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AbstractNatural Vision Systems have reached incredible performances in detecting and track-ing multiple moving objects simultaneously. Accurate and robust multiple-targettracking is also a key task in many promising Computer-Vision applications. Practi-cal usages of proposed algorithms can now be tackled in real time thanks to recenttechnological advances. Further, this represents a huge challenge because of the nu-merous particular problems involved in such a task. Thus, proposals must deal withmultiple highly non-rigid targets which move in an unforeseeable manner throughunconstrained dynamic open-world scenarios.In this thesis, a principled hierarchical architecture which ful�lls multiple-targettracking is presented. Further, another tracking approach is previously developed andevaluated.The �rst approach developed in this document focuses on tracking by means ofparticle �ltering. In this case, the problem is formulated as a sequence of inferenceswith a temporal probability model by means of Bayesian �lters. No assumption aboutlinearity or gaussianity is made on the involved pdf's.Although this paradigm presents some remarkable advantages, it has several im-portant drawbacks. In this document, these are highlighted, and some ways of so-lutions are proposed, also to handle the aforementioned expected inherent problems.Thus, a new weight normalisation is used to cope with sampling impoverishment ina multiple target-tracking scenario. Dynamics updating and state estimation arewell studied in order to deal with unknown target's dynamics, presumably highlynon-linear. A method is presented to handle partial and complete occlusions by con-sidering target predicted trajectories, and their likelihoods. Model drift is tackledby careful updating, based on the history of likelihood measures. A colour-basedlikelihood, computed from histogram similarity, is used. However, despite the greate�orts spent on this approach, it still lacks from a robust performance due to thedrawbacks of the particle �ltering framework, and the inherent complexity involvedin non-supervised multiple-human tracking.Thus, a second approach is developed to tackle this complex open problem. Anovel architecture inscribed in a principled framework is proposed. It follows in manyways a biological paradigm. A modular and hierarchically-organised system is de-signed. It is conformed by a detection level which feeds a two-level tracking sub-system. Co-operating modules, distributed through this architecture, work followingboth bottom-up and top-down approaches.Contributions include both the architecture itself, and the development, improve-iii



ivment and integration of the di�erent modules. The proposed architecture introducesthe necessary synergies which allow the system to tackle such a problem as uncon-strained multiple-target tracking. With respect to the di�erent modules, the mainfocus is placed on high-level tracking algorithms. Since a careful analysis of mo-tion events is a critical issue for tracking successful, a module for principled eventmanagement is proposed, and embedded in the system. Multiple-target interactionevents, and a proper scheme for tracker instantiation and removal according to sceneevents, are considered. Thus, the system is allowed to switch among the two di�erentoperation modes implemented, namely motion-based tracking and appearance-basedtracking. This entails another remarkable characteristic of the system: its abilityto continuous and independently track numerous targets while they group and split.Multiple appearance models are built and constantly updated. A special attentionis paid to maximise the discrimination between the target and potential distractersby means of an appropriate feature selection, and a wise combination of all availablesources of information.This tracking architecture works as a stand-alone application in a non-friendly,complex and dynamic scenario. No a-priori knowledge about either the scene or thetargets, based on a previous o�-line training period is needed. Hence, the scenariocould be completely unknown beforehand. No camera calibration is required sincetracking is achieved without the need of 3D information.Successful tracking has been demonstrated in multiple sequences of both indoorand outdoor scenarios, from own and public well-known databases. Accurate androbust localisations have been yielded even during long-term target clustering andocclusions. Results are comprehensively analysed.Keywords: Multiple-target tracking; Trajectory analysis; Kalman �lter; Parti-cle �ltering; Feature evaluation and selection; Probabilistic colour appearance models;Event management; Motion segmentation; Appearance-based tracking.Topics: Image Processing; Computer Vision; Scene Understanding; MachineIntelligence; Machine Vision Applications; Video-Sequence Evaluation



ResumLos Sistemes de Visió Naturals (SVN) han assolit uns resultats increïbles pel que faa la detecció i seguiment de múltiples objectes simultàniament en moviment. Aquestseguiment precís i robust de múltiples agents (objectes i persones) és també una tascaclau en moltes aplicacions prometedores basades en la Visió per Computador (VC).Los algorismes teòrics proposats durant estos últims anys poden ser ara aplicats a lapràctica i en temps real gràcies als últims avenços tecnològics. Nogensmenys, això harepresentat ser un gran repte degut als nombrosos problemes que han anat sorgintdurant el desenvolupament d'aquesta tasca, bàsicament pel fet d'haver de tractar ambmúltiples persones, que són altament no-rígids, que es mouen d'una manera impre-visible per escenaris oberts, dinàmics i no-restringits.En esta Tesis se presenta una arquitectura jeràrquica que realitza el seguiment demúltiples agents. A més, s'han desenvolupat i avaluat dues aproximacions teòriquesal seguiment d'agents.La primera aproximació desenvolupada en aquest document se centra en el segui-ment basat en el �ltratge de partícules. En aquest cas, el problema se formula com unaseqüència d'inferències utilitzant un model probabilístic temporal a partir de �ltresBayesians. A més, no se fa cap assumpció sobre la linearitat o Gaussianitat de lespdf's involucrades.Malgrat que aquest paradigma té avantatges remarcables, també té inconvenientsimportants. Així doncs, aquests inconvenients se ressalten en aquest document i seproposen vies de solució, també per a manegar els problemes inherents i per tantprevistos, abans esmentats. Així, s'utilitza una nova normalització dels pesos de lespartícules per a evitar el problema anomenat empobriment del sampleig que s'esdevéen escenaris on hi ha seguiment de múltiples agents. S'han estudiat les actualitza-cions de les dinàmiques i les estimacions dels estats per tal de tractar les dinàmiquesdesconegudes dels agents, presumiblement altament no-linials. Com a resultat, se pre-senta un mètode per a manipular oclusions parcials i complertes, a partir de predic-cions sobre les trajectòries dels agents i de la seva versemblança. La deriva del modelemprat està contemplada a partir d'actualitzacions curoses basades en la història deles mesures de versemblança. Per a això, utilitzem un càlcul de la versemblançabasada en color a partir de la similitud d'histogrames. Nogensmenys, malgrat tots elsesforços emprats en aquest paradigma, el seu rendiment no és massa robust degut alsinconvenients intrínsecs dels �ltres de partícules i per la inherent complexitat involu-crada en el seguiment no-supervisat de múltiples humans.Per tant, s'ha desenvolupat una segona aproximació per afrontar aquest prob-v



vilema tan complex i obert. Es proposa una arquitectura nova inscrita en un marcestructurat. Segueix en molts aspectes un paradigma biològic: ha estat dissenyat unsistema modular i jeràrquicament organitzat que és format per un nivell de deteccióque alimenta un subsistema de dos nivells. Los mòduls que cooperen, distribuïts através d'aquesta arquitectura, funcionen seguint enfocaments tant de baix a dalt comde dalt a baix.Les contribucions inclouen l'arquitectura en si i el desenvolupament, millora iintegració dels diferents mòduls. L'arquitectura proposada introdueix les sinergiesnecessàries per permetre al sistema tractar el problema del seguiment de múltiplesagents. Respecte als diferents mòduls, el focus principal es posa en els algoritmesde seguiment d'alt nivell. Ja que una anàlisi prudent dels esdeveniments de movi-ment és un assumpte crític per un seguiment d'èxit, es proposa un mòdul per a lagestió d'aquests esdeveniments, que està incrustat en el sistema. Així, es considerenels esdeveniments d'interacció entre múltiples agents, i un esquema propi per a lainstanciació dels diferents algorismes de seguiment o la seva supressió segons els esde-veniments de l'escena. Així, lo sistema permet canviar-se entre dos modes diferentsde funcionament implementats, és a dir, basat en lo moviment i basat en l'aparença.Això suposa una altra característica notable del sistema: la seva habilitat per seguircontinua i independentment múltiples objectius mentre aquests s'agrupen i es sepa-ren. Es construeixen models d'aparença que s'actualitzen constantment. Es para unaatenció especial per maximitzar la discriminació entre l'objectiu seguit i los distrac-tors potencials, per mitjà d'una selecció de les característiques més apropiades i unacombinació assenyada de totes les fonts d'informació disponibles.Aquesta arquitectura de seguiment treballa com a aplicació autònoma en un esce-nari no amistós, complex i dinàmic. No es necessita cap tipus de coneixement a-priorial voltant de l'escena o dels agents, basat en un període d'entrenament previ. Peraixò, l'escenari podria ser completament desconegut per endavant. No s'exigeix capcalibració de càmeres ja que lo seguiment és aconseguit sense la necessitat d'informació3D. S'ha demostrat un seguiment correcte en múltiples seqüències de tant interiorscom a l'aire lliure, de bases de dades pròpies i públiques molt conegudes. Han estatassolides unes localitzacions acurades i robustes �ns i tot durant agrupaments llargsi oclusions. Los resultats obtinguts s'han analitzat extensa i completament.
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Chapter 1IntroductionHuman beings, as well as a great diversity of animal species, have developed an amaz-ing capability of processing complex and continuous varying visual stimuli. Millionsof years of evolution have led to highly e�cient visual systems which show, in suchan apparently easy way, incredible performances.The ability of motion detection must be undoubtedly mentioned among the mostpowerful faculties of Natural Visual Systems [68]. This skill is crucially involved innumerous critical issues for the survival of the species, such as in tracking movingobjects, despite partial occlusions and drastic illumination changes; in extracting thedepth structure of the world by taking advantage of the motion parallax; in detectingobjects which are camou�aged in a cluttered background of similar colour and texture;or in recognising objects from the relative motion of their parts. Moreover, this facultyis implied in several associated motor responses such as the stabilisation of the gaze,or the control of limbs.Thus, the ability of perceiving the motion of potential predators and preys hasbeen unavoidable linked to self-motion capabilities [54]. These entail the necessityof a nervous and sensory system. The visual system is the most important sensorysystem in organisms at the highest level of the phylogenetic scale. In particular, theVisual Cortex is the most massive system in the human brain.A novel interdisciplinary domain which aims to emulate some of such capabilitieshas raised within Computer Science in the last three decades [63]. It comprehendstechniques of Image Processing and Analysis, Pattern Recognition, Arti�cial Intelli-gence, Computer Graphics, and Robotics, among others. This new domain analysesand evaluates sequences of images concerning human-populated scenes. Impressivedevelopments have also been possible thanks to a large number of technological ad-vances in the hardware �eld. Emerging capabilities have led to a wide range ofscienti�c contribution, and, subsequently, to new software implementations.The ultimate aim of this novel domain is to interpret people behaviour. This goalrequires detecting and tracking moving objects, and identifying people among them.The analysis of human motion is currently being thoroughly studied, and new domaintaxonomies replace the previous ones as the state of the art makes progress. Thus,taxonomies have evolved from simple classi�cations according to various criteria such1



2 CHAPTER 1. INTRODUCTIONas the space dimensionality or the type of sensor used [9, 1, 23, 69] to complex onesbased on required system functionalities organised in a hierarchical manner [8, 93, 62].While in the former surveys reviewed algorithms aimed to estimate the quantitativeparameters which describes when and where motion was detected, in the latters high-level processes are incorporated in order to analyse which kind of motion is beingperformed, and how it is carried out.Thus, in 2000 and according to Nagel [65], an Image-Sequence Evaluation (ISE)system would transform image-sequence data into semantic descriptions; subsequently,these descriptions would be processed, and the system would react in terms of signaltriggers or conceptual terms. His system is clearly inspired in the ideas of Kanade inthe early eighties [49].In 2004, Gonzàlez [25] proposed the term Human-Sequence Evaluation (HSE) todenote the analysis of human motion in order to achieve the understanding of humanbehaviour, that is, the explanation and reasoning about why motion is performed.Further, it would be able to provide Natural-Language (NL) scene descriptions, andto generate synthetic views of the environment in order to visualise recognised be-haviours and simulate potential situations. Therefore, HSE de�nes an extensive Cog-nitive Vision System (CVS) which transforms acquired image values into semanticdescriptions of human behaviour and synthetic visual representations. Hence, HSErepresents a huge challenge in which the aim is to emulate the fascinating perfor-mances of a Natural Vision System, and the reasoning and communication skills of ahuman observer.In this work, the focus is placed on one of the main HSE tasks: target tracking.Understanding the behaviour of human beings requires the potential targets to bedetected and tracked. Tracking can be loosely de�ned as detecting and keeping lockover time on any object of interest. Consequently, special stress is placed on trackingmoving objects in generic human-populated scenes. The problem is tackled withoutsetting any kind of restrictions on the nature of the scene. The proposal should alsoscale with the number of objects being tracked, which are a-priori unknown.1.1 MotivationRobust Multiple-Target Tracking (MTT) in unconstrained dynamic scenes is a com-plex task, specially when it concerns human-populated environments. Trying to em-ulate the astonishing performances of such a perfect system as the Natural VisionSystem represents, without any doubt, a real challenge.The tracking task is even more complicated when it deals with human beings,thereby making it particularly appealing. In spite of the numerous di�culties in-volved �or perhaps, because of them� target tracking in human-populated sceneshas become a very active research �eld: it has already generated a vast number ofscienti�c contributions in recent years [62]. However, despite this interest and thesubstantial developments achieved, this still constitutes an ambitious open problemwhich is far from being solved.Further, this interest is also prompted by the increasing number of potential ap-plications within the HSE framework [46, 11, 33, 75, 30, 84, 6, 96, 70]. These include



1.2. BASIC CONCEPTS 3smart video safety and video surveillance, automatic sport-statistics computation, in-telligent human-computer interfaces, machine content annotation, or e�cient athletetraining and orthopedic therapy, among others. Thus, the numerous promising ap-plications constitute an important practical motivation which raises signi�cant fundsfor HSE research.1.2 Basic ConceptsIn this section, the sense in which basic concepts are used throughout the wholedocument is introduced.The main concept �tracking� has been above loosely de�ned as detecting andkeeping lock over time on any object of interest; this de�nition will be subsequentlyre�ned, once necessary new concepts have been introduced.Tracking is performed through a scene, which is the piece of the real world thata particular visual sensor can capture. Mosaics built from multiple-camera systemsor from cameras in motion are also considered as the scene.Active vision means that it is possible to modify in a controlled way accordingto what is happening in the scene some camera parameters �such as the zoom, theorientation, the focus, or the diaphragm aperture.Any entity present within the scene which could be subject to special interest and,consequently subject to be detected and tracked, is called a target. Further, any targetwith intentional capabilities is referred as an agent. Depending on the application,the term may include people, manned or unmanned vehicles, or even animals.The target state can be de�ned as the parametrised knowledge which characterisesthe target evolution, i.e, all the information required to successfully perform thetracking task. Under certain assumptions, which will be latter stated, the state couldbe de�ned as the information needed to make the future independent from the pastgiven the present.The tracking de�nition can be now detailed by considering tracking as establish-ing coherent relations among targets between frames; or as inferring the target stateover time using all evidence up to date. Monitoring can be broadly de�ned as observ-ing and keeping record of some processes. Within the Human-Sequence Evaluationcontext, it refers to a high-level processing of recognised patterns of motion, possiblyalso including the generation of Natural-Language texts, and the synthesisation ofvisualisations of the recognised motion patterns within the scene.The foreground is composed of those objects �present in the scene� in whichwe have a special interest and, consequently, the focus is placed on them. Therefore,it can be seen as conjunction of all targets within the camera �eld of view. Thebackground can be de�ned as the complement of the foreground concept. Thus, whatis considered foreground and background will depend on the current application, andthe border between both concepts can be seen as fuzzy.Agents and mobile objects are usually considered as foreground, whereas �xedobjects are commonly referred as background1. A mobile object is generally one that1It is worth to notice that any part of the background that moves is considered from thenon as foreground �this is the case of a car parked before the application starts that resumed



4 CHAPTER 1. INTRODUCTIONhas been moved or carried by an agent, such a suitcase or a bag2. It can have beentaken from the scene or placed on it. Nevertheless, it should be noticed that thebackground may be in motion, such as in the case of waving branches, or �owingwater3. Although there is certainly motion, these entities must not be detected, sincethey are not objects of interest. Alternatively, an agent or a mobile object do nothave to be in motion as they could have momentarily stopped, or objects could havebeen left.The term scenario includes all the conditions in which a sequence is acquired.These are related not only to the background characteristics, but also to those derivedfrom the foreground objects that may be within the scene. For instance, it includesissues such as if it considers an open world, which means that the number of peopleand objects within the scene is expected to be variable. On the contrary, a closedworld refers to a region where all objects within it are assumed to be known at anytime. Thus, in an open-world application, people may enter into the scene whileothers may exit, also removing, leaving, or carrying objects with them.The scenario certainly includes also the context : �any information that can be usedto characterise the situation of an entity; an entity is a person, place or object thatis considered relevant to the interaction between a user and an application, includingthe user and the application themselves� [17]. Other background conditions mustbe also taking into account, such as the nature of the illumination and its potentialvariability. Thus, the scenario can be seen as the environment in which the scene isrecorded, and therefore it determines the performance of the visual system.The performance can be de�ned in several terms: the accuracy, a measure ofhow close is the estimated motion to the actual motion performed by the target;the robustness, which denotes the system capability of functioning correctly �or atleast not failing catastrophically� under a great number of conditions; and otherissues related to a particular system implementation such as real-time processing �where frames are processed faster than acquired. This is usually determined by otherrequirements related to cost, energy consumption, and future viability and scalability.1.3 Potential Applications of HSERecent developments in Human-Sequence Evaluation have made possible to considera huge number of promising applications. Moreover, the bene�ts that can be obtainedfrom these applications are promoting research in this particular computer-vision area.Thus, for instance, smart video safety could assist remote elderly care, and theprevention of children drown in unattended swimming-pools; automatic video surveil-lance increases the security against vandalism, thefts or terrorism; tra�c monitoringassists in congestion avoidance; advanced vehicle control systems help preventingmotion, or a moved piece of furniture.2Objects in motion without a known agent mediation �such as a rolling ball or somethingwhich falls� are also considered as foreground.3This motion may have some oscillation nature �like leaves moving in the wind� or not�like clouds. In any case, here is assumed that the supposed application do not intend totrack leaves or clouds, which would entail considering this entities as foreground.



1.3. POTENTIAL APPLICATIONS OF HSE 5Domain Area Speci�c applicationAnalysis Diagnosis OrthopedicsAthlete trainingChoreographyMonitoring People countingVideo surveillanceTra�c monitoringVideo retrievalControl and HCI DomoticsDriving assistanceSignalingSynthesis Communications and HCI TeleconferencingVirtual realityAugmented realityTele-surgeryEducation and Entertainment SimulatorsVideo gamesAnimationsVideo compression TransmissionsStorageTable 1.1: HSE applications.collisions and o�-lane accidents; intelligent gestural user-computer interfaces providedriving assistance, and allow domotics applications; orthopedic therapy, athlete train-ing or computer animation bene�t from an accurate motion analysis; sports can alsopro�t from on-line computed statistics; automatic content annotation based on mo-tion semantics brings new information search capabilities.These applications can be classi�ed according to their aims, see Table 1.1. Adivision between analysis and synthesis applications is here considered. The formerattempts to process an input video signal, whereas the goal of the latter is to generatesynthetic scenes, agents, and their motion. Notwithstanding, complex applicationsmay comprehend several of the following categories.The system requirements could be rather di�erent depending on the desired ap-plication, as well as the considered assumptions and system capabilities.1.3.1 Analysis applicationsThis area covers three kinds of applications, depending on the nature of the data tobe extracted from the image sequence, and how these data is going to be subsequentlyanalysed. Thus, diagnosis, monitoring and control applications are intended:1. Diagnosis: in which the aim is to evaluate the subject performance. Potential



6 CHAPTER 1. INTRODUCTIONapplications include the �elds of orthopedics, athlete training, or choreographyenhancement. Strong accuracy requirements should be expected. However,some assumptions can be made, such as expecting only one person with specialclothes in a controlled environment. In this case, the system capabilities mustinclude target tracking and body-pose recovery.2. Monitoring: in which the goal is to detect and track people within thescene, perhaps identify them, or recognise particular actions. We can con-sider within this area people counting, video surveillance, tra�c monitoring,or video-retrieval tasks. In surveillance applications real-time requirements areusually necessary. These applications also need extreme robust performances.Thus, the considered assumptions should be minimum. The system must beable to deal with open worlds, illumination changes, background in motion,etc. On the other hand, accuracy requirements can be relaxed. The expectedcapabilities could include presence detection, target tracking, and people iden-ti�cation.3. Control / Human-Computer Interactions (HCI): in which the data ex-tracted from the sequence is going to be used to provide command functionali-ties. Potential applications could include gestures, facial-expression and body-pose interfaces. These interfaces would be used in domotics, driving assistance,or signaling in noisy environments. In this area real-time processing will bethe higher requirement although, depending on the applications, both accuracyand robustness could also be needed. In this case, system capabilities such asaction recognition and gesture interpretation are essential.1.3.2 Synthesis applicationsSynthesis applications are concerned with generating new sequences. This can bedone from real images, computer drawings, natural language sentences, or from amixture of these4. Thus, the following application categories are considered:1. Communications / HCI: in which the goal of the generated sequence is toprovide some information to a user who may or may not be at the same placewhere the original sequence was taken. This area includes teleconferencing andvirtual and augmented reality. Real-time processing is an essential fact in thiskind of application in order not to introduce delays in the communication. Someapplications such as tele-surgery would also need special accuracy requirements.2. Entertainment / education: in which the sequences serve leisure purposes,such as animations or video-games, or education and training, such as simula-tors.3. Video compression: in which the goal is to build a new sequence from anotherone by minimising the required storage space or the bit transmission rate.4This kind of application usually follow the synthesis from analysis paradigm. Therefore,a previous motion detection and modelling stage from real data is frequently mandatory.



1.4. PROBLEM OVERVIEW: WHICH ARE THE DIFFICULTIES? 7

(a) (b)

(c) (d)Figure 1.1: Example of some MTT inherent di�culties, as mentioned in thetext. (a) Highly non-linear dynamics and non-rigid shape. (b) High appear-ance variability. (c) Cluttered scenario. (d) Illumination-related di�culties.1.4 Problem Overview: Which are the Di�culties?Multiple-Target Tracking is extremely complex and time-consuming. Further, strongrequirements may be mandatory, like extreme robust performances, high accuracy, orreal-time processing.This task being so ambitious, serious di�culties should be expected. First ofall, adversities common to other Computer Vision areas could cause system failures,such as uncontrolled changing illumination, shadows, cluttered backgrounds �alsopossibly in motion� target variability, etc.In addition, MTT entails numerous special di�culties:1. it involves dealing with remarkably non-rigid targets; they are not only highlyarticulated, but also elastically deformable, and usually wear loose-�tting clothes;2. neither their appearance, nor their shape can be speci�ed in advance; there isa considerable target diversity, not only due to the presence of several classesof targets �like people, vehicles, animals, or any object� but also within a
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Figure 1.2: Example of resolution selection. (Figure taken from the SceneUnderstanding Symposium notes, Poggio, 2007).particular class, and even with the same target at di�erent times; the fact thatboth shape and appearance vary as the agent performs a particular motionmust as well be taken into account;3. their dynamics are highly non-linear, a-priori unknown, and they are alwayssubject to sudden and unforeseeable changes; in this case, the agent's inten-tionality plays an important role;4. in open-world applications, the number of agents within the scene may vary overtime; they might also carry, leave or remove objects from the scene, therebyactively modifying the background;5. in unconstrained and dynamic environments, the illumination and background-clutter distracters are uncontrolled, a�ecting the observed appearance as timegoes by; this depends on issues such as the targets' position in the local back-ground, or their orientation to di�erent �and maybe time-varying� illumina-tion sources;6. �nally, agents tend to interact among themselves, grouping and splitting, caus-ing partial or complete occlusions, and thereby changing their observed appear-ance and shape at any time.Summarising, both background and target appearances are extremely di�cult tomodel, and they vary over time in an uncontrolled way. Further, target movementsand interactions are considerably hard to predict. Therefore, there is still muchground to cover before reaching a point where it can be said that the unconstrainedpeople-tracking problem has been solved, what makes the task specially appealing.Some examples of images with the above mentioned di�culties are shown in Fig. 1.1.1.5 Assumptions over Considered Scenarios for HSEOne should also keep in mind that several scenarios may be considered dependingon the desired application and where it is carried out. Di�erent scenarios may implyrather di�erent approaches. The following criteria can be used to distinguish amongthe di�erent scenarios in order to decide the most suitable approach:
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• Time-scale selection, in which the change ratio for the di�erent features is set.Attributes can change abruptly �like the motion pattern, or a goal-directedbehaviour� slowly �appearance� or be quasi-permanent �face shape, gait.
• Spatial-scale selection, in which the resolution is chosen. High resolution wouldbe necessary to analyse gestures or facial expressions, whereas pose analysis re-quires a medium resolution and trajectory tracking the lowest one, see Fig. 1.2.Minimum resolution is set depending not only on the current application butalso on the chosen approach.
• Information-channel selection, in which it is decided whether facial, hand, thewhole body information, or several of these are used. This would depend onwhat the focus is placed on: expressions, gestures, pose, location, presence,etc. More than one channel could be considered in order to improve the systemrobustness by using redundancy to disambiguate unsettled situations.
• Application requirements, in which accuracy, speed and robustness are takeninto account depending on the application purpose. For example, some appli-cations will require real-time processing, while in others o�-line processing willbe enough.
• Model necessity and availability, in which the possibility of considering for in-stance an articulated �and perhaps even elastic� body-structure, or a simplerbody model, is evaluated. Models for other information channels, such as faces,or for the scene can be also taken into account.
• Active or passive devices may be taken into account. The formers relies onradiating some signal from a transmitter attached to the subject; whereas thelatters use natural signal sources such as light. In this second case, markerscan be used. However, both methods can be considered as intrusive5. Ob-taining robust and accurate tracking performances, whilst using non-intrusivetechnology, is frequently mandatory. This is what had led to vision-based sys-tems. Therefore, a technology which does not depend on devices attached tocooperative subjects is desired, that is, a Markerless Motion Capture.
• Context, in which several premises are often assumed:� Camera assumptions relative to single or multiple cameras, �xed or mo-bile, monocular or stereo, monochrome, colour or infrared, active vision,or the use of particular camera models, optics, etc.� Background assumptions relative to whether outdoor or indoor scenesare considered, static or in-motion background, potential illuminationchanges, shadows, presence of clutter, a-priori known objects in the scene,or even a detailed scene model.� Foreground assumptions. Two kind of premises can here be considered.In the �rst place, those ones related to movement, such as possibility of5An exception to this generalisation is given by thermal imagery, where the signal isradiated by the targets themselves and no marker is required.



10 CHAPTER 1. INTRODUCTIONocclusions; agents and objects entries and exits from the scene; smooth,restricted or already-known dynamics; whether the camera is faced or not,or whether attitudes and intentions are known. Secondly, those related tothe structure, such as whether the subject and the start pose is known ornot; whether a single person, multiple or groups of people can be found inthe scene; presence of special clothes or markers, or whether objects canbe carried.Some of these criteria have been also used by Pentland in his Looking at people domaintaxonomy [69], by Moeslund et al. while considering Motion Capture Assumptionsand Application Performances [63], or by Gavrila while describing possible taxonomiesaccording to sensor properties [23].The aim of this work is to develop a general approach able to cope with uncon-strained tracking in trajectory-analysis HSE applications. Thus, among the above-presented common premises, only the following ones are assumed (which usually holdin most of this kind of applications):1. All sources of noise are considered to be uncorrelated, and to cause WhiteAdditive Gaussian Noise (WAGN).2. The background slowly changes with respect to the motion of the targets withinthe scene.3. Changes in the target's dynamics and appearances are smooth at the currentframe rate. This assumptions allow us to introduce the following simpli�cationsin the dynamic, appearance and shape models:(a) Since their long-run dynamics are hardly predictable, a �rst-order dy-namic model is adopted. Thus, the considered dynamic models are givenby a constant-speed approaches where the acceleration is modelled asWAGN. The latter is supposed to be constant during the sampling pe-riod, and independent between periods.(b) Appearances are supposed to evolve smoothly in short-time scales. Thisallows to set a time continuity, and to avoid appearance updatings undercertain conditions. A robust appearance model can be built, allowingtarget matching among frames which are close enough.(c) Target interactions cannot abruptly change between frames. Thus, forinstance, targets cannot change from grouped to single without ever beingsplitting.4. The size of the targets in the image is assumed to be big enough in order tobuild a representative statistical appearance model, but small enough w.r.t thescene size.5. Humans will essentially remain in upright posture. This along with the chosenresolution permits to select a coarse blob representation as information channel.No body model is used. Blob orientation is considered to undergo just minorvariations.



1.6. THE ULTIMATE GOAL 116. The sequence of input images come from a stationary single monocular colourcamera.Therefore, no assumption is taken relative to the following issues:1. The number of targets within the scene, which may vary as time evolves.2. Their trajectories and dynamics, which are completely unknown beforehand,and presumably highly non-linear.3. The scene conditions, which could be uncontrolled. No knowledge is a-prioriavailable about illumination conditions, complex clutter distracters, or regionsin motion. These may also evolve over time depending on the lighting, weather,moved objects, etc.4. The target appearances and shapes, which are unknown. No markers are placedon the targets. Heavy appearance and shape changes can be expected dueto the deformable and articulate nature of the targets, and potential variableillumination conditions.1.6 The Ultimate GoalIn this work, the aim is to achieve a robust and accurate MTT. This implies the infer-ence of the state of each target within the scene. Therefore, tracking is the result ofthe conjunction of detection, estimation and adaptation tasks. Firstly, targets need tobe detected within the scene. This allows the system to initialise a tracker over eachtarget. Then, coherent relations must be established between detected targets overtime by means of prediction and validation in accordance with new measurements.Thus, estimation reduces the search area and may cope with expected di�cultiessuch as occlusions. In addition, di�erent hypotheses can be considered simultane-ously, improving the system performance in terms of robustness. Finally, the modelsthemselves must be adaptive in order to handle unforeseeable alterations.Therefore, the ultimate goal is to conceive a principled image-based tracking ar-chitecture which makes a step forward in dealing with the aforementioned di�culties.This system will be implemented and experimentally veri�ed using real image se-quences. It should be able to simultaneously perform a reliable tracking of multipletargets in unconstrained and dynamic open-world scenarios, in the above stated con-ditions. At the present stage, this will be done using as system input the output of asingle, monocular, static colour camera.As a result, target trajectories will be obtained, as well as quantitative informationabout the target state at any time, such as their speed and size, and qualitative one,such as whether they are being occluded, grouping or splitting, and entering or exitingthe scene. Target trajectories, and the interactions among them will be analysed froma coarse representation without making use of a-priori models. Consequently, in thiswork no attention is placed on target postures and actions, or facial expressions andemotions. These are in a level of detail which is out of the scope of this document6.6Nevertheless, these topics are within the scope of the HSE framework that steers the



12 CHAPTER 1. INTRODUCTION1.7 Approaches and ContributionsIn this thesis, two di�erent tracking approaches are presented and confronted. Aprobabilistic framework is commonly used as a way to perform this task [80]. Classicalapproaches, such as the Kalman Filter [48], rely on strong assumptions about thelinearity and Gaussianity of the involved distributions, which cannot be applied incomplex scenes. The �rst approach developed in this document focuses on tracking bymeans of Particle Filtering (PF) in the conditions described above. This approach hasbeen widely explored by several previous algorithms [38, 91, 67, 16]. Although someresults have been achieved, many undesirable e�ects still remain. These misbehavioursare here highlighted, and an algorithm which deals with some of them is proposed.Thus, tracking is �rst performed by enhancing the particle �ltering framework.The main contributions of the presented approach are the following:
• Previous state estimations are used in the dynamics updating process to feedback the sample state. All state variables are regularised. Both actions attemptto reduce the number of samples required to carry out the tracking task whileattenuating the trajectory jitter.
• Target appearance is modelled by means of grey-scale templates. The e�ectsof the position and size errors on the likelihood function are explored. Unde-sirable e�ects are tackled by making use of an appropriate likelihood mapping.Subsequently, in order to cope with clutter distracters, colour-based histogramsare used instead to model target appearances. Likelihoods are computed fromhistogram similarity. Colour information relative to the target surroundings isused to tune the colour histograms.
• One of main particle-�lter drawbacks is sampling impoverishment. This prob-lem becomes critical in a multiple-target tracking scenario. By modifying thesample-weight normalisation �taking into account the number of detectedtargets� the loss of any of the targets due to the lack of samples is avoided.
• Model drift is precluded by careful updating, based on likelihood measures.
• Occlusions are handled considering the predicted trajectories of all targetswithin the scene and the history of likelihood measurements. Thus, targettracking and updating is faced according to their occlusion status. Likelihoodmeasures are taken to infer when the appearance model can be reliably updated.Despite the great e�orts spent on this approach, it still lacks from a robust and accu-rate enough performance due to the important drawbacks of a PF framework, togetherwith the inherent complexity involved in non-supervised multiple-human tracking. Asa second approach, a principled framework is here proposed to accomplish this task.The main features of this approach are the following:e�orts of our lab. Cooperation with HSE Cognitive Levels, and body and face informationchannels is intended. See http://iselab.cvc.uab.es/ for further details on these issues,and on the Image Sequence Evaluation research lab.

http://iselab.cvc.uab.es/
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• It consists of a modular and hierarchically-organised architecture. It aims todeal with such a complex task by taking advantage of a general and structuredframework. A set of co-operating modules, distributed in three levels, work fol-lowing both bottom-up and top-down paradigms, thereby maximising potentialsynergies.
• The approach follows the natural paradigm, where visual-stimuli analysis isperformed by the combination of pre-attentive and attentive processes. Further,it makes use of �rst-order and second-order motion perception.
• Levels are de�ned according to the di�erent tasks to be performed, namelytarget detection, low-level and high-level tracking. Thus, a remarkable char-acteristic of this architecture is that the tracking task is split into two levels:a lower level based on a short-term blob tracker, and a long-term high-leveltarget tracker. While the former permits tracking without the need of detailedknowledge, the latter automatically builds and tunes multiple appearance mod-els, manages the events in which the target is involved, and selects the mostappropriate tracking approach according to these.
• Every module has a speci�c functionality which is performed by a particularalgorithm. However, being the architecture modular, these are subject to besubstituted by any enhanced method developed in the future. New functional-ities can also be easily added. Further, stress has been laid on designing robusthigh-level tracking algorithms to tackle such a complicated task.
• Two operation modes are implemented, namely Motion-based Tracking (MBT)and Appearance-based Tracking (ABT). These are independent and automati-cally selected according to each target particular conditions.
• A complex event management is performed. Multiple-target interaction events,and a proper scheme for tracker instantiation and removal according to sceneevents, are considered. This allows the system to switch between the two con-sidered operation modes. Further, open-world applications can be tackled.
• The current proposal is fully automated, and thereby no human interaction isrequired. Further, no a-priori knowledge about either the scene or the targets,based on extensive o�-line training or learning periods, is used. However, theexpected future use of this high-level information can do nothing but enhancethe current system performances. Hence, in the present approach the scenariocould be completely unknown beforehand, and no a-priori knowledge is availableabout potential targets. The method is auto-adaptive in issues such as thescene model, the number of targets being tracked, or their most convenientappearance representation.
• The proposed system deals with multiple targets simultaneously. It is scalablewith the number of targets, avoiding the curse of dimensionality present in mostother systems.
• It copes with clutter distracters by selecting the most convenient colour-relatedfeatures. A set of appearance models is continuously conformed, smoothed



14 CHAPTER 1. INTRODUCTIONand updated. Thus, multiple targets are represented using several models foreach of them, while they are simultaneously being tracked. Further, colourinformation relative to the target surroundings such as the background andother close targets is used to tune the appearance models.
• Model drift is precluded by a careful updating of high-level appearance colourmodels, thereby ensuring proper tracking despite noisy measures, estimate er-rors, partial or complete occlusions, and changes in the illuminant and cameraviewpoint.Summarising, the aim of the proposed system is to work as a stand-alone application ina non-friendly, complex and dynamic open-world scenario, which could be completelyunknown beforehand. Thus, possible scenarios could include an indeterminate numberof non-white light sources, heavy background clutter, huge target variability, andcomplex target interactions.1.8 Document OutlineThe remainder of this document is organised as follows. Chapter 2 covers the state ofthe art: some previous surveys and taxonomies related to the analysis of human mo-tion are here described; subsequently, the most recent and relevant approaches whichtackle target detection and tracking are reviewed. The advantages of the di�erentmethods are explained and their drawbacks exposed.In Chapter 3, the HSE framework �in which the tracking proposal is inscribed�is depicted, evolved, and confronted to previous taxonomies. In this research, we aimto develop a system that can be seen as a part of a more complex one which performsa HSE, which is also the aim of the EU HERMES project7 in which the author wasactively involved at the time this thesis was developed.Chapter 4 develops the �rst approach presented in this document. The necessaryprobabilistic framework to accomplish this work is described. Bayesian �lters are ex-plained. Particle �lters are revisited and their misbehaviours exposed. A particle �lteralgorithm for multiple-target tracking is implemented and tested. Subsequently, it isenhanced by incorporating colour-based appearance models and likelihood functions.The second proposal is described in chapter 5. First, the tracking architecture isoutlined in section 5.1, and justi�ed by pointing out the similarities with a NaturalVision System in section 5.2. Then it is fully described in the next three sections:section 5.3 details how the segmentation is carried out, and the chosen data represen-tation for the detected foreground blobs; section 5.4 discusses the low-level trackingtier; and section 5.5 presents a high-level appearance tracker, with on-line featureselection, operation mode switching, and complex event management.Chapter 6 is related to experimental results. First, some considerations on track-ing performances are given in section 6.1. Then, the next sections shows an exten-sive set of experimental results of both approaches using own and public well-known7EC grant IST-027110, see http://www.hermes-project.eu/

http://www.hermes-project.eu/


1.9. RESUM 15databases. Finally, chapter 7 presents a brief summary of the contributions, sum-marises the conclusions, and proposes some future-work lines which can extend thesystem capabilities.1.9 ResumEls éssers humans, així com una gran diversitat d'espècies animals, han desenvolupatuna capacitat sorprenent de processament complex de estímuls visuals, variables i con-tinus. Milions d'anys d'evolució han desenvolupat sistemes visuals altament e�caçosque mostren, d'una manera aparentment fàcil, rendiments increïbles.L'habilitat de la detecció de moviment s'ha d'esmentar indubtablement entreles facultats més potents dels sistemes de Visió Natural [68]. Aquesta habilitatestà implicada crucialment en nombrosos assumptes crítics per a la supervivènciade l'espècie, com el seguiment objectius que es mouen, malgrat oclusions parcialsi canvis d'il·luminació dràstics; la extracció de l'estructura de profunditat del mónapro�tant la paral·laxi del moviment; la detecció objectes que es camu�en en un fonsde color i textura similars; o en el reconeixement d'objectes des del moviment relatiude les seves parts del cos. A més, aquesta facultat s'implica en unes quantes respostesmotors associades, com l'estabilització de la mirada, o el control de les extremitats.Així, l'habilitat de percebre el moviment de predadors potencials i de preses haestat inevitablement connectat amb les capacitats d'automoviment [54]. Aquestessuposen la necessitat d'un sistema nerviós i sensorial. El sistema visual és el sistemasensorial més important en organismes del nivell més alt de l'escala phylogenetic. Enparticular, el Còrtex Visual és el sistema més massiu al cervell humà.Un domini nou interdisciplinari que tracta d'emular algunes d'aquestes capaci-tats s'ha alçat dins de les Ciències de la Computació en les últimes tres dècades [63].Comprèn tècniques de Processament i Anàlisi d'Imatges, Reconeixement de Formes,Intel·ligència Arti�cial, Grà�cs per Computador, i Robòtica, entre altres. Aquest do-mini nou analitza i avalua seqüències d'imatges d'escenes poblades amb humans. Elsdesenvolupaments impressionants també han estat possibles gràcies a un número grand'avenços tecnològics en el camp del hardware. Les capacitats emergents han conduïta una àmplia gamma de contribucions cientí�ques, i, posteriorment, a aplicacionsnoves de software.El propòsit últim d'aquest camp nou és interpretar el comportament de la gent.Aquest objectiu exigeix detectar i seguir objectes que es mouen, i identi�car gent entreells. L'anàlisi del moviment humà s'està estudiant actualment minuciosament, i lestaxonomies noves reemplacen a les antigues mentre l'estat de l'art fa progrés. Així,les taxonomies s'han convertit des de classi�cacions simples, segons criteris diversoscom ara la dimensionalitat espacial o el tipus del sensor utilitzat [9, 1, 23, 69], a méscomplexos basats en funcionalitats de sistema organitzats jeràrquicament [8, 93, 62].Mentre en treballs antics els algoritmes aspiraven calcular els paràmetres quantitatiusque descriuen quan i on era detectat el moviment, en els més actuals s'incorporenprocessos d'alt nivell per analitzar quina classe de moviment està sent observat, i coms'està executant.Així, al 2000 i segons Nagel [65], un sistema per l'Avaluació de Seqüències d'Imat-



16 CHAPTER 1. INTRODUCTIONges (ASI) es va de�nir per transformar dades de seqüències d'imatges en descripcionssemàntiques; posteriorment, aquestes descripcions es processen, i el sistema reaccionaen termes de senyal o conceptes.El 2004, Gonzàlez [25] proposà el terme Avaluació de Seqüències amb Humans(ASH) per de�nir l'anàlisi de moviment humana per aconseguir la comprensió delcomportament humà observat, és a dir, l'explicació i raonament sobre el per què elmoviment es observat. A més, un sistema AHS proporciona descripcions de l'escenaen llenguatge natural, així com la generació de seqüències sintètiques de l'entornper visualitzar comportaments reconeguts i simular situacions crítiques difícilmentobservables en el món real. Per això, ASH es pot de�nir com un Sistema de VisióCognitiva, on hi han transformacions de valors d'imatge a descripcions semàntiquessobre el comportament humà, així com representacions visuals sintètiques. Per això,AHS constitueix un desa�ament enorme en el qual el propòsit és emular els rendimentsfascinants d'un Sistema de Visió Natural més les habilitats de raonament i comunicaciód'observadors humans.En aquest treball, el focus es posa en una de les tasques de ASH principals:el seguiment. Entenent el comportament d'éssers humans exigeix que aquests esdetectin i se segueixin. El seguiment pot ser de�nit com la detecció i el seu posteriormanteniment en qualsevol objecte d'interès. Consegüentment, l'iterés es posa enobjectes movent-se en escenes genèriques poblades amb humans. El problema estracta sense posar cap classe de restriccions sobre la natura de l'escena. La propostatambé hauria de ser independent del número d'objectes que se segueixen, que a-prioriés desconegut.



