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God grant me the serenity
To accept the problems that I cannot solve

The persistence to solve the problems that I can
And the wisdom to know the difference

Shahriar Manzoor

You can get it if you really want,
you can get it if you really want,

but you must try, try and try,
try and try . . .

you’ll succeed at last

Jimmy Cliff
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Abstract

The comprehension of animal behavior, especially human behavior, is one of the
most ancient and studied problems since the beginning of civilization. The big list
of factors that interact to determine a person action require the collaboration of
different disciplines, such as psichology, biology, or sociology. In the last years the
analysis of human behavior has received great attention also from the computer vision
community, given the latest advances in the acquisition of human motion data from
image sequences.

Despite the increasing availability of that data, there still exists a gap towards
obtaining a conceptual representation of the obtained observations. Human behavior
analysis is based on a qualitative interpretation of the results, and therefore the
assignment of concepts to quantitative data is linked to a certain ambiguity.

This Thesis tackles the problem of obtaining a proper representation of human
behavior in the contexts of computer vision and animation. On the one hand, a good
behavior model should permit the recognition and explanation the observed activity
in image sequences. On the other hand, such a model must allow the generation of
new synthetic instances, which model the behavior of virtual agents.

First, we propose methods to automatically learn the models from observations.
Given a set of quantitative results output by a vision system, a normal behavior model
is learnt. This results provides a tool to determine the normality or abnormality
of future observations. However, machine learning methods are unable to provide
a richer description of the observations. We confront this problem by means of a
new method that incorporates prior knowledge about the enviornment and about the
expected behaviors. This framework, formed by the reasoning engine FMTL and the
modeling tool SGT allows the generation of conceptual descriptions of activity in new
image sequences. Finally, we demonstrate the suitability of the proposed framework
to simulate behavior of virtual agents, which are introduced into real image sequences
and interact with observed real agents, thereby easing the generation of augmented
reality sequences.

The set of approaches presented in this Thesis has a growing set of potential appli-
cations. The analysis and description of behavior in image sequences has its principal
application in the domain of smart video–surveillance, in order to detect suspicious or
dangerous behaviors. Other applications include automatic sport commentaries, el-
derly monitoring, road traffic analysis, and the development of semantic video search
engines. Alternatively, behavioral virtual agents allow to simulate accurate real sit-
uations, such as fires or crowds. Moreover, the inclusion of virtual agents into real
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image sequences has been widely deployed in the games and cinema industries.



Resum

La comprensió del comportament dels animals, i en especial dels humans, és un dels
problemes més antics i estudiats al llarg de la història, quasi des de l’inici de la civil-
ització. La quantitat de factors diferents que actuen alhora de determinar les accions
d’una persona requereixen la participació de diferents disciplines, com la psicoloǵıa,
bioloǵıa, o socioloǵıa. En els darrers anys l’anàlisi del comportament humà ha es-
devingut també un tema molt interessant per a la comunitat cient́ıfica de visió per
computador, gràcies als darrers avenços en l’adquisició de dades sobre el moviment
humà a partir de seqüències d’imatges.

Malgrat la creixent disponibilitat d’aquestes dades, existeix encara una barrera per
obtenir una representació conceptual de les observacions obtingudes. L’avaluació del
comportament humà en seqüències d’imatges està basat en una interpretació qual-
itativa dels resultats, i per tant l’assignació de conceptes a les dades quantitatives
obtingudes està lligada a una certa ambigüetat.

Aquesta Tesi confronta el problema d’obtenir una representació correcta del com-
portament humà en els contextes de la visió i animació per computador. En primer
lloc, un bon model de comportament ha de permetre reconèixer i descriure l’activitat
observada en seqüències d’imatges. D’altra banda, el model ha de permetre generar
sintèticament noves instàncies, que permetin modelar el comportament d’agents vir-
tuals.

En primer lloc, proposem mètodes per aprendre els models directament de les
observacions. A partir de les dades obtingudes mitjançant l’anàlisi de seqüències
d’imatges, construim models de comportament normal dins l’escenari. Això ens pro-
porciona una eina per determinar la normalitat o anormalitat de futures observacions.
Tanmateix, els mètodes d’aprenentatge automàtic son incapaços de provëır una de-
scripció semàntica de les observacions. Aquesta problema és tractat mitjançant un
nou mètode que incorpora un coneixement a–priori sobre l’escena i els comporta-
ments esperats. Aquesta estructura, formada pel motor de raonament difús FMTL i
l’eina de modelatge SGT, permet obtenir descripcions conceptuals del contingut de
noves seqüències de video. Finalment, l’estructura FMTL + SGT ens permet simular
comportament sintètic i introdüır agents virtuals dins d’escenes reals que interactuen
amb els agents reals existents, constrüınt d’aquesta manera seqüències de realitat
augmentada.

El conjunt de mètodes presentats en aquesta Tesi tenen un conjunt potencial
d’aplicacions cada cop més gran. Per un costat, el reconeixement i descripció de com-
portament en seqüències d’imatges té com a principal aplicació la video–vigilància
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intel.ligent, permetent detectar comportaments delictius o perillosos. Altres aplica-
cions inclouen la transcripció d’esdeveniments esportius, monitorització de centres
geriàtrics, anàlisi de tràfic en carreteres i la construcció de buscadors de video basats
en conceptes semàntics. D’altra banda, l’animació d’agents virtuals amb comporta-
ments complexes permet obtenir simulacions acurades de situacions reals, com per
exemple incendis o multituds. A més, la inclusió d’agents virtuals en entorns reals té
forta implantació en els mons dels videojocs i el cinema.
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Chapter 1

Introduction

Almost since the beginning of the human civilization and the rational thinking, one
of the most studied problems has been to understand the behavior of everything
around human beings. In the first place, the attention was focused on the most
trascendent physical phenomena, e.g the meaning of days and nights, the fire, the sun,
etc. Those were initially associated to divine action. However, the pass of centuries
has led the cilivilization to grow scientifically and to leave the initial dogmatism.
Thus, some of these physical phenomena have become explained by physics law or
by mathematic theorems. The contributions of Newton, Einstein, and Euler, among
others, constituted a great help towards understanding accurately how non–living
objects behave inside the space and the consequences of their interactions.

Regarding living creatures, the existence of consciousness and emotions has added
complexity in the task of understanding their actions. Hence, besides the study
of their physical properties, efforts have been devoted to understand what are the
internal impulses that make them acting in a particular fashion. Non–rational animals
(which at the moment are all the living creatures except humans) are mostly driven
by their survival instinct. Roughly speaking, survival instinct is a kind of internal
memory containing a serie of actions, which will be performed by animals in order
to feed, reproduce and defense. According to the Theory of Evolution of Species, the
biological properties and actions of animals have evolved over time in order to adapt
themselves to their environment. Moreover, animals experiment a learning process
during their lives, which enriches their behavior.

In the particular case of human beings, their capacity for the abstract thinking,
language communication, and action planning differentiates them from the rest of an-
imals. On the one hand, abstract thinking allows humans to think and reason about
non–visible concepts and to create complex representations of the world. On the
other hand, humans can planify long–term actions and estimate their consequences
beforehand. These two features produces that the number and granularity of behav-
iors that can be performed by human beings increases exponentially the complexity
of its recognition and, especially, its prediction.

A novel interdisciplinary domain which aims to emulate some of the previously
mentioned capabilities has raised within Computer Science in the last decades [69].

1
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It comprehends techniques of Image Processing and Analysis, Pattern Recognition,
Artificial Intelligence, Computer Graphics, and Robotics, among others. This new do-
main analyzes and evaluates sequences of images concerning human-populated scenes.
Impressive developments have also been possible thanks to a large number of techno-
logical advances in the hardware field. Emerging capabilities have led to a wide range
of scientific contribution, and, subsequently, to new software implementations.

1.1 Motivation

Behavior analysis in dynamic scenes is a complex task, specially when it concerns
human-populated environments. Trying to emulate the astonishing performances of
such a perfect system as the Natural Vision System represents, without any doubt, a
real challenge.

The reasoning task is even more complicated when it deals with human beings,
thereby making it particularly appealing. In spite of the numerous difficulties involved
—or perhaps, because of them— behavior analysis in human-populated scenes has
become a very active research field: it has already generated a vast number of scientific
contributions in recent years [69]. However, despite this interest and the substantial
developments achieved, this still constitutes an ambitious open problem which is far
from being solved.

Further, this interest is also prompted by the increasing number of potential ap-
plications. These include smart video safety and video surveillance, automatic sport-
statistics computation, intelligent human-computer interfaces, machine content anno-
tation, or efficient athlete training and orthopedic therapy, among others. Thus, the
numerous promising applications constitute an important practical motivation which
raises significant funds for this field of research.

Recent developments in Human-Sequence Evaluation have made possible to con-
sider a huge number of promising applications. Moreover, the benefits that can be
obtained from these applications are promoting research in this particular computer
vision area.

These applications can be classified according to their aims. A division between
analysis and synthesis applications is here considered. The former attempts to process
an input video signal, whereas the goal of the latter is to generate synthetic scenes,
agents, and their motion.

An important application of high-level event recognition in image sequences is
smart video–surveillance, which increases the security agains vandalism, thefts or ter-
rorism, see Fig. 1.1.(a) and (b). The recognition of events in traffic environments
allows to acquire information about the state of the roads, traffic holdups and acci-
dents, see Fig. 1.1.(c). Moreover, smart video safety could assist remote elderly care
[109], see Fig. 1.1.(d). An application into controlled environments can lead to a
complete recognition of observed activity, e.g. automatic description of sport events,
see Fig. 1.1.(d). Finally, event recognition in video is receiving important attention
towards the creation of a semantic–based video indexing engine. In such a system,
the user can search for a video based on the expected activity, see Fig. 1.1.(f).

Alternatively, the generation of synthetic behavior in virtual enviornments allows
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 1.1: Examples of applications. (a) Detection of dangerous events (b) Left
baggage detection (c) Elderly care monitoring (extracted from [109]) (d) Traffic mon-
itoring [49] (e) Automatic sport commentaries (f) Semantic video indexing [54] (g)
Complex Event Simulation (h) Generation of virtual characters in games, extracted
from [91] (i) Simulation of realistic crowds for special effects in movies, extracted
from [92].

the simulation of complex activity in selected scenarios, e.g. traffic simulation in Fig.
1.1.(g). The entertainment industry has also shown great interest in the creation of
special effects in movies, see Fig. 1.1.(h) and (i).

This Thesis focuses on obtaining proper models to recognize, interpret, and repro-
duce behaviors in order to understand and generate image sequences. The approaches
and methods that will be described along next chapters are intended to apply for any
kind of subject: animals, objects or physical phenomena for which there is a physical
or mathematical law explaining their behavior. Nevertheless, we have chosen human
beings given that they represent the highest level of complexity, as explained above.

1.2 Definitions of Behavior in Computer Vision

The general concept behavior is the reaction of human beings to a set of external
and internal impulses. These impulses may be caused by very different sources, and
only the combination of them can represent an objective explanation of the observed
behavior.
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From a biological point of view, the elements that affect and modify human be-
havior are those related to the instincts carried from its animal nature, and can be
generalized with the self–preservation principle. Such instinct enables the actions that
must be taken in order to stay alive, for instance, self–feeding, reproduction, defense,
etc.

The psichological aspect is also another source of impulses that severely affect to
the performance of human behavior. Roughly speaking, these impulses would be the
answer to questions like: what is the person A worried about? and how is person A
feeling?. Obviously, the internal mood of a human being directly conditions on its
behavior, and even in the intensity of the chosen one. Moreover, human personality
changes over time and depending on the environment. A more sophisticated question
would be how is person A feeling, at this precise moment, being in this place, and
with that partners?.

Other different factors that condition on human behavior are briefly summarized
next. First, physical properties of human beings determine a correct interpretation of
their behavior. For instance, a human being moving may be considered to be walking
or running, depending on whether it is an old or young person. Second, the role of the
person in the environment has also a critical correlation with the resulting behavior.
This role can be general (for instance, being a policeman) or particular (e.g. the
father–son role).

The principal aim of this Thesis is to represent human behavior using the fea-
tures estimated by state–of–the–art computer vision systems. This task must be
accomplished in a consistent manner, so that the result can be used to explain new
observations and to generate valid synthetic instances. Such representation is depen-
dant on qualitative and quantitative knowledge about specific human features and
also on the scenario conditions. These features are classified into four groups:

1. Knowledge about human motion. This group includes the features of humans
as moving objects inside a scenario. Examples are speed and orientation. These
values may show a different distribution in different scenario locations, e.g. roads
or sidewalks.

2. Knowledge about human actions. A human agent is represented by a body
model and thus features consist of sequences of movements of the components.
For instance, the walking action is a cyclic action which involves the movement
of particular body parts, which differentiates from other actions like bending or
jumping.

3. Knowledge about human interactions. Human agents can hardly behave without
considering their environment. Such environment consists of all possible factors
that can affect human behavior. Indeed, the interaction with either other human
agents or objects from the scenario determines future agent reactions.

4. Knowledge about human emotions. The internal mood of an agent conditions
not only on its behavior but also on the intensity of that behavior.

Nowadays, the main challenge in the state–of–the–art is how to provide this re-
quired knowledge. Recently, the focus has been set on maximizing the amount of
information that can be automatically acquired from image sequences.
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(a) (b) (c)

(d) (e) (f)

Figure 1.2: Open issues in multiple–target tracking [88]. (a) Cluttered environments
(b) Camouflage with the background (c) Illumination problems (d) Crowds of people
(e) Unknown shape of targets (f) Mutual occlusions between targets

1.3 Inherent difficulties

The task of interpreting the events occurred in an image sequence involves subjec-
tivity, and is strongly related to an explanation based on human–defined concepts.
However, the input data available to accomplish this task come from vision–based
techniques, which are basically quantitative. Therefore, an intermediate step to con-
vert quantitative data into concepts has to be considered between the vision–based
techniques and the behavior interpretation.

The acquisition of qualitative knowledge from image sequences involves two steps
which can induce uncertainty to the final image sequence interpretation. As a result
of integration, numerical information obtained from image sequences can be used to
instantiate qualitative predicates and, the other way around, conceptual knowledge
can be used to assist pattern analysis processes [72].

On the one hand, the error pulled from the computer vision subsystem caused
by the sensory gap, which refers to the lack of accuracy in the quantitative data
acquisition from the image sequences. There still exists several issues open in the
vision–based estimation of motion in image sequences. Fig. 1.2 depicts the current
problems that are still unsolved. For instance, a cluttered or poorly illuminated envi-
ronment difficulties distinguishing the targets from the background, thus obtaining a
wrong estimation of their position and obviously of their activity. Moreover, multiple
targets produce mutual occlusions with respect to the point of view, preventing an
accurate acquisition of their silhouettes.

On the other hand, human behavior modeling has to deal with the uncertainty
due to the semantic gap, which refers to the conceptual ambiguity between the image
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(a)

(b)

Figure 1.3: (a) The semantic gap between the observations (quantitative) and the
concepts (qualitative). (b) Example of semantic gap. Given the red agent trajectory,
two possible interpretations can be done 1) The agent is searching his parked car
(considered as normal behavior), and 2) The agent is trying to steal a car (suspicious
behavior). Given that situation, no possible reactions can be done until further
information is obtained or provided beforehand.

sequence and its possible interpretations. In our context, the semantic gap is present
in both learning and recognition of behaviors, see Fig. 1.3.(a). On the one hand,
although a computer can learn a set of behavior patterns given some training data,
it is unable to extract a semantic explanation of the results. Indeed, it is not possible
to assert if some of the learnt patterns represent a normal or an anomalous behavior
unless the training set has been previously labeled. On the other hand, behavior
recognition consists of matching an observed action sequence with a set of behavior
patterns. In this case, the inaccuracy pulled from the vision system and the ambiguity
of possible interpretations, see Fig. 1.3.(b), can lead to a misclassification of the input
action sequence. Thus, Uncertainty arises because of the difficulty of modeling all the
possible human behaviors in a given discourse domain. Therefore, uncertainty has
to be considered, so logic predicates, which represent knowledge acquired from image
sequences, have to be accurately designed in order to fulfill all possible situations,
otherwise ambiguity could make the system to misinterpret the input image sequence.
For example, an agent walking in a parking lot moving his face back and forth can
be interpretated as a person searching his parked car or a thief deciding which car to
steal.
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1.4 Towards a Cognitive Vision System

Due to the complexity of the proposed goal, such a kind of system must be designed
in a modular structure. In this case, we obey the modular scheme of Human Sequence
Evaluation(HSE) [44], which is shown in Figure 1.4. The modules in this scheme are
linked with bidirectional arrows, which means that data can flow in both directions.
This Thesis considers both data flows. On the one hand, the Bottom-up data flow
goes from the lowest level, an image sequence, to a high level representation that
can be sent to a user interface, e.g. a natural language text description. This tran-
formation embeds two separate tasks: first, to obtain a geometric description of the
scene in terms of quantitative values (the Visual Subsystem), and second, to asso-
ciate the geometric description with qualitative concepts within a proper knowledge
representation for conceptual description (Conceptual Subsystem).

