@dp, r<t<T
0 0

(5.4.29)
J2(37\Tay7§r ®y)(87t)
¢t
/(yt—yu)dnu—ra 0<s<t<r
(7]0 - 77577‘) ® (yt - yr) + / (yr - yu) dnufr
¢ S
+/ (yr — yu)b(u — 7,2, ) du
+/ o(@,_,)du(y—r @Y).4, 0<s<r<t<T
¢
/ (ys — yu)b(u — 7,20 du
5 t
+/ o(@ _)dy(y_r @Y).4 r<s<t<T
\ s
(5.4.30)

Remark that this mapping is well-defined because (Ji, y, J2) is a real-valued
f—Haélder continuous multiplicative functional for each (Z7,y, 7" ®y) € Mlﬁ 1(0,7).

Now we bound the Holder norms of J; and J, using Proposition 5.3.1 and Propo-
sition 5.3.2. Let s < ¢ € [0, 7], we have

o for s <tel0,r)

[Tl < nlla-ro.0), (5.4.31)
1 2ll28s0 < Illp=ro01¥ll5, (5.4.32)
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o for s <telrT]
il < Illalt = 07 + Kol lyls
+K (0”10 + 10" IINZ 13y (£ = 5)*)
Xq)ﬂ(s,t) (fg’fﬂ—r’ yfr)(t - S)IB?

(5.4.33)
[ T2ll26¢se) < [lblloc Nwlla(t =)' + Kol ca®p(en) (v y)
+K ([0 lloo + 10" AT 13 s.y (8 = $)7)
X P sy (T, Y, y) (E — 5)°,
(5.4.34)
e for s€[0,r) and t € [r,T]
[Sillse < N illsen + 11llseme
< nllsro0) + 1blloo(t =)' + Kllollso lylls
+K ([[0”lloo + 110 AT 3y (8 = 7))
X D) (T Yoo ) (= 1),
(5.4.35)
[ J2]l25(s,¢) [S2ll25(s,r) + Nl J2ll20r1)

IAIA

2[nllsrom1¥lls + I8lloe 1ylls(t =)'~ + Koo Ppiry (y—r, )
+K (07 llo + 10" A IZT_ [y (¢ = 7))

XDy (T, Yy y) (E — P,
(5.4.36)

For s <t € [r,T], we set
(EE{LT ® y-*T)S,t = (§ ® y)sfr,tfr- (5437)

In Section 5 of [Besali et al., 2014] it is proved that it is a S-Holder continuous
multiplicative functional.
We proceed dividing the proof in two steps.

Step 1: We will find a set CY of elements (z7,y,7" ® y) € Mﬁl(O,T) such that
J(CY) C CY. Recall definitions of p,;, and A, from (5.4.26) and (5.4.27), respec-
tively, and set

A, = (Kpppohy) 7. (5.4.38)

Let C¥ be the set of elements (2", y, 7" @ y) € Mf’l(O, T) satisfying the following
conditions:

17 oe < My, (5.4.39)
sup_ (7 s < Kpuno(lylls +1), (5.4.40)
0<t—s<Ay
sup [T @ yloseny < Kpupolllylls + 1915+ ly.—r @ yllas). (5.4.41)
0<t—s<Ay
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We take s,t € [0, 7] such that
0<t—s<A,, (5.4.42)

and then we have )

(t—s) <AP<
Kpppo(llylls +1)

1
Kppo(lylls + 1ylf + 1y.—r © yll2s)

Suppose that (Z",y, 2" ®y) € CY, then using (5.4.40), (5.4.43) and (5.4.41), (5.4.44)
respectively, we have

<™

(5.4.43)

and

(t—s)7 <Al < (5.4.44)

(t =) 17" sy < 1, (5.4.45)
(t—= )17 @ylasery < 1. (5.4.46)

Now observe that, if s,t € [r,T| satisfy (5.4.42), then s — r,t —r € [0,7] also
satisfy this condition. As a consequence,

(t = )77 o <1 (5.4.47)

and
(t = )17, © yrllapion < L. (5.4.48)

From the last inequality it easily follows that
D51 (@, g, y)(t — 5)6
= (187 el s llseo + 1Wlseoll &y © yrllases
s ® Yllapien | (¢~ )°
< lylls + Iyll5 + ly— @ yll2s. (5.4.49)

T s

Also, observe that if s € [0,7) and ¢ € [r,T] satisfy (5.4.42), then t —r < Ky
and all the previous inequality are satisfied if we change the interval (s,t¢) to the
interval (r,t) for ¢t € [r, T].

