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Chapter 1  

Introduction 

The advances of general purpose programmable computers have brought revolutionary 

changes into the world as it was known by providing the possibility of obtaining fast and 

efficient solutions to all sorts of problems. Over the past decades, computers became part 

of everyday’s life and their processing power exponentially increased, duplicating 

approximately every year and a half. This fact was first observed by Gordon Moore (Intel’s 

co-founder) in 1965 and is widely known as Moore’s law. 

Despite this evolution of processing power, there is a wide range of problems that cannot 

be solved in a reasonable amount of time with today's computers. These problems are 

called Grand Challenge problems [77]. One alternative for reaching an acceptable time to 

solve these problems is to split the problem and employ several processors simultaneously 

in parallel, reaching the solution in a fraction of the single-computer’s original time. This 

model is called parallel computing. Parallel computing can be defined as simultaneous use 

of more than one computer, or processor, working together to solve a common problem 

[25]. 

There are several ways to obtain the goals of parallel computing differing on processors 

communication strategy (shared or distributed memory), parallel programming model 

(threads, message passing), algorithm programming paradigm (master-worker, pipeline, 

divide and conquer, …), etc.  
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Nowadays the best cost-performance solution for parallel computing is the use of standard 

workstations interconnected by a network. This approach is known as cluster computing 

[25][26] and became even more popular with the use of commodity-of-the-shelf (COTS) 

components as presented at the Beowulf project [73] [L2].  

Because of its relative low-costs and simplicity, clusters of workstations (COW) have 

become a pervasive supercomputing alternative, now seen in industry and academia 

worldwide.  

Clusters might be homogeneous, i.e. formed by several identical computers, or 

heterogeneous, having computers with different hardware configurations. Heterogeneous 

clusters of workstations are gradually becoming the natural COW configuration because of 

the commodity nature of workstations and the multiplicity of vendors and platforms. Even 

homogeneously built clusters tend to become heterogeneous along time through computers 

replacement or new acquisition.  

The heterogeneity brings some drawbacks to applications speedup like problem 

decomposition, scheduling, balancing the load, mapping and processor selection [31]. 

Several works propose parallelization techniques to overcome some of these problems in 

heterogeneous clusters of workstations [17][20][32][64]. 

Computational problems faced by those heterogeneous clusters of workstations (HCOW) 

are increasing in size and complexity. However, clusters limited performance prevents the 

problems’ study grow.  

Internet’s evolution made possible to surpass the single cluster performance limitations by 

the joint of scattered HCOWs in a cooperative meta-computer, a multi-cluster. Multi-

cluster computing systems are formed from a set of independent clusters interconnected by 

a wide-area network (WAN) (Figure 1-1). 

Nowadays there is an emphasis on enabling applications to access resources in different 

and possibly widely dispersed locations, through computational and data GRIDs [38][47]. 

A collaborative multi-cluster application execution can occur as a result of the direct 

specific joint of clusters or as a result of a job request allocation from a GRID broker [40]. 

However, an effective execution speedup through multi-cluster usage is challenged by the 

addition of new levels of heterogeneity [58]. Despite of the heterogeneity within each 
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cluster, in a multi-cluster it is also relevant the heterogeneity among clusters. A multi-

cluster can be formed by clusters with different global performances and local area 

networks. There might also be differences in the latency and throughput in each pair of 

clusters communication.  

 

Figure 1-1: A multi-cluster as a group of clusters interconnected through a wide area network. 

Another remarkable aspect that improves the difficulties in multi-cluster performance 

obtainment is the difference between clusters’ local area networks (intra) and the wide-area 

network (inter) used to interconnect clusters [50][66]. Locally, in a cluster, computers are 

connected through a high-throughput, low latency and dedicated network. On the other 

hand, generally the network used to interconnect clusters is shared with other resources and 

offers low-throughput and high-latency when compared to local clusters networks.  

When Internet is chosen as geographically distributed clusters interconnection network, the 

collaboration difficulties are multiplied. The cooperation problems increment are a result 

of greater latency and throughput differences, Internet’s variability, vulnerability to 

external attacks and the possibility of intermittent communication failures.  

The Message Passing Interface (MPI) is currently the de facto standard for parallel 

applications communication in clusters [36][L4]. Numerous implementations of MPI have 

been carried out in industry and academia, and MPI has successfully been used in many 

domains (e.g., scientific computing, visualization, and bioinformatics). 

Some of the MPI solutions for clusters (MPICH[48][L5], LANMPI [L3], …) do not scale 

properly to multi-clusters, leading to research on MPI implementations for distributed 

domains executions (PACX [44], MPICH-G2 [54][L6], MagPIe [55], MPICH-VMI 
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[63][L7], and StaMPI [51]). These solutions address the communication heterogeneity 

problem [54] but they lack Internet fault tolerance facilities. 

The complexity of Internet based multi-cluster systems pushed solutions to use coarse-

grained (job-level) parallelism [39], targeting the speedup through job scheduling 

techniques [12][24]. 

In a near future scenario, when the usage of remote processing power could be charged, it 

is important not just to reduce the application execution time but also to guarantee a certain 

level of efficiency in the resources usage. Assuring a threshold level of efficiency enhances 

parallel computers’ throughput, improving the investment return. 

The efficient execution of applications in heterogeneous clusters is not a trivial matter 

[21][56] and this complexity is enhanced in a Internet-based multi-cluster environment 

[52]. It has been shown that parallel applications written for a single cluster do not run 

efficiently without modifications on multi-cluster systems [13].  

Through the past years several works were published focusing on the analysis of 

heterogeneous environments and their performance parameters. These works might focus 

on single heterogeneous clusters [14][15][22], scattered heterogeneous computers [23][70] 

or multi-clusters [1][52][62].  

The work presented in this thesis investigates how to reduce the execution time of parallel 

applications based on the master-worker paradigm, originally conceived for a single 

cluster, through the efficient use of multi-cluster resources. Transparency is aimed at the 

application migration strategy to the multi-cluster system and the specific resources 

involved in the application execution (local and external clusters) should just be selected 

when their efficiency will be above a certain threshold. A system architecture is proposed 

to provide transparency, scalability and to surpass the inter-cluster communications 

problems. An analytical model, including the multi-cluster system and the application 

features, was developed to support the efficiency evaluation, providing the basis for a 

proposed performance prediction methodology and a guide for the system tuning actions. 

The methodology aims to guide to the analysis of the application and selection of the 

multi-cluster resources in order to guarantee the execution time reduction within a certain 

level of efficiency. This methodology also gives the support to the application tuning in 

order to increase the efficient speedup through the multi-cluster. The architecture, 
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analytical model and methodology are the key components of a multi-cluster middleware 

for parallel applications. This middleware would provide efficient execution, prediction 

and dynamic adaptability. 

1.1. Objectives  

The use of multi-clusters can be a cheap, flexible and adaptable alternative to reduce 

applications’ execution time. Nevertheless a multi-cluster is a complex environment whose 

heterogeneity challenges the collaborative execution of applications and their efficient 

speedup. The complexity grows when multi-clusters are formed by scattered clusters 

interconnected through Internet. 

The work presented in this thesis targets to reduce the execution time of applications 

written for a single cluster, using a multi-cluster environment.  It is also aimed that this 

execution speedup is achieved within a certain level of efficiency.  

In order to achieve this goal, this work aims to provide a middleware, that allow a 

collection of clusters to form a multi-cluster; an architecture, to efficiently organize 

clusters resources and a methodology to guide in the process of achieving, using multi-

clusters, an application speedup with a certain level of efficiency. 

At the lower level a communication middleware is aimed to interconnect clusters through 

Internet providing reliability, overcoming possible temporary communication failures and 

efficiency, exploiting in a maximum Internet’s peaks of throughput. 

Once multi-cluster resources are interconnected, a system architecture is targeted to 

organize these resources in a way that applications’ adaptation to multi-clusters is 

transparent, avoiding significant modifications in single-cluster original programs.  

This architecture is aimed to organize multi-cluster resources in a way that applications 

execution is scalable, robust, efficient and adaptable. Scalability is a necessity because 

multi-cluster executions might occur with different amount of clusters and resources. The 

execution must also be robust to environment changes like Internet throughput and latency 

variances, delays or failures.  
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Efficiency is one of the main targets of this work. The resources organization aims to 

support strategies to increase the efficiency, like simultaneous computation and 

communication, and to overcome efficiency obstacles, such as load imbalance.  

Once clusters are interconnected and organized, another objective of this work is to 

provide a methodology to guide in the process of efficiently executing an application in a 

multi-cluster with the goal of reducing the application execution time. 

This methodology is oriented to determine, for a determined application if it should be 

profitable to be executed in the multi-cluster system, i.e., if it is possible to reduce the 

execution time with the coordinated use of the scattered resources. When a multi-cluster 

execution is profitable, the methodology targets to evaluate the execution time and 

efficiency of the application in the multi-cluster environment and to select which clusters 

and specific resources inside the clusters, should be involved in the execution to guarantee 

a defined efficiency.  

Finally, this thesis also aims to provide some hints to help in the application tuning process 

in order to increase the application speedup and execution efficiency in the multi-cluster 

system. 

1.2. Related Works 

The objective of the work described in this thesis is to reduce the execution time of 

applications through the efficient use of multi-clusters. Generally a multi-cluster is a 

heterogeneous system on computation (each cluster itself might have different processing 

power and computers in each cluster might have different processors) and communication 

(intra-cluster networks have different level of performance than inter-clusters 

interconnection network). 

The differences in latency and throughput from clusters local area network and the wide-

area network used to interconnect clusters caused message passing libraries for parallel 

applications to have problems of scalability for multi-clusters. The scalability problems can 

be specially observed when collective communications are used. 

Karonis in [53] demonstrates the advantages of topology aware message passing 

communication between scattered resources in a GRID environment. Topology aware MPI 
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implementations like MagPIe [55] and MPICH-G2 [54] try to minimize the data traffic for 

collective operations in the slow link.  

However, these approaches just avoid loss of performance of message passing 

communication through the wide-area network, not considering the effect of high-latency 

communication in the parallel algorithm performance. 

Plaat at all in [66] show the performance degradation for six applications because of the 

different latency and bandwidth between intra and inter-communication networks. The 

paper describes ways to change the applications to explicitly use the multi-level structure. 

In order to enable the achievement of speedup and efficiency in multi-clusters it is 

necessary for the application to be aware of the topology and performance at its workload 

distribution level.  

Bal in [13] demonstrates that simple optimizations to take the multilevel network into 

account might enable high performance in a multi-cluster structure for parallel applications 

originally written for a cluster. Some authors [59][11] defend that the communication 

middleware should provide applications with mechanisms to query topology information.  

Scalability is also an important issue for multi-cluster execution of applications. Aida in [1] 

and Nieuwpoort in [62] solved the scalability problem, achieving improvements in the 

application execution through hierarchical approaches applied to master-worker and 

divide-and-conquer applications.  

Moscicki in [61] introduces a load-balance algorithm for the multi-cluster execution of 

divide-and-conquer applications. This algorithm adapts itself to inter-cluster network 

configurations and job granularities, not requiring manually tuned parameters. 

Our proposal is to use a topology aware architecture to efficiently interconnect clusters 

based on a master-worker hierarchical approach to provide scalability. Our proposal also 

targets that these changes are not application specific like in Aida [1]. For our system 

transparency, not requiring considerable modifications to the application, is a target issue. 

Another important goal of the thesis is to guarantee a minimum efficiency in the multi-

cluster resources utilization. A performance model is the kind of tool we use to predict 

execution time and efficiency.  
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There are several on going works targeting efficiency of applications in heterogeneous 

clusters of computers. The master-worker paradigm is analyzed for HNOW considering 

just heterogeneous computation [21] or both heterogeneous computation and 

communication [4][5]. These works consider the distribution of one communication 

between master and worker and do not consider the possibility of having clusters 

interconnected through Internet. Our work takes into consideration master-worker 

application with multiple tasks that facilitates the balance of the load especially with 

heterogeneous processors. 

Some works on GRID computing address the problem of having scattered resources 

interconnected through Internet for task-parallelism [23] or master-worker [70] 

applications.  

Shao presents in [70] a performance model and a methodology to determine a 

performance-efficient mapping of master and worker processes in a GRID, considering the 

communication heterogeneity, but this model does not contemplate the possibility of 

interconnecting clusters instead of single computers. 

Our multi-cluster approach congregates aspects of both heterogeneous cluster and GRID 

behaviors, given that master-worker execution is done in heterogeneous clusters and 

workload distribution between clusters is done through a low-throughput network such as 

Internet.  

We propose then an analytical model also based in the computation-communication 

analysis but considering the cluster heterogeneity and the fact that clusters are connected 

through Internet. It is also relevant for our model possible performance improvements like 

overlapped computation and communication. 

1.3. Contributions 

In order to overcome multi-cluster problems, such as computation and communication 

heterogeneities, and reach a reduction of master-worker applications execution time while 

the resources (clusters/computers) are efficiently used, this thesis proposes a hierarchical 

master-worker system architecture, an analytical performance model and a performance 

prediction and system tuning methodology. 
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The proposed system architecture organizes the multi-cluster system in a way that it is 

possible to reach a high-performance efficient execution of applications. The system 

architecture is organized around a hierarchical master-worker with managers for handling 

Internet communication. The proposed system architecture provides the necessary single 

system image to the multi-cluster, transparently interconnecting clusters and overcoming 

Internet communication problems. The system architecture is also responsible to enable 

scalability and efficient and balanced usage of existent resources, allowing different data 

distribution strategies at intra and inter-clusters communication levels. 

The performance model is based on the computation-communication analysis. This model 

has as inputs some computation and communication characteristics of the application and 

of the multi-cluster system. The analytical model evaluates the possibility of using 

scattered resources to speedup the application execution and predicts the efficiency in each 

cluster and in the multi-cluster, estimating also the application execution time.  

The performance prediction and system tuning methodology describes the steps to migrate 

an application from a cluster to a multi-cluster environment, using the system architecture. 

The methodology uses the proposed analytical model to evaluate the efficiency and 

execution time and to dimension the execution resources in order to guarantee a fixed 

efficiency threshold. Additionally, if it is still necessary to improve the application 

speedup, the methodology also gives support to the process of tuning the application to a 

multi-cluster environment, helping in evaluating the necessary changes for efficiently 

reducing the execution time. 

The proposed system architecture, analytical performance model and performance 

prediction and system tuning methodology have been applied to three applications to verify 

the quality of the predicted values for execution time and efficiency. The selected 

applications were the matrix multiplication, Stochastic Resonant Memory Storage Device 

simulation (SRMSD) and traveling salesman problem. The testbed multi-cluster included 

three scattered clusters located in Argentina, Brazil and Spain. 

The obtained results proved the accuracy of the analytical model over 90% precision. 

Through the usage of the performance prediction and tuning methodology to the Stochastic 

Resonant Memory Storage Device application it was possible to achieve a speedup of 13 
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from a maximum speedup achievable of 13.7. The efficiency in the resources utilization 

was kept over 95%. 

1.4. Thesis organization 

This thesis is organized as follows. Chapter 2 presents the proposed system architecture 

used to interconnect the scattered heterogeneous clusters and create the multi-cluster 

system. Chapter 3 describes the proposed analytical model, explaining in details its 

concepts and elements. Chapter 4 introduces methodology for the performance prediction 

and system tuning, describing its phases and steps. The selected applications and the 

carried out experiments used to validate the proposed methodology and analytical model 

are described in Chapter 5. Finally Chapter 6 explains the thesis conclusion, summarizing 

its contributions and outlining possible future works.  
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Chapter 2  

System Architecture 

2.1. Introduction 

Due to its complexity and heterogeneity, building efficient and interoperable multi-cluster 

systems is not that simple as plugging in and setting up clusters’ Internet connection. This 

is especially true when considering finer grain applications on which continuous 

communication between clusters is a requirement. Simply interconnecting clusters proved 

to be a strategy that, for many applications, do not speedup appropriately [13], and might 

even cause decrease in the overall performance [41]. 

A multi-cluster has several heterogeneity aspects. The most relevant ones for our study 

concern computation and communication. At a multi-cluster of HNOWs, each cluster as a 

single element might have different processing power as well as each computer inside a 

cluster. 

A similar situation happens with communication, once each cluster might have different 

local area network bandwidths and the communication between each pair of clusters might 

have different levels of latency, bandwidth, and even reliability. The network performance 

differences are especially relevant when clusters are interconnected through Internet. 

Figure 2-1 illustrates a multi-cluster and its heterogeneities. 
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In a multi-cluster there might be differences of 3 or 4 orders of magnitude in latency and 

bandwidth between clusters LAN and the wide-area network used to interconnect clusters. 

Using Internet as inter-cluster WAN magnifies these latency and bandwidth differences.  

10Mbits

Internet

100Mbits

Cluster A Cluster B

10Mbits

Cluster C Cluster D

1Gbits

20Kbps

100Kbps
50Kbps

 

Figure 2-1: Heterogeneity in a multi-cluster formed by HNOW interconnected through Internet. 

This heterogeneity between LAN and WAN made message passing solutions for a cluster 

(MPICH[48][L5], LANMPI [L3], …) not to scale properly to multi-clusters, suffering 

deterioration in communication performance, especially when collective communication is 

used [53] . The actual proposed solution for this problem is to turn MPI implementations 

aware of the topology as available in multi-cluster MPI implementations (PACX [44], 

MPICH-G2 [54][L6], MagPIe [55], MPICH-VMI [63][L7], and StaMPI [51]). 

These multi-cluster implementations use the Internet Transmission Control Protocol (TCP) 

[67] for wide-area communication. Although, TCP is not well suited for Internet wide-area 

data transfers [33][37], reaching a fraction of the available bandwidth between the 

endpoints. Dickens [33] proposes a UDP based protocol to attain better communication 

performance. Other authors [3][71] approach this problem by dividing the data into 

partitions, opening several TCP sockets, and striping the data over several sockets. 

An additional complication of Internet in wide-area communication, especially when long 

duration executions take place, is the possibility of temporary communication failures and 
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consequent TCP disconnection. This problem evidences the necessity of a fault tolerance 

mechanism on inter-cluster communication. To the best of our knowledge, these 

communication fault tolerance mechanisms are currently inexistent in MPI 

implementations. 

Another challenge on Internet usage is the high level of variation in latency and bandwidth 

along time. At Figure 2-2 it can be seen the Internet achieved throughput value along time 

between two computers, one located in Brazil and the other in Spain. The experiment had 

46 hours duration and shows that the reached throughput varies from 8 to 30 KBytes/sec. 
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Figure 2-2: Internet throughput variance between one computer in Brazil and one computer in Spain. 

A system architecture is proposed in order to support efficiency in multi-clusters 

applications execution [42][43][7]. This system architecture objectives to be: (i) scalable, 

allowing the collaboration between multiple clusters; (ii) robust, overcoming possible 

temporary communication failures in Internet and giving support to fault-tolerance 

schemes [72]; (iii) efficient, using strategies for exploiting Internet bandwidth in a 

maximum and to allow the application to use different strategies for both communication 

levels; (iv) adaptable, supporting the possibility of adapting the workload distribution to 

possible changes in the multi-cluster environment during the execution. 

The proposed system architecture is organized in a way that the multi-cluster can be seen 

as a hierarchical master-worker, containing a component to manage wide-area 
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communication: communication manager (CM). Hierarchical master-worker approaches 

were used by Aida [1] and Banino [16] to attain better levels of performance in multi-

cluster and GRID respectively. 

This chapter introduces the master-worker and hierarchical master-worker approaches, the 

system architecture functionality and components in more details.  

2.2. Master-Worker Paradigm 

On the way to parallelize an application, data and computational activities are partitioned 

into small tasks that can be executed simultaneously at the distinct processing elements. 

There are some paradigms for task and data decomposition. One of the most popular 

parallel programming paradigms is the master-worker. 

The master-worker programming model is a fundamental and commonly used approach 

that consists of two entities: a master and multiple workers. The master is responsible for 

decomposing a problem into tasks and distributing these tasks among a farm of workers, as 

well as for gathering the partial results in order to produce the final computation result. The 

workers execute in a cycle: receive a message with the task (input), process the task, and 

send the result back to the master (output) (Figure 2-3).  

 

Figure 2-3: Master-worker paradigm. 

Usually master-worker communication patterns are simple and well-defined, requiring 

communication only between the master and individual workers. Typically the master 

sends one or more tasks to each worker. Each time a worker finishes, it sends the result 

back to the master and the master sends to this worker a new task. This process is repeated 
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until all tasks have been completed [25]. This characteristic turns the master-worker model 

to be easily adaptable to heterogeneous systems. 

Goux [45] claims that the master-worker paradigm is suited for dynamic and 

heterogeneous environments that require programmability, adaptability, reliability and 

efficiency. These features grounded the creation of some master-worker based frameworks 

[46][29][61]. 

The master-worker (MW) model is used in many scientific, engineering and commercial 

applications, such as: software building and testing, sensitivity analysis, parameter space 

exploration, image and movie rendering, high-energy physics event reconstruction, the 

processing of optical DNA sequencing, neural networks training and stochastic 

optimization among others [18][27][76][L8]. 

The most important reasons to adopt the master-worker model in this work are: 

• Adaptability to a changing number of machines 

The master-worker paradigm turns applications to become easily adaptable to 

executions with different numbers of computers. With a dynamic task management and 

the capacity to react to machine losses throughout execution time, the master-worker 

implementation is also adaptable to a dynamic changing number of machines during 

execution without major problems.  

• Existence of a central element 

The existence of a central control element that distributes the work is quite important 

for such a heterogeneous and unpredictable system like heterogeneous multi-clusters. 

The master element can dynamically adjust the amount of work to each worker and to 

other connected clusters, depending on the variance of the execution parameters like 

network throughput or external clusters availability for example. 

• High degree of predictability 

Empirical evidence has shown that, for a range of applications, the execution of each 

task in successive iterations tends to behave similar, so that the measurements taken for 
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a particular iteration are input predictors of near-future behavior [68]. This is important 

for designing models on which predictions could support dynamic decisions. 

• Efficiency 

With the standard distribution approach, workers will be idle during the 

communication period. In order to avoid this waste of computational power a pipeline 

strategy might be employed at the master-worker implementation. Workers processes 

might have two buffers and two threads: one for communication and another for 

computation. In the meantime a result is being sent and a new task is being received. 

The worker will be computing the other task buffer during the communication process.  

• Scalability 

Applying to a collection of clusters, the master-worker architecture also provides a 

number of hierarchical models in order to gather data and optimize distribution over 

non-first-level clusters or sub-clusters. The master-worker model itself is hierarchical, 

and it can also be expanded into more complex hierarchical relations. In Figure 2-4 the 

system architecture is extended into different hierarchical levels. The possibilities of 

expanding this model are unlimited [1][16].  

 

Figure 2-4: Hierarchical master-worker possibilities. 

The connection between a master and another level master (sub-master) usually can be 

different (i.e. in latency and bandwidth) from the one that interconnects a master to a 

worker. The master and workers can be in the same LAN, the sub-master and its sub-

workers in another LAN, and the connection between them can be a public WAN. 
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Therefore, the master-worker paradigm itself facilitates centralization of system 

management by using a central point that function as a global master, managing all 

communications with others clusters, monitoring network behavior, controlling task 

execution and also reallocating data, when necessary. One mentionable advantage of 

this architecture is that the master does not have to be always tied to one specific 

cluster. 

2.3. Proposed System Architecture 

The proposed system architecture is organized in a way that the multi-cluster can be seen 

as a hierarchical master-worker, containing an element to manage WAN communication: 

communication manager (CM). 

In this architecture each cluster is a master-worker itself. The cluster that contains the main 

master on which all data resides and from which the application execution starts is 

considered the local cluster or main cluster. All other external clusters are also called sub-

clusters, its masters, sub-masters and its workers, sub-workers. Communication managers 

are responsible for each pair of clusters communication through Internet (Figure 2-5).  

 

Figure 2-5: Multi-cluster system architecture as a hierarchical master-worker. 

In the way it is organized, the System Architecture presents four distinct processes roles: 

master, worker, sub-master, and communication manager. 

In order to improve the performance that a remote-cluster can attain to the system, the 

master might send to sub-masters tasks with coarser grains when compared to tasks sent to 

its local workers. There is no direct communication between master and external cluster’s 
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workers. To reach a balance of the load despite workers heterogeneity tasks are distributed 

in on-demand scheme. 

The master is the element that has all the data and from which all distributions begins. 

Masters are responsible for division of the problem into several tasks of a certain 

granularity and for distribution of these tasks to its workers and to sub-masters at external 

clusters.  

A pipeline strategy is implemented between clusters through the use of sub-masters and 

communication managers. Sub-masters implement a buffer/cache strategy so that data 

already received is recorded for further use, depending on the application characteristics. 

This feature allows an increase on the communication-computation ratio, avoiding 

communication of already sent data through the slow WAN link. 

Sub-masters have the same basic functionalities of a master, except by the fact that its 

workload is received by the main master and represents part of the global problem. Sub-

masters can receive bigger granularity tasks and then distribute this workload in finer grain 

tasks to its sub-workers. The same process is done with workers results, that can be joined 

into bigger grains results before being sent back to the main master. 

Workers are responsible for labor function. Workers receive a task data, execute the task 

and answer to the master connected to its LAN the result data. To reach performance 

improvements a pipeline strategy is implemented at workers level. Each worker has two 

buffers and executes computation and communication functions simultaneously through 

the use of two threads. 

Communication managers play a very important architectural role having different 

functionalities. For the main cluster master a CM represents a worker with greater 

computational power (corresponding to the connected sub-cluster) and high latency both 

on receiving tasks and returning partial results.  