A brief description of the HSE modules is provided next:

• Active Sensor Level. It represents the camera system. Provides the lowest level
information, which is the recorded image sequence.

• Image Signal Level. This level contains two low level processes: The human
agent detection and segmentation.

• Picture Domain Level. In this level 2D representations of the human agent are
calculated based on the results of the segmentation done in the ISL.

• Scene Domain Level. This level represents the process followed to obtain 3D
agent coordinates from the 2D coordinates obtained in the Picture Domain
Level. This process requires a camera calibration, which needs information
about the camera model in the Active Sensor Level.

• Conceptual Integration Level. At this level, geometrical information obtained
from the previous levels is integrated into conceptual predicates, based on fuzzy
logic.

• Behavior Interpretation Level. The conceptual knowledge obtained in the previ-
ous level is organized in order to classify behavior patterns observed in the input
image sequence. In this work the deterministic formalism Situation Graph Tree
is used to model human behavior and to extract conceptual descriptions, which
are high level semantic predicates.

• User Interface Level. This level allows users to interact with the system, provid-
ing the results obtained in the previous levels in a high level of abstraction like a
natural language generated text or a synthetic image sequence which describes
the image sequence recorded in the Active Sensor Level.

In this Thesis, we focus on the ultimate aim of this novel domain: the cognitive
stage of HSE, which refers to the linkage between the quantitative information that
can be obtained by a computer vision system, with a conceptual representation of the
world. Such models are intended to provide an explanation of what is going on in an
image sequence. The term Human-Sequence Evaluation (HSE) denotes the analysis



8 INTRODUCTION

Figure 1.4: The Human Sequence Evaluation scheme. This work is enclosed between
the modules CIL and BIL. More details in the text.

of human motion in order to achieve the understanding of human behaviour, that is,
the explanation and reasoning about why motion is performed. Further, it would be
able to provide conceptual scene descriptions, and to generate synthetic views of the
environment in order to (i) visualize recognised behaviours, and (ii) simulate potential
situations. Therefore, HSE defines an extensive Cognitive Vision System (CVS) which
transforms acquired image values into semantic descriptions of human behaviour and
synthetic visual representations. Hence, HSE represents a huge challenge in which
the aim is to emulate the fascinating performances of a Natural Vision System, and
the reasoning and communication skills of a human observer.

Towards this end, we confront two alternative and complementary paradigms,
which are standard methods for modeling real observable phenomena. These are,
namely, bottom–up and top–down approaches, see Fig. 1.5. On the one hand,
bottom–up behavior modeling is based on automatically constructing models from
observed events in large recordings. Alternatively, top–down techniques make use of
prior knowledge to deterministically design a selected set of behavior models. Along
this document we present approaches for this two paradigms and we discuss and
justify the benefits and drawbacks that are obtained with each method. Bottom–up
approaches can only establish a similarity between learnt behavior models and the ob-
servations, since they lack of a proper semantic layer. On the other hand, Top–down
approaches enable the use of semantic information to model behaviors in a selected
context, allowing to extract conceptual representations of the results. Then, we use
the obtained behavior models to recognize and describe the quantitative information
obtained from vision–based techniques.

However, a desirable feature of a modeling formalism is that model instances can
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Figure 1.5: Top–down and Bottom–up paradigms in the task of behavior modeling.
Top–down approaches make use of precomputed behavior models to describe the
observations, while Bottom–up approaches analyze these observations to learn the
models.

not only be represented and recognized, but also synthetically generated. In the case
of behavior modeling, this implies the creation of synthetic behavior instances. We
demonstrate the feasibility of our proposed Top–down behavior model towards the
creation of virtual environments. A suitable motion model is learnt for human beings,
which allows to differentiate between motion actions (e.g. walking or running) and
the conceptual descriptions are used to generate quantitative information, just the
other way around as in the recognition process.

Finally, we apply our behavior modeling framework to generate Augmented Re-
ality sequences, involving real and virtual characters. Augmented Reality (AR) is a
growing area in virtual reality research [78, 79, 55]. AR combines a real scene viewed
by the user and a computer–generated virtual scene, which enriches the original scene
with additional information. Most of the augmented reality applications are primarily
designed for letting a user browsing a 3D virtual world registered with the real world.
Nowadays, the generation of augmented sequences through the animation of virtual
characters in real scenarios has raised as a promising challenge, with wide applications
in the game industry [85] and education [53].

1.5 Basic Concepts

In this section we briefly introduce the definition of the basic concepts that are present
along this Thesis.
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1.5.1 Agent

Any entity present within the scene which could be subject to special interest and,
consequently subject to be detected and tracked, is called a target. Further, any target
with intentional capabilities is referred as an agent. Depending on the application,
the term may include people, vehicles, or even animals.

In this Thesis we distinguish between real and virtual agents. Real agents are
those passive entities present in image sequences whose motion is observed by some
computer vision system. Alternatively, virtual agents are user–designed agents that
perform synthetic instances of behavior in a controlled environment.

1.5.2 Scenario

In the following sections, the words scenario and scene will be used to reference the
environment where activity is supposed to take place. In order to be interesting in
our context, a valid scenario should allow a particular human agent to develop at
least one of the previously enumerated behavior types.

Considering the context of video surveillance, scenario is primarily represented by
a finite set of reference images, taken by a single or multiple camera system. Thus, a
straightforward way to represent the existence of objects and agents within a scenario
is specifying their location with respect to the coordinate system of the reference
image (this will be called image plane coordinates in the following). Hence, the agent
position is represented using a specific pair of pixels (i, j) of the image. Any further
reasoning must consider the projective distortion of agent locations given the camera
position. The image–plane representation does not provide a proper description of the
scenario configuration, since real distances can not be a–priori measured. In essence,
the real distance between two regions at locations (i1, j1) and (i2, j2) is completely
dependant on the image–plane.

An alternative representation of the scenario is expressed in real–world coordi-
nates, being those independent from the point of view. Such coordinate system is
obtained by mapping pixel locations into a ground–plane, assumed to be within the
scenario.

Surveillance scenarios represent outdoor or indoor environments, and each type
entail different kinds of behaviors to be analyzed. On the one hand, outdoor scenarios
represent unconstrained open areas, where agents have freedom to move back and
forth. Since cameras cover a wide region, agents occupy a narrow part of the image,
difficulting the analysis of body action or face expression. In that scenarios, analysis
is focused on the agent silhouette and trajectory. Nevertheless, indoor scenarios
typically represent small environments, e.g. rooms, where agent mobility is sometimes
limited. Also, indoor environments contain a richer set of objects that the agents
interact to. Cameras usually capture a close–up of agents, allowing the analysis of
face and gestures.

It is important to distinguish different semantic regions in the scenario, since this
conditions on final human behavior. For instance, in an urban scenario, human agents
are expected to behave different when they walk within a crosswalk or a sidewalk.
Following chapters address the challenge of obtaining a proper conceptual scenario
model, either by learning from observations or by establishing prior knowledge.
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(a) (b) (c) (d)

Figure 1.6: Different data sources for behavior analysis. (a) Multi–object tracking
(b) Body action recognition (c) Face expression recognition (d) Head pose estimation

1.5.3 Data from Vision Systems

The detection of human features in images has concerned a great part of the vision
community in the last decade. The exponential enhancement of hardware performance
and the implementation of new algorithms has led to perform a more efficient analysis
of images. These human features are searched in order to provide a representation
of the activity observed in an image, and try to answer the questions described in
previous section. Nowadays, human feature detection has become a wide general
topic, thereby being divided into several research lines, see Fig. 1.6:

• Multi–object Tracking [106]. The concept tracking is defined as the process of
establishing coherent relations amont targets between frames; or as inferring the
agent status over time using all evidence up to date [88].

• Body Action Recognition [17, 102, 48]. The recognition of human body actions
enhances the granularity of behaviors but entails a high degree of complexity
due to self–occlusions and pose variability.

• Facial Expression Recognition [63, 32]. Facial expression analysis provides a
good estimation of the mood of the agent. Such an information can ease expla-
nations of global agent behavior.

• Head Pose Estimation [15]. The estimation of head pose approximates the gaze
of the agent at a given frame step.

1.5.4 Agent Status

Given that time information is discretized into frame steps in the image sequence,
the status of an agent, or agent status, is defined as the parametrized knowledge wich
characterizes the target evolution, i.e, all the information obtained from a single agent
at a certain time step.

1.6 Approaches and Contributions

This chapter summarizes the approaches and subsequent contributions described in
this document. A hierarchical scheme of this section can be seen in Fig. 1.7. There,



12 INTRODUCTION

gray ellipses represent processes, gray boxes represent the data and blue boxes repre-
sent the final applications of each contribution.

• In this thesis, we focus on developing behavior models for the analysis and gen-
eration of image sequences. First chapters are devoted to analyze the observed
behaviors in video–surveillance scenarios. To this end, two different approaches
for behavior analysis in images sequences are described and confronted.

• First, we tackle the challenge of learning behavior models from the observation
of activity in surveillance scenarios. We propose a statistical method to learn
motion patterns and to build up the normal behavior model in particular regions
of the scenario. Given that result, we are able to differentiate between normal
and abnormal behavior in future observations. Subsequently, we can predict the
development of incoming observations by assuming that the performed behavior
is normal. Finally, we can sample the constructed models in order to generate
synthetic normal instances of behavior.

• The unsupervised learning of behavior models does not take care of the inherent
semantics of human behavior. In order to tackle this issue, we propose to use
a deterministic top–down approach for the analysis of human behavior which
takes advantage of prior semantic knowledge about the enviornment and about
the behaviors that we expect to observe there. We use the framework formed
by the reasoning formalism called Fuzzy Metric Temporal Logic and the be-
havior modeling formalism called Situation Graph Tree for the recognition and
description of a predefined set of human behaviors in outdoor scenarios. The
flexibility of the proposed approach is shown by applying the framework into
different discourse domains: video–surveillance and sport shows.

• We exploit the reaction capabilities of the SGT formalism to generate synthetic
instances of the modeled behaviors and thus simulate synthetic agents in virtual
environments. We present a robust framework to simulate the development
of virtual agents that interact with each other and show complex behaviors
in a selected environment. By combining the SGTs for recognition with the
simulation ones, we can obtain interactions between real and virtual agents.
This leads to the generation of augmented reality (AR) sequences in where real
and virtual agents exist in a consistent manner.

• The unified approach to produce AR sequences is tested on two application
domains. First, we describe a virtual storytelling system that converts a natural
language explanation into its representation in images. A natural language
understanding (NLU) module is used to convert sentences into predicates that
represent goals in virtual agent behavior. Through the acchievement of these
goals, a virtual story is generated. Second, we face the problem of tracking
evaluation by providing a mechanism to gradually increase the complexity of
a given scenario. This is achieved with the addition of behavior–based virtual
agents into a real scenario, thereby generating new targets to be observed by
the tracker. Since being synthetically generated, these new agents automatically
generate the ground–truth to be compared against the tracking results.
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Summarizing, in this Thesis we explore the current open issues in the long path
towards behavior analysis in image sequences and we have proposed a contribution
for each of them. However, the unavoidable influence of semantics in human behavior
makes statistical approaches limited to provide an objective explanation in an un-
controlled environment. On the other hand, explicit behavior models depend on the
expertise of the human designer. Concluding, there is still a long ground towards
having a unified solution to the overall problem.

1.7 Document Outline

The remaining of the document is structured as follows. Next chapter reviews the
current state of the art in the topics related to this work, namely behavior analysis
in image sequences, behavior modeling for virtual agents and augmented reality. A
brief review of the applications of the proposed approaches is also added at the end
of the chapter.

Next, Chapter 3 introduces two approaches for the automatic learning of motion
patterns in surveillance scenarios from computer vision outputs. The main difference
between the two methods is the way the incoming data is received. Section 3.2
proposes to on–line process observations as they are estimated by the vision system,
and Section 3.3 presents an offline version which exploits the advantage of having
complete observations to learn typical entry and exit areas, thereby creating common
paths in the scenario. Section 3.4 applies the latter approach to detect anomalies in
image sequences and, finally, Section 3.5 compares the two proposed methods and
justifies ther advantages and drawbacks.

The use of semantics is exploited in the approach presented in Chapter 4. There,
we describe the framework formed by a fuzzy temporal reasoning engine (FMTL) and
a behavior modeling tool (SGTs), used to recognize, interpret and describe a selected
set of behaviors in image sequences. The approach is tested over image sequences
from two different discourse domains and the benefits and drawbacks are discussed
at the end of the chapter.

Chapter 5 extends the previous framework towards the generation of synthetic be-
havioral agents in the simulation of virtual environments. Then, Section 5.2 describes
the combination of real and virtual agents into real environments, thereby producing
augmented reality sequences. The subsequent experiments demonstrate the feasibility
to build interactions between real and virtual agents and the consistent adaptation
of virtual agents into real environments. Sections 5.4 and 5.5 show the application of
the presented approach into tracking performance evaluation and virtual storytelling,
respectively.

Finally, Chapter 6 presents a general discussion about the approaches and results
obtained in this Thesis. For each topic related to the presented contributions we point
out the remaining open issues and future directions of research.



14 INTRODUCTION

1.8 Resum

La comprensió del comportament dels animals, i en especial dels humans, és un dels
problemes més antics i estudiats al llarg de la història, quasi des de l’inici de la civil-
ització. La quantitat de factors diferents que actuen alhora de determinar les accions
d’una persona requereixen la participació de diferents disciplines, com la psicoloǵıa,
bioloǵıa, o socioloǵıa. En els darrers anys l’anàlisi del comportament humà ha es-
devingut també un tema molt interessant per a la comunitat cient́ıfica de visió per
computador, gràcies als darrers avenços en l’adquisició de dades sobre el moviment
humà a partir de seqüències d’imatges.

Malgrat la creixent disponibilitat d’aquestes dades, existeix encara una barrera per
obtenir una representació conceptual de les observacions obtingudes. L’avaluació del
comportament humà en seqüències d’imatges està basat en una interpretació qual-
itativa dels resultats, i per tant l’assignació de conceptes a les dades quantitatives
obtingudes està lligada a una certa ambigüetat.

Aquesta Tesi confronta el problema d’obtenir una representació correcta del com-
portament humà en els contextes de la visió i animació per computador. En primer
lloc, un bon model de comportament ha de permetre reconèixer i descriure l’activitat
observada en seqüències d’imatges. D’altra banda, el model ha de permetre generar
sintèticament noves instàncies, que permetin modelar el comportament d’agents vir-
tuals.

En primer lloc, proposem mètodes per aprendre els models directament de les
observacions. A partir de les dades obtingudes mitjançant l’anàlisi de seqüències
d’imatges, construim models de comportament normal dins l’escenari. Això ens pro-
porciona una eina per determinar la normalitat o anormalitat de futures observacions.
Tanmateix, els mètodes d’aprenentatge automàtic son incapaços de provëır una de-
scripció semàntica de les observacions. Aquesta problema és tractat mitjançant un
nou mètode que incorpora un coneixement a–priori sobre l’escena i els comporta-
ments esperats. Aquesta estructura, formada pel motor de raonament difús FMTL i
l’eina de modelatge SGT, permet obtenir descripcions conceptuals del contingut de
noves seqüències de video. Finalment, l’estructura FMTL + SGT ens permet simular
comportament sintètic i introdüır agents virtuals dins d’escenes reals que interactuen
amb els agents reals existents, constrüınt d’aquesta manera seqüències de realitat
augmentada.

El conjunt de mètodes presentats en aquesta Tesi tenen un conjunt potencial
d’aplicacions cada cop més gran. Per un costat, el reconeixement i descripció de com-
portament en seqüències d’imatges té com a principal aplicació la video–vigilància
intel.ligent, permetent detectar comportaments delictius o perillosos. Altres aplica-
cions inclouen la transcripció d’esdeveniments esportius, monitorització de centres
geriàtrics, anàlisi de tràfic en carreteres i la construcció de buscadors de video basats
en conceptes semàntics. D’altra banda, l’animació d’agents virtuals amb comporta-
ments complexes permet obtenir simulacions acurades de situacions reals, com per
exemple incendis o multituds. A més, la inclusió d’agents virtuals en entorns reals té
forta implantació en els mons dels videojocs i el cinema.
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Figure 1.7: Scheme of the proposed approaches and contributions.