By expressions from (5.4.31) to (5.4.34) and from (5.4.45) to (5.4.49) we easily get
that

Iillssy < lnllsroo + 1BllT ™ + Kl ]l [lyl5
+K (lo"lloo +1lo”ll2) (lylls + 1)

< Kpppo(llylls +1) (5.4.50)
and
[ allassy < 20nllaro0)ylls + [1Blloo [yllsT* " + Kllo oo (1913 + 13— @ yll2s)
+E ([0 [loo + lo"[1) (lylls + 11915 + [[y— @ yll2p)
< Kppoo(llylls + Il + ly— @ yll2s) (5.4.51)
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where K > 1. B
It only remains to prove that [|Ji|le < M,,. Set N = [(T+r)A,'] +1 and define

the partition ty =0 <t; <--- <ty =71 +r, where t; = 1A, for i =0,...,N — 1.
The estimates (5.4.43) and (5.4.50) imply

sup  |(J1)ul < V(e |+ (= tic)P (| Al gt < [(J)es] + 1.

w€[ti—1,ti]
Moreover,

sup |(J1)u] < sup  |(J1)u] +1,
ue[ovti] UE[O,ti,ﬂ

and iterating we finally get that

up ((J1)u] < 1o + N <o + TA;N + 1= M,
u€|0,T

Hence, (J1,y, J2) € CY.

Step 2: We find a bound for the Holder norms of " and (Z" ® y).
We can construct a sequence of functions 7™ and (7" ® y)™ such that,

77O =ny and @ ®@y) =0
and
7 = g (70, @ @y ),

@y = (T @),

Notice that (Z7?,y, (Z" ® y)®) € C¥ and, since we have proved in Step 1 that
J(C’y) C CY, we have that (/f’"(”),y, (" ® y)(")) € Y for each n. We estimate

|27 || 5 as follows:

00 _ 7o) 0 _ o)
| s < 0§s<1IE)ST (t—s)8 O§s<?§T (t —s)P
tfsgﬁy tstKy

IN

Kpypo(lylls +1) + 24,7177 |

Kppoo(llylls +1) + 24,7 My,
Kpypoy(1+2M,,). (5.4.52)

VANVAN

This implies that the sequence of functions "™ is equicontinuous and bounded in

C?(0,T) and the upper bound does not depend on r. So, there exists a subsequence
which converges in the ’-Holder norm if 5/ < 8 and such that the upper bound
of the ’-Holder norm does not depend on r.
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In a similar way we obtain the same result for (z"®y)™. From inequality (5.4.46)
we obtain that

sup @ @y < @ ©y) P lasen a0 (ti — ti1)?

11 <s<t<t;

< (ti—tim)? < Af

and

sup | @y)Y| < NAP < TAP! + AP,
0<s<t<T

As for (5.4.52), we estimate ||(Z" ® y)™ ||o5 as follows:

1@ @)™l < Kpgaolllylls + I1ylls + ly—r © yll2s) + TAP + A7
1

N

This implies that the sequence of functions (z" ® y)(”) is bounded and equicontinu-
ous in the set of functions 23-Holder continuous on A7, and the upper bound does
not depend on r. So, there exists a subsequence which converges in the 5-Holder
norm if #/ < [ and such that the upper bound of the f’-Holder norm does not
depend on .

Now as n tends to infinity it is easy to see that the limit is a solution, and the
limit defines a S—Holder continuous multiplicative functional (Z7,y, 7" ® y) and
this functional satisfies estimates (5.4.23), (5.4.24) and (5.4.25). O

Remark 5.4.3. In Proposition 5.4.2 it is proved that ||Z"|| g 0,1 < KpppoAy(1 +
2M, ), so we have the same bound for ||2"||z ;. Moreover, using the ideas in the
proof of Proposition 5.4.2 it is possible to prove that ||2" ® y||2s is bounded and
its bound does not depend on .

The following proposition gives us a result about the behavior of (" — z") when
r tends to zero.