For the application, communication managers’ worker behavior adds transparency to the 

system, allowing unaltered applications to work in a multi-cluster. For the external cluster, 

communication managers feed the sub-master with the workload to be split through its 

workers. For the system architecture, communication managers are necessary elements 

with functionalities that provide efficiency and robustness. 
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It is important to remark that the four processing roles existent in the system architecture 

are just related to execution processes and not to clusters computers. A workstation can be 

concurrently executing a master, communication manager and several workers processes.  

Although, these processes have different resources needs. Masters are generally not CPU 

bound but require high principal and secondary memory capacity and IO throughput. 

Workers are CPU oriented. Communication managers need memory and preferentially two 

different network cards so that Internet traffic do not interfere in the LAN and local and 

remote communication can be done simultaneously. 

In a heterogeneous environment, processes can be assigned each one to a specific 

workstation which can afford its characteristics. It might not be a good strategy to have two 

workers processes competing for one CPU, or even to have a worker interfering in the 

master capacity of distribution. High performance computers should be selected as workers 

while intermediate computers can have their memory and storage devices improved to play 

master roles. A brief description of the system architecture processes types is found in 

Table 2-1. 

Table 2-1: System architecture processes roles. 

Role Needs Responsibility 

Master Memory and 
IO. 

Data distribution policies for 
workers and sub-masters.  
Storage of problem and result data. 

Worker CPU Pipeline with tasks execution in a 
multithreaded scheme with double 
buffering. 

Sub-master Memory and 
IO 

Same as master. 
Buffering of its dataset. 

Communic
ation 
Manager 

LAN and 
WAN access. 

LAN and WAN isolation. 
Add reliability to WAN 
communication. 
Exploit WAN low throughput in a 
multi-connections multithreaded 
organization. 

2.4. Communication Managers 

Communication managers proved to be necessary to guarantee to the multi-cluster system 

transparency, efficiency, robustness and security.  
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Transparency is achieved because for the master CMs act as any worker, receiving tasks 

and returning tasks results. The difference is that this worker has the processing power of 

an external cluster with a high latency on tasks and results communication. For a sub-

master CMs act as the storage system where this master obtain the tasks to be distributed 

among its workers. 

Communication managers are bridge elements that receive data from local MPI calls, store 

these data in a buffer and continuously send them to the remote cluster. This 

communication becomes again local MPI calls at the other cluster side. The CM existence 

takes out from the master the responsibility of dealing with Internet latency and bandwidth 

unpredictability and with possible Internet communication failures. 

In order to provide efficiency to the system architecture, communication managers act as a 

bridge isolating traffic between local and wide-area networks. Being present at the LAN, 

CMs prevent the master to delay the tasks distribution to its local workers because of the 

long delay on sending tasks to external clusters through the low throughput WAN. 

Experiments without the use of CMs show the loss of local cluster performance, once the 

master stands long busy communicating with remote computers causing local workers idle 

time [41]. 

For efficiency reasons, CM also applies strategies of buffering, threading for local and 

wide-area simultaneous communication, and stripping for Internet communication. These 

strategies were implemented through the design and development of a communication 

library for the wide-area network. 

The communication library is called Long-Distance Service (LDS) and is explained in 

more details at the Appendix A of this thesis. CMs use standard MPI for intra-cluster and 

LDS for inter-cluster communication. 

At LDS initialization, buffers are allocated for sending and receiving communication. 

Communication managers continuously requests new tasks to the master until LDS 

sending buffer is full. With this strategy, CM tries to guarantee a constant communication 

between clusters so that the available throughput can be exploited in a maximum. 
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In order to maximize the communication performance LDS apply a network stripping 

strategy consisting of dividing the data into partitions, opening several sockets and striping 

the data over the sockets [3][71].  

Figure 2-6 shows the obtained throughput along time for communications between Brazil 

and Spain using LDS library configured for different amount of sockets. It can be seen that 

the communication improves its throughput almost linearly until 6 simultaneous 

communications through sockets are used. Then the increase in the amount of sockets does 

not change the obtained throughput meaning that the available throughput was reached. 
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Figure 2-6: Experimental throughput between Brazil and Spain using LDS with different amount of 
simultaneous communication. 

Robustness is achieved at Internet communication because LDS also implements a fault 

tolerance strategy handling possible TCP disconnections and guaranteeing the arrival of 

the data.  

Although CM was not designed with security concerns, it is possible to attain security 

because only one gateway is required to the cluster interconnection to the Internet and the 

communication ports of LDS can be easily configured. In the gateway computer firewalls 

can be used guarding the cluster from attacks. 

It is important to remark that the CM is a logical concept that physically is represented by a 

process which can be running on any computer, even concurring with a master or worker. 

Despite that, because of the networks isolation, it is highly recommended to run CM 
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process in a workstation that has two network cards: one in the LAN and the other in the 

WAN.  

Internally, the communication manager’s architecture is organized around two threads to 

make the bridge of MPI sending and receiving operation to LDS. LDS by its turn is a 

transparent multithreaded buffered system that allows reliable inter-cluster communication. 

The CM architecture can be seen in Figure 2-7. The mutex semaphores are necessary to 

avoid two simultaneous MPI calls that might result in MPICH to halt. 

 

Figure 2-7: Communication manager architecture. 

2.5. Adapting to the Proposed System Architecture 

In order to have a better overview of the system and to guide the adaptation of applications 

to the proposed system architecture, a layered model is introduced. This model is formed 

by five layers from the application to the physical layer (Figure 2-8). 

At the application layer there is the application written under a programming paradigm. 

The system architecture aims transparency and the application should be unaltered on its 

main basic functionalities concerned with the solution of the problem 

At the programming paradigm layer the system architecture uses the hierarchical master-

worker paradigm. It is interesting to remark that it is possible to map different paradigms to 

the master-worker and use the proposed system architecture as run-time architecture for 

applications, extending the range of applications that can be passed transparently to a 

multi-cluster. 

In order to execute in a multi-cluster, the only necessary change at this layer in the 

application is to enable the master, when acting as a sub-master, to have the 

communication-manager computer as its input/output subsystem. 
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Figure 2-8: Layered model. 

The message passing middleware is the layer responsible to the communication between 

multi-cluster resources. At this layer it is necessary to add the communication manager. 

The communication manager is a worker and inserting it consists on selecting a specific 

worker to act as communication manager being a bridge between MPI and LDS. 

In the network layer there are the standard communication protocols while the physical 

layer corresponds to the existent physical components like computers, network cards, 

switches, routers, etc. 

With the objective of improving efficiency some other modifications can be performed at 

the programming paradigm layer. In order to implement the intra-cluster pipeline, reducing 

idle time of workers, it is necessary that workers have two buffers and use asynchronous 

communication or separate threads for overlapping computation and communication. 

Another possible change that can result in performance improvements is to send tasks with 

a different granularity to the worker representing the communication manager, aiming a 

better computation-communication relation for the high-latency external clusters. 
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2.6. Conclusions  

In this chapter the proposed system architecture was described. The system architecture 

main objective is to support multi-cluster execution of applications providing scalability, 

robustness, efficiency and adaptability. It is also a goal of the proposed system architecture 

to enable applications to be adapted transparently to a multi-cluster environment. 

The proposed system architecture is organized in a way that the multi-cluster can be seen 

as a hierarchical master-worker. A master is responsible for tasks distribution in each 

cluster. The cluster that contains the problem data is responsible for distributing tasks to 

the external clusters masters, as well as to its own workers. 

Communication managers were added to the system architecture to provide transparency 

for the adaptation of applications, robustness and efficiency to the inter-cluster 

communication.  

Transparency is reached because communication manager encapsulates in a local cluster 

normal worker the complexity and performance of external clusters. To the main master a 

communication manager is a worker with greater performance and high latency on 

responding to tasks. For external clusters masters, communication managers are the 

input/output subsystem for the problem tasks and results. 

Efficiency and robustness at Internet communication between clusters is achieved through 

a developed communication library called LDS. The LDS communication service uses 

buffering strategy for asynchronous sending and receiving messages, targeting to keep 

constant communication, exploiting Internet in a maximum. A network stripping strategy 

aims to obtain the maximum throughput out of Internet’s transmission protocol. Fault 

tolerance is implemented to transparently solve problems of possible communication 

disconnections. 

 



Chapter 3: System Performance Model 
 

   25

Chapter 3  

System Performance Model 

3.1. Introduction 

At Chapter 2 the proposed system architecture was presented. The system architecture 

organizes a multi-cluster in a way that scattered clusters can be used for an application 

execution. The target of this thesis is to reduce the execution time of applications through 

the use of distributed clusters and to achieve this speedup guaranteeing a certain level of 

efficiency in resources utilization.  

It is also important to have a reliable estimation of the amount of time local and external 

resources will be in use because of the fact that resources might be in different domains, 

belonging do different organizations. 

A performance model is then necessary to estimate execution time and efficiency of 

master-worker applications. Different authors are working on performance modeling for 

master-worker applications with heterogeneous resources. These models are centered in 

communication and computation analysis considering single heterogeneous clusters [4][21] 

or scattered resources obtained from a GRID allocation [15][70].   

Our multi-cluster approach congregates aspects of both mentioned behaviors, given that 

master-worker execution is done in heterogeneous clusters and workload distribution 

between clusters is done through a low-throughput network such as Internet.  
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In order to improve efficiency, avoiding workers idle computation time, the architecture 

defined a pipeline strategy where communication and computation occurs simultaneously 

in both intra and inter cluster levels. The execution performance with this strategy is either 

limited by workers computation (computation-bounded) or by network communication 

(communication-bounded) capacities. 

The master-worker pipelined execution has two stages (computation and communication) 

and can be divided in three different states: startup, steady and end. The startup is the state 

comprehended between the execution start and the moment when all workers compute 

tasks. At this moment the system reaches its steady state. At the steady state the best 

execution performance is achieved. The steady state finishes when a worker becomes idle 

because the master has no more tasks to distribute. From this moment until the master 

receives the last task takes place the end state.  

Figure 3-1 illustrates the performance behavior along time for a pipeline execution. It is 

possible to distinguish in this graphic the startup, steady and end states. Even when the 

steady state is computation bounded, the overall efficiency is reduced because of startup 

and end states.  

 

Figure 3-1: Sample graphic of performance for a pipelined execution, showing the different states.  

An analytical performance model is then proposed [9][8] to evaluate these three states and 

estimate efficiency and execution time of an application at a multi-cluster system 

organized as defined in the proposed system architecture. The main objective of the model 
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is to evaluate the possible performance that each cluster can attain in the multi-cluster 

execution, estimating the multi-cluster application execution time and the achievable 

efficiency. 

The performance model is grounded in a computation-communication analysis. This model 

has as inputs the application computation and communication requirements, the multi-

cluster system computation and communication capacity and the target efficiency. 

It is also an aim of the model to help the selection of resources for which the execution 

carries out a desired threshold level of efficiency. This resources selection determines 

which clusters and computers can be used guaranteeing efficiency over the threshold. 

In this chapter the proposed analytical model parameters and design for each state are 

presented in more details. 

3.2. Multi-cluster Input Parameters 

The analytical model proposed in this thesis is based in computation-communication 

analysis. The model communication and computation parameters can be divided in two 

basic types: application and system. 

Application parameters are those that depend exclusively on an application, i.e., 

parameters that are not modified when the target execution resources is changed. Examples 

of application parameters are the amount of bytes of a task and the amount of tasks of a 

certain problem.  

System parameters are the ones that depend on the target multi-cluster system where an 

application execution is planned to happen. The number of nodes, the performance of each 

node and network throughputs are examples of system parameters. 

Application parameters need to be analyzed just once for a certain application and just 

need to be reevaluated if the application implementation has changed. System parameters 

need to be updated every time an execution will take place with different resources, i.e., 

within a different multi-cluster configuration. 
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3.2.1. Application Parameters 

Application parameters refer to the application computation and communication 

requirements for the solution of a problem. Analyzing computation, application 

parameters are associated to the problem division into tasks and tasks complexity.  

On the communication side, application parameters are related to the volume of 

communication required for communicating tasks and their results. 

Before analyzing the computational application parameters it is important to determine the 

application basic operation. The basic operation of an application is the metric of 

computation performance that is used to compare resources performances and to predict 

execution time. The basic operation represents the most important and common operation 

executed in an application task, the operation that computationally limits the execution 

time. For example, a possible basic operation for a matrix multiplication algorithm could 

be a single float point operation. It is possible to determine the amount of float point 

operations of a matrix multiplication and also the float point operations are the most 

important operation in a matrix multiplication task. 

For some applications it might not be straightforward to determine such a simple operation 

as the basic one and the basic operation might be a Fourier transform or a group of 

calculations for example. If no important repeatable operation is evident for an application, 

an application task itself can be considered as basic operation. 

Computation 

The model computational application parameters for an algorithm are the amount of 

tasks of a certain workload, the amount of basic operations of a task and the amount of 

basic operations of a workload. 

The problem or a significant part of the problem is considered to be a workload. The 

amount of tasks of a workload (Tasks) depends on how an application divides a workload 

into single tasks that are sent to workers. For some applications there might be several 

ways to divide a workload into tasks, resulting in different amount of tasks depending on 

the granularity. In this case, the amount of tasks of a workload is a function of some 

algorithm parameters that define this granularity.  
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The amount of basic operations of a task (Oper) also depends on the way tasks are divided 

in an application and it represents how many single basic operations needs to be done for a 

task completion.  

The amount of basic operations of a workload (Workload) for a certain granularity can be 

seen as the multiplication between the amount of tasks of a workload and the amount of 

operations in a task (1) and represents how many single basic operations needs to be done 

for the workload completion. 

)()()( GOperGTasksGWorkload ∗=  (1)

Table 3-1 summarizes the application parameters for computation, with their symbol and 

explanation. 

Table 3-1: Model computation application parameters for a multi-cluster. 

Computation 
Parameter 

Symbol Explanation 

Tasks of a 
workload 

Tasks(G) Represents the quantity of tasks of a workload 
divided in a specific granularity. 

Basic operations 
of a task 

Oper(G) Represents the number of basic operations of a 
task with a specific granularity. 

Basic operations 
of a workload 

Workload(G) Represents the number of basic operations of a 
workload divided in a specific granularity. It is 
the number of tasks for this workload multiplied 
by the operations of a task. 

Communication 

For the communication, the application parameters are related with the data 

communication volume of tasks and results. The communication application parameters 

are the size of a task (STask), the size of a task result (SResult) and the total communication of 

a task (SComm).  

The size of a task is the amount of bytes that needs to be communicated from master to 

worker in order to send an application task. Similarly, the size of a result is the amount of 

bytes that needs to be communicated from worker to master in order to send a task result. 

Both the size of a task and the size of a result depend on the granularity on which the tasks 

were divided. 
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The total communication of a task (2) is the sum of the size of a task and the size of a 

result.  

ResultTaskComm SSS +=  
(2)

Table 3-2 summarizes the application parameters for communication, with their symbol 

and explanation. 

Table 3-2: Model communication application parameters for a multi-cluster. 

Communication 
Parameter 

Symbol Explanation 

Size of a task STask(G) Represents the amount of bytes that needs to be 
communicated for sending a task from master to 
worker with a certain granularity. 

Size of a result SResult(G) Represents the amount of bytes that needs to be 
communicated for sending the result of a task 
from worker to master with a certain granularity. 

Total 
communication 
of a task 

SComm(G) Represent the total amount of bytes needed to be 
communicated between master and worker for a 
task completion. It is the sum of the size of a task 
and the size of a result. 

3.2.2. System Parameters 

System parameters refer to the multi-cluster system computation and communication 

capacity. Analyzing computation, system parameters are associated to the capacity of 

workers on computing tasks. For communication, system parameters are related to 

clusters networks throughputs and inter-cluster throughputs. 

Computation 

For the computation, the system parameters are each computer available performance 

(PerfAvail), each cluster available performance (CPerfAvail) and the multi-cluster available 

performance (MCPerfAvail). 

The available performance of a computer is defined as the amount of basic operations per 

second a computer can reach executing application tasks. This measurement might also 

depend on the task division granularity. This value is reached by executing in each 

computer stand alone application tasks of the desired granularity. 
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For a specific execution, the sum of workers available performance in a cluster represents 

the cluster available performance (CPerfAvail) (3). Analogously, the addition of the cluster 

available performances for all clusters in the multi-cluster execution represents the multi-

cluster available performance (MCPerfAvail) (4). These indexes represent an approximation 

to the best possible performance of the system using the selected workers. 

∑=
workers

AvailAvail PerfCPerf  
(3)

∑=
clusters

AvailAvail CPerfMCPerf  
(4)

A summary of the dynamic computational parameters can be seen at Table 3-3.  

Table 3-3: Model dynamic computation parameters for a multi-cluster. 

Computation 
Parameter 

Symbol Explanation 

Available 
Performance 

PerfAvail(G) Represents the amount of basic tasks per second a 
computer is able to execute using tasks of a 
certain granularity. 

Cluster Available 
Performance 

CPerfAvail(G) Represents the sum of the available performance 
for the computers which have worker role. 

Multi-cluster 
Available 
Performance 

MCPerfAvail(G) Represents the sum of the cluster available 
performance for the clusters selected to the 
application execution. 

Communication 

The system parameters for communication are each cluster local area network 

throughput (TPutLAN) and the average Internet throughput (TPutInet) between the main 

cluster and each external cluster in the multi-cluster. 

Local area networks are dedicated environments for which the nominal throughput is 

known. Despite that, the real useful throughput of a LAN can vary with the size of the data 

being transmitted and its relation with the size of the total header data for all the protocol 

layers used. 

Because of this variation possibility, it is recommended to have the local area network 

throughput measured as the average throughput using a program that continuously 

communicates application task-sized and result-sized packets. This value might be 

dependent of the task granularity. 
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Internet throughput between clusters is not stable and can significantly vary along time. 

For this work, the Internet throughput is an average value reached through a long duration 

communication experiment between clusters. It might be possible to have different values 

for incoming and outgoing Internet throughputs. Because of this both communications 

throughputs should be experimentally determined. 

A summary of the dynamic communication parameters can be seen at Table 3-4.  

Table 3-4: Model dynamic communication parameters for a multi-cluster. 

Communication 
Parameter 

Symbol Explanation 

Local area 
network 
throughput 

TPutLAN Represents the average real throughput of the 
local area network communication task and 
results sized packets of a certain granularity. 

Internet 
throughput 

TPutInet Represents the average throughput of the Internet 
between the main cluster and a specific external 
cluster.  

3.3. Performance model 

The performance model is based in the computation-communication analysis for the 

architecture pipelined approach. As defined in the proposed system architecture, during an 

application execution computation and communication run simultaneously using double-

buffered multi-threaded workers for intra-cluster level and using sub-masters and 

communication managers for the inter-cluster level.  

The aim of the performance model is to evaluate the execution time and efficiency for an 

application execution in a specific multi-cluster. This evaluation is done analyzing the 

different states for an application execution. 

A master-worker pipelined execution has two stages: computation and communication. 

The pipeline execution time can be divided in three different states: startup, steady and 

end.  

The startup is the state comprehended between the execution start and the moment when 

the pipeline is full and the system reaches its best execution performance. The startup is 

the period of time where each worker first task is communicated. 

The steady state is the period where the execution is stabilized in its maximum and steady 

performance, where the best computation-communication ratio is reached. The steady 
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stage finishes when there are no more tasks to be distributed and workers start to become 

idle. From the moment the first worker ends its execution until the last task is received by 

the master represents the end state.  

Figure 3-2 illustrates a double buffered pipelined execution of 20 tasks in a cluster with 4 

heterogeneous workers. This figure graphically shows each execution state and their 

respective duration: startup time (TUp), steady time (TSte) and end time (TEnd). 

1

1 1

2

2

3

3

4

4

5

6

7

8

5

9

2 10

6

4 11

8

7

3

12

14

16

15

19

16

12

17

18

14

20

15

19

18

20

17

W1

W2

W3

W4

Startup Steady End

Task communication time

Task result communication time

Task computation time

…
…
...

TUp TSte TEnd

 

Figure 3-2: Illustration of the execution time states for a sample execution of 20 tasks in a cluster with 
4 workers. 

In order to evaluate the efficiency it is important to analyze the three states. At the startup 

and end states there is a loss in efficiency caused by idle computation time of workers 

while idle computation can be found in the steady state when the application is 

communication bounded.  

The proposed model estimates the duration of each of these three states. The estimated 

execution time (TEx) (5) is then the sum of startup time (TUp), steady time (TSte) and end 

time (TEnd).  

EndSteUpEx TTTT ++=  
(5)

The best possible execution time (TBest) would occur when all the tasks are executed in 

computation bounded steady state. In this case the startup and end time would be null and 

all tasks would be executed in a perfect pipeline, using the whole multi-cluster available 

performance (4). The best execution time would then be the ratio between the amount of 

basic operations of the workload and the multi-cluster available performance (6). 
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Avail
Best MCPerf

WorkloadT =  
(6)

The estimated efficiency can be defined as the ratio between the best possible execution 

time and the estimated execution time (7). 

EndSteUp

best

ex

best

TTT
T

T
T

Efficiency
++

==  
(7)

In the following sub-sections we study the possible best and worst time for each state of 

the pipeline execution (startup, steady, end), so that the overall best and worst execution 

time and efficiency can be estimated. This study is initially done for a local cluster and 

then extended to an external cluster. 
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Figure 3-3: Illustration of one-to-one inter-cluster studied distribution strategy, where one inter-
cluster task corresponds to one task inside the external cluster and so does one inter-cluster task result. 

For external clusters the startup, steady and end times are dependent on the inter-cluster 

tasks distribution strategy. This strategy might be specifically oriented for the application. 

On the following sub-sections we study two possible distribution strategies for inter-cluster 

tasks distribution: one-to-one and one-to-many. 
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At one-to-one distribution strategy, one inter-cluster task data sent to an external cluster 

represents one task for external cluster workers. For this task one result will be sent back 

from external to main cluster (Figure 3-3).  

At one-to-many distribution strategy, one task data packet sent to an external cluster 

represents an N fixed number of tasks locally in the external cluster. An N fixed number of 

results will be joined together in an inter-cluster task result (Figure 3-4).  

The one-to-many approach is profitable when it is possible to increase the computation-

communication ratio of an application by the means of increasing the task volume of data.  
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Figure 3-4: Illustration of one-to-many  inter-cluster distribution strategy, where one inter-cluster task 
corresponds to N tasks inside the external cluster and one inter-cluster result corresponds to the joint 
of N external clusters results. 

3.3.1. Startup Time 

The startup time is the elapsed time between the execution start and the moment the 

pipeline is full and steady. At the beginning of the startup state, all workers are idle waiting 

for tasks. During this state the first task is distributed to workers so that gradually the 

system improves the workers usage until there are no idle workers. At this moment the 

startup state reaches its end. 
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At the next sub-sections the startup state is studied for a local cluster and for external 

clusters with both proposed distribution strategies. 

Local cluster 

The time spent by the master to communicate one task for the first worker in the local 

cluster (TcTaskLC) is the startup time for this worker. The second worker waits the time that 

it takes for the master to send two tasks (one for the first worker and one for it). For each 

worker the startup time grows successively as shown in Figure 3-5.  

  

Figure 3-5: Startup time for each worker in a local cluster execution. 

The total computation idle time (TpIdle) for a W workers cluster startup is then the sum of 

these idle times (8) which represent an arithmetic progression (9). The whole system is 

penalized in the average of the total idle time, which is reached by dividing the idle time by 

the amount of workers. The startup time for a local cluster (TUpLC) is then given by 

equation (10). 

TaskLCTaskLCTaskLCIdle TcWTcTcTp ∗++∗+= ...2  
(8)

( )
⎥⎦
⎤

⎢⎣
⎡ ∗+

∗=
2
1 WWTcTp TaskLCIdle  

(9)

( )
2

1* +
=

WTcT TaskLCUpLC  
(10)
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The time spent to send a task can be defined as the size of a task (STask) divided by the local 

cluster LAN average throughput (TPutLC) (11). The startup time for the local cluster can 

also be defined as seen in equation (12). 

LC

Task
TaskLC TPut

STc =  
(11)

( )
2

1+
∗=

W
TPut

S
T

LC

Task
UpLC  

(12)

External cluster – One-to-One Strategy 

In order to analyze the one-to-one strategy we consider an external cluster connected to a 

local cluster through the Internet. One inter-cluster task represents one external cluster 

task. In this case the communication of tasks happens in a double pipelined scenario where 

the master to sub-master communication is overlapped with the communication between 

sub-master and its workers inside the external sub-cluster as illustrated in Figure 3-6. 

  

Figure 3-6: Startup time for each worker in an external cluster considering the one inter-cluster task 
as one intra-cluster task.  

The time to send the first task from master to sub-master (TcTaskMSM) is the sum of the time 

to send this task from master to its communication manager in the local cluster (TcTaskLC), 

the time to send the task from one CM to the other through Internet (TcTaskInet) and the time 

to send a task from CM to sub-master in the sub-cluster LAN (TcTaskSC) (13).  
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TaskSCTaskInetTaskLCTaskMSM TcTcTcTc ++=  
(13)

For the second task sent from master to sub-master, Internet communication runs 

simultaneously with local communications (Figure 3-6 a). The communication time would 

be the sum of the time for the first communication from the master to its communication 

manager, two times the time to send a task through Internet and the time to send the task 

from the communication manager to the master (14). The master to sub-master 

communication time grows in one Internet communication for each task.  