16 INTRODUCTION



Chapter 2

Related Work

In spite of being a relatively new research area, a massive number of contributions
related to behavior analysis in image sequences have been published in the last decade.
This topic undoubtedly presents a big challenge and is receiving important amounts
of private and public funds given the wide set of potential applications. However,
most of the existing approaches present a contribution on a specific environment or a
single agent of interest, sometimes making them too specific for general situations.

First, approaches are divided into two groups depending on the final purpose of the
contribution. On the one hand, bottom–up approaches learn behavior patterns from
observing activity inside a scenario. Obtained patterns are further used to identify
new instances of the same behavior. Alternatively, top–down approaches contain prior
knowledge about the behavior to be recognized, which can be specified using semantic
information, thus allowing to extract semantic descriptions of new observed behavior
instances.

First section reviews existing methods to learn scenario models from analyzing
features obtained from tracking. Next, a complete description of the state of the art
in behavior understanding is provided. Finally, last section presents related contribu-
tions to the field of augmented reality and computer animation.

2.1 Learning Scene Models by Trajectory Analysis

Current literature on analysis of surveillance videos has tried to automatically learn
some conceptual data from the analysis of tracked individuals. This has lead to two
main tasks: first, the clustering of trajectories allows to learn behavior patterns on
specific regions of the scenario. Second, some regions of the scenario can be classified
as one semantic class depending on the observed features (speed, orientation), for in-
stance, road, sidewalk, etc. Nevertheless, these two tasks represent the same problem
and there exists an association between semantic explanation of a specific region and
the behaviors that can be observed there. Thus, on the one hand a region of the
scenario with a specific semantic explanation denotes a set of behaviors that can be
observed there. On the other hand, the learning of motion patterns from trajectories
permits the classification of regions using semantic labels.

17
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(a) (b)

Figure 2.1: Early approaches on scene learning by trajectory analysis. (a) The
neural network approach by Johnson and Hogg [58] (b) Semantic regions obtained
by Fernyhough et al. [39].

Several approaches faced this problem for the traffic domain. The analysis of
vehicle trajectories allows to extract accurate models of behavior, since vehicles have
low complexity in terms of mobility and behavior. In fact, the analysis of human
trajectories instead of vehicle trajectories implies a high addition of complexity. On
the one hand, while vehicles are supposed to follow a predefined set of marked lanes,
human beings can perform any kind of trajectory, unless there is a physical barrier
limiting their mobility. On the other hand, human motion is highly non-linear, a-priori
unknown, and it is always subject to sudden and unforeseeable changes of orientation
and speed.

Initial attempts were done by Johnson and Hogg in [58]. Their proposed method
learns probability density functions of object trajectories generated from image se-
quences. the movement of an object is described in terms of a sequence of flow vectors,
where each vector consists of four elements representing the position and velocity of
the object in the image plane. The patterns of object trajectories are formed with
two competitive learning networks which are connected by leaky neurons. Both of
the neural networks are learnt using vector quantization.

Fernyhough et al. [39] proposed a method to learn and classify semantic regions
from a scenario. This approach recognizes common paths by extending trajectories
with the spatial extent occupied by the agents in camera coordinates. Although the
method does not need any a–priori information, it requires full trajectories and cannot
handle on–line learning. In addition, this method does not use orientation to compute
paths and thus does not distinguish between objects following the same route but
different directions. Despite showing promising intermediate results, the formulation
lacks extensibility to other domains and no semantic description is reported. The
method uses the size of tracked blobs to stablish the spatial extent of the agent at
each frame step. It makes the method very dependent of the training set used to
construct the path database.

The use of Hidden Markov Models (HMM) for the modeling of events has been
widely studied. Galata et al. [40] proposed a Variable–Length HMM. In that work,



2.1. Learning Scene Models by Trajectory Analysis 19

(a) (b) (c)

Figure 2.2: Example results from different approaches. (a) Route models con-
structed by Makris et al. [67](b) Division of the scenario into cells by Veeraraghavan
et al. [100] (c) Statistical motion patterns obtained by Hu et al. [52]

the learning is done assuming a invariant background, where landmarks never change
position. The method is not tested under a noisy dataset, where unobserved behaviors
may appear.

The lack of conceptual labelling of the scenario is addressed by Makris and Ellis
in [67], learning entry/exit zones and routes from trajectory samples. The start/end
points of trajectories are used to learn entry/exit zones applying the Expectation-
Maximization (EM) algorithm. For the learning of routes, a new trajectory is com-
pared with all routes already in the database using a simple distance measure. If
a match is found, the trajectory is added to the matching route and the route is
updated. Otherwise, a new route is initialized.

The use of constructive models have been proposed to learn sequences of events
observed in sequences. Veeraraghavan et al. [100] present a novel method for repre-
senting and classifying events in video sequences using reversible context-free gram-
mars (CFG). The grammars are learned using a semi-supervised learning method.
More concretely, by using the classification entropy as a heuristic cost function, the
grammars are iteratively learned using a search method. The learning algorithm re-
quires some knowledge of the structure of the grammar and a small set of supervised
examples. Moreover, the scenario model is discretized into cells, which have to be
manually drawn or randomly generated. The cells are deterministically generated,
affecting the learnt event patterns.

Another statistical method to learn motion patterns is presented by Hu et al. in
[52], where trajectories are clustered hierarchically using spatial and temporal infor-
mation and motion pattern are represented with a chain of Gaussian distributions.
Learnt motion patterns are used to detect anomalies and predict object future be-
haviors. The method construct statistical motion patterns from a set of object tra-
jectories, which are used to detect anomalies and predict object future behaviors.
The tracking module is implemented by clustering foreground pixels in each image
frame and comparing pixel distributions between successive images. It outputs object
trajectories and features (color, size, etc.), which form the sample data for learning
motion patterns. After enouch sample data are acquired, object motion patterns
are learned using a hierarchical trajectory clustering based on the fuzzy K–means
algorithm. Each pattern is represented by a chain of Gaussian distributions, and sta-
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Figure 2.3: Scene model learnt by Basharat et al. [13]

tistical descriptions are then formed. For detection of anomalies, the probabilities of
the matching between observed behaviors and the learned motion patterns and the
probability values of abnormality of the observed behaviors are computed. Moreover,
partial trajectories are matched to the learned motion patterns, and future behaviors
are stochastically inferred.

Recent contributions have extended the set of features used to learn scenario mod-
els. For instance, Basharat et al. [13] presented a method to detect anomalies based
on a probabilistic map of the scenario that takes into account not only trajectory
positions but also object sizes, allowing to detect anomalous object sizes. They use
observation vectors containing 5 features: timestamp t, position (x, y) and the dimen-
sions of the bounding box (w, h). For each observation Oi = (ti, xi, yi, wi, hi), a set
of transition vectors are created, which capture the transition from the given obser-
vation to future observations of the same trajectory. Considering a temporal window
τ , the transition vectors are used to create a observation space at each pixel location,
which is modeled using a Gaussian Mixture Model. The resulting probabilistic model
is used to detect local and global anomalies. The former represent variations in speed
and size of a new trajectory, while the latter represent completely unobserved routes.
The method is also used to improve object detection, since it estimates the size of
objects at each pixel location. However, the method is very dependent on a clean
training dataset and classifies as anomaly very tiny variations of previously observed
trajectories.

An approach to on–line learning trajectory clusters is presented by Piciarelli et
al. in [83]. On–line clustering is about clustering computed as the incoming data
are acquired. Clusters are represented in a tree like structure representing the shared
prefixes of clusters, where a prefix is just the starting piece of a cluster. A new dis-
tance measure is proposed to compare clusters with incoming trajectories, based on
the Euclidian distance. Clusters can be split and merged depending either on new
acquired data or on the time a cluster has remained static in the database. Obtained
clusters are used to perform behaviour analysis, since they allow the identification
of anomalous events. However, this method does not tackle human trajectory fea-
tures like bidirectional paths. Moreover, the method does not derive any semantic
description about obtained clusters.
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(a) (b) (c) (d)

Figure 2.4: (a) Normal and (b) Abnormal trajectories learnt by [57]

Anjum and Cavallaro [5] employ PCA to reduce the dimensionality of trajectories.
They analyze the PCA first two components of each trajectory together with their
associated average velocity vector. Mean-shift, with these features, is employed to
seek the local modes and generate the clusters. The modes associated with very few
data points are considered as outliers. The outlier condition is set as the 5% of the
maximum peak in the dataset, but again the drawback of the approach is that the
analysis is adapted to highly structured scenes. Similarly, Naftel and Khalid [70] first
reduce the dimensionality of the trajectory data employing discrete Fourier transform
coefficients and then apply a self-organising map (SOM) clustering algorithm to find
normal behaviour. Antonini and Thiran [6] transform the trajectory data employing
independent component analysis, while the final clusters are found employing an ag-
glomerative hierarchical algorithm. In these approaches it is however delicate to select
the number of coefficients that will represent the data after dimensionality reduction.
Calderara et al. [24] employ a k-medoids clustering algorithm on a transformed space
modelling different possible trajectory directions to find groups of normal behaviour.
Abnormal behaviour is detected as a trajectory that does not fit into the established
groups, however the approach is validated with acted abnormal trajectory. Recently,
Patino et al. [81] applied agglomerative hierarchical clustering to find the main tra-
jectory patterns of people and relational analysis clustering to extract the relationship
between people, contextual objects and events.

Given few training samples, clustering methods based on a similarity or dissim-
ilarity measures can provoke overfitting. This is true for the first several steps of
hierarchical clustering: when clusters contain only a few trajectories (starting from
only one trajectory), the learnt patterns tend to be overfitted and the dissimilar-
ity measures based on them are quite unreliable, thus resulting in clustering errors.
These errors will propagate to future clustering steps. To address this problem, Jiang
et al. [57] considers trajectories as dynamic processes and uses Dynamic Hierarchical
Clustering (DHC) to train HMMs for each cluster, thus updating the clustering re-
sults at each merging step. Once a new HMM is trained after trajectory merging, all
the trajectories in the database are reclassified. Possibly, some incorrectly clustered
trajectories at previous steps are associated to the new HMM. All the HMMs are
then retrained based on the updated trajectory clusters. This is a typical data reclas-
sification and model retraining process, which is used in many iterative algorithms
such as the expectation-maximization algorithm. This updating also enables error
correction at later clustering steps, as clusters have gathered more samples and the



22 RELATED WORK

Approach Model used Types of anomalies

Fernyhough and Hogg [39] Vector quantization HA

Makris et al. [67] GMM and vector quantization HA

Hu et al. [52] Fuzzy C-means and GMM SA, HA

Piciarelli et al. [83] Vector quantization HA

Basharat et al. [13] Transition vectors and GMM SA, HA

Our approach GMM with Splines SA, IA, HA

Table 2.1

Comparison of previous approaches in terms of model and the types of

anomalies detected.

trained HMMs are more reliable.
The principal application of most of the previously described learning approches is

the detection of anomalies from new observations in image sequences. From a statistic
point of view, normal behavior occurs more frequently than anomalous behavior. This
is the main assumption of all recent works performed in anomaly detection research
[13, 52, 67, 83].

Our proposal focuses on the definition of anomalies in terms of a hierarchy of devi-
ations from a previously learnt model. In this work we differentiate three semantically
different anomalies, namely Soft (SA), Intermediate (IA), and Hard (HA) anomaly.
Each anomaly is related with a level of deviation between the learnt model M and
new trajectory observations. Table 2.1 summarizes existing contributions in the field
of statistical anomaly detection, compared to our proposed anomaly definition.

2.2 Behavior Understanding

In this section, the state of the art in behavior understanding is reviewed. Such
research lines has raised several applications in different fields, as explained in the
Introduction. Thus, the methods introduced next have been used to analyze behavior
from different moving targets, e.g. faces, animals, vehicles, and human beings. The
latter represents nowadays the most challenging goal in behavior understanding, due
to special features of human behavior, such as variety and unpredictability.

Current motion understanding systems rely on numerical knowledge based on (i)
the quantitative data obtained from tracking procedures and (ii) the geometrical prop-
erties of the scene[23],[62]. Therefore, this process is usually scene-dependent, and
a-priori information of the spatial structure of the scene is required. The questions
about the what and why can be answered by reasoning about the tracking data and
transforming it to semantic predicates which relates each tracked agent with its en-
vironment. Common problems are the semantic gap which refers to the conceptual
ambiguity between the image sequence and its possible interpretations, and uncer-
tainty raised due to the impossibility of modeling all possible human behaviors.
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2.2.1 Probabilistic Behavior Understanding

The major existing methods in the literature related to behavior understanding make
use of standard probabilistic techniques and are outlined as follows.

Principal Component Analysis (PCA), as a statistical approach, has been applied
to the recognition of object behaviors. For instance, Yacoob and Black [105] learn
behavior models using PCA of a number of exemplar actions.

Dynamic Time Warping (DTW) is a template–based dynamic programming match-
ing technique which has been used to match human movement patterns. For instance,
Bobick and Wilson [18] use DTW to match an input signal to a deterministic sequence
of states.

Hidden Markov Models (HMMs)generally outperform DTW in the processing of
undivided successive data and are therefore extensively applied to behavior under-
standing. Brand and Kettnaker [21] show that, by minimizing the entropy of the
joint distribution, observed behaviors can be organized into meaningful states within
an HMM. Oliver et al. [76] propose and compare two different state-based learn-
ing architectures, namely, HMMs and CHMMs (Coupled Hidden Markov Models) for
modeling people behaviors and interactions. Nguyen et al. [75] present an Abstract
Hidden Markov Memory Mode-based approach for recognizing high-level human be-
haviors. Duong et al. [34] apply the Switching Hidden Semi-Markov Model to learn
and recognize human behaviors and detect anomalies. More recently, Nguyen et al.
describes in [74] the application of Hierarchical Hidden Markov Models (HHMM)
to learn and detect complex behaviors in indoor scenarios. They define a two–level
HHMM by considering complex and primitive behaviors. Similar to work from Park
and Aggarwal [80] work, they recognized primitive behaviors based on HMMs. Treat-
ing the recognition of primitive behaviors as observations for complex behaviors, they
constructed another layer of HMMs on top of the primitive behavior recognition sys-
tem. As a result, their system was able to represent and recognize two levels of
behaviors with a probabilistic model.

Unlike HMMs, Variable–Length Markov Models (VLMMs) can capture behavioral
dependencies that may have a variable or long time scale. Galata et al. [40] propose
a method for automatically acquiring stochastic models of a behavior. VLMMs are
used for the efficient representation of behaviors.

Grammar Techniques (GT), based on low level features detected by standard
independent probabilistic temporal behavior detectors, provide longer–range tempo-
ral constraints and disambiguates uncertain low-level detections, etc. Brand [20]
uses a simple non–probabilistic grammar to recognize sequences of discrete behaviors.
Ivanov and Bobick [56] describe a probabilistic grammar approach for the detection
and recognition of temporally extended behaviors and interactions between multiple
objects. Minnen et al. [68] present a system that uses human–specified grammars
to recognize a person performing the Towers of Hanoi task from a video sequence by
analyzing object interaction behaviors.

Bayesian Networks (BNs) offer many advantages for using prior knowledge and
modeling the dynamic dependencies between parameters of object states. Town [97]
uses an ontology to train the structure and parameters of Bayesian networks for
behavior recognition. Park and Aggarwal [80] describe a framework for recognizing
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Figure 2.5: Bremond et al. [22] use Finite State Automatons for sequential scenar-
ios.

human actions and interactions. In the framework, the poses of individual body parts
are recognized using individual Bayesian networks, and the actions of a single person
are modeled using a dynamic Bayesian network. Statistical Shape Theory (SST) is an
effective tool for analyzing object behaviors. Vaswani et al. [99] model a behavior by
the polygonal shape of an associated configuration of point objects and its deformation
over time. Both drastic and slow anomalies can be detected.

Non–deterministic Finite Automaton (NFA) are employed by Wada and Mat-
suyama [101] as a sequence analyzer. They present an approach for multiobject
behavior recognition based on behavior-driven selective attention.

2.2.2 Semantic–based Behavior Understanding

The above introduced methods do not include a semantic explanation of the rec-
ognized behaviors. The semantic gap, explained in the Introduction, is therefore
not tackled. In this section we describe approaches that make use of prior semantic
knowledge to enhance the interpretation of the observed behavior patterns. These ap-
proaches, often called top–down or description–based approaches, normally represent
the behaviors to be recognized in terms of logic predicates and chains of causality. The
design of such descriptions has to be done by a human expert and may be scenario de-
pendant. This characteristics make them unsuitable for unconstrained environments,
however they can provide an accurate explanation of observed behaviors in selected
scenarios.