Chapter 2Related WorkIn spite of being a relatively new research area, a massive number of contributionsrelated to HSE have been published in the last years[63, 62]. Undoubtedly, it repre-sents an ambitious challenge, which is further raising important amounts of privateand public funds due to the increasing number of attractive commercial applications.The growing number of contributions in recent years has motivated the publicationof multiple surveys [1, 23, 93, 62]. These review the state of the art, while proposingnew domain taxonomies. Nevertheless, this �eld still lacks from a widely acceptedtaxonomy which arrange in a systematic way the di�erent works. Thus, it wouldbe interesting to show the relations between these, while including a hierarchicalclassi�cation.In this chapter, the most relevant surveys are revisited, thereby putting intocontext the work here proposed. Further, a new taxonomy is also proposed. Subse-quently, the focus is placed on detection and tracking methods. Thus, some of themost signi�cant algorithms are discussed. The advantages of the di�erent methodsare explained and their drawbacks exposed.2.1 A Review of Most Relevant Surveys and Tax-onomies on HSEThe increasing number of papers ��rst related to people detection and tracking, thenalso to the analysis and understanding of human motion� in the last years has ledto the publication of several surveys. Each of them has presented a taxonomy whicharrange the most signi�cant previous works according to di�erent criteria.Aggarwal and Cai presented a series of reviews in di�erent workshops. Finally,this work resulted in what is probably the �rst relevant survey [1]. It reviews pro-posed approaches from 1980 to 1998, and 51 papers are referenced. Their taxonomyconsiders three main areas: (i) body structure analysis, (ii) tracking moving humans,and (iii) recognition, see Fig. 2.1.The �rst area concerns the structure of human-body parts. It is subdivided intwo kind of approaches, depending on whether they rely on a-priori human shape17
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Figure 2.1: Taxonomy presented by Aggarwal and Cai in [1].models or not. Approaches from both categories can be grouped according to therepresentation used, namely, stick �gures �the supporting bones� 2-D contours �the projection of the human �gure� or volumetric models �modelling the �esh.The second proposed area involves human tracking without considering its artic-ulated con�guration. Another subdivision is made based on whether a single cameraor multiple perspectives are used. Papers from both approaches are also groupeddepending on the representation, namely, points, 2-D blobs �that is, regions withsimilar properties� or 3-D volumes. The considered features are related to motioninformation (position, velocity), intensity values, etc.The �nal area addresses human-activity recognition. Papers are grouped depend-ing on whether they use template-matching techniques or state-space models. Theformer uses representations based on points, lines and blobs, while the latter usespoint and meshes.Another survey covering the time period from 1973 to 1997 �which references81 papers� was presented by Gavrila [23]. Here, the classi�cation is based on twocriteria: the type of model, and the space dimensionality. Thus, this survey distin-guishes three categories: (i) 2-D approaches without an explicit shape model, (ii) 2-Dapproaches with explicit shape models, and (iii) 3-D approaches, see Fig. 2.2.The �rst kind of approach relies on statistical descriptions based on low-level fea-tures and heuristics such as image moments, orientation histograms, and skin colour.The second one assumes a known point of view and a de�ned motion model. Rep-resentations are based on sticks and 2-D blobs. The third kind of approaches aremainly based on stick �gures which model the skeleton, and 2-D surfaces or volumeswhich model the �esh. Features such as joint angles are considered. The three cate-gories aim to provide results for all the required functionalities at the moment, thatis, detection, tracking and recognition.In addition, Gavrila provided an application classi�cation altogether with the sys-tem required capabilities. Six �elds are considered: virtual reality, smart surveillance,advanced user interfaces, motion analysis, and model-based coding. Among the ca-pabilities, presence detection, identi�cation, tracking, action recognition, and gesture
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Figure 2.2: Taxonomy presented by Gavrila in [23].or expression recognition can be found.Moeslund and Granum [63] gave the most comprehensive survey, covering theyears between 1980 and 2000 and citing 154 papers. Further, some previous surveysare discussed and compared. The covered period is later extended in [62], wherecontributions from 2000 to 2006 are included, and 337 papers are referenced.In their work, a novel taxonomy based on functionalities is proposed: (i) initiali-sation, (ii) tracking, (iii) pose estimation and (iv) recognition, see Fig. 2.3. However,facial expression and hand gestures are not covered.The �rst considered task concerns the camera, scene and target model initialisa-tion, that is to say, calibration, manual or automatic parameter tuning, target initialpose, etc.Then, tracking is addressed. The process is divided in three main tasks, i.e.,target segmentation, representation and tracking. The former is divided in temporaland spatial approaches. According to the authors, on the one hand, temporal ap-proaches can be subdivided into subtraction �which includes frame di�erencing andbackground subtraction� and optical �ow techniques. On the other hand, spatialapproaches may rely on thresholding, or on statistical methods.Secondly, the representation of segmented entities is reviewed. Two categoriesare given, namely, object-based �points, boxes, silhouettes or active contours, andblobs� and image-based �spatial, spatio-temporal, edges, and features such aslength, area, etc. Finally, the tracking task is discussed considering model-based ap-proaches opposed to probabilistic learnt models ; and single camera against multiple-camera approaches.The third main functionality concerns the pose estimation. It is here consideredas either a tracking post-processing, or as an active part of it. Three categoriesare then given: model-free, indirect model and direct model. The former builds arepresentation without the use of an a-priori model. It can be based on a point, boxor stick representation. The second category considers approaches which use a modelas a guide to interpret the given data. The latter includes those approaches which
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Figure 2.3: Taxonomy presented by Moeslund and Granum in [63].use a direct model, that is, a detailed a-priori human model.This last category is discussed in a comprehensive way. A large number of papersare classi�ed according to their abstraction level �edges, silhouettes, sticks and joints,blobs, depth, texture, movement� the dimension �2-D, 2 1
2 −D, 3-D� or the modeltype �cylinders, stick �gures, patches, cones, ellipsoids, scaled prisms, CAD model,boxes, etc.The way in which the results are evaluated is also taken into account: quantitativesuch as ground truth or manually segmented data, and qualitative such as visualinspection or animation.Subsequently, the recognition task is addressed. Two distinction are made: staticand dynamic recognition. Among the former, techniques such as template matching,normalised silhouettes or postures can be found in the literature. The latter includeslow-level methods, such as spatio-temporal templates or motion templates, and highlevel ones such as Hidden Markov Models (HMM) or Neural Networks (NN).Finally, a classi�cation of applications is also proposed by considering three mainareas: surveillance, control and analysis. A taxonomy relative to the assumptionsmade in the �eld is as well given, which consists of movement, environment andsubject assumptions.In 2003, Wang et al. presented an extensive and one of the most interestingsurveys [93]. The time period from 1992 to 2001 is covered by citing 164 papers. Ap-plications are classi�ed under three categories, namely, visual surveillance, advanceduser interfaces, and motion-based diagnosis and identi�cation. Previous surveys arealso revisited. This review presented a taxonomy based on functionalities organisedin a hierarchical manner. The proposed framework consist of three levels correspond-ing to low-level vision, intermediate-level vision and high-level vision. Each level isfocused on one of the following task: detection, tracking and behaviour understanding,see Fig. 2.4.The detection level aims to segment and group moving pixels corresponding topeople. It is divided in two sub-processes: (i) motion segmentation and (ii) objectclassi�cation. The former includes several approaches which are organised under four
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Figure 2.4: Taxonomy presented by Wang et al. in [93].categories, namely, background subtraction, statistical methods, temporal di�erencingand optical �ow. The latter is subdivided into two categories, which are shape-basedclassi�cation and motion-based classi�cation.The goal of the tracking level is to establish coherent relations of image featuresbetween frames. Present-day approaches are classi�ed according to whether they aremodel-based, contour-based, region-based or feature-based. With respect to the former,human-body models can be represented by stick �gures, 2-D contours or volumetricmodels. The second and third kind of approaches aim to track detected contours andblobs, respectively. Finally, the last one aims to track sub-features as points or lines.The highest level involves action recognition and description, and the analysis andunderstanding of human behaviours. The usual techniques are dynamic time warping,hidden Markov models or neural networks. The recognition is carried out under twogroups of approaches, namely, template matching and state-space methods. Semanticdescriptions are also receiving increasing attention from the community, as is statedby the authors.Finally, Pentland [69] presented a paper which, without aiming to classify explic-itly the up-to-time approaches, touches a diversity of human-motion analysis methodsand applications. This domain was called in the paper �Looking at People�, and thisterm have been subsequently widely used1. A review of related mathematical tech-niques, and a domain taxonomy based in channels, scales and intentionality is pro-vided. The state-of art of face recognition, surveillance, 3-D methods and perceptualuser interfaces is revisited.As has been aforementioned, this thesis is focused on target detection and track-ing. Further, a taxonomy of these two functionalities based on the information �ow,1As an example, the search of the terms �looking at people� plus �tracking� through theInternet yields more than 24000 hits.



22 CHAPTER 2. RELATED WORKand a structured framework which encloses Human-Motion Analysis functionalitiesare presented in section 2.2, and chapter 3, respectively.In order to put the presented work into context, it is worth to locate it withinthe taxonomies above revisited. Thus, it lies within the tracking area, and the single-camera approach category of the taxonomy proposed by Aggarwal and Cai [1]; withinthe 2D area, and without-shape-model approach category of the one proposed byGavrila in [23]; in the taxonomy proposed by Moeslund and Granum in [63], it lieswithin the tracking functionality, covering all segmentation, representation, and track-ing tasks, and following temporal segmentation approaches, object-based representa-tion, and probabilistic learnt models ; �nally, it the taxonomy presented by Wang etal. in [93], our work is covers both detection and tracking functionalities, and it ad-dresses motion-segmentation and tracking tasks by following statistical approachesfor the former, and blob ones for the latter.2.2 State of the Art of Target Detection and Track-ingIn this section, a review of the most relevant papers published in recent times rela-tive to segmentation, detection and tracking approaches is presented. The di�erentproposals are here outlined, and their advantages and drawbacks discussed. How-ever, despite the huge e�orts made, and the fact that achieving robust and accuratetracking is the �rst basic task to HSE, the problem is still open.From the author point of view, target segmentation and tracking tasks are solinked that they should be considered together. Thus, a proper segmentation is, atleast, essential for tracking initialisation and error recovery. And without applying atracking scheme, it is not possible to keep a temporal consistency on detected targets.Further, it is really unusual to �nd a relevant paper speci�c to just segmentationor tracking. Papers are here inscribed in one of the following categories or anotheraccording to their main contribution, albeit they usually cover several tasksThis review implicitly presents a taxonomy according to the information �ow.Thus, tracking is usually carried out using either bottom-up or top-down approaches.The formers rely on foreground segmentation, and a subsequent target association,which is usually followed by a state �ltering; on the contrary, the latters are based ona prior complex motion, shape and/or appearance modelling, and a posterior stateprediction. Thus, bottom-up approaches generate hypothesis according to the resultsof image processing, whereas top-down ones specify a-priori generated hypothesesaccording to current image data.In this taxonomy, each of the bottom-up tasks is subsequently divided accordingto the di�erent techniques used �which in some cases coincide with the ones statedby the aforementioned surveys.Top-down approaches are split taking into account the tracking technique used,although it is subsequently detailed the feature in which the particular proposal rely.A sketch of this taxonomy is shown in Fig. 2.5.Finally, some research groups have developed structured architectures which aimnot to be restricted to a particular task, but to perform a global scene analysis [46, 81].
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Figure 2.5: Proposed tracking taxonomy. Tracking approaches are classi�edin bottom-up and top-down methods. Bottom-up ones usually perform targetsegmentation, observation association, and state �ltering tasks. Top-downapproaches require an o�-line appearance and dynamic modelling, and thenperform target tracking according to the chosen methods.These contributions usually combine several techniques.2.2.1 Bottom-up TrackingBottom-up tracking approaches are usually based on motion segmentation in order toextract foreground entities from the background [94, 61, 83]. This can be performedby means of background subtraction, frame di�erencing, a combination of both, oroptical �ow.Alternatively, detection can be achieved by means of detection of salient fea-tures [32, 55, 6]. In this case, regions with high curvature in space-scale images�blobs� regions with large gradients �corners�- and other signi�cant image char-acteristics are extracted. However, by using this kind of approaches, any salientbackground point is selected as a potential target.2.2.1.1 Pixel SegmentationThis task involves separating image regions that do not belong to the background,and extracting them. Although this issue is closely related to movement, foregroundobjects could remain static for an unknown number of frames while the background



24 CHAPTER 2. RELATED WORKDrawbacks of common approaches Intrinsic di�cultiesBootstrapping Illumination changesForeground aperture Camou�ageGhost Clutter in motionStopped Objects Camera motionTable 2.1: Motion-segmentation di�culties.may be in motion2.Motion segmentation algorithms face multiple di�culties. These can be classi�edinto two categories, since some of them are intrinsic to the problem domain, whereasothers may be seen as drawbacks of the approach used, see Table 2.1. Thus, the maindi�culties are the following:
• Bootstrapping. It refers to the problems that arise when the method requiresand initialisation period, and a scene free of moving objects cannot be assured.
• Foreground aperture. In this case, homogeneous object in motion cause thatthe inner part is not segmented.
• Ghosts. The relocation of a background object implies changes in both theold and the new location. However, only the latter should be identi�ed asforeground region.
• Stopped object. Some motion segmentation methods requires signi�cantchanges between frames to segment any pixel. Thus, if a target stop motion,the segmentation fails.
• Illumination changes. These completely alter the pixels characteristics,thereby resulting in a drastic increase of pixel segmentation. They may beglobal �thereby yielding a general highlight or shadow� or local �which aremainly caused by target shadows. Further, they can also be sudden �such asthose due to changes in weather conditions, or by turning on/o� a light� orgradual.
• Camou�age. In this case, some of the pixel features between the backgroundand the foreground are too similar to disambiguate them.
• Clutter in motion. Any approach that relies on motion to perform segmen-tation is liable to consider as foreground any moving background pixel.
• Camera motion. In this case, the whole scene seems to be in motion.In the following, papers are classi�ed according to the approach used, and howthe di�erent di�culties are addressed is explained.2Think about a person stopped momentarily at a tra�c light. He or she must still beconsidered as foreground and, therefore detected and tracked. On the other hand, wavingbranches and leaves or �owing water must not be segmented, although they are in motion.
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(a) Sample frame (b) Obtained segmentationFigure 2.6: Sample frame using the approach published in [94] by Wren etal.Background Subtraction Background subtraction is one of the most commonlyused approaches for motion segmentation [71, 50]. Pixels in motion are segmented bycomparing the current image and a reference one, namely, the background model. Inthe early days, simple methods consisted in di�erencing each image and a referenceone, and subsequently compare the result with an a-priori set threshold [33]:
|Bt − It| > τ, (2.1)where Bt is the reference background at time t, It the current frame, and τ a pre-setthreshold. The model could be subsequently updated following a In�nite-ImpulseResponse �lter (IIR) :

Bt+1 = (1− α)Bt + αIt, (2.2)being α the adaptation rate that weights the current model versus the new obser-vation. However, this method was extremely sensitive to changes in the backgroundconditions such as lightning or due to background in motion, as well as to the cameranoise. More recent approaches model either each pixel or group of pixels statisti-cally. This allows building adaptive background models while providing robustness tothe above-stated background conditions. Usually, model statistics are continuouslyupdated in order to provide an adaptive approach.Among the background-subtraction approaches, Wren et al. developed the P�nderalgorithm [94]. Each scene pixel is modelled using a Gaussian colour distribution.Thus, outliers are assumed to be foreground pixels, and are therefore segmented.Visible pixels are updated using a single adaptive �lter. Segmented pixels are groupedinto blobs and each blob is modelled using spatial and colour components. Blobs areassociated with body parts using a log likelihood measure and tracked by means of
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(a) Sample frame (b) Obtained segmentationFigure 2.7: Sample frame using the approach published in [30] by Haritaogluet al.Kalman Filters (KF). However, it just attempts to detect and track one person, inupright posture, in indoor scenes. A sample frame is shown in Fig. 2.6.Haritaoglu et al. presented the W4 method [31, 30]. Unlike P�nder, it aims todetect and track people, isolated or in groups, in outdoor scenes, and consideringseveral poses. Each pixel is modelled with a range of intensity values given by mini-mum and maximum intensity values, and the maximum intensity di�erence betweenframes during a training period. Pixels whose values are placed outside the intervalwhich is given by the minimum value minus a multiple of the maximum di�erenceand the maximum value plus a multiple of the maximum di�erence are considered asforeground pixels. A sample frame is shown in Fig. 2.7.The model is periodically updated considering both pixel-based and object-basedmethods: the former updates the values of the pixels classi�ed as background, and thelatter replaces the model parameters for those pixels classi�ed as static foreground.Neighbour pixels are grouped and blobs are classi�ed using heuristics. Poses areidenti�ed by means of projection histograms. KFs and textural temporal templatesare used to track detected targets. However, this approach is rather sensitive toshadows and lighting changes, since the only cue is the pixel intensity.Horprasert et al. [34, 35] implemented an statistical colour background algorithm,which models each pixel based on both brightness and colour distortion. It still needsa static background scene, but it's able to handle strong shadows and highlights. Theproposed algorithm is able to classify the image pixels into four categories, namely,original, shadowed and highlighted background, and moving foreground. A sampleresult is shown in Fig. 2.8.McKenna et al. [61] combined colour and gradient information in their adaptivebackground subtraction approach. Each pixel chrominance �given by the normalisedred and green channels� is modelled using two Gaussians, one on each channel. TheGaussian parameters are updated using an adaptive �lter. If one of the currentchrominance values is farther from the mean more than three times the standarddeviation, the pixel is marked as foreground. Using chrominance instead of RGBvalues, shadow detection is avoided, but it cannot cope with foregrounds of the same
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Figure 2.8: Sample frame using the approach published in [35] by Horprasertet al.chrominance as the background. Thus, they also modelled the background pixelsusing the spatial RGB gradients, and pixels are also �agged as foreground if thegradient of any of the channels is out of the scope of the corresponding Gaussian.As a result, albeit foreground pixels with the same chrominance as the backgroundcan now be segmented, hard-edge shadows are also segmented. Tracking is done bymeans of data association.Three levels of representation are used, namely regions �stable connected compo-nents� people �groups of regions that satisfy conditions relative to overlapping andarea� and groups �people that share regions. People appearance is modelled usingcolour histograms. Visibility indexes �obtained from the probabilities that the pixelscorrespond to unoccluded people� are used to disambiguate occlusions. However,problems arise when several people and the background have a similar appearance.It is also assumed that the target appearance do not signi�cantly change while thetargets are grouped.Still, shadow removal has not be properly addressed yet within a target detectionframework, where shadows are considered to yield just changes in intensity, but notin chrominance. Last advances in the �eld �such as those contributions of Finlaysonet al. [21]� need to be incorporated.Nevertheless, none of these models can cope with background in motion. Stau�erand Grimson presented in [86] an approach focused on this issue. A colour backgroundmodel is built using a Mixture of Gaussians (MoG) to represent each pixel. Thus,each Gaussian models the pixel colour distribution for one of the possible backgroundslearnt in a training period. Pixels which do not match any of the distributions areconsidered as foreground. The distribution weights are periodically updated according



28 CHAPTER 2. RELATED WORKto the one that has matched the current pixel value. The least probable distributionis replaced in case none of them match the value, thereby, including long-term stillforegrounds. The adaptive scheme apparently also copes with lighting and sceneschanges, as well as motion from clutter. Tracking is performed by implementing a setof KFs.Javed et al. [43] presented a method that aimed to solve most of the common seg-mentation di�culties: bootstrapping, ghosts, quick illumination changes, backgroundin motion, and camou�age. It uses both colour and gradient cues. A hierarchicalsystem is build based on three levels: pixel, region and frame.At the pixel level, statistical models of pixel colour and gradients based on mixtureof Gaussians are independently used to classify each pixel as potential backgroundor foreground. At the region level, foreground pixels obtained from the colour modelare grouped into regions, and the gradient model is then used to eliminate regionscorresponding to highlights or ghosts. Pixel-based models are updated based ondecisions made at the this level. Finally, the frame level ignores the colour-basedsegmentation if more than 50 percent of the image pixels are considered foreground.In this case, a global illumination change in considered, and segmentation is performedaccording to gradient information. Nevertheless, the ghosts are not eliminated if thebackground contains a high number of edges.Frame Di�erencing and Hybrid Algorithms A typical temporal di�erenc-ing approach segments motion by subtracting the current image from the previous onepixel by pixel. Then, pixels are segmented if the result is over a pre-de�ned threshold:
|It − It−1| > τ. (2.3)It can also be done by considering several consecutive frames. For example, Collinset al. [11, 13] implemented an hybrid algorithm for target detection that combinesan adaptive background subtraction and a three-frame di�erencing approach. Back-ground subtraction techniques can provide good segmentation results, but they areextremely sensitive to scene changes due to dynamic background, lighting or extrane-ous events. In addition, ghost are usually detected when long-term stationary objectsstart moving �albeit statistical models eventually adapt to this situation. On theother hand, temporal di�erencing is very adaptive to dynamic environments and donot generate false alarms caused by ghosts, but it cannot segment all relevant pixels,and it may be rather sensitive to camera noise.In that work, pixel intensity is taken as the representing feature. Thus, pixelswhose intensity varies signi�cantly from both the last frame and the next-to-last oneare marked as moving. These pixels are clustered and a background subtractionmethod is applied to the inner region. Both background model and threshold areupdated over time for non-moving pixels.The approach is adapted to pan-tilt camera platforms by collecting a set of back-ground references for known camera settings and registering the images according toselective pixel integration. They also introduced a layered detection algorithm: pix-els are classi�ed as stationary, transient or background according to two measures,



2.2. TARGET DETECTION AND TRACKING 29namely, a motion trigger and a stability measure. These point out if the pixel belongsto a moving object, a stopped object or the �motion� is due to lightning changes.Foreground pixels are clustered into regions and classi�ed as moving or stationaryones. Stationary regions constitute layers which are used to determine occlusions andmotion resuming. Tracking is done by predicting next positions according to the es-timated dynamic model, and convolving the object templates with candidate regions.Several scenarios are described according to the results of the two previous stagesand hypotheses are launched accordingly. Finally, clutter in motion is rejected if thecumulative object displacement indicates changes in direction.Thus, this system use a network of cooperative active cameras to detect and trackpeople and vehicles in cluttered environments. Targets are classi�ed into semanticcategories and their activities are monitored. Once the geo-locations are extracted,symbolic data are inserted into a synthetic scene visualisation.The algorithm proposed in [83] is also a good example of hybrid algorithms whichcombines frame di�erencing and background subtraction techniques to achieve motionsegmentation. Segmentation is performed in two sequential steps. First, a fuzzyclassi�cation is carried out by according to current pixel motion on each RGB channel.Then, results are enhanced taken into account the previous segmentation result, anda background model. Finally, HSI colour space is used to eliminate shadows.In addition to frame di�erencing and background subtraction, optical �ow tech-niques have also been used to perform motion segmentation. These describe coherentfeature motion between frames. These techniques independently segment moving ob-jects, even in presence of camera motion. However, this approach is rather sensitiveto noise and background in-motion, and it requires huge computational resources.Optical Flow These methods look for coherent motion of points or features be-tween frames. Bregler [7] presented a human-dynamics recognising method wheremotion is segmented according to optical �ow results. An a�ne motion model is usedfor this purpose. Blobs are extracted by means of the Expectation-Maximisation (EM)algorithm, where the likelihood of each pixel of belonging to a particular blob dependson the coherent a�ne motion, HSV colour values, and spatial proximity. In order toincorporate past estimates, a bank of KFs provides priors for the EM initialisation,resulting in a MoG propagation.Summarising, multiple techniques have been developed to tackle motion segmen-tation. They usually address a limited of the numerous di�culties expected. The wayof solution may come from a smart combination of techniques. The di�erent algo-rithms here described are summed up in Table 2.2, while pointing out the di�cultiesaddressed.2.2.1.2 Target Detection and Observation AssociationSegmented pixels are grouped into blobs, which could be considered as an entity ofinterest. This is usually done according to a connected component analysis, and a



30 CHAPTER 2. RELATED WORKAddressed di�culty ReferencesSudden illumination changes [94, 35, 61, 86, 83, 43]Gradual illumination changes [30, 35, 61, 86, 13]Camou�age [61, 43]Clutter in motion [86, 13, 43]Camera motion [7, 13]Bootstrapping [86, 30, 43]Stopped Objects [86, 30, 13, 43]Ghosts [86, 13, 30, 83, 43]Table 2.2: Motion-segmentation methods.subsequent spatial �ltering process. Then, some features can be extracted to representa target observation, thereby classifying the target, and concluding its detection.However, as it has been above stated, in some cases this process is enhanced bytaking into account the probability of a given pixel of belonging to the target accordingto some statistical model.In general, once detection has been performed, several approaches arise to keeptrack of the targets. New observations can be just associated to previous ones. Thisprocess can be done taking into account di�erent cues like spatial proximity or ap-pearance similarity. The latter may consist of a template matching between newlydetected targets and the models of the previous ones. In both cases several problemsmust be expected due to detection failures. These mainly occur because of segmen-tation errors �such as those due to background clutter which mimics the targetappearance, and illumination changes� and target occlusions or merging.Depending on whether several targets and measurements are expected, the associ-ation is accomplished using nearest-neighbour techniques, or by means of Data Asso-ciation Filters �such as the Probabilistic Data Association Filter (PDAF), the JointProbabilistic Data Association Filter (JPDAF), or the Multiple Hypotheses Tracking(MHT) [4].2.2.1.3 State FilteringUsually, a prediction stage is also incorporated after associating the observation,thereby providing better chances of tracking success. Filters such as the KF [48],or subsequent extensions and improvements such as the Extended Kalman Filter(EKF) [2] or Unscented Kalman Filter (UKF) [45, 92] are commonly used.The KF is a linear recursive estimator which predicts the next state according to adynamic model, and updates this result in agreement with the obtained measurement.Although it has been widely used, it presents important drawbacks:1. it requires strong assumptions about the linearity and Gaussianity of the tran-sition model and the likelihood function;2. it cannot cope with multiple targets and measurements;



2.2. TARGET DETECTION AND TRACKING 313. and, it relies on a previous segmentation in order to provide the measurement.These requisites are often not feasible in MTT scenarios, specially during target group-ing and occlusions, or in cluttered backgrounds. Therefore, several approaches havebeen implemented in order to avoid these restrictions. The EKF linearises both tran-sition and likelihood models using Taylor series expansions. The system Jacobian iscomputed for the predicted states, and the results are used in the updating stage.However, the EKF keeps several drawbacks:1. posterior densities are still modelled as Gaussians;2. the series approximation can lead to poor representations of the posterior dis-tribution �this is specially the case on highly non-linear systems, because onlythe mean is propagated through the non-linearity;3. and, although the models do not need to be linear, they still must be di�eren-tiable.The UKF aims to propagate high-order moments through non-linear functions. A setof deterministic sample points �called sigma points� are selected around the meanand subsequently propagated. It can be analytically proved that it yields betterapproximations of the mean and covariance than the EKF. Further, there is no needto compute expensive, computationally speaking, Jacobians. However, it cannot beapplied to general non-Gaussian distributions.More general dynamics and measurement functions can be dealt with by meansof Particle Filters (PF) [18, 3]�which are also known as Sequential ImportanceRe-sampling (SIR)� and further evolutions, such as the Unscented Particle Filter(UPF) [89]. These address the �ltering problem when no assumption about linearityor Gaussianity is made on almost all involved probability density functions. Since theseminal paper by Gordon et al. [27], PFs have been widely used to perform stochasticestimation. The algorithm is based on Bayesian �lters. Therefore, they compute aposterior probability density function (pdf) which undergoes a di�usion-reinforcementprocess making use of Monte Carlo simulation techniques. The reinforcement stage isaccomplished by means of factored sampling. Thus, the PF approach provides a com-plete representation of the posterior pdf. Therefore, any statistical estimate can becomputed despite non-linearities and non-Gaussianity of the involved distributions.Multiple hypotheses can simultaneously be considered, and they can be propagatedeven when no evidence is obtained from the current image. However, the search regionis reduced, which may increase the processing speed, but the robustness could as wellbe cut down.Although the asymptotic correctness of the algorithm is proved, it has severaldrawbacks [52]:1. there is no information about the number of samples required for a requestedprecision, specially for unde�ned times lengths;2. it su�ers from several intrinsic problems such as sample degeneration or sam-pling impoverishment, depending on the whether re-sampling is used or not;
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Figure 2.9: Sample frame using the approach published in [38] by Isard andBlake.3. and �nally, PFs were initially designed to keep multiple hypotheses but only fora single target; further extensions which combine information about all targetsin every sample usually cause the curse of dimensionality.In every PF approach, samples are drawn from a proposal distribution. Usually,the transition model is used as such proposal. However, problems may arise if thesamples are placed in the tail of the temporal prior or if the likelihood is very peaked.De Freitas et al. [15] used the results provided by EKF as a proposal distribution.More recently, given that the UKF outperforms the EKF, this �lter has been used togenerate the prior samples [89].2.2.2 Top-down TrackingDespite these e�orts, there are many situations where segmentation-from-motion,and the subsequent observation-tracker correspondence, is not possible, like in targetgrouping or target occlusion. Top-down approaches incorporate a-priori knowledgeabout the targets and the context in order to tackle these situations. Thus, thesemethods rely on accurate target modelling. Hence, complex templates, which shouldcope with an important degree of deformation, are prede�ned. Further, high-levelmotion patterns are a-priori learnt, and used to reduce the state-space search regionin agreement to some state prediction.Further, targets can be localised following an appearance segmentation, instead ofa motion segmentation. This relies on feature extraction, and a subsequent exhaustivesearch of some feature patterns learnt during a classi�er training process.Nevertheless, model-based high-level tracking is not feasible in case this informa-tion is not available there is not enough a-priori knowledge about either the sceneor the targets. Also, an accurate initialisation is often not possible. The need ofadaptation when target appearances considerably evolve over time usually leads tothe phenomenon known as model drift. In those cases, motion-based tracking usuallyoutperforms model-based appearance or shape tracking.Notwithstanding, numerous proposals have been presented to perform model-based tracking, while trying to overcome these drawbacks.
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Figure 2.10: Sample frame using the approach published in [67] by Nummi-aro et at.2.2.2.1 Particle FilteringThe aforementioned PF techniques �together with complex dynamic and appear-ance models� have constituted a common approach [38, 56, 58, 53, 87, 16]. Thesetechniques were introduced in the Computer-Vision �eld in Condensation [38, 40]by Isard and Blake, albeit they were already known in some other areas, such as Au-tomatic Control or Arti�cial Intelligence. This algorithm is based on a PF frameworkcombined with edge-based image features. Subsequently, contour tracking have beenwidely researched within this framework [39, 57], although this may not be the bestapproach in crowded scenarios because of the potential multiple occlusions. A sampleperformance is shown Fig. 2.9.Nummiaro et al. [67] applied PFs using colour distributions as image features.These are approximated using histograms, which are supposed to be less sensitiveto partial occlusions and rotations in depth than other appearance models such astemplates. They used the HSV colour space since they claimed that it can providerobustness to changes in lightning conditions. Histograms are calculated inside anelliptic region, once the pixels have been weighted according to a kernel. A similarityfunction is implemented using the Bhattacharyya Coe�cient (BC) [5]. Samples arerepresented using the centroid position in image coordinates, its speed, the lengthof the ellipsis axes, and a scale change. The tracker is initialised placing samples�assuming a known target model� at strategic positions. Models are only updatedwhen the likelihood of the estimated state is over a pre-de�ned threshold. However, noMTT is considered �which implies that no event such as target grouping or occlusioncan be analysed� and it lacks from an independent observation process, since samplesare evaluated according to the histograms of the predicted image region. A sampleframe is shown in Fig. 2.10.Perez et al. [74] proposed also a PF based on a colour-histogram likelihood. Theyintroduced interesting extensions in multiple-part modelling, incorporation of back-ground information, and MTT. Nevertheless, it may require an extremely large num-ber of samples, since one sample contains information about the state of all targets,dramatically increasing the state dimensionality. Further, no appearance model up-dating is performed, what leads to target loss in dynamic scenes.



34 CHAPTER 2. RELATED WORKDeutscher and Reid [16] presented an attractive approach called Annealing Par-ticle Filter to recover full body motion. It aims to reduce the required number ofsamples. A series of weighting functions is designed from the original one by raisingto a series of decreasing exponents, thereby de�ning a series of layers. One annealingrun is performed at each time slice. The run started using the broader weightingfunction. At each layer, N particles are weighted, re-sampled with replacement, andused to yield a particle set for the next layer by applying Gaussian di�usion. As aresult, all particles are spread around the global maximum. This �nal set is usedto initialise the broader layer at the next time slice. Thus, the number or requiredsamples is considerably reduced. However, pruning hypotheses with lower likelihoodmay lead to a single hypothesis, and therefore it could be inappropriate in clutteredenvironments.The weighting function is built taken into account two image features: edges andsilhouettes. Edges are obtained using a gradient-based mask over the entire image.Silhouettes are produced using a background-subtraction algorithm. Pixel weightmaps are built taken into account both the proximity to an edge, and its enclosinginto an extracted silhouette. In addition, two enhancements are introduced. Firstly, asoft-partition sampling is implementing by adding an amount of randomness to eachparameter proportional to the variance of that parameter. In this way, samples arenot wasted and the e�ort is concentrated on those parameters whose uncertainty isbigger. Secondly, a cross-over operator is used by combining selected particles, andthereby, tracking in parallel di�erent sections of the search space. As they focus onmotion analysis, multiple targets and unconstrained environments are not explored.BraMBLe [42] is an appealing approach to multiple-blob tracking which modelsboth background and foreground using MoG. However, no model updating is per-formed, there is a common foreground model for all targets, and it su�ers from thecurse of dimensionality �as all PF-based methods which tackle MTT combining in-formation about all targets in every sample.Occlusion events present particular di�culties which should be explicitly ad-dressed. Wu et al. [95] address these issues using a PF by implementing a DynamicBayesian Network (DBN) with an extra hidden process for occlusion handling.2.2.2.2 Gradient-descent SearchTarget localisation following a gradient-descent search �Mean-shift tracking� hasalso been commonly used [10, 14, 12]. The search is performed in the basin of attrac-tion of a spatially-smooth similarity function given by a weighted image region. Thus,in this case the search is deterministic. This is usually done according to a measure ofhistogram similarity between both model and candidate distributions related to theBC.However, these methods do not work in unconstrained situations. The maindrawbacks of the algorithm consist of the assumptions that the target candidate donot drastically change its appearance between time steps, and that its new location isin the basin of attraction of the similarity function, which is de�ned by the kernel size.Further, it is assumed that the similarity function presents a unique local maximumwithin the basin of attraction. In addition, only one hypothesis is considered, thereby
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Figure 2.11: Sample frame using the approach published in [14] by Comani-ciu et al.limiting its e�ectiveness in case of occlusions or heavy cluttered backgrounds.For instance, Comaniciu et al. [14] represented a target by an elliptic regionsde�ned at given location, and a target model. This is obtained from the features ofthe normalised-to-unit-circle pixels locations, once applied an isotropic kernel. Colouris selected as image feature, and the target model pdf is approximated by means ofhistograms. However, it tracks just one target, initialised by hand, and the appearancemodel is never updated. A sample performance is shown in Fig 2.11.Collins et al. [12] presented an appealing tracker, based also on the mean-shift al-gorithm, with on-line feature selection of discriminative features. It aims to maximisethe distinction between the target appearance and its surroundings. Still, it tracksjust one target, and may su�er from model drift, although models are anchored tothe �rst frame, which is manually segmented. It still tracks rigid targets (or rigidregions of them), appearance changes are limited, and since MTT is not considered,interaction events are not studied. These facts cannot be seen as minor issues in realapplications such as video-surveillance.2.2.3 Bottom-up and Top-down TrackingAlgorithms which combine both bottom-up and top-down approaches have also beenproposed [41, 81]. Most appealing approaches rely on the combination of severaltechniques. Senior et al. presented a two-level tracking system with template-basedappearance models [81]. These are used in conjunction with probability masks to inferdepth ordering and detect occlusions. Nonetheless, appearance ambiguities amonggrouped targets have not been addressed.In [41], the probabilistic top-down tracking framework developed for Condensa-tion [40] is extended by means of importance sampling in order to generate samplesaccording to a bottom-up process.Yang et al. [97] proposed a system which speci�cally tackles grouping situations,albeit no �ltering is carried out, and grouped targets are not independently tracked.Thus, during grouping events, just a coarse localisation can be obtained by consideringthat the targets are inside the group region. Therefore, grouped targets are notaccurately tracked, and no complex situation can satisfactorily be faced �for instance,those in which a group of more-than-two members merge and split, see Fig. 2.12.Kahn et al. [46, 47] developed a system called Perseus. It is a visual purposivearchitecture which aims to recognise gestures. The way in which the structure is
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Figure 2.12: Target interaction. Keeping the identity of multiple targetswhich cannot be independently segmented is a challenging task. Notice thedi�erent group membership of targets in blob 1 and 4.
modularised was surprisingly novel, allowing the system to use knowledge about con-text and task at every stage and providing it with redundancy and independence ofassumptions. It also provides an interface to higher-level systems. It consisted of sixcomponents: a planner is located at the higher level. It called visual routines whichaim to detect and track selected objects. Object representations (OR) �backgroundobjects, light, people, objects, etc.� can be instantiated, which involves registeringit at the long term visual memory. The object methods, such as segment, keep aglobal segmentation map using the image features maps located at the lower level.The considered features are intensity, edges, disparity, colour and motion. All higherlevels made use of these maps to carry out their functionalities. Features parameterscan be tuned according to the task and context. All object representations are alsoassociated to markers which track the segmented objects.Alternatively, several approaches take advantage of 3D information by makinguse of a known camera model and assuming that agents move on a known groundplane. These and other assumptions relative to a known Sun position or constrainedstanding postures allow the system presented in [98] to initialise trackers on peoplewho do not enter the scene isolated.



