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Preface

IN the last years, computing performance demand has been in increase.
This necessity appeared specially in di�erent scienti�c areas that have

to solve complex problems. Thus, Biology, Physics and Chemistry are be-
coming the main producers and users of applications with high performance
computing requirements. There are many applications that di�er from the
functional point of view, such as the determining of the human genome, the
simulation of the universe, nature models study, etc. However, in general
the data set size and the complexity of the operations over them require the
use of very powerful systems in order to solve the problem as fast as possible
and using the resources in an e�cient way.

Thus, the increasing necessity for high performance systems/computing
has been directing the attention of the scienti�c �eld towards the para-
llel/distributed paradigm because of grand challenge applications very often
need more computing power than a sequential computer can provide. In such
sequential systems, the improvement of the operating speed of processors and
other components is constrained by the speed of light, thermodynamic laws,
and the high �nancial costs for processor fabrication. A viable and cost-
e�ective alternative solution is to connect multiple processors together and
coordinate their computational power. The resulting systems are popularly
known as parallel computers, and they allow for the sharing of a computa-
tional task among multiple processors [8]. This general de�nition includes
di�erent kinds of parallel computers, such as one machine with thousands
of processors or a set of workstations (a.k.a. nodes) connected through a lo-
cal area network. Either of these con�gurations should provide a signi�cant
increase in the performance when compared to a uniprocessor. The general
and basic idea is that n processors or nodes should provide a computational
speed n times faster than a simple node, i.e., the problem should be solved in
an interval of 1/n of the time [18]. Clearly, the advantages of using parallel
systems constitute an ideal situation which in practice is not always true.
However, even though parallel systems have some limitations in execution
time, those limits are upper than the uniprocessors ones.
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Figure 1: Two eras of computing

Figure 1 shows how an assortment of new architectures, compilers and
operating systems have been developed through the years to enable the use of
parallel computing, and cover the necessity of improving the computational
performance [8]. All of them have been evolving as the sequential paradigm
was �nding some constraints to cover certain expectations. Programmers
have to face a series of di�culties to reach the best performance of their
applications. The development of parallel applications has to follow a speci�c
manner to allow for their execution in a parallel system. In addition, once
the application has been implemented, it has to be systematically tested from
the functional point of view in order to guarantee its correctness. Following
that, the application has to be adjusted to ensure that no bottlenecks exist in
the execution, and in consequence that ful�ls the aim of providing a better
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performance. Thus, the performance of the parallel applications is a key
aspect due to the di�erence between expected and real performances should
not be signi�cant. The optimization process, so-called tuning process, is -as
its name indicates- the process followed in order to adapt and improve the
behaviour of the applications by modifying their critical parameters.

The tuning process includes several and successive phases. Firstly, during
a monitoring phase the information about the behaviour of the application
is captured. Next, the information is analyzed, by looking for bottlenecks,
deducing their causes and trying to determine the adequate actions to elim-
inate them. Finally, appropriate changes have to be applied to the code to
solve the problems and improve the performance. As a consequence, the de-
velopers are forced to know very well the application, the di�erent involved
software layers and the behaviour of the distributed system. All these is-
sues make di�cult and costly the performance tuning process, specially for
non-expert users, due to a high degree of expertise is required in order to
signi�cantly improve the behaviour of the application. Fortunately, through
the years di�erent approaches and tools have been developed with the aim of
helping the user during some of the optimization phases (monitoring, analy-
sis or tuning phases). In Section 1.3 we present an overview of them.

The essential and, at the same time, most complex task during the tuning
process is the performance analysis due to in practice, the bottlenecks can be
found at di�erent abstraction levels. Some of them can be caused by the use
of heterogeneous systems rather than homogeneous ones or by dependences
on the set of input data. These facts entail some potential bottlenecks which
can vary through the execution or in di�erent executions. Other problems,
can come from communications, caused by an erroneous conception of the
application -which can provoke some unexpected blocking in some communi-
cation functions-, the communication library implementation -the design or
implementation of the software layers can be generic and not optimized to
a particular system or conditions-, the operating system characteristics -the
inappropriate size of a bu�er or the management of the messages at protocol
level can interfere in the message sending times- and the underlying hard-
ware capacities -some characteristics of the interconnection network, such as
latency or bandwidth, or even the volume of tra�c in the network, can a�ect

xi



the speed of the application execution-.
These examples show the complexity of the tuning process and the ne-

cessity for using automatic tools in order to simplify and accelerate the per-
formance tuning process. However, even though in the performance opti-
mization area there are several approaches and tools, in general all of them
require the user to know parallel programming in-depth and take an active
part in tuning the application. In consequence, tools capable of automat-
ing the tuning of parallel programs in a user-friendliness way need to be
provided.

One of the available tools is MATE (Monitoring, Analysis and Tuning
Environment), which is an automatic and dynamic tuning environment for
parallel applications. As its name indicates, MATE works in three continuous
and iterative phases in order to adapt the deployment of the application
according to the current state of the execution environment. MATE includes
the knowledge to tune performance problems in pieces of software called
�tunlets�. Each tunlet includes the logic to collect behavioural information,
analyze it on the �y and decide what the required tuning actions are.

The objective of this work is to extend the usability of MATE. Our work
covers two di�erent aspects of MATE:

• the improvement of the performance reached by the centralized analy-
sis executed by MATE, due to it turns in a bottleneck as the size of
the application increases. Thus, we provide an alternative to provide
MATE with scalability properties.

• the increase in the user-friendliness of MATE in order to facilitate the
inclusion of new performance knowledge in it. Thus, we make MATE
transparent for the users.

According to the �rst aspect, we propose a novel approach to execute
the analysis process, called Distributed-Hierarchical Collecting-Preprocessing
Approach. This approach is based on the distributed collection of events
which alleviates the centralized old-fashion in which collection was done,
and in the preprocessing of cumulative or comparative operations as possible.
Thus, the Global Analyzer receives just the necessary information condensed

xii



in a unique message from each Collector-Preprocessor, which considerably
reduces the overload of Global Analyzer. In this way, MATE is provided with
scalability properties. In order to validate this new approach we compared
its deployment with the deployment of full centralized approach.

According to the second aspect, we provide a methodology, including a
designed language and a developed translator to automatically insert tunlets
(tuning techniques) in MATE. When some problem has to be tuned in a pa-
rallel application the user has to develop the corresponding tunlet. By using
our methodology, the user is exempted from being involved in implemen-
tation details of MATE. Thus, by de�ning a set of abstractions about the
application and the performance model, such abstractions can be formalized
in a tunlet speci�cation using the provided language. Such speci�cation will
be automatically translated in a tunlet ready to be used in MATE.
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Chapter 1

Introduction

�Una esperanza creía en los tipos �sonómicos, tales como los ñatos, los de
cara de pescado, los de gran toma de aire, los cetrinos y los cejudos, los de
cara intelectual, los de estilo peluquero, etc. Dispuesto a clasi�car de�niti-
vamente estos grupos, empezó por hacer grandes listas de conocidos y los
dividió en los grupos citados más arriba. Tomó entonces el primer grupo,
formado por ocho ñatos, y vio con sorpresa que en realidad estos muchachos
se subdividían en tres grupos, a saber: los ñatos bigotudos, los ñatos tipo
boxeador y los ñatos estilo ordenanza de ministerio, compuestos respecti-
vamente por 3, 3 y 2 ñatos. Apenas los separó en sus nuevos grupos (en
el Paulista de San Martín, donde los había reunido con gran trabajo y no
poco mazagrán bien frappé) se dio cuenta de que el primer subgrupo no
era parejo, porque dos de los ñatos bigotudos pertenecían al tipo carpincho,
mientras el restante era con toda seguridad un ñato de corte japonés.�

Su fe en las ciencias, Julio Cortázar

PARALLEL computing and performance tuning are two �elds in con-
stant evolution, given the increasing of the requirements for high per-

formance computing. Through the years, several approaches and tools had
been proposed and used in order to improve the behaviour of the parallel
applications and to cover the expectations of the users. In this Chapter we
present the general background of this work. We provide an overview of the
main aspects of parallel computing and performance. Then, we present the
di�erent approaches to tune the performance of applications and summarize
the related work. Finally, the aim of this work, the thesis contribution and
the work organization are presented.
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1.1 Parallel Programming aspects

Parallel applications development involves a set of additional aspects to the
algorithmic ones. Such issues have to be considered in order to obtain a bet-
ter behaviour. Just by considering the underlying parallel computer, there
are several con�gurations among we can consider a system composed of a net-
work of nodes, where there are some inherent delays in the data transmission.
In addition, when the parallel computer is a heterogeneous or time-sharing
system, the individual performance of each node can vary from one to other.
As we will explain below, a problem can be parallelly solved when it has
some characteristics; on the one hand, the problem could manage a consid-
erably amount of data, then the data is divided to be parallelly processed by
several processors. On the other hand, the problem could process the data
by means of an algorithm comprising a set of relatively independent subtasks
which could be assumed by di�erent machines in order to operate like a se-
rial factory. It is fundamental taking into account these characteristics and
the underlying platform when designing the parallel program, in order to
obtain the desired bene�ts. Thus, the division of the work in smaller parts
and their corresponding assignment to the parallel nodes, are key aspects in
designing parallel algorithms [24]. In the following, we introduce the main
concepts involved in parallel processing.

Decomposition is the process of dividing the work in smaller parts,
where all or some of them could be executed in parallel. Each portion of
work is de�ned by the programmer and constitutes a task or computing
unit. The number of tasks and their size determine the granularity. This
depends rather on the concurrency degree, i.e., the maximum number of
tasks which can be simultaneously executed. In general, the concurrency
degree increases as the granularity gets �ner.

Another issue to consider is the load balancing among the nodes, due
to it is desirable that all of them have the same volume of work. The load
balancing in a homogeneous environment can be obtained by fairly dividing
calculus and communication. However, in heterogeneous or time-sharing
environments, load balancing is a very di�cult task.

One more aspect to take into account is the scalability. In general,

2



an application is scalable if bigger parallel systems can solve proportionally
bigger problems in equivalent time, or smaller problems in a shorter period
of time. Both concepts, load balancing and scalability are key aspects in
order to achieve high performance computing in parallel machines, and are
presented in more detail in Section 1.2.

Clearly, the development of parallel algorithms is a critical issue in solving
problems. In practice, the design of a parallel algorithm could comprise some
or all the following steps:

1. Identifying parallelism [18, 24].

2. Choosing the decomposition strategy [24].

3. Choosing the parallel algorithm which will constitute the application
[24].

4. Choosing the programming model and implementation interface in or-
der to write the program [18].

5. Choosing the implementing style [18].

In general, there exist several options for each step. However, in order
to obtain an acceptable performance from the used resources only some of
these options, the well-known ones, are usually considered.

The �rst step is needed to determine the portions of work which can be
executed in parallel. The Bernstein's conditions [53] can be considered in
order to de�ne the meaning of �execute in parallel�:

• Bernstein's Conditions: Given C1 and C2 two tasks, C1 and C2 can
be executed in parallel without any synchronization if and only if none
of the following conditions are true:

1. C1 write data which after are read by C2 (read-after-write).

2. C1 reads data which after are written by C2 (write-after-read).

3. C1 write data which after are re-written by C2 (write-after-write).

3



The remaining four steps are closely related to each other, due to the
decisions made in a certain step could a�ect the decisions in the following
ones. In general, there are two di�erent decomposition strategies to de�ne
how to divide the work in several concurrent pieces:

• Data parallelism: the data domain is divided into multiple regions
which can be assigned to di�erent nodes. Data parallelism is commonly
used in scienti�c problems, due to it concurrently uses several nodes
and exhibits natural scalability conditions.

• Tasks parallelism: the main parts of the program can be identi�ed as
tasks. Their parallel execution should be scheduled by considering the
interdependences. Tasks parallelism is normally limited to low degrees
of parallelism [29].

For both strategies there are di�erent models of parallel algorithms, such
as Master/Worker [33] for data parallelism and Pipeline [33] for task par-
allelism. In the case of programming models, the two main programming
models were conceived in order to be used in the corresponding parallel ar-
chitecture:

• Shared memory : the application data are in the global memory, which
can be accessed from every node. This means that each processor can
independently manage data everywhere in the memory. Some synchro-
nization mechanism is needed to preserve the consistency and integrity
of the shared data.

• Message passing : the data are associated to a particular node. To
access to remote data nodes have to establish communications. In
general, a process sends the data and another one receives it. Thus,
sending and receiving primitives synchronize the program. PVM [21]
and MPI [25, 26] are the most used message passing libraries.

The use of these two programming models is not restricted to the archi-
tectures they are inspired in. However, an alternative use of them can entail
some performance degradation. The chosen programming model determines
the selection of the programming language to implement the application.
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1.2 Performance of parallel applications

Once a parallel application has been designed, implemented and tested, the
quality of its execution has to be evaluated. The aim of this process is
to evaluate the used mechanism. Frequently, parallel applications present
execution values which do not cover the expectations. In such cases, the
parts of the program responsible for the undesirable behaviour have to be
isolated to �nd the causes. Unfortunately, the users are who should a�ront
this problem. This requires the users to know which would be the desirable
execution values. Thus, if the obtained values are under the acceptable
limits, they are responsible for determining the parts of the program which
should be measured and analyzed.

There are several causes for performance degradation, such as incongru-
ences among application, software and hardware. Di�erences among com-
munication bandwidth and processing speed or memory bandwidth can be
some examples. Through the years, several indices have been de�ned in or-
der to evaluate the deployment of parallel computing. Due to the complexity
level involved, none of the simple measures is capable of provide a completely
faithful measure of the system performance. This entails the use of diverse
indices in order to measure di�erent aspects.

In general, every performance study about a parallel program has to con-
sider as parameters the execution time, the scalability, the e�ciency, load
balancing, memory requirements, throughput, network latency, input/output
indices, network throughput, design cost, implementing cost, debugging cost,
reusability, hardware requirements, portability and maintenance costs. The
importance of each factor is relative to the nature of the problem.

Some of the performance parameters, such as the execution time, the
scalability, the e�ciency and the load balance, have a general importance
which entailed the development of several mathematical models to formal-
ize some of their qualities. These models allow the users to understand the
general behaviour of the applications, and can be used to compare di�erent
executions or di�erent implementations of the program.

Speedup. The main point of interest in developing parallel solutions is
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to consider how fast is solved the problem [53]. The parallel execution time
can be pondered by the execution time of a simple processor. If we de�ne
T (x) as the execution time of an application with x processors, the speedup
is a relative performance measure, de�ned as follows [18, 53]:

Speedup(n) = T (1)
T (n)

Thus, Speedup(n) represents the speed increasing when a parallel system
is used. However, the complexity of the program in parallel computing is
not really representative, due to communications increment considerably the
total execution time. The maximum possible speedup with n processors is
n. Such speedup is reached when there is not additional overhead in using
parallel computing and the computing can be divided in processes which last
more or less the same and are assigned to di�erent processors. In such cases,
the speedup is linear.

Speedup(n)≤ T (1)
T (1)

n

= n

Sometimes, the Speedup(n) can reach values bigger than n, which is
called superlinear speedup. This fact can be explained because the extra
memory in the parallel system [53].

Scalability. The speedup of parallel applications can be limited by
di�erent factors. On the one hand, some regions in the program cannot be
divided in concurrent parts. They have to be sequentially executed, such as
the initialization and the �nalization of the application. On the other hand,
the application can present some idle periods in some processors, redundant
calculations in each node or excessive interprocesses communication.

If the required time to process the sequential regions is denoted by f ,
the execution time with n nodes in parallel will be f ∗ T (1) + (1 − f)T (1)

n .
More intuitively, TS denotes the sequential region and TP denotes the pa-
rallel region. Figure 1.1 (based on [53]) shows a simple example where TS

comprises the initialization time and TP comprises the parallel execution of
the remaining part of the program.

The scalability is another of the interesting property, which is used to
measure how e�ciently a program uses the processors in a parallel system.
This parameter provides an estimation of the pro�t taken from the involved
resources. Particularly interesting is the evolution of the scalability when
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Figure 1.1: Parallelizing a sequential problem.

new processors are added to the execution. A series of laws in order to
predict the scalability of applications have been de�ned:

• Amdhal's Law: Amdhal considered the sequential time TS and the
problem size as constant values. Then, even though an improvement
in the speed can be observed, the concurrent computing fraction has
to be a substantial part of the global computing in order to reach an
increasing in the speed. This can be expressed as follows:

Speedup(n)= TS+TP

TS+
TP
n

= T (1)

TS+
TP
n

≤ T (1)
TS

Thus, 1
f limits the maximum speedup, even though an in�nite number

of processors is considered. Amdahl used this argument along the
60th's in order to promote the uniprocessor systems. However, this
law can be interpreted in a more positive way, by considering that the
allowed speedup can be a big improvement.

• Gustafson's Law. Gustafson presented a new line in scalability con-
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cepts, in order to demonstrate the Amdahl's law was not as much
signi�cant as supposed. In practice, a bigger number of processors al-
lows for solving a bigger problem in a reasonable time. Then, the size
of the problem can be determined by the size of the available set of
processors. In this way, the execution time is considered as �xed in
place of the problem size. In order to maintain constant the parallel
execution time, the size of the problem has to increase as the size of
the system increases.

By considering the parallel execution time TP as a constant, the speedup
is di�erent from the speedup de�ned by Amdahl. This new magnitude
is called scaled speedup, i.e. speedup when the problem is scaled. The
parallel execution time is de�ned as TP = f∗T (1)+(f−1)∗T (1)/n = 1.
By applying an algebraic arti�ce, T (1) = f ∗ T (1) + (1 − f) ∗ T (1) is
transformed in n + (1 − n)f ∗ T (1) [53]. Then, the scaled speedup is
de�ned as follows:

SpeedupS(n) =
f ∗ T (1) + (1− f) ∗ T (1)

f ∗ T (1) + (1− f)T (1)
n

=

=
n + (1− n)f ∗ T (1)

1
= n + (1− n) ∗ f ∗ T (1)

In this equation, there are two assumptions: parallel execution time
and sequential execution time are constants.

In addition to the problem size constant scalability (Amdahl) and the
execution time scalability (Gustafson), the scalability could present some
memory problems, i.e. the problem is scaled as memory is available. In
general, the size of the memory increases as the number of nodes increase.
This can allow for the increasing in the execution time.

E�ciency. Sometimes, it is useful to know the use of the processors.
This can be determined by using the e�ciency, which is de�ned as follows
[53] :

Efficiency = Execution time using a simple processor
Execution time using n nodes in parallel × n

Efficiency = T (1)
T (n)×n
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In other way:
Efficiency = Speedup(n)

n × 100%

where the e�ciency represents a percentage. For example, if the e�-
ciency is of 50%, the processors were used, in average, during a half of the
time. The e�ciency reach 100% when Speedup(n) is n.

Load Balance and load balancing. To execute a parallel program,
the tasks must be mapped to processing elements. How the mappings are
done can have a signi�cant impact on the overall performance of a parallel
algorithm. It is crucial to avoid the situation in which a subset of the process-
ing elements is doing most of the work while others are idle. Load balance
refers to how well the work is distributed among the processing elements. In
an e�cient parallel program, the load is balanced so each processing element
spends about the same amount of time on the computation. Load balanc-
ing is the process of allocating work to processing elements, such that each
element involved in the parallel computation takes approximately the same
amount of time. The load balancing can be either static or dynamic, but in
both cases the work is distributed as evenly as possible. [33]

1.3 Performance Analysis and Tuning

The main goal of parallel and distributed applications is to take pro�t from
high computational capabilities of parallel systems. However, obtaining high
performance of an application running in such a system becomes a hard task
[38]. As explained in the previous section, there are several indices which
allow for a general evaluation of di�erent aspects of the applications behav-
iour. Nevertheless, none of them provides the users with speci�c information
or suggestions to overcome the problems. Then, the development of an appli-
cation with a good performance, forces the users to face the tuning process.
Therefore, to attend the performance analysis problem and help program-
mers in the application improvement, many tools have been presented [38].
The basic purpose of performance analysis tools is to help a programmer
to understand the performance characteristics of an application. In particu-
lar, the tool should analyze and locate parts of an application that exhibit
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poor performance and cause program bottlenecks. Such tools are useful for
understanding the behaviour of normal sequential applications and can be
enormously helpful when trying to analyze the performance characteristics of
parallel applications. Such tools are categorized as monitoring tools, analysis
tools or/and tuning tools.

Most performance monitoring tools consist of some or all of the following
components:

• a technology of inserting instrumentation calls to the performance mon-
itoring routines into the user's application

• a run-time performance library that consists of a set of monitoring
routines that measure and record various aspects of a program perfor-
mance

• a set of tools for processing and displaying the performance data.

A particular issue with performance monitoring tools is the intrusiveness
of the tracing calls and their impact on the applications performance. It is
very important to note that instrumentation a�ects the performance cha-
racteristics of the parallel application and thus provides a false view of its
performance behaviour [8].

With regard to the performance analysis tools, their objective is to auto-
mate the evaluation of the monitored information. In general, they include
some performance knowledge to �nd bottlenecks and provide solutions. The
complexity of the analysis process directed by the philosophy of the knowl-
edge determines how fast the solutions or modi�cations are available to be
introduced into the application.

Finally, the performance tuning tools attempt to automate the process
of inserting modi�cations into the application with the aim of overcome the
detected bottlenecks. Some tools cover more than one of these categories,
helping the user in more than a simple level.

Every tool shares the goal of helping users to tune the behaviour of their
applications. However, the manner in which this help has been provided has
been continuously evolving. Thus, through the years, several approaches in
performance monitoring, analysis and tuning have been proposed in order to
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assist the users in improving their applications. In the following sections we
provide an overview of them.

1.3.1 Classical performance analysis

The classical performance analysis approach is based on the post-mortem
analysis of the application behaviour carried out by the user. The �gure 1.2
presents the general �ow of this kind of analysis.
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Figure 1.2: Classical performance analysis approach

First, while the application is running, a monitoring tool obtains infor-
mation about the behaviour of the application. The corresponding instru-
mentation had been statically inserted by the monitoring tool or manually
by the user. When the application is being executed and performing the
instrumented code, the instrumentation allows for data measurements and
collection. In the following step, this performance data are graphically inter-
preted by some visualization tool. Some of the common perspectives used
to show the information are the Gantt, pie or/and bar charts and are used
to present di�erent views of message-passing, computing time, subroutines
invocations, etc. During the performance analysis phase, the graphics are
useful to help the user to understand the tracing in order to analyze the
behaviour presented by the application through the execution. In the last
step, the user manually changes the source code of the application in accor-
dance with decisions made during the analysis. Then, the modi�ed program
has to be re-compiled and re-linked for future executions. This process is

11



successively repeated until an acceptable performance is achieved.
Even though the classical approach has been used for many years, it has

several drawbacks. It requires the user to have a very high degree of exper-
tise in order to analyze and make decisions on how to improve the behaviour
of the application; this is a very di�cult task due to the size of trace �le
is in general proportional to the size and the execution time of the applica-
tion. In addition, visualization tools do not scale very well, which has as a
consequence that when there is a high number of processes involved in the
application or the execution time is too long, the graphics become unread-
able. Furthermore, because of the analysis is made by considering a single
execution, the tuning is only useful when the behaviour of the application
neither depends on the input data nor varies from one iteration to another
nor changes the platform in which it is executed. In summary, the classical
approach constitutes a very time consuming task which is constrained to a
reduced set of applications.

There are several tools following the classical approach. Some of them are
only focussed on monitoring or on visualization, and some others combine
both skills. In the category of monitoring tools, we can include Tape/PVM
[32] and PICL [22, 67]; both of them generate trace �les of PVM applications
and require the recompilation of the application. Tape/PVM is a good
base for some visualization or post-mortem analysis tools, and is focused on
minimal overhead introduced into traced programs. PICL (Portable Instru-
mented Communication Library) is a subroutine library that can be used to
develop PVM applications portable across several platforms. It provides a
set of high-level communication routines and allows for enabling a mecha-
nism of trace �le generation. It is obsolete, but evolved to MPICL [64]:
PICL for MPI.

In the category of visualization tools, we can mention ParaGraph [27, 66]
and Vampir [45, 69]. ParaGraph visualized trace �les in the PICL or
MPICL format, but at present it only works with MPICL. It present the
information by considering the processor utilization, the communication be-
tween processes and the task information. Vampir(Visualization and Analy-
sis of MPI pRograms), monitors the application by using its own mechanism,
VAMPIRtrace for MPI-based applications. It provides a variety of graphical
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displays and �lter operations to reduce the amount of managed information.
It supports load balancing, analysis of performance of subroutines or code
blocks, and identi�cation of communication bottlenecks. It evolved to the
DAMIEN (Distributed Application and Middleware for Industrial Use of
European Networks) project [57] for Grid applications.

Some of the tools which integrate monitoring and visualization skills,
are Pablo [48] and XPMV [21, 70]. Pablo includes application performance
instrumentation, graphical (including 3D performance data representation)
and sonic representation of the collected data and data amount reduction.
XPVM is usually integrated with the PVM library and can be used as a
graphical console, monitoring tool and post-mortem analysis tool.

1.3.2 Automatic performance analysis

The main contribution of the automatic performance analysis approach has
been to release the user from having a high degree of expertise in parallel
systems and performance analysis. This is shown in Figure 1.3.
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Figure 1.3: Automatic performance analysis approach

When the execution of the application �nishes, the analysis tool looks
for performance bottlenecks automatically by considering the information
collected by the monitoring tool and its own knowledge about potential pro-
blems the application can present. Such knowledge is normally constituted
by performance models of the well-known and typical parallel performance
problems. The performance models allow for detection of bottlenecks as
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well as their causes and needed changes to improve the future executions
of the application. When the performance analysis �nishes, it provides the
user with the corresponding suggestions to modify the source code. As in the
previous approach, the user changes the application, re-compiles and re-links
it to next execution.

Although this approach exempts the user from the very di�cult and time
consuming task of analysing the behaviour of the application, it has some
constraints. On the one hand it is still based on trace �les and considers
a single execution of the application; on the other hand, the creation of
knowledge models is not an easy task and need a trade-o� between simplicity
and accuracy. Then, it is only suitable for the same set of applications as in
the classical approach.

Some examples of tools following this approach are KappaPi [19], Par-
adise [31] and AIMS [54, 56]. KappaPi (Knowledge-based Automatic Para-
llel Program Analyzer for Performance Improvement), is based on Tape/PVM
trace �les. Its knowledge base includes performance models about the main
bottlenecks found in message passing applications. The analysis is made
by dividing the trace �le in chunks which are separately analyzed. Regard-
ing to Paradise (PARallel programming ADvISEr), it represents the exe-
cution of the program as an event-graph. It is viable for programs written
in Charm++ [30], an extension of C++. Both, KappaPi and Paradise pro-
vide suggestions about the detected bottlenecks and the way to avoid them.
A slightly di�erent tool is AIMS (Automated Instrumentation and Mon-
itoring System), due to it includes a source code instrumentor, a run-time
performance-monitoring library, two tools that process the performance data
(trace �le animation and analysis toolkit)and a trace post-processor that re-
moves overhead introduced by monitor. It can be used for FORTRAN or C
message-passing programs written using the NX, PVM or MPI communica-
tion libraries.

1.3.3 Dynamic performance analysis

The dynamic performance analysis proposes to overcome the drawbacks pre-
sented by the automatic post-mortem performance approach, such as the
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analysis step based on a single run of the application and on large trace �les.
The analysis is made �on the �y� by considering performance data collected
by an on-line monitoring tool, which presents the bene�t of independence
from a trace �le. Figure 1.4 shows the general view of this approach. The
instrumentation can be dynamically inserted into or eliminated from the
application by applying dynamic instrumentation techniques (explained in
Chapter 2).
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Figure 1.4: Dynamic performance analysis approach

The dynamic analysis approach allows for detection of performance pro-
blems faster than the postmortem approaches. It is suitable for iterative
long-running applications. However, it requires the user to stop, modify,
recompile and re-run the application in order to apply the tuning. Then, as
in previous approaches, decisions based on a single execution could not be
signi�cant in future execution, when the application depends on the input
data or their evolution.

Paradyn [37, 46, 65] is an example tool in the dynamic performance
analysis approach. It is able to insert and modify instrumentation during
run-time without any changes of the source code, due to it uses dynamic
instrumentation (see Section 2.1.3). It has a special module so-called Per-
formance Consultant which can be used in order to exempt the user form
deciding which instrumentation is the most important, in order to minimize
the intrusion inserted into the application.
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1.3.4 Dynamic performance tuning

The dynamic performance tuning approach proposes to automate the inser-
tion of modi�cations in the application. The previous three approaches have
been incrementally overcoming the di�culties presented by their precedent
approaches, dynamic performance tuning o�ers automatic tuning during run-
time instead of manual insertion of changes in the source code. Figure 1.5
shows the general operation of this approach.
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Figure 1.5: Dynamic performance tuning

All the phases in this approach are done during run-time. The analy-
sis step is not based on trace �les, but it uses the measurements provided
by a dynamic monitoring tool. Depending on the evaluation of the per-
formance, the tuning actions are automatically and dynamically inserted in
the application. Thus, the running parallel application would be automati-
cally monitored, analyzed and tuned on the �y without need to re-compile,
re-link nor restart it. This completely exempts users from taking part in
tuning their applications. Another advantage is that the performance of the
application is evaluated and tuned according to its current behaviour in the
environment. Then, decisions are more accurate and consistent, due to every
execution of the application is separately tuned according to its particular
execution conditions, i.e. di�erent input data or di�erent conditions in the
execution environment. Such as in the previous approach, this one is suitable
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for iterative, long running and resource-intensive programs.
There exist several tools in this approach, such as SCIRun [47, 68], Au-

topilot [49], Active Harmony [52, 55], AppLeS [6], Mojo [4], Dynamo [16],
PerCo [35], Java HotSpot [63] and MATE [38, 39, 40]. Due to MATE is the
core of this work, we dedicate an overview of it in the following subsection,
and mention what makes it di�erent from the others tools. In Chapter 2 we
provide more details about MATE.

SCIRun (Scienti�c Computing and Imaging), is a problem solving en-
vironment (PSE) and a computational steering system in which large scale
simulations can be processed. It allows to interactively steer a computation
changing parameters, recomputing and then re-visualizing. First, a simu-
lation can be composed via a visual programming interface to a data�ow
network. Then, such a simulation can be executed, controlled and tuned
by interacting with the end user via a graphical user interface. Finally, the
information can be displayed using 3D graphics.

Autopilot, automatically chooses and con�gures resource management
algorithms based on application request patterns and observed system per-
formance. Its infrastructure is based on Pablo tool. It provides a set of
performance sensors, decision procedures and policy actuators. The toolkit
uses distributed sensors to gather quantitative and qualitative performance
data from executing applications. Autopilot relies on fuzzy sets and uses a
set of IF-THEN production rules that map the sensor input values to the
actuator output space.

Active Harmony, is a framework which enables the dynamic adapta-
tion of an application to the network and resource capabilities. It permits
automatic adaptation of algorithms, data distribution, and load balancing.
The system provides Library Speci�cation Layer with uniform API. This
layer integrates di�erent libraries with the same or similar functionality. The
user develops an application using this API, and hence the application con-
tains a set of libraries with di�erent algorithms and tunable parameters to
be changed. During runtime Active Harmony monitors underlying library
execution and manages the values of the di�erent parameters. The system
is able to select more e�cient library and change tunable parameters to
improve the application performance.
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AppLeS (Application Level Scheduler), combines dynamic system per-
formance information with application-speci�c models and user speci�ed pa-
rameters to provide better schedules. It is developed on agent-base methodo-
logy. Each application has its own AppLeS agent. Each one contains static
and dynamic information about the available resources and its function is to
determine an application-speci�c schedule and implement that schedule on
the distributed resources on metacomputers.

Mojo and Dynamo, perform the run time optimization of a native
instruction stream. The program binary is not instrumented and is left
untouched during the system operation. Thus, they uses very low-level tech-
niques of optimization.

PerCo (Performance Control), can be used for distributed applications
executing on a heterogeneous network, such as a computational Grid. The
PerCo system is oriented to two HPC application domains: coupled models
for scienti�c simulation [3] and distributed search for statistical disclosure
control [34]. PerCo is capable of monitoring the progress of the applica-
tions and redeploying them so as to optimize performance. PERCO requires
performance prediction capabilities, such as history of previous executions.

Java HotSpot provides the highest possible performance for Java ap-
plications. Traditionally bytecodes are generated from Java programs and
then interpreted during execution by Java Virtual Machine. Java HotSpot
includes dynamic compilers that adaptively compile Java bytecodes into op-
timized machine instructions and e�ciently manages the Java heap using
garbage collectors, optimized for both low pause time and throughput. It
provides data and information to pro�ling, monitoring and debugging tools
and applications.

MATE

MATE (Monitoring, Analysis and Tuning Environment) [38] is a tool which
implements automatic and dynamic tuning of parallel applications. The op-
eration of MATE is based on three automatic and continuous phases along
the application execution: monitoring, analysis and tuning. The knowledge
about what to measure, how to evaluate the behaviour and what to change
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to adjust the behaviour is based on performance models managed by the
Analysis phase. Analysis phase indicates to the Monitoring one, what is
the information needed to evaluate the model by considering its parame-
ters. In consequence, such phase inserts the corresponding instrumentation.
Collected information is sent to the Analysis phase as events. Then, the per-
formance model can be evaluated. Depending on the decision, the Tuning
phase will receive a requirement for changing something in the application.
Each performance model is encapsulated as a piece of software called �tunlet�.