A complete behavior recognition system is proposed by Bremond et al. [22].
For each tracked actor, the behaviour recognition module performs three levels of
reasoning: states, events and scenarios. For simple scenarios, they verify that a
state has been detected during a predefined time period using a temporal filter. For
sequential scenarios, they use Finite State Automatons (FSA). For composed scenarios
defining a single unit of movement composed of sub scenarios they propose AND/OR
trees of sub scenarios. Behaviors are defined using an event description language. An
example of the previously mentioned structures is shown in Fig. 2.5.
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(a) (b)

Figure 2.6: Example of Petri Nets extracted from [42].

Alternatively, the use of Petri Nets has been studied for event recognition in indoor
and outdoor environments by Ghanem et al. [42]. A Petri Net (PN) is a directed
bipartite graph, in which the nodes represent transitions (i.e. discrete events that
may occur), places (i.e. conditions), and directed arcs (that describe which places
are pre- and/or postconditions for which transitions), see Fig. 2.6. In the context of
event detection, moving objects in the scene are considered tokens that are moving
along the PN whilst existing in the image sequence. Tokens are situated in one place
and can change their place when an event is recognized, i.e. a neighbor transition is
activated. A place represents a possible state of one of more objects. The recognition
of the event is based on logic conditions that are explicitly predefined by a human
expert, e.g. object speed is greater than 0, object is of type person, etc. The PN
formalism allows to express logical and temporal relations, concurrency, and partial
ordering of events, see Fig. 2.6. The transitions can be ordered by priority, allowing to
solve conflicts when multiple transitions are available from the same place. Moreover,
transitions are associated to a time period, which has to be ellapsed for the transition
to be fired.

More recently, some extensions have been proposed by Borzin et al. in order to a
provide the PN formalism with stochastic timed transitions [19]. The delay between
transitions is learnt from a set of training examples, using a negative exponential
probability density function. The resulting formalism, Generalized Stochastic Petri
Net (GSPN), represents the coexistence of immediate transitions and stochastic timed
transitions. Latest improvements for the PN formalism entail the addition of proba-
bilities in the directed arcs going to a transition, which can also be learnt from a set
of training examples. In order to tackle the uncertainty carried from the detection
and tracking processes, Albanese et al. have proposed to attach a probability score
to each token, i.e. each object [3].

Fuzzy Metric Temporal Logic (FMTL) [90] also copes with the temporal and
uncertainty aspects of integration in a goal-oriented manner. This predicate logic
language treats dynamic occurrences, uncertainties of the state estimation process,



26 RELATED WORK

Figure 2.7: Situation Graph describing a vehicle approaching to an intersection,
extracted from [49].

Figure 2.8: Intelligent Agent perception/reaction scheme from [89].

and intrinsic vagueness of conceptual terms in a unified manner. FMTL uses three
different strategies to accomplish such an abstraction process, according to the source
of knowledge which is exploited to generate the qualitative description. The main
advantage of FMTL over the previously referred algorithms relies on the promise to
support not only the interpretation, but in addition diagnosis during the continu-
ous development and test of the so-called Cognitive Vision Systems [72]. Further,
Situation Graph Trees (SGTs) constitute a suitable behavior model which explicitly
represents and combines the specialization, temporal, and semantic relationships of
the constituent conceptual predicates in FMTL. The SGT is introduced in the follow-
ing chapters and has been initially used by Nagel et al. for the recognition of traffic
environments involving vehicles [49]. Fig. 2.7 shows a Situation Graph describing the
situations involved in the behavior of a vehicle approaching to an intersection.

2.3 Behavior Modeling for Augmented Reality

The design of intelligent virtual agents (IVAs) in virtual environments (VE) entails
the collaboration of several areas of computer science.

First, intelligent agent modeling constitutes an entire field in artificial intelligence
research, and a complete description can be found in Russell and Norvig’s book [89].
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There, an agent is defined as something capable of getting data from the environment
using sensors, which is called perception, and reacting to these stimuli through effec-
tors, see Fig. 2.8. Based on this initial interaction scheme, the ideal rational agent is
capable of driving its actions so that it maximizes some performance measure. Intelli-
gent agents are classified into two main types, depending on how the initial interaction
scheme shown in Fig. 2.8 is particularized:

• Reflex Agents. This class represents agents that just react to perceived stimuli
by means of if–then rules. A more sophisticated version of these agents can
maintain a internal memory to keep track of the current state of the environ-
ment.

• Goal–based Agents. Agent behavior is determined not only by the perception
from the environment, but also by some internal goals that the agent should
acchieve in the future. In order to successfully accomplish that goals, agents
must planify an action sequence that drives towards the desired configuration.
Based on an utility function, the agent should also find the best way to acchieve
the goals, thereby solving possible conflicts between goals.

In this work our aim is to create virtual characters capables of performing complex
behaviors whilst interacting with the environment. Thus, the required agent struc-
ture is similar to the Goal–based Agents proposed by Russell and Norvig: Behavior–
based agents have a set of goals (described as their behavior), and they accomplish
it depending on the perceived actions from other agents in the environment. The
representation of these goals is then a crucial point in the design of virtual agents
[59]. So far, current contributions have developed models by considering two different
approaches: bottom–up and top–down techniques.

Bottom–up approaches make use of machine learning techniques to represent be-
haviors from a set of supervised examples. Thus, behavioral learning has been ex-
ploited recently using techniques such as k–Nearest Neighbours [28] or Reinforcement
Learning (RL) [94, 28]. On the one hand, the k-NN algorithm provides a local approx-
imation of the target function and can be used automatically without the designer
selecting the inputs. It is guaranteed to learn the target function based on the quality
of the examples provided and to memorize the decisions made by planning through a
cognitive model. On the other hand, the RL algorithms allow one or several agents to
carry out a series of optimal actions according to a given environment thanks to re-
ward/penalty techniques. Through the repetition of non-pertinent or pertinent tests,
these agents learn the task asked for. Alternatively, top–down techniques predefine a
set of behavior patterns which represent the set of agent behaviors to be synthesized.

Top–down approaches have a limited learning capability, but they take advantage
of the richness provided by semantic knowledge to represent human behaviors in a
consistent manner, and they do not depend on the specific data from the training set
[16, 82, 8]. In this Thesis agent behavior is modeled also using the Situation Graph
Tree formalism. Thus, the SGT is used to model the behavior of real and virtual
agents, thereby integrating both types of agent in the same scenario.

Second, intelligent virtual agents may emulate the capabilities of a real characters
inside a virtual environment, for instance vehicles or humans. To this end, the sensors
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and effectors from the original agents have to be emulated by the virtual ones. In the
case of humans, which is the topic of this Thesis, sensors are eyes, ears, and other
organs, and hands, legs, mouth, and other body parts represent the effectors [89].
This process entails the collaboration of two complementary subprocesses, phisic and
shape modeling:

• The physical model of the agent is the representation of the physical properties
and constraints of the virtual agent, according to those from the environment.
This process entails the creation of a simplified representation of a character’s
anatomy, analogous to a skeleton or stick figure. The position of each segment
of the skeletal model is defined by animation variables, or Avars. In human
and animal characters, many parts of the skeletal model correspond to actual
bones, but skeletal animation is also used to animate other things, such as facial
features. Traditionally, animators manipulate the Avars directly. However,
rather than set Avars for every frame, they usually set Avars at strategic points,
key–frames, and the rest of the animation is automatically interpolated. A
different method called motion capture makes use of observing real motion [66,
8]. In motion capture, a real character performs the desired actions and the
obtained motion is encoded using video cameras and markers. Finally, the
action sequence is replicated into the virtual character.

• The shape model represents the appearence of the agent within the environment.
This process resides in the area of computer graphics and deals with aspects
like realism, illumination, occlusion consistency, etc. Nowadays, objects are
represented by complex structures usually containing thousands of polygons.
The animation is created by rendering the scenario, i.e. introducing the shape
models into the rendering pipeline [95]. The technique that produces the most
realistic rendering is Ray–tracing, which emulates the reflexion and refraction
of light sources in their interaction with the objects in the scenario [43]. This
technique involves a high level of computational complexity and a general real–
time solution is currently a hot research topic.

Magnenat and Thalmann list the three steps described above as the exhaustive
way to model virtual humans [65]. Also, they state the current challenges in
the field of virtual human modeling. Among them, two important remaining
issues are ensuring a realistic on–the–fly generation of motion of virtual humans
and creating believable relationships between real and virtual humans in mixed
environments.

2.3.1 Augmented Reality

A complete description of the stages in creation of augmented reality involving virtual
characters can be found in [64]. There, a complete model of the scenario is used to
produce realistic images with virtual avatars, see Fig. 2.9. In that paper a list of
problems related is stated, although most of them are related to computer graphic
features, such as illumination or character realism, which are not tackled in this
Thesis.
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Figure 2.9: Example animation result from [64]

(a) (b) (c)

Figure 2.10: Example augmented reality results from current works. (a) Example
result from [11] (b) Example result from [108].

Interaction between real and virtual agents has been little considered previously
[12, 41]. Balcisoy et al. showed the application into a virtual storytelling system,
restricting virtual agents to perform a given script, converting them in directors of
the scene [12]. More recently, Balcisoy et al. describe a mixed reality setup to mix
virtual characters with the tracking of particular objects in the scene, see Fig. 2.10(a)
[11].

Gelenbe et al. proposed an augmented reality system which combines computer
vision with behavior–based object agents [41]. Behavior is modeled using a hierarchy
of three behavior modules, but without considering the particular features of human
motion and behavior. The occlusion between real and virtual is tackled only with
static objects, for instance a tree. All the static objects that may occlude virtual
characters are segmented from the background by generating a virtual representation
of the scenario.

Zhang et al. presented a method to merge virtual objects into video sequences
recorded with a freely moving camera [108]. Multiple views of the scenario are
matched by means of fusing features extracted using the SIFT algorithm. In or-
der to integrate the virtual objects consistently, the 3D scene model is reconstructed
by means of an extended multi–baseline algorithm. The method is consistent accord-
ing to illumination and shadows, but it does not tackle occlusions with real moving
agents, see Fig. 2.10.(b).

The use of computer vision techniques in augmented reality has also been re-
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Figure 2.11: Example result from [61]. Several virtual Ewoks are defeated by a
virtual Darth Vader on a desk.

(a) (b)

Figure 2.12: (a) Example result from [78]. (b) Example result from [84].

cently confronted by Douze et al. [33], where moving targets are tracked from image
sequences and merged into other real or virtual environments, see Fig. 2.10.(c). How-
ever, the method does not consider the animation of behavioral virtual agents in the
resulting sequence.

Klein and Murray adapt SLAM algorithms developed for robotic exploration into
the AR field [61]. Using images taken from calibrated hand–held cameras, they collect
thousands of feature points that enable the estimation of a dominant ground–plane.
Then, they use this information to add virtual objects over the ground–plane that
develop some predefined behavior, see Fig. 2.11. The method keeps a correct esti-
mation of the ground–plane as the camera moves, thereby maintaining a consistent
existence of virtual objects in the image sequence.

The generation of augmented reality has received much attention given the wide
set of potential applications, which have led to the publication of many contributions
in different areas. For instance, Papagiannakis et al. use AR for the reconstruction
of ancient cities in [78]. The proposed method presents virtual actors that introduce
visitors of ancient locations into the world of fresco paintings, by providing these
actors with dramaturgical behaviors. Augmented reality can be also very helpful to
aid modeling processes, since it can provide additional information that can not be
obtained by just observing the scenario. In [55], Barakonyi et al. use ubiquitous
agents in AR displays in order to guide the user to configure interfaces, e.g. repairing
a lego construction. Torre et al. used AR to simulate a virtual opponent in checkers
competition [96]. The method tracks the checkers board to generate a consistent
location of the virtual agent. Hugues et al. presented some examples of AR systems
applied to military training, see Fig. 2.12.(a). Finally, the use of AR has been
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massively investigated within the game and cinema industries, since it can provide
impressive results using a reduced amount of resources. For instance, Piekarski and
Thomas presented an augmented reality version of the popular game Quake in [84],
where the player can shoot to virtual monsters in a real outdoor environment, see
2.12.(b).

2.3.2 Performance Evaluation of Tracking

Nowadays, research in multi–object tracking algorithms has achieved great results
when tracking non–grouped targets in few frames image sequences including soft illu-
mination changes. However, several problems, inherent to computer vision in general,
are still unsolved and constitute a big challenge towards an unconstrained multiple–
target tracking, namely long occlusions, grouping disambiguation and camouflage.

One typical drawback comes up when testing the tracking algorithm in a differ-
ent environment or image sequence [14]. As long as difficult frames appear in the
new image sequence, some modifications must be done to the algorithm (parameters,
thresholds) in order to achieve good results. However, these modifications could dam-
age the results obtained in former image sequences. Instead of using completely new
sequences, it would be useful to have a method to gradually increase the difficulty of a
given sequence. However, when recording a new sequence, even in the same scenario,
we are exposed to several condition changes due to illumination, weather, or scenario
configuration. In addition, it is sometimes hard to record image sequences containing
crowds of people in public urban environments for legal or security reasons.

Related work in the field of performance evaluation for object tracking can roughly
be classified into different semantic classes as they specifically address one or more
of the following semantic levels [87]: pixel-level [2, 73], frame-level [14, 2], object tra-
jectory level [14, 103], and behaviors or higher level events [31]. Bashir and Porikli
[14] presented a set of unbiased metrics on the frame and object level which leaves
the final evaluation to the community. However, the total number of 48 different
metrics makes the interpretation difficult. Aguilera et al. [2] presented an evaluation
method for the frame and pixel level, all based on segmentation. The pixel-level met-
ric is currently used for the online service called PETS metrics[107]. Wu et al. [103]
evaluate their body part detector-based tracker using five criteria on the trajectory
level which cover most of the typical errors they observed. Furthermore, occlusion
events were separately evaluated defining short and long scene or object occlusions.
The metric then gives the number of successful handled occlusions against all occlu-
sions of a certain category by dataset. Desurmont et al. [31] presented a general
performance evaluation metric for frequent high level events where they use dynamic
programming to specifically address the problem of automatic realignment between
results and ground truth. Their definition of an event is however very much limited
to the detection of blobs crossing predefined lines in order to count people passing by.

2.4 Resum

Malgrat ser una ĺınia de recerca relativament nova, un gran nombre de contribu-
cions relacionades amb l’anàlisi de comportaments en seqüències d’imatges han estat
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publicades durant la darrera dècada. Aquest tema presenta indubtablement un gran
desafiament i està rebent importants quantitats de subvencions tant públiques com
privades, donat el seu conjunt potencial d’aplicacions. Tanmateix, la majoria de con-
tribucions estàn destinades a analitzar un entorn espećıfic o el comportament d’un
agent en particular, provocant una manca d’usabilitat per a situacions generals.

En aquest caṕıtol hem presentat l’estat de l’art en els diferents temes tractats en
aquesta Tesi. En primer lloc, repassem els principals mètodes presentats darrerament
per a l’aprenentatge automàtic de models de comportament a partir d’un conjunt
d’aprenentatge. Seguidament, estudiem l’aplicació dins l’anàlisi de comportament de
les eines més usades en la modelització de processos dinàmics, com per exemple els
Models de Markov Ocults (HMMs) o les xarxes bayesianes (BNs). Seguidament també
presentem els mètodes d’anàlisi de comportament basats en coneixement semàntic
predefinit. En quant a la generació d’agents virtuals, presentem diferents mètodes
per a modelar comportament sintètic i exemples d’aplicacions de realitat augmentada,
sobretot combinant agents humans reals i virtuals.



Chapter 3

Behavior Learning

This chapter discusses two different strategies to automatically acquire behavior pat-
terns from a video-surveillance scenario, taking as input the results of computer vision
techniques applied to image sequences. As introduced in Chapter 1, the data available
to attempt such a task is basically the set of typical features obtained from multiple–
target tracking systems, thereby limiting the subsequent learning approaches in terms
of the semantic classification of trajectories. The objective is to find a description of
typical motion within the scenario. This is so–called in different ways along the re-
cent literature: semantic regions [58], statistical motion patterns [52], semantic scene
models [104, 67], trajectory prototypes [81, 9], etc. This is due basically to the applica-
tion that each work performs to the obtained description. The common applications
are anomaly detection and behavior analysis. A significant conclusion of the recent
literature is that learning a scenario model has become the same task as learning a
target behavior model, since the characteristics obtained for a given scenario describe
the motion patterns expected to be observed, i.e the behavior of agents in terms of
speed, orientation, and size.