Proposition 5.4.4. Let f' = § — ¢, where ¢ > 0 is such that § — 2 > 0 and
A > 1o —2. Suppose that (z,y, x®y), (2", y,2" ®y), (T7,y,7"®y) and (y,y,y®y)
belong to M(ﬁm(O, T). Assume that o and b satisfy (H1) and (H2) respectively, and
both satisfy (H3). Assume also that ||n||g(—re0) < 00 and sup,<,, Pso.r(n—r,y) <

oo and suppose that ||(y — y.—r) @ Ylloprry = 0 and ||y @ (y — y.—r) |25y — 0
when r tends to zero. Then

2" =2 |e < KpAr”
[a" =" ||y < KpAr*
||(xr—fv\'r)®yH25, < KMpPA3r® + KMp*A2A,
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where K > 1, M > 1 are constants depending on 3,5 ,ro, T, 0,y and
p = <1 + 3]l T 4 3l oo (1 +T7) + 2]|0” o (1 + T%) + 3|0 [T~

10" (2500 11+ [0 o) TOH7 4 [0 o (1 + T)

r<ro

2]l |l sup | [TV ) (14 T9),

r<ro

A = max (17 ||7]||,3(—7‘o,0)7 sup (I),B’(O,T) (n~—'r7 y)7 (I)B(O,T) (?/7 y>7 sup q)ﬁ’(r,T) (y-—m y)a

r<ro r<ro

sup P 0,0y (N—r, ¥, ¥), sup P01y (2", ), sup Lar o, (27, y))

r<ro r<ro r<ro

x (1 sup 2" Nl ) (1+ s ).

r<ro

A, = max (1suplle o) (g = ) @ yllasoy + g @ (4 = g lasrem))-

r<rg

Remark 5.4.5. Thanks to Proposition 5.4.2, p and A are finite and, by hypothesis,
A, converges to zero when r tends to zero. Hence, the proposition states that

rl0

2" — 7" ||oc 0,
=" =7 ls =% o0,

T __ T T*LO 0
[ =7) @y, — 0

Proof. We start studying the supremum norm. Observe that
2" =T loo < 2" = 7" [[sctor) + [127 = Z"|oo(rry-

On one hand, by definition (5.4.12) and using Proposition 5.3.1, for r < rg, we
obtain

2" = @ llocory < nllgr-royr™ + [Bllocr + Kl lloolyll 7"
+E Dy 0,0) (11—, y) (107 lloo + 0" I lln—+ 10,097
< [HnHﬁ(—m,O)T“rHbHooTl_B + Kl|olsollylls T

FE B0 0) (1010 + 10 I i ) T ]2

)\[3’) TQ,B’

where we used that [|7]|g(—r0) < [[9ll3(—r0,0T" and [[ylls < [lyllsT=.
On the other hand, by definition (5.4.13) and using Proposition 5.3.1 we obtain

=@ ooprry < 0o + Klollocllyllgr”
+E g 0,17, y) (|0 loo + 107 INIE" 15y 77 )12

< [T + Ko llyllsT°

"

/

FE D0 (@ 9) (10l + /Il 3 T¥) T |1
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Chapter 5. Delay differential equations

Hence, we have that
|27 — Z"||os < KpAr?, (5.4.54)

as we wanted.
Now we study the Holder norms. Following the proof of Lemma 5.4.1 we easily
obtain that

2" = &"||g < ll2" = Z"[| g0y + 12" = 2" || (5.4.55)
and

[(a" =2 Qyllag < (" —7") @Yllago + (2" —Z7) @ yll2prirm)
2" = 2" g0 Iyl - (5.4.56)

So we can study the Holder norms independently in the intervals [0, 7) and [r, T].
We study the Holder norm of (2" —Z"). In the interval [0, r) by definition (5.4.14)
and Proposition 5.3.1 we have
lz" =2 p0n < Inllgro) + 10l + Kllolloc[yllg0,0

FE @0, (0 y) (107 [loo + [0 IAll7 =130,y

(1 l3-ra0) + IblloeT" " + Kl lucllylls

FE @0 (17 ) (10 oo + 10" I 0T T 4]

)\BI)TB/

IN

(5.4.57)
In the interval [r, T|, observe that
2" = 27| g
r __qr _ r __pr r __ T _ T wr
N €t Yt i ¥ [ i M Vot oY
s<te[r,T] (t—s)° s<te[r,T] (t—s)P
t—s<r t—s>r
(5.4.58)

On one hand, by definition (5.4.17) and Proposition 5.3.1 we have

sup 7
s<te[r,T) (t - S>B
t—s<r

< 20|bloer ™ + 2K 0| so |yl g 7
+2K ) (@, 9) (10|00 + 107N IE 13y )

< 120bllo T + 2K ol oolyll 5

!