Even though MATE shares some characteristics with the tools previously
presented, it has some particularities. On the one hand, if we consider the
preparing of the application to be tuned, using MATE the monitoring is
based on the dynamic instrumentation where the application does not require
to be prepared for tuning due to measure and tuning points are inserted on
the �y. In Autopilot the developer must prepare the application inserting
sensors and actuators manually into the source code. In Active Harmony the
mechanism is based on the integration of di�erent libraries with the same
functionality.

On the other hand, if we consider the way in which the performance
analysis is made, MATE uses simple, conventional rules and performance
models, whilst Autopilot uses fuzzy logic to automate the decision-making
process, Active Harmony uses heuristic algorithms in order to describe the
application behaviour, and PerCo is based on history. In addition, MATE is
focussed on the e�ciency of resource utilization and performance bottlenecks
that occur during the application execution, while AppLeS is focused on the
resource scheduling. Finally, MATE works at binary program level rather
than at native instruction stream level such as in Mojo or Dynamo.

A more detailed description about MATE is presented in Chapter 2.

1.4 Thesis Contribution

Our proposal is to enhance and extend the use of MATE from two di�erent
sides. The �rst point is related to make MATE scalable, with the proposal of
overcome the bottleneck presented by MATE when the number of machines
involved in the execution of the application increases. The second point is
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relating to automate the creation of tunlets (the inclusion of knowledge in
MATE) in order to make easier the use of this environment.

To start with the �rst point, we propose a new approach to perform
the analysis phase of MATE. The novel approach is called the distributed-
hierarchical collecting-preprocessing approach. Until now MATE had been
following a centralized approach, in which the collection and processing of
the information turned in a bottleneck as the amount of processes in the
application -and consequently the amount of events- increased. Thus, such
approach limited the scalability properties of MATE. Then, we studied di�e-
rent options to provide scalability; however, both distributed and hierarchical
approaches presented constraints from the user, the performance model and
the application point of view. Thus, we selected the good characteristics of
them in order to provide a viable alternative. The objective of the proposed
approach is to overcome the bottleneck of Analyzer, by distributing what
can be distributed (the collection of events) and preprocessing what can
be processed before the model evaluation. We compare the new approach
with the centralized one in order to appreciate the signi�cance of the con-
tribution. We also study the intrusion caused by MATE and the resources
requirements.

Concerning to the second aspect of the extensions of MATE, we de�ne a
methodology to specify performance models according to applications. The
purpose of such methodology is to palliate the constraints imposed until
now to use MATE, due to the users had to program their tunlets by hand
considering the implementation details of MATE. Then, this part of the
present work represents an important contribution from the usability and
user-friendliness point of view, owing to from now the user will be only
concentrated in the application and the performance model. By writing the
speci�cation of the performance problem, the user can automatically access
to the possibility of using such knowledge in order to tune the application:
the speci�cation is automatically translated in a tunlet to be used in MATE
to dynamically and automatically tune the application. In order to de�ne
the methodology we studied the viability of de�ning some enough expressive
language in order to formalize the speci�cations. As a result, we designed
and de�ned a context free language, and developed a translator to create
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tunlets from speci�cations.
We also provide two use cases of such methodology, which at the same

time provide MATE with two new tunlets to tune Master/Worker applica-
tions. The developed tunlets allow for tuning the number of workers and the
load balancing, respectively.

1.4.1 Work organization

This work is organized as follows: in Chapter 2 we give a general description
about MATE and summarize the main aspects of dynamic instrumentation.
Then, we explain in more details the main aspects relating to the architecture
of MATE.

In Chapter 3, we describe the proposal to provide Analyzer -and in conse-
quence MATE- with scalability. We include the comparison with centralized
approach and the study of the intrusion of MATE.

In Chapter 4, we describe the methodology to automatically generate
tunlets from speci�cations. Then, we present the process followed in the
de�nition of the designed Tunlet Speci�cation Language and the developed
Translator. At the end of the chapter, we summarize the main aspects to be
taken in consideration by the users. The complete syntax directed de�nition
of the language is presented in Appendix A.

Chapter 5 is dedicated to depict some examples and use cases of the
methodology presented in Chapter 4. The examples include the complete
speci�cation of the tunlets, documented in Appendixes B and C.

Finally, the main conclusions and open lines that can extend this research
are reported in Chapter 6.
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Chapter 2

Monitoring, Analysis and
Tuning Environment

�En El Cairo uno entra en una tienda y le ofrecen, inmediatamente, café,
vino, frutas... Luego le dicen `Bienvenido a Egipto' . Después cuando uno
pregunta el precio de algo, con toda cortesía le advierten. `½No Señor! ½Es
un regalo! ' Pero se sobreentiende que esto es una convención y que no es
un regalo que se daba aceptar. En seguida viene el regateo, que puede
durar media hora o tres cuartos de hora. Uno ofrece cinco y ellos piden
veinticinco y todo eso para que, �nalmente, el precio quede en diez. Y es
una maravilla porque si uno no compra nada, igual son muy corteses. Ellos
no han descubierto el mate, pero igual han encontrado una manera, casi más
simpática, de perder el tiempo�

Borges, sus días y su tiempo, Jorge Luis Borges

MATE , which means Monitoring, Analysis and Tuning Environment,
provides dynamic and automatic tuning of parallel applications. The

power of this tool lies in its two characteristics:

• Dynamic tuning, is useful especially when applications are executed in
heterogeneous or time-sharing systems, because decisions to adjust
the behaviour of a determined application are made on the �y, taking
into account the current state of the system.

• Automatic tuning, is helpful because users have not to be worried nor
envolved in looking for performance bottlenecks nor applying solutions
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into the applications to improve their performance. They only have
to statically cooperate with the tool to indicate what the performance
problems the application can present are.

Decisions on how to improve applications are made by considering per-
formance models of possible problems the applications could present. Then,
some instrumentation to collect information about the behaviour of the ap-
plication is automatically inserted according to the model. Analysis of the
gathered information is made evaluating the given performance model. So-
lutions are automatically inserted in the application, and applications do not
need to be re-compiled, re-linked or restarted.

Dynamic tuning implemented by MATE is the core of this work. There-
fore, in the following sections, we describe in more details the main aspects
of MATE (more details can be consulted in [38, 39, 40, 41]). We provide
its general characteristics, functionality and di�erent techniques used during
the MATE development. The original version of MATE presents some limi-
tations and restrictions to be used. On the one hand it has some di�culties
when the number of machines increases. On the other hand not only the
cooperation of the user is needed to de�ne how to analyze the behaviour of
the application, but the user must also know the implementation details of
MATE to make possible the implementation of the solutions. The proposed
enhancements and improvements are presented in the next chapters.

2.1 General view of MATE

In this section we present MATE in a general and conceptual way, in order
to understand what its philosophy is. We describe the tuning approach
applied in MATE, and the mechanism it uses in order to implement dynamic
instrumentation and tuning.

2.1.1 Dynamic tuning

In Chapter 1, we presented the di�erent tuning approaches. As commented,
MATE implements dynamic and automatic tuning. It is composed of di�e-
rent services cooperating among themselves:
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• Dynamic monitoring of the application execution. This service pro-
vides the metrics obtained during the execution. The instrumentation
of the application, i.e. the insertion of code to examine the applica-
tion behaviour of the application, is performed automatically to reduce
and make easier the intervention of the user. Collected information is
directly sent to the analysis phase.

• Automatic performance analysis �on the �y�. This service analyzes
the received information in order to detect possible bottlenecks and to
provide solutions to overcome them. Performance knowledge about sig-
ni�cant parallel bottlenecks is needed to detect problems and provide
solutions.

• Automatic tuning of the application during run-time. This service is
responsible for automatic insertion of the solutions provided by analysis
phase into the application during its execution. This kind of tuning
exempts the modi�cation of the code due to the application is modi�ed
on the �y.

These services make easier the users' task if we consider the intervention
in the tuning process. On the one hand, the user does not need to instrument
the application by hand or semi-automatically, nor to trace the execution of
the application, nor to analyze analytically or automatically the performance
nor to modify and re-compile the application source code. On the other hand,
this tuning approach is not restricted to homogeneous applications with a
regular behaviour, it is suitable for applications that are executed under
di�erent conditions.

2.1.2 Additional characteristics

Additionally to the characteristics straightforward adopted from dynamic
tuning approach, MATE considers the following aspects in order to work as
a whole:

• Parallel control of the application. Control and Optimization services,
i.e. monitoring and tuning respectively, should act over every machine
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involved in the application execution in order to manage the entire
application.

• Global Analysis. Even though the application is executed as subtasks in
separate machines, the improvement of local tasks does not necessarily
means an improvement in the whole application. Then, the behaviour
of the application has to be evaluated in a global manner. Hence, some
information about the individual tasks is collected and centralized to
perform global analysis.

• Application knowledge. Dynamic tuning is executed during run time.
This has two requirements:

� simplicity in the analysis process, to make decisions in a short
period of time,

� conciseness in modi�cations to be inserted in the application.

These two factors restrict the usability of dynamic tuning. Further-
more, the e�ectiveness of dynamic tuning could be decreased when no
knowledge about the application is available. This presents the need of
providing information about what should be measured, how to detect
and solve existing bottlenecks and what to modify. Another di�culty
is the representation of the knowledge.

• Monitoring and optimization during run time. As mentioned before,
every phase in monitoring, analysis and tuning process has to be done
�on the �y�. The key is to determine the insertion of instrumentation
and changes in the program without access the source code of the ap-
plication. To make it possible, dynamic instrumentation is used.
This technique allows for inserting a piece of code in a program in
execution. One of the advantages of this approach is that the instru-
mentation can be inserted or removed as necessary. In fact, MATE
uses DynInst [7], a library which implements dynamic instrumenta-
tion, both to instrument and modify the application. We provide an
overview of this library in Section 2.1.3.
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• Low intrusion. The overhead caused by the continuous monitoring,
analysis and tuning processes should be minimal to avoid a�ect the
performance of the application, due to they are executed concurrently
with the application. Monitoring should manage reduced amount of
information, analysis process should not be too complex, and tuning
phase should not comprise very signi�cant changes in the application.

• Overcome the bottlenecks. The monitoring, analysis and tuning proces-
ses require a certain period of time to provide an applicable solution
to the existing problem. This can present a disadvantage: when the
solution is ready to be applied, the application bottleneck may disap-
pear. This fact could be a restriction because problems which appear
isolately could not be e�ectively solved. This is why dynamic tun-
ing is applicable to problems which have certain persistence along the
execution.

2.1.3 Dynamic Instrumentation: DynInst

�The normal cycle of developing a program is to edit source code,
compile it, and then execute the resulting binary. However, some-
times this cycle can be too restrictive. We may wish to change the
program while it is executing, and not have to re-compile, re-link
or re-execute the program to change the binary.� [7]

The principle of the dynamic instrumentation consists in to postpone the in-
strumentation of the application until it is being executed. Instrumentation
can be inserted, modi�ed or removed as needed during run time. DynInst
is an API (Application Program Interface) which generates code during run
time. As explained below, this library is used by MATE in order to manage
the instrumentation of the application. In the following, we summarize the
main concepts inherent in DynInst. More details can be obtained from [7].

DynInst provides a C++ library to dynamically instrument independent
machine code. The API is based on object oriented technology, and provides
a set of classes and methods which allow the user to perform the following
actions:
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• To modify an executing process or to start a new one.

• To create a new piece of code.

• To access and use existing code and data structures.

• To insert created code into executing programs.

• To remove inserted code from executing programs.

The instrumentation inserted in the application will be executed when
the program executes another time the modi�ed block. The program has
not to be re-compiled, re-linked nor restarted. Due to DynInst manages the
address space image of the process, the library does not need to access to
the source code of the program. A fundamental requirement of DynInst is
the debug information, which is used to locate the functions and variables
in the application. Because of this, the programs to be instrumented must
be compiled using the correspondent compiling option.

Library abstractions

DynInst is based on the following abstractions:

• Mutatee or Application: this is the program to be instrumented.

• Mutator: this is the program which controls and modi�es the mutatee
via DynInst.

• Point: this is an speci�c point in the application where some new code
could be inserted. Examples of points can be the entry or the exit of
a function.

• Snippet: it is a representation of a piece of executable code, which
can be inserted into a program at a determined point. A snippet can
include conditionals, function calls, loops, etc.

• Thread: this corresponds to a thread of execution.

• Image: this constitutes the static representation of a program in the
disk. Each thread is unequivocally associated to an image.
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The abstractions used by DynInst and their interactions are shown in
Figure 2.1. In particular, the snippets are used to implement the data col-
lection. An example can be the programming of a function call counter.

Mutator


API


DynInst


code


doWork(int a, b)


{


   int i;


   for(i=0;i<16;i++)


   {


      f(a, i);


   }


}


Snippets


Run time library


Points


Mutator
 Application


 


Figure 2.1: DynInst API abstractions

Using DynInst

To be able to dynamically insert instrumentation into an application, a user
of DynInst library has to attend the following steps:

1. Have a mutatee executable �le. Neither the source code of the appli-
cation is needed nor special compiling or linking options besides the
debugging option.

2. The mutator has to be implemented by using the appropriate classes
of DynInst.

3. The mutator has to implement snippets by using the classes provided
by DynInst.

4. The mutator has to be compiled and linked to DynInst library.

5. The mutator has to be executed.

Subsequently, DynInst executes the following steps during run time:

1. DynInst library is loaded in the address space of the mutator.
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2. Via DynInst, the mutator creates a process to execute the application.

3. DynInst automatically loads its library and the snippets in the address
space of the mutatee process.

4. DynInst inserts snippets calls in the speci�ed points of the application.

5. When a function has a snippet call, for instance in its entry point, the
code of the snippet is �rstly executed and then the original code of the
function.

The MATE environment uses DynInst to be able to instrument the ap-
plication. MATE acts as the mutator whereas the user application acts as
the mutatee. Snippets and Points depend on the information necessary to
evaluate the behaviour of the application. Snippets are the pieces of soft-
ware used to obtain the information and make the events. The points are
the locations in the application that allow for collection of the information
about the application behaviour. In the following sections, we explain the
architecture an operation of MATE in more details.

2.2 MATE

MATE (Monitoring, Analysis and Tuning Environment) is, as its name in-
dicates, an environment which provides dynamic and automatic tuning of
parallel/distributed applications. The steering of the application comprises
three di�erent phases: monitoring of the behaviour of the application, per-
formance analysis and tuning. All these phases are continuously and auto-
matically executed on the �y. The main goal of this tool is to improve the
performance of an application, by adapting it to the variable current condi-
tions of the system. Hence, the user is exempted from manual application
tuning.

In order to dynamically and e�ectively optimize the applications, the
considerations made in sections 2.1.1 and 2.1.2 for dynamic and automatic
tuning are implemented by MATE. As shows Figure 2.2, MATE instruments
the application during run time to obtain information about its behaviour.
The analysis phase receives the collected data as events, looks for possible
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Figure 2.2: Operation of MATE

bottlenecks and tries to �nd solutions to overcome the problems. The solu-
tions are inserted into the application by the tuning phase. The run-time
changes of the application, for both the monitoring and tuning processes,
are implemented via DynInst.

2.2.1 Architecture

MATE is composed by several components which cooperate among them to
control and to improve the execution of the application. The main compo-
nents are the following:

• Application Controller (AC ): it is a daemon like process which
controls the execution and dynamic instrumentation of the individual
tasks.

• Dynamic Monitoring Library (DMLib): this is a shared library
which is dynamically loaded in the application tasks. It is used to
perform the data monitoring and collection.

• Analyzer: this process carries out the performance analysis of the
application. In addition, it decides what have to be monitored and
tuned.

Figure 2.3 represents the basic structure of MATE in a PVM scenario.
For conciseness reasons, only the main components have been included. In
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Figure 2.3: Architecture of MATE

this example, the application is divided into three tasks distributed among
two di�erent machines. When the execution starts, MATE distributes AC
processes to both machines to control the start-up of the tasks. The AC
master resides in the same machine as the PVM master daemon. It provides
the control of the virtual machine, the creation of local tasks and the syn-
chronization of the clocks of the di�erent hosts. The slave AC is executed on
the other machine, to control the creation of local tasks and synchronize the
local clock with master AC's. In order to control the creation of tasks, both
ACs communicate with the local PVM daemon (pvmd). When a new PVM
task is started, DMLib is loaded into the memory of the task to provide
its instrumentation. During run time, ACs manage the instrumentation of
each task. This allows Analyzer to dynamically add or remove events. DM-
Libs are responsible for sending events to Analyzer. When an iteration has
�nished, Analyzer looks for bottlenecks by analyzing the obtained informa-
tion. If some change in the application is required, Analyzer asks the AC for
tuning. This is the general description of the cooperation among the di�e-
rent parts of MATE. In the following sections, we provide some additional
description about each particular module.
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2.2.2 Application Controller - AC

The Application Controller or AC is a daemon like process which controls the
execution of the application, manages the dynamic instrumentation of the
application tasks and supervises the modi�cations of the application during
tuning phase. AC is composed of the Monitor and Tuner modules that
cooperate among them to provide the required functionality. More details
can be consulted in [38].

Monitor

Monitor is the module responsible for monitoring the execution of an ap-
plication. The monitoring is based on function calls event tracing. The
application is dynamically instrumented and the inserted instrumentation
generates events. When MATE is launched, Analyzer indicates to Monitor
the set of events to be traced. Conceptually, events are calledmeasure points.
When the application execution starts, Monitor inserts the code needed to
catch the events into the running application.

The instrumentation could vary during run time. To �nd bottlenecks
Analyzer may need some additional information, or may need to remove some
useless instrumentation. Monitor is noti�ed by Analyzer if some changes
in the instrumentation are needed. In consequence, Monitor supports the
modi�cation of the set of monitored events.

DynInst is the library used by Monitor in order to carry out dynamic
trace of events. For example, the instrumenting code can be inserted in the
entry or exit of the sending or receiving functions to monitor the network
characteristics; this information can be useful to analyze if there exist some
bottleneck inherent in the communications.

The events are collected and sent to the Analyzer process by using DMLib
-explained in Section 2.2.3, which was loaded during the start-up of the task.
The communication with Analyzer is established by using an event collection
low level protocol based on TCP/IP.

Monitor has to dynamically create instrumentation code -or in terms
of DynInst so called snippet- for each new event to be traced. When the
event happens, the snippet obtains from the parameters of the function and
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the global variables all the attributes associated to the event. A particular
snippet is executed each time the function it is inserted in is executed. The
generated event is passed by DMLib to the Analyzer.

Tuner

Tuner is the module responsible for applying the tuning actions over the
application tasks. The needed changes are determined by the solutions
proposed by the Analyzer. Tuner modi�es the application execution via
DynInst, by modifying the memory associated to the application. Tuner
provides an API which de�nes the set of tuning actions that the Analyzer
can require:

• LoadLibrary : this loads a certain library in a process. This allows
Analyzer to load additional code required to the tuning process.

• SetVariableValue: the value of a certain variable in a determined process
can be modi�ed.

• ReplaceFunction: this allows to replace every call to a certain function
for a call to another function.

• InsertFunctionCall : a new function call with its attributes can be in-
serted.

• OneTimeFunctionCall : it allows to call a certain function once during
the execution.

• RemoveFunctionCall : every call to a certain function is eliminated.

• FunctionParamChange: the value of a parameter can be changed in the
entry of a function, before the body of the function is being executed.

Every tuning action includes a synchronization parameter called break-
point, which speci�es when the tuning action should be executed to ensure
the correctness of the application behaviour. The breakpoint is inserted in
a speci�c point of the application. When the execution of the application
reaches that breakpoint, the tuning action is executed and the breakpoint is
removed.
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2.2.3 Dynamic Monitoring Library - DMLib

DMLib is a dynamic library which provides event tracing. The AC process
loads this library on the address space of every process in the application
in order to simplify the instrumenting and data collection. The library in-
cludes a set of functions responsible for providing events with all associated
attributes, according to the Analyzer requirements. The DMLib API in-
cludes functions to perform the following operations:

• To initialize the library, by providing information about the process to
be monitored, the Analyzer host location and the di�erences in clocks.
DMLib establishes a connection via TCP/IP with Analyzer that allow
Analyzer for recognizing, receiving and processing the events incoming
from DMLibs.

• To �nalize the library, which should be the last action to be invoked.
It releases all the acquired resources, noti�es the Analyzer process that
the application processes have �nished and closes the connection with
it.

• To register events. The identi�er or name of the event has to be pro-
vided and also the speci�c function and point in which the event should
be caught. If the event has some associated attributes, the description
of them (this is the data type and the identi�er) has to be provided.
When the register of an event �nishes, it means that this kind of event
can be sent to the Analyzer. Thus, the Analyzer will be able of ob-
taining the needed information.

Monitor creates a snippet which is inserted in the application when the
registering of a new event is required. In this way, when a snippet is invoked
all the attributes associated to the event are obtained, and the event is reg-
istered via DMLib. Each event includes at least timestamp, event identi�er,
number of attributes, and attributes.

DMLib uses a set of bu�ers in order to minimize the network overhead
when sending events. The sending of events is controlled by time to avoid
excessive wait for individual events.
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2.2.4 Analyzer

The Analyzer is the module which governs the tuning of the applications.
It requires the necessary metrics, carries out the performance analysis, and
requires for changes in the application. In order to be able to evaluate the
deployment of a given application, Analyzer requires both some application
knowledge and the online event tracing.

From a functional point of view, the Analyzer is divided into two main
parts which are the Dynamic Tuning API (DTAPI) and the Tunlets
[38].

Dynamic Tuning API

The DTAPI constitutes the interface to handle the improvement of the ap-
plication performance. It is the part which encapsulates all the low-level
issues related to controlling the execution of the parallel application, i.e. its
performance monitoring and tuning. As will be explained in Section 2.2.4,
tunlets use the DTAPI as an interface in order to require the instrumentation
necessary to evaluate the performance model; in order to be able of receiving
and processing such events, the tunlets have to be associated to each event
as an event handler. In the next, we intend to explain these issues.

DTAPI is implemented as a distributed asynchronous system where:

• the monitoring instrumentation and tuning service requests are dele-
gated to distributed Application Controllers that in turn instrument
and tune the application tasks

• the incoming events (event records sent by DMLibs and meta data sent
by ACs) are collected and dispatched to registered event handlers.

The Dynamic Tuning API is provided as a collection of C++ classes.
Most important of them are illustrated in Figure 2.4.

From the user of MATE point of view, these classes can be conceived as
follows: Application object represents the analyzed application which con-
sists of a number of Tasks. Each Task represents an individual application
process (i.e. PVM task) and contains meta data (properties speci�c to that
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Figure 2.4: Dynamic Tuning API class diagram

task, e.g. process identi�er, host where the task is running, etc. Each task
may have a number of events to be monitored. A traced event is represented
by the Event object. An event contains a set of Attribute objects that de�ne
what information should be recorded when the event is caught. Each Event
object is associated with an Event Handler that is called each time a record
of the event occurrence is received by the Analyzer. Therefore, as mentioned
before, due to tunlets are associated to events as event handlers, each time
a speci�c event is received, it is handled by every handler -tunlet- associated
to it. In addition, the Task object contains the history of all tuning actions
performed on that task.

In more depth, these classes present relevant information from the de-
scriptive point of view of the application and the information needed in order
to tune it: Application class includes general information about the appli-
cation path, status and set of task, monitored events, etc., and provides a
variety of methods to start the application or instrument it both for mon-
itoring or tuning. Task class contains the name, id, status and monitored
events among others, and has methods analogous to the Application class,
but in this case to instrument the individual tasks. Every object of the Event
class comprises data about the exact point in the code where the event must
be caught (the function or the combination of class and method), and the
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attributes associated to it. Each Attribute object es de�ned by its properties,
such as data type and source. The EventRecordClass encapsulates complete
information about the event, when and where it took place. For clarity rea-
sons, we have presented the most signi�cant classes. However there are many
other classes that support the handling of the incoming events, managing the
start and �nish of a task, or controlling the hosts in the virtual machine.

Tunlets

The knowledge about a particular performance problem an application can
present is represented by a tuning technique. A tunlet may be de�ned as
a module of software which describes a particular performance problem of
a running application, and provides the means to modify the execution to
reach an optimal behaviour. As the Figure 2.5 shows, each tunlet de�nes
and implements a particular tuning technique, i.e. the logic to overcome a
particular performance problem by encapsulating the knowledge about the
performance problem in the terms that follows:

• A set of measure points in order to indicate what is needed to detect
the performance problem.

• A performance model to determine how to evaluate the collected
information in order to detect bottlenecks.

• A set of tuning actions indicating what, where and when to change
in the application execution in order to overcome the detected bottle-
necks.

The tunlets should use Dynamic Tuning API to manage the application
by invoking monitoring and tuning requirements, and to handle the events
to collect the information of the application necessary for its analysis. Then,
the DTAPI constitutes the interface that tunlets must follow to correctly
work in MATE.

Owing to Analyzer manages the performance analysis process, it includes
a set of tunlets which in fact provide the performance analysis logic. When
Analyzer starts its execution, a particular tunlet indicates to the Analyzer
what the set of measure points required to be able of evaluating the behaviour
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of the program is. Analyzer forwards the requirement to every AC. Then,
Analyzer requires the master AC to start the execution of the application.
When the application has started, the Analyzer enters in a bottleneck search
phase. It continuously receives requested event records generated by di�erent
processes.

When an event record arrives to the Analyzer, the tunlet is noti�ed in
order to search for bottlenecks and determine their solutions. By examining
the set of received event records, the tunlet extracts measurements and then
it evaluates a built-in performance model to determine the actual and opti-
mal performance. If the tunlet detects a performance bottleneck, it decides if
the actual performance can be improved in existing conditions. If so, it then
requests the Analyzer to apply the corresponding tuning actions. A request
determines what should be changed (tuning point/action/synchronization)
and it is sent to the appropriate instance of AC, and hence to the Tuner.

2.3 MATE as a development and tuning environ-
ment

In addition to its tuning properties, MATE is provided with a framework
for the development of Master/Worker applications [10, 11, 43, 44]. The
Master/Worker model of parallel algorithm consists of two logical elements:
a master and one or more instances of a worker ??. We represent the �ow
of this model in the Figure 2.6.

The master initiates the computation and sets up the problem. It then
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creates a set of tasks to divide the work among the workers. The workers
process the tasks and then send back to the master the results. In the classic
algorithm, the master waits until the job is done, receives the results and
�nalizes the computing. This process could be iterative.

When users implement their applications by using this framework, they
automatically can use MATE to tune the applications.
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Figure 2.7: Class diagram of the Master/Worker Framework

The framework is constituted by general classes Master andWorker which
encapsulate the communications and the general functioning of the Mas-
ter/Worker programming model. The speci�c methods inherent in the pro-
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blem solving are virtual methods, which the user has to de�ne. As shown
in Figure 2.7 the user has to provide the input and output data structures.
The �rst one indicates the data structure of the input data to be processed
along the application. The second one indicates the structure in which the
results of the processing have to be stored.

In addition, the Initialize and Finalize methods are to be de�ned for
master and worker. The master process requires another method -Partition-
to make the partition of the data among the workers and the worker class
needs the Computing method.

Due to MATE provides some tunlets de�ned over the framework, (this
is the measure points, the performance functions and the tuning points are
depending on the framework classes) every application developed using this
framework can be automatically tuned by those tunlets. This represents a
great bene�t specially for non expert users: they not only can develop their
Master/Worker applications without been worried about communications,
but they also can automatically tune them according to the problems the
tunlets can overcome.

At the moment MATE o�ers only the Master/Worker framework [36],
but in the future, the idea is to incorporate new programming models, and
skeletons, and tunlets to tune them.
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Chapter 3

Scalability of Analyzer

�Es entonces cuando aparece Eddington con una teoría revolucionaria. Guiado
por la idea de que la palabra expansión se re�ere a algo esencialmente rela-
tivo, atacó el enigma desde un punto de vista nuevo. Cuando decimos que
el universo se expande, queremos signi�car que se agranda con relación a
algo de tamaño constante, por ejemplo, con respecto al metro de París. Esta
clase de expresiones tiene un valor relativo: Gulliver es un gigante al llegar
a Lilliput y se convierte en un enano al llegar a Brobdingnag. �

Uno y el Universo, Ernesto Sábato

IN MATE, the Analyzer module manages the performance analysis phase
and has the logic to require instrumenting and tuning of the application.

Until now, Analyzer has been working in a centralized manner, which entails
some problems as the amount of processes (and in consequence the volume
of events) involved in the application increases. The event collection and the
evaluation of the performance model may cause a bottleneck in MATE. This
limits the usability of MATE, due to it does not exhibit scalability properties.
In this chapter, we propose a new approach to overcome the limitations
of Analyzer and make MATE scalable. We start by emphasizing the more
relevant aspects of centralized Analyzer, what are the motivations to provide
Analyzer with scalability properties and what are the possibilities to reach
such objective. Then, we present our proposal, the distributed collection and
hierarchical preprocessing of data and we analyze the results of applying the
new approach. Finally, we study the overhead caused by the use of MATE.
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3.0.1 Centralized Analysis Approach

In MATE, the performance analysis is originally done in a centralized man-
ner. Analyzer is executed on an independent machine to reduce the overhead
caused by the continuous analysis process in machines where the application
is running. This is shown in �gure 3.1.
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Figure 3.1: Analyzer interacting with the rest of the environment

As explained in chapter 2, the Analyzer module provides the Monitor
module with the measure points. These points indicate the instrumentation
which has to be inserted into the application in order to collect information
on the behaviour of the application (in Figure 3.1, dashed arrows). Col-
lected information related to each task of the application is sent back to
the Analyzer as events (dashed-dotted arrows in the �gure). When all the
information is collected, Analyzer can e�ect the performance analysis of the
application, by evaluating the performance model. Depending on the re-
sult of the evaluation, Analyzer decides if it is necessary to introduce some
changes into the application to adjust its behaviour to the current condi-
tions of the execution environment. If so, the Tuner module of AC applies
the required changes in the application (illustrated by continuous arrows).
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All the knowledge about a particular performance problem, i.e. measure
points and performance functions, is condensed into a tunlet. While the
performance analysis is being executed, the application continues its execu-
tion. When a tuning action is required, the execution of the application is
stopped for a while, the tuning action is performed and then the execution is
resumed. Tuning actions could require synchronizing the tuning action, then
it will be necessary an additional stopping in order to insert a breakpoint.

3.0.2 Scalability of MATE: Motivation

At this point, the following aspects of the parallel paradigm should be con-
sidered:

• The number of machines involved in the execution of the application

• The persistence of the performance problems

With regard to the �rst point, we can assume that as the number of
machines increases, the number of events incoming to the Analyzer rises too.
As a consequence, the Analyzer is turned into a bottleneck which a�ects the
global e�ectiveness of the system. The operation of the Analyzer is shown in
more detail in Figure 3.2. There is a thread collecting the events incoming
from the application. Each event is managed to extract the information
associated to it; such information is used to calculate or update the value
of the intermediate auxiliary variables used to store the information until
every event of the iteration is processed, and all the information is available
to calculate or update the performance parameters.

Once every parameter is determined, the performance model is evaluated
to decide if some change is necessary to improve the behaviour of the appli-
cation. As the �gure illustrates, independently from the amount of incoming
events, they are managed following a �rst-in, �rst-out policy. It provokes
the time wasted in processing the information is proportional to the amount
of events. In addition, sometimes there are �waves� of events; this means
that every task is sending events at more or less the same time, causing the
overloading of the Analyzer in a particular instant, such as the end of an
iteration, when every process in the application ends. Even more, while the
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Figure 3.2: Analyzer operation

Analyzer is processing data for iteration i the application follows executing
iteration i + 1, thus the collection of events is continuously in operation.

Taking into account the second point, we should bear in mind that the
application tuning is based on the assumption that performance problems
last more than one iteration. That is why the evaluation of performance
models should be reduced to evaluate a set of expressions. However, in order
to evaluate the expressions it is necessary to process all the incoming events
to obtain the values of the model parameters. Similarly, when the number
of events goes up, the processing of the information associated to them takes
more time. If we consider these two situations at the same time, the bot-
tleneck caused by collecting events and their subsequent processing could
mean that when the solution to the existing problem is ready to be inserted,
perhaps the performance problem has changed or disappeared. Figure 3.3
illustrates an example of this delay in making e�ective the adaptation of the
application.
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Figure 3.3: What happens when the Analyzer is overloaded

In the example of the �gure, a Master/Worker application which executes
through 60 iterations, is subdued to a controlled extra load. Certain variable
load is injected in the system to provoke variations in the current conditions
and the consequent reactions of MATE to adapt the application to the new
conditions. In this case we consider a tunlet to tune the number of workers.
As can be seen, the number of workers is adapted as the load pattern changes.
As the load in the system increases, the number of workers is changed into a
bigger one. Conversely, the number of workers is reduced as the load in the
system decreases. However, the modi�cations in the number of workers is
delayed several iterations due to the amount of workers and events involved
in the obtaining of the performance parameters. In consequence, the �rst
iterations in which the load in the system increases are penalized due to every
worker is overloaded. Once the number of workers is tuned the performance
of the application improves. However, as the load in the system decreases
the �rst iterations are penalized by the excessive amount of workers, due to
each worker can process the task faster. Thus, along the execution of the
application there is a continuous lag among the conditions in the system and
the tuning actions.

