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Abstract

Natural Vision Systems have reached incredible performances in detecting and track-
ing multiple moving objects simultaneously. Accurate and robust multiple-target
tracking is also a key task in many promising Computer-Vision applications. Practi-
cal usages of proposed algorithms can now be tackled in real time thanks to recent
technological advances. Further, this represents a huge challenge because of the nu-
merous particular problems involved in such a task. Thus, proposals must deal with
multiple highly non-rigid targets which move in an unforeseeable manner through
unconstrained dynamic open-world scenarios.

In this thesis, a principled hierarchical architecture which fulfills multiple-target
tracking is presented. Further, another tracking approach is previously developed and
evaluated.

The first approach developed in this document focuses on tracking by means of
particle filtering. In this case, the problem is formulated as a sequence of inferences
with a temporal probability model by means of Bayesian filters. No assumption about
linearity or gaussianity is made on the involved pdf’s.

Although this paradigm presents some remarkable advantages, it has several im-
portant drawbacks. In this document, these are highlighted, and some ways of so-
lutions are proposed, also to handle the aforementioned expected inherent problems.
Thus, a new weight normalisation is used to cope with sampling impoverishment in
a multiple target-tracking scenario. Dynamics updating and state estimation are
well studied in order to deal with unknown target’s dynamics, presumably highly
non-linear. A method is presented to handle partial and complete occlusions by con-
sidering target predicted trajectories, and their likelihoods. Model drift is tackled
by careful updating, based on the history of likelihood measures. A colour-based
likelihood, computed from histogram similarity, is used. However, despite the great
efforts spent on this approach, it still lacks from a robust performance due to the
drawbacks of the particle filtering framework, and the inherent complexity involved
in non-supervised multiple-human tracking.

Thus, a second approach is developed to tackle this complex open problem. A
novel architecture inscribed in a principled framework is proposed. It follows in many
ways a biological paradigm. A modular and hierarchically-organised system is de-
signed. It is conformed by a detection level which feeds a two-level tracking sub-
system. Co-operating modules, distributed through this architecture, work following
both bottom-up and top-down approaches.

Contributions include both the architecture itself, and the development, improve-

il
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ment and integration of the different modules. The proposed architecture introduces
the necessary synergies which allow the system to tackle such a problem as uncon-
strained multiple-target tracking. With respect to the different modules, the main
focus is placed on high-level tracking algorithms. Since a careful analysis of mo-
tion events is a critical issue for tracking successful, a module for principled event
management, is proposed, and embedded in the system. Multiple-target interaction
events, and a proper scheme for tracker instantiation and removal according to scene
events, are considered. Thus, the system is allowed to switch among the two different
operation modes implemented, namely motion-based tracking and appearance-based
tracking. This entails another remarkable characteristic of the system: its ability
to continuous and independently track numerous targets while they group and split.
Multiple appearance models are built and constantly updated. A special attention
is paid to maximise the discrimination between the target and potential distracters
by means of an appropriate feature selection, and a wise combination of all available
sources of information.

This tracking architecture works as a stand-alone application in a non-friendly,
complex and dynamic scenario. No a-priori knowledge about either the scene or the
targets, based on a previous off-line training period is needed. Hence, the scenario
could be completely unknown beforehand. No camera calibration is required since
tracking is achieved without the need of 3D information.

Successful tracking has been demonstrated in multiple sequences of both indoor
and outdoor scenarios, from own and public well-known databases. Accurate and
robust localisations have been yielded even during long-term target clustering and
occlusions. Results are comprehensively analysed.

Keywords: Multiple-target tracking; Trajectory analysis; Kalman filter; Parti-
cle filtering; Feature evaluation and selection; Probabilistic colour appearance models;
Event management; Motion segmentation; Appearance-based tracking.

Topics: Image Processing; Computer Vision; Scene Understanding; Machine
Intelligence; Machine Vision Applications; Video-Sequence Evaluation



Resum

Los Sistemes de Visi6o Naturals (SVN) han assolit uns resultats increibles pel que fa
a la deteccio i seguiment de multiples objectes simultaniament en moviment. Aquest
seguiment precis i robust de multiples agents (objectes i persones) és també una tasca
clau en moltes aplicacions prometedores basades en la Visié per Computador (VC).
Los algorismes teorics proposats durant estos tltims anys poden ser ara aplicats a la
practica i en temps real gracies als Gltims avengos tecnologics. Nogensmenys, aixo ha
representat ser un gran repte degut als nombrosos problemes que han anat sorgint
durant el desenvolupament d’aquesta tasca, basicament pel fet d’haver de tractar amb
multiples persones, que s6n altament no-rigids, que es mouen d’una manera impre-
visible per escenaris oberts, dinamics i no-restringits.

En esta Tesis se presenta una arquitectura jerarquica que realitza el seguiment de
multiples agents. A més, s’han desenvolupat i avaluat dues aproximacions teoriques
al seguiment d’agents.

La primera aproximacié desenvolupada en aquest document se centra en el segui-
ment basat en el filtratge de particules. En aquest cas, el problema se formula com una
seqiiéncia d’inferéncies utilitzant un model probabilistic temporal a partir de filtres
Bayesians. A més, no se fa cap assumpcié sobre la linearitat o Gaussianitat de les
pdf’s involucrades.

Malgrat que aquest paradigma té avantatges remarcables, també té inconvenients
importants. Aixi doncs, aquests inconvenients se ressalten en aquest document i se
proposen vies de solucié, també per a manegar els problemes inherents i per tant
previstos, abans esmentats. Aixi, s’utilitza una nova normalitzacié dels pesos de les
particules per a evitar el problema anomenat empobriment del sampleig que s’esdevé
en escenaris on hi ha seguiment de multiples agents. S’han estudiat les actualitza-
cions de les dinamiques i les estimacions dels estats per tal de tractar les dindmiques
desconegudes dels agents, presumiblement altament no-linials. Com a resultat, se pre-
senta un meétode per a manipular oclusions parcials i complertes, a partir de predic-
cions sobre les trajectories dels agents i de la seva versemblanca. La deriva del model
emprat estd contemplada a partir d’actualitzacions curoses basades en la historia de
les mesures de versemblanca. Per a aix0, utilitzem un calcul de la versemblanca
basada en color a partir de la similitud d’histogrames. Nogensmenys, malgrat tots els
esforcos emprats en aquest paradigma, el seu rendiment no és massa robust degut als
inconvenients intrinsecs dels filtres de particules i per la inherent complexitat involu-
crada en el seguiment no-supervisat de miltiples humans.

Per tant, s’ha desenvolupat una segona aproximacioé per afrontar aquest prob-
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lema tan complex i obert. Es proposa una arquitectura nova inscrita en un marc
estructurat. Segueix en molts aspectes un paradigma biologic: ha estat dissenyat un
sistema modular i jerdrquicament organitzat que és format per un nivell de deteccio
que alimenta un subsistema de dos nivells. Los moduls que cooperen, distribuits a
través d’aquesta arquitectura, funcionen seguint enfocaments tant de baix a dalt com
de dalt a baix.

Les contribucions inclouen ’arquitectura en si i el desenvolupament, millora i
integracié dels diferents moduls. L’arquitectura proposada introdueix les sinergies
necessaries per permetre al sistema tractar el problema del seguiment de multiples
agents. Respecte als diferents moduls, el focus principal es posa en els algoritmes
de seguiment d’alt nivell. Ja que una analisi prudent dels esdeveniments de movi-
ment és un assumpte critic per un seguiment d’éxit, es proposa un modul per a la
gestio d’aquests esdeveniments, que estd incrustat en el sistema. Aixi, es consideren
els esdeveniments d’interaccié entre multiples agents, i un esquema propi per a la
instanciacio dels diferents algorismes de seguiment o la seva supressio segons els esde-
veniments de l’escena. Aixi, lo sistema permet canviar-se entre dos modes diferents
de funcionament implementats, és a dir, basat en lo moviment i basat en l’aparenca.
Aix0 suposa una altra caracteristica notable del sistema: la seva habilitat per seguir
continua i independentment multiples objectius mentre aquests s’agrupen i es sepa-
ren. Es construeixen models d’aparenca que s’actualitzen constantment. Es para una
atenci6 especial per maximitzar la discriminacié entre l’objectiu seguit i los distrac-
tors potencials, per mitja d’una selecci6 de les caracteristiques més apropiades i una
combinaci6 assenyada de totes les fonts d’informacié disponibles.

Aquesta arquitectura de seguiment treballa com a aplicacié autonoma en un esce-
nari no amistos, complex i dindmic. No es necessita cap tipus de coneixement a-priori
al voltant de ’escena o dels agents, basat en un periode d’entrenament previ. Per
aix0, l'escenari podria ser completament desconegut per endavant. No s’exigeix cap
calibracié de cameres ja que lo seguiment és aconseguit sense la necessitat d’informacié
3D.

S’ha demostrat un seguiment correcte en multiples seqiiéncies de tant interiors
com a l’aire lliure, de bases de dades propies i publiques molt conegudes. Han estat
assolides unes localitzacions acurades i robustes fins i tot durant agrupaments llargs
i oclusions. Los resultats obtinguts s’han analitzat extensa i completament.
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Chapter 1

Introduction

Human beings, as well as a great diversity of animal species, have developed an amaz-
ing capability of processing complex and continuous varying visual stimuli. Millions
of years of evolution have led to highly efficient visual systems which show, in such
an apparently easy way, incredible performances.

The ability of motion detection must be undoubtedly mentioned among the most
powerful faculties of Natural Visual Systems [68]. This skill is crucially involved in
numerous critical issues for the survival of the species, such as in tracking moving
objects, despite partial occlusions and drastic illumination changes; in extracting the
depth structure of the world by taking advantage of the motion parallax; in detecting
objects which are camouflaged in a cluttered background of similar colour and texture;
or in recognising objects from the relative motion of their parts. Moreover, this faculty
is implied in several associated motor responses such as the stabilisation of the gaze,
or the control of limbs.

Thus, the ability of perceiving the motion of potential predators and preys has
been unavoidable linked to self-motion capabilities [54]. These entail the necessity
of a nervous and sensory system. The visual system is the most important sensory
system in organisms at the highest level of the phylogenetic scale. In particular, the
Visual Cortex is the most massive system in the human brain.

A novel interdisciplinary domain which aims to emulate some of such capabilities
has raised within Computer Science in the last three decades [63]. It comprehends
techniques of Image Processing and Analysis, Pattern Recognition, Artificial Intelli-
gence, Computer Graphics, and Robotics, among others. This new domain analyses
and evaluates sequences of images concerning human-populated scenes. Impressive
developments have also been possible thanks to a large number of technological ad-
vances in the hardware field. Emerging capabilities have led to a wide range of
scientific contribution, and, subsequently, to new software implementations.

The ultimate aim of this novel domain is to interpret people behaviour. This goal
requires detecting and tracking moving objects, and identifying people among them.
The analysis of human motion is currently being thoroughly studied, and new domain
taxonomies replace the previous ones as the state of the art makes progress. Thus,
taxonomies have evolved from simple classifications according to various criteria such
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as the space dimensionality or the type of sensor used [9, 1, 23, 69] to complex ones
based on required system functionalities organised in a hierarchical manner [8, 93, 62].
While in the former surveys reviewed algorithms aimed to estimate the quantitative
parameters which describes when and where motion was detected, in the latters high-
level processes are incorporated in order to analyse which kind of motion is being
performed, and how it is carried out.

Thus, in 2000 and according to Nagel [65], an Image-Sequence Evaluation (ISE)
system would transform image-sequence data into semantic descriptions; subsequently,
these descriptions would be processed, and the system would react in terms of signal
triggers or conceptual terms. His system is clearly inspired in the ideas of Kanade in
the early eighties [49].

In 2004, Gonzalez [25] proposed the term Human-Sequence Evaluation (HSE) to
denote the analysis of human motion in order to achieve the understanding of human
behaviour, that is, the explanation and reasoning about why motion is performed.
Further, it would be able to provide Natural-Language (NL) scene descriptions, and
to generate synthetic views of the environment in order to visualise recognised be-
haviours and simulate potential situations. Therefore, HSE defines an extensive Cog-
nitive Vision System (CVS) which transforms acquired image values into semantic
descriptions of human behaviour and synthetic visual representations. Hence, HSE
represents a huge challenge in which the aim is to emulate the fascinating perfor-
mances of a Natural Vision System, and the reasoning and communication skills of a
human observer.

In this work, the focus is placed on one of the main HSE tasks: target tracking.
Understanding the behaviour of human beings requires the potential targets to be
detected and tracked. Tracking can be loosely defined as detecting and keeping lock
over time on any object of interest. Consequently, special stress is placed on tracking
moving objects in generic human-populated scenes. The problem is tackled without
setting any kind of restrictions on the nature of the scene. The proposal should also
scale with the number of objects being tracked, which are a-priori unknown.

1.1 Motivation

Robust Multiple-Target Tracking (MTT) in unconstrained dynamic scenes is a com-
plex task, specially when it concerns human-populated environments. Trying to em-
ulate the astonishing performances of such a perfect system as the Natural Vision
System represents, without any doubt, a real challenge.

The tracking task is even more complicated when it deals with human beings,
thereby making it particularly appealing. In spite of the numerous difficulties in-
volved —or perhaps, because of them— target tracking in human-populated scenes
has become a very active research field: it has already generated a vast number of
scientific contributions in recent years [62]. However, despite this interest and the
substantial developments achieved, this still constitutes an ambitious open problem
which is far from being solved.

Further, this interest is also prompted by the increasing number of potential ap-
plications within the HSE framework [46, 11, 33, 75, 30, 84, 6, 96, 70]. These include
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smart video safety and video surveillance, automatic sport-statistics computation, in-
telligent human-computer interfaces, machine content annotation, or efficient athlete
training and orthopedic therapy, among others. Thus, the numerous promising ap-
plications constitute an important practical motivation which raises significant funds
for HSE research.

1.2 Basic Concepts

In this section, the sense in which basic concepts are used throughout the whole
document is introduced.

The main concept —tracking— has been above loosely defined as detecting and
keeping lock over time on any object of interest; this definition will be subsequently
refined, once necessary new concepts have been introduced.

Tracking is performed through a scene, which is the piece of the real world that
a particular visual sensor can capture. Mosaics built from multiple-camera systems
or from cameras in motion are also considered as the scene.

Active vision means that it is possible to modify in a controlled way according
to what is happening in the scene some camera parameters —such as the zoom, the
orientation, the focus, or the diaphragm aperture.

Any entity present within the scene which could be subject to special interest and,
consequently subject to be detected and tracked, is called a target. Further, any target
with intentional capabilities is referred as an agent. Depending on the application,
the term may include people, manned or unmanned vehicles, or even animals.

The target state can be defined as the parametrised knowledge which characterises
the target evolution, i.e, all the information required to successfully perform the
tracking task. Under certain assumptions, which will be latter stated, the state could
be defined as the information needed to make the future independent from the past
given the present.

The tracking definition can be now detailed by considering tracking as establish-
ing coherent relations among targets between frames; or as inferring the target state
over time using all evidence up to date. Monitoring can be broadly defined as observ-
ing and keeping record of some processes. Within the Human-Sequence Evaluation
context, it refers to a high-level processing of recognised patterns of motion, possibly
also including the generation of Natural-Language texts, and the synthesisation of
visualisations of the recognised motion patterns within the scene.

The foreground is composed of those objects —present in the scene— in which
we have a special interest and, consequently, the focus is placed on them. Therefore,
it can be seen as conjunction of all targets within the camera field of view. The
background can be defined as the complement of the foreground concept. Thus, what
is considered foreground and background will depend on the current application, and
the border between both concepts can be seen as fuzzy.

Agents and mobile objects are usually considered as foreground, whereas fixed
objects are commonly referred as background!. A mobile object is generally one that

1t is worth to notice that any part of the background that moves is considered from then
on as foreground —this is the case of a car parked before the application starts that resumed
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has been moved or carried by an agent, such a suitcase or a bag?. It can have been
taken from the scene or placed on it. Nevertheless, it should be noticed that the
background may be in motion, such as in the case of waving branches, or flowing
water®. Although there is certainly motion, these entities must not be detected, since
they are not objects of interest. Alternatively, an agent or a mobile object do not
have to be in motion as they could have momentarily stopped, or objects could have
been left.

The term scenario includes all the conditions in which a sequence is acquired.
These are related not only to the background characteristics, but also to those derived
from the foreground objects that may be within the scene. For instance, it includes
issues such as if it considers an open world, which means that the number of people
and objects within the scene is expected to be variable. On the contrary, a closed
world refers to a region where all objects within it are assumed to be known at any
time. Thus, in an open-world application, people may enter into the scene while
others may exit, also removing, leaving, or carrying objects with them.

The scenario certainly includes also the contexzt: “any information that can be used
to characterise the situation of an entity; an entity is a person, place or object that
is considered relevant to the interaction between a user and an application, including
the user and the application themselves” [17]. Other background conditions must
be also taking into account, such as the nature of the illumination and its potential
variability. Thus, the scenario can be seen as the environment in which the scene is
recorded, and therefore it determines the performance of the visual system.

The performance can be defined in several terms: the accuracy, a measure of
how close is the estimated motion to the actual motion performed by the target;
the robustness, which denotes the system capability of functioning correctly —or at
least not failing catastrophically— under a great number of conditions; and other
issues related to a particular system implementation such as real-time processing —
where frames are processed faster than acquired. This is usually determined by other
requirements related to cost, energy consumption, and future viability and scalability.

1.3 Potential Applications of HSE

Recent developments in Human-Sequence Evaluation have made possible to consider
a huge number of promising applications. Moreover, the benefits that can be obtained
from these applications are promoting research in this particular computer-vision area.

Thus, for instance, smart video safety could assist remote elderly care, and the
prevention of children drown in unattended swimming-pools; automatic video surveil-
lance increases the security against vandalism, thefts or terrorism; traffic monitoring
assists in congestion avoidance; advanced vehicle control systems help preventing

motion, or a moved piece of furniture.

2Objects in motion without a known agent mediation —such as a rolling ball or something
which falls— are also considered as foreground.

3This motion may have some oscillation nature —like leaves moving in the wind— or not
—like clouds. In any case, here is assumed that the supposed application do not intend to
track leaves or clouds, which would entail considering this entities as foreground.
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Domain Area Specific application
Analysis Diagnosis Orthopedics
Athlete training
Choreography
Monitoring People counting

Video surveillance
Traffic monitoring
Video retrieval

Control and HCI Domotics
Driving assistance
Signaling
Synthesis Communications and HCI Teleconferencing

Virtual reality
Augmented reality
Tele-surgery
Education and Entertainment | Simulators

Video games
Animations

Video compression Transmissions
Storage

Table 1.1: HSE applications.

collisions and off-lane accidents; intelligent gestural user-computer interfaces provide
driving assistance, and allow domotics applications; orthopedic therapy, athlete train-
ing or computer animation benefit from an accurate motion analysis; sports can also
profit from on-line computed statistics; automatic content annotation based on mo-
tion semantics brings new information search capabilities.

These applications can be classified according to their aims, see Table 1.1. A
division between analysis and synthesis applications is here considered. The former
attempts to process an input video signal, whereas the goal of the latter is to generate
synthetic scenes, agents, and their motion. Notwithstanding, complex applications
may comprehend several of the following categories.

The system requirements could be rather different depending on the desired ap-
plication, as well as the considered assumptions and system capabilities.

1.3.1 Analysis applications

This area covers three kinds of applications, depending on the nature of the data to
be extracted from the image sequence, and how these data is going to be subsequently
analysed. Thus, diagnosis, monitoring and control applications are intended:

1. Diagnosis: in which the aim is to evaluate the subject performance. Potential
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applications include the fields of orthopedics, athlete training, or choreography
enhancement. Strong accuracy requirements should be expected. However,
some assumptions can be made, such as expecting only one person with special
clothes in a controlled environment. In this case, the system capabilities must
include target tracking and body-pose recovery.

2. Monitoring: in which the goal is to detect and track people within the
scene, perhaps identify them, or recognise particular actions. We can con-
sider within this area people counting, video surveillance, traffic monitoring,
or video-retrieval tasks. In surveillance applications real-time requirements are
usually necessary. These applications also need extreme robust performances.
Thus, the considered assumptions should be minimum. The system must be
able to deal with open worlds, illumination changes, background in motion,
etc. On the other hand, accuracy requirements can be relaxed. The expected
capabilities could include presence detection, target tracking, and people iden-
tification.

3. Control / Human-Computer Interactions (HCI): in which the data ex-
tracted from the sequence is going to be used to provide command functionali-
ties. Potential applications could include gestures, facial-expression and body-
pose interfaces. These interfaces would be used in domotics, driving assistance,
or signaling in noisy environments. In this area real-time processing will be
the higher requirement although, depending on the applications, both accuracy
and robustness could also be needed. In this case, system capabilities such as
action recognition and gesture interpretation are essential.

1.3.2 Synthesis applications

Synthesis applications are concerned with generating new sequences. This can be
done from real images, computer drawings, natural language sentences, or from a
mixture of these*. Thus, the following application categories are considered:

1. Communications / HCI: in which the goal of the generated sequence is to
provide some information to a user who may or may not be at the same place
where the original sequence was taken. This area includes teleconferencing and
virtual and augmented reality. Real-time processing is an essential fact in this
kind of application in order not to introduce delays in the communication. Some
applications such as tele-surgery would also need special accuracy requirements.

2. Entertainment / education: in which the sequences serve leisure purposes,
such as animations or video-games, or education and training, such as simula-
tors.

3. Video compression: in which the goal is to build a new sequence from another
one by minimising the required storage space or the bit transmission rate.

“This kind of application usually follow the synthesis from analysis paradigm. Therefore,
a previous motion detection and modelling stage from real data is frequently mandatory.
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Figure 1.1: Example of some MTT inherent difficulties, as mentioned in the
text. (a) Highly non-linear dynamics and non-rigid shape. (b) High appear-
ance variability. (c¢) Cluttered scenario. (d) Illumination-related difficulties.

1.4 Problem Overview: Which are the Difficulties?

Multiple-Target Tracking is extremely complex and time-consuming. Further, strong
requirements may be mandatory, like extreme robust performances, high accuracy, or
real-time processing.

This task being so ambitious, serious difficulties should be expected. First of
all, adversities common to other Computer Vision areas could cause system failures,
such as uncontrolled changing illumination, shadows, cluttered backgrounds —also
possibly in motion— target variability, etc.

In addition, MTT entails numerous special difficulties:

1. it involves dealing with remarkably non-rigid targets; they are not only highly
articulated, but also elastically deformable, and usually wear loose-fitting clothes;

2. neither their appearance, nor their shape can be specified in advance; there is
a considerable target diversity, not only due to the presence of several classes
of targets —like people, vehicles, animals, or any object— but also within a
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Head Close-body Medium-body
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Figure 1.2: Example of resolution selection. (Figure taken from the Scene
Understanding Symposium notes, Poggio, 2007).

particular class, and even with the same target at different times; the fact that
both shape and appearance vary as the agent performs a particular motion
must as well be taken into account;

3. their dynamics are highly non-linear, a-priori unknown, and they are always
subject to sudden and unforeseeable changes; in this case, the agent’s inten-
tionality plays an important role;

4. in open-world applications, the number of agents within the scene may vary over
time; they might also carry, leave or remove objects from the scene, thereby
actively modifying the background;

5. in unconstrained and dynamic environments, the illumination and background-
clutter distracters are uncontrolled, affecting the observed appearance as time
goes by; this depends on issues such as the targets’ position in the local back-
ground, or their orientation to different —and maybe time-varying— illumina-
tion sources;

6. finally, agents tend to interact among themselves, grouping and splitting, caus-
ing partial or complete occlusions, and thereby changing their observed appear-
ance and shape at any time.

Summarising, both background and target appearances are extremely difficult to
model, and they vary over time in an uncontrolled way. Further, target movements
and interactions are considerably hard to predict. Therefore, there is still much
ground to cover before reaching a point where it can be said that the unconstrained
people-tracking problem has been solved, what makes the task specially appealing.
Some examples of images with the above mentioned difficulties are shown in Fig. 1.1.

1.5 Assumptions over Considered Scenarios for HSE

One should also keep in mind that several scenarios may be considered depending
on the desired application and where it is carried out. Different scenarios may imply
rather different approaches. The following criteria can be used to distinguish among
the different scenarios in order to decide the most suitable approach:
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e Time-scale selection, in which the change ratio for the different features is set.
Attributes can change abruptly —like the motion pattern, or a goal-directed
behaviour— slowly —appearance— or be quasi-permanent —face shape, gait.

e Spatial-scale selection, in which the resolution is chosen. High resolution would
be necessary to analyse gestures or facial expressions, whereas pose analysis re-
quires a medium resolution and trajectory tracking the lowest one, see Fig. 1.2.
Minimum resolution is set depending not only on the current application but
also on the chosen approach.

e Information-channel selection, in which it is decided whether facial, hand, the
whole body information, or several of these are used. This would depend on
what the focus is placed on: expressions, gestures, pose, location, presence,
etc. More than one channel could be considered in order to improve the system
robustness by using redundancy to disambiguate unsettled situations.

e Application requirements, in which accuracy, speed and robustness are taken
into account depending on the application purpose. For example, some appli-
cations will require real-time processing, while in others off-line processing will
be enough.

e Model necessity and availability, in which the possibility of considering for in-
stance an articulated —and perhaps even elastic— body-structure, or a simpler
body model, is evaluated. Models for other information channels, such as faces,
or for the scene can be also taken into account.

e Active or passive devices may be taken into account. The formers relies on
radiating some signal from a transmitter attached to the subject; whereas the
latters use natural signal sources such as light. In this second case, markers
can be used. However, both methods can be considered as intrusive®. Ob-
taining robust and accurate tracking performances, whilst using non-intrusive
technology, is frequently mandatory. This is what had led to vision-based sys-
tems. Therefore, a technology which does not depend on devices attached to

cooperative subjects is desired, that is, a Markerless Motion Capture.

e Context, in which several premises are often assumed:

— Camera assumptions relative to single or multiple cameras, fixed or mo-
bile, monocular or stereo, monochrome, colour or infrared, active vision,
or the use of particular camera models, optics, etc.

— Background assumptions relative to whether outdoor or indoor scenes
are considered, static or in-motion background, potential illumination
changes, shadows, presence of clutter, a-priori known objects in the scene,
or even a detailed scene model.

— Foreground assumptions. Two kind of premises can here be considered.
In the first place, those ones related to movement, such as possibility of

®An exception to this generalisation is given by thermal imagery, where the signal is
radiated by the targets themselves and no marker is required.
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occlusions; agents and objects entries and exits from the scene; smooth,
restricted or already-known dynamics; whether the camera is faced or not,
or whether attitudes and intentions are known. Secondly, those related to
the structure, such as whether the subject and the start pose is known or
not; whether a single person, multiple or groups of people can be found in
the scene; presence of special clothes or markers, or whether objects can
be carried.

Some of these criteria have been also used by Pentland in his Looking at people domain
taxonomy [69], by Moeslund et al. while considering Motion Capture Assumptions
and Application Performances [63], or by Gavrila while describing possible taxonomies
according to sensor properties [23].

The aim of this work is to develop a general approach able to cope with uncon-
strained tracking in trajectory-analysis HSE applications. Thus, among the above-
presented common premises, only the following ones are assumed (which usually hold
in most of this kind of applications):

1. All sources of noise are considered to be uncorrelated, and to cause White
Additive Gaussian Noise (WAGN).

2. The background slowly changes with respect to the motion of the targets within
the scene.

3. Changes in the target’s dynamics and appearances are smooth at the current
frame rate. This assumptions allow us to introduce the following simplifications
in the dynamic, appearance and shape models:

(a) Since their long-run dynamics are hardly predictable, a first-order dy-
namic model is adopted. Thus, the considered dynamic models are given
by a constant-speed approaches where the acceleration is modelled as
WAGN. The latter is supposed to be constant during the sampling pe-
riod, and independent between periods.

(b) Appearances are supposed to evolve smoothly in short-time scales. This
allows to set a time continuity, and to avoid appearance updatings under
certain conditions. A robust appearance model can be built, allowing
target matching among frames which are close enough.

(c) Target interactions cannot abruptly change between frames. Thus, for
instance, targets cannot change from grouped to single without ever being
splitting.

4. The size of the targets in the image is assumed to be big enough in order to
build a representative statistical appearance model, but small enough w.r.t the
scene size.

5. Humans will essentially remain in upright posture. This along with the chosen
resolution permits to select a coarse blob representation as information channel.
No body model is used. Blob orientation is considered to undergo just minor
variations.
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6. The sequence of input images come from a stationary single monocular colour
camera.

Therefore, no assumption is taken relative to the following issues:

1. The number of targets within the scene, which may vary as time evolves.

2. Their trajectories and dynamics, which are completely unknown beforehand,
and presumably highly non-linear.

3. The scene conditions, which could be uncontrolled. No knowledge is a-priori
available about illumination conditions, complex clutter distracters, or regions
in motion. These may also evolve over time depending on the lighting, weather,
moved objects, etc.

4. The target appearances and shapes, which are unknown. No markers are placed
on the targets. Heavy appearance and shape changes can be expected due
to the deformable and articulate nature of the targets, and potential variable
illumination conditions.

1.6 The Ultimate Goal

In this work, the aim is to achieve a robust and accurate MTT. This implies the infer-
ence of the state of each target within the scene. Therefore, tracking is the result of
the conjunction of detection, estimation and adaptation tasks. Firstly, targets need to
be detected within the scene. This allows the system to initialise a tracker over each
target. Then, coherent relations must be established between detected targets over
time by means of prediction and validation in accordance with new measurements.
Thus, estimation reduces the search area and may cope with expected difficulties
such as occlusions. In addition, different hypotheses can be considered simultane-
ously, improving the system performance in terms of robustness. Finally, the models
themselves must be adaptive in order to handle unforeseeable alterations.

Therefore, the ultimate goal is to conceive a principled image-based tracking ar-
chitecture which makes a step forward in dealing with the aforementioned difficulties.
This system will be implemented and experimentally verified using real image se-
quences. It should be able to simultaneously perform a reliable tracking of multiple
targets in unconstrained and dynamic open-world scenarios, in the above stated con-
ditions. At the present stage, this will be done using as system input the output of a
single, monocular, static colour camera.

As aresult, target trajectories will be obtained, as well as quantitative information
about the target state at any time, such as their speed and size, and qualitative one,
such as whether they are being occluded, grouping or splitting, and entering or exiting
the scene. Target trajectories, and the interactions among them will be analysed from
a coarse representation without making use of a-priori models. Consequently, in this
work no attention is placed on target postures and actions, or facial expressions and
emotions. These are in a level of detail which is out of the scope of this document®.

SNevertheless, these topics are within the scope of the HSE framework that steers the
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1.7 Approaches and Contributions

In this thesis, two different tracking approaches are presented and confronted. A
probabilistic framework is commonly used as a way to perform this task [80]. Classical
approaches, such as the Kalman Filter [48], rely on strong assumptions about the
linearity and Gaussianity of the involved distributions, which cannot be applied in
complex scenes. The first approach developed in this document focuses on tracking by
means of Particle Filtering (PF) in the conditions described above. This approach has
been widely explored by several previous algorithms [38, 91, 67, 16]. Although some
results have been achieved, many undesirable effects still remain. These misbehaviours
are here highlighted, and an algorithm which deals with some of them is proposed.

Thus, tracking is first performed by enhancing the particle filtering framework.
The main contributions of the presented approach are the following:

e Previous state estimations are used in the dynamics updating process to feed
back the sample state. All state variables are regularised. Both actions attempt
to reduce the number of samples required to carry out the tracking task while
attenuating the trajectory jitter.

e Target appearance is modelled by means of grey-scale templates. The effects
of the position and size errors on the likelihood function are explored. Unde-
sirable effects are tackled by making use of an appropriate likelihood mapping.
Subsequently, in order to cope with clutter distracters, colour-based histograms
are used instead to model target appearances. Likelihoods are computed from
histogram similarity. Colour information relative to the target surroundings is
used to tune the colour histograms.

e One of main particle-filter drawbacks is sampling impoverishment. This prob-
lem becomes critical in a multiple-target tracking scenario. By modifying the
sample-weight normalisation —taking into account the number of detected
targets— the loss of any of the targets due to the lack of samples is avoided.

e Model drift is precluded by careful updating, based on likelihood measures.

e Occlusions are handled considering the predicted trajectories of all targets
within the scene and the history of likelihood measurements. Thus, target
tracking and updating is faced according to their occlusion status. Likelihood
measures are taken to infer when the appearance model can be reliably updated.

Despite the great efforts spent on this approach, it still lacks from a robust and accu-
rate enough performance due to the important drawbacks of a PF framework, together
with the inherent complexity involved in non-supervised multiple-human tracking. As
a second approach, a principled framework is here proposed to accomplish this task.
The main features of this approach are the following:

efforts of our lab. Cooperation with HSE Cognitive Levels, and body and face information
channels is intended. See http://iselab.cvc.uab.es/ for further details on these issues,
and on the Image Sequence Evaluation research lab.
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e It consists of a modular and hierarchically-organised architecture. It aims to
deal with such a complex task by taking advantage of a general and structured
framework. A set of co-operating modules, distributed in three levels, work fol-
lowing both bottom-up and top-down paradigms, thereby maximising potential
synergies.

e The approach follows the natural paradigm, where visual-stimuli analysis is
performed by the combination of pre-attentive and attentive processes. Further,
it makes use of first-order and second-order motion perception.

e Levels are defined according to the different tasks to be performed, namely
target detection, low-level and high-level tracking. Thus, a remarkable char-
acteristic of this architecture is that the tracking task is split into two levels:
a lower level based on a short-term blob tracker, and a long-term high-level
target tracker. While the former permits tracking without the need of detailed
knowledge, the latter automatically builds and tunes multiple appearance mod-
els, manages the events in which the target is involved, and selects the most
appropriate tracking approach according to these.

e Every module has a specific functionality which is performed by a particular
algorithm. However, being the architecture modular, these are subject to be
substituted by any enhanced method developed in the future. New functional-
ities can also be easily added. Further, stress has been laid on designing robust
high-level tracking algorithms to tackle such a complicated task.

e Two operation modes are implemented, namely Motion-based Tracking (MBT)
and Appearance-based Tracking (ABT). These are independent and automati-
cally selected according to each target particular conditions.

e A complex event management is performed. Multiple-target interaction events,
and a proper scheme for tracker instantiation and removal according to scene
events, are considered. This allows the system to switch between the two con-
sidered operation modes. Further, open-world applications can be tackled.

e The current proposal is fully automated, and thereby no human interaction is
required. Further, no a-priori knowledge about either the scene or the targets,
based on extensive off-line training or learning periods, is used. However, the
expected future use of this high-level information can do nothing but enhance
the current system performances. Hence, in the present approach the scenario
could be completely unknown beforehand, and no a-priori knowledge is available
about potential targets. The method is auto-adaptive in issues such as the
scene model, the number of targets being tracked, or their most convenient
appearance representation.

e The proposed system deals with multiple targets simultaneously. It is scalable
with the number of targets, avoiding the curse of dimensionality present in most
other systems.

e It copes with clutter distracters by selecting the most convenient colour-related
features. A set of appearance models is continuously conformed, smoothed
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and updated. Thus, multiple targets are represented using several models for
each of them, while they are simultaneously being tracked. Further, colour
information relative to the target surroundings such as the background and
other close targets is used to tune the appearance models.

e Model drift is precluded by a careful updating of high-level appearance colour
models, thereby ensuring proper tracking despite noisy measures, estimate er-
rors, partial or complete occlusions, and changes in the illuminant and camera
viewpoint.

Summarising, the aim of the proposed system is to work as a stand-alone application in
a non-friendly, complex and dynamic open-world scenario, which could be completely
unknown beforehand. Thus, possible scenarios could include an indeterminate number
of non-white light sources, heavy background clutter, huge target variability, and
complex target interactions.

1.8 Document Outline

The remainder of this document is organised as follows. Chapter 2 covers the state of
the art: some previous surveys and taxonomies related to the analysis of human mo-
tion are here described; subsequently, the most recent and relevant approaches which
tackle target detection and tracking are reviewed. The advantages of the different
methods are explained and their drawbacks exposed.

In Chapter 3, the HSE framework —in which the tracking proposal is inscribed—
is depicted, evolved, and confronted to previous taxonomies. In this research, we aim
to develop a system that can be seen as a part of a more complex one which performs
a HSE, which is also the aim of the EU HERMES project” in which the author was
actively involved at the time this thesis was developed.

Chapter 4 develops the first approach presented in this document. The necessary
probabilistic framework to accomplish this work is described. Bayesian filters are ex-
plained. Particle filters are revisited and their misbehaviours exposed. A particle filter
algorithm for multiple-target tracking is implemented and tested. Subsequently, it is
enhanced by incorporating colour-based appearance models and likelihood functions.

The second proposal is described in chapter 5. First, the tracking architecture is
outlined in section 5.1, and justified by pointing out the similarities with a Natural
Vision System in section 5.2. Then it is fully described in the next three sections:
section 5.3 details how the segmentation is carried out, and the chosen data represen-
tation for the detected foreground blobs; section 5.4 discusses the low-level tracking
tier; and section 5.5 presents a high-level appearance tracker, with on-line feature
selection, operation mode switching, and complex event management.

Chapter 6 is related to experimental results. First, some considerations on track-
ing performances are given in section 6.1. Then, the next sections shows an exten-
sive set of experimental results of both approaches using own and public well-known

TEC grant IST-027110, see http://www.hermes-project.eu/
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databases. Finally, chapter 7 presents a brief summary of the contributions, sum-
marises the conclusions, and proposes some future-work lines which can extend the
system capabilities.

1.9 Resum

Els éssers humans, aixi com una gran diversitat d’espécies animals, han desenvolupat
una capacitat sorprenent de processament complex de estimuls visuals, variables i con-
tinus. Milions d’anys d’evolucié han desenvolupat sistemes visuals altament eficagos
que mostren, d’una manera aparentment facil, rendiments increibles.

L’habilitat de la detecci6 de moviment s’ha d’esmentar indubtablement entre
les facultats més potents dels sistemes de Visio Natural [68]. Aquesta habilitat
estd implicada crucialment en nombrosos assumptes critics per a la supervivéncia
de l’espécie, com el seguiment objectius que es mouen, malgrat oclusions parcials
i canvis d’il-luminacié drastics; la extraccié de 'estructura de profunditat del moén
aprofitant la paral-laxi del moviment; la deteccié objectes que es camuflen en un fons
de color i textura similars; o en el reconeixement d’objectes des del moviment relatiu
de les seves parts del cos. A més, aquesta facultat s’implica en unes quantes respostes
motors associades, com l'estabilitzacio de la mirada, o el control de les extremitats.

Aixi, ’habilitat de percebre el moviment de predadors potencials i de preses ha
estat inevitablement connectat amb les capacitats d’automoviment [54]. Aquestes
suposen la necessitat d’'un sistema nerviés i sensorial. El sistema visual és el sistema
sensorial més important en organismes del nivell més alt de ’escala phylogenetic. En
particular, el Cortex Visual és el sistema més massiu al cervell huma.

Un domini nou interdisciplinari que tracta d’emular algunes d’aquestes capaci-
tats s’ha algat dins de les Ciéncies de la Computacio6 en les ultimes tres décades [63].
Compreén técniques de Processament i Analisi d’Imatges, Reconeixement de Formes,
Intel-ligéncia Artificial, Grafics per Computador, i Robotica, entre altres. Aquest do-
mini nou analitza i avalua seqiiéncies d’imatges d’escenes poblades amb humans. Els
desenvolupaments impressionants també han estat possibles gracies a un nimero gran
d’avencos tecnologics en el camp del hardware. Les capacitats emergents han conduit
a una amplia gamma de contribucions cientifiques, i, posteriorment, a aplicacions
noves de software.