+2K @0, (@, y) (0"l + HJ’HAHx’“ug,m,)TW]7(65.4-59>
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where we used that sup ||y[|s s < |lyllsre.

s<te([r,T]
t—s<r

On the other hand, with a similar computation, by definition (5.4.16) and Propo-
sition 5.3.1 we have

T __ T _ T __ T
ap 1@ =T =)

s<te[r,T) (t - S)B/
t—s>r

< 2plloor ™ + 2Kl cllyll s Tr*
+2K @@ 9) (10l + 0" N7 1 iy )
< [208loT" 7 + 2 oo 19157

F2K P01y (7, 9) (0l + 01273 T )T~ 5.4.60)

where we used that sup ||y|lg@—rsy < |Jylls7r

te[r,T]
Then, by inequality (5.4.55) and using (5.4.57), (5.4.58), (5.4.59) and (5.4.60) it
follows that

H{Er — /.Qf\!r”ﬁ/ S KpATa. (5461)

Finally, we study the Hélder norm |[(z" — 2") ® y||2s. By definition (5.4.18) and
Proposition 5.3.2 we have

[(z" = Z") @ yll2p 0,
< n—llsonllyllson + 1Yllaon bl ™ + Kllo|lo®s 0. (¥, v)
+K (10 loo + 110713 110.= 13 0.0y VP (00) (.= 5 ) 77

< [Illsc oo IollsT= + IlslbllocT™ + K001 (5, )T

(0" lloo + 10" I3y T P00y (1 9, 9) T2
< Kphr (5.4.62)
where we used that @4 (0.)(y,y) < Psom) (y, y)r*

Now we study the Holder norm in the interval [r,T]. Let a < b € [r,T]. By
definition (5.4.20)

’ ft(yu+r - yu)b(u .%‘Z) dul
=7 ® ' < su 5 ;
I ) @ Yllap(a) S (i — )%
s | [So(@ ) du((y = y—r) ©y).]
s<t€la,b] (t )Qﬁl
. o(x dy(y_r ®
- [ [o(=,) — o(@, 2331 (Yo—r @ Y).4]
s<t6[a b] (t )
= A+ Ay + As. (5.4.63)
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It is easy to see that
Ay < [lylls [DlloT < K phre. (5.4.64)

By Proposition 5.3.2 we have
Ay < K||0]loc Par(ap) (Y — Yors y)

+ K (10" loe + 10" A1 1 iy T ) @0y @y = ) T

= Klyllsr (Irlloo + (11o'lloe + 1IN T VI 15T ) Ny = 9l
+K (llolloe + (101l + 1" IAIZ 1 T ) 17 1T ) 1y = 9—0) © yllasrer)
+ Kyl T ('l + 0I5 IF 15 T ) 137 (= g lasra (54:65)

Now we will estimate the norm |27 ® (y — y.—r)||28/(a,p)- By definition (5.4.11), for
s <t€la,bl,

t t
@ o=y = [ = wbo—r@du= [ (s =g - r.7) du
s . s .
s [ o) dyr o) [ o)y Oy
t
= / (Yt — Ytr — Yu + Yur)b(u — 7,70 ) du

+/ O-(fzfr) du (y-fr ® (y - y-fr)).’t'

So by Proposition 5.3.2 and Lemma 5.3.8 we have

12" @ (y = y—r) |28 (ap)
<201l Iyl a7 7 1 + K||o || s P (ap) (Yomrs Y — Yoor)
+K (10 loo + 110" IMZ 13 @) T ) @pr 0y (@5 Yors y — Yoy ) TP

= K (1"l + 1157 13 T) (1 gl + 13 & yllagr) T
8l T + ooyl | ylls 7*
K {1l + (0 llst o/ I3 15 T) 711 77 |

XNy—r @ (Y = y—p)ll2pr(r1)-
(5.4.66)

Now we put together (5.4.65) and (5.4.66). Also, we apply inequality (5.3.9) and
we use the notation of A, p and A, appearing in the beginning of the proof. With
all of that we obtain that