2.3. DISCUSSION 372.3 DiscussionSummarising, an evolution in the perception of the analysis of the human motion taskcan certainly be noticed. Taxonomies have being re�ned from mere classi�cations ac-cording to the aim of the task, or even to criteria such as the model dimension or thesensor used, to hierarchical structures which cope which all the required functionali-ties. These are spread through di�erent levels which are task-oriented.However, this area is sill in a transition step between Image Processing and Pat-tern Recognition, and a more advanced view in which Cognitive Sciences provide aglobal understanding of the scene. The latter supplies also interactive capabilities,such as a natural language communication between a user and the system, or syntheticscene visualisations.With respect to segmentation, it can be concluded that although remarkableadvances have been achieved by presenting a wide set of di�erent approaches, thesegmentation task is still an open problem. These techniques must be enhanced tocope successfully with the numerous di�culties expected, specially in outdoor scenes.Among these di�culties, we can include lighting changes, di�erent weather conditions,background in motion, or camou�age. Further, it is still not clear how to deal withbackground objects which unexpectedly move at a given moment, with the ghost theyleave, or with foreground objects which stop momentarily. The solution may comefrom the combination and development of some of the existing approaches, therebyproviding the system with redundancy. Taking advantage of context knowledge andmaking use of high-level information may also be a way of solution.With respect to tracking, numerous approaches have been proposed to performthis task. Data-association techniques on their own are not reliable enough, sincethey completely depend on a proper segmentation. Prediction-updating approachesshould be �exible and general enough to cope with complex environments. The com-bination of several of the aforementioned techniques may lead to a way of solution.Thus, for instance, EKF/UKF approaches may enhance system predictions; meanshift techniques could adjust �nal estimates; and several segmentation methods maybe combined with prediction-updating techniques in order to provide the system witherror recovery capabilities.In our opinion, it is clear that some sort of structured architecture with coopera-tive levels is needed in order to cope with a such a complex problem as the analysisof human motion.2.4 ResumResumint, un es pot naturalment adonar d'una evolució en la percepció de l'anàlisidel moviment humana. Les taxonomies s'han re�nat de meres classi�cacions segonsel propòsit de la tasca, o �ns i tot a criteris com la dimensió dels models o el sensorutilitzat, a estructures jeràrquiques que descriuen totes les funcionalitats exigides.Aquestes s'estenen a través de nivells diferents que estan orientats a tasques particularsi diferents.Tanmateix, aquesta àrea està encara en un pas de transició entre el Processa-



38 CHAPTER 2. RELATED WORKment d'Imatges i el Reconeixement de Formes, i un punt de vista més avançat en elqual les Ciències Cognitives proporcionen una comprensió e interpretació globals del'escena. Les Ciències Cognitives subministren també capacitats interactives, com lacomunicació en llenguatge natural entre un usuari i el sistema, o les visualitzacionssintètiques d'escenes.Respecte a la segmentació, es pot concloure que encara que els avenços notabless'han aconseguit presentant un conjunt ample d'enfocaments diferents, la tasca de lasegmentació és encara un problema obert. Aquestes tècniques s'han de millorar perafrontar reeixidament di�cultats esperades i nombroses, de manera especial en escenesa l'aire lliure. Entre aquestes di�cultats, podem incloure canvis d'il·luminació, l'estatdel temps, el fons en moviment, o el camu�ament. A més, no està encara clar comtractar amb objectes del fons que inesperadament es mouen en un moment donat,o amb objectes en primer pla que s'aturen momentàniament. La solució pot arribarde la combinació i el desenvolupament d'algunes tècniques ja existents, aportant aixíredundància al sistema. Apro�tar el coneixement de context i l'ús que es fa de lainformació d'alt nivell també poden ser el camí de solució.Respecte al seguiment, nombroses aproximacions s'han proposat per realitzaraquesta tasca. Les tècniques d'associació de dades no són prou �ables en si mateixes, jaque depenen completament d'una segmentació correcta. Els enfocaments d'actualitza-ció de les prediccions haurien de ser més �exibles i prou generals per afrontar ambientscomplexos. La combinació d'unes quantes de les susdites tècniques pot conduir a unavia de solució. Així, per exemple, les aproximacions d'EKF/UKF poden millorarles prediccions de sistema; les tècniques de mean-shift podrien re�nar les predic-cions �nals; i diferents mètodes de segmentació es podrien combinar amb tècniquesd'actualització de la predicció per dotar al sistema de capacitats per la recuperaciód'errors.En la nostra opinió, està clar que es necessita alguna classe d'arquitectura es-tructurada amb nivells cooperatius per afrontar un problema tan complex com lacomprensió del moviment humà observat en seqüències d'imatges.



Chapter 3A Framework to Human-SequenceEvaluationAccomplishing HSE involves such a complexity that a structured framework is re-quired. This is not only related to Human-Motion Analysis (HMA) �as were mosttaxonomies described in the previous chapter� but also to behaviour understand-ing. Therefore, the proposed framework must include the di�erent required systemfunctionalities, while making use of cognitive processes.In this chapter, the HSE framework presented in [25] is reviewed and enhanced, seeFig. 3.1. This framework steers the e�orts of our lab, are therefore its implementationconstitutes the aim of the research projects in which its members are involved.HSE de�nes a complete Cognitive Vision System which transforms image valuesinto semantic descriptions of human behaviour by performing multiple bottom-upand top-down processes. Thus, its aim goes far beyond detecting, tracking and iden-tifying the actions being performed: its goal is to apply cognition methodologies tounderstand human behaviour in image sequences.Therefore, this proposal is not restricted to Image Processing and Analysis, orPattern Recognition techniques, but it also comprehend topics related to Arti�cialIntelligence, Computational Linguistics, Computer Animation, and Automatic Con-trol. For instance, Computer Animation techniques are taken into account in orderto provide to a user graphical information and simulations about the situation whichis taking place, as well as predictions about potential future ones; Automatic Controlcan come into scene to allow machine responses to recognised behaviours in human-inhabited environments, and to operate PTZ cameras.Mainly, the implementation of HSE involves three co-operating tasks: (i) theobtention of a dynamic description of the observed human motion; (ii) the transfor-mation of these quantitative parameters into logic predicates; and (iii) the communi-cation of the obtained results to an human user.Hence, multiple issues are demanded in order to accomplish HSE. At the veryleast, these include (i) active video camera control, (ii) target segmentation, (iii) ro-bust and accurate MTT, (iv) target classi�cation, (v) posture and action recognition,(vi) facial expression analysis, (vii) behaviour understanding, and (viii) communica-39



40 CHAPTER 3. HUMAN-SEQUENCE EVALUATIONtion of those inferred conceptual interpretations to human operators. The last taskcan be achieved by means of NL text generation �by applying syntax rules to thoseinstantiated conceptual primitives� and by the synthesisation of virtual environmentsfrom this conceptual information.The computational knowledge of the three di�erent channels of human motion,namely the motion of agents (trajectories), bodies (postures and actions), and faces(expressions and emotions), is linked together in the same discourse domain.Unfortunately, adversities common to other Computer Vision areas could causesystem failures, for instance due to acquisition conditions, uncontrolled illumination,shadows, cluttered backgrounds �possibly in motion� etc. In addition, dealing withpeople entails numerous special di�culties such as posture changes, huge appearancevariability, or unforeseeable motion changes. Hence, location, orientation and linearor angular speeds may not be enough to describe human motion, since great structuralchanges should be expected. At least, these changes are restricted: a basic structureis preserved by maintaining a logical body part order �depending on the pose� anda relative aspect ratio between body parts. Bounded positions and speeds should alsobe expected.Alternatively, understanding people involves, as an essential aspect, intentionality.Relations between agents, and between an agent and its environment, must be takeninto account in order to explain some situations. Moreover, conceptual interpretationsof motion include a degree of uncertainty due to the inaccuracy of the semanticterms used to explain human behaviour. Therefore, considering the context will be adetermining factor.Due to this complexity, an HSE system is here presented as a highly modularisedand hierarchically organised framework. Thus, multiple co-operating modules are de-�ned through the di�erent levels. They work following both top-down and bottom-upapproaches in a closed loop, thereby de�ning the interactions of di�erent ComputerVision algorithms with other components, such as human behaviour modelling andNL text generation. This is done while taking into account the uncertainty gener-ated during motion naming, i.e. the textual explanation of perceived motion. HSErequires intermediate models of human motion to associate geometric knowledge withconceptual statements. Thus, each level exploits the a-priori knowledge provided bymodels and context.Levels are de�ned according to main functionalities. The whole structure is highlyinterconnected, and each level receives inputs from higher and lower ones, providingthe system with redundancy. The inter-level communication can be seen in threedi�erent ways: �rst of all, a data stream is provided to the higher levels by lower onesincluding all the results obtained in the bottom-up process; secondly, higher levelsfeed back the lower ones in a top-down process, so that the whole procedure can beenhanced; at the same time, higher levels can act on the lower ones by tuning theparameters, and selecting di�erent operation modes, models or approaches dependingon what is known about the current scene, and what goals are pursued.Information is processed according to the following �ows: on the one hand, visualsensors provide evidences about the real world to the system at the Active-SensorLevel (ASL). Then, the next three levels process and analyse the image sequence. Atthe Image-Signal Level (ISL), the sequence of image data is processed by segmenting



3.1. MACHINE INTERFACE LEVELS 41potential targets. The resulting foreground regions are the basis for the followinglevel: the Picture-Domain Level (PDL). Possible segmentation errors generated atthe ISL are handled here by means of representation, classi�cation, and trackingtechniques. At the Scene-Domain Level (SDL), the 3D con�guration of the scene isused to compute the parameters of each agent within its 3D environment.Results obtained at either the PDL or the SDL are forwarded to the two higherlevels which perform the description of the obtained quantitative results, and �nallycarry out a principled reasoning over them. Hence, the Conceptual-Integration Level(CIL) instantiate semantic predicates for a given agent and time step. These quali-tative descriptions are used to generate interpretations of its motion, as well as con-ceptual relationships of the agent and its environment. Instantiated predicates arefed forward to the Behaviour-Interpretation Level (BIL), where the expected tem-poral evolution of descriptions are a-priori modelled in order to generate coherentspatio-temporal interpretations.On the other hand, a top-down process closes the loop by feeding back the lowerlevels with the results obtained at the higher levels. For example, the behaviour inter-pretation generated at the BIL is used at the CIL to avoid an exponential explosion ofsituation hypotheses; the current inferred situation permits to disambiguate trackingscenarios at the SDL; an scene analysis provided by the SDL allows the PDL to copewith the e�ect of the view point; the ISL can enhance the segmentation by takinginto account the presence of tracked targets.Finally, the User-Interface Level (UIL) provide NL descriptions of situations andbehaviours that occur within the scene. Further, an interactive Graphical User Inter-face (GUI) allows a single human operator to monitor a signi�cant area of interest.An example of an HSE into operation is shown in Fig. 3.2.3.1 Machine Interface LevelsThese levels, that can be seen as the lowest and highest ones in the hierarchicalarchitecture, constitute the interface between the Human-Sequence Evaluation systemand, on one side, the real world, and on the other, the user.3.1.1 Active Sensor Level (ASL)This level acquires raw video sequences and information about camera parameters.Pieces of reality can be captured by the cameras according to the kind of sensorused and the visual �eld. Thus, this level includes hardware devices, such as thecamera itself and the acquisition cards, and models to deal with these devices1. Suchmodels consist mainly of three modules which de�ne the camera, the digitiser and theencoder/decoder, respectively.The �rst module deals with the optic parameters �the focal distance, the opticcentre, the diaphragm aperture, the exposure time� and the camera position andorientation. The second module de�nes the transformation from camera signals toimage values, namely, the image resolution, the pixel depth, the number of frames1Such as a pin-hole camera model, a stereo camera model, or a model for PTZ camera.



42 CHAPTER 3. HUMAN-SEQUENCE EVALUATIONwhich are acquired per second, and the acquisition mode, colour or grey-scale. Thelatter is used when the image sequence must be encoded for transmission or securityreasons.Multiple cameras can be used and combined to produce a single scene mosaic. Apanorama can also be obtained by making use of pan-tilt cameras.Finally, being the sensors active, the system is allowed to modify the cameraparameters depending on the task and environment conditions. Thus, the cameramodule could modify the focal length �zooming in or out allowing active vision�or the aperture depending on the light conditions; and the viewpoint �panning andtilting. The digitiser module could change the image resolution and pixel depth whena higher accuracy is required; the frame rate could be also adjusted to the scenedynamics.3.1.2 User Interaction Level (UIL)At this level, human-computer communication is carried out. Multiple modules canbe included in order to bring new interaction capabilities, such as natural language,visual descriptions, or audio interactions.3.1.2.1 Natural Language (NL)One of the main tasks of the UIL is to provide a natural-language description of whatis actually happening within the scene. The quantitative information generated atlower levels is associated with qualitative semantic terms such as verbs, nouns, adverbsand adjectives, and it is used to generate natural sentences by means of syntactical,morphological, and orthographic rules.The �rst step involved is the elaboration of a corpus made by native speakers.Then, a technique is required to facilitate the conversion of conceptual informationinto linguistic outputs. At the lexicalisation step, the logical predicates importedfrom the BIL are clustered into appropriated lemmas by means of an ordered set oflanguage-dependent rules.After that, Text Generation Rules (TGRs) are speci�ed in order to infer thesyntactical order of the input lemmas. Subsequently, morphological rules are appliedover the set of lemmas to properly in�ect the linguistic elements (number, gender,tense...). Lastly, orthography provides punctuation symbols to the sequence of wordsto be delivered to the �nal user.3.1.2.2 Graphical User Interface (GUI)Keeping track of multiple people, vehicles, and their interactions among them andwith other objects, within a complex scene is a di�cult task. A GUI allows a singlehuman operator to e�ectively monitor a signi�cant area of interest. Thus, the GUIautomatically places virtual agents representing people and vehicles into a syntheticview of the environment.This approach has the bene�t that visualisation of scene events is no longer tied tothe original resolution and viewpoint of a single video sensor. Through this interface,



3.2. IMAGE ANALYSIS LEVELS 43the user can act on individual sensor units, modify the system parameters, select oneparticular approach, and ask for situation descriptions, behaviour explanations, andsynthetic simulations.An audio-based interactive environment can also be here considered to enhancethe user interaction.3.2 Image Analysis LevelsThese levels perform image processing, and a subsequent data analysis according to2D-picture or 3D-scene representation.3.2.1 Image Signal Level (ISL)At this stage, the task is to process the bit �ow that represents the image sequenceprovided by the sensor modules. This is carried out, frame by frame, by the ISL,whose main goal is to segment foreground objects. The results obtained at this levelinvolves two main issues, namely foreground segmentation and data representation.Several pre-processing tasks such as noise �ltering are also carried out at this level.As a result of the current level, a compact image representation of the foregroundobjects is given to the PDL.This level receives also feed-back from the PDL Level. Thus, information aboutmodels and context can enhance the level performance in both accuracy and ro-bustness senses. The ISL can act on active sensors in order to modify the cameraparameters. Thus, a better segmentation could be obtained.3.2.1.1 Image Feature SelectionA set of image features are extracted from each frame. Several cues can be useddepending on the application aim, which assumptions and heuristics are considered,and the methods chosen to achieve the goals from each task. The di�erent imagefeatures to be used are selected by the higher levels and extracted at this level fromthe image sequence. They are used to carry out several tasks including segmentation,classi�cation, tracking or identi�cation through the di�erent levels. Di�erent cuescan be taken into account to carry out the same task in order to provide the wholeprocess with redundancy, and thus with robustness. However, not all the selectedcues will be used to perform the same task. Thus, di�erent subsets of cues could bemore appropriate to the di�erent tasks.This feature set could include intensity values, colour, gradients, disparity, motion,texture, curvature, lines, edges, shape and depth.It will be desirable to allow higher levels to tune �according to the currentscenario� the cue value range of interest, resolution, thresholds, colour spaces, motionsensitivity, texture patterns, and other parameters of interest.



44 CHAPTER 3. HUMAN-SEQUENCE EVALUATION3.2.1.2 Foreground SegmentationThis task involves separating image regions that do not belong to the background, andextracting them. Targets can be segmented following an appearance segmentation �which requires high-level information� or by means of motion segmentation. Thismodule may implement also several methods to perform the latter, such as temporaldi�erencing, optical �ow, background subtraction, or a combination of these.3.2.1.3 Image Data RepresentationThis task may be seen as placed in the interface between the ISL and the PDL.Features are here manipulated to obtain representations which can be handled by thePDL. In addition, segmented objects are represented in a compact way in order toreduce the complexity of the search space and remove confusing elements.This representation can be foreground-oriented or image-oriented. Among theformer, points �centroid, median coordinate, contour points, axis points� boundingboxes, blobs, contours or more elaborate structures made of segments or blobs can beused. Among the latter, spatial and spatio-temporal transformations (Fourier, PCA,Wavelets, DCT, histograms), and features points representations can be taken intoaccount.3.2.2 Picture Domain Level (PDL)The purpose of this level is to carry out an image analysis in order to perform thefollowing tasks: a classi�cation of the targets already segmented by the ISL, and thetracking of them through the sequence of frames. As a result, the tracked labelledtargets are supplied to the PDL Level.This level receives also feed-back knowledge from the PDL level �such as pro-jected 3D model and information about the scene� and from the CIL �concerninganalysed situations. Besides, the level is acting on the ISL. Thus, it would be possi-ble to choose which cues to extract, the segmentation method or the representationapproach, as well as to perform background updating according to high-level infor-mation, threshold tuning, etc.3.2.2.1 Target Classi�cationTargets can be classi�ed according to whether they are agents or objects, that is, bytaken into account if they are targets with intentional capabilities, or not. Dependingon the chosen resolution, regions such as body parts can be also classi�ed.Again, multiple approaches can be taken into account, in this case depending onwhether a shape model is used or not. If no shape model is used, the target can still beclassi�ed according to its shape, appearance features, or movement. The former maybe based on representations such as projection histograms, or on structural relationlike key points order, curvature, symmetry, or aspect relations such as compactness.Features classi�ers are based on (skin) colour, texture, intensity, or salient points.Therefore, some heuristics should be used in the classi�cation process. The properheuristics are selected by higher levels depending on the available information about



3.2. IMAGE ANALYSIS LEVELS 45the scene. In any of these two kind of approaches, the classi�cation can be done afterthe representation of the segmented entities is achieved.On the contrary, movement classi�ers analyse the periodic nature of the move-ment, or whether there are any kinematic restrictions. This requires that the targetshave been tracked for a time period. Both kind of classi�cations can be combined.On the other hand, an a-priori shape model can be used to perform the clas-si�cation. Two options can here be considered: using a 2D model or a 3D modelprojection. The former would be located at the PDL. Several object representationscan be chosen allowing the comparison between segmented target and the model.The second option would consist in using the projection of a 3D model. This modelwould be located at the SDL and its projection should be given to the PDL in orderto compare it with the current image representation. Features used to perform thecomparison include edges, contours, blobs texture, colour or intensity, segments andjoints, depth, or movement. In this case, structural models could provide possiblehuman con�gurations.Once a target has been segmented and classi�ed, it is considered that the detectionhas been performed.3.2.2.2 Target TrackingThis phase involves matching targets in consecutive frames, thereby establishing co-herent target relations over time. The process is based on predicting the target's nextstate and evaluating the results according to what is found in the current image. Thestate could include information about spatial position, speed, shape or appearance.Hence, transition models are required. They describe the target's motion, pro-viding a set of equations. It is possible to distinguish between dynamic and aspectmodels. The former deals with global position changes, whereas the latter models theshape and appearance changes. These models can be locally located at the PDL, orprovided by higher levels according to learn patterns, 3D projections, etc.Several context restrictions can also be used in order to narrow the search. Theyare usually provided by higher-level feedback, although it is also possible to learntthem over time. These constrictions could include speed limits, forbidden areas givenby collisions, allowed shapes, et cetera.3.2.3 Scene Domain Level (SDL)At this stage a higher-level tracking process is performed taking into account 3Dknowledge. Thus, the results provided by the PDL are re�ned using a 3D humanmodel2. A 3D scene model can also be used, thereby providing context restrictionsas well as a set of heuristics. Using a correspondence model, the level knowledge isfed-back to the PDL. This model may be placed in the interface between both PDLand SDL.2It is interesting to remark that the information �ow can be very �exible. For example,a segmentation based on depth cues represents a direct collaboration between the ISL andthe SDL.



46 CHAPTER 3. HUMAN-SEQUENCE EVALUATIONSeveral kinds of shape models can here be used to represent the human body.Thus, the model can be made of sticks, polygons, 3D surfaces (such as patches) andvolumes. Sticks are used to model the skeleton while the other representations are usedto model the �esh. Both components, skeleton and �esh, can be used simultaneously.Among the volume representations, it is possible to use several geometric primitivessuch as cylinders, cones, spheres or prisms. This last representation could be used totake into consideration not only structural and kinematic properties, but also dynamicones.Again, this level is acting on the lowest levels by selecting proper models, pa-rameters and approaches according to the current 3D knowledge about the currentscene.3.3 Cognitive LevelsThe following two levels carry out �rst a description of the current scene situation,and subsequently perform spatio-temporal reasonings over the inferred descriptions,thereby explaining agent potential behaviours.3.3.1 Conceptual Integration Level (CIL)This level aims to describe conceptual situations according to the data given by bothPDL and SDL3. Thus, all the conceptual knowledge used for HSE is implementedat the CIL as a set of logic predicates. This level should cope with the temporaland uncertainty aspects inherent in the integration of numerical values into concep-tual terms. This include dynamic occurrences, uncertainties of the state estimationprocess, and intrinsic vagueness of conceptual terms.Two source of knowledge are established. Firstly, the quantitative knowledgeembedded in the numerical state vector such as position, speed or orientation values.Since the state vector is determined by the nature of the parameters used for tracking,semantic terms will refer to dynamical, positional and postural properties of thehuman agent. These quantitative parameters are associated to semantic conceptslike moving, slow, small, and crawling or lying, along with a fuzzy degree of validitycharacterising how good a concept matches the numerical parameter value.Secondly, spacial relationships of each agent w.r.t. its environment are derivedby considering the positions of the agents and other static objects in the scene. Thisis implemented by applying a distance function between the positions of the di�erentagents and objects in the scene. Subsequently, a discretisation of the resulting distancevalue is obtained by using fuzzy logic, thus allowing to instantiate logic predicates,such as the presence or proximity of other agents or objects in terms such as left ornear, and events such as grouping or splitting and occluded. Other spatial relationshipsare derived by considering the semantics of the scene, so a conceptual scene modelis required to identify speci�c locations within the environment, or events such asentering or exiting.3Again, another example of �exible collaboration is given by the fact that the CIL caninfer conceptual situation from 2D results provided by the PDL.



3.4. DISCUSSION 47All the aforementioned conceptual knowledge generated at the CIL at each timestep is called a situation. As a result of this stage, conceptual descriptions or situationsare given to the Behaviour Interpretation Level. Further, the context informationprovided by the BIL is used to prune the number of potential situation hypotheses.3.3.2 Behaviour Interpretation Level (BIL)By means of spatio-temporal reasonings �based on semantic terms� this level aimsto explain behaviours and intentions. Then, the inferred information could be usedto predict future situations. Due to the impossibility of modeling all possible humansituations, the expected evolution of situations to be described are modelled a-priorifor improving spatio-temporal interpretation. That means, the BIL selects thosesituations to be instantiated at the CIL, thus allowing to interpret the intentions ofthe agent in a goal-oriented manner.There exists a data �ow in two directions, top-down and bottom-up, which mayrestrict the combinatorial explosion of data and the reproduction of errors. On the onehand, top-down data �ow is generated for hypothesis veri�cation. This informationmay be forwarded to the lower levels of the architecture to assist segmentation andtracking procedures, thereby constraining the uncertainty in lower levels. On theother hand, bottom-up data �ow corresponds to potential semantic descriptions �hypotheses made at the CIL based on estimations� derived from motion analysisprocesses carried out at the PDL and SDL.3.4 DiscussionHSE is focused on the transformation of image data into semantic descriptions innatural language, and vice-versa. This transformation process implements motionunderstanding in the Computer Vision domain. HSE involves di�erent topics suchas acquisition; detection and tracking; recognition; interpretation; human behaviourmodeling; and NL textual generation and synthetic visual representation. These mainsteps are organised within an architecture based on a set of cooperating modules, eachone devoted to a speci�c task.The proposed HSE architecture embeds three goals. Firstly, the estimation ofspatio-temporal descriptions of human motion in terms of quantitative knowledge �this is done at the ASL, ISL, PDL and SDL. Secondly, the association of geometricparameters with semantic predicates �what is done at the CIL and BIL. Thirdly, thegeneration of NL texts explaining the meaning of observed human motion patterns,and the synthetic visualisation of them �performed at the UIL.Three information channels can be considered depending on the image resolutionand camera views. Thus, a trajectory analysis can be considered for the whole scene,thereby detecting and tracking the agents within it. By making use of closer camerasor using active camera zooms, their body posture can be evaluated. Finally, witha higher resolution, their face can be resolved su�ciently well, and facial emotionscan be analysed. It is also interesting to integrate these three modes into a singleapplication environment.



48 CHAPTER 3. HUMAN-SEQUENCE EVALUATIONThis architecture must be considered as a framework to perform HSE, that is,a way to organise the di�erent tasks that can be carried out by a Cognitive VisionSystem. However, it must not be seen as a �xed structure, but a rather �exibleone dependent on the goal of the current application. That means that non-relevanttasks can be avoided and the implementation does not have to strictly follow thisstructure. For instance, a counting people or a video-surveillance application may notneed any SDL functionality, and perhaps only a zenithal 2D view is required. A �xedsegmentation method and cues can be selected avoiding having the need to selectdi�erent ones.The ISE Lab aims to design a Cognitive Vision System for human motion andbehavior understanding, followed by the communication of the system results to end-users, based on two main goals: the �rst goal is to determine which interpretations arefeasible to be inferred from three di�erent categories of human motion, i.e. the motionof agent, body and face. The second objective is set to establish how these three typesof interpretations can be linked together (i) to coherently evaluate the human motionas a whole in image sequences, and (ii) to communicate inferred interpretations usingnatural-language texts or virtual environments as a visual language.The rest of this work is focused on the ISL, PDL and CIL within the HSE frame-work. The mail goal is to perform a robust MTT. Therefore, detection, estimationand adaptation tasks are here addressed. This requires target segmentation, represen-tation and tracking. Further, model adaptation, target interactions, and extraneousevents demand situation description.It is worth to say that the proposed system is also prepared to be integrated inthe near future in a complex HSE architecture. Obtained results are currently beingforwarded to further conceptual and behaviour interpretation. High-level informationabout the context and current situations provided by cognitive levels of the HSEframework will enhance tracking performances. Make future use of multiple activecameras from several point of views is also feasible, and will solve problems derivedfrom the use a �xed point of view.3.5 ResumASH se centra en la transformació de les dades d'una imatge a descripcions semàn-tiques en llenguatge natural, i viceversa. Aquest procés de transformació comporta lacomprensió del moviment en el camp de la Visió per Computador. ASH implica temesdiferents com l'adquisició; la detecció i el seguiment; el reconeixement; la interpretació;el modelatge del comportament humà; i la generació de textos en llenguatge naturalaixí com la representació visual sintètica. Aquests passos principals s'organitzen dinsd'una arquitectura basada en un conjunt de mòduls que cooperen, però on cada unestà dedicat a una tasca especí�ca.L'arquitectura d'ASH proposada s'arrela en tres objectius. En primer lloc, l'estima-ció de descripcions espaitemporals del moviment humà en termes de coneixementquantitatiu �això es fa a l'ASL, ISL, PDL i SDL. En segon lloc, l'associació deparàmetres geomètrics amb predicats semàntics �que es fa al CIL i BIL. Finalment,la generació de texts en llenguatge natural explicant el signi�cat dels patrons de movi-



3.5. RESUM 49ment observats, així com la visualització automàtica d'animacions virtuals� realitzatsa l'UIL.Es poden considerar tres canals d'informació depenent de les vistes de la imatge,així com la resolució de la càmera. Així, es pot considerar una anàlisi de trajectòriesper a l'escena sencera, detectant i seguint així els agents dins d'aquesta. Fent ús decàmeres més properes o utilitzant càmeres actives amb zoom, la postura del cos espot avaluar. Finalment, amb una resolució molt més alta, la cara es pot analitzarsu�cientment bé, i es poden analitzar emocions facials. És també interessant integraraquests tres modes en un domini d'aplicació únic.Aquesta arquitectura s'ha de considerar com un marc per realitzar ASH, és a dirde, una manera d'organitzar les diferents tasques que poden ser fetes per un Sistemade Visió Cognitiu. Tanmateix, no s'ha de veure com una estructura �xa, sinó �exiblei dependent de l'objectiu de l'aplicació a desenvolupar. Això signi�ca que es podenevitar tasques no pertinents ja que l'aplicació no ha de seguir estrictament aquestaestructura. Per exemple, un comptador de persones o una aplicació de vigilància devídeo pot no necessitar funcionalitat de SDL, i potser només és demanat un punt devista zenital 2-D. A més, es pot seleccionar un mètode de segmentació �x evitant tenirla necessitat de seleccionar-ne diferents.Els propòsits de Laboratori d'ISE per dissenyar un Sistema de Visió Cognitiu pera la comprensió del moviment i comportament humans, seguida per la comunicaciódels resultats a usuaris �nals, estan basats en dos objectius principals: el primerobjectiu és determinar quines interpretacions són factibles per ser inferides en les trescategories diferents de moviment humà, i.e. d'agent, cos i cara. El segon objectiu ésestablir com aquests tres tipus d'interpretacions poden ser connectats junts (i) peravaluar coherent i globalment el moviment humà en la imatge , i (ii) comunicar lesinterpretacions inferides mitjançant texts en llenguatge natural o en entorns virtualscom a llengua visual.La resta d'aquest treball se centra en l'ISL, PDL i CIL dins de l'estructura ASH.L'objectiu és realitzar un MTT robust. Per això, les tasques de detecció, representaciói adaptació són encarats tot seguit. Això exigeix la segmentació d'objectes, la sevarepresentació i el seu seguint. A més, per a la descripció de situacions es requereixl'adaptació dels models, les interaccions entre objectes, i l'anàlisi esdeveniments ex-terns.Cal dir que el sistema proposat també es prepara per ser integrat en el pròximfutur en una arquitectura ASH més complexa. Els resultats obtinguts s'estan enviantactualment per promoure la interpretació conceptual del comportament. La infor-mació d'alt nivell sobre el context i les situacions actuals proporcionades per nivellscognitius realçaran els rendiments aconseguits. L'ús futur de càmeres actives múlti-ples des d'uns quants punt de vistes també és factible, i resoldrà els actuals problemesobtinguts per l'ús un punt de vista �x.
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Figure 3.1: HSE framework evolved from [25]. Levels are de�ned accordingto main functionalities. Thus, each level performs some general task suchas providing a machine interface �ASL, UIL� processing and analysing theimage sequence �ISL, PDL, SDL� and describing and reasoning over theobtained quantitative results �CIL, BIL.
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Figure 3.2: Example of an HSE system into operation in an indoor scene.





Chapter 4Multiple-Target Tracking based onParticle FilteringIn this chapter, the �rst proposal to tackle multiple-target tracking is developed. Here,tracking is performed by enhancing the particle �ltering framework. This approachhas been widely explored by several previous algorithms, as discussed before. Despitethis e�ort, many undesirable e�ects still remain. These are here highlighted, andsome proposals are presented in order to cope with them.4.1 Framework OutlineA probabilistic framework is commonly used as a way to perform tracking in orderto deal with uncertainty over time [80]. Classical approaches, such as the KalmanFilter [48], rely on linearity and Gaussianity assumptions about the involved distri-butions, see Appendix D.More recent works make use of Bayesian �lters combined with Monte Carlo Sim-ulation methods in order to deal with nonlinear and non-Gaussian transition modelsand non-Gaussian likelihood functions [77, 59]. Subsequent developments have in-troduced a re-sampling phase in the sequential simulation-based Bayesian �lter algo-rithms [27]. These approaches are known as particle �ltering within the control �eldor survival of the �ttest in Arti�cial Intelligence.Such methods were �rst introduced in the computer-vision research area by Isardand Blake, and renamed as Condensation [38, 40]. They have been widely used inrecent years [41, 15, 91, 57, 89, 58, 42, 74, 67, 95, 16]. Excellent reviews have beenpresented by Doucet [18], and by Arulampalam et al. [3]. Further, comprehensivetreatments are given in [19, 76]. However, several important drawbacks remain, asstated by King and Forsyth [52]. Despite the great number of improvements thathave been already introduced, many open issues prevent from stating that particle�lters are able to solve unconstrained tracking problems.In order to perform the following analysis, a strong probabilistic background isrequired. Basic statistics are summed up at Appendix C. For further proofs and53



54 CHAPTER 4. PARTICLE-FILTERING TARGET TRACKINGexplanations, see [51, 80]. Simulation techniques are covered in [77, 59].4.2 Probabilistic FrameworkFrom a probabilistic point of view, the tracking problem involves dealing with stochas-tic processes. These are series of time-slices describing the state of all entities withinthe scene. Each time-slice consists of a set of random variables1. Two kind of variablescan be distinguished, namely unobservable state variables at time t, denoted as St,and observable evidence variables, denoted as Et. The interval between time-slicesdepends on the frame rate2.In order to specify the dependencies among the di�erent variables, these are or-dered following a temporal criterion, i.e, taking causality into account. This meansthat the variables from previous time-slices cause the values of subsequent time-slicevariables. Thus, it should be possible to specify conditional probability density func-tions for all variables given their predecessors, from now on called parents [80]. On theorder hand, variable conditional independence within a time-slice could be establishedgiven a set of parents.However, since every time-slice must be considered, several problems arise:1. There is an unbounded set of conditional probability density functions.This problem can be overcome making the homogeneous process assumption:The process is governed by laws that do not change themselves over time.Hence, there is no need to specify all conditional pdf but only those within arepresentative time-slice.2. There is an unbounded set of parents.Let us consider separately the e�ect of the parents on the state variables St andon evidence variables Et. Considering the Markov assumption on both statesand evidences, it is possible to get over this problem:(a) The current state St depends only on a �nite history of previous states,
St−τ :t−1.Therefore, the state could be de�ned as the information needed to makethe future independent from the past given the present. In �rst-order1The following notation is here used: related to variables, non-bold lowercase denotesscalars, whereas bold lowercase denotes vectors, and matrices are given by bold uppercase.In a probabilistic context, uppercase denotes probability density functions (pdf) and randomvariables; lowercase denotes probabilities and variable instances. Xt1:t2

denotes a variableset from time t = t1 to t = t2.2This parameter is set considering the possible dynamics of the targets that could appearin the scene.



4.2. PROBABILISTIC FRAMEWORK 55Markov processes the current state only depends on the immediately pre-vious one. Here, this kind of Markov processes is considered, since it isalways possible to reformulate a non �rst-order Markov process as a �rst-order one by increasing the state variable set [80].Thus, the state variables are conditional independent of all other previousvariables given the previous state:
P (St | S0:t−1,E1:t−1) = P (St | St−1) . (4.1)The latter conditional pdf is called the transition model. In the trackingproblem here presented, the transition model will be split into a dynamicmodel, which considers the target's motion, and an aspect model, whichcaptures the target's shape and appearance.(b) The evidence variables at time t Et depend only on the current state St.Hence, the evidence variables are conditional independent from all othervariables given the state:
P (Et | S0:t−1,E1:t−1) = P (Et | St) . (4.2)In this case, the latter conditional pdf is called the observation or sensormodel . It is also called the likelihood function since it forecasts how likelyan observation is, once the state is given. It models a causal relation: itis the current state which causes the obtained evidence.Thus, the developments within the scene can be modelled as a Hidden Markov Model(HMM) where St constitutes the unobservable or hidden state variables and Et theobservable evidence variables at time t. The HMM is described by:

• an initial prior state density function, P (S0);
• the transition model3, P (St | St−1) for t ≥ 1;
• the likelihood function, P (Et | St) for t ≥ 1;
• both assumptions on variable conditional independence stated in Eqs. (4.1) and(4.2):� the state variables, {St; t∈ N} ,St ∈ R

ns , given the immediately previousstate St−1; ns denotes the state-space dimension;� the evidence variables, {Et; t∈ N} ,Et ∈ R
ne , given the correspondingstate variable; ne denotes the evidence-space dimension.3A sequence of random variables St satisfying the Markov assumption is called a Markovchain. If the conditional probability density functions P (St | St−1) are time independent,the Markov chain is called homogeneous. However, it does not mean that the probabilitydensity functions of consecutive states are the same, P (St) = P (St−1), a fact that is calledstationarity.



56 CHAPTER 4. PARTICLE-FILTERING TARGET TRACKINGGiven both models and assumptions, it is possible to specify the complete joint densityfunction:
P (S0:t,E1:t) = P (Et | S0:t,E1:t−1) P (S0:t,E1:t−1) (cond. prob.)

= P (Et | St)P (S0:t,E1:t−1) (Markov on ev.)
= P (Et | St)P (St | S0:t−1,E1:t−1)P (S0:t−1,E1:t−1) (cond. prob.)
= P (Et | St)P (St | St−1)P (S0:t−1,E1:t−1) (Markov)
...

= P (S0)

t∏

k=1

P (Ek | Sk)P (Sk | Sk−1) , (4.3)which speci�es the probability of every event within the scene and, therefore, cananswer every probabilistic query about it. Unfortunately, it is usually too complex tobe analytically computed.4.3 Bayesian FilteringLet us now consider the probabilistic inference problem in which the state variable set
S1:t is estimated from the observed evidence e1:τ , �nding out the posterior probabilitydensity function P (S1:t | e1:τ ). Let us also focus in one of the posterior pdf marginals,
P (St | e1:τ ).The previous computation is called smoothing if t < τ , �ltering or monitoringif t = τ , and predicting if t > τ . The general term estimating comprises all threeprocesses. This work is focused on �ltering, the computation of the belief state St�or, even better, the posterior pdf over the current state P (St | e1:t)� given allevidence up to date e1:t.In this case, instead of the causal relation given by the likelihood function whichassigns probabilities to potential evidences given the state, the �ltered pdf allows tomake and inference about the state given the evidence.This pdf can be calculated through recursive estimation, that is, computing thenew posterior given the previous one and the new evidence [18, 80]:
P (St | e1:t) = P (St | e1:t−1, et) (4.4)

∝ P (et | St, e1:t−1) P (St | e1:t−1) (Bayes')
= P (et | St)P (St | e1:t−1) (Mark. on ev.)
= P (et | St)

∫
P (St | st−1, e1:t−1)P (st−1 | e1:t−1) dst−1 (cond.)

= P (et | St)︸ ︷︷ ︸

∫
P (St | st−1)︸ ︷︷ ︸P (st−1 | e1:t−1)︸ ︷︷ ︸ dst−1.likelihood︸ ︷︷ ︸ trans. model previous post.