El proposit altim d’aquest camp nou és interpretar el comportament de la gent.
Aquest objectiu exigeix detectar i seguir objectes que es mouen, i identificar gent entre
ells. L’analisi del moviment huma s’esta estudiant actualment minuciosament, i les
taxonomies noves reemplacen a les antigues mentre l'estat de 'art fa progrés. Aixi,
les taxonomies s’han convertit des de classificacions simples, segons criteris diversos
com ara la dimensionalitat espacial o el tipus del sensor utilitzat [9, 1, 23, 69], a més
complexos basats en funcionalitats de sistema organitzats jerarquicament [8, 93, 62].
Mentre en treballs antics els algoritmes aspiraven calcular els parametres quantitatius
que descriuen quan i on era detectat el moviment, en els més actuals s’incorporen
processos d’alt nivell per analitzar quina classe de moviment esta sent observat, i com
s’esta executant.

Aixi, al 2000 i segons Nagel [65], un sistema per |’ Avaluacid de Seqiiéncies d’Imat-
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ges (ASI) es va definir per transformar dades de seqiiéncies d’imatges en descripcions
semantiques; posteriorment, aquestes descripcions es processen, i el sistema reacciona
en termes de senyal o conceptes.

El 2004, Gonzalez |25] proposa el terme Awvaluacié de Seqiéncies amb Humans
(ASH) per definir l’analisi de moviment humana per aconseguir la comprensi6 del
comportament huma observat, és a dir, I’explicacié i raonament sobre el per qué el
moviment es observat. A més, un sistema AHS proporciona descripcions de ’escena
en llenguatge natural, aixi com la generacié de seqiiéncies sintétiques de l’entorn
per visualitzar comportaments reconeguts i simular situacions critiques dificilment
observables en el mon real. Per aixo, ASH es pot definir com un Sistema de Visié
Cognitiva, on hi han transformacions de valors d’imatge a descripcions semantiques
sobre el comportament huma, aixi com representacions visuals sintétiques. Per aixo,
AHS constitueix un desafiament enorme en el qual el proposit és emular els rendiments
fascinants d’un Sistema de Visi6 Natural més les habilitats de raonament i comunicaci6
d’observadors humans.

En aquest treball, el focus es posa en una de les tasques de ASH principals:
el seguiment. Entenent el comportament d’éssers humans exigeix que aquests es
detectin i se segueixin. El seguiment pot ser definit com la detecci6 i el seu posterior
manteniment en qualsevol objecte d’interés. Consegilientment, l’iterés es posa en
objectes movent-se en escenes geneériques poblades amb humans. El problema es
tracta sense posar cap classe de restriccions sobre la natura de 'escena. La proposta
també hauria de ser independent del nimero d’objectes que se segueixen, que a-priori
és desconegut.



Chapter 2

Related Work

In spite of being a relatively new research area, a massive number of contributions
related to HSE have been published in the last years[63, 62]. Undoubtedly, it repre-
sents an ambitious challenge, which is further raising important amounts of private
and public funds due to the increasing number of attractive commercial applications.

The growing number of contributions in recent years has motivated the publication
of multiple surveys [1, 23, 93, 62]. These review the state of the art, while proposing
new domain taxonomies. Nevertheless, this field still lacks from a widely accepted
taxonomy which arrange in a systematic way the different works. Thus, it would
be interesting to show the relations between these, while including a hierarchical
classification.

In this chapter, the most relevant surveys are revisited, thereby putting into
context the work here proposed. Further, a new taxonomy is also proposed. Subse-
quently, the focus is placed on detection and tracking methods. Thus, some of the
most significant algorithms are discussed. The advantages of the different methods
are explained and their drawbacks exposed.

2.1 A Review of Most Relevant Surveys and Tax-
onomies on HSE

The increasing number of papers —first related to people detection and tracking, then
also to the analysis and understanding of human motion— in the last years has led
to the publication of several surveys. Each of them has presented a taxonomy which
arrange the most significant previous works according to different criteria.

Aggarwal and Cai presented a series of reviews in different workshops. Finally,
this work resulted in what is probably the first relevant survey [1]. It reviews pro-
posed approaches from 1980 to 1998, and 51 papers are referenced. Their taxonomy
considers three main areas: (i) body structure analysis, (ii) tracking moving humans,
and (iii) recognition, see Fig. 2.1.

The first area concerns the structure of human-body parts. It is subdivided in
two kind of approaches, depending on whether they rely on a-priori human shape

17
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Figure 2.1: Taxonomy presented by Aggarwal and Cai in [1].

models or not. Approaches from both categories can be grouped according to the
representation used, namely, stick figures —the supporting bones— 2-D contours —
the projection of the human figure— or volumetric models —modelling the flesh.

The second proposed area involves human tracking without considering its artic-
ulated configuration. Another subdivision is made based on whether a single camera
or multiple perspectives are used. Papers from both approaches are also grouped
depending on the representation, namely, points, 2-D blobs —that is, regions with
similar properties— or 3-D volumes. The considered features are related to motion
information (position, velocity), intensity values, etc.

The final area addresses human-activity recognition. Papers are grouped depend-
ing on whether they use template-matching techniques or state-space models. The
former uses representations based on points, lines and blobs, while the latter uses
point and meshes.

Another survey covering the time period from 1973 to 1997 —which references
81 papers— was presented by Gavrila [23]. Here, the classification is based on two
criteria: the type of model, and the space dimensionality. Thus, this survey distin-
guishes three categories: (i) 2-D approaches without an explicit shape model, (i) 2-D
approaches with explicit shape models, and (iii) 3-D approaches, see Fig. 2.2.

The first kind of approach relies on statistical descriptions based on low-level fea-
tures and heuristics such as image moments, orientation histograms, and skin colour.
The second one assumes a known point of view and a defined motion model. Rep-
resentations are based on sticks and 2-D blobs. The third kind of approaches are
mainly based on stick figures which model the skeleton, and 2-D surfaces or volumes
which model the flesh. Features such as joint angles are considered. The three cate-
gories aim to provide results for all the required functionalities at the moment, that
is, detection, tracking and recognition.

In addition, Gavrila provided an application classification altogether with the sys-
tem required capabilities. Six fields are considered: virtual reality, smart surveillance,
advanced user interfaces, motion analysis, and model-based coding. Among the ca-
pabilities, presence detection, identification, tracking, action recognition, and gesture
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Figure 2.2: Taxonomy presented by Gavrila in [23].

or expression recognition can be found.

Moeslund and Granum [63] gave the most comprehensive survey, covering the
years between 1980 and 2000 and citing 154 papers. Further, some previous surveys
are discussed and compared. The covered period is later extended in [62], where
contributions from 2000 to 2006 are included, and 337 papers are referenced.

In their work, a novel taxonomy based on functionalities is proposed: (i) initiali-
sation, (ii) tracking, (iil) pose estimation and (iv) recognition, see Fig. 2.3. However,
facial expression and hand gestures are not covered.

The first considered task concerns the camera, scene and target model initialisa-
tion, that is to say, calibration, manual or automatic parameter tuning, target initial
pose, etc.

Then, tracking is addressed. The process is divided in three main tasks, i.e.,
target segmentation, representation and tracking. The former is divided in temporal
and spatial approaches. According to the authors, on the one hand, temporal ap-
proaches can be subdivided into subtraction —which includes frame differencing and
background subtraction— and optical flow techniques. On the other hand, spatial
approaches may rely on thresholding, or on statistical methods.

Secondly, the representation of segmented entities is reviewed. Two categories
are given, namely, object-based —points, boxes, silhouettes or active contours, and
blobs— and image-based —spatial, spatio-temporal, edges, and features such as
length, area, etc. Finally, the tracking task is discussed considering model-based ap-
proaches opposed to probabilistic learnt models; and single camera against multiple-
camera approaches.

The third main functionality concerns the pose estimation. It is here considered
as either a tracking post-processing, or as an active part of it. Three categories
are then given: model-free, indirect model and direct model. The former builds a
representation without the use of an a-priori model. It can be based on a point, box
or stick representation. The second category considers approaches which use a model
as a guide to interpret the given data. The latter includes those approaches which
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Figure 2.3: Taxonomy presented by Moeslund and Granum in [63].

use a direct model, that is, a detailed a-priori human model.

This last category is discussed in a comprehensive way. A large number of papers
are classified according to their abstraction level —edges, silhouettes, sticks and joints,
blobs, depth, texture, movement— the dimension —2-D, 2% —D, 3-D— or the model
type —cylinders, stick figures, patches, cones, ellipsoids, scaled prisms, CAD model,
boxes, etc.

The way in which the results are evaluated is also taken into account: quantitative
such as ground truth or manually segmented data, and qualitative such as visual
inspection or animation.

Subsequently, the recognition task is addressed. Two distinction are made: static
and dynamic recognition. Among the former, techniques such as template matching,
normalised silhouettes or postures can be found in the literature. The latter includes
low-level methods, such as spatio-temporal templates or motion templates, and high
level ones such as Hidden Markov Models (HMM) or Neural Networks (NN).

Finally, a classification of applications is also proposed by considering three main
areas: surveillance, control and analysis. A taxonomy relative to the assumptions
made in the field is as well given, which consists of movement, environment and
subject assumptions.

In 2003, Wang et al. presented an extensive and one of the most interesting
surveys [93]. The time period from 1992 to 2001 is covered by citing 164 papers. Ap-
plications are classified under three categories, namely, visual surveillance, advanced
user interfaces, and motion-based diagnosis and identification. Previous surveys are
also revisited. This review presented a taxonomy based on functionalities organised
in a hierarchical manner. The proposed framework consist of three levels correspond-
ing to low-level vision, intermediate-level vision and high-level vision. Each level is
focused on one of the following task: detection, tracking and behaviour understanding,
see Fig. 2.4.

The detection level aims to segment and group moving pixels corresponding to
people. It is divided in two sub-processes: (i) motion segmentation and (ii) object
classification. The former includes several approaches which are organised under four
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Figure 2.4: Taxonomy presented by Wang et al. in [93].

categories, namely, background subtraction, statistical methods, temporal differencing
and optical flow. The latter is subdivided into two categories, which are shape-based
classification and motion-based classification.

The goal of the tracking level is to establish coherent relations of image features
between frames. Present-day approaches are classified according to whether they are
model-based, contour-based, region-based or feature-based. With respect to the former,
human-body models can be represented by stick figures, 2-D contours or volumetric
models. The second and third kind of approaches aim to track detected contours and
blobs, respectively. Finally, the last one aims to track sub-features as points or lines.

The highest level involves action recognition and description, and the analysis and
understanding of human behaviours. The usual techniques are dynamic time warping,
hidden Markov models or neural networks. The recognition is carried out under two
groups of approaches, namely, template matching and state-space methods. Semantic
descriptions are also receiving increasing attention from the community, as is stated
by the authors.

Finally, Pentland [69] presented a paper which, without aiming to classify explic-
itly the up-to-time approaches, touches a diversity of human-motion analysis methods
and applications. This domain was called in the paper “Looking at People”, and this
term have been subsequently widely used'. A review of related mathematical tech-
niques, and a domain taxonomy based in channels, scales and intentionality is pro-
vided. The state-of art of face recognition, surveillance, 3-D methods and perceptual
user interfaces is revisited.

As has been aforementioned, this thesis is focused on target detection and track-
ing. Further, a taxonomy of these two functionalities based on the information flow,

! As an example, the search of the terms “looking at people” plus “tracking” through the
Internet yields more than 24000 hits.
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and a structured framework which encloses Human-Motion Analysis functionalities
are presented in section 2.2, and chapter 3, respectively.

In order to put the presented work into context, it is worth to locate it within
the taxonomies above revisited. Thus, it lies within the tracking area, and the single-
camera approach category of the taxonomy proposed by Aggarwal and Cai [1]; within
the 2D area, and without-shape-model approach category of the one proposed by
Gavrila in [23]; in the taxonomy proposed by Moeslund and Granum in [63], it lies
within the tracking functionality, covering all segmentation, representation, and track-
ing tasks, and following temporal segmentation approaches, object-based representa-
tion, and probabilistic learnt models; finally, it the taxonomy presented by Wang et
al. in [93], our work is covers both detection and tracking functionalities, and it ad-
dresses motion-segmentation and tracking tasks by following statistical approaches
for the former, and blob ones for the latter.

2.2 State of the Art of Target Detection and Track-
ing

In this section, a review of the most relevant papers published in recent times rela-
tive to segmentation, detection and tracking approaches is presented. The different
proposals are here outlined, and their advantages and drawbacks discussed. How-
ever, despite the huge efforts made, and the fact that achieving robust and accurate
tracking is the first basic task to HSE, the problem is still open.

From the author point of view, target segmentation and tracking tasks are so
linked that they should be considered together. Thus, a proper segmentation is, at
least, essential for tracking initialisation and error recovery. And without applying a
tracking scheme, it is not possible to keep a temporal consistency on detected targets.
Further, it is really unusual to find a relevant paper specific to just segmentation
or tracking. Papers are here inscribed in one of the following categories or another
according to their main contribution, albeit they usually cover several tasks

This review implicitly presents a taxonomy according to the information flow.
Thus, tracking is usually carried out using either bottom-up or top-down approaches.
The formers rely on foreground segmentation, and a subsequent target association,
which is usually followed by a state filtering; on the contrary, the latters are based on
a prior complex motion, shape and/or appearance modelling, and a posterior state
prediction. Thus, bottom-up approaches generate hypothesis according to the results
of image processing, whereas top-down ones specify a-priori generated hypotheses
according to current image data.

In this taxonomy, each of the bottom-up tasks is subsequently divided according
to the different techniques used —which in some cases coincide with the ones stated
by the aforementioned surveys.

Top-down approaches are split taking into account the tracking technique used,
although it is subsequently detailed the feature in which the particular proposal rely.
A sketch of this taxonomy is shown in Fig. 2.5.

Finally, some research groups have developed structured architectures which aim
not to be restricted to a particular task, but to perform a global scene analysis [46, 81].
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Figure 2.5: Proposed tracking taxonomy. Tracking approaches are classified
in bottom-up and top-down methods. Bottom-up ones usually perform target
segmentation, observation association, and state filtering tasks. Top-down
approaches require an off-line appearance and dynamic modelling, and then
perform target tracking according to the chosen methods.

These contributions usually combine several techniques.

2.2.1 Bottom-up Tracking

Bottom-up tracking approaches are usually based on motion segmentation in order to
extract foreground entities from the background [94, 61, 83]. This can be performed
by means of background subtraction, frame differencing, a combination of both, or
optical flow.

Alternatively, detection can be achieved by means of detection of salient fea-
tures [32, 55, 6]. In this case, regions with high curvature in space-scale images
—blobs— regions with large gradients —corners—- and other significant image char-
acteristics are extracted. However, by using this kind of approaches, any salient
background point is selected as a potential target.

2.2.1.1 Pixel Segmentation

This task involves separating image regions that do not belong to the background,
and extracting them. Although this issue is closely related to movement, foreground
objects could remain static for an unknown number of frames while the background
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Drawbacks of common approaches | Intrinsic difficulties
Bootstrapping [Nlumination changes
Foreground aperture Camouflage

Ghost Clutter in motion
Stopped Objects Camera motion

Table 2.1: Motion-segmentation difficulties.

may be in motion?.

Motion segmentation algorithms face multiple difficulties. These can be classified
into two categories, since some of them are intrinsic to the problem domain, whereas
others may be seen as drawbacks of the approach used, see Table 2.1. Thus, the main
difficulties are the following;:

Bootstrapping. It refers to the problems that arise when the method requires
and initialisation period, and a scene free of moving objects cannot be assured.

Foreground aperture. In this case, homogeneous object in motion cause that
the inner part is not segmented.

Ghosts. The relocation of a background object implies changes in both the
old and the new location. However, only the latter should be identified as
foreground region.

Stopped object. Some motion segmentation methods requires significant
changes between frames to segment any pixel. Thus, if a target stop motion,
the segmentation fails.

Illumination changes. These completely alter the pixels characteristics,
thereby resulting in a drastic increase of pixel segmentation. They may be
global —thereby yielding a general highlight or shadow— or local —which are
mainly caused by target shadows. Further, they can also be sudden —such as
those due to changes in weather conditions, or by turning on/off a light— or
gradual.

Camouflage. In this case, some of the pixel features between the background
and the foreground are too similar to disambiguate them.

Clutter in motion. Any approach that relies on motion to perform segmen-
tation is liable to consider as foreground any moving background pixel.

Camera motion. In this case, the whole scene seems to be in motion.

In the following, papers are classified according to the approach used, and how
the different difficulties are addressed is explained.

2Think about a person stopped momentarily at a traffic light. He or she must still be
considered as foreground and, therefore detected and tracked. On the other hand, waving
branches and leaves or flowing water must not be segmented, although they are in motion.
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(a) Sample frame (b) Obtained segmentation

Figure 2.6: Sample frame using the approach published in [94] by Wren et
al.

Background Subtraction Background subtraction is one of the most commonly
used approaches for motion segmentation [71, 50]. Pixels in motion are segmented by
comparing the current image and a reference one, namely, the background model. In
the early days, simple methods consisted in differencing each image and a reference
one, and subsequently compare the result with an a-priori set threshold [33]:

|Bt —It| > T, (2].)

where B, is the reference background at time ¢, I; the current frame, and 7 a pre-set
threshold. The model could be subsequently updated following a Infinite-Impulse
Response filter (IIR) :

Bt+1 = (1 — Oé) Bt + OéIt, (22)

being « the adaptation rate that weights the current model versus the new obser-
vation. However, this method was extremely sensitive to changes in the background
conditions such as lightning or due to background in motion, as well as to the camera
noise. More recent approaches model either each pixel or group of pixels statisti-
cally. This allows building adaptive background models while providing robustness to
the above-stated background conditions. Usually, model statistics are continuously
updated in order to provide an adaptive approach.

Among the background-subtraction approaches, Wren et al. developed the Pfinder
algorithm [94]. Each scene pixel is modelled using a Gaussian colour distribution.
Thus, outliers are assumed to be foreground pixels, and are therefore segmented.
Visible pixels are updated using a single adaptive filter. Segmented pixels are grouped
into blobs and each blob is modelled using spatial and colour components. Blobs are
associated with body parts using a log likelihood measure and tracked by means of
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(a) Sample frame (b) Obtained segmentation

Figure 2.7: Sample frame using the approach published in [30] by Haritaoglu
et al.

Kalman Filters (KF). However, it just attempts to detect and track one person, in
upright posture, in indoor scenes. A sample frame is shown in Fig. 2.6.

Haritaoglu et al. presented the W/ method [31, 30]. Unlike Pfinder, it aims to
detect and track people, isolated or in groups, in outdoor scenes, and considering
several poses. Each pixel is modelled with a range of intensity values given by mini-
mum and maximum intensity values, and the maximum intensity difference between
frames during a training period. Pixels whose values are placed outside the interval
which is given by the minimum value minus a multiple of the maximum difference
and the maximum value plus a multiple of the maximum difference are considered as
foreground pixels. A sample frame is shown in Fig. 2.7.

The model is periodically updated considering both pixel-based and object-based
methods: the former updates the values of the pixels classified as background, and the
latter replaces the model parameters for those pixels classified as static foreground.
Neighbour pixels are grouped and blobs are classified using heuristics. Poses are
identified by means of projection histograms. KFs and textural temporal templates
are used to track detected targets. However, this approach is rather sensitive to
shadows and lighting changes, since the only cue is the pixel intensity.

Horprasert et al. [34, 35] implemented an statistical colour background algorithm,
which models each pixel based on both brightness and colour distortion. It still needs
a static background scene, but it’s able to handle strong shadows and highlights. The
proposed algorithm is able to classify the image pixels into four categories, namely,
original, shadowed and highlighted background, and moving foreground. A sample
result is shown in Fig. 2.8.

McKenna et al. [61] combined colour and gradient information in their adaptive
background subtraction approach. Each pixel chrominance —given by the normalised
red and green channels— is modelled using two Gaussians, one on each channel. The
Gaussian parameters are updated using an adaptive filter. If one of the current
chrominance values is farther from the mean more than three times the standard
deviation, the pixel is marked as foreground. Using chrominance instead of RGB
values, shadow detection is avoided, but it cannot cope with foregrounds of the same
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Figure 2.8: Sample frame using the approach published in [35] by Horprasert
et al.

chrominance as the background. Thus, they also modelled the background pixels
using the spatial RGB gradients, and pixels are also flagged as foreground if the
gradient of any of the channels is out of the scope of the corresponding Gaussian.
As a result, albeit foreground pixels with the same chrominance as the background
can now be segmented, hard-edge shadows are also segmented. Tracking is done by
means of data association.

Three levels of representation are used, namely regions —stable connected compo-
nents— people —groups of regions that satisfy conditions relative to overlapping and
area— and groups —people that share regions. People appearance is modelled using
colour histograms. Visibility indexes —obtained from the probabilities that the pixels
correspond to unoccluded people— are used to disambiguate occlusions. However,
problems arise when several people and the background have a similar appearance.
It is also assumed that the target appearance do not significantly change while the
targets are grouped.

Still, shadow removal has not be properly addressed yet within a target detection
framework, where shadows are considered to yield just changes in intensity, but not
in chrominance. Last advances in the field —such as those contributions of Finlayson
et al. [21]— need to be incorporated.

Nevertheless, none of these models can cope with background in motion. Stauffer
and Grimson presented in [86] an approach focused on this issue. A colour background
model is built using a Mixture of Gaussians (MoG) to represent each pixel. Thus,
each Gaussian models the pixel colour distribution for one of the possible backgrounds
learnt in a training period. Pixels which do not match any of the distributions are
considered as foreground. The distribution weights are periodically updated according
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to the one that has matched the current pixel value. The least probable distribution
is replaced in case none of them match the value, thereby, including long-term still
foregrounds. The adaptive scheme apparently also copes with lighting and scenes
changes, as well as motion from clutter. Tracking is performed by implementing a set
of KFs.

Javed et al. [43] presented a method that aimed to solve most of the common seg-
mentation difficulties: bootstrapping, ghosts, quick illumination changes, background
in motion, and camouflage. It uses both colour and gradient cues. A hierarchical
system is build based on three levels: pizel, region and frame.

At the pixel level, statistical models of pixel colour and gradients based on mixture
of Gaussians are independently used to classify each pixel as potential background
or foreground. At the region level, foreground pixels obtained from the colour model
are grouped into regions, and the gradient model is then used to eliminate regions
corresponding to highlights or ghosts. Pixel-based models are updated based on
decisions made at the this level. Finally, the frame level ignores the colour-based
segmentation if more than 50 percent of the image pixels are considered foreground.
In this case, a global illumination change in considered, and segmentation is performed
according to gradient information. Nevertheless, the ghosts are not eliminated if the
background contains a high number of edges.

Frame Differencing and Hybrid Algorithms A typical temporal differenc-
ing approach segments motion by subtracting the current image from the previous one
pixel by pixel. Then, pixels are segmented if the result is over a pre-defined threshold:

|It — It71| > T (23)

It can also be done by considering several consecutive frames. For example, Collins
et al. [11, 13] implemented an hybrid algorithm for target detection that combines
an adaptive background subtraction and a three-frame differencing approach. Back-
ground subtraction techniques can provide good segmentation results, but they are
extremely sensitive to scene changes due to dynamic background, lighting or extrane-
ous events. In addition, ghost are usually detected when long-term stationary objects
start moving —albeit statistical models eventually adapt to this situation. On the
other hand, temporal differencing is very adaptive to dynamic environments and do
not generate false alarms caused by ghosts, but it cannot segment all relevant pixels,
and it may be rather sensitive to camera noise.

In that work, pixel intensity is taken as the representing feature. Thus, pixels
whose intensity varies significantly from both the last frame and the next-to-last one
are marked as moving. These pixels are clustered and a background subtraction
method is applied to the inner region. Both background model and threshold are
updated over time for non-moving pixels.

The approach is adapted to pan-tilt camera platforms by collecting a set of back-
ground references for known camera settings and registering the images according to
selective pixel integration. They also introduced a layered detection algorithm: pix-
els are classified as stationary, transient or background according to two measures,
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namely, a motion trigger and a stability measure. These point out if the pixel belongs
to a moving object, a stopped object or the “motion” is due to lightning changes.
Foreground pixels are clustered into regions and classified as moving or stationary
ones. Stationary regions constitute layers which are used to determine occlusions and
motion resuming. Tracking is done by predicting next positions according to the es-
timated dynamic model, and convolving the object templates with candidate regions.
Several scenarios are described according to the results of the two previous stages
and hypotheses are launched accordingly. Finally, clutter in motion is rejected if the
cumulative object displacement indicates changes in direction.

Thus, this system use a network of cooperative active cameras to detect and track
people and vehicles in cluttered environments. Targets are classified into semantic
categories and their activities are monitored. Once the geo-locations are extracted,
symbolic data are inserted into a synthetic scene visualisation.

The algorithm proposed in [83] is also a good example of hybrid algorithms which
combines frame differencing and background subtraction techniques to achieve motion
segmentation. Segmentation is performed in two sequential steps. First, a fuzzy
classification is carried out by according to current pixel motion on each RGB channel.
Then, results are enhanced taken into account the previous segmentation result, and
a background model. Finally, HSI colour space is used to eliminate shadows.

In addition to frame differencing and background subtraction, optical flow tech-
niques have also been used to perform motion segmentation. These describe coherent
feature motion between frames. These techniques independently segment moving ob-
jects, even in presence of camera motion. However, this approach is rather sensitive
to noise and background in-motion, and it requires huge computational resources.

Optical Flow These methods look for coherent motion of points or features be-
tween frames. Bregler [7] presented a human-dynamics recognising method where
motion is segmented according to optical flow results. An affine motion model is used
for this purpose. Blobs are extracted by means of the Ezpectation-Mazimisation (EM)
algorithm, where the likelihood of each pixel of belonging to a particular blob depends
on the coherent affine motion, HSV colour values, and spatial proximity. In order to
incorporate past estimates, a bank of KFs provides priors for the EM initialisation,
resulting in a MoG propagation.

Summarising, multiple techniques have been developed to tackle motion segmen-
tation. They usually address a limited of the numerous difficulties expected. The way
of solution may come from a smart combination of techniques. The different algo-
rithms here described are summed up in Table 2.2, while pointing out the difficulties
addressed.

2.2.1.2 Target Detection and Observation Association

Segmented pixels are grouped into blobs, which could be considered as an entity of
interest. This is usually done according to a connected component analysis, and a
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Addressed difficulty References

Sudden illumination changes | [94, 35, 61, 86, 83, 43|
Gradual illumination changes | |30, 35, 61, 86, 13|
Camouflage [61, 43]

Clutter in motion [86, 13, 43]

Camera motion [7, 13]

Bootstrapping [86, 30, 43]

Stopped Objects [86, 30, 13, 43]
Ghosts [86, 13, 30, 83, 43

Table 2.2: Motion-segmentation methods.

subsequent spatial filtering process. Then, some features can be extracted to represent
a target observation, thereby classifying the target, and concluding its detection.

However, as it has been above stated, in some cases this process is enhanced by
taking into account the probability of a given pixel of belonging to the target according
to some statistical model.

In general, once detection has been performed, several approaches arise to keep
track of the targets. New observations can be just associated to previous ones. This
process can be done taking into account different cues like spatial proximity or ap-
pearance similarity. The latter may consist of a template matching between newly
detected targets and the models of the previous ones. In both cases several problems
must be expected due to detection failures. These mainly occur because of segmen-
tation errors —such as those due to background clutter which mimics the target
appearance, and illumination changes— and target occlusions or merging.

Depending on whether several targets and measurements are expected, the associ-
ation is accomplished using nearest-neighbour techniques, or by means of Data Asso-
ciation Filters —such as the Probabilistic Data Association Filter (PDAF), the Joint
Probabilistic Data Association Filter (JPDAF), or the Multiple Hypotheses Tracking
(MHT) [4].

2.2.1.3 State Filtering

Usually, a prediction stage is also incorporated after associating the observation,
thereby providing better chances of tracking success. Filters such as the KF [4§],
or subsequent extensions and improvements such as the FExtended Kalman Filter
(EKF) [2] or Unscented Kalman Filter (UKF) [45, 92] are commonly used.

The KF is a linear recursive estimator which predicts the next state according to a
dynamic model, and updates this result in agreement with the obtained measurement.
Although it has been widely used, it presents important drawbacks:

1. it requires strong assumptions about the linearity and Gaussianity of the tran-
sition model and the likelihood function;

2. it cannot cope with multiple targets and measurements;
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3. and, it relies on a previous segmentation in order to provide the measurement.

These requisites are often not feasible in MTT scenarios, specially during target group-
ing and occlusions, or in cluttered backgrounds. Therefore, several approaches have
been implemented in order to avoid these restrictions. The EKF linearises both tran-
sition and likelihood models using Taylor series expansions. The system Jacobian is
computed for the predicted states, and the results are used in the updating stage.
However, the EKF keeps several drawbacks:

1. posterior densities are still modelled as Gaussians;

2. the series approximation can lead to poor representations of the posterior dis-
tribution —this is specially the case on highly non-linear systems, because only
the mean is propagated through the non-linearity;

3. and, although the models do not need to be linear, they still must be differen-
tiable.

The UKF aims to propagate high-order moments through non-linear functions. A set
of deterministic sample points —called sigma points— are selected around the mean
and subsequently propagated. It can be analytically proved that it yields better
approximations of the mean and covariance than the EKF. Further, there is no need
to compute expensive, computationally speaking, Jacobians. However, it cannot be
applied to general non-Gaussian distributions.

More general dynamics and measurement functions can be dealt with by means
of Particle Filters (PF) [18, 3]—which are also known as Sequential Importance
Re-sampling (SIR)— and further evolutions, such as the Unscented Particle Filter
(UPF) [89]. These address the filtering problem when no assumption about linearity
or Gaussianity is made on almost all involved probability density functions. Since the
seminal paper by Gordon et al. [27], PFs have been widely used to perform stochastic
estimation. The algorithm is based on Bayesian filters. Therefore, they compute a
posterior probability density function (pdf) which undergoes a diffusion-reinforcement
process making use of Monte Carlo simulation techniques. The reinforcement stage is
accomplished by means of factored sampling. Thus, the PF approach provides a com-
plete representation of the posterior pdf. Therefore, any statistical estimate can be
computed despite non-linearities and non-Gaussianity of the involved distributions.
Multiple hypotheses can simultaneously be considered, and they can be propagated
even when no evidence is obtained from the current image. However, the search region
is reduced, which may increase the processing speed, but the robustness could as well
be cut down.

Although the asymptotic correctness of the algorithm is proved, it has several
drawbacks [52]:

1. there is no information about the number of samples required for a requested
precision, specially for undefined times lengths;

2. it suffers from several intrinsic problems such as sample degeneration or sam-
pling impoverishment, depending on the whether re-sampling is used or not;
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Figure 2.9: Sample frame using the approach published in [38] by Isard and
Blake.

3. and finally, PFs were initially designed to keep multiple hypotheses but only for
a single target; further extensions which combine information about all targets
in every sample usually cause the curse of dimensionality.

In every PF approach, samples are drawn from a proposal distribution. Usually,
the transition model is used as such proposal. However, problems may arise if the
samples are placed in the tail of the temporal prior or if the likelihood is very peaked.
De Freitas et al. [15] used the results provided by EKF as a proposal distribution.
More recently, given that the UKF outperforms the EKF, this filter has been used to
generate the prior samples [89].

2.2.2 Top-down Tracking

Despite these efforts, there are many situations where segmentation-from-motion,
and the subsequent observation-tracker correspondence, is not possible, like in target
grouping or target occlusion. Top-down approaches incorporate a-priori knowledge
about the targets and the context in order to tackle these situations. Thus, these
methods rely on accurate target modelling. Hence, complex templates, which should
cope with an important degree of deformation, are predefined. Further, high-level
motion patterns are a-priori learnt, and used to reduce the state-space search region
in agreement to some state prediction.

Further, targets can be localised following an appearance segmentation, instead of
a motion segmentation. This relies on feature extraction, and a subsequent exhaustive
search of some feature patterns learnt during a classifier training process.

Nevertheless, model-based high-level tracking is not feasible in case this informa-
tion is not available there is not enough a-priori knowledge about either the scene
or the targets. Also, an accurate initialisation is often not possible. The need of
adaptation when target appearances considerably evolve over time usually leads to
the phenomenon known as model drift. In those cases, motion-based tracking usually
outperforms model-based appearance or shape tracking.

Notwithstanding, numerous proposals have been presented to perform model-
based tracking, while trying to overcome these drawbacks.
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Figure 2.10: Sample frame using the approach published in [67] by Nummi-
aro et at.

2.2.2.1 Particle Filtering

The aforementioned PF techniques —together with complex dynamic and appear-
ance models— have constituted a common approach [38, 56, 58, 53, 87, 16]. These
techniques were introduced in the Computer-Vision field in CONDENSATION [38, 40]
by Isard and Blake, albeit they were already known in some other areas, such as Au-
tomatic Control or Artificial Intelligence. This algorithm is based on a PF framework
combined with edge-based image features. Subsequently, contour tracking have been
widely researched within this framework [39, 57], although this may not be the best
approach in crowded scenarios because of the potential multiple occlusions. A sample
performance is shown Fig. 2.9.

Nummiaro et al. [67] applied PFs using colour distributions as image features.
These are approximated using histograms, which are supposed to be less sensitive
to partial occlusions and rotations in depth than other appearance models such as
templates. They used the HSV colour space since they claimed that it can provide
robustness to changes in lightning conditions. Histograms are calculated inside an
elliptic region, once the pixels have been weighted according to a kernel. A similarity
function is implemented using the Bhattacharyya Coefficient (BC) [5]. Samples are
represented using the centroid position in image coordinates, its speed, the length
of the ellipsis axes, and a scale change. The tracker is initialised placing samples
—assuming a known target model— at strategic positions. Models are only updated
when the likelihood of the estimated state is over a pre-defined threshold. However, no
MTT is considered —which implies that no event such as target grouping or occlusion
can be analysed— and it lacks from an independent observation process, since samples
are evaluated according to the histograms of the predicted image region. A sample
frame is shown in Fig. 2.10.

Perez et al. [74] proposed also a PF based on a colour-histogram likelihood. They
introduced interesting extensions in multiple-part modelling, incorporation of back-
ground information, and MTT. Nevertheless, it may require an extremely large num-
ber of samples, since one sample contains information about the state of all targets,
dramatically increasing the state dimensionality. Further, no appearance model up-
dating is performed, what leads to target loss in dynamic scenes.
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Deutscher and Reid [16] presented an attractive approach called Annealing Par-
ticle Filter to recover full body motion. It aims to reduce the required number of
samples. A series of weighting functions is designed from the original one by raising
to a series of decreasing exponents, thereby defining a series of layers. One annealing
run is performed at each time slice. The run started using the broader weighting
function. At each layer, N particles are weighted, re-sampled with replacement, and
used to yield a particle set for the next layer by applying Gaussian diffusion. As a
result, all particles are spread around the global maximum. This final set is used
to initialise the broader layer at the next time slice. Thus, the number or required
samples is considerably reduced. However, pruning hypotheses with lower likelihood
may lead to a single hypothesis, and therefore it could be inappropriate in cluttered
environments.

The weighting function is built taken into account two image features: edges and
silhouettes. Edges are obtained using a gradient-based mask over the entire image.
Silhouettes are produced using a background-subtraction algorithm. Pixel weight
maps are built taken into account both the proximity to an edge, and its enclosing
into an extracted silhouette. In addition, two enhancements are introduced. Firstly, a
soft-partition sampling is implementing by adding an amount of randomness to each
parameter proportional to the variance of that parameter. In this way, samples are
not wasted and the effort is concentrated on those parameters whose uncertainty is
bigger. Secondly, a cross-over operator is used by combining selected particles, and
thereby, tracking in parallel different sections of the search space. As they focus on
motion analysis, multiple targets and unconstrained environments are not explored.

BraMBLe [42] is an appealing approach to multiple-blob tracking which models
both background and foreground using MoG. However, no model updating is per-
formed, there is a common foreground model for all targets, and it suffers from the
curse of dimensionality —as all PF-based methods which tackle MTT combining in-
formation about all targets in every sample.

Occlusion events present particular difficulties which should be explicitly ad-
dressed. Wu et al. [95] address these issues using a PF by implementing a Dynamic
Bayesian Network (DBN) with an extra hidden process for occlusion handling.

2.2.2.2 Gradient-descent Search

Target localisation following a gradient-descent search —Mean-shift tracking— has
also been commonly used [10, 14, 12]. The search is performed in the basin of attrac-
tion of a spatially-smooth similarity function given by a weighted image region. Thus,
in this case the search is deterministic. This is usually done according to a measure of
histogram similarity between both model and candidate distributions related to the
BC.

However, these methods do not work in unconstrained situations. The main
drawbacks of the algorithm consist of the assumptions that the target candidate do
not drastically change its appearance between time steps, and that its new location is
in the basin of attraction of the similarity function, which is defined by the kernel size.
Further, it is assumed that the similarity function presents a unique local maximum
within the basin of attraction. In addition, only one hypothesis is considered, thereby
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Figure 2.11: Sample frame using the approach published in [14] by Comani-
ciu et al.

limiting its effectiveness in case of occlusions or heavy cluttered backgrounds.

For instance, Comaniciu et al. [14] represented a target by an elliptic regions
defined at given location, and a target model. This is obtained from the features of
the normalised-to-unit-circle pixels locations, once applied an isotropic kernel. Colour
is selected as image feature, and the target model pdf is approximated by means of
histograms. However, it tracks just one target, initialised by hand, and the appearance
model is never updated. A sample performance is shown in Fig 2.11.

Collins et al. [12] presented an appealing tracker, based also on the mean-shift al-
gorithm, with on-line feature selection of discriminative features. It aims to maximise
the distinction between the target appearance and its surroundings. Still, it tracks
just one target, and may suffer from model drift, although models are anchored to
the first frame, which is manually segmented. It still tracks rigid targets (or rigid
regions of them), appearance changes are limited, and since MTT is not considered,
interaction events are not studied. These facts cannot be seen as minor issues in real
applications such as video-surveillance.

2.2.3 Bottom-up and Top-down Tracking

Algorithms which combine both bottom-up and top-down approaches have also been
proposed [41, 81]. Most appealing approaches rely on the combination of several
techniques. Senior et al. presented a two-level tracking system with template-based
appearance models [81]. These are used in conjunction with probability masks to infer
depth ordering and detect occlusions. Nonetheless, appearance ambiguities among
grouped targets have not been addressed.

In [41], the probabilistic top-down tracking framework developed for CONDENSA-
TION [40] is extended by means of importance sampling in order to generate samples
according to a bottom-up process.

Yang et al. [97] proposed a system which specifically tackles grouping situations,
albeit no filtering is carried out, and grouped targets are not independently tracked.
Thus, during grouping events, just a coarse localisation can be obtained by considering
that the targets are inside the group region. Therefore, grouped targets are not
accurately tracked, and no complex situation can satisfactorily be faced —for instance,
those in which a group of more-than-two members merge and split, see Fig. 2.12.