Ay < KpAr® + Kp*A?r® + Kp*AA, + KpA,
< Kp*A*r® 4+ Kp?AA,, (5.4.67)
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where we used that 1 < p < p? and 1 < A < A%
Finally, by Proposition 5.3.7 and inequalities (5.4.54) and (5.4.61) we have

AS < G%/(a,b) (Ua x 7?" r Y—r y) (b - a)ﬁl Hfr - EC\T*THOO(%(’)

+Ghan) (0. T T Yoo, y) (0 — )7 T = T, ||y
+G oy (0,7 r,y)(b —a)? (@ = 77_,) ® yo—r |28 (a)
< Ghypy (0,77 T,y ) TV 27 = 7
+ Gy (0,7 Ty y) T |27 = 77|
_|_Gg,(rT (0,27, y)(b— a)ﬁ (" = 2") ® yll28/(a—rp—r)
< KpPA*r" + G (0,77, y) (0 — @) ||(2" = T7) @ yll2p(amrpn)

(5.4.68)
where we used that GfB,(T T)(a, 2Ty y) TP < KpA for i = 4,5.
Applying the multiplicative property, it is easy to see that

(2" —2") @ yll2pr(a—rp—r)
< @" = 2") @ Yl2pa—ra) + (2" = Z") @ Yll2g(ap) + l" = 2" (| [yl -

On one hand, by (5.4.61)
2" = 2"l llyller < lla" = Tl llyllsT° < Kp*A%r=.
On the other hand, we have that
(2" = 27) ®@ yllag(a—ra) < Kp?A?r° + Kp*AA,,
where the result is obtained considering separately the two cases a € [r,2r) and

a € [2r,T] and applying multiplicative property, inequalities (5.4.62), (5.4.63),
(5.4.64), (5.4.67), (5.4.68) and G, By (0, T ) T% < KpA. Therefore,

[(z" = Z") @ yllagramrpr) < Kp*A* 15 + Kp? AN, + |[(2" — T7) @ |2 (ap)-
It follows that

A3 < Gy (0,7, 9) (b — )7 (27 = 7)) @ yllagrap + Kp* N r* + Kp*APA,,
(5.4.69)

where we used again that G%,, 1 (0,77_,,y) T% < KpA. From inequalities (5.4.63),
(5.4.64), (5.4.67) and (5.4.69) we have that

1" =2) @ylowan < Chom (0 Ty —a)” [[(@" = T7) @ yllzpaiy
+Kp* A% rf + KpPA%A,,
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Chapter 5. Delay differential equations

where we used that p" < p"t! and A” < A"*! for n € N.
Set

1
YA

A= (2 sup Gg,(T’T)(a, fq,"_r,y)> . (5.4.70)

r<ro

Observe that, if a,b are such that (b —a) < A, then
[(z" = ") @ ylloprapy < Kp*APr° + Kp?AA,. (5.4.71)

Now consider a partition r = tg < --- < tpy = T such that (t;11 — t;) < A for
t=0...,M — 1. Then, using the multiplicative property iteratively, we have

M-1
@ =) @ ylagery < D N =F) @ yllage ) + (M = D" =2 |l lyllo
=0

Applying (5.4.61) and (5.4.71), we obtain

KMp*Are + KMp* A’ A, + K(M — 1)p*A*r*

[(@" =2") @ yllag ) <
< KMp*A*r® + KMp*A%A,. (5.4.72)

Finally, by (5.4.56), (5.4.61), (5.4.62) and (5.4.72)
(2" = 2") @ yllagr < KMp*A®r® + KMp*A?A,.. (5.4.73)

So the proof is complete. O

The following definitions will be useful in the next results:

@2, = ng G%,(O’T)(a, x,z",y) i=1,2 (5.4.74)
@f;, = EEE) G%,(O7T)<O', z") (5.4.75)
Eé, = SEE) G%,,(QT)(J, z,z", Y, y) j=4,5 (5.4.76)
@g, = EEE) Gg/(o,T)(@ " y). (5.4.77)

The following result gives as a bound for ||(x -z ® y||2 B(ap) when the interval

(a,b) is sufficiently small. Define A}, as follows:

—6 _L]
Aé/ - (2Gﬂ/) s .