In this context, we need to determine a means of executing the analysis
phase in a more useful manner. Then, the scalability of Analyzer arises, and
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it is necessary to study what strategies can be used to implement it to adapt
the application as fast as possible.

Before studying the possible approaches to overcome the problems pre-
sented by centralized Analyzer, we have to consider what the requirements
of a viable and useful option are:

• to exhibit scalability properties

• to cover the delays in collecting and processing the events in order to
apply the tuning actions in a more sensible manner

• to be an automatizable approach. In other words, as introduced in
Chapter 1, the aim of this work is to automate the tuning process
as much as possible. In Chapter 4 we will present a methodology to
automatically insert performance knowledge in MATE. Such knowledge
is used in order to manage the monitoring, analysis and tuning phases,
due to it includes the measure points, the performance model and the
tuning points/actions. In this chapter, when considering the selected
approach to overcome the di�culties of centralized Analyzer we should
have in mind that such approach should be viable to deduce its logic
from the speci�cation provided by the user.

The requirements for the new approach impose an additional challenge
in order to �nd a viable solution to scale the Analyzer.

3.0.3 Di�erent Approaches to support Scalability

Considering the growth of parallel computing and high performance com-
puting in recent years, it is essential to improve the tools that computer
scientists provide to assist the users' work. In the case of MATE, a bot-
tleneck appears when the number of machines involved in the execution of
the application is increased and in consequence the number of events to be
managed. It is due to the Analyzer module, which is working in a centralized
way. Then, we must analyze all the possibilities to make Analyzer scalable
and in consequence make MATE scalable too.

There are two di�erent approaches to make Analyzer scalable:

48



• The hierarchical approach

• The distributed approach

Both approaches present certain inherent di�culties.
If we consider the hierarchical approach, at �rst sight it seems to be the

most useful solution for implementing the scalability of Analyzer. Collecting
data and performance model evaluation would be divided into smaller pieces
of work, which will be managed at each stage of the hierarchy. This would
allow for the decentralization of the analysis phase. The problem with this
con�guration is that it would be necessary to rede�ne the performance model
of the problem the user is trying to overcome. This rede�nition would be
needed in order to indicate what should be gathered from the application
execution at each stage in the hierarchy and how it should be evaluated.
This kind of solution is not very useful due to the performance models are
general models, independent from the implementation of MATE, i.e. with-
out consider any hierarchy in the evaluation of the performance parameters
and expressions. In addition, as mentioned in the requirements of previous
section, when users have to develop a tunlet, it is assumed that they are
capable of cooperating to write the speci�cation in an e�ective way; the user
needs have a general knowledge of his application and the performance pro-
blem it presents. However, if the new hierarchical approach requires the user
to think the model in a hierarchical way, the use of MATE will became very
restrictive, due to we are considering non-expert users who have not neces-
sarily been involved in de�ning the performance model and who therefore do
not know the details of the model.

Due to the inconvenients of the hierarchical approach, we can think in
multiplying the analyzer without considering hierarchy. Then, the distributed
approach appears, proposing to execute several instances of the Analyzer in
parallel, each one dedicated to manage the behaviour of a certain set of
machines in the application. Perhaps it seems to be a very direct proposal
to reach scalability, but similarly to the previous approach, it presents some
di�culties. In this case, in order to apply the performance model separately
in each instance of the Analyzer, we have two contrasting options:

• to send the events in a redundant way to each separate Analyzer
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• to change the programming model the application follows

The �rst choice is relating to the fact that, in general, every program-
ming model has more than one kind of processes cooperating to execute the
application. In general terms, performance models are de�ned in function
of the programming model as a whole, then to evaluate they it is needed to
collect information about diverse processes in the programming model and
their interactions. But if we want to divide the set of task in the application
in several subsets to be managed by a separated Analyzer, the performance
model will not be straightforwardly applicable, unless each subset of task is
recursively equivalent to the global programming model, or the model does
not need global information. Unfortunately, in general this is not the case.
Then, we could mitigate this situation by sending to each instance of the
Analyzer the events external to its set of tasks, in order to evaluate the per-
formance functions. Clearly, by doing this we increase communications in the
system and perhaps we can introduce some kind of inconsistency, depending
on the performance model de�nition.

This second alternative approach exhibit a clear problem: we cannot
force the user to change the implementation of his application to take ad-
vantages from the performance model he is providing. Not only these changes
would complicate the task of the user, but they also would provoke that the
programming pattern modeled in the performance model would not coin-
cide with the new pattern adopted by the application. In addition, we need
some centralized evaluator to verify the global behaviour of the application
is balanced among the di�erent groups of machines and all of them obey
as a whole to the original performance model. In this case we would need
the user to de�ne the global application performance model. Furthermore,
as the number of distributed Analyzer processes increased, the central An-
alyzer will su�er the same problem as the full centralized approach. Then,
distributed approach does not seem to be very promising.

In addition to the previous considerations, we are trying to make the
tuning process as automatic as possible. As the architecture of Analyzer
gets more complex, the involvement of the user in programming its logic
will be required. As mentioned in the Chapter 1 the main contribution of
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this work is to provide a methodology to automatically insert new tunlets in
MATE -presented in Chapter 4-. Thus, the approach followed to decentralize
the Analyzer has to consider the viability of deducing its logic from the
speci�cation. This adds another constraint to implement the Analyzer in
a distributed or hierarchical way, due to deducing an entire hierarchical or
distributed performance model from the original performance model could
be a very complex task, and hardly automatizable.

Analysing the problems that the hierarchical and distributed approaches
present, we propose an alternative approach, to take advantage of the good
characteristics of each one. We will distribute what can be distributed inde-
pendently from the performance model and we will de�ne a hierarchy consi-
dering the parts of the model which can be decentralized, considering if such
de�nition is speci�cation-inferred. We call this approach the Distributed-
Hierarchical Collecting-Preprocessing approach, which will intent to take the
maximum pro�t of hierarchical and distributed architectures, and from the
performance model provided by the user, avoiding bottlenecks in receiving
events and delays in applying solutions.

3.1 Distributed-Hierarchical Approach

Considering the advantages and disadvantages of each approach discussed in
the previous section, we need to choose the best option to scale the analy-
sis process without additional user's e�ort. Then, we essentially propose a
mixture between distributed and hierarchical approaches, taking the best
characteristics of each one of them.

As explained in the previous section, the distribution of the entire Ana-
lyzer is constrained by the performance model, the application, and the user.
The functionality of the Analyzer in a hierarchical way is restricted by the
performance model and the user. In other words, we cannot force the user
to modify the application or the performance model to use the Analyzer in a
distributed or hierarchical way. That is why we propose to distribute what
can be distributed without generate additional work for the user, and in this
way to maintain the MATE's transparency.

As mentioned before, the bottleneck of Analyzer is caused by the col-
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lection of events and their consequent processing and classi�cation as the
number of managed events increases. The performance model has to be eva-
luated in a centralized way because in general the evaluated models take into
account a global view of the application performance.

AC

AC


Machine 1
 Machine n


Machine p


pvmd

pvmd


instr.


.


events


modifications
 .


events


Task
1
 Task
2
Task
3


instrumentation

.


DMLib

DMLib


DMLib


Global


Analyzer


...


Machine q

Collector


Machine r

Collector


Preprocessor


events


data

data


Preprocessor


Tunlet


Figure 3.4: Distributed-Hierarchical Collecting-Preprocessing Approach

In our approach, we can distribute the collection of events due to it
is independent from the performance model and the application. On the
other hand we can also de�ne a basic hierarchy in the processing of the
incoming events, when the kind of expression to be evaluated is cumulative or
comparative. We only consider these kinds of operations due to their division
in hierarchical parts can be automatized without introducing alterations or
inconsistencies according to the original operations. More complex operators
could be considered, but the involvement of the user should be required when
de�ning the speci�cation, in order to ensure the hierarchical calculations
preserves the original meaning of the expression.

In summary, to make the Analyzer scalable we propose to distribute the
collecting and preprocessing of the information associated to incoming events
from the application, which is illustrated in Figure 3.4.
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The parallelization of the Analyzer as a Distributed-Hierarchical collect-
ing and preprocessing system, takes the advantages from each one of the
subjacent approaches. Then, from this point we can talk about two di�erent
kinds of processes cooperating to perform the performance analysis:

• Collector-Preprocessor

• Global Analyzer

Every Collector-Preprocessor (CP) will be an instance of collection and
preprocessing of incoming data, whilst the Global Analyzer will execute the
global analysis according to the information collected and classi�ed by CPs.
Both kinds of processes are described in the following sections.

3.1.1 Global Analyzer

The Global Analyzer is the part of the Analysis phase which does e�ective
the evaluation of the performance model. Not only this process evaluates the
behaviour of the application, but it also needs to reclassify the incoming in-
formation preprocessed in the CPs. This fact is due to the new con�guration
of the Analyzer. In the �rst version of MATE, centralized Analyzer received
all the incoming events straightforward from the application, more speci�-
cally from the DMLibs associated to every task. The events were classi�ed
according to their type (i.e., among the di�erent events to be caught -such
as start of an iteration, entry to a certain function, etc.- what kind of event
it is) and associated information stored in their attributes was used in order
to (directly when some event attribute embodies the value of a performance
parameter or indirectly when the event attribute has to be temporally stored
until all the information necessary to evaluate the performance parameter is
available) update the values of parameters in the performance model.

In the novel conception of Analyzer, Global Analyzer is receiving just
a portion of the events, enough to do not overload it with the reception of
events rather than with the reception of condensed information from CPs.
In addition it is receiving from each CP the condensed information collected
from the incoming events of the application and preprocessed to summarize
the data needed by the Global Analyzer. Thus, the Global Analyzer is not
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Figure 3.5: Algorithm followed by Global Analyzer

receiving the total set of data collected for every CP, but it is receiving a
register containing information to contrast with information received from
other CPs, and information condensed about the tasks the CP is responsible
for, such as partial additions or products, minimal elements, conjunctions,
etc. This is shown in �gure 3.5.

3.1.2 Collector-Preprocessor - CP

Each particular instance of CP manages a speci�c set of machines or tasks
in the application. It is responsible for collecting the events of the set of
machines associated to it. Not only the CP collects the events, but it also
preprocesses the information associated to them. In other words, one of the
reasons why we propose to decentralize the Analyzer is to alleviate Global
Analyzer from processing all the incoming information. Then, it is needed
to implement some logic to preprocess the incoming data in the CP.

To illustrate what we mean by preprocessing we can consider, for exam-
ple, at global level the calculus of average processing time in a Master/Worker
application. In order to calculate the average we �rst need to calculate the
cumulative addition of every individual worker processing time. But each
CP is managing the events associated to a speci�c set of workers. Then, no
one of them can calculate the total cumulative addition. In order to avoid
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Figure 3.6: Algorithm followed by Collector-Preprocessor

sending the processing times of every worker, each CP calculates the partial
cumulative addition of the processing time of the workers it is responsible
for. The condensed information is sent to the global Analyzer which will in-
terpret it to obtain all the values needed to evaluate the performance model.
In the example, Global Analyzer should add all the partial additions received
from all the CPs, and then calculate the average. The general functioning
of CP is presented in �gure 3.6

Two di�erent aspects raise from the new conception of Analyzer:

• changes in the internal functionality of Analyzer

• changes in the logic to obtain the performance parameters in order to
evaluate the performance model.

With respect to both aspects, CPs have to include the mechanisms to
manage, classify and resend the incoming data, and the Global Analyzer has
to include the logic to interpret the new manner in which the information is
arriving. First of all, both CPs and Global Analyzer have to be conscious
about the data structure necessary to condense and interchange the informa-
tion necessary to evaluate the performance parameters. Then, each CP has
to be capable of collecting events as in the old-fashion of MATE. However,
in place of using the information carried by the events to con�gure the va-
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lues of the performance parameters, the information has to be as processed
as possible taking into account the local available information, such as in
the example presented in the previous paragraph. The information has to
be stored in the common data structure and sent to the Global Analyzer.
At the same time, the Global Analyzer has to be capable of collecting and
reinterpreting the condensed information incoming from CPs. All this logic
has to be introduced in both modules.

These aspects have been considered when distributed approach and hi-
erarchical approach were discarded and distributed-hierarchical collecting-
preprocessing approach was proposed: The new con�guration of the An-
alyzer and CPs can be automatically deduced from a tunlet speci�cation
without any additional e�ort of the user. This will be discussed in more
depth in the next Chapter, in Section 4.5.5.

3.1.3 Validation of hierarchical-distributed approach

In order to evaluate the e�ectiveness of the new hierarchical-distributed ap-
proach, in the following we present some experimental results, comparing
the new approach with the centralized approach. In particular, we studied
and compared the amount of time each approach wastes in collecting and
process the incoming information to be able of evaluating the performance
model. The aim of the experiment is to verify if the proposed approach is
overcoming the bottlenecks presented by the centralized approach, and thus,
we will be able to appreciate the obtained bene�ts.

To conduct the experiments, we used a 2D N-Body implementation. The
application was developed using the Master/Worker framework presented in
Chapter 2. Experiments were conducted on a homogeneous cluster.

The con�guration was the following:

• Processor PENTIUM IV 3.0 Ghz

• 1 GB DDR-SDRAM 400 Mhz

• Ethernet card Broadcom NetXtreme Gigabit

Furthermore, the operating system installed was Fedora Core 4. All the
machines were con�gured to use NFS (Network File System) based on one
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server which has the same characteristics as the cluster machines.
The experiments were made considering the problem of the number of

workers in the Master/Worker model. The general idea is on the one hand
that when there are many workers the communications saturate the system,
and on the other hand, when there are not enough workers the master be-
comes idle and the workers are overloaded. Thus, what MATE tunes in the
application is the number of workers according to the current conditions of
the system. The model implemented by the tunlet can be obtained from
[14], and will be explained in Chapter 5. The amount of workers involved
in the experiments varied among 1 and 25. For each worker we monitored 6
di�erent events and we used two CPs in order to collect such events and the
associated information.

Since we need to control the load of the system to reproduce the expe-
riments many times, we created certain load patterns -such as in �gure 3.3,
so that we can introduce and modify certain external load to simulate the
system's timesharing. We have conducted our experiments in two di�erent
scenarios:

• In the �rst scenario the application was executed under MATE consi-
dering the centralized approach. One separate machine of the cluster
was dedicated to run the analyzer.

• In the second scenario the application was executed under MATE but
following a distributed-hierarchical approach. One separate machine of
the cluster was dedicated to run the Global Analyzer, and a separate
set of machines was dedicated to execute CPs.

In both scenarios, each worker was executed in an individual machine.
The main result we obtained from experimentation is the veri�cation of

our proposal: the volume of incoming events and data can be managed in a
more e�ective way, which allows for a more e�ective use of dynamic tuning
too, due to MATE can react faster to the changes in the environment.

In �gure 3.7 we represented the operation of the old fashioned Analyzer.
It handles the events according to their arrival order and when every para-
meter in the performance model has been calculated using the information
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Figure 3.7: Sequence of events managed by the Centralized Analyzer

carried by the events, the model is evaluated. In the event queue, the order
of the events cannot be predicted, due to each machine could be working
at di�erent speeds and can found di�erent communication tra�c. In the
�gure, even though the worker1 started its task before the workern, the
workern �nishes before. Specially interesting are the events indicating the
start and the end of the iteration (the blue ones), due to they together mean
all the processing in the application associated to such iteration has already
�nished. Thus, the performance model can be evaluated as soon as every
event of the iteration is received and handled. In the �gure we represented
a typical situation when the amount of events is high: due to the volume
of events, several events are received after the reception of the event which
indicates the �nalization of the iteration. This fact provokes a delay in the
evaluation or updating of the performance parameters, due to the Analyzer
has to process all the information associated to the events before calculating
the values of the parameters to evaluate the performance model.

In Figure 3.8 we present the new proposed approach to handle the events.
The Global Analyzer handles just a part of the events, while the mass of
events is collected and processed by the Collector/Preprocessors. In the �g-
ure we illustrated just one Collector-Preprocessor, but in fact several of them
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Figure 3.8: Events managed by the Distributed/Hierarchical Analyzer

could be in parallel execution. Once the CP receives all the events and ex-
tracts the information, the �nal calculations to summarize the information
are made, and that relevant information necessary for the Global Analyzer
is sent. The Global Analyzer assimilates such data into the performance pa-
rameters and evaluates the model. The bene�t obtained from the use of this
approach, is that each CP is handling just a reasonable amount of events to
process, and thus the information is classi�ed and preprocessed in an e�ective
and globally faster manner. From experiments, we detected that using this
approach, the model can be evaluated when the Global Analyzer receives the
event which indicates the �nalization of the iteration. In terms of time, this
means that the Analyzer is highly synchronized with the execution of the
application. In addition, due to CPs send the information preprocessed, the
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calculations made to update some performance parameters is reduced; this
reduces even more the period of time passed between the instant in which
the performance parameters can be calculated and the moment in which the
performance model can be evaluated.

In Figure 3.9 we present a general �trace� of the execution of the Analyzer
process along an iteration of the application. At left, we represent the order
in the tracing, considering the order in which the sentences are executed.
Analyzer receives events from the application, among which we emphasized
the events to indicate the begining and the end of the iteration (coloured
blue), and/or data from CPs (note that data from CPs is just received in the
new proposal). When every event was received, the performance parameters
are calculated or updated and then the performance model is evaluated.
Finally, the tuning actions are required.
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Figure 3.9: Trace of the Analyzer for a given iteration

We studied the following times:

• The time elapsed from the start and the end of the iteration (TIter, in
this case given by T (j + 1)− T (i)). This allows for calculation of how
fast the Analyzer detects the end of the iteration.

• The time elapsed from the end of the iteration and the instant in which
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the performance parameters can be updated or calculated (TUpd, in this
case given by T (k + 1) − T (j + 1)). This is when every event of the
iteration was handled and the information was classi�ed to be available
in the updating of the performance parameters.

• The time elapsed from the start of the parameters updating and the
instant in which the performance model can be evaluated (TEval, in
this case given by T (k + 2)− T (k + 1)).

• The time elapsed from the start of the model evaluation (TEval) and
the instant in which the tuning actions can be required (TTun, in this
case given by T (k + 3)− T (k + 2))

Approach TIter TUpd TEval TTun

Centralized 2199,1 19,7286 3,27 0,2187

Distributed/Hierarchical 680,1 0,2535 2,6 0,2212

Table 3.1: Times obtained for both approaches, in ms.

In Table 3.1 we summarize the obtained results, which are illustrated in
Figures 3.10 and 3.11.
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Figure 3.10: Comparison among real iteration time and the obtained for each approach

Note that TEval and TTun depend in addition on the complexity of the
performance model. Using the new approach, the end of the iteration is
detected almost immediately, due to the average iteration time is 672,5 ms
(see the Figure 3.10, where the App_Iter bar represents the real iteration
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Figure 3.11: Comparison among times obtained for each approach

time). This is a good result, since the Analyzer is more synchronized with
the application, which increases the possibilities of tuning the application
when the performance problem still exists. Other important result, perhaps
the more signi�cant one, is the reduction of TUpd 98,715 per cent, due to all
the information is available and classi�ed when the IterationFinishes event
is received, thanks to the distribution of collecting and preprocessing of the
events. In addition, we scaled down TEval 20,489 per cent. In this case,
the percentage of the improvement depends on the amount of updating op-
erations involving in the data preprocessing done by CPs. However, TTun

cannot be reduced due to the performance model is evaluated in function of
performance parameters, whose values are already available at the beginning
of the model evaluation (instant k + 3).

From the obtained results we can propose this new approach to imple-
ment the performance analysis in a more e�ective way, supporting the grow-
ing of the applications and the total volume of events.

3.1.4 How to decide the number of CPs?

A key question in using distributed-hierarchical approach is the amount of
subordinated Analyzers necessary to e�ectively overcome the bottleneck suf-
fered by the full centralized Analyzer. From the experimentation, we deduced
the ability or capacity of a particular CP is limited by a certain number of
events to be received. Unfortunately, in SPMD applications, every process
is sending the same events. The events are captured as the process executes,
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at speci�c points (entries or exits of functions). Thus, even though each ma-
chine could execute the process at di�erent speeds (caused by heterogeneity
or time-sharing) it is normal to receive �waves� of events, specially when we
are talking about events indicating points such as the start or the end of an
iteration.

The problem is to decide how many collectors are needed, depending on
the volume of incoming events. The trouble is magni�ed when we consider
that we are using an automatic and dynamic tuning approach and/or that
the number of events can vary along the iteration. The causes to increase
(or decrease) the amount of events can be the following:

• some processes are added to (or removed from) the application

• some instrumentation is inserted into (or removed from) the application

The �rst point is related to cases such as presented in Section 3.1.3,
where the number of workers of the application could vary (increase or de-
crease) along the execution, according to the evaluation of the application
performance in the current conditions of the system.

The second point is related to some performance models, which according
to the results of the performance evaluation requires additional information
of the application or dispenses with some part of it.

In both cases, the e�ect is similar due to the global amount of events will
change. If such volume is very signi�cant, the re-adjusting of the number of
CPs could be required to try to preserve the best performance of the system.
However, due to the variation of the volume of events will be dynamic, the
number of CPs will result in an additional parameter to be tuned in the
whole execution, but in this case at level of MATE. Thus, MATE should
provide a tunlet to �auto-tune� its number of CPs according to the current
needs (this is, the amount of events to be collected and processed). However,
there exist two limitations:

• currently, MATE does not support the interaction among di�erent tun-
lets. Such characteristic would be necessary to manage, solve and
counteract the mutual in�uence among tunlets. In other words, each
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tunlet makes decisions according to a speci�c performance model; ho-
wever, the decisions could not be good when the tunlet is not taking
into account the decisions made by the remaining tunlets, which could
be changing some of the crucial parameters. In our case, suppose the
tunlet of the number of CPs decides to add new collectors just when
the tunlet of the number of workers decides to remove some workers.
This will provoke inconsistencies between both models and in the �nal
behaviour and performance of the whole system. This is why MATE
should provide composition of tunlets, by de�ning super-performance
models.

• in order to implement a tunlet a performance model of the number of
CPs is necessary. We have not developed such a model yet due to it is
out of the scope of this thesis, but the results presented in this work can
be used as the initial experience in de�ning the corresponding model.
At the same time, we need some mechanism to avoid that as the amount
of machines in the application increases the Global Analyzer becomes
a bottleneck, such as in the centralized approach. Then, we propose
recursively introduce new layers of CPs, as many as needed to cover
the amount of machines is been used to solve the application. This
would be another reason to denominate �Hierarchical � our approach.

In our experiments, we just decided the number of CPs according to the
number of workers required by the tunlet, based on the observed behaviour of
previous executions (remind we injected controlled load patterns in order to
be able of reproducing the experiments). However, this manner of deciding
how many CPs have to be used was selected just to verify the improvements
proposed by the distributed-hierarchical approach are viable. Therefore, it
is required to automate this aspect, due to the functioning of MATE is based
on dynamic conditions rather than on history.

3.2 Overhead caused by MATE

The use of a tool to supervise the application execution has some inherent
advantages and drawbacks. As mentioned in Chapter 1, instrumentation and
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monitoring (and in our case tuning too) a�ects the performance characte-
ristics of the parallel application providing a false or altered view of its own
performance. As MATE is a monitoring, analysis and tuning environment,
we have to analyze not only the improvements obtained in the application
performance, but we also have to consider the overhead caused by the use
of MATE to adapt the behaviour of the application as well as the amount
of additional resources required by MATE. Both aspects are studied in the
following paragraphs.

3.2.1 Intrusion

In this section we study the aspect related to the intrusion of MATE. To per-
form the analysis we divided the intrusion in three di�erent types, depending
on the nature of the intrusion.

Instrumentation

The instrumentation allows for insertion of new code in the application at
certain points, with the aim of collecting information when the execution of
the application passes by such place. Depending on the moment in which
the instrumentation is inserted (or removed), we can consider two di�erent
cases:

• Initial instrumentation: in general, the bigger volume of instrumen-
tation is inserted when the application starts its execution, to start
the collection of data as soon as possible. Thus, when the application
starts, it enters in a phase of overhead caused by the instrumenting
process, and just then continues or resumes the execution. The ave-
rage time wasted to insert the instrumentation to catch an event is
0,284 ms. Even though the time consumed in initial instrumentation
could be considerable, it is only su�ered at the start-up of the appli-
cation and is disguised as the execution of the applications progresses.
Remind in general we are considering big applications, which could
execute several minutes or hours. Thus, the time taken by initializa-
tion (in order of microseconds) is hidden by the total execution time
(in order of minutes or hours).
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• Extra instrumentation: as mentioned before, some performance mo-
dels requires the addition (or removal) of some instrumentation, due
to additional information is necessary (or unnecessary) according to
the current conditions of the system and the behaviour of the appli-
cation. The process of inserting (or removing) some instrumentation
takes some time, which such as in the previous case, is hidden has the
execution of the application continues. In the particular case of re-
moving instrumentation, the time wasted is made up as in monitoring
phase some time is saved in capturing such events. The time used to
insert extra instrumentation is the same as before.

Monitoring

The monitoring process consists in detecting the instrumented points in the
application to gather the required information and send it as events to the
Analysis phase. The overhead provoked by monitoring is in the order of
microseconds (the capture and sending of an event takes about 0,844 ms)
whilst the bene�ts obtained from the use of MATE reaches the order of
minutes.

Note that the overhead caused by monitoring is -in each iteration of the
application- proportional to the amount of events to be caught and the num-
ber of times that each event occurs through the iteration. Therefore, we can
consider that the monitoring process is which introduces a continuous over-
head in the application execution, di�erent from instrumenting and tuning.
Instrumenting process in general causes the major overhead just at the start-
up of the application and eventually when some additional instrumentation
has to be inserted or removed. Tuning process introduces overhead as the
conditions of the environment change and some adaptation in the application
is necessary; thus, if the conditions are not changing along every iteration
not too many tuning actions will be required.

Tuning

The tuning process introduces changes in the application. This could be at
variables level or at functions level. The overhead provoked will fundamen-
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tally depend on the kind of tuning required. In Table 3.2 we summarize the
time required to perform the di�erent tuning actions commented in Section
2.2.2.

Tuning Action Time

Set Variable Value 1,1858

Replace Function 2,0078

Insert Function Call 1,308

Remove Function Call 0,254

Function Parameter Change 0,4007

On time function call 1678,286

Table 3.2: Time wasted in the di�erent tuning actions, in ms

Some points or actions in the application can be changed without any
synchronization, due to they are used at speci�c points and are out of in-
consistencies through a speci�c iteration. However, some values can only be
changed at certain points of execution to ensure the coherence of the value
along the iteration. The time wasted when a breakpoint has to be inserted
before applying the tuning action is 1,539 seconds in average. Just for pro-
viding an example, we can consider the variable used in a Master/Worker
application to control the current number of workers (named �nw �). Supose
that the master process uses nw as follows:

//Master process
main()
{ ...

nw=initial amount of workers
while(there are data to process)
{ ...

divide the total data into nw tasks
for(i=0;i<nw;i++)

send 1 task to worker i
for(i=0;i<nw;i++)

receive answer
put together the answers
...

}
...

}
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�nw� is used to decide the amount of parts in which the total work will
be divided and how many sending and receptions will be executed. Clearly,
the value of nw must be the same along the iteration to avoid anomalies in
the execution. Supose, for instance, the following situations:

1. initially nw=16, then the master splits the work in 16 tasks and sends
them to the 16 workers

2. the value of nw is changed into 12 according to the evaluation of the
behaviour of the application in the previous iteration

3. the master waits for 12 answers

or

1. initially nw=16, then the master splits the work in 16 tasks and send
them to the 16 workers

2. the value of nw is changed into 20 according to the evaluation of the
behaviour of the application in the previous iteration

3. the master waits for 20 answers

In both cases, there are no coherence among the value of nw considered at
the di�erent points of the iteration. Such incoherences provoke an abnormal
or unexpected behaviour in the application, whose consequences could be
disastrous. On the one hand, in the �rst case, the master process is losing
part of the answers, then the �nal resulting data of the iteration will be
incomplete due to the inconsistencies in the considered values of nw. On the
other hand, in the second case the master process becomes blocked waiting
for the answers which never will be received.

In order to avoid any inconsistency, the previous problem can be solved
in two ways:

• by synchronizing the modi�cations: in this case, the change of the value
of nw can be made exactly before the next iteration starts. Then, a
breakpoint should be inserted to stop the execution in such a point,
then the value is changed and the execution is resumed. In this way,
the value of nw will be �xed through the iteration.
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• by using an auxiliary variable: this is perhaps the more pragmatic
approach to introduce modi�cations, due to it does not require an ad-
ditional stopping and resuming of the execution to insert a breakpoint.
However, in this case the cooperation of the user is required in case a
new variable has to be added in the application. In the example, we
could use an auxiliary variable nworkers as follows:

//Master process
main()
{ ...
nworkers=initial amount of workers
while(there are data to process)
{ ...
nw=nworkers
divide the total data into nw tasks
for(i=0;i<nw;i++)

send 1 task to worker i
for(i=0;i<nw;i++)

receive answer
put together the answers
...

}
...

}

In such case, the tuning point will be nworkers, then even though its
value is changed along the iteration, the value of nw will change just
when the next iteration starts.

Tuning with or without synchronization clearly presents advantages and
disadvantages related to the involvement of the user and the time wasted in
applying the tuning action.
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Estimation of the intrusion

In order to summarize what the previous paragraphs explains, in the follo-
wing we present an expression to estimate the intrusion caused by MATE:

TInstr(e1...en) + TMon(e1...en) + TTun(app)

where TMon(e1..en) =
∑

TMonitor(ei) ∗Occurr(ei). TInstr is the time
wasted to insert the instrumentation in the application to catch the corres-
ponding n events; TMon represents the time wasted to catch and send the
events, and TTun represents the time used to tune the application.

In the particular case of TMon, the individual time wasted to catch an
event has to be multiplied by the amount of times the event takes place. This
is due to some events are caught several times -such in a iterative function-
along the iteration. Sometimes, the occurrence of some particular events is
unknown due to it depends on the execution sequence, i.e. it could depends
on conditional sentences.

TTun is the more uncertain time to be estimated. In other words, we
can predict how many times will be wasted in e�ect the tuning actions when
required, but we cannot predict when nor how many times the tuning actions
will be required, precisely because it depends on the dynamic conditions of
the systems.

3.2.2 Additional Resources

Another aspect to consider when using MATE to tune parallel applications,
is the additional amount of resources necessary to support MATE. As ex-
plained in Chapter 2 MATE is composed of three di�erent modules: AC,
DMLib and Analyzer. AC is distributed along the machines involved in the
execution of the application, due to is AC which manages the monitoring
and tuning process. DMLib is associated to each task of the application to
facilitate the instrumentation and data collection and to register the events.
Then, both modules share the machines with the application. However, as
mentioned previously in this Chapter, the Analysis process is executed in an
independent set of machines, in order to reduce the overhead provoked by
MATE on the behaviour of the application.
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The question is how many additional machines are needed to the analy-
sis process. On the one hand, Global Analyzer is executed in a particular
machine, then we have to add a machine to the pool of machines used by
the application. On the other hand, each Collector-Preprocessor is executed
in an independent machine. One aspect to consider with CPs is that the
amount of them could vary along the execution of the application. Thus,
the system should have more available resources than when the application
starts its execution. Then, we can calculate the amount of machines involved
in the execution and tuning of the application as follows:

M(application) + CP (events) + 1

where M() represents the number of machines involved in the execution
of the application, CP () represents the amount of CPs necessaries to manage
the amount of events, and 1 stands for the Global Analyzer's machine. Note
that in the case of CP () it is not only depending on the volume of events,
but it is also depending on the distribution followed by the events to arrive
to the analysis phase. All these issues have to be considered to de�ne a
performance model of the number of CPs, to be included in MATE when it
supports multiple tunlets.
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Chapter 4

Automatic Development of
Tunlets

�Todo lenguaje es un alfabeto de símbolos cuyo ejercicio presupone un pasado
que los interlocutores comparten; ¾cómo transmitir a los otros el in�nito
Aleph, que mi temerosa memoria apenas abarca?�

El Aleph, Jorge Luis Borges

TUNLETS constitute the core of dynamic and automatic tuning im-
plemented by MATE, in terms of representation of knowledge. Each

tunlet condenses the information about a particular performance problem
that could a�ect parallel applications. This knowledge is used to manage
the monitoring, analysis and tuning steps along the execution of the appli-
cation. However, the existence of varied performance problems and the need
of making MATE transparent to the user, requires a means to automate the
inclusion of knowledge in it. In this chapter, we present a methodology to
the de�nition of tunlets and a tool to automatically generate them. In the fo-
llowing section, we introduce what is the spirit of the automation of tunlets
creation. Secondly, we de�ne the abstractions and additional terminology
used through the development of tunlets. In third place, we determine a me-
thodology to prepare the abstractions needed to de�ne the tunlet. A simple
example is presented after that. Next, we de�ne the Tunlet Speci�cation
Language and then we describe the Automatic Generator of tunlets from
speci�cations. Finally, we include a section to condense the main aspects
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from the user's point of view.