Kahn et al. [46, 47] developed a system called Perseus. It is a visual purposive
architecture which aims to recognise gestures. The way in which the structure is
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Figure 2.12: Target interaction. Keeping the identity of multiple targets
which cannot be independently segmented is a challenging task. Notice the
different group membership of targets in blob 1 and 4.

modularised was surprisingly novel, allowing the system to use knowledge about con-
text and task at every stage and providing it with redundancy and independence of
assumptions. It also provides an interface to higher-level systems. It consisted of six
components: a planner is located at the higher level. It called visual routines which
aim to detect and track selected objects. Object representations (OR) —background
objects, light, people, objects, etc.— can be instantiated, which involves registering
it at the long term visual memory. The object methods, such as segment, keep a
global segmentation map using the image features maps located at the lower level.
The considered features are intensity, edges, disparity, colour and motion. All higher
levels made use of these maps to carry out their functionalities. Features parameters
can be tuned according to the task and context. All object representations are also
associated to markers which track the segmented objects.

Alternatively, several approaches take advantage of 3D information by making
use of a known camera model and assuming that agents move on a known ground
plane. These and other assumptions relative to a known Sun position or constrained
standing postures allow the system presented in [98] to initialise trackers on people
who do not enter the scene isolated.
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2.3 Discussion

Summarising, an evolution in the perception of the analysis of the human motion task
can certainly be noticed. Taxonomies have being refined from mere classifications ac-
cording to the aim of the task, or even to criteria such as the model dimension or the
sensor used, to hierarchical structures which cope which all the required functionali-
ties. These are spread through different levels which are task-oriented.

However, this area is sill in a transition step between Image Processing and Pat-
tern Recognition, and a more advanced view in which Cognitive Sciences provide a
global understanding of the scene. The latter supplies also interactive capabilities,
such as a natural language communication between a user and the system, or synthetic
scene visualisations.

With respect to segmentation, it can be concluded that although remarkable
advances have been achieved by presenting a wide set of different approaches, the
segmentation task is still an open problem. These techniques must be enhanced to
cope successfully with the numerous difficulties expected, specially in outdoor scenes.
Among these difficulties, we can include lighting changes, different weather conditions,
background in motion, or camouflage. Further, it is still not clear how to deal with
background objects which unexpectedly move at a given moment, with the ghost they
leave, or with foreground objects which stop momentarily. The solution may come
from the combination and development of some of the existing approaches, thereby
providing the system with redundancy. Taking advantage of context knowledge and
making use of high-level information may also be a way of solution.

With respect to tracking, numerous approaches have been proposed to perform
this task. Data-association techniques on their own are not reliable enough, since
they completely depend on a proper segmentation. Prediction-updating approaches
should be flexible and general enough to cope with complex environments. The com-
bination of several of the aforementioned techniques may lead to a way of solution.
Thus, for instance, EKF/UKF approaches may enhance system predictions; mean
shift techniques could adjust final estimates; and several segmentation methods may
be combined with prediction-updating techniques in order to provide the system with
error recovery capabilities.

In our opinion, it is clear that some sort of structured architecture with coopera-
tive levels is needed in order to cope with a such a complex problem as the analysis
of human motion.

2.4 Resum

Resumint, un es pot naturalment adonar d’una evoluci6 en la percepci6é de l’analisi
del moviment humana. Les taxonomies s’han refinat de meres classificacions segons
el proposit de la tasca, o fins i tot a criteris com la dimensié dels models o el sensor
utilitzat, a estructures jerarquiques que descriuen totes les funcionalitats exigides.
Aquestes s’estenen a través de nivells diferents que estan orientats a tasques particulars
i diferents.

Tanmateix, aquesta area estd encara en un pas de transicié entre el Processa-
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ment d’Imatges i el Reconeixement de Formes, i un punt de vista més avancat en el
qual les Ciéncies Cognitives proporcionen una comprensié e interpretacié globals de
I’escena. Les Ciéncies Cognitives subministren també capacitats interactives, com la
comunicaci6 en llenguatge natural entre un usuari i el sistema, o les visualitzacions
sintétiques d’escenes.

Respecte a la segmentacio, es pot concloure que encara que els avencos notables
s’han aconseguit presentant un conjunt ample d’enfocaments diferents, la tasca de la
segmentacioé és encara un problema obert. Aquestes técniques s’han de millorar per
afrontar reeixidament dificultats esperades i nombroses, de manera especial en escenes
a laire lliure. Entre aquestes dificultats, podem incloure canvis d’il-luminaci6, I'estat
del temps, el fons en moviment, o el camuflament. A més, no estd encara clar com
tractar amb objectes del fons que inesperadament es mouen en un moment donat,
o amb objectes en primer pla que s’aturen momentaniament. La solucié pot arribar
de la combinacié i el desenvolupament d’algunes técniques ja existents, aportant aixi
redundancia al sistema. Aprofitar el coneixement de context i I'as que es fa de la
informacié d’alt nivell també poden ser el cami de solucio.

Respecte al seguiment, nombroses aproximacions s’han proposat per realitzar
aquesta tasca. Les técniques d’associacié de dades no sén prou fiables en si mateixes, ja
que depenen completament d’una segmentacio correcta. Els enfocaments d’actualitza-
ci6 de les prediccions haurien de ser més flexibles i prou generals per afrontar ambients
complexos. La combinacié d’unes quantes de les susdites técniques pot conduir a una
via de soluci6. Aixi, per exemple, les aproximacions d’EKF/UKF poden millorar
les prediccions de sistema; les técniques de mean-shift podrien refinar les predic-
cions finals; i diferents métodes de segmentacié es podrien combinar amb técniques
d’actualitzacié de la prediccié per dotar al sistema de capacitats per la recuperacio
d’errors.

En la nostra opini, estd clar que es necessita alguna classe d’arquitectura es-
tructurada amb nivells cooperatius per afrontar un problema tan complex com la
comprensié del moviment huma observat en seqiiéncies d’imatges.



Chapter 3

A Framework to Human-Sequence
Evaluation

Accomplishing HSE involves such a complexity that a structured framework is re-
quired. This is not only related to Human-Motion Analysis (HMA) —as were most
taxonomies described in the previous chapter— but also to behaviour understand-
ing. Therefore, the proposed framework must include the different required system
functionalities, while making use of cognitive processes.

In this chapter, the HSE framework presented in [25] is reviewed and enhanced, see
Fig. 3.1. This framework steers the efforts of our lab, are therefore its implementation
constitutes the aim of the research projects in which its members are involved.

HSE defines a complete Cognitive Vision System which transforms image values
into semantic descriptions of human behaviour by performing multiple bottom-up
and top-down processes. Thus, its aim goes far beyond detecting, tracking and iden-
tifying the actions being performed: its goal is to apply cognition methodologies to
understand human behaviour in image sequences.

Therefore, this proposal is not restricted to Image Processing and Analysis, or
Pattern Recognition techniques, but it also comprehend topics related to Artificial
Intelligence, Computational Linguistics, Computer Animation, and Automatic Con-
trol. For instance, Computer Animation techniques are taken into account in order
to provide to a user graphical information and simulations about the situation which
is taking place, as well as predictions about potential future ones; Automatic Control
can come into scene to allow machine responses to recognised behaviours in human-
inhabited environments, and to operate PTZ cameras.

Mainly, the implementation of HSE involves three co-operating tasks: (i) the
obtention of a dynamic description of the observed human motion; (ii) the transfor-
mation of these quantitative parameters into logic predicates; and (iii) the communi-
cation of the obtained results to an human user.

Hence, multiple issues are demanded in order to accomplish HSE. At the very
least, these include (i) active video camera control, (ii) target segmentation, (iii) ro-
bust and accurate MTT, (iv) target classification, (v) posture and action recognition,
(vi) facial expression analysis, (vii) behaviour understanding, and (viii) communica-

39
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tion of those inferred conceptual interpretations to human operators. The last task
can be achieved by means of NL text generation —by applying syntax rules to those
instantiated conceptual primitives— and by the synthesisation of virtual environments
from this conceptual information.

The computational knowledge of the three different channels of human motion,
namely the motion of agents (trajectories), bodies (postures and actions), and faces
(expressions and emotions), is linked together in the same discourse domain.

Unfortunately, adversities common to other Computer Vision areas could cause
system failures, for instance due to acquisition conditions, uncontrolled illumination,
shadows, cluttered backgrounds —possibly in motion— etc. In addition, dealing with
people entails numerous special difficulties such as posture changes, huge appearance
variability, or unforeseeable motion changes. Hence, location, orientation and linear
or angular speeds may not be enough to describe human motion, since great structural
changes should be expected. At least, these changes are restricted: a basic structure
is preserved by maintaining a logical body part order —depending on the pose— and
a relative aspect ratio between body parts. Bounded positions and speeds should also
be expected.

Alternatively, understanding people involves, as an essential aspect, intentionality.
Relations between agents, and between an agent and its environment, must be taken
into account in order to explain some situations. Moreover, conceptual interpretations
of motion include a degree of uncertainty due to the inaccuracy of the semantic
terms used to explain human behaviour. Therefore, considering the context will be a
determining factor.

Due to this complexity, an HSE system is here presented as a highly modularised
and hierarchically organised framework. Thus, multiple co-operating modules are de-
fined through the different levels. They work following both top-down and bottom-up
approaches in a closed loop, thereby defining the interactions of different Computer
Vision algorithms with other components, such as human behaviour modelling and
NL text generation. This is done while taking into account the uncertainty gener-
ated during motion naming, i.e. the textual explanation of perceived motion. HSE
requires intermediate models of human motion to associate geometric knowledge with
conceptual statements. Thus, each level exploits the a-priori knowledge provided by
models and context.

Levels are defined according to main functionalities. The whole structure is highly
interconnected, and each level receives inputs from higher and lower ones, providing
the system with redundancy. The inter-level communication can be seen in three
different ways: first of all, a data stream is provided to the higher levels by lower ones
including all the results obtained in the bottom-up process; secondly, higher levels
feed back the lower ones in a top-down process, so that the whole procedure can be
enhanced; at the same time, higher levels can act on the lower ones by tuning the
parameters, and selecting different operation modes, models or approaches depending
on what is known about the current scene, and what goals are pursued.

Information is processed according to the following flows: on the one hand, visual
sensors provide evidences about the real world to the system at the Active-Sensor
Level (ASL). Then, the next three levels process and analyse the image sequence. At
the Image-Signal Level (ISL), the sequence of image data is processed by segmenting
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potential targets. The resulting foreground regions are the basis for the following
level: the Picture-Domain Level (PDL). Possible segmentation errors generated at
the ISL are handled here by means of representation, classification, and tracking
techniques. At the Scene-Domain Level (SDL), the 3D configuration of the scene is
used to compute the parameters of each agent within its 3D environment.

Results obtained at either the PDL or the SDL are forwarded to the two higher
levels which perform the description of the obtained quantitative results, and finally
carry out a principled reasoning over them. Hence, the Conceptual-Integration Level
(CIL) instantiate semantic predicates for a given agent and time step. These quali-
tative descriptions are used to generate interpretations of its motion, as well as con-
ceptual relationships of the agent and its environment. Instantiated predicates are
fed forward to the Behaviour-Interpretation Level (BIL), where the expected tem-
poral evolution of descriptions are a-priori modelled in order to generate coherent
spatio-temporal interpretations.

On the other hand, a top-down process closes the loop by feeding back the lower
levels with the results obtained at the higher levels. For example, the behaviour inter-
pretation generated at the BIL is used at the CIL to avoid an exponential explosion of
situation hypotheses; the current inferred situation permits to disambiguate tracking
scenarios at the SDL; an scene analysis provided by the SDL allows the PDL to cope
with the effect of the view point; the ISL can enhance the segmentation by taking
into account the presence of tracked targets.

Finally, the User-Interface Level (UIL) provide NL descriptions of situations and
behaviours that occur within the scene. Further, an interactive Graphical User Inter-
face (GUI) allows a single human operator to monitor a significant area of interest.
An example of an HSE into operation is shown in Fig. 3.2.

3.1 Machine Interface Levels

These levels, that can be seen as the lowest and highest ones in the hierarchical
architecture, constitute the interface between the Human-Sequence Evaluation system
and, on one side, the real world, and on the other, the user.

3.1.1 Active Sensor Level (ASL)

This level acquires raw video sequences and information about camera parameters.
Pieces of reality can be captured by the cameras according to the kind of sensor
used and the visual field. Thus, this level includes hardware devices, such as the
camera itself and the acquisition cards, and models to deal with these devices!. Such
models consist mainly of three modules which define the camera, the digitiser and the
encoder/decoder, respectively.

The first module deals with the optic parameters —the focal distance, the optic
centre, the diaphragm aperture, the exposure time— and the camera position and
orientation. The second module defines the transformation from camera signals to
image values, namely, the image resolution, the pixel depth, the number of frames

!Such as a pin-hole camera model, a stereo camera model, or a model for PTZ camera.
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which are acquired per second, and the acquisition mode, colour or grey-scale. The
latter is used when the image sequence must be encoded for transmission or security
reasons.

Multiple cameras can be used and combined to produce a single scene mosaic. A
panorama can also be obtained by making use of pan-tilt cameras.

Finally, being the sensors active, the system is allowed to modify the camera
parameters depending on the task and environment conditions. Thus, the camera
module could modify the focal length —zooming in or out allowing active vision—
or the aperture depending on the light conditions; and the viewpoint —panning and
tilting. The digitiser module could change the image resolution and pixel depth when
a higher accuracy is required; the frame rate could be also adjusted to the scene
dynamics.

3.1.2 User Interaction Level (UIL)

At this level, human-computer communication is carried out. Multiple modules can
be included in order to bring new interaction capabilities, such as natural language,
visual descriptions, or audio interactions.

3.1.2.1 Natural Language (NL)

One of the main tasks of the UIL is to provide a natural-language description of what
is actually happening within the scene. The quantitative information generated at
lower levels is associated with qualitative semantic terms such as verbs, nouns, adverbs
and adjectives, and it is used to generate natural sentences by means of syntactical,
morphological, and orthographic rules.

The first step involved is the elaboration of a corpus made by native speakers.
Then, a technique is required to facilitate the conversion of conceptual information
into linguistic outputs. At the lexicalisation step, the logical predicates imported
from the BIL are clustered into appropriated lemmas by means of an ordered set of
language-dependent rules.

After that, Text Generation Rules (TGRs) are specified in order to infer the
syntactical order of the input lemmas. Subsequently, morphological rules are applied
over the set of lemmas to properly inflect the linguistic elements (number, gender,
tense...). Lastly, orthography provides punctuation symbols to the sequence of words
to be delivered to the final user.

3.1.2.2 Graphical User Interface (GUI)

Keeping track of multiple people, vehicles, and their interactions among them and
with other objects, within a complex scene is a difficult task. A GUI allows a single
human operator to effectively monitor a significant area of interest. Thus, the GUI
automatically places virtual agents representing people and vehicles into a synthetic
view of the environment.

This approach has the benefit that visualisation of scene events is no longer tied to
the original resolution and viewpoint of a single video sensor. Through this interface,
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the user can act on individual sensor units, modify the system parameters, select one
particular approach, and ask for situation descriptions, behaviour explanations, and
synthetic simulations.

An audio-based interactive environment can also be here considered to enhance
the user interaction.

3.2 Image Analysis Levels

These levels perform image processing, and a subsequent data analysis according to
2D-picture or 3D-scene representation.

3.2.1 Image Signal Level (ISL)

At this stage, the task is to process the bit flow that represents the image sequence
provided by the sensor modules. This is carried out, frame by frame, by the ISL,
whose main goal is to segment foreground objects. The results obtained at this level
involves two main issues, namely foreground segmentation and data representation.
Several pre-processing tasks such as noise filtering are also carried out at this level.

As a result of the current level, a compact image representation of the foreground
objects is given to the PDL.

This level receives also feed-back from the PDL Level. Thus, information about
models and context can enhance the level performance in both accuracy and ro-
bustness senses. The ISL can act on active sensors in order to modify the camera
parameters. Thus, a better segmentation could be obtained.

3.2.1.1 Image Feature Selection

A set of image features are extracted from each frame. Several cues can be used
depending on the application aim, which assumptions and heuristics are considered,
and the methods chosen to achieve the goals from each task. The different image
features to be used are selected by the higher levels and extracted at this level from
the image sequence. They are used to carry out several tasks including segmentation,
classification, tracking or identification through the different levels. Different cues
can be taken into account to carry out the same task in order to provide the whole
process with redundancy, and thus with robustness. However, not all the selected
cues will be used to perform the same task. Thus, different subsets of cues could be
more appropriate to the different tasks.

This feature set could include intensity values, colour, gradients, disparity, motion,
texture, curvature, lines, edges, shape and depth.

It will be desirable to allow higher levels to tune —according to the current
scenario— the cue value range of interest, resolution, thresholds, colour spaces, motion
sensitivity, texture patterns, and other parameters of interest.
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3.2.1.2 Foreground Segmentation

This task involves separating image regions that do not belong to the background, and
extracting them. Targets can be segmented following an appearance segmentation —
which requires high-level information— or by means of motion segmentation. This
module may implement also several methods to perform the latter, such as temporal
differencing, optical flow, background subtraction, or a combination of these.

3.2.1.3 Image Data Representation

This task may be seen as placed in the interface between the ISL and the PDL.
Features are here manipulated to obtain representations which can be handled by the
PDL. In addition, segmented objects are represented in a compact way in order to
reduce the complexity of the search space and remove confusing elements.

This representation can be foreground-oriented or image-oriented. Among the
former, points —centroid, median coordinate, contour points, axis points— bounding
boxes, blobs, contours or more elaborate structures made of segments or blobs can be
used. Among the latter, spatial and spatio-temporal transformations (Fourier, PCA,
Wavelets, DCT, histograms), and features points representations can be taken into
account.

3.2.2 Picture Domain Level (PDL)

The purpose of this level is to carry out an image analysis in order to perform the
following tasks: a classification of the targets already segmented by the ISL, and the
tracking of them through the sequence of frames. As a result, the tracked labelled
targets are supplied to the PDL Level.

This level receives also feed-back knowledge from the PDL level —such as pro-
jected 3D model and information about the scene— and from the CIL —concerning
analysed situations. Besides, the level is acting on the ISL. Thus, it would be possi-
ble to choose which cues to extract, the segmentation method or the representation
approach, as well as to perform background updating according to high-level infor-
mation, threshold tuning, etc.

3.2.2.1 Target Classification

Targets can be classified according to whether they are agents or objects, that is, by
taken into account if they are targets with intentional capabilities, or not. Depending
on the chosen resolution, regions such as body parts can be also classified.

Again, multiple approaches can be taken into account, in this case depending on
whether a shape model is used or not. If no shape model is used, the target can still be
classified according to its shape, appearance features, or movement. The former may
be based on representations such as projection histograms, or on structural relation
like key points order, curvature, symmetry, or aspect relations such as compactness.
Features classifiers are based on (skin) colour, texture, intensity, or salient points.
Therefore, some heuristics should be used in the classification process. The proper
heuristics are selected by higher levels depending on the available information about
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the scene. In any of these two kind of approaches, the classification can be done after
the representation of the segmented entities is achieved.

On the contrary, movement classifiers analyse the periodic nature of the move-
ment, or whether there are any kinematic restrictions. This requires that the targets
have been tracked for a time period. Both kind of classifications can be combined.

On the other hand, an a-priori shape model can be used to perform the clas-
sification. Two options can here be considered: using a 2D model or a 3D model
projection. The former would be located at the PDL. Several object representations
can be chosen allowing the comparison between segmented target and the model.
The second option would consist in using the projection of a 3D model. This model
would be located at the SDL and its projection should be given to the PDL in order
to compare it with the current image representation. Features used to perform the
comparison include edges, contours, blobs texture, colour or intensity, segments and
joints, depth, or movement. In this case, structural models could provide possible
human configurations.

Once a target has been segmented and classified, it is considered that the detection
has been performed.

3.2.2.2 Target Tracking

This phase involves matching targets in consecutive frames, thereby establishing co-
herent target relations over time. The process is based on predicting the target’s next
state and evaluating the results according to what is found in the current image. The
state could include information about spatial position, speed, shape or appearance.

Hence, transition models are required. They describe the target’s motion, pro-
viding a set of equations. It is possible to distinguish between dynamic and aspect
models. The former deals with global position changes, whereas the latter models the
shape and appearance changes. These models can be locally located at the PDL, or
provided by higher levels according to learn patterns, 3D projections, etc.

Several context restrictions can also be used in order to narrow the search. They
are usually provided by higher-level feedback, although it is also possible to learnt
them over time. These constrictions could include speed limits, forbidden areas given
by collisions, allowed shapes, et cetera.

3.2.3 Scene Domain Level (SDL)

At this stage a higher-level tracking process is performed taking into account 3D
knowledge. Thus, the results provided by the PDL are refined using a 3D human
model?. A 3D scene model can also be used, thereby providing context restrictions
as well as a set of heuristics. Using a correspondence model, the level knowledge is
fed-back to the PDL. This model may be placed in the interface between both PDL
and SDL.

It is interesting to remark that the information flow can be very flexible. For example,
a segmentation based on depth cues represents a direct collaboration between the ISL and
the SDL.
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Several kinds of shape models can here be used to represent the human body.
Thus, the model can be made of sticks, polygons, 3D surfaces (such as patches) and
volumes. Sticks are used to model the skeleton while the other representations are used
to model the flesh. Both components, skeleton and flesh, can be used simultaneously.
Among the volume representations, it is possible to use several geometric primitives
such as cylinders, cones, spheres or prisms. This last representation could be used to
take into consideration not only structural and kinematic properties, but also dynamic
ones.

Again, this level is acting on the lowest levels by selecting proper models, pa-
rameters and approaches according to the current 3D knowledge about the current
scene.

3.3 Cognitive Levels

The following two levels carry out first a description of the current scene situation,
and subsequently perform spatio-temporal reasonings over the inferred descriptions,
thereby explaining agent potential behaviours.

3.3.1 Conceptual Integration Level (CIL)

This level aims to describe conceptual situations according to the data given by both
PDL and SDL3. Thus, all the conceptual knowledge used for HSE is implemented
at the CIL as a set of logic predicates. This level should cope with the temporal
and uncertainty aspects inherent in the integration of numerical values into concep-
tual terms. This include dynamic occurrences, uncertainties of the state estimation
process, and intrinsic vagueness of conceptual terms.

Two source of knowledge are established. Firstly, the quantitative knowledge
embedded in the numerical state vector such as position, speed or orientation values.
Since the state vector is determined by the nature of the parameters used for tracking,
semantic terms will refer to dynamical, positional and postural properties of the
human agent. These quantitative parameters are associated to semantic concepts
like mowving, slow, small, and crawling or lying, along with a fuzzy degree of validity
characterising how good a concept matches the numerical parameter value.

Secondly, spacial relationships of each agent w.r.t. its environment are derived
by considering the positions of the agents and other static objects in the scene. This
is implemented by applying a distance function between the positions of the different
agents and objects in the scene. Subsequently, a discretisation of the resulting distance
value is obtained by using fuzzy logic, thus allowing to instantiate logic predicates,
such as the presence or proximity of other agents or objects in terms such as left or
near, and events such as grouping or splitting and occluded. Other spatial relationships
are derived by considering the semantics of the scene, so a conceptual scene model
is required to identify specific locations within the environment, or events such as
entering or exiting.

3 Again, another example of flexible collaboration is given by the fact that the CIL can
infer conceptual situation from 2D results provided by the PDL.
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All the aforementioned conceptual knowledge generated at the CIL at each time
step is called a situation. As a result of this stage, conceptual descriptions or situations
are given to the Behaviour Interpretation Level. Further, the context information
provided by the BIL is used to prune the number of potential situation hypotheses.

3.3.2 Behaviour Interpretation Level (BIL)

By means of spatio-temporal reasonings —based on semantic terms— this level aims
to explain behaviours and intentions. Then, the inferred information could be used
to predict future situations. Due to the impossibility of modeling all possible human
situations, the expected evolution of situations to be described are modelled a-priori
for improving spatio-temporal interpretation. That means, the BIL selects those
situations to be instantiated at the CIL, thus allowing to interpret the intentions of
the agent in a goal-oriented manner.

There exists a data flow in two directions, top-down and bottom-up, which may
restrict the combinatorial explosion of data and the reproduction of errors. On the one
hand, top-down data flow is generated for hypothesis verification. This information
may be forwarded to the lower levels of the architecture to assist segmentation and
tracking procedures, thereby constraining the uncertainty in lower levels. On the
other hand, bottom-up data flow corresponds to potential semantic descriptions —
hypotheses made at the CIL based on estimations— derived from motion analysis
processes carried out at the PDL and SDL.

3.4 Discussion

HSE is focused on the transformation of image data into semantic descriptions in
natural language, and vice-versa. This transformation process implements motion
understanding in the Computer Vision domain. HSE involves different topics such
as acquisition; detection and tracking; recognition; interpretation; human behaviour
modeling; and NL textual generation and synthetic visual representation. These main
steps are organised within an architecture based on a set of cooperating modules, each
one devoted to a specific task.

The proposed HSE architecture embeds three goals. Firstly, the estimation of
spatio-temporal descriptions of human motion in terms of quantitative knowledge —
this is done at the ASL, ISL, PDL and SDL. Secondly, the association of geometric
parameters with semantic predicates —what is done at the CIL and BIL. Thirdly, the
generation of NL texts explaining the meaning of observed human motion patterns,
and the synthetic visualisation of them —performed at the UIL.

Three information channels can be considered depending on the image resolution
and camera views. Thus, a trajectory analysis can be considered for the whole scene,
thereby detecting and tracking the agents within it. By making use of closer cameras
or using active camera zooms, their body posture can be evaluated. Finally, with
a higher resolution, their face can be resolved sufficiently well, and facial emotions
can be analysed. It is also interesting to integrate these three modes into a single
application environment.
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This architecture must be considered as a framework to perform HSE, that is,
a way to organise the different tasks that can be carried out by a Cognitive Vision
System. However, it must not be seen as a fixed structure, but a rather flexible
one dependent on the goal of the current application. That means that non-relevant
tasks can be avoided and the implementation does not have to strictly follow this
structure. For instance, a counting people or a video-surveillance application may not
need any SDL functionality, and perhaps only a zenithal 2D view is required. A fixed
segmentation method and cues can be selected avoiding having the need to select
different ones.

The ISE Lab aims to design a Cognitive Vision System for human motion and
behavior understanding, followed by the communication of the system results to end-
users, based on two main goals: the first goal is to determine which interpretations are
feasible to be inferred from three different categories of human motion, i.e. the motion
of agent, body and face. The second objective is set to establish how these three types
of interpretations can be linked together (i) to coherently evaluate the human motion
as a whole in image sequences, and (ii) to communicate inferred interpretations using
natural-language texts or virtual environments as a visual language.

The rest of this work is focused on the ISL, PDL and CIL within the HSE frame-
work. The mail goal is to perform a robust MTT. Therefore, detection, estimation
and adaptation tasks are here addressed. This requires target segmentation, represen-
tation and tracking. Further, model adaptation, target interactions, and extraneous
events demand situation description.

It is worth to say that the proposed system is also prepared to be integrated in
the near future in a complex HSE architecture. Obtained results are currently being
forwarded to further conceptual and behaviour interpretation. High-level information
about the context and current situations provided by cognitive levels of the HSE
framework will enhance tracking performances. Make future use of multiple active
cameras from several point of views is also feasible, and will solve problems derived
from the use a fixed point of view.

3.5 Resum

ASH se centra en la transformacié de les dades d’una imatge a descripcions seman-
tiques en llenguatge natural, i viceversa. Aquest procés de transformacié comporta la
comprensié del moviment en el camp de la Visié per Computador. ASH implica temes
diferents com l'adquisicié; la deteccio i el seguiment; el reconeixement; la interpretacio;
el modelatge del comportament huma; i la generacié de textos en llenguatge natural
aixi com la representacio visual sintética. Aquests passos principals s’organitzen dins
d’una arquitectura basada en un conjunt de moduls que cooperen, perd on cada un
esta dedicat a una tasca especifica.

L’arquitectura d’ASH proposada s’arrela en tres objectius. En primer lloc, I’estima-
ci6 de descripcions espaitemporals del moviment huméa en termes de coneixement
quantitatiu —aix0 es fa a I’ASL, ISL, PDL i SDL. En segon lloc, "associacio de
parametres geomeétrics amb predicats semantics —que es fa al CIL i BIL. Finalment,
la generacio de texts en llenguatge natural explicant el significat dels patrons de movi-
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ment observats, aixi com la visualitzacié automatica d’animacions virtuals— realitzats
a I’'UIL.

Es poden considerar tres canals d’informacié depenent de les vistes de la imatge,
aixi com la resolucio de la camera. Aixi, es pot considerar una analisi de trajectories
per a ’escena sencera, detectant i seguint aixi els agents dins d’aquesta. Fent s de
cameres més properes o utilitzant cameres actives amb zoom, la postura del cos es
pot avaluar. Finalment, amb una resolucié molt més alta, la cara es pot analitzar
suficientment bé, i es poden analitzar emocions facials. Es també interessant integrar
aquests tres modes en un domini d’aplicaci6 dnic.

Aquesta arquitectura s’ha de considerar com un marc per realitzar ASH, és a dir
de, una manera d’organitzar les diferents tasques que poden ser fetes per un Sistema
de Visié Cognitiu. Tanmateix, no s’ha de veure com una estructura fixa, sin6 flexible
i dependent de l'objectiu de I'aplicacio a desenvolupar. Aixo significa que es poden
evitar tasques no pertinents ja que l’aplicacié no ha de seguir estrictament aquesta
estructura. Per exemple, un comptador de persones o una aplicaci6é de vigilancia de
video pot no necessitar funcionalitat de SDL, i potser només és demanat un punt de
vista zenital 2-D. A més, es pot seleccionar un métode de segmentacio fix evitant tenir
la necessitat de seleccionar-ne diferents.

Els proposits de Laboratori d’ISE per dissenyar un Sistema de Visié6 Cognitiu per
a la comprensi6 del moviment i comportament humans, seguida per la comunicacio
dels resultats a usuaris finals, estan basats en dos objectius principals: el primer
objectiu és determinar quines interpretacions sén factibles per ser inferides en les tres
categories diferents de moviment huma, i.e. d’agent, cos i cara. El segon objectiu és
establir com aquests tres tipus d’interpretacions poden ser connectats junts (i) per
avaluar coherent i globalment el moviment huma en la imatge , i (ii) comunicar les
interpretacions inferides mitjancant texts en llenguatge natural o en entorns virtuals
com a llengua visual.

La resta d’aquest treball se centra en I'ISL, PDL i CIL dins de I’estructura ASH.
L’objectiu és realitzar un MTT robust. Per aixo0, les tasques de deteccid, representacio
i adaptacio son encarats tot seguit. Aix0 exigeix la segmentacié d’objectes, la seva
representacio i el seu seguint. A més, per a la descripcié de situacions es requereix
I’adaptacio dels models, les interaccions entre objectes, i I’analisi esdeveniments ex-
terns.

Cal dir que el sistema proposat també es prepara per ser integrat en el proxim
futur en una arquitectura ASH més complexa. Els resultats obtinguts s’estan enviant
actualment per promoure la interpretacié conceptual del comportament. La infor-
maci6 d’alt nivell sobre el context i les situacions actuals proporcionades per nivells
cognitius real¢aran els rendiments aconseguits. L’as futur de cameres actives multi-
ples des d’uns quants punt de vistes també és factible, i resoldra els actuals problemes
obtinguts per I’Gs un punt de vista fix.
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Figure 3.1: HSE framework evolved from [25]. Levels are defined according
to main functionalities. Thus, each level performs some general task such
as providing a machine interface —ASL, UIL— processing and analysing the
image sequence —ISL, PDL, SDL— and describing and reasoning over the
obtained quantitative results —CIL, BIL.
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Figure 3.2: Example of an HSE system into operation in an indoor scene.






Chapter 4

Multiple-Target Tracking based on
Particle Filtering

In this chapter, the first proposal to tackle multiple-target tracking is developed. Here,
tracking is performed by enhancing the particle filtering framework. This approach
has been widely explored by several previous algorithms, as discussed before. Despite
this effort, many undesirable effects still remain. These are here highlighted, and
some proposals are presented in order to cope with them.

4.1 Framework Outline

A probabilistic framework is commonly used as a way to perform tracking in order
to deal with uncertainty over time [80]. Classical approaches, such as the Kalman
Filter [48], rely on linearity and Gaussianity assumptions about the involved distri-
butions, see Appendix D.

More recent works make use of Bayesian filters combined with Monte Carlo Sim-
ulation methods in order to deal with nonlinear and non-Gaussian transition models
and non-Gaussian likelihood functions [77, 59]. Subsequent developments have in-
troduced a re-sampling phase in the sequential simulation-based Bayesian filter algo-
rithms [27]. These approaches are known as particle filtering within the control field
or survival of the fittest in Artificial Intelligence.

Such methods were first introduced in the computer-vision research area by Isard
and Blake, and renamed as Condensation |38, 40]. They have been widely used in
recent years [41, 15, 91, 57, 89, 58, 42, 74, 67, 95, 16]. Excellent reviews have been
presented by Doucet [18], and by Arulampalam et al. [3]. Further, comprehensive
treatments are given in [19, 76]. However, several important drawbacks remain, as
stated by King and Forsyth [52]. Despite the great number of improvements that
have been already introduced, many open issues prevent from stating that particle
filters are able to solve unconstrained tracking problems.

In order to perform the following analysis, a strong probabilistic background is
required. Basic statistics are summed up at Appendix C. For further proofs and

93



54 CHAPTER 4. PARTICLE-FILTERING TARGET TRACKING

explanations, see [51, 80]. Simulation techniques are covered in [77, 59].

4.2 Probabilistic Framework

From a probabilistic point of view, the tracking problem involves dealing with stochas-
tic processes. These are series of time-slices describing the state of all entities within
the scene. Each time-slice consists of a set of random variables'. Two kind of variables
can be distinguished, namely unobservable state variables at time ¢, denoted as S;,
and observable evidence variables, denoted as E;. The interval between time-slices
depends on the frame rate?.

In order to specify the dependencies among the different variables, these are or-
dered following a temporal criterion, i.e, taking causality into account. This means
that the variables from previous time-slices cause the values of subsequent time-slice
variables. Thus, it should be possible to specify conditional probability density func-
tions for all variables given their predecessors, from now on called parents [80]. On the
order hand, variable conditional independence within a time-slice could be established
given a set of parents.

However, since every time-slice must be considered, several problems arise:

1. There is an unbounded set of conditional probability density functions.
This problem can be overcome making the homogeneous process assumption:
The process is governed by laws that do not change themselves over time.

Hence, there is no need to specify all conditional pdf but only those within a
representative time-slice.

2. There is an unbounded set of parents.
Let us consider separately the effect of the parents on the state variables S; and

on evidence variables E;. Considering the Markov assumption on both states
and evidences, it is possible to get over this problem:

(a) The current state S; depends only on a finite history of previous states,
Sth:tfl-

Therefore, the state could be defined as the information needed to make
the future independent from the past given the present. In first-order

!The following notation is here used: related to variables, non-bold lowercase denotes
scalars, whereas bold lowercase denotes vectors, and matrices are given by bold uppercase.
In a probabilistic context, uppercase denotes probability density functions (pdf) and random
variables; lowercase denotes probabilities and variable instances. Xjy,.;, denotes a variable
set from time t = ¢ to t = to.

2This parameter is set considering the possible dynamics of the targets that could appear
in the scene.
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Markov processes the current state only depends on the immediately pre-
vious one. Here, this kind of Markov processes is considered, since it is
always possible to reformulate a non first-order Markov process as a first-
order one by increasing the state variable set [80].

Thus, the state variables are conditional independent of all other previous
variables given the previous state:

P(S;|So:t—1,E1.4-1) =P (S¢ | S¢—1). (4.1)

The latter conditional pdf is called the transition model. In the tracking
problem here presented, the transition model will be split into a dynamic
model, which considers the target’s motion, and an aspect model, which
captures the target’s shape and appearance.

(b) The evidence variables at time t E; depend only on the current state Sy.

Hence, the evidence variables are conditional independent from all other
variables given the state:

P(E;|Sot-1,E14-1) = P(E; | Sy). (4.2)

In this case, the latter conditional pdf is called the observation or sensor
model. It is also called the [ikelihood function since it forecasts how likely
an observation is, once the state is given. It models a causal relation: it
is the current state which causes the obtained evidence.

Thus, the developments within the scene can be modelled as a Hidden Markov Model
(HMM) where S; constitutes the unobservable or hidden state variables and E; the
observable evidence variables at time ¢. The HMM is described by:

e an initial prior state density function, P (Sy);
e the transition model®, P (S; | S;_1) for t > 1;
e the likelihood function, P (E; | S¢) for ¢ > 1;
e both assumptions on variable conditional independence stated in Eqgs. (4.1) and
(4.2):
— the state variables, {S¢;t€ N}, S; € R" given the immediately previous
state S;_1; ns denotes the state-space dimension;

— the evidence variables, {E;;t€ N} ,E;, € R", given the corresponding
state variable; ne denotes the evidence-space dimension.

3 A sequence of random variables S; satisfying the Markov assumption is called a Markov
chain. If the conditional probability density functions P (S; | S;—1) are time independent,
the Markov chain is called homogeneous. However, it does not mean that the probability
density functions of consecutive states are the same, P (S:) = P (St¢-1), a fact that is called
stationarity.
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Given both models and assumptions, it is possible to specify the complete joint density
function:

P (So.t, Eq.4) P (E;|So.t,E1..-1) P (So:t, E1:4-1) (cond. prob.)
= P(E¢|S) P (Sot, E1t-1) (Markov on ev.)
= P(E;[S:)P(St|So:t-1,E1:4-1) P(So:t—1,E1:4-1) (cond. prob.)

P(E¢|St) P (St | St—1) P (Soit—1, E1:4-1) (Markov)
t
= P(So) [[P(Ex|Sk)P(Sk|Sk1), (4.3)
k=1

which specifies the probability of every event within the scene and, therefore, can
answer every probabilistic query about it. Unfortunately, it is usually too complex to
be analytically computed.

4.3 Bayesian Filtering

Let us now consider the probabilistic inference problem in which the state variable set
S1.; is estimated from the observed evidence e;.,, finding out the posterior probability
density function P (S1. | e1..). Let us also focus in one of the posterior pdf marginals,
P (St | el:-,—).

The previous computation is called smoothing if t < 7, filtering or monitoring
if t = 7, and predicting if t > 7. The general term estimating comprises all three
processes. This work is focused on filtering, the computation of the belief state S;
—or, even better, the posterior pdf over the current state P (S; | e1.4)— given all
evidence up to date ej.;.

In this case, instead of the causal relation given by the likelihood function which
assigns probabilities to potential evidences given the state, the filtered pdf allows to
make and inference about the state given the evidence.

This pdf can be calculated through recursive estimation, that is, computing the
new posterior given the previous one and the new evidence [18, 80]:

P(S¢lew) = P(St|ewnt—1,e) (4.4)
x  P(et ]St ers—1)P (St |er—1) (Bayes’)
= P(e[Se)P(S:]ert-1) (Mark. on ev.)
= Ple] St)/P(St | si—1,€1:4-1) P(si—1 | erv—1)ds;—1  (cond.)

—  Ple]S) /P(St|st_1)P(st_1|e1;t_1)dst_1. (Markov)

likelihood trans. model  previous post.
—_——

updating prediction
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Figure 4.1: Temporal propagation of posterior density functions. A deter-
ministic drift and a stochastic spreading given by the transition model yield
the temporal prior. Then, the new posterior is obtained by using the correc-
tion given by likelihood function.