TaskSCTaskInetTaskLCTaskMSM TcTcTcTc +∗+= 2  
(14)

Considering that Internet communication throughput is at least one order of magnitude 

worst than local communication, we assume that the communication of a task between 

master and sub-master can be simplified as being the Internet communication time.  

The time to send a task through the Internet link can be defined as the size of a task divided 

by the sub-cluster Internet incoming throughput (TPutInetIN) (15). 

InetIN

Task
TaskInetTaskMSM TPut

STcTc ==  
(15)

The first worker idle time is the communication time of a task from master to sub-master 

(TcTaskMSM) plus the communication time of a task in the sub-cluster LAN (TcTaskSC).  For 

the second worker, the idle time is two times the master to sub-master task communication 

time plus the LAN communication time. This grows successively until the last worker. 

The total computation idle time (TpIdle) for a sub-cluster with WSC workers is the sum of 

each worker idle time (16). The total idle time will then be defined by equation (17). The 

sub-cluster startup time (TUpSC) is then the average of the total idle time (18). 

( ) ( )
( )TaskSCTaskMSMSC

TaskSCTaskMSMTaskSCTaskMSMIdle

TcTcW
TcTcTcTcTp

+∗+
++∗++= ...2
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External cluster – One-to-Many Strategy 

For the one-to-many distribution strategy, the main cluster sends tasks data packets that 

result in more than one task on the external cluster. Figure 3-7 illustrates an example of the 

startup state on which each inter-cluster task has two external cluster tasks. 

 

Figure 3-7: Startup state for each worker in an external cluster considering one inter-cluster task 
represents two intra-cluster tasks.  

For this case the sum of the idle time is a bit more complex and has to consider the amount 

N of sub-cluster tasks inside an inter-cluster data packet. It is also relevant the fact that the 

size of an inter-cluster task (STaskInter) is different than of an intra-cluster task (STask). The 

master to sub-master communication time is then the ratio between the size of the inter-

cluster task and Internet average throughput (19).  

InetIN

TaskInter
TaskMSM TPut

S
Tc =  

(19)

The first worker idle computation time is the sum of the master to sub-master inter-cluster 

task communication time and the sub-cluster task communication time. From the second 
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worker until the Nth worker, the idle time is increased in one LAN task communication 

time at the sub-cluster.  

From the worker N+1 to the 2*N, the idle time is similar, increased in a new inter-cluster 

task communication. The total idle time sum would then be (20) and the startup time 

would be the average of the total idle time for the workers (21). 

( ) ( )
( ) ( ) ...2

...2
++∗+∗++
+∗+++=

TaskSCTaskMSMTaskSCTaskMSM

TaskSCTaskMSMTaskSCTaskMSMIdle

TcTcTcNTc
TcTcTcTcTp

 
(20)
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Idle
UpSC W

Tp
T =  

(21)

3.3.2. Steady Time 

The steady time is the period on which the pipeline is running steady and computation and 

communication are overlapped. In the steady state the execution reaches its best 

performance. The steady state finishes when there are no more tasks to feed workers and 

workers become idle. 

Local cluster 

During the steady execution, considering the master does not represent the bottleneck, the 

execution performance is either limited by the computers performance (computation-

bounded) or by the network throughput (communication-bounded).  

Figure 3-8 illustrates a computation bounded execution of 20 tasks in a heterogeneous 

cluster with 4 workers. It can be seen during the steady period some idle moments on the 

network communication but no idle processing time in workers.  

The same 20 tasks sample execution, this time communication bounded because of bigger 

task sending and result receiving time, can be seen at Figure 3-9. In this example, during 

the steady execution there was no idle communication moment but there was idle 

processing time in workers.  
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Figure 3-8: An example of a computation bounded execution of 20 tasks in a heterogeneous cluster.  

Our objective is to estimate the steady time. The steady time is the maximum value 

between computation time (Tp) and communication time (Tc) (22).  

),max( TpTcTSte =  (22)
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Figure 3-9: An example of a communication bounded execution of 20 tasks in a heterogeneous cluster.  

The computation time (23) can be defined as the amount of tasks to be executed (Tasks) 

multiplied by the number of basic operations in a task (Oper) divided by the cluster 

available performance (CPerfAvail) (3). The communication time is the amount of tasks 

multiplied by the size of communication (Scomm) divided by the local cluster LAN 

throughput (TPutLC) (24). From this it is possible to calculate the steady time (25). 

AvailCPerf
OperTasks
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∗

=  
(23)
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=  
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It is also important to determine the performance on which the pipeline will stabilize. This 

performance value represents the best system performance and can be used to dimension 

the resources to be used in the execution. Using computers that together have an available 

performance greater than this steady performance represents a waste in resources and a 

decrease in system efficiency. 

The steady performance (PerfSte) (26) is the amount of tasks multiplied by the basic 

operations of a task divided by the steady time.  

⎟⎟
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⎛
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STasks

CPerf
OperTasks

OperTasksPerf

,min
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(26)

From the equation (26) it is possible to conclude that the steady performance will be the 

minimum value between the available performance and the computation bounded 

performance limit.  

The computation bounded performance limit represents the performance on which the 

communication would become saturated, the best achievable performance if there was no 

computation resources limitation.  

External cluster – One-to-One Strategy 

For the one-to-one analyzed scenario, where one inter-cluster task represents one task data 

packet for an external cluster, both the communication time of tasks between master and 

sub-master and the communication time of task results between sub-master and master 

must also be considered for determining the steady time. It is relevant the possibility that 

external clusters incoming and outgoing Internet communication throughputs might have 

different average values. 

In such a scenario the steady time is not just the maximum from the external cluster 

computation (Tp) and communication (Tc) times but also from the master to sub-master 

total tasks communication time (TcTotTaskMSM) and sub-master to master results total 

communication time (TcTotResultSMM) (27). 
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),,,max( MMTotResultSTotTaskMSMSte TcTcTcTpT =  
(27)

As seen at the external cluster startup time explanation, we simplify the master to sub-

master tasks communication time as being the time to communicate one task using the 

Internet (15). Analogously, the sub-master to master result communication time 

(TcResultSMM) can be simplified as just being the time to send one result through the Internet, 

which corresponds to the size of a result divided by the external cluster outgoing 

throughput (TPutInetOUT) (28). 

InetOUT

Result
ResultInetResultSMM TPut

STcTc ==  
(28)

The total time to communicate tasks through the Internet (TcTotTaskMSM) is the amount of 

tasks multiplied by the time to send one task (29) while the total time to send results 

(TcTotResultSMM) is the amount of tasks multiplied by the time to send one result (30). 
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STasksTcTasksTc ∗=∗=  
(29)
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Result
ResultSMMMMTotResultS TPut

STasksTcTasksTc ∗=∗=  
(30)

Considering TPutSC as the sub-cluster LAN throughput, the steady time in this scenario is 

represented by equation (31) and the steady performance by equation (32). 
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External cluster – One-to-Many Strategy 

The one-to-many scenario is similar to the previous one with the difference that one inter-

cluster task and result represents N external sub-cluster tasks and results. The size of an 

inter-cluster task (STaskInter) and result (SResultInter) might be different (normally greater) than 
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from a local task and result but the advantage is that an inter-cluster task in this scenario 

carries N local tasks. 

The time to receive tasks from the Internet (33) and the time to send results at the Internet 

(34) are then relative to the inter-cluster task and result sizes and the N value. 
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InetOUT

rResultInte
MMTotResultS TPut

Tasks
N

STc ∗=  
(34)

In this case the steady time is given by equation (35) and the steady performance by 

equation (36). 
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3.3.3. End Time 

The end state starts when the master has no more tasks to distribute and the first worker 

finishes its tasks becoming idle. The end state goes until the moment the master join the 

last task. There are several possible configurations for the end state depending on resources 

heterogeneity, amount of tasks, order of tasks distribution, communication properties, etc.  

We analyze the most significant of those possible scenarios for determining the application 

execution time and efficiency. These scenarios are the best and worst possible end time. 

The best and worst possible end time will lead to the best and worst execution time and 

efficiency. The worst possible end time must be used when targeting to guarantee an 

efficiency threshold. 

For determining the worst possible end time, two alternatives are evaluated. Firstly it is 

considered the application does not reassign tasks when the last task is distributed. The 

second alternative considers the master reassigns the last task to every worker that finishes 
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its execution until the total problem is solved. It is also evaluated the possibility of the 

application being communication bounded and the end time be restricted to results 

communication. 

Local cluster 

At the local cluster, the best end state happens when the execution finishes perfectly 

balanced, just like the pipeline startup. Each worker would finish its execution in the exact 

time the network is available for it to send the task result data (Figure 3-10). 
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Figure 3-10: Best execution ending scenario. 

In this scenario, the best end time value for the local cluster (TBestEndLC) is similar to the 

startup time (14), considering the size of the task result (SResult) (37). 
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The worst end possible scenarios depend if the execution is computation or 

communication bounded.  

The worst computation bounded scenario happens if the final task goes to the worst 

worker when all workers finished their tasks at almost same time (Figure 3-11).  



Chapter 3: System Performance Model 
 

    46 

5

4

5
W1

W2

W3

W4

Idle computation time

Task computation time

Result communication time

6

6

8

7

84

7

TcResultLC

TpTaskWorst

 

Figure 3-11: Worst execution ending scenario. 

For this scenario the total computation idle time is the worst worker task execution time 

(TpTaskWorst) multiplied by the amount of worker minus one. To this value it should be 

added the time for each worker to send a task result in the local cluster LAN (TcResultLC) 

(38). The worst ending time (TWorstEndLC) (39) is then the average of the idle time for the 

workers. 

( ) ResultLCTaskWorstIdle TcWWTpTp ∗+−∗= 1  
(38)

( )
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W
WTpT +

−
∗=

1
 

(39)

It is possible for the master, when a worker finishes its tasks, to reassign the last task to this 

worker because in heterogeneous clusters this worker might finish faster than the one that 

is executing this last task.  

If reassignment is considered, the worst possible computation bounded scenario happens 

when the last task is reassigned to all computers and they all finish this last task at the same 

time, meaning that every computer but one wasted one execution time. The worst scenario 

happens when the best computer is the one whose execution time is not wasted, 

maximizing the idle time (Figure 3-12). 



Chapter 3: System Performance Model 
 

   47

8

8
W1

W2

W3

W4

Idle computation time

Task computation time

Result communication time

8

8

8

5

4

7

6

7

5

4

6

Reassigned task wasted computation time

3

2

2 8

3 8

1 8

8

1

Reassignment!
TcResultLC

∑
−1Workers

TaskTp
 

Figure 3-12: Worst execution ending scenario if the last task is reassigned. 

In this case the worst end time (40) is the addition of the time to send a task result data 

(TcResultLC) and the average time each worker, except one (the worst case is that this one is 

the best worker), spent on processing one task (TpTask). The time to send a task result data 

(41) is the ratio between the task result data size (SResult) and the local cluster network 

throughput. The time it takes to a worker to execute a task (42) is the amount of operations 

of the task divided by the worker available performance. Finally, the worst scenario ending 

time can also be seen as equation (43). 

∑
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When the application is communication bounded, the worst scenario happens when all 

workers finish their last tasks at the same time. In this case the communications will be 

done without any computation (Figure 3-13).  
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Figure 3-13: Worst execution ending scenario for communication bounded clusters. 

The worst end time (44) would then be the number of workers multiplied by the time to 

send a task result. 
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SWTcWT ∗=∗=  
(44)

In summary the best end is the perfect balanced pipeline and the worst end time depends if 

the application is computation or communication bounded and if it reassigns the last task. 

External cluster – One-to-One Strategy 

Considering that every task result for an external cluster needs to be communicated back to 

the main cluster, both the best and worst ending scenarios time differs from the local 

cluster by the inter-cluster communication pipeline.  

The best ending scenario occurs when the pipeline finishes perfectly balanced, considering 

the time for a task result to be communicated from the sub-master to the master (Figure 

3-14).  

The idle processing time for the last computer in this scenario is the time to send a result in 

the external cluster LAN plus (TcResultSC) the time to send a result from sub-master to main 

master (TcResultSMM). For the previous worker, the idle processing time it is time to send a 

result in the external cluster LAN plus two times the time to send it to the main cluster. 
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This value increases in one inter-cluster communication until the first worker (45). The 

total idle time is then defined by equation (46). 

 

Figure 3-14: Best execution ending for external clusters in the first scenario. 
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The end time (47) is then the average of the idle time for the workers. Similarly to the time 

to send a task, the time the result takes from the sub-master to the master (TcResultSMM) is 

simplified as the time it takes to send a result between the communication managers in the 

Internet (TcResultInet) (48). 
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The worst end cases are also similar to the ones of the local cluster analysis. If the 

application is computational bounded with no reassignment of the last task than the worst 
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scenario is when workers finish at the same tame and the last task goes to the worst worker 

(Figure 3-15). 

 

Figure 3-15: Worst execution ending for external clusters in the first scenario when the last task is not 
reassigned. 

In this case the worst end time (49) is similar to the local cluster just adding the time to 

send a result from the sub-master to the main master. 
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Figure 3-16: Worst execution ending for external clusters in the first scenario when the last task is 
reassigned. 



Chapter 3: System Performance Model 
 

   51

( )
ResultSMMResultSC

SC

SC
TaskWorstWorstEnd TcTc

W
W

TpT ++
−

∗=
1

 
(49)

The same situation happens when tasks are reassigned (Figure 3-16) and to reach the worst 

end value it is just necessary to add the time for the result to be communicated from the 

sub-master to the main master (50). 
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In the case it is communication bounded, it is possible that at the worst end all the workers 

wait for the slower sub-master to master communication of results (Figure 3-17). The 

communication bounded worst end time value is seen in equation (51). 
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Figure 3-17: Worst execution ending for external clusters in the first scenario when the application is 
communication bounded. 

ResultSMMResultECWorstEnd TcWTcT ∗+=  
(51)

For communication bounded executions the worst end time would be the maximum 

between the computation bounded – (49) or (50) – and the communication bounded (51) 

worst end times.  
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External cluster – One-to-Many Strategy 

At the second studied scenario, one task result sent from the external cluster to the main 

represents the joint of N tasks results executed inside the external cluster. The size of the 

inter-cluster result (SResultInter) is then different from the intra-cluster result (SResult).  

The best ending scenario occurs when the pipeline finishes perfectly balanced (Figure 

3-18). The idle computation time for the first computer in this scenario is the time to send 

N results in the external cluster LAN (TcResultSC) plus W/N times the time to send a result 

from the sub-master to the main master (TcResultSMM).  

 

Figure 3-18: Best execution ending for external clusters in the second scenario. 

For the second worker it is the time to send N-1 results in the external cluster LAN plus 

W/N times the time to send it to the main cluster. This goes successively for the first N 

workers. At this point the next worker idle time will be the time of N LAN results plus 

(W/N - 1) sub-master to master result. The total idle computation time is then (52). 
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The best end time is then the average of the idle time for the workers (53). 
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(53)

The worst end cases are similar to the ones of the first studied scenario. If the application is 

computational bounded with no reassignment of the last task than the worst scenario is 

when the workers finish at the same tame and the last task goes to the worst worker (Figure 

3-19). 

 

Figure 3-19: Worst execution ending for external clusters in the second scenario when the last task is 
not reassigned. 

In this case the worst end time is similar to the first scenario (54). 
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The same situation happens when tasks are reassigned (Figure 3-20), the worst end 

equation is similar to the one of the first scenario (55). 
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In the case it is communication bounded, it is possible that at the worst end all the workers 

wait for the slower sub-master to master communication of results, with the difference that 
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this communication starts after the first N local task communications and repeats W/N 

times (Figure 3-21). The worst end time value would then be (56).  
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Figure 3-20: Worst execution ending for external clusters in the second scenario when the last task is 
reassigned. 
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The worst end time would be the maximum between the computation bounded – (54) or 

(55) – and the communication bounded (56) worst end times.  

 

Figure 3-21: Worst execution ending for external clusters in the second scenario when the application 
is communication bounded. 
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3.4. Conclusions 

In this chapter the proposed analytical model was presented. The analytical model is based 

in computation-communication analysis. The proposed analytical model evaluates the 

execution time and efficiency for an application execution in a multi-cluster. The model 

has as inputs some characteristics of the application (tasks of a workload, basic operations 

of a task, and basic operations of a workload) and multi-cluster system (available 

performance and network throughput).  

In the analytical model, the two-stage master-worker pipelined execution is divided in 

three states: startup, pipeline and end. Equations are developed to estimate the duration of 

each of these states for a local cluster distribution and for an external cluster. In the case of 

the external cluster, two possible data distribution strategies are evaluated. It is important 

to remark that there are other different possible data strategies distributions for external 

clusters that would require new synthesis of equations. 

If more than one scenario was possible for each execution part then the best and worst 

times were evaluated. This leads to the best and worst possible execution times. 

The model serves as base to analyze applications and evaluate their efficiency in multi-

clusters. 
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Chapter 4  

Performance Prediction and 
System Tuning 

4.1. Introduction 

Two are our main goals on using multi-cluster environments. Firstly it is to decrease the 

application execution time in a multi-cluster when compared to the time spent for the 

application to run in a single cluster. Secondly is to guarantee that this speedup is obtained 

without a significant waste of local and remote resources, guaranteeing a chosen minimum 

level of efficiency. 

At Chapter 3 an analytical performance model for multi-cluster execution of applications 

was introduced. This performance model analyzes the multi-cluster master-worker 

execution, based on the system architecture proposed at Chapter 2. The analytical model 

evaluates the application execution time and efficiency dividing the execution in three 

different states (startup, steady and end).  

The analytical model can be used as the basis for prediction, efficiency obtainment and 

application tuning in multi-cluster environments.  
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At the prediction level it is possible to evaluate if it is possible to reduce the application 

execution time using a multi-cluster and to estimate the execution time reduction. It is also 

possible to evaluate the efficiency of each cluster and of the multi-cluster as a whole. 

For the efficiency obtainment, the model can be used to select which clusters and 

computers in each cluster should be used to reduce the execution time if, for example, a 

minimum efficiency of 90% is desired in each cluster. Once the resources are selected it is 

possible to predict the application execution time for this selection. 

In other words, it is possible to evaluate what would be the adequate configuration of 

resources that could be efficiently used to diminish the execution time of the application. 

The model can be used to give support to the application tuning in case the obtainable 

execution time is not satisfactory. The application tuning process can be supported by the 

evaluation of the stages that represent the performance and efficiency bottleneck, 

identifying the model parameters that need to be tuned in order to achieve better levels of 

usage of the multi-cluster resources. 

A performance prediction and system tuning methodology is proposed [10] to guide 

through the process of evaluating a parallel application execution in a multi-cluster, 

estimating the execution time and determining the clusters and resources on which the 

execution efficiency is superior to a specified threshold. The methodology has as inputs the 

parallel application, the desired threshold efficiency and the target multi-cluster.  

On another hand, the methodology can be used for giving guidance to the application 

tuning, giving support to changes in the application workload distribution in a way that the 

execution time is decreased with an increment on the efficiency. 

In this chapter the proposed performance prediction and system tuning methodology is 

described through its three basic phases: Local Cluster Analysis, Multi-Cluster Analysis, 

and Application Tuning 

It is also presented in this chapter a developed hierarchical master-worker framework. This 

framework aims to provide tools to support the methodological process, implementing the 

proposed system architecture performance improvements, and monitoring the analytical 

model parameters during the execution to make available accurate time prediction. 



Chapter 4: Performance Prediction and System Tuning 
 

   59

4.2. Methodological phases 

The performance prediction and system tuning methodology is divided in three basic 

phases providing an estimated speedup, efficiency, and the selected resources to be used in 

each cluster. The basic phases are Local Cluster Analysis, Multi-Cluster Analysis, and 

Application Tuning. Figure 4-1 shows the methodology basic flow diagram.  

 

Figure 4-1: Flow diagram of the multi-cluster performance prediction and application tuning 
methodology. 

The methodology starts with the existence of a parallel application, a problem to be solved, 

a local cluster and external clusters (multi-cluster) that could help in the parallel 

application execution.  

The Local Cluster Analysis is the first phase and evaluates if the application in the local 

cluster is apt to obtain external cluster’s performance contribution, reducing the execution 

time. When external clusters can collaborate raising up the speedup then the Multi-Cluster 

Analysis is the following phase. On the contrary, if speedup is not possible, the application 

should be tuned to be able to use the multi-cluster resources.  

The Multi-Cluster Analysis evaluates the speedup that each available external cluster can 

add to the local one executing the specific application. Each cluster’s resources are then 
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selected to reach the evaluated speedup respecting the target efficiency. The Multi-Cluster 

Analysis also provides the attainable speedup for the application execution using these 

resources. 

There are two possible outputs from the Multi-Cluster Analysis. The first output, when the 

obtainable performance is satisfactory, leads to the end of the methodological process. The 

other output, for improving the performance, is the Application Tuning phase. 

The Application Tuning evaluates the possibilities of adapting the application data 

distribution strategy for improving the collaborative performance. Some performance 

recommendations are presented to guide the possible application changes. If the 

application is changed the application needs to be re-evaluated and the Application Tuning 

is followed by the Local Cluster Analysis phase.  

4.3. Local Cluster Analysis 

The main process inside the Local Cluster Analysis (LCA) is to apply the analytical 

performance model, to evaluate the collaboration possibility of external cluster in the 

application execution.  

This analysis can be divided in some steps as shown at Figure 4-2. The first step is the 

application parameters analysis. In this step the application is studied, the basic operation 

metric and the computation and communication analytical model application parameters 

are defined. If possible the application parameters should be defined as a function of the 

granularity.  

The following step is then the system parameters obtainment. In this step it needs to be 

determined the analytical model system parameters for the local cluster. It is important that 

the parameters obtainment is as precise as possible, acquired in similar conditions of the 

application execution. If different granularities are possible for the problem execution then 

the parameters can be obtained for some possible granularities or, at this moment, an 

arbitrary granularity can be fixed. 

Once obtained the system parameters (computers performance and network throughput) it 

is possible to do the architecture roles mapping. The architecture roles mapping is 

oriented to the selection of computers that will have master and communication manager 
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processes. The communication manager process needs to be in a computer that is 

connected to both cluster local area network and external network. It is preferable that the 

communication manager computer is connected to both networks with different network 

cards so that inter-cluster does not interfere in intra-cluster communication. If more than 

one computer follows this option, the computer with lower computational power should be 

selected. 

 

Figure 4-2: Local Cluster Analysis flow diagram. 

Mapping the master process requires a different approach, not to turn master into an 

unnecessary bottleneck. It is common in master-worker applications for a master to do the 

task joining work which might demand some processing power. The master workstation 

should be the less processing power one that can do the task joining work keeping LAN 

throughput in its maximum.  

This can be determined simply by checking if for the less processing power workstation it 

is possible to reach, in a parallel application execution, the expected steady performance. If 

the expected performance is reached then the master is not the bottleneck. 
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If the cluster uses a network file system (NFS), the possibility of avoiding NFS 

communication traffic should be studied. This can be done by setting the NFS server to be 

the master computer or by storing application data in the master computer local hard drive. 

All the computers that do not have master or communication manager roles are set to have 

worker processes. 

After finishing the roles mapping it is possible to start the analyses. The next step is steady 

state analysis. In the steady state analysis the execution performance for the steady state is 

estimated. From this estimation it can be concluded if the application using all resources of 

the local cluster is computation or communication bounded. 

If the application in the steady state is communication bounded (communication time is 

greater than computation time) then it is not possible for this application to use all its local 

resources. In this case it is useless to target external clusters collaboration. The Local 

Cluster Analysis should then lead to the Application Tuning phase. 

If the application is computation bounded in the steady state then the next step is the 

minimum workload estimation. The objective of this step is to use the performance model 

to estimate the minimum workload for which the efficiency threshold is respected for the 

local cluster. This estimation is done setting that the worst execution efficiency needs to be 

greater than or equal to the threshold (57) deducing the workload. This deduction process 

is shown in (58).  
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In the particular case of computation bounded applications where the steady performance 

is the cluster available performance, the minimum workload equation is (59). If it is 
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desired to know the minimum amount of tasks, the minimum workload should be divided 

by the amount of basic operations in a task. 
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∗−
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1

 
(59)

If the minimum workload is greater than the total workload of the problem being solved 

then it would just be possible to achieve the efficiency threshold in the local cluster by 

releasing computers of the execution. In this case it would not be possible for the local 

cluster to attain external clusters performance and the LCA should be followed by the 

Application Tuning phase. 

In the case that the minimum workload is just part of the total problem than it is possible to 

attain external clusters help and the LCA precedes the Multi-Cluster Analysis. 

4.4. Multi-Cluster Analysis 

The Multi-Cluster Analysis (MCA) targets to evaluate the external clusters and establish 

the resources that can be used in each cluster for diminishing the execution time, 

respecting the efficiency threshold. The MCA smaller steps flow diagram can be seen in 

the Figure 4-3. 

The first step of the MCA is the inter-cluster application parameters analysis which 

should be done in case the data distribution policy or granularity between clusters is 

different than in the local cluster. The objective of this analysis is to define the application 

parameters for the local to external cluster data distribution.  

The following steps are the system parameters obtainment and architecture roles mapping 

that have the same procedure as their LCA analogous but applied to each external cluster.  

The steady stage analysis is also similar with the correspondent step in the LCA with the 

difference that in the MCA this analysis needs to verify if each external cluster is not just  

communication bounded by the LAN but also by the Internet incoming and outgoing 

communication with the local cluster. 