4.1 Introduction

As mentioned in previous chapters, the use of MATE constitutes a very
promising approach, especially when we consider non expert users as well
as time-shared or heterogeneous environments. In addition, in Section 2.3
we presented MATE not only as a tuning environment, but also as an en-
vironment which provides the possibility of developing applications, due to
MATE provides a framework for the semi-automatic development of Mas-
ter/Worker applications. In such a case, when users decide to develop some
Master/Worker application by using the framework, they are automatically
accessing to the possibility of executing and tuning the application by us-
ing MATE, because of it is provided with some tunlets de�ned over the
framework, i.e. over the entities inherent in the framework code (variables,
methods and functions of the framework) independent from the entities of
each particular user.

The use of MATE as a development and tuning environment results spe-
cially useful for non-expert users, due to they are only involved in de�ning
the inherent functionalities in the problem the application is solving (ini-
tialization, data partition, data processing, etc.). The aspects related to
communications and tuning are automatically tackled by the framework and
MATE respectively (for more details see [11]). This situation could be gen-
eralized for additional frameworks for di�erent parallel programming models
which MATE could include in the future.

However, until now, unless the user developed its Master/Worker appli-
cations by using the framework integrated to MATE and he or she wanted
to tune the number of workers [10] the use of MATE has not been straight-
forward. This fact constitutes a too restrictive usefulness of the tuning tool
both at level of programming models and development of applications and
performance problems that could be tackled. The user can have the appli-
cation previously developed, following another programming model, or can
prefer to develop the application by using another tool. In addition, there
exist a variety of performance problems inherent in each parallel program-
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ming model. Each problem must be tackled in MATE by an independent
tunlet, i.e. the implementation of a tuning element for each performance
problem is needed.

MATE is an environment conceived to assist and simplify the user's work.
If we think in a particular user who has his or her own parallel application
(from now we generalize as �he�, for simplicity). He could be in one of the
following situations:

• He needs add a new tunlet to overcome a particular performance pro-
blem which has not been included in MATE yet.

• He needs to tune a performance problem included in MATE but this
tunlet was implemented according to another application (or frame-
work).

Then, he should implement (or re-implement in the second case) the
tunlet. But, if the goal of the environment is make easier and more automatic
the user's work, it does not make sense involve the user in the implementation
details of MATE to be able of programming his tunlet.

In this chapter we present a methodology for automatically developing
tunlets with the aim of providing the users with the possibility of:

• developing their applications without the necessity of using the Mas-
ter/Worker framework included in MATE, and

• adding new tunlets to overcome di�erent problems

Figure 4.1 represents this proposal from the user's point of view. It
summarizes the idea of automating the creation of tunlets. Given a particular
parallel application it could present some speci�c performance problem. If
the user knows the mathematical model of the problem or he is capable of
develop it, that model constitutes a piece of knowledge that can be included
as a tunlet in MATE to automatically tune the application during execution.
Then, the user only needs to know his application and the performance model
to specify it, then the creation of the tunlet is completely automatic.
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Figure 4.1: Automatic development of a tunlet from a speci�cation

4.2 Abstractions and Terminology

The main objective of this work is to exempt the user from being involved
in the implementation details of MATE when de�ning a tunlet. However
it is necessary the user to know MATE in terms of functioning, knowledge,
information and structures required to tune the applications. In addition,
it is needed the user to know and understand both the application and the
performance model in order to develop an e�ective tunlet. Thus, the user will
be able of developing a solution for the problem in a high level of abstraction.

Recaping on Chapter 2, MATE (Monitoring, Analysis and Tuning En-
vironment) is, as its name indicates, a tool conceived to control and adapt
the execution of parallel iterative applications. This environment works in
an automatic and dynamic way, characteristics especially useful in both situ-
ations: when the user is not an expert on performance analysis and/or when
the applications are executing in a heterogeneous or time-sharing environ-
ment or their behaviour depend on the input data. The general functioning
of MATE is shown in �gure 4.2.

As can be seen, MATE works in three di�erent and continuous phases
over the application: monitoring, analysis and tuning. When the appli-
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Figure 4.2: General functioning of MATE

cation starts its execution, the monitoring phase inserts some code into -
instruments- the application in order to collect information about its behav-
iour along the execution. The gathered information is sent as events to the
analysis phase, and is used to evaluate the deployment of the application, by
looking for possible bottlenecks. The analysis phase tries to �nd solutions
to overcome such problems, and indicates the tuning phase what is needed
to do. Then, the solutions are inserted into the application by the tuning
phase, dynamically changing some values or code. This process is repeated
along the execution of the application and thus it is adapted to the changing
conditions presented in each particular iteration. The insertions/removals
or changes made in the application during run-time, are possible because of
the use of a dynamic instrumentation technique.

In this process, the user is only involved in the development of the appli-
cation. However, he needs to know what kind of problems MATE is capable
of tackle, in order to know if MATE is useful for his application. In gen-
eral, MATE can solve every problem which can be expressed by means of a
performance model. Performance models constitute the knowledge used by
MATE to conduct what information is needed to collect during the execu-
tion (so called measure points), how to evaluate the collected information
(the performance functions) and which are the changes needed to tune the
application (the tuning points). Each performance model is encapsulated in
a piece of software, the so called �tunlet�.
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Figure 4.3: Role of a tunlet in MATE

As shows the �gure 4.3, the tunlets are part of the analysis phase, and
are in fact which own the knowledge. According to what mentioned in the
previous paragraph and introduced in Chapter 2, the main elements con-
stituting a tunlet and used by MATE to con�gure each of its monitoring,
analysis and tuning phases (see the green arrows) are the following:

• Measure Points, which indicate what is needed to measure in the
application to be able of evaluating its behaviour. This de�nition in-
cludes values of variables, parameters, function returning, timestamps,
etc. According to the measure points of the tunlet, the Monitoring
phase inserts the corresponding instrumentation in the application in
order to be able of collecting the information needed by the Analysis
phase.

• Performance Functions, which determine how to evaluate the col-
lected information in order to detect bottlenecks. Once the Monitoring
phase sends to the Analysis phase all the information required for an
speci�c iteration, the Analysis phase can evaluate the performance
functions and decide if some change in the application is needed to
adapt its behaviour.

• Tuning Points/Actions indicating what, where and when to change
in the application execution with the aim of adapting its behaviour.
The Tuning phase makes e�ective the changes in the application taking
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into account the point/s or function/s to change, the place in the code
and the instant during the execution where the changes should be
introduced.

These three elements are de�ned by considering mainly the performance
model of the problem and the application. Then, we de�ne the main ab-
stractions on them:

• Performance Problem: Each programming model -such as Mas-
ter/Worker, Pipeline, etc.- provide a di�erent functionality, characte-
ristics and possibilities of interactions and communication. The execu-
tion of applications is directly in�uenced by such characteristics, both
the advantages and the drawbacks. A performance problem constitutes
some problem in the application, related to the deployment; i.e., the
performance obtained by the application is not according to the ex-
pectations. Performance problems can be caused by di�erent reasons,
but in general, for every parallel programming model, fortunately there
exist a set of well-known performance problems.

• Performance Model: In general, in order to obtain a suitable be-
haviour certain parameters of the applications must be tuned. But the
trouble is that some parameters can't be statically tuned due to their
dependency on particular conditions of each execution, inherent in the
application or to the execution environment. However, parallel applica-
tions generally act in accordance with di�erent programming schemes.
By studying both the bene�ts and bottlenecks of these schemes, the
performance problems they present can be mathematically modeled.
Thus, a performance model is the mathematical model of a particular
performance problem. These models can be a means to help us over-
come the di�culties in reaching an optimal performance. In general, a
performance model is de�ned by the following elements:

Performance Parameters: parameters needed to evaluate some
expressions to represent the behaviour of the model; are the �mathema-
tical� variables involved in the evaluation of the performance functions.
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Performance Functions: are functions expressing how to evalu-
ate the performance parameters. In general, the results of the perfor-
mance functions are used to determine what the solution to the existing
problem is.

Tunlet


Meassure Points


    
  p

1

,

 

p


2  

  ...    p


i


Performance Functions


     
 f
1 
 ... f
k


Tuning Actions/Points


      
a

1 

 ...  a


k


     tp

1 

 ...  tp


h


Performance Model


Parameters


    
  p

1

,

 

p


2  

  ...    p


i


Mathematical Model


     
 f

1 

(p


m

,...,p


n

) ... f


k 

(p


m

,...,p


n

)


Model Evaluation


      r

1

  ... r


k


Figure 4.4: Relation between a performance model and a tunlet

The elements of a particular performance model constitute the knowl-
edge condensed in a tunlet, as shows Figure 4.4.

• Actor: In general, every parallel application has di�erent kinds of
processes executing in parallel and cooperating to solve the problem.
Each kind of process or task in the programming model, constitute a
di�erent actor. For instance, in the Master/Worker model, master and
worker are two di�erent actors, and in the Pipeline model each phase
represents a di�erent actor. In �gure 4.5 is shown this concept and the
following ones.

• Event: is the mechanism used by MATE in order to collect informa-
tion. Events are captured in entries or exits of functions and can carry
additional information associated with them. For instance, when cap-
tured the entry of the processing function it is possible to collect the
volume of data to be processed.

• Variable: is a variable of the application. A variable can be needed
for obtaining its value or change it.
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Process_1


Data a,b,c,d...


...


int i


Res f_1(Data d)


{


   ...


}


...


f_i(Data r, Data r1)


{


   ...


}


main()


{


   ...


   r=f_1(a)


   ...


   f_i(c,d)


   ...


}


Process_2


Data a,b,c,d...


...


int i


g_1(Data d,int x)


{


   ...


}


...


g_j(Data r)


{


   ...


}


main()


{


   ...


   g_1(b,i)


   ...


   g_j(d)


   ...


}


Process_3


Data d...


...


h_1(Data e)


{


   ...


}


main()


{


   ...


   h_1()


   ...


}


Actors


Variables


Values
 Events


Figure 4.5: Abstractions in the application

• Value: is the value assumed by a parameter or the result of a function.
Similarly to the variables, values are useful to obtain information or to
change such values.

• Attribute: is a piece of information or attribute related to a particular
entity. Actors and Events are in general the entities which have a set of
attributes associated. These attributes condense information related
to the entity which is used to determine the value of some performance
parameters.

The interdependence among these abstractions can be summarized as
shows �gure 4.6.

4.3 Methodology

Once de�ned the abstractions used by MATE and its interface to work over
the applications, we present the methodology a user should follow in order
to de�ne a tunlet. The methodology includes a series of steps, related to
identify or/and interpret the previously de�ned abstractions in the speci�c
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Figure 4.6: Interrelation among application, performance model and tunlet

application and performance model under study.

4.3.1 Providing a performance model

MATE is oriented to non-expert users due to it exempts them from being
involved in tuning aspects when developed the applications using the frame-
work included in MATE, and the problem to solve is the number of workers.
However, users should have the possibility of inserting new knowledge in
MATE with the aim of solving a new particular problem, as well as using
the knowledge already included in MATE but applied to other applications.

Given an application with some performance problem, the user has to
consider which the model of such a problem is. The performance model can
be a preexisting model or can be an ad hoc model de�ned by the user. When
the user is involved in developing a performance model, a higher degree of
expertise is needed, but we can suppose that if somebody turns to parallel
computing has to be conscious about the �collateral� problems the parallel
application can present, and has to dominate a certain set of concepts relating
to the parallel paradigm, commented in Chapter 1.

4.3.2 Understanding the performance model

Once the performance model was determined, the understanding of it is
a basic requirement due to the model has to be interpreted according to
the application. Thus, the di�erent elements of the tunlet can be de�ned.
When the performance model is already included as a tunlet in MATE, even
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though the user is only going to �adapt� it to its application, the requirement
of understanding the performance model is fundamental too, because every
part of the model has to be reinterpreted.

Fortunately, in case of using a preexisting model, the user should concen-
trate specially in the study and comprehension of the relevance and semantic
of each performance parameter, rather than in the performance functions due
to they could be very complex; as mentioned in Section 4.2, the functions
are de�ned over the parameters; then if the model had been validated and
the user has enough understanding of the semantic of each performance pa-
rameter to interpret them in the application, the functions will be able of
been evaluated.

4.3.3 Interpreting the performance model

This step and the following one are very related due to their interdependency,
then they could be done in parallel. When the performance model had been
determined and specially the performance parameters have been understood,
the user has to determine what are the entities in the application which
embody each performance parameter, i.e. how to provide each parameter
with its semantics. Here is where the user has to de�ne the events to be
captured and the information associated to them.

Identifying the information/variables/values

As mentioned before, the performance parameters have to be interpreted
according to the variables, values and functions of the application under
study. According to the semantic of each performance parameter, the user
has to determine how to constitute its value, and what is the event the
information has to be associated with. For each variable or value, the user
has to provide its name, data type, and the name of the actor which has
visibility of it. A special consideration is needed with variables. The variables
whose value will be obtained or changed, have to be global variables. Thus,
this can require some adaptations in the implementation of the application,
rede�ning variables as global as well as using auxiliary global variables. In
Figure 4.7(b) we declare b as global not only to make it visible for Assign2B,
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but also to be able of obtaining its value and send it as an attribute of the
event caught in the exit of the function.

Identifying the events

Events constitute the mechanism of MATE in order to collect information.
Then, according to the semantic of each performance parameter (or some
group of parameters), the user has to determine what are the entries and
exits of functions which have to be caught, i.e. what are the points of the
program in which the information has to be obtained. Sometimes, -specially
when the required information required is related to timestamps- the user
will be forced to abstract some parts of the functionality of the application
in functions in order to be able of delimiting the beginning and the end of
such an interesting point of execution.

ProgramA


main()


{


int a,b,c,...;


...


aux=b:


b=a;      
(*)


a=b;


...


}


ProgramB


int b;


Assign2B(int x)


{


   b=x;


}


main()


{


int a,c,...;


...


aux=b;


Assign2B(a);


a=b;


...


}


(a)                                                                        (b)


Figure 4.7: Two simple and equivalent programs

For example, in order to caught the instant (*) of Figure 4.7 (a), it is
needed to modify the program as in Figure 4.7 (b). In this way, when exiting
from function Assign2B we will capture the timestamp of its exit. In general,
for each event the user has to determine a name and specify its location in
the code (method, class and place) and the actor where it happens.
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4.3.4 Identifying the actors in the application

When the performance model to tune the problem presented by the appli-
cation was determined, it is needed the user to abstract what are the actors
involved in the application. For each actor, the user has to provide a name,
the �le and the class in which is included or de�ned, and the name of the
executable �le. The user should re�ect over some additional aspects:

• the minimal and maximal quantity of this type of actor could co-
execute in the application.

• a completion condition to detect when the actor reached the end of its
tasks along an iteration.

• the actor's attributes, i.e. what properties should be registered in each
iteration; for example for a worker, to catch the computing time along
the iteration could be interesting.

4.4 Simple Example

In order to clarify the functioning of the proposed methodology, in this sec-
tion we present a simple but complete example.

Suppose the parallel application presented in Figure 4.8. The application
consists of two processes: Process_1 and Process_2. Process_1 initializes
the data to be processed and partitionates it. Then, on the one hand a half
of the data is sent to Process_2, which processes and send back the results
to Process_1. On the other hand the other part of the data is processed by
Process_1. When Process_1 receives the results from Process_2, it executes
the �nal treatment of the results. All this process is iteratively executed.

Supose the performance of this application do not covers what expected.
The user wants to analyze how much time is wasted in communications.
Then, the user has to provide the mathematical model of the execution
time of an iteration. Note that for simplicity, in this example we talk about
mathematical model rather than performance model, due to the study of the
time wasted in computing and communications are not enough to improve
them.
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Process_1


Data dt,dt1,dt2,rs,rs1,rs2


Initialize(Data d)


{


   //Initialize data


}


Finalize(Data r, Data r1, Data r2)


{


   //Final processing of results


}


DivideData(Data d, Data d1, Data d2)


{


   //Divide d into d1 and d2


}


SendData(Data d)


{


   //Send d to Process_2


}


Receive(Data r)


{


   //Receive r from Process_2


}


Data Process(Data d)


{


   //Process corresponding Data d and


   //return the results


}


main()


{


    while(!end)


    {


        Initialize(dt)


        DivideData(dt,dt1,dt2)


        SendData(d2)


        rs1=Process(d1)


        Receive(r2)


        Finalize(rs,rs1,rs2)


    }


}


Process_2


Data dt,rs


SendData(Data d)


{


   //Send d to Process_2


}


Receive(Data r)


{


   //Receive r from Process_2


}


Data Process(Data d)


{


   //Process corresponding Data d and


   //return the results


}


main()


{


    while(!end)


    {


        Receive(dt)


        rs=Process(dt)


        SendData(rs)


    }


}


Figure 4.8: Example of a simple parallel application

1. Providing the model. We can think how to model the execution time
of an iteration in a parallel program. Unlike the sequential paradigm,
in the parallel paradigm the data processing is overlapped -or folded-
and this provides a shorter total execution time. But in turn, there
is an additional time, the communication time spent to coordinate all
the parallel processes. Figure 4.9 is a diagram of activities in which
this situation can be seen. Dashed lines represent the time line. Every
iteration starts by a brief period of initialization. After that, process
1 (P1) divides the set of data to be processed into two parts. One
portion is sent to process 2 (P2) and the other portion is processed by
process 1. When process 2 �nishes the reception of the data, starts
its computing phase. Following, when all data has been processed, the
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results are sent back to the process 1. After a brief phase of �nalization
of iteration, for example to put together all the results, it starts the
next iteration -note that in terms of time, each iteration covers its own
period of time, but due to the algorithm is the same for every iteration,
we represent this fact with the last arrow which joins the �nalization
of one iteration with the initialization of the next one-.

�
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NextIter()
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Figure 4.9: General view of a parallel application and the iteration time calculation

As can be seen, by dividing the total work into two parts it is possible
to reduce the total execution time in comparison with the time it would
take to process the data sequentially, in spite of the additional commu-
nication time and the waiting time. For example, P1 starts and �nishes
the processing phase before P2, then it spent a while waiting for the re-
sults of P2 to execute the �nalization of the iteration. Sometimes, some
of these times are overlapped with computing time which reduces the
negative e�ects of waiting. In a scheme like presented in Figure 4.9, it
is possible to determine the execution time of the iteration it as follows:

TEx(it) = TComp(it) + TComm(it)

where:
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TComp(it) = TIni(it) + TProc(it) + TFin(it)

TComm(it) = TSend(it) + TRecv(it)

In order to calculate each one of the components of TComp and TComm

we can consider the instants of the entries and exits of di�erent methods
or functions.

• TIni Comprises the initial treatment and con�guration, previous
to the parallel processing. In our example, it includes the Initialize
andDivideData functions. Similarly, for TFin we consider the �nal
treatment made over the processed data.

• TProc comprises the interval of time in which the processes are
processing the data.

• TSend comprises the time spent in sending messages, whenever
this time is not overlapped to computing time. TRecv bears some
resemblances to the previous case, but considering the receiving
messages process.

Then, by capturing entries and exits of the correspondent functions
we are able to calculate the total time of an iteration. Performance
models of programming models are clearly more clomplex than this
simple example, but in general they follow the same essence.

Each model should be de�ned by a set of parameters needed to evaluate
the expressions. For the previous example, in spite of it is not a per-
formance model, the mathematical model can be expressed as shows
Figure 4.10, where Tsomething(x) represents the time wasted during
the iteration x to execute the something function, and Entry(f) and
Exit(f) allow obtain the initial and �nal instants of a certain function
f , respectively.

2. Understanding the model. In this example, due to we followed the
reasoning to obtain the model, the semantic of each parameter appears
clearly.
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Figure 4.10: Mathematical model of the iteration time calculation

3. Interpreting the model according to the application.

Even though the proposed mathematical model was had hoc developed
for this simple application, we can determine what are the interesting
points of measure in more depth. In order to calculate each one of the
components of TComp and TComm we have to determine what are the
points in the execution which correspond to the instants we need in
order to calculate the times. We can consider the instants of the entries
and exits of di�erent methods or functions, which are represented in
the �gure 4.9 as ix.

• TIni can be obtained from the subtraction between the exit of
the DivideData() function and the entry of the Initialization()
function (TIni = i3−i1). Similarly, for TFin we consider Finalize()
action (TFin = i10 − i9).

• TProc is calculated by considering the instant in which the �rst
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process started to process any data (in the example P1), and
the time by the last process �nished of processing its data (P2)
(TProc = i7 − i4).

• TSend comprises the time spent to sending messages, whenever
this time is not overlapped to computing time (TSend = (i4−i3)+

(i8 − i7)). TRecv bears some resemblances to the previous case,
but considering the receiving messages process (TRecv = i9 − i8).
Note that interval (i5 − i4) was not considered as part of TRecv

because it is overlapped to TProc.

Then, by capturing entries and exits of di�erent functions we are able
to calculate the total time of an iteration.

4. Identifying the actors in the application. In this example it is
very clear the existence of two di�erent actors: Process1 and Process2.
For each one of them we have to determine some properties -some of
them could appear redundant in this simple example-:

• Process1

� name: p1
� class: none
� executable �le: Process_1
� completion condition: exit of Finalize()
� attributes: timestamps of: Entry(Initialize), Exit(DivideData),

Entry and Exit of Send, Receive, Process and Finalize.

• Process2

� name: p2
� class: none
� executable �le: Process_2
� completion condition: exit of Send()
� attributes: Entry and Exit of Send, Receive and Process

The property class is none, due to this simple example is written in C
(like). If it were written in C++ we will need the name of the class.
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4.5 Tunlet Speci�cation Language

As we introduced before, the performance models provide useful information
about the deployment of applications. Our goal is to encapsulate all this
information on how to solve an speci�c performance problem as a tunlet
which will be used through the execution of the application to direct its
monitoring, analysis and tuning. In the previous sections we de�ned a set
of abstractions and a methodology to understand the application and the
performance model in the terms that MATE does. Once the user reached
the conceptual de�nition of the elements of the tunlet -by following the me-
thodology depicted in Section 4.3- it is necessary a mechanism to formalize
such a conceptual de�nition and transform it into a tunlet. In other words,
to de�ne a tunlet, a speci�cation of the performance problem in function
of the application needs to be provided. Then we propose a Tunlet Spec-
i�cation Language such that the tunlet can be de�ned without entering in
implementation details of MATE.

According to [2] we de�ned:

1. The set of symbols which can be used in a valid speci�cation,

2. The set of valid speci�cations, and

3. The �meaning� of each valid speci�cation.

In the de�nition of the Tunlet Speci�cation Language there is involved
the set of concepts introduced in sections 4.2 and 4.3. However, in this section
they are more dependent on the implementation details of MATE, which in
several cases determines the way in which the elements are de�ned. In the
particular case of specifying tunlets, it is needed to examine and consider
what elements of the performance problem and of the application must be
included, how to establish the relationships among them, and how to express
its syntax and semantics. All these issues are in relationship with the way
in which the Analyzer represents and uses the knowledge.

Just recapping what explained in Chapter 2, from a functional point of
view, the Analyzer is divided into two main parts which are the Dynamic
Tuning API (DTAPI) and the Tunlets [38].
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The DTAPI constitutes the interface of the Analyzer to communicate
with the Monitoring and Tuning phases. It provides the Analyzer with a
global view of the application, the tasks and the events. With regard to
Tunlets, they should use Dynamic Tuning API to manage the application
by invoking monitoring and tuning requirements, and to handle the events
to collect the information of the application necessary for its analysis. Then,
the DTAPI constitutes the interface that tunlets must follow to correctly
work in MATE. As commented before, descriptive classes of the application
are Application, Task, Event, Attribute and EventRecord. Then, in terms of
tunlets speci�cation we should have in mind these classes of the interface and
use it as guideline to build tunlets according to the requirements of MATE.

Our study on how to de�ne the Tunlet Speci�cation Language is centered
in the following aspects:

• How to capture the information. We have to consider the methods
provided by the DTAPI in order to instrument the application, in
particular, what are the properties which de�ne an event. In order
to insert an event in a particular process, it is needed a name for
the event, its location in the code and the attributes or information
associated to it. Such attributes have to be visible to the process where
the event is being inserted.

• How to manage the collected information. When an event is inserted in
a process, it is necessary to determine a handler for such event when
it happens and is received by the analysis phase. In that way, the infor-
mation carried by the event can be obtained and managed as needed.
In general, tunlets are the handlers of events, due to they encapsulate
the logic to process the information and interpret it according to the
performance model.

• How and where to store the information. Each tunlet manages a data
structure for each iteration. In such structure, the information col-
lected is stored according to the nature of the information: information
about actors or iteration.

• How to modify the application. Similarly to the insertion of monitor-
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ing instrumentation, when some tuning action is required we have to
consider the methods provided to introduce some modi�cations in the
application. Thus, we need determine if some synchronization is nece-
ssary to introduce the changes, and we have to provide the necessary
values according to the kind of requirement.

Having in mind these four points, we need a speci�cation to cover all
these characteristics. Before providing a formal de�nition of the language
we will analyze and present the language in a more intuitive way.

4.5.1 Components and Sections of the speci�cation

By automating the creation of tunlets we will make MATE transparent to
the user. But we require the cooperation of the user in de�ning his tunlet.
As we mentioned before, a speci�c performance model constitutes the basis
of a tunlet due to it provides the measure points, the performance functions
and the tuning points and actions. Then, from the performance model
point of view it is needed to de�ne:

• The measure points,

• The performance model, and

• The tuning actions and points.

However, to instrument the application to monitor and/or tune it, the
performance model by itself is not enough, it is needed some additional
knowledge about the application, such as the variables which we will use
as metrics, the values we are able to change, and the programming model,
among others, to have a conceptual view of the application. Then, we need
to determine what is required in order to write the speci�cation. Thus, from
the point of view of the application we need to be aware of:

• The programming model it follows, i.e. how di�erent kinds of processes
or actors are involved in the scheme,

• The variables or values we can manipulate, both to get their values or
to change them, and
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• The functions whose execution we need to detect to collect the infor-
mation and send it as events.

As we can see, the variables, values and events in the application are
closely associated to the measure points of the tunlet, because they constitute
the interpretation of the variables in the performance model. Then, we can
extend the meaning of �measure points� and think about the inclusion of
this information joined to the metrics we should obtain. In this way, the
speci�cation results divided into three di�erent sections, which we describe
in the following paragraphs.

Measure Points

The measure points section will embody the larger part of the speci�cation,
due to it will condense all the information of the application, the program-
ming model and all the parameters susceptible of change, in addition to the
performance model parameters.

The most direct way to describe the application is perhaps by following
the classes in the DTAPI. But even though we should have that structure
in mind, we must remind our goal: simplify the user's task. Then, we must
consider the basic parallel concepts that the non-expert users should man-
age, such as the parallel programming models, and the results they expect to
obtain by using them. In addition, as users are going to specify a tunlet tak-
ing into account a certain performance model, it is needed they understand
how such a model can act over their applications. Then, di�erent processes
are de�ned as actors of the programming model.

The user must de�ne:

• The actors of the programming model (the types of processes or tasks
co-existing in parallel). The tunlet needs this information because in
general each kind of process must be instrumented in a di�erent and
speci�c sense inherent in its nature and role in the programming model.
In other words, for each actor it is needed to capture di�erent events,
then the instrumentations inserted to detect them will depend on the
necessities. Then, according to DTAPI, when a task is registered, in
order to locate the points in the code and discriminate what kind of

94



instrumentation should be inserted, it is needed to declare the name of
the actor and the class in which is included or de�ned, and the name
of the executable �le. Some additional information is required from the
tunlet point of view:

� the minimal and maximal quantity of this type of actor could
co-execute is needed to generate the structures to manage the
behavioural information of each process along the successives it-
erations.

� a completion condition to detect when the actor reached the end of
its tasks along an iteration. This is necessary to be able of check-
ing if every process �nished before evaluating the performance
functions.

� the actor's attributes, i.e. the properties should be registered in
each iteration; for example for a worker, to catch the computing
time along the iteration could be interesting. The attributes are
normally used to calculate the value of other attributes, or per-
formance parameters.

• The variables and values which can be instrumented or tuned in the
application. For each one must be declared:

� the name, such as in the application

� the data type, such as declared in the application

� if it is a variable, a parameter or a function output

� the actor who has visibility of it.

In general, these variables and values are used in de�ning the attributes
of the speci�cation elements. The details (type, actor, etc.) are needed
to locate them in the code and transmit them correctly.

• The events to capture, such as entries or exits of functions. Each event
is de�ned by its name, the actor it is associated with, the place in the
source code and a code to indicate if the event must be used to control
the beginning or the end of the iteration. In addition, the user has to
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indicate the utility of the event through the execution; i.e. if the event
have to be always caught or it is an event which could be required
according to the evaluation of the system or if it is a removable event.
Some attributes -that is some information measured when an event
occurs- can be associated to a particular event. The quantity of bytes
sent, can be an interesting metrics caught when an event indicating
the exit of sending function occurs.

• The model parameters are the own attributes of the performance
model, whose value generally is calculated as a function of the at-
tributes of actors or events. Even though these parameters could be
omitted in the tunlet, due to the performance functions can obtain the
values directly from the attributes of the entities, it is convenient to
respect the parameters of the performance model to avoid errors in the
interpretation.

• As MATE was designed to tune iterative applications, collected infor-
mation should indicate what iteration corresponds to, because commu-
nications could cause a gap between the instant in which the informa-
tion is sent and the moment in which it is received. Then, to avoid
inconsistencies, we require an additional section in the speci�cation to
collect information about each iteration. The iteration information,
includes an attribute to indicate the current iteration, and then all
the additional information necessary to describe the behaviour of each
iteration, according to the performance model.

In general, all the elements in the speci�cation with a set of attributes,
must declare for each attribute its name, the data type, the initialization
value and the way in which its value must be calculated in each iteration.
Finally, if the attribute depends on another attribute or event it should be
expressed to maintain the coherence in calculating values.

Performance Functions

With respect to the performance functions, they must be de�ned in C/C++
language, i.e. any function which could be de�ned in such languages, will
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be recognized as a performance function of the tunlet. This function will
be the value assigned to some of the tuning points in the following section
or in intermediate calculus. Any library needed to implement the functions,
should be declared in the include section.

Tuning Actions/Points

There are di�erent possible tuning actions to modify the behaviour of the
application, explained in Chapter 2: SetVariableValue, ReplaceFunction,
InsertFunctionCall, RemoveFunctionCall, OnTimeFuncCall and FuncPar-
amChange. All the information about a tuning action, i.e. what to do, where
and when, is encapsulated as a tuning point. Therefore, for each tuning
point it must be declared the kind of action (one of the previously enumer-
ated), the identi�er of the entity to be managed (the name of a variable
or a function), the value to be assigned, a condition to apply the tuning,
and additional information about synchronization on the appropriate exe-
cution place to change the value of the point. In case the tuning action
is InsertFunctionCall or OnTimeFuncCall a list of attributes -the list of
the arguments of the function- has to be added to the previous information.
In case the action is FuncParamChange, the index of the parameter to be
changed is required and a boolean value to indicate if the original value of
the parameter is required. Note that when the action is SetVariableValue
and when some attributes need to be associated to an action, the localization
of the variable or attribute in the code is done only using its name. That
is because all the details should have been declared in the measure points
section, and the name acts as a reference to that information. We can to
re�ect on this fact: why do not include the information of the tuning points
in its section? The answer is easy: a tuning point is a malleable object, and
in addition it could act at the same time as a measure point and as a tuning
point. Then, to avoid duplicating the information, we include its declaration
only in the measure points section.
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4.5.2 Symbols

Once we have discussed the elements needed to de�ne a tunlet, we have to
determine the way in which these elements must be declared. In this section
we de�ne the symbols which can be used in a valid speci�cation. Then, from
the previous analysis, we would need the following categories of symbols:

1. Delimiters of the tunlet. All the speci�cation of the tunlet must be
declared between the boundaries that determine where the speci�cation
tunlet starts and where it �nishes.

• TUNLET - ENDTUNLET

2. Delimiters of sections. These delimiters are needed to indicate which
part of the speci�cation is being de�ned. As can be seen, these sections
do not need END<SECTION> delimiter, because on the one hand the
inner subsections are delimited and on the other hand the start of the
following section indicates the end of the previous one.

• MEASURE POINTS. This section will include variables and values,
events, actors, iteration information and performance model pa-
rameters subsections.

• PERFORMANCE FUNCTIONS. In this part of the speci�cation, the en-
tities de�ned are functions to evaluate the deployment of the ap-
plication.

• TUNING POINTS. The tuning points are the entities that can be
de�ned in this section.

3. Delimiters of subsections. All these subsections belong to the measure
points section. Even though these delimiters are not strictly needed,
they help the user to organize better the speci�cation, due to the mea-
sure points section will be in general the biggest section in the speci�-
cation.