The pdf is projected forward according to the transition model, making a predic-
tion. Then, it is updated in agreement with the new evidence, e;. The prediction
term represents the density function after applying the transition model to the pre-
vious posterior density function. It leads to the so-called prior density function,
P (St | er+—1). It is called prior because it is previous to the likelihood correction.

The temporal propagation of the posterior pdf marginal can be seen as a diffusion—
reinforcement process, see Fig. 4.1. The transition model has a deterministic and a
stochastic component. The former imposes a drift to the probability density function,
while the latter causes the spreading of the pdf that increases the state uncertainty.
Subsequently, the likelihood function reinforces the pdf in the vicinity of observations
altering the peaks and reducing the uncertainty.

4.4 Monte-Carlo Simulation

Unfortunately, the recursive estimation given above leads to expressions that are
impossible to evaluate analytically unless strong assumptions are made. For example,
the Kalman Filter is a linear recursive estimator which assumes a linear Gaussian
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transition model, and a Gaussian likelihood function.

In a more general framework, this problem is overcome by making use of Monte-
Carlo methods*, where N independent-and-identically-distributed (i.i.d.) random
samples, {si;i =1: N}, are generated from the posterior pdf, P (S; | e1.¢).

On the one hand, a simulated probability density function is given by the following
expression:

N

P(St | el;t) = %Zé (St - Sé) , (45)

i=1

where § (-) denotes the Dirac delta function.
On the other hand, the posterior expectation is given by:

12 Eps, o [S1] = / S,P (S, | e1s) dSy, (4.6)

and the posterior variance by:

o’ £ EP(St‘elzt) [Sf] - EQP(Sﬂel:t) [St] : (47)

Let us now consider the following estimate:

N
— ~ 1 .
SN = /StP (St | el:t) dSt = Nzi : S;, (48)

if both posterior expectation and variance are finite, it follows, due to the Central
Limit Theorem, that when N — oo, Sy has a distribution that is approximately
normal, which mean is the posterior expectation p and its variance is proportional to

the posterior variance o2:

2
Sy — ufv/\/(o,%) . (4.9)

Therefore, the posterior expectation Ep(s,e,,,) [St] can be estimated and, in ad-
dition, the deviation from the true value follows a normal distribution. Moreover,
the higher the number of samples is, the lower the estimate variance will be. These
results are also applied for expectations of the form:

Ep(sijers) [ (S0)] = / 6(S0) P (St | err) dS, (4.10)

where ¢ (-) is a general function of the state.
However, there are several drawbacks which prevent from using the method as
it is presented above. The posterior pdf, P (S; | e1.t), is usually complex enough,

“Stochastic simulation techniques are referred as Monte-Carlo methods for the Casinos of
Monte Carlo, the capital city of gambles. Roulette wheels and dice rolls are simple random
number generators.
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multivariate, and only known up to a proportionality constant. These problems make
impossible to sample directly from it. Thus, alternative solutions are required.

4.5 Sequential Importance Sampling (SIS)

It is possible to avoid the difficulty of sampling directly from the posterior density by
sampling from an importance or proposal distribution, @ (So.; | €1.¢). As it will be
proved, the posterior density function can be approximated arbitrary well by drawing
samples from a proposal distribution, and thereby, obtaining approximations of the
expectations of interest. Without the lack of generality, results are here obtained for
the first raw moment, i.e, the mean:

HP(So.tlert) — /SO:tP (SO:t | e1:¢) dso: (4.].].)

)
S
SO tw (SO:t | el:t) dSO:t (proposal diStI‘.)
Q (So:t | e1:t)

IR
/Sm Eel t | S1:¢) P (So:t)

e1:¢) Q (Soxt | €1:¢)

Q (SO:t | el:t) dSO:t- (Bayes)

By defining the unnormalised importance weights as:

. P(e1;t | Sl:t)P(SO:t)
e a Q (SO:t | el:t) ' (412)

and conditioning over the evidence probability density function, it follows that:

1
/J‘P(So:t\eht) = P (el't) /SO:tﬂ—tQ (SO:t | el:t) dSO:t (413)

[ S0:mQ (St | e1:4) dso:e o
= TP (er]S1a) P (Sor) dson (conditioning)

_ f SO:tﬂtQ (SO:t | el:t) dSO:t (prOp distr )
JP(e1 | S1) P (Sou) S5eeisddso.
ISO:tﬂ'tQ (SO:t | el:t) dSO:t .
= ht def.
S 7Q (So:¢ | e1:t) dsot (welght def.)

_ EQ(sifer) [S(”ﬂ-t]' (expect. def.)

EqQ(siler.s) [t]

Both expectations can be approximated by sampling from the proposal distri-
bution. Thus, the posterior distribution mean is thereby approximated using the
following estimate:
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N
1 i
WE S0:¢T¢
—
Sy = —/—

N
1 i
N2

i=1

N . .
= D st (4.14)
i=1

where:

(4.15)

denotes the normalised importance weights. The posterior density function can then
be approximated in the following way:

P(SO:t | el:t) ~ P(SO:t | el:t)

N . .
> 76 (S0t — She) 5 (4.16)
i=1

Q

what results from comparing Eq. (4.8) and Eq. (4.14).

Counsidering a filtering scenario, that is, assuming that current states will not be
modified by future observations, the proposal distribution can be decomposed as:

Q (So:t | €1:t) Q (So:t—1,S: | e1) (4.17)
Q (St | So:t—1,€1:t) Q (So:t—1 | €1:) (cond. prob.)

Q
= Q(S:[So:-1,€1:) Q (Soi—1 | e1i—1) (Mark. on ev.)

This allows us to obtain a recursive expression for the importance weights:
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P (e1: | S1:t) P (Sout)
- 4.18
" Q (So:t | e1:t) (4.18)
P (e1. | S1:¢) P (So:t)
- oposal decomp.
Q (St | So:t—1,€1:4) Q (So:t—1 | €1:4-1) (prop mp.)

P (et | S1:4) P (So: T 1 .
N Q (S: | So:El,e|Lt) C»; (Si:t1)| eq;—1) Plenc1S1e— ) P(Somy) (weight def.
Q(So:t—1ler:t—1)
P(e1: | S1:) P (So:t)
Q (St | So:t—1,€1:¢) P (e1:t—1 | S1:—1) P (So:t—1)
P(e; | S1,e1:4-1) P(er:i—1| S1:¢) P(S¢ | So:e—1) P (So:4—1)
Q (St | So:t—1,€1:) P (e1:4—1 | S1:e—1) P (So:4—1)
P(et | St)P(St | St—l)

= - Markov),
et Q(St | SO:tflvelzt) ( V)

= T¢—1

(cond. prob)

= T¢-1

where

e P(e;|S:) is the likelihood function;
e P(S;|S;_1) is the transition model;

e and, @ (S; | So.t—1,€1.¢) is the proposal distribution.

A common and easy choice for the proposal distribution —for instance, the one taken
in [40]— is:

Q (St | SO:tflvelzt) ~ P(St | Stfl)- (4-19)

In this case, the importance weights are given by:
Tt = 7Tt71P (et | St), (420)

and the normalised importance weights are given by:

—i 7Tzlf.—lp (et | Szzf)

T = .
> il p(eils)
j=1

However, this choice has several drawbacks derived from the fact that not incor-
porating the observations introduces errors in the prediction. Thus, it may be the

case that only a few particles have significant weights after being evaluated, specially
when the likelihood function is much narrower than the temporal prior.

(4.21)
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4.5.1 Degeneracy Problem

The SIS algorithm have an intrinsic problem which prevents from using it as it is.
As it is proved in [18], the variance of the importance weights increase over time.
This result has devastating consequences on the simulation performance, since the
majority of the normalised importance weights tend to zero after few iterations. This
samples being numerically insignificant, they are not taken into account in the pdf
approximation. This result implies a sample wastage and a poor representation of the
posterior distribution.

4.6 Sequential Importance Re-sampling (SIR)

Under this approach, a re-sampling stage is used to prune those particles with neg-
ligible importance weights, and multiply those with higher ones. Thus, samples are
re-sampled with replacement using the importance weights as probabilities.

This idea is based on the factored sampling algorithm [28] designed for stationary
pdf’s. It works as follows: A posterior representation is given by the Bayes’ theorem:

P(S|e)x P(e|S)P(S), (4.22)

but the likelihood function is complex enough to prevent the posterior being evaluated
in closed form. Thus, sampling techniques are proposed to generate random variates
from a distribution P (s) that approximates the posterior P (S | e). A sample set of
N i.i.d. random samples, {él,z =1: N}, is simulated from the initial prior density
function, P (S). The algorithm assigns normalised weights 7 to each sample in the
set according to the likelihood function:

L plels)
2p(e|§j)

Subsequently, the samples are selected —or re-sampled— from the sample set with
probability 7. Therefore, the new sample set, {s’;i = 1 : N'}, represents the posterior
density function, P (S | e), accurately as N — oo. Obviously, some particles may be
chosen several times, especially those with higher weights. Thus, some samples in the
new set could be identical. On the other hand, samples with lower weights could be
not chosen at all.

This weighted particle representation is shown in Fig. 4.2, where the posterior den-
sity function is represented by blobs whose centres are the sample set {si;i =1:N }
and their area is proportional to the observation value given by the weights 7.

This idea was introduced by Gordon et al. [27] within a Bayesian filtering frame-
work, thereby leading to Sequential Importance Re-sampling (SIR) filters. Here, a
posterior probability density function represented by samples is iteratively computed.
The pdf undergoes a diffusion-reinforcement process, and the reinforcement stage is

(4.23)
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Figure 4.2: Posterior pdf representation as set of weighted particles. See
text for details.

followed by a run of the factored sampling algorithm presented above. Thus, the
factored sampling is extended by applying it iteratively to successive time-slices.

Subsequently, this techniques were introduced in the Computer Vision field, as
well as in other areas such as Artificial Intelligence, or Automatic Control. Therefore,
these methods are also variously called: particle filtering —after the use of samples or
particles as the way of propagating the probability density function— survival of the
fittest —after the re-sampling stage— bootstrap filtering®, etc. In Computer Vision
they are widely used under the name of CONDENSATION, after the paper presented
in [38].

4.6.1 The CONDENSATION Algorithm

The CONDENSATION algorithm was presented by Isard and Blake in short form at
the European Conference on Computer Vision in 1996 [38]. Later on, it was fully
developed in [40]. This intended to track a human contour, which moves in cluttered
background, given a raw video signal as data.

CONDENSATION addresses the filtering problem when no assumption about linear-
ity or Gaussianity is made on almost all involved probability density functions. The
algorithm is based on Bayesian filters. Therefore, it computes a posterior probability
density function P (S; | e1.+) which undergoes the diffusion-reinforcement process de-
scribed above. Because of the analytical problems already exposed, it makes use of
Monte-Carlo simulation techniques.

5The use of the term bootstrap derives from the phrase "to pull oneself up by one’s
bootstrap", widely thought to be based on one of the eighteenth century Adventures of Baron
Munchausen, by Rudolph Erich Raspe. In the context of this thesis, it means that the
algorithm starts up and recovers by itself: fittest old samples give rise to many new ones.
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It follows the aforementioned SIR approach. Thus, the posterior pdf at time
t—1, P(Si—1|e1.4—1), is given by a set of tuples, each of them consisting in one
sample and its weight, {éi,l,ﬁi,l; i=1: N} or, after applying the factored sampling
algorithm, by the re-sampled sample set {s};,l, %;i =1: N}. In this case, since all
particles are evenly weighted, weights are not displayed and the notation is reduced
to {si_l;i =1: N}.

Summarising, the four density functions involved in a Bayesian filter are:

1. the initial prior density function, P (So);
2. the transition model, P (S; | S;—1) for ¢ > 1;
3. the likelihood function, P (E, | S;) for ¢ > 1;

4. the posterior state density function, P (S; | e1.+) for ¢t > 1.

The initial prior density function is now the only one supposed to be Gaussian. There-
fore, the initial sampling is straightforward. Samples are propagated using the ap-
proach described above, that is, by sampling them from the transition model. Thus,
there is no need to sample from the previous posterior in subsequently iterations.
This fact avoids one of the main problems of the approach based on Monte Carlo
Simulation, i.e., sampling from a complex, multivariate and only known up to a pro-
portionality constant posterior pdf.

This algorithm works as follows: each iteration starts with the prediction stage
where the temporal prior P (S; | e1.4—1) is obtained by applying the transition model
P (S; | Si—1) to the previous posterior. Computationally, this is done in two steps.
In the first place, a deterministic drift is applied to each sample of the previous
posterior,{sf;_l;i =1:N } Obviously, those samples which were identical will un-
dergo the same drift. Then, the random component, i.e. the diffusion, is applied
causing identical samples to split. As a result of this stage, the sample set represents
the prior density function at time ¢, {8};i =1: N}.

The second stage consists in the likelihood correction where the sample weights
are calculated according to:

T =p(e}|8}). (4.24)

It is worth to notice that there is no need to recursively propagate the weights
—as done in Eq. (4.21)— since all previous weights are even and equal to % after the
re-sampling stage. Once all samples have been propagated and measured, the final
stage applies the factored sampling to carry out the re-sampling phase. Thus, weights
are normalised:

i
Ty

N )
>
i=j

(4.25)

—i
T =

where 7! denotes the i-th sample normalised weight at time t.
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Algorithm 1 Re-sampling stage.

e For each sample si:

1. a random number is generated from a Uniform distribution, r €
[0,1].
2. the smallest k index for which ¢} > r is found.

3. the corresponding sample is selected, si = &F.

e end for ¢

Sampling from the discrete set {8;4 = 1: N} with probabilities 7} can be accom-
plished by sampling from a discrete uniform distribution, projecting the index onto
the sample cumulative distribution range and then onto the distribution domain [18§],
see Fig. 4.3.

The cumulative probability distribution is constructed according to:

0

¢ = 0,
d = d7'47, i=1:N. (4.26)

Then, the new sample set, {si;i =1: N} is calculated by generating a random
number, and selecting the sample whose corresponding cumulative probability exceed
this number. This process is summarised in Algorithm 1.

Finally, the sample set represents the posterior pdf at time ¢, P (s, e1.1). The
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Algorithm 2 CONDENSATION.
PROPAGATION

e for each sample in the set {Si_l;i =1: N} do

1. predict the sample values 8: using the transition model P (S; | Sy_1);

2. measure the sample weights 7}, Eq. (4.24);
e end for i
STATE ESTIMATION
e Estimate the state according to Eq. (4.27);
RE-SAMPLING

e Normalise the weights, Eq. (4.25);
e Compute the cumulative probabilities as in Eq.(4.26);

e Call the algorithm in Algorithm 1.

sample set size IV is kept constant over time for all iterations. The expected value at
time ¢ can be approximated as:

N
Ep(sie) (S~ Y 78 (4.27)
i=1
1.
~ stg. (4.28)
=1

It is interesting to remark that the accuracy of any estimate —such as the mean
and covariance— of the posterior distribution can only decrease as a result of the re-
sampling stage. Thus, if these quantities are to be used or displayed, then these should
be computed prior to re-sampling, as in Eq. (4.27), instead of using the posterior
expression in Eq. (4.28).

The algorithm is graphically depicted in Fig. 4.4, and summed up in Algorithm 2.
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Figure 4.4: CONDENSATION algorithm: a graphical representation of one
iteration. See text for details.

4.6.2 The Drawbacks of the CONDENSATION Algorithm

CONDENSATION has certainly been widely applied between 1999 and 2003. According
to Cite-Seer®, it has a peak of over 35 citations in 2001 and 271 hits within the
Cite-Seer database. It has been considered fast and efficient due to its two main
advantages:

1. first of all, it can represent multi-modal density functions. This fact allows us
to consider multiple hypotheses, which is essential in scenes where background
clutter or other moving objects” could mimic the target. Thus, it is possible to
propagate multiple hypotheses which are pruned or reinforced in each iteration
depending on their likelihood.

®http://citeseer.ist.psu.edu/
"Which does not mean that several targets can be tracked at the same time using the
algorithm as it is.



68 CHAPTER 4. PARTICLE-FILTERING TARGET TRACKING

2. The second advantage is that, maintaining the sample set size fixed, it was
supposed to be able to run with bounded computational resources in near real
time?®.

Isard and Blake proved in [40] the asymptotic correctness of the algorithm by showing
that the sample set representation of the posterior density function has weak and
uniform convergence as N — oo. Thus, it is stated that each sample at time ¢ of the
sample set {si;i =1: N} is drawn from a probability density function P (S; | e1.+)
such that P (S¢ | e1t) — P (S | e1.4), where — denotes weak, uniform convergence®.

However, they already warned that the convergence was proved for N — oo given
a fized t. Therefore, the sampled representation approximates the true distribution
with a desired accuracy but only for a fixed number of frames 7. Nothing is said
about the limit T — oo. Thus, at later times larger values of N may be required.

They also stated that there is no information about how large N should be for a re-
quested precision and, therefore, it is heuristically determined. These and other unde-
sirable CONDENSATION side-effects were thoroughly discussed by King and Forsyth [52].
They are briefly presented in the next paragraphs.

One of the main drawbacks of the re-sampling algorithms is a phenomenon called
sampling impoverishment. Let us consider that the samples are spread around several
modes'®. King and Forsyth demonstrated that, with probability one —what is called
an almost sure event''— all samples will end up in one of those modes. Moreover,
the probability that one mode absorbs all samples is proportional to the number of
samples that started in it. Therefore, spurious modes have a non-zero probability of
usurping all samples, causing the true mode to be lost.

Although sampling impoverishment is well studied and proved in [52], it can also
be informally explained as a result of what is called genetic drift: consider a finite
population and one particular gene. The frequency of the gene will not be exactly
reproduced in the offspring due to sampling errors. This sampling error is propagated
over time. The initial frequency is lost because there is not any kind of genetic
memory. Eventually, this random process leads to a population where this gene is
either lost or is present in every individual. In both cases, no further changes are

8However, as will be shown later, having a fixed sample set size has several drawbacks.
Further, the number of samples required to ensured acceptable performances in high di-
mensional spaces prevent from a real-time use in most applications. An on-line sample-set
size adaptation was explore was Fox [22] by evaluating the approximation error using the
Kullback-Leibler distance; this was kept bounded by modifying the sample set size.

“Weak convergence: for every @ defined in a probability space, <15 (st | e1:t) ,Q> —

(P (st | e1:t), Q) where () denotes the inner product.

Uniform convergence: for every ¢ > 0, there exists a natural number N such that for
all s, and all n > N, [p(s¢ | e1t) —p(se | e1)| < e.

The term mode here refers to each local maximum of the distribution.

" There is a subtle difference between an event being sure and almost sure. On the one
hand, a sure event will always happen, and no other event can ever happen. On the other,
if an event is almost sure, other event are allowed to occur, but they happen almost never.
Thus, for instance, infinite sequences of events, or a continuum of outcomes, allow events
with zero-probability to occur —like hitting with a dart a particular point.
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possible. Thus, one mode has disappeared and it cannot be recovered. The Markov
chain that modelled the process has reached an absorbing state, and its distribution
is known as a stationary distribution which means that P (S;y1) = P (S¢).

CONDENSATION uses factored sampling. This process involves a loss of informa-
tion. The probability for one sample of being selected is given by its weight. Consider
now that several samples could be identical and similar samples form modes that can
be far enough one from the other. The probability of propagating one mode is pro-
portional to the number of samples that constitute it. Sample impoverishment means
that all but one of these modes could disappear, and this fact has a non-negligible
probability of happening in finite time.

Considering a real-time tracking application —whose frame rate can be set for
instance at 30 frames per second, which means 30 generations per second— it is
obvious that many modes could disappear in less than seconds. How many seconds
will be needed is only a matter of how many samples are used.

Moreover, lost modes have a very low probability of being recovered. The diffusion
process could preserve diversity, as mutation does in genetics. However, the distance
between modes is usually bigger than the diffusion. One sample will need several
iterations in order to move from one mode to another. But the likelihood in the
region between modes is small, thereby making such a journey highly improbable.

Summarising, there is a non-negligible probability of losing modes, a low probability
of recovering them, and the remaining modes could be all spurious.

There is also another interesting fact, albeit undesirable as well. Isolated pop-
ulations, starting with identical gene frequency, can end up in different absorbing
states. Thus, variation within populations is turned into variations between popula-
tions. Returning to the tracking problem, this fact means that different runs of the
algorithm lead to different results. Therefore, computed expectations may have high
variance. However, computed expectations within the same algorithm run have low
variance making the tracker look stable.

A yet another remarkable phenomenon is caused by the tendency of CONDEN-
SATION towards clustering samples. Ewven when the likelihood function gives no in-
formation at all, i.e, there is nothing to track in the scene, samples become quickly
concentrated. It strongly looks as if the tracker is following something, when actually
it isn’t. Of course, the peaks tracked differ from run to run.

Finally, CONDENSATION was designed to keep multiple hypotheses but only for a
single target. Thus, multiple-target tracking was not feasible. Further extensions and
variations from other authors [74, 57| usually lead to the so-called curse of dimen-
sionality™?.

King and Forsyth proposed two approaches to tackle sampling impoverishment.
In the first place, they suggested using fewer re-sampling steps. Obviously, a well
constrained dynamic model would be required, what is usually not feasible. The
second suggestion implies generating new samples occasionally. This suggestions has

12This is a term coined by Richard Bellman in 1961 to refer to the problem caused by
the exponential increase of an hyper-volume as a function of space dimensionality: adding
extra dimensions causes an exponential growth of the number of required samples to densely
populate the space.
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been followed by Varona et al. in [91], and within the importance-sampling framework,
by Isard and Blake [41].

4.7 An Approach to MTT by Particle Filtering

In this section, an proposal based on particle filters is developed in order to perform
Multiple-Target Tracking. The approach was initially inspired in the iTrack algo-
rithm —within the SIR framework— implemented by Varona in his PhD thesis [90].
Subsequently, the focus has been placed in coping with two main difficulties:

1. inherent drawbacks of SIR methods;

2. and, scenario-dependent problems.

On the one hand, serious computational problems arose due to the inability of man-
aging particle sets which must be big enough to populate adequately the search space,
thereby being able of representing arbitrary distributions. Thus, particles should be
wisely steered and re-sampled, so as to reduce the number of required particles. Issues
such as sample impoverishment, and the curse of dimensionality must be tackle in a
principled way.

On the other hand, robust tracking requires to deal with expected difficulties, such
as background clutter and target occlusion. The non-rigid nature of the targets, along
with changing illumination conditions, make model updating unavoidable. However,
model drift should be prevented at any cost to ensure tracking viability.

4.7.1 State Modelling

A first-order dynamic model in image coordinates is used to model the motion of the
central point of a bounding box. This bounding box is considered the region within
the scene which is thought to enclose the target.

Thus, the target’s motion is characterised by its position at time ¢, x; = (2, yt)T,
and its speed, u; = (uy, vt)T. This dynamic model involves the assumption of constant
speed —acceleration will be given by Gaussian noise—- which can be more o less
realistic depending on the target’s dynamics and the frame rate. It usually holds in
trajectory-analysis applications at current common frame rates of 25-30 fps.

The aspect model is given bjy a bounding box and an appearance matrix. The
former, denoted by w; = (wy, hy)" , defines a rectangle whose size is given by its width,
wy, and its height, h;. The latter, denoted by A, stores the pixel intensity values
within the bounding box. An indicator of the expected likelihood value is given by
A¢. This stores expected matching, taking into account that differences will be found
due to sensor noise, changes in illumination, shape deformations, etc.

The occlusion status is inferred and store in p,. This is a binary variable which
points out whether the target is the nearer one in a group to the camera.

Finally, a label [ associates a specific appearance model to the corresponding

samples, allowing multiple-target tracking. Therefore, the [—target’s state is defined

U (ol ol ol AL 0 VT
as 8y = (xt7utuwt7At7pt7)‘t) .



4.7. AN APPROACH TO MTT BY PARTICLE FILTERING 71

4.7.2 Transition Model

Several independence relationships are assumed in order to determine the transition
model. It is considered that both aspect and dynamic models are independent, that
the position only depends on the previous position and speed, the speed on the pre-
vious one, and so does the bounding box on and the appearance. Therefore, the
transition model can be split:

P(St | Stfl) = P(Xt;UtathAt | thlvUtflthflvAtfl) (429)
= P(X¢ | X1, Upq) P(Ug | Upg) P(Wy [ Wi1) P(A | Ayoa)
Given the constant speed assumption, the dynamic model can be defined accord-

ing to:

P (Xt | Xt—1, ut,l) = N(Xt;Xt,1 + utflAt, Ex) y (430)
P (Ut | ut,l) ./\/(Ut;utfl, Eu) (431)

Thus, the position state variable X; evolves according to a linear Gaussian whose
mean is a linear expression of its parents and the variance is fixed and heuristically
determined. A; is the sampling period. Time is considered discrete and measured in
frames. Thus, A; equals 1. Position is also discrete and measured in pixels. On the
other hand, the speed state variable U; evolves according to a Gaussian whose mean
is its parent and the variance is again heuristically fixed according to the expected
target acceleration. These two covariance matrices are denoted by ¥« and 3.

In order to implement the aspect model, it is assumed that the shape evolves
smoothly, and the appearance is fixed between consecutive frames according to:

P (Wt | Wtfl) = N(Wt;Wtfl, Zw), (432)
P(Ai| A1) = d(Ar— A1), (4.33)

where X, denotes the size covariance matrix.

Although the appearance is considered to be fixed when propagating the state, it
will eventually be updated once the posterior expectation is computed.

Therefore, the position, speed, and size of each sample are predicted according

to:
il il il i
X, = xg twl A+,
ﬁi)l = ufﬁ—l + 5:17
wit = whl el (4.34)

where the random vectors &2, &¢, &L, sampled from WAGN processes, provide the
system with a diversity of hypotheses.
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Sample likelihoods depend on sample position and size, but not on their speeds.
Thus, if speeds were propagated considering the previous speed, they would be in
quasi open loop!3. Thus, their values could become completely different from the
true values within a few frames, and an important proportion of samples would be
wasted. In order to avoid this phenomenon, the estimated target speed u}_; at time

t — 1 is fed back into the prediction of )Acffl

After the initialisation, no sample is generated using detection, since it would
magsk tracking misbehaviours. Thus, just tracking performances are tested by means
of propagating hypotheses and weighting them according to evidence. Clearly, by
incorporating detection, the general performance will be enhanced, providing the
system with error-recovery capabilities.

4.7.3 Template-based Likelihood Function

In a visual tracking context, the likelihood function gives the probability density
function of image features given the state. The intensity is chosen as image feature.
Features are considered pixel-oriented. Hence, the appearance is given by a matrix
whose elements are the pixels’ intensity values.

Let I; be a matrix whose elements are the scene pixel intensity values at time
t. Thus, evidence e; is given by the input image sequence I;. Given the predicted
position X; and bounding-box size W, the corresponding image sub-region is denoted
by I. The model appearance matrix must be scaled according to the sample size.
Let A® be the model scaled matrix. Thus, assuming that the likelihood function is
independent of the speed component, it can be expressed as:

P |S) = P |X,W,A)
= PI7[A]), (4.35)

and, once assumed constant appearance between frames and White Additive Gaussian
Noise, the likelihood function can be defined as a similarity measure which averages
the likelihood of all pixels within the bounding box!*:

S 1 S
P A} = 37 > P@(ab)]Af (D)
a,beAg
1
= 37 2 N (a.b);Af (ab),07) (4.36)
a,beAg

13There would still be a weak relation, since speeds are used to predict positions, and
position errors can be measured, but a considerable delay would be introduced, as it will be
shown in the experimental results.

14This expression does not pretend to follow a probabilistic derivation. The likelihood
function is usually defined in terms of a distance, and this distance is here computed from
the likelihood of each pixel within the bounding box.
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where M is the number of pixels of the appearance model, (a,b) defines a pixel posi-
tion in the appearance matrix and o2 is the camera noise variance, which randomly
influences the pixels’ intensity values.

4.7.4 Weight Normalisation

In a multiple-target tracking scenario, those targets whose samples exhibit lower like-
lihood are more likely to be lost, since the probability of propagating one mode is
proportional to the cumulative weights of its samples. In order to avoid one target
absorbing other target samples, genetic drift must be prevented. Thus, a memory
term, which takes into account the number of targets being tracked, is included.
Weights are normalised according to:

ol M1 (4.37)

where L is the number of tracked targets. Each weight is normalised according to
the total weight of the target’s samples. Thus, all targets have the same probability
of being propagated, since the addition of the weights of each target samples sums
%. This allows multiple-target tracking using a single PF framework, despite the

differences between their likelihoods and the genetic drift phenomenon.

4.7.5 State Estimation

The [-target estimates are computed according to:

N
x, = (1—oax) (Xt +uj_;A) +ox (LZﬁi’lii’l> :
i=1

! !
xt —x!
ui (1—au)ué71+au (7t At 1),
¢

N
w! (1—aw)w |+ oy (LZﬁi’l\’fvi’l> ) (4.38)
i=1

where ax, an, aw € [0,1] denote the adaptation rates. Target speeds are not esti-
mated according to sample speeds and their weights, since significant errors would be
introduced: samples are chosen only because of sample weights, which do not directly
depend on the current speed. This fact could imply a significant amount of jitter and
many samples would be wasted. Therefore, target speeds are computed from succes-
sive position estimates. Further, both position and speed estimates are enhanced by
regularising them according to their histories.
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The target appearance must also be updated. However, this is a sensitive task
which may lead to the well-known model drift phenomenon. Thus, models are then
only updated when two conditions hold:

e the target is not occluded;

e and, the likelihood of the estimated target’s state suggests that the estimate is
sufficiently reliable.

In this case, they are updated using an adaptive filter:

Al =(1—aa) A7, +aall, (4.39)

where aa € [0,1] is the learning rate, and I} is the image sub-region cropped given
the target new estimate position and size x., wl.

In order to determine when the estimate is reliable, the likelihood of the current
estimate is computed, p (et | sfg) The appearance is then updated when this value
is higher than an indicator of the expected likelihood value, calculated following an
adaptive rule:

A= (1—a) iy +ap(e|sp). (4.40)

4.7.6 Occlusion handling

Although the appearance model is not updated during occlusions, these still constitute
a main cause of catastrophic failures. Partial occlusions may cause inaccurate size
updating, according to the area that can be seen. In case of complete occlusions,
sample likelihoods are meaningless, and the re-sampling phase randomly propagate
them, quickly losing the target.

Hence, proper handling of occlusions is crucial. The state binary variable p!
tracks the occlusion status. Occlusions are predicted according to the learnt dynamics.
When the predicted occlusion is significant, and the target likelihood is lower than the
expected one given by !, the target state changes into occluded. Then, the following
changes are introduced:

e neither the size, nor the velocity or the likelihood-expectation indicator are
updated; the position is just propagated

e those samples belonging to the occluded target are not re-sampled. As a result,
samples are spread around the target because of the uncertainty predictions
terms. The other targets’ samples are re-sampled, but are not assigned to the
occluded target, since otherwise this one would monopolise the whole sample
set.

When the occlusion is no longer predicted, or a sample likelihood exceeds the value
previous to the occlusion, pl turns into zero, which immediately implies pruning those
samples with lower weights. Furthermore, all estimates are again updated.
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4.7.7 Extension of the Tracking Algorithm

Bounding-boxes and templates can hardly model the shape and appearance of non-
rigid targets. The target region representation is changed into an ellipse in order to
reduce the number of background pixels included in the model. Now, the motion of
the central point of an elliptical region is modelled using first-order dynamics in image
coordinates.

Further, the target appearance is represented by means of colour histograms.
Histograms are broadly used to represented human appearance, since they are claimed
to be less sensitive than colour templates to rotations in depth, the camera point of
view, non-rigid targets, and partial occlusions. By using colour as image feature
instead of intensity, a better target disambiguation can be achieved.

Thus, the [—model is given by:

p = {pk=1:K}, (4.41)

where K is the number of bins, and the probability of each feature is:

P = C'Y 5(b(xa) — k), (4.42)

where C! is a normalisation constant required to ensure that Eszl pﬁc =1, 0 the Kro-
necker delta, {x,;a = 1: M} the pixel locations, and b (x,) a function that associates

the given pixel to its corresponding histogram bin.

The I-labelled target’s state is then defined as sl = (x%, ul, wi, pl, pl, A%)T, where

components are the ellipse position, velocity, both axes, the appearance model, the
occlusion status, and the expected target likelihood.

4.7.7.1 A Colour-based Likelihood function

The target distribution at the predicted position ki’l and ellipse size vAvi’l, is given by
pﬁ, which is calculated in the same way as the model. The similarity between two
histograms can be computed using the following metric [14, 67]:

dg =/1—p(p,P), (4.43)

where

K
p(p. D) = D \/piBhs (4.44)

k=1

is known as the Bhattacharyya coefficient. Therefore, similar histograms have a high
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Figure 4.5: Examples of a centre-surround model with safety margin.
(a) Tracked van from a traffic-monitoring sequence. (b) Tracked person from
an indoor surveillance application in a shopping centre. Regions from cen-
tre to border: target estimation, safety margin, surrounding background, and
non-local background.

Bhattacharyya coefficient, which should correspond to high sample weights. The
computed metric can be mapped using a Gaussian distribution [67], and samples are
thus weighted according to:

ml=p (et | §i’l> =N (d;p,0°). (4.45)

So far no background information has been used. However, tracking success de-
pends on how distinguishable the target is from a local environment. Thus, foreground
features present also in its surroundings should be less important for target localisa-
tion. Here, an approach similar to [14] is adopted by using a centre-surround model
to compute the local background histogram q' according to the outer region which
encloses the target, see Fig. 4.5.

The local background region is given by an ellipse which encloses the tracked one
by defining two margins of dimension ks * max (h,w). The potential incorporation
of own target pixels, specially if the target shape cannot be fairly represented by an
ellipse is minimised by taking into account just the outer region to build the local
background histogram. s is usually equal to 0.1 for the inner margin and 0.3 for the
outer one. Hence, the background histogram is used to compute a weight for each

bin:
ql*
wé—{min <—’§);k—1:K}, (4.46)
dy

where qfc* is the minimum non-zero value. Thus, these weights are then applied to the
target histogram to diminish the importance of those bins which represent the local
background. Hence, the resulting Bhattacharyya coefficient is
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Algorithm 3 MT'T particle filtering
PROPAGATION

e fori=1to N do

1. predict the sample values §i’l using the transition model in Eq. (4.34)

2. measure the sample weights 7 according to Eq. (4.45)
e end for ¢
UPDATING

e normalise the weights as in Eq. (4.37)
e predict occlusion percentage according to target’s dynamics models

e for/=1to L do

1. evaluate occlusions according to target collision and likelihoods
2. estimate the target state:

(a) if target is occluded then set adaptation rates ax, oy to zero
(b) estimate target position and speed according to Eq. 4.38
(c) if the target estimate is reliable
i. update target’s size
ii. update the appearance models following Eqs. (4.38),(4.48)
iii. update A} as in Eq.(4.40)

e end for [
RE-SAMPLING

e Build the cumulative distribution as in Eq.(4.26)

e fori=1to N do
if target [ is occluded then keep the sample: si’l = §il

else proceed with re-sampling as in Algorithm 1

e end fori
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K
pw (P D) = Y wi\/DkPh (4.47)

k=1

Finally, in the state-estimation stage, Eq.(4.39) is changed accordingly:
ﬁf& = (I1-aq) ﬁf&—l + qupé, (4.48)

where aqg € [0, 1] is the learning rate which weights the most recent values versus the
historic ones. The complete algorithm is summarised in Algorithm 3.

4.8 Discussion

With this work we have attempted to take a step towards solving the numerous
difficulties which appear in MTT applications by means of particle filtering'®.

Dynamics updating is modified by feeding back the estimated speed into the
prediction stage. The target’s speed is estimated from successive position estimates.
Both position and speed estimates are now regularised. Thus, sample wastage is
significantly reduced. In addition, trajectory jitter is considerably attenuated.

Different likelihood function have been explored in order to properly evaluate
samples associated to targets which present a high appearance variability. Finally,
the approach relies on the Bhattacharyya coefficient between colour histograms to
perform this task.

Model updating is carried out with special care, in order to overcome the model
drift phenomenon. A multiple-target tracking scenario causes several problems, in-
cluding sampling impoverishment and mutual occlusions. These issues are tackled
by redefining the weight normalisation, and predicting and handling occlusions. The
proposed sample-weight normalisation avoids losing any of the targets due to the lack
of samples.

Although significant advances have been obtained —see chapter on experimental
results— the approach is far from being suitable to perform multiple target tracking
in cluttered environments under uncontrolled conditions in long sequences. This is
due to multiple facts:

e Monte-Carlo methods are usually not able to densely populate a high-dimension
spaces. Estimations are performed from a limited number of samples. This
results in poor state approximations when dealing with multi-modal pdf’s.

e Top-down approaches require extremely constrained models, which is not fea-
sible in generic applications. Errors in the estimation are propagated, thereby
causing model drift.

Y5Experimental results obtained using the presented approach in both synthetic and real
scenarios are shown in the corresponding chapter, see section 6.2 on page 147.
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e An independent observation process from prediction is required to cope with
estimation errors with a finite number of samples. This entails the necessity a
bottom-up process.

e Likelihood functions are usually not discriminative enough.

Taking all these issues in mind, a novel approach which simultaneously takes advan-
tage of both bottom-up and top-down paradigms is developed in next chapter. As
stated by the English Franciscan Friar William of Ockham in the 14th century, "en-
tia non sunt multiplicanda praeter necessitatem". This principle!® suggests to select
the theory that introduces the fewest assumptions and postulates the fewest entities,
which is of course not the case of PF’s in uncontrolled environments.

The hierarchical architecture presented in the following intends to make use of all
available sources of information, while keeping the assumptions to a minimum, and
avoiding the use of constrained models. Two trackers —motion-based and appearance-
based— are embedded as modules in each pathway, i.e. bottom-up and top-down,
respectively. In the proposed approach, these are implemented as a Kalman Filter
and a Mean-shift tracker. Both functionalities can be carried out by a particle filter
like the one above described —in case some conditions hold, like the existence of
constrained models. Nevertheless, given the aforementioned reasons, the practical
implementation has been left to the above stated filters.

4.9 Resum

Amb aquest treball hem intentat avancar cap a la resolucié de les nombroses di-
ficultats que apareixen en aplicacions de MTT per mitja de resultats de filtratge.
L’actualitzacio de les dinamiques es realitza alimentant-se de la velocitat aproximada
a escenari durant la prediccié. La velocitat dels objectes es calcula des de successius
prediccions de posici6. Es normalitzen ara les prediccions tant de posicié com de
velocitat. Aixi, el desaprofitament de les mostres utilitzades es redueix significativa-
ment. A més a més, les desviacions en la prediccié de la trajectoria també s’atenuen
considerablement.

Han estat explorats funcions de versemblanca diferents per propiament avaluar
que les mostres s’associaven a els objectes que presenten una variabilitat d’aspecte
molt alta. Finalment, I’enfocament depén del coeficient Bhattacharyya entre his-
togrames de color utilitzats per aquesta tasca.

L’actualitzacio dels models es fa amb una cura especial, per véncer el fenomen
de la deriva del model. El seguiment de miltiples objectes provoca uns quants prob-
lemes, incloent-hi 'empobriment de mostreig i les oclusions mutues. Aquests cassos
es tracten redefinint la normalitzacié de pes, i pronosticant i manejant oclusions. La
normalitzaci6é proposada dels pesos de les mostres evita perdre qualsevol dels objectes
a causa de la manca de mostres.