We state the following proposition:
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5.5. Proof of the main result

Proposition 5.4.6. Suppose that (z,y,x ®@y), (z",y,2" @ y) and (T",y,7" ® y)
belong to Mim(o, T), (y,y,y®y) belongs to Mfzm((), T) and (y.—_,y,y.—-Qy) belongs

to Mgm(r, T). Assume that o and b satisfy (H1) and (H2) respectively. Then,
forall0 < a <b<T such that (b—a) < Ap,

H(x —a')® yH2B’(a,b)
< 2[Lyllylls (b — ) + Ghapy(on .27, 4. 9)] (0 — ) [l2 = 2" ooy
+2Gh (02,27, y,y) (0 — @) ||z — 2" gap)
+2K pA Gl (0,2, 7y, y) (0 — )17
+ 2K pA [G%,(a7b) (o,2", 2", y,y) + Mp2A2G6/(a,b) (0,7",y)] (b - a)?'re
+2KMp*A2 Gy, ) (0,77, y) (b — a) A,

where functions G,Zé’(mb) with i = 4,5,6 are defined in Proposition 5.3.6 and p, A, A,
are defined in the proof of Proposition 5.4.4.

Proof. The proposition is proved applying first Proposition 5.3.3, Proposition 5.3.6
and Proposition 5.3.7 to definition (5.4.7) and then Proposition 5.4.4, and observ-
ing that for a < b such that (b—a) < A},

2" 9) b= a)" < 2.
O
5.5 Proof of the main result
We start studying lim, ¢ |2 — 27| -
As in Lemma 5.4.1, it is easy to see that
[z —2"[pr < [l =2 g0 + [l = 2"l pr - (5.5.1)

First we study the norm in the interval [0,7). We apply Proposition 5.3.3 and
Proposition 5.3.4 to definition (5.4.6) and we obtain

lz —2"lpory < Lar' " Plle =2 |lsotor) + Ghon (0 20— y) Pl = 1_p oo (o)
+ G0 (02,0 ) Tl = 0t |50
+ G0 (00— [[(x = 1.-r) @ yll2s0.0)-
Using that the supremum norm of x is bounded and the bound does not depend
on r, we easily see that sup,.,, G%(o r)(a, x,M_p,y) < oo fori=12and

SUD,<p, G?a(o,r) (o,m._) < 00. So last expression clearly goes to zero when r tends
to zero.
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Chapter 5. Delay differential equations

Now we work on the interval [r,T]. Let r < a < b < T. Applying Proposition
5.3.3, Proposition 5.3.4, Proposition 5.3.5 and Proposition 5.4.4, we obtain

lz = 2" llpny < [Lab—a) " + Ghploza”,y)] (0= a)"[lz — " [|sas)

+ Gl (0, ,27,y) (b= a) ||z — 2| g0y

+ Gy (0,2") (0= a)” |[(z = 2") @ yllag(ap)

+ Gl (0,277, y) (0= @) |27 = T soan)

+ Gl (0,27, T, y) (b= ) |27 — || ()

+G5'(a,b)( ) (b—a)|(z" -7 ® Y28/ (a)

< [LN(b - a)l 2 + Gé’(a,b) (07 Z, :UT7 y)} (b - a)ﬁl “l‘ - xr”oo(a,b)

+ G%’(a,b)(0'7 Z, »Tr7 y) (b - CL)B ||l’ — xTH,B’(a,b)
+ Gy (0,27) (b= @) ||(@ = 27) @ Yllasran)
+KpA G}j,(a,b)(o, "z y) (b — a)ﬁlrﬁl

+[KpA Goopy(o,2", T y) + Kp° N’ Gy (0,77)] (b — a)?'r

+E PP NN, Gy (0,77) (b—a)”"

We take a and b such that
1
(b — CL) S AB/

and apply Proposition 5.4.6, so we have

[l = 2" gr(a)

< [In @1yl Gy (0:27) (b — @) +1) (b — a)' >

+G}5,(a7b) (o,2,2",y) + QG%/(M) (o, xT)G%,(mb)(a, z, 2"y, y)(b— a)’ }

x (0= a)" ||z = 2" saty

+ [ G%,(a,b) (o,2,2",y) + 2G%/(a7b) (o, x”)G’g,(a’b)(a, z, 2"y, y)(b— a)’ ]

x (0= a)|lz — 2"l gap)

(5.5.2)

+KpA(G}g,(a7b) (0,27, 2", y) + QG%/(M) (o, :L‘T)G?;/(ayb)(d, "2y, y) (b — a)’B/)

x (b —a)*r”

+ [KpA(G%,(a,b)(a, ", 7" y) + QG%,(a,b)(cr, xT)G%,(mb) (o,2", 2", y,y)(b— a)ﬁl)

+Kp3A3 (ng(mb) (CT, /.T\T> + QG%’(G,I)) (U, :L"T)Gg,(mb) (U, /.CC\T, y) (b — (1/)/8/)]

X (b— @)5' €

£

+Kp3A2(GB, ab) (0,2") + ZGB,(a b)(a T )Gﬂ, ab) (0,2",y)(b—a) ,)(b — Q)B/Ar.