In this chapter the aim is to obtain a description of agent motion within a sce-
nario in terms of the paths that are mostly observed during a training period. Two
approaches are presented, so–called On–line Scenario Modeling and Offline Scenario
Modeling, respectively:

• The On–line learning method generates a hierarchy of trajectory clusters by
processing each observation from tracking independently. This method does
not need to process complete trajectories and can lead to intermediate results.
However, On–line clustering does not consider the semantic meaning of complete
trajectories, and noisy trajectories can be wrongly considered to update the
model. In order to solve this drawback, a set of prunning methods are presented
and discussed.

• The Off-line learning method follows the classical methodology of analyzing
an existing training set [58]. The main advantage is that, since the method
processes complete trajectories, the typical entry and exit areas can be auto-
matically learnt and thus noisy or anomalous trajectories can be removed during

33
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(a) (b)

Figure 3.1: (a) Original trajectory dataset (4250 trajectories). (b)) Trajectory
dataset after removing tracking failure noise and semistationary motion noise [67].

the training process. The resulting model is then applied to perform anomaly
detection on new observed trajectories.

Next, the obtained scenario models are used to detect anomalies in new observed
trajectories. First, we define a taxonomy of anomalies in terms of the level of de-
viation from the models, which represent normal behavior. Recall that, while the
training of the model can be performed by either the On–line or the Off–line Scenario
Modeling methods, the subsequent anomaly detection system must have on–line per-
formance in order to be reliable in video–surveillance and other similar applications.
To this end, we propose probabilistic framework to incrementally classify trajecto-
ries between different kinds of anomalies, as new observations are acquired from the
tracking system.

3.1 Preprocessing the trajectory dataset

The methods proposed in this chapter are intended to learn using large recording
datasets without any previous handmade trajectory selection. Therefore, the initial
trajectory dataset might contain spureous data, see Fig. 3.1.(a). Summarizing, the
most relevant noise problems are due to:

• Tracking failure noise due to the failure of the motion-tracking algorithm to
track a target successfully for its whole activity in the scene. It may appear in
the form of false trajectories (trajectories where motion histories of more than
one target have been mixed), or split trajectories (trajectories that represent
only a portion of the motion history of a target).

• If sources of semistationary motion noise are present (such as trees, curtains,
window reflections), then an apparent high activity is detected in the vicinity
of the source of the semistationary motion noise.

The first and second noise problems are solved by applying the multistep learning
algorithm of Entry and Exit zones, by Makris et al. [67]. The algorithm uses Expecta-
tion Maximization (EM) to find the set of entry (S) and exit (E) zones, represented
by Gaussian Mixture Models (GMM). Since the number of entry and exit areas is
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unknown beforehand, it is overestimated by the algorithm in an initial clustering.
Afterwards, the resulting GMM is pruned using a density criterion and the EM is run
again. Subsequently, S and E allow to obtain a subset T ′ ⊆ T of trajectories that
begin in some entry area of S and end in some exit area of E:

T ′ = {t ∈ T |∃s∈S,e∈E : begins(t, s) ∧ ends(t, e)} (3.1)

3.2 On–line scenario modeling

This section presents an on–line clustering algorithm to construct a cluster database
from trajectories obtained by a multiple–target tracking system. In our case, we will
use the system described in [88]. The term on–line means that the algorithm updates
the model using the information obtained for a single frame step, instead of requiring
a complete trajectory (intermediate on–line) or a complete trajectory set (offline).

Trajectories are defined as sequences of observations for a given target over time:

t = {o1, . . . , on} (3.2)

Each observation is formed by the center of the surrounding ellipse of the target. In
addition, uncertainty is represented by a zero–mean gaussian noise:

oi = (xi, yi) +N (0, σ) (3.3)

where ΣI is the diagonal, simmetric covariance matrix, which needs to be converted
to ground–plane coordinates, in order to obtain the real noise. We obtain the ground–
plane covariance Σw by using an homography H, which maps image to ground plane
coordinates:

σx = d(H ×

[

x
y

]

, H ×

[

x + σ
y

]

), (3.4)

σy = d(H ×

[

x
y

]

, H ×

[

x
y + σ

]

), (3.5)

Σw =

(

σx 0
0 σy

)

(3.6)

where d is the Euclidean Distance.
Subsequently, a cluster is defined as an accumulation of trajectories, and is based

on the uncertainty of the observations. Thus, clusters are represented as a sequence
of cluster nodes C = {c1, . . . , cm} where ci = (µi, Σiw

), see Fig. 3.2.
From these clusters we construct a tree representation in order to establish spatio–

temporal relationships of precedence between clusters. Thus, given a cluster Ck and a
list of clusters L = {C1, . . . , Cn}, if every path beginning in Ck finishes in one cluster
of L, this is represented in this work by means of tree–like structures, so–called cluster
trees, see Fig. 3.3. In this framework, the childhood relationship (Ci, Cj) indicates
that Ci absolutely precedes Cj .
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Figure 3.2: Cluster constructed from incoming trajectories. Dark circles represent
the mean {x, y} center of each cluster node and white circles represent their covariance
matrix Σ.

Figure 3.3: Example of obtained clustering of trajectories and the subsequent tree
representation.

3.2.1 Distance Measurement and Cluster Update

In order to check if a trajectory is matching a cluster, the distance between the cluster
and each new observation is measured. Nonetheless, although distance is measured
in terms of spatial proximity, time information must be used in order to compare
the agent position only with those cluster nodes which are close in time. Since each
cluster node has different variance for each axis, we define:

D (oi, Ck) = min
j

(mahal (oi, cj)) , j ∈ {⌊(1− δ)i⌋ . . . ⌈(1 + δ)i⌉} (3.7)

where the mahal computes the Mahalanobis distance between an observation o and
a cluster node cj = (µj , Σj), considering the distribution in cj :

mahal(o, µ, Σ) =
√

(o− µ)T ∗ Σ−1∆(o− µ)T (3.8)

When observation o has been captured, its position is compared with cluster nodes
that represent a time period close to i. The δ parameter in Eq. 3.7 defines a sliding
temporal window centered in the time step i. This window is required in order
to compare the distances between the observation and cluster nodes that are close
in time. The temporal window is then clipped in the range (1 . . . ||C||) and, if it
completely falls outside this range, the distance D is set to ∞. Note that the values
mahal(o, c) (i) can be computed as new observations are generated by the tracking
system, and (ii) can be used to detect if the trajectory is moving away from the
cluster.

A cluster node is updated when a new observation is incorporated. To do so, we
once more represent the contribution of that observation as a gaussian having the
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initial diagonal covariance matrix. The cluster is updated by computing a normalized
sum of the two gaussians, with respect to the number of observations contained in
each cluster node.

NN+1(µN+1, ΣN+1) = NN (µN , ΣN ) +N1(µ1, Σ1) (3.9)

µN+1 =
(N + 1)µN + µ1

N
(3.10)

ΣN+1 =
(N + 1)ΣN + Σ1

N
(3.11)

3.2.2 Clustering algorithm

The clustering algorithm is sketched in Fig. 3.4. The input is a new observation o,
consisting of a trajectory identifier id, the center of the bounding box (x, y) and the
uncertainty Σ. When a new trajectory is detected by the tracking system, it does not
exist in the trajectory database. In this case, the trajectory is added and its initial
position is compared against the entrance points, represented by the root nodes of
the cluster tree set. If a match is found, the corresponding cluster is updated and
associated to the trajectory, whose status is set to FOLLOWING. Otherwise, a
new cluster tree is created with a root cluster containing the initial position of the
trajectory, and the trajectory status is set to CREATING. However, if the trajectory
already existed in the database and its status is FOLLOWING, the distance from
the agent status to its related cluster C is computed. If the distance is small enough,
the trajectory is considered to be still following C, and the nearest cluster node of
C is updated using Eq. 3.9. Otherwise, the algorithm tests whether the trajectory
matches one cluster of the children of C. If so, the related cluster is changed by the
correspondent child. In case that no child cluster is close enough, a bifurcation is
created at the nearest cluster node of C, see Fig. 3.5. This fact implies the creation
of two child clusters Ct (a tail cluster split from C) and Cnew, a new cluster assigned
to the trajectory, whose status is now set to CREATING.

3.2.3 Generating a Conceptual Model of the Scenario

The on–line procedure described above obtains a quantitative representation of the
typical development of the paths between two significant areas of the scenario. How-
ever, no conceptual knowledge has been inferred so far, since no qualitative data has
been extracted from the clusters. In this work we will focus on two concepts that
can be inferred by means of the clusters: speed and orientation changes, which will
give a semantic description on some parts of the scenario. Also, we next describe how
to deal properly with outliers and atypical behaviors observed in the scene. In first
subsection we briefly introduce methods to prune the database and subsequently we
describe the conceptualization of the resulting model.
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Figure 3.4: On–line clustering algorithm.
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(a) (b)

Figure 3.5: Situations producing the creation of new clusters. (a) New cluster
created since the trajectory goes further than its followed cluster. (b) Split situation
when a trajectory is not within the current cluster anymore. A new cluster is created
and the previous is divided into two at the splitting point.

Cluster Database Management

Human trajectories are diffuse, unpredictable, and they are exposed to unforeesable
changes in orientation and speed. Therefore, establishing a set of paths in a human
environment requires to apply a maintenance process to the database when the num-
ber of clusters grows. This maintenance consists of analyzing the tree representation
in order to reduce the number of clusters by keeping only those containing the max-
imum number of trajectories. To this end, three different techniques are presented:
cluster tree prunning, sibling merging, and child concatenation.

Cluster Tree Prunning Prunning the cluster tree preserves of maintaining clusters
that either have a low update frequency (abnormal behavior) or they have not been
updated for a long time period (indicating that the environment has changed and
may be the path is not available anymore).

On the one hand, frequency is computed recursively to each branch of the cluster
tree set, beginning at the root. Subtrees whose root update frequency is below a
threshold τ are removed from the cluster tree set. On the other hand, temporal
prunning requires to maintain information about last updates. Subtrees not being
updated for a long period are removed.

Sibling Merging Sometimes two clusters with the same parent (sibling clusters)
are very similar and represent the same path. This happens when a new trajectory
does not match any existing cluster, thereby creating a new one. Despite having
different starts, the existing and the new cluster are very similar and could be merged
into a single cluster.

To this end, similar sibling clusters are searched and merged, combining two sim-
ilarity measurement techniques:

• Distance between clusters: This similarity measure returns the distance measure
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between two clusters Ci = {ci1 , . . . , cin
} and Cj = {cj1 , . . . , cjm

} as the mean of
the normalized distances of every point Cik

from the nearest point of Cj found
inside the sliding temporal window centered at k.

D (Ci, Cj) =
1

n

n
∑

k=1

d (cik
, Cj) (3.12)

where d (ti, C) is the distance measure defined in Eq. 3.7.

• Cluster–to–cluster correspondence: Given two clusters Ci = {ci1 , . . . , cin
} and

Cj = {cj1 , . . . , cjm
}, the correspondence interval between Ci and Cj is defined

as the pair of sequences Si ⊆ Ci and Sj ⊆ Cj so that:

Si = {cik
, . . . , cil

}, 1 ≤ k < l ≤ ‖Ci‖

Sj = {cjp
, . . . , cjq

}, 1 ≤ p < q ≤ ‖Cj‖

‖Si‖ = ‖Sj‖

∀x : 1 ≤ x ≤ ‖Si‖ : mahal (Six
, Sjx

) ≤ 2σ (3.13)

The correspondence interval is computed for each pair (Ci, Cj) of sibling clus-
ters. If the size of the correspondence interval is relevant according to the whole
cluster size, then Ci and Cj are merged as shown in Fig. 3.6. The correspondent
part is merged into a single cluster Cij , and non–correspondent tails Cit

and
Cjt

are set children of Cij . Finally, children of Ci and Cj are set children of Cit

and Cjt
, respectively.

These similarity measures are applied to each cluster by following a fixed–point
algorithm: the similarity between sibling clusters is continuously measured and possi-
ble merges are performed until no more similarities are found. In each loop, merging
is measured recursively: for each node of the tree, merging is first attempted to its
children and then to it.

This procedure allows the same cluster to be fully or partly mergeable with two
different clusters. However, only the merging operation with the greatest similarity
value is executed at each loop. The rest of mergeable clusters will be again compared
to the new merged cluster in future loops of the algorithm.

Concatenation of Single Childs After a large number of processed trajectories,
some tree nodes might have a single child subtree. This can be produced either
because of tree prunning, sibling merging, or because similar trajectories ended at
different points and produced tail clusters. These clusters are concatenated to their
parents in order to obtain a single cluster.
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(a) (b)

Figure 3.6: Cluster–to–cluster correspondence. (a) Before reestructuration, corre-
spondence between C1 and C2 is computed. (b) Merging is performed and the tails
are assigned to their children.

Figure 3.7: Finding double way paths.

Cluster Relation Graphs

Given a cluster tree T , its root node Cr is an entrance point to the scenario and the
leaf nodes of T contain the exit points from the scenario. Thus, each sequence of
nodes from the root to leaf nodes defines a path in the scenario from one entrance
point to one exit point. However, due to inherent features of human behavior within a
scenario, entrance points in one cluster tree can be exit points of another cluster tree,
and viceversa. Thus, given an entrance point A and an exit point B, the path from
A to B is defined as the sequence of clusters beginning in A and finishing in B. Next,
entrance points are compared to the exit points in order to obtain double way paths,
see Fig. 3.7. Therefore, the goal of this procedure is to establish a global relation
between entrance and exit points from the scenario, so that, given two entrance/exit
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points A and B, there is a single path to go from A to B. To this end, these cluster
trees are fused into a Cluster Relation Graph (CRG) G = (V, E) where V = {vi}
contains spatial portions of the scenario and E ⊆ V × V defines the continguity
relations between portions of the scenario.

The procedure explained in this section generates a cluster relation graph by fus-
ing the set of cluster trees obtained during the learning step. Although the model
can be generated at any time since the first trajectory is clustered, the accuracy and
representativity of the model depends on the number of clustered trajectories and
the maintenance operations performed so far. As the number of processed trajecto-
ries increase, outlier clusters (representing abnormal trajectories) can be more easily
identified and removed from the cluster set.

The CRG is initialized by transforming each entrance/exit point of the scenario
into a vertex. To this end, entrance points are found by taking the root nodes of each
cluster tree, and exit points are obtained by taking the last position of leaf nodes in
the cluster tree.

Given two entrance points X and Y , represented by two root nodes, the sequence
of clusters that form the path between X and Y , (SX→Y and SY →X), are searched
and their correspondence is computed.

SX→Y = CXY 1
, . . . , CXY n

SY →X = CY X1
, . . . , CY Xm

path(X, Y ) = {X, V1, . . . , Vk, Y }, k = max (n, m) (3.14)

The path between X and Y in the relation graph contains as many vertices as the
maximum number of clusters in the sequences SX→Y and SY →X . When the number
of clusters is different, e.g. ‖SX→Y ‖ > ‖SY →X‖, some clusters of SY →X will be
splitted in order to merge with one cluster of SX→Y .

Fig. 3.8 shows the vertex creation. The example scenario contains three entrance
points {A, B, C} and the paths between them are formed as follows:

SA→B = {C1, C2, C3}

SB→A = {C7, C6, C5}

SA→C = {C1, C2, C4}

SC→A = {C13, C12, C10, C9}

SB→C = {C7, C8}

SC→B = {C13, C12, C10, C9}

The procedure starts by processing SA→B and SB→A. Since the maximum number
of clusters is 3, there will be a sequence of 3 vertices {v1, v2, v3} between A and B.
Each vertex represents a list of clusters representing the same region of the scenario.
To this end, the correspondence between each pair of clusters (Ci, Cj), Ci ∈ SA→B,
Cj ∈ SB→A is computed to find which cluster in SA→B is most similar to which
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Figure 3.8: Example of Cluster Relation Graph creation. (a) Tree for the entrance
point A (b) Tree for the entrance point B (c) Tree for the entrance point C (d)
Resulting conceptual graph.

cluster in SB→A.

v1 = (C1, C5)

v2 = (C2, C6)

v3 = (C3, C7)

As seen above, each pair of correspondent clusters creates a new vertex in the
graph. Next, the procedure continues by processing SA→C and SC→A. In this case, A
and C are separated by 4 vertices, see Eq. 3.14. After computing the correspondence
measure, the highest correspondence for clusters C12 and C13 is found to be C4.
Consequently, C4 is splitted into C41

, C42
and thus SA→C = {C1, C2, C41

, C42
}. On

the other hand, C1 and C2 are merged into already existing vertices:

v1 = (C1, C5, C9)

v2 = (C2, C6, C10)

v3 = (C3, C7)

v4 = (C41
, C12)

v5 = (C42
, C13)

Finally, the correspondence between SB→C and SC→B is processed. The final vertices
list is
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Figure 3.9: Scenarios used in the experiments: (a) Hermes Outdoor (b) Kingston
Dataset. The trajectories are shown in ground–plane coordinates after applying
the multistep algorithm by Makris et al [67], which erases noisy trajectories from
stationary motion noise and tracking failures.

v1 = (C1, C5, C9)

v2 = (C2, C6, C10)

v3 = (C3, C7, C11)

v4 = (C41
, C12, C81

)

v5 = (C42
, C13, C82

)

The resulting relation graph is shown in Fig. 3.8.(d). In this graph, vertices rep-
resent the identified portions of the scenario and the edges show the transitions an
upcoming trajectory is expected to perform, in order to be considered normal. There-
fore, such trajectories will be considered as normal behavior, and those performing
different transitions as abnormal behavior.