• VARIABLES AND VALUES

• EVENTS

• ACTORS
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• ITERATION INFORMATION

• MODEL PARAMETERS

4. Delimiters of the di�erent kinds of entities.

• variable-endvariable; event-endevent; actor-endactor;
ATTRS. The three �rst pairs of delimiters are needed to encapsulate
all the information about a particular variable, event or actor and
its attributes, which are declared after the key word ATTRS.

• function - endfunction. These delimiters are used in the per-
formance functions sections to encapsulate the de�nition of a par-
ticular performance function.

• point - endpoint. Similarly to the previous pairs of delimiters,
these are used to de�ne a concrete tuning point.

5. Labels for di�erent kinds of information, such as id, type, �le or value.

• id, will be used to de�ne the name of every entity in the speci�-
cation: tunlet, events, actors, variables, parameters, points, func-
tions, attributes, etc. The kind of entity which is being named is
determined by the delimiters of the entity.

• comment, which is only used for documentation. In case of reuse
of a certain tunlet, these comments are useful to �recycle� the
speci�cation.

• source, type. The �rst of these labels is used in variables de�n-
ition to determine what kind of entity in the application is going
to be manipulated, for monitoring or tuning. The values this
property can take are: 1

� asFuncParamValue, asFuncParamPointerValue, this means
the value we are trying to manipulate is part of a function
call arguments.

� asFuncReturnValue. In this case, the value is a return value
of a determined function.

� asVarValue. This value indicates the entity is a �normal�
variable in the application.
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� asConstValue. Similar to the previous case, this value rep-
resents a constant in the application.

The second label describes the basic data type we are managing
(int, short, float, double, char, string). Structs should
be crumbled in its individual �elds.

• actorId, acts as a reference to the actor's o process' name whose
code includes -or has visibility of- the entity (variable or event)
is being de�ned. The value of this property must correspond to
some of the actors' names in the ACTORS section.

• method, class, place, exe, are properties used to determine
the precise place in the source code of the application where the
entity we need to manage is located (variables, actors or events).
The property class is used when the application is written in
C++ to indicate what class a method belongs to; when the ap-
plication has not classes, this property takes the value none. The
property place is used to de�ne where or when an event must
be caught, and it can take only one of two values: entry or
exit. In addition it is used when a tuning point encapsulates
a InsertFuncCall tuning action, where it is necessary specify if
the call has to be inserted at the entry or at the exit of the caller
function.

• controliter. As mentioned in Chapter 2, MATE was conceived
to tune iterative applications. Thus, it has to be able to detect
when an iteration �nishes and the following one starts, with the
aim of evaluating the performance model and adapt the behaviour
of the application in consequence. However, we have to consider
that there are several di�erent machines involved in the execution
of the application, where each one is sending the monitoring in-
formation to the analyzer as events, but the order in which events
arrive can't be ensured. As an instance, we can consider the case
in which the event of �nalization of the iteration (from the master
process) arrives before the event of the �nalization of the send-
ing function of some of the tasks in the application (a worker
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process); even though the iteration �nish had been received, the
performance model can't be evaluated until all the needed events
arrived from the machines. This is why the events have to include
the controliter property; it indicates if the event is determining
the beginning or the end of a particular iteration, or if it is trig-
gering the evaluation of the performance functions. Note that in
the last case, it does not mean that the performance functions will
be evaluated: The evaluation will depend on the completion con-
ditions of every actor, due to in general the completion conditions
are true when every event has been received and the information
for each actor has been completed. The values that this property
can take are: {begin, end, eval, no}, to indicate beginning or
end of an iteration, triggering of model evaluation or indi�erent
function, respectively.

• utility. Due to some instrumentation could be added or re-
moved from the application according to the current conditions
of the system, for each event the user has to indicate if the
event must be always caught or if it is an addable or remov-
able event. Thus, utility can assume three di�erent values:
{always, addable, removable}. In case the event is addable,
when required the addition the user has to use the following syn-
tax: add_event(e), where e represents the name of the event.
Similarly, when an events becomes unnecessary, the user has to
specify rem_event(e).

• min, max can take int values and will be used to determine the
size of the internal data structures used to store information re-
lated to each particular actor in the application.

• completion is a logical expression which will be used to decide if
the actor �nished an speci�c iteration or not. This will be used
before evaluating the performance functions to ensure every task
in the application has �nished.

• inic, value. These properties are used to de�ne the expressions
to calculate the initial value of each attribute and the way in
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which they should be updated during each iteration.

• cum. This property is used in attributes of iteration information or
performance parameters to indicate if the value is de�ned by some
cumulative or comparative operator. This property is taken into
account when de�ning the functionality of CPs and Global Ana-
lyzer, in order to implement the logic to preprocess information
in CP or reinterpret in Global Analyzer. The supported opera-
tions are: cumulative addition or multiplication and minimal or
maximal elements. More details are provided in Section 4.5.6

• dependency is used to declare the name of the entity the current
one is depending on. In general, the evaluation of the value of
a particular entity is de�ned in function of the values of other
entities. Thus, the evaluation can only be done once every argu-
ment of it had been evaluated. These dependences are used to
determine the order of evaluation through the tunlet.

• depinic is used similarly to dependency but it is used to deter-
mine the dependences of the inic property.

• def includes the de�nition of the performance function, written
in C/C++. Any additional function needed to such de�nition can
be included in the include section.

• syncfunction is used by the tunlet to indicate the Tuning phase
what is the function -the moment in the execution- in which the
changes should be introduced. If the changes are independent of
the point of execution, this property take the value 0. Note that
in case of using synchronization information, the application has
to temporally stop the execution to insert a breakpoint, and then
restart the execution.

• syncplace speci�es if the stop has to be made at the entry or at
the exit of the function.

• cond represents a condition to apply the tuning. Even though the
tunlet is provided with the knowledge to decide if the behaviour of
the application can be improved -through the performance model-
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sometimes there are additional aspects to take into consideration
according to the decisions made by the tunlet. For example, when
working with the tunlet to tune the number of workers in a Mas-
ter/Worker application, the total available resources could be a
constraint to apply the improvement the tunlet is proposing; i.e.,
if tunlet propose to use x workers to improve the execution time,
but the resources do not cover x it should be controlled to avoid
inconsistencies between the information managed by the tunlet
and what is happening during run-time.

• kind is used to indicate what kind of tuning action encapsulates
the tuning point. The possible values are: SetVariableValue,
ReplaceFunction, InsertFunctionCall, RemoveFunctionCall,
OnTimeFuncCall and FuncParamChange.

• idx and req are used when the tuning action is FuncParamChange,
in order to indicate the ordinal index of the parameter in the argu-
ments of the function, and if the original value of such parameter
is required, respectively.

• ATTRS is used to delimit the list of attributes associated to an
actor, an event or a tuning point. The list could be, in the case
of events and tuning points, a list of references to some entity
declared in the VARIABLES AND VALUES section as well as,
in the case of actors, a set of attributes where each one is will be
used to store information about the actor.

On the other hand, we need de�ne the rules to specify the values of
di�erent elements in the speci�cation:

1. Expressions, such as the initialization value of an attribute or the body
of a performance function. They must be de�ned as C/C++ expres-
sions, and must be delimited by {/#, #/}

2. Words, such as the name of a variable or the �le of a speci�c actor. We
can express this by means of a regular expression:

• ([a..z]|[A..Z])([0..9]| [a..z]|[A..Z]|.|_)*
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3. Iterators, to allow the management of the data related to identical
actors, and iterative or cumulative operations over the stored infor-
mation. Thus, there exists an array of data for each kind of actor
in the application. In the array, each element contains the gathered
information of a particular task.

4. Selectors, to permit determine which part of the information linked to
an actor or event we are interested in. (See below).

Iterators and Selectors are used to simplify the task of the user and
avoid its involvement in implementation aspects when de�ning the speci�ca-
tion. Then, the expressions used to de�ne the initialization (init) and value
(value) attributes must be de�ned by using the user entities included by
the user along the speci�cation. Thus, to access each actor's data, we use a
positional access, and select the right attribute such as in any data structure
by using the dot (actor[i].attribute). Information associated with events
and iteration information are accessed in a similar way (event.attribute,
iter.attribute)

4.5.3 Syntax

The syntax of the language determines what the logic order in which infor-
mation should be sequenced in the speci�cation to ensure a correct interpre-
tation of it is.

TUNLET


     name:


     comment:

     include:


MEASURE POINTS


    
V
ARIABLES AND VALUES


  
 
 
E
VENTS

    ACTORS


   
 ITERATION INFORMATION


    
M
ODEL PARAMETERS

P
ERFORMANCE FUNCTIONS


TUNING POINTS


ENDTUNLET


Figure 4.11: General syntax of speci�cations
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In the previous section, we presented the di�erent symbols needed to
describe and delimit each part and entity in the speci�cation. In this section,
we will present the way in which these symbols should be combined to obtain
a valid speci�cation, i.e. a valid element of the language we are de�ning.
Then, we start de�ning the order in which sections and subsections should
be declared in the speci�cation, as shows Figure 4.11.

 
V
ARIABLES AND VALUES


variable


    id:


    comment:

    source:


    type:


    actorId:
      

endvariable


Figure 4.12: Properties to de�ne a variable or value

    ACTORS


actor


    id:


    min:

    max:


    completion:


    class:

    exe:


ATTRS


    name


    comment:

    type:


    inic:


    depinic:


    value:

    cum:


    dependency:


                endactor


    EVENTS


event


    id:


    actorId:

    controliter:


    utility:


    method:


    class:

    place:


ATTRS


    id:

endevent


Figure 4.13: Properties to de�ne actors and events

As can be seen, �rstly the measure points must be de�ned. They include
the variables, events, actors, iteration information and performance para-
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meters. Then, the performance functions should be de�ned and �nally, the
tuning points section must be speci�ed.

   MODEL PARAMETERS


           id:


           comment:


           type:

           inic:


           depinic:


           value:

           cum:


           dependency:


  
 ITERATION INFORMATION


            id:


            comment:


            type:

            inic:


            depinic:


            value:


            cum:

            dependency:


PERFORMANCE FUNCTIONS


    func


        def:


    endfunc


TUNING POINTS


    point


         id:


         value:

         syncfunction:


         syncplace:


         cond:

         place:


         idx:


         req:


    ATTRS

         id:


    endpoint


Figure 4.14: Properties to de�ne iteration information, tuning points and performance func-
tions and parameters

Each one of these sections include di�erent kinds of entities described by
a set of properties associated to them. Properties which de�ne each entity
are listed in Figures 4.12, 4.13 and 4.14.

Note that for each section it is possible declare more than one entity, i.e.
for example in subsection ACTORS it is possible include several di�erent
kinds of actors, where each one of they will be de�ned by its own set of
properties. In order to clarify, see the use cases in Chapter 5.

4.5.4 Grammar

In this section we formally de�ne the Tunlet Speci�cation Language, accord-
ing to the previous discussion. By following this syntax the user can de�ne
the tunlet speci�cations. In the Section 4.5.5 we explain the semantic as-
sociated to each production. Let G be a grammar which de�nes the tunlet
speci�cation language. Formally, we can de�ne it as the following 4-uple:
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G =< N , T ,S,P > where

1. N is the set of nonterminal symbols.

N = { S, Tunlet, Vv, Ev, Ac, Ii, Pp, Fc, Tp,
DELIMV, VBLE, DELIMEV, EVENT, IDEV,
DELIMAC, ACTOR, IDAC, DELIMF, DELIMP, POINT,
ATTR, VBLEREF, NUMBER, WORD, EXP,
INSTPL, TYPE, SOURCE, CODE, UTIL, LOG, KIND }

Some of these symbols observe the following mnemonic rule:

• S: Speci�cation
• Vv: Variables and Values

• Ev: Events

• Ac: Actors

• Ii: Iteration Information

• Pp: Performance model Parameters

• Fc: Performance Function

• Tp: Tuning points

• EXP: represents a C/C++ function or expression, which we con-
sider pre-established.

2. T is the set of terminal symbols, disjoint from N .
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T ={ TUNLET, ENDTUNLET
MEASURE POINTS, PERFORMANCE FUNCTION,
TUNING POINTS, VARIABLES AND VALUES,
EVENTS, ACTORS, ITERATION INFORMATION,
MODEL PARAMETERS, ATTRS,
variable, endvariable, event, endevent,
actor, endactor, func, endfunc, point, endpoint,

id, min, max, completion, exe,
class, method, place, comment, source,
actorId, controliter, utility, def,
kind, syncfunction, syncplace, cond, idx, req,
begin, end, eval, no, none, include,
always, addable, removable,
type, inic, value, cum, entry, exit, dependency,
depinic, int, short, float, double,
char, string, true, false,
asFuncParamValue, asVarValue, asFuncReturnValue,
asConstValue, asFuncParamPointerValue,
SetVariableValue, ReplaceFunction,
InsertFunctionCall, RemoveFuncCall,
OnTimeFuncCall, FuncParamChange,
[0..9],[a..z], [A..Z], _, ., (, ), :, /, [, ], ;, * }

3. P is the set of production rules in the language.

P: {
S −→ TUNLET Tunlet

MEASURE POINTS Vv Ac Ii Pp
PERFORMANCE FUNCTIONS Fc
TUNING POINTS Tp
ENDTUNLET

108



Tunlet −→ id: WORD
comment: (WORD)+

include: (WORD)+

Vv −→ (DELIMV)+ | (include WORD)+

Ev −→ EVENTS(DELIMEV)+

Ac −→ ACTORS (DELIMAC)+

Ii −→ ITERATION INFORMATION (ATTR)+

Pp −→ MODEL PARAMETERS (ATTR)+

Fc −→ (DELIMF)+

Tp −→ (DELIMP)+

DELIMV −→ variable VBLE endvariable
VBLE −→ id: WORD

comment: (WORD)+

source: SOURCE
type: TYPE
actorId: WORD

DELIMEV −→ event EVENT endevent
EVENT −→ IDEV (ATTRS (VBLEREF)+)?
IDEV −→ id: WORD

actorId: WORD
controliter: CODE
utility: UTIL
method: WORD
class: WORD
place: INSTPL

DELIMAC −→ actor ACTOR endactor
ACTOR −→ IDAC (ATTRS (ATTR)+)?

IDAC −→ id: WORD
min: NUMBER
max: NUMBER
completion: EXP
class: WORD
exe: WORD+
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DELIMF −→ func def: EXP endfunc
DELIMP −→ point

VBLEREF POINT (ATTRS (VBLEREF)+)?
endpoint

POINT −→ value: EXP
kind: KIND
syncfunction: WORD
syncplace: INSTPL
cond: EXP
( idx: NUMBER
req: LOG ) ?

( place: INSTPL ) ?
ATTR −→ id: WORD

comment: (WORD)+

type: TYPE
inic: EXP
depinic: WORD | none
value: EXP
cum: LOG
dependency: WORD | none

VBLEREF −→ id:WORD
NUMBER −→ [0..9]+

WORD −→ ( [a..z]|[A..Z])([0..9]|[a..z]|[A..Z]|
. | _ | ( | ) | : | / | * | [ | ] | ; )∗

EXP −→ C/C++FUNCTION |C/C++EXP
INSTPL −→ entry | exit
TYPE −→ int | short | float

| double | char | string
SOURCE −→ asFuncParamValue | asVarValue

| asFuncReturnValue| asConstValue
| asFuncParamPointerValue

CODE −→ begin | end | eval| no
UTIL −→ always | addable | removable
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LOG −→ true | false
KIND −→ SetVariableValue | ReplaceFunction

| InsertFunctionCall| RemoveFuncCall
| OnTimeFuncCall | FuncParamChange

}

4. S is the start symbol of the gramar.

4.5.5 Semantics

In order to de�ne the semantic of the Tunlet Speci�cation Language, we use a
syntax-directed de�nition. According to [1], a syntax-directed de�nition
is a generalization of a context-free grammar in which each symbol has a set
of associated attributes. If we consider each node in a syntax tree represents
a grammar symbol through a register with �elds to store information, then
each attribute of the grammar symbol corresponds to the name of one �eld.
The value of an attribute is de�ned by a semantic rule associated to the
production. Formally:

In a syntax-directed de�nition, each production A −→ α has
associated a set of semantic rules b := f(c1, c2, ..., ck), where:

• f is a function, AND

• b is a synthesized attribute of A and c1, c2, ..., ck are at-
tributes belonging to the symbols of the production, OR

• b is a inherited attribute of some symbol in α and c1, c2, ..., ck

are attributes belonging to the symbols of the production.

In other words, we will augment the grammar presented in Section 4.5.4
with some attributes and semantic rules to explain the semantics of the
language. In particular, we used a synthesized attributes de�nition, i.e. we
will use only synthesized attributes.

In the following, we present the syntax-directed de�nition, and then we
explain and de�ne -in pseudocode- the procedures used in the translation
process.
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Syntax Directed De�nition

Even though we provide the whole syntax-directed de�nition, the most in-
teresting semantic rule is associated with the start symbol S. This semantic
rule condenses the operation of the translation from the speci�cation to the
tunlet. The remaining rules, in general, allow for obtaining -synthesizing-
the values of the attributes.

For legibility and space reasons, in this section we just present the starting
production with its associated semantic rules. The whole syntax directed
de�nition is documented in Appendix A. Note that for space reasons too,
we present the semantic rules following the right part of each production,
rather than in a table as proposed in [1].

S −→ MEASURE POINTS Vv Ac Ii Pp
PERFORMANCE FUNCTIONS Fc
TUNING POINTS Tp
{
Translate_and_Solve_Dependences()
Create_Tunlet_Stats()
Create_Tunlet()

}

In the next paragraphs we describe the semantic of each procedure in-
volved in the semantic rule.

Procedures

Before starting with the de�nition of the semantic, some assumptions have
to be established. In the semantic rules, we assume that every symbol which
manages a list of some �x� entity, (attribute called xs) has an attribute �i�,
initialized in 0, used to indicate the position in the list where the next �x�
should be stored.

Translate_and_Solve_Dependences: this is a procedure used to
translate the entities used by the user through the speci�cation into entities
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of MATE. In addition, the dependences in the evaluation order of attributes
and parameters are determined. For legibility reasons, in the algorithm we
abbreviated as attr.value the reference to the corresponding synthesized at-
tribute of attr which should be:

Ac.actors[j].attrs[Ac.actors[j].k].value

where j selects the jth actor from the list of actors and k selects the kth

attribute from the list of attributes. Similarly, we represented attributes
in Ii, parameters in Pp, tuning points in Tp, variables in Vv and events in
Ev, by using attr.value, param.value, point.value, vble.type and event.sent,
respectively.

Translate_and_Solve_Dependences()
{
for each actor in Ac.actors

for each attribute in the actor
Translate(attr.value)
ObtainDependences()

Translate(actor.comp_cond)
for each attribute in Ii.attrs

Translate(attr.value)
ObtainDependences()

for each parameter in Pp.attrs
Translate(param.value)
ObtainDependences()

for each tuning point in Tp.points
Translate(point.value)

for each variable in Vv.vbles
Translate(vble.type)

for each event in Ev.events
event.sent=ObtainSentences()

for each function in Fc.funcs
Unfold()

}

As mentioned in Section 4.5.2, to simplify the task of the user and avoid
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its involvement in implementation aspects, the expressions used to de�ne
the initialization (init) and value (value) attributes must be de�ned by
using the user entities included by the user along the speci�cation. Thus, to
access each actor's data, we use a positional access, and selecting the right
attribute such as in any data structure by using the dot (actor[i].attribute).
Information associated with events and iteration information are accessed in
a similar way (event.attribute, iter.attribute). The Translate() action is used
to translate a string containing user-entities to an equivalent string including
MATE entities. The main transformations are presented in �gure 4.15 as
a translation scheme. �e� represents the name of a scanned event, �attr�
represents a given attribute of an actor, event or iteration, �a� represents the
name of an actor or the string �iter�.

e.


attr


print(r.)


if (timestamp) print("GetTimeStamp()")


elseif (task) print("GetTask()")


elseif (id) print("GetId")


else


find position of attr in event


print("GetAttributeValue(pos)")


a[

print("aData d =")


Obtain_Position()


].attr

print("d.Set_attr(" )


Obtain_argv()


Token-String
 Translation


Figure 4.15: Translation Scheme for transforming user entities in MATE entities

These translations are determined and dependent on the implementation
of MATE. Suppose the user refers to some attribute of an event as �e.attr�.
In MATE, the attributes of an event can be only managed when the event
is received and it is handled by the event handler, which in general is the
tunlet. Then, in the HandleEvent method, r represents the event which
provides a series of methods in order to obtain the information associated
to it (see Chapter 2). Given that each event has three default attributes
timestamp, id and task indicating the instant, the process identi�er and
the task in which it happened, �attr� is translated using the default me-
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thods GetTimeStamp, GetId or GetTask when attr==timestamp, attr==id
or attr==task, respectively. When the attribute is not a default one, the
GetAttributeValue method is used to obtain the attribute from the event.
The position �pos� is inferred from the order followed by the user in de�ning
the attributes associated to the event. A string such as �a[i].attr� is trans-
lated in several steps. In �rst place, the corresponding data structure in the
tunlet must be obtained to manage the information. In the implementation
of MATE the data structure used to store the information associated to ac-
tor a is called �aData�. In a following step, the index of such structure is
obtained in order to manage the corresponding structure. In other step, the
methods associated to aData are used in order to obtain the value of attr
(when the string is a r-value) or in order to set the value (when the string is a
l-value), such in the table where d.Set_attr is used; in the following step, the
argument for such setting method is obtained. The particular translation of
tuning points interprets the value of each property according to the kind of
associated tuning action.

Obtain_Dependences() is a function used to solve the chain of depen-
dences among the di�erent entities in the speci�cation. In general, the chain
of dependences starts depending on an event, and is used to determine the
order of evaluation of the attributes and performance parameters. The de-
pendency and depinic properties are involved in this process.

Obtain_Sentences() is a function used to associate the corresponding set
of actions to execute when an event is handled. As mentioned above, the tun-
let is the event handler, and in consequence it is responsible for extracting,
processing and classifying the information carried by the event, to consti-
tute the iteration information, actors' attributes and then the performance
parameters. The set of actions is established according to the dependences
determined in the previous procedure. The symbol �||� represents the con-
catenation of strings.

Obtain_Sentences()
{
according to Obtain_Dependences()
for each attribute depending on the event
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event.sent:=event.sent||attr.value
}

Unfold is a function used to obtain each part of the performance functions
de�nition: the returning value, the name, the parameters, the de�nition.
They are used to de�ne the corresponding methods in the tunlet.

Create_Tunlet_Stats: is used to generate the statistics structures
used to store the information collected during run-time. The information
can be related to each actor or to each iteration. The Set and Get methods
are de�ned to assign or obtain the value of a particular attribute of the class.
Such classes are used by the tunlet to store and obtain the values.

Create_Tunlet_Stats()
{
//Create individual structures for each actor
for each actor in Ac.actors
create a class to manage its attributes
for each attribute in Ac.actors[j].attrs
declare the attribute as a class-attribute
create Set and Get methods

create an isCompleted() method
using Ac.actor[j].comp

//Create individual structures for each iteration
create a class to manage the attributes of iterations
for each attribute in Ii.attrs
declare the attribute as a class-attribute
create Set and Get methods

for each actor in Ac.actors
create a map <int,actor_class>
create Set and Get methods

}

Create_Tunlet: in this procedure, the entities in the speci�cation are
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used to constitute the parts of the tunlet which implement the logic to obtain
and evaluate the elements in the performance model.

Create_Tunlet()
{
for each actor in Ac.actor
Create_Instrumentation_Methods()

for each parameter in Pp.attrs
declare as a tunlet class attribute
Create_Updating_Methods()

for each function in Fp.funcs
Create_PerfFunc_Methods()

for each tuning point in Tp.points
Create_Tune_tp_Methods()

Define_HandleEvents()
}

When a speci�c task starts execution, the tunlet has to require the co-
rresponding instrumentation to Application Controller (more speci�cally to
Monitor).

Create_Instrumentation_Methods()
{
for each actor in Ac.actors
for (each event in Ev.events such that

Ev.events[k].actor==Ac.actors[j])
create the requirement:

include the attributes in Ev.events[k].vblesr
send the requirement to Application Controler

}
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When an iteration �nishes, the performance parameters can be updated
to evaluate the performance model. Thus, the tunlet has to include some
methods to update the values. Similarly, the performance functions have to
be implemented as methods of the tunlet.

Create_Updating_Methods()
{
for each parameter in Pp.attrs
use Pp.attrs[h].value to define the body

of the method
}

Create_PerfFunc_Methods()
{
for each parameter in Fp.funcs
use Fp.funcs[m].name, Fp.funcs[m].type,

Fp.funcs[m].param and Fp.funcs[m].def
to define the method

}

In the loop of reception of events, the Global Analyzer and the CPs have
to include the logic to use the information carried by the event in order to
assign the corresponding values to the entities depending on such an event.

Define_HandleEvents()
{
for each event in Ev.events
use Ev.events[n].sent to define the
corresponding management of the event

}

An special aspect in the semantic interpretation of the tunlet speci�-
cation is the inference of the logic to the CPs preprocess the information
associated to the events and the logic to the Global Analyzer to interpret
the information received from each CP. We will analyze such logic in the
following section.
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4.5.6 Deducing CPs logic from the speci�cation

In Chapter 3 we discussed the needs for providing scalable qualities to the
Analyzer, and what will be the strategy to reach such a con�guration. In
this section, we describe the mechanisms used to transform the information
included in the speci�cation of the tunlet in a useful way to automate the
creation of the di�erent processes involved in the analysis phase: Collector-
Preprocessor and Global Analyzer.

Before to expand on the obtaining of the code from the speci�cation,
we should have in mind the elements of the speci�cation, summarized in
Figure 4.11. The MEASURE POINTS section condenses all the information
needed to evaluate the deployment of the application. Just to remind and
summarize the main parts, it includes variables, performance parameters,
iteration information, actors and events. The last two categories can have
associated a set of attributes. Performance parameters, iteration information
and attributes are de�ned in a similar way, then in order to make easier the
discussion, we will call all of them as �attributes�.

Each one of the attributes has a property named value which indicates
the way in which the value of the entity should be calculated. In general,
that value depends on other attributes or variables in the speci�cation. Un-
fortunately, the attributes the value depends on are not always associated
to the same actor the attribute is, and this fact could complicate the mech-
anism to calculate it. The trouble is mainly in the fact that we need to
divide the collecting and preprocessing of the information incoming from the
tasks in several di�erent groups, and this division could not match with the
original conception of the performance model as a whole. If some informa-
tion belonging to another group of tasks is needed, in order to obtain it we
must to pay for the cost of communication. Then, the idea is avoid this
hardship by calculating what locally is possible and to postponing the global
evaluations comprising the di�erent sets of tasks information to the Global
Analysis phase.

CPs and Global Analyzer must include data structures and mechanisms
to support and process local data and to prepare data needed to the global
evaluation of the model. Then, the collection of data will be done by using
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the same data structure as in centralized approach. As shows Figure 4.16
such data structure includes a �eld to store each one of the attributes associ-
ated to the entity. This particular example constitutes the data structure to
store the master attributes, such as firstSend, lastRecv and lastWorker.
In the case of actors whose property max is greater than one, the data struc-
tures are managed as an array, where each element contains the information
of a particular actor. Iteration information and performance parameters
have their own data structure.

 

TUNLET


...


ACTORS


actor


name
: master


...


attributes


name
: firstSend


...


name
: lastRecv


...


name:
 lastWorker


...


endactor


...


ENDTUNLET


master


firstSend


lastRecv


lastWorker


Figure 4.16: Data structure to store the attributes of a particular actor

If we study in depth the situation of the lastWorker attribute, the master
process needs to know which of the workers was the last in send back to him
the results of the calculations. In the speci�cation it is de�ned as in Figure
4.17. As can be seen, lastWorker attribute depends on WRepliesM event.
Let suppose that this event is caught in the worker code, when a send action
is executed. Obviously, in Analyzer's centralized approach to obtain this
information is relatively easy because the only Analyzer is receiving all the
events. But in the new approach, workers' events are collected by CPs.
Then, each CP is capable of determining which of the workers the last in
sending the answer to it was. That will constitute a �local lastWorker�, but
the master will be who decide which of those partial lastWorkers is the

120



global lastWorker.
 


...


name
:lastWorker


type
: int


inic
: lastWorker=0


value
: if(WRepliesM.timestamp>master.lastRecv || master.lastRecv==0.0)


master.lastWorker= WRepliesM.id;


dependency
: WRepliesM


...


Figure 4.17: Speci�cation of lastWorker attribute of master actor

Here arises the need of including a new kind of structure to manage
the data needed by other entities. Then, in addition to the array of data
structures, we need a data structure called Aux with a �eld to store each one
of the values needed by foreign entities. On the one hand, the way in which
that value will be initialized and calculated in the CPs will depend on the
de�nition of the entity. In our example, Aux will provide a lastWorker �eld
which is initialized in the same way as master.lastWorker. Then, due to the
calculation of the value of this attribute is only involving local information
(i.e. workers information) can be rede�ned in the same way as the global
lastWorker, as presents Figure 4.18.

Aux


  field_name
:lastWorker


  field_type
: int


  field_inic
: lastWorker=0


  field_value
: if(WRepliesM.timestamp>Aux[lastRecv] || Aux[lastRecv]==0.0)


Aux[lastWorker]= WRepliesM.id;


  field_dependency
: WRepliesM


  ...


Figure 4.18: Aux data structure in subordinated Analyzers

On the other hand the global Analyzer have to rede�ne the determining
of the lastWorker. To do that, it will need an equivalent Aux structure
to store the data sent by each CP, then it will manage an array of such
structures. A mechanism to compare lastWorker �elds will be needed in
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order to determine the global worker who replied at last.
In the translation from a speci�cation into a tunlet, the logic to constitute

the collecting, preprocessing and reinterpretation of the information sent by
the CPs to the Global Analyzer is inferred from the declarations in the
speci�cation, specially by considering the value of the property cum. As
introduced in Section 4.5.2, this property should be True when the value
of the attribute under consideration is calculated using some cumulative
operation (addition or multiplication) or comparative operators (minimal
or maximal elements). However, even though the cum property is True, the
translator decides if the attribute can be e�ectively preprocessed by studying
what actors the value depends on. In other words, the value of an attribute
att could depend, for example, on a cumulative operation over a kind of
actors (the cumulative addition of attribute att0 of every worker) and a
particular attribute of another kind of actor (the division by the attribute
att1 of the master), as follows:

id:att
type:int
inic:att=0
depinic:none
value: int i;

for(i=0;i<n;i++)
{att+=worker[i].att0;}
att=att/master[0].att1;

cum:true
dependency: ...

where n represents the total amount of workers. If the information -the
events- related to each kind of actors is not collected by the same CP, the
value of att cannot be calculated at CP level even though cumm==true. This
force the CP to send all the information to the Global Analyzer, increasing
the Global Analyzer processing time.

A technique to solve these limitations is to provide some auxiliary at-
tributes to calculate the cumulative/comparative operations and then use
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the result in the original att, as in the following example, where n will be
interpreted by the CP as the number of workers locally managed:

id:attaux
type:int
inic:att=0
depinic:none
value: int i;

for(i=0;i<n;i++)
{attaux+=worker[i].att0;}

cum:true
dependency: ...

id:att
type:int
inic:att=0
depinic:none
value: att=attaux/master[0].att1;
cum:false
dependency: attaux

In this case, attaux can be partially obtained at each CP and the �nal
treatment of att will be done at Global Analyzer level. Recapping on the Aux
structure, it should include an attribute �attaux� in which the CP will store
the correspondig value, and which will be reinterpreted by Global Analyzer
to complete the information, before evaluating the performance model.

Note that given the complexity that could be involved in the de�nition of
the value property, we require the cooperation of the user (by including aux-
iliary attributes as before) in order to maximize the amount of information
preprocessed in CPs.
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4.6 Tunlet Generator Implementation

Once the tunlet has been speci�ed, it is possible translate such speci�cation
in source code. Such as in all translations of code, we follow a series of steps
to obtain the source code of the tunlet, ready to be incorporated in MATE.

XML


Tunlet


Specification


Tunlet.h
 Tunlet.cpp
 Stats.h
 Stats.cpp


Tunlet


Specification


XML


Tunlet


Specification


(translated expressions,


solved dependencies)


Flex


Lexical


Analyzer


XMLDom


Preprocessor


XSLT


Source Code


Generation


Figure 4.19: Phases in the generation of a tunlet from a speci�cation

The successive phases are illustrated in Figure 4.19 and are described in
the following paragraphs:

1. Lexical Analysis: The input of the analyzer is the speci�cation of the
tunlet, written in a text �le. The output is an equivalent speci�cation
but following the XML syntax [61].

This step exists for user-friendliness reasons, and consists in translating
the speci�cation into its equivalent XML speci�cation. The lexical

124



analyzer was implemented in Flex [62]. By considering the semantic
de�ned in the previous section, the lexical analyzer obtains the initial
value of the attributes.