︸ ︷︷ ︸updating prediction (Markov)
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Figure 4.1: Temporal propagation of posterior density functions. A deter-ministic drift and a stochastic spreading given by the transition model yieldthe temporal prior. Then, the new posterior is obtained by using the correc-tion given by likelihood function.The pdf is projected forward according to the transition model, making a predic-tion. Then, it is updated in agreement with the new evidence, et. The predictionterm represents the density function after applying the transition model to the pre-vious posterior density function. It leads to the so-called prior density function,
P (St | e1:t−1). It is called prior because it is previous to the likelihood correction.The temporal propagation of the posterior pdf marginal can be seen as a di�usion�reinforcement process, see Fig. 4.1. The transition model has a deterministic and astochastic component. The former imposes a drift to the probability density function,while the latter causes the spreading of the pdf that increases the state uncertainty.Subsequently, the likelihood function reinforces the pdf in the vicinity of observationsaltering the peaks and reducing the uncertainty.4.4 Monte-Carlo SimulationUnfortunately, the recursive estimation given above leads to expressions that areimpossible to evaluate analytically unless strong assumptions are made. For example,the Kalman Filter is a linear recursive estimator which assumes a linear Gaussian



58 CHAPTER 4. PARTICLE-FILTERING TARGET TRACKINGtransition model, and a Gaussian likelihood function.In a more general framework, this problem is overcome by making use of Monte-Carlo methods4, where N independent-and-identically-distributed (i.i.d.) randomsamples, {si
t; i = 1 : N

}, are generated from the posterior pdf, P (St | e1:t).On the one hand, a simulated probability density function is given by the followingexpression:
P̃ (St | e1:t) =

1

N

N∑

i=1

δ
(
St − si

t

)
, (4.5)where δ (·) denotes the Dirac delta function.On the other hand, the posterior expectation is given by:

µ , EP (St|e1:t) [St] =

∫
StP (St | e1:t) dSt, (4.6)and the posterior variance by:

σ2 , EP (St|e1:t)

[
S2

t

]
− E

2
P (St|e1:t)

[St] . (4.7)Let us now consider the following estimate:
S̄N =

∫
StP̃ (St | e1:t) dSt =

1

N

N∑

i=1

si
t, (4.8)if both posterior expectation and variance are �nite, it follows, due to the CentralLimit Theorem, that when N → ∞, S̄N has a distribution that is approximatelynormal, which mean is the posterior expectation µ and its variance is proportional tothe posterior variance σ2:

S̄N − µ∼̇N
(

0,
σ2

N

)
. (4.9)Therefore, the posterior expectation EP (St|e1:t) [St] can be estimated and, in ad-dition, the deviation from the true value follows a normal distribution. Moreover,the higher the number of samples is, the lower the estimate variance will be. Theseresults are also applied for expectations of the form:

EP (St|e1:t) [φ (St)] =

∫
φ (St)P (St | e1:t) dSt (4.10)where φ (·) is a general function of the state.However, there are several drawbacks which prevent from using the method asit is presented above. The posterior pdf, P (St | e1:t), is usually complex enough,4Stochastic simulation techniques are referred as Monte-Carlo methods for the Casinos ofMonte Carlo, the capital city of gambles. Roulette wheels and dice rolls are simple randomnumber generators.



4.5. SEQUENTIAL IMPORTANCE SAMPLING (SIS) 59multivariate, and only known up to a proportionality constant. These problems makeimpossible to sample directly from it. Thus, alternative solutions are required.4.5 Sequential Importance Sampling (SIS)It is possible to avoid the di�culty of sampling directly from the posterior density bysampling from an importance or proposal distribution, Q (S0:t | e1:t). As it will beproved, the posterior density function can be approximated arbitrary well by drawingsamples from a proposal distribution, and thereby, obtaining approximations of theexpectations of interest. Without the lack of generality, results are here obtained forthe �rst raw moment, i.e, the mean:
µP (S0:t|e1:t) =

∫
S0:tP (S0:t | e1:t) ds0:t (4.11)

=

∫
S0:t

P (S0:t | e1:t)

Q (S0:t | e1:t)
Q (S0:t | e1:t) ds0:t (proposal distr.)

=

∫
S0:t

P (e1:t | S1:t)P (S0:t)

P (e1:t)Q (S0:t | e1:t)
Q (S0:t | e1:t) ds0:t. (Bayes)By de�ning the unnormalised importance weights as:

πt =
P (e1:t | S1:t)P (S0:t)

Q (S0:t | e1:t)
, (4.12)and conditioning over the evidence probability density function, it follows that:

µP (S0:t|e1:t) =
1

P (e1:t)

∫
S0:tπtQ (S0:t | e1:t) ds0:t (4.13)

=

∫
S0:tπtQ (S0:t | e1:t) ds0:t∫

P (e1:t | S1:t) P (S0:t) ds0:t
(conditioning)

=

∫
S0:tπtQ (S0:t | e1:t) ds0:t∫

P (e1:t | S1:t) P (S0:t)
Q(S0:t|e1:t)
Q(S0:t|e1:t)

ds0:t

(prop. distr.)
=

∫
S0:tπtQ (S0:t | e1:t) ds0:t∫

πtQ (S0:t | e1:t) ds0:t
(weight def.)

=
EQ(St|e1:t) [S0:tπt]

EQ(St|e1:t) [πt]
. (expect. def.)Both expectations can be approximated by sampling from the proposal distri-bution. Thus, the posterior distribution mean is thereby approximated using thefollowing estimate:
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S̄N =

1
N

N∑

i=1

si
0:tπ

i
t

1
N

N∑

i=1

πi
t

=

N∑

i=1

si
0:tπ

i
t, (4.14)where:

πi
t =

πi
t

N∑

j=1

π
j
t

, (4.15)
denotes the normalised importance weights. The posterior density function can thenbe approximated in the following way:

P (S0:t | e1:t) ≈ P̃ (S0:t | e1:t)

≈
N∑

i=1

πi
tδ
(
S0:t − si

0:t

)
, (4.16)what results from comparing Eq. (4.8) and Eq. (4.14).Considering a �ltering scenario, that is, assuming that current states will not bemodi�ed by future observations, the proposal distribution can be decomposed as:

Q (S0:t | e1:t) = Q (S0:t−1,St | e1:t) (4.17)
= Q (St | S0:t−1, e1:t)Q (S0:t−1 | e1:t) (cond. prob.)
= Q (St | S0:t−1, e1:t)Q (S0:t−1 | e1:t−1) (Mark. on ev.)This allows us to obtain a recursive expression for the importance weights:
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πt =

P (e1:t | S1:t)P (S0:t)

Q (S0:t | e1:t)
(4.18)

=
P (e1:t | S1:t)P (S0:t)

Q (St | S0:t−1, e1:t)Q (S0:t−1 | e1:t−1)
(proposal decomp.)

=
P (e1:t | S1:t)P (S0:t)

Q (St | S0:t−1, e1:t)Q (S0:t−1 | e1:t−1)

πt−1

P (e1:t−1|S1:t−1)P (S0:t−1)
Q(S0:t−1|e1:t−1)

(weight def.)
= πt−1

P (e1:t | S1:t) P (S0:t)

Q (St | S0:t−1, e1:t)P (e1:t−1 | S1:t−1)P (S0:t−1)

= πt−1
P (et | S1:t, e1:t−1)P (e1:t−1 | S1:t)P (St | S0:t−1)P (S0:t−1)

Q (St | S0:t−1, e1:t)P (e1:t−1 | S1:t−1) P (S0:t−1)
(cond. prob)

= πt−1
P (et | St)P (St | St−1)

Q (St | S0:t−1, e1:t)
(Markov),where

• P (et | St) is the likelihood function;
• P (St | St−1) is the transition model;
• and, Q (St | S0:t−1, e1:t) is the proposal distribution.A common and easy choice for the proposal distribution �for instance, the one takenin [40]� is:

Q (St | S0:t−1, e1:t) ≈ P (St | St−1) . (4.19)In this case, the importance weights are given by:
πt = πt−1P (et | St) , (4.20)and the normalised importance weights are given by:
πi

t =
πi

t−1p
(
et | si

t

)

N∑

j=1

π
j
t−1p

(
et | sj

t

) . (4.21)However, this choice has several drawbacks derived from the fact that not incor-porating the observations introduces errors in the prediction. Thus, it may be thecase that only a few particles have signi�cant weights after being evaluated, speciallywhen the likelihood function is much narrower than the temporal prior.



62 CHAPTER 4. PARTICLE-FILTERING TARGET TRACKING4.5.1 Degeneracy ProblemThe SIS algorithm have an intrinsic problem which prevents from using it as it is.As it is proved in [18], the variance of the importance weights increase over time.This result has devastating consequences on the simulation performance, since themajority of the normalised importance weights tend to zero after few iterations. Thissamples being numerically insigni�cant, they are not taken into account in the pdfapproximation. This result implies a sample wastage and a poor representation of theposterior distribution.4.6 Sequential Importance Re-sampling (SIR)Under this approach, a re-sampling stage is used to prune those particles with neg-ligible importance weights, and multiply those with higher ones. Thus, samples arere-sampled with replacement using the importance weights as probabilities.This idea is based on the factored sampling algorithm [28] designed for stationarypdf's. It works as follows: A posterior representation is given by the Bayes' theorem:
P (S | e) ∝ P (e | S)P (S) , (4.22)but the likelihood function is complex enough to prevent the posterior being evaluatedin closed form. Thus, sampling techniques are proposed to generate random variatesfrom a distribution P̃ (s) that approximates the posterior P (S | e). A sample set of

N i.i.d. random samples, {ŝi; i = 1 : N
}, is simulated from the initial prior densityfunction, P (S). The algorithm assigns normalised weights πi to each sample in theset according to the likelihood function:

πi =
p
(
e | ŝi

)

N∑

j=1

p
(
e | ŝj

)
. (4.23)Subsequently, the samples are selected �or re-sampled� from the sample set withprobability πi. Therefore, the new sample set, {si; i = 1 : N

}, represents the posteriordensity function, P (S | e), accurately as N → ∞. Obviously, some particles may bechosen several times, especially those with higher weights. Thus, some samples in thenew set could be identical. On the other hand, samples with lower weights could benot chosen at all.This weighted particle representation is shown in Fig. 4.2, where the posterior den-sity function is represented by blobs whose centres are the sample set {si; i = 1 : N
}and their area is proportional to the observation value given by the weights πi.This idea was introduced by Gordon et al. [27] within a Bayesian �ltering frame-work, thereby leading to Sequential Importance Re-sampling (SIR) �lters. Here, aposterior probability density function represented by samples is iteratively computed.The pdf undergoes a di�usion-reinforcement process, and the reinforcement stage is
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Figure 4.2: Posterior pdf representation as set of weighted particles. Seetext for details.followed by a run of the factored sampling algorithm presented above. Thus, thefactored sampling is extended by applying it iteratively to successive time-slices.Subsequently, this techniques were introduced in the Computer Vision �eld, aswell as in other areas such as Arti�cial Intelligence, or Automatic Control. Therefore,these methods are also variously called: particle �ltering �after the use of samples orparticles as the way of propagating the probability density function� survival of the�ttest �after the re-sampling stage� bootstrap �ltering5, etc. In Computer Visionthey are widely used under the name of Condensation, after the paper presentedin [38].4.6.1 The Condensation AlgorithmThe Condensation algorithm was presented by Isard and Blake in short form atthe European Conference on Computer Vision in 1996 [38]. Later on, it was fullydeveloped in [40]. This intended to track a human contour, which moves in clutteredbackground, given a raw video signal as data.Condensation addresses the �ltering problem when no assumption about linear-ity or Gaussianity is made on almost all involved probability density functions. Thealgorithm is based on Bayesian �lters. Therefore, it computes a posterior probabilitydensity function P (St | e1:t) which undergoes the di�usion-reinforcement process de-scribed above. Because of the analytical problems already exposed, it makes use ofMonte-Carlo simulation techniques.5The use of the term bootstrap derives from the phrase "to pull oneself up by one'sbootstrap", widely thought to be based on one of the eighteenth century Adventures of BaronMunchausen, by Rudolph Erich Raspe. In the context of this thesis, it means that thealgorithm starts up and recovers by itself: �ttest old samples give rise to many new ones.



64 CHAPTER 4. PARTICLE-FILTERING TARGET TRACKINGIt follows the aforementioned SIR approach. Thus, the posterior pdf at time
t − 1, P (St−1 | e1:t−1), is given by a set of tuples, each of them consisting in onesample and its weight, {ŝi

t−1, π
i
t−1; i = 1 : N

} or, after applying the factored samplingalgorithm, by the re-sampled sample set {si
t−1,

1
N

; i = 1 : N
}. In this case, since allparticles are evenly weighted, weights are not displayed and the notation is reducedto {si

t−1; i = 1 : N
}.Summarising, the four density functions involved in a Bayesian �lter are:1. the initial prior density function, P (S0);2. the transition model, P (St | St−1) for t ≥ 1;3. the likelihood function, P (Et | St) for t ≥ 1;4. the posterior state density function, P (St | e1:t) for t ≥ 1.The initial prior density function is now the only one supposed to be Gaussian. There-fore, the initial sampling is straightforward. Samples are propagated using the ap-proach described above, that is, by sampling them from the transition model. Thus,there is no need to sample from the previous posterior in subsequently iterations.This fact avoids one of the main problems of the approach based on Monte CarloSimulation, i.e., sampling from a complex, multivariate and only known up to a pro-portionality constant posterior pdf.This algorithm works as follows: each iteration starts with the prediction stagewhere the temporal prior P (St | e1:t−1) is obtained by applying the transition model

P (St | St−1) to the previous posterior. Computationally, this is done in two steps.In the �rst place, a deterministic drift is applied to each sample of the previousposterior,{si
t−1; i = 1 : N

}. Obviously, those samples which were identical will un-dergo the same drift. Then, the random component, i.e. the di�usion, is appliedcausing identical samples to split. As a result of this stage, the sample set representsthe prior density function at time t, {ŝi
t; i = 1 : N

}.The second stage consists in the likelihood correction where the sample weightsare calculated according to:
πi

t = p
(
ei

t | ŝi
t

)
. (4.24)It is worth to notice that there is no need to recursively propagate the weights�as done in Eq. (4.21)� since all previous weights are even and equal to 1

N
after there-sampling stage. Once all samples have been propagated and measured, the �nalstage applies the factored sampling to carry out the re-sampling phase. Thus, weightsare normalised:

πi
t =

πi
t

N∑

i=j

π
j
t

, (4.25)where πi
t denotes the i-th sample normalised weight at time t.
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Figure 4.3: Cumulative distribution.Algorithm 1 Re-sampling stage.
• For each sample si

t:1. a random number is generated from a Uniform distribution, r ∈
[0, 1].2. the smallest k index for which ck

t ≥ r is found.3. the corresponding sample is selected, si
t = ŝk

t .
• end for iSampling from the discrete set {ŝi

t; i = 1 : N
} with probabilities πi

t can be accom-plished by sampling from a discrete uniform distribution, projecting the index ontothe sample cumulative distribution range and then onto the distribution domain [18],see Fig. 4.3.The cumulative probability distribution is constructed according to:
c0
t = 0,

ci
t = ci−1

t + πi
t, i = 1 : N. (4.26)Then, the new sample set, {si

t; i = 1 : N
} is calculated by generating a randomnumber, and selecting the sample whose corresponding cumulative probability exceedthis number. This process is summarised in Algorithm 1.Finally, the sample set represents the posterior pdf at time t, P (st, e1:t). The



66 CHAPTER 4. PARTICLE-FILTERING TARGET TRACKINGAlgorithm 2 Condensation.Propagation
• for each sample in the set {si

t−1
; i = 1 : N

} do1. predict the sample values ŝi
t using the transition model P (St | St−1);2. measure the sample weights πi

t, Eq. (4.24);
• end for iState Estimation
• Estimate the state according to Eq. (4.27);Re-sampling
• Normalise the weights, Eq. (4.25);
• Compute the cumulative probabilities as in Eq.(4.26);
• Call the algorithm in Algorithm 1.

sample set size N is kept constant over time for all iterations. The expected value attime t can be approximated as:
EP (St|e1:t) [St] ≈

N∑

i=1

πi
tŝ

i
t (4.27)

≈ 1

N

N∑

i=1

si
t. (4.28)It is interesting to remark that the accuracy of any estimate �such as the meanand covariance� of the posterior distribution can only decrease as a result of the re-sampling stage. Thus, if these quantities are to be used or displayed, then these shouldbe computed prior to re-sampling, as in Eq. (4.27), instead of using the posteriorexpression in Eq. (4.28).The algorithm is graphically depicted in Fig. 4.4, and summed up in Algorithm 2.
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Figure 4.4: Condensation algorithm: a graphical representation of oneiteration. See text for details.4.6.2 The Drawbacks of the Condensation AlgorithmCondensation has certainly been widely applied between 1999 and 2003. Accordingto Cite-Seer6, it has a peak of over 35 citations in 2001 and 271 hits within theCite-Seer database. It has been considered fast and e�cient due to its two mainadvantages:1. �rst of all, it can represent multi-modal density functions. This fact allows usto consider multiple hypotheses, which is essential in scenes where backgroundclutter or other moving objects7 could mimic the target. Thus, it is possible topropagate multiple hypotheses which are pruned or reinforced in each iterationdepending on their likelihood.6http://citeseer.ist.psu.edu/7Which does not mean that several targets can be tracked at the same time using thealgorithm as it is.



68 CHAPTER 4. PARTICLE-FILTERING TARGET TRACKING2. The second advantage is that, maintaining the sample set size �xed, it wassupposed to be able to run with bounded computational resources in near realtime8.Isard and Blake proved in [40] the asymptotic correctness of the algorithm by showingthat the sample set representation of the posterior density function has weak anduniform convergence as N →∞. Thus, it is stated that each sample at time t of thesample set {si
t; i = 1 : N

} is drawn from a probability density function P̃ (St | e1:t)such that P̃ (St | e1:t)→ P (St | e1:t), where → denotes weak, uniform convergence9.However, they already warned that the convergence was proved for N →∞ givena �xed t. Therefore, the sampled representation approximates the true distributionwith a desired accuracy but only for a �xed number of frames T . Nothing is saidabout the limit T →∞. Thus, at later times larger values of N may be required.They also stated that there is no information about how large N should be for a re-quested precision and, therefore, it is heuristically determined. These and other unde-sirableCondensation side-e�ects were thoroughly discussed by King and Forsyth [52].They are brie�y presented in the next paragraphs.One of the main drawbacks of the re-sampling algorithms is a phenomenon calledsampling impoverishment. Let us consider that the samples are spread around severalmodes10. King and Forsyth demonstrated that, with probability one �what is calledan almost sure event11�, all samples will end up in one of those modes. Moreover,the probability that one mode absorbs all samples is proportional to the number ofsamples that started in it. Therefore, spurious modes have a non-zero probability ofusurping all samples, causing the true mode to be lost.Although sampling impoverishment is well studied and proved in [52], it can alsobe informally explained as a result of what is called genetic drift : consider a �nitepopulation and one particular gene. The frequency of the gene will not be exactlyreproduced in the o�spring due to sampling errors. This sampling error is propagatedover time. The initial frequency is lost because there is not any kind of geneticmemory. Eventually, this random process leads to a population where this gene iseither lost or is present in every individual. In both cases, no further changes are8However, as will be shown later, having a �xed sample set size has several drawbacks.Further, the number of samples required to ensured acceptable performances in high di-mensional spaces prevent from a real-time use in most applications. An on-line sample-setsize adaptation was explore was Fox [22] by evaluating the approximation error using theKullback-Leibler distance; this was kept bounded by modifying the sample set size.9Weak convergence: for every Q de�ned in a probability space, 〈P̃ (st | e1:t) , Q
〉
→

〈P (st | e1:t) , Q〉 where 〈〉 denotes the inner product.Uniform convergence: for every ε > 0, there exists a natural number N such that forall st and all n > N , |p̃ (st | e1:t) − p (st | e1:t)| < ε.10The term mode here refers to each local maximum of the distribution.11There is a subtle di�erence between an event being sure and almost sure. On the onehand, a sure event will always happen, and no other event can ever happen. On the other,if an event is almost sure, other event are allowed to occur, but they happen almost never.Thus, for instance, in�nite sequences of events, or a continuum of outcomes, allow eventswith zero-probability to occur �like hitting with a dart a particular point.



4.6. SEQUENTIAL IMPORTANCE RE-SAMPLING (SIR) 69possible. Thus, one mode has disappeared and it cannot be recovered. The Markovchain that modelled the process has reached an absorbing state, and its distributionis known as a stationary distribution which means that P (St+1) = P (St).Condensation uses factored sampling. This process involves a loss of informa-tion. The probability for one sample of being selected is given by its weight. Considernow that several samples could be identical and similar samples form modes that canbe far enough one from the other. The probability of propagating one mode is pro-portional to the number of samples that constitute it. Sample impoverishment meansthat all but one of these modes could disappear, and this fact has a non-negligibleprobability of happening in �nite time.Considering a real-time tracking application �whose frame rate can be set forinstance at 30 frames per second, which means 30 generations per second� it isobvious that many modes could disappear in less than seconds. How many secondswill be needed is only a matter of how many samples are used.Moreover, lost modes have a very low probability of being recovered. The di�usionprocess could preserve diversity, as mutation does in genetics. However, the distancebetween modes is usually bigger than the di�usion. One sample will need severaliterations in order to move from one mode to another. But the likelihood in theregion between modes is small, thereby making such a journey highly improbable.Summarising, there is a non-negligible probability of losing modes, a low probabilityof recovering them, and the remaining modes could be all spurious.There is also another interesting fact, albeit undesirable as well. Isolated pop-ulations, starting with identical gene frequency, can end up in di�erent absorbingstates. Thus, variation within populations is turned into variations between popula-tions. Returning to the tracking problem, this fact means that di�erent runs of thealgorithm lead to di�erent results. Therefore, computed expectations may have highvariance. However, computed expectations within the same algorithm run have lowvariance making the tracker look stable.A yet another remarkable phenomenon is caused by the tendency of Conden-sation towards clustering samples. Even when the likelihood function gives no in-formation at all, i.e, there is nothing to track in the scene, samples become quicklyconcentrated. It strongly looks as if the tracker is following something, when actuallyit isn't. Of course, the peaks tracked di�er from run to run.Finally, Condensation was designed to keep multiple hypotheses but only for asingle target. Thus, multiple-target tracking was not feasible. Further extensions andvariations from other authors [74, 57] usually lead to the so-called curse of dimen-sionality12.King and Forsyth proposed two approaches to tackle sampling impoverishment.In the �rst place, they suggested using fewer re-sampling steps. Obviously, a wellconstrained dynamic model would be required, what is usually not feasible. Thesecond suggestion implies generating new samples occasionally. This suggestions has12This is a term coined by Richard Bellman in 1961 to refer to the problem caused bythe exponential increase of an hyper-volume as a function of space dimensionality: addingextra dimensions causes an exponential growth of the number of required samples to denselypopulate the space.



70 CHAPTER 4. PARTICLE-FILTERING TARGET TRACKINGbeen followed by Varona et al. in [91], and within the importance-sampling framework,by Isard and Blake [41].4.7 An Approach to MTT by Particle FilteringIn this section, an proposal based on particle �lters is developed in order to performMultiple-Target Tracking. The approach was initially inspired in the iTrack algo-rithm �within the SIR framework� implemented by Varona in his PhD thesis [90].Subsequently, the focus has been placed in coping with two main di�culties:1. inherent drawbacks of SIR methods;2. and, scenario-dependent problems.On the one hand, serious computational problems arose due to the inability of man-aging particle sets which must be big enough to populate adequately the search space,thereby being able of representing arbitrary distributions. Thus, particles should bewisely steered and re-sampled, so as to reduce the number of required particles. Issuessuch as sample impoverishment, and the curse of dimensionality must be tackle in aprincipled way.On the other hand, robust tracking requires to deal with expected di�culties, suchas background clutter and target occlusion. The non-rigid nature of the targets, alongwith changing illumination conditions, make model updating unavoidable. However,model drift should be prevented at any cost to ensure tracking viability.4.7.1 State ModellingA �rst-order dynamic model in image coordinates is used to model the motion of thecentral point of a bounding box. This bounding box is considered the region withinthe scene which is thought to enclose the target.Thus, the target's motion is characterised by its position at time t, xt = (xt, yt)
T ,and its speed, ut = (ut, vt)

T . This dynamic model involves the assumption of constantspeed �acceleration will be given by Gaussian noise�- which can be more o lessrealistic depending on the target's dynamics and the frame rate. It usually holds intrajectory-analysis applications at current common frame rates of 25-30 fps.The aspect model is given by a bounding box and an appearance matrix. Theformer, denoted by wt = (wt, ht)
T , de�nes a rectangle whose size is given by its width,

wt, and its height, ht. The latter, denoted by At, stores the pixel intensity valueswithin the bounding box. An indicator of the expected likelihood value is given by
λt. This stores expected matching, taking into account that di�erences will be founddue to sensor noise, changes in illumination, shape deformations, etc.The occlusion status is inferred and store in ρt. This is a binary variable whichpoints out whether the target is the nearer one in a group to the camera.Finally, a label l associates a speci�c appearance model to the correspondingsamples, allowing multiple-target tracking. Therefore, the l−target's state is de�nedas sl
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4.7. AN APPROACH TO MTT BY PARTICLE FILTERING 714.7.2 Transition ModelSeveral independence relationships are assumed in order to determine the transitionmodel. It is considered that both aspect and dynamic models are independent, thatthe position only depends on the previous position and speed, the speed on the pre-vious one, and so does the bounding box on and the appearance. Therefore, thetransition model can be split:
P (St | St−1) = P (Xt,Ut,Wt,At | Xt−1,Ut−1,Wt−1,At−1) (4.29)

= P (Xt | Xt−1,Ut−1) P (Ut | Ut−1)P (Wt |Wt−1)P (At | At−1) .Given the constant speed assumption, the dynamic model can be de�ned accord-ing to:
P (Xt | xt−1,ut−1) = N (Xt;xt−1 + ut−1∆t,Σx) , (4.30)

P (Ut | ut−1) = N (Ut;ut−1,Σu) . (4.31)Thus, the position state variable Xt evolves according to a linear Gaussian whosemean is a linear expression of its parents and the variance is �xed and heuristicallydetermined. ∆t is the sampling period. Time is considered discrete and measured inframes. Thus, ∆t equals 1. Position is also discrete and measured in pixels. On theother hand, the speed state variable Ut evolves according to a Gaussian whose meanis its parent and the variance is again heuristically �xed according to the expectedtarget acceleration. These two covariance matrices are denoted by Σx and Σu.In order to implement the aspect model, it is assumed that the shape evolvessmoothly, and the appearance is �xed between consecutive frames according to:
P (Wt | wt−1) = N (Wt;wt−1,Σw) , (4.32)
P (At | At−1) = δ (At −At−1) . (4.33)where Σw denotes the size covariance matrix.Although the appearance is considered to be �xed when propagating the state, itwill eventually be updated once the posterior expectation is computed.Therefore, the position, speed, and size of each sample are predicted accordingto:
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t = x

i,l
t−1 + u

i,l
t−1∆t + ξi
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i,l
t = ul

t−1 + ξi
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ŵ
i,l
t = w

i,l
t−1 + ξi

w, (4.34)where the random vectors ξi
x, ξi

u, ξi
w, sampled from WAGN processes, provide thesystem with a diversity of hypotheses.



72 CHAPTER 4. PARTICLE-FILTERING TARGET TRACKINGSample likelihoods depend on sample position and size, but not on their speeds.Thus, if speeds were propagated considering the previous speed, they would be inquasi open loop13. Thus, their values could become completely di�erent from thetrue values within a few frames, and an important proportion of samples would bewasted. In order to avoid this phenomenon, the estimated target speed ul
t−1 at time

t− 1 is fed back into the prediction of x̂
i,l
t .After the initialisation, no sample is generated using detection, since it wouldmask tracking misbehaviours. Thus, just tracking performances are tested by meansof propagating hypotheses and weighting them according to evidence. Clearly, byincorporating detection, the general performance will be enhanced, providing thesystem with error-recovery capabilities.4.7.3 Template-based Likelihood FunctionIn a visual tracking context, the likelihood function gives the probability densityfunction of image features given the state. The intensity is chosen as image feature.Features are considered pixel-oriented. Hence, the appearance is given by a matrixwhose elements are the pixels' intensity values.Let It be a matrix whose elements are the scene pixel intensity values at timet. Thus, evidence et is given by the input image sequence It. Given the predictedpositionXt and bounding-box sizeWt, the corresponding image sub-region is denotedby I

p
t . The model appearance matrix must be scaled according to the sample size.Let As be the model scaled matrix. Thus, assuming that the likelihood function isindependent of the speed component, it can be expressed as:

P (It | St) = P (It | Xt,Wt,At)

= P (Ip
t | As

t ) , (4.35)and, once assumed constant appearance between frames andWhite Additive GaussianNoise, the likelihood function can be de�ned as a similarity measure which averagesthe likelihood of all pixels within the bounding box14:
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)
, (4.36)13There would still be a weak relation, since speeds are used to predict positions, andposition errors can be measured, but a considerable delay would be introduced, as it will beshown in the experimental results.14This expression does not pretend to follow a probabilistic derivation. The likelihoodfunction is usually de�ned in terms of a distance, and this distance is here computed fromthe likelihood of each pixel within the bounding box.



4.7. AN APPROACH TO MTT BY PARTICLE FILTERING 73where M is the number of pixels of the appearance model, (a, b) de�nes a pixel posi-tion in the appearance matrix and σ2
n is the camera noise variance, which randomlyin�uences the pixels' intensity values.4.7.4 Weight NormalisationIn a multiple-target tracking scenario, those targets whose samples exhibit lower like-lihood are more likely to be lost, since the probability of propagating one mode isproportional to the cumulative weights of its samples. In order to avoid one targetabsorbing other target samples, genetic drift must be prevented. Thus, a memoryterm, which takes into account the number of targets being tracked, is included.Weights are normalised according to:
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L
, (4.37)where L is the number of tracked targets. Each weight is normalised according tothe total weight of the target's samples. Thus, all targets have the same probabilityof being propagated, since the addition of the weights of each target samples sums

1
L
. This allows multiple-target tracking using a single PF framework, despite thedi�erences between their likelihoods and the genetic drift phenomenon.4.7.5 State EstimationThe l-target estimates are computed according to:
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, (4.38)where αx, αu, αw ∈ [0, 1] denote the adaptation rates. Target speeds are not esti-mated according to sample speeds and their weights, since signi�cant errors would beintroduced: samples are chosen only because of sample weights, which do not directlydepend on the current speed. This fact could imply a signi�cant amount of jitter andmany samples would be wasted. Therefore, target speeds are computed from succes-sive position estimates. Further, both position and speed estimates are enhanced byregularising them according to their histories.



74 CHAPTER 4. PARTICLE-FILTERING TARGET TRACKINGThe target appearance must also be updated. However, this is a sensitive taskwhich may lead to the well-known model drift phenomenon. Thus, models are thenonly updated when two conditions hold:
• the target is not occluded;
• and, the likelihood of the estimated target's state suggests that the estimate issu�ciently reliable.In this case, they are updated using an adaptive �lter:

Al
t = (1− αA)Al,s

t−1 + αAIl
t, (4.39)where αA ∈ [0, 1] is the learning rate, and Il

t is the image sub-region cropped giventhe target new estimate position and size xl
t,w

l
t.In order to determine when the estimate is reliable, the likelihood of the currentestimate is computed, p

(
et | sl

t

). The appearance is then updated when this valueis higher than an indicator of the expected likelihood value, calculated following anadaptive rule:
λl

t = (1− αl)λl
t−1 + αlp

(
et | sl

t

)
. (4.40)4.7.6 Occlusion handlingAlthough the appearance model is not updated during occlusions, these still constitutea main cause of catastrophic failures. Partial occlusions may cause inaccurate sizeupdating, according to the area that can be seen. In case of complete occlusions,sample likelihoods are meaningless, and the re-sampling phase randomly propagatethem, quickly losing the target.Hence, proper handling of occlusions is crucial. The state binary variable ρl

ttracks the occlusion status. Occlusions are predicted according to the learnt dynamics.When the predicted occlusion is signi�cant, and the target likelihood is lower than theexpected one given by λl
t, the target state changes into occluded. Then, the followingchanges are introduced:

• neither the size, nor the velocity or the likelihood-expectation indicator areupdated; the position is just propagated
• those samples belonging to the occluded target are not re-sampled. As a result,samples are spread around the target because of the uncertainty predictionsterms. The other targets' samples are re-sampled, but are not assigned to theoccluded target, since otherwise this one would monopolise the whole sampleset.When the occlusion is no longer predicted, or a sample likelihood exceeds the valueprevious to the occlusion, ρl

t turns into zero, which immediately implies pruning thosesamples with lower weights. Furthermore, all estimates are again updated.



4.7. AN APPROACH TO MTT BY PARTICLE FILTERING 754.7.7 Extension of the Tracking AlgorithmBounding-boxes and templates can hardly model the shape and appearance of non-rigid targets. The target region representation is changed into an ellipse in order toreduce the number of background pixels included in the model. Now, the motion ofthe central point of an elliptical region is modelled using �rst-order dynamics in imagecoordinates.Further, the target appearance is represented by means of colour histograms.Histograms are broadly used to represented human appearance, since they are claimedto be less sensitive than colour templates to rotations in depth, the camera point ofview, non-rigid targets, and partial occlusions. By using colour as image featureinstead of intensity, a better target disambiguation can be achieved.Thus, the l−model is given by:
pl =

{
pl

k; k = 1 : K
}

, (4.41)where K is the number of bins, and the probability of each feature is:
pl
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δ (b (xa)− k) , (4.42)where Cl is a normalisation constant required to ensure that∑K
k=1 pl

k = 1, δ the Kro-necker delta, {xa; a = 1 : M} the pixel locations, and b (xa) a function that associatesthe given pixel to its corresponding histogram bin.The l-labelled target's state is then de�ned as sl
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)T , wherecomponents are the ellipse position, velocity, both axes, the appearance model, theocclusion status, and the expected target likelihood.4.7.7.1 A Colour-based Likelihood functionThe target distribution at the predicted position x̂
i,l
t and ellipse size ŵ

i,l
t , is given by

pl
i, which is calculated in the same way as the model. The similarity between twohistograms can be computed using the following metric [14, 67]:
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, (4.43)where
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k, (4.44)is known as the Bhattacharyya coe�cient. Therefore, similar histograms have a high
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(a) (b)Figure 4.5: Examples of a centre-surround model with safety margin.(a) Tracked van from a tra�c-monitoring sequence. (b) Tracked person froman indoor surveillance application in a shopping centre. Regions from cen-tre to border: target estimation, safety margin, surrounding background, andnon-local background.Bhattacharyya coe�cient, which should correspond to high sample weights. Thecomputed metric can be mapped using a Gaussian distribution [67], and samples arethus weighted according to:
π

i,l
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t

)
= N

(
dB; µ, σ2

)
. (4.45)So far no background information has been used. However, tracking success de-pends on how distinguishable the target is from a local environment. Thus, foregroundfeatures present also in its surroundings should be less important for target localisa-tion. Here, an approach similar to [14] is adopted by using a centre-surround modelto compute the local background histogram ql according to the outer region whichencloses the target, see Fig. 4.5.The local background region is given by an ellipse which encloses the tracked oneby de�ning two margins of dimension κs ∗ max (h, w). The potential incorporationof own target pixels, specially if the target shape cannot be fairly represented by anellipse is minimised by taking into account just the outer region to build the localbackground histogram. κs is usually equal to 0.1 for the inner margin and 0.3 for theouter one. Hence, the background histogram is used to compute a weight for eachbin:
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, (4.46)where ql∗

k is the minimum non-zero value. Thus, these weights are then applied to thetarget histogram to diminish the importance of those bins which represent the localbackground. Hence, the resulting Bhattacharyya coe�cient is



4.7. AN APPROACH TO MTT BY PARTICLE FILTERING 77Algorithm 3 MTT particle �lteringPropagation
• for i = 1 to N do1. predict the sample values ŝ

i,l
t using the transition model in Eq. (4.34)2. measure the sample weights πi

t according to Eq. (4.45)
• end for iUpdating
• normalise the weights as in Eq. (4.37)
• predict occlusion percentage according to target's dynamics models
• for l = 1 to L do1. evaluate occlusions according to target collision and likelihoods2. estimate the target state:(a) if target is occluded then set adaptation rates αx, αu to zero(b) estimate target position and speed according to Eq. 4.38(c) if the target estimate is reliablei. update target's sizeii. update the appearance models following Eqs. (4.38),(4.48)iii. update λl

t as in Eq.(4.40)
• end for lRe-sampling
• Build the cumulative distribution as in Eq.(4.26)
• for i = 1 to N doif target l is occluded then keep the sample: s

i,l
t = ŝ

i,l
t .else proceed with re-sampling as in Algorithm 1

• end for i
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ρw
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k. (4.47)Finally, in the state-estimation stage, Eq.(4.39) is changed accordingly:
pl

t = (1− αq)pl
t−1 + αqp

l
t, (4.48)where αq ∈ [0, 1] is the learning rate which weights the most recent values versus thehistoric ones. The complete algorithm is summarised in Algorithm 3.4.8 DiscussionWith this work we have attempted to take a step towards solving the numerousdi�culties which appear in MTT applications by means of particle �ltering15.Dynamics updating is modi�ed by feeding back the estimated speed into theprediction stage. The target's speed is estimated from successive position estimates.Both position and speed estimates are now regularised. Thus, sample wastage issigni�cantly reduced. In addition, trajectory jitter is considerably attenuated.Di�erent likelihood function have been explored in order to properly evaluatesamples associated to targets which present a high appearance variability. Finally,the approach relies on the Bhattacharyya coe�cient between colour histograms toperform this task.Model updating is carried out with special care, in order to overcome the modeldrift phenomenon. A multiple-target tracking scenario causes several problems, in-cluding sampling impoverishment and mutual occlusions. These issues are tackledby rede�ning the weight normalisation, and predicting and handling occlusions. Theproposed sample-weight normalisation avoids losing any of the targets due to the lackof samples.Although signi�cant advances have been obtained �see chapter on experimentalresults� the approach is far from being suitable to perform multiple target trackingin cluttered environments under uncontrolled conditions in long sequences. This isdue to multiple facts:

• Monte-Carlo methods are usually not able to densely populate a high-dimensionspaces. Estimations are performed from a limited number of samples. Thisresults in poor state approximations when dealing with multi-modal pdf's.
• Top-down approaches require extremely constrained models, which is not fea-sible in generic applications. Errors in the estimation are propagated, therebycausing model drift.15Experimental results obtained using the presented approach in both synthetic and realscenarios are shown in the corresponding chapter, see section 6.2 on page 147.
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• An independent observation process from prediction is required to cope withestimation errors with a �nite number of samples. This entails the necessity abottom-up process.
• Likelihood functions are usually not discriminative enough.Taking all these issues in mind, a novel approach which simultaneously takes advan-tage of both bottom-up and top-down paradigms is developed in next chapter. Asstated by the English Franciscan Friar William of Ockham in the 14th century, "en-tia non sunt multiplicanda praeter necessitatem". This principle16 suggests to selectthe theory that introduces the fewest assumptions and postulates the fewest entities,which is of course not the case of PF's in uncontrolled environments.The hierarchical architecture presented in the following intends to make use of allavailable sources of information, while keeping the assumptions to a minimum, andavoiding the use of constrained models. Two trackers�motion-based and appearance-based� are embedded as modules in each pathway, i.e. bottom-up and top-down,respectively. In the proposed approach, these are implemented as a Kalman Filterand a Mean-shift tracker. Both functionalities can be carried out by a particle �lterlike the one above described �in case some conditions hold, like the existence ofconstrained models. Nevertheless, given the aforementioned reasons, the practicalimplementation has been left to the above stated �lters.4.9 ResumAmb aquest treball hem intentat avançar cap a la resolució de les nombroses di-�cultats que apareixen en aplicacions de MTT per mitjà de resultats de �ltratge.L'actualització de les dinàmiques es realitza alimentant-se de la velocitat aproximadaa l'escenari durant la predicció. La velocitat dels objectes es calcula des de successiusprediccions de posició. Es normalitzen ara les prediccions tant de posició com develocitat. Així, el desapro�tament de les mostres utilitzades es redueix signi�cativa-ment. A més a més, les desviacions en la predicció de la trajectòria també s'atenuenconsiderablement.Han estat explorats funcions de versemblança diferents per pròpiament avaluarque les mostres s'associaven a els objectes que presenten una variabilitat d'aspectemolt alta. Finalment, l'enfocament depèn del coe�cient Bhattacharyya entre his-togrames de color utilitzats per aquesta tasca.L'actualització dels models es fa amb una cura especial, per vèncer el fenomende la deriva del model. El seguiment de múltiples objectes provoca uns quants prob-lemes, incloent-hi l'empobriment de mostreig i les oclusions mútues. Aquests cassoses tracten rede�nint la normalització de pes, i pronosticant i manejant oclusions. Lanormalització proposada dels pesos de les mostres evita perdre qualsevol dels objectesa causa de la manca de mostres.Encara que s'han obtingut avenços signi�catius � vegi el capítol sobre resultatsexperimentals � l'enfocament és lluny de ser l'adequat per realitzar el seguiment de16It is usually referred as the `Ockham�s razor'



80 CHAPTER 4. PARTICLE-FILTERING TARGET TRACKINGmúltiples objectes en ambients oberts sota condicions incontrolades i en seqüènciesllargues. Això és a causa de múltiples fets:
• Els mètodes de Monte-Carlo no són normalment capaços de poblar densamentespais de dimensionalitat alta. Les prediccions es realitzen des d'un nombrelimitat de mostres. Això ocasiona aproximacions pobres en tractar amb pdf'smultimodals.
• Les aproximacions de Dalt-a-Baix exigeixen models extremadament restrictius,la qual cosa no és factible en aplicacions genèriques. Els errors en l'estimacióes propaguen, provocant així una deriva dels models.
• Es requereix un procés d'observació independent de la predicció per afrontarerrors en les prediccions amb un nombre �nit de mostres. Això suposa lanecessitat un procés de Baix-a-Dalt.
• Les Funcions de Versemblança normalment no són prou discriminatives.Prenent tots aquests problemes, es desenvolupa en el pròxim capítol una nova aprox-imació que prengui avantatge simultàniament de paradigmes tant de Baix-a-dalt comde Dalt-a-baix. Com va manifestar el Franciscà anglès William d'Ockham al segle14è, "entia non sunt multiplicanda praeter necessitatem". Aquest principi suggereixseleccionar la teoria que introdueixi les menors suposicions que pressuposi les menorsentitats, que naturalment no és el cas dels �ltres de partícules en entorns no controlats.L'arquitectura jeràrquica presentada tot seguit pretén fer ús de totes les fontsd'informació disponibles, mantenint les suposicions a un mínim, i evitant l'ús de mod-els massa restrictius. S'inclouen dos algorismes de seguiment �basat en moviment ien l'aparença� en cada sentit, i.e. de Baix-a-Dalt i de Dalt-a-Baix, respectivament. Enl'aproximació proposada a continuació, aquests s'implementen com un Filtre Kalmani un algorisme de Mean-shift. Les dues funcionalitats poden ser assolides per un �l-tre de partícules com el descrit anteriorment �in el cas de que algunes condicions esmantinguem, com l'existència de models restrictius. No obstant això, atès les susditesraons, es presenta una aplicació pràctica amb els �ltres anteriorment mencionats.