3.2.4 Experiments

The clustering algorithm has been tested in two different scenarios, so–called HER-
MES Outdoor and Kingston Dataset, see Fig. 3.9. These scenarios comprise several
difficulties:

1. No phisical limitations to the possible set of trajectories. Human agents can
walk almost in all the points of the scenario.
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(a) (b)

Figure 3.10: Example of tracking results.

(a) (b)

Figure 3.11: Evolution of the cluster tree corresponding to entrance points in the
HERMES Outdoor scenario. The gray level indicates the depth level in the tree,
being the root of the tree painted in black. The original cluster identifiers have been
changed due to clarity reasons. (a) Entrance point 1. (b) Entrance point 2.

2. No predefined behavior patterns are supposed to be followed.

3. Human trajectory performance depends on other agents moving at the same
time, like other pedestrians or vehicles.

A single calibrated monocular camera has been used to acquire image data and
real–time clustering has been implemented using MATLAB. Executions were per-
formed using a Pentium 4 processor with 2GB of RAM memory and running at
3Ghz.

Clustering

For the HERMES Outdoor scenario, 223 trajectories have been tracked and clustered.
Similarly, 120 trajectories were considered for the Kingston Dataset. The target po-
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Figure 3.12: Evolution of the cluster tree corresponding to entrance points in the
Kingston Dataset scenario. The gray level indicates the depth level in the tree,
being the root of the tree painted in black. The original cluster identifiers have been
changed due to clarity reasons.

sitions have been processed by the time they were returned from the tracking system,
whose results are shown in Fig. 3.10. To this end, the parameters σ, α, and δ have
been tuned to cope with the human charasteritics, the tracking system performance
and the dimension units of the scenario. The variance value to construct the initial
covariance matrices has been assigned σ2 = 100, which assumes a standard deviation
of 10 pixels in each observation on a 1392× 1040 image plane. This variance is thus
growing or diminishing depending on the actual position in ground plane coordinates.
Each cluster node is initially weighted as representing N = 100 observations, so each
update is a sum of gaussians with a low update rank. This is an appropiate because
since lower updates made no effect on the cluster and higher values made some clus-
ter nodes to be updated continuously and growed to match every trajectory in the
scenario. The rest of the parameters used, δ = 0.5 and τ = 5% were finally chosen
after testing different ranges of values.

The maintenance of the cluster database, i.e. prunning, concatenation, and merge,
has been applied after each 30 processed trajectories. As a result, clusters produced
by abnormal trajectories like the one shown in Fig. 3.10.b) have been removed from
the cluster database. Fig. 3.11 shows the evolution of the cluster database for the
cluster trees related to two entrance points of the Hermes Outdoor scenario, after
several maintenance processes. Similarly, the evolution of the cluster tree represented
by a entrance point in the Kingston Dataset Scenario is depicted in Fig. 3.12.

Conceptual Knowledge

Fig. 3.13 shows the obtained CRGs for the HERMES Outdoor and Kingston Dataset
scenarios. Also, a graph representation of the resulting CRGs is depicted in Fig.
3.14. For the Hermes Outdoor scenario, the resulting CRG contains 12 vertices,
being 6 of them entry/exit points of the scenario. As a result of the double way path
computation, all the transitions between vertices have finally become bidirectional.
By comparing the graph with the original scenario, we can assess the semantic labels of
the vertices, being {v1, v2, v4, v5, v6} the sidewalk regions and v3 the crosswalk. Note
that the resulting conceptual model establishes a strong separation between the entry
points 1, 2, 3 and 4, 5, 6, and normal behavior implies to cross v3, i.e. the crosswalk,
to change from one sidewalk to another. Another remarkable conclusion from this
result is that at first glance the scenario seems to be simmetric. However, trajectories
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(a) (b)

Figure 3.13: Cluster representation of the CRG obtained from the fusion of the
learned cluster tree set. The results are shown in ground–plane coordinates for the
two scenarios: (a) Hermes Outdoor (b) Kingston Dataset.

(a) (b)

Figure 3.14: Graph representation of the CRGs obtained from the fusion of the
learned cluster set for the two scenarios: (a) Hermes Outdoor (b) Kingston Dataset.

moving from any position inside either v1 or v2 to v3 are considered normal, v4 has
no direct transition to v3, so trajectories performing this transition are considered
abnormal. This fact is determined by the trajectories considered during the learning
step, and their order of appearence.

Note that the resulting structure models possible paths not existing in the training
set, for example the path from the entry point 1 to the exit point 6.

On the other hand, the CRG obtained for the Kingston Dataset scenario contains
three entry and exit points, and five internal vertices, which clearly identify the nor-
mal routes to pass through the scenario. However, this scenario lacks of semantically
diferentiated zones, since almost all the ground plane is a pedestrian environment.
Although each node has bidirectional relationship with its neighbors, not all possi-
ble combinations of neighbor vertices describes a normal path in the scenario. For
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Scenario # Clusters bef. # Clusters aft. % Obs. % Correct paths

Hermes Outdoor 35.4 ± 10.3 11.5 ± 2.5 74.32 ± 7.2 86.5 ± 2.3

Kingston dataset 134.3 ± 8.6 8.4 ± 2.1 62.5 ± 11.3 82.5 ± 5.2

Table 3.1

Evaluation of the size of the cluster database and the subsequent CRG for a

set of 150 experiments in each scenario.

instance, the path (1→ v1 → v3 → v4 → 3), in the resulting CRG, has not been in-
ferred from the database. Therefore, the resulting CRG allows to recognize two types
of anomalies from incoming trajectories:

• Trajectories that perform a path represented in the CRG but not in the database,
e.g. the path (1→ v1 → v3 → v4 → 3).

• Trajectories that perform a path which results in an unobserved sequence of
vertices of the CRG. For instance, the path (1→ v2 → v4 → v3 → 2) is not a
modeled path in the CRG, since there is not neighborhood connection between
v2 and v4.

A quantitative analysis of the clustering and conceptualization is reported in Table
3.1. This experiment has been done by randomly choosing 150 permutations of the
each dataset and simulating an on–line development of each permutation of trajecto-
ries. The objective of this experiment is to analyze how the order of the trajectories
affect to the resulting cluster database, and how the cleaning procedures described in
this work help to reduce the size of the database. Finally, the experiment compares
the results obtained for each scenario.

Although the amount of clean trajectories is similar in each scenario, the experi-
ment showed that the noise contained in the Kingston Dataset produced a very high
number of clusters, since stationary motion trajectories never followed any of the ex-
isting cluster trees. However, the cleaning procedures, specially the noise removing
procedure described in previous section, considerably reduces the number of outlier
clusters.

The last two columns of Table 3.1 reports a comparison between the obtained
representations and a manually annotated ground truth of the conceptual model, for
each scenario. To this end, the number of entry, exit and paths have been annotated
and a set of points for each path have been selected. The column % Observations
contains the average number of points that were correctly assigned to existing paths
in the database. Finally, the column % Correct paths compares the obtained path
list with the manually generated ground truth. The results of these two values are
justified as follows: The point comparison column gives better classification rate to
the Hermes Outdoor scenario, since the paths are very stilized and hardly overlap,
while the Kingston Dataset represents a set of very overlapped paths, producing er-
rors when classifying each point of the experiment. On the other hand, the number
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of paths correctly detected in the approach have been similar, since the previously
described disadvantage is corrected because the Kingston Dataset scenario is concep-
tually simpler than the Hermes Outdoor scenario.

3.2.5 Discussion

The presented method constructs a conceptual model by means of on–line trajectory
clustering. The main advantage of this approach is the capability to work with incom-
plete trajectories, which allows to get intermediate results and avoids preprocessing
a trajectory set. The method has shown good results in stylized scenes where paths
are well structured. This is due to the observed deviation from the trajectories of
the same path is minimized and, therefore, a small set of clusters is generated out
of them. For instance, a roadway scene involving vehicles can be accurately modeled
using this technique, since it covers with the desirable requirements. Firstly, roads
establish well-defined and restricted paths. Secondly, vehicles represent rigid objects
and therefore their behavior is mostly defined by their speed and orientation.

As long as the scenario complexity rises, specially in human–populated scenarios,
the number of cluster might be high since there is no clue about the final develop-
ment of a trajectory given the observations time–up–to–now. Knowing the ending
area beforehand would allow to relate the trajectory with any of the current paths,
thereby avoiding the creation of duplicated clusters. The following sections propose
an alternative approach to generate a scenario model from a set of existing trajecto-
ries, in which the sets of entry and exit areas are learnt for modeling typical routes
within the scenario.

3.3 Off–line Scenario Modeling

In this section we present our proposed algorithm to create routes from the previously
described trajectory set T ′.

3.3.1 Scenario Model

A route Rs,e between two areas (s, e) ∈ S ×E is defined as a normal way to go from
s to e and is represented by a Gaussian Mixture Model (GMM):

Rs,e = {G1, . . . , Gk} (3.15)

Due to several reasons, such as scene restrictions or speed variations, there could
be more than one route between a pair (s, e) ∈ S×E. A path Ps,e contains the routes
from s to e:

Ps,e = {R1
s,e, . . . , R

U
s,e} (3.16)

Finally, our scenario model consists of the sequence of paths between each pair
(s, o) ∈ S × E:

M = {Ps,e|s ∈ S, e ∈ E} (3.17)
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3.3.2 Clustering Entry and Exit Areas

A region r of the scenario is considered to be an entry of exit area if trajectories
begin or end in that points. To this end, the first positions of the trajectory set are
clustered to find the entry areas, as explained as follows.

The objective is to find a set E which contains the start points to the scenario.
The fact that the exact number of entry areas is unknown beforehand discourages the
use of parameter–specific clustering algorithms like k–means, although research done
in that subject [29]. In order to avoid specifying the number of clusters, two different
approaches have been tested.

Initially we have used the Quality Threshold (QT) clustering algorithm [51] in a
similar way to [9]. The QT clustering is based on establishing the maximum distance
between points of the same cluster. In our case , since the scenario has been calibrated,
the distances between entry areas are expressed in meters. Using this information, we
set a distance constraint D, the maximum distance allowed between two entry areas
to belong to the same cluster.

S = {s1, . . . , sk}

si = {t1, . . . , tm}, ∀tp1
,tq1

∈si
dist(tp1

, tq1
) ≤ D (3.18)

Following Eq. (3.18), the QT-clustering algorithm divides the training trajectory
set T into k disjoint subsets. For each subset si, the positions must be separated by
a maximum distance D (called complete linkage clustering). Afterwards, a centroid
is computed for each subset si:

CS = {cs1
, . . . , csk

}

csi
=

∑

tj ∈ si/k (3.19)

However, this measure requires that the trajectories are estimated over a common
ground plane, which may not be realistic assumption in some scenarios. Furthermore,
the QT clustering is too much demanding in computing time, and this issue encour-
aged to look for a different approach. The same procedure is followed to find the exit
areas, but using the last positions of the trajectory set.

Subsequently, the sets of entry and exit areas have been estimated using the ap-
proach by Makris et al. [67], as explained previously in Section 3.1, see Fig. 3.15.

3.3.3 Smoothing Trajectories

Depending on the accuracy of the tracking algorithm and also the scenario conditions,
trajectories might lack of smoothness, being irrealistic representations of the actual
target motion over the scene. This problem is solved by representing each trajectory
of T ′ using a continuous function model that allows to get rid of the inaccuracy
coming from the tracking system. In order to solve such a problem, trajectories in T ′

are converted into a spline representation [30]. The main advantage over the initial
structure of the trajectory is that the spline acts as a continuous function which takes
values from [0 . . . 1], allowing to sample points with any required precision.
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(a) (b)

Figure 3.15: Detected entry and exit areas from (a) Kingston Dataset and (b)
HERMES Outdoor.

p0 p1

p0 p1

(a) (b)

Figure 3.16: The speed vectors completely determine the curve of the spline between
the points p0 and p1. In these two samples it can be seen how to obtain different
splines by just varying the derivative vectors.

The spline representation of a trajectory t = {(x1, y1), . . . , (xn, yn)} has to deal
with the features of human motion, i.e. complex curve shapes that might be modeled.
Hence, a single spline is not enough to model all types of trajectories. Instead, we
use a concatenation of simple splines, or B-splines. Thus, the spline representation of
t is called sp(t), being sp(t) = {bsp1, . . . , bspd} the sequence of d control points.

In order to ease the notation, let us consider that one b–spline models a segment
of a trajectory, e.g {xp, . . . , xq}. The construction of the b–spline needs of two control
points p0 and p1, which coincide with the starting and ending point of the spline curve.
However, the curvature of the spline is determined by the speed in the entrance and
exit of the spline, see Fig. 3.16. This speed is represented by two normalized vectors
v0 and v1, i.e. the derivatives of the spline at p0 and p1, see Fig. 3.17(b). In the
figure, the vectors v1 and v2 are obtained by joining p0 with the next two positions
in the trajectory. The derivative obtained for p1 at one b–spline will be the same
as that for p0 in next b–spline. This allows us to obtain a continuous and smooth
concatenation of b–splines.

Let Tij = {τ1, . . . , τq} be the trajectories from T that begin in the entry area si
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p0
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Figure 3.17: Computing the derivatives for a simple b–spline. The average of the
vectors formed by p0 and the subsequent trajectory points are normalized to obtain
the derivative of the spline in p0. The same is done for p1, and that derivative is kept
equal for the next spline.
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Figure 3.18: Example of trajectory and its spline representation.

and finish at the exit area ej . Control points will maintain a spatial and temporal
consistency between splines. To this end, splines are created using K control points,
being K fixed for all the trajectories in the same Tij . Fig. 3.18 shows an example
trajectory and its conversion to the spline representation.

The required number of cubic splines is automatically decided by computing the
error between the original trajectory and the computed spline sequence:

error(t, s(t)) =
∑

(x,y)∈t

d((x, y), s(t)) (3.20)

where d computes the minimum Euclidean distance between (x, y) and a set of points
sampled from s(t).

This representation allows to sample intermediate points with any precision while
maintaining the temporal consistency of the original trajectory. Moreover, this rep-
resentation only requires to store the spline information, i.e. the intermediate control
points and derivatives, reducing disk storage demand when the trajectory set is very
large.

3.3.4 Learning algorithm

The following procedure is applied for each pair (s, e) ∈ S×E. Let Ts,e = {t1, . . . , tN} ⊆
T ′ be the set of trajectories starting at s and ending at e. Each trajectory ti is repre-
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sented by a sequence r(ti) of K equally spaced control points, obtained by sampling
from s(ti):

r(ti) = {pi
1, . . . , p

i
K} (3.21)

where pi
k corresponds to the sample point k/K of s(ti).

The learning algorithm shown in Algorithm 1 produces a progressive splitting of
the trajectories, in order to create those routes R1 . . . Rm that best describe the path
between a pair of entry and exit areas.

Algorithm 1 Route Modeling Algorithm for a pair (s, e) ∈ S × E

Initialize Ps,e with a single route R1

for k = 1 to K do
nc← |Ps,e|
for c = 1 to nc do

list← points(k, c)
G← GMM(list, 1)
(G1, G2)← GMM(list, 2)
if δ(G) > (δ(G1) + δ(G2)) ∗ α/2 then

create Rc1 , Rc2 from Rc

add G1 to Rc1

add G2 to Rc2

split points(k, c) according to G1 and G2

substitute Rc with Rc1 , Rc2 in Ps,e

else
add G to Rc

end if
end for

end for

The input of the algorithm consists of the set of trajectories starting in an entry
point s ∈ S and ending in an exit point e ∈ E. These trajectories are represented in a
K ×N matrix, where N is the number of trajectories and K is the number of control
points that have been sampled for each trajectory, given the spline representation
explained before. Each trajectory is associated to one of the routes that form the
path Ps,e. This is represented by points(k, c), which contains the list of k–th points
of the trajectories being currently associated to the route Rc. As an initialization,
the algorithm considers that all the trajectories are following the same route R1.