Encara que s’han obtingut avencos significatius — vegi el capitol sobre resultats
experimentals — 'enfocament és lluny de ser I’adequat per realitzar el seguiment de

61t is usually referred as the ‘Ockham “s razor’
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multiples objectes en ambients oberts sota condicions incontrolades i en seqiiéncies
llargues. Aix0 és a causa de multiples fets:

e FEls métodes de Monte-Carlo no sén normalment capacos de poblar densament
espais de dimensionalitat alta. Les prediccions es realitzen des d’un nombre
limitat de mostres. Aix0 ocasiona aproximacions pobres en tractar amb pdf’s
multimodals.

e Les aproximacions de Dalt-a-Baix exigeixen models extremadament restrictius,
la qual cosa no és factible en aplicacions genériques. Els errors en ’estimacié
es propaguen, provocant aixi una deriva dels models.

e Es requereix un procés d’observacio independent de la prediccié per afrontar
errors en les prediccions amb un nombre finit de mostres. Aixo suposa la
necessitat un procés de Baix-a-Dalt.

e Les Funcions de Versemblancga normalment no sén prou discriminatives.

Prenent tots aquests problemes, es desenvolupa en el proxim capitol una nova aprox-
imacié que prengui avantatge simultaniament de paradigmes tant de Baix-a-dalt com
de Dalt-a-baix. Com va manifestar el Francisca anglés William d’Ockham al segle
14¢, "entia non sunt multiplicanda praeter necessitatem". Aquest principi suggereix
seleccionar la teoria que introdueixi les menors suposicions que pressuposi les menors
entitats, que naturalment no és el cas dels filtres de particules en entorns no controlats.
L’arquitectura jerarquica presentada tot seguit pretén fer s de totes les fonts
d’informaci6 disponibles, mantenint les suposicions a un minim, i evitant 1’as de mod-
els massa restrictius. S’inclouen dos algorismes de seguiment —basat en moviment i
en I’aparenca— en cada sentit, i.e. de Baix-a-Dalt i de Dalt-a-Baix, respectivament. En
I’aproximacié proposada a continuacio, aquests s’implementen com un Filtre Kalman
i un algorisme de Mean-shift. Les dues funcionalitats poden ser assolides per un fil-
tre de particules com el descrit anteriorment —in el cas de que algunes condicions es
mantinguem, com ’existéncia de models restrictius. No obstant aixo, ates les susdites
raons, es presenta una aplicacié practica amb els filtres anteriorment mencionats.



Chapter 5

A Principled Hierarchical
Architecture to Multiple-Target
Tracking

Non-supervised MTT involves such an inherent complexity that leads to propose a
structured framework to accomplish such a task. First of all, reliable target seg-
mentation is critical in every tracking system in order to achieve an accurate feature
extraction without considering any prior knowledge about potential targets. This is
even more crucial in dynamic open scenes. However, complex interacting agents who
move through cluttered environments require high-level analysis.

5.1 Approach Outline

Our proposal combines in a principled architecture both bottom-up and top-down
approaches. This is implemented as a modular and hierarchically-organised system.
The resulting architecture is based on a set of co-operating modules which are dis-
tributed through three levels. Each level is defined according to the different tasks to
be performed: Target Detection, Low-Level Tracking (LLT), and High-Level Tracking
(HLT). A sketch of this system?® is shown in Fig. 5.1.

The different modules take part in both bottom-up and top-down processes. On
the one hand, the bottom-up process provides the system with capabilities for ini-
tialisation, error-recovering and simultaneous modelling and tracking. On the other
hand, the top-down one builds the models according to a high-level event interpreta-
tion, and allows the system to switch between the two operation modes implemented:
Motion-Based Tracking and Appearance-Based Tracking.

These concurrent processes are allowed due to the fact that in the proposed ar-
chitecture the tracking task is split into two levels: the lower one, which is based on

!The notation used through this chapter is summed up and explained in detail in Ap-
pendix B. It may slightly differ from the one used in the previous chapter due to practical
reasons derive from dealing with multiple approaches and algorithms.
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Figure 5.1: Tracking architecture. I; represents the current frame; the ob-
servation, LLT and HLT data structures are denoted by Z;, X; and S; re-
spectively; u; represents a vector of potential system control signals, while C;
refers to high-level information. Matching results are explained in the text.
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Figure 5.2: Relations between the HSE framework and the proposed tracking
architecture. See text for details.

short-term blob trackers, and a higher one, based on long-term target trackers. The
latter has a crucial importance: it automatically builds and tunes multiple appear-
ance colour models, manages the events in which the target is involved, and selects
the most appropriate tracking approach according to these. Therefore, the system can
react to what is taking place, and switch accordingly to a most convenient operation
mode [60].

It is interesting to remark that the tracking architecture presented in Fig. 5.1 is a
part of the complex HSE framework shown in Fig. 3.1 on page 50. Thus, segmentation
tasks within the Detection Level correspond to ISL; target detection and classification,
as well as LLT, and appearance representation within the HLT belong to PDL; and
event management, operation-mode selection, and other HLT tasks are assimilated to
CIL2.

2However, the HSE framework aims to be a conceptual abstraction of system function-
alities, while the proposed architecture implements a real tracking system. Therefore, func-
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Further, cognitive levels consequently require the global position, shape and ap-
pearance of all targets within the scene: this information is fed forward by the track-
ing system. In addition, this system can benefit in the future from the cognitive
processes performed at the higher levels of the HSE framework. Finally, the scene
could be recorded using active cameras. In this case, an image mosaic would be built,
and the entire process would be transparent for the architecture here presented. The
relations between both HSE framework and the implemented tracking architecture is
shown in Fig 5.2.

The current system design considers no use of a-priori knowledge about either the
scene or the targets, based on extensive off-line training or learning periods. The aim
is to implement a system general enough to be independent of a particular scenario,
and which can directly be used. However, the expected future use of this high-level
information can do nothing but enhance the current system performances?.

In the following, a comparison is presented between the proposal and a natural
paradigm. Subsequently, each level shown in Fig. 5.1 is depicted in detail, as well as
the relations among the different cooperating modules. Thus, it is the architecture
itself what is considered as the main contribution: it introduces in the system the
necessary synergies which permit to tackle such a inherently complex problem. How-
ever, contributions include not only the architecture itself, but also the development
and improvement of the different modules. Notwithstanding, there the main focus
is placed on the high-level tracking algorithms. Hence, contributions have been pre-
sented on diverse modules, levels ans tasks —such as on segmentation [37], low-level
tracking [26], high-level tracking [79], and event management [78].

5.2 A Solution Inspired in a Natural Paradigm

The proposed architecture can be seen as a biological-inspired solution in many
ways. In a natural paradigm, visual-stimuli processing can be divided into two cate-
gories [44, 68]: on the one hand, bottom-up or pre-attentive processes carry out raw
data processing without high-level, a-priori learnt information —this is usually done
quickly and apparently effortless in the whole visual field; on the other hand, top-
down or attentive processes perform goal-oriented tasks by making use of context and
domain knowledge. Nevertheless, these two kind of processes are strongly linked, and
they occur simultaneously in a closed loop [68]. In this way, the latters are applied
to solve those cases in which the formers fail, and to tune them in order to focus the
attention on the object of interest. Further, the pre-attentive stage of vision performs
the processing for different visual cues, such as motion or colour. This is done in a
parallel and independent way. Subsequently, these results are fused in the attentive
stage.

tionality correspondences have a degree of fuzziness, as represented in Fig 5.2.

3The system can be particularised to a defined scenario by introducing known context
constraints in the different algorithm implemented in each module. Further, learning meth-
ods can be considered to tune the algorithm parameters. However, it is worth to say the
current sensitivity to these is low enough to allow keep them fixed during the hundreds of
processed frames of each of the multiple considered sequences in many different scenarios.
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Figure 5.3: Biological foundation of the tracking architecture. (Figure from
Scene Understanding Symposium, MIT, T. Poggio, 2007)

Hence, our proposed architecture follows this natural paradigm in several senses.
As it has been stated, the approach is based on a two-level tracking system fed by a de-
tection level. Thus, it combines the two stages of visual perception. Our pre-attentive
stage provides a coarse localisation, while the attentive one performs an accurate
tracking of those objects of interest, by means of a further analysis and hypothesis
confirmation. This biological basis can also be found in other Computer Vision ap-
plications, such as medical imaging retrieval, and face tracking approaches [64, 20].
Further, the attention/back-projection information flow* is currently a challenging
new line of research [82], see Fig. 5.3.

As intermediate objects, low-level trackers are created at a initial level of abstrac-
tion, by processing segmented image data. This step provides several advantages:
(i) segmentation errors due to noise, camouflage, or the inclusion of shadows and re-
flections are reduced, thereby limiting potential spurious structural changes; (ii) the

*http://suns.mit.edu/SUnS07Slides/Poggio_SUnSO7.pdf, T. Poggio, Scene Under-
standing Symposium, MIT, 2007.
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Figure 5.4: Detection level.

low-level target representation can be handled by high-level entities, thereby reducing
the sensory gap between images and high-level abstractions; and (iii) the computa-
tional complexity is cut down by using a compact representation, which also removes
confusing elements.

Thus, low-level motion trackers perform a rough tracking where detailed models
are avoided. No appearance information is used, and events are not analysed. After
this first stage of pre-attentive processing, and once the low-level trackers reach enough
confidence, the system performs selective examinations of the tracked objects that
draw its attention. Hence, high-level trackers build accurate appearance colour-based
models, and analyse the events in which they take part in. This information is then
used to act on the lower trackers. Therefore, the output S; from high-level attentive
tracking algorithms is fed back to the lower levels, tuning pre-attentive cues, and
yielding a closed-loop system.

Further, the two implemented operation modes follow also the natural paradigm of
first-order and second-order motion perception [66]. While the former is performed by
detecting luminance changes in a particular point of the retina, and correlating it with
a delayed change at a neighbouring point, the latter depends on moving blobs defined
in terms of contrast —difference in the color and brightness with the surroundings—
or texture. Thus, an analogy can also be found between each tracking tier with human
peripheral or nocturnal vision in contrast to central colour vision.

Finally, an structural biological foundation can be seen in the presented archi-
tecture: each level has an inner feed-back loop, but the different levels are part of
several outer loops. Thus, like in a vertebrate nervous system, decisions can be locally
taken, or given by a higher level [29]. See Appendix E for more information about
how a Natural Vision System works, and about the hierarchical system of response
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Figure 5.5: Sensor response. The sensor response depends on the illuminant
wavelength, and on the object reflectance, apart from the sensor sensitivity.
(Figure modified from CS410 notes, Draper, 2006).

generation.

5.3 Detection Level

The first level performs target detection from motion segmentation, see Fig. 5.4.
The segmentation task is accomplished following a statistical background-subtraction
approach which uses either colour or intensity cues according to sensor response s¢ [37].
The segmented image is subsequently filtered, a connected component analysis is
performed, and extracted blobs are parametrically represented.

The sensor response s¢ —for Lambertain, or perfect matte surfaces— depends
on three components: the illuminant spectral power distribution L (\), the object
reflectance distribution R ()\), and the sensor sensitivity S¢ (\):

5 :/L()\)R(A) S° () dA, (5.1)

where A\ denotes the wavelength, and ¢ € {R, G, B} the colour channel, see Fig. 5.5.
Therefore, changes in the illumination —in both brightness and chrominance compo-
nents— modify the sensor response, see Fig. 5.6. The object reflectance may consid-
erably depend on the both the incident-light angle, and the viewing angle. It also
may present strong specular components, that have no information about the object
colour. Finally, it depends on the sensor sensitivity, see Fig. 5.7. In addition, the
sensor dynamic range must be taken into account. This is defined as the ratio be-
tween the maximum possible signal versus the noise signal in dark. Thus, very low or
very high brightness distort the observed response. Consequently, these effects should
be considered as a source of potential errors during both background modelling and
image segmentation.

Fig. 5.8 shows a case analysis of the potential segmentation casuistry using the
combination of two background models. These consists on a colour-based one which
separates both chrominance and brightness component; and and intensity one com-
puted for those pixels beyond the sensor range.
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Figure 5.6: Illuminant Spectral Power Distribution. The illuminant SPD
may vary, thereby affecting the observed colour. (Figure modified from CS320

notes, Jepson, 2005).
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The colour base case is the correct operation of the chrominance model. Thus,
a pixel is considered as foreground when it differs in chrominance with the model.
Changes in illumination conditions —such as those cause by shadows— are supposed
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Figure 5.8: Segmentation casuistry based on chrominance and brightness.
See text for details.

to entail just variations in the observed brightness, but not in the chrominance.

Secondly, very dark pixels do not have enough brightness to reliably compute the
chrominance, since they are beyond the sensor dynamic range. A similar problem
appears with very light pixels, which have at least one channel component saturated.
A series of experiments with a Macbeth board were designed to explore these phe-
nomena, see Fig. 5.9. The experiments show that a wrong background model may
be built depending on the illumination conditions. Thus, a Macbeth board is illu-
minated with a constant light source. Then, the diaphragm is modified in a series
of time steps, thereby changing the received luminance. The red line denotes the
modelled chrominance line, whereas the blue one corresponds to the actual one. The
background was modelled during 50 frames, and the corresponding pixel values are
drawn in green. Then, 650 more frames are acquired while changing the aperture.
These pixel values are drawn in blue. These cases are addressed using the intensity
model, being the intensity base case.

Hence, the base case solves some of the segmentation problems, such as shadows
and highlights —independently of their being local or global, sudden or gradual—
as long as the illuminant has a plain spectral power distribution. The anomalies
are problems that may appear, since they cannot be disambiguated using colour and
intensity cues. The next anomalies should be taken into account: firstly, foreground
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Figure 5.9: Experiments on a Macbeth board to test the sensor dynamic
range. (a) This corresponds to a blue checker which is not observed with
enough light during the modelling process. (b) In this case, the chrominance
of a yellow checker is modelled while some of the channels are saturated.
Consequently, there are important deviations between the inferred and actual
chrominance in both cases.
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Figure 5.10: Background modelling approach. See text for details.

pixels with the same chrominance as the background model are not segmented, and are
considered camouflaged. Secondly, this is also the case of pixels with lower and higher
brightness, that cannot be distinguished from shadows and highlights, respectively.
Finally, local and global changes in the illuminant chrominance, as well as gleaming
surfaces, cause false-positive segmentations.

This casuistry is here used to implement an image-segmentation algorithm which
addresses the base case by combining different cues.

5.3.1 Background Model

The background is modelled on a pixel-wise basis [86, 30, 61, 81], which provides the
necessary model accuracy. This is carried out by using a window of T frames. A
motion filter is used to remove moving pixels during the modelling stage:

I, — 15| < max (kmog,€), (5.2)

where I~§ is the median value of channel ¢ € {R, G, B} of pixel a during the T frames,
0¢ their standard deviation, s, the factor that sets the confidence region, and € a
small positive quantity. This process is iterated until convergence. Then, just those
pixels with a representative number of valid values in the T frames are taken into
account for background modelling.

Two cues, colour and intensity, are considered in order to build the background
model. On the one hand, those pixels whose RGB values are beyond the linear range
of the sensor are also filtered before building the Background Colour Model (BCM).
On the other hand, those pixels values which are beyond the sensor dynamic range are
used to build the Background Intensity Model (BIM). A sketch of the Background-
Modelling Module is shown in Fig 5.10.

The BCM is computed according to the representation shown in Fig. 5.11: first,
the RGB mean p, and standard deviation o, of every image pixel a during the time



92 CHAPTER 5. MULTIPLE-TARGET TRACKING ARCHITECTURE

Expected
< chromatic line

Figure 5.11: Colour-model representation. u, represents the expected RGB
colour value for a pixel a, while I, is the current pixel value. The line Op,
shows the expected chromatic line —all colours along this line have the same
chrominance, but different brightness. «, and (3, give the current brightness
and chrominance distortion, respectively.
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Once each RGB component is normalised by their respective standard deviation
0%, c € {R,G, B}, two distortion measures are established: the brightness distortion,
0 ¢, and the chrominance distortion, 3, . The brightness distortion can be computed
by minimising the distance between the current pixel value I,; and the chromatic
line Op,. This distance is, in fact, the chromatic distortion. Thus, the brightness
distortions is given by:

R R G G B B
Ia,tiu’a Ia,tlu‘a Ia,tlu‘a

wn? t 0o T lony?

R\ 2 a2 B\ 2’
(5) + (%) + (%)

(5.5)

and the chromatic one by:

IS, — agpi\ 2
ﬁa,t: Z (¢T> . (56)

¢c=R,G,B

Finally, the Root Mean Square over time of both distortions for each pixel is
computed: @, and (,, respectively:
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where 1 is subtracted to ag, so that the brightness distortion is now distributed
around zero: positive values mean brighter pixels, whereas negative ones mean darker
pixels, with regard to the learnt values. These values are used as normalising factors
so that a single threshold can be set for the whole image. This 4-tuple (ua, o4, 0, Ba)
constitutes the pixel colour background model.

Unfortunately, chrominance cues cannot be used for those foreground pixels be-
yond the sensor dynamic range. For this cases, the brightness of the BCM is used as
segmenting cue.

The BIM consist on a 2-tuple given by the mean pixel intensity, x4 and its stan-
dard deviation o. It is computed for those non-in-motion pixels which have a repre-
sentative number of values beyond sensor dynamic range.

5.3.1.1 Automatic Threshold Selection

The model is completed by an automatic threshold computation for a given detection
rate. A new frame is presented and normalised distortions are calculated for each
pixel:

Qg t

aa,t = 0_4(17 (59)
Bt = %at (5.10)

This process is repeated during a temporal window of T3, frames in order to avoid
errors due to an insufficient number of samples. Subsequently, the histograms of
both accumulated measures &, and ﬁvmt are computed taking into account all pixel
distortions during the temporal window. Detection rates are used to set a lower and
higher brightness distortion thresholds, 71, Ta2, and a chrominance threshold, 75.

Two thresholds are set for both dark and light foreground cases, where the current
pixel is beyond the sensor dynamic range:

™D = KDTal,
T, — KLTa2, (511)
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Figure 5.12: Threshold computation. Thresholds are automatically com-
puted by accumulating histogram values and applying a detection rate.

where usually kp = k1, = K is a factor that specifies the confidence region. Fig. 5.12.(a)
shows the normalised brightness distortion histogram for a given frame, as well as the
corresponding thresholds; Fig. 5.12.(b) shows the normalised chromatic distortion
histogram and the computed threshold.

Finally, the threshold used for pixel segmentation according to BIM is computed
as:

7} =max (k'ol,€), (5.12)
where k! is the factor that sets the confidence region, and € is a small positive quantity.

5.3.2 Image Segmentation

Input images can now be segmented by classifying the pixels according to computed
background models and the current sensor response, see Fig. 5.13. Thus, three general
cases are considered, and a different model is applied in each one:

e the BCM is applied to those pixels whose current values are inside the sensor
dynamic range, and for which a BCM could be built;

e the brightness component of the BCM is applied to segment those pixels whose
current values are beyond this range which also have a BCM;

e and, the BIM is applied to the those pixels which do not have enough values
within the linear sensor range during the modelling process.

A sketch of the Image-Segmentation Module is shown in Fig 5.14. As a re-
sult, a segmentation map M, is computed at each time step. Thus, pixels under
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Figure 5.13: Segmentation module.

the first condition are classified as background (BgC), highlight (H), shadow (S), or
foreground (FgC); those under the second one as background (BB), or dark fore-
ground (DF) and light foreground (LF); and those under the last one as back-
ground (BgI) or foreground (Fgl). This process is performed according to the following
equation:

Ma,t = (513)
BgC : 3BCM A 75 <IS <Tw A Ta1 < &ay < Taz Afay < 75
S ¢ IBCM A T <I, <y A Gat < Tal A Bai <78
H @ 3BCM A 70 <ISe<mn A day > T2 ABay <75
FgC : IBCM A T < gy < Tn A ﬂua,t > T3
=4y BB : dBCM A [, <7 VI, >Tn A D < Qg < T
DF : dBCM A Ig, <Tm A Oat < TpD
LF : 3dBCM A I, > A gt > TL
Bgl : dBIM A IS, <7mVIg,>Tn A Ig)t -l <7l
FgI : dBIM A I, <t VI, >7 A I(it —pl| > 7l

where ¢ € {R, G, B} denotes the colour channel, and ¢ = I the intensity; 7,7, give
the sensor dynamic range. The whole process is summarised in Algorithm 4.

An example of image segmentation can be seen in Fig. 5.15.(a). As it can be seen,
despite the heavy shadows caused by both agents in an environment with several light
sources, they are correctly segmented.
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Figure 5.14: Image segmentation approach. As a result of applying back-
ground model to the current frame, pixels are classified according to the BCM
as as foreground (FgC), background (BgC), shadow (S), and highlight (H); us-
ing the BCM on pixels beyond the sensor dynamic range, as dark foreground
(DF), light foreground (LF), and background (BgB); and according to the
BIM as foreground (Fgl) and background (Bgl).

(b)

Figure 5.15: (a) Segmentation example: segmented foreground pixels using
the BCM are painted on magenta, while shadows are painted on green, and
highlights on red; dark-foreground pixels are painted in yellow, and light-
foreground ones in orange; segmented foreground pixels using the BIM are
painted in lilac, while background ones are in cyan. (b) Detection example:
red ellipses represent each target, and yellow lines denote their contour.
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Algorithm 4 Image segmentation.

e if BCM exists for the current pixel, then:

— if it is within the sensor dynamic range, then:

x if it has a different chrominance, then foreground,
x else if it has lower brightness, then shadow,

x else if it has higher brightness, then highlight,

* otherwise, original background.

— else

x if it has lower brightness, then dark foreground,
x else if it has higher brightness, then light foreground,
* otherwise, original background.

e else if BIM exists, then:

— if it has lower or higher intensity, then foreground,

— otherwise, original background.
e otherwise, no background was visible during the training period*

* In this case a frame-differencing algorithm can be applied to segment mov-
ing pixels, and a new background-modelling process performed in the next
temporal window.

5.3.3 Blob Detection and Representation

Subsequently, the blobs that may correspond to targets are extracted, see Fig. 5.16.
First, the different foreground masks are fused; then, majority, closing and opening
morphological filters are applied on the resulting mask; next, the surviving pixels are
grouped into blobs by means of connected-component analysis; finally, a minimum-
area filter is used.

Each blob is then labelled, and their contours are computed. Further, blobs
are parametrically represented, as explained next. By using such a representation,
the spurious structural changes that the blobs may undergo are constrained. These
include target fragmentation due to camouflage, or the inclusion of shadows and
reflections. Moreover, this representation can be handled by the low-level trackers,
thereby filtering the target state and reducing also these effects. Representations
based on ellipses are commonly used [14, 67]. Here, an orientable ellipse is chosen
—which keeps the blob first and second order moments.

Thus, the j-observed blob at time ¢ is given by the vector z = (fg, 7, E;, wl 5@) ,
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Figure 5.16: Blob-detection and representation module.

where E{,ﬂi represent the abscissa and ordinate of the ellipse centroid, 71% ,iuvf are
the major and minor axes, respectively, and the 6 gives the angle between the ab-

scissa axis and the ellipse major one. An example of target detection can be seen in
Fig. 5.15.(b).

5.3.4 Remarks on the Detection Level

These modules work in cascade, and eventually close the feed-back loop, see again
Fig. 5.1 on page 82. Therefore, the background model can be updated taking into
account a temporal window of segmentation results.

The proposed modular architecture allows us to substitute the currently-used
background subtraction method with another one —which may be found more con-
venient in the future— without modifying the system architecture. Further, new
functionalities can be added by inserting new modules. Thus, targets could be clas-
sified into several categories, which include people, vehicles, and unknown objects.
At this stage, this would be done according to shape and/or appearance criteria.
Further, this a-priori results could be refined after tracking is performed, thereby
including stability and motion-based classification criteria.

5.4 Low-level Tracking (LLT)

Low-level motion trackers establish coherent target relations between frames by set-
ting correspondences between observations and state predictions, and by estimating
new target states according to the sequence of associated noise observations. In order
to accomplish this task, four processes are carried out, see Fig. 5.17.

In the first place, gates are computed by the observation-validation module. These
are the regions where the observations are expected to appear. This is done according
to the target state and the system uncertainties. Subsequently, data association is
performed. In this stage, correspondences between observations and trackers are
set based on a nearest-neighbour decision —within the gate— in the observation
space. Then, filtering is carried out: new target states are estimated according to the
associated observations. This is here accomplished by a bank of KFs. Finally, the
track-management module (i) initiates tentative tracks for those observations which
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Figure 5.17: Low-level tracking.

are not associated; (ii) confirms tracks with enough supporting observations; and (iii)
removes low-quality ones. Results are forwarded to high-level trackers, and fed back
to the measure-validation module.

It is interesting to remark that a motion-tracking functionality is here established;
however, each of these modules can be implemented using other algorithms without
modifying the architecture itself, like a JPDAF for data association, or a UKF to
perform the estimation task.

This level also includes an appearance-based tracker which is used to track grouped
targets. In case of this event, segmented blobs contain multiple targets, which may
actually conform a group, or be an effect of the viewing angle. Thus, tracking based on
motion segmentation is not feasible, and therefore an appearance tracking is carried
out. This decision is taken by the higher level, once the scene events are analysed.

5.4.1 State-Space Model

In this work, targets are assumed to move slowly enough compared to the frame rate.
Since their long-run dynamics are hardly predictable, a first-order dynamic model is
adopted. This assumption holds in most HSE applications on trajectory analysis. The
target state is defined by x} = (a7, &7, y7, 9, hl, hl,wl !, 67 ), which establishes a
state variable for every observation one and adds the target speed and the size change
rate. Thus, the model considered is given by a constant-speed approach where the
acceleration is modelled as White Additive Gaussian Noise (WAGN) —except for the
angle variable 6], whose speed is modelled as noise: this variable is here considered
to undergo minor variations, i.e. humans will essentially remain in upright posture.
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The LLT dynamic model is defined by the following equations:

x| = Ax] | +w (5.14)
‘ Cx{ + vy,

j
Zy

where w; ~ N (0,Q) is the process noise, Q the noise covariance, vy ~ N (0, R) is
the segmentation noise, and R the noise covariance. WAGN is assumed to represent
both noise processes. It is also assumed that both process and measurement noises are
uncorrelated. Finally, the acceleration is supposed to be constant during the sampling
period, and independent between periods.

The target dynamics can be described using block matrices for each pair of first-
order model variables —such as for example x; 1 = (x4, :i:t)T. Thus, previous assump-
tions allows us to define this system as:

1
Ty = Xy—1+ Atitfl + EA?It, (515)
By o= doq + Ay (5.16)
i o N(0,0,), (5.17)

where A; is the sampling period, o, the variance of the noise process which models
the acceleration. Thus, the transition matrix is given by:

A, = (é Af), (5.18)

the output matrix is:
C, = (1 O), (5.19)

and the system noise in terms of sampled acceleration:

Wy = Gliit, (520)

where G is the noise matrix for a first-order system, given by:

G, =(ia2 A )", (5.21)

Thus, the system covariance matrix results in:
Ql = CoVv (Glit) (522)
= E[Gi##] G]] (5.23)

Ay A
_ (= 7
= (& O, (5.24)
( 5 A )
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Figure 5.18: Observation-validation module.

where the equality E [G14:] = G1E [#;] = 0 has been taken into account. The output
covariance matrix is:

R, =E [w']| =0, (5.25)

where o, is the variance of the observation noise. Thus, the target dynamic matrices
are given by the replication of the above-defined block matrices.

5.4.2 Observation Validation

In a MTT scenario, numerous observations may be obtained at every sampling pe-
riod. In this case, some observations could have been generated by clutter or noise
processes, and several observations might correspond to the same target with a given
probability. Thus, gates are computed in agreement with the target state and the
system uncertainties, see Fig. 5.18.

The observation vector at time ¢, z;, is given by the blob detection module. Each
target expected observation is predicted according to the system dynamics:

Zt = CAthl. (526)

Since the estimation is performed following a Kalman filtering scheme —see Ap-
pendix D for details— the prior error covariance matrix is computed accordingly:

P, = AP, AT +Q; (5.27)

and subsequently, the innovation covariance is obtained:

S, = CP; CT +R. (5.28)
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Figure 5.19: Innovation covariance ellipsoid. The predicted observation is
given by the mean, and samples represent potential observations. Different
ellipsoids are given at several Confidence Intervals (CI), thereby providing the
MSD of the sample points lying on them.

This covariance matrix defines an ellipsoid in the observation space whose axes
are given by the covariance matrix eigenvectors, and the axis length —for the ellipsoid
with unit Mahalanobis radius— is given by the square root of corresponding eigen-
values. A particular Mahalanobis radius defines an ellipsoid, centred at the mean of
the distribution, which encloses a probability mass given by the Confidence Interval
(CI) associated with the ellipsoid, see Fig. 5.19.

Thus, the Mahalanobis Squared Distance (MSD) is given by:

d?\/[ahalﬂf = (2 —2)S; (2 —24)" (5.29)

and, provided that the observation follow a d-dimensional Gaussian pdf, the MSD is
distributed according to a Chi-squared distribution with d degrees of freedom [24]:

d%Wahal ~ XZ (530)

Hence, the Mahalanobis radius corresponding to the ellipsoid with a given con-
fidence interval can be computed by evaluating the inverse of the cumulative distri-
bution function of the Chi-squared distribution. This means that measures can be
validated for a given confidence interval by calculating the MSD between the predicted
observation and the actual one, and comparing this value with the Mahalanobis radius
for this confidence interval.
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Figure 5.20: Observation association. Example with two predicted locations
and their gates given by the respective trackers, and four observations. In both
cases several observations are validated; one observation is even validated for
both trackers.

Figure 5.21: Data-association and Filtering modules.

5.4.3 Data Association and State Filtering

Once the gates have been computed, setting the correspondence between observations
and trackers may not be straightforward: multiple observations may lie in the same
gate, and some observations may be shared by more than one gate, see Fig 5.20.

Here, observations are associated to the nearest tracker in whose gate they lie, see
Fig. 5.21. A more complex data association method, such as JPDAF, is not considered
to be necessary since observations are usually just within one target gate. This is
intrinsic to the segmentation method: if two targets are so close in the observation
space as to introduce ambiguity in the data association process, the segmentation
module is likely to segment just one blob corresponding to the group formed by both
targets. This issue will be later discussed at the high-level tracker section.

A bank of Kalman filters is implemented to estimate the state of all targets de-
tected within the scene. The LLT dynamic model is given by Eq. (5.14), where the
system matrices are built according to the above-defined block matrices®.

As a special case, if no observation is associated to a particular target, its state is
estimated using a Kalman Gain equal to zero, that is, it is just propagated according
to the dynamic model. See Appendix D for details.

SIndependence between position and size state components is assumed.
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Figure 5.22: Track-management module.

5.4.4 Track Management

This module manages the target tracks by instantiating, confirming and removing
them: (i) not associated observation initiates tentative tracks; (ii) tracks with enough
supporting satisfactory observations are confirmed; and (iii) those tracks which lose
confidence are removed, see Fig. 5.22. This is done according to the values of two

1
indicators: the square root of the covariance matrix determinant S|, and the obser-
vation MSD.

The first one is related to the track uncertainty: the determinant is given by the
product of the matrix eigenvalues, which correspond to the variance of the dimensions
given by the respective eigenvectors. That means that while an observation is asso-
ciated, the track uncertainty decreases to its asymptotic value, and the time taken
depends only on the system dynamics and uncertainties. Thus, the innovation covari-
ance matrix is calculated recursively according to Eq. (5.28), which just depends on
the time-independent and known system matrices A, C, and Q, R.

That is to say, the track uncertainty does not depend on the observation MSD.
It is however a good indicator of how many observations have been associated, and
whether there have been frames without any observation. This is done without the
need of setting thresholds and specifying cases: it is intrinsic to the behaviour given
by the system dynamics.

Nevertheless, the quality of the observation must also be taken into account, and
therefore, the MSD of each target associated observation is evaluated. The MSD,
seen as the Mahalanobis radius of the ellipsoid, is used to qualify those observations
which lied inside the ellipsoid of a given variance, 7,2.

Therefore, a track is instantiated every time an observation has not being as-
sociated to any existing trackers. When the track uncertainty is below a certain
percentage of its asymptotic value, and the MSD is lower than a given ellipsoid vari-
ance, the track is confirmed as stable. That means that a sequence of observations
where successfully associated in the past recent frames, and there is a little error be-
tween the prediction and the current observation. If track uncertainty grows beyond
a pre-set confidence value, the LLT is deleted, and the Kalman filter removed.

An example of the evolution of the track-management indicators can be seen in
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Figure 5.23: Track management. Tracks are confirmed when both track

uncertainty and MSD are low enough. Tracks with high track uncertainty are
removed. See text for details.

Fig. 5.23, and some sample frames® are shown in Fig. 5.24: at frame 7 —Fig. 5.24.(a)—
a target starts entering the scene, an observation is received and a tracker is instanti-
ated; while new observations are associated, the track uncertainty decreases. However,
at frame 10 —Fig. 5.24.(b)— a major change happened —because the target has com-
pletely entered the visual field— and the MSD is so high that the observation is not
associated to the existing tracker. Consequently, a new one is instantiated. The for-
mer one stops receiving observations and its tracks uncertainty keeps growing until
frame 13, when the tracker is finally removed’.

At frame 15 —Fig. 5.24.(c)— the track uncertainty of this second LLT is close
enough to its asymptotic value, and the MSD is lower than the equivalent distance
defined in terms of the variance. Thus, the track is confirmed. During frames 32
and 33 —Fig. 5.24.(d) and (e)— shadows and specular reflexions are included in
the segmented blob. At frame 35 —Fig. 5.24.(f)— an abrupt correction causes a

®The following notation is used: blob contours are painted in yellow, while red ellipses
represent detected blobs, and white and black ones give low- and high-level tracker estimates,
respectively. The blue box denotes the ROI.

It must be said that problems caused by target entering and exiting are also handled by
the high-level trackers, as it will be explained in the corresponding section.
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Figure 5.24: Sample frames for track management. See text for details.
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Figure 5.25: High-level tracking.

MSD high enough so that the tracker is temporarily non-confirmed. When a new
target enters the scene at frame 39 —Fig. 5.24.(g)— a new track is instantiated —the
observation is far beyond the gate boundary— and the previous process is repeated.
At frame 47 both tracks are confirmed —Fig. 5.24.(h).

Several considerations must be taken into account. In the first place, depending
on the system matrices, the time needed to reach a value close to the asymptotic value
of the track uncertainty may considerably vary. Thus, if |Q| grows, the dynamics are
less reliable, the Kalman Gain grows, the state variables are more affected by the
observation values, and the convergence is faster. On the other hand, if |R| grows,
the measure is less reliable, the Kalman gain decreases, the predicted values are less
affected by the current observation, and the convergence is slower.

Secondly, it is worth to notice that if the target shape or position abruptly changes,
the observation may lie outside the tracker gate. In this case, a new Kalman filter is
instantiated, and both, the old and the new one are now competing for the observa-
tions. Consequently, a high-level analysis is required to assign a common identifier to
both trackers.

5.5 High-Level Tracking (HLT)

At the top of the system architecture, high-level trackers aim to obtain robust and
accurate state estimates for every target within the scene, see Fig. 5.25. Motion LLT’s
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cannot cope with situations of continuous target-segmentation failures. Among the
causes of these failures, grouping events, partial and complete occlusions, non-smooth
changes in position or shape, and target camouflage may be found, to cite a few. In
this cases, the corresponding motion low-level trackers would gradually lose confidence
due to the lack of associated observations, and will eventually be removed. Therefore,
these issues must then be addressed by HLT. These trackers build appropriate target
appearance models, and infer conceptual knowledge about the targets’ situation.

Once this is achieved, the higher level can act on the lower ones following a top-
down approach in numerous ways: by selecting MBT or ABT operation mode, by
preventing the creation of non-feasible low-level tracks, by validating the association
of observations to LLT, by associating several LLT to the same HLT, by maximising
the discrimination between the target model and potential distracters, and by enabling
the incorporation of a motionless objects into the background.

5.5.1 Tracking Operation Modes

As it has been stated, the proposed system implements two tracking approaches: MBT
and ABT. The higher level selects the most appropriate operation mode according to
the current situation in which the targets are involved. This is done by the Matching
module from the information given by the FEvent-Management module.

In our experience, MBT usually outperforms ABT in every situation where no
a-priori knowledge is available about the scene or the targets, specially when their
appearances evolves over time: in open-world scenarios, the target appearance cannot
be specified in advance, and an accurate initialisation is often not feasible. Further,
it should be continuously updated, since it strongly depends on the target position,
its orientation to the camera and the different light sources, or —in case of human
targets— the body posture. However, the need of adaptation usually leads to the
phenomenon known as model drift®.

Nevertheless, in case that no accurate segmentation can be produced, MBT is
no longer feasible. The target state could be propagated according to the learnt
dynamic model, but this usually does not suffice, since its motion is generally subject
to sudden changes, and the probability of losing the target increases with the time
the it is non-detected.

If, for example, the target is grouping, just a single blob, whose boundary en-
closes all connected pixels in motion, is detected. A coarse localisation —obtained
by considering that the target is inside the group region— could be also considered,
but it cannot tackle any complex situation, like for instance those in which a group
of more-than-two members split, see again Fig. 2.12 on page 36. These cases require
the use of ABT methods.

Thus, in our system, segmentation by motion is used whenever this is possible,
and the system takes advantage of these situations to build accurate target models.
ABT tracking success will be determined by the ability of distinguishing the target
from potential distracters. In order to be able to track them under difficult situations

8Classical adaptive tracking problem, where the model gradually drifts as misclassified
pixels are used to update it. This contamination leads to further localisation errors, and
eventually to a complete tracking failure.
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Figure 5.26: Matching module.

—those in which target segmentation is not feasible— the target appearance is rep-
resented by taking into account the local background clutter, as well as other targets
with whom it may interact. Then, a robust ABT method is applied.

5.5.2 High-Level Tracker Management

HLT are instantiated by indication of the Matching module, which performs the
association between existing low-level and high-level trackers, see Fig. 5.26. The
matching procedure may lead to different kinds of conclusions, and for each of them
the system exhibit a particular response. This process works as follows.

The module considers three cases: (i) the first time a low-level tracker is confirmed,
a high-level tracker is instantiated and associated, see matching result (1) in Fig. 5.26.
This may correspond to an isolated target, or to a group of them. The actual situation
is determined according to the information relative to target collision provided by the
Event-Management module. In case that the new-born tracker corresponds to an
isolated target, the target appearance is then computed. In other case, it is marked
as a group tracker. (ii) If a LLT is already associated, the high-level tracker parameters
relative to the target position and shape are updated in subsequent tracker matchings,
see matching result (2). Further, while the track is still confirmed, this situation is
pointed out so that the appearance will also be computed and updated.

While the associated low-level motion tracker exists, the targets are tracked by
motion. However, this matching process is not always feasible, since LLT’s may have
been removed during long-duration segmentation failures due to the continuous lack
of an associated observation. Thus, (iii) those targets which have no correspondence
are tracked in a top-down process using low-level ABT, see matching result (3). This
makes possible target tracking even when image segmentation is not feasible, such as
during long-term occlusions, grouping events or target camouflage. During these situ-
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ations, the LLT gradually loses confidence due to the lack of associated observations,
and is eventually removed. Hence, the aim of including an ABT is (i) to track those
trackers which have no LLT, and (ii) to refine the localisation of those HLT with no
associated observation.

Subsequently, an event-management module determines what is happening within
the scene: the target-interaction events are inferred, and the entering or exiting of
targets into/from the scene is established. Among the formers, interactions such as
which targets are grouping or splitting, or whether stable groups are being formed,
are set. This include complex combinations of them, since one target may be involved
in different kind of interactions with several other targets.