Chapter 5A Principled HierarchicalArchitecture to Multiple-TargetTrackingNon-supervised MTT involves such an inherent complexity that leads to propose astructured framework to accomplish such a task. First of all, reliable target seg-mentation is critical in every tracking system in order to achieve an accurate featureextraction without considering any prior knowledge about potential targets. This iseven more crucial in dynamic open scenes. However, complex interacting agents whomove through cluttered environments require high-level analysis.5.1 Approach OutlineOur proposal combines in a principled architecture both bottom-up and top-downapproaches. This is implemented as a modular and hierarchically-organised system.The resulting architecture is based on a set of co-operating modules which are dis-tributed through three levels. Each level is de�ned according to the di�erent tasks tobe performed: Target Detection, Low-Level Tracking (LLT), and High-Level Tracking(HLT). A sketch of this system1 is shown in Fig. 5.1.The di�erent modules take part in both bottom-up and top-down processes. Onthe one hand, the bottom-up process provides the system with capabilities for ini-tialisation, error-recovering and simultaneous modelling and tracking. On the otherhand, the top-down one builds the models according to a high-level event interpreta-tion, and allows the system to switch between the two operation modes implemented:Motion-Based Tracking and Appearance-Based Tracking.These concurrent processes are allowed due to the fact that in the proposed ar-chitecture the tracking task is split into two levels: the lower one, which is based on1The notation used through this chapter is summed up and explained in detail in Ap-pendix B. It may slightly di�er from the one used in the previous chapter due to practicalreasons derive from dealing with multiple approaches and algorithms.81
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Figure 5.1: Tracking architecture. It represents the current frame; the ob-servation, LLT and HLT data structures are denoted by Zt, Xt and St re-spectively; ut represents a vector of potential system control signals, while Ctrefers to high-level information. Matching results are explained in the text.Ongoing and future-planned modules are shown in transparent dash lines.
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Figure 5.2: Relations between the HSE framework and the proposed trackingarchitecture. See text for details.short-term blob trackers, and a higher one, based on long-term target trackers. Thelatter has a crucial importance: it automatically builds and tunes multiple appear-ance colour models, manages the events in which the target is involved, and selectsthe most appropriate tracking approach according to these. Therefore, the system canreact to what is taking place, and switch accordingly to a most convenient operationmode [60].It is interesting to remark that the tracking architecture presented in Fig. 5.1 is apart of the complex HSE framework shown in Fig. 3.1 on page 50. Thus, segmentationtasks within the Detection Level correspond to ISL; target detection and classi�cation,as well as LLT, and appearance representation within the HLT belong to PDL; andevent management, operation-mode selection, and other HLT tasks are assimilated toCIL2.2However, the HSE framework aims to be a conceptual abstraction of system function-alities, while the proposed architecture implements a real tracking system. Therefore, func-



84 CHAPTER 5. MULTIPLE-TARGET TRACKING ARCHITECTUREFurther, cognitive levels consequently require the global position, shape and ap-pearance of all targets within the scene: this information is fed forward by the track-ing system. In addition, this system can bene�t in the future from the cognitiveprocesses performed at the higher levels of the HSE framework. Finally, the scenecould be recorded using active cameras. In this case, an image mosaic would be built,and the entire process would be transparent for the architecture here presented. Therelations between both HSE framework and the implemented tracking architecture isshown in Fig 5.2.The current system design considers no use of a-priori knowledge about either thescene or the targets, based on extensive o�-line training or learning periods. The aimis to implement a system general enough to be independent of a particular scenario,and which can directly be used. However, the expected future use of this high-levelinformation can do nothing but enhance the current system performances3.In the following, a comparison is presented between the proposal and a naturalparadigm. Subsequently, each level shown in Fig. 5.1 is depicted in detail, as well asthe relations among the di�erent cooperating modules. Thus, it is the architectureitself what is considered as the main contribution: it introduces in the system thenecessary synergies which permit to tackle such a inherently complex problem. How-ever, contributions include not only the architecture itself, but also the developmentand improvement of the di�erent modules. Notwithstanding, there the main focusis placed on the high-level tracking algorithms. Hence, contributions have been pre-sented on diverse modules, levels ans tasks �such as on segmentation [37], low-leveltracking [26], high-level tracking [79], and event management [78].5.2 A Solution Inspired in a Natural ParadigmThe proposed architecture can be seen as a biological-inspired solution in manyways. In a natural paradigm, visual-stimuli processing can be divided into two cate-gories [44, 68]: on the one hand, bottom-up or pre-attentive processes carry out rawdata processing without high-level, a-priori learnt information �this is usually donequickly and apparently e�ortless in the whole visual �eld; on the other hand, top-down or attentive processes perform goal-oriented tasks by making use of context anddomain knowledge. Nevertheless, these two kind of processes are strongly linked, andthey occur simultaneously in a closed loop [68]. In this way, the latters are appliedto solve those cases in which the formers fail, and to tune them in order to focus theattention on the object of interest. Further, the pre-attentive stage of vision performsthe processing for di�erent visual cues, such as motion or colour. This is done in aparallel and independent way. Subsequently, these results are fused in the attentivestage.tionality correspondences have a degree of fuzziness, as represented in Fig 5.2.3The system can be particularised to a de�ned scenario by introducing known contextconstraints in the di�erent algorithm implemented in each module. Further, learning meth-ods can be considered to tune the algorithm parameters. However, it is worth to say thecurrent sensitivity to these is low enough to allow keep them �xed during the hundreds ofprocessed frames of each of the multiple considered sequences in many di�erent scenarios.
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Figure 5.3: Biological foundation of the tracking architecture. (Figure fromScene Understanding Symposium, MIT, T. Poggio, 2007)Hence, our proposed architecture follows this natural paradigm in several senses.As it has been stated, the approach is based on a two-level tracking system fed by a de-tection level. Thus, it combines the two stages of visual perception. Our pre-attentivestage provides a coarse localisation, while the attentive one performs an accuratetracking of those objects of interest, by means of a further analysis and hypothesiscon�rmation. This biological basis can also be found in other Computer Vision ap-plications, such as medical imaging retrieval, and face tracking approaches [64, 20].Further, the attention/back-projection information �ow4 is currently a challengingnew line of research [82], see Fig. 5.3.As intermediate objects, low-level trackers are created at a initial level of abstrac-tion, by processing segmented image data. This step provides several advantages:(i) segmentation errors due to noise, camou�age, or the inclusion of shadows and re-�ections are reduced, thereby limiting potential spurious structural changes; (ii) the4http://suns.mit.edu/SUnS07Slides/Poggio_SUnS07.pdf, T. Poggio, Scene Under-standing Symposium, MIT, 2007.

http://suns.mit.edu/SUnS07Slides/Poggio_SUnS07.pdf
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Figure 5.4: Detection level.low-level target representation can be handled by high-level entities, thereby reducingthe sensory gap between images and high-level abstractions; and (iii) the computa-tional complexity is cut down by using a compact representation, which also removesconfusing elements.Thus, low-level motion trackers perform a rough tracking where detailed modelsare avoided. No appearance information is used, and events are not analysed. Afterthis �rst stage of pre-attentive processing, and once the low-level trackers reach enoughcon�dence, the system performs selective examinations of the tracked objects thatdraw its attention. Hence, high-level trackers build accurate appearance colour-basedmodels, and analyse the events in which they take part in. This information is thenused to act on the lower trackers. Therefore, the output St from high-level attentivetracking algorithms is fed back to the lower levels, tuning pre-attentive cues, andyielding a closed-loop system.Further, the two implemented operation modes follow also the natural paradigm of�rst-order and second-order motion perception [66]. While the former is performed bydetecting luminance changes in a particular point of the retina, and correlating it witha delayed change at a neighbouring point, the latter depends on moving blobs de�nedin terms of contrast �di�erence in the color and brightness with the surroundings�or texture. Thus, an analogy can also be found between each tracking tier with humanperipheral or nocturnal vision in contrast to central colour vision.Finally, an structural biological foundation can be seen in the presented archi-tecture: each level has an inner feed-back loop, but the di�erent levels are part ofseveral outer loops. Thus, like in a vertebrate nervous system, decisions can be locallytaken, or given by a higher level [29]. See Appendix E for more information abouthow a Natural Vision System works, and about the hierarchical system of response
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Figure 5.5: Sensor response. The sensor response depends on the illuminantwavelength, and on the object re�ectance, apart from the sensor sensitivity.(Figure modi�ed from CS410 notes, Draper, 2006).generation.5.3 Detection LevelThe �rst level performs target detection from motion segmentation, see Fig. 5.4.The segmentation task is accomplished following a statistical background-subtractionapproach which uses either colour or intensity cues according to sensor response sc [37].The segmented image is subsequently �ltered, a connected component analysis isperformed, and extracted blobs are parametrically represented.The sensor response sc �for Lambertain, or perfect matte surfaces� dependson three components: the illuminant spectral power distribution L (λ), the objectre�ectance distribution R (λ), and the sensor sensitivity Sc (λ):
sc =

∫

λ

L (λ) R (λ)Sc (λ) dλ, (5.1)where λ denotes the wavelength, and c ∈ {R, G, B} the colour channel, see Fig. 5.5.Therefore, changes in the illumination �in both brightness and chrominance compo-nents� modify the sensor response, see Fig. 5.6. The object re�ectance may consid-erably depend on the both the incident-light angle, and the viewing angle. It alsomay present strong specular components, that have no information about the objectcolour. Finally, it depends on the sensor sensitivity, see Fig. 5.7. In addition, thesensor dynamic range must be taken into account. This is de�ned as the ratio be-tween the maximum possible signal versus the noise signal in dark. Thus, very low orvery high brightness distort the observed response. Consequently, these e�ects shouldbe considered as a source of potential errors during both background modelling andimage segmentation.Fig. 5.8 shows a case analysis of the potential segmentation casuistry using thecombination of two background models. These consists on a colour-based one whichseparates both chrominance and brightness component; and and intensity one com-puted for those pixels beyond the sensor range.



88 CHAPTER 5. MULTIPLE-TARGET TRACKING ARCHITECTURE

Figure 5.6: Illuminant Spectral Power Distribution. The illuminant SPDmay vary, thereby a�ecting the observed colour. (Figure modi�ed from CS320notes, Jepson, 2005).

Figure 5.7: Sensor sensitivity. Di�erent sensors presenta di�erent response to the same stimulus. (Figure fromhttp://astrosurf.com/build/70v10d/eval_htm).The colour base case is the correct operation of the chrominance model. Thus,a pixel is considered as foreground when it di�ers in chrominance with the model.Changes in illumination conditions �such as those cause by shadows� are supposed
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Figure 5.8: Segmentation casuistry based on chrominance and brightness.See text for details.to entail just variations in the observed brightness, but not in the chrominance.Secondly, very dark pixels do not have enough brightness to reliably compute thechrominance, since they are beyond the sensor dynamic range. A similar problemappears with very light pixels, which have at least one channel component saturated.A series of experiments with a Macbeth board were designed to explore these phe-nomena, see Fig. 5.9. The experiments show that a wrong background model maybe built depending on the illumination conditions. Thus, a Macbeth board is illu-minated with a constant light source. Then, the diaphragm is modi�ed in a seriesof time steps, thereby changing the received luminance. The red line denotes themodelled chrominance line, whereas the blue one corresponds to the actual one. Thebackground was modelled during 50 frames, and the corresponding pixel values aredrawn in green. Then, 650 more frames are acquired while changing the aperture.These pixel values are drawn in blue. These cases are addressed using the intensitymodel, being the intensity base case.Hence, the base case solves some of the segmentation problems, such as shadowsand highlights �independently of their being local or global, sudden or gradual�as long as the illuminant has a plain spectral power distribution. The anomaliesare problems that may appear, since they cannot be disambiguated using colour andintensity cues. The next anomalies should be taken into account: �rstly, foreground
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(a)

(b)Figure 5.9: Experiments on a Macbeth board to test the sensor dynamicrange. (a) This corresponds to a blue checker which is not observed withenough light during the modelling process. (b) In this case, the chrominanceof a yellow checker is modelled while some of the channels are saturated.Consequently, there are important deviations between the inferred and actualchrominance in both cases.
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Figure 5.10: Background modelling approach. See text for details.pixels with the same chrominance as the backgroundmodel are not segmented, and areconsidered camou�aged. Secondly, this is also the case of pixels with lower and higherbrightness, that cannot be distinguished from shadows and highlights, respectively.Finally, local and global changes in the illuminant chrominance, as well as gleamingsurfaces, cause false-positive segmentations.This casuistry is here used to implement an image-segmentation algorithm whichaddresses the base case by combining di�erent cues.5.3.1 Background ModelThe background is modelled on a pixel-wise basis [86, 30, 61, 81], which provides thenecessary model accuracy. This is carried out by using a window of T frames. Amotion �lter is used to remove moving pixels during the modelling stage:
∣∣∣Ic

a,t − Ĩc
a

∣∣∣ < max (κmσc
a, ε) , (5.2)where Ĩc

a is the median value of channel c ∈ {R, G, B} of pixel a during the T frames,
σc

a their standard deviation, κmthe factor that sets the con�dence region, and ε asmall positive quantity. This process is iterated until convergence. Then, just thosepixels with a representative number of valid values in the T frames are taken intoaccount for background modelling.Two cues, colour and intensity, are considered in order to build the backgroundmodel. On the one hand, those pixels whose RGB values are beyond the linear rangeof the sensor are also �ltered before building the Background Colour Model (BCM).On the other hand, those pixels values which are beyond the sensor dynamic range areused to build the Background Intensity Model (BIM). A sketch of the Background-Modelling Module is shown in Fig 5.10.The BCM is computed according to the representation shown in Fig. 5.11: �rst,the RGB mean µa and standard deviation σa of every image pixel a during the time
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Figure 5.11: Colour-model representation. µa represents the expected RGBcolour value for a pixel a, while Ia is the current pixel value. The line 0µashows the expected chromatic line �all colours along this line have the samechrominance, but di�erent brightness. αa and βa give the current brightnessand chrominance distortion, respectively.period t = [1 : T ] are computed:
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. (5.4)Once each RGB component is normalised by their respective standard deviation
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a, c ∈ {R, G, B}, two distortion measures are established: the brightness distortion,

αa,t, and the chrominance distortion, βa,t. The brightness distortion can be computedby minimising the distance between the current pixel value Ia,t and the chromaticline 0µa. This distance is, in fact, the chromatic distortion. Thus, the brightnessdistortions is given by:
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)2 , (5.5)and the chromatic one by:
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. (5.6)Finally, the Root Mean Square over time of both distortions for each pixel iscomputed: ᾱa and β̄a, respectively:
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ᾱa = RMS (αa,t − 1) =

√√√√√√
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T
, (5.7)

β̄a = RMS (βa,t) =

√√√√√√

T∑

t=0

(βa,t)
2

T
, (5.8)where 1 is subtracted to αa,t, so that the brightness distortion is now distributedaround zero: positive values mean brighter pixels, whereas negative ones mean darkerpixels, with regard to the learnt values. These values are used as normalising factorsso that a single threshold can be set for the whole image. This 4-tuple (µa, σa, ᾱa, β̄a

)constitutes the pixel colour background model.Unfortunately, chrominance cues cannot be used for those foreground pixels be-yond the sensor dynamic range. For this cases, the brightness of the BCM is used assegmenting cue.The BIM consist on a 2-tuple given by the mean pixel intensity, µI
a and its stan-dard deviation σI

a. It is computed for those non-in-motion pixels which have a repre-sentative number of values beyond sensor dynamic range.5.3.1.1 Automatic Threshold SelectionThe model is completed by an automatic threshold computation for a given detectionrate. A new frame is presented and normalised distortions are calculated for eachpixel:
ᾰa,t =

αa,t

ᾱa

, (5.9)
β̆a,t =

βa,t

β̄a

. (5.10)This process is repeated during a temporal window of Ttr frames in order to avoiderrors due to an insu�cient number of samples. Subsequently, the histograms ofboth accumulated measures ᾰa,t and β̆a,t are computed taking into account all pixeldistortions during the temporal window. Detection rates are used to set a lower andhigher brightness distortion thresholds, τα1, τα2, and a chrominance threshold, τβ .Two thresholds are set for both dark and light foreground cases, where the currentpixel is beyond the sensor dynamic range:
τD = κDτα1,

τL = κLτα2, (5.11)
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(a) (b)Figure 5.12: Threshold computation. Thresholds are automatically com-puted by accumulating histogram values and applying a detection rate.where usually κD = κL = κ is a factor that speci�es the con�dence region. Fig. 5.12.(a)shows the normalised brightness distortion histogram for a given frame, as well as thecorresponding thresholds; Fig. 5.12.(b) shows the normalised chromatic distortionhistogram and the computed threshold.Finally, the threshold used for pixel segmentation according to BIM is computedas:
τI
a = max

(
κIσI

a, ε
)
, (5.12)where κI is the factor that sets the con�dence region, and ε is a small positive quantity.5.3.2 Image SegmentationInput images can now be segmented by classifying the pixels according to computedbackground models and the current sensor response, see Fig. 5.13. Thus, three generalcases are considered, and a di�erent model is applied in each one:

• the BCM is applied to those pixels whose current values are inside the sensordynamic range, and for which a BCM could be built;
• the brightness component of the BCM is applied to segment those pixels whosecurrent values are beyond this range which also have a BCM;
• and, the BIM is applied to the those pixels which do not have enough valueswithin the linear sensor range during the modelling process.A sketch of the Image-Segmentation Module is shown in Fig 5.14. As a re-sult, a segmentation map Mt is computed at each time step. Thus, pixels under
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Figure 5.13: Segmentation module.the �rst condition are classi�ed as background (BgC), highlight (H), shadow (S), orforeground (FgC); those under the second one as background (BB), or dark fore-ground (DF) and light foreground (LF); and those under the last one as back-ground (BgI) or foreground (FgI). This process is performed according to the followingequation:
Ma,t = (5.13)

=



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BgC : ∃BCM ∧ τm < Ic
a,t < τn ∧ τα1 < ᾰa,t < τα2 ∧ β̆a,t < τβS : ∃BCM ∧ τm < Ic
a,t < τn ∧ ᾰa,t < τα1 ∧ β̆a,t < τβH : ∃BCM ∧ τm < Ic
a,t < τn ∧ ᾰa,t > τα2 ∧ β̆a,t < τβFgC : ∃BCM ∧ τm < Ic
a,t < τn ∧ β̆a,t > τβBB : ∃BCM ∧ Ic

a,t < τm ∨ Ic
a,t > τn ∧ τD < ᾰa,t < τLDF : ∃BCM ∧ Ic

a,t < τm ∧ ᾰa,t < τDLF : ∃BCM ∧ Ic
a,t > τn ∧ ᾰa,t > τLBgI : ∃BIM ∧ Ic

a,t < τm ∨ Ic
a,t > τn ∧

∣∣II
a,t − µI

∣∣ < τI
aFgI : ∃BIM ∧ Ic

a,t < τm ∨ Ic
a,t > τn ∧

∣∣II
a,t − µI

∣∣ > τI
awhere c ∈ {R, G, B} denotes the colour channel, and c = I the intensity; τmτn givethe sensor dynamic range. The whole process is summarised in Algorithm 4.An example of image segmentation can be seen in Fig. 5.15.(a). As it can be seen,despite the heavy shadows caused by both agents in an environment with several lightsources, they are correctly segmented.



96 CHAPTER 5. MULTIPLE-TARGET TRACKING ARCHITECTURE

Figure 5.14: Image segmentation approach. As a result of applying back-ground model to the current frame, pixels are classi�ed according to the BCMas as foreground (FgC), background (BgC), shadow (S), and highlight (H); us-ing the BCM on pixels beyond the sensor dynamic range, as dark foreground(DF), light foreground (LF), and background (BgB); and according to theBIM as foreground (FgI) and background (BgI).

(a) (b)Figure 5.15: (a) Segmentation example: segmented foreground pixels usingthe BCM are painted on magenta, while shadows are painted on green, andhighlights on red; dark-foreground pixels are painted in yellow, and light-foreground ones in orange; segmented foreground pixels using the BIM arepainted in lilac, while background ones are in cyan. (b) Detection example:red ellipses represent each target, and yellow lines denote their contour.



5.3. DETECTION LEVEL 97Algorithm 4 Image segmentation.
• if BCM exists for the current pixel, then:� if it is within the sensor dynamic range, then:

∗ if it has a di�erent chrominance, then foreground,
∗ else if it has lower brightness, then shadow,
∗ else if it has higher brightness, then highlight,
∗ otherwise, original background.� else
∗ if it has lower brightness, then dark foreground,
∗ else if it has higher brightness, then light foreground,
∗ otherwise, original background.

• else if BIM exists, then:� if it has lower or higher intensity, then foreground,� otherwise, original background.
• otherwise, no background was visible during the training period∗* In this case a frame-di�erencing algorithm can be applied to segment mov-ing pixels, and a new background-modelling process performed in the nexttemporal window.5.3.3 Blob Detection and RepresentationSubsequently, the blobs that may correspond to targets are extracted, see Fig. 5.16.First, the di�erent foreground masks are fused; then, majority, closing and openingmorphological �lters are applied on the resulting mask; next, the surviving pixels aregrouped into blobs by means of connected-component analysis; �nally, a minimum-area �lter is used.Each blob is then labelled, and their contours are computed. Further, blobsare parametrically represented, as explained next. By using such a representation,the spurious structural changes that the blobs may undergo are constrained. Theseinclude target fragmentation due to camou�age, or the inclusion of shadows andre�ections. Moreover, this representation can be handled by the low-level trackers,thereby �ltering the target state and reducing also these e�ects. Representationsbased on ellipses are commonly used [14, 67]. Here, an orientable ellipse is chosen�which keeps the blob �rst and second order moments.Thus, the j -observed blob at time t is given by the vector z
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Figure 5.16: Blob-detection and representation module.where x̃

j
t , ỹ

j
t represent the abscissa and ordinate of the ellipse centroid, h̃

j
t , w̃

j
t arethe major and minor axes, respectively, and the θ̃

j
t gives the angle between the ab-scissa axis and the ellipse major one. An example of target detection can be seen inFig. 5.15.(b).5.3.4 Remarks on the Detection LevelThese modules work in cascade, and eventually close the feed-back loop, see againFig. 5.1 on page 82. Therefore, the background model can be updated taking intoaccount a temporal window of segmentation results.The proposed modular architecture allows us to substitute the currently-usedbackground subtraction method with another one �which may be found more con-venient in the future� without modifying the system architecture. Further, newfunctionalities can be added by inserting new modules. Thus, targets could be clas-si�ed into several categories, which include people, vehicles, and unknown objects.At this stage, this would be done according to shape and/or appearance criteria.Further, this a-priori results could be re�ned after tracking is performed, therebyincluding stability and motion-based classi�cation criteria.5.4 Low-level Tracking (LLT)Low-level motion trackers establish coherent target relations between frames by set-ting correspondences between observations and state predictions, and by estimatingnew target states according to the sequence of associated noise observations. In orderto accomplish this task, four processes are carried out, see Fig. 5.17.In the �rst place, gates are computed by the observation-validation module. Theseare the regions where the observations are expected to appear. This is done accordingto the target state and the system uncertainties. Subsequently, data association isperformed. In this stage, correspondences between observations and trackers areset based on a nearest-neighbour decision �within the gate� in the observationspace. Then, �ltering is carried out: new target states are estimated according to theassociated observations. This is here accomplished by a bank of KFs. Finally, thetrack-management module (i) initiates tentative tracks for those observations which
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Figure 5.17: Low-level tracking.are not associated; (ii) con�rms tracks with enough supporting observations; and (iii)removes low-quality ones. Results are forwarded to high-level trackers, and fed backto the measure-validation module.It is interesting to remark that a motion-tracking functionality is here established;however, each of these modules can be implemented using other algorithms withoutmodifying the architecture itself, like a JPDAF for data association, or a UKF toperform the estimation task.This level also includes an appearance-based tracker which is used to track groupedtargets. In case of this event, segmented blobs contain multiple targets, which mayactually conform a group, or be an e�ect of the viewing angle. Thus, tracking based onmotion segmentation is not feasible, and therefore an appearance tracking is carriedout. This decision is taken by the higher level, once the scene events are analysed.5.4.1 State-Space ModelIn this work, targets are assumed to move slowly enough compared to the frame rate.Since their long-run dynamics are hardly predictable, a �rst-order dynamic model isadopted. This assumption holds in most HSE applications on trajectory analysis. Thetarget state is de�ned by x
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), which establishes astate variable for every observation one and adds the target speed and the size changerate. Thus, the model considered is given by a constant-speed approach where theacceleration is modelled as White Additive Gaussian Noise (WAGN) �except for theangle variable θ
j
t , whose speed is modelled as noise: this variable is here consideredto undergo minor variations, i.e. humans will essentially remain in upright posture.
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x

j
t = Ax

j
t−1 + ωt (5.14)

z
j
t = Cx

j
t + νt,where ωt ∼ N (0,Q) is the process noise, Q the noise covariance, νt ∼ N (0,R) isthe segmentation noise, and R the noise covariance. WAGN is assumed to representboth noise processes. It is also assumed that both process and measurement noises areuncorrelated. Finally, the acceleration is supposed to be constant during the samplingperiod, and independent between periods.The target dynamics can be described using block matrices for each pair of �rst-order model variables �such as for example xt,1 = (xt, ẋt)

T . Thus, previous assump-tions allows us to de�ne this system as:
xt = xt−1 + ∆tẋt−1 +

1

2
∆2

t ẍt, (5.15)
ẋt = ẋt−1 + ∆tẍt (5.16)
ẍt v N (0, σx) , (5.17)where ∆t is the sampling period, σx the variance of the noise process which modelsthe acceleration. Thus, the transition matrix is given by:
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, (5.18)the output matrix is:
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(
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, (5.19)and the system noise in terms of sampled acceleration:

ωt = G1ẍt, (5.20)where G1 is the noise matrix for a �rst-order system, given by:
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. (5.21)Thus, the system covariance matrix results in:
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Figure 5.18: Observation-validation module.where the equality E [G1ẍt] = G1E [ẍt] = 0 has been taken into account. The outputcovariance matrix is:
R1 = E

[
ννT

]
= σv, (5.25)where σv is the variance of the observation noise. Thus, the target dynamic matricesare given by the replication of the above-de�ned block matrices.5.4.2 Observation ValidationIn a MTT scenario, numerous observations may be obtained at every sampling pe-riod. In this case, some observations could have been generated by clutter or noiseprocesses, and several observations might correspond to the same target with a givenprobability. Thus, gates are computed in agreement with the target state and thesystem uncertainties, see Fig. 5.18.The observation vector at time t, zt, is given by the blob detection module. Eachtarget expected observation is predicted according to the system dynamics:

ẑt = CAxt−1. (5.26)Since the estimation is performed following a Kalman �ltering scheme �see Ap-pendix D for details� the prior error covariance matrix is computed accordingly:
P−

t = APt−1A
T + Q; (5.27)and subsequently, the innovation covariance is obtained:

St = CP−
t CT + R. (5.28)
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Figure 5.19: Innovation covariance ellipsoid. The predicted observation isgiven by the mean, and samples represent potential observations. Di�erentellipsoids are given at several Con�dence Intervals (CI), thereby providing theMSD of the sample points lying on them.This covariance matrix de�nes an ellipsoid in the observation space whose axesare given by the covariance matrix eigenvectors, and the axis length �for the ellipsoidwith unit Mahalanobis radius� is given by the square root of corresponding eigen-values. A particular Mahalanobis radius de�nes an ellipsoid, centred at the mean ofthe distribution, which encloses a probability mass given by the Con�dence Interval(CI) associated with the ellipsoid, see Fig. 5.19.Thus, the Mahalanobis Squared Distance (MSD) is given by:
d2

Mahal,t = (zt − ẑt)S
−1
t (zt − ẑt)

T
, (5.29)and, provided that the observation follow a d -dimensional Gaussian pdf, the MSD isdistributed according to a Chi-squared distribution with d degrees of freedom [24]:

d2
Mahal ∼ χ2

d. (5.30)Hence, the Mahalanobis radius corresponding to the ellipsoid with a given con-�dence interval can be computed by evaluating the inverse of the cumulative distri-bution function of the Chi-squared distribution. This means that measures can bevalidated for a given con�dence interval by calculating the MSD between the predictedobservation and the actual one, and comparing this value with the Mahalanobis radiusfor this con�dence interval.
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Figure 5.20: Observation association. Example with two predicted locationsand their gates given by the respective trackers, and four observations. In bothcases several observations are validated; one observation is even validated forboth trackers.

Figure 5.21: Data-association and Filtering modules.5.4.3 Data Association and State FilteringOnce the gates have been computed, setting the correspondence between observationsand trackers may not be straightforward: multiple observations may lie in the samegate, and some observations may be shared by more than one gate, see Fig 5.20.Here, observations are associated to the nearest tracker in whose gate they lie, seeFig. 5.21. A more complex data association method, such as JPDAF, is not consideredto be necessary since observations are usually just within one target gate. This isintrinsic to the segmentation method: if two targets are so close in the observationspace as to introduce ambiguity in the data association process, the segmentationmodule is likely to segment just one blob corresponding to the group formed by bothtargets. This issue will be later discussed at the high-level tracker section.A bank of Kalman �lters is implemented to estimate the state of all targets de-tected within the scene. The LLT dynamic model is given by Eq. (5.14), where thesystem matrices are built according to the above-de�ned block matrices5.As a special case, if no observation is associated to a particular target, its state isestimated using a Kalman Gain equal to zero, that is, it is just propagated accordingto the dynamic model. See Appendix D for details.5Independence between position and size state components is assumed.
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Figure 5.22: Track-management module.5.4.4 Track ManagementThis module manages the target tracks by instantiating, con�rming and removingthem: (i) not associated observation initiates tentative tracks; (ii) tracks with enoughsupporting satisfactory observations are con�rmed; and (iii) those tracks which losecon�dence are removed, see Fig. 5.22. This is done according to the values of twoindicators: the square root of the covariance matrix determinant |S| 12 , and the obser-vation MSD.The �rst one is related to the track uncertainty: the determinant is given by theproduct of the matrix eigenvalues, which correspond to the variance of the dimensionsgiven by the respective eigenvectors. That means that while an observation is asso-ciated, the track uncertainty decreases to its asymptotic value, and the time takendepends only on the system dynamics and uncertainties. Thus, the innovation covari-ance matrix is calculated recursively according to Eq. (5.28), which just depends onthe time-independent and known system matrices A,C, and Q,R.That is to say, the track uncertainty does not depend on the observation MSD.It is however a good indicator of how many observations have been associated, andwhether there have been frames without any observation. This is done without theneed of setting thresholds and specifying cases: it is intrinsic to the behaviour givenby the system dynamics.Nevertheless, the quality of the observation must also be taken into account, andtherefore, the MSD of each target associated observation is evaluated. The MSD,seen as the Mahalanobis radius of the ellipsoid, is used to qualify those observationswhich lied inside the ellipsoid of a given variance, τσ2 .Therefore, a track is instantiated every time an observation has not being as-sociated to any existing trackers. When the track uncertainty is below a certainpercentage of its asymptotic value, and the MSD is lower than a given ellipsoid vari-ance, the track is con�rmed as stable. That means that a sequence of observationswhere successfully associated in the past recent frames, and there is a little error be-tween the prediction and the current observation. If track uncertainty grows beyonda pre-set con�dence value, the LLT is deleted, and the Kalman �lter removed.An example of the evolution of the track-management indicators can be seen in
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Figure 5.23: Track management. Tracks are con�rmed when both trackuncertainty and MSD are low enough. Tracks with high track uncertainty areremoved. See text for details.Fig. 5.23, and some sample frames6 are shown in Fig. 5.24: at frame 7 �Fig. 5.24.(a)�a target starts entering the scene, an observation is received and a tracker is instanti-ated; while new observations are associated, the track uncertainty decreases. However,at frame 10 �Fig. 5.24.(b)� a major change happened �because the target has com-pletely entered the visual �eld� and the MSD is so high that the observation is notassociated to the existing tracker. Consequently, a new one is instantiated. The for-mer one stops receiving observations and its tracks uncertainty keeps growing untilframe 13, when the tracker is �nally removed7.At frame 15 �Fig. 5.24.(c)� the track uncertainty of this second LLT is closeenough to its asymptotic value, and the MSD is lower than the equivalent distancede�ned in terms of the variance. Thus, the track is con�rmed. During frames 32and 33 �Fig. 5.24.(d) and (e)� shadows and specular re�exions are included inthe segmented blob. At frame 35 �Fig. 5.24.(f)� an abrupt correction causes a6The following notation is used: blob contours are painted in yellow, while red ellipsesrepresent detected blobs, and white and black ones give low- and high-level tracker estimates,respectively. The blue box denotes the ROI.7It must be said that problems caused by target entering and exiting are also handled bythe high-level trackers, as it will be explained in the corresponding section.
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(a) (b)
(c) (d)
(e) (f)
(g) (h)Figure 5.24: Sample frames for track management. See text for details.
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Figure 5.25: High-level tracking.MSD high enough so that the tracker is temporarily non-con�rmed. When a newtarget enters the scene at frame 39 �Fig. 5.24.(g)� a new track is instantiated �theobservation is far beyond the gate boundary� and the previous process is repeated.At frame 47 both tracks are con�rmed �Fig. 5.24.(h).Several considerations must be taken into account. In the �rst place, dependingon the system matrices, the time needed to reach a value close to the asymptotic valueof the track uncertainty may considerably vary. Thus, if |Q| grows, the dynamics areless reliable, the Kalman Gain grows, the state variables are more a�ected by theobservation values, and the convergence is faster. On the other hand, if |R| grows,the measure is less reliable, the Kalman gain decreases, the predicted values are lessa�ected by the current observation, and the convergence is slower.Secondly, it is worth to notice that if the target shape or position abruptly changes,the observation may lie outside the tracker gate. In this case, a new Kalman �lter isinstantiated, and both, the old and the new one are now competing for the observa-tions. Consequently, a high-level analysis is required to assign a common identi�er toboth trackers.5.5 High-Level Tracking (HLT)At the top of the system architecture, high-level trackers aim to obtain robust andaccurate state estimates for every target within the scene, see Fig. 5.25. Motion LLT's



108 CHAPTER 5. MULTIPLE-TARGET TRACKING ARCHITECTUREcannot cope with situations of continuous target-segmentation failures. Among thecauses of these failures, grouping events, partial and complete occlusions, non-smoothchanges in position or shape, and target camou�age may be found, to cite a few. Inthis cases, the corresponding motion low-level trackers would gradually lose con�dencedue to the lack of associated observations, and will eventually be removed. Therefore,these issues must then be addressed by HLT. These trackers build appropriate targetappearance models, and infer conceptual knowledge about the targets' situation.Once this is achieved, the higher level can act on the lower ones following a top-down approach in numerous ways: by selecting MBT or ABT operation mode, bypreventing the creation of non-feasible low-level tracks, by validating the associationof observations to LLT, by associating several LLT to the same HLT, by maximisingthe discrimination between the target model and potential distracters, and by enablingthe incorporation of a motionless objects into the background.5.5.1 Tracking Operation ModesAs it has been stated, the proposed system implements two tracking approaches: MBTand ABT. The higher level selects the most appropriate operation mode according tothe current situation in which the targets are involved. This is done by the Matchingmodule from the information given by the Event-Management module.In our experience, MBT usually outperforms ABT in every situation where noa-priori knowledge is available about the scene or the targets, specially when theirappearances evolves over time: in open-world scenarios, the target appearance cannotbe speci�ed in advance, and an accurate initialisation is often not feasible. Further,it should be continuously updated, since it strongly depends on the target position,its orientation to the camera and the di�erent light sources, or �in case of humantargets� the body posture. However, the need of adaptation usually leads to thephenomenon known as model drift8.Nevertheless, in case that no accurate segmentation can be produced, MBT isno longer feasible. The target state could be propagated according to the learntdynamic model, but this usually does not su�ce, since its motion is generally subjectto sudden changes, and the probability of losing the target increases with the timethe it is non-detected.If, for example, the target is grouping, just a single blob, whose boundary en-closes all connected pixels in motion, is detected. A coarse localisation �obtainedby considering that the target is inside the group region� could be also considered,but it cannot tackle any complex situation, like for instance those in which a groupof more-than-two members split, see again Fig. 2.12 on page 36. These cases requirethe use of ABT methods.Thus, in our system, segmentation by motion is used whenever this is possible,and the system takes advantage of these situations to build accurate target models.ABT tracking success will be determined by the ability of distinguishing the targetfrom potential distracters. In order to be able to track them under di�cult situations8Classical adaptive tracking problem, where the model gradually drifts as misclassi�edpixels are used to update it. This contamination leads to further localisation errors, andeventually to a complete tracking failure.
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Figure 5.26: Matching module.�those in which target segmentation is not feasible� the target appearance is rep-resented by taking into account the local background clutter, as well as other targetswith whom it may interact. Then, a robust ABT method is applied.5.5.2 High-Level Tracker ManagementHLT are instantiated by indication of the Matching module, which performs theassociation between existing low-level and high-level trackers, see Fig. 5.26. Thematching procedure may lead to di�erent kinds of conclusions, and for each of themthe system exhibit a particular response. This process works as follows.The module considers three cases: (i) the �rst time a low-level tracker is con�rmed,a high-level tracker is instantiated and associated, see matching result (1) in Fig. 5.26.This may correspond to an isolated target, or to a group of them. The actual situationis determined according to the information relative to target collision provided by theEvent-Management module. In case that the new-born tracker corresponds to anisolated target, the target appearance is then computed. In other case, it is markedas a group tracker. (ii) If a LLT is already associated, the high-level tracker parametersrelative to the target position and shape are updated in subsequent tracker matchings,see matching result (2). Further, while the track is still con�rmed, this situation ispointed out so that the appearance will also be computed and updated.While the associated low-level motion tracker exists, the targets are tracked bymotion. However, this matching process is not always feasible, since LLT's may havebeen removed during long-duration segmentation failures due to the continuous lackof an associated observation. Thus, (iii) those targets which have no correspondenceare tracked in a top-down process using low-level ABT, see matching result (3). Thismakes possible target tracking even when image segmentation is not feasible, such asduring long-term occlusions, grouping events or target camou�age. During these situ-