2. Preprocess: the input is the XML speci�cation of the tunlet (obtained
in the previous lexical analysis phase). In this phase, existing depen-
dences among attributes and events through the speci�cation are solved
(i.e. ordered to avoid inconsistencies in the behaviour of the tunlet);
in addition, the expressions to calculate the initialization and value of
each entity are translated into internal structures of MATE. The out-
put is the same XML speci�cation but with the expressions translated
and the dependences solved. The preprocessor is an XMLDom program
[58]. By considering the procedures presented in the previous section,
the preprocessor implements the Translate_and_Solve_Dependences
procedure.

3. Source Code Generation: the input is the XML speci�cation obtained
in preprocess phase. The output is a set of C/C++ �les, with the
source code of the tunlet. This last step in generating a tunlet, consists
in extracting information from the di�erent sections of the speci�cation
to conform the source code of the tunlet. The generator was imple-
mented as several XSLT stylesheets [72, 71]. The Create_Tunlet_Stats
and Create_Tunlet procedures are implemented in this step.

Notice that the generation process includes several steps, but the user
only is involved in the de�nition of the speci�cation. From that speci�cation
it is possible generate the source code.

4.7 What does the User need to know?

The aim of this section is to summarize what explained previously, and
to condense the main concepts needed to understand and use MATE, the
methodology to develop tunlets, the Tunlet Speci�cation Language and the
Tunlet Generator, taking into account the view of the user.

First at all, recapping on Chapter 2, MATE (Monitoring, Analysis and
Tuning Environment) is, as its name indicates, a tool conceived to control
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and adapt the execution of parallel iterative applications. This environment
works in an automatic and dynamic way, characteristics especially useful in
both situations: when the user is not an expert on performance analysis
and/or when the applications are executed in heterogeneous or time-sharing
environments or their behaviour depend on the input data. The general
functioning of MATE is shown in �gure 4.20.

User


Tool


Problem / Solution


Performance


information


Application Development


Sourc


e


Events


Source Code
 Application


Instrumentation


Modifications


DynInst


Tuning


Performance


Analysis


Monitoring


Execution


Tunlet
 Tunlet
...


Figure 4.20: General operation of MATE

In this process, the user is only involved in the development of the appli-
cation. In general, MATE can solve every problem which can be expressed by
means of a performance model. Performance models constitute the knowl-
edge used by MATE to conduct what information is needed to collect during
the execution (so called measure points), how to evaluate the collected in-
formation (the performance functions) and which are the changes needed
to tune the application (the tuning points). Each performance model is en-
capsulated in a piece of software so called �tunlet�. As shows the �gure,
the tunlets are part of the analysis phase, and are in fact which own the
knowledge.

To use MATE, the user can be in one of the following situations:

• His application presents a particular performance problem which has
not been included in MATE yet.

• His application has some of the performance problem whose solution
is included in MATE but the corresponding tunlet was implemented
according to another application.
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In both previous situations, the user can use the methodology depicted
in Section 4.3 in order to identify the abstractions de�ned in Section 4.2
needed to generate a tunlet. The Tunlet Speci�cation Language can
be used in order to specify a new performance problem to be transformed
in a tunlet, or in order to reinterpret an existing speci�cation for the user's
application. When the speci�cation is ready, the Tunlet Generator au-
tomatically generates the tunlet from the speci�cation. In the following we
present the algorithm to add a tunlet to MATE. In the next subsections, we
explain each step in more depht.

1. To Develop the parallel application

• Following the methodology chosen by the user

• Using the Master/Worker framework included
in MATE, which already provides the measure
points for the tunlet.

2. To define the tunlet abstractions

• Following the methodology 4.3

3. To write the specification of the tunlet

(a) Defining the measure points

• Defining the variables

• Defining the events

• Defining the actors

• Defining the iteration information

• Defining the performance parameters

(b) Defining the performance functions

(c) Defining the tuning points

4. To generate the tunlet

• Executing the TG script

5. Execute the application under the control
of MATE in the cluster
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4.7.1 Developing the parallel application

MATE can be used to tune any parallel and iterative application. Cur-
rently, applications have to be written in C/C++ and have to be based
on pvm message passing library. The applications can be developed follo-
wing any methodology or using any development tool, whenever they respect
those three requirements to be tuned by MATE. In particular, as mentioned
in the algorithm, MATE includes a framework to the semi-automatic de-
velopment of Master/Worker applications. Then, if the user develops his
Master/Worker applications by using this framework, not only he straight-
forward can use the pool of tunlets prede�ned, but he also is exempted from
think about some aspects of the speci�cation of the tunlet when de�ning a
new one, such as the measure points, due to they are provided beforehand.

4.7.2 De�ning the tunlet abstractions

Once the application had been developed, the user should follow the proposed
methodology to understand the application and the performance model in
the terms that MATE does. Once the user identi�ed the abstractions ac-
cording to Section 4.2, they can be formalized in a speci�cation to its later
translation into a tunlet.

4.7.3 Writing the speci�cation of the tunlet

In order to write the speci�cation of a tunlet according to some given ap-
plication and performance model, the user can follow the pattern presented
in Figure 4.21 at the end of this section (4.7). In the following we provide
some further details about di�erent parts of the speci�cation.

1. De�ning the variables and values, including the identi�er, data type,
the name of the actor which has visibility of it and if it is a variable,
parameter, function result, etc.

2. De�ning the actors involved in the application. For each actor, it is
needed to declare the name, the class in which is included or de�ned,
and the name of the executable �le. Some additional information is
required:
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• the minimal and maximal quantity of this type of actor could co-
execute during the execution of the application. These numbers
are needed to generate the structures to manage the behavioural
information of each process along the successive iterations of the
application.

• a completion condition to detect when the actor reached the end
of its tasks along an iteration.

• the actor's attributes, i.e. the properties that should be registered
in each iteration.

3. De�ning the events to capture. In general, each event is de�ned by
its name, the actor it is associated with (i.e. where it happens) and
the place in the source code. By considering that MATE is based
on iterations and the events constitute the means to send information
about the application to the Analysis phase, it is through some events
that the beginning and end of the iterations are captured. In addition,
it is needed to consider that the evaluation of the performance functions
is not only depending on the reception of the event indicating the end
of the iteration, but it depends also on the reception of every data
needed to evaluate the functions. Then, due to the order in which
events arrive from di�erent machines can't be ensured, the user has to
indicate what the events which are �nishing the iteration for each actor
are. In this way, when one of these events arrive to the Analysis phase,
a query is made in order to verify if the information is complete or if
it is needed to wait for additional events. Thus, the events controlling
the beginning or the end of the global iteration, and the end of an
interation for each actor, have to be indicated with value begin, end
or eval respectively in the property controliter. When the event has
not any special consequence, the value of controliter is no.

A particular event can carry associated some speci�c information in its
attributes. Note that the attributes associated to a particular event
have to be visible from the actor's code where the event is caught. The
quantity of bytes sent, can be an interesting metric caught when an
event that indicates the exit of the sending function occurs. Each event
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has three default attributes: timestamp, tid and task to indicate the
speci�c instant, the process id and the task it was caught in.

4. De�ning the performance parameters of the performance model,
whose value generally are calculated as a function of the attributes of
actors or events.

5. De�ning the iteration information necessary to describe the behav-
iour of each iteration, not included in the other sections, such as the
total communication or processing time in the iteration. This section
requires the de�nition of an attribute to indicate the current iteration.

In general, all the elements in the speci�cation with a set of attributes,
must declare for each attribute its name, the data type, the initialization
value and the way to update its value (see below). Finally, if the attribute
depends on another attribute or event -in the sense that the value of the
current entity can't be calculated until the one it depends on was determined-
the name of such entity should be expressed.

6 De�ning the performance functions as the implementation in C/C++

language of the performance expressions of the model. As in every el-
ement through the speci�cation, the functions will depend on entities
included in the speci�cation. The necessary mathematical libraries
have to be declared in the beginning of the speci�cation, in include
section.

7 De�ning the tuning points declaring the kind of action, the name
(id) of the involved variable or function, the new value to be assigned,
a condition to apply the tuning, and some information about synchro-
nization: the appropriate place and instant to change the value of the
point. In case the kind of tuning action consist in changing the value of
a function parameter (FuncParamChange) two additional properties are
necessary: the ordinal position of the parameter in the list of arguments
of the function (the idx property) and a boolean value to indicate if the
original value of such parameter is needed (the req property). In case
the tuning action is RemoveFuncCall the value property indicates the
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name of the caller function where the function call have to be removed.
In case the tuning action is InsertFunctionCall the value property
indicates the name of the function or method where the call have to
be inserted. In this case, the additional property place (entry or exit)
have to be speci�ed. In addition the attributes of the function have to
be expressed as well as when the tuning action is InsertFunctionCall
or OnTimeFuncCall.

To simplify the task of the users and reduce their involvement in im-
plementation aspects, the expressions used to de�ne the initialization (init)
and value (value) properties (for attributes, iteration information and per-
formance model parameters sections) must be de�ned by using the user en-
tities (variables, events, actors, etc.) included along the speci�cation. Thus,
to access each actor's data, we use a positional access, and select the right
attribute such as in any data structure by using the dot (actor[i].attribute).
Information associated with events and iteration information are accessed in
a similar way (event.attribute, iter.attribute).

4.7.4 Special considerations and constraints

When de�ning the abstractions and the speci�cation, the user should con-
sider some special requirements of MATE and/or some constraints of the
language:

• The start and the end of each iteration must be detected. Therefore,
the user has to provide the de�nition of two events to capture such
instants. Each one has to indicate its functionality in the controliter
property, indicating if the event detects the begin or the end points
of the iteration. These events are necessary to detect when the perfor-
mance model can be evaluated.

• Each event should indicate what is the iteration in which it was caught.
In general, this information can be obtained from some variable in the
application which can be associated to the event as an attribute. This
information is used to classify the information carried by the event in
the corresponding iteration data structure.

131



• Even though the user have to de�ne the dependences among di�erent
entities (using the dependency and depinic properties), in addition we
recomend to declare the entities following the dependence order when-
ever it is possible. Note that the order of the speci�cation sections
should not be changed, the dependence order have to be considered to
entities in the same section.

• Some special functions can be used to program some functionalities
when de�ning the value property:

� add_event(e) and rem_event(e), where e represents the identi-
�er of an event. These functions can be used when the insertion
of an additional event is required (whenever the utility property
of the event is addable) or when the removal of some event is ne-
cessary (whenever the utility property of the event is removable).

� Tune_<tuningpoint_id>(). In general, this family of functions is
not necessary when the default cycle of collection of data, analysis
and tuning actions is enough in order to cover the necessities of
the tunlet. However, some performance models require multiple
tuning actions along an iteration, applied under certain condi-
tions. Thus, these functions can be used when a tuning action
have to be applied in some instant di�erent from the normal and
automatic one.

• When some point in the code has to be speci�ed, the method, class
and place properties are used, in the case of specifying an event. Howe-
ver, if the implementation of the application is not based on the object
oriented paradigm, the user has to just provide the name of the corres-
ponding function in the method property, and class remains empty. In
the case of tuning points, most of the available tuning actions require
the name of the involved functions. When the application is based
on the object oriented paradigm and the function under consideration
is a method, the user has to provide the name as the combination of
<class>::<method>.

• In order to take a major advantage of the preprocessing (in CPs) of
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the information associated to the events, we recommend considering
the use of auxiliary actors' attributes, iteration information and per-
formance parameters when the cum property of an entity is true but
the value depends on entities belonging to di�erent kinds of actors.
In other words, the user should try to separate the calculus of cumu-
lative additions or multiplications in an independent entity, and then
use the result in the original entity. The same has to be considered for
comparative relations.

4.7.5 Generating the tunlet

The command used to automatically generate the tunlet from the speci�ca-
tion is the following:

> TG <specification_path>
TG is a script which supervises the successive stages of the generation of

the tunlet. Those phases are lexical analysis, preprocessing code generation
and compiling, but they are not important from the user's point of view.

4.7.6 Executing the application under MATE

The general way in which the application has to be executed under MATE
is by using the following command:

> MATE <application_path> <application_arguments>
Pvm should be started before the previous command. Depending on

the particular functioning or manager of the execution system (the cluster
in which the application will be executed and dynamically tuned) the way
in which the user prepares the environment can be manual or automatic.
Thus, the user should consult the administrators of the systems about the
use of MATE. Another consideration is that MATE requires some additional
machines which will be used exclusively for the analysis phase; then, when
asking for resources to the system (number of hosts in pvm) it is needed to
include these additional machines.
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TUNLET


     name:


     comment:

     include:


MEASURE POINTS


    
VARIABLES AND VALUES


variable

    id:


    comment:


    source:


    type:

    actorId:


endvariable


    
    EVENTS


event


    id:


    actorId:


    controliter:

    utility:


    method:


    class:

    place:


ATTRS


    id:


endevent

      
  ACTORS


actor


    id:

    min:


    max:


    completion:


    class:

    exe:


ATTRS


        id:


        comment:

        type:


        inic:


        depinic:

        value:


                       cum:


        dependency:


                endactor


(follows in the next column)


   
 
 ITERATION INFORMATION


        id:


        comment:

        type:


        inic:


        depinic:


        value:

        cum:


        dependency:


    
MODEL PARAMETERS


      
  id:


        comment:


        type:


        inic:

        depinic:


        value:


        cum:

        dependency:


PERFORMANCE FUNCTIONS


     
 function

       def:


endfunction


TUNING POINTS


               
point


        id:


        value:

        syncfunction:


        syncplace:


        cond:


        place:

        idx:


        req:


               ATTRS

        id:


endpoint


ENDTUNLET


Figure 4.21: Template to specify a tunlet
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Chapter 5

Use Cases

�[...] los Espila se avinieron a iniciar los experimentos, y Elena se dedicó
muy en serio a estudiar galvanoplastia mientras que el sordo preparaba los
baños y se ponía práctico en ese trabajo de unir en serie o tensión los cables
del amperímetro y en manejar la resistencia. Hasta la anciana participó en
los experimentos y nadie dudó, cuando consiguieron cobrear una chapa de
estaño, que en breve tiempo se enriquecerían si la rosa de cobre no fracasaba.�

Los Siete Locos, Roberto Arlt

IN this chapter we present two examples on how to specify tunlets from
some given performance models. The models we present are de�ned for

the Master/Worker programming scheme and are the following:

• the optimal number of workers model

• the load balancing model

We will specify the tunlets taking into account these models to tune
applications created by using the framework Master/Worker [36] associated
with MATE [10, 11], presented in Section 2.3. In order to generate the
tunlets we follow the methodology presented in Chapter 4. Even though in
this work we want to evaluate the usability of the proposed methodology
and the speci�cation language, we present in addition some results obtained
when the application is executing by itself and when it is executed under
MATE.
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Note that these use cases are not just examples of the language usage.
In fact, the two automatically developed tunlets will provide MATE with
two new tunlets, available to straightforwardly tune applications developed
with the Master/Worker Framework. For applications developed following
another methodology, the tunlets can be reinterpreted according to the ap-
plication.

5.1 Optimal Number of Workers

In Master/Worker applications it is crucial to study the application perfor-
mance according to the quantity of workers used to process the tasks, because
it is one of the major performance problems in this programming scheme.
When there are not enough worker processes, the master process distributes
the data and becomes idle as it waits for results. On the other hand, if there
are too many workers, the amount of data is divided into small pieces and
the communications saturate the system.

5.1.1 Providing a Performance Model

The model provided to develop the tunlet is a pre-existing performance
model. We present the general aspects of it, but additional details can be
obtained from [14].

Terminology

In the following, we present the terminology used to identify the di�erent
parameters of the performance model:

• tl = network latency, in milliseconds (ms)

• λ = sending a byte cost (bandwidth inverse relation), in ms
byte

• vi = size of tasks sent to each worker i, in bytes

• vm= size of the answer send back to the master for each worker (bytes)

• V = total data volume(
∑

(vi + vm)), in bytes
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• n= current number of workers

• tci= computing time of the worker i, in ms

• Tc= total computing time (
∑

(tci)), in ms

• Tt= total iteration time, in ms

• Nopt= number of workers needed to minimize the execution time

Tt is the magnitude we want to minimize, and to do that we should use
Nopt workers.

Performance Functions

The following expression indicates how to calculate the number of workers
suitable to improve the application performance:

Nopt =

√
λV + Tc

tl

where Nopt represents the number of workers needed to minimize the
execution time. This expression was obtained by deriving the expression
that models the execution time of an iteration, in order to minimize it.
Such expression is de�ned in function of computing time and communication
time, which is in�uenced by the latency and bandwidth (more details can be
obtained from [14]).

Performance Parameters

To calculate Tt a set of parameters should be measured. For each one of
they, the model indicates where and when should be measured, to allow
evaluating the performance functions:

• tl (network latency, in milliseconds) and λ (sending a byte cost -
bandwidth inverse relation- in ms

byte). They must be calculated at the
beginning of the execution and should be periodically updated to allow
the adaptation of the system to the network load conditions.

• V is the total data volume(
∑

(vi + vm)) expressed in bytes, where:
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� vi (size of tasks sent to each workeri, in bytes) must be captured
when master sends tasks to the workers.

� vm (size of the answer send back to the master for each worker,
in bytes) must be captured when master receives answers from
the workers.

• Tc is the total computing time (
∑

(tci)), in ms, where:

� tci(computing time of the worker i, in ms). Each worker com-
puting time is needed to calculate the total computing time (Tc).

5.1.2 Interpreting the Performance Model

As indicated in Section 4.3.2, even though the performance expressions could
not be very intuitive without the deep study of the model, it is enough to un-
derstand the meaning of each parameter in order to correctly identify what
are the entities in the application which embody such parameters. In the
previous section we explained the meaning of each performance parameter;
this is why in this analysis we do not include the Understanding the Perfor-
mance Model step of the methodology. In this section, those parameters will
be interpreted according to the framework under study.

Identifying the variables and values

We need to interpret V (vm and vi), Tc (tci), tl, λ and Nopt, by identifying
the events to be caught and the information associated to them. First of
all we have to identify the variables and values in the application -in this
case in the framework- which conform the information required to evaluate
the performance parameters. We start by analyzing the variables and values
which can be straightforwardly identi�ed. However, as we progress in the
de�nition of the tunlet, new variables to take into account could appear.

• The value of vi can be obtained from the variable numtuples which
indicates (in the sending action of the master process) the number of
tasks sent to the worker i. In addition, we need the variable called
TheWorkUnitBytes -which indicates the size in bytes of each task- to
multiply by the cumulative addition of every numtuples.
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• The value of vm can be obtained from the variable nbytes, used by the
master process to indicate the size of the answer received from each
worker.

• cti has to be calculated for each worker according to the instants in
which the worker starts and �nishes the computing phase. In this case,
we do not need any variable or value from the framework, due to we
only need to know some timestamps.

• tl is considered as �xed (tl = 1000ms)

• λ has to be calculated as the division between the communication time
of the iteration and the volume of data interchanged with a worker.
The way to obtain the volumes of data was explained above. The
question is: how to calculate the communication time of an iteration?
Such time can be calculated by capturing:

� the instant of the last receive (lr) of the master

� the instant of the �rst send (fs) of the master

� the computing time (i.e. tci) of the worker which send the results
at last .

Then, the communication time can be calculated as (lr − fs) − tci.
Observe that in this case we do not need to extract information from
variables, due to λ depend on some timestamps and tci. However, we
need to identify what is the ��rst� and what is the �last� workers. Then,
we have to consider two new variables:

� workerTID, which is used by the master to know what is the
worker it is sending data to, and

� workerTIDr, used by the master to know what the answering
worker is.

In addition, due to we need tci of the last worker, when capturing tci

we need to know which is such �i�. Thus, we need to consider:

139



� myTID, the variable used by the worker to indicate its tid. Ho-
wever, we can dispense with this variable, due to events have a
default attribute id in order to indicate the process in which was
caught.

• The value of Nopt has to be assigned to the variable in the framework
which controls the number of workers in each iteration. The framework
provides the NOptWorkers variable in order to introduce the changes,
while the variable used through the iteration to control the current
number of workers is nw.

Note that V and Tc do no need any variable value, due to they are
calculated in function of vi and vm, and tci, respectively.

From the general point of view of the application, and in a more deep
analysis, when an event is caught we need to identify what is the current
iteration to associate the information to the correspondent iteration. The
framework uses two variables to indicate the current iteration:

• iteration in the code of the master, and

• CurrentIteration in the code of the worker.

In the Table 5.1 we present the main information related to each involved
variable, which will be used to formalize the abstractions in the correspon-
ding speci�cation:

Identifying the events

The next step consists in to determine how, where and when to capture the
variables and values previously enumerated. Note that the names used to
call the events could be any names; which we use try to be mnemonic. In
general, �M � stands for master and �W � stands for worker. In Table 5.2 we
summarize the main information related to each event.

The MSendsTaskW captures each execution of the sending action and
the number of tasks sent to each worker, while the WRepliesM event collects
the volume of data received by the master each time a worker sends the
results. WStartsTask and WFinishesTask are used to capture the instants
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Variable Type Actor

numtuples int master

TheWorkUnitBytes int master

nbytes int master

NOptWorkers int master

nw int master

workerTID int master

workerTIDr int master

iteration int master

CurrentIteration int worker

Table 5.1: Information about the variables

delimiting the data processing in each worker. In the case of WFinishesTask,
the considered place to be caught is the entry of _W_SendAll method,
due to among the end of _ReceiveEffective and such place, some �nal
computing is executed in the worker process. In addition to the events
necessary to catch the variables and values previously depicted, we have to
de�ne the events which indicate the start and the end of an iteration, in order
to be able of evaluating the performance expression. In the framework, each
iteration is delimited in the code of the master. The loop starts by executing
a function to divide the data and send the tasks, and �nishes with a function
to receive answers and make the �nal treatment of the results. Thus, we can
consider such entry and exit, respectively, in order to catch the iteration.
Note that the attributes associated to each event are visible to the code of
the actor where the event is captured (compare Tables 5.1 and 5.2).

5.1.3 Identifying the Actors

Due to we are working with a Master/Worker framework, there are clearly
two kinds of processes: master and worker. Due to for each one of them we
need collect some speci�c information (for the workers we need the compu-
ting time and for the master we need the volume of data and communication
time) we will need to instrument each kind of process in a di�erent manner.
Then, we have two di�erent actors, and for each one of them we need to
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Event Attributes Actor Method P lace

MSendsTaskW
numtuples

master _DMM_SendTask exit
workerTID

WRepliesM
nbytes

master _DMM_ReceiveE�ective exit
workerTIDr

WStartsTask
timestamp

worker _W_DoWorks entry
id

WFinishesTask timestamp worker _W_SendAll entry

IterationStarts

iteration

master _M_SendIteration entryTheWorkUnitBytes

nw

IterationFinishes iteration master _M_ReceiveIteration exit

Table 5.2: Information about the events

identify some information:

Master

• id: master

• min:1

• max: 1

• class: _CMaster, _MyMaster

• executable �le: /home/paola/pvm3/bin/LINUX/master

• completion condition: the event �IterationFinishes� happened

• attributes: the instants of the �rst send (fs) and the last receive (lr),
and the worker who answered at last (i.e. the value of tid of the worker
registered in lr).

Worker

• id: worker
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• min:1

• max: 28

• class: _CWorker, _MyWorker

• executable �le: /home/paola/pvm3/bin/LINUX/worker

• completion condition: the processing of data has been �nished.

• attributes: the instants in which the computing starts and when �n-
ishes, to calculate the computing time (tci); the volume of data received
(vi) and sent (vm) and the instants in which where received and sent.
Strictly, those two instants are the instant in which the master sends a
task to workeri and when receives the answer. However, even though
they are instants caught in the master process, due to the information
is closer to the workers, it is stored in the worker structures. In other
case, the master should include an array to store the times correspon-
ding to each worker.

5.1.4 Tunlet Speci�cation

In the previous sections, we de�ned the main abstractions involved in the
de�nition of the tunlet. In this section, we present how to formalize such
abstractions. We will explain the main aspects to consider and provide some
examples on how to formalize each kind of entity. The complete speci�cation
can be consulted in Appendix B.

Measure points

VARIABLES AND VALUES
The variables and values able to be �manipulated�, both to obtain their

values and/or change it, have to be declared in this section of the speci�ca-
tion. As can be appreciated in Appendix B, for each variable we formalize
the information provided in the previous sections, and we provide some ad-
ditional properties associated to each variable. As an example, consider the
numtuples variable:
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variable
id: numtuples
comment:/*the amount of tuples sent to a worker*/
source: asVarValue
type: int
actorId: master

endvariable

On the one hand, in addition to the information predetermined (i.e. the
name, the type and the actor), in the comment property we provide a brief
description of the semantic of the variable in the framework. This description
could be useful in future uses of the tunlet. On the other hand, we include
the source property which indicates the nature of the entity, in this case
indicated by asVarValue, due to numtuples is a variable. Remind what
mentioned in Chapter 4: this property could take some value among the
following ones:

{asFuncParamValue, asVarValue, asFuncReturnValue,
asConstValue, asFuncParamPointerValue}

EVENTS
In this section we formalize the description of the events. Consider as an

example the MSendsTaskW event:

event
id: MSendsTaskW
actorId: master
controliter: no
utility: always
method:_DMM_SendTask
class:_CDtaMngM
place: exit

ATTRS:
id:workerTID
id:numtuples

endevent
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We included some additional properties to the presented in Table 5.2,
such as:

• class, which in combination with the method property is used to locate
the function required. If the application is not following an object
oriented paradigm, this property takes the value none.

• controliter, used to indicate if the event is controlling the start or the
end of an iteration, or if the reception of this event triggers the evalu-
ation of the performance model. Then, the possible values are begin,
end and eval respectively. In other case, the value is no, such as in
the example, due to the sending of a mesage does not mean the start
or end of an iteration nor the need for evaluating the performance
model, because the processing and receiving information remains to be
collected.

• utility is a property used to indicate if the event is used along all the
execution or if it is an event to add or remove in case it is necessary.
Then, the possible values for this property are always, addable and
removable respectively. In this example, the event has to be caught in
every iteration.

The attributes associated to the event are enumerated after the ATTRS
word.

ACTORS
In this section, the actors of the programming model are depicted. Con-

sider the master:

actor
id: master
min: 1
max: 1
completion: /#master.comp==1#/
class:_CMaster, _MyMaster
exe: /home/paola/pvm3/bin/LINUX/master
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ATTRS:
id:firstSend
comment:/*timestamp of the first send*/
type: double
inic:/#firstSend=0.0;#/
depinic:none
value:/# if( (MSendsTaskW.timestamp <

master[MSendsTaskW.id].firstSend) ||
(master[MSendsTaskW.id].firstSend==0.0)

)
{

master[MSendsTaskW.id].firstSend=
MSendsTaskW.timestamp;

}
#/

cum:false
dependency: MSendsTaskW

...

endactor

In this case, we mainly formalized each property. For this example we
present just one attribute even though this actor has several of them. The
attributes of actors allow for storing the information related to each actor
until all the required information is available to evaluate or update the per-
formance parameters. Some of the properties of such attributes are the same
as for variables and values (i.e. name, type and comment); the additional
ones are the following:

• inic, used to determine the initial value of the attribute.

• value, indicates how to determine the value of the attribute. From the
example, remind each event has three default attributes: timestamp, id
and task, indicating the instant, the process id and the task in which
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the event was caught. In addition, remember that the data associated
to each actor is accessed using iterators and selectors, such as in every
data structure.

• dependency, which indicates when the attribute can be updated, i.e, if
it depends on the value of other entities. In the example, �rstSend can
be calculated when the MSendsTaskW event is received.

• depinic indicates the dependences of inic property. In this case, due
to �rstSend in initialized in 0.0 it has none dependency.

ITERATION INFORMATION
In Section 5.1.2 we identi�ed as necessary the variables iteration and

CurrentIteration in order to associate the information to the correspondig
iteration data structure. In the speci�cation, we included several attributes
in order to store information inherent in each iteration. In the case of Starte-
dIteration takes the value carried by IterationStarts.iteration. In the case of
tuplesize, we need to know the size of each task in order to calculate the
performance parameter V . Finally, iterCommTime takes the value from
(fs − lr) − cti , which is used to calculate the value of λ. We de�ne each
attribute of this section with the same description as the attributes of actors.

MODEL PARAMETERS
Each entity declared in this section is described with the same properties

as the attributes of actors. Consider for example vm:

id:vm
comment:/*answers volume*/
type: int
inic:/#vm=0;#/
depinic:none
value:/# vm=0;

for(int i=0;i<n;i++)
{
vm+=worker[i].replysize;
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}
#/

cum:true
dependency: none

In this case, the value of vm is calculated as the addition of the replysize
property of each worker. replysize takes its value from WRepliesM.nbytes.
In the particular case of model parameters, we specify a dependency just
when a parameter is depending on another one. But we do not consider
external dependences (this is dependences on events) due to we assume the
performance parameters are evaluated when every event of the iteration was
received and processed.

Performance Functions

In this performance model we have just one performance function. Then,
we just implemented the function using the library functions available for
C/C++. In this case, we use math.h.

Tuning Points

NOptWorkers is the variable whose value has to change in order to tune the
number of workers used to process the data. We de�ne the tuning point as
follows:

point
id: NOptWorkers
value:/#pf();#/
kind: SetVariableValue
syncfunction=0
syncplace=0
cond:/#NOptWorkers > iter.GetNum_worker()+2 ||

NOptWorkers < iter.GetNum_worker()-2
#/

endpoint
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The information associated to the NOptWorkers variable is included in
the MEASURE POINTS section. Here, it acts as a reference. The syncfunc-
tion and syncplace properties are used to indicate, if needed, where should
be introduced a breakpoint in order to tune the variable and avoid inconsis-
tencies. In this example, there is needed no breakpoint, due to the value of
NOptWorkers is considered only at the beginning of each iteration, then we
declare the values as 0. The cond property indicates when the tuning has
to be applied. In this case, we considered that the number of workers has
to changed when the di�erence among the current amount and the optimal
is bigger than 2. The value of NOptWorkers is calculated using the perfor-
mance function pf(). The kind of tuning action to perform is indicated in
the kind property.

5.1.5 Generated Tunlet

The automatically generated tunlet implements the logic provided by the
performance model according to the application. In particular, due to the
Analysis phase has a previous stage of collection and preprocessing of the
data in the Collector-Preprocessor machines, the evaluation (i.e. the calcu-
lations to update the value) of each actor attribute, iteration attribute or
performance parameter is made as follows:

• Collector-Preprocessor: Collects the events related to the workers
(WStartsTask and WFinishesTask), and the attributes of such events
are stored in the corresponding worker structures. When every worker
�nished the iteration, the Collector-Preprocessor performs the �nal
calculations involving the local data. In this case, calculates the partial
Tc by adding every tci (at the same time, tci is calculated in function
of the instants in which the computing started and �nished). Then, the
partial Tc and every tci are sent to the Analyzer, in order to complete
the missing information necessary to evaluate the performance model.

• Global Analyzer: Collects the events caught in the master process
code (MSendsTaskW, WRepliesM, IterationStarts, IterationFinishes).
The attributes associated to each event are stored. Concurrently, the
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Analyzer receives from Collector-Preprocessor the summary of the col-
lected information and reclassi�es it. In particular, the partial Tcs are
accumulated in the global Tc and each tci is stored as corresponds.
Thus, the Analyzer can obtain the computing time (tci) corresponding
to the worker which answered at last, needed to calculate λ. Once
every performance parameter has been evaluated or updated, the per-
formance model can be evaluated.

5.1.6 Experiments

In this section we want to validate the usefulness of the tunlet automati-
cally generated. We compare the execution time of the application when
executed under the automatically generated tunlet and when executed by
itself in di�erent �xed number of workers (1, 2, 4, 8, 16, 25). To conduct the
experiments, we selected a 2D N-Body created by using the Master/Worker
framework [36]. Experiments were conducted on a homogeneous cluster with
the following con�guration:

• Processor PENTIUM IV 3.0 Ghz (Fedora Core 4)

• 1 GB DDR-SDRAM 400 Mhz

• Ethernet card Broadcom NetXtreme Gigabit

We created certain load patterns, so that we can introduce and modify
certain external load to simulate the system's timesharing. Each experiment
was performed many times and the average of the execution time for the
application was calculated. Results are shown in Table 5.3 and Figure 5.1.

Number workers 1 2 4 8 16 25

Execution Time 13,37 7,42 4,06 2,18 2,58 3,34

NBody + MATE Starting with 1 worker and then tuning

Execution Time 1,42

Table 5.3: Execution time of NBody considering di�erent �xed numbers or workers and NBody
under MATE (in minutes)
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Figure 5.1: Execution times of NBody when considering the number of workers

As shows the table and the �gure, when the application is executed under
MATE it obtains the best execution time. In the cases in which the number of
workers is �xed, the execution time is a�ected or degraded by the overload of
the workers or by the communication time. The �rst reason can be observed
when 1, 2 or 4 workers where used. The second reason can be observed in the
case of 16 and 25 workers. If we consider the best execution time obtained
with a �xed number of workers, i.e. when the application was executed
with 8 workers, we can observe that MATE allows for reducing the total
execution time about 30 per cent. In addition, the advantage of using MATE,
is that the dedicated resources to the application are determined in each
instant according to the current conditions of the system. In consequence,
the resources are used just when they are necessary.