Ultimately, those HLT which have no LLT associated are evaluated in order to
decide whether a correspondence can be established with other HLT’s, since new
trackers are instantiated over targets that have undergone an event which cause LLT
removal, once the event is over. If there are no tracker candidates, or they are not
similar enough, in the appearance sense, the appearance-based operation mode holds”
until the target can be associated to a new high-level tracker. Results are fed back
and used for low-level and high-level tracker matching.

In the following, each module of the high-level tracking is explained in detail.

5.5.3 Appearance Representation based on Soft and Hard Pixel
Weighting

The target appearance is here represented by means of colour histograms [61, 14, 67,
12]. Histograms are broadly used to represented target appearance, since they are
claimed to be less sensitive than colour templates to rotations in depth, the camera
point of view, non-rigid targets, and partial occlusions. They are also usually used
to represent non-parametric distributions, provided that they allow one to achieve
real-time performances given the low computational cost required.

The histogram of a target is given by:

p = f{pk=1:K}, (5.31)

where K is the number of histogram bins, and the discrete probabilities of each bin
are calculated as:

,
e = O gi (Ixal’) 8 (b(xa) = ), (5.32)

where § is the Kronecker delta, {x,;a = 1: P} the pixel locations, P the number of
target pixels, and b (x,) a function that associates the given pixel a to its correspond-
ing histogram bin. C' is a normalisation constant required to ensure that:

9This is, for instance, the case when the targets are grouped.
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K
> pr=1 (5.33)
k=1

Finally, gg () is the convex and monotonic profile of an isotropic kernel which
allows one to perform gradient-based searches, which need differentiable similarity
functions. Further, by assigning lower weights to pixels farther from the centre, the
influence of boundary clutter is diminished. Here, an Epanechnikov kernel has been
used [14, 67]. To eliminate the influence of different target dimensions and aspect
ratio, the kernel is first rescaled to an ellipse of the target size. Thus, pixels are here
soft-weighted according to their spatial distribution.

The above-defined appearance histograms are computed given a cropped image
region. Two sources of information are available to decide which pixels should be con-
sidered as belonging to the target, namely the silhouette of the associated observation
—given by the detection module— and the filtered ellipse —given by the LLT.

In this work a conservative approach has been used in order to minimise the risk
of failures caused by model drift. Thus, only those pixels which belong to both the
detected silhouette and the filtered ellipse are taken into account to build the target
model. By doing so, background pixels which have been erroneously detected —e.g
due to reflections— or those inside the tracked ellipse are likely to be removed. Also,
non-reliable boundary foreground pixels —such as those of the end of the limbs— are
usually not taken into account. This can be seen as a hard pixel weighting.

Groups should be handled in a different way, since their shape can rarely be
modelled as an ellipse!®. Thus, a rectangular bounding box is used, and the group
region is given by just considering the current detection instead. In this case, detection
errors are not critical, since no appearance model is computed for the whole group,
but for the different partners, and this location is only used for collision-detection
purposes.

5.5.4 Feature Selection on Colour Cues

Colour cues have been here selected to model the target appearance, see Fig. 5.27.
Numerous colour spaces can be used, and each of them has tunable parameters,
resulting in an enormous space of potential features. By selecting the most appropriate
ones, a maximum discrimination between the target and local distracters is obtained.

The following feature-selection technique has been evolved from the one presented
in [12] by generalising it taking into account multiple clutter sources. Features are
here selected considering not only the best distinction between the local background
and the target, but also taking into account other nearby targets, which will be called
group partners in the following. The information provided by the event module is
used to decide which targets are partners, and in what sense. Thus, features are
selected from a set of linear combinations of the R, G and B channels:

Y90f course this refers to groups identified as so. Non-detected groups —due to the targets
had entered the scene together— are tracked using an ellipse representation until the targets
split.
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Figure 5.27: Feature-selection module.

F=wPfR+w G +wPB|u° e {-2,-1,0,1,2}, (5.34)

where ¢ € {R, G, B}. Hence, this set includes raw R, G, and B, intensity, and common
chrominance approximations. The total number of candidates is 53. Non-independent
combinations are removed, leaving a set of 49 features. Computed values are then
normalised to the range [0 : 255], and subsequently discretised. In the present imple-
mentation the number of bins is set to K = 64. This is a sensitive decision since a
low number of bins will prevent from target-clutter disambiguation, but, on the other
hand, a high value favours erroneous representations that appear when distributions
are estimated from an insufficient number of samples, and thereby over-fitting the
model and making it too sensitive to minor illumination changes.

5.5.4.1 Feature Selection in a n-class Problem

The target histograms are given by p*/, where i denotes the feature index, and j the
target one; and q° provides the local background distribution according to the i — th
feature. Features are then ranked in the following way: first, the log-likelihood ratio
of each feature is computed!’:

"Here it is assumed that the joint distribution for the tuned feature can be computed by
reusing the distributions already computed for the background and different targets involved.
This essentially entails that the regions from which these distributions were computed should
have a similar number of pixels. Although exact distributions can be computed by re-
accumulating them, it is done in this way for sake of efficiency.
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Figure 5.28: Log-likelihood. A negative value indicates that the bin has a
higher occurrence in the clutter region, whereas positive ones correspond to
a majority of target pixels.
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where J gives the number of partners including the current [—target, and € is set to
prevent dividing by zero or taking the logarithm of zero, but avoiding also magnifying
the corresponding log-likelihood value, see Fig. 5.28. Thus, shared colour bins have a
log-likelihood close to zero, whereas target bins have a positive one, and clutter bins
a negative one.

The variance of the log-likelihood according to a general discrete distribution ¢
can be computed as:

2
var (A;¢) = E[A?] —E[A]" = Z¢k1\2k - <Z¢kAk> ) (5.36)
k k

so features are then evaluated according to the variance-ratio of the log-likelihood:
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Figure 5.29: Appearance-modelling modules.
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and subsequently, they are ranked according to these values: the higher, the better.
Thus, the selection maximises the inter-class variance —that is, the distance between
clutter and target clusters of bins— while minimising the intra-class variance —tightly
clustering both clutter and target bins. Thus, in order to allow the system to build
reliable appearance models using the features which best distinguish a target from its
potential distracters, once a grouping event is detected, the partners histograms are
also used in the feature selection procedure.

5.5.5 Appearance Modelling

As it has been above stated, target models are based on histogram representations
using colour cues. Summarising the approach so far, histograms are calculated from a
given image region, once an Epanechnikov kernel has been applied to it. This region
is defined by the intersection of the segmented silhouette and the filtered ellipse.
Histograms are computed in a feature space given by a linear combination of the R,
G and B channels. Channel weights are selected in order to maximise the target
discrimination form potential distracters.

Upon this basis, multiple models for each target are built and kept updated,
see Fig. 5.29. Self-similarity statistics are also computed. In these way, we aim to
solve the initialisation, smooth the representation, and complete it so that tracker
association is feasible once the event that cause the target loss is over. The possibility
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Figure 5.30: Feature pool. The best M features at time ¢, and the best IV
long-run features are kept for appearance modelling.

of an inconsistent localisation due to feature switch is also minimised, by introducing
the distinction between long-run features and the current best ones. Thus, long-run
features are here kept and smoothed. The representation scheme proposed in [12] is
therefore considerably enhanced in this work —in addition to the fact of using the
background and partner models to obtain a maximum target discrimination.

5.5.5.1 Model Pool

By keeping a set of long-run features, the system robustness is significantly increased.
Histograms can be smoothed, thereby making the representation less sensitive to
potential initialisation and subsequent localisation errors. This can also cope with
sudden and temporal appearance changes, for instance due to illumination fluctua-
tions. Further, past features may be crucial for tracker association after a tracking
failure.

Hence, a pool of M + N features is kept: the best M features at time ¢, and the
best N long-run features, i.e. those which have been at the top of the feature ranking
more times. These features are only dropped when new features enter the pool, and
eventually overcome the formers.

An example of how the feature pool evolves over time is shown in Fig. 5.30. At
each time step, the number of times a particular feature has been selected among the
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best M ones is represented. Features selected in a given interval and the corresponding
histogram are shown in Figs. 5.31,5.32 respectively. By analysing the evolution of the

model pool, several

facts can be noticed: some features are periodically among the

best ones (in this case, features number 13, 24 and 39); this repetitive behaviour is
presumably due to similar agent orientations and gait during tracking. Some features
join the pool and quickly become one of the best ones (feature number 23), as the
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Figure 5.33: Adaptation rate. It presents a transient and a steady-state
response to accommodate contrary requirements.

agent moves and the local background changes. Finally, other features (20, 36, 45)
are dropped and re-selected several times; they are periodically among the best ones
ones, but they are not selected enough times, and due to the pool size are dropped
when others join the set. These behaviours strongly suggest that keeping a stable set
of features may be useful for tracker association after a tracking failure.

5.5.5.2 Model Updating

Whenever there is enough confidence on the tracker to update the appearance, all
M + N models are updated. This is done in a recursive way using an adaptive filter:

b)) = By +ap (P - Bi%) (5.38)

where ap € [0: 1] denote the adaptation rate which weights the most recent values
versus the historic ones, and ﬁi’j the smoothed histogram of target j at time ¢ using
the i-th feature. Old values are exponentially forgotten according to this rate: the
bigger it be, the faster old data are forgotten. However, contrary requirements must
be fulfilled: (i) when a feature is recently added, the model should be fast adapted,
in order to cope with potential detection errors during the initialisation; (ii) medium-
term models should not be excessively adapted, to prevent model-drift phenomena;
(iii) long-term models should be3 adaptive enough, so that the system can handle
unexpected appearance changes. This suggest defining the adaptation rate in terms
of time, and to employ a principled function oy, (t). Thus, a recursive mean filter is
first used, thereby fulfilling the two first requirements, but the adaptation rate is fixed
to a high enough value after an initialisation period, and thus model adaptation could
be performed during arbitrary long time periods. An example is shown in Fig. 5.33.

In this way, once a target is detected, and the corresponding low-level motion-
based tracker is confirmed, the target is being tracked while it is simultaneously being
modelled by the high-level tracker. New features can be added, while stable ones build
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robust appearance models, even during hard situations, as it will demonstrated later
on.

5.5.5.3 Model Similarity

A similarity measure between two histograms is computed using the following metric
[14, 67]:

chat = 1- P (pu q)7 (539)

where

K
p(Pa) = Y /Prdr (5.40)

k=1

is the Bhattacharyya coefficient. A similarity criterion is set in order to establish when
two histogram are close enough. For this purpose, every time the smoothed histogram
is updated, the mean and variance of the Bhattacharyya metric dppq: between the
former histogram and the new one are also recursively updated:

p? o= oty + v (dzéjhat7t - Miﬂ) ; (5.41)

ig\? =3 i\ (i ig_ i)
(O't ) = 7_2 (O't_l) + (n’ — 1) (/Lt — Mt—l) , (542)

nvJ

where n%J is the number of times this particular feature histogram has been updated.
In this way, the metric distribution is parameterised and used to establish a confidence
measure.

5.5.6 Appearance-Based Tracking (ABT)

This operation mode is chosen by the HLT to cope with those situations in which
MBT is not feasible, such as target camouflage, grouping and partial occlusion, see
Fig. 5.34.

However, in general, ABT methods are very sensitive to changes in the illumina-
tion conditions. Further, the background and nearby targets can act as appearance
distracters, thereby causing the tracker to erroneously lock on them. In this work,
a distracter-robust mean-shift method is developed and used when no valid target
observation is available.

A smart system should take advantage of all possible sources of information in
order to minimise the risk of target loss when no accurate motion-segmentation can
be performed. Potential sources of information include, among others, an updated
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Figure 5.34: Mean-shift module.

background model, the current frame segmentation, the estimate state of all targets
within the scene, and their appearance models, and the prediction of collisions and
occlusions according to the learnt dynamic models and appearance ones.

Thus, a mean-shift procedure is here enhanced by making a principled use of all
the knowledge inferred. This methods weight each candidate pixel according to its
supposed membership to a determine target, given its appearance model. However,
the target’s appearance evolves in a unknown manner over time, and the local back-
ground and nearby targets may mimic its appearance. In order to achieve a successful
tracking, this ambiguity must be minimised.

First, multiple appearance histogram models are simultaneously used. These have
been built during the MBT stage by taking into account the most appropriate features
which provide a maximum discrimination between the target and local distracters.

Target candidate regions should be wisely chosen, since neither the detection,
nor the estimation is free of errors: segmented regions may include shadows and
reflections, but may not enclose all target pixels due to camouflage problems; the
estimate target region may include pixels of the background and of nearby targets
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Detection Mask

Figure 5.35: Merging targets. While the target estimate regions may include
pixels of the background and of nearby targets, the detection mask include
shadows and reflections, but do not enclose all target pixels due to camou-
flage problems. (FP and FN denote a False Positive and a False Negative,
respectively).

due to errors introduced by the state representation, see Fig. 5.35. Therefore, the
current motion segmentation is used to help discriminating background pixels. Thus,
those pixels which are not segmented are weighted according to an estimate error-
segmentation rate. Occluded regions are also taken into account when building the
target candidate histograms.

Further, shared model bins with both the background and nearby targets are
made less significant. Finally, an spatial exclusion is set in order to avoid that a same
pixel significantly contributes to locate more than one target. The complete approach
which combines appearance, motion and spacial cues to perform target localisation is
shown in Fig. 5.36.

Subsequently, potential drift of the appearance models is precluded by performing
a careful updating according to the detected events and the evaluation of the tracking
results. These procedures are explained in the following.

5.5.6.1 Mean-shift Technique

This technique achieves target localisation by performing a deterministic gradient-
descent search on a image region of interest —the basin of attraction— which is
previously weighted [14]. In the following, a brief explanation is given.

The target model is given by the histogram P, while the target candidate distri-
bution at the image location X is represented by p (Xo). The similarity between two
histograms is computed using the metric defined in Eq. (5.39).

The mean-shift procedure recursively moves the candidate position to a new lo-



5.5. HIGH-LEVEL TRACKING (HLT) 121

potion- Epanechnikoy ol
Sagmentation Harnal Partries hask Histogram
Tracked
Ay ¥
Flispaty Hiatogram | | Bin-waight
- R Wmgning Computaton | | Computation
Picel [ Back-projection in | [ B
G e
.y - - ko
Candidate v
Mciion- |
Partnes Mask Distractor
5"9"“"‘”“““ {esciusion) Histograms

Figure 5.36: Multiple-cue Mean-shift. The approach combines motion, ap-
pearance and spatial cues to perform target localisation in presence of dis-
tracters.

cation, while searching the local minimum according to the aforementioned metric.
That is to say, a new location is searched in the neighbourhood of the former one by
maximising the similarity between the target model and the candidate one, computed
from the current image at this location. This is approximately equivalent to minimise
the second term of the Taylor expansion of the Bhattacharyya coefficient which rep-
resents a weighted-data density estimate computed with the kernel profile [14]. Thus,
the new location is given by:

M

2
Y XaWadr (||Xo = Xa| )

~ _ a=1

X1 = Y;
. A 2
>~ wage (%0 — xal)
a=1

, (5.43)

where the weights w, are given by:

wa = 4[5 (b(xa) — k). (5.44)

By choosing an Epanechnikov kernel, both kernel profile derivatives gz in Eq. (5.43)
can be removed by taking into account that the derivative of the profile of an Epanech-
nikov kernel is a constant. The complete algorithm is shown in Algorithm 5.



122 CHAPTER 5. MULTIPLE-TARGET TRACKING ARCHITECTURE

Algorithm 5 Mean-shift method.

1. the histogram of the target candidate p is computed at location X,
2. weights are computed according to Eq. (5.44),
3. the next target location X; is derived following Eq. (5.43),

4. if [|[Xg — X1]| < €, or the maximum number of iterations has been reached,
stop. Otherwise set Xg «— X7 and go to step 1.

5.5.6.2 Basin of Attraction and Target Candidate Region

A mean-shift procedure assigns weights to each histogram bin according to a relation
between the model and candidate histograms, and then back-projects these values
into image pixels, before computing the new proposed localisation. Thus, each pixel
is weighted according to its supposed membership to a determine target, given its
appearance model.

The tracked region is given by the previous estimated location. Both size and
orientation are kept fixed. This yield an ellipse from which the candidate histogram
is computed.

Bin weights are back-projected in a basin of attraction given by the rectangle
of dimensions h * w pixels —the one which encloses the tracked ellipse— plus an
outer margin of k,, * max (h,w). K., is usually equal to 0.1. This margin provides
better chances of tracking success in case of low frame rates —which may cause that
successive target region do not overlap— and aspect ratio changes.

5.5.6.3 Introducing Motion Cues. Pixel weighting

The current segmentation can be used to weight the influence of each pixel on the
candidate histogram, and on the weighted sub-image where the search is performed.
By doing so, the system is making use of the results obtained by the detection level,
but without neglecting the possibility of segmentation errors.

Thus, according to motion information, those pixels within the target candidate
region which are not segmented are also weighted according to an estimate error-
segmentation rate, see Fig. 5.37. Further, the same procedure is applied to the weights
of the pixels of the basin of attraction after back-projection.

In addition, candidate pixels contribute to the histogram with a value in the
interval [0 : 1], according to the applied kernel. In this proposal, the Epanechnikov
kernel is combined with the detection mask, thereby minimising the risk of over-
weighting significant distracters bins.

Finally, in case that the tracked target is partially occluded —what is inferred by
the Event-Management module— the affected parts are not taken into account when
computing the target histogram.
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Figure 5.37: Pixel weighting. (a) Cropped candidate. (b) Tracked region.
(c) Applied Motion-segmentation mask (cropped to the basin-of-attraction
size). (d) Candidate region. (e) Epanechnikov kernel. (f) Epanechnikov
kernel applied to the candidate mask —which is given by the conjunction of
the mask of the tracked region and the motion-segmentation mask.

5.5.6.4 Bin-weighting

So far, background and partners’ information has been used to select the features
that best discriminate the target from a local environment, see Fig. 5.38. However,
even for the best features, histogram bins could be shared between the target and
potential distracters. This fact leads to an erroneous localisation, which finally ends
causing the drift of the appearance models. This can also be accelerated due to the
fact that the foreground is hardly ever perfectly delineated.

To minimise tracking failures due to this issue, the following approach is proposed:
the background-weighting approach proposed in [14] is here generalised by including
other sources of information: the appearance models of the partners and the learnt
local background model. Further, this is applied to each appearance model computed
from a particular feature. The learnt background presents the advantage that it
contains no foreground information. However, it may differ from the current one, for
instance, due to the occlusion of some light source.

A conservative approach has here also been chosen: all significant bins in any
of the aforementioned sources of knowledge about potential distracters will have its
importance diminished, see Fig. 5.39. Thus, an histogram of the local background is
computed using the learnt background model:

d = {g:k=1:K}. (5.45)
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Figure 5.38: Weighted images. (a) Tracked region. (b) Image mapped
according to a selected feature (Feature 36, V' = 0.7653, 25th in feature rank).
(c) Corresponding weighted image. (d) Weighted image for a feature with
higher Variance Ratio (Feature 19, V' = 1.0123, second in feature rank).
Notice that the latter feature is much more discriminative than the former
one —which is in the model pool for being a long-run feature.

Figure 5.39: Maximisation of target discrimination. The best discriminant
features between the target model and the clutter are selected. Then, shared
bins are made less significant.

Then, a weight for each bin is derived from its significance on this histogram:

w,i’q = {min <qii,1) ik=1: K} , (5.46)
d

where q;* is the minimum non-zero value. These values are equalised according to a
predefined maximum rate of exclusion, n? € [0 : 1]:

(Wi’q — min (Wi’q))

max (wh?) — min (w9)

Wil = 77q 4

(1—79). (5.47)
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Figure 5.40: Bin weighing. (a) Model histogram. (b) Candidate histogram.
(c) Partner histogram. (d) Partner bin weights. (e) Partner equalised bin
weights. (f) Background equalised bin weights. (g) Combined bin weights.
(h) Resulting bin weights for back-projection.

The same technique is used to compute weights for each partner, 1[);7 Thus, for
the [-target among the J targets of the group, the total weight of each model bin,
given the i-th model feature, is obtained by combining these weights:

J
il _ i —inj
wy = @ H w7 (5.48)
J=1,j#1

These weights can then be applied to the target model to diminish the importance
of those bins which are shared with potential distracters:

K
il [Pk
We = Y wy ()= (5.49)
kz::l K Pk

Bin weighting according to the appearance of local distracters can be seen like a
probabilistic exclusion principle. Such a technique has also been used in [57] in order
to avoid that an edge feature can correspond to several targets. In other words, one
particular evidence must not contribute to mutually exclusive hypotheses. In our case,
shared model bins must not reinforce the different local maxima in the weighted image
where the mean-shift is computed. The maximisation of the target discrimination is
graphically shown in Fig. 5.40.
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5.5.6.5 Spatial Exclusion

Following the aforementioned exclusion principle, the back-projected values of the
candidate pixels are also weighted in other to avoid that the same pixel contributes to
locate the centroid of more than one target. Thus, for each target, an exclusion kernel
is computed from the location of the partners. A flat kernel is applied by setting the
partner region to a pre-defined exclusion rate. Notwithstanding, this approach could
be enhanced by computing probabilistic masks for each target. These would record
the likelihood of the target being observed at that pixel.

5.5.6.6 Criteria to Perform an Appearance Updating

A bank of M 4+ N mean-shift procedures is run, and each of them uses an appearance
model tuned at one of the selected features. These models need to be updated even
when the targets are grouped, since their appearances are always subject to undergo
significant changes —specially when the targets are in motion. However, the updating
of the appearance models must be carefully done in order to avoid model drift.

Therefore, the multiple results obtained are first evaluated and filtered according
to appearance and localisation criteria. Then, the surviving results are eventually
fused in order to produce a robust estimate. This final estimate can be used to
perform model updating.

First, those mean-shift procedures which have not converged after a number of
iterations are not considered reliable enough to take them into account to perform
the updating. Next, an appearance gate is computed to filter those features whose
histograms significantly differ from the models according to the learnt feature statistics
of self-similarity:

dhare < 17+ raproy?, (5.50)

where kK p7 is the factor which set the confidence region. Finally, a robust target
localisation is obtained by filtering potential position outliers among the remaining
features. This avoids that a feature model locked on a distracter similar in appearance
corrupts the localisation computation. This is done by computing the position mean
and variance, and removing the outliers. The procedure is iterated until convergence.

When at least one model survives the appearance filtering, the target similarity
is again evaluated at the final estimate localisation. If the result is still satisfactory,
then the estimate is considered reliable enough to perform model updating and feature
selection.

Given that a candidate localisation is always necessary, even in the event of non
having any reliable result according to the appearance criterion, the above robust-
target localisation is performed, and the position is updated, but the appearance
models are kept unmodified.
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Figure 5.41: Event-management module.
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Figure 5.42: Target state coding.

5.5.7 Event Management

High-level understanding of motion events is a critical task in any system which aims
to analyse dynamic human-populated scenes. MTT requires considering potential
target interactions among them, specially when no assumption is made with respect to
their trajectories. These kind of events will be referred in the following as interaction
events. Among these, occlusions events deserve being explicitly addressed, given their
particular difficulties.

Further, in open-world applications, targets can enter and exit the scene, or a
Region of Interest (ROI) defined on it. These events will be referred as scene events,
and they have an important role in matching low-level and high-level trackers, and in
handling the latters.

However, current tracking techniques still do not address complex interaction
events among multiple targets. In this thesis, a principled event management is
proposed and embedded in the tracking architecture, see Fig. 5.41. Within the HSE
framework, this module is located at the Conceptual-Integration Level, see Fig. 5.2
on page 83.

Multiple-target interaction events, and a proper scheme for tracker instantiation
and removal according to scene events, are considered. Further, this allows the system
to switch among different operation modes. Both types of events, and occlusions as
a special interaction event, will be managed as follows.
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Figure 5.43: Group management. Eight possible target states (represented
by ellipses), and a state for group trackers, are defined. Interaction events are
denoted by arrows. Notice that some of the less frequent transitions are not
drawn for the sake of clarity.

5.5.7.1 On Interaction Events

A proper detection of interaction events is crucial to achieve successful performances,
since a different tracking approach must be used in each case: on the one hand,
whenever a detected blob clusters more than one target, tracking by motion detection
is no longer feasible, and no accurate target position can be obtained; on the other
hand, ABT methods suffer from a poor target localisation, and therefore they are
not the optimal choice when an appropriate detection can be performed. Thus, by
detecting these events, several operation modes could be introduced and properly
selected. Further, this represents a significant knowledge which can be used for scene
understanding.

Two targets are said to be in-collision when their safety areas'? superpose them-

12These areas are defined according to the targets’ sizes by following the centre-surround
approach shown in Fig. 4.5 on page 76
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Figure 5.44: Sample tracking through interaction events. See text for details.

selves. Thus, once all targets’ positions and sizes are estimated, a collision map is
computed. The collision map is also used to determine whether a new-born tracker
represents a group: in this case, it is instantiated over a collision zone.

The following states can be now defined: (i) a target is considered as single if
it does not collide with any other target within the scene; (ii) targets are said to be
grouping if they do collide, but no group is being tracked in their area; (iii) targets
are considered as grouped if they collide, they are over a group tracker area, and the
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Figure 5.45: Sample tracking showing the detection of multiple targets that
had not entered the scene isolately. (a) Target 7 is in fact a group, but is has
not been detected yet since a single observation has always been received —
the yellow contour shows the segmentation; (b) Target 10 and 11 are detected
and marked as splitting, while 7 is now marks as a dissolving group —this
information is shown in the corner box; (c) Target 12 and 13 are detected
as splitting from 11, which was in fact a group of two; (d) a new group is
conformed by target 10 and 12; this is marked as 14.

group tracker is currently associated with an observation; (iv) finally, trackers are said
to be splitting once the group has no longer an observation, but they do still collide.
The frame rate is supposed to be high enough so that a target cannot change from
grouped to single without ever being splitting.

Unfortunately, the above-presented classification does not suffice in complex sce-
narios where clusters of more than one target may be formed —for instance, one
target could belong to a stable group of several targets, while being grouping with
some other targets at the same time as splitting from other ones. Hence, the afore-
mentioned scheme should be generalised by taking into account multiple and different
target interactions.

The interaction state is coded using a three-bit vector, where each bit point outs
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whether the target is grouping, grouped or splitting, see Fig 5.42. When every bit is
set to zero, the target state is single. Otherwise, the state could be a mixture of the
previously defined situations.

Secondly, several attributes are associated with each state. These point out rele-
vant information to solve interesting queries about current interaction events: which
targets are interacting? in which sense? which ones are simultaneously grouping and
splitting? which are the partners of some grouped target? etc. Thus, the eight possi-
ble states include all potential tracking situation, and these, along with the associated
attributes, constitute all the necessary knowledge to solve any query relative to target
interaction.

Two cases concerning the attributes are distinguished, depending on whether the
tracker tracks a target or a group of them. In the first case, two lists of grouping and
splitting partners are kept. Further, the group label, if this exists, is stored. In the
second one, a flag which points out that the tracker is actually tracking a group is
set. In addition, a list of grouped targets is also kept.

Finally, several events must be taken into account in order to define state tran-
sitions. These include issues such as target collision with another target (COL), or
with a group (GR), whether the group has an associated observation (GR(OB)) or
not, if there are new partners in collision (NEW PRT), or splitting partners are still
so (SPL PRT).

The state machine that models the group management is defined by eight plus
one states, see Fig. 5.43. The formers are defined for target trackers, and the latter
for group trackers. Thus, there are 56 potential transitions between target states,
although a fraction of them are not feasible according to the aforementioned assump-
tions. For instance, grouped targets cannot become single, since they have to split
before. It is also possible to perform changes in the attributes without this meaning
a state transition. This is the case when several targets are already grouping, and a
new one joins them.

As an example of complex interaction, consider a target whose state is grouped;
then, the following events take place: (i) it is colliding with some other targets (COL),
(ii) the group has currently no associated observation (GR(—OB)), and (iii) new
partners are also colliding (NEW PRT). As a result, it changes its state into grouping
and splitting. Multiple of such complex interactions are shown in Fig. 5.44. The
previous example is the case of target 9. The changes on interactions between the
two shown frames are summed up in Table 5.1.

Although the current proposal do not allow yet to independently track people who
do not enter into the scene isolated, a tracker is instantiated over the group region.
However, the system does detect the targets as they split, recognises the former target
as a group, and creates new trackers for each partner that splits from the group, see
Fig. 5.45.

5.5.7.2 Occlusions events

Partial and complete occlusions may lead tracking to unrecoverable failures, if they
are not properly handled. In a 2-D approach, these may occur due to target grouping
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Target label | State (t = 877) Attribute | State (¢t = 882) Attribute
5 grouped 10 splitting 9
9 grouped 10 splitting )
grouping 13
12 - -
13 grouped 17 grouped 17
grouping 9
15 grouped 17 grouped 17
splitting 16 splitting 16
16 splitting 15 splitting 15
Group label Attribute Attribute
10 - 2,9 X X
17 - 15,16 - 15,16

Table 5.1: Interactions of targets shown in Fig. 5.44.

—real, or due to or the effect of viewing angle— and background objects.

Partial occlusions cause inaccurate position and size updating. However, as long
as the frame rate is high enough to ensure smoothed changes, this represents just
a temporal estimate deviation. The main problem comes from the possibility of
model drift during ABT. Further, basins of attraction cannot be accurately chosen,
and partner features can be wrongly computed. This could cause target loss in a
few frames. Further, the contaminated model prevents from any posterior target
recovering. Thus, a proper occlusion handling is crucial for tracking success.

The following approach is here used to infer the occlusions status. The collision
rate is known given the estimated target positions and sizes. The likelihood of the
target estimate is also known, according to Eq. (5.50), where the updating was de-
cided. Thus, a significant collision along with a remarkable fall in the target likelihood
in comparison with historic values allow the system to infer that the target is being
occluded by other group partner.

Once the target is considered as occluded many actions can be taken. First, the
collision are is no taken into account in future appearance updatings. Further, this
area is also discarded while appearance tracking is performed. Finally, this area can
be securely taken to compute partner weights during ABT.

The occlusion status remains while any ambiguity exists. Thus, just in case
that no collision is predicted, or the collision is no longer significant, and the target
likelihood is high enough to perform an appearance updating, this status is changed.

5.5.7.3 On Scene Events

A proper handling of scene events is essential in order to achieve successful system
performances in open-world applications. In these, the number of targets within the
scene is not a-priori known, and it may vary as new targets enter the scene, or other
ones exit it. By defining a Region of Interest within the scene boundaries three aims
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Figure 5.46: Scene regions. Example of scene events on an image from
PETS database. The three regions define the ROI, a security border, and
non-interesting areas. Events according to the target positions are shown.

are achieved: (i) it is not necessary to fully process the whole image, and therefore this
favours accomplishing real-time performances; (ii) the number of false positives can be
effectively reduced, by avoiding detections in non-plausible or non-interesting areas,
like the sky in a pedestrian-surveillance application; and (iii) targets can be almost
completely segmented, thereby avoiding major shape changes in targets partially out
the field of view.

Three regions are here defined: a ROI, a security border, and non-interesting
areas, see Fig. 5.46. These are used to determine where targets can be detected,
where LLT’s and HLT’s can be instantiated, and when they can be removed. The
security border prevents the system from alternatively creating and removing a tracker
placed on the ROI frontier, in addition to avoid errors in the estimated shape in HLT.

The different system main tasks —pixel segmentation, blob detection, low-level
blob tracking, and high-level target tracking— are performed according to noticeable
changes in particular set of these regions.

Thus, pixel segmentation is carried out in the whole image, since targets’ sizes
are not a-priori known. However, targets are only detected —that is, they constitute
an entity for the system— if a part of them is inside the ROI, or the centroid of the
corresponding blob lies at least within the security border.

For each detected target, a low-level tracker is instantiated. However, not every
LLT instantiate a high-level tracker. This requires that two conditions hold: (i)
the LLT has been confirmed and it currently has an associated observation —which
implies that the detection has been correctly performed according to what is above
stated; and (ii) the target is at least partially within the ROI. High-level trackers are
instantiated as entering, except when they come from a group that have split —in
this case they are appearing. Entering status last until they completely lie within the
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Figure 5.47: Appearance-association module.

ROI. Appearing status last a pre-defined number of frames in which the HLT had
confidence enough to be updated.

When a part of the target is partially outside the ROI and the security border,
the target is marked as exiting. The target can now either return to the ROI, or lie
completely outside the area defined by the ROI and the security border. The latter
implies the tracker removal. Trackers are also removed if they are partially within the
outer zone and they are being tracked by a low-confidence ABT, thereby avoiding a
senseless gradient-based search when the target has actually exited.

5.5.8 Appearance Association

Low-level trackers lose their track during long-term segmentation failures, such as
background camouflage, target grouping and occlusions. Once the particular event is
over, the target is again detected, and a new LLT is instantiated. When this track
become stable, the LLT is confirmed and a HLT is created. The former HLT state
was estimated according to ABT, and the appearance models were updated when the
localisation was reliable enough. A tracker association process can now be performed,
and the system should conclude that both trackers are in fact representing the same
target, see Fig. 5.47.

This is done as follows: first, a potential tracker association matrix is built upon
several state criteria which are detailed in the following. Subsequently, candidates
are filtered according to their shape. Then, they are gated by appearance using
the multiple smoothed appearance models and similarity statistics previously learnt.
Finally, the tracker association process is performed.

Thus, the potential association matrix is built according to a set of rules. These
define which HLT can be selected as candidates, and which HLT require an association
process. On the one hand, the formers must be new appearing HLT, which track single
targets, with an associated LLT still confirmed. On the other, among the formers, no
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HLT tracking a group is considered, and they must have no LLT associated; further
they are discarded if the ABT is being successfully performed —which implies that
there is enough confidence to perform model updating— and they do not collide with
the candidate.

Shape gating is performed according to the innovation covariance matrix of the
candidate corresponding LLT. Thus, the lost HLT must lie within an ellipsoid defined
by the uncertainties on axes lengths and orientation.

Finally, the similarity between the histograms of each feature of the candidate and
the tracker are evaluated using the computed statistics of the above-defined metric as
in Eq. (5.50) learnt for the former HLT. Those histogram corresponding to the former
tracker are in fact smoothed models computed while the segmentation was reliable.
However, since feature selection depends on the local environment, and the targets
move while they are grouped, the feature pool is subject to changes —whenever
the appearance models were successfully updated during the mean-shift procedure
execution. Then, in case that non-coincident features are present, new histograms are
computed for the candidate.

Thus, features are gated, and the resulting mean distance is used to perform the
association between former high-level trackers and candidates according to a nearest-
neighbour criteria in the appearance sense. The association process ended by updating
the interaction status taking into account the new situation.

If none of the candidate trackers is within the gate of the former one, this is still
considered lost, and a new association process is applied at the next time step.

5.5.9 Some Significant Top-down Pathways

At is has been shown, the proposed architecture follows an attentive approach by
analysing the events in which the HLT’s are involved. According to these, the two
main presented actions include a principled target-appearance modelling, and the
selection of the operation mode.

Further, an attentive approach is also used to feed back the LLT tier, by validating
the observation gating process, and by allowing multiple LLT correspondence to one
HLT. This process is done as follows.

5.5.9.1 High-level Validation of Gated Observation.

Observations were validated for a given LLT according to the result of comparing the
Mahalanobis Squared Distance between the predicted observation and the actual one,
and the Mahalanobis radius given by the covariance ellipsoid at a given confidence.

Observations were then associated according to a nearest neighbour approach.
This suffices to disambiguate among the different targets, since the only ambiguity
appears when two targets are close enough. However, in this case a single blob
corresponding to the group is obtained.

Nevertheless, problems arise between the group LLT and the target ones. If the
group observation may also correspond to the target state —which happens in case
of complete occlusions, for instance— the observation is validated for both LLT. This
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Figure 5.48: High-level observation-validation module.

Algorithm 6 High-level validation of gated observations.

1. Derive if the observation is over a collision area,
2. compute the number of targets in the support map,

3. if there are several targets, then:

(a) search for a group in the HLT’s corresponding to LLT’s with vali-
dated observations

(b) if a group is found, then:
i. compare the number of group partners and the number of tar-
gets in the support,

ii. if this matches, then validate the observation just for the LLT
associated to the group HLT

4. else, then prevent the validation of the observation for the LLT associ-
ated with the group HLT.

issue is even more noticeable due to the fact that the covariance ellipsoid of the
grouped target is expanding while no observation is associated.

Thus, a principled validations of observations based on the inferred events is
required, see Fig. 5.48. The following approach is used: every observation associated
to an existing LLT is analysed according to the collision map. If the observations
lies over a collision area, the number of targets in the corresponding support map'? is

13This is a binary map which keeps the record or target occupancy for each scene pixel.
For instance, if a certain pixel has at the support map a corresponding value of 0110, it
means that both targets two and three are over that particular pixel.
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Figure 5.49: LLT validation module.

computed. Then, two actions can be taken: on the one hand, if more than one target
is found, the LLT for which the observations are validates, are examined. If any of
them tracks a group, the number of group partners is compared with the number of
targets in the support map. In case this matches, the observation is validated just for
the LLT associated with the group.

On the other hand, if just one target or less lie in the support map, it is concluded
that the observation cannot be validated for the LLT of the group, despite being within
its covariance ellipsoid. This procedure is summarised in Algorithm 6.

5.5.9.2 Multiple LLT Correspondence

LLT’s represent intermediate entities that require being associated to a HLT, once
they have being ever confirmed as stable. Thus, every time a non associated LLT is
confirmed the following process take place: first, its position in the scene is evaluated.
If it is validated according to the scene criteria set in section 5.5.7, the possible consti-
tution of a group is considered according to the number of targets in the support map,
whether they are enclosed in the observation area, and these targets actually collide.
Then, either an HLT representing a group is instantiated, or the LLT corresponds to
an appearing target requires a new target HLT.

However, given the frequent segmentation errors due to changing environmental
conditions, another case has to be taken into account. Due to significant camouflage
problems, a LLT may be instantiated on a target already tracked —if the observation
lie beyond the confidence ellipsoid. The new and the former LLT’s can then compete
for the observations, and eventually the second LLT may be confirmed and requests
for and HLT.

In order to avoid that a second HLT is instantiated for a same target, an LLT
validation process is performed, see Fig. 5.49. Existing LLT’s are gated using the
innovation covariance matrix of the just confirmed one, according to Eq. (5.29). In
case that another LLT lie within the defined ellipsoid, and no other HLT overlap with
this region, the new LLT is assigned to the HLT of that LLT. Both LLT’s coexists,
but just one HLT is created, see Fig. 5.50.
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Figure 5.50: Sample tracking showing multiple LLT correspondence on a
PETS sequence. (a) The associated LLT —in white— receives an observa-
tion, and the HLT —in black— is consequently updated —as shown in the box;
(b) A wrong segmentation —in yellow— due to camouflage causes the instan-
tiation of a new LLT; the HLT is tracked in ABT mode; (¢) The second LLT
is confirmed and associated to the same HLT, thanks to the LLT-validation
module; (d) the first LLT is again confirmed once the problem is over, and
the HLT recovers it.