After evaluated if the application in the external cluster is computation or communication 

bounded the MCA goes to the resources selection step. The target of the resources 
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selection is to evaluate if and which computers should be dropped of the execution because 

of the efficiency threshold target (EffThreshold).  
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Figure 4-3: Multi-Cluster Analysis flow diagram. 

Supposing the startup and ending times values dischargeable, it is possible to conclude that 

the system efficiency is upper bounded by the ratio between the steady and available 

performances as deduced in the equation (60). 
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Computers should be released from the external cluster until this performances ratio is 

greater than the efficiency threshold. Because of clusters heterogeneity several different 

computers sets might be possible. The best set is the one with the fewer amount of 

computers because this would lower both the startup and ending times. 
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If the performances ratio is not greater than the efficiency threshold, even when just the 

worst computer of the external cluster is selected, then the collaboration of this cluster is 

not possible. 

The next step on the Multi-Cluster Analysis is then the minimum workload estimation. 

This step is similar to the one in the LCA and is done for each external cluster to determine 

the minimum workload on which the efficiency target is reached. 

The following step is then the multi-cluster load balancing. The purpose of this step is to 

statically determine the approximate workload each cluster will be responsible to solve. 

This is done by balancing each cluster execution time, assuming all the clusters will end up 

their execution at the same time knowing that the sum of each cluster workload is the total 

workload of the problem (61). 
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At this point each cluster estimated workload and each cluster minimum workload are 

known. If for any cluster the estimated workload is lower than the minimum workload, this 

means that for this cluster with the selected computers it is not possible to reach the 

efficiency target. In this case the methodological process next step is the resources 

adjustment. 

At the resources adjustment computers should be taken out the execution in order to reach 

the efficiency threshold. There might be several possible ways to do this adjustment, 

releasing computers from different clusters. The objective is to find the resources 

configuration that admits the minimum execution time. 

After the resources adjustment step, the minimum workload estimation and the multi-

cluster load balancing are re-evaluated until the efficiency threshold is respected. 

After the efficiency threshold target is reached, some resources might be left out of the 

execution. If a better execution time is needed, then the MCA should lead to the 

Application Tuning. If the execution time is satisfactory then no more analysis are 

necessary and the methodology reaches its end. 
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4.5. Application Tuning 

The Application Tuning phase is oriented to evaluating the possibility of changing the 

application to decrease the execution time in the multi-cluster system. The objective is to 

increase the execution performance using more available resources. The Application 

Tuning flow diagram can be seen in Figure 4-4. 
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Figure 4-4: Application Tuning flow diagram. 

Two are the possible causes for releasing resources or clusters from the multi-cluster 

execution. Firstly the application execution in a cluster might be communication bounded, 

either in the cluster local area or in the inter-clusters Internet network, and resources were 

taken out to guarantee the threshold efficiency.   

The second reason for releasing resources from an execution is the impossibility of 

surpassing the efficiency threshold caused by the startup and end time. Even if the 

application is computation bounded it might happen that the startup and end time together 

are relatively big enough, when compared to the steady time, to reduce the efficiency down 

the threshold. 
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The first step of the Application Tuning phase is to verify if the application is 

communication bounded in any of the clusters. This information is known from the 

incoming phase (LCA or MCA) steady state analysis step. 

If the application is communication bounded then the next step is the computation-

communication ratio improvement evaluation. At this step first it is evaluated for the 

communication bottleneck (the LAN, the Internet incoming or the Internet outgoing 

communication) the possibility of changing the communication granularity, improving the 

computation-communication ratio in a way it is possible to use more resources from the 

evaluated cluster. 

The computation-communication ratio improvement evaluation depends on the application 

and the possibility of changing the application execution granularity inside a cluster or 

between clusters. The granularity can be changed, for example, by dividing the workload 

in smaller-sized or in bigger-sized tasks, by aggregating several tasks in one bigger task or 

by aggregating several results in one bigger result. 

The next step on the AT phase is to verify if the performance is limited by the workload 

the cluster is responsible for. This information is known from the LCA and MCA minimum 

workload estimation and from the MCA multi-cluster load balancing steps. 

If for any of the clusters the assigned workload was smaller than the minimum workload 

necessary for this cluster to surpass the efficiency threshold then resources were taken out 

of the execution to guarantee the minimum efficiency. 

In this case the startup and end time values inhibit the efficiency obtainment and it is 

necessary to do the startup and end time evaluation step. The objective of the startup and 

end time evaluation step is to evaluate the possibility of reducing the size of tasks or results 

at intra-cluster or inter-cluster levels in order to reduce the startup and end time. 

There is a natural tradeoff in the analysis of the Application Tuning phase. For most of the 

applications the communication-computation ratio will be increased by increasing the task 

and result sizes. This will cause longer startup and end time for whose smaller tasks and 

results are necessary to guarantee the efficiency. 

It is interesting to use these two analyses to discover the lower and upper granularity 

bounds for each cluster so that decisions about resources and execution time can be taken. 
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If changes were decided at the AT phase then it is necessary to re-evaluate the application 

starting by the LCA. In no changes could be made then the methodological processes ends 

with the results that were reached at the MCA. 

4.6. Hierarchical Master-Worker Framework 

A hierarchical master-worker framework was developed with the objective of providing 

tools to support the methodological process, implementing the proposed system 

architecture performance improvements, and monitoring the analytical model parameters 

during the execution to provide accurate time prediction. 

In order to use the proposed analytical model through the performance prediction and 

tuning methodology it is necessary to obtain the application and system parameters. 

Application parameters are related to the application communication and computation 

needs while system parameters are related to the multi-cluster system computation and 

communication capacity.  

The developed framework provides, at the execution startup or in a workload benchmark 

previously to the execution, the application parameters such as the amount of tasks of a 

workload/problem and the basic operations of a workload. The amount of basic operations 

of a task is application specific and is considered as an input. In case this input is not set 

the framework performs the measurements considering one task as the basic operation. 

 
Figure 4-5: Example of the framework workload initialization for a matrix multiplication. 

a 

b 
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An example of the initialization, using the framework, for a 6,000 x 6,000 matrix 

multiplication execution in 200 x 200 blocks can be seen in Figure 4-5. In this figure can 

be seen the amount of tasks of the workload (Figure 4-5 a) and the user input value for the 

amount of basic operations for a task as well as the amount of basic operations for a 

workload (Figure 4-5 b). 

When an application is written in the framework it is possible to benchmark multi-cluster 

computers, executing application tasks to obtain each computer available performance; 

and to benchmark local and wide-area networks, achieving the communication 

throughputs. An example of the computers benchmark results can be seen in Table 4-1. 

Table 4-1: Example of the framework benchmark results for the matrix multiplication. 

Benchmark Date Wed Sep 14 20:09:44 2005 

Benchmark Configuration Matrix 2000 x 2000 in 200 x 200 blocks.  

Machine 
Total Time 

(sec) 
Read Time 

(sec) 
Write Time 

(sec) 
Work Time 

(sec) 

Join 
Time 
(sec) 

Other 
Time (sec) 

Perf 
(Tasks/sec) 

aoquir8 216.9150 0.0092 0.0031 216.7773 0.0980 0.0274 4.6130 

aoquir3 126.5020 0.0108 0.0043 126.2889 0.1708 0.0273 7.9184 

aoquir12 126.5029 0.0115 0.0038 126.2929 0.1659 0.0287 7.9181 

aoquir6 87.5568 0.0141 0.0056 85.6038 1.8285 0.1047 11.6817 

aoquir9 125.5992 0.0206 0.0073 124.2014 1.2776 0.0923 8.0514 

aoquir5 88.4233 0.0138 0.0053 86.2676 2.0378 0.0987 11.5918 

aoquir2 138.0031 0.0206 0.0072 136.7841 1.1123 0.0790 7.3108 

aoquir4 137.1708 0.0209 0.0072 136.0529 1.0163 0.0735 7.3501 

aoquir11 137.6371 0.0207 0.0073 136.4532 1.0857 0.0702 7.3285 

aoquir1 137.8504 0.0208 0.0078 136.5439 1.1698 0.1081 7.3237 

aoquir7 152.3769 0.0231 0.0079 151.3552 0.9099 0.0809 6.6070 

Through the usage of these tools it is possible to, previously to the execution, follow the 

methodological steps, described at the present chapter, obtaining an execution time and 

efficiency prediction. 

The hierarchical master-worker framework is a set of C++ classes. A parallel master-

worker application can be adapted to the framework by adding to it the application specific 

features: task execution, results joining and task division functionalities as well as tasks 

and results serialization.  

For example, to add a master-worker matrix multiplication in blocks to the framework it 

would be necessary to add the blocks multiplication algorithm (task execution), the matrix 

sum to join two blocks multiplications (results joining), the division of a matrix into blocks 
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representing smaller tasks (task division), and the way to read and communicate the matrix 

blocks (tasks and results serialization). 

The framework them implements all the hierarchical master-worker functionalities as 

described in the system architecture. Workers will have two buffers and two threads, one 

for computation and one for communication. A communication manager process is added 

to the local cluster for each sub-cluster in the execution and sub-masters receive their work 

from their communication managers. The framework also enables the usage of different 

granularities for intra and inter cluster. 

During the execution the framework measures the intra and inter-cluster communication 

throughputs as well as the execution performance. This monitoring feeds the analytical 

model with information, updating the execution time prediction along the execution. An 

example of the execution time prediction for the Stochastic Resonant Memory Storage 

Device (SRMSD) application with three clusters can be seen in Figure 4-6. The multi-

cluster statistics are shown in white, while the statistics for each cluster are shown with 

different colors. The statistics were updated every 10 seconds. 

 

Figure 4-6: Example of the statistics provided along the execution for the SRMSD simulation with 
three clusters. 

At the execution end the framework provides a summary of workers and network obtained 

performances enabling the possibility of comparing with the predicted values and 

analyzing the possible causes of prediction errors. An example for the execution end 

statistics for the SRMSD simulation with three clusters can be seen in Figure 4-7. 
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The applications used in this thesis to experimentally validate the precision of the proposed 

analytical model were adapted to multi-clusters through the use of the developed 

framework. 

 
Figure 4-7: Example of the execution end statistics for the SRMSD simulation with three clusters. 

The hierarchical master-worker framework can be divided in three basic modules: master-

worker engine, application functionalities and I/O middleware. A layered model of the 

framework basic modules and their interfaces can be seen at Figure 4-8. 

 

Figure 4-8: Framework layered model and basic modules. 



Chapter 4: Performance Prediction and System Tuning  
 

    72 

4.6.1. Master-Worker Engine 

The master-worker engine provides all the functionalities of the proposed hierarchical 

master-worker system architecture such as workers pipeline, communication managers, 

sub-masters buffering, etc. 

The framework interface receives the framework configuration and execution parameters 

that are set in configuration files. The framework configuration corresponds to the 

statistics interval, worker behavior and inter-cluster load balancing. 

The statistics interval corresponds to the interval in seconds where the execution progress 

and time estimation is show in the main master standard output. The value zero to this 

parameter sets the framework for a “silent” execution. 

The worker behavior sets if workers will have two buffers and threads, overlapping 

computation and communication, or if they will have just one buffer and one thread 

without the overlapping feature. 

The inter-cluster load balance sets if the framework is responsible for doing the load 

balance as seen in the Multi-Cluster Analysis or if the user wants to have the load balance 

programmed in the application functionalities. 

The framework configuration is set for the main master in the main cluster only. An 

example of the configuration file entries for the framework configuration can be seen in 

Figure 4-9. 

 

Figure 4-9: Example of the configuration file entries for the framework configuration. 

The execution parameters are set for each cluster. The execution parameters indicate the 

computers names, processes roles and communication manager (CM) configurations. 

These parameters are set in an enhanced version of the MPI machine file. The first 
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computer in this machine file represents the master. All other computers are workers. For 

the communication manager some special parameters need to be set following the settings: 

<local machine name> # <M/S> <0/1> <socket_port> <server machine name> 

The first communication manager parameter is M/S indicating it is connected to a master 

or to a sub-master behaving as a worker or as the I/O input respectively. The second 

parameter 0/1 sets if this communication manager is the socket server or client (0 for 

socket client and 1 for socket server).The socket port is the number of the port on which 

the CMs connect and the server machine name is required when the CM is a client, 

representing the socket server machine this CM needs to connect. 

An example of this machine file for a main cluster and a sub-cluster can be seen at Figure 

4-10. In this example the machine pgs-2 is the CM for the main master and socket client 

connecting to the aoquir4 through the port 1200. The machine aoquir4 has the sub-cluster 

communication manager process and is the socket server. 

 

Figure 4-10: Example of the enhanced MPI machine file for a main cluster and a sub-cluster. 

4.6.2. Application Functionalities 

The application functionalities module represents the code the application programmer 

needs to pass to the framework for enabling its execution. For adding this code the user 

must inherit some of the framework classes. These classes might have some standard 

behaviors that may or may not be changed, depending on the application needs. 

The application classes are configuration, index, problem, task, result, scheduler, and 

gatherer. The configuration represents the factory class on which the framework is 

enabled to create instances of all other application functionality classes. There is just one 

instance of the configuration class and it might contain specific application parameters for 

the creation of instances. For example in a squared matrix multiplication, the configuration 
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class might have the number of rows and columns a multiplication task and result must 

allocate. 

The task class must have the task serialization routine and also the task execution 

functionality. The result class must have the result joining functionality as well as the 

result serialization routine. 

Through the task and result serialization routines it is possible for the framework to set the 

application communication parameters.  

The framework uses a default task and result index class. This class associates an integer 

unique ID value for each task. Optionally the user might inherit the index class in order to 

change a task/result index for having for example a row and column number.  

The problem class has the problem amount of tasks, configuration and division in a multi-

cluster. The standard procedure is to divide the problem tasks proportionally to each 

cluster. If another concept is applied to this division, like different granularities for intra 

and inter-cluster communication, it is necessary to inherit the problem class and change 

the problem division behavior. 

The scheduler is responsible for dividing the problem into tasks selecting the task to be 

sent to each worker. The division of the problem needs to be defined and from this 

division the framework obtains the application computation parameters. 

The default functionality for the scheduler to distribute tasks is to select the next task for 

the next worker without making differences between workers. It is possible to change this 

functionality by rewriting the selection method of the scheduler. 

The gatherer is responsible for gathering task results, joining them and checking for the 

end of the algorithm when all tasks are done. It is also possible to change its behavior. 

4.6.3. I/O Middleware 

All the I/O for the framework is made through a standard middleware interface that is 

translated to the necessary I/O system device. With this it is possible for the framework to 

perform the I/O in the correct device depending on the necessity. The Internet 

communication in the CM is done through the LDS library while the results storing in the 
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disk is done through the disk device. The communication in a LAN is done through MPI 

calls. The application programmer describes the I/O through standard calls to the I/O 

middleware. 

Through this I/O structure the framework is able to obtain the application communication 

parameters. The basic I/O interface has functions to open and close devices, store and load 

data from the devices. The I/O functions to the programmer and its description are 

illustrated at Table 4-2. 

Table 4-2: Illustration of the I/O middleware interface for the application classes’ serialization.  

I/O Function Description 
OpenDevice Opens a device. Depending on the received parameters it opens a file, an 

MPI communication, or a LDS communication. 
CloseDevice Closes and specific device. 
CloseAllDevices Closes all opened devices. 
ReadBlock Reads a data block from a device. 
WriteBlock Writes a data block into a device. 

The I/O interface also provides the master-worker engine with functionalities for 

serializing objects and getting statistics. These functions are illustrated at Table 4-3. 

Table 4-3: Illustration of the I/O middleware interface for the master-worker engine. 

I/O Function Description 
Load Calls the serialization function for loading the data of a certain 

serializable object.  
Store Calls the serialization for storing the data of a certain serializable 

object 
GetDeviceStatistics Get the actual time statistics for a device: time spent reading and 

writing data in the device. 
GetDeviceVolStatistics Function to get the data volume statistics for the device: Amount of 

bytes read or written in the device. 

4.7. Conclusions 

In this chapter a performance prediction and system tuning methodology was proposed and 

its three phases were described. The objective of this methodology is to use the analytical 

model to evaluate an application execution in a multi-cluster environment, estimating the 

execution time and efficiency and selecting the clusters and computers that should be used 

at this execution. The resources selection is done in a way that a minimum efficiency is 

guaranteed. 

The methodology was divided in three related phases: Local Cluster Analysis, Multi-

Cluster Analysis and Application Tuning. The Local Cluster Analysis is responsible for 
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evaluating if the local cluster is apt to receive, for this execution, extra performance from 

external clusters. 

The Multi-Cluster Analysis evaluates each external cluster and selects the ones that can 

collaborate in the execution keeping the system efficiency over a threshold. If it is 

desirable a better execution time than the estimated by the LCA and MCA phases the 

methodology needs to go to the Application Tuning phase.  

At the Application Tuning the possible causes of the release of resources are analyzed and 

changes on the application communication granularity that could lead to the usage of more 

resources are evaluated.  

If changes are possible then the methodological steps are reevaluated and a new resources 

selection, efficiency and execution time estimation is done. 

It was also presented in this chapter a hierarchical master-worker framework that provides 

tools to the methodological steps. The developed framework implements the proposed 

system architecture performance enhancements and provides the application and system 

parameters as well as execution time predictions based on the analytical model. 
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Chapter 5  

Experimental Validation 

5.1. Introduction 

This thesis studies the problem of improving the execution performance of parallel 

applications adapting them from their original single cluster to a heterogeneous multi-

cluster environment. The goal is to reduce the execution time guaranteeing a minimum 

level of efficiency on both local and external resources usage.  

In order to reach this target, at Chapter 2 it is proposed an architecture that can efficiently 

interconnect clusters providing reliability to Internet communication and allowing a multi-

cluster to be seen as a single system. An analytical performance model was then developed 

in Chapter 3, based on this system architecture.  

From this analytical model it is possible to, providing some computation and 

communication parameters of an application and of a target multi-cluster, evaluate the 

application efficiency and execution time for a certain problem. This model also gives 

support to the selection of resources for which efficiency can be improved. 

At Chapter 4 are described the methodological steps on which an application originally 

written for a single cluster can be evaluated and adapted to a multi-cluster. The 

methodological phases guide the obtainment of application parameters, the usage of the 

analytical model to evaluate resources, efficiency and execution time in the multi-cluster, 

and the tuning process.  
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The performance analysis and system tuning methodology can be used to predict the 

execution time and efficiency for an application execution in a multi-cluster. Another 

possible use of the methodology is to support the selection of resources for which an 

execution will take place with efficiency over a threshold. The methodology can also be 

used to assist the application tuning process to improve the level of usability of the multi-

cluster. 

The objective of the present chapter is to validate the analytical model and methodological 

approach. For doing this, three applications were chosen: the matrix multiplication (MM), 

the Stochastic Resonant Memory Storage Device (SRMSD) simulation and the traveling 

salesman problem (TSP).  

Throughout this chapter, each application implementation for a single cluster is described. 

The applications are adapted to the multi-cluster through the usage of the hierarchical 

master-worker framework presented at Chapter 4. 

The matrix multiplication (MM) is the first evaluated application and represents an 

important algebra kernel [35]. The MM is used as an initial benchmark application selected 

because of its scalability, known computation and communication volume as well as high 

communication requirement for multi-cluster collaboration. 

There are many possible execution variations for the MM within quite different 

computation communication ratios and granularities. The matrix multiplication is briefly 

analyzed through the methodological steps in order to verify the precision of the analytical 

model predictions and its capability on supporting an application design and granularities 

selection.  

The Stochastic Resonant Memory Storage Device (SRMSD) simulation application [28] 

represents a complex numerical simulation to study the response of a system of bistable 

oscillators coupled unidirectional driven by a source of external noise and a periodic and 

temporal stimulus.  

This application is composed by a few – in the order of hundreds – long-duration atomic 

simulations on which each simulation’s result represents a large data communication 

packet of 2.256 MBytes. Each simulation task may last for hundreds up to thousands of 

seconds. For this application the balance of load becomes an important issue. 
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For this application a problem and a target multi-cluster are presented and the 

methodological process phases for this application/multi-cluster scenario are explained 

step by step. The target is to verify the methodology capabilities of prediction, resources 

selection for guaranteeing an efficient execution as well as performance tuning.  

The traveling salesman problem (TSP) application was selected to prove the analytical 

performance model robustness. Three different algorithms were developed for the TSP: 

exhaustive, local pruning and global pruning. These algorithms differ on the level of 

predictability of tasks execution time.  

5.2. Matrix Multiplication 

The matrix multiplication (MM) is a key operation of the linear algebra kernel [34][35] 

used by a wide range of scientific applications. There are efficient solutions for the MM 

problem over homogeneous processors, e.g. ScalaPACK [30]. However, the MM 

execution over different-speed processors turns out to be surprisingly difficult. Actually, its 

NP-completeness over heterogeneous platforms was proved [19]. There are studies for the 

MM execution optimization over heterogeneous processors as seen in [20].  

The analysis done in this thesis does not intend to be a specific optimization study for the 

matrix multiplication. For this thesis the MM represents a highly scalable and fine-grained 

application that present scalability difficulties for heterogeneous multi-clusters. No 

optimization library, like ATLAS [L1], was used for the matrix multiplication codification 

present in this work.  

A master-worker blocked algorithm is the studied approach for this thesis. The main 

master has two operands M x M matrixes and one result M x M matrix. For our approach 

no distribution of any of the operand matrixes is done previously to the execution. 

A blocked multiplication algorithm was chosen because it does not require previous 

distribution of any of the operand matrixes. This approach is also highly adaptable to 

heterogeneous computation. For the blocked multiplication, the three M x M operand 

matrixes are organized in B x B blocks as shown in Figure 5-1. 

The master sends to workers a block from the first operand matrix and a block from the 

second operand matrix representing a task. Workers multiply the block matrixes and send 
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back to the master the blocked multiplication result that is joined (summed) in the result 

matrix (Figure 5-2). The master repeats this process until every first operand blocked row 

and second operand blocked column are multiplied and the final result matrix is achieved. 

...

...

...

B x B matrix 
block

M elements

 

Figure 5-1: M x M elements matrix divided in B x B blocks. 

This multiplication approach allows the analysis of large matrixes multiplication (like 

10,000 x 10,000) with fine-grained tasks (blocks of 100 x 100). It is a challenge to attain 

external clusters collaboration in a fine-grained application like the matrix multiplication. 
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Worker sends partial 
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Master sums partial 
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Figure 5-2: Schematic diagram of a master sending a task of matrix blocks to a worker and receiving 
from this worker a block result. 

This section briefly describes each methodological phase for the matrix multiplication, 

focusing on the main challenges for its execution using efficiently the available resources. 

The target multi-cluster is formed by two clusters: the first cluster is considered the local 

cluster and is located in Brazil while the external cluster is located in Spain. 
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5.2.1. Local Cluster Analysis 

The blocked approach to solve the matrix multiplication enables the division of the 

problem in several different granularities, i.e., it is possible to divide the M x M matrixes in 

different B x B sized blocks. 

There are then two possibilities to select a granularity for the execution in a cluster. The 

first possibility is to arbitrarily choose a granularity and, if this granularity does not allow 

an efficient usage, adjust it in the Application Tuning phase. 

The second possibility is to select some different granularities and evaluate the effect of the 

granularity in the steady performance and system efficiency. Through this analysis the best 

granularity for a cluster can be inferred. This second analysis was chose because of its 

completeness.  

In this section we briefly determine the application and system parameters and then we 

perform the granularity analysis. 

Application and System Parameters Obtainment 

The main determinant basic operation of the matrix multiplication is the float point 

operation (either multiplication or addition). All the performance measurements will then 

be done in float point operations per second (FLOPS) or in million of FLOPS (MFLOPS). 

The application parameters are the amount of tasks of a workload, the amount of basic 

operations of a task and the amount of basic operations for a workload. For the MM, a 

task is the multiplication of two B x B sub-matrixes.  

The amount of tasks of a workload is the amount of B x B blocks multiplications of the M 

x M operand matrixes. Each matrix row has K=M/B blocks. The result matrix has K2 

blocks that are the result of row per column blocked multiplications. Each row per column 

multiplication has K blocked operations. From this it is possible to deduce that the amount 

of tasks is K3 (62). The value of B represents the granularity of the task. 
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In the process of multiplying two B x B matrixes, the result matrix is composed by B2 line 

per columns multiplications. Each line per column multiplication has B multiplications and 

B – 1 additions, meaning 2*B – 1 float point operations. This means that the amount of 

basic operations of a B x B blocked task in is given by equation (63).  

232)( BBBOperTask −∗=  
(63)

The amount of basic operations for an M x M matrix workload divided in B x B blocks in 

our master-worker approach is then the total amount of tasks multiplied by each task 

amount of basic operations (64). 
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On the communication side, the amount of bytes necessary to be sent for a B x B 

multiplication (size of a task) is two times the B x B matrix of float points. Considering 

that a float point has α bytes, the size of a task (STask) is given by equation (65). A task 

result data has one B x B block; the size of a result (SResult) is then equation (66). The total 

communication of a task (SComm) (67) is the sum of these values. 

 22)( BBSTask ∗∗= α  
(65)

2)( BBSResult ∗=α  
(66)

23)( BBSComm ∗∗= α  
(67)

The granularities B=25, 50, 100, 200, 300, 400, 500 and 1000 were selected for the local-

cluster performance analysis. The system parameters were measured for these 

granularities. Table 5-1 shows the Brazilian cluster local area network throughput for the 

different granularities with different amount of workers. The average value of 1,012,391 

bytes/sec is used for the Brazilian cluster estimations. 