5.2 Load Balancing

Imbalance in parallel systems could be caused by heterogeneity of proces-
sors, operating system interference or irregularity of the tasks assigned to a
processor. In general, the load balancing techniques try to compensate the
load imbalances by assigning more work to processors that �nish earlier their
work. Factoring is a load balancing strategy which divides the total work in
batches. Each batch has as many chunks as processors are executing, every
chunk containing the same amount of tasks.
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5.2.1 Providing a Performance Model

As in the previous example, the model provided to develop the tunlet is a
pre-existing performance model. We present the general aspects of it, but
additional details can be obtained from [15].

Terminology

The terms involved in the performance model are the following:

• iteration = an iteration of the application, in which a data set has to
be processed.

• N = number of tasks to be processed in an iteration

• batch = each one of the parts in which N is divided to implement the
factoring algorithm. Each batch constitutes a subset of tasks.

• subiteration = the processing of a batch of tasks

• xi = portion of tasks to be processed in the subiteration i

• Fi = amount of tasks assigned to each chunk of subiteration i

• Ri = remaining amount of tasks (for next subiterations) when subit-
eration i is been executed.

• C = task processing time (ms/task)

• µ(C) = mean of task processing time

• σ(C) = standard deviation of task processing time

• P = number of workers

Performance Functions

The following expression indicates how to calculate the amount of tasks to
be assigned in the subiteration to obtain the best performance, according to
the current conditions of the system:
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Fi =





N
xiP

, if i = 0

Ri
xiP

, otherwise

The di�erences between both de�nitions reside in the fact that in the
�rst subiteration (when i = 0) the workers are synchronized, waiting for
data to be processed, whilst in the remaining subiterations the availability
of the workers depends on the speed the previous batch was processed with.
For more details, consult [15].

Performance Parameters

In order to calculate the value of Fi the following magnitudes have to be
considered as indicated:

• C (task processing time) necessary to calculate µ(C) and σ(C). Has
to be measured in every iteration.

• µ(C) necessary to calculate Fi

• λ(C) necessary to calculate Fi

• The successive xi of an iteration have to be calculated at the start of
the iteration in order to establish the size of the relating Fi. It should
be calculated as follows:

xi =





µ(C)+σ(C)
q

P
2

µ(C) , if i = 0

2µ(C)+σ(C)
q

P
2

µ(C) , otherwise

• P has to be measured when the application starts, and should be pe-
riodically updated in case the number of workers could change along
the execution. In our case, we consider P as �xed.
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5.2.2 Interpreting the Performance Model

Such as in use case 5.1, the performance model was explained in the previous
section, then in this one we de�ne the abstractions involved in the de�nition
of the tunlet.

Identifying the variables and values

For this model, we need to interpret N , xi, Fi, Ri, C and P . Then, we will
identify the variables and values in the application -the framework- which
embody the parameters.

• C has to be calculated as the average of the computing time wasted by a
worker to process each one of the received tasks. In order to reduce the
amount of events, in place of capturing the time wasted on executing
each separate task, we can calculate C = average(tci/NroTasks),
where:

� tci represents the computing time of the worker i through the
iteration, which can be calculated by catching the instants in
which the worker starts and �nishes the computing phase, as in
previous use case. However, in this case the computing time is
the addition of every batch computing time (in the previous use
case, each worker processed only one -bigger- batch along each
iteration).

� NroTasks is a variable in the worker process which indicates how
many task have been received.

� TheNumTuples and TheWorkUnitBytes are variables in the
master process which indicates the total amount of tasks of the
iteration and the size of each task in bytes, respectively. In com-
bination, these variables allows for determining N and initialize
Ri.

As in the previous use case, there are two variables necessary in order
to identify the worker which is receiving or sending the data:
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� workerTID, which is used by the master to know what is the
worker it is sending data to, and

� workerTIDr, which is used by the master to know what is the
worker which is answering.

• The value of Fi has to be assigned to the variable in the framework
which controls the size of the chunk. The framework provides the
globalSizeChunk variable in order to introduce the changes.

• The value of P can be obtained from the nw variable, used by the
master process to control the amount of workers along the iteration.

Note that µ(C), σ(C), xi and Fi do not need any variable value, due to
they are calculated in function of the other parameters.

Variable Type Actor

NroTasks int worker

TheWorkUnitBytes int master

TheNumTuples int master

nw int master

globalSizeChunk int master

workerTID int master

workerTIDr int master

iteration int master

CurrentIteration int worker

Table 5.4: Information about the variables

As in the previous use case, from the general point of view of the appli-
cation, when an event is received we need to identify what is the iteration it
belongs to in order to associate the information to the correspondent itera-
tion. As mentioned before, we can use the variables used by the framework
to indicate the current iteration:

• iteration in the code of the master, and

• CurrentIteration in the code of the worker.
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In the Table 5.4 we present the main information related to each involved
variable, which will be used to formalize the abstractions in the correspon-
ding speci�cation:

Identifying the events

The next step consists in to determine how, where and when to capture
the variables and values previously enumerated. For familiarity, we used the
same names as in the previous use case. In Table 5.5 we summarize the main
information related to each event.

Event Attributes Actor Method P lace

MSendsTaskW workerTID master _DMM_SendTask exit

WRepliesM workerTIDr master _DMM_ReceiveE�ective exit

WStartsTask

timestamp

worker _W_DoWorks entryCurrentIteration

NroTasks

WFinishesTask
timestamp

worker _W_SendAll entry
CurrentIteration

IterationStarts

iteration

master _M_SendIteration entry
TheWorkUnitBytes

TheNumTuples

nw

IterationFinishes iteration master _M_ReceiveIteration exit

Table 5.5: Information about the events

As in the previous use case, we de�ne IterationStarts and IterationFin-
ishes, due to are necessary to indicate the start and the end of an iteration,
in order to be able of evaluating the performance expression. In general, the
information collected to complete the performance parameters of the model
is very similar to the information collected to the model presented in the
previous use case. The di�erence resides in the manner in which the in-
formation is interpreted and used. A particular di�erence is the use of the
NroTasks variable. The model under consideration requires the calculation
of the average task processing time, whilst in the previous use case we worked
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at volume of data (in bytes) level.

5.2.3 Identifying the Actors

The underlying programming model has two actors: master and worker.
Then, we de�ne both actors and their attributes:

Master

• id: master

• min: 1

• max: 1

• class: _CMaster, _MyMaster

• executable �le: /home/paola/pvm3/bin/LINUX/master

• completion condition: the event �IterationFinishes� happened

• attributes: none

Worker

• id: worker

• min:1

• max: 25

• class: _CWorker, _MyWorker

• executable �le: /home/paola/pvm3/bin/LINUX/worker

• completion condition: the processing of data has been �nished.

• attributes: the instants in which the computing starts and when �n-
ishes to calculate the computing time (tci), the amount of tasks re-
ceived, C (the average task processing time).
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5.2.4 Tunlet Speci�cation

In the previous sections, we de�ned the main abstractions involved in the
de�nition of the tunlet. Due to we explained the general formalization of
such abstractions in the previous use case, in this section we present an
example of the usage of an auxiliary performance parameter, used to make
possible the precalculation (at CPs level) of some cumulative operation. The
complete formalized speci�cation can be consulted in Appendix C.

Consider µ(C) (the mean of task processing time). It can be calculated
as follows:

µ(C) =
∑

Ci

P

where Ci represents the task processing time of worker i, 0 ≤ i ≤ P .
Therefore, in order to calculate the value of µ(C), have to be obtained or
calculated in advance the values of P and every Ci. If we now consider how
the information about the application behaviour is collected according to the
previous analysis and the formalized speci�cation (Appendix C), we �nd the
following:

• P is obtained from IterationStarts.nw, which is captured in the master
process.

• Each Ci is calculated as tci/numTaskRecv, where at the same time
tci is calculated according to the WFinishesTask.timestamp event and
the WStartsTask.timestamp event and numTaskRecv is obtained from
WStartsTask.NroTasks. Obviously, both tci and numTaskRecv are
obtained from the worker process (see Section 5.2.2 and Table 5.5 for
clari�cation).

According to the current implementation of distributed-hierarchical An-
alyzer and given that P and Ci are obtained in di�erent actors, they are
managed at di�erent levels: CPs collect the incoming events from workers
and Global Analyzer collects the incoming events from Master.

If we specify µ(C) as:
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id:MC
comment: /*mean of C*/
type:double
inic: /#MC=0.0;#/
depinic:none
value: /#for(int i=0;i<n;i++)

{MC+=worker[i].C;}
MC=MC/N #/

cum:true
dependency:none

even though we declare that the calculus of the value of MC includes
a cumulative operation (cum:true), the operation cannot be dismembered
given that the Tunlet Generator operates as follows:

• The Tunlet Generator interprets cum:true as a possible operation to
be executed by CPs.

• The actors involved in the necessary information are considered.

• If the information depends only on one actor, the value can be cal-
culated at CP level if the actor is the worker, or at Global Analyzer
level if the actor is the master. Such value can be calculated as soon
as every parameter involved in the calculation is available.

• If the information depends on di�erent actors, the calculation of the
value is deferred until Global Analyzer collected all the involved infor-
mation.

In order to take pro�t from the distributed-hierarchical collecting-prepro-
cessing approach, we can declare an auxiliary performance parameter to
allow the CPs for calculating the partial cumulative addition of the local Ci;
in this manner, Global Analyzer does not need every Ci. Then, we specify:

id:Ct
comment: /*partial cumulative addition of Ci*/
type:double
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inic: /#Ct=0;#/
depinic:none
value: /#for(int i=0;i<n;i++)Ct+=worker[i].C;#/
cum:true
dependency:none

id:MC
comment: /*mean of C*/
type:double
inic: /#MC=0;#/
depinic:none
value: /#MC=Ct/N;#/
cum:false
dependency:Ct

In this way, Ct is calculated at CP level, due to the value involves only
workers information. Even though Global Analyzer has to calculate the value
of MC, we are reducing the amount of operations to be executed by the Global
Analyzer and we exempt the CP from send every Ci, which reduces the size
of the message sent to the Global Analyzer.

As explained before, Global Analyzer does not need C to calculate MC
when CP calculates the partial Ct. However, as the translation continues,
the Tunlet Generator detects that σ(C) depends on master and worker.
Unfortunately, in this case the calculation cannot be dismembered given that
µ(C) (MC) has to be determined beforehand. In consequence, every C has to
be sent to the Global Analyzer to calculate σ(C). However, the reduction of
the amount of operations done by the Global Analyzer (commented in the
previous paragraph) is still valid.

5.2.5 Generated Tunlet

The logic provided by the performance model studied in the previous analysis
was automatically transformed in a tunlet. The functioning of each stage of
Analysis phase was determined as follows:

• Collector-Preprocessor: Collects the events related to the workers
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(WStartsTask and WFinishesTask), and stores the information car-
ried by them in the corresponding worker data structure. When every
worker �nished the iteration, the Collector-Preprocessor performs the
�nal calculations involving the local data. In this case, calculates C

for each worker as the division between tci and numTasksRecv, where
tci is calculated in function of the instants in which the computing
started and �nished and numTasksRecv takes its value from WStart-
sTask.NroTasks. In addition, each CP calculates the partial Ct (used
to calculate µ(C), see Appendix C) by adding every C. Then, every
C and the partial cumulative addition Ct are sent to the Analyzer, in
order to complete the missing information necessary to evaluate the
performance model.

• Global Analyzer: Collects the events caught in the master process
code (MSendsTaskW, WRepliesM, IterationStarts, IterationFinishes).
The attributes associated to each event are stored. Concurrently, the
Analyzer receives from Collector-Preprocessors the average task com-
puting time C of each worker, and the partial cumulative addition
of them (the partial Ct) of the workers, which is accumulated in the
global Ct. Thus, the Analyzer can obtain calculate the the average task
computing time and the standard deviation. Once every performance
parameter has been evaluated or updated, the performance model can
be evaluated.

5.2.6 Experiments

To conduct the experiments, we used the same 2D N-Body application and
the same platform as in the previous use case. In this section we compare
the execution time of the application in three di�erent scenarios:

• the application was executed by itself in di�erent �xed number of work-
ers (1, 2, 4, 8, 16, 25) in a dedicated environment (i.e. without any
additional external load)

• the application was executed in a non-dedicated environment. In this
case we injected a controlled variable load.
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• the application was executed under the automatically generated tunlet

Each experiment was performed many times and the average of the ex-
ecution time for the application was calculated. Results are shown in Table
5.6 and Figure 5.2.

Number workers 1 2 4 8 16 25

N-Body 10,14 5,46 3,38 1,48 2,31 2,37

N-Body + variable load 13,37 7,42 4,06 2,18 2,58 3,34

N-Body + MATE + variable load - 6,01 3,41 1,51 2,48 2,52

Table 5.6: Execution time of NBody considering di�erent �xed numbers of workers with and
without extra load, and NBody under MATE (in minutes)
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Figure 5.2: Execution times of NBody when considering load balancing

As shows the table and the �gure, the execution time of the application
increases when the external controlled load is injected. However, the imbal-
ance is in general corrected when the application is executed under MATE,
due to MATE detects the changes in the conditions of the system and adapts
the factors used to distribute the work.
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Chapter 6

Conclusions

�¾Qué se puede hacer en ochenta años? Probablemente, empezar a darse
cuenta de cómo habría que vivir y cuáles son las tres o cuatro cosas que
valen la pena. Un programa honesto requiere ochocientos años. Los primeros
cien serían dedicados a los juegos propios de la edad, dirigidos por ayos de
quinientos años; a los cuatrocientos años, terminada la educación superior,
se podría hacer algo de provecho; el casamiento no debería hacerse antes de
los quinientos; los últimos cien años de vida podrían dedicarse a la sabiduría.
Y al cabo de los ochocientos años quizá se empezase a saber cómo habría
que vivir y cuáles son las tres o cuatro cosas que valen la pena. Un programa
honesto requiere ocho mil años. Etcétera. �

Uno y el Universo, Ernesto Sábato

THIS chapter presents the conclusions and results obtained from our
work. The chapter also describes the possible open lines that can be

undertaken in the future in order to continue the research on dynamic and
automatic tuning of parallel applications.

6.1 Conclusions

In this work we have treated an important aspect of high performance com-
puting: the tuning process of parallel applications.

The main purpose of existing works in the �eld is to provide means to
detect and solve performance problems. Each tool provides support for some
or every step in the tuning process. However, each one obeys to a particular
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approach and has a particular philosophy. In Chapter 1 we discussed the ap-
plicability and constraints of them. In particular, in this work we have been
focussed in MATE (Monitoring, Analysis and Tuning Environment) which
provides dynamic and automatic tuning of parallel applications. This envi-
ronment was described in Chapter 2. Part of the description, development
and results of can be found in:

MATE: Monitoring, Analysis and Tuning Environment for
Parallel/Distributed Applications. A. Morajko, P. Caymes-Scutari,
T. Margalef, E. Luque. Concurrency and Computation: Practice
and Experience. 2005. Accepted.

Automatic Tuning of Data Distribution Using Factoring in
Master/Worker Applications. A. Morajko, P. Caymes, T. Mar-
galef, E. Luque. 5th Internacional Conference in Computational
Science (ICCS2005). Part III (LNCS 3515), p. 132-139. 22-25
May 2005. Atlanta, GA, United States.

In this work we have proposed and developed two di�erent extensions
of MATE in order to expand, improve and facilitate its usability. On the
one hand we worked on the scalability of MATE and on the other hand we
worked in making MATE transparent for the users.

With regard to the scalability of MATE, we proposed a novel approach to
execute the analysis process: the Distributed-Hierarchical Collecting-Prepro-
cessing Approach. Until now, MATE has been executing the analysis phase
in a centralized manner, which turned in a bottleneck as the number of
machines (and events) in the application was in increase. We studied the
di�erent possibilities or approaches to overcome such a problem. Both dis-
tributed and hierarchical approaches present constraints to be applied, due
to they require to introduce modi�cations in the application or/and in the
performance model. This would entail additional work for the user, who
would be responsible for adapting the performance model or the application.
These actions sometimes could provoke inconsistencies, specially when we
are talking about non expert users. Then, on the one hand we proposed
to distribute what can be distributed independently from the performance
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model and from the application: the collection of events; on the other hand
we proposed decentralize the processing of the information carried by the
events, then we proposed to de�ne a hierarchy over the calculations which
can be dismembered, such as cumulative or comparative operations.

We developed and coded a �rst version of this new approach in analy-
sis process. We have a set of collector-preprocessors (CPs) and a Global
Analyzer. Each CP executes in an independent machine and is responsible
for collecting the incoming events from a predetermined set of machines.
The information associated to the events is preprocessed and when all the
information of an iteration is completed, the CP condenses the information
needed by Global Analyzer and send it. Global Analyzer executes in another
independent machine; it receives a small portion of events and the data sent
by the CPs. Thus, the Global analyzer is responsible for evaluating the
performance model and requiring for tuning actions.

We showed the distributed-hierarchical collecting-preprocessing approach
allows for overcoming the bottlenecks presented by the full centralized ap-
proach. We improved the synchronization of the analysis process with the
execution of the application in several manners: �rst of all, due to the Global
Analyzer is receiving just a part of the total volume of events, we augment the
probability of detecting and processing each event as soon as received. Par-
ticularly interesting is the detection of the start and the end of an iteration,
owing to them indicates all the information belonging to such an iteration
has been already caught, and the Global Analyzer will be able of evaluating
the performance model as soon as every CP sends the preprocessed infor-
mation. That is precisely the second improvement: the experiments showed
that the Global Analyzer has a minimal delay to start the updating or cal-
culation of performance parameters and the evaluation of the performance
model, due to it has all the preprocessed information available when the end
of the iteration is reached and detected. Another reduction of time is in
the updating/calculation of performance parameters, due to a part of the
calculations has been done in CPs. However, this reduction is proportional
to the volume of calculations dependent on preprocessed data.

Relating to making MATE transparent to the user, we proposed and de-
veloped a methodology to automatically generate tunlets from speci�cations.
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Until now, if users wanted to use MATE to tune their applications, they had
to program the corresponding tunlet considering the requirements and imple-
mentation details of MATE or they had to develop their applications using
the Master/Worker Framework associated to MATE and tune the number
of workers. The details and results of the developments to constitute the
development and tuning environment (framework + MATE) can be found
in:

Development and Tuning Framework of Master/Worker Ap-
plications. A. Morajko, E. César, P. Caymes-Scutari, J. Mesa,
G. Costa, T.Margalef, J. Sorribes, E.Luque. Journal of Com-
puter Science & Technology (JCS&T) - October 2005. Invited
Paper. Vol. 5 N. 3. P. 115-112. ISSN:1666-6038. October 2005.
Argentina.

Entorno de Desarrollo y Sintonización de Aplicaciones Mas-
ter/Worker. P. Caymes-Scutari, A. Morajko, E. César, J. Mesa,
G. Costa, T.Margalef, J. Sorribes, E.Luque. IX Congreso Ar-
gentino de Ciencias de la Computación CACIC 2005. Electronic
Proceedings of the conference. 17/10/05 - 21/10/05. Concordia,
Argentina.

Automatic Tuning of Master/Worker Applications. A. Mora-
jko, E. César, P. Caymes-Scutari, T. Margalef, J. Sorribes, E.
Luque. Euro-Par 2005 Parallel Processing: 11th International
Euro-Par Conference. LNCS 3648, p. 95-103. 30/08/05 - 02/09/05

Lisboa, Portugal.

In addition, such developments where presented in some workshops:

Development and Tuning Environment of Master/Worker ap-
plications. P. Caymes-Scutari, A. Morajko, G. Costa, E. César,
T.Margalef, J. Sorribes, E.Luque. Automatic Performance Analy-
sis. Dagstuhl Seminar N 05501. Schloss Dagstuhl - International
Conference and Research Center for Computer Science. 12-16
December 2005. Dagstuhl, Germany.
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Dynamic tuning of Master/Worker applications. P. Caymes
Scutari, A. Morajko, T. Margalef, E. Cesar, J. Sorribes, E. Luque.
Paradyn/Condor Week 2005. 14-18 March 2005. Madison (Wis-
consin), United States.

However, that has been a very restrictive con�guration, because on the
one hand it forced the users to develop their applications using the frame-
work, or on the other hand the users were deeply involved in the complexity
of MATE when de�ning a tunlet, rather than in their applications and the
performance problems, when developed the applications using another tools.

In this work, we proposed a methodology to specify tunlets by considering
the programming model followed by the application and the performance
problem. Thus, users have to think in the application and the performance
model as MATE does. A set of abstractions have to be de�ned, such as the
actors in the application (i.e. the di�erent kinds of processes co-executing in
the application), the events and information to be collected, the performance
parameters and the tuning points. For each entity the user has to provide
some information such as data type, location, name, etc. These abstractions
will be formalized to constitute a speci�cation.

We studied the viability of automating the creation of tunlets and the
requirements to achieve such purpose. Then, we designed a Tunlet Speci�ca-
tion Language to formalize the abstractions de�ned by the user, and in addi-
tion we developed and coded a translator to transform a given speci�cation
into a tunlet. Such developments were made considering the requirements of
MATE, i.e. the API the tunlets have to follow to works in MATE. The trans-
lator includes the automation to generate the code corresponding to CPs and
Global Analyzer. A summary of the methodology and the language can be
found in:

Automatic generation of dynamic tuning techniques. P. Cay-
mes-Scutari, A. Morajko, T.Margalef, E.Luque. Euro-Par 2007.
28-31 August 2007. Laboratorio IRISA, Rennes, France. Ac-
cepted.

Generación Automática de Técnicas de Sintonización Diná-
mica. P. Caymes-Scutari, A. Morajko, T.Margalef, J. Sorribes,
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E.Luque. XVII Jornadas de Paralelismo-Albacete 2006. Pro-
ceedings of the XVII Jornadas de Paralelismo, p. 383-388. Uni-
versidad de Castilla-La Mancha, ISBN:84-690-0551-0. 18/09/06
- 20/09/06. Albacete, Spain.

In addition, this work was presented in the Paradyn-Condor Week 2007:

Automatic performance tuning: automatic development of
tunlets. P. Caymes Scutari, A. Morajko, T.Margalef, E.Luque.
Paradyn/Condor Week 2007. University of Wisconsin. Madison
(Wisconsin), United States. 30/04/07 - 03/05/07.

In order to validate the usability of such language, in Chapter 5 we
provided two examples of usage, to tune the number of workers and/or the
load balance in Master/Worker applications. In addition, these two use cases
provide MATE with the logic to automatically tune those problems when
the application under consideration was developed using the Master/Worker
Framework. In other cases, the tunlets speci�cations can be re-used to de�ne
the speci�cation corresponding to another particular application.

The development of this methodology constitutes a very promising means
to extend the use of MATE, due to the users can specify di�erent performance
problems for di�erent applications. They will not be restricted to tunlets
provided a priori by MATE nor involved in the implementing details of
MATE.

Both scalability and transparency of MATE are qualities necessary to
make MATE a more useful and user-friendly tool. The proposals and devel-
opments presented in this work attempt to provide MATE with such charac-
teristics. Experiments showed the viability of the proposals. Even though
several improvements remain to extend and improve MATE, we established
the basis to scale the analysis process and provide the users the possibility
of using MATE in the tuning process of their parallel applications.

6.2 Open Lines

During the development of this thesis, we discovered a lot of topics that can
be the goal of future work. Some of these open lines have a direct connection
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with our work, and others are related to more general topics. In the following
paragraphs we highlight some possible lines to continue the work.

As mentioned before, in this work we established a new approach to
execute the analysis phase in MATE. The distributed-hierarchical collecting-
preprocessing approach provides MATE with scalability properties when the
size of the application increases. However, the initial proposal and imple-
mentation could be improved in several manners. As mentioned in Chapter
3, in our prototype we decided beforehand the number of CPs according
to the necessities of the application. However, in the future this approach
should be applied in a more general way, then we have to provide MATE with
knowledge to decide how many CPs are needed according to the current con-
ditions of the system. Thus, a performance model to decide the number of
CPs should be de�ned. Such a performance model, should take into consider-
ation the trade o� between the bene�ts obtained and the resources involved
in the analysis process. In addition, the hierarchical levels at collecting-
preprocessing stage should be de�ned when the amount of events to manage
in the system is such that the Global Analyzer turns in a bottleneck such as
in full centralized approach.

With respect to the methodology to specify tunlets, in this work we
provided a tunlet speci�cation language and a translator to automatically
generate the tunlets. Even though the translator works over XML speci�ca-
tions, we provided the users with a previous stage in which they can de�ne
the speci�cation by following the syntax of the language to specify the tunlet.
This exempts the users from being worried about XML labels and syntax.
In addition, we could add a more abstract stage in order to increase the
user-friendliness of the tunlets speci�er.

If we consider more general aspects of MATE to be extended or improved,
we can mention the co-execution of tunlets. Until now, MATE just supports
the execution of a simple tunlet. Thus, only one performance problem can be
solved when an application is executing. Even though it would be very useful
the overcoming of several performance problems along the same execution, it
is not a trivial nor straightforwardly applicable approach due to the decisions
made by a tunlet could be opposite or inconsistent with the decisions made
by another tunlet. Then, the study of super-performance models and its

169



automation should be studied in order to increase the power of MATE. At
the same time, it would allow the use of the tunlet to auto-tune the number
of CPs.

Another aspect to consider is the augment in the variety of program-
ming models which could use MATE. The current implementation of MATE
is oriented to Master/Worker applications, but it would be interesting ex-
tend its usability to another programming models, such as Pipeline, Di-
vide&Conquer, etc. Furthermore, once MATE is adapted to work with other
programming models than Master/Worker, it should be useful associate to
MATE some frameworks or skeletons to develop applications following such
models, and in such ways provide a set of prede�ned tunlets over the frame-
works, ready to be used, such as we did in this work, providing two tunlets
to the Master/Worker Framework.

Finally, a bigger usability of MATE could be reached when all the im-
plementation of MATE is adapted to work with mpi applications too. The
initial implementation of MATE is de�ned using pvm to take advantages, for
example, from tasker and hoster services. Currently, some parts of MATE
are available to mpi applications, but other parts are remaining to provide
the complete tuning tool.

Parallel computing is as useful as well as complex �eld. Due to the con-
stant evolution of this computing area, tools have to evolve in consequence in
order to help and simplify the users' task and take the major pro�t possible
of capacities o�ered by parallelism. In particular, it is necessary to tackle
the problem of performance tuning from many di�erent ways. We trust our
work is an important contribution from automatic and dynamic tuning to
overcome some problems. We hope investigation continues on this area, then
we will be able to see in an immediate future the results of such advances.
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Appendix A

Tunlet Speci�cation Language:
Syntax Directed De�nition

IN Chapter 4 we de�ned a language to specify tunlets. The idea of such a
language is to make MATE transparent to the users in order to facilitate

the inclusion of knowledge about performance problems. For legibility and
space reasons, in Section 4.5.5 we just presented the starting production with
its associated semantic rule. In this appendix, we present the whole syntax
directed de�nition. Note that we present the semantic rules following the
right part of each production, rather than in a table as proposed in [1].

In order to de�ne the semantic rules for every production, we transformed
slightly the grammar presented in Section 4.5.4, by elaborating on the closure
of some productions (such as Ev or Ac in which we implemented the �+� as
LDEV and LDAC, respectively). Thus, several new productions representing
lists of entities are added in the grammar (LVBLEREF, LVBLE, LDEV, LDAC,
LATTR and LWORD).

In general, the basic non-terminal symbols have only a �v� attribute,
which stores the value associated to such symbol1. These attributes �v� are
used in the upper levels to compose the di�erent attributes of the symbols
(such as IDAC.id or IDAC.min). Finally, non-terminal containing some list of
x elements as attribute, has an attribute xs and an index i used to indicate
the tail of the list. This index is initialized in 0.

1For NUMBER and WORD we assume the �v� attribute, to simplify the de�nition
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Even though we provide the whole syntax-directed de�nition, the most
interesting semantic rule is associated with the start symbol S. This semantic
rule condenses the operation of the translation from the speci�cation to the
tunlet. The remaining rules, in general, allow for obtaining -synthetizing- the
values of the attributes. The procedures used to translate the speci�cation
into a tunlet were explained in Section 4.5.5

S −→ TUNLET Tunlet
MEASURE POINTS Vv Ac Ii Pp
PERFORMANCE FUNCTIONS Fc
TUNING POINTS Tp
ENDTUNLET
{
Translate_and_Solve_Dependences()
Create_Tunlet_Stats()
Create_Tunlet()

}

Tunlet −→ id: WORD {Tunlet.id:=WORD.v
comment: LWORD1 Tunlet.comment:=LWORD1.words
include: LWORD2 Tunlet.include:=LWORD2.words}

Vv −→ LVBLE
{Vv.vbles:=LVBLE.vbles}

Ev −→ EVENTS LDEV
{Ev.events:=LDEV.events}

Ac −→ ACTORS LDAC
{Ac.actors:=LDAC.actors}
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Ii −→ ITERATION INFORMATION LATTR
{Ii.attrs:=LATTR.attrs}

Pp −→ MODEL PARAMETERS LATTR
{Pp.attrs:=LATTR.attrs}

Fc −→ Fc1 DELIMF
{Fc.funcs[Fc.i].def:=DELIMF.def
Fc.i++}

Fc −→ DELIMF
{Fc.funcs[Fc.i].def:=DELIMF.def
Fc.i++}

Tp −→ Tp1 DELIMP
{Tp.points[Tp.i].id:=DELIMP.id
Tp.points[Tp.i].value:=DELIMP.value
Tp.points[Tp.i].kind:=DELIMP.kind
Tp.points[Tp.i].syncfunction:=DELIMP.syncfunction
Tp.points[Tp.i].syncplace:=DELIMP.syncplace
Tp.points[Tp.i].cond:=DELIMP.cond
Tp.points[Tp.i].place:=DELIMP.place
Tp.points[Tp.i].idx:=DELIMP.idx
Tp.points[Tp.i].req:=DELIMP.req
Tp.points[Tp.i].attrs:=DELIMP.attrs
Tp.i++}
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Tp −→ DELIMP
{Tp.points[Tp.i].id:=DELIMP.id
Tp.points[Tp.i].value:=DELIMP.value
Tp.points[Tp.i].kind:=DELIMP.kind
Tp.points[Tp.i].syncfunction:=DELIMP.syncfunction
Tp.points[Tp.i].syncplace:=DELIMP.syncplace
Tp.points[Tp.i].cond:=DELIMP.cond
Tp.points[Tp.i].place:=DELIMP.place
Tp.points[Tp.i].idx:=DELIMP.idx
Tp.points[Tp.i].req:=DELIMP.req
Tp.points[Tp.i].attrs:=DELIMP.attrs
Tp.i++}

LVBLEREF −→ LVBLEREF1 VBLEREF
{LVBLEREF.vblesr[LVBLEREF.i].id:=VBLEREF.id
LVBLEREF.i++}

LVBLEREF −→ VBLEREF
{LVBLEREF.vblesr[LVBLEREF.i].id:=VBLEREF.id
LVBLEREF.i++}

LVBLE −→ LVBLE1 DELIMV
{ LVBLE.vbles[LVBLE.i].id:=DELIMV.id
LVBLE.vbles[LVBLE.i].comment:=DELIMV.comment
LVBLE.vbles[LVBLE.i].source:=DELIMV.source
LVBLE.vbles[LVBLE.i].type:=DELIMV.type
LVBLE.vbles[LVBLE.i].actorId:=DELIMV.actorId
LVBLE.i++ }
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LVBLE −→ DELIMV
{ LVBLE.vbles[LVBLE.i].id:=DELIMV.id
LVBLE.vbles[LVBLE.i].comment:=DELIMV.comment
LVBLE.vbles[LVBLE.i].source:=DELIMV.source
LVBLE.vbles[LVBLE.i].type:=DELIMV.type
LVBLE.vbles[LVBLE.i].actorId:=DELIMV.actorId
LVBLE.i++ }

LDEV −→ LDEV1 DELIMEV
{LDEV.events[LDEV.i].id:=DELIMEV.id
LDEV.events[LDEV.i].actorId:=DELIMEV.actorId
LDEV.events[LDEV.i].controliter:=DELIMEV.controliter
LDEV.events[LDEV.i].utility:=DELIMEV.utility
LDEV.events[LDEV.i].method:=DELIMEV.method
LDEV.events[LDEV.i].class:=DELIMEV.class
LDEV.events[LDEV.i].place:=DELIMEV.place
LDEV.events[LDEV.i].attrs:=DELIMEV.attrs
LDEV.i++}

LDEV −→ DELIMEV
{LDEV.events[LDEV.i].id:=DELIMEV.id
LDEV.events[LDEV.i].actorId:=DELIMEV.actorId
LDEV.events[LDEV.i].controliter:=DELIMEV.controliter
LDEV.events[LDEV.i].utility:=DELIMEV.utility
LDEV.events[LDEV.i].method:=DELIMEV.method
LDEV.events[LDEV.i].class:=DELIMEV.class
LDEV.events[LDEV.i].place:=DELIMEV.place
LDEV.events[LDEV.i].attrs:=DELIMEV.attrs
LDEV.i++}
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LDAC −→ LDAC1 DELIMAC
{LDAC.actors[LDAC.i].id:=DELIMAC.id
LDAC.actors[LDAC.i].min:=DELIMAC.min
LDAC.actors[LDAC.i].max:=DELIMAC.max
LDAC.actors[LDAC.i].completion:=DELIMAC.completion
LDAC.actors[LDAC.i].class:=DELIMAC.class
LDAC.actors[LDAC.i].exe:=DELIMAC.exe
LDAC.actors[LDAC.i].attrs:=DELIMAC.attrs
LDAC.i++}