5.6 Discussion

In this chapter —the main one— a principled and structured system is presented
in an attempt to take a step towards solving the numerous difficulties which appear
in unconstrained tracking applications. The system here proposed implements a hi-
erarchical but collaborative architecture, in which each level is composed of several
modules which are devoted to specific tasks. These are performed by particular al-
gorithms, but they can be substituted by any enhanced one without modifying the
architecture itself. Therefore, albeit the different modules have been here developed
or improved, we consider the architecture itself as the main contribution: it introduces
the synergies between the algorithms which permit to tackle a problem with such an
inherent complexity.
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This structured framework combines in a principled way both bottom-up and top-
down tracking approaches: each level feeds the higher one with its computed results,
and is itself fed back with high-level results. In this way, by taking advantage of both
approaches, the system is allowed to benefit from bottom-up capabilities, such as
simultaneous modelling and tracking without making used of a-priori knowledge; but
also, high-level analysis is performed, granting accurately tuned models, and proper
operation-mode selection. In addition, each level has an internal loop which also
provides the system with adaptive capabilities by updating the background model,
making use of the knowledge about existing tracks, or selecting the most appropriate
approach according to the events in which the targets are involved.

In this way, the proposed approach follows the natural paradigm, where visual-
stimuli analysis is performed by the combination of pre-attentive and attentive pro-
cesses. Further, it makes use of first-order and second-order motion perception.

A principled event management is proposed and embedded in the architecture.
This provides a valuable knowledge in order to obtain high-level scene descriptions,
while allowing the system to switch among different operation modes. The latter is
crucial to achieve successful performances, since non-supervised MTT is a complex
task which demands different approaches according to different situations.

This remarkable characteristic of the system in managing multiple interactions
among several targets leads to another important contribution. This focuses on track-
ing several targets independently while they are grouped, thereby yielding an accurate
and robust target localisation. Thus, feature-selection and appearance-computation
modules have been developed, by paying special attention to the particular charac-
teristics of grouping situations. Features are selected considering not only the best
distinction between the local background and the target, but also between the target
and its group partners.

A model pool is built, and long-run features are kept and smoothed. These fea-
tures are useful after a target loss caused by occlusion, grouping or camouflage events
to recover the target. Further, by smoothing the histograms the representation is less
sensitive to potential initialisation and subsequent localisation errors. Then, a second
operation mode, an ABT, is added to tackle those events which prevent from a proper
segmentation. Motion and appearance cues, relative to potential distracters, are taken
into account when performing a gradient search. A principled model updating scheme
is followed to avoid model drift.

Thus, the proposed architecture successfully tracks multiple targets simultane-
ously —as shown in the chapter devoted to experimental results. This is achieved
even in hard conditions of cluttered background and uncontrolled illumination. Tar-
gets present a high appearance and shape variability. Complex tracking events —in
which numerous targets are simultaneously involved in different grouping and splitting
situations— take place. In spite of these difficulties, experiments on complex indoor
and outdoor scenarios have yielded robust and accurate results, thereby demonstrat-
ing the system ability to deal with unconstrained and dynamic scenes. No a-priori
knowledge about either the scene or the targets, based on a previous training period,
is required. The method is adaptive in the sense of number of targets, the best ap-
pearance representation, or the most appropriate tracking algorithm according to the
events which are taking place.
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Still, many cases remain in which no positive discrimination is obtain between
the background and a particular target. Thus, target segmentation can be enhanced
by making use of new cues. For instance, gradient-change detection can be used to
attenuate target camouflage. Further, shadow removal techniques could be very useful
to address those false detections due to changes in the illuminant chrominance. This
can be carried out by considering the techniques proposed in [21].

Further, a multi-layered background can be built by including characteristics of
left objects. Therefore, motion segmentation of new targets over former ones could
be achieved, while ghost detection —in the event that the object be again removed—
is avoided.

A target classification module —which requires a-priori learnt knowledge— could
distinguish among people, vehicles and other objects in motion. This will also help
to segment targets who enter the scene within a group.

Target representation can be refined by including structure components —such
as body-part histograms— and shape cues —such as SIFT descriptors. This will
enhance agent tracking during long-term occlusions.

Finally, the system may benefit from high-level information about the context and
current situations provided by cognitive levels of the HSE framework, while making
use of multiple active cameras from several point of views. Further, learning methods
can be considered to tune algorithm parameters according to the particular conditions
of a given scenario.

5.7 Resum

S’ha presentat un sistema estructurat per tractar les nombroses dificultats que aparei-
xen en aplicacions genériques de seguiment. El sistema que aqui es proposa imple-
menta una arquitectura jerarquica col-laborativa, en la qual cada nivell es compon
d’uns quants moduls que estan dedicats a tasques especifiques. Per aixo, per bé que els
diferents moduls han estat aqui desenvolupats o millorats, considerem ’arquitectura
mateixa com la contribucio principal de la Tesi, ja que defineix les sinergies entre
algoritmes que permeten tractar un problema amb una complexitat tan inherent.

Aquesta estructura combina enfocaments tant de Baix-a-Dalt com de Dalt-a-Baix:
cada nivell alimenta de més alts amb els seus resultats, i és alimentat amb els resultats
dels nivells més alts. El sistema permet beneficiar-se de les capacitats de Baix-a-Dalt,
com el modelatge i el seguiment simultani sense utilitzar coneixement a-priori; perd
també es realitza un analisi d’alt nivell, generant models refinats més acuradament,
garantint aixi la seleccié del model de funcionament més adient. A més a més, cada
nivell té un bucle intern que també doéna capacitats al sistema d’adaptacio.

S’ha proposat una gestié d’esdeveniments que s’ha incrustat en 'arquitectura.
Aix0 proporciona un coneixement valuos per obtenir descripcions d’escena d’alt nivell,
mentre deixa el sistema canviar diferents modes d’operaci6.

Aquesta caracteristica del sistema per gestionar les interaccions entre els objectes
ha portat a una altra contribuci6é important. Aquesta se centra en seguir independent-
ment miltiples objectes mentre s’agrupen, produint aixi una localitzacié d’aquests
més acurada i robusta. Aixi, s’han desenvolupat uns moduls per al calcul de ’aparenca
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i uns algorismes per a la selecci6é de les millors caracteristiques. Aquestes caracteris-
tiques se seleccionen considerant no només la millor distincié entre el fons i ’objecte,
sin6 també entre ’objecte i els seus companys de grup.

S’ha construit un model on les millors caracteristiques a llarg terme s’enmagatze-
men i se suavitzen. Aquestes caracteristiques seran ttils per recobrar ’objecte després
d’una pérdua provocada per oclusions, agrupacions o camuflament. A més, amb la
suavitzacié dels histogrames, les representacions dels objectes sén menys sensibles a
errors potencials de localitzaci6 i inicialitzacié. Llavors, un segon model d’operacio,
I’ABT, s’afegeix al sistema per tractar aquells errors degut a la falta d’una bona
segmentacio. Aixi es tenen en compte informacié de moviment i d’aparenga dels po-
tencials distractors, que sén tinguts en compte per a realitzar el descens del gradient.
A continuacié se segueix amb un esquema d’actualitzacio del model per evitar la
deriva del model.

Aixi, I'arquitectura proposada segueix satisfactoriament multiples objectes si-
multaniament. Aixo s’aconsegueix fins i tot en condicions fortes de fons sorollos i
d’il-luminacié no controlada. En estos casos els objectes presenten una variabilitat
molt gran d’aparenca. Llavors, els esdeveniment de seguiment que es produeixen sén
molt complexos de tractar. Malgrat aquestes dificultats, s’han realitzat experiments
en entorns complexos, tant tancats com oberts, que han donat uns resultats robustos
i acurats, demostrant aixi ’habilitat de sistema per tractar escenes no restringides i
dinamiques. Tampoc s’exigeix cap tipus de coneixement a-priori ni sobre de 1’escena ni
sobre els objectes, que estiguin basats en un periode d’entrenament previ. El métode
és adaptatiu al niimero d’objectes, a la millor representacié d’aparenca, i a l’algoritme
escollit més apropiat que millor segueixi, segons els esdeveniments que estan tenint
lloc.






Chapter 6

Experimental Results

The tracking task requires reasoning over time under uncertainty. This uncertainty
involves not only probabilities about some event or condition, but degrees of truth
about them. Given the practical and theoretical ignorance about all the involved
processes, it is not possible to have access to a ground truth about what is taking
place in the real world. Further, all human assessments of a particular situation
entails an important subjective component, thereby presenting significant deviations
among them!. However, it is often assumed that a human visual determination, or
the juxtaposition of multiple ones, provides a error-free ground truth.

MTT applications usually imply real-time requirements, in conjunction with ex-
treme robust performances. Hence, algorithms should be flexible enough in order to
deal with unexpected situations. Therefore, the considered assumptions should be
kept to minimum. However, accuracy requirements can be relaxed in comparison
with applications concerned with action, gesture or facial expression recognition, for
example.

In the following, some considerations on tracking performances are stated. Sub-
sequently, numerous experimental results in several scenarios are presented, and the
performance of the different algorithms analysed according to various criteria.

6.1 On Tracking Performance

Real-time processing, extreme robust performances, high accuracy, low power, or low
cost may be critical for the application purpose. Unfortunately, a trade-off must usu-
ally be found among these requirements: enhancing the system accuracy and robust-
ness often implies increasing the algorithm complexity, and thereby the computation
time.

! Another way of mitigating the inherent human subjectivity consists on testing the track-
ing algorithms on synthetic sequences about virtual environments. Synthetic data allow us
to achieve two goals: first, access to the ground truth is granted, and therefore deviations
and performances can be accurately measured; and secondly, experiment conditions can get
harder on each aspect independently, and thereby maximum performances can be measured.

143
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A differentiation is here made about practical requirements —which may depend
on the budget, or may change as the technology make progress— and the evaluation
of the obtained results. In the opinion of the author, research should not be restricted
by the technology state of the art?.

6.1.1 Achieving Real-time Performances

MTT in unconstrained and dynamic scenarios are one of the most computation-
ally demanding Computer Vision topic. Nevertheless, real-time performances may
be achieved without excessively compromising accuracy and robustness by placing
special care in three main tasks, namely, specific hardware implementation®, code
optimisation, and algorithm designing.

Thanks to a large number of recent technological advances in the hardware do-
main, image-sequence capture and transfer is already feasible in real-time*. Hence,
image processing remains in many application as the only bottleneck [73]. Other
bottlenecks may appear in case of needing to store of visualise processed images.
Large-scale non-volatile storage can be mandatory®.

Nevertheless, significant speed improvements can be achieved by processing pixel-
wise operations in parallel. Many systems can benefit from specific hardware imple-
mentations. Among these, Application Specific Integrated Circuits (ASIC), Digital
Signal Processors (DSP), Graphic Processors Units (GPU), and Fully Programmable
Arrays (FPGA) can be considered.

Systems present in the related literature are often prototypes. Robustness and
accuracy in unconstrained conditions requires capabilities to switch among differ-
ent operation modes and algorithms [60]. However, cost requirements imply keeping
the hardware viable. Albeit ASICs provide better speed performances, low power
and low cost, they preclude future developments. On the other hand, DSPs allow
programmable architectures at the expense of higher individual cost and power con-
sumption. GPUs offer the possibility of offload specific processes, thereby speeding up
low-level algorithms at economical cost. Finally, FPGAs provide large-scale parallel
processing, efficient pipe-lining, and high I/O capabilities, which support simultane-
ous access to multiple external memory banks.

It should be remarked that the computational load at any time ¢ depends on
particular issues which cannot be controlled, such as the number of targets within
the scene, and the size of these targets or the scene itself in number of pixels. It also
depends on design decisions which may be critical to achieve successful performances

2However, it should be close enough in order to allow practical applications in a near
future.

3Enhanced performances via hardware can also be obtained by making use of more power-
ful computers, overclocking them, or including dual- and quad-core processors, for example.

“For example, at the time this thesis was written, Giga-Ethernet cameras provide high
resolution and frame rate in progressive colour acquisition modes.

5 Again, current fastest hard disks rotate at 15,000 rpm, and data transfer is limited to a
maximum of 110 MB/s. Thin Film Transistor Liquid Crystal Display (TFT LCD) monitors
are experimenting an important development, and the newest ones reach response times of
lms.
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—Tlike the number of histogram bins, or the number of features selected in the proposed
tracking architecture.

Further processing speed improvements can be achieved by optimising the code.
This specifically means to modify the code and its compilation settings on a given
computer architecture to produce more efficient software. Performance bottlenecks
are often due to language limitations rather than algorithms or data structures used
in the program. Low-level languages which gives more direct access to the underlying
machine allow faster computation as the expense of less readability and maintainabil-
ity. An special case are interpreted languages. These are executed from source form,
and are consequently slower. However, the code is often more flexible, allowing a faster
prototyping. Finally, a remark must be said against premature optimisation®, which
describes a situation where a programmer lets performance considerations affect the
design of a piece of code.

Finally, the system can be speed up by implementing asymptotically optimal
algorithms, that is, those which for large inputs performs at worst a constant factor
worse than the best possible algorithm, thereby allowing algorithm scalability. In this
case, the performance is evaluated in the sense of time complexity, i.e, the number of
steps that it takes to solve an instance of the problem as a function of the size of the
input.

6.1.2 Evaluating Accuracy and Robustness

This field still being a novel open research line, there is unfortunately a lack of widely
accepted test data-bases, ground-truth data, and evaluation criteria. Performance
evaluations are often based on quantitative metrics which depends on qualitative
events, or even results are evaluated by means of visual inspection. In order to allow
algorithm comparisons, a standard methodology for performance evaluation must
still be developed and assumed. Public test sequences should be synchronised and
calibrated, and ground truth data must be available.

At least, some efforts have been made in both issues. Several workshops on
Performance Evaluation of Tracking and Surveillance” (PETS) have taken place since
2000. Data sets are provided in order to allow algorithm performance comparison. In
particular, PETS 2001 Test Case Scenario has been widely used by the community
since its release. It contains three different views of an outdoor scenario which includes
roads, parking places, and green areas surrounding several buildings. The resolution
is PAL standard: 768 x 576 pixels, at 25 frames per second (fps). Files are compressed
in low quality JPEG, thereby presenting many visual artifacts.

CAVIAR (Context Aware Vision using Image-based Active Recognition) database®
has been used in PETS 2004. It contains indoor sequences corresponding to two dif-
ferent data sets. The first one were filmed with a wide angle camera lens in an
entrance lobby. The second one was recorded in a mall centre corridor from two dif-
ferent point of views. In both cases, the resolution is half-PAL standard (384 x 288

5Tony Hoare —the quick-sort designer— and Donald Knuth —who can be considered the
father of algorithm analysis— repeatedly warned against this practice.

"http://peipa.essex.ac.uk/ipa/pix/pets

®http://homepages.inf.ed.ac.uk/rbf/CAVIAR
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pixels @ 25 fps). Sequences are synchronised, calibrated, and some ground truth data
representation is available.

The SCEPTRE project? (Service to Evaluate the Performance of Tracking and
Recognition) provides two data sets of football matches from eight viewpoints each.
The resolution is 720 x 576 at a frame rate of 25 fps. Many others performance-
evaluation workshops and projects have recently provided a wide diversity of data-
sets, such as CLEAR 2006 and 2007 (Classification of Events, Activities and Rela-
tionships!?), and the AMI project (Augmented Multi-Party Interactions'!).

Despite this effort, most results are given as samples of a small number of pro-
cessed frames, and there is still a lack of accepted performance criteria. Nevertheless,
an increasing number of authors are proposing performance measures in recent times.
Thus, Senior et al. [81] compute a set of error measures between the tracking re-
sults and a ground truth determined by a human user. The performance is evaluated
according to:

1. the centroid position error;
2. the bounding-box area error;
3. the object detection lag;

4. the track incompleteness, which is given by the rate of number of frames missing
from the result track plus the number of frames erroneously associated by the
common number of frames between results and ground truth;

5. false positive and negative track error rates;

6. and, the number of object classification errors.

Zhao and Nevatia [99] evaluate their algorithm performance without the need of an
accurate ground truth. Thus, this is done according to the following measures:

1. the trajectory-based error rate, given by the number of times an identification
is broken, and the number of objects;

2. the detection lag;
3. the detection rate;

4. and, the false alarm rate.

Event-based error measures have also been proposed [72]. In these, events reported by
the system are compared to reference ones. Thus, cumulative counts of specific event
types of different orders are used to perform an evaluation on several sub-sequences.
Low relative errors at lower orders imply good responses for those event of interest,
while low errors at higher orders imply also good track continuity.

“http://sceptre.king.ac.uk/sceptre/default.html
Yhttp://www.clear-evaluation.org/
Yhttp://corpus.amiproject.org/
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(a): Frame 1 (b): Frame 40

(c): Frame 50 (d): Frame 100

Figure 6.1: Example of same ground-truth frames for a given scenario.

Finally, the ETISEO project!? (Evaluation du Traitement et de I'Interprétation de
Séquences Vidéo) proposes a data structure for content annotation, video annotation
rules, and a set of metric definitions.

Summarising, there is still a lack of widely accepted test data-bases. Performance
evaluations are often quantitative comparisons using qualitative metrics, or even re-
sults are evaluated by means of visual inspection —given a set of sample frames—
and usually no ground-truth data is available. A standard methodology for evaluating
performances is mandatory.

6.2 Evaluating the Performance of the Particle-Filter
Approach.

The performance of the algorithm has been tested using both synthetic and real
data. A series of synthetic experiments has been designed in order to evaluate the

Y2hitp://www.etiseo.net/
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Mean number of samples per target

Target 1 | Target 2
Run 1 49.5101 | 50.4899
Run 2 49.6577 | 50.3423
Run 3 50.4195 | 49.5805
Run 4 49.9866 | 50.0134
Run 5 50.3456 | 49.6544
Run 6 50.0705 | 49.9295

Table 6.1: Results of the proposed weight-normalisation approach.

Mean normalised error Mean normalised error
Target 1 | Target 2 Target 1 | Target 2

Run 1 0.1163 0.1309 Run 1 0.0715 0.0716
Run 2 3.8864 0.1182 Run 2 0.0849 0.1163
Run 3 0.1222 0.1226 Run 3 0.0987 0.1289
Run 4 0.0980 0.1038 Run 4 0.0645 0.0595
Run 5 0.1612 0.1131 Run 5 0.0679 0.1173
Run 6 0.1101 2.4679 Run 6 0.1233 0.0840
Mean* | 0.1216 0.1177 Mean* 0.0851 0.0963

(a) Performance without (b) Performance using the proposed

regularisation and speed feedback  regularisation and speed feedback

* The mean is computed just for those non-lost targets. Thus, in Table (a)
the second run for target 1, and the sixth one for target 2 are not taken into
account. Otherwise, even a higher difference would have been yield.

Table 6.2: Mean normalised error

performance of the different design improvements. They cover several difficulties a
tracker can run into, see Fig 6.1. Thus, the scenario implies an experiment in which
two moving targets with highly non-linear dynamics are considered. Both target
size and aspect ratio change over time. They move through a scene with complex
clutter. Two strips are drawn in the background. Their distributions are identical to
both targets’ distributions, thereby mimicking them. Strong acquisition device noise
is simulated. The targets are in different planes but their image trajectories cross
over causing a complete occlusion through several frames. Tracking is performed over
T = 300 frames using N = 100 samples.

As it have been stated in Chapter 4, no detection is ever used after the initiali-
sation. Thus, targets are tracked by means of prediction and weighting the different
hypotheses, while the image is not scanned by performing any motion segmentation.

Numerous runs have been carried out with and without the proposed weight
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Figure 6.2: Number of lost samples. (a) without the regularisation and
speed feedback; (b) using the proposed regularisation and speed feedback.
(Notice the reduction of 75% in the scale of the axes)
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(c) (d)

Figure 6.3: Target performance on traffic sequences

normalisation'3. In case of no-using it, one target is lost due to the lack of samples
in five of the runs. In the remaining one, at time ¢ = 300 one target got 92 out
of 100 samples. A target is considered lost when the normalised Euclidean distance,
according to the target’s size, between the target and the estimation position is higher
than a threshold set at 0.5, that is, the overlapping between the sample and the real
target is reduced a half of its area'?.

After the proposed weight normalisation, the mean number of samples per agent
fluctuates between 49.5 % and 50.5%, as seen in Table 6.1.

Multiple runs have been performed to test the effect of regularising both position

13Here results are presented for just six runs. This is however enough —in our opinion—
since the tracker is dealing with a synthetic scenario with all its parameters fixed.

“Duye to the lack of a standard about this issue, we have considered convenient to establish
such a strict criterion.
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(c) Frame 80: occluded (d) Frame 140: recovery

Figure 6.4: Experiment involving an opposite translation and merging.

and speed, not estimating the target speed from the speed of the samples, and feed-
ing back the estimated speed into the prediction stage. Thus, Table 6.2.(a) shows
the mean normalised error —according to the target size— in estimating the target
position without the regularisation, while Table. 6.2.(b) shows the same results after
applying it. A significant error reduction can be appreciated.

Further, Figs. 6.2.(a) and (b) compare the number of samples per target that have
lost the target. After considering the regularisation, a significant sample loss reduction
is observed: the number of lost samples is negligible, except for specific instants in
which the target is over clutter, see run 8 in Fig. 6.2.(b). In addition, none of the
targets is ever lost, since the effective number of samples has been increased avoiding
sample wastage. The trajectory jitter is considerably reduced.

In the next, both particle filter approaches —using appearance models based on
intensity templates, and based on colour histograms— are tested on real sequences.
Two hundred samples have been used in all the analysed sequences. Trackers are
initialised by hand.

Fig. 6.3 shows results using the template approach in traffic sequences taken in a
motorway during 60 frames. Figs. 6.3.(a), 6.3.(b) show results where large size and
speed changes are present, as they can be noticed according to the milestones and the
bounding box sizes; Figs. 6.3.(c), 6.3.(d) exhibit tracker performance under heavy
shadow and reflectance conditions.
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— % e =~ | VA -
(a) Frame 12: updating (b) Frame 38: tracking

(b) Frame 50: occluded (¢) Frame 102: recovery and exiting

Figure 6.5: Experiment involving an overtaking

The performance of the grey-scale template-based algorithm has also been tested
using several sequences involving humans. Two targets are tracked simultaneously,
despite their being articulated and elastic objects whose dynamics are highly non-
linear, and that move through an environment with complex clutter.

The first sequence involves an opposite translation and merging. Both targets
start moving from opposite positions and meet near the second actor’s initial position.
In this case 120 images of 320 x 240 have been analysed. The number of samples is
also fixed at 200, and trackers are manually initialised.

The first target’s speed decreases unevenly from five pixels per frame and the sec-
ond one from two pixels per frame to nearly zero during the first part of the sequence.
The first target is almost completely still from frames 70 to 130, occluding the second
target. The latter crosses at a very low speed while performing a rotation. Thus,
significant speed, size and appearance changes can be observed. The background
intensity levels are so similar to the target ones that constitute a source of clutter.
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Figure 6.6: Sample distribution in the overtaking sequence

The tracker performance is shown in Fig. 6.4. Both targets’ appearance models
are updated when reliable measures are obtained, see Fig. 6.4.(b). Occlusion is cor-
rectly detected avoiding re-sampling of samples of the occluded target and erroneous
dynamic and appearance models updating, see Fig. 6.4.(c). The tracker recovers from
occlusion, see Fig. 6.4.(d).

The second sequence involves an overtaking, see Fig. 6.5. This sequence have
130 images of 384 x 288. Two hundred samples have been also chosen to track both
targets. Trackers are also initialised by hand.

The second target moves faster than the first one —which is in fact a group of two
people— overtaking it. An almost complete occlusion can be observed from frame 40
to 60, see Fig. 6.5.(b), Fig. 6.5.(c). The street-lamps constitute a source of clutter
and cause partial occlusions to both targets, see Fig. 6.5.(a).

In the following paragraphs, quantitative data concerning the overtaking sequence
are presented. In this way, the algorithm robustness can be discussed and the draw-
backs exposed, as well as the ways of solution. Results concerning six runs are pre-
sented.

Fig. 6.6 shows the sample distribution among the targets present within the scene.
Occlusion and appearance-model updating situations are also pointed out. As can
be observed, the sample are evenly distributed. Thus, the number of samples per
object fluctuates around the fifty percent, given that two objects are tracked. During
occlusions, the samples corresponding to the occluded target are not re-sampled.
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Figure 6.7: Re-sampled samples in the overtaking sequence

Sample survival rate

Target 1 | Target 2
Run 1 38.6 28.5
Run 2 39.6 27.2
Run 3 36.9 27.3
Run 4 39.0 28.4
Run 5 41.2 28.7
Run 6 45.5 29.0
Mean 40.1 28.2

Table 6.3: Sample survival rate.

Thus, the number of them is constant while this situation holds, as can be observed
in the aforementioned figure. The loss of a target due to the lack of samples have
been avoided.

Fig. 6.7 shows the number of re-sampled samples. As before, it can be noticed
that samples belonging to occluded targets are just propagated without pruning them.
The survival rate is shown in Table 6.3. In the experiments carried out, the mean
survival rate is 28.2% (values for target 1 are biased since during the occlusion no
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Figure 6.8: Target likelihood in the overtaking sequence

sample is re-sampled). Low values of survival rate indicate that there are significant
differences among the likelihood values of the different samples. By making better
predictions, this rate may be increased, a fact which represents an increment in the
number of effective samples —those which are in fact tracking the target. Thus, the
number of required samples may be reduced.

However, this is an endemic problem in particle filtering [3]. Despite the numerous
approaches that have been tried —Partition Sampling [58], Covariance Sampling [85],
Annealing Filtering [16], Unscented Particle Filter [89], etc— the problem is still open.
Thus, according to [57], the evaluation of the survival diagnostic:

a i 2
D = ("), (6.1)

i=1

for the conventional particle filter [40] —given a 10-frame sequence with two targets
using 2000 samples— yields a value below 5%; the same evaluation using Partition
Sampling yields a value below 15%.

Fig. 6.8 shows the evolution of the targets’ likelihoods. Target one corresponds
to the two women whereas target two corresponds to the man. Two women being
tracked, one behind the other, using just one tracker cause the significant lower val-
ues in the target likelihood, since bigger appearance changes occur between successive
frames. The maximum sample likelihood is also drawn, using a thin red line. Usually,
this value is higher than the target likelihood, since targets’ states are obtained by
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Figure 6.9: Likelihood values
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(a) Appearance model (b) Ground truth

Figure 6.10: Target’s appearance

averaging the weighted samples. In some cases, the sample with maximum likeli-
hood corresponds to spurious state, given by a reduction of the target size caused by
background clutter. In other cases, the maximum sample likelihood is lower than the
target likelihood. This is caused by the fact that using a limited number of samples to
model a highly dimensional pdf implies that this space cannot be densely populated,
and thereby ‘holes’ are left.

Clutter is really a significant problem in these sequences. Numerous zones of the
background mimic the target appearance in many pixels. Intensity is used as image
feature. We try to overcome this problem using colour image features, and making use
of global target characteristics, such as computing histograms. This last issue would
prevent the effects of dealing with articulated and elastic targets, which likelihood,
under certain conditions, may present significant falls due to pixel misalignments.

In the Fig. 6.9, the likelihood values around the target position at two different
frames are shown. As can be seen, the likelihood function is highly multi-modal
and present low values at the true position. The first target’s appearance model
—the two women— is show in Fig. 6.10.(a) and the corresponding image section in
Fig. 6.10.(b). Significant differences in the corresponding pixels can be observed due
to the articulated nature of the targets. These result strongly suggest that other
likelihood functions should be explored.

The performance of the approach based on colour histograms has been tested
using the CAVIAR database. In the sequence OneLeaveShopReenterlcor (CAVIAR
dataset2, 389 frames @ 25 fps, 384 x 288 px), two targets are tracked simultaneously,
despite their being articulated and deformable objects whose dynamics are highly
non-linear, and that move through an environment which locally mimics the target
colour appearance. The first target performs a rotation and heads towards the second
one, eventually occluding it. It also presents challenging difficulties due to the fact
the background colour distribution is so similar to target one that it constitutes a
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(a) Frame 4: updating
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(b) Frame 62: tracking
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(c) Frame 74: occluded (d) Frame 90: recovery

Figure 6.11: PF performance on CAVIAR sequence. Each target’s estimated
position is denoted by an ellipse and tagged accordingly; milestones are placed
on the target trajectory every 25 frames; each predicted sample is drawn using
a dark dot, whereas re-sampled particles are drawn in a light ones.

strong source of clutter. Furthermore, several oriented lighting sources are present,
dramatically affecting the target appearance depending on its position and orientation
(notice the bluish effect on the floor on the right of the corridor, and the reddish one
on the floor on the left of the corridor). Thus, significant speed, size, shape and
appearance changes can be observed, jointly with events such as people grouping,
partial occlusions and group splitting. the environment locally mimics the target
colour appearance, and several oriented lighting sources are present.

The tracker performance is shown in Fig. 6.11. Both targets’ appearance models
are updated when reliable measures are obtained, see Fig. 6.11.(a). Poor localisations
and occlusions are correctly detected, thereby avoiding re-sampling of samples of
the occluded target and erroneous dynamic and appearance models updating, see
Fig. 6.11.(b), (c¢). The tracker successfully recovers from occlusion, see Fig. 6.11.(d).
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Figure 6.12: Likelihood evolution.

The maximum sample and target likelihoods, and the likelihood indicator is shown
in Fig. 6.12.

Despite the achieved improvements, the experimental results show the limita-
tions on the approach based on particle filters. Constrained appearance models are
required. In the presented results, targets were initialised by hand. An automatic ini-
tialisation entails the necessity of dealing with common detection errors in cluttered
and uncontrolled scenes. This approach would not cope with such ill-pose models.

Further, the need of model updating due to changing illumination conditions, or
the non-rigid nature of the targets, implies assuming model contamination. Since the
targets cannot be perfectly delineated, and small position errors are always present,
the models will unavoidable drift. In addition, likelihood functions are not discrimina-
tive enough to mitigate the drift of the models. Thus, tracking in long-term sequences
would not be feasible.

Obviously, these facts may be overcome by generating new samples from detection,
and performing a data association process like in [41, 91]. However, this would just
mask tracking misbehaviours what leads one to question about the feasibility of this
kind of approaches.

Finally, due to the lack of a constrained dynamic model, an despite the improve-
ments introduced, there is still a significant sample wastage. By assigning samples
to an specific target instead of using a state vector which includes variables from
all targets, we have tried to cope this effect —which is increased due to the curse
of dimensionality. Other authors have tested other approaches like partitioned sam-
pling [58], but the cause remains.

This considerations have lead to the development of the approach which results
are presented in the following section.
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Figure 6.13: Annotation tool. (a) Main Windows and cropped region. (b)
Segmented contour. (c) Annotation window. (d) Occluding target. (e) Re-
sults pointing out occluded regions and Head. (f) Identification window, tar-
get and frame labelling.
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6.3 Evaluating the Performance of the Proposed Hi-
erarchical Tracking Architecture.

The performance of our system has been tested using sequences taken from both
public well-known databases, and own ones. Successful tracking results have been
achieved in all processed sequences!®.

Further, a ground-truth annotation tool has been developed'®, and the interaction
between human and computer is aided by using a pen tablet, see Fig. 6.13. Thus,
foreground regions can be annotated, visualised and edited. Targets are labelled, and
visible and occluded regions are pointed out, as well as significant parts as head or
feet. As aresult, a XML file is generated with the annotation data, and a set of target
image masks are stored.

Significant processed frames of the previously used CAVIAR sequence are shown
in Fig. 6.14. The following notation is used in all presented images: the contour of
segmented blobs is painted on yellow; LLT’s are denoted by black ellipses, wheres
HLT’s are represented by white ones; the security border is faded on blue, while outer
areas are in grey.

Tracking information is displayed in the box: the target label or identification (ID)
is followed by the tracking status —tracked or lost— the operation mode —observed,
or ABT— the interaction event and as attributes the partners involved, and whether
the tracker is being updated, the target is occluded, or is entering/exiting the scene.
For instance, in the Fig. 6.14.(e) targets one and two are both tracked in ABT mode,
they are splitting one from each other, and the trackers have confidence enough to
update the colour models; the group which both targets conformed is dissolving.

The sequence DATASET1 TESTING_CAMERA1 (PETS 2001 database, 2688
frames @ 29.97 fps, 768 x 576 px) presents a high variety of targets entering into
the scene: three isolated people, two groups of people, three cars, and a person who
exits from a parked car. These cause multiple tracking events in which several targets
are involved in different grouping, grouped, and splitting situations simultaneously.
Samples of tracking results can be seen in Fig. 6.15.

A crosswalk sequence is analysed in Zebral (CVC database, 1344 frames @ 25{ps,
720 x 576 px). Four people are involved in different interaction events. Further, several
vehicles cross the scene in a front plane, and people walk behind various streetlamps
and trees, resulting in multiple partial an complete occlusions of the targets. Fig. 6.16
shows some significant frames.

5The reader is encouraged to see the whole processed sequences
at http://iselab.cvc.uab.es/?q=agent_motion

Y6 This is applied to the ISE lab database, see http://iselab.cvc.uab.es/?q=tools. The
aim of these is to develop new techniques, technology, and algorithms for the automatic
evaluation (i.e. motion detection, tracking, recognition and interpretation) of human be-
haviours in image sequences. ISE Lab is involved in an ongoing effort to develop datasets
of synchronised videos, and ground-truth data. Consequently, the provided datasets are
meant to aid research in developing, testing and evaluating algorithms for human-behaviour
understanding.
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(e) (f)

Figure 6.14: Sample tracking results on the
CAVIAR _OneLeaveShopReenterlcor sequence. Two targets are tracked; a
LLT is instantiated in (a), and a HLT in (b); interaction events are correctly
detected: (c) grouping, (d) grouped in (3), and (e) splitting; during the
merging both targets are tracked using ABT; after it, new trackers are
instantiated and correctly associated (f).


http://iselab.cvc.uab.es/files/Results/Agent_Motion/Video_tesis/CAVIAR2_OneLeaveShopReenter1cor_901_FullMarked_30fps.avi
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Figure 6.15: Sample tracking results on the
PETS DATASET! TESTING CAMERAI1 sequence. Targets are tracked
despite no segmentation is available in (a), a single blob is obtained for the
group in (b), (d), or they are heavily occluded in (e); multiple simultaneous
events are correctly inferred, such as target 13 is grouped in group 15 while
splitting from 14 in (d).


http://iselab.cvc.uab.es/files/Results/Agent_Motion/Video_tesis/PETS2001_DATASET1_TESTING_CAMERA1_905_30fps.avi
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Figure 6.16: Sample tracking results on the CVC Zebral sequence. Targets
are successfully tracked despite mutual occlusions in (a) and (d), or occlusions
with the background in (c) and (e); interaction and scene events are correctly
inferred.

The Hermes_Qutdoor Caml sequence (HERMES database, 1612 frames @ 15
fps, 1392 x 1040 px) presents a great diversity of situations. Three people and three
cars act on a robbery sequence, where suitcases and bags are carried, left and picked
from the floor. Multiple interaction events can be seen, in which several agents are
involved in different simultaneous grouping, grouped and splitting events, while they
are partially or completely occluded. Among the sequence difficulties, it must be also
remarked that objects from the initial background are removed, several targets suffer
from heavy background camouflage, and strong clutter is caused by similar group


http://iselab.cvc.uab.es/files/Results/Agent_Motion/Video_tesis/CVC_Zebra1_502_FullMarked_30fps.avi
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(e) (f)

Figure 6.17: Sample tracking results on HERMES QOutdoor Caml se-
quence. The dissolution of a non-detected group form by target 4 —the
man— and 3 —the bag— is correctly detected in (a), (e); targets are success-
fully tracked through groups in (b), partial occlusions in (c), and complete
occlusions in (d); left objects are detected in (e), an correctly tracked after
being picked up in (f).


http://iselab.cvc.uab.es/files/Results/Agent_Motion/Video_tesis/HERMES_Outdoor_Cam1_915.avi
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Figure 6.18: Demo tracking results on the CVC _Zebral sequence.

partners. Significant frames are shown in Fig. 6.17.

Finally, a football matched is recorded in the sequence VS PETS Testing Camera/
(VS_PETS!" database, 1570 frames analysed @ 25fps, 720 x 576 px). These sequence
entails special difficulties given the high number of targets in the scene, and the fact
that the appearance of all players from each team is identical.

Similar results are given in a demo mode, where all annotated information, scene
regions, and intermediate results are removed for the sake of clarity. Thus, Fig. 6.18
shows some frames from CVC Zebral sequence, whereas Fig. 6.19 does the same

"Visual Surveillance and Performance Evaluation of Tracking and Surveillance, 2003.
http://www.cvg.rdg.ac.uk/VSPETS/


http://iselab.cvc.uab.es/files/Results/Agent_Motion/Video_tesis/CVC_Zebra1_910_DEMO_30fps.avi
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Figure 6.19: Demo tracking results on the HERMES QOutdoor Caml se-
quence.

for HERMES Outdoor_Caml sequence, and Fig. 6.20 for the VS _PETS sequence.
In this last sequence, the system fails after a thousand frames to accurately track
all targets. Multiple facts entail this fact. First of all, the system must face a high


http://iselab.cvc.uab.es/files/Results/Agent_Motion/Video_tesis/HERMES_Outdoor_Cam1_911_DEMO_30fps.avi
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(c) (d)

Figure 6.20: Demo tracking results on VS PETS Qutdoor Caml se-
quence. (a) Multiple targets are simultaneously tracked; target 6 is success-
fully tracked in ABT mode, despite no segmentation is obtained —due to an
wrong background model in the zone because a player was there during the
initialisation; (b) target 4 partially occludes target 6; both are tracked in ABT
mode; (c) the linesman is being tracked despite being out of the ROI since he
has once stepped on it; (d) the system fails to track targets under tracker 16
and 49, see text for details.

number of targets in a low-resolution region. This issue can be solved by using a
mosaic from registered multiple cameras. Secondly, no context constrains have been
deliberately introduced into the system, but in a practical application the known
appearance of the targets and background can be used'®. In the third place, all the

'8 The aim has been designing a general system in order to cope with the maximum number
of different scenarios. It should be easier to particularise the system later on, depending on
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Mean Error Error Std. Dev.
X- position 1.93 1.06
y- position 2.46 2.62
Major axis 5.39 5.27
Minor Axis 2.77 1.90

Table 6.4: Error statistics.
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(a) (b)

Figure 6.21: Sample tracking evaluation. (a) Position and (b) size error
of targetl in Hermes_Qutdoor Caml sequence. Non-visible body-parts are
also manually annotated; Major estimation errors correspond to frames with
partial occlusions with the rubbish bin.

players of each team have the same colour appearance. As stated in the discussion
on page 138, this issue is going to be addressed by introducing shape descriptors —as
SIFT— to enhance disambiguation. Finally, many problems are caused by the fact
that a single tracker is assigned to a group of targets that enter the scene together.
As stated in the aforementioned discussion, this issue is being currently addressed
within the HERMES project by the development of a target classification module.

Several of the above stated performance measures are here used to evaluate
the system results, according to the data provided by the manual annotation tool.
Thus, Fig. 6.21 shows the position and size error over time of target 1 in a Her-
mes_ Outdoor _Caml. Error statistics are shown in Table 6.4. Sample annotation
frames are shown in Fig. 6.22.

Events are manually annotated and confronted with computed ones, see Table 6.5.
Thus, events are correctly detected, albeit hardly ever occur at the exactly same time
instant. This issue is of course sensitive to location estimation errors of a few pixels.