Then, the matrix is traversed row–wise, from k = 1 to K, considering at each
loop the current routes and the k–th control points of the trajectories associated to
each route. Given a route Rc ∈ Ps,e, the k–th control points of each associated tra-
jectory are obtained by list = points(k, c). Now, the number of gaussian components
that best represent list must be decided. In order to simplify the algorithm, the
assumption that routes will be separated in at most two sub–routes has been taken,
although there may be better representations in particular scenarios using a higher
number of components. Thus, list is modeled using a one–component GMM and a
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(a) (b)

Figure 3.19: Possible situations in the learning algorithm. (a) The density of a
single gaussian is enough to represent the k − th set of control points. (b) Two
gaussians represent better the control points and then the current route is split into
two subroutes.

two–component GMM. In order to decide which model better represents the data,
the degree of occupation inside the components is measured by means of a density
criterion:

δ(G) =
w

π ·
√

|Σ|
(3.22)

where w and Σ are the prior probability and the covariance matrix of G, respectively.
If the mean density at the two components GMM (G1, G2) is higher than the density
at G, bounded by a factor α, then the current route Rc is splitted into two new routes
Rc1 and Rc2 , see Fig. 3.19. Also, the trajectories that were associated to Rc will be
now associated to one of the new routes, depending on the proximity of their k–th
control points to each of the components G1 or G2. Since in the current loop cycle
the route Rc has been split into two new routes, Rc is replaced by Rc1 and Rc2 in the
remaining of the loop.

After applying the algorithm to each pair of entry and exit areas,M contains the
set of normal paths that trajectories should pass in the future. Thus, a trajectory
deviating from M will be considered as an anomaly. However, current distinction
between normal and anomalous trajectory can be enhanced by recognizing different
types of anomalies, as explained next.

3.4 Anomaly Detection

Nowadays, the detection of anomalies in video sequences is considered a hot topic in
video understanding research [47]. This issue is caused not by the difficulty of imple-
menting an anomaly detector, but because it is unclear which is the best definition
of anomaly. On the one hand, the concept of anomaly is usually related in video–
surveillance to suspicious or dangerous behaviors, i.e. those for which an alarm should
be fired when detected. Unfortunately, concepts like dangerous are very difficult to
automatically learn without the explicit help of a–priori semantic knowledge about
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Figure 3.20: Schema of the types of anomalies detected in our approach. The
trajectory ta performs a well–known route from s1 to e1, however it is marked as SA

since some parts fall out of the route. tb performs a route from s1 to e1. However,
the first half of the trajectory was directed towards e2, so it has been labeled as IA.
Finally, tc is very far from following any of the existing routes, so it is labeled as HA.

the context. Existing top–down approaches take advantage of this a–priori knowl-
edge to identify suspicious behavior [22] or to generate conceptual descriptions of the
detected behavior patterns [7]. However, these approaches are scenario oriented and
are designed to recognize or describe a reduced set of specific behaviors.

On the other hand, from a statistic point of view, normal behavior occurs more
frequently than anomalous behavior. This is the main assumption of all recent works
performed in anomaly detection research [13, 52, 67, 83]. Since an anomaly is a de-
viation from what is considered normal, these two concepts, normality and anomaly,
are complementary. In the video–surveillance domain, the standard learning proce-
dure uses observations extracted by a motion tracking algorithm over a continuous
recording to build a model of the scenario that will determine somehow the normality
or abnormality of new observations.

3.4.1 Taxonomy of Anomalies

Our proposal first focuses on the definition of anomalies in terms of a hierarchy
of deviations from a previously learnt model. In this work we differentiate among
three semantically different anomalies, namely Soft (SA), Intermediate (IA), and
Hard (HA) anomaly. Each anomaly is related with a level of deviation between
the learnt model M and new trajectory observations. In essence, a SA represents
a slight deviation from the parameters of a learnt pattern inside the model, e.g. a
person running, stopping, walking backwards for a while, etc. On the other hand,
a HA is the observation of a event which is completely outside the model, e.g. a
person appearing from an unobserved entry point. These two anomalies have been
recognized using different approaches, see Table 2.1 in Chapter 2, but there still exists
a semantic gap between them. To fill this gap, the IA represents the observations
that deviate from any learnt pattern but they are still fit inside the model, e.g. a
person that, walks from A to B, but somewhen changes to C.

Summarizing, we differentiate three kinds of anomaly with respect to the current
trajectory over the scenario, see Fig. 3.20:
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• Soft Anomaly (SA): Some parts of a trajectory are classified as SA if they follow
a modeled path, but there are sudden changes in speed or orientation that differ
from the learnt routes from s to e.

• Intermediate Anomaly (IA): A trajectory is classified as IA the most probable
path Ps,e has changed during the trajectory development for a whole window
ω.

• Hard Anomaly (HA): A trajectory is classified as HA if it has performed a
completely unobserved path. This can be caused because the trajectory started
from a entry point e′ /∈ E or because the probability of any path beginning in
the actual entry point is too low for the whole window ω.

This description of anomalies represent different degrees of deviation between a
new observation and the learnt model. Indeed, a SA can be considered as a route
deviation inside a path. A IA detects path deviations inside the same model M.
Finally, a HA represents a complete deviation fromM. Note that this representation
could be extended if there were several models M1, . . . , Mm instead of a single one.

3.4.2 On–line labeling of trajectories

Trajectories are on–line classified in one of the four considered classes, namely normal,
SA, IA, and HA, as long as new observations are obtained by the tracking system. In
our method, trajectories do not need to be completely observed before deciding about
its normality or abnormality. However, this on–line classification enables to modify
the classification of a trajectory over time. On the other hand, a given trajectory
may not be classified with a single label; it could have normal and anomalous parts.
These parts will be referred in the following as trajectory segments.

The assignment of labels is based on a measure of the probability for a trajectory
to belong to the what is considered a normal behavior. In that case, the model M
obtained by the method in Section 3.3 is used. However, the proposed hierarchy
of anomalies is not dependant on the precise model, and could be evaluated using
alternative approaches.

Firstly, the prior probability that a pixel location (x, y) is a part of a modeled
path, p(Ps,e|(x, y)), is obtained by computing a probabilistic map of the image plane.
These probabilities are stored in a h×w×|M| matrix Θ, where h×w are the number
of pixels of the image and |M| is the number of paths:

Θx,y = p(Ps,e|(x, y)) = max (p(Gj|(x, y)) (3.23)

where Gj belongs to some route Ru
s,e ∈ Ps,e.

The information provided by a single observation can be interpreted in several
ways, since it does not carry information about past development. This problem
is tackled by assuming correlation with the previous frame steps and the system
maintains a temporal window ω with the last |ω| observations . Thus, the probability
for a trajectory to be in a given path is computed recursively, by combining the prior
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probability described in Eq. (3.23) with the probabilites computed in previous frame
steps:

p(Ps,e|Θ, ω, (x, y)) = α ∗Θx,y + (1− α) ∗

∑|w|
i p(Ps,e|Θ, wi)

|w|
(3.24)

where wi represents the i–th observation in ω and α is an appropiate update factor.
The on–line anomaly detection algorithm is explained next. When a new tra-

jectory t is detected, the initial observation is compared to the entry areas in S,
previously learnt. If there is no entry point close enough, then t is labeled as HA,
since there is no path in M to explain this observation. Otherwise, assuming some
s ∈ S as the entry area of t, the probabilities for the trajectory to follow paths be-
ginning in e are computed using Eq. (3.24) for each new observation (x, y). Since
paths sharing the same entry area can be partially overlapped, the probabilities may
remain similar for a certain period of time. When this happens, t is not assumed to
be following any of the paths. However, since all the possible paths remain insideM,
the trajectory is labeled as normal while this condition holds.

When paths split towards different directions, after |ω| frames a path Ps,e may
eventually get a high probability compared to the others. In such a case, the trajectory
will be marked to be following Ps,e for the next frames. Otherwise, if the trajectory
takes a direction which makes all the paths to have a low probability, this means that
the trajectory is not performing any of the modeled paths, and it will be marked
as HA after |ω| frames. This situation will hold unless the trajectory corrects its
development and returns back to a known path, which will increase its probability.
If the trajectory keeps developing normally inside the path, the rest of the trajectory
will be labeled as normal.

Let us consider that the trajectory is developing normally inside a path Ps,e,
which means that the probability of being in Ps,e is very high compared to any other
path that started in s. Suppose that probabilities become similar again. While
this situation holds, uncertainty about final trajectory development is high, but the
trajectory is kept to be following the previous path. However, if another path Ps,e′

gets a dominant probability, then it is unclear which segment of the trajectory will
be finally the anomalous one, and thus both anomalies must be considered. The
trajectory segment where Ps,e was dominant is labeled as IA, and so does the segment
starting at that particular time step. The uncertainty about the actual anomaly will
not be solved until the trajectory ends in either e or e′. If the trajectory finally ends
in e′ then the only segment labeled as IA will be that in which Ps,e was dominant.
On the other hand, if Ps,e gets again the dominant probability and the trajectory
finally ends up in e, then the segment where Ps,e′ will be labeled as IA.

Now let us assume that the trajectory is inside a path Ps,e, avoiding hard and soft
anomalies. We select the gaussian Gj∗ that better represents the current observation:

j∗ = argmax
j

p(Gj|(x, y)) (3.25)

In order to check whether the trajectory is developing normally given the current
path Ps,e, we compute the sum of increments of the probability that ω is performing a
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path between Gj∗−1 and Gj∗+1, which are the previous and the next Gaussian Model
of Gj∗ , respectively. This information is encoded into a normality factor F (ω):

F (ω) =

{

∑|ω|
i −∆p(Gj∗−1|ωi) if h(Gj∗ , ω) > 0

∑|ω|
i ∆p(Gj∗+1|ωi)) otherwise

(3.26)

where ∆p(G|ωi) = p(G|ωi) − p(G|ωi−1), and h(Gj∗ , ω) measures the direction of ω
towards Gj∗ :

h(Gj∗ , ω) = p(Gj∗ |ω|ω|)− p(Gj∗ |ω1) (3.27)

A positive value of F (ω) means that the last ω frames represent a normal sequence
of observations given the model M. Otherwise, the trajectory is slightly deviating
from the model parameters, so we annotate subsequent observations as SA until
the trajectory recovers from the deviation. Note that the value of F (ω) is only
representative when the trajectory is following a path, i.e., the highest path has kept
stable during the whole last ω. Hence, if the trajectory is labeled as IA or a HA, the
value of F (ω) does not provide any extra information.

3.4.3 Experiments

In this section we show the performance of the offline learning approach by analyzing
the HERMES Outdoor and Kingston Dataset scenarios, which have been previously
introduced in Section 3.2.4. In previous sections we have shown how the initial trajec-
tory dataset T has been refined by learning the entry and exit areas of the scenario,
so a subset T ′ has been obtained. Moreover, we have used a spline representation of
the trajectories in T ′.

For our experiments we have tested a wide set of values for the parameters K, the
number of control points per path, and ω, the size of the temporal window. In the
following results we have used the values K = 10 and |ω| = 20. In Fig. 3.21.(a), the
results for two paths are depicted. Moreover, Fig. 3.21.(b) depicts the probabilistic
maps Θ for the modeled paths. Finally, the resulting model M is depicted in Fig.
3.22.

Regarding anomaly probabilities, a path P1 is considered to be qualitatively more
probable than another path P2 if p(P1|Θ, ω, (x, y)) > 1.5 ∗ p(P2|Θ, ω, (x, y)). Finally,
in order to consider a trajectory as HA, we have set that all paths should have a prob-
ability less than 0.5. In Fig. 3.23 we show four examples of different result. The first
column shows the trajectory in the image plane, being the orientation marked by the
black arrow. The second and third columns show the evolution of p(Ps,e|Θ, ω, (x, y))
and F (ω), respectively, over time for the possible paths given the computed entry
point. The case (a) represents a trajectory without any anomaly, since it has a single
high probable path over all the trajectory, and F (ω) keeps greater than zero. The case
(b) represents also has a single high probable path over all the trajectory, however
F (ω) < 0 in the interval when the trajectory is going backwards, and this interval is
marked as SA. Case (c) is an example of IA, because the most probable path has
changed but has kept stable for a long time. Note that it is unclear which part of the
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(a) (b)

Figure 3.21: (a) Examples of route models using our learning procedure, depicted
in Alg. 1. (b) Graphical representation of the probabilistic maps Θ of the paths.

trajectory (the intervals where P3,2 and P3,1 are higher) should be considered anoma-
lous. Indeed, both parts will be considered anomalous until the trajectory eventually
finishes in exit point 1, when the anomaly will be assigned to the part where P3,2 was
higher. Finally, case (d) represents a HA, because the trajectory goes far from any
modeled path from the detected entry point (2).

3.5 Discussion

This chapter has introduced two approaches towards learning scene models from a
initial set of trajectories. The first introduced method performs an on–line learning,
updating the model at each frame step given the observations provided by the target
tracking system. On the other hand, the second method generates a consistent model
of the scenario by dealing with the trajectory set as a whole. As been explained along
this chapter, both methods show advantages and drawbacks, although the second
method seems to be more convenient, since it performs less assumptions over the
scenario structure.

The current bottleneck in learning scenario models in video–surveillance scenarios
is the lack of proper training sets, richs in different data types, like those listed in
Chapter 1: target, body, and face tracking. Nowadays, the learning is performed
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Figure 3.22: (a) Model M obtained by running Algorithm 1 over the trajectory
dataset T ′ of Fig. 3.1.(d). (b) Graphical representation of the probabilistic maps Θ
of the paths in M

using only target trajectories, which are composed by spatial coordinates, speed,
orientation and blob sizes. Given these quantitative data, learnt models basically
describe information related to the motion pattern performed by some kinds of agents
at different locations within the scenario. But, no inference about other factors that
affect behavior can be analyzed, e.g. mood, which would help to generate a more
detailed description of a new observation.

On the other hand, our proposed methods use quantitative information to learn
the model, avoiding the use of a–priori knowledge about the scenario. Designing very
generic methods entails a wide applicability over a variate set of possible scenarios.
However, the lack of qualitative information prevents from obtaining a high–level,
semantic representation of the result. In other words, it is impossible to distinguish
two semantic regions if the same motion pattern has been observed during the training
period, i.e., the same speed, orientation, etc. But human behavior could be interpreted
in a very different way depending on its location. For instance, the sudden stop of
a pedestrian could be considered anomalous behavior, since this stop has not been
observed in the training period. This fact could be a dangerous situation depending
on the semantics of the regions, however the notion of anomaly may not be related to
the concept of danger. Thus, the pedestrian stopping on the sidewalk is less dangerous
than stopping on the road.

For these reasons, in order to obtain a semantic description of human behavior
in video, some prior semantic knowledge should be considered about the types of
behavior that are expected to observe in a particular scenario. Next chapter describes
an alternative approach to describe and manage prior knowledge, and combine it
with quantitative data obtained from vision systems in order to produce high–level
reasoning about the contents of an image sequence.

3.6 Resum

Aquest caṕıtol introdueix dos enfocs per a l’aprenentatge de models d’escena a partir
d’un conjunt de trajectòries. El primer mètode explicat realitza l’aprenentatge on–
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line, actualitzant el model quan arriba una nova observació de la trajectòria d’un
agent. D’altra banda, el segon mètode processa un conjunt de trajectòries a la vegada
per generar un model consistent de l’escena.

Els models obtinguts representen el conjunt de camins normals en un escenari
concret. Els camins representen diferents rutes per anar des d’un punt d’entrada a un
punt de sortida de l’escenari. A més, les rutes estàn formades per cadenes de models
gaussians, que indiquen la trajectòria normal d’un agent que camina per la ruta.

A partir dels models apresos, hem definit una jerarqúıa de d’anomalies que per-
meten obtenir una classificació de noves observacions en diferents classes, depenent
de la seva proximitat als models apresos. Aix́ı, considerem com a anomalia forta
un agent caminant fora de cap camı́ après, anomalia intermitja a un agent que en
algun moment s’ha desviat completament però que finalment ha caminat per punts
d’entrada / sortida coneguts i, finalment, una anomalia lleugera consisteix en una
petita desviació d’una ruta durant un petit interval de temps.