Figure 5-3 shows the Brazilian cluster available performance for the MM application with 

different granularities. It can be seen that the performance decreases for bigger grains. This 

can be explained with the fact that the increment of the granularity implies a squared 

increase on the size of the task which might improve the cache misses.  
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Table 5-1: Average throughput in bytes/sec for the Brazilian cluster LAN with different amount of 
workers and different granularities.  

Workers 100 x 100 200 x 200 300 x 300 400 x 400 500 x 500 Average 
1 1,075,341 1,042,389 1,051,342 1,035,495 1,037,723 1,048,458
2 992,490 981,755 988,112 988,755 998,153 989,853
3 995,754 982,516 1,002,688 1,006,843 1,004,562 998,472
4 1,026,582 1,005,519 1,011,797 994,758 997,432 1,007,218
5 1,012,046 1,016,555 1,018,914 1,005,807 1,019,032 1,014,471
6 1,001,692 1,010,856 1,023,699 1,024,551 1,018,561 1,015,871

Average 1,017,318 1,006,598 1,016,092 1,009,368 1,012,577 1,012,391

For the matrix multiplication, the steady performance depends on the granularity and can 

be defined as equation (68). The performance for which the execution becomes 

computational bounded at the LAN is proportional to the B block index. This can be 

explained because the MM computation has cubic and the communication has squared 

complexity. 
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Figure 5-3: Brazilian cluster available performance for different granularities. 
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Figure 5-4 shows the Brazilian cluster available performance, expected steady 

performance and maximum cluster efficiency for the different studied granularities. The 

steady time is communication bounded for the studied granularities up to B=200. From 

B=300 on the steady time is computation bounded.  
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Figure 5-4: Brazilian cluster available performance for different granularities. 

Figure 5-5 shows the estimated startup and worst end time for the different granularities in 

the Brazilian cluster. It can be seen that an increase in the granularity causes an increment 

of these times. The best granularity is the smaller one on which the application is 

computation bounded. 
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Figure 5-5: Startup and worst end time for different granularities in the Brazilian cluster. 
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5.2.2. Multi-Cluster Analysis 

Once the Brazilian cluster parameters were obtained, it is time to analyze the system 

parameters for the Spanish cluster. The Spanish cluster available performance, steady 

performance and local maximum efficiency, for the MM application can be seen in Figure 

5-6. The Spanish cluster is computation bounded in the local area network for granularities 

greater than or equal to B=400.  
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Figure 5-6: Available performance, expected steady performance and maximum efficiency for 
different granularities locally in the Spanish cluster. 

The obtained experimental Internet throughput values for the Spanish cluster relative to the 

Brazilian cluster was of 53.95 Kbytes/sec with no significant difference for incoming or 

outgoing. 

The objective now is to evaluate the possible steady performance for the Spanish cluster, 

considering also Internet incoming and outgoing communication. The expected steady 

performance for the Spanish cluster is obtained by the equation (69).  
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Since the incoming and outgoing Internet throughputs are similar, the steady performance 

is limited by the incoming Internet communication. The graphic in Figure 5-7 shows the 

cluster available performance, the expected steady performance (result of the equation 

(69)) and the maximum cluster efficiency for the Spanish cluster as an external cluster. 

It can be concluded that the application is communication bounded for all the studied 

granularities. The granularity B=400 is the smaller studied one that is computational 

bounded for both clusters. This granularity is the selected one for intra-cluster computation 

because bigger granularities would represent longer startup and end times. 
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Figure 5-7: Spanish cluster available performance, expected steady performance and maximum 
efficiency for different granularities. 

For the B=400 granularity it is not profitable the Spanish cluster collaboration. There are 

no possible worker configurations for which the execution would be over an efficiency 

threshold of 80%.  

The alternative of increasing the granularity until the application becomes computational 

bounded considering the Internet communication is not a viable because of two reasons. 

Firstly the workers performance would be drastically reduced because of the size of the 

task. A task of B=2000 grain would be approximately 46 Mbytes. Secondly, the size of the 

task would also drastically reduce the efficiency because of the high startup and end times. 

It is then necessary to tune the application for the multi-cluster. 
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5.2.3. Application Tuning 

The objective of the MM Application Tuning is to increase the computation-

communication ratio for the inter-cluster communication. In order to do that two different 

inter-cluster distribution strategies are analyzed. Both strategies try to take advantage of 

the MM cubic computation complexity against its squared communication complexity. 

The first analyzed strategy is a generalization of the blocked approach, increasing the inter-

cluster granularity by sending to the Spanish cluster tasks with matrixes of G x G elements, 

being G a multiple of B. The second strategy is to send lines and columns of blocks of the 

operand matrixes to the sub-cluster. This strategy dynamically improves the inter-cluster 

granularity by the use of the data locality.  

The second strategy is the one selected for the inter-cluster distribution because it is the 

one with lower startup and end time. The following sections explain each strategy showing 

how the analytical model can be used to compare different tuning possibilities. 

Increase Inter-Cluster Matrix 

The objective of this strategy is to increase the external cluster steady performance by 

sending a bigger inter-cluster multiplication G x G.  

It is possible to calculate the minimum inter-cluster granularity value assuming that at the 

equation (69) the Internet incoming communication bound performance for the Spanish 

cluster, with the inter-cluster G granularity, needs to be greater than or equal to the Spanish 

cluster available performance (70).  

Avail
InetIN CPerfTPutG ≥
∗

∗−∗
α2

)12(  
(70)

The minimum inter-cluster granularity G for reaching at the steady time the Spanish 

available performance is then given by equation (71). 

2
1

+
∗

≥
InetIN

Avail

TPut
CPerfG α  

(71)

Applying this equation to the Spanish cluster (72) we obtain the minimum value of 

G=4,123. The next B=400 multiple is the value of G=4,400. This means that the inter-
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cluster tasks have to be in the minimum blocks of 4,400 x 4,400 to be able to attain the 

totality of the Spanish cluster performance at the steady time. 

4123.18
2
1

55,245
56,939,3644

2
1

≥⇒+
∗

≥⇒+
∗

≥ GG
TPut

CPerfG
InetIN

Availα  
(72)

A 4400 x 4400 matrix has approximately 148Mbytes of size, increasing the startup (21) 

and end times (55) to an order of 45 and 24 minutes respectively. Using the analytical 

model we can calculate the minimum workload of 6 inter-cluster tasks for reaching a 

minimum of 80% efficiency from the Spanish cluster. 

Increase Inter-Cluster Matrix 

Another possible data distribution strategy for the matrix multiplication is to send to 

external clusters complete operands’ sets of rows/columns. Each new row/column (r/c) pair 

that reaches the sub-master can be computed with the previously received columns/rows. 

The granularity of the inter-cluster tasks continuously grows along time the more 

rows/columns are sent to the external cluster. An example of the growing granularity can 

be seen in Figure 5-8. When the first r/c arrives it is possible to multiply one row of blocks 

by one column of blocks. Once the second r/c arrives it is possible to perform four blocked 

row per column multiplications. For the third r/c, nine row per columns multiplications can 

be done and this ratio increases the more data arrives. 

This approach has some advantages when compared with the strategy of increasing the 

inter-cluster granularity. The first advantage is that once a row/column arrives in the 

external cluster, this cluster can already perform some computation even though with 

reduced efficiency until the cluster available performance can be reached. 

Another advantage is that the external cluster result is an already computed row per 

column multiplication, improving the end time. This result represents just one 400 x 400 

matrix block for which the size is quite small when compared to a 4400 x 4400 bigger 

granularity block.  

This would reduce the end time from 20 minutes to 30 seconds requiring a smaller 

minimum workload to obtain the desired efficiency for 400 x 400 blocks independently of 

the matrix size. 
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Figure 5-8: Schematic diagram of the grown in the granularity by the strategy of sending operands 
row/columns. 

5.2.4. Multi-Cluster Analysis – Tuned Application 

Considering the modified inter-cluster distribution, the application parameters for the 

communication between clusters have changed. An inter-cluster task can be redefined as 

being one row and column while the row per column multiplication can be considered as 

being an inter-cluster result. 

As shown at Figure 5-8, the first row/column sent to an external cluster represents one row 

per one column blocks multiplications. This means that the first inter-cluster task carries 

M/B (the amount of blocks in a row) tasks to be solved by the external cluster workers. 
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When the second r/c is received by the external cluster, three new rows per columns 

multiplications are possible, as illustrated with the orange color in the Figure 5-8. When a 

RC row/column is received it is possible to do 2*RC – 1 row per columns multiplications.  

It is possible to conclude that the RC inter-cluster task has (73) operations. The amount of 

operations of an inter-cluster task grows linearly the more tasks are sent and can be 

defined by (74). 

)()1(2),,( BOper
B
MRCBMRCOperInter ∗∗−∗=  

(73)

)2()1(2),,( 2 BBMRCBMRCOperInter −∗∗∗−∗=  
(74)

The size of a task is the amount of bytes of one row of blocks plus one column of blocks. 

Both a row and a column of blocks have M x B float point elements; the size of a task is 

then (75). Similarly to an intra-cluster result, an inter-cluster result is one B x B block (76). 

Each sent result carries one row per column multiplication operations (77). 

BMBSTask ∗∗∗= α2)(  
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(77)

For this MM distribution, different amount of operations are used for intra-cluster, 

incoming and for outgoing communication bounded limits.  

Once defined the application parameters it is possible to analyze the steady performance. 

The steady performance for the Spanish cluster is then given by the equation (78). 

For a 10,000 x 10,000 multiplication in 400 x 400 blocks, for example, the Spanish cluster 

steady performance would be of (79). The obtainable performance is mainly limited by the 

incoming communication and it is possible to find out for which row/column the 

application would become computational bounded (80). 
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In this example after the 7th inter-cluster task the external cluster would become 

computation bounded and the available performance would be reached. To guarantee a 

minimum efficiency it is necessary to evaluate this startup time and the end time, reaching 

the minimum workload or selecting resources. 

The startup time is the time spent to send the row/columns until the cluster available 

performance is reached. The best and worst end times can be calculated by the second 

external cluster studied scenario equations (53) and (55) respectively. For a 10,000 x 

10,000 matrix in 100 x 100 blocks the best end time would be 0.46 seconds and the worst 

time 0.68 seconds. 

5.2.5. Experimental Validation 

The objective with the matrix multiplication was to analyze a complex fine grained 

application for which it was necessary a different inter-cluster distribution strategy to attain 

an efficient collaboration. This different strategy implies in different parameters for the 
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multi-cluster communications. The simple computation-communication analysis, that is 

the base of the analytical model, could be used for achieving more complex information 

like the minimum row column for which the steady performance reaches its maximum. 

The designed experiments aim to validate the performance analysis of the MM application 

in two levels: Firstly at the intra-cluster level, demonstrating the necessity of the local 

cluster granularity analysis. The selection of a computation bounded grain avoids the local 

area network saturation and the consequent efficiency reduction.  

Secondly at the inter-cluster level, demonstrating that it is possible to predict the 

application performance behavior along time, the moment where the pipeline gets in its 

best performance, the execution time and efficiency. 

Intra-Cluster Validation 

The Brazilian and Spanish cluster expected performance (26) in the local MM execution 

for different granularities can be seen in Figure 5-4 and Figure 5-6 respectively.  

In order to validate this analysis several executions of the parallel MM application at both 

clusters with the selected granularities and different matrixes sizes were done. The 

comparison between available, expected and obtained steady performance for the Brazilian 

and Spanish clusters can be seen in Figure 5-9 and Figure 5-10 respectively. 
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Figure 5-9: Brazilian cluster’s available, expected and experimentally obtained steady performance for 
different granularities. 
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The prediction is over 98% precision for both the computation and communication 

bounded granularities. 
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Figure 5-10: Spanish cluster’s available, expected and experimentally obtained steady performance for 
different granularities. 

Inter-Cluster Validation 

For the inter-cluster validation two experiments are analyzed in details. For the first 

experiment a 10,000 x 10,000 multiplication is done in blocks of 100 x 100 elements. In 

this experiment both clusters steady state are communication bounded causing a reduction 

in the system efficiency. 

For the second experiment the 10,000 x 10,000 matrixes are multiplied in 400 x 400 

blocks. This experiment targets a minimum of 80% efficiency using all resources of both 

clusters.  

The analytical model was used to predict the efficiency and execution time for both 

experiments. The model was also used to determine the amount of row/columns needed to 

be sent to the Spanish cluster in order to turn its execution into computation bounded and 

this startup time.  

The 10,000 x 10,000 multiplication in 100 x 100 blocks experiment prediction data can be 

seen at Table 5-2. From this data it can be inferred that because of the fine-grained inter-

clusters communication the best and worst predicted times are very similar.  
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Table 5-2: Prediction information for a multi-cluster execution of a 10,000 x 10,000 matrix in 100 x 100 
blocks.  

Startup Estimated Execution Time (sec) Estimated Efficiency

Cluster 
Row / 

Columns 
Time 
(min) Best Worst Best Worst 

Brazil   0.004 16h 41'24sec 16h 41'24sec 61.51% 61.51%
Spain 7 16.89 16h 41'24sec 16h 41'25sec 28.48% 28.48%
Multi-Cluster 16h 41'24sec 16h 41'25sec 39.13% 39.13%

The Spanish average performance along time grows linearly through the startup phase until 

the 7th row/column arrives after 16.89 min. At this moment the pipeline stabilizes in the 

expected steady performance until the execution end. The expected execution performance 

for both clusters along time can be seen in Figure 5-11. 
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Figure 5-11: Performance behavior along time estimation for the Brazilian and Spanish clusters. 

It is important to remark that, once both clusters execution is communication bounded, at 

Figure 5-11 the Brazilian cluster predicted steady performance is 62% of its capacity while 

the Spanish steady performance is 28%. 

Table 5-3 shows the comparison between the estimated and the experimentally obtained 

startup row/column, startup time, execution time and efficiency. Figure 5-12 shows the 

comparison between expected and obtained performance behavior along time. 

Table 5-3: Comparison between estimated and experimentally obtained values for the multi-cluster 
execution of a 10,000 x 10,000 matrix in 100 x 100 blocks.  
  Estimated Experimental Error 
Stabilize Row Column 7 7 0% 
Spanish Startup Time (min) 16.89 16.3 4% 
Execution Time 16h 41'24sec 17h 18'00sec 4% 
Efficiency 39.13% 38.02% 3% 
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Analyzing the performance graphic it can be concluded that for both clusters the obtained 

performance along time was slightly inferior of the predicted value. It can be inferred that 

the obtained local area network throughput was lower than the measured value.  
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Figure 5-12: Expected and obtained performance behavior along time for the Brazilian and Spanish 
clusters. 

It can be also seen in the graphic a curious behavior in the Brazilian cluster experimental 

performance for the first 200 minutes of the execution (Figure 5-12 a). During this period 

the Brazilian cluster performance is stabilized in a lower level of performance then the 

level for the rest of the execution. 

This behavior can be explained through the trace of the inter-cluster communication shown 

at Figure 5-13. Brazilian lower performance stage coincides with the higher throughput 

outgoing communication period between Brazil and Spain. The reason for this behavior is 

that because of the local area network saturation the communication between master and 

communication manager causes impact on the attainable performance.  

For the second experiment the 10,000 x 10,000 multiplication is done in 400 x 400 blocks 

and it is expected an efficient execution with all the resources. The prediction information 

for this execution can be seen at Table 5-4.  

Table 5-4: Prediction information for a multi-cluster execution of a 10,000 x 10,000 matrix in 400 x 400 
blocks.  

Startup Estimated Execution Time (sec) Estimated Efficiency

Cluster 
Row / 

Columns 
Time 
(min) Best Worst Best Worst 

Brazil   0.063 7h 07'26sec 7h 07'49sec 94.64% 94.50%
Spain 6 57.92 7h 07'25sec 7h 07'49sec 84.45% 84.39%
Multi-Cluster 7h 07'26sec 7h 07'49sec 87.73% 87.65%

a 
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Figure 5-13: Brazilian cluster outgoing and incoming communication with the Spanish cluster during 
the experiment. 

The expected execution time was reduced from 16 to 7 hours and it is expected more than 

87% efficiency. The Spanish average performance along time grows linearly through the 

startup phase until the 6th row/column arrives after 57.92 min. The startup moment was 

delayed for this execution because of the grown in the Spanish cluster steady performance. 

The expected execution performance for both clusters along time for this experiment can 

be seen in Figure 5-14. 

-

10

20

30

40

50

60

70

0 30 60 90 120 150 180 210 240 270 300 331 361 391 421 451

Time (min)

Pe
rfo

rm
an

ce
 (M

Fl
op

s)

Spanish
Expected

Brazilian
Expected

 

Figure 5-14: Performance behavior along time estimation for the Brazilian and Spanish clusters. 

Table 5-5 shows the comparison between the estimated and the experimentally obtained 

startup row/column, startup time, execution time and efficiency.  
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Table 5-5: Comparison between estimated and experimentally obtained values for the multi-cluster 
execution of a 10,000 x 10,000 matrix in 400 x 400 blocks.  

  Estimated Experimental Error 
Stabilize Row Column 6 6 0% 
Spanish Startup Time 57.92 53.24 8% 
Execution Time 7h 07'26sec 7h 28'36sec 5% 
Efficiency 87.73% 88.31% 1% 

Figure 5-15 shows the comparison between expected and obtained performance behavior 

along time. At the performance graphic it can be seen a moment with a sudden decrease of 

performance followed by a great performance peak around the minute 130 (Figure 5-15 a). 

Analyzing the inter-cluster communication graphic at Figure 5-16 it can be seen that there 

was an interruption of the internet communication between the clusters at this moment 

(Figure 5-16 a). 
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Figure 5-15: Expected and obtained performance behavior along time for the Brazilian and Spanish 
clusters. 

The following increase in the Spanish performance is a result of the communication 

manager buffering strategy. During the Internet disconnection the Spanish cluster did not 

stop its execution and the results were kept at the communication manager. When the 

connection was reestablished, these results were sent to the Brazilian cluster resulting in a 

sudden increase of the attained performance (Figure 5-15 a).  

It is also possible to conclude from the inter-cluster communication graphic that the startup 

time for the Spanish cluster was reduced because the effective attained Internet 

performance was greater than the 53.95 Kbytes/sec used for the estimation. 

a 
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Figure 5-16: Brazilian cluster outgoing and incoming communication with the Spanish cluster during 
the experiment. 

From these executions it is possible to conclude that the model is also accurate (with over 

95% of precision) for finer-grained applications and that the estimation is influenced by the 

dynamic variation of the model parameters like the LAN or Internet throughputs. The 

accuracy of the estimation could be increased dynamically using the methodology. 

5.3. Stochastic Resonant Memory Storage Device  

The Stochastic Resonant Memory Storage Device SRMSD is our example application used 

to follow the methodological steps. The SRMSD application [28] represents a numerical 

simulation to study the response of a system of bistable oscillators coupled unidirectional 

driven by a source of external noise and a periodic and temporal stimulus.  

The physical phenomena underlying such short-time storage is that of stochastic resonant 

(SR) [60], that is, the presence of external noise is essential in sustaining the stored 

information for an appreciable time once the external stimulus has disappeared. Under this 

condition the set up acts as a SRMSD. 

The application performs several numerical simulations involving rings with different 

numbers of links and delay times in the coupling. The result is the evaluation of the power-

spectral density of the first oscillator during the travelling signal loops, aver-aging it over a 

suitable ensemble of N initial conditions in order to hinder fluctuations. The windowed 

Fourier transform is used to provide a picture of the decaying process. 

a 
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The SRMSD model and its simulation in a single-cluster environment were developed 

using the master-worker paradigm. The master distributes to all workers the command to 

execute one simulation. The worker then generates a random set of initial conditions and 

simulates the traveling signal, sending back to the master a tri-dimensional matrix 

representing the simulation result. When the master receives one result back, it sends to 

this worker another simulation command (Figure 5-17). 

Run simulation.

Master

Worker
...

1234N

Task IDs

Randomize simulation 
initial data

Send Task ID
(4 bytes)

Return result matrix.
(2,310,248 bytes)

Join data adding result.

Averages the result data in the 
final task.

 

Figure 5-17: Schematic diagram of a master sending a task simulation to a worker and receiving from 
this worker the simulation result. 

When all the N simulations matrices results are received and added by the master, the 

master calculates the average value of these tri-dimensional matrices, writes it in a file and 

terminates the program execution. 

The application is originally executed in a heterogeneous cluster located in the Universidad 

Nacional de General Sarmiento, Argentina. Two external clusters are available to 

collaborate in the execution of the SRMSD application. The first is a heterogeneous cluster 

located in the University Catholic of Salvador in Brazil and the other is a heterogeneous 

cluster located in the University Autonoma of Barcelona, Spain. The clusters are 

interconnected through Internet.  

Our objective with this application is to demonstrate the usage of the methodology for a 

scientific application in more details. This application is also used to validate the analytical 
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model and methodology, showing the efficiency increase through the resources selection 

and the precision of the model estimations. 

The resources are selected to use the three clusters multi-cluster, keeping the efficiency 

over 80%. The application is tuned to reduce even more the execution time using all 

available resources. 

On the following sections we go along the methodological steps for a simulation composed 

of 500 tasks, targeting a minimum of 80% efficiency. The application execution time in the 

cluster Argentina is of approximately 66 hours. 

5.3.1. Local Cluster Analysis 

The Local Cluster Analysis is focused on evaluating if it is possible for this application in 

the local cluster to attain external clusters performance. In order to do this analysis the 

application parameters and the local cluster dynamic parameters are set. 

The LCA steps are application parameters analysis, system parameters obtainment, 

architecture roles mapping, steady state analysis and minimum workload estimation. 

Application Parameters Analysis 

The first step for doing the Local Cluster Analysis is to analyze the application and 

determine the basic operation and the application parameters.  

It is not a simple matter to determine a basic operation for the SRMSD application since 

several different numerical operations are done for each simulation process. Because of 

this and because of the fact that the application was built in a way that one simulation is 

not dividable, the basic operation is set to be one simulation task itself and the 

performance metric will then be the amount of tasks per second. 

The computational application parameters are the amount of tasks of a certain workload or 

problem, the amount of basic operations of a certain task and the amount of basic 

operations of a certain workload.  

Since the task is one simulation itself, the amount of tasks of a workload of N simulations 

is N (81), the amount of basic operations of a task is equal to 1 (82) and the amount of 

basic operations of a workload is also the N tasks this workload has (83). 
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NNTasks =)(  (81)

1=TaskOper  
(82)

NNWorkload =)(  (83)

The communication application parameters are the amount of bytes necessary to be 

communicated for sending a task to a worker (size of a task), for receiving tasks result 

from the worker (size of a result) and the total communication of a task. 

A task is simply one integer value representing a task ID. The amount of bytes necessary to 

be sent for a task, the size of a task, is then the β bytes of an integer (84). The simulation 

result is a matrix of 601 x 31 x 31 elements. Considering that a float point has α bytes, the 

size of a result is (85). The total communication of a task is the sum of these values (86). In 

the execution platform used both α and β have 4 bytes.  

It is remarkable that for the SMRSD application the communication volume for sending a 

task is quite small when compared to the one of the result. This fact will have an influence 

on reducing the startup time and rising significantly the end time. Differently from the 

matrix multiplication application, the end time will them have a great importance on the 

system efficiency. 

 4== βTaskS  (84)

244,310,2577,56131*31*601 =∗=∗= ααResultS  (85)

248,310,2577,561 =∗+= αβCommS  (86)

System Parameters Obtainment 

Once determined the application parameters, it is necessary to determine the system 

parameters for the local cluster. For the computation, the system parameter is each 

computer available performance and for the communication it is the local area network 

throughput. 
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Each computer available performance can be determined by executing several tasks in each 

worker stand alone. Table 5-6 shows for each computer in the Argentinean cluster (local 

cluster) the processor type, main memory size and the available performance executing the 

SRMSD application in 10-3 tasks per second.  

Table 5-6: Argentinean cluster computers’ processor type, memory and available performance for the 
SRMSD application. 

Computer Processor   
Memory 
(MBytes) 

Available 
Performance 

(10-3 tasks/sec) 
 pgs-1  Pentium III 500 512            0.7909    
 pgs-3  AMD 500 32            0.7951    
 pgs-4  AMD 300 128            0.5417    
 pegasus  Pentium III 800 512            2.0969    
 Total general              4.2246    

The cluster in Argentina has its workstations connected by a 10Mbits hub. For precision 

reasons, communication experiments were done to determine an experimental throughput 

for this network. These experiments were done setting the worst processing computer (pgs-

4) to act as a master and the other computers to act as workers. The workers continuously 

send packets of 2,310,244 bytes (the size of task result) to the master that meters the 

average throughput in bytes per second. 

Table 5-7 shows the average throughput for the Brazilian LAN with different amount of 

workers and the variance of this value when compared to the global average. The variance 

of the average throughput when compared to the global average throughput is not 

considerable (it does not exceed 3%). The global average throughput of 1,068,674 is used 

for all the estimations. 

Table 5-7: Average throughput and variance compared to the global average for continuous 
communication of 80,000 bytes packets with different number of workers of the Brazilian cluster. 

Workers 
Average Throughput 
(bytes/sec) 

Variance to Global 
Average 

1 1,105,107 3%
2 1,047,449 -2%
3 1,053,465 -1%

Global 
Average 1,068,674   
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Architecture Role Mapping 

All the workstations of the Argentinean cluster are interconnected through a hub while the 

computer pegasus has two network cards and is the gateway for the cluster to the Internet. 

Originally the computer pegasus has the master role because it represents the network file 

system server. 