110 CHAPTER 5. MULTIPLE-TARGET TRACKING ARCHITECTUREations, the LLT gradually loses con�dence due to the lack of associated observations,and is eventually removed. Hence, the aim of including an ABT is (i) to track thosetrackers which have no LLT, and (ii) to re�ne the localisation of those HLT with noassociated observation.Subsequently, an event-management module determines what is happening withinthe scene: the target-interaction events are inferred, and the entering or exiting oftargets into/from the scene is established. Among the formers, interactions such aswhich targets are grouping or splitting, or whether stable groups are being formed,are set. This include complex combinations of them, since one target may be involvedin di�erent kind of interactions with several other targets.Ultimately, those HLT which have no LLT associated are evaluated in order todecide whether a correspondence can be established with other HLT's, since newtrackers are instantiated over targets that have undergone an event which cause LLTremoval, once the event is over. If there are no tracker candidates, or they are notsimilar enough, in the appearance sense, the appearance-based operation mode holds9until the target can be associated to a new high-level tracker. Results are fed backand used for low-level and high-level tracker matching.In the following, each module of the high-level tracking is explained in detail.5.5.3 Appearance Representation based on Soft and Hard PixelWeightingThe target appearance is here represented by means of colour histograms [61, 14, 67,12]. Histograms are broadly used to represented target appearance, since they areclaimed to be less sensitive than colour templates to rotations in depth, the camerapoint of view, non-rigid targets, and partial occlusions. They are also usually usedto represent non-parametric distributions, provided that they allow one to achievereal-time performances given the low computational cost required.The histogram of a target is given by:
p = {pk; k = 1 : K} , (5.31)where K is the number of histogram bins, and the discrete probabilities of each binare calculated as:

pk = C

P∑

a=1

gE

(
‖xa‖

2
)

δ (b (xa)− k), (5.32)where δ is the Kronecker delta, {xa; a = 1 : P} the pixel locations, P the number oftarget pixels, and b (xa) a function that associates the given pixel a to its correspond-ing histogram bin. C is a normalisation constant required to ensure that:9This is, for instance, the case when the targets are grouped.
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K∑

k=1

pk = 1. (5.33)Finally, gE (x) is the convex and monotonic pro�le of an isotropic kernel whichallows one to perform gradient-based searches, which need di�erentiable similarityfunctions. Further, by assigning lower weights to pixels farther from the centre, thein�uence of boundary clutter is diminished. Here, an Epanechnikov kernel has beenused [14, 67]. To eliminate the in�uence of di�erent target dimensions and aspectratio, the kernel is �rst rescaled to an ellipse of the target size. Thus, pixels are heresoft-weighted according to their spatial distribution.The above-de�ned appearance histograms are computed given a cropped imageregion. Two sources of information are available to decide which pixels should be con-sidered as belonging to the target, namely the silhouette of the associated observation�given by the detection module� and the �ltered ellipse �given by the LLT.In this work a conservative approach has been used in order to minimise the riskof failures caused by model drift. Thus, only those pixels which belong to both thedetected silhouette and the �ltered ellipse are taken into account to build the targetmodel. By doing so, background pixels which have been erroneously detected �e.gdue to re�ections� or those inside the tracked ellipse are likely to be removed. Also,non-reliable boundary foreground pixels �such as those of the end of the limbs� areusually not taken into account. This can be seen as a hard pixel weighting.Groups should be handled in a di�erent way, since their shape can rarely bemodelled as an ellipse10. Thus, a rectangular bounding box is used, and the groupregion is given by just considering the current detection instead. In this case, detectionerrors are not critical, since no appearance model is computed for the whole group,but for the di�erent partners, and this location is only used for collision-detectionpurposes.5.5.4 Feature Selection on Colour CuesColour cues have been here selected to model the target appearance, see Fig. 5.27.Numerous colour spaces can be used, and each of them has tunable parameters,resulting in an enormous space of potential features. By selecting the most appropriateones, a maximum discrimination between the target and local distracters is obtained.The following feature-selection technique has been evolved from the one presentedin [12] by generalising it taking into account multiple clutter sources. Features arehere selected considering not only the best distinction between the local backgroundand the target, but also taking into account other nearby targets, which will be calledgroup partners in the following. The information provided by the event module isused to decide which targets are partners, and in what sense. Thus, features areselected from a set of linear combinations of the R, G and B channels:10Of course this refers to groups identi�ed as so. Non-detected groups �due to the targetshad entered the scene together� are tracked using an ellipse representation until the targetssplit.
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Figure 5.27: Feature-selection module.
F = wRR + wGG + wBB |wc ∈ {−2,−1, 0, 1, 2} , (5.34)where c ∈ {R, G, B}. Hence, this set includes raw R, G, and B, intensity, and commonchrominance approximations. The total number of candidates is 53. Non-independentcombinations are removed, leaving a set of 49 features. Computed values are thennormalised to the range [0 : 255], and subsequently discretised. In the present imple-mentation the number of bins is set to K = 64. This is a sensitive decision since alow number of bins will prevent from target-clutter disambiguation, but, on the otherhand, a high value favours erroneous representations that appear when distributionsare estimated from an insu�cient number of samples, and thereby over-�tting themodel and making it too sensitive to minor illumination changes.5.5.4.1 Feature Selection in a n-class ProblemThe target histograms are given by pi,j , where i denotes the feature index, and j thetarget one; and qi provides the local background distribution according to the i− thfeature. Features are then ranked in the following way: �rst, the log-likelihood ratioof each feature is computed11:11Here it is assumed that the joint distribution for the tuned feature can be computed byreusing the distributions already computed for the background and di�erent targets involved.This essentially entails that the regions from which these distributions were computed shouldhave a similar number of pixels. Although exact distributions can be computed by re-accumulating them, it is done in this way for sake of e�ciency.
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Figure 5.28: Log-likelihood. A negative value indicates that the bin has ahigher occurrence in the clutter region, whereas positive ones correspond toa majority of target pixels.
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where J gives the number of partners including the current l−target, and ε is set toprevent dividing by zero or taking the logarithm of zero, but avoiding also magnifyingthe corresponding log-likelihood value, see Fig. 5.28. Thus, shared colour bins have alog-likelihood close to zero, whereas target bins have a positive one, and clutter binsa negative one.
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, (5.36)so features are then evaluated according to the variance-ratio of the log-likelihood:
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Figure 5.29: Appearance-modelling modules.
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,and subsequently, they are ranked according to these values: the higher, the better.Thus, the selection maximises the inter-class variance �that is, the distance betweenclutter and target clusters of bins� while minimising the intra-class variance �tightlyclustering both clutter and target bins. Thus, in order to allow the system to buildreliable appearance models using the features which best distinguish a target from itspotential distracters, once a grouping event is detected, the partners histograms arealso used in the feature selection procedure.5.5.5 Appearance ModellingAs it has been above stated, target models are based on histogram representationsusing colour cues. Summarising the approach so far, histograms are calculated from agiven image region, once an Epanechnikov kernel has been applied to it. This regionis de�ned by the intersection of the segmented silhouette and the �ltered ellipse.Histograms are computed in a feature space given by a linear combination of the R,G and B channels. Channel weights are selected in order to maximise the targetdiscrimination form potential distracters.Upon this basis, multiple models for each target are built and kept updated,see Fig. 5.29. Self-similarity statistics are also computed. In these way, we aim tosolve the initialisation, smooth the representation, and complete it so that trackerassociation is feasible once the event that cause the target loss is over. The possibility
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Figure 5.30: Feature pool. The best M features at time t, and the best Nlong-run features are kept for appearance modelling.of an inconsistent localisation due to feature switch is also minimised, by introducingthe distinction between long-run features and the current best ones. Thus, long-runfeatures are here kept and smoothed. The representation scheme proposed in [12] istherefore considerably enhanced in this work �in addition to the fact of using thebackground and partner models to obtain a maximum target discrimination.5.5.5.1 Model PoolBy keeping a set of long-run features, the system robustness is signi�cantly increased.Histograms can be smoothed, thereby making the representation less sensitive topotential initialisation and subsequent localisation errors. This can also cope withsudden and temporal appearance changes, for instance due to illumination �uctua-tions. Further, past features may be crucial for tracker association after a trackingfailure.Hence, a pool of M + N features is kept: the best M features at time t, and thebest N long-run features, i.e. those which have been at the top of the feature rankingmore times. These features are only dropped when new features enter the pool, andeventually overcome the formers.An example of how the feature pool evolves over time is shown in Fig. 5.30. Ateach time step, the number of times a particular feature has been selected among the
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Figure 5.31: Example of selected features on a given interval where targetsare grouped.

Figure 5.32: Histogram of feature selection on the whole sub-sequence.best M ones is represented. Features selected in a given interval and the correspondinghistogram are shown in Figs. 5.31,5.32 respectively. By analysing the evolution of themodel pool, several facts can be noticed: some features are periodically among thebest ones (in this case, features number 13, 24 and 39); this repetitive behaviour ispresumably due to similar agent orientations and gait during tracking. Some featuresjoin the pool and quickly become one of the best ones (feature number 23), as the
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Figure 5.33: Adaptation rate. It presents a transient and a steady-stateresponse to accommodate contrary requirements.agent moves and the local background changes. Finally, other features (20, 36, 45)are dropped and re-selected several times; they are periodically among the best onesones, but they are not selected enough times, and due to the pool size are droppedwhen others join the set. These behaviours strongly suggest that keeping a stable setof features may be useful for tracker association after a tracking failure.5.5.5.2 Model UpdatingWhenever there is enough con�dence on the tracker to update the appearance, all
M + N models are updated. This is done in a recursive way using an adaptive �lter:
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, (5.38)where αp ∈ [0 : 1] denote the adaptation rate which weights the most recent valuesversus the historic ones, and p

i,j
t the smoothed histogram of target j at time t usingthe i-th feature. Old values are exponentially forgotten according to this rate: thebigger it be, the faster old data are forgotten. However, contrary requirements mustbe ful�lled: (i) when a feature is recently added, the model should be fast adapted,in order to cope with potential detection errors during the initialisation; (ii) medium-term models should not be excessively adapted, to prevent model-drift phenomena;(iii) long-term models should be3 adaptive enough, so that the system can handleunexpected appearance changes. This suggest de�ning the adaptation rate in termsof time, and to employ a principled function αp (t). Thus, a recursive mean �lter is�rst used, thereby ful�lling the two �rst requirements, but the adaptation rate is �xedto a high enough value after an initialisation period, and thus model adaptation couldbe performed during arbitrary long time periods. An example is shown in Fig. 5.33.In this way, once a target is detected, and the corresponding low-level motion-based tracker is con�rmed, the target is being tracked while it is simultaneously beingmodelled by the high-level tracker. New features can be added, while stable ones build



118 CHAPTER 5. MULTIPLE-TARGET TRACKING ARCHITECTURErobust appearance models, even during hard situations, as it will demonstrated lateron.5.5.5.3 Model SimilarityA similarity measure between two histograms is computed using the following metric[14, 67]:
dBhat =

√
1− ρ (p,q), (5.39)where
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pkqk (5.40)is the Bhattacharyya coe�cient. A similarity criterion is set in order to establish whentwo histogram are close enough. For this purpose, every time the smoothed histogramis updated, the mean and variance of the Bhattacharyya metric dBhat between theformer histogram and the new one are also recursively updated:
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, (5.42)where ni,j is the number of times this particular feature histogram has been updated.In this way, the metric distribution is parameterised and used to establish a con�dencemeasure.5.5.6 Appearance-Based Tracking (ABT)This operation mode is chosen by the HLT to cope with those situations in whichMBT is not feasible, such as target camou�age, grouping and partial occlusion, seeFig. 5.34.However, in general, ABT methods are very sensitive to changes in the illumina-tion conditions. Further, the background and nearby targets can act as appearancedistracters, thereby causing the tracker to erroneously lock on them. In this work,a distracter-robust mean-shift method is developed and used when no valid targetobservation is available.A smart system should take advantage of all possible sources of information inorder to minimise the risk of target loss when no accurate motion-segmentation canbe performed. Potential sources of information include, among others, an updated
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Figure 5.34: Mean-shift module.background model, the current frame segmentation, the estimate state of all targetswithin the scene, and their appearance models, and the prediction of collisions andocclusions according to the learnt dynamic models and appearance ones.Thus, a mean-shift procedure is here enhanced by making a principled use of allthe knowledge inferred. This methods weight each candidate pixel according to itssupposed membership to a determine target, given its appearance model. However,the target's appearance evolves in a unknown manner over time, and the local back-ground and nearby targets may mimic its appearance. In order to achieve a successfultracking, this ambiguity must be minimised.First, multiple appearance histogram models are simultaneously used. These havebeen built during the MBT stage by taking into account the most appropriate featureswhich provide a maximum discrimination between the target and local distracters.Target candidate regions should be wisely chosen, since neither the detection,nor the estimation is free of errors: segmented regions may include shadows andre�ections, but may not enclose all target pixels due to camou�age problems; theestimate target region may include pixels of the background and of nearby targets
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Figure 5.35: Merging targets. While the target estimate regions may includepixels of the background and of nearby targets, the detection mask includeshadows and re�ections, but do not enclose all target pixels due to camou-�age problems. (FP and FN denote a False Positive and a False Negative,respectively).due to errors introduced by the state representation, see Fig. 5.35. Therefore, thecurrent motion segmentation is used to help discriminating background pixels. Thus,those pixels which are not segmented are weighted according to an estimate error-segmentation rate. Occluded regions are also taken into account when building thetarget candidate histograms.Further, shared model bins with both the background and nearby targets aremade less signi�cant. Finally, an spatial exclusion is set in order to avoid that a samepixel signi�cantly contributes to locate more than one target. The complete approachwhich combines appearance, motion and spacial cues to perform target localisation isshown in Fig. 5.36.Subsequently, potential drift of the appearance models is precluded by performinga careful updating according to the detected events and the evaluation of the trackingresults. These procedures are explained in the following.5.5.6.1 Mean-shift TechniqueThis technique achieves target localisation by performing a deterministic gradient-descent search on a image region of interest �the basin of attraction� which ispreviously weighted [14]. In the following, a brief explanation is given.The target model is given by the histogram p, while the target candidate distri-bution at the image location x̂0 is represented by p̂ (x̂0). The similarity between twohistograms is computed using the metric de�ned in Eq. (5.39).The mean-shift procedure recursively moves the candidate position to a new lo-
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Figure 5.36: Multiple-cue Mean-shift. The approach combines motion, ap-pearance and spatial cues to perform target localisation in presence of dis-tracters.cation, while searching the local minimum according to the aforementioned metric.That is to say, a new location is searched in the neighbourhood of the former one bymaximising the similarity between the target model and the candidate one, computedfrom the current image at this location. This is approximately equivalent to minimisethe second term of the Taylor expansion of the Bhattacharyya coe�cient which rep-resents a weighted-data density estimate computed with the kernel pro�le [14]. Thus,the new location is given by:
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, (5.43)where the weights wa are given by:
wa =

K∑
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√
pk

p̂k (x̂0)
δ (b (xa)− k) . (5.44)By choosing an Epanechnikov kernel, both kernel pro�le derivatives ġE in Eq. (5.43)can be removed by taking into account that the derivative of the pro�le of an Epanech-nikov kernel is a constant. The complete algorithm is shown in Algorithm 5.



122 CHAPTER 5. MULTIPLE-TARGET TRACKING ARCHITECTUREAlgorithm 5 Mean-shift method.1. the histogram of the target candidate p̂ is computed at location x̂0,2. weights are computed according to Eq. (5.44),3. the next target location x̂1 is derived following Eq. (5.43),4. if ‖x̂0 − x̂1‖ < ε, or the maximum number of iterations has been reached,stop. Otherwise set x̂0 ← x̂1 and go to step 1.5.5.6.2 Basin of Attraction and Target Candidate RegionA mean-shift procedure assigns weights to each histogram bin according to a relationbetween the model and candidate histograms, and then back-projects these valuesinto image pixels, before computing the new proposed localisation. Thus, each pixelis weighted according to its supposed membership to a determine target, given itsappearance model.The tracked region is given by the previous estimated location. Both size andorientation are kept �xed. This yield an ellipse from which the candidate histogramis computed.Bin weights are back-projected in a basin of attraction given by the rectangleof dimensions h ∗ w pixels �the one which encloses the tracked ellipse� plus anouter margin of κm ∗ max (h, w). κm is usually equal to 0.1. This margin providesbetter chances of tracking success in case of low frame rates �which may cause thatsuccessive target region do not overlap� and aspect ratio changes.5.5.6.3 Introducing Motion Cues. Pixel weightingThe current segmentation can be used to weight the in�uence of each pixel on thecandidate histogram, and on the weighted sub-image where the search is performed.By doing so, the system is making use of the results obtained by the detection level,but without neglecting the possibility of segmentation errors.Thus, according to motion information, those pixels within the target candidateregion which are not segmented are also weighted according to an estimate error-segmentation rate, see Fig. 5.37. Further, the same procedure is applied to the weightsof the pixels of the basin of attraction after back-projection.In addition, candidate pixels contribute to the histogram with a value in theinterval [0 : 1], according to the applied kernel. In this proposal, the Epanechnikovkernel is combined with the detection mask, thereby minimising the risk of over-weighting signi�cant distracters bins.Finally, in case that the tracked target is partially occluded �what is inferred bythe Event-Management module� the a�ected parts are not taken into account whencomputing the target histogram.
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(a) (b) (c)
(d) (e) (f)Figure 5.37: Pixel weighting. (a) Cropped candidate. (b) Tracked region.(c) Applied Motion-segmentation mask (cropped to the basin-of-attractionsize). (d) Candidate region. (e) Epanechnikov kernel. (f) Epanechnikovkernel applied to the candidate mask �which is given by the conjunction ofthe mask of the tracked region and the motion-segmentation mask.5.5.6.4 Bin-weightingSo far, background and partners' information has been used to select the featuresthat best discriminate the target from a local environment, see Fig. 5.38. However,even for the best features, histogram bins could be shared between the target andpotential distracters. This fact leads to an erroneous localisation, which �nally endscausing the drift of the appearance models. This can also be accelerated due to thefact that the foreground is hardly ever perfectly delineated.To minimise tracking failures due to this issue, the following approach is proposed:the background-weighting approach proposed in [14] is here generalised by includingother sources of information: the appearance models of the partners and the learntlocal background model. Further, this is applied to each appearance model computedfrom a particular feature. The learnt background presents the advantage that itcontains no foreground information. However, it may di�er from the current one, forinstance, due to the occlusion of some light source.A conservative approach has here also been chosen: all signi�cant bins in anyof the aforementioned sources of knowledge about potential distracters will have itsimportance diminished, see Fig. 5.39. Thus, an histogram of the local background iscomputed using the learnt background model:

qi =
{
qi
k; k = 1 : K

}
. (5.45)
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(a) (b) (c) (d)Figure 5.38: Weighted images. (a) Tracked region. (b) Image mappedaccording to a selected feature (Feature 36, V = 0.7653, 25th in feature rank).(c) Corresponding weighted image. (d) Weighted image for a feature withhigher Variance Ratio (Feature 19, V = 1.0123, second in feature rank).Notice that the latter feature is much more discriminative than the formerone �which is in the model pool for being a long-run feature.

Figure 5.39: Maximisation of target discrimination. The best discriminantfeatures between the target model and the clutter are selected. Then, sharedbins are made less signi�cant.Then, a weight for each bin is derived from its signi�cance on this histogram:
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(a) (b) (c) (d)
(e) (f) (g) (h)Figure 5.40: Bin weighing. (a) Model histogram. (b) Candidate histogram.(c) Partner histogram. (d) Partner bin weights. (e) Partner equalised binweights. (f) Background equalised bin weights. (g) Combined bin weights.(h) Resulting bin weights for back-projection.The same technique is used to compute weights for each partner, w̃

i,j
k . Thus, forthe l-target among the J targets of the group, the total weight of each model bin,given the i-th model feature, is obtained by combining these weights:
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k . (5.48)These weights can then be applied to the target model to diminish the importanceof those bins which are shared with potential distracters:
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. (5.49)Bin weighting according to the appearance of local distracters can be seen like aprobabilistic exclusion principle. Such a technique has also been used in [57] in orderto avoid that an edge feature can correspond to several targets. In other words, oneparticular evidence must not contribute to mutually exclusive hypotheses. In our case,shared model bins must not reinforce the di�erent local maxima in the weighted imagewhere the mean-shift is computed. The maximisation of the target discrimination isgraphically shown in Fig. 5.40.



126 CHAPTER 5. MULTIPLE-TARGET TRACKING ARCHITECTURE5.5.6.5 Spatial ExclusionFollowing the aforementioned exclusion principle, the back-projected values of thecandidate pixels are also weighted in other to avoid that the same pixel contributes tolocate the centroid of more than one target. Thus, for each target, an exclusion kernelis computed from the location of the partners. A �at kernel is applied by setting thepartner region to a pre-de�ned exclusion rate. Notwithstanding, this approach couldbe enhanced by computing probabilistic masks for each target. These would recordthe likelihood of the target being observed at that pixel.5.5.6.6 Criteria to Perform an Appearance UpdatingA bank of M +N mean-shift procedures is run, and each of them uses an appearancemodel tuned at one of the selected features. These models need to be updated evenwhen the targets are grouped, since their appearances are always subject to undergosigni�cant changes �specially when the targets are in motion. However, the updatingof the appearance models must be carefully done in order to avoid model drift.Therefore, the multiple results obtained are �rst evaluated and �ltered accordingto appearance and localisation criteria. Then, the surviving results are eventuallyfused in order to produce a robust estimate. This �nal estimate can be used toperform model updating.First, those mean-shift procedures which have not converged after a number ofiterations are not considered reliable enough to take them into account to performthe updating. Next, an appearance gate is computed to �lter those features whosehistograms signi�cantly di�er from the models according to the learnt feature statisticsof self-similarity:
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t , (5.50)where κABT is the factor which set the con�dence region. Finally, a robust targetlocalisation is obtained by �ltering potential position outliers among the remainingfeatures. This avoids that a feature model locked on a distracter similar in appearancecorrupts the localisation computation. This is done by computing the position meanand variance, and removing the outliers. The procedure is iterated until convergence.When at least one model survives the appearance �ltering, the target similarityis again evaluated at the �nal estimate localisation. If the result is still satisfactory,then the estimate is considered reliable enough to perform model updating and featureselection.Given that a candidate localisation is always necessary, even in the event of nonhaving any reliable result according to the appearance criterion, the above robust-target localisation is performed, and the position is updated, but the appearancemodels are kept unmodi�ed.
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Figure 5.41: Event-management module.

Figure 5.42: Target state coding.5.5.7 Event ManagementHigh-level understanding of motion events is a critical task in any system which aimsto analyse dynamic human-populated scenes. MTT requires considering potentialtarget interactions among them, specially when no assumption is made with respect totheir trajectories. These kind of events will be referred in the following as interactionevents. Among these, occlusions events deserve being explicitly addressed, given theirparticular di�culties.Further, in open-world applications, targets can enter and exit the scene, or aRegion of Interest (ROI) de�ned on it. These events will be referred as scene events,and they have an important role in matching low-level and high-level trackers, and inhandling the latters.However, current tracking techniques still do not address complex interactionevents among multiple targets. In this thesis, a principled event management isproposed and embedded in the tracking architecture, see Fig. 5.41. Within the HSEframework, this module is located at the Conceptual-Integration Level, see Fig. 5.2on page 83.Multiple-target interaction events, and a proper scheme for tracker instantiationand removal according to scene events, are considered. Further, this allows the systemto switch among di�erent operation modes. Both types of events, and occlusions asa special interaction event, will be managed as follows.
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Figure 5.43: Group management. Eight possible target states (representedby ellipses), and a state for group trackers, are de�ned. Interaction events aredenoted by arrows. Notice that some of the less frequent transitions are notdrawn for the sake of clarity.5.5.7.1 On Interaction EventsA proper detection of interaction events is crucial to achieve successful performances,since a di�erent tracking approach must be used in each case: on the one hand,whenever a detected blob clusters more than one target, tracking by motion detectionis no longer feasible, and no accurate target position can be obtained; on the otherhand, ABT methods su�er from a poor target localisation, and therefore they arenot the optimal choice when an appropriate detection can be performed. Thus, bydetecting these events, several operation modes could be introduced and properlyselected. Further, this represents a signi�cant knowledge which can be used for sceneunderstanding.Two targets are said to be in-collision when their safety areas12 superpose them-12These areas are de�ned according to the targets' sizes by following the centre-surroundapproach shown in Fig. 4.5 on page 76
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(a)

(b)Figure 5.44: Sample tracking through interaction events. See text for details.selves. Thus, once all targets' positions and sizes are estimated, a collision map iscomputed. The collision map is also used to determine whether a new-born trackerrepresents a group: in this case, it is instantiated over a collision zone.The following states can be now de�ned: (i) a target is considered as single ifit does not collide with any other target within the scene; (ii) targets are said to begrouping if they do collide, but no group is being tracked in their area; (iii) targetsare considered as grouped if they collide, they are over a group tracker area, and the
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(a) (b)
(c) (d)Figure 5.45: Sample tracking showing the detection of multiple targets thathad not entered the scene isolately. (a) Target 7 is in fact a group, but is hasnot been detected yet since a single observation has always been received �the yellow contour shows the segmentation; (b) Target 10 and 11 are detectedand marked as splitting, while 7 is now marks as a dissolving group �thisinformation is shown in the corner box; (c) Target 12 and 13 are detectedas splitting from 11, which was in fact a group of two; (d) a new group isconformed by target 10 and 12; this is marked as 14.group tracker is currently associated with an observation; (iv) �nally, trackers are saidto be splitting once the group has no longer an observation, but they do still collide.The frame rate is supposed to be high enough so that a target cannot change fromgrouped to single without ever being splitting.Unfortunately, the above-presented classi�cation does not su�ce in complex sce-narios where clusters of more than one target may be formed �for instance, onetarget could belong to a stable group of several targets, while being grouping withsome other targets at the same time as splitting from other ones. Hence, the afore-mentioned scheme should be generalised by taking into account multiple and di�erenttarget interactions.The interaction state is coded using a three-bit vector, where each bit point outs



5.5. HIGH-LEVEL TRACKING (HLT) 131whether the target is grouping, grouped or splitting, see Fig 5.42. When every bit isset to zero, the target state is single. Otherwise, the state could be a mixture of thepreviously de�ned situations.Secondly, several attributes are associated with each state. These point out rele-vant information to solve interesting queries about current interaction events: whichtargets are interacting? in which sense? which ones are simultaneously grouping andsplitting? which are the partners of some grouped target? etc. Thus, the eight possi-ble states include all potential tracking situation, and these, along with the associatedattributes, constitute all the necessary knowledge to solve any query relative to targetinteraction.Two cases concerning the attributes are distinguished, depending on whether thetracker tracks a target or a group of them. In the �rst case, two lists of grouping andsplitting partners are kept. Further, the group label, if this exists, is stored. In thesecond one, a �ag which points out that the tracker is actually tracking a group isset. In addition, a list of grouped targets is also kept.Finally, several events must be taken into account in order to de�ne state tran-sitions. These include issues such as target collision with another target (COL), orwith a group (GR), whether the group has an associated observation (GR(OB)) ornot, if there are new partners in collision (NEW PRT), or splitting partners are stillso (SPL PRT).The state machine that models the group management is de�ned by eight plusone states, see Fig. 5.43. The formers are de�ned for target trackers, and the latterfor group trackers. Thus, there are 56 potential transitions between target states,although a fraction of them are not feasible according to the aforementioned assump-tions. For instance, grouped targets cannot become single, since they have to splitbefore. It is also possible to perform changes in the attributes without this meaninga state transition. This is the case when several targets are already grouping, and anew one joins them.As an example of complex interaction, consider a target whose state is grouped;then, the following events take place: (i) it is colliding with some other targets (COL),(ii) the group has currently no associated observation (GR(¬OB)), and (iii) newpartners are also colliding (NEW PRT). As a result, it changes its state into groupingand splitting. Multiple of such complex interactions are shown in Fig. 5.44. Theprevious example is the case of target 9. The changes on interactions between thetwo shown frames are summed up in Table 5.1.Although the current proposal do not allow yet to independently track people whodo not enter into the scene isolated, a tracker is instantiated over the group region.However, the system does detect the targets as they split, recognises the former targetas a group, and creates new trackers for each partner that splits from the group, seeFig. 5.45.5.5.7.2 Occlusions eventsPartial and complete occlusions may lead tracking to unrecoverable failures, if theyare not properly handled. In a 2-D approach, these may occur due to target grouping



132 CHAPTER 5. MULTIPLE-TARGET TRACKING ARCHITECTURETarget label State (t = 877) Attribute State (t = 882) Attribute5 grouped 10 splitting 99 grouped 10 splitting 5grouping 1312 � �13 grouped 17 grouped 17grouping 915 grouped 17 grouped 17splitting 16 splitting 1616 splitting 15 splitting 15Group label Attribute Attribute10 � 5,9 x x17 � 15,16 � 15,16Table 5.1: Interactions of targets shown in Fig. 5.44.�real, or due to or the e�ect of viewing angle� and background objects.Partial occlusions cause inaccurate position and size updating. However, as longas the frame rate is high enough to ensure smoothed changes, this represents justa temporal estimate deviation. The main problem comes from the possibility ofmodel drift during ABT. Further, basins of attraction cannot be accurately chosen,and partner features can be wrongly computed. This could cause target loss in afew frames. Further, the contaminated model prevents from any posterior targetrecovering. Thus, a proper occlusion handling is crucial for tracking success.The following approach is here used to infer the occlusions status. The collisionrate is known given the estimated target positions and sizes. The likelihood of thetarget estimate is also known, according to Eq. (5.50), where the updating was de-cided. Thus, a signi�cant collision along with a remarkable fall in the target likelihoodin comparison with historic values allow the system to infer that the target is beingoccluded by other group partner.Once the target is considered as occluded many actions can be taken. First, thecollision are is no taken into account in future appearance updatings. Further, thisarea is also discarded while appearance tracking is performed. Finally, this area canbe securely taken to compute partner weights during ABT.The occlusion status remains while any ambiguity exists. Thus, just in casethat no collision is predicted, or the collision is no longer signi�cant, and the targetlikelihood is high enough to perform an appearance updating, this status is changed.5.5.7.3 On Scene EventsA proper handling of scene events is essential in order to achieve successful systemperformances in open-world applications. In these, the number of targets within thescene is not a-priori known, and it may vary as new targets enter the scene, or otherones exit it. By de�ning a Region of Interest within the scene boundaries three aims
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Figure 5.46: Scene regions. Example of scene events on an image fromPETS database. The three regions de�ne the ROI, a security border, andnon-interesting areas. Events according to the target positions are shown.are achieved: (i) it is not necessary to fully process the whole image, and therefore thisfavours accomplishing real-time performances; (ii) the number of false positives can bee�ectively reduced, by avoiding detections in non-plausible or non-interesting areas,like the sky in a pedestrian-surveillance application; and (iii) targets can be almostcompletely segmented, thereby avoiding major shape changes in targets partially outthe �eld of view.Three regions are here de�ned: a ROI, a security border, and non-interestingareas, see Fig. 5.46. These are used to determine where targets can be detected,where LLT's and HLT's can be instantiated, and when they can be removed. Thesecurity border prevents the system from alternatively creating and removing a trackerplaced on the ROI frontier, in addition to avoid errors in the estimated shape in HLT.The di�erent system main tasks �pixel segmentation, blob detection, low-levelblob tracking, and high-level target tracking� are performed according to noticeablechanges in particular set of these regions.Thus, pixel segmentation is carried out in the whole image, since targets' sizesare not a-priori known. However, targets are only detected �that is, they constitutean entity for the system� if a part of them is inside the ROI, or the centroid of thecorresponding blob lies at least within the security border.For each detected target, a low-level tracker is instantiated. However, not everyLLT instantiate a high-level tracker. This requires that two conditions hold: (i)the LLT has been con�rmed and it currently has an associated observation �whichimplies that the detection has been correctly performed according to what is abovestated; and (ii) the target is at least partially within the ROI. High-level trackers areinstantiated as entering, except when they come from a group that have split �inthis case they are appearing. Entering status last until they completely lie within the
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Figure 5.47: Appearance-association module.ROI. Appearing status last a pre-de�ned number of frames in which the HLT hadcon�dence enough to be updated.When a part of the target is partially outside the ROI and the security border,the target is marked as exiting. The target can now either return to the ROI, or liecompletely outside the area de�ned by the ROI and the security border. The latterimplies the tracker removal. Trackers are also removed if they are partially within theouter zone and they are being tracked by a low-con�dence ABT, thereby avoiding asenseless gradient-based search when the target has actually exited.5.5.8 Appearance AssociationLow-level trackers lose their track during long-term segmentation failures, such asbackground camou�age, target grouping and occlusions. Once the particular event isover, the target is again detected, and a new LLT is instantiated. When this trackbecome stable, the LLT is con�rmed and a HLT is created. The former HLT statewas estimated according to ABT, and the appearance models were updated when thelocalisation was reliable enough. A tracker association process can now be performed,and the system should conclude that both trackers are in fact representing the sametarget, see Fig. 5.47.This is done as follows: �rst, a potential tracker association matrix is built uponseveral state criteria which are detailed in the following. Subsequently, candidatesare �ltered according to their shape. Then, they are gated by appearance usingthe multiple smoothed appearance models and similarity statistics previously learnt.Finally, the tracker association process is performed.Thus, the potential association matrix is built according to a set of rules. Thesede�ne which HLT can be selected as candidates, and which HLT require an associationprocess. On the one hand, the formers must be new appearing HLT, which track singletargets, with an associated LLT still con�rmed. On the other, among the formers, no



5.5. HIGH-LEVEL TRACKING (HLT) 135HLT tracking a group is considered, and they must have no LLT associated; furtherthey are discarded if the ABT is being successfully performed �which implies thatthere is enough con�dence to perform model updating� and they do not collide withthe candidate.Shape gating is performed according to the innovation covariance matrix of thecandidate corresponding LLT. Thus, the lost HLT must lie within an ellipsoid de�nedby the uncertainties on axes lengths and orientation.Finally, the similarity between the histograms of each feature of the candidate andthe tracker are evaluated using the computed statistics of the above-de�ned metric asin Eq. (5.50) learnt for the former HLT. Those histogram corresponding to the formertracker are in fact smoothed models computed while the segmentation was reliable.However, since feature selection depends on the local environment, and the targetsmove while they are grouped, the feature pool is subject to changes �wheneverthe appearance models were successfully updated during the mean-shift procedureexecution. Then, in case that non-coincident features are present, new histograms arecomputed for the candidate.Thus, features are gated, and the resulting mean distance is used to perform theassociation between former high-level trackers and candidates according to a nearest-neighbour criteria in the appearance sense. The association process ended by updatingthe interaction status taking into account the new situation.If none of the candidate trackers is within the gate of the former one, this is stillconsidered lost, and a new association process is applied at the next time step.5.5.9 Some Signi�cant Top-down PathwaysAt is has been shown, the proposed architecture follows an attentive approach byanalysing the events in which the HLT's are involved. According to these, the twomain presented actions include a principled target-appearance modelling, and theselection of the operation mode.Further, an attentive approach is also used to feed back the LLT tier, by validatingthe observation gating process, and by allowing multiple LLT correspondence to oneHLT. This process is done as follows.5.5.9.1 High-level Validation of Gated Observation.Observations were validated for a given LLT according to the result of comparing theMahalanobis Squared Distance between the predicted observation and the actual one,and the Mahalanobis radius given by the covariance ellipsoid at a given con�dence.Observations were then associated according to a nearest neighbour approach.This su�ces to disambiguate among the di�erent targets, since the only ambiguityappears when two targets are close enough. However, in this case a single blobcorresponding to the group is obtained.Nevertheless, problems arise between the group LLT and the target ones. If thegroup observation may also correspond to the target state �which happens in caseof complete occlusions, for instance� the observation is validated for both LLT. This
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Figure 5.48: High-level observation-validation module.Algorithm 6 High-level validation of gated observations.1. Derive if the observation is over a collision area,2. compute the number of targets in the support map,3. if there are several targets, then:(a) search for a group in the HLT's corresponding to LLT's with vali-dated observations(b) if a group is found, then:i. compare the number of group partners and the number of tar-gets in the support,ii. if this matches, then validate the observation just for the LLTassociated to the group HLT4. else, then prevent the validation of the observation for the LLT associ-ated with the group HLT.issue is even more noticeable due to the fact that the covariance ellipsoid of thegrouped target is expanding while no observation is associated.Thus, a principled validations of observations based on the inferred events isrequired, see Fig. 5.48. The following approach is used: every observation associatedto an existing LLT is analysed according to the collision map. If the observationslies over a collision area, the number of targets in the corresponding support map13 is13This is a binary map which keeps the record or target occupancy for each scene pixel.For instance, if a certain pixel has at the support map a corresponding value of 0110, itmeans that both targets two and three are over that particular pixel.
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Figure 5.49: LLT validation module.computed. Then, two actions can be taken: on the one hand, if more than one targetis found, the LLT for which the observations are validates, are examined. If any ofthem tracks a group, the number of group partners is compared with the number oftargets in the support map. In case this matches, the observation is validated just forthe LLT associated with the group.On the other hand, if just one target or less lie in the support map, it is concludedthat the observation cannot be validated for the LLT of the group, despite being withinits covariance ellipsoid. This procedure is summarised in Algorithm 6.5.5.9.2 Multiple LLT CorrespondenceLLT's represent intermediate entities that require being associated to a HLT, oncethey have being ever con�rmed as stable. Thus, every time a non associated LLT iscon�rmed the following process take place: �rst, its position in the scene is evaluated.If it is validated according to the scene criteria set in section 5.5.7, the possible consti-tution of a group is considered according to the number of targets in the support map,whether they are enclosed in the observation area, and these targets actually collide.Then, either an HLT representing a group is instantiated, or the LLT corresponds toan appearing target requires a new target HLT.However, given the frequent segmentation errors due to changing environmentalconditions, another case has to be taken into account. Due to signi�cant camou�ageproblems, a LLT may be instantiated on a target already tracked �if the observationlie beyond the con�dence ellipsoid. The new and the former LLT's can then competefor the observations, and eventually the second LLT may be con�rmed and requestsfor and HLT.In order to avoid that a second HLT is instantiated for a same target, an LLTvalidation process is performed, see Fig. 5.49. Existing LLT's are gated using theinnovation covariance matrix of the just con�rmed one, according to Eq. (5.29). Incase that another LLT lie within the de�ned ellipsoid, and no other HLT overlap withthis region, the new LLT is assigned to the HLT of that LLT. Both LLT's coexists,but just one HLT is created, see Fig. 5.50.
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(a) (b)
(c) (d)Figure 5.50: Sample tracking showing multiple LLT correspondence on aPETS sequence. (a) The associated LLT �in white� receives an observa-tion, and the HLT�in black� is consequently updated �as shown in the box;(b) A wrong segmentation �in yellow� due to camou�age causes the instan-tiation of a new LLT; the HLT is tracked in ABT mode; (c) The second LLTis con�rmed and associated to the same HLT, thanks to the LLT-validationmodule; (d) the �rst LLT is again con�rmed once the problem is over, andthe HLT recovers it.5.6 DiscussionIn this chapter �the main one� a principled and structured system is presentedin an attempt to take a step towards solving the numerous di�culties which appearin unconstrained tracking applications. The system here proposed implements a hi-erarchical but collaborative architecture, in which each level is composed of severalmodules which are devoted to speci�c tasks. These are performed by particular al-gorithms, but they can be substituted by any enhanced one without modifying thearchitecture itself. Therefore, albeit the di�erent modules have been here developedor improved, we consider the architecture itself as the main contribution: it introducesthe synergies between the algorithms which permit to tackle a problem with such aninherent complexity.