However, some errors due to the subjective component of the annotation remain.
For example, in Fig. 6.17.(a) target 1 does not keep its ID after leaving the bag,
due to major shape and appearance changes, and two new trackers are instantiated
—target 3 and target 4. Hence, target 1 is referred as target 4 after bag —target 3—
is left. Consequently, subsequent tracker instantiations have the labels shifted. Thus,
the group is referred as target 4 in the annotated events and target 5 in the computed

a given scenario.
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(d) (e)

Figure 6.22: Sample annotation frames in Hermes_Qutdoor Caml se-
quence. (a) Example of input frame; (b) manual annotation and (c¢) marked
image without occluded target parts for segmentation-evaluation purposes;
and (d) manual annotation and (e) marked imaged including occluded parts
for tracking-evaluation purposes.
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ones. Nevertheless, this ID change is desirable in other cases, such as a man leaving

a child.

Further, several trajectory indicators over the tracked targets are computed and
presented in Table 6.6. It must be remarked that just targets which enter completely
in the scene are taken into account!®. Thus, every time a new blob is detected, a LLT
is instantiated. This usually happens when targets merge into groups, they dissolve
themselves, or targets undergo significant changes due to camouflage, occlusions, etc.

Annotated event (t) ID  Attrib.| Computed event (t)  ID Attrib.
observed (550) 1 - observed (550) 1 -
entering (629) 2 - entering (629) 2 -
— dissolving (655) 1 -
splitting (662) 13 splitting (655) 4 3
splitting (662) 3 1 splitting (655) 3 4
grouping (681) 1 2 grouping (682) 4 2
grouping (681) 2 1 grouping (682) 2 4
grouped (689) 1 4 grouped (697) 4 5
grouped (689) 2 4 grouped (697) 2 5
group (689) 4 1&2 group (697) 5 2&4

Table 6.5: Annotated and computed events on Hermes sequence. The at-
tribute denote the targets involved.

Measure\Sequence CAVIAR PETS CVC HERMES
Targets 2 8 4 8
LLT 8 78 138 86
HLT (targets) 4 28 11 36
HLT (groups) 1 13 3 11
Temporarily Broken ID 0 0 1 2
Permanently Broken ID 0 0 0 2
False Positive 0 0 0 2
False Negative 0 0 0 0

Table 6.6: Trajectory measures.

YYPETS results corresponds to the first 1300 sequence frames.
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Module\ Measure Temporarily Permanently False False
Broken ID  Broken ID  Positive Negative

Normal operation 2 2 2 0

No use of bin weighting* 2 2 2 0

No ABT updating 4 4 2 0

No motion cues in ABT 3 6 2 0

Combined removal 3 9 2 0

*The indicators do not show a worse performance since the redundancies pro-
vided by the different modules make the errors no catastrophic enough to
cause a target loss. However, a poor target localisation is obtained, as shown
in Fig. 6.23.

Table 6.7: Effect of the different modules on tracking performance in the
Hermes sequence.

Thus, the number of LLT’s is much higher than the number of targets in every
analysed sequence. When a LLT become stable, a HLT is created and associated
with it. These are hopefully subsequently associated with the HLT that is already
tracking the target. In this case, the target identity is not broken. When this process
last more than one frame, the identity is temporarily broken. Since a HLT is created
after the event is over, together with the fact that HLT are also instantiated to track
groups, the number of HLT’s is higher than the actual number of targets, even if the
identities are correctly kept. Temporarily broken ID in CVC_Zebra sequence is due
to an important partial occlusion of target 3 with a tree, see Fig. 6.16.(e). In the
Hermes sequence this fact happens when the suitcase is picked up, due to significant
segmentation errors. The permanent broken ID, and the false positives are due to
ghosts yielded by a non-detected motionless car which starts motion?°.

In order to to experimentally explore the effect of the different modules, several
tests on the Hermes sequence have been carried out using the previous indicators.
Thus, as shown in Table 6.7, the removal of any of this modules cause make the
performance worse. Nevertheless, it should be remarked that these modules work in
cooperation to maximise the target disambiguation from potential distracters. There-
fore, since they provide some redundancy for the sake of robustness, the effect of
removing only some of them may be not significantly noticeable.

Finally, it worth to say some remarks on the current implementation, and resulting
real-time performances. As it have been above stated, multiple-people tracking in
unconstrained and dynamic scenarios are one of the most computationally-speaking
demanding task in Computer Vision.

The current system is implemented as a Matlab prototype. The focus has been
placed on achieving robust and accurate performance, instead of on a careful code
optimisation.

Significant speed improvements can be achieved by processing pixel-wise oper-

20This issue is commented in next section
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Figure 6.23: Bin-weighting effect on target localisation. Example of a poor
localisation of target 4 due to the fact of no using the bin-weighting module
in (b) in comparison with (a).

ations in parallel. In addition, many systems can benefit from specific hardware
implementations like FPGA, DSP, GPU, etc. Low-level languages which give more
direct access to the underlying machine allow faster computation as the expense of
less readability and maintainability. On the contrary, interpreted languages are ex-
ecuted from source form, and are consequently slower. However, the code is often
more flexible, allowing a faster prototyping.

Subsequent implementations of bottleneck modules?! in C++ have yielded speed
improvements which reduce 25 times the computation time of these particular func-
tions. This would allow the system to process the above sequences at an average rate
around 10 fps in a Pentium V @ 3200Mhz.

The computational complexity will be given by the complexity of each of the
algorithms run at each module. For instance, the cost of the mean-shift algorithm is
given by [14]:

Oo ~ N; (Ch + PCS) s (62)

where N; is the mean number of iterations per frame an target, c;, the cost of com-
puting the candidate histogram, P the number of target pixels, and ¢, the cost of an
addition, a squared root, and a division.

2'The main bottleneck was located at the computation of the weighted histograms, given
the huge number of evaluation required for selecting the best M feature out of 49, perform
the appearance gating and association, the iterative mean-shift with multiple targets and
group partners, multiple target models, the evaluation of background weights, and the final
appearance updating.






Chapter 7

Concluding Remarks

In this thesis, the main goal has been achieving a robust and accurate Multiple-
Target Tracking in human-populated scenarios. These should be as generic as possible,
thereby limiting the number of assumed premises. The environment may be open,
dynamic and uncontrolled. Towards this aim two approaches have been designed,
implemented and experimentally verified.

The first proposal is founded on a particle-filter framework. PF algorithms has
been widely used, specially between 1999 and 2003. These have been considered
fast and efficient, and able to represent multi-modal density functions. Thus, with
a fixed sample-set size —thereby, with bounded computational resources— multiple
hypotheses could be simultaneously considered, in order to tackle background clutter.

Our approach was initially based on the PF algorithm implemented by Varona in
his PhD at this Institute [90]. Subsequently, the focus has been placed in coping with
the inherent drawbacks of SIR methods, and other common tracking difficulties, such
as model drift. Then, after the evaluation of the obtained results and the feasibility
of new enhancements, a second approach is developed and presented.

This second proposal —which constitutes the main contribution of this thesis— is
based on a principled and structured framework. Thus, the system is implemented as
a hierarchical but collaborative architecture, where each level is composed of several
modules which are devoted to specific tasks. Therefore, this framework combines in
a principled way both bottom-up and top-down tracking approaches.

7.1 Discussion and Contributions

The first approach has been widely explored, and finally discarded. Although sig-
nificant advances have been obtained the approach is far from being appropriate to
carry out multiple target tracking in unconstrained environments, specially in long
sequences. Thus, the following issues have been explored and tested:

e Different appearance models and likelihood functions have been implemented.
Thus, the approach has been evolved from using gray-scale templates computed
from bounding boxes to colour histograms calculated from elliptical regions.
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The former uses likelihood functions computed from the probability of each
pixel value, whereas the latter relies on the Bhattacharyya distance.

The dynamics updating stage has been modified to reduce sample wastage.
The estimated speed is fed back into the prediction stage. All estimates are
regularised.

Model updating has been designed in order to overcome the model drift phe-
nomenon. This is performed by taking into account the target likelihood, the
evolution of this indicator, and the potential interactions with other targets.

Sampling impoverishment have been tackled by redefining the weight normal-
isation. The proposed sample-weight normalisation avoids losing the targets
due to the lack of samples.

Occlusions have been dealt with by predicting collisions, and evaluating the
target likelihood.

However, common problems of SIR filters have being inherited:

High-dimension spaces cannot be densely populated, and estimations are often
performed from a very limited number of samples. This results in poor state
approximations when dealing with multi-modal pdf’s.

Top-down approaches require extremely constrained models, which is not fea-
sible in generic applications. Errors in the estimation are propagated, thereby
causing model drift.

This problem is magnified by the fact that likelihood functions are usually not
discriminative enough.

An independent observation process from prediction is required to cope with
estimation errors with a finite number of samples. This entails the necessity a
bottom-up process.

Finally, any generation of new samples from detection would just mask tracking
misbehaviours. Survival rates are very low, and propagated samples would come
from the newly generated ones.

The results obtained from the extensive experimental work carried out with the ap-
proach based on particle filters have led to the following preliminary conclusions:

A bottom-up approach is required.

Models must remain as simple as possible.

The system must profit from all available sources of information.
Multiple stages of hierarchical processing are desirable.

More complex models at the higher levels need to be on-line built by using the
information provided by the lower levels.

These will be used to act on the lower levels.
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Therefore, in order to take these issues to practice, a hierarchical but collaborative
architecture has been designed. Each level feeds the higher one with its computed
results, and is itself fed back with high-level results. In this way, by taking advantage
of both approaches, the system is allowed to benefit from bottom-up capabilities; but
also, high-level analysis is performed, granting accurately tuned models, and proper
operation-mode selection:

Three levels have been defined to perform each of the main system tasks: target
detection, low-level tracking, and high-level tracking. Further, a remarkable
characteristic of this architecture is that the tracking task is split into two levels.
This fact is crucial to perform tracking without the need of previous detailed
knowledge by introducing simultaneous modelling and tracking capabilities.

Each level is fed with lower and higher level computed results. Further, each
level has an internal feed-back loop.

These levels can work according to two operation modes: Motion-Based Track-
ing (MBT) and Appearance-Based Tracking (ABT). These are independent and
automatically selected according to each target particular conditions.

A principled event management module is proposed and embedded in the ar-
chitecture. Thus, a remarkable characteristic is its ability to manage multiple
interactions among several targets. This allows the system to switch among
different operation modes according to what situation is taking place. This ca-
pability is critical to achieve successful performances in uncontrolled scenarios.
Further, a valuable knowledge is provided in order to obtain high-level scene
descriptions.

Feature-selection and appearance-computation modules have been developed,
by paying special attention to the particular characteristics of grouping sit-
uations. Appearance is represented by means of multiple colour histograms.
Histogram features are selected by considering not only the best distinction
between the local background and the target, but also between the target and
its group partners.

A model pool is built, and long-run features are kept and smoothed. The use
multiple features —including long-run ones— provide the system with recov-
ering capabilities after grouping or camouflage events. Further, by smoothing
the histograms the representation is less sensitive to potential initialisation and
subsequent localisation errors.

A procedure which takes into account motion and appearance cues relative to
potential distracters has been designed to enhance the ABT operation mode.
Thus, an important contribution focuses on tracking several targets indepen-
dently while they are grouped, thereby yielding an accurate and robust target
localisation, where other algorithms just provide coarse one.

A principled model updating scheme has been followed to avoid model drift.
Thus, targets are updated by considering the events in which they are involved.
Targets tracked using MBT are updated when the track is confirmed as stable



178 CHAPTER 7. CONCLUDING REMARKS

—what depends of the quality of the observation sequence. Targets tracked
using ABT are evaluated using the computed appearance models and similarity
indicators before deciding whether update them or not.

Hence, the architecture proposed as second approach follows the natural paradigm,
where visual-stimuli analysis is performed by the combination of pre-attentive and
attentive processes. Further, it makes use of first-order and second-order motion
perception. This results in a successful tracking of multiple targets simultaneously:

e This is achieved even in hard conditions of cluttered background and uncon-
trolled illumination.

e Targets present a high appearance and shape variability.

e Complex tracking events —in which numerous targets are simultaneously in-
volved in different grouping and splitting situations— take place.

In spite of these difficulties, experiments on complex indoor and outdoor scenarios
have yielded robust and accurate results. These have been carried out using sequences
taken from both public well-known databases, and own ones, thereby demonstrating
the system ability to deal with unconstrained and dynamic scenes:

e No a-priori knowledge about either the scene or the targets, based on a previous
training period, is required.

e The method is adaptive in the sense of the background model, the number of
targets, the best appearance representation, or the most appropriate tracking
algorithm according to the events which are taking place.

The architecture itself must be seen as the main contribution, since it introduces
the necessary synergies between the different modules and methods to tackle such an
inherently complex problem. Therefore, each module task is performed by a particular
algorithm, but they can be substituted by enhanced ones without modifying the
architecture itself, thereby enhancing the system capabilities.

7.2 Open Issues and Future Work

As it has been stated multiple times, tracking success depends on the ability of dis-
tinguishing the target from potential distracters. An important effort has been made
on this direction in all involved modules. Still, many cases remain in which no pos-
itive discrimination can be obtained using colour and intensity cues. Thus, target
segmentation can be enhanced by making use of new cues:

e For instance, gradient-change detection can be used to attenuate target cam-
ouflage?.

'This is currently being developed and tested. Promising results have already been
achieved [36].
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e Further, shadow removal techniques could be very useful to address those false
detections due to changes in the illuminant chrominance.

An important remaining issue is caused by the background objects which are eventu-
ally removed. This fact leads to the so-called ghost detection problem:

e An analysis of the speed and contrast of newly created objects can be useful to
tackle this open issue.

e Further, a multi-layered background can be built by including characteristics
of left objects. Therefore, motion segmentation of new targets over former ones
could be achieved, while ghost detection is mitigated.

Target classification was out of the scope of this work. However, a classification
module can be easily inserted in the architecture, as shown in Fig. 5.1 on page 82:

e This would require a-priori learnt knowledge in order to distinguish among peo-
ple, vehicles, and other objects in motion?. In addition, working in cooperation
with detection modules, it would also help to segment targets who enter the
scene within a group.

Target representation can be refined by including structure components and shape
cues:

e For example, body-part histograms and salient points would enhance agent
tracking during long-term partial occlusions, while SIFT descriptors would pro-
vide new ways of target discrimination.

The system is also prepared for taking advantage in the future of any high-level
information about the context and current situations provided by cognitive levels of
the HSE framework. Further, learning methods can be considered to tune algorithm
parameters according to the particular conditions of a given scenario. The potential
future use of multiple active cameras from several point of views is also feasible.

Finally, some remarks on what this system cannot do, or it is not intended to do.
The premises taken in the design process assume that the background slowly changes
with respect to the motion of the targets. Tracking is based on an initial motion
segmentation in order to launch the LLT’s. The issue maybe attenuated by modelling
the background on a MoG basis, for instance. Still background motion should be
limited.

Changes in both the target’s dynamics and appearance are supposed to be smooth
at the current frame rate. Very fast objects® cannot be tracked. The size of the targets
in the image is assumed to be big enough in order to build a representative statistical
appearance model, but small enough w.r.t the scene size to ensure that a coarse blob
representation is feasible. Humans will essentially remain in upright posture. For
instance, a single human recorded in a close-up image making fast movements cannot

This issue is currently being addressed within our lab, according to the HSE framework.
3 According to the scenario conditions, the selected frame rate, and the speed of the
targets.
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be tracked. Further, it is assumed that the size of the targets permits that they can
completely lie within he ROI in order to perform event analysis.

In the current implementation —as a Matlab prototype— the focus has been
placed on achieving robust and accurate results, instead of on real-time performances.
It was not the aim of this thesis to design a system on a commercial platform. How-
ever, this system can be easily exported by taking into account the consideration
discussed in Chapter 6.

Therefore, the system is designed to carry out trajectory analysis applications,
such as people counting, video-surveillance, video-safety, extraction of sport match
statistics, etc. Other further use requires the combination of this proposal with other
systems which perform detailed human-body action analysis, or face tracking and
facial expression analysis, etc. This is assumed to be performed by the remaining two
channels within the HSE framework.

Acknowledgements. This work has been supported by the Catalan Research
Agency (AGAUR), by the Spanish Ministry of Education (MEC) under projects
AHNA (TIC2003-08865), SYSIPHUS (TIN2006-14606), and DPI-2004-5414, and by
the EC under projects HERMES (IST-027110) and Vidi-Video (IST-045547).



Appendix A

Acronyms

Given the extensive use of acronyms through the text —related to the specific terms
some already used in the literature, but most introduced in this work— we have found
convenient to summarise them in Tables A.1, A.2.

Symbol Description
ABT Appearance-Based Tracking
ASL Active-Sensor Level
BC Bhattacharyya Coefficient
BCM Background Colour Model

BIL Behaviour-Interpretation Level
BIM Background Intensity Model
Cl Confidence Interval

CIL Conceptual Integration Level
CVS Cognitive Vision System
EKF Extended Kalman Filter

fps frames per second
GUI Graphical User Interface
HCI Human-Computer Interaction

HLT High-Level Tracking

HMA Human-Motion Analysis

HMM Hidden Markov Models

HSE Human-Sequence Evaluation

ISE Image-Sequence Evaluation

ISL Image-Signal Level
JPDAF  Joint Probabilistic Data Association Filter

KF Kalman Filter

Table A.1: Acronyms (I).
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Symbol Description
LLT Low-Level Tracking
MHT Multiple-Hypotheses Tracker
MoG Mixture of Gaussians
MTT Multiple-Target Tracking
MSD Mahalanobis Squared Distance
NL Natural Language
NN Nearest Neighbour
PDAF  Probabilistic Data Association Filter
pdf Probabilistic Density Function
PF Particle Filter
PDL Picture-Domain Level
PTZ Pan-tilt-zoom
ROl Region of Interest
SDL Scene-Domain Level
SIR Sequential Importance Re-sampling
SIS Sequential Importance Sampling
SPD Spectral Power Distribution
UIL User-Interface Level
UKF Unscented Kalman Filter
UPF Unscented Particle Filter
WAGN  White Additive Gaussian Noise

Table A.2: Acronyms (II).
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Symbol List

Due to the fact that numerous collaborative algorithms have been presented, this
work has required the use of a large number of symbols. In order to aid the reader
comprehension, these symbols are here summed up. They are split through several
manageable tables, according to the symbol category. Thus, functions are described
in Table B.1; indexes in Table B.2, constants in Table B.3, scalars and vectors in
Table B.5, and matrices and data-structures in Table B.4.

For the sake of clarity, symbols exclusively related to the particle-filer approach

are split in Table B.6.

Symb. Description Symb. Description
L()\) illuminant SPD b(e)  bin-indexing function
N (o) Gaussian pdf ge (o)  Epanechnikov kernel profile
R()\) object reflectance distrib. 0 (o)  Kronecker delta
S¢(\) sensor sensitivity ¢ (o) general discrete distrib.
X?l (o) Chi-squared pdf with d de-

grees of freedom

Table B.1: Functions.

Symb. Description Symb. Description
a pixel index (sub) q background index (sup)
c channel index (sup) t time index (sub)
i feature index (sup) B blue channel
J entity index (sup) G green channel
k bin index (sub) I intensity
l particular entity index (sup) R red channel

Table B.2: Sub- and super-index symbols. Lowercase denote variables, while

uppercase denote constants.
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Symb. Description Symb. Description
C normalisation constant € small positive quantity
confidence factor for ABT
J number of group partners KABT .
updating
. . f. factor for dark fore-
K number of histogram bins KD con actor fob dark fore
ground
f. factor for light fore-
M current best features K, ot actor for Hght fore
ground
factor for the outer margin
N best long-run features Fm - 6f the basin of attraction
P number of target pixels Tm minimum sensor sensitivity
T number of window frames n saturation sensor point
A sambline veriod - covariance ellipsoid variance
¢ PHs b °*  threshold

Table B.3: Constant symbols.
uppercase, and non-bold Greek lowercase.

They are represented by non-bold Latin

Symb. Description Symb. Description
A transition matrix R observation noise covariance
C output matrix Sy innovation covariance
G noise matrix Cy conceptual data
I current frame S, HLT data
K, Kalman gain X, LLT data
M,  Segmentation map Zy observation data
o error covariance AZ’I log-likelihood ratio
l?'t predicted error covariance Vel variance ratio
Q process noise covariance

Table B.4: Matrices and data structures. Bold uppercase denotes matrices,
while data structures are printed in calligraphic uppercase.
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Symb. Description Symb. Description
dy, oty Bhattacharyya distance Qg brightness distortion
d?\/lahal ‘ Mahalanobis Squared  Dis- [ brightness distortion RMS
" tance
T o observed major and minor . normalised brightness dis-
W axes @at  tortion
h{, w{ axes state-variable ap histogram adaptation rate
hg, u')g 3Zfisablechange—rate state- Ba¢  chrominance distortion
pi’j histogram 3. thl\r/})émnance distortion
i . . s normalised chrominance dis-
n"  counter of updating times Bat tortion
Dk histogram bin 9~g observed angle
ﬁi’j smoothed histogram 95 angle state-variable
~ij; histogram at estimated loca- 7 rate of exclusion for back-
bt tion n ground bins
s¢ SEnsor response A wavelength
uy control signals Ua colour-channel mean
w* channel weight ul mean intensity
wi bin weight ,U?j ir;‘:ilg Bhattacharyya dis-
wh, equalised bin weights p Bhattacharyya coefficient
Wq pixel weight o, colour-channel std. dev.
Xq pixel location ol intensity standard deviation
x{ LLT state O'i’j chattaCharyya dist.  std.
ev.
fc{ LLT predicted state -2 process variance due to ac-
celeration
7 ) ﬂg observed centroid o2 observation noise variance
x{ ) yg centroid state-variable ™D dark-foreground threshold
x'{, yg speed state-variable T light-foreground threshold
Y innovation Tal low-brightness threshold
z{ observation Ta2  high-brightness threshold
Zi predicted observation T3 chrominance threshold
v observation noise
wi process noise

Table B.5: Scalar and vector symbols. Scalars are printed in non-bold low-
ercase, whereas vectors are denoted by bold lowercase.
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Symb. Description Symb. Description
y ;:umulative prob. for sample I, scene image at time ¢
e evidence variable instance Ii’p Eredlcted image region  of
arget [
i sample index L number of targets
l target label N number of samples
Ne evidence-space dimension M number of pixels of the ap-
pearance model
Ng state-space dimension P(e) probability density function
p(e)  probability P(e) simulated pdf
pl target histogram Q(e) proposal distribution
t time index S; state random variable
state variable instance at .
St . QA appearance adaptation rate
time ¢
s} state estimate of target [ ap histogram adaptation rate
si’l sample ¢ of target [ Qy speed adaptation rate
’s\i’l sample temporal prior Qi position adaptation rate
uf;’l speed of sample 7 M expected likelihood
A?l spegd temporal prior of sam- ﬂi’l sample weight
ple ¢
ul speed estimate of target [ ﬁi’l normalised sample weight
wﬁl size of sample 7 ,oft occlusion status
A?l size‘temporal prior of sam- - time offset
ple ¢
wi size of target [ ¢ speed diffusion vector
xi’l position of sample ¢ i size diffusion vector
fci’l position‘ temporal prior of i position diffusion vector
sample 7
x! position estimate of target [ >l speed covariance matrix
Al [-target appearance matrix sl size covariance matrix
E; evidence random variable >l position covariance

Table B.6: Symbols related to the particle-filtering approach. Notation is
consistent with the one used in the previous tables, and further, in a proba-
bilistic context, uppercase denotes pdf’s and random variables; while lower-

case denotes probabilities and variable instances.



Appendix C

Basic Statistics

Probability theory provides a principled way of reasoning under the uncertainty de-
rived from the impossibility of accessing to the whole truth about the environment.
A probability model is based in four main elements. Thus, given an experiment with
an uncertain result, the set of all possible ones is called outcome set; a subset of this
is called event x; each event has a long-term relative frequency which is its probability
p; and finally, a random variable X is a real function whose domain is the probabil-
ity space S defined by the outcome set, all possible events, and their probabilities.
Expressions involving random variables represent possible events in the probability
model.

An atomic event is a complete specification on the state of the model by assigning
a value to each defined random variable. Atomics events are mutually exclusive (two
of them cannot be the case simultaneously), and the set of all of them is exhaustive
(one must be the case).

An unconditional or prior probability is a statement about the probability of the
event given by the expression on the random variable in the absence of any other
information.

The probability theory is build from the Kolmogorov axioms:

1. all probabilities are between 0 and 1: 0 < p(z) < 1,

2. the probability of the true event is 1, and the probability of the false event is
Zero,

3. the probability of the disjunction is given by:

pVvy) =p@)+py)—plEAy) (C.1)

The probability of all possible outcomes for a random variable is given by its probability
distribution, P. The distribution function of a discrete variable is called probability
mass function, whereas it is called probability density function —since probabilities
will be integrals— in case of continuous variables. A joint probability distribution of
some variables provides the probabilities of all possible combined values of the involved
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random variables. The full joint probability distribution gives the joint distribution
for the complete set of random variables.

The conditional or posterior probability is used when some knowledge is available.
They are defined as:

JACRAY

plaly) = POV (©2)
p

this give place to the so-called product rule:

plxAy) = plely)ply), (C.3)

which can be defined in terms of probability distributions:

P(X,Y) = P(X|[Y)P(Y). (C.4)

Marginals probabilities are obtained by extracting the probability distribution of
some subset of variables in a process called marginalisation:

P(X) = /P (X, y) dy. (C.5)

Making use of the product rule, the conditioning rule can be derived:

P(X) = / P(Xly)p (y) dy. (C.6)

The Bayes’ theorem is deduced from the product rule:

P(X|Y) = PIIX) P(X) (Yg?yl)) (X), (C.7)

which can be also conditionalised:
P(Y|X,2)P(X]z)
P (Y|z)

Random variables are said to be independent if the following equivalent expression
hold:

P(X|Y,z) = (C.8)

P(X|Y) = P(X),
PY|X) = P(Y),
P(X,Y) = P(X)P(Y). (C.9)
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On the other hand, random variables are conditionally independent if:
P(X,)Y|Z) = PX|Z)P(Y|2), (C.10)

which allows to decompose large probability models into manageable sub-models. In
addition, conditional independence assumptions are much more realistic than absolute
independence ones. Thus, it leads to the so-called naive Bayes model in which a full
joint distribution concerning a cause and its effects is decomposed considering that
the effects are independent, given the cause:

P (Cause,Ef fects,...,Ef fect,) = P (Cause) ﬁP (Ef fect;|Cause)(C.11)
i=1

The expected long-term average observed value of a distribution, called the pop-
ulation mean, is given by:
E[X] = /a:p(a:)d:c. (C.12)

The values given by:

E[Xk] = /Ikp(I)dIZ?, (C.13)

are called raw moments. The central moments are given by:

where p is the population mean, or the first order raw moment. The second order
central moment, commonly denoted by o2, is called population variance. The following
relation holds:

o2 =E[(X - p) (X—M)T] =E[x?] - E2[X]. (C.14)
The covariance of two random variables X, Y is defined by:

cov(X,)Y)=E[(X —ux) Y — pny)]. (C.15)

Two variables are said to be uncorrelated if their covariance is zero, which implies:

E[XY]=E[X]E[Y]. (C.16)






Appendix D

Kalman Filter

The Kalman filter [48] is a stochastic state estimator developed by Rudolph E. Kalman
in 1960. It implements a recursive algorithm which works in a prediction-correction
way, estimating the system state from noisy measures. The estimator is optimal in
the sense that it minimises the steady-state error covariance:

P=1lmE|(x—%)(x—%)"|. (D.1)

t—o0

However, strong assumptions are required: the transition model must be linear
Gaussian, and the sensor model must be Gaussian. Nevertheless, albeit these condi-
tions rarely exist, the filter still works reasonably well for many applications, and it
has been widely used[80].

It works as follows. The process is assumed to be governed by a linear stochastic
difference equation:

Xy = AXt,1 + Wi, (D2)

where

e x; € R" is the system state, n the state-space dimension, and ¢ a discrete time
index,

e A is a nxn matrix describing the linear transition model,

e w; ~ N (0,Q) is the process noise, and Q the noise covariance. Hereby, zero-
mean white additive Gaussian noise is assumed to represent modelling uncer-
tainties and disturbances.

The measure process is assumed to be governed by the next equation:

Zy = CXt + Uy, (D3)
where,
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Figure D.1: Diagram block of a Kalman state estimator. See text for details.

e 7z, € R™ is the measure vector, and m the measure-space dimension,
e C is a m x n matrix relating the state to measure,

e vy ~ N (0,R) is the sensor noise, and R the noise covariance. Hereby, zero-
mean white additive Gaussian noise is assumed to represent measurement noise.

It is also assumed that both process and measurement noise are uncorrelated:

Cov (l/tth) = 0. (D.4)
The initial state is unknown, but it is assumed that it follows a normal law:

Xp N (/Lo, PO) 5 (D.5)

where

e X is the system initial state,
® (i is the initial distribution mean,

e P is the initial distribution covariance.

Independence of process noises wy, V4 and initial state xq is assumed.

The filter works in two steps which are recursively performed —a block diagram
is shown in Fig. D.1. In the first one, a prediction is made: the expectation and
covariance are propagated according to the dynamic model, thereby obtaining the
temporal prior:

}A(t_ = E [AXt_l + wt]
= A-it—la (D6)

and the prior covariance matrix:
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Pr = E[(—Efx) (x—Efxi])”
= E[(A(x1—Efxi]) + W) (A (i1 —Efxioa]) + wi)”
= AP, AT +Q. (D.7)

After obtaining the new measurement z;, the second step is carried out, and values
are updated according to the observation likelihood:

)A(t = X; + Ktyta (D8)
P, = I-KCP,, (D.9)
where:

yi =2z — CXy, (D.10)

is called the innovation or the residual,
S, = CP; CT +R, (D.11)

is called the innovation covariance, and
K, =P, C"S; ! (D.12)

is known as the Kalman gain.






Appendix E

Biological Foundations of the
Proposed Hierarchical Architecture

In the following, a brief depiction of a biological paradigm —which can be seen as
a natural inspiration for the proposed architecture— is presented. Stress is laid on
(i) the capabilities of a natural vision system, and (ii) at which level and how the
decisions are taken. This section complements the exposition made in section 5.2 on
page 84.

E.1 Natural Vision System

According to Urtubia [88], vision is the capacity of processing information about the
environment by means of light stimuli incident on the retina. The retina is a layer
of neural cells that generate visual neural signals. These cells contains a protein
responsible for photo-reception: the opsin. Two kind of opsin are present in human
retina, namely rod opsins and cone opsins. The conjunction of both provide the
different visual capabilities.

Thus, rods are mainly located in the periphery of the retina, while cones have a
higher concentration in the fovea, at the centre of the retina. There are three subtypes
of cones which differ in the light wavelength to which they are receptive. They are
consequently called red, green and blue cones.

Rods are used to see at low levels of light, while cones allow to distinguish colour
and other features at normal light intensities. Hence, rods are responsible for periph-
eral vision, which occurs outside the centre of gaze, that is, outside the macula. Due
to the lower density of cells, peripheral vision is less accurate in humans. This along
with the fact that these cells are mainly rods, cause poor peripheral vision capabili-
ties in distinguishing color and shape. However, the peripheral vision present another
significant feature: the ability of motion detection. Thus, it provides good motion
detection capabilities. Further, it is predominant in the dark, since the lack of light
makes cones useless, whereas on the contrary rods get easily saturated.

Motion perception is the process of inferring the speed and direction of any object
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Figure E.1: Motor command generation. Signals involved in voluntary mo-
tor responses are generated at the cortex, according to current sensory percep-
tions and memories. (Figure from Psychology 465/665 notes, Nawrot, 2002).

that moves in a scene, given some visual input. Several kind of motion perception
processes can be carried out. First-order motion perception is performed by detecting
luminance changes in a particular point of the retina, and correlating it with a delayed
change at a neighbouring point. On the contrary, second-order motion perception
depends on moving contours defined in terms of contrast —difference in the color and
brightness with the surroundings— or texture.

Visual signals are processed through three layers of neurons, namely photo-receptors,
bipolar cells, and ganglionic cells. Then, neural signals are relayed to the brain
through the optic nerve: the biggest ganglionic cells relay information related to mo-
tion and intensity from the periphery through the magnocellular system, whereas the
smallest ones transmit colour and acuity information from the macula through the
parvocellular system.

Complex visual information is processed in the wvisual cortex, which is the most
massive system in the human brain. It is, thereby, responsible for a high-level pro-
cessing of the acquired image sequences. Signals are first transmitted to the Primary
Visual Cortex (V1), in where cells respond to particular chromatic stimuli and edge
orientation. Then, signals are relayed to the associative areas (V2, V3, V4 and V5)
where various analyses are carried out on motion, dynamic shapes, colour, and shape
associated to colour. All these analyses converge in the inferior temporal cortex (IT),
where pattern recognition is accomplished. See [68, 88] for details.

E.2 Natural Motor Responses

The cerebral cortez is the outer layer of a vertebrate brain. Mammals have developed
a top cortex layer called neocortex, which is itself composed of six layers'!. These

!The fact of including this section may surprise the reader, since the thesis is devoted to
Computer Vision. However, two issues should be considered. In the first place, although the
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Figure E.2: Human motor system. Multiple hierarchical levels are involved
in the different loop in which decisions are taken according to sensory inputs.
(Figure from Biomedical Science notes, Shaw, 2007)

are labelled from I, the outermost, to VI, the innermost. In mammal species, the
neocortex is the part of the cerebral cortex responsible for higher functions, such as
sensory perception, and the generation of motor commands, see Fig E.1.

Thus, the neocortex region involved in planning, controlling, and executing vol-
untary motor responses is called motor cortex. This is divided into the primary motor
cortex (M1), and the secondary motor cortices. The former is responsible for gen-
erating the neural impulses which control the execution of movements. Among the
latters, the posterior parietal corter is involved in transforming visual information
into motor commands; and the pre-motor cortexr plays an important role in sensory
guidance of movement.

Further, other brain regions outside the cortex are also strongly related to motor
functions. Among these, the most notably ones are the cerebellum, the pons, and
the medulla oblongata. The cerebellum —located at the inferior posterior part of
the brain— provides a feed-back loop in order to tune motor movements according
to sensory perception of body posture. It sends this information to the motor cortex

part of the HSE framework addressed in this thesis uses stationary cameras, the ultimate
aim of HSE is to benefit from the obtained results at this stage to act on multiple cameras.
These will be able to focus on the scene region where tracking is being done by panning,
tilting and zooming in order to provide results from the two remaining information channels:
body pose and face expression. Further, the system can be provided with the capability of
acting on the scene, for example, by opening doors, or switching lights. Both aspects can be
considered as motor responses.

Secondly, the aim of HSE is to emulate human skills in inferring other human behaviour,
and acting in consequence. In this task, multiple decisions are taken at every level, and the
information flow follows both bottom-up and top down pathways, thereby creating numerous
loops. The paradigm is clearly represented in the Natural Motor System itself, and in its
relations with the Sensory Systems.
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Figure E.3: Signal pathways. (a) Reflex arc: decisions are locally taken.
(b) Conscious motor reaction: decisions are taken in the brain.

through the pons, which is frontal to the cerebellum. Then, the neural signals are
relayed to the muscles, thereby moving them accordingly. Below the pons and above
the spinal cord is the medulla oblongata. In addition to transmitting neural signals
between the spinal cord and the brain, it also directly controls many involuntary
muscular and glandular activities.

Efferent neurons are responsible for transmitting motor neural signals, see Fig E.2.
Two categories can be distinguished: on the one hand, upper motor neurons, which
are located in the brain, connect this to the spinal cord; on the other, lower motor
neurons, carry the neural impulses from the upper motor neurons to muscle fibers.

Thus, upper motor neurons propagate neural signals through the central nervous
system. For instance, a direct pathway from the layer V of the primary motor cor-
tex to lower motor neurons —located in the ventral horn of the spinal cord— sends
fine voluntary motor control signals and also controls voluntary body posture adjust-
ments; another pathway from the motor cortex to the pons and medulla is involved in
involuntary maintenance of body posture; or a pathway from the superior colliculus
to lower motor neurons is responsible for involuntary adjustment of head position in
response to visual information.

Lower motor neurons innervate two types of muscle fibers, and are therefore ac-
cordingly classified. On the one hand, alpha motor neurons innervate extrafusal
muscle fibers, which are involved in contracting the muscle. On the other, gamma
motor neurons innervate intrafusal muscle fibers, which are related to muscle spindles
and the sense of body position. A muscle spindle is a specialised muscle structure
innervated by both sensory and motor neuron axons. It is related to the capability of
sensing the position, orientation and movement of the different parts of the body.
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Thus, alpha motor-neurons —located in the anterior horn— effect the muscles,
while sensory neurons, at the posterior horn, receives sense information. The latter are
the nerve cells responsible for converting the external organism stimuli into internal
electrical signals, thereby being a part of the reflex loops. These are usually located
in the spinal cord.

A reflex arc is a neural pathway that allows reflex or involuntary actions, see
Fig E.3.(a). By synapsing in the spinal cord, these pathways do not pass through the
brain, and therefore can occur relatively quickly since the delay of routing the signal
through the brain is avoided. Nevertheless, the brain receive the sensory signals for
further cognitive processing, but this happens simultaneously to the reflex action, see
Fig E.3.(b). Reflex arcs can be mono-synaptic or poly-synaptic. The former involves
just a motor and a sensory neuron, while in the latter inter-neurons connect both
afferent and efferent signals. This allows to process or inhibit the reflexes at spinal
cord. See [29] for details.
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Natural Vision Systems have reached incredible performances in detecting and
tracking multiple moving objects simultaneously. Accurate and robust multiple-target
tracking is also a key task in many promising Computer-Vision applications. Practi-
cal usages of proposed algorithms can now be tackled in real time thanks to recent
technological advances. Further, this represents a huge challenge because of the nu-
merous particular problems involved in such a task. Thus, proposals must deal with
multiple highly non-rigid targets which move in an unforeseeable manner through
unconstrained dynamic open-world scenarios.

In this thesis, a principled hierarchical architecture which fulfills multiple-target
tracking is presented. Further, another tracking approach —based on particle filter-
ing— is previously developed and evaluated. Thus, a modular and hierarchically-
organised system is designed. It is conformed by a detection level which feeds a
two-level tracking subsystem. Co-operating modules, distributed through this archi-
tecture, work following both bottom-up and top-down approaches. Contributions
include both the architecture itself, and the development, improvement and integra-
tion of the different modules. The proposed architecture introduces the necessary
synergies which allow the system to tackle such a problem as unconstrained multiple-
target tracking.

With respect to the different modules, the main focus is placed on high-level
tracking algorithms. Since a careful analysis of motion events is a critical issue for
tracking successful, a module for principled event management is proposed, and em-
bedded in the system. Multiple-target interaction events, and a proper scheme for
tracker instantiation and removal according to scene events, are considered. Thus, the
system is allowed to switch among the two different operation modes implemented,
motion-based tracking and appearance-based tracking. This entails another remark-
able characteristic of the system: its ability to continuous and independently track
numerous targets while they group and split. Multiple appearance models are built
and constantly updated. A special attention is paid to maximise the discrimination
between the target and potential distracters by means of an appropriate feature se-
lection, and a wise combination of all available sources of information.

It works as a stand-alone application in a non-friendly, complex and dynamic
scenario. No a-priori knowledge about either the scene or the targets, based on a
previous off-line training period is needed. No camera calibration is required since
tracking is achieved without the need of 3D information.

Successful tracking has been demonstrated in multiple sequences of both indoor
and outdoor scenarios. Accurate and robust localisations have been yielded even
during long-term target clustering and occlusions. Results are comprehensively anal-
ysed.
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