According with the system architecture the computer pegasus will have the 

communication manager role because it is the Internet gateway. The problem for this 

cluster is that pegasus is the best computer and would represent the best worker. In this 

situation it would be recommendable if possible to switch the Internet gateway to another 

computer.  

The best candidate for having the master role is the computer pgs-4 that has the worst 

processing power. In order to verify if this computer would not represent a bottleneck as a 

master a similar throughput experiment, with the difference that this time the computer 

pgs-4 also executes the join function, was done. The result of this experiment shows no 

difference in the throughputs when compared with the version that does not compute task 

joins. The computer pgs-4 was then selected as the master. 

It is now possible to find out the value for the cluster available performance that represents 

the sum of the workers performance. The cluster available performance for the cluster in 

Argentina is the sum of pgs-1 and pgs-3 performances: 1.5861 x 10-3 tasks/sec. 

Steady State Analysis 

Once determined all the parameters it is possible to proceed with the steady stage analysis 

to find out if the steady execution is computation or communication bounded. This is done 

by evaluating if the steady performance (26) is limited by the computation or by the 

communication. 

It can be demonstrated in (87) that the execution is computation bounded because its 

steady performance is limited by the computation performance. Consequently, the next 

step in the LCA is the minimum workload estimation. 
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Minimum Workload Estimation 

At this step we will determine the minimum workload for reaching in the local cluster the 

desired 80% threshold efficiency. The minimum workload for a computation bounded 

application is defined by (88) and depends on the startup and worst end time. 

( ) ( )Threshold

Threshold
WorstEndUpAvail Eff

EffTTCPerfWorkload
−

∗+∗≥
1

 
(88)

The startup time value for the local cluster is of 5.61x10-6 sec (89) while the worst end time 

is of 634.38 sec (90), considering reassignment of the last task. 
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Based on these values, the minimum workload is then of 4.02 tasks and, since one task is 

not dividable, the minimum workload in the local cluster is of 5 tasks. 

Once the minimum workload is not greater than the problem, the Local Cluster Analysis 

leads to the Multi-Cluster Analysis. 
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5.3.2. Multi Cluster Analysis 

Inter-cluster Application Parameters Analysis 

The first step of the MCA is to identify the application parameters for the communication 

between clusters. At this time we are analyzing the possibility to pass the SRMSD 

unchanged to a multi-cluster environment. In this case the application parameters between 

clusters are the same as inside a cluster. 

System Parameters Obtainment 

In this step the system parameters for the external clusters in Brazil and Spain are obtained. 

The system parameters are the available performance for each computer, each cluster local 

area network throughput and the incoming and outgoing Internet throughput between the 

main cluster and each external cluster. 

At Table 5-8 it can be seen each computer processor, memory and available performance 

executing SRMSD application’s tasks for the Brazilian cluster. 

Table 5-8: Each computer performance for the Brazilian cluster. 

Computer Processor   
Memory 
(MBytes)

Available Performance 
(10-3 tasks/sec) 

 infoquir1  Pentium 166 32                             0.4683   
 infoquir2  Pentium 166 32                             0.4590   
 infoquir3  Pentium III 500 64                             1.4845   
 infoquir5  Pentium 166 32                              0.3642   
 infoquir6  Pentium 133 32                             0.3750   
 infoquir7  Pentium 133 32                             0.3743   
 infoquir8  Pentium 133 32                             0.2530   
 Total general                               3.7784   

Similarly to the Argentinean cluster, the cluster located in Brazil is connected with a 10 

Mbits hub with the difference that this cluster has more computers. Table 5-9 shows the 

LAN throughput experiments for the Brazilian cluster from 1 up to 6 workers. The average 

LAN throughput for this cluster is of 987,614 bytes per second.  

The Spanish cluster is the biggest and has the best performance of the three target clusters. 

Each computer processor, memory and available performance of the Spanish cluster can 

be seen at Table 5-10. 
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Table 5-9: Brazilian cluster local area network throughput with different amount of workers.  

Workers Average Throughput (bytes/sec) 
Variance to 
Global Average

1 1,045,279 6%
2 972,011 -2%
3 971,283 -2%
4 974,110 -1%
5 979,988 -1%
6 983,014 0%

Global Average 987,614   

The Spanish cluster is interconnected through a 100 Mbits hub. Table 5-11 shows the 

results for the throughput experiments with different amount of workers in this cluster. The 

global average value is used as input for the estimation. 

Table 5-10: Each computer performance for the Spanish cluster. 

Computer Processor   
Memory 
(MBytes) 

 Available 
Performance 

 (10-3 tasks/sec)  
 aoquir1  Pentium III 500 128 1.1312  
 aoquir2  Pentium III 500 128 2.0018  
 aoquir3  AMD Athlon 2600 256 4.6354  
 aoquir4  Pentium III  500 128 1.8681  
 aoquir5  Pentium III  800 128 1.4706  
 aoquir6  Pentium III  800 128 1.5286  
 aoquir7  Pentium III  450 128 2.0293  
 aoquir8  Intel Pentium 4  2600 256 6.1301  
 aoquir10  Pentium III  450 128 2.0507  
 aoquir11  Pentium III  500 128 1.9997  
 Total general     24.8454  

For an external cluster it is also a parameter the incoming and outgoing Internet average 

throughput between the clusters. Several long duration experiments were made and the 

incoming and outgoing average throughput value between the external clusters and the 

Argentinean cluster is shown in Table 5-12.  

Architecture Roles Mapping 

The Brazilian cluster is interconnected to the Internet through the computer infoquir2 that 

is mapped with communication manager role. The computer with the lowest performance 
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is infoquir8 and it has the master role. The Brazilian cluster available performance is then 

of 3.066x10-3 tasks/sec. 

Table 5-11: Spanish cluster local area network throughput with different amount of workers.  

Workers 
Average Throughput 

(bytes/sec) 
Variance to 

Global Average 
1 10,281,379 7% 
2 10,023,744 4% 
3 9,598,730 0% 
4 9,341,646 -3% 
5 9,461,904 -1% 
6 9,410,681 -2% 
7 9,245,924 -4% 
8 9,424,798 -2% 
9 9,603,672 0% 

Global Average 9,599,164   

The Internet gateway for the Spanish cluster is the computer aoquir2 while the computer 

with the lowest performance for this application is aoquir1. These computers are mapped 

with communication manager and master roles respectively and the Spanish cluster 

available performance is then of 21.712x10-3 tasks/sec. 

Table 5-12: Average Internet throughput between the external clusters (Brazilian and Spanish) and 
the local cluster (Argentinean).  

Internet Throughput 
(bytes/sec) External 

Cluster Incoming Outgoing 
Brazil 26,384 25,430
Spain 21,802 21,206

The multi-cluster available performance is the sum of the cluster available performance 

and for this execution the multi-cluster available performance value is 26.365x10-3 

tasks/sec. This value represents a maximum speedup of 16.623 for the multi-cluster 

relative to the local cluster performance. 

Steady State Analysis 

All the parameters are set for the clusters and the steady state analysis evaluates if the 

external clusters are computation bounded or communication bounded. It is possible for 

the external clusters to be communication bounded by its local area networks, by the 

incoming or outgoing Internet communication. 
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The evaluation of this step is done by analyzing the steady performance and which of the 

equation elements has the minimum value, representing the bottleneck. The actual 

approach for the inter-cluster communication is that one inter-cluster task is one task inside 

the external cluster. This corresponds to the first data distribution evaluated scenario for 

external clusters studied at the Chapter 3. 

In this case the steady performance equation is (32) and the results for the Brazilian cluster 

can be seen in (91). From these values it can be concluded that the estimated steady 

performance is the cluster available performance meaning the Brazilian cluster is 

computation bounded. It can also be concluded that more computers could be added to the 

Brazilian cluster until the performance reaches the lowest limitation represented by the 

Internet outgoing communication. 
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The same analysis applied to the Spanish cluster can be seen in (92). Differently from the 

Brazilian cluster, the Spanish cluster is communication bounded by the Internet outgoing 

communication in a performance of 9.179x10-3 tasks/sec. 
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Resources Selection 

The resources selection step evaluates the computers that should be used in the external 

clusters respecting the efficiency threshold. The system efficiency of a cluster is upper 

limited to efficiency in the steady time that is the ratio between the steady performance and 

the cluster available performance (60).  



Chapter 5: Experimental Validation 
 

   109

In Table 5-13 it can be seen for the external clusters the estimated steady performance, the 

cluster available performance and the expected steady efficiency. Since the Brazilian 

cluster is computation bounded, the estimated steady performance is the available 

performance leading to an expected efficiency of 100% during the steady time. The 

conclusion is that all the resources are selected for the Brazilian cluster. 

Table 5-13: Estimated steady performance, cluster available performance and estimated steady 
efficiency for the external clusters.  

Cluster 

Estimated Steady 
Performance 

(10-3 tasks/sec) 

Cluster Available 
Performance 

(10-3 tasks/sec) 

Expected 
Steady 

Efficiency 
Brazil 3.106 3.106 100% 
Spain 9.179 23.570 42% 

A different situation happens with the Spanish cluster because this cluster is 

communication bounded. Using all the resources the best reachable efficiency for the 

Spanish cluster would be of 42%. Since our minimum target efficiency for this execution is 

80% it is necessary to release some of the Spanish computers out of the execution. 

When computers are released from the execution the Spanish cluster available 

performance value reduces and the expected efficiency increases. Our target is to find out 

the group of computers for which the efficiency is over 80%. Several might be the 

computers combination; the best choice is the one with the least amount of computers 

meaning lower startup and end time. 

The selection of the computers aoquir3, aoquir7 and aoquir10 would decrease the cluster 

available performance to 8.715x10-3 tasks/sec. The steady period is now computation 

bounded and the estimated steady efficiency rises up to 100%.  

Minimum Workload Estimation 

In order to estimate the minimum workload each external cluster needs to receive for 

surpassing the efficiency threshold it is necessary to calculate for these clusters the startup 

time and worst end time and apply these times in the equation (58). 

The startup time and worst end time equations for this inter-cluster distribution are defined 

in the first external cluster scenario study of the Chapter 3 respectively as the equations 
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(18) and (50). Table 5-14 shows for each external cluster the startup time, the worst end 

time and the minimum workload to reach the efficiency target. 

Table 5-14: External clusters’ startup time, worst end time and minimum workload for reaching 
efficiency threshold.  

External 
Cluster 

Startup Time 
(sec) 

Worst End 
Time (sec) 

Minimum Workload 
(Tasks) 

Brazil 0.000459 2137 27
Spain 0.000367 436 16

Multi-cluster Load Balancing 

The objective of this step is to estimate the amount of tasks to be solved by each cluster in 

order to reach a perfect balance of the load at the execution. The workload estimation is 

done by solving the equations system in (93). This system derives to the equation system 

in (94) where the variables are the workloads. 
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The balance of the load is done supposing two situations: the clusters will execute in their 

best time or in their worst time. Supposing the clusters will have their execution with the 

best time, the balanced execution will provide the best execution time for the application. 

On the other hand, the balanced load supposing clusters will execute with their worst time 

will provide the worst execution time. 

Table 5-15 shows for each cluster the startup time, the best end time, the worst end time 

and the balanced workload for the best and worst possibilities.  
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The balanced workload is not yet the estimated workload for each cluster because tasks can 

not be divided. It is necessary to redistribute the tasks subdivisions generating the smallest 

possible load imbalance.  

Table 5-15: Each cluster startup time, best end time, worst end time and balanced workload for the 
best and worst execution time possibilities.  

Balanced Workload (tasks)
Cluster 

Startup 
Time (sec) 

Best End 
Time (sec) 

Worst End 
Time (sec) Best Worst 

Argentina 0.0000056 3.24 634.38 59.64 59.66
Brazil 0.0004589 274.88 2136.99 114.48 110.74
Spain 0.0003674 218.13 435.99 325.88 329.59

The best solution for the possible combinations of this redistribution can be seen in Table 

5-16. This table also shows the minimum workload, the best and worst estimated execution 

time for each cluster and the best and worst estimated execution time for the multi-cluster 

system. The estimated execution time for the application in the multi-cluster is the 

maximum from each cluster execution time. 

Table 5-16: Estimated workload and execution time for each cluster and estimated execution time for 
the multi-cluster.  

Estimated Workload 
(tasks) Estimated Execution Time (sec) 

Cluster 

Minimum 
Workload 

(tasks) Best Worst Best Worst 
Argentina 5 59 59 10h 20'04sec 10h 30'35sec 
Brazil 27 114 111 10h 24'12sec 10h 38'56sec 
Spain 16 327 330 10h 28'58sec 10h 38'20sec 
Estimated multi-cluster execution time 10h 28'58sec 10h 38'56sec 

Since for all the clusters the best and worst estimated workloads are greater than the 

minimum workload, the Multi-Cluster Analysis reaches its end. 

Two are the possible outputs from the MCA. If the estimated execution time is satisfactory 

then the methodological process reaches its end. The results of the methodological process 

are the selected resources, best and worst execution time and efficiency for each cluster 

and the best and worst execution time and efficiency for the multi-cluster. These data can 

be seen in Table 5-17.  

Comparing this estimation with the local cluster stand alone execution, the worst execution 

time would represent a speedup of 6.13, reducing the application execution time from 65h 

16min to 10h 38min. 
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Table 5-17: Methodological process results: selected resources, estimated best and worst execution 
time and efficiency for each cluster and for the multi-cluster as a whole.  

Estimated Execution Time 
(sec) Estimated Efficiency 

Cluster Resources Best Worst Best Worst 
Argentina All Cluster 10h 20'04sec 10h 30'35sec 98.58% 97.04%
Brazil All Cluster 10h 24'12sec 10h 38'56sec 98.52% 94.43%
Spain aoquir3, 7 and 10 10h 28'58sec 10h 38'20sec 99.42% 98.77%
Multi-Cluster 10h 28'58sec 10h 38'56sec 99.11% 97.57%

Despite that reduction, most of the resources from the cluster in Spain were taken out of 

the execution. There is a potential speedup of 16.6 if all resources from the three clusters 

could be used. If several executions of the application are expected than it would be 

interesting to evaluate the possibility of tuning the application in order to improve the 

execution speedup. Targeting this goal, the methodology will proceed with the Application 

Tuning phase. 

5.3.3. Application Tuning 

The Application Tuning phase targets to increase the attainable performance analyzing the 

possible bottlenecks and evaluating the possible changes in the application to surpass the 

problem.  

The first step on the AT is to verify if the application is communication bounded in any of 

the clusters. For our example execution the application with all the resources is 

communication bounded for the Spanish cluster. It is then necessary to proceed with the 

computation-communication ratio improvement evaluation step. Because no cluster has its 

performance limited by the workload, it is not necessary to proceed with the startup or end 

time decrease evaluation step. 

Computation-Communication Ratio Improvement Evaluation 

It was seen at the MCA steady state analysis that the SRMSD application is 

communication bounded on the Internet outgoing communication for the Spanish cluster. 

Our objective is then to try to increase the computation-communication ratio for the 

Spanish cluster task results. 
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The SRMSD application final result is the average of each simulation task result. The main 

master keeps a partial sum from the received results and when the last result arrives it 

computes the average and save the result data. 

It is then possible for a sub-cluster to send back to the main cluster results with the sum of 

some tasks, avoiding the communication of every single task result, improving the 

computation-communication ratio. 

In order to do this it is necessary to change the sub-master to sum a certain number R of 

results from the sub-cluster before sending the result sum to the main master. It is also 

necessary to change the main master in order to consider a result from the external cluster 

as N computed results. 

Before performing the necessary changes the methodology proceeds with a new evaluation 

of the application to determine if these changes represent a gain in the execution time 

without reducing significantly the efficiency. 

5.3.4. Local Cluster Analysis – Tuned Application 

There are no changes in the local data distribution or in any of the application or system 

parameters. It is not necessary to re-evaluate the Local Cluster Analysis and it is possible 

to proceed with the Multi Cluster Analysis.  

5.3.5. Multi Cluster Analysis – Tuned Application 

Inter-cluster Application Parameters Analysis 

Applying the tuning strategy, the only inter-cluster computation application parameter that 

changes is the amount of basic operations for an inter-cluster task. An inter-cluster task 

after the tuning represents the value R of results that are joined in the sub-master before 

communication (95). 

ROperInterTask =  (95)

The communication volume for sending one result or R results does not change. The 

difference is that for R results the task result matrix has the R added values. This means 

there is no difference on the communication application parameters. 
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Inside the clusters the task distribution and execution is not changed with the tuning 

alternative. This means that the system parameters on performance and throughput and the 

architecture roles are not changed. It is not necessary to do the system parameters 

obtainment and architecture roles mapping steps. 

Steady State Analysis 

The evaluation if the external clusters are computation bounded or communication 

bounded has changed for the tuning alternative. With the tuning alternative the steady time 

follows the second distribution scenario studied for external clusters for the analytical 

model (Chapter 3).  

In this case the steady performance equation is (36) and the results for the Brazilian cluster 

can be seen in (96). It can be concluded that for the Brazilian cluster it is not necessary to 

aggregate tasks since for R=1 the cluster is already computation bounded.  
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The same analysis applied to the Spanish cluster can be seen in (97). Differently from the 

Brazilian cluster, the Spanish cluster might be limited by the outgoing communication.  

The Spanish cluster is turns to be computational bounded when the Internet outgoing value 

is greater than or equal to the available performance (98). The amount of joined tasks 

before communication for turning to computation bounded the Spanish cluster needs to be 

R≥2.37.  
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(98)

Since tasks are atomic we can conclude that for values or R greater than or equal to 3 the 

Spanish cluster will be communication bounded. The best value of R is the minimum value 

3 because this value minimizes the possible unbalance of the load. This happens because 

the Spanish cluster will just answer results after three tasks are computed which takes a 

longer duration. 

Resources Selection 

The resources selection step evaluates the computers that should be used in the external 

clusters respecting the efficiency threshold. Once there are no communication bounded 

clusters, the steady performance is limited to the cluster available performance meaning 

maximum efficiency with all the resources. All the multi-cluster resources are then 

selected for the execution. 

Minimum Workload Estimation 

In order to estimate the minimum workload the new startup time and worst end time are 

calculated following the second external cluster scenario study of the Chapter 3. The 

equations used are respectively (21) and (55).  

Table 5-18 shows for each external cluster the startup time, the worst end time and the 

minimum workload to reach the efficiency target with the tuned application. 

Table 5-18: External clusters’ startup time, worst end time and minimum workload for reaching 
efficiency threshold with the tuned application.  

External 
cluster 

Startup Time 
(sec) 

Worst End 
Time (sec) 

Minimum Workload 
(Tasks) 

Brazil 0.000459 2137 27
Spain 0.000368 981 90

Multi-cluster Load Balancing 

Following the same procedure of the multi-cluster load balancing step for the application 

without tuning, it is possible to reach the balanced workload results for the tuned 

application for both the best and worst execution times.  
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Table 5-19 shows for each cluster and the tuned application the startup time, the best end 

time, the worst end time and the balanced workload for the best and worst possibilities.  

Table 5-19: Each cluster startup time, best end time, worst end time and balanced workload for the 
best and worst execution time possibilities.  

Balanced Workload 
(tasks) 

Cluster 
Startup Time 

(sec) 
Best End 

Time (sec) 
Worst End 
Time (sec) Best  Worst 

Argentina 0.0000056 3.24 634.38 29.17 29.56 
Brazil 0.0004589 274.88 2136.99 55.56 52.54 
Spain 0.0003678 218.37 980.73 415.28 417.91 

The balanced workload is not yet the estimated workload for each cluster because tasks can 

not be divided and also because for the Spanish cluster the amount of tasks needs to be a 

multiple of R=3.  

Redistributing tasks, the best solution for the possible combinations can be seen in Table 

5-20. This table also shows the minimum workload, the best and worst estimated execution 

time for each cluster and the best and worst estimated execution time for the multi-cluster 

system. The estimated execution time for the application in the multi-cluster is the 

maximum from each cluster execution time. 

Table 5-20: Estimated workload and execution time for each cluster and estimated execution time for 
the multi-cluster with the tuned application.  

Estimated 
Workload (tasks) Estimated Execution Time (sec) 

Cluster 

Minimum 
Workload 

(tasks) Best Worst Best Worst 
Argentina 5 29 29 5h 04'48sec 5h 15'19sec 
Brazil 27 54 51 4h 58'05sec 5h 12'49sec 
Spain 90 417 420 5h 07'48sec 5h 22'41sec 
Estimated multi-cluster execution time 5h 07'48sec 5h 22'41sec 

Since for all the clusters the best and worst estimated workloads are greater than the 

minimum workload, the Multi-Cluster Analysis reaches its end.  

The results of the methodological process are the selected resources, best and worst 

execution time and efficiency for each cluster and the best and worst execution time and 

efficiency for the multi-cluster. These data can be seen in Table 5-21.  

Comparing this estimation with the multi-cluster execution without tuning, the speedup is 

of almost 2, reducing the execution time from 10h 38min to 5h 22min. If the comparison is 
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made with the original application in the local cluster, the worst execution time would 

represent a speedup of 12.14, reducing the application execution time from 65h 16min to 

5h 22min. 

Table 5-21: Methodological process results: selected resources, estimated best and worst execution 
time and efficiency for each cluster and for the multi-cluster with the tuned application.  

Estimated Execution Time 
(sec) Estimated Efficiency 

Cluster Resources Best Worst Best Worst 
Argentina All Cluster 5h 04'48sec 5h 15'19sec 99.01% 94.44%
Brazil All Cluster 4h 58'05sec 5h 12'49sec 95.36% 85.90%
Spain All Cluster 5h 07'48sec 5h 22'41sec 98.82% 94.93%
Multi-Cluster 5h 07'48sec 5h 22'41sec 98.44% 93.90%

5.3.6. Experimental Validation 

The validation of the performance analysis and system tuning methodology applied to the 

Stochastic Resonant Memory Storage Device application is explained in two parts: first the 

proposed problem experiments and then several experiments varying workload and clusters 

configurations.  

At the first part three experiments corresponding to proposed problem used to explain the 

methodology are described in more details. The proposed problem is the solution of 500 

simulations in three geographically distributed clusters located in Argentina, Brazil and 

Spain and connected by Internet.  

The experiments correspond to three different moments in the methodology. For all the 

experiments the methodology and analytical model are used to predict each cluster 

workload, execution time and efficiency. These predictions are done for the best and worst 

possible execution time. From these data it is also predicted the multi-cluster best and 

worst execution time and efficiency. 

 The first analyzed moment, called complete resources, occurs when the application is just 

ported to the multi-cluster, not tuned and executes using all the available computers. This 

execution ignores the predicted efficiency or execution time.  

The evaluation for the complete resources execution estimates a low efficiency because the 

resources were not selected. The objective of this experiment is to verify that the efficiency 

reduction and if it happens because of the predicted causes. 
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The second analyzed moment is called selected resources. This moment takes place after 

the first complete evaluation of the application, when resources are selected and before the 

application was tuned. The predicted workload, efficiency and execution time for this 

experiment can be seen at Table 5-16 and Table 5-17. 

This experiment targets to demonstrate that, after the methodological process and before 

the tuning, the minimum efficiency threshold was guaranteed.  

The third experiments that finalizes the first validation part corresponds is called tuned 

application. This experiment corresponds to the final result of the methodological process 

where the application was tuned and all the resources are used. The prediction of this 

experiment can be seen at Table 5-20 and Table 5-21. 

The second part of the validation shows a comparison of efficiency between prediction and 

execution for several experiments, with different problem sizes and clusters configurations 

for the three mentioned execution types. The objective is to show the prediction accuracy 

for the three different moments with smaller workloads, that can cause greater load 

imbalance, and greater workloads, for whose it is more probable greater Internet 

throughput variances.  

Proposed Problem Experiments 

Along the methodological process of the SRMSD application it was concluded that it is not 

possible to obtain an 80% efficient execution of the application without changes. The 

reason for this impossibility was the fact that the Spanish cluster was computational 

bounded and just could attain part of its performance. 

In order to check this impossibility an experiment was designed with the unchanged 

application and all the computers in the three clusters multi-cluster. This experiment 

corresponds to what we characterized a complete resources experiment.  

Table 5-22 shows, using the analytical model for this complete resources experiment, the 

best and worst estimated workload, execution time and efficiency for each cluster and for 

the multi-cluster. It can be seen in this table that the estimated efficiency for multi-cluster 

execution is below 50% because of the 39% expected efficiency of the Spanish cluster. 
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Table 5-22: Complete resources experiment estimated best and worst execution time and efficiency for 
each cluster and for the multi-cluster.  

Estimated 
Workload (tasks) 

Estimated Execution Time 
(sec) 

Estimated 
Efficiency 

Cluster Best Worst Best Worst Best Worst 
Argentina 58 58 10h 09'33sec 10h 20'04sec 99.90% 97.86%
Brazil 111 108 10h 07'54sec 10h 22'38sec 98.89% 94.25%
Spain 331 334 10h 10'05sec 10h 22'48sec 39.57% 39.12%
Multi-Cluster 500 500 10h 10'05sec 10h 22'48sec 49.67% 48.65%

At Table 5-23 it can be seen for each cluster and for the multi-cluster the workload, 

execution time and efficiency results for the experiment. A graphical comparison of the 

predicted best and worst execution time with the experimentally obtained execution time 

can be seen in Figure 5-18. 

Table 5-23: Experimentally obtained workload, execution time and efficiency for the complete 
resources experiment.  