5.6. DISCUSSION 139This structured framework combines in a principled way both bottom-up and top-down tracking approaches: each level feeds the higher one with its computed results,and is itself fed back with high-level results. In this way, by taking advantage of bothapproaches, the system is allowed to bene�t from bottom-up capabilities, such assimultaneous modelling and tracking without making used of a-priori knowledge; butalso, high-level analysis is performed, granting accurately tuned models, and properoperation-mode selection. In addition, each level has an internal loop which alsoprovides the system with adaptive capabilities by updating the background model,making use of the knowledge about existing tracks, or selecting the most appropriateapproach according to the events in which the targets are involved.In this way, the proposed approach follows the natural paradigm, where visual-stimuli analysis is performed by the combination of pre-attentive and attentive pro-cesses. Further, it makes use of �rst-order and second-order motion perception.A principled event management is proposed and embedded in the architecture.This provides a valuable knowledge in order to obtain high-level scene descriptions,while allowing the system to switch among di�erent operation modes. The latter iscrucial to achieve successful performances, since non-supervised MTT is a complextask which demands di�erent approaches according to di�erent situations.This remarkable characteristic of the system in managing multiple interactionsamong several targets leads to another important contribution. This focuses on track-ing several targets independently while they are grouped, thereby yielding an accurateand robust target localisation. Thus, feature-selection and appearance-computationmodules have been developed, by paying special attention to the particular charac-teristics of grouping situations. Features are selected considering not only the bestdistinction between the local background and the target, but also between the targetand its group partners.A model pool is built, and long-run features are kept and smoothed. These fea-tures are useful after a target loss caused by occlusion, grouping or camou�age eventsto recover the target. Further, by smoothing the histograms the representation is lesssensitive to potential initialisation and subsequent localisation errors. Then, a secondoperation mode, an ABT, is added to tackle those events which prevent from a propersegmentation. Motion and appearance cues, relative to potential distracters, are takeninto account when performing a gradient search. A principled model updating schemeis followed to avoid model drift.Thus, the proposed architecture successfully tracks multiple targets simultane-ously �as shown in the chapter devoted to experimental results. This is achievedeven in hard conditions of cluttered background and uncontrolled illumination. Tar-gets present a high appearance and shape variability. Complex tracking events �inwhich numerous targets are simultaneously involved in di�erent grouping and splittingsituations� take place. In spite of these di�culties, experiments on complex indoorand outdoor scenarios have yielded robust and accurate results, thereby demonstrat-ing the system ability to deal with unconstrained and dynamic scenes. No a-prioriknowledge about either the scene or the targets, based on a previous training period,is required. The method is adaptive in the sense of number of targets, the best ap-pearance representation, or the most appropriate tracking algorithm according to theevents which are taking place.



140 CHAPTER 5. MULTIPLE-TARGET TRACKING ARCHITECTUREStill, many cases remain in which no positive discrimination is obtain betweenthe background and a particular target. Thus, target segmentation can be enhancedby making use of new cues. For instance, gradient-change detection can be used toattenuate target camou�age. Further, shadow removal techniques could be very usefulto address those false detections due to changes in the illuminant chrominance. Thiscan be carried out by considering the techniques proposed in [21].Further, a multi-layered background can be built by including characteristics ofleft objects. Therefore, motion segmentation of new targets over former ones couldbe achieved, while ghost detection �in the event that the object be again removed�is avoided.A target classi�cation module �which requires a-priori learnt knowledge� coulddistinguish among people, vehicles and other objects in motion. This will also helpto segment targets who enter the scene within a group.Target representation can be re�ned by including structure components �suchas body-part histograms� and shape cues �such as SIFT descriptors. This willenhance agent tracking during long-term occlusions.Finally, the system may bene�t from high-level information about the context andcurrent situations provided by cognitive levels of the HSE framework, while makinguse of multiple active cameras from several point of views. Further, learning methodscan be considered to tune algorithm parameters according to the particular conditionsof a given scenario.5.7 ResumS'ha presentat un sistema estructurat per tractar les nombroses di�cultats que aparei-xen en aplicacions genèriques de seguiment. El sistema que aquí es proposa imple-menta una arquitectura jeràrquica col·laborativa, en la qual cada nivell es compond'uns quants mòduls que estan dedicats a tasques especí�ques. Per això, per bé que elsdiferents mòduls han estat aquí desenvolupats o millorats, considerem l'arquitecturamateixa com la contribució principal de la Tesi, ja que de�neix les sinergies entrealgoritmes que permeten tractar un problema amb una complexitat tan inherent.Aquesta estructura combina enfocaments tant de Baix-a-Dalt com de Dalt-a-Baix:cada nivell alimenta de més alts amb els seus resultats, i és alimentat amb els resultatsdels nivells més alts. El sistema permet bene�ciar-se de les capacitats de Baix-a-Dalt,com el modelatge i el seguiment simultani sense utilitzar coneixement a-priori; peròtambé es realitza un anàlisi d'alt nivell, generant models re�nats més acuradament,garantint així la selecció del model de funcionament més adient. A més a més, cadanivell té un bucle intern que també dóna capacitats al sistema d'adaptació.S'ha proposat una gestió d'esdeveniments que s'ha incrustat en l'arquitectura.Això proporciona un coneixement valuós per obtenir descripcions d'escena d'alt nivell,mentre deixa el sistema canviar diferents modes d'operació.Aquesta característica del sistema per gestionar les interaccions entre els objectesha portat a una altra contribució important. Aquesta se centra en seguir independent-ment múltiples objectes mentre s'agrupen, produint així una localització d'aquestsmés acurada i robusta. Així, s'han desenvolupat uns mòduls per al càlcul de l'aparença



5.7. RESUM 141i uns algorismes per a la selecció de les millors característiques. Aquestes caracterís-tiques se seleccionen considerant no només la millor distinció entre el fons i l'objecte,sinó també entre l'objecte i els seus companys de grup.S'ha construït un model on les millors característiques a llarg terme s'enmagatze-men i se suavitzen. Aquestes característiques seran útils per recobrar l'objecte desprésd'una pèrdua provocada per oclusions, agrupacions o camu�ament. A més, amb lasuavització dels histogrames, les representacions dels objectes són menys sensibles aerrors potencials de localització i inicialització. Llavors, un segon model d'operació,l'ABT, s'afegeix al sistema per tractar aquells errors degut a la falta d'una bonasegmentació. Així es tenen en compte informació de moviment i d'aparença dels po-tencials distractors, que són tinguts en compte per a realitzar el descens del gradient.A continuació se segueix amb un esquema d'actualització del model per evitar laderiva del model.Així, l'arquitectura proposada segueix satisfactòriament múltiples objectes si-multàniament. Això s'aconsegueix �ns i tot en condicions fortes de fons sorollós id'il·luminació no controlada. En estos casos els objectes presenten una variabilitatmolt gran d'aparença. Llavors, els esdeveniment de seguiment que es produeixen sónmolt complexos de tractar. Malgrat aquestes di�cultats, s'han realitzat experimentsen entorns complexos, tant tancats com oberts, que han donat uns resultats robustosi acurats, demostrant així l'habilitat de sistema per tractar escenes no restringides idinàmiques. Tampoc s'exigeix cap tipus de coneixement a-priori ni sobre de l'escena nisobre els objectes, que estiguin basats en un període d'entrenament previ. El mètodeés adaptatiu al número d'objectes, a la millor representació d'aparença, i a l'algoritmeescollit més apropiat que millor segueixi, segons els esdeveniments que estan tenintlloc.





Chapter 6Experimental ResultsThe tracking task requires reasoning over time under uncertainty. This uncertaintyinvolves not only probabilities about some event or condition, but degrees of truthabout them. Given the practical and theoretical ignorance about all the involvedprocesses, it is not possible to have access to a ground truth about what is takingplace in the real world. Further, all human assessments of a particular situationentails an important subjective component, thereby presenting signi�cant deviationsamong them1. However, it is often assumed that a human visual determination, orthe juxtaposition of multiple ones, provides a error-free ground truth.MTT applications usually imply real-time requirements, in conjunction with ex-treme robust performances. Hence, algorithms should be �exible enough in order todeal with unexpected situations. Therefore, the considered assumptions should bekept to minimum. However, accuracy requirements can be relaxed in comparisonwith applications concerned with action, gesture or facial expression recognition, forexample.In the following, some considerations on tracking performances are stated. Sub-sequently, numerous experimental results in several scenarios are presented, and theperformance of the di�erent algorithms analysed according to various criteria.6.1 On Tracking PerformanceReal-time processing, extreme robust performances, high accuracy, low power, or lowcost may be critical for the application purpose. Unfortunately, a trade-o� must usu-ally be found among these requirements: enhancing the system accuracy and robust-ness often implies increasing the algorithm complexity, and thereby the computationtime.1Another way of mitigating the inherent human subjectivity consists on testing the track-ing algorithms on synthetic sequences about virtual environments. Synthetic data allow usto achieve two goals: �rst, access to the ground truth is granted, and therefore deviationsand performances can be accurately measured; and secondly, experiment conditions can getharder on each aspect independently, and thereby maximum performances can be measured.143



144 CHAPTER 6. EXPERIMENTAL RESULTSA di�erentiation is here made about practical requirements �which may dependon the budget, or may change as the technology make progress� and the evaluationof the obtained results. In the opinion of the author, research should not be restrictedby the technology state of the art2.6.1.1 Achieving Real-time PerformancesMTT in unconstrained and dynamic scenarios are one of the most computation-ally demanding Computer Vision topic. Nevertheless, real-time performances maybe achieved without excessively compromising accuracy and robustness by placingspecial care in three main tasks, namely, speci�c hardware implementation3, codeoptimisation, and algorithm designing.Thanks to a large number of recent technological advances in the hardware do-main, image-sequence capture and transfer is already feasible in real-time4. Hence,image processing remains in many application as the only bottleneck [73]. Otherbottlenecks may appear in case of needing to store of visualise processed images.Large-scale non-volatile storage can be mandatory5.Nevertheless, signi�cant speed improvements can be achieved by processing pixel-wise operations in parallel. Many systems can bene�t from speci�c hardware imple-mentations. Among these, Application Speci�c Integrated Circuits (ASIC), DigitalSignal Processors (DSP), Graphic Processors Units (GPU), and Fully ProgrammableArrays (FPGA) can be considered.Systems present in the related literature are often prototypes. Robustness andaccuracy in unconstrained conditions requires capabilities to switch among di�er-ent operation modes and algorithms [60]. However, cost requirements imply keepingthe hardware viable. Albeit ASICs provide better speed performances, low powerand low cost, they preclude future developments. On the other hand, DSPs allowprogrammable architectures at the expense of higher individual cost and power con-sumption. GPUs o�er the possibility of o�oad speci�c processes, thereby speeding uplow-level algorithms at economical cost. Finally, FPGAs provide large-scale parallelprocessing, e�cient pipe-lining, and high I/O capabilities, which support simultane-ous access to multiple external memory banks.It should be remarked that the computational load at any time t depends onparticular issues which cannot be controlled, such as the number of targets withinthe scene, and the size of these targets or the scene itself in number of pixels. It alsodepends on design decisions which may be critical to achieve successful performances2However, it should be close enough in order to allow practical applications in a nearfuture.3Enhanced performances via hardware can also be obtained by making use of more power-ful computers, overclocking them, or including dual- and quad-core processors, for example.4For example, at the time this thesis was written, Giga-Ethernet cameras provide highresolution and frame rate in progressive colour acquisition modes.5Again, current fastest hard disks rotate at 15,000 rpm, and data transfer is limited to amaximum of 110 MB/s. Thin Film Transistor Liquid Crystal Display (TFT LCD) monitorsare experimenting an important development, and the newest ones reach response times of1ms.



6.1. ON TRACKING PERFORMANCE 145�like the number of histogram bins, or the number of features selected in the proposedtracking architecture.Further processing speed improvements can be achieved by optimising the code.This speci�cally means to modify the code and its compilation settings on a givencomputer architecture to produce more e�cient software. Performance bottlenecksare often due to language limitations rather than algorithms or data structures usedin the program. Low-level languages which gives more direct access to the underlyingmachine allow faster computation as the expense of less readability and maintainabil-ity. An special case are interpreted languages. These are executed from source form,and are consequently slower. However, the code is often more �exible, allowing a fasterprototyping. Finally, a remark must be said against premature optimisation6, whichdescribes a situation where a programmer lets performance considerations a�ect thedesign of a piece of code.Finally, the system can be speed up by implementing asymptotically optimalalgorithms, that is, those which for large inputs performs at worst a constant factorworse than the best possible algorithm, thereby allowing algorithm scalability. In thiscase, the performance is evaluated in the sense of time complexity, i.e, the number ofsteps that it takes to solve an instance of the problem as a function of the size of theinput.6.1.2 Evaluating Accuracy and RobustnessThis �eld still being a novel open research line, there is unfortunately a lack of widelyaccepted test data-bases, ground-truth data, and evaluation criteria. Performanceevaluations are often based on quantitative metrics which depends on qualitativeevents, or even results are evaluated by means of visual inspection. In order to allowalgorithm comparisons, a standard methodology for performance evaluation muststill be developed and assumed. Public test sequences should be synchronised andcalibrated, and ground truth data must be available.At least, some e�orts have been made in both issues. Several workshops onPerformance Evaluation of Tracking and Surveillance7 (PETS) have taken place since2000. Data sets are provided in order to allow algorithm performance comparison. Inparticular, PETS 2001 Test Case Scenario has been widely used by the communitysince its release. It contains three di�erent views of an outdoor scenario which includesroads, parking places, and green areas surrounding several buildings. The resolutionis PAL standard: 768 x 576 pixels, at 25 frames per second (fps). Files are compressedin low quality JPEG, thereby presenting many visual artifacts.CAVIAR (Context Aware Vision using Image-based Active Recognition) database8has been used in PETS 2004. It contains indoor sequences corresponding to two dif-ferent data sets. The �rst one were �lmed with a wide angle camera lens in anentrance lobby. The second one was recorded in a mall centre corridor from two dif-ferent point of views. In both cases, the resolution is half-PAL standard (384 x 2886Tony Hoare �the quick-sort designer� and Donald Knuth �who can be considered thefather of algorithm analysis� repeatedly warned against this practice.7http://peipa.essex.ac.uk/ipa/pix/pets8http://homepages.inf.ed.ac.uk/rbf/CAVIAR
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146 CHAPTER 6. EXPERIMENTAL RESULTSpixels @ 25 fps). Sequences are synchronised, calibrated, and some ground truth datarepresentation is available.The SCEPTRE project9 (Service to Evaluate the Performance of Tracking andRecognition) provides two data sets of football matches from eight viewpoints each.The resolution is 720 x 576 at a frame rate of 25 fps. Many others performance-evaluation workshops and projects have recently provided a wide diversity of data-sets, such as CLEAR 2006 and 2007 (Classi�cation of Events, Activities and Rela-tionships10), and the AMI project (Augmented Multi-Party Interactions11).Despite this e�ort, most results are given as samples of a small number of pro-cessed frames, and there is still a lack of accepted performance criteria. Nevertheless,an increasing number of authors are proposing performance measures in recent times.Thus, Senior et al. [81] compute a set of error measures between the tracking re-sults and a ground truth determined by a human user. The performance is evaluatedaccording to:1. the centroid position error;2. the bounding-box area error;3. the object detection lag;4. the track incompleteness, which is given by the rate of number of frames missingfrom the result track plus the number of frames erroneously associated by thecommon number of frames between results and ground truth;5. false positive and negative track error rates;6. and, the number of object classi�cation errors.Zhao and Nevatia [99] evaluate their algorithm performance without the need of anaccurate ground truth. Thus, this is done according to the following measures:1. the trajectory-based error rate, given by the number of times an identi�cationis broken, and the number of objects;2. the detection lag;3. the detection rate;4. and, the false alarm rate.Event-based error measures have also been proposed [72]. In these, events reported bythe system are compared to reference ones. Thus, cumulative counts of speci�c eventtypes of di�erent orders are used to perform an evaluation on several sub-sequences.Low relative errors at lower orders imply good responses for those event of interest,while low errors at higher orders imply also good track continuity.9http://sceptre.king.ac.uk/sceptre/default.html10http://www.clear-evaluation.org/11http://corpus.amiproject.org/
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(a): Frame 1 (b): Frame 40

(c): Frame 50 (d): Frame 100Figure 6.1: Example of same ground-truth frames for a given scenario.Finally, the ETISEO project12 (Evaluation du Traitement et de l'Interprétation deSéquences Vidéo) proposes a data structure for content annotation, video annotationrules, and a set of metric de�nitions.Summarising, there is still a lack of widely accepted test data-bases. Performanceevaluations are often quantitative comparisons using qualitative metrics, or even re-sults are evaluated by means of visual inspection �given a set of sample frames�and usually no ground-truth data is available. A standard methodology for evaluatingperformances is mandatory.6.2 Evaluating the Performance of the Particle-FilterApproach.The performance of the algorithm has been tested using both synthetic and realdata. A series of synthetic experiments has been designed in order to evaluate the12http://www.etiseo.net/
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148 CHAPTER 6. EXPERIMENTAL RESULTSMean number of samples per targetTarget 1 Target 2Run 1 49.5101 50.4899Run 2 49.6577 50.3423Run 3 50.4195 49.5805Run 4 49.9866 50.0134Run 5 50.3456 49.6544Run 6 50.0705 49.9295Table 6.1: Results of the proposed weight-normalisation approach.Mean normalised errorTarget 1 Target 2Run 1 0.1163 0.1309Run 2 3.8864 0.1182Run 3 0.1222 0.1226Run 4 0.0980 0.1038Run 5 0.1612 0.1131Run 6 0.1101 2.4679Mean* 0.1216 0.1177(a) Performance withoutregularisation and speed feedback

Mean normalised errorTarget 1 Target 2Run 1 0.0715 0.0716Run 2 0.0849 0.1163Run 3 0.0987 0.1289Run 4 0.0645 0.0595Run 5 0.0679 0.1173Run 6 0.1233 0.0840Mean* 0.0851 0.0963(b) Performance using the proposedregularisation and speed feedback* The mean is computed just for those non-lost targets. Thus, in Table (a)the second run for target 1, and the sixth one for target 2 are not taken intoaccount. Otherwise, even a higher di�erence would have been yield.Table 6.2: Mean normalised errorperformance of the di�erent design improvements. They cover several di�culties atracker can run into, see Fig 6.1. Thus, the scenario implies an experiment in whichtwo moving targets with highly non-linear dynamics are considered. Both targetsize and aspect ratio change over time. They move through a scene with complexclutter. Two strips are drawn in the background. Their distributions are identical toboth targets' distributions, thereby mimicking them. Strong acquisition device noiseis simulated. The targets are in di�erent planes but their image trajectories crossover causing a complete occlusion through several frames. Tracking is performed over
T = 300 frames using N = 100 samples.As it have been stated in Chapter 4, no detection is ever used after the initiali-sation. Thus, targets are tracked by means of prediction and weighting the di�erenthypotheses, while the image is not scanned by performing any motion segmentation.Numerous runs have been carried out with and without the proposed weight
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(b)Figure 6.2: Number of lost samples. (a) without the regularisation andspeed feedback; (b) using the proposed regularisation and speed feedback.(Notice the reduction of 75% in the scale of the axes)
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(a) (b)

(c) (d)Figure 6.3: Target performance on tra�c sequencesnormalisation13. In case of no-using it, one target is lost due to the lack of samplesin �ve of the runs. In the remaining one, at time t = 300 one target got 92 outof 100 samples. A target is considered lost when the normalised Euclidean distance,according to the target's size, between the target and the estimation position is higherthan a threshold set at 0.5, that is, the overlapping between the sample and the realtarget is reduced a half of its area14.After the proposed weight normalisation, the mean number of samples per agent�uctuates between 49.5 % and 50.5%, as seen in Table 6.1.Multiple runs have been performed to test the e�ect of regularising both position13Here results are presented for just six runs. This is however enough �in our opinion�since the tracker is dealing with a synthetic scenario with all its parameters �xed.14Due to the lack of a standard about this issue, we have considered convenient to establishsuch a strict criterion.
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(a) Frame 4: tracking (b) Frame 24: updating
(c) Frame 80: occluded (d) Frame 140: recoveryFigure 6.4: Experiment involving an opposite translation and merging.and speed, not estimating the target speed from the speed of the samples, and feed-ing back the estimated speed into the prediction stage. Thus, Table 6.2.(a) showsthe mean normalised error �according to the target size� in estimating the targetposition without the regularisation, while Table. 6.2.(b) shows the same results afterapplying it. A signi�cant error reduction can be appreciated.Further, Figs. 6.2.(a) and (b) compare the number of samples per target that havelost the target. After considering the regularisation, a signi�cant sample loss reductionis observed: the number of lost samples is negligible, except for speci�c instants inwhich the target is over clutter, see run 3 in Fig. 6.2.(b). In addition, none of thetargets is ever lost, since the e�ective number of samples has been increased avoidingsample wastage. The trajectory jitter is considerably reduced.In the next, both particle �lter approaches �using appearance models based onintensity templates, and based on colour histograms� are tested on real sequences.Two hundred samples have been used in all the analysed sequences. Trackers areinitialised by hand.Fig. 6.3 shows results using the template approach in tra�c sequences taken in amotorway during 60 frames. Figs. 6.3.(a), 6.3.(b) show results where large size andspeed changes are present, as they can be noticed according to the milestones and thebounding box sizes; Figs. 6.3.(c), 6.3.(d) exhibit tracker performance under heavyshadow and re�ectance conditions.
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1

Target1: UPDATING

2

Target2: UPDATING

Frame: 12 (a) Frame 12: updating
12

Frame: 38 (b) Frame 38: tracking
1

Target1: OCCLUDED

2

Frame: 50 (b) Frame 50: occluded
1 2

Target2: EXITING

Frame: 102(c) Frame 102: recovery and exitingFigure 6.5: Experiment involving an overtakingThe performance of the grey-scale template-based algorithm has also been testedusing several sequences involving humans. Two targets are tracked simultaneously,despite their being articulated and elastic objects whose dynamics are highly non-linear, and that move through an environment with complex clutter.The �rst sequence involves an opposite translation and merging. Both targetsstart moving from opposite positions and meet near the second actor's initial position.In this case 120 images of 320 x 240 have been analysed. The number of samples isalso �xed at 200, and trackers are manually initialised.The �rst target's speed decreases unevenly from �ve pixels per frame and the sec-ond one from two pixels per frame to nearly zero during the �rst part of the sequence.The �rst target is almost completely still from frames 70 to 130, occluding the secondtarget. The latter crosses at a very low speed while performing a rotation. Thus,signi�cant speed, size and appearance changes can be observed. The backgroundintensity levels are so similar to the target ones that constitute a source of clutter.
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Figure 6.6: Sample distribution in the overtaking sequenceThe tracker performance is shown in Fig. 6.4. Both targets' appearance modelsare updated when reliable measures are obtained, see Fig. 6.4.(b). Occlusion is cor-rectly detected avoiding re-sampling of samples of the occluded target and erroneousdynamic and appearance models updating, see Fig. 6.4.(c). The tracker recovers fromocclusion, see Fig. 6.4.(d).The second sequence involves an overtaking, see Fig. 6.5. This sequence have130 images of 384 x 288. Two hundred samples have been also chosen to track bothtargets. Trackers are also initialised by hand.The second target moves faster than the �rst one �which is in fact a group of twopeople� overtaking it. An almost complete occlusion can be observed from frame 40to 60, see Fig. 6.5.(b), Fig. 6.5.(c). The street-lamps constitute a source of clutterand cause partial occlusions to both targets, see Fig. 6.5.(a).In the following paragraphs, quantitative data concerning the overtaking sequenceare presented. In this way, the algorithm robustness can be discussed and the draw-backs exposed, as well as the ways of solution. Results concerning six runs are pre-sented.Fig. 6.6 shows the sample distribution among the targets present within the scene.Occlusion and appearance-model updating situations are also pointed out. As canbe observed, the sample are evenly distributed. Thus, the number of samples perobject �uctuates around the �fty percent, given that two objects are tracked. Duringocclusions, the samples corresponding to the occluded target are not re-sampled.
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Figure 6.7: Re-sampled samples in the overtaking sequenceSample survival rateTarget 1 Target 2Run 1 38.6 28.5Run 2 39.6 27.2Run 3 36.9 27.3Run 4 39.0 28.4Run 5 41.2 28.7Run 6 45.5 29.0Mean 40.1 28.2Table 6.3: Sample survival rate.Thus, the number of them is constant while this situation holds, as can be observedin the aforementioned �gure. The loss of a target due to the lack of samples havebeen avoided.Fig. 6.7 shows the number of re-sampled samples. As before, it can be noticedthat samples belonging to occluded targets are just propagated without pruning them.The survival rate is shown in Table 6.3. In the experiments carried out, the meansurvival rate is 28.2% (values for target 1 are biased since during the occlusion no
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Figure 6.8: Target likelihood in the overtaking sequencesample is re-sampled). Low values of survival rate indicate that there are signi�cantdi�erences among the likelihood values of the di�erent samples. By making betterpredictions, this rate may be increased, a fact which represents an increment in thenumber of e�ective samples �those which are in fact tracking the target. Thus, thenumber of required samples may be reduced.However, this is an endemic problem in particle �ltering [3]. Despite the numerousapproaches that have been tried �Partition Sampling [58], Covariance Sampling [85],Annealing Filtering [16], Unscented Particle Filter [89], etc� the problem is still open.Thus, according to [57], the evaluation of the survival diagnostic:
D =

N∑

i=1

(
πi
)2

, (6.1)for the conventional particle �lter [40] �given a 10-frame sequence with two targetsusing 2000 samples� yields a value below 5%; the same evaluation using PartitionSampling yields a value below 15%.Fig. 6.8 shows the evolution of the targets' likelihoods. Target one correspondsto the two women whereas target two corresponds to the man. Two women beingtracked, one behind the other, using just one tracker cause the signi�cant lower val-ues in the target likelihood, since bigger appearance changes occur between successiveframes. The maximum sample likelihood is also drawn, using a thin red line. Usually,this value is higher than the target likelihood, since targets' states are obtained by
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(a) Appearance model (b) Ground truthFigure 6.10: Target's appearanceaveraging the weighted samples. In some cases, the sample with maximum likeli-hood corresponds to spurious state, given by a reduction of the target size caused bybackground clutter. In other cases, the maximum sample likelihood is lower than thetarget likelihood. This is caused by the fact that using a limited number of samples tomodel a highly dimensional pdf implies that this space cannot be densely populated,and thereby `holes' are left.Clutter is really a signi�cant problem in these sequences. Numerous zones of thebackground mimic the target appearance in many pixels. Intensity is used as imagefeature. We try to overcome this problem using colour image features, and making useof global target characteristics, such as computing histograms. This last issue wouldprevent the e�ects of dealing with articulated and elastic targets, which likelihood,under certain conditions, may present signi�cant falls due to pixel misalignments.In the Fig. 6.9, the likelihood values around the target position at two di�erentframes are shown. As can be seen, the likelihood function is highly multi-modaland present low values at the true position. The �rst target's appearance model�the two women� is show in Fig. 6.10.(a) and the corresponding image section inFig. 6.10.(b). Signi�cant di�erences in the corresponding pixels can be observed dueto the articulated nature of the targets. These result strongly suggest that otherlikelihood functions should be explored.The performance of the approach based on colour histograms has been testedusing the CAVIAR database. In the sequence OneLeaveShopReenter1cor (CAVIARdataset2, 389 frames @ 25 fps, 384 x 288 px), two targets are tracked simultaneously,despite their being articulated and deformable objects whose dynamics are highlynon-linear, and that move through an environment which locally mimics the targetcolour appearance. The �rst target performs a rotation and heads towards the secondone, eventually occluding it. It also presents challenging di�culties due to the factthe background colour distribution is so similar to target one that it constitutes a
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(a) Frame 4: updating (b) Frame 62: tracking

(c) Frame 74: occluded (d) Frame 90: recoveryFigure 6.11: PF performance on CAVIAR sequence. Each target's estimatedposition is denoted by an ellipse and tagged accordingly; milestones are placedon the target trajectory every 25 frames; each predicted sample is drawn usinga dark dot, whereas re-sampled particles are drawn in a light ones.strong source of clutter. Furthermore, several oriented lighting sources are present,dramatically a�ecting the target appearance depending on its position and orientation(notice the bluish e�ect on the �oor on the right of the corridor, and the reddish oneon the �oor on the left of the corridor). Thus, signi�cant speed, size, shape andappearance changes can be observed, jointly with events such as people grouping,partial occlusions and group splitting. the environment locally mimics the targetcolour appearance, and several oriented lighting sources are present.The tracker performance is shown in Fig. 6.11. Both targets' appearance modelsare updated when reliable measures are obtained, see Fig. 6.11.(a). Poor localisationsand occlusions are correctly detected, thereby avoiding re-sampling of samples ofthe occluded target and erroneous dynamic and appearance models updating, seeFig. 6.11.(b), (c). The tracker successfully recovers from occlusion, see Fig. 6.11.(d).
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Figure 6.12: Likelihood evolution.The maximum sample and target likelihoods, and the likelihood indicator is shownin Fig. 6.12.Despite the achieved improvements, the experimental results show the limita-tions on the approach based on particle �lters. Constrained appearance models arerequired. In the presented results, targets were initialised by hand. An automatic ini-tialisation entails the necessity of dealing with common detection errors in clutteredand uncontrolled scenes. This approach would not cope with such ill-pose models.Further, the need of model updating due to changing illumination conditions, orthe non-rigid nature of the targets, implies assuming model contamination. Since thetargets cannot be perfectly delineated, and small position errors are always present,the models will unavoidable drift. In addition, likelihood functions are not discrimina-tive enough to mitigate the drift of the models. Thus, tracking in long-term sequenceswould not be feasible.Obviously, these facts may be overcome by generating new samples from detection,and performing a data association process like in [41, 91]. However, this would justmask tracking misbehaviours what leads one to question about the feasibility of thiskind of approaches.Finally, due to the lack of a constrained dynamic model, an despite the improve-ments introduced, there is still a signi�cant sample wastage. By assigning samplesto an speci�c target instead of using a state vector which includes variables fromall targets, we have tried to cope this e�ect �which is increased due to the curseof dimensionality. Other authors have tested other approaches like partitioned sam-pling [58], but the cause remains.This considerations have lead to the development of the approach which resultsare presented in the following section.
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(a) (b)

(c) (d)

(e) (f)Figure 6.13: Annotation tool. (a) Main Windows and cropped region. (b)Segmented contour. (c) Annotation window. (d) Occluding target. (e) Re-sults pointing out occluded regions and Head. (f) Identi�cation window, tar-get and frame labelling.



6.3. HIERARCHICAL TRACKING ARCHITECTURE 1616.3 Evaluating the Performance of the Proposed Hi-erarchical Tracking Architecture.The performance of our system has been tested using sequences taken from bothpublic well-known databases, and own ones. Successful tracking results have beenachieved in all processed sequences15.Further, a ground-truth annotation tool has been developed16, and the interactionbetween human and computer is aided by using a pen tablet, see Fig. 6.13. Thus,foreground regions can be annotated, visualised and edited. Targets are labelled, andvisible and occluded regions are pointed out, as well as signi�cant parts as head orfeet. As a result, a XML �le is generated with the annotation data, and a set of targetimage masks are stored.Signi�cant processed frames of the previously used CAVIAR sequence are shownin Fig. 6.14. The following notation is used in all presented images: the contour ofsegmented blobs is painted on yellow; LLT's are denoted by black ellipses, wheresHLT's are represented by white ones; the security border is faded on blue, while outerareas are in grey.Tracking information is displayed in the box: the target label or identi�cation (ID)is followed by the tracking status �tracked or lost� the operation mode �observed,or ABT� the interaction event and as attributes the partners involved, and whetherthe tracker is being updated, the target is occluded, or is entering/exiting the scene.For instance, in the Fig. 6.14.(e) targets one and two are both tracked in ABT mode,they are splitting one from each other, and the trackers have con�dence enough toupdate the colour models; the group which both targets conformed is dissolving.The sequence DATASET1_TESTING_CAMERA1 (PETS 2001 database, 2688frames @ 29.97 fps, 768 x 576 px) presents a high variety of targets entering intothe scene: three isolated people, two groups of people, three cars, and a person whoexits from a parked car. These cause multiple tracking events in which several targetsare involved in di�erent grouping, grouped, and splitting situations simultaneously.Samples of tracking results can be seen in Fig. 6.15.A crosswalk sequence is analysed in Zebra1 (CVC database, 1344 frames @ 25fps,720 x 576 px). Four people are involved in di�erent interaction events. Further, severalvehicles cross the scene in a front plane, and people walk behind various streetlampsand trees, resulting in multiple partial an complete occlusions of the targets. Fig. 6.16shows some signi�cant frames.15The reader is encouraged to see the whole processed sequencesat http://iselab.cvc.uab.es/?q=agent_motion16This is applied to the ISE lab database, see http://iselab.cvc.uab.es/?q=tools. Theaim of these is to develop new techniques, technology, and algorithms for the automaticevaluation (i.e. motion detection, tracking, recognition and interpretation) of human be-haviours in image sequences. ISE Lab is involved in an ongoing e�ort to develop datasetsof synchronised videos, and ground-truth data. Consequently, the provided datasets aremeant to aid research in developing, testing and evaluating algorithms for human-behaviourunderstanding.

http://iselab.cvc.uab.es/?q=agent_motion
http://iselab.cvc.uab.es/?q=tools
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(a) (b)
(c) (d)
(e) (f)Figure 6.14: Sample tracking results on theCAVIAR_OneLeaveShopReenter1cor sequence. Two targets are tracked; aLLT is instantiated in (a), and a HLT in (b); interaction events are correctlydetected: (c) grouping, (d) grouped in (3), and (e) splitting; during themerging both targets are tracked using ABT; after it, new trackers areinstantiated and correctly associated (f).

http://iselab.cvc.uab.es/files/Results/Agent_Motion/Video_tesis/CAVIAR2_OneLeaveShopReenter1cor_901_FullMarked_30fps.avi
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(a) (b)
(c) (d)
(e) (f)Figure 6.15: Sample tracking results on thePETS_DATASET1_TESTING_CAMERA1 sequence. Targets are trackeddespite no segmentation is available in (a), a single blob is obtained for thegroup in (b), (d), or they are heavily occluded in (e); multiple simultaneousevents are correctly inferred, such as target 13 is grouped in group 15 whilesplitting from 14 in (d).

http://iselab.cvc.uab.es/files/Results/Agent_Motion/Video_tesis/PETS2001_DATASET1_TESTING_CAMERA1_905_30fps.avi
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(a) (b)
(c) (d)
(e) (f)Figure 6.16: Sample tracking results on the CVC_Zebra1 sequence. Targetsare successfully tracked despite mutual occlusions in (a) and (d), or occlusionswith the background in (c) and (e); interaction and scene events are correctlyinferred.The Hermes_Outdoor_Cam1 sequence (HERMES database, 1612 frames @ 15fps, 1392 x 1040 px) presents a great diversity of situations. Three people and threecars act on a robbery sequence, where suitcases and bags are carried, left and pickedfrom the �oor. Multiple interaction events can be seen, in which several agents areinvolved in di�erent simultaneous grouping, grouped and splitting events, while theyare partially or completely occluded. Among the sequence di�culties, it must be alsoremarked that objects from the initial background are removed, several targets su�erfrom heavy background camou�age, and strong clutter is caused by similar group

http://iselab.cvc.uab.es/files/Results/Agent_Motion/Video_tesis/CVC_Zebra1_502_FullMarked_30fps.avi
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(a) (b)
(c) (d)
(e) (f)Figure 6.17: Sample tracking results on HERMES_Outdoor_Cam1 se-quence. The dissolution of a non-detected group form by target_4 �theman� and 3 �the bag� is correctly detected in (a), (e); targets are success-fully tracked through groups in (b), partial occlusions in (c), and completeocclusions in (d); left objects are detected in (e), an correctly tracked afterbeing picked up in (f).

http://iselab.cvc.uab.es/files/Results/Agent_Motion/Video_tesis/HERMES_Outdoor_Cam1_915.avi
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(a) (b)
(c) (d)
(e) (f)Figure 6.18: Demo tracking results on the CVC_Zebra1 sequence.partners. Signi�cant frames are shown in Fig. 6.17.Finally, a football matched is recorded in the sequenceVS_PETS_Testing_Camera4(VS_PETS17 database, 1570 frames analysed @ 25fps, 720 x 576 px). These sequenceentails special di�culties given the high number of targets in the scene, and the factthat the appearance of all players from each team is identical.Similar results are given in a demo mode, where all annotated information, sceneregions, and intermediate results are removed for the sake of clarity. Thus, Fig. 6.18shows some frames from CVC_Zebra1 sequence, whereas Fig. 6.19 does the same17Visual Surveillance and Performance Evaluation of Tracking and Surveillance, 2003.http://www.cvg.rdg.ac.uk/VSPETS/

http://iselab.cvc.uab.es/files/Results/Agent_Motion/Video_tesis/CVC_Zebra1_910_DEMO_30fps.avi
http://www.cvg.rdg.ac.uk/VSPETS/
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(a) (b)

(c) (d)

(e) (f)Figure 6.19: Demo tracking results on the HERMES_Outdoor_Cam1 se-quence.for HERMES_Outdoor_Cam1 sequence, and Fig. 6.20 for the VS_PETS sequence.In this last sequence, the system fails after a thousand frames to accurately trackall targets. Multiple facts entail this fact. First of all, the system must face a high

http://iselab.cvc.uab.es/files/Results/Agent_Motion/Video_tesis/HERMES_Outdoor_Cam1_911_DEMO_30fps.avi
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(a) (b)

(c) (d)Figure 6.20: Demo tracking results on VS_PETS_Outdoor_Cam1 se-quence. (a) Multiple targets are simultaneously tracked; target 6 is success-fully tracked in ABT mode, despite no segmentation is obtained �due to anwrong background model in the zone because a player was there during theinitialisation; (b) target 4 partially occludes target 6; both are tracked in ABTmode; (c) the linesman is being tracked despite being out of the ROI since hehas once stepped on it; (d) the system fails to track targets under tracker 16and 49, see text for details.number of targets in a low-resolution region. This issue can be solved by using amosaic from registered multiple cameras. Secondly, no context constrains have beendeliberately introduced into the system, but in a practical application the knownappearance of the targets and background can be used18. In the third place, all the18The aim has been designing a general system in order to cope with the maximum numberof di�erent scenarios. It should be easier to particularise the system later on, depending on



6.3. HIERARCHICAL TRACKING ARCHITECTURE 169Mean Error Error Std. Dev.x- position 1.93 1.06y- position 2.46 2.62Major axis 5.39 5.27Minor Axis 2.77 1.90Table 6.4: Error statistics.
(a) (b)Figure 6.21: Sample tracking evaluation. (a) Position and (b) size errorof target1 in Hermes_Outdoor_Cam1 sequence. Non-visible body-parts arealso manually annotated; Major estimation errors correspond to frames withpartial occlusions with the rubbish bin.players of each team have the same colour appearance. As stated in the discussionon page 138, this issue is going to be addressed by introducing shape descriptors �asSIFT� to enhance disambiguation. Finally, many problems are caused by the factthat a single tracker is assigned to a group of targets that enter the scene together.As stated in the aforementioned discussion, this issue is being currently addressedwithin the HERMES project by the development of a target classi�cation module.Several of the above stated performance measures are here used to evaluatethe system results, according to the data provided by the manual annotation tool.Thus, Fig. 6.21 shows the position and size error over time of target 1 in a Her-mes_Outdoor_Cam1. Error statistics are shown in Table 6.4. Sample annotationframes are shown in Fig. 6.22.Events are manually annotated and confronted with computed ones, see Table 6.5.Thus, events are correctly detected, albeit hardly ever occur at the exactly same timeinstant. This issue is of course sensitive to location estimation errors of a few pixels.However, some errors due to the subjective component of the annotation remain.For example, in Fig. 6.17.(a) target 1 does not keep its ID after leaving the bag,due to major shape and appearance changes, and two new trackers are instantiated�target 3 and target 4. Hence, target 1 is referred as target 4 after bag �target 3�is left. Consequently, subsequent tracker instantiations have the labels shifted. Thus,the group is referred as target 4 in the annotated events and target 5 in the computeda given scenario.
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(a)
(b) (c)
(d) (e)Figure 6.22: Sample annotation frames in Hermes_Outdoor_Cam1 se-quence. (a) Example of input frame; (b) manual annotation and (c) markedimage without occluded target parts for segmentation-evaluation purposes;and (d) manual annotation and (e) marked imaged including occluded partsfor tracking-evaluation purposes.