LDAC −→ DELIMAC
{LDAC.actors[LDAC.i].id:=DELIMAC.id
LDAC.actors[LDAC.i].min:=DELIMAC.min
LDAC.actors[LDAC.i].max:=DELIMAC.max
LDAC.actors[LDAC.i].completion:=DELIMAC.completion
LDAC.actors[LDAC.i].class:=DELIMAC.class
LDAC.actors[LDAC.i].exe:=DELIMAC.exe
LDAC.actors[LDAC.i].attrs:=DELIMAC.attrs
LDAC.i++}

LATTR −→ LATTR1 ATTR
{LATTR.attrs[LATTR.i].id:=ATTR.id
LATTR.attrs[LATTR.i].comment:=ATTR.comment
LATTR.attrs[LATTR.i].type:=ATTR.type
LATTR.attrs[LATTR.i].inic:=ATTR.inic
LATTR.attrs[LATTR.i].depinic:=ATTR.depinic
LATTR.attrs[LATTR.i].value:=ATTR.value
LATTR.attrs[LATTR.i].cum:=ATTR.cum
LATTR.attrs[LATTR.i].depdcy:=ATTR.depdcy
LATTR.i++}
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LATTR −→ ATTR
{LATTR.attrs[LATTR.i].id:=ATTR.id
LATTR.attrs[LATTR.i].comment:=ATTR.comment
LATTR.attrs[LATTR.i].type:=ATTR.type
LATTR.attrs[LATTR.i].inic:=ATTR.inic
LATTR.attrs[LATTR.i].depinic:=ATTR.depinic
LATTR.attrs[LATTR.i].value:=ATTR.value
LATTR.attrs[LATTR.i].cum:=ATTR.cum
LATTR.attrs[LATTR.i].depdcy:=ATTR.depdcy
LATTR.i++}

LWORD −→ LWORD1 WORD
{LWORD.words[LWORD.i].id:=WORD.v
LWORD.i++}

LWORD −→ WORD
{LWORD.words[LWORD.i].id:=WORD.v
LWORD.i++}

DELIMV −→ variable VBLE endvariable
{ DELIMV.id :=VBLE.id
DELIMV.comment :=VBLE.comment
DELIMV.source:=VBLE.source
DELIMV.type:=VBLE.type
DELIMV.actorId:=VBLE.actorId }

VBLE −→ id: WORD1 { VBLE.id:=WORD1.v
comment: LWORD VBLE.comment:=LWORD.words
source: SOURCE VBLE.source:=SOURCE.v
type: TYPE VBLE.type:=TYPE.v
actorId: WORD2 VBLE.type:=WORD2.v }
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DELIMEV −→ event EVENT endevent
{ DELIMEV.id :=EVENT.id
DELIMEV.actorId :=EVENT.actorId
DELIMEV.method:=EVENT.method
DELIMEV.class:=EVENT.class
DELIMEV.controliter:=EVENT.controliter
DELIMEV.utility:=EVENT.utility
DELIMEV.place:=EVENT.place
DELIMEV.attrs:=EVENT.attrs}

EVENT −→ IDEV (ATTRS LVBLEREF)?
{ EVENT.id :=IDEV.id
EVENT.actorId :=IDEV.actorId
EVENT.method:=IDEV.method
EVENT.class:=IDEV.class
EVENT.controliter:=IDEV.controliter
EVENT.utility:=IDEV.utility
EVENT.place:=IDEV.place
EVENT.attrs:=LVBLEREF.vblesr}

IDEV −→ id: WORD1 { IDEV.id:=WORD1.v
actor: WORD2 IDEV.actorId:=WORD2.v
method: WORD3 IDEV.method:=WORD3.v
class: WORD4 IDEV.class:=WORD4.v
controliter: CODE IDEV.controliter:=CODE.v
utility: UTIL IDEV.utility:=UTIL.v
place: INSTPL IDEV.place:=INSTPL.v }
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DELIMAC −→ actor ACTOR endactor
{DELIMAC.id:=ACTOR.id
DELIMAC.min:=ACTOR.min
DELIMAC.max:=ACTOR.max
DELIMAC.completion:=ACTOR.completion
DELIMAC.class:=ACTOR.class
DELIMAC.exe:=ACTOR.exe
DELIMAC.attrs:=ACTOR.attrs }

ACTOR −→ IDAC (ATTRS (LATTR)+)?
{ACTOR.id:=IDAC.id
ACTOR.min:=IDAC.min
ACTOR.max:=IDAC.max
ACTOR.completion:=IDAC.completion
ACTOR.class:=IDAC.class
ACTOR.exe:=IDAC.exe
ACTOR.attrs:=LATTR.attrs }

IDAC −→ id: WORD1 { IDAC.id:=WORD1.v
min: NUMBER1 IDAC.min:=NUMBER1.v
max: NUMBER2 IDAC.max:=NUMBER2.v
completion: EXP IDAC.completion:=EXP.v
class: WORD2 IDAC.class:=WORD2.v
exe: WORD3 IDAC.exe:=WORD3.v }

DELIMF −→ func def:EXP endfunc
{DELIMF.def:=EXP.v }
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DELIMP −→ point
VBLEREF POINT (ATTRS LVBLEREF)?
endpoint
{DELIMP.id:=VBLEREF.id
DELIMP.value:=POINT.value
DELIMP.kind:=POINT.kind
DELIMP.syncfunction:=POINT.syncfunction
DELIMP.syncplace:=POINT.syncplace
DELIMP.cond:=POINT.cond
DELIMP.place:=POINT.place
DELIMP.idx:=POINT.idx
DELIMP.req:=POINT.req
DELIMP.attrs:=LISVBLEREF.vblesr }

POINT −→ value: EXP1 {POINT.value:=EXP1.v
kind: KIND POINT.kind:=KIND.v
syncfunction: WORD POINT.syncfunction:=WORD.v
syncplace: INSTPL POINT.syncplace:=INSTPL.v
cond: EXP2 POINT.cond:=EXP2.v
( idx: NUMBER ( POINT.idx:=NUMBER.v
req: LOG) ? POINT.req:=LOG.v ) ?

( place: INSTPL) ? (POINT.place:=INSTPL.v ) ? }

ATTR −→ id: WORD1 { ATTR.id:=WORD1.v
comment: LWORD ATTR.comment:=LWORD.words
type: TYPE ATTR.type:=TYPE.v
inic: EXP1 ATTR.inic:=EXP1.v
depinic: VAL1 ATTR.depinic:=VAL1.v
value: EXP2 ATTR.value:=EXP2.v
cum: LOG ATTR.cum:=LOG.v
dependency: VAL2 ATTR.depdcy:=VAL2.v }
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VBLEREF −→ id:WORD { VBLEREF.id:=WORD.v}

VAL −→ WORD { VAL.v:=WORD.v}
VAL −→ none { VAL.v:=�none�}

NUMBER −→ [0..9]+

WORD −→ ( [a..z]|[A..Z])([0..9]|[a..z]|[A..Z]|
. | _ | ( | ) | : | / | * | [ | ] | ; )∗

EXP −→ C/C++FUNCTION
{EXP.v:=C/C++FUNCTION.v}

EXP −→ C/C++EXP
{EXP.v:=C/C++EXP.v}

INSTPL −→ entry {INSTPL.v:=�entry�}
INSTPL −→ exit {INSTPL.v:=�exit�}

TYPE −→ int {TYPE.v:=�int�}
TYPE −→ short {TYPE.v:=�short�}
TYPE −→ float {TYPE.v:=��oat�}
TYPE −→ double {TYPE.v:=�double�}
TYPE −→ char {TYPE.v:=�char �}
TYPE −→ string {TYPE.v:=�string�}

SOURCE −→ asFuncParamValue
{SOURCE.v:=�asFuncParamValue�}

SOURCE −→ asVarValue
{SOURCE.v:=�asVarValue�}

SOURCE −→ asFuncReturnValue
{SOURCE.v:=�asFuncReturnValue�}
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SOURCE −→ asConstValue
{SOURCE.v:=�asConstValue�}

SOURCE −→ asFuncParamPointerValue
{SOURCE.v:=�asFuncParamPointerValue�}

CODE −→ begin
{CODE.v:=�begin�}

CODE −→ end
{CODE.v:=�end �}

CODE −→ eval
{CODE.v:=�eval �}

CODE −→ no
{CODE.v:=�no�}

UTIL −→ always
{UTIL.v:=�always�}

UTIL −→ addable
{UTIL.v:=�addable�}

UTIL −→ eval
{UTIL.v:=�eval �}

LOG −→ true
{LOG.v:=�true�}

LOG −→ false
{LOG.v:=�false�}

KIND −→ SetVariableValue
{KIND.v:=�SetVariableValue�}

KIND −→ ReplaceFunction
{KIND.v:=�ReplaceFunction�}
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KIND −→ InsertFunctionCall
{KIND.v:=�InsertFunctionCall �}

KIND −→ RemoveFuncCall
{KIND.v:=�RemoveFuncCall �}

KIND −→ OnTimeFuncCall
{KIND.v:=�OnTimeFuncCall �}

KIND −→ FuncParamChange
{KIND.v:=�FuncParamChange�}
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Appendix B

Tunlet Speci�cation: Optimal
Number of Workers

IN this appendix we present the complete speci�cation of the tunlet to
tune the number of workers. In Section 5.1 we documented the followed

steps in order to obtain this speci�cation.

TUNLET
name:nworkers
comment:/*tunlet to tune the number of workers

in M/W applications. If the applications
are developed using the Framework
Master/Worker associated to MATE, the
tunlet can be straightfordwardly used,
i.e. any changes or modifications are
required in this specification.*/

include: math.h

MEASURE POINTS
VARIABLES AND VALUES

variable
id: iteration
comment: /*indicates the current iteration
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of the master process*/
source: asVarValue
type: int
actorId:master

endvariable

variable
id: TheWorkUnitBytes
comment:/*amount of bytes sent in a task

by the master to each worker*/
source: asVarValue
type: int
actorId:master

endvariable

variable
id: workerTID
comment:/*worker TID*/
source: asVarValue
type: int
actorId:master

endvariable

variable
id: numtuples
comment:/*amount of tasks sent to a worker*/
source: asVarValue
type: int
actorId:master

endvariable

variable
id: workerTIDr
comment:/*answering worker TID*/
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source: asVarValue
type: int
actorId:master

endvariable

variable
id: nbytes
comment:/*amount of bytes of the answer*/
source: asVarValue
type: int
actorId:master

endvariable

variable
id:CurrentIteration
comment:/*current iteration of the worker*/
source: asVarValue
type: int
actorId:worker

endvariable

variable
id: nw
comment: /*current number of workers*/
source: asVarValue
type: int
actorId:master

endvariable

variable
id: NOptWorkers
comment:/*optimal number of workers according

to the current conditions of the system */
source: asVarValue
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type: int
actorId:master

endvariable

EVENTS

event
id:IterationStarts
actorId:master
controliter:begin
utility:always
method: _M_SendIteration
class:_CMaster
place: entry

ATTRS
id: iteration
id: TheWorkUnitBytes
id: TheNumTuples
id: nw

endevent

event
id: IterationFinishes
actorId: master
controliter:end
utility:always
method:_M_ReceiveIteration
class: _CMaster
place: exit

ATTRS
id: iteration

endevent

event

188



id:MSendsTaskW
actorId:master
controliter:no
utility:always
method:_DMM_SendTask
class: _CDtaMngM
place: exit

ATTRS
id:workerTID
id:numtuples

endevent

event
id:WRepliesM
actorId:master
controliter:no
utility:always
method:_DMM_ReceiveEffective
class: _CDtaMngM
place:exit

ATTRS
id:workerTIDr
id:nbytes

endevent

event
id:WStartsTask
actorId:worker
controliter:no
utility:always
method:_W_DoWorks
class: _CWorker
place: entry

ATTRS
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id:CurrentIteration
endevent

event
id:WFinishesTask
actorId:worker
controliter:eval
utility:always
method:_W_SendAll
class: _CWorker
place:entry

ATTRS
id:CurrentIteration

endevent

ACTORS
actor

id: master
min: 1
max: 1
completion:/#comp==1#/
class:_CMaster, _MyMaster
exe: /home/paola/pvm3/bin/LINUX/master

ATTRS
id:comp
comment:/*when an iteration finishes, the value of comp

is set to 1, which indicates the completion of
the master.*/

type: int
inic:/#comp=0;#/
depinic:none
value: /#master[0].comp=1;#/
cum:false
dependency: IterationFinishes
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id:firstSend
comment:/*instant in which the master executes the first

send of the iteration*/
type: double
inic:/#firstSend=0.0;#/
depinic:none
value: /#if(MSendsTaskW.timestamp<master[0].firstSend ||

master[0].firstSend==0.0)
master[0].firstSend= MSendsTaskW.timestamp;#/

cum:false
dependency: MSendsTaskW

id:lastRecv
comment:/*instant in which the master receives the last

answer of the iteration*/
type: double
inic:/#lastRecv=0.0;#/
depinic:none
value:/# if(WRepliesM.timestamp>master[0].lastRecv ||

master[0].lastRecv==0.0 )
master[0].lastRecv= WRepliesM.timestamp;#/

cum:false
dependency: WRepliesM

id:lastWorker
comment:/*id of the worker which answered at last.

It is needed to obtain its computing time.*/
type: int
inic:/#lastWorker=0;#/
depinic:none
value: /#if(WRepliesM.timestamp>master[0].lastRecv ||

master[0].lastRecv==0.0)
master[0].lastWorker= WRepliesM.id;#/
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cum:false
dependency: WRepliesM

endactor

actor
id: worker
min:1
max: 18
completion:/#comp==1#/
class: _CWorker, _MyWorker
exe: /home/paola/pvm3/bin/LINUX/worker

ATTRS

id:comp
comment:/*when the processing of the task finishes, the

value of comp is set to 1, which indicates the
completion of the worker.*/

type: int
inic:/#comp=0;#/
depinic:none
value: /#worker[WFinishesTask.id].comp=1;#/
cum:false
dependency: WFinishesTask

id:timestampRecv
comment:/*instant in which the worker receive the data*/
type: double
inic: /#timestampRecv=0.0;#/
depinic:none
value:/#worker[MSendsTaskW.workerTID].timestampRecv=

MSendsTaskW.timestamp;#/
cum:false
dependency:MSendsTaskW
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id: timestampSnd
comment:/*instant in which the master receives an answer

from the worker workerTIDr*/
type: double
inic: /#timestampSnd=0.0;#/
depinic:none
value:/#worker[WRepliesM.workerTIDr].timestampSnd=

WRepliesM.timestamp;#/
cum:false
dependency:WRepliesM

id: numtuplesRecv
comment: /*amount of tuples to be processed by the worker*/
type: int
inic:/# numtuplesRecv=0;#/
depinic:none
value:/# worker[MSendsTaskW.workerTID].numtuplesRecv=

MSendsTaskW.numtuples;#/
cum:false
dependency:MSendsTaskW

id:replysize
comment: /*size of the results sent by the worker*/
type: int
inic: /#replysize=0;#/
depinic:none
value: /#worker[WRepliesM.workerTIDr].replysize=

WRepliesM.nbytes;#/
cum:false
dependency:WRepliesM

id:timestampStartCalc
comment:/*instant in which the worker starts processing

the data*/
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type: double
inic:/#timestampStartCalc=0.0;#/
depinic:none
value:/#worker[WStartsTask.id].timestampStartCalc=

WStartsTask.timestamp;#/
cum:false
dependency:WStartsTask

id:timestampEndCalc
comment:/*instant in which the worker finishes processing

the data*/
type: double
inic:/#timestampEndCalc=0.0;#/
depinic:none
value:/#worker[WFinishesTask.id].timestampEndCalc=

WFinishesTask.timestamp;#/
cum:false
dependency:WFinishesTask

id:cti
comment:/*computing time of the worker*/
type: double
inic: /#cti=0.0;#/
depinic:none
value: /#worker[WFinishesTask.id].cti=

worker[WFinishesTask.id].timestampEndCalc -
worker[WFinishesTask.id].timestampStartCalc;#/

cum:false
dependency: timestampEndCalc

endactor

ITERATION INFORMATION
id: StartedIteration
comment: /*indicates the number of the last
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(or current)iteration*/
type: int
inic: /#StartedIteration=0;#/
depinic:none
value: /#iter.StartedIteration=

IterationStarts.iteration;#/
cum:false
dependency:IterationStarts

id: tuplesize
comment: /*indicates the size of each task,

in bytes*/
type: int
inic: /#tuplesize=0;#/
depinic:none
value: /#iter.tuplesize=

IterationStarts.TheWorkUnitBytes;#/
cum:false
dependency:IterationStarts

id: iterCommTime
comment: /*communication time of the iteration*/
type: double
inic: /#iterCommTime=0.0;#/
depinic:none
value: /#iter.iterCommTime=

(master[0].lastRecv - master[0].firstSend)-
(worker[master[0].lastWorker].cti);#/

cum:false
dependency:IterationFinishes

MODEL PARAMETERS
id:n
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comment: /*current number of workers*/
type:int
inic: /#n=0;#/
depinic:none
value: /#n=iter.nw;#/
cum:false
dependency:none

id:tl
comment: /*latency - constant*/
type:float
inic: /#tl=1000;#/
depinic:none
value: /#tl=1000;#/
cum:false
dependency:none

id:vi
comment: /*total data volume to be processed*/
type:int
inic: /#vi=0;#/
depinic:none
value: /#vi=0;for(int i=0;i<n;i++)vi+=

worker[i].numtuplesRecv*iter.tuplesize;#/
cum:true
dependency:none

id:viuno
comment: /*data volume sent to a worker*/
type:int
inic: /#viuno=0;#/
depinic:none
value: /#viuno=vi/n;#/
cum:false
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dependency:vi

id:vm
comment: /*volume of answers*/
type:int
inic: /#vm=0;#/
depinic:none
value: /#vm=0;for(int i=0;i<n;i++)vm+=worker[i].replysize;#/
cum:true
dependency:none

id:vmuno
comment: /*volume of an answer*/
type:int
inic: /#vmuno=0;#/
depinic:none
value: /#vmuno=vm/n;#/
cum:false
dependency:vm

id:lambda
comment: /*cost of sending a byte*/
type:float
inic: /#lambda=0.0;#/
depinic:none
value: /#lambda=iter.iterCommTime/(vi+vmuno);#/
cum:false
dependency:vmuno

id:Ct
comment: /*total computing time*/
type:double
inic: /#Ct=0.0;#/
depinic:none
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value: /#Ct=0;for(int i=0;i<n;i++)Ct+=worker[i].cti;#/
cum:true
dependency:none

id:Vt
comment: /*total managed volume of data */
type:int
inic: /#Vt=0;#/
depinic:none
value: /#Vt=vm+vi;#/
cum:false
dependency:vm

PERFORMANCE FUNCTION

function
def:/#int pf(){ int nro=0; nro=

(int)sqrt( (lambda * Vt +Ct)/tl);return nro;}#/
endfunction

TUNING POINTS
point

id:NOptWorkers
value:/#pf()#/
kind: SetVariableValue
syncfunction:0
syncplace:0
cond:/#NOptWorkers>iter.GetNum_worker()+2 ||

NOptWorkers<iter.GetNum_worker()-2 #/
endpoint

ENDTUNLET
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Appendix C

Tunlet Speci�cation: Load
Balancing

IN this appendix we present the complete speci�cation of the tunlet to
tune the load balancing. In Section 5.2 we documented the followed steps

in order to obtain this speci�cation.

TUNLET
name:nworkers
comment:/*tunlet to tune the load balancing

in M/W applications. If the applications
are developed using the Framework
Master/Worker associated to MATE, the
tunlet can be straightfordwardly used,
i.e. any changes or modifications are
required in this specification.*/

include:math.h

MEASURE POINTS
VARIABLES AND VALUES

variable
id: iteration
comment: /*indicates the current iteration

199



of the master process*/
source: asVarValue
type: int
actorId:master

endvariable

variable
id: TheNumTuples
comment:/*total amount of tasks of

the iteration*/
source: asVarValue
type: int
actorId:master

endvariable

variable
id: TheWorkUnitBytes
comment:/*size of a task*/
source: asVarValue
type: int
actorId:master

endvariable

variable
id: workerTID
comment:/*worker TID*/
source: asVarValue
type: int
actorId:master

endvariable

variable
id: numtuples
comment:/*amount of tasks sent to a worker*/
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source: asVarValue
type: int
actorId:master

endvariable

variable
id: workerTIDr
comment:/*answering worker TID*/
source: asVarValue
type: int
actorId:master

endvariable

variable
id:CurrentIteration
comment:/*current iteration of the worker*/
source: asVarValue
type: int
actorId:worker

endvariable

variable
id: NroTasks
comment: /*number of task to proces by worker*/
source: asVarValue
type: int
actorId:worker

endvariable

variable
id: nw
comment: /*current number of workers*/
source: asVarValue
type: int
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actorId:master
endvariable

variable
id: globalSizeChunk
comment:/*size of the chunk,

is the tunable variable*/
source: asVarValue
type: int
actorId:master

endvariable

EVENTS
event

id:IterationStarts
actorId:master
controliter:begin
utility:always
method: _M_SendIteration
class:_CMaster
place: entry

ATTRS
id: iteration
id: TheNumTuples
id: TheWorkUnitBytes
id: nw

endevent

event
id: IterationFinishes
actorId: master
controliter:end
utility:always
method:_M_ReceiveIteration

202



class: _CMaster
place: exit

ATTRS
id:iteration

endevent

event
id:MSendsTaskW
actorId:master
controliter:no
utility:always
method:_DMM_SendTask
class: _CDtaMngM
place: exit

ATTRS
id:workerTID
id:numtuples

endevent

event
id:WRepliesM
actorId:master
controliter:no
utility:always
method:_DMM_ReceiveEffective
class: _CDtaMngM
place:exit

ATTRS
id:workerTIDr

endevent

event
id:WStartsTask
actorId:worker
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controliter:no
utility:always
method:_W_DoWorks
class: _CWorker
place: entry

ATTRS
id:CurrentIteration
id:NroTasks

endevent

event
id:WFinishesTask
actorId:worker
controliter:eval
utility:always
method:_W_SendAll
class: _CWorker
place:entry

ATTRS
id:CurrentIteration

endevent

ACTORS
actor
id: master
min: 1
max: 1
completion:/#comp==1#/
class:_CMaster, _MyMaster
exe: /home/paola/pvm3/bin/LINUX/master

ATTRS
id:comp
comment:/*when an iteration finishes, the value of comp

is set to 1, which indicates the completion of
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the master.*/
type: int
inic:/#comp=0;#/
depinic:none
value: /#master[0].comp=1;#/
cum:false
dependency: IterationFinishes

endactor

actor
id: worker
min:1
max: 25
completion:/#comp==nrobatch#/
class: _CWorker, _MyWorker
exe: /home/paola/pvm3/bin/LINUX/worker

ATTRS
id: comp
comment: /*to register the completion*/
type: int
inic:/# comp=0;#/
depinic:none
value:/#worker[WFinishesTask.id].comp=

worker[WFinishesTask.id].comp + 1;#/
cum:false
dependency:WFinishesTask

id: numTasksRecv
comment: /*amount of received tasks*/
type: int
inic:/# numTasksRecv=0;#/
depinic:none
value:/# worker[WStartsTask.id].numTasksRecv=

WStartsTask.NroTasks;#/
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cum:true
dependency:WStartsTask

id:timestampStartCalc
comment:/* computing start instant of the worker*/
type: double
inic:/#timestampStartCalc=0.0;#/
depinic:none
value:/#worker[WStartsTask.id].timestampStartCalc=

WStartsTask.timestamp;#/
cum:false
dependency:WStartsTask

id:timestampEndCalc
comment:/* computing end instant of the worker*/
type: double
inic:/#timestampEndCalc=0.0;#/
depinic:none
value:/#worker[WFinishesTask.id].timestampEndCalc=

WFinishesTask.timestamp;#/
cum:false
dependency:WFinishesTask

id:cti
comment:/* computing time worker i*/
type: double
inic: /#cti=0.0;#/
depinic:none
value: /#worker[WFinishesTask.id].cti=

worker[WFinishesTask.id].cti +
(worker[WFinishesTask.id].timestampEndCalc
- worker[WFinishesTask.id].timestampStartCalc);#/

cum:true
dependency: timestampEndCalc
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id:C
comment:/* average task computing time of worker i*/
type: double
inic: /#C=0.0;#/
depinic:none
value: /#worker.C=worker.cti/worker.numTaskRecv;#/
cum:true
dependency: cti

endactor

ITERATION INFORMATION
id: StartedIteration
comment: /*current iteration*/
type: int
inic: /#StartedIteration=0;#/
depinic:none
value: /#iter.StartedIteration=IterationStarts.iteration;

iter.currentBatch=0; #/
cum:false
dependency:IterationStarts

id: totalworktodo
comment:/*amount of tasks to be processed*/
type: int
inic: /#totalworktodo=0;#/
depinic:none
value: /#iter.totalworktodo=IterationStarts.TheNumTuples;#/
cum:false
dependency:IterationStarts

id: tuplesize
comment: /*task size (in bytes)*/
type: int
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inic: /#tuplesize=0;#/
depinic:none
value: /#iter.tuplesize=

IterationStarts.TheWorkUnitBytes;#/
cum:false
dependency:IterationStarts

id: numW
comment: /*amount of workers in the iteration*/
type: int
inic: /#numW=0;#/
depinic:none
value: /#iter.numW=IterationStarts.nw;#/
cum:false
dependency:IterationStarts

id: remainingTasks
comment: /*remaining tasks of the iteration*/
type: int
inic: /#remainingTasks=iter.totalworktodo;#/
depinic:iter.totalworktodo
value: /#remainingTasks=remainingTasks-

MSendsTaskW.numtuples#/
cum:false
dependency:MSendsTaskW

id: currentBatch
comment: /*current batch */
type: int
inic: /#currentBatch=0#/
depinic:none
value: /##/
cum:false
dependency:none
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id: remainingTasksBatch
comment: /*remaing tasks of the batch*/
type: int
inic: /#remainingTasksBatch=f[iter.currentBatch]*P;#/
depinic:iter.currentBatch
value: /#remainingTasksBatch=remainingTasksBatch

-MSendsTaskW.numtuples;
if(remainingTasksBatch==0 &&

iter.currentBatch<nrobatch-1 )
{changeFactor();}#/

cum:false
dependency:MSendsTaskW

MODEL PARAMETERS
id:P
comment: /*current number of workers*/
type:int
inic: /#N=0;#/
depinic:none
value: /#N=iter.numW;#/
cum:false
dependency:none

id:N
comment: /*number of task of the iteration*/
type:int
inic: /#N=0;#/
depinic:none
value: /#N=0;

for(int i=0; i<P; i++)
{ N=iter.totalworktodo *

iter.tuplesize); } #/
cum:true
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dependency:none

id:R
comment: /*Remaning tasks in the interation*/
type:int
inic: /#R=N;#/
depinic:none
value: /##/
cum:true
dependency:N

id:Ct
comment: /*total computing time*/
type:double
inic: /#Ct=0;#/
depinic:none
value: /#Ct=0;for(int i=0;i<n;i++)Ct+=worker[i].C;#/
cum:true
dependency:none

id:MC
comment: /*mean of C*/
type:double
inic: /#MC=0;#/
depinic:none
value: /#MC=Ct/N;#/
cum:false
dependency:Ct

id:sumMC
comment: /*intermediate parameter to calculate SC*/
type:double
inic: /#sumMC=0.0;#/
depinic:none
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value: /#for(int i=0;i<P;i++){sumMC=sumMC+
(pow(worker[i].C,2) - pow(MC,2) ) }#/

cum:true
dependency:MC

id:SC
comment: /*standard deviation of C*/
type:double
inic: /#SC=0.0#/
depinic:none
value: /#SC=sqrt(1/N*sumMC);#/
cum:false
dependency:sumMC

id:nrobatch
comment: /*current number of batch*/
type:int
inic: /#nrobatch=0;#/
depinic:none
value: /##/
cum:false
dependency:none

id:x[10]
comment: /*factors to be used through the batchs*/
type:int
inic: /#for(int i=0;i<10;i++){x[i]=0.0;}#/
depinic:none
value: /#for(int i=0;i<10;i++)

{if(i==0)
{x[i]=(MC+(SC*sqrt(P/2)))/MC;}
else
{x[i]=(2*MC+(SC*sqrt(P/2)))/MC;}

}#/
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cum:false
dependency:none

id:f[10]
comment: /*factors to be used through the batchs*/
type:int
inic: /#for(int i=0;i<10;i++){f[i]=0;}#/
depinic:none
value: /#nrobatch=0;

while((nrobatch<10) && (R>P*2))
{if(nrobatch==0)
{f[nrobatch]=(int)(N/x[nrobatch]*P);}
else{{f[nrobatch]=(int)(R/x[nrobatch]*P;}
R=R-(f[nrobatch]*P); nrobatch++;}
iter.currentBatch=0;#/

cum:false
dependency:x

PERFORMANCE FUNCTIONS

function
def:/#int pf()

{int a; a=f[iter.currentBatch+1];
iter.currentBatch++; return (a);} #/

endfunction

function
def:/#int changefactor()

{ if(f[iter.currentBatch+1] ==
f[iter.currentBatch] )

{Tune_globalSizeChunk();} }#/
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endfunction

TUNING POINTS
point

id:globalSizeChunk
value:/#pf()#/
kind: SetVariableValue
syncfunction:0
syncplace:0
cond:/#true#/

endpoint
ENDTUNLET
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Glossary

AC : Application Controller. This is the module of MATE which controls
the execution of each task of the application. Is composed of several
modules such as Monitor and Tuner.

Analyzer : is the module of MATE responsible for evaluating the be-
haviour of the application. In the distributed-hierarchical collecting-
preprocessing approach, the analysis is done in cooperation among CPs
and a Global Analyzer.

CP : Collector Preprocessor. In the distributed-hierarchical collecting-
preprocessing approach, the CP is each one of the modules responsible
for collecting the events incoming from a determined set of machines.
In addition, the information carried by the events is classi�ed and pre-
processed as much as possible, before sending the condensed relevant
information to the Global Analyzer.

DMLib : Dynamic Monitoring Library. It is a shared library used by AC in
order to facilitate the instrumentation and data collection. In addition,
it is responsible for the registration of events.

DTAPI : is the interface used by Analyzer to represent the application, the
tasks, the events and the tuning actions, and to handle the performance
monitoring and tuning of the application

DynInst : is a library which implements dynamic instrumentation. It
is used by MATE to insert monitoring instrumentation and tuning
changes.

Global Analyzer : In the distributed-hierarchical collecting-preprocessing
approach, the Global Analyzer is the process which manages the global
evaluation of the application performance. CPs are the modules which
cooperate with it, by collecting events and preprocessing the informa-
tion as possible. Thus, before evaluating the performance model, the
Global Analyzer receives the relevant condensed information from the
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CPs, in place of receiving every event from the application, as in the
�rst implementation of MATE.

MATE : Monitoring, Analysis and Tuning Environment. It provides dy-
namic and automatic tuning of parallel applications. The performance
knowledge used to tune the applications is based on performance mo-
dels.

Optimization : this term is used in the broadest sense of the word to mean
�improvement�, i.e. we are not strictelly considering mathematical
optimization.

Process : each program in execution. Parallel applications consist in a set
of processed executing and cooperating in parallel. Sometimes, process
is used as a synonym of task (except in Chapter 1).

Task : this word has three di�erent meanings, which can be deduced from
the context. In general terms (such as in Chapter 1), task is used to
refer to some job or application to be executed. Another meaning of
this word is related to a speci�c process in the application, i.e. some
kind of the cooperating processes which executes a determined code;
this is why sometimes task is used as synomym of process. Finally, this
word is used to represent a subset of the total data to be processed,
which represent a piece of job to be processed by some process.

Tuning technique : it is constituted by all the required information re-
lated to one particular problem, i.e. the application knowledge that
represents speci�c, determined information about performance pro-
blems that can occur during application execution and solutions to
these problems. In MATE, each tuning technique is implemented as a
tunlet.

Tunlet : is a piece of software used by MATE where the knowledge about a
particular performance problem is encapsulated. The main elements in
a tunlet are the measure points, the performance model and the tuning
points/actions. Tunlets provide the knowledge used by the Analyzer
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(or Global Analyzer) process of MATE to require the monitoring in-
strumentation, evaluate the behaviour of the application and require
for tuning actions.

Work : generally, this word is used to refer to some job to be executed or
some data to be processed. It is related to task, due to in general terms
both are used in a similar manner. Therefore, work is used to mean a
portion of data to be processed, or to mean a speci�c functionality of the
program, i.e. a subset of sentences to be executed. The meaning depend
on the decomposition strategy under consideration: data parallelism
or tasks parallelism.
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