Cluster 
Workload 

(tasks) 
Execution Time 

(sec) Efficiency 
Argentina 57 10h 02'48sec 99.37% 
Brazil 106 10h 04'32sec 95.30% 
Spain 337 10h 08'25sec 40.40% 
Multi-Cluster 500 10h 08'25sec 49.80% 

From the comparison of the prediction with the experimentally obtained data it can be seen 

that the Spanish cluster execution time was 0.27% lower than the best expected value. 

Analyzing the experiment real Internet throughput we observed that the average outgoing 

throughput for the Spanish cluster was 21,558 bytes/sec. This value is 1.77% greater than 

the value of 21,206 bytes/sec used for estimation. 

It can be concluded that the Internet performance had the influence on the increase of the 

Spanish cluster contribution. This increase resulted that the Spanish cluster was responsible 

for more tasks which lead to the execution of fewer tasks by the Argentinean and Brazilian 

clusters. This is the reason for fact that these clusters execution time is better than 

expected. 

This conclusion is reinforced when analyzing the efficiency for each cluster. Just the 

Spanish cluster had its efficiency not between the predicted minimum and maximum 

values. 
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Figure 5-18: Graphical comparison, for the complete resources experiment, between the best and worst 
predicted execution time and the experimentally obtained time. 

Even with the Internet variance, the prediction was 99.7% accurate when comparing the 

experimental execution time with the best predicted execution time. As predicted by the 

methodology, it was not possible to reach the totality of the selected resources, reducing 

the system efficiency to 49.8%. 

The selected resources experiment is done with the application not tuned, after the multi-

cluster analysis. The predicted values for this experiment are shown at Table 5-24. These 

values were taken from the multi-cluster analysis results (Table 5-16 and Table 5-17).  

Table 5-24: Selected resources experiment estimated best and worst execution time and efficiency for 
each cluster and for the multi-cluster.  

Estimated 
Workload (tasks) 

Estimated Execution Time 
(sec) Estimated Efficiency

Cluster Best Worst Best Worst Best Worst 
Argentina 59 59 10h 20'04sec 10h 30'35sec 98.58% 97.04%
Brazil 114 111 10h 24'12sec 10h 38'56sec 98.52% 94.43%
Spain 327 330 10h 28'58sec 10h 38'20sec 99.42% 98.77%
Multi-Cluster 500 500 10h 28'58sec 10h 38'56sec 99.11% 97.57%

Comparing this prediction with the complete resources prediction it can be seen that at the 

selected resources, the estimated efficiency is greater than 97% while at the complete 

resources it lower than 50%. The expected execution time for the selected resources 

execution is just 2.6% greater than for the complete resources one.  

At Table 5-25 it is shown for each cluster and for the multi-cluster the experimentally 

obtained workload, execution time and efficiency. A graphical comparison of the predicted 
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best and worst execution time with the experimentally obtained execution time can be seen 

in Figure 5-19. 
Table 5-25: Experimentally obtained workload, execution time and efficiency for the complete 
resources experiment.  

Cluster 
Workload 
(tasks) 

Execution Time 
(sec) Efficiency 

Argentina 59 10h 29'09sec 98.55% 
Brazil 111 10h 31'41sec 95.51% 
Spain 330 10h 35'17sec 99.34% 
Multi-Cluster 500 10h 35'17sec 98.13% 

It can be seen that the model adjusts to the system once all the experimental execution and 

efficiency values are inside the predicted range.  
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Figure 5-19: Graphical comparison, for the selected resources experiment, between the best and worst 
predicted execution time and the experimentally obtained time. 

The tuned application experiment is done with all the resources for the application after 

tuning. The predicted values for this experiment are shown at Table 5-26. These values 

were taken from the results of the multi-cluster analysis for the tuned application (Table 

5-20 and Table 5-21).  

Table 5-26: Tuned application experiment estimated best and worst execution time and efficiency for 
each cluster and for the multi-cluster.  

Estimated 
Workload (tasks) 

Estimated Execution Time 
(sec) Estimated Efficiency

Cluster Best Worst Best Worst Best Worst 
Argentina 29 29 5h 04'48sec 5h 15'19sec 99.01% 94.44%
Brazil 54 51 4h 58'05sec 5h 12'49sec 95.36% 85.90%
Spain 417 420 5h 07'48sec 5h 22'41sec 98.82% 94.93%
Multi-Cluster 500 500 5h 07'48sec 5h 22'41sec 98.44% 93.90%
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According to the prediction, for this execution the 80% efficiency threshold is guaranteed 

for the multi-cluster using all the resources.  

At Table 5-27 it is shown for each cluster and for the multi-cluster the experimentally 

obtained workload, execution time and efficiency. A graphical comparison of the predicted 

best and worst execution time with the experimentally obtained execution time can be seen 

at Figure 5-20. 

Table 5-27: Experimentally obtained workload, execution time and efficiency for the complete 
resources experiment.  

Cluster 
Workload 
(tasks) 

Execution Time 
(sec) Efficiency 

Argentina 29 5h 09'52sec 98.35% 
Brazil 52 4h 49'58sec 97.47% 
Spain 419 5h 09'52sec 98.63% 
Multi-Cluster 500 5h 09'52sec 97.78% 

The model provides a valid approximation to the system since for each cluster and for the 

multi-cluster the experimentally obtained execution time and efficiency data are inside the 

predicted boundaries. 
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Figure 5-20: Graphical comparison, for the tuned application experiment, between the best and worst 
predicted execution time and the experimentally obtained time. 

The comparison between each experiment predicted and obtained execution times in the 

multi-cluster can be seen in Figure 5-21. Figure 5-21 also shows the obtained multi-cluster 

efficiency for these experiments. It can be concluded that after the resources selection there 

is a tiny increase in the execution time justified by a great increment on the system 
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efficiency. When the application is tuned the execution time is decreased in almost 50% 

without loss in the obtained efficiency. 

98% 98%

50%

0

2

4

6

8

10

12

Complete Resources Selected Resources Tuned Application

Ex
ec

ut
io

n 
Ti

m
e 

(h
ou

rs
)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Best
Real
Worst
Efficiency

 

Figure 5-21: Graphical comparison, for the selected resources experiment, between the best and worst 
predicted execution time with the experimentally obtained time. 

The Figure 5-22 compares the maximum speedup and the obtained speedup for each 

experiment related with the original execution just in the local cluster. The maximum 

speedup is obtained considering the selected resources available performance. 
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Figure 5-22: Speedup of the experiments related to the local cluster stand alone execution time.  

Other Experiments 

For validating the methodological approach, some experiments with different workloads 

and clusters configurations are presented. Two basic problem workloads were chosen: 100 

and 500 tasks.  
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Executing in the multi-cluster 100 tasks improves the balance unload while 500 tasks 

executions are more likely to face Internet’s throughput variations. Experiments were done 

for each execution type: complete resources, selected resources and tuned application. 

The presented experiments (from A to H) categorized by experiment type and workload 

size can be seen in Table 5-28. 

Table 5-28: Designed experiments categorized by experiment type and workload size.  

Workload Size 
Experiment Type 100 tasks 500 tasks 
Complete Resources A, B C 
Selected Resources D, E F 
Tuned Application G H 

For these experiments the multi-cluster was formed by the Argentinean, Brazilian and 

Spanish clusters. For each experiment we compare the predicted and obtained efficiency. 

This comparison can be seen in Figure 5-23. 
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Figure 5-23: Speedup of the experiments related to the local cluster stand alone execution time.  

For all the experiments except the experiment A the model is a good approximation to the 

experimental data. The experiment A obtained efficiency is lower than the minimum 

estimated value because for this experiment the obtained Internet throughput for the 

Spanish cluster was 16,102 bytes/sec. This value is 24% inferior to the evaluated 

throughput used for the estimation. 
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5.4. Traveling Salesman Problem 

The traveling salesman problem (TSP) is a well known NP-hard combinatorial 

optimization problem. A salesman is required to visit once and only once each of N 

different cities starting from a base city, and returning to this city. The objective is to find 

out the path that minimizes the total distance traveled by the salesman. 

It is possible to formulate as a TSP many problems in science, engineering, and 

bioinformatics fields, such as flexible manufacturing systems, routing problems for printed 

circuits manufacturing, physical mapping problems [2], genome rearrangement [69], and 

phylogenetic tree construction [57]. 

The most direct solution for the TSP problem would be to try all the permutations (ordered 

combinations) and see which one is cheapest. Nevertheless given that the number of 

permutations is the factorial of the number of cities, the execution time for this solution 

increases rapidly. 

The algorithm factorial complexity motivated the research in two lines to attack the 

problem: exact algorithm or heuristics. The exact algorithms search for the optimal 

solution through the use of branch-and-bound technique (40 to 60 cities), linear 

programming (120-200) or branch-and-bound and cut based on linear programming (5,000 

cities) [49]. 

Heuristic solutions for the TSP are approximation algorithms that in a fraction of the time 

of the exact algorithm reach an approximate solution, close to the optimal. Heuristic 

algorithms to solve the traveling salesman problem might be based on genetic and 

evolutionary algorithms [75][74], simulated annealing [65], Tabu search, neural networks 

[6], ant system, etc. 

The traveling salesman problem is used in our work for analyzing different levels of 

predictability in the computation time of tasks. One of the proposed analytical model 

inputs is the performance for each computer. This performance is measured with 

executions of the application at the workstations.  

The precision of this measurement approach is accurate for applications with a high level 

of determinism and where the execution time does not significantly vary for different data 
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inputs. Both the matrix multiplication (considering no predominance of zero-valued cells) 

and the SRMSD applications are deterministic.  

Three different versions to obtain the exact TSP solution were developed in order to 

analyze the influence of different levels of determinism in the robustness of the analytical 

model accuracy. This analysis is used to evaluate strategies to adapt the model for 

applications with different levels of predictability. 

In this section the different TSP implementations are presented, the performance behavior 

for each implementation is studied and changes in the analytical model usage are proposed 

to guarantee the threshold efficiency. Experiments with different sets of cities are designed 

and the accuracy of different levels of predictability is analyzed.  

5.4.1. TSP Algorithms 

The three different implementations of the TSP are master-worker programs based on 

calculating the distance of the possible permutations. Considering C different cities, the 

master defines a certain level L to divide the tasks. Tasks are the possible permutations of 

C cities in L elements. The granularity G of a task is the number of cities that defines the 

task sub-tree: G = C – L. 

A city is defined with two coordinates in a plane and at the execution startup the master 

sends the cities coordinates to every worker. 

A diagram of the possible permutations for 5 cities, considering the salesman starts and 

ends his trip at the city 1, can be seen in Figure 5-24. The master can divide this problem 

into 1 task of level 0 or 4 tasks of level 1 or 12 tasks of level 2 for example. The tasks of 

the first level would be represented by the cities 1 and 2 for the first task, 1and 3 for the 

second, followed by 1and 4 and 1 and 5. 

Workers are responsible for calculating the distance of the permutations left in the task and 

send to the master the best path and distance of these permutations. 

The differences between the three analyzed algorithms are on the pruning strategy. One of 

the characteristics of the TSP is that once the distance for a path is superior to the already 

computed minimum distance it is possible to prune this path tree. The pruning process is 
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illustrated at Figure 5-25 where each arrow has the distance between the two cities it 

connects. 

 

Figure 5-24: Possible paths for the salesman considering 5 cities. 

The total distance for the first followed path (in the left) at Figure 5-25 is of 38 units. The 

distance between 1 and 2 on the second path (in the right) is already of 44 units. It is then 

not necessary in this path for the algorithm to keep calculating distances from the city 2 on 

because it is impossible to reach a better distance for this branch.  

 

Figure 5-25: Illustration of the pruning process in the TSP. 

Our three approaches for the solution of the TSP differ on the pruning strategy. At the first 

approach, which we call exhaustive, there is no pruning and the distance for the whole 
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possible permutations is calculated. It is expected a predictable behavior for this approach 

because the amount of operations does not change with the input data. 

For the second approach, called task pruning, the worker starts a task with no minimum 

distance and prunes with the distances found inside the task. At the third approach, global 

pruning, the master sends tasks with the current achieved minimum distance and workers 

prune whenever it is possible, based on the global distance value, from the beginning of the 

task on. 

The predictability decreases from the exhaustive to the global pruning approaches as 

illustrated on Table 5-29. 

Table 5-29: TSP algorithms used in the thesis, pruning strategy and expected predictability level.  

Algorithm Pruning Strategy Expected Predictability 
Exhaustive No pruning. Every path is evaluated. High 
Task Pruning Branches are pruned inside a task based 

on the task minimum distance.  
Average 

Global Pruning Branches are pruned based on the global 
minimum value sent within the task. 

Low 

5.4.2. Algorithms Performance Behavior 

Our first step is to analyze the performance behavior of the algorithm with different set of 

cities as data inputs. In order to perform this analysis we measured the execution time of 

several tasks in a single computer for different sets of cities.  

Exhaustive algorithm 

For the exhaustive algorithm we analyzed the TSP with 15 cities (C=15) and a computer 

executing sub-trees with 11 cities (G=11 and L=4). The graphics in Figure 5-26 and Figure 

5-27 show the distribution of tasks per execution time for the exhaustive algorithm 

execution in a specific computer. Two different data inputs were used for Figure 5-26 and 

Figure 5-27. The red line shows the average execution time of a task.  

Analyzing these graphics it can be seen that the variance of time between tasks is lower 

than 0.5% for the first set of data and lower than 1.5% for the second set. The average time 

for the first set of data was 8.533 sec while for the second set was 8.680. The difference 

between the averages of the two data sets is of less than 2%. 
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Figure 5-26 Tasks distribution for the exhaustive TSP algorithm execution of the first dataset with 15 
cities in 11 cities branches. 

It is possible to conclude that our proposed methodology would fit well in this distribution 

because of its level of predictability.  

For proving the predictability of this algorithm, the exhaustive TSP program execution 

time was evaluated for a workload of 14 cities divided in tasks of 11 cities. Three different 

sets of cities were used for the cluster execution. 
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Figure 5-27 Tasks distribution for the exhaustive TSP algorithm execution of the second dataset with 
15 cities in 11 cities branches. 
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Table 5-30 shows the execution time prediction and the experimental execution time for 

the exhaustive algorithm in the cluster with the different data input sets. It can be seen in 

this table that the prediction was accurate once the experimental execution time was inside 

the estimated range. 

Table 5-30: Estimated and execution time for the TSP exhaustive execution with different sets of 14 
cities with tasks of 11 cities.  

Estimated Time (sec) 
City Set Min Max 

Execution Time 
(sec) 

A       291.65        302.89 295.68
B       291.65        302.89 294.31
C       291.65        302.89 294.35

Figure 5-28 shows the execution performance in tasks/sec along time for the three different sets of 

cities. It can be seen in this graphic that there are no variations on the obtained performance.  
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Figure 5-28 Execution performance along time for the exhaustive algorithm with different sets of cities 
in a cluster. 

Task pruning algorithm 

The same datasets were used for the task pruning algorithm. The task distribution for each 

dataset can be seen in Figure 5-29 and Figure 5-30. This distribution variance is far greater 

than the one in the exhaustive algorithm varying from 41% to 206% of the average value 

for the first dataset and from 51% to 170% for the second dataset. 
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Figure 5-29 Tasks distribution for the task pruning TSP algorithm execution of the first dataset with 15 
cities in 11 cities branches. 

The average task execution time for the datasets also differs in 16%; from 0.195 to 0.230 

sec meaning that different datasets might result in different average execution times. It is 

not possible than to use our proposed methodology based simply in static performance data 

obtained before the execution.  
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Figure 5-30 Tasks distribution for the task pruning TSP algorithm execution of the second dataset with 
15 cities in 11 cities branches. 
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Although the level of predictability of this algorithm is moderate and our proposed model 

might be used dynamically. The best alternative would be to incorporate the model into the 

application or into the middleware. It would then be possible to dynamically determine the 

average performances and to use the analytical model to predict, along the execution, the 

possible execution time range and its probability. This prediction can be used for dynamic 

decision taking of, for example, change the distribution granularity targeting to balance 

computation and communication. 

Figure 5-31 shows the performance execution along time for the task pruning algorithm 

with three different sets of 16 cities with tasks of 12 cities. It can be seen in this graphic 

that there is a certain variance (from 3 up to 7 tasks per second) in the obtained 

performance along time. It can also be seen that for different workloads, different 

execution times was obtained, varying from 550 to 800 seconds. 
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Figure 5-31 Execution performance along time for the task pruning algorithm with different sets of 
cities in a cluster. 

In Table 5-31 it can be seen the dynamic prediction of the execution time using the 

performance average after 10% of the execution. This table also shows the prediction error 

compared to the experimental time. It can be seen that the prediction error was under 10%. 

Table 5-31: Estimated, execution time and prediction error for the TSP task pruning execution with 
different sets of 16 cities with tasks of 12 cities.  

Estimated Time (sec) 
Cities Set Min Max 

Experimental 
Time (sec) Prediction Error 

A       593.56        609.76 631.74 4% 
B       859.97        876.16 798.24 7% 
C       597.90        614.09 550.12 8% 
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Global pruning algorithm 

The task distribution for the global pruning algorithm with different datasets can be seen in 

Figure 5-32 and Figure 5-33. For this algorithm the maximum and minimum task 

execution time can vary up to 200 or 300 times.  
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Figure 5-32 Tasks distribution for the global pruning TSP algorithm execution of the first dataset with 
15 cities in 11 cities branches. 

Once the pruning is based in the global minimum there is a high probability of short time 

execution tasks. The predictability of this algorithm is very low and our proposed model 

can not be applied for the execution prediction although it could be used for dynamic 

granularity selection. The average performance value for an execution is unpredictable.  
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Figure 5-33 Tasks distribution for the global pruning TSP algorithm execution of the second dataset 
with 15 cities in 11 cities branches. 
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Figure 5-34 shows the performance execution along time for the global pruning algorithm 

with three different sets of 19 cities with tasks of 13 cities. It can be seen in this graphic 

that there is great variance (from 3 up to 1600 tasks per second) in the obtained 

performance along time. It can also be seen that for different workloads, quite different 

execution times was obtained, varying from 1,535 up to 4,644 seconds. 
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Figure 5-34 Execution performance along time for the task pruning algorithm with different sets of 
cities in a cluster. 

In Table 5-32 it can be seen the dynamic prediction of the execution time using the 

performance average after 10% of the execution. This table also shows the unpredictable 

behavior of the algorithm once the prediction error was over 72%. 

Table 5-32: Estimated, execution time and prediction error for the TSP task pruning execution with 
different sets of 16 cities with tasks of 12 cities.  

Estimated Time (sec) 
Experimental 

Time (sec) 
Cities Set Min Max  

Prediction 
Error 

A  16.717,58   16.733,78 4624,2165 72%
B  24.010,13   24.026,33 4605,7743 81%
C  18.457,48   18.473,67 1535,646 92%

5.5. Conclusions 

At this chapter three different applications were used to evaluate the proposed 

methodology and analytical model: the matrix multiplication, Stochastic Resonant 

Memory Storage Device and traveling salesman problem. 
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At the matrix multiplication the possibilities of selecting local cluster and inter-cluster 

granularities was shown and the model proved to predict with more than 90% precision 

using over 90% of the available resources performance.  

For the SRMSD application the whole methodological steps were detailed and the 

methodology was used for prediction, for selecting resources in order to improve 

efficiency and for tuning the application in order to reduce the execution time keeping the 

efficiency threshold. 

The executions results showed the model accuracy for the three scenarios once the 

experimental execution times were inside the minimum and maximum predicted values. 

The traveling salesman problem application was used to prove the robustness of the model 

with different levels of computation predictability. It was shown that depending on the 

level of predictability the performance model can be used dynamically with a high level of 

accuracy. 
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Chapter 6  

Conclusions and Future Work 

6.1. Conclusions 

Clusters of workstations became a common solution to attain the goals of parallel 

computing. Along time clusters often become heterogeneous, having computers with 

different configurations. Heterogeneous clusters of workstations can be found spread over 

the world in many university departments or companies, directly or indirectly connected to 

Internet.  

Those clusters are often used to solve complexity-increasing applications that demand 

more power than the one available with a single cluster. A possible way to surpass single-

cluster performance limitations is to use Internet to interconnect these clusters into a 

cooperative multi-cluster. 

An important issue for the execution of applications in multi-clusters environments is the 

efficiency. An efficient execution results in the increase of clusters throughput and in the 

decrease of the execution direct and indirect associated costs.  

Many are the challenges to make possible an efficient execution of applications in multi-

clusters: 

• Heterogeneity management: Not just in-clusters machines are heterogeneous. There 

are also throughput, latency and reliability differences between intra-cluster local 
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area network and inter-clusters Internet. Each cluster itself is also different as a 

whole from others, characterizing another level of heterogeneity. 

• Application migration to a multi-cluster: It is an important aspect that the migration 

of existent applications to a multi-cluster is transparent and scalable. Problems of 

inter-cluster communication reliability and throughput should be surpassed with, if 

none, a minimum of changes in applications. 

• Speedup achievement: Speedup is a key aspect since a multi-cluster execution can 

only be justified by a gain on the overall performance and reduction of the 

execution time. 

• Efficiency threshold obtainment: Efficiency on a multi-cluster execution might just 

be achieved through selection of some of the available resources or maybe just 

through modifications to tune the application. These alternatives should be 

evaluated.  

The work presented in this thesis addressed to provide tools and strategies to overcome 

these problems and reduce the execution time of applications through the use of multiple 

Internet-connected clusters. It is aimed that applications speedup is reached guaranteeing a 

certain level of efficiency. 

This work reached the objectives through the proposal of a system architecture, an 

analytical performance model and a performance prediction and system tuning 

methodology.  

The proposed system architecture is based on a hierarchical master-worker with the 

inclusion of communication managers for improving Internet usability and adding 

reliability to the inter-cluster communication. The system architecture provides to master-

worker applications scalability, robustness, efficiency, and transparency on the adaptation 

to multi-clusters. 

The developed analytical model is based in computation-communication characteristics of 

an application and a multi-cluster system. The analytical performance model evaluates the 

execution time and efficiency that can be achieved for an application in a multi-cluster 
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system. The analytical model is the base for the proposed performance prediction and 

system tuning methodology.  

The system architecture and analytical model were presented in the paper: 

E. Argollo, D. Rexachs, F. Tinetti, and E. Luque, "Efficient 

execution of scientific computation on geographically 

distributed clusters," PARA'04 State-of-the-Art in Scientific 

Computing, Lecture Notes in Computer Science, vol. 3732, pp. 

691-698, Feb. 2006. 

In order to overcome Internet’s problems on latency, bandwidth, and reliability a 

communication library was built. This library adds reliability to long-distance 

communication and improves the throughput by a multi-threaded multi-connection 

strategy. All this process is done transparently through a simple message passing 

application program interface. 

Experiments show that the connection turns to be fault tolerant and the average throughput 

could be increased in almost six times. The whole system, working with the library was 

described in the following publication: 

E. Argollo, J. d. Souza, D. Rexachs, and E. Luque, “Efficient 

execution on long-distance geographically distributed dedicated 

clusters,” 11th European PVM/MPI Users' Group Meeting on 

Recent Advances in Parallel Virtual Machine and Message Passing 

Interface, Lecture Notes in Computer Science, vol. 3241, pp. 311-

318, 2004 

The proposed performance prediction and system tuning methodology targets to guide the 

analysis and tuning of an application to execute in a multi-cluster guaranteeing an 

efficiency threshold. The methodology answers if for a specific application it is possible to 

reduce the execution time through external clusters performance.  

The proposed methodology also guides through the selection of clusters and computers in 

each cluster for which the execution will take place with an efficiency threshold. In the 
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case a better execution time is still required the methodology gives the support to the 

application tuning analysis. 

The proposed methodology was applied to the Stochastic Resonant Memory Storage 

Device simulation and experiments were done in different phases of the methodology. The 

paper: 

E. Argollo, A. Gaudiani, D. Rexachs, E. Luque. “Tuning 

Application in a Multi-cluster Environment”. European 

Conference of Parallel Computing (EUROPAR’06). To be 

published, 2006. 

proved the usability of the methodology, reducing the application execution time, without 

application changes, to 12% of the original single-cluster time with an efficiency over 90% 

because of the resources selection. When the application was tuned the execution time was 

reduced to 6% its original time using 94% of the available resources over 90% efficiency. 

In order to validate the thesis contributions three applications were selected: the matrix 

multiplication, the Stochastic Resonant Memory Storage Device and the traveling 

salesman problem. 

The testbed multi-cluster is formed by three geographically distributed clusters located in 

Argentina, Brazil and Spain. Experiments were done with different multi-cluster 

configurations to validate the accuracy of the proposed model and the applicability of the 

proposed methodology and architecture.  

The performance model demonstrated over 95% precision and proved to be usable in order 

to support the application tuning. It was possible to achieve, after the proper tuning, 94% 

of the available performance in the multi-cluster with the matrix multiplication and 98% 

with the SRMSD application. 

The traveling salesman problem was used to prove the robustness of the model through 

three different optimal algorithm variations: exhaustive, local pruning and global pruning. 

The algorithms have different levels of predictability. For the exhaustive algorithm the 

execution time of tasks is deterministic and independent of the task data, and the 

performance model achieves a high level of predictability precision.  
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The local pruning algorithm has an unpredictable average execution time of tasks with 

data-driven behavior but the variances follow a statistical distribution. For this case the 

analytical model can be used dynamically, receiving the input parameters values along the 

execution to improve the prediction precision. 

The global pruning algorithm presents a high level of unpredictability. In this case it would 

be necessary to study the relation between the input data and the application task execution 

time in order to improve the prediction accuracy. This study is beyond the work of this 

thesis. 