6.3. HIERARCHICAL TRACKING ARCHITECTURE 171ones. Nevertheless, this ID change is desirable in other cases, such as a man leavinga child.Further, several trajectory indicators over the tracked targets are computed andpresented in Table 6.6. It must be remarked that just targets which enter completelyin the scene are taken into account19. Thus, every time a new blob is detected, a LLTis instantiated. This usually happens when targets merge into groups, they dissolvethemselves, or targets undergo signi�cant changes due to camou�age, occlusions, etc.Annotated event (t) ID Attrib. Computed event (t) ID Attrib.observed (550) 1 � observed (550) 1 �entering (629) 2 � entering (629) 2 �� dissolving (655) 1 �splitting (662) 1 3 splitting (655) 4 3splitting (662) 3 1 splitting (655) 3 4grouping (681) 1 2 grouping (682) 4 2grouping (681) 2 1 grouping (682) 2 4grouped (689) 1 4 grouped (697) 4 5grouped (689) 2 4 grouped (697) 2 5group (689) 4 1&2 group (697) 5 2&4Table 6.5: Annotated and computed events on Hermes sequence. The at-tribute denote the targets involved.Measure\Sequence CAVIAR PETS CVC HERMESTargets 2 8 4 8LLT 8 78 138 86HLT (targets) 4 28 11 36HLT (groups) 1 13 3 11Temporarily Broken ID 0 0 1 2Permanently Broken ID 0 0 0 2False Positive 0 0 0 2False Negative 0 0 0 0Table 6.6: Trajectory measures.
19PETS results corresponds to the �rst 1300 sequence frames.



172 CHAPTER 6. EXPERIMENTAL RESULTSModule\Measure TemporarilyBroken ID PermanentlyBroken ID FalsePositive FalseNegativeNormal operation 2 2 2 0No use of bin weighting* 2 2 2 0No ABT updating 4 4 2 0No motion cues in ABT 3 6 2 0Combined removal 3 9 2 0*The indicators do not show a worse performance since the redundancies pro-vided by the di�erent modules make the errors no catastrophic enough tocause a target loss. However, a poor target localisation is obtained, as shownin Fig. 6.23.Table 6.7: E�ect of the di�erent modules on tracking performance in theHermes sequence.Thus, the number of LLT's is much higher than the number of targets in everyanalysed sequence. When a LLT become stable, a HLT is created and associatedwith it. These are hopefully subsequently associated with the HLT that is alreadytracking the target. In this case, the target identity is not broken. When this processlast more than one frame, the identity is temporarily broken. Since a HLT is createdafter the event is over, together with the fact that HLT are also instantiated to trackgroups, the number of HLT's is higher than the actual number of targets, even if theidentities are correctly kept. Temporarily broken ID in CVC_Zebra sequence is dueto an important partial occlusion of target 3 with a tree, see Fig. 6.16.(e). In theHermes sequence this fact happens when the suitcase is picked up, due to signi�cantsegmentation errors. The permanent broken ID, and the false positives are due toghosts yielded by a non-detected motionless car which starts motion20.In order to to experimentally explore the e�ect of the di�erent modules, severaltests on the Hermes sequence have been carried out using the previous indicators.Thus, as shown in Table 6.7, the removal of any of this modules cause make theperformance worse. Nevertheless, it should be remarked that these modules work incooperation to maximise the target disambiguation from potential distracters. There-fore, since they provide some redundancy for the sake of robustness, the e�ect ofremoving only some of them may be not signi�cantly noticeable.Finally, it worth to say some remarks on the current implementation, and resultingreal-time performances. As it have been above stated, multiple-people tracking inunconstrained and dynamic scenarios are one of the most computationally-speakingdemanding task in Computer Vision.The current system is implemented as a Matlab prototype. The focus has beenplaced on achieving robust and accurate performance, instead of on a careful codeoptimisation.Signi�cant speed improvements can be achieved by processing pixel-wise oper-20This issue is commented in next section
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(a) (b)Figure 6.23: Bin-weighting e�ect on target localisation. Example of a poorlocalisation of target 4 due to the fact of no using the bin-weighting modulein (b) in comparison with (a).ations in parallel. In addition, many systems can bene�t from speci�c hardwareimplementations like FPGA, DSP, GPU, etc. Low-level languages which give moredirect access to the underlying machine allow faster computation as the expense ofless readability and maintainability. On the contrary, interpreted languages are ex-ecuted from source form, and are consequently slower. However, the code is oftenmore �exible, allowing a faster prototyping.Subsequent implementations of bottleneck modules21 in C++ have yielded speedimprovements which reduce 25 times the computation time of these particular func-tions. This would allow the system to process the above sequences at an average ratearound 10 fps in a Pentium V @ 3200Mhz.The computational complexity will be given by the complexity of each of thealgorithms run at each module. For instance, the cost of the mean-shift algorithm isgiven by [14]:
CO ≈ Ni (ch + Pcs) , (6.2)where Ni is the mean number of iterations per frame an target, ch the cost of com-puting the candidate histogram, P the number of target pixels, and cs the cost of anaddition, a squared root, and a division.21The main bottleneck was located at the computation of the weighted histograms, giventhe huge number of evaluation required for selecting the best M feature out of 49, performthe appearance gating and association, the iterative mean-shift with multiple targets andgroup partners, multiple target models, the evaluation of background weights, and the �nalappearance updating.





Chapter 7Concluding RemarksIn this thesis, the main goal has been achieving a robust and accurate Multiple-Target Tracking in human-populated scenarios. These should be as generic as possible,thereby limiting the number of assumed premises. The environment may be open,dynamic and uncontrolled. Towards this aim two approaches have been designed,implemented and experimentally veri�ed.The �rst proposal is founded on a particle-�lter framework. PF algorithms hasbeen widely used, specially between 1999 and 2003. These have been consideredfast and e�cient, and able to represent multi-modal density functions. Thus, witha �xed sample-set size �thereby, with bounded computational resources� multiplehypotheses could be simultaneously considered, in order to tackle background clutter.Our approach was initially based on the PF algorithm implemented by Varona inhis PhD at this Institute [90]. Subsequently, the focus has been placed in coping withthe inherent drawbacks of SIR methods, and other common tracking di�culties, suchas model drift. Then, after the evaluation of the obtained results and the feasibilityof new enhancements, a second approach is developed and presented.This second proposal �which constitutes the main contribution of this thesis� isbased on a principled and structured framework. Thus, the system is implemented asa hierarchical but collaborative architecture, where each level is composed of severalmodules which are devoted to speci�c tasks. Therefore, this framework combines ina principled way both bottom-up and top-down tracking approaches.7.1 Discussion and ContributionsThe �rst approach has been widely explored, and �nally discarded. Although sig-ni�cant advances have been obtained the approach is far from being appropriate tocarry out multiple target tracking in unconstrained environments, specially in longsequences. Thus, the following issues have been explored and tested:
• Di�erent appearance models and likelihood functions have been implemented.Thus, the approach has been evolved from using gray-scale templates computedfrom bounding boxes to colour histograms calculated from elliptical regions.175



176 CHAPTER 7. CONCLUDING REMARKSThe former uses likelihood functions computed from the probability of eachpixel value, whereas the latter relies on the Bhattacharyya distance.
• The dynamics updating stage has been modi�ed to reduce sample wastage.The estimated speed is fed back into the prediction stage. All estimates areregularised.
• Model updating has been designed in order to overcome the model drift phe-nomenon. This is performed by taking into account the target likelihood, theevolution of this indicator, and the potential interactions with other targets.
• Sampling impoverishment have been tackled by rede�ning the weight normal-isation. The proposed sample-weight normalisation avoids losing the targetsdue to the lack of samples.
• Occlusions have been dealt with by predicting collisions, and evaluating thetarget likelihood.However, common problems of SIR �lters have being inherited:
• High-dimension spaces cannot be densely populated, and estimations are oftenperformed from a very limited number of samples. This results in poor stateapproximations when dealing with multi-modal pdf's.
• Top-down approaches require extremely constrained models, which is not fea-sible in generic applications. Errors in the estimation are propagated, therebycausing model drift.
• This problem is magni�ed by the fact that likelihood functions are usually notdiscriminative enough.
• An independent observation process from prediction is required to cope withestimation errors with a �nite number of samples. This entails the necessity abottom-up process.
• Finally, any generation of new samples from detection would just mask trackingmisbehaviours. Survival rates are very low, and propagated samples would comefrom the newly generated ones.The results obtained from the extensive experimental work carried out with the ap-proach based on particle �lters have led to the following preliminary conclusions:
• A bottom-up approach is required.
• Models must remain as simple as possible.
• The system must pro�t from all available sources of information.
• Multiple stages of hierarchical processing are desirable.
• More complex models at the higher levels need to be on-line built by using theinformation provided by the lower levels.
• These will be used to act on the lower levels.



7.1. DISCUSSION AND CONTRIBUTIONS 177Therefore, in order to take these issues to practice, a hierarchical but collaborativearchitecture has been designed. Each level feeds the higher one with its computedresults, and is itself fed back with high-level results. In this way, by taking advantageof both approaches, the system is allowed to bene�t from bottom-up capabilities; butalso, high-level analysis is performed, granting accurately tuned models, and properoperation-mode selection:
• Three levels have been de�ned to perform each of the main system tasks: targetdetection, low-level tracking, and high-level tracking. Further, a remarkablecharacteristic of this architecture is that the tracking task is split into two levels.This fact is crucial to perform tracking without the need of previous detailedknowledge by introducing simultaneous modelling and tracking capabilities.
• Each level is fed with lower and higher level computed results. Further, eachlevel has an internal feed-back loop.
• These levels can work according to two operation modes: Motion-Based Track-ing (MBT) and Appearance-Based Tracking (ABT). These are independent andautomatically selected according to each target particular conditions.
• A principled event management module is proposed and embedded in the ar-chitecture. Thus, a remarkable characteristic is its ability to manage multipleinteractions among several targets. This allows the system to switch amongdi�erent operation modes according to what situation is taking place. This ca-pability is critical to achieve successful performances in uncontrolled scenarios.Further, a valuable knowledge is provided in order to obtain high-level scenedescriptions.
• Feature-selection and appearance-computation modules have been developed,by paying special attention to the particular characteristics of grouping sit-uations. Appearance is represented by means of multiple colour histograms.Histogram features are selected by considering not only the best distinctionbetween the local background and the target, but also between the target andits group partners.
• A model pool is built, and long-run features are kept and smoothed. The usemultiple features �including long-run ones� provide the system with recov-ering capabilities after grouping or camou�age events. Further, by smoothingthe histograms the representation is less sensitive to potential initialisation andsubsequent localisation errors.
• A procedure which takes into account motion and appearance cues relative topotential distracters has been designed to enhance the ABT operation mode.Thus, an important contribution focuses on tracking several targets indepen-dently while they are grouped, thereby yielding an accurate and robust targetlocalisation, where other algorithms just provide coarse one.
• A principled model updating scheme has been followed to avoid model drift.Thus, targets are updated by considering the events in which they are involved.Targets tracked using MBT are updated when the track is con�rmed as stable



178 CHAPTER 7. CONCLUDING REMARKS�what depends of the quality of the observation sequence. Targets trackedusing ABT are evaluated using the computed appearance models and similarityindicators before deciding whether update them or not.Hence, the architecture proposed as second approach follows the natural paradigm,where visual-stimuli analysis is performed by the combination of pre-attentive andattentive processes. Further, it makes use of �rst-order and second-order motionperception. This results in a successful tracking of multiple targets simultaneously:
• This is achieved even in hard conditions of cluttered background and uncon-trolled illumination.
• Targets present a high appearance and shape variability.
• Complex tracking events �in which numerous targets are simultaneously in-volved in di�erent grouping and splitting situations� take place.In spite of these di�culties, experiments on complex indoor and outdoor scenarioshave yielded robust and accurate results. These have been carried out using sequencestaken from both public well-known databases, and own ones, thereby demonstratingthe system ability to deal with unconstrained and dynamic scenes:
• No a-priori knowledge about either the scene or the targets, based on a previoustraining period, is required.
• The method is adaptive in the sense of the background model, the number oftargets, the best appearance representation, or the most appropriate trackingalgorithm according to the events which are taking place.The architecture itself must be seen as the main contribution, since it introducesthe necessary synergies between the di�erent modules and methods to tackle such aninherently complex problem. Therefore, each module task is performed by a particularalgorithm, but they can be substituted by enhanced ones without modifying thearchitecture itself, thereby enhancing the system capabilities.7.2 Open Issues and Future WorkAs it has been stated multiple times, tracking success depends on the ability of dis-tinguishing the target from potential distracters. An important e�ort has been madeon this direction in all involved modules. Still, many cases remain in which no pos-itive discrimination can be obtained using colour and intensity cues. Thus, targetsegmentation can be enhanced by making use of new cues:
• For instance, gradient-change detection can be used to attenuate target cam-ou�age1.1This is currently being developed and tested. Promising results have already beenachieved [36].
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• Further, shadow removal techniques could be very useful to address those falsedetections due to changes in the illuminant chrominance.An important remaining issue is caused by the background objects which are eventu-ally removed. This fact leads to the so-called ghost detection problem:
• An analysis of the speed and contrast of newly created objects can be useful totackle this open issue.
• Further, a multi-layered background can be built by including characteristicsof left objects. Therefore, motion segmentation of new targets over former onescould be achieved, while ghost detection is mitigated.Target classi�cation was out of the scope of this work. However, a classi�cationmodule can be easily inserted in the architecture, as shown in Fig. 5.1 on page 82:
• This would require a-priori learnt knowledge in order to distinguish among peo-ple, vehicles, and other objects in motion2. In addition, working in cooperationwith detection modules, it would also help to segment targets who enter thescene within a group.Target representation can be re�ned by including structure components and shapecues:
• For example, body-part histograms and salient points would enhance agenttracking during long-term partial occlusions, while SIFT descriptors would pro-vide new ways of target discrimination.The system is also prepared for taking advantage in the future of any high-levelinformation about the context and current situations provided by cognitive levels ofthe HSE framework. Further, learning methods can be considered to tune algorithmparameters according to the particular conditions of a given scenario. The potentialfuture use of multiple active cameras from several point of views is also feasible.Finally, some remarks on what this system cannot do, or it is not intended to do.The premises taken in the design process assume that the background slowly changeswith respect to the motion of the targets. Tracking is based on an initial motionsegmentation in order to launch the LLT's. The issue maybe attenuated by modellingthe background on a MoG basis, for instance. Still background motion should belimited.Changes in both the target's dynamics and appearance are supposed to be smoothat the current frame rate. Very fast objects3 cannot be tracked. The size of the targetsin the image is assumed to be big enough in order to build a representative statisticalappearance model, but small enough w.r.t the scene size to ensure that a coarse blobrepresentation is feasible. Humans will essentially remain in upright posture. Forinstance, a single human recorded in a close-up image making fast movements cannot2This issue is currently being addressed within our lab, according to the HSE framework.3According to the scenario conditions, the selected frame rate, and the speed of thetargets.



180 CHAPTER 7. CONCLUDING REMARKSbe tracked. Further, it is assumed that the size of the targets permits that they cancompletely lie within he ROI in order to perform event analysis.In the current implementation �as a Matlab prototype� the focus has beenplaced on achieving robust and accurate results, instead of on real-time performances.It was not the aim of this thesis to design a system on a commercial platform. How-ever, this system can be easily exported by taking into account the considerationdiscussed in Chapter 6.Therefore, the system is designed to carry out trajectory analysis applications,such as people counting, video-surveillance, video-safety, extraction of sport matchstatistics, etc. Other further use requires the combination of this proposal with othersystems which perform detailed human-body action analysis, or face tracking andfacial expression analysis, etc. This is assumed to be performed by the remaining twochannels within the HSE framework.Acknowledgements. This work has been supported by the Catalan ResearchAgency (AGAUR), by the Spanish Ministry of Education (MEC) under projectsAHNA (TIC2003-08865), SYSIPHUS (TIN2006-14606), and DPI-2004-5414, and bythe EC under projects HERMES (IST-027110) and Vidi-Video (IST-045547).



Appendix AAcronymsGiven the extensive use of acronyms through the text �related to the speci�c termssome already used in the literature, but most introduced in this work� we have foundconvenient to summarise them in Tables A.1, A.2.Symbol DescriptionABT Appearance-Based TrackingASL Active-Sensor LevelBC Bhattacharyya Coe�cientBCM Background Colour ModelBIL Behaviour-Interpretation LevelBIM Background Intensity ModelCI Con�dence IntervalCIL Conceptual Integration LevelCVS Cognitive Vision SystemEKF Extended Kalman Filterfps frames per secondGUI Graphical User InterfaceHCI Human-Computer InteractionHLT High-Level TrackingHMA Human-Motion AnalysisHMM Hidden Markov ModelsHSE Human-Sequence EvaluationISE Image-Sequence EvaluationISL Image-Signal LevelJPDAF Joint Probabilistic Data Association FilterKF Kalman FilterTable A.1: Acronyms (I).181



182 APPENDIX A. ACRONYMSSymbol DescriptionLLT Low-Level TrackingMHT Multiple-Hypotheses TrackerMoG Mixture of GaussiansMTT Multiple-Target TrackingMSD Mahalanobis Squared DistanceNL Natural LanguageNN Nearest NeighbourPDAF Probabilistic Data Association Filterpdf Probabilistic Density FunctionPF Particle FilterPDL Picture-Domain LevelPTZ Pan-tilt-zoomROI Region of InterestSDL Scene-Domain LevelSIR Sequential Importance Re-samplingSIS Sequential Importance SamplingSPD Spectral Power DistributionUIL User-Interface LevelUKF Unscented Kalman FilterUPF Unscented Particle FilterWAGN White Additive Gaussian NoiseTable A.2: Acronyms (II).



Appendix BSymbol ListDue to the fact that numerous collaborative algorithms have been presented, thiswork has required the use of a large number of symbols. In order to aid the readercomprehension, these symbols are here summed up. They are split through severalmanageable tables, according to the symbol category. Thus, functions are describedin Table B.1; indexes in Table B.2, constants in Table B.3, scalars and vectors inTable B.5, and matrices and data-structures in Table B.4.For the sake of clarity, symbols exclusively related to the particle-�ler approachare split in Table B.6.Symb. Description Symb. Description
L (λ) illuminant SPD b (•) bin-indexing function
N (•) Gaussian pdf gE (•) Epanechnikov kernel pro�le
R (λ) object re�ectance distrib. δ (•) Kronecker delta
Sc (λ) sensor sensitivity φ (•) general discrete distrib.

χ2

d (•) Chi-squared pdf with d de-grees of freedomTable B.1: Functions.Symb. Description Symb. Description
a pixel index (sub) q background index (sup)
c channel index (sup) t time index (sub)
i feature index (sup) B blue channel
j entity index (sup) G green channel
k bin index (sub) I intensity
l particular entity index (sup) R red channelTable B.2: Sub- and super-index symbols. Lowercase denote variables, whileuppercase denote constants. 183



184 APPENDIX B. SYMBOL LISTSymb. Description Symb. Description
C normalisation constant ε small positive quantity
J number of group partners κABT

con�dence factor for ABTupdating
K number of histogram bins κD

conf. factor for dark fore-ground
M current best features κL

conf. factor for light fore-ground
N best long-run features κm

factor for the outer marginof the basin of attraction
P number of target pixels τm minimum sensor sensitivity
T number of window frames τn saturation sensor point
∆t sampling period τσ2

covariance ellipsoid variancethresholdTable B.3: Constant symbols. They are represented by non-bold Latinuppercase, and non-bold Greek lowercase.Symb. Description Symb. Description
A transition matrix R observation noise covariance
C output matrix St innovation covariance
G noise matrix Ct conceptual data
It current frame St HLT data
Kt Kalman gain Xt LLT data
Mt Segmentation map Zt observation data
Pt error covariance Λi,l

k
log-likelihood ratio

P̂t predicted error covariance V i,l variance ratio
Q process noise covarianceTable B.4: Matrices and data structures. Bold uppercase denotes matrices,while data structures are printed in calligraphic uppercase.



185Symb. Description Symb. Description
d

i,j
Bhat,t Bhattacharyya distance αa,t brightness distortion

d2

Mahal,t

Mahalanobis Squared Dis-tance αa brightness distortion RMS
h̃

j
t , w̃

j
t

observed major and minoraxes ᾰa,t
normalised brightness dis-tortion

h
j
t , w

j
t axes state-variable αp histogram adaptation rate

ḣ
j
t , ẇ

j
t

axes change-rate state-variable βa,t chrominance distortion
p

i,j
t histogram βa

chrominance distortionRMS
ni,j counter of updating times β̆a,t

normalised chrominance dis-tortion
pk histogram bin θ̃

j
t observed angle

p
i,j
t smoothed histogram θ

j
t angle state-variable

p̂
i,j
t

histogram at estimated loca-tion ηq rate of exclusion for back-ground bins
sc sensor response λ wavelength
ut control signals µa colour-channel mean
wc channel weight µI

a mean intensity
wi

k bin weight µ
i,j
t

mean Bhattacharyya dis-tance
w̃i

k equalised bin weights ρ Bhattacharyya coe�cient
wa pixel weight σa colour-channel std. dev.
xa pixel location σI

a intensity standard deviation
x

j
t LLT state σ

i,j
t

Bhattacharyya dist. std.dev.
x̂

j
t LLT predicted state σ2

x

process variance due to ac-celeration
x̃

j
t , ỹ

j
t observed centroid σ2

ν
observation noise variance

x
j
t , y

j
t centroid state-variable τD dark-foreground threshold

ẋ
j
t , ẏ

j
t speed state-variable τL light-foreground threshold

yt innovation τα1 low-brightness threshold
z

j
t observation τα2 high-brightness threshold

ẑ
j
t predicted observation τβ chrominance threshold

νt observation noise
ωt process noiseTable B.5: Scalar and vector symbols. Scalars are printed in non-bold low-ercase, whereas vectors are denoted by bold lowercase.
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Symb. Description Symb. Description

ci
t

cumulative prob. for sample
i

It scene image at time t

et evidence variable instance I
l,p
t

predicted image region oftarget l

i sample index L number of targets
l target label N number of samples

ne evidence-space dimension M
number of pixels of the ap-pearance model

ns state-space dimension P (•) probability density function
p(•) probability P̃ (•) simulated pdf
pl

t target histogram Q(•) proposal distribution
t time index St state random variable
st

state variable instance attime t
αA appearance adaptation rate

sl
t state estimate of target l αp histogram adaptation rate

s
i,l
t sample i of target l αu speed adaptation rate

ŝ
i,l
t sample temporal prior αx position adaptation rate

u
i,l
t speed of sample i λl

t expected likelihood
û

i,l
t

speed temporal prior of sam-ple i
π

i,l
t sample weight

ul
t speed estimate of target l π

i,l
t normalised sample weight

w
i,l
t−1

size of sample i ρl
t occlusion status

ŵ
i,l
t

size temporal prior of sam-ple i
τ time o�set

wl
t size of target l ξi

u speed di�usion vector
x

i,l
t position of sample i ξi

w size di�usion vector
x̂

i,l
t

position temporal prior ofsample i
ξi
x position di�usion vector

xl
t position estimate of target l Σl

u speed covariance matrix
Al

t l-target appearance matrix Σl
w size covariance matrix

Et evidence random variable Σl
x position covarianceTable B.6: Symbols related to the particle-�ltering approach. Notation isconsistent with the one used in the previous tables, and further, in a proba-bilistic context, uppercase denotes pdf's and random variables; while lower-case denotes probabilities and variable instances.



Appendix CBasic StatisticsProbability theory provides a principled way of reasoning under the uncertainty de-rived from the impossibility of accessing to the whole truth about the environment.A probability model is based in four main elements. Thus, given an experiment withan uncertain result, the set of all possible ones is called outcome set ; a subset of thisis called event x; each event has a long-term relative frequency which is its probability
p; and �nally, a random variable X is a real function whose domain is the probabil-ity space S de�ned by the outcome set, all possible events, and their probabilities.Expressions involving random variables represent possible events in the probabilitymodel.An atomic event is a complete speci�cation on the state of the model by assigninga value to each de�ned random variable. Atomics events are mutually exclusive (twoof them cannot be the case simultaneously), and the set of all of them is exhaustive(one must be the case).An unconditional or prior probability is a statement about the probability of theevent given by the expression on the random variable in the absence of any otherinformation.The probability theory is build from the Kolmogorov axioms :1. all probabilities are between 0 and 1: 0 ≤ p(x) ≤ 1,2. the probability of the true event is 1, and the probability of the false event iszero,3. the probability of the disjunction is given by:

p (x ∨ y) = p (x) + p (y)− p (x ∧ y) (C.1)The probability of all possible outcomes for a random variable is given by its probabilitydistribution, P . The distribution function of a discrete variable is called probabilitymass function, whereas it is called probability density function �since probabilitieswill be integrals� in case of continuous variables. A joint probability distribution ofsome variables provides the probabilities of all possible combined values of the involved187



188 APPENDIX C. BASIC STATISTICSrandom variables. The full joint probability distribution gives the joint distributionfor the complete set of random variables.The conditional or posterior probability is used when some knowledge is available.They are de�ned as:
p (x|y) =

p (x ∧ y)

p (y)
, (C.2)this give place to the so-called product rule:

p(x ∧ y) = p(x|y)p(y), (C.3)which can be de�ned in terms of probability distributions:
P (X, Y ) = P (X |Y )P (Y ) . (C.4)Marginals probabilities are obtained by extracting the probability distribution ofsome subset of variables in a process called marginalisation:

P (X) =

∫
P (X, y) dy. (C.5)Making use of the product rule, the conditioning rule can be derived:

P (X) =

∫
P (X |y) p (y) dy. (C.6)The Bayes' theorem is deduced from the product rule:

P (X |Y ) =
P (Y |X)P (X)

P (Y )
, (C.7)which can be also conditionalised:

P (X |Y, z) =
P (Y |X, z)P (X |z)

P (Y |z)
. (C.8)Random variables are said to be independent if the following equivalent expressionhold:

P (X |Y ) = P (X) ,

P (Y |X ) = P (Y ) ,

P (X, Y ) = P (X)P (Y ) . (C.9)



189On the other hand, random variables are conditionally independent if:
P (X, Y |Z) = P (X |Z)P (Y |Z) , (C.10)which allows to decompose large probability models into manageable sub-models. Inaddition, conditional independence assumptions are much more realistic than absoluteindependence ones. Thus, it leads to the so-called naïve Bayes model in which a fulljoint distribution concerning a cause and its e�ects is decomposed considering thatthe e�ects are independent, given the cause:

P (Cause, Effect1, ..., Effectn) = P (Cause)
n∏

i=1

P (Effecti|Cause)(C.11)The expected long-term average observed value of a distribution, called the pop-ulation mean, is given by:
E [X ] =

∫
xp(x)dx. (C.12)The values given by:

E
[
Xk
]

=

∫
xkp(x)dx, (C.13)are called raw moments. The central moments are given by:

E

[
(X − µ)k

]
,where µ is the population mean, or the �rst order raw moment. The second ordercentral moment, commonly denoted by σ2, is called population variance. The followingrelation holds:

σ2 = E

[
(X − µ) (X − µ)

T
]

= E
[
X2
]
− E

2 [X ] . (C.14)The covariance of two random variables X, Y is de�ned by:cov (X, Y ) = E [(X − µX) (Y − µY )] . (C.15)Two variables are said to be uncorrelated if their covariance is zero, which implies:
E [XY ] = E [X ]E [Y ] . (C.16)





Appendix DKalman FilterThe Kalman �lter [48] is a stochastic state estimator developed by Rudolph E. Kalmanin 1960. It implements a recursive algorithm which works in a prediction-correctionway, estimating the system state from noisy measures. The estimator is optimal inthe sense that it minimises the steady-state error covariance:
P = lim

t→∞
E

[
(x− x̂) (x− x̂)T

]
. (D.1)However, strong assumptions are required: the transition model must be linearGaussian, and the sensor model must be Gaussian. Nevertheless, albeit these condi-tions rarely exist, the �lter still works reasonably well for many applications, and ithas been widely used[80].It works as follows. The process is assumed to be governed by a linear stochasticdi�erence equation:

xt = Axt−1 + ωt, (D.2)where
• xt ∈ Rn is the system state, n the state-space dimension, and t a discrete timeindex,
• A is a n x n matrix describing the linear transition model,
• ωt ∼ N (0,Q) is the process noise, and Q the noise covariance. Hereby, zero-mean white additive Gaussian noise is assumed to represent modelling uncer-tainties and disturbances.The measure process is assumed to be governed by the next equation:

zt = Cxt + νt, (D.3)where, 191



192 APPENDIX D. KALMAN FILTER
Figure D.1: Diagram block of a Kalman state estimator. See text for details.
• zt ∈ Rm is the measure vector, and m the measure-space dimension,
• C is a m x n matrix relating the state to measure,
• νt ∼ N (0,R) is the sensor noise, and R the noise covariance. Hereby, zero-mean white additive Gaussian noise is assumed to represent measurement noise.It is also assumed that both process and measurement noise are uncorrelated:

Cov
(
νtω

T
t

)
= 0. (D.4)The initial state is unknown, but it is assumed that it follows a normal law:

x0 ∼ N (µ0,P0) , (D.5)where
• x0 is the system initial state,
• µ0 is the initial distribution mean,
• P0 is the initial distribution covariance.Independence of process noises ωt, νt and initial state x0 is assumed.The �lter works in two steps which are recursively performed �a block diagramis shown in Fig. D.1. In the �rst one, a prediction is made: the expectation andcovariance are propagated according to the dynamic model, thereby obtaining thetemporal prior:

x̂−
t = E [Axt−1 + ωt]

= Ax̂t−1, (D.6)and the prior covariance matrix:
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P−

t = E

[
(xt − E [xt]) (xt − E [xt])

T
]

= E

[
(A (xt−1 − E [xt−1]) + wt) (A (xt−1 − E [xt−1]) + ωt)

T
]

= APt−1A
T + Q. (D.7)After obtaining the new measurement zt, the second step is carried out, and valuesare updated according to the observation likelihood:

x̂t = x̂−
t + Ktyt, (D.8)

Pt = I−KtCP−
t , (D.9)where:

yt = zt −Cx̂−
t , (D.10)is called the innovation or the residual,

St = CP−
t CT + R, (D.11)is called the innovation covariance, and

Kt = P−
t CTS−1

t , (D.12)is known as the Kalman gain.





Appendix EBiological Foundations of theProposed Hierarchical ArchitectureIn the following, a brief depiction of a biological paradigm �which can be seen asa natural inspiration for the proposed architecture� is presented. Stress is laid on(i) the capabilities of a natural vision system, and (ii) at which level and how thedecisions are taken. This section complements the exposition made in section 5.2 onpage 84.E.1 Natural Vision SystemAccording to Urtubia [88], vision is the capacity of processing information about theenvironment by means of light stimuli incident on the retina. The retina is a layerof neural cells that generate visual neural signals. These cells contains a proteinresponsible for photo-reception: the opsin. Two kind of opsin are present in humanretina, namely rod opsins and cone opsins. The conjunction of both provide thedi�erent visual capabilities.Thus, rods are mainly located in the periphery of the retina, while cones have ahigher concentration in the fovea, at the centre of the retina. There are three subtypesof cones which di�er in the light wavelength to which they are receptive. They areconsequently called red, green and blue cones.Rods are used to see at low levels of light, while cones allow to distinguish colourand other features at normal light intensities. Hence, rods are responsible for periph-eral vision, which occurs outside the centre of gaze, that is, outside the macula. Dueto the lower density of cells, peripheral vision is less accurate in humans. This alongwith the fact that these cells are mainly rods, cause poor peripheral vision capabili-ties in distinguishing color and shape. However, the peripheral vision present anothersigni�cant feature: the ability of motion detection. Thus, it provides good motiondetection capabilities. Further, it is predominant in the dark, since the lack of lightmakes cones useless, whereas on the contrary rods get easily saturated.Motion perception is the process of inferring the speed and direction of any object195
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Figure E.1: Motor command generation. Signals involved in voluntary mo-tor responses are generated at the cortex, according to current sensory percep-tions and memories. (Figure from Psychology 465/665 notes, Nawrot, 2002).that moves in a scene, given some visual input. Several kind of motion perceptionprocesses can be carried out. First-order motion perception is performed by detectingluminance changes in a particular point of the retina, and correlating it with a delayedchange at a neighbouring point. On the contrary, second-order motion perceptiondepends on moving contours de�ned in terms of contrast �di�erence in the color andbrightness with the surroundings� or texture.Visual signals are processed through three layers of neurons, namely photo-receptors,bipolar cells, and ganglionic cells. Then, neural signals are relayed to the brainthrough the optic nerve: the biggest ganglionic cells relay information related to mo-tion and intensity from the periphery through the magnocellular system, whereas thesmallest ones transmit colour and acuity information from the macula through theparvocellular system.Complex visual information is processed in the visual cortex, which is the mostmassive system in the human brain. It is, thereby, responsible for a high-level pro-cessing of the acquired image sequences. Signals are �rst transmitted to the PrimaryVisual Cortex (V1), in where cells respond to particular chromatic stimuli and edgeorientation. Then, signals are relayed to the associative areas (V2, V3, V4 and V5)where various analyses are carried out on motion, dynamic shapes, colour, and shapeassociated to colour. All these analyses converge in the inferior temporal cortex (IT),where pattern recognition is accomplished. See [68, 88] for details.E.2 Natural Motor ResponsesThe cerebral cortex is the outer layer of a vertebrate brain. Mammals have developeda top cortex layer called neocortex, which is itself composed of six layers1. These1The fact of including this section may surprise the reader, since the thesis is devoted toComputer Vision. However, two issues should be considered. In the �rst place, although the
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Figure E.2: Human motor system. Multiple hierarchical levels are involvedin the di�erent loop in which decisions are taken according to sensory inputs.(Figure from Biomedical Science notes, Shaw, 2007)are labelled from I, the outermost, to VI, the innermost. In mammal species, theneocortex is the part of the cerebral cortex responsible for higher functions, such assensory perception, and the generation of motor commands, see Fig E.1.Thus, the neocortex region involved in planning, controlling, and executing vol-untary motor responses is called motor cortex. This is divided into the primary motorcortex (M1), and the secondary motor cortices. The former is responsible for gen-erating the neural impulses which control the execution of movements. Among thelatters, the posterior parietal cortex is involved in transforming visual informationinto motor commands; and the pre-motor cortex plays an important role in sensoryguidance of movement.Further, other brain regions outside the cortex are also strongly related to motorfunctions. Among these, the most notably ones are the cerebellum, the pons, andthe medulla oblongata. The cerebellum �located at the inferior posterior part ofthe brain� provides a feed-back loop in order to tune motor movements accordingto sensory perception of body posture. It sends this information to the motor cortexpart of the HSE framework addressed in this thesis uses stationary cameras, the ultimateaim of HSE is to bene�t from the obtained results at this stage to act on multiple cameras.These will be able to focus on the scene region where tracking is being done by panning,tilting and zooming in order to provide results from the two remaining information channels:body pose and face expression. Further, the system can be provided with the capability ofacting on the scene, for example, by opening doors, or switching lights. Both aspects can beconsidered as motor responses.Secondly, the aim of HSE is to emulate human skills in inferring other human behaviour,and acting in consequence. In this task, multiple decisions are taken at every level, and theinformation �ow follows both bottom-up and top down pathways, thereby creating numerousloops. The paradigm is clearly represented in the Natural Motor System itself, and in itsrelations with the Sensory Systems.
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(a) (b)Figure E.3: Signal pathways. (a) Re�ex arc: decisions are locally taken.(b) Conscious motor reaction: decisions are taken in the brain.through the pons, which is frontal to the cerebellum. Then, the neural signals arerelayed to the muscles, thereby moving them accordingly. Below the pons and abovethe spinal cord is the medulla oblongata. In addition to transmitting neural signalsbetween the spinal cord and the brain, it also directly controls many involuntarymuscular and glandular activities.E�erent neurons are responsible for transmitting motor neural signals, see Fig E.2.Two categories can be distinguished: on the one hand, upper motor neurons, whichare located in the brain, connect this to the spinal cord; on the other, lower motorneurons, carry the neural impulses from the upper motor neurons to muscle �bers.Thus, upper motor neurons propagate neural signals through the central nervoussystem. For instance, a direct pathway from the layer V of the primary motor cor-tex to lower motor neurons �located in the ventral horn of the spinal cord� sends�ne voluntary motor control signals and also controls voluntary body posture adjust-ments; another pathway from the motor cortex to the pons and medulla is involved ininvoluntary maintenance of body posture; or a pathway from the superior colliculusto lower motor neurons is responsible for involuntary adjustment of head position inresponse to visual information.Lower motor neurons innervate two types of muscle �bers, and are therefore ac-cordingly classi�ed. On the one hand, alpha motor neurons innervate extrafusalmuscle �bers, which are involved in contracting the muscle. On the other, gammamotor neurons innervate intrafusal muscle �bers, which are related to muscle spindlesand the sense of body position. A muscle spindle is a specialised muscle structureinnervated by both sensory and motor neuron axons. It is related to the capability ofsensing the position, orientation and movement of the di�erent parts of the body.



E.2. NATURAL MOTOR RESPONSES 199Thus, alpha motor-neurons �located in the anterior horn� e�ect the muscles,while sensory neurons, at the posterior horn, receives sense information. The latter arethe nerve cells responsible for converting the external organism stimuli into internalelectrical signals, thereby being a part of the re�ex loops. These are usually locatedin the spinal cord.A re�ex arc is a neural pathway that allows re�ex or involuntary actions, seeFig E.3.(a). By synapsing in the spinal cord, these pathways do not pass through thebrain, and therefore can occur relatively quickly since the delay of routing the signalthrough the brain is avoided. Nevertheless, the brain receive the sensory signals forfurther cognitive processing, but this happens simultaneously to the re�ex action, seeFig E.3.(b). Re�ex arcs can be mono-synaptic or poly-synaptic. The former involvesjust a motor and a sensory neuron, while in the latter inter-neurons connect botha�erent and e�erent signals. This allows to process or inhibit the re�exes at spinalcord. See [29] for details.
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Natural Vision Systems have reached incredible performances in detecting andtracking multiple moving objects simultaneously. Accurate and robust multiple-targettracking is also a key task in many promising Computer-Vision applications. Practi-cal usages of proposed algorithms can now be tackled in real time thanks to recenttechnological advances. Further, this represents a huge challenge because of the nu-merous particular problems involved in such a task. Thus, proposals must deal withmultiple highly non-rigid targets which move in an unforeseeable manner throughunconstrained dynamic open-world scenarios.In this thesis, a principled hierarchical architecture which ful�lls multiple-targettracking is presented. Further, another tracking approach �based on particle �lter-ing� is previously developed and evaluated. Thus, a modular and hierarchically-organised system is designed. It is conformed by a detection level which feeds atwo-level tracking subsystem. Co-operating modules, distributed through this archi-tecture, work following both bottom-up and top-down approaches. Contributionsinclude both the architecture itself, and the development, improvement and integra-tion of the di�erent modules. The proposed architecture introduces the necessarysynergies which allow the system to tackle such a problem as unconstrained multiple-target tracking.With respect to the di�erent modules, the main focus is placed on high-leveltracking algorithms. Since a careful analysis of motion events is a critical issue fortracking successful, a module for principled event management is proposed, and em-bedded in the system. Multiple-target interaction events, and a proper scheme fortracker instantiation and removal according to scene events, are considered. Thus, thesystem is allowed to switch among the two di�erent operation modes implemented,motion-based tracking and appearance-based tracking. This entails another remark-able characteristic of the system: its ability to continuous and independently tracknumerous targets while they group and split. Multiple appearance models are builtand constantly updated. A special attention is paid to maximise the discriminationbetween the target and potential distracters by means of an appropriate feature se-lection, and a wise combination of all available sources of information.It works as a stand-alone application in a non-friendly, complex and dynamicscenario. No a-priori knowledge about either the scene or the targets, based on aprevious o�-line training period is needed. No camera calibration is required sincetracking is achieved without the need of 3D information.Successful tracking has been demonstrated in multiple sequences of both indoorand outdoor scenarios. Accurate and robust localisations have been yielded evenduring long-term target clustering and occlusions. Results are comprehensively anal-ysed.
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