154



5.5. Proof of the main result

To simplify the notation, let define
HT = KPA(G}J”(O,T) (0', xr, i'\r, y) + ZG%’(O,T) (U, mr)Gé/(mT) (O', .I'T, 5:,\7‘, Yy, y) T'B ) T/B 7’6
+ [KpA(G%’(O,T)<0-7 2", 7", ?J) + 2G?[a'(o,T) (U: xT)Gg'(o,T)(Uy ", 7"y, y) T’ )
+Kp*A? (G%/(QT)(O‘, ")+ QG%,(QT) (o, :B”)Gg,(()’T)(a, z",y)TP )} T% e

+Kp*A° (G%’(O,T) (0,2") + QG%’(O,T) (0, $T>Gg'(o,T) (0,7, y)Tﬁl)} T7A, (5.5.3)

Observe that H, converges to zero when r tends to zero. Hence, we can write

o=l < [Ln (@0lly Ciupy (0T + )71
FG o) (0, 7,27, y) + 2G50 (0,27) G gy (0, 7,27y, y)Tﬂl}
X (b= a)" [l& = 2| oot
[ Gorap (02,27, y) + 2G4 (0, 27) Gy oy (0,2, 27y, y)T7]
x (b= a) |l — || gr(ap)
+H,.

We take a and b such that

[G%,(mb)(a, z,x",y) + ZG%,(M)(U, x’")Gg,(%b) (0,227, y, )T (b—a)” <

(5.5.4)

DN | —

In this way we have

=2 llpan < 2[La(2lylly Coany (o 2T + 1)1
+G}3/(a7b) (o,z,2",y) + 2G?3/(a,b) (o, :I:T)G%,(&b)(a, x,x",y, y)Tﬁl
x (b—a)? ||z — 2" || co(ap) + 2H,- (5.5.5)
On the other hand,

2 = 2" llootary < lwa — 25 + (b= a)” |z = 2"[|gr(ap),
and replacing inequality (5.5.5) we obtain
o = 2 llocteny < J7a = 2] + 2| L (2Aylls Gy (0,2 ) T + )T

+G}5,(a,b) (0,2, 2", y) + QG%,(a,b) (o, xT)Gé,(mb) (0,2, 2"y, y)Tﬂ']
x (b—a)*||z — 2" || oo(ap) + 277 H,. (5.5.6)
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Now, we take a and b such that

2 |:LN (2l|yH5'G%/(a,b) (07 xT)TB + 1>T172B + Gé’(a,b) (07 Z, xr7 y)

26 00,2 Gy (02,07 9. )T | 7 (b — 0)” < % (5.5.7)
and we obtain
12— 2" ||ootap) < 2|7 — L] + 4T H,.
We can observe that
sup |z, —af| < 2 sup |z, — af| +4T7 H,. (5.5.8)

0<t<b 0<t<a

We define Ag such that all a,b with (b — a) < Ag fulfill the following conditions
(5.5.2), (5.5.4) and (5.5.7):

Ng = (16LNT1—5'+16§15, % 143,

_ L
7

—3 —4 / —5 / —6 B

(5.5.9)
Then, it is clear that (5.5.8) holds for all @ and b such that b —a < Ag.

Now, we take a partition 0 = tg < t; < --- < tpy = T of the interval [0, T] such
that (ti+1 - tz) S A,B’- Then,

sup |z —a)| < 2 sup |z —al| 4+ 477 H,. (5.5.10)

0<t<tp =T 0<t<tpr—1

Repeating the process M times we obtain

M-1
sup |o, —af| < 2M|xg — af| + ( Z 2’“) AT H, = 42 — 1)T? H,
0<t<T —

that clearly converges to zero when r tends to zero.

The proof that the limit
lim [z ©9) — (2" © 9) 0 = lim | (= — 27) @ gl

vanishes follows easily using the same ideas.
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