6.2. Future work 

This work leaves opened lines for future research. The methodology could be used 

dynamically at the application startup to dimension, based on historical parameters values, 

the resources for an efficient execution of the application.  

A multi-cluster execution is a dynamic environment and changes in communication 

(Internet or available LAN throughputs) or computation (process co-allocation at the 

clusters, computers or clusters failures) might happen along the execution. The 

methodology can be used to answer to these changes in the system parameters by 

dynamically adding or removing clusters/computers, guaranteeing the maintenance on the 

system efficiency. 

Depending on the application and on its programming strategy it is also possible to use the 

system methodology to dynamically tune the granularity inside a cluster or between 

clusters. 

It is possible to study the applicability of the developed proposal on the system 

architecture, analytical model and performance prediction and tuning methodology for 

different programming paradigm. The system architecture could, for example, be used as a 

master-worker based run-time for different paradigms. In this case the 

computation/communication could be evaluated dynamically allowing the usage of the 

analytical model and system methodology.  
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The performance model and the proposed methodology could be part of an execution 

framework or of an MPI extension, with maybe some specific primitives for giving hints to 

the model in order to allow the dynamic evaluation or tuning. 

The performance prediction and tuning methodology might not just be used to dimension 

the resources in order to guarantee a threshold of efficiency, as demonstrated in this thesis, 

but it should be also possible to analyze the possibility of the methodology to reach an 

efficient execution of an application, with the minimum resources in a specific execution 

time.  
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Appendix A  

LDS Library 

The use of Internet might result in some problems concerned to the communication. The 

most commons problems are high communication latency, unpredictable throughput and 

low bandwidth when compared to a local-area network. The use of long-distance standard 

Internet not just intensifies those problems but also adds a new and important one: the lack 

of reliability.  

Figure A-1 shows the route (traceroute program execution) for the long-distance Internet 

communication between the Computer Science departments at University Autonoma of 

Barcelona, in Spain, and Catholic University of Salvador, in Brazil. It can be seen each 

host through which a message needs to pass to go from Spain cluster to Brazil, and its 

influence in the latency. The amount of 15 hosts from the origin to the destiny is 

considerable and denotes some of the difficulties of long-distance Internet. 

Figure A-1: Spain to Brazil traceroute result. 

 1  158.109.64.1 (158.109.64.1)  0.829 ms  1.113 ms  0.798 ms 
 2  anella-uab.cesca.es (193.147.232.9)  2.218 ms  2.810 ms  2.149 ms 
 3  GE1-0-0.EB-Barcelona0.red.rediris.es (130.206.202.1)  2.261 ms  2.247 ms  2.249 ms 
 4  CAT.SO2-1-0.EB-IRIS2.red.rediris.es (130.206.240.9)  17.861 ms  17.593 ms  17.576 ms 
 5  SO0-0-0.EB-IRIS4.red.rediris.es (130.206.240.2)  17.435 ms  17.951 ms  17.678 ms 
 6  rediris.es1.es.geant.net (62.40.103.61)  18.132 ms  18.002 ms  17.667 ms 
 7  es.it1.it.geant.net (62.40.96.186)  40.257 ms  39.824 ms  40.193 ms 
 8  it.de2.de.geant.net (62.40.96.61)  49.580 ms  49.201 ms  49.448 ms 
 9  abilene-gw.de2.de.geant.net (62.40.103.254)  143.361 ms  143.901 ms  143.538 ms 
10  atlang-washng.abilene.ucaid.edu (198.32.8.65)  159.092 ms  159.140 ms  159.066 ms 
11  abilene-oc3.ampath.net (198.32.252.253)  177.465 ms  177.943 ms  177.475 ms 
12  rnp.ampath.net (198.32.252.238)  285.899 ms  281.244 ms  280.907 ms 
13  ba-serial4-1-0.bb3.rnp.br (200.143.253.90)  312.897 ms  312.338 ms  312.963 ms 
14  200.128.6.171 (200.128.6.171)  312.447 ms  312.420 ms  313.337 ms 
15  * * * 
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The communication is not guaranteed at long-distance Internet even when the reliable 

transport-layer protocol (TCP) is used. At short time executions (hours), this problem is 

not representative since it is not frequent, but it becomes essential on a long duration 

execution (days to weeks). It is important to remark that a break on the communication can 

cause the whole collaboration from one cluster to the other to be lost. 

This reliability problem was discovered when intercommunication tests were made with 

PACX MPI library. The system proved not to maintain the communication for long 

periods of time: Internet’s transport-layer protocol (TCP) communication sockets 

presented unexpected disconnections. After those failures, to prove that the problem was 

on the network itself, direct TCP communication was tested. The same results were gotten: 

sudden disconnections. It was impossible to determine for how long the communication 

would stay alive and active. 

Since all others MPI implementations are based on the TCP protocol, it became necessary 

to build an MPI level library that, with a high-level interface to the user, could maintain the 

communication for long-duration, tolerating possible Internet failures transparently. For 

the user, a one-hour disconnection should represent just one hour with no communication, 

since the connection is maintained and all exchanged data is guaranteed to be correctly 

communicated. 

It is important to remark that this reliability at inter-clusters communication level was 

necessary not just because of Internet’s transport protocol failures. This feature is also 

relevant because Internet, and specially standard long-distance one, is not a controlled 

environment like a LAN. When targeting long-duration executions other factors like a 

router maintenance or physical network malfunction can also cause communication 

failures. 

The efforts to solve all the presented problems evolved into the development of a library 

called Long Distance Service (LDS). LDS not just adds transport layer reliability, but also 

exploits the best of long-distance communication throughput and latency in order to obtain 

the best use of Internet link. The reason to be done as a library is that, through this, all 

features are transparent to the user. The library interface is similar and as easy to use as 

popular MPI standard. 
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This appendix introduces the LDS library. Section A.1 describes the library development 

goals. A layered model and each layer details are presented at Section A.2. Then, at 

Section A.3, we present experiments made with different configurations and their results. 

Finally, conclusions and future work are shown at Section A.4. 

A.1 Goals 

To communicate long-distance geographically distributed clusters through Internet is not 

an easy task and presents some problems. Among the difficulties the most important are 

high latency, low throughput, variable bandwidth and, specially for long-duration 

communications, lack of reliability.  

LDS library was built to be an easy to use communication tool that could, transparently to 

the user, implement strategies to overcome those problems. LDS main goals are: 

• Add reliability to the communication 

To the end user the communication between clusters must never fail and the program 

execution must continue even if data can not be effectively sent or received. The main 

reason for this is that once the execution can be as long as weeks, the fact that the 

Internet link is not available for hours or even days does not mean the collaboration 

could not be achieved. During the disconnection, both clusters can be executing and 

generating result data that can be sent after the communication problem is solved. 

• Implement strategies to exploit in a maximum the throughput and its peaks. 

Since Internet’s throughput varies along time, it presents peaks of performance. A 

buffering strategy could be used to have enough data to exploit properly those peaks 

increasing the available throughput usage. One other thing that can be done to improve 

the effective throughput, in case of long-distance communications, is to use at once 

more than on simultaneous connections. 

• Avoid the interference of low Internet bandwidth at the high-speed LAN. 

It is important that one cluster element does not get stuck in feeding the other cluster 

with data. There should be buffering strategies, asynchronous sending, and ways to the 
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user to know that a long-distance communication can be done without interfering on its 

performance and local communication response time. 

• Be easy to use and transparent to the end user. 

All those functionalities must be provided by a simple and standardized interface and 

all complexity details should be hidden to the user, although the user must have the 

possibility to configure the library for specific needs. 

Each of those goals can be solved at different levels on which the upper level does not 

need to be concerned about the problems solved at the lower level. To do this LDS is built 

over a layered model. The upper layer, closest to the end user, is responsible for the easy 

usage and transparency and the lower layer (closest to the network) solves the lack of 

reliability. The middle layers try to exploit the best performance from the throughput by 

using a buffering strategy and multiples connections through multiples threads. At the next 

section we introduce the layered model in more details. 

A.2 Layered Model 

LDS is programmed in C++ (where each layer can be mapped to one class) and the library 

users can accede to its functionalities through standard C functions, representing the API. 

The Long Distance Service (LDS) is a library that can be used to attain efficient and 

reliable long-distance point-to-point communication over Internet. It works on the same 

MPI principles, providing a simple application program interface (API) to allow 

workstations data exchange through message passing mechanism. A example of LDS 

message flow use can be seen at Figure A-2. 

LDS implements strategies to obtain the best of long-distance Internet characteristics, 

adding fault tolerance on this communication, taking advantage of its peaks of 

performance and isolating its traffic and low latency from LAN communication.  

The functionalities and strategies are implemented in layers that goes from the high-level 

user API to the low-level network exchange of data. The layered approach allows the 

possibility of evolution since a layer can be easily replaced. 
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LDS_Send(...)

LDS_Init()

Machine A

 Internet

Machine B

LDS_Init()

LDS_Recv(...)

LDS_Send(...)

LDS_Recv(...)

LDS_Finalize() LDS_Finalize()
 

Figure A-2: LDS message flow use example. 

LDS layers from the user to the hardware are: Message passing and management API 

layer, Buffering administration layer, Multi-pipe layer, and Connection Controlled layer. 

The Connection controlled layer uses standard TCP/IP protocol suite functionalities 

(Figure A-3). 

Network

Message passing API Management API

Buffering administistration - dividing and
reordering

Multipipe: Multi-thread and multi-socket buffer sending

Controlled Connection

TCP/IP

User

Hardware
 

Figure A-3: LDS layered model. 
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At the bottom of LDS layered model there is the Controlled Connection layer. The 

Controlled Connection layer adds failure detection and timeout functionality to standard 

TCP sockets so that failures can be communicated to and resolved by the Multi-pipe layer 

The Multi-pipe layer is responsible for the instantiation of multiple peer-to-peer Controlled 

Connections, each one with one new thread. The Multi-pipe layer adds reliability for those 

connections and uses them to simultaneously try to send or receive the obtained buffers (at 

the Buffering Administration layer) through the long-distance link. The use of multiple 

connections allows the best use of the communication link. 

The Buffering Administration layer is responsible for the division or reordering of a 

message to the send buffers or from the receive buffers. It is also responsibility of this 

layer the distribution and concurrence control of those buffers for the multiple threads of 

the Multi-pipe layer. 

The Message Passing and Management API is the interface with the user. It provides to the 

user a series of functions and a configuration file. All user actions over the service are only 

possible through this layer. The process of a message communication through LDS layers 

can be seen at Figure A-4.  
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Figure A-4: Message communication process through the layered model. 

The next section explains each layer in more details. 

A.2.1  Message passing and management API layer 

At LDS top level there are the functions that work as interface to the library user. Those 

functions can be divided into two categories: the message passing functionality and the 
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whole communication service management. The idea is to provide a message passing 

service that starts with the initialization function (LDS_Init) and ends with a finalization 

function (LDS_Finalize). Between those functions send and receive message operations 

can be done (LDS_Send and LDS_Recv) as seen in Figure A-2. The initialization function 

is responsible for classes instantiation, memory allocation, threads start, and connections 

establishments, following the configuration file. Send and receive functions use the Buffer 

Administration layer services, and the finalization function disconnects and free all 

allocated resources. 

All functions start with LDS prefix and LDSM for management functions. The 

management function to change the configuration file is for example 

LDSM_SetConfigFile. No message passing function should be called before LDS_Init or 

after LDS_Finalize.  

At the current version there is only one management function. This function is responsible 

to set the configuration file (in case of not using the default) on which all service’s 

parameters are set and it should be called before the service initialization, if needed.  

On future versions several functions are going to be responsible for the library 

configuration changes and they can be divided in two types: static and dynamic 

management functions. The static ones (LDSM_st) will just be available for call before the 

service starts and will mainly be responsible for overall section configuration. Dynamic 

ones (LDSM_dy) will be responsible for either on-the-fly configuration changes or for 

returning system conditions or statistics, like overall bandwidth or last minute throughput.  

The available functions at current version API are: 

int LDSM_SetConfigFile(char *filename) 

This function sets the configuration file in case the default file is not used. It must be called 

before the service initialization and it returns an error code in case the file passed as 

parameter does not exist or 0 in case of success. 

The configuration file is a text file responsible for setting the system configuration. Its 

parameters and its properties are shown in Table A-1. 
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Table A-1: Configuration file parameters. 

Parameter Type Status Default Data Explanation 

Server Integer Obligatory - 

1 for server 
and 0 for 
client 

Indicates if the service to be 
initialized is client or a server. 

ServerHostName String 
Obligatory 
if Server=1 - 

Name of 
server host. 

Indicates the name of the 
workstation that will be the 
communication server. 

BlockSize Integer Optional 10000 

Number 
representing 
bytes. 

Represents the amount of bytes of 
the Buffering Administration 
layer block.  

SendMemory Integer Optional 1000000 

Number 
representing 
bytes. 

Represents the total amount of 
bytes that will be available for 
Buffer Administration layer send 
messages buffer. A multiple of 
BlockSize is desirable. 

RecvMemory Integer Optional 1000000 

Number 
representing 
bytes. 

Represents the total amount of 
bytes that will be available for 
Buffer Administration layer 
receive messages buffer. A 
multiple of BlockSize is desirable. 

SenderPort Integer Optional 60000 Number 
Represents the first socket port 
used by sender threads. 

SenderPort Integer Optional 61000 Number 
Represents the first socket port 
used by receiver threads. 

The default configuration file is called LDN_Service.ini. An example of a client 

configuration file is shown at Figure A-5. 

Config file
Server = 0
ServerHostName = infoquir2
BlockSize =  40000
SendMemory = 1200000
RecvMemory = 1200000
SenderPort = 60000
ReceiverPort = 60100

 

Figure A-5: Configuration file example. 

int LDS_Init(int aitCommInstances) 

This must be the first message passing function call in the program. Just after the 

initialization it is possible to exchange messages with data. This function initializes 

objects, allocates all necessary memory and establish the communication system, data to 

the target configuration file.  
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This function receives as a parameter the amount of communication instances 

(aitCommInstances) that will be generated for communication. This number represents the 

numbers of communication pipes that will be opened at Multi-pipe layer. This function call 

returns 0 case no errors were found, or an error code in case something fails. 

int LDS_Rank(void) 

This function can be used to know if this application is a client or a server. In case it is a 

client the function call returns 0, and it returns 1 in case of being a server.  

int LDS_Send(void *buf, int count) 

This function is responsible for sending a message with data from one point to the other. 

The message is at buf address and has count bytes. This function returns an error code in 

case of failure, or 0 in case of success.  

This function does not block the program execution until there are free space within the 

send message buffers. In case the buffers are full then the system execution is blocked. 

int LDS_ Recv(void *buf, int count) 

This function is responsible for receiving a message with data. The message is filled buf 

address and will have count bytes. This function returns an error code in case of failure, or 

0 in case of success.  

The system keep receiving data asynchronously through the use of threads. This means that 

there are possibilities that the expected data is already at the buffers. In this case the 

function call will not block, returning instantaneously the required data. In case all the 

requested data is not at the receive buffers, the function will block.  

int LDS_Finalize(void) 

This function finalizes the service, waiting for all messages that are on its way, closing all 

connections, freeing all buffers and ending the communication system. After this function 

call, no more communication is possible. 
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A.2.2  Buffering Administration layer 

The Buffering Administration layer is responsible for managing the buffers for sending or 

receiving data. Send and receive operations can be done simultaneously through multiple 

Multi-pipe layer threads.  

To manage the buffer for a send operation means receiving from the API layer the data, 

dividing it into the buffers, managing the send threads concurrence to this data, managing 

the Multi-pipe layer confirmation of reception of the buffers, and freeing buffers 

confirmed. It is important to remark that, since latency is considerable, the system does not 

wait for a received confirmation to assign another buffer to be sent. Confirmations are 

asynchronous.  

At the other side, buffers will be received and the reception confirmation will be sent. 

Buffers are received independently of a existence, at the API layer, of a receive function 

call and this layer controls the buffer assignation to the threads. Whenever the receive 

function is called, buffers will be reordered and joined at the receive data area until it 

reaches the amount of required data. The buffers that were used are then freed. 

Figure A-6 shows the Buffering layer workflow for a send operation and its interactions 

with the Multi-pipe layer. The data reception works in a similar way. 

It is important to remark that the size of LDS communication packet (the buffer packet 

size) have influence on the recovery time, on the buffer memory allocation, and on the 

communication overhead.  

For the recovery time, the increase of the packet size means that, when a failure occurs, 

more time was lost at the transmission that was being made, and that there will be more 

data to be communicated to recover this failure. Concerning just the failure recovery, a 

buffer as small as possible would be best idea. 

The packet size is important for the buffer memory allocation since each buffer has to have 

this size. As the system can keep the communication when a single failure occurs, it is 

desirable the existence of a great amount of buffers. The more the buffers, the bigger the 

probability of keep communicating until a failure is corrected. A small packet size would 

also be the best option. 
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Figure A-6: Buffering layer workflow and interfaces for a send operation. 

On the other hand, regarding the communication overhead, the smaller the packet the more 

representative will be the protocol headers and trailers. This means that small packets 

communication will waste part of the available throughput with overhead.  

The conclusion is that the communication packet should be as small as possible so that 

recovery can be efficient and as big as possible so that there is not much waste of 

throughput. 

A.2.3  Multi-pipe layer 

The Multi-pipe layer is responsible for the creation of a reliable virtual communication link 

between two workstations. To increase throughput multiple threads for communication can 

be involved. The aim is to achieve simultaneous send and receive of data, and also be 
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prepared to tolerate and solve possible communication failures through reconnections and 

resending of lost data.  

The use of simultaneous communication proved to be an efficient alternative, reaching 

even 6 times the single connection throughput. Some authors also use the idea of using 

multiples simultaneous connections, striping the data over several sockets [3][71]. 

When LDS service is started up, the user passes to the initialization function (LDS_Init) 

the number of desired simultaneous connections. For each connection, at each workstation, 

a pair of threads (one for data send and the other for data reception) and two Controlled 

Connection layer sockets (outcoming and incoming) are created. Figure A-7 is an example 

of the virtual connection threads when three was the simultaneous startup connections 

value. 
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Figure A-7: Multi-thread layer communication threads for three connections. 

Each Multi-pipe layer sender thread has one Controlled Connection socket to a receiver 

thread. This thread is continuously sending buffers and asking the Buffering 

Administration layer for new buffers to be sent. The Multi-pipe layer is the active system 
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component responsible for checking the status of the send and receive operations. It is at 

this layer that the system fault tolerance is provided. 

At the Buffering Administration layer, communication buffers are sequentially numbered 

with an ID. This ID indicates the order so that the Buffering Administration layer at the 

receiver can proceed with the reordering service. This ID is used at the Multi-pipe layer to 

reach the fault tolerance.  

Each sender communication thread contains a list of sent buffers which reception is still 

not confirmed, the non-confirmed list (NCL). This list exists because long-distance 

communication through Internet presents high latency and a great amount of hosts 

buffering packets from both endpoints. It would then not be efficient to wait for one buffer 

confirmation of reception to start sending another one.  

The sender thread keeps continuously sending buffers and putting all the non-confirmed at 

NCL. Each send operation gets all available confirmations and returns then so that the list 

can be reduced. The NCL is used in case of communication failure: the buffers at this list 

are resent once the communication is reestablished. The sender thread workflow can be 

seen at Figure A-8.  

The reconnection and resending action brings reliability to the system. The Buffering 

Administration layer dividing and reordering brings the possibility of the existence of 

multiple simultaneous threads. 

The receiver thread workflow is quite simpler since all the receiver does is ask for free 

buffers, receive data, and send data reception confirmation. This workflow is illustrated at 

Figure A-9. 

A.2.4  Controlled Connection layer 

At the base of the LDS service there is the layer responsible for the data exchange. This 

layer uses the standard TCP/IP Internet protocol, adding to it a special failure detection 

reporting to the Multi-pipe layer disconnections or long periods inactivity.  
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Figure A-8: Sender thread workflow. 

It is important to remark that once the standard reliable Internet transport protocol (TCP) 

proved not to work properly in the described conditions, presenting failures through broken 

pipes, the natural way to add the desirable reliability would be to implement the 

communication over the unreliable Internet suite protocol (UDP).  

Despite that, our decision was to keep using the standard transport protocol, since it is a 

mature solution with several important features implemented like data-flow control. One 

other reason for using TCP as the base is that although disconnections occur, they do not 

happen frequently. 

The Controlled Communication layer is then a thin layer over TCP responsible to detect 

communication failures and allow the reconnection of the broken TCP communication 

without causing the whole system to halt.  

The Controlled Connection layer not just returns the common TCP disconnection but also 

adds an inactivity timeout message that will be interpreted as a disconnection. The reason 
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for this is that the disconnection can sometimes be received after 15 to 30 minutes of data 

transfer inactivity. This happens because TCP is still trying to keep communication alive. 
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Figure A-9: Receive thread workflow. 

To wait such a long time without communicating is not efficient and to avoid this 

behavior, the Controlled Connection layer was provided with a timeout option. Whenever a 

send or receive operation is performed, if a specific time is passed without the exchange of 

even one byte of data, the layer assumes a disconnection will occur and returns to the 

Multi-pipe layer this information.  

This simple idea proved to be effective on reducing the time to overpass connection 

failures. It is implemented through the combination of the use of non-blocking sockets with 

a system call to check for a period of time if data was communicated. This send and 

receive process can be seen at Figure A-10. 

A.3  Experiments and results 

To prove the effectiveness and efficiency of LDS library a benchmark application was 

built. This application tests the communication and meters the throughput between two 

hosts connected through long-distance Internet. One of the hosts, called sender, 

continuously sends messages of a determined packet size and the other host, called 

receiver, receives those messages and records the communication throughput statistics. 
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One thread is launched to periodically record the period average throughput. The 

benchmark program workflow can be seen at Figure A-11. 

Non-blocking TCP
send/recv call.

Send/recv
fails?

yes

no
Block until

effective send/
recv of some data

or timeout.

Block function
timeout? yesnoStill data to

send?

yes

Update data to
send pointer.

no

Data sent OK.
Connection and
send/recv fail.

Send/recv
call

 

Figure A-10: Send and receive with timeout and connection failure detection. 

The execution parameters for this application are the number of simultaneous threads (and 

consequently connections). The amount of threads has influence on the throughput: the 

tendency is an increment on the throughput when one more thread is added until a point on 

which the network is saturated.  

The application output is a file with the throughput average in each period of a defined 

amount of time. For the presented results 1 minute is considered to be the measuring 

period. One other output is also obtained by the LDS system: failure log file. The failure 

log file present the moment a disconnection occurred, the moment the system was able to 

reconnect and the moment all lost data was correctly retransmitted. This data is only 

available for the LDS system since to the end user the network presents to failures. 
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Figure A-11: Benchmark application workflow. 

Three are ours key goals at the experiments: prove that the library is reliable to TCP 

disconnections, show the increase of performance with the multithreads use, and 

experimentally determine the maximum possible bandwidth, i.e. the saturation point and 

the amount of threads to reach this point. 

For the presented experiments, LDS configuration file was set so that 100 buffers of 10 

kilobytes are used. At the application level messages of 100kbytes are sent. Experiments 

were executed between Spain and Brazil for 1, 2, 4, 6, 8, 10, and 16. Throughput behavior 

along time is shown in Figure A-12.  

The average execution throughput, the number of disconnections and a relative gain 

representing the ratio between this execution and the single thread one for Spain-Brazil 

execution can be seen in Table A-2.  



Appendix A: LDS Library  
 

    172 

0

10

20

30

40

50

60

70

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58

1Thread

2Threads

4Threads

6Threads

8Threads

16Threads

 

Figure A-12: Spain – Brazil throughput behavior with multiple threads comparison. 

It can be seen that the system throughput speeds up almost linearly from one thread to 6 

threads reaching the saturation point of 54 Kbytes/sec. For an amount of threads bigger 

then six there is no real gain in throughput. It is also important to notice that the number of 

disconnections appears to have a random behavior. 

Table A-2: Average throughput, disconnections and relative throughput for LDS communication. 

  Brazil-Spain 
  OveralThroughput Disconnections Relative Throughput 
  (Kbytes/sec)     
1Thread                 8,91    2                         1,00    
2Threads               19,51    4                         2,19    
4Threads               40,49    4                         4,55    
6Threads               53,95    8                         6,06    
8Threads               55,52    3                         6,23    
16Threads               55,01    3                         6,18    
32Threads               50,11    5                         5,62    

A.4  Conclusions 

This chapter presented the inter-cluster communication problems: unpredictable and 

unstable latency and throughput and the unreliable transport layer connection. 

Although there are MPI solutions that work over wide-area networks, like Internet, all of 

them are based on the transport layer protocol TCP that proved not to be reliable when 

concerning long-distance and long-duration communication. 
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These problems, the fact that multiple connections improves throughput when long-

distance standard Internet is used, and the need of a simple and transparent interface for 

communication, lead to the development of a library called Long Distance Service (LDS). 

The LDS layered model and internal structure was presented in details and experiments 

were made to prove its efficiency. Experiments show that LDS not just allows, through 

multithreading, the improvement on the throughput that reached 6 times the single socket 

ones, but also shows that the reliability is accomplished. 

It is important to remark that the actual stage of the library just allows the connection of 

two clusters. Future works would be to generalize the approach to more than two clusters 

and to prepare the library as an extension of MPI so that communication inter-clusters can 

be even more transparent through standard MPI calls. Other future work would be to put 

the library to dynamically increase and decrease the amount of threads to keep the network 

saturated along the communication without the waste of system resources. 
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