Un dels inconvenients actuals en l’aprenentatge de models d’escena en l’entorn
de video-vigilància és la manca de conjunts d’entrenament rics en dades referents els
tipus d’inputs descrits a la introducció: target, body i face tracking. Actualment,
l’aprenentatge es realitza usant només trajectòries que contenen, com a molt, les
posicions, velocitats, orientacions i mides dels objectes que es mouen dins l’escenari.
Donades aquestes dades, els models apresos descriuen informació relativa al tipus
de moviment que alguns tipus d’agents realitzen a diferents regions de l’escenari.
En canvi, no se’n pot fer una inferència sobre altres factors del comportament que
ajudarien a generar una descripció més detallada d’una nova observació.

És per això que, de cara a obtenir una descripció semàntica del comportament
humà en video, cal aportar un coneixement a–priori que indiqui quines regions semàntiques
hi ha a l’escenari i quin tipus de comportament s’espera trobar. El següent caṕıtol
discuteix un enfoc alternatiu per a representar el coneixement sobre el comportament
humà en un escenari concret per tal d’obtenir descripcions d’alt nivell del contingut
d’una seqüència d’imatges.
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Figure 3.23: Examples of trajectories used for detection of anomalies. (a) Normal
trajectory (b) Soft Anomaly (c) Intermediate Anomaly (d) Hard Anomaly. More
details in the text.



Chapter 4

Behavior Modeling using Prior
Knowledge

Previous chapter showed that current pure learning techniques do not cope with the
semantic gap explained in the introduction. The resulting models obtained from
bottom–up techniques are quantitatively accurate, but little semantic explanation
can be extracted without a–priori semantic knowledge.

Since complex semantics can not be derived from pure statistical analysis, some
scenario–dependent Commonsense Knowledge Base is required in order to address
the semantic gap. This chapter presents a complete framework which identifies the
knowledge required for behavior modeling. The framework is composed of a unified
data representation scheme, the Fuzzy Metric Temporal Logic (FMTL) formalism,
and a behavior modeling tool, the Situation Graph Tree (SGT). On the one hand,
F-Limette is a FMTL–based inference engine based on fuzzy temporal predicates,
which in the following will be also referred as concepts. On the other hand, SGTs
describe human behavior as a combination of concepts instead of numerical data.
The following sections fully explain FMTL, SGTs, and their combination towards
analyzing observed behaviors in image sequences.

4.1 Inferring Concepts from the Scene

This section describes the management and processing of the numerical results ob-
tained by means of tracking and other low–level processes. Reasoning on these results
has to address three challenging issues:

1. Concepts extracted from image sequences recording time-variant scenes might
be valid only during certain time intervals.

2. The estimation of numerical knowledge from image sequences involves uncer-
tainty.

3. More uncertainty is included from associating conceptual attributes with ge-
ometric quantities, for example abnormal behavior speed, due to the inherent

63
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vagueness of many concepts.

In order to address these issues, concepts can be well represented not by using
quantitative data but with fuzzy temporal logic predicates. To this end, we use the
Fuzzy Metric Temporal Logic (FMTL) formalism [90], which consists of a rule–based
inference engine in which conventional logic formalisms are extended by a fuzzy and
temporal component. In terms of notation, FMTL is similar to the well known rea-
soning engine PROLOG [27]. However, while the latter is based on resolution calculus
and depth search, FMTL uses tableaux calculus, and provides several inference strate-
gies (depth search, breadth search, beam search) which can be selected by the user.

In addition, each FMTL predicate has a temporal validity expressed by a time
interval (t1, t2) ∈ Z. The following expression:

t1 : t2 ! performing activity(. . .). (4.1)

indicates that the predicate performing activity is valid for the time interval (t1, t2).
The state vector of an agent refers to the quantitative information obtained for

that agent in a single frame step t:

1. The 2-D spatial position (x,y) of the agent Agent in the ground–plane, in ad-
dition to the velocity Vel and the orientation Or. These three parameters are
called the spatial status of the agent, and constitutes the typical result ouptut
by motion tracking systems.

2. A label aLabel which describes the action being performed by the agent, inferred
with respect to the velocity vel. Thus, we may differentiate between walking,
standing or running.

All this knowledge is comprised in the following attribute scheme, or state vector
of the agent:

has status(Agent, X, Y, Or, V el, aLabel). (4.2)

FMTL membership functions encode the a–priori knowledge about the relation
between the numerical estimation for a human feature as obtained by a vision sys-
tem and the conceptual values used to describe qualitatively this estimation. As
an example of FMTL membership function, the performance of the has speed(Agent,
Concept) function is explained next. This function associates a fuzzy speed value
given the numerical value obtained from tracking. Given a state vector of an agent
in a given time t, has status(Agent, , , ,Vel, , )1, the output fuzzy value Concept is
assigned depending on the numerical value Vel.

has_speed(Agent,Concept) :-

has_status(Agent,X,Y,Theta,Vel,A,S) ,

associate_speed(Vel,Concept).

1In logic programming, the symbol ‘ ’ means that the corresponding value is not relevant for the
predicate to be true or false.
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(a)

(b)

Figure 4.1: (a) Discretization of continuous speed values into a set of intervals. The
graph shows the fuzzy membership functions µspeedvalue for the subset (zero, small,

normal, high, very high) of discrete conceptual speed values. (b) Discretization of
continuous distance values.

The function degreeOfValidity(Vel, A, B, C, D) computes the degree of confidence
for the numerical value Vel to be in the trapezoid formed by the values (A,B,C,D),
see Fig. 4.1. Inside the function associate speed(Vel, Value), the fuzzy value with the
highest degree of confidence is assigned to the output value Concept :

associate_speed(Vel,Concept) :-

degreeOfValidity(Vel,-0.83,-0.27,0.10,0.15) , Concept = zero ;

degreeOfValidity(Vel,0.10,0.15,0.6,0.83) , Concept = small ;

degreeOfValidity(Vel,0.6,0.83,1.7,2.2) , Concept = normal ;

degreeOfValidity(Vel,1.7,2.2,2.8,4.4) , Concept = high ;

degreeOfValidity(Vel,2.8,4.4,6.0,12.0) , Concept = very_high ;

degreeOfValidity(Vel,0.28,0.83,100.0,100.0) , Concept = moving.

The Commonsense Knowledge Base consists of a terminology of FMTL predicates
related to the information to be described about the scene. Therefore, the terminology
actually restricts the discourse domain, and consists of rules and facts regarding the
state of the agent, its relationship with the environment, and information about the
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context. Note that the problem domain itself provides the knowledge required to
design such a terminology.

Based on the quantitative information of the state vector of the agent obtained
from tracking procedures, the aim is to associate conceptual interpretations for such
numerical data. For this purpose, we next address three different strategies to ac-
complish such an abstraction process, according to the source of knowledge which is
exploited to generate the qualitative description2.

4.1.1 About the spatial information of an agent within the
scene

Quantitative state parameters are associated to concepts like moving, small, left, or
briefly with a fuzzy degree of validity characterizing how good a concept matches the
numerical quantity. As a result, the speed and orientation parameters of the state
vector will be associated to fuzzy attributes, thus allowing the instantiation of logic
predicates such as:

has speed(Agent, V alue),
has direction(Agent, V alue).

4.1.2 About the relationship of an agent with respect to its
environment

Spatial relations are derived by considering the positions of the agents and other
static objects in the scene. This description is implemented by applying a distance
function between the positions of different agents/objects in the scene. Subsequently,
a discretization of the resulting distance value is obtained by using Fuzzy Logic:

is alone(Agent, Proximity),
has distance(Agent, Patiens, V alue).

Moreover, behavior analysis requires of an explicit reference to the spatial context,
i.e., a conceptual model of the scene. Such a model allows to infer the relationship of
the agent with respect (predefined) static objects of the scene, and to associate facts
to specific locations within the scene. The scene is divided into polygonally bounded
segments, which describe the possible positions in which an agent can be found. Each
segment has a label which determines the conceptual description associated to such
a segment. For example, the predicate on road(Agent, WLine) checks whether the
spatial position of the agent Agent in the scene is inside the specific road segment
defined as WLine.

4.1.3 About the action which an agent is performing

An action label is associated using Fuzzy Logic to the state of the agent, depending on
the agent velocity. Thus, we can distinguish between three different actions, namely

2In the predicates described next, capitalized words are considered variables and lower case ones
are considered to denote constant values
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running, walking or standing. These fuzzy attributes allow the posture status to
incorporate a conceptual term, i.e. the label of the recognized action:

is performing(Agent, aLabel).
is running(Agent).
is waving(Agent).

This posture status can also reflect additional information about performance
characteristics, such as the style or the relative velocity in which the action is being
played, for example.

4.2 Situation Graph Trees

Situation Graph Trees [7] provide a deterministic formalism to represent the knowl-
edge required for human behavior modeling, where behavior refers to human agent
trajectories which acquire a meaning in a specific scene. These trajectories contain
information about human agent features, see Eq. (4.2), for each time step. Based on
this information, logic predicates are instantiated by employing FMTL. As a result,
temporally and conceptually isolated logic statements are instantiated for each frame.
Using SGTs, this knowledge is further embedded into a temporal and conceptual con-
text.

The concept of generically describable situation presented in [71] is the basic unit
of SGTs: a situation consists of an agent state, together with the potential reactions
that such an agent can perform in such a state. SGTs organize the set of plausible sit-
uations into a temporal and conceptual hierarchy. Thus, on the one hand, SGTs can
represent the temporal evolution of situations, and a set of potential successor situa-
tions are specified for each situation. That means, predicate evaluation is performed
in a goal-oriented manner: given a situation, only its successors will be evaluated in
the next time step. On the other hand, each situation can be described in a concep-
tually more detailed way, thus allowing to establish conceptual descriptions with a
certain level of abstraction and specificity.

The basic component of SGTs is the situation scheme, which embeds the quanti-
tative knowledge for a given agent at each frame step. These situation schemes are
separated into two parts, see Fig. 4.2: the state scheme and the reaction scheme. On
the one hand, the state scheme refers to logic predicates about the state of the agent.
On the other hand, the reaction scheme describes the responses (in terms of logic
predicates, too) that an agent is supposed or expected to perform when the predi-
cates of the state scheme are satisfied. In this case, the traversal process instantiates
the status part of the situation for a particular agent.

Situation schemes are connected by directed edges, called prediction edges, which
define the temporal successor relationship within the sequence. Thus, transitions
between situations express a temporal change from one situation to another: if an
agent has been recognized to instantiate the situation from which a prediction edge
starts, one probable next situation for that agent could be the situation to which the
prediction edge points. Of course, an agent can persist in a single situation for more
than one time step: those prediction edges from one situation to itself are referred as
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Figure 4.2: The situation scheme is the basic element of Situation Graph Trees.

Figure 4.3: Example of Situation Graph Tree

self-prediction edges.
Situation Graphs are built by embedding single situation schemes into temporal

sequences of other schemes or, in other words, by linking situation schemes using
prediction edges. Thus, the resulting graph is directed and can comprise cycles. Situ-
ations within situation graphs can be marked as start situation and/or end situation.
Each path from a start situation to an end situation defines a sequence of situations
represented by the situation graph, see Fig. 4.3.

Also, situation graphs can particularize superordinate situation schemes by using
particularization edges. These edges allow to describe a situation in a conceptually
or temporally more detailed manner. The situation scheme particularized is called
parent situation scheme of the particularizing situation graph. Therefore, situation
schemes and their particularization edges build tree-like structures, which are called
Situation Graph Trees (SGT).
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  t    : has_status(agent1, x, y, v, o, a, p)

Current situation 

SITUATION_SCHEME

has_speed(Agent, moving)

action(Agent, params)

Reasoning Engine (F-Limette)

(1) Situation 

verification

has_speed(agent1, moving)

(2) Situation 

Instantiation

  t-1 : has_status(agent1, ...)

  t-2 : has_status(agent1, ...)

Agent trajectory

action(agent1, params)

(3) An action is raised

Figure 4.4: Situation instantiation in a Situation Graph Tree.

4.3 Evaluation of Human Behaviors in Image Se-
quences

SGTs can be used to recognize those situations which can be instantiated for an
observed agent by applying the so–called graph traversal [49]. The goal is to deter-
mine the most particularized situation which can be instantiated by considering the
FMTHL predicates that are true at each time step. This traversal of the SGT is
applied by considering the knowledge encoded in the form of prediction and particu-
larization edges. The procedure is described as follows.

The recognition of situations is started at the root situation graph. Here, a start
situation is searched for which each logic predicate of the state scheme is satisfied
for the actual inspected point of time. If no such situation scheme can be found, the
traversal fails. Otherwise the traversal is instantiating that situation. If this situa-
tion scheme is further particularized by any situation graph, these graphs are again
searched for those start situation schemes whose state predicates are also satisfied.
Again, if such a situation scheme can be found, it is instantiated. Using this pro-
cedure, the most particular situation scheme will be instantiated. In other words,
for each point in time, an agent is instantiating situation schemes on several levels
of detail, each on a specialization path from a scheme in the root graph to the most
particular case.

Concerning the reaction scheme, two different cases are considered when applying
the graph traversal: each reaction predicate can be marked as incremental or non-
incremental. Incremental reactions of a situation scheme are executed whenever this
situation scheme lies on a particularization path of schemes being currently instanti-
ated by the agent. On the other hand, non-incremental reactions are only executed
whenever the situation is the most particular one on a path of schemes that an agent
is instantiating.

For the next point in time, only those situation schemes connected by prediction
edges are investigated. In other words, the next predicted situation scheme on the
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Trajectory for agent_1

Conceptual Description

SGT

List of conceptual predicates

RUNNING_THE_SUBWAY

has_speed(Agent, high)

on_subway(Agent)

note(running_in_the_subway(Agent))

EXITING_THE_SUBWAY

on_exit_gate(Agent)

note(exiting_the_subway(Agent))

1 1

2

i      ! has_status(agent_1, ...)

j      ! has_status(agent_1, ...)

j +1 ! has_status(agent_1, ...)

k     ! has_status(agent_1, ...)

i      ! running_in_the_subway(agent_1, ...)

j      ! running_in_the_subway(agent_1, ...)

j +1 ! exiting_the_subway(agent_1, ...)

k     ! exiting_the_subway(agent_1, ...)

start  end  situation

i        j        running_in_the_subway(agent_1)

j+1    k       exiting_the_subway(agent_1)

Figure 4.5: Generation of conceptual descriptions from image sequences using the
framework SGT – FMTL.

same level of detail is first searched. If no scheme can be instantiated, two different
cases are considered. On the one hand, if the situation scheme last instantiated is
an end–situation, prediction on this level is finished and the traversal continues in
the parent situation of the actual graph. On the other hand, if no end situation was
reached in the actual graph, the traversal ends.

4.3.1 Description of Observed Behaviors

The conceptual description of an image sequence includes an explanation of observed
behaviors, consisting on a list of conceptual predicates indexed by the frame interval
where these predicates have been valid. In order to generate such indexing predicates,
the SGT is designed with note(Pc) predicates at the reaction scheme. This predicate
generates a conceptual predicate Pc when the situation is instantiated. When the
same predicate is generated repeatedly during frames i . . . j, then these are grouped
into a single reference:

i : j ! Pc(agent) (4.3)

, thereby generating an explanation of agent behavior between frames i and j.
Figure 4.5 shows an example of the overall process followed to obtain this con-

ceptual predicates from the geometrical data obtained from tracking. Given an agent
agent 1, a list of predicates has status(. . . ) is generated by the tracking system. In
this case example, the predicate list represents the frame interval (i, . . . , k). When
frame i is analyzed, the SGT is inspecting the start situation scheme RUNNING THE
SUBWAY. The state scheme of that situation is satisfied from i-th to the j–th frame
and, thus, the reaction scheme generates the predicate note(running in the subway(...))
for each frame in this interval. When the (j + 1)–th state vector causes this state
scheme to fail, the next predicted situation is inspected (EXITING THE SUBWAY ).
This state scheme is satisfied during the interval (j +1, . . . , k), and then the predicate
note(exiting the subway(...)) is generated during this interval. Unique predicates are
grouped into a semantic description.
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(a) (b)

Figure 4.6: Tracking results (a) Pedestrian crossing sequence (b) Football sequence.

4.4 Experiments

In this section we describe the full top–down system applied to two different discourse
domains. The aim is to demonstrate the feasibility of top–down frameworks to exploit
the semantics of each discourse domain. The performence of the system in the video–
surveillance domain is tested using image sequences from the HERMES Outdoor
scenario3. In the first experiment, the objective is the study of pedestrian behaviors
and the interaction between pedestrians and vehicles. Next, the second experiment
focuses on the analysis of sport video sequences to obtain descriptions of sport matches
. To this end, a football sequence from the VS-PETS 2003 database [77] has been
used to evaluate football player behavior. Some samples of tracking results from both
sequences can be seen in Fig. 4.6.

For each application domain a conceptual model of the environment has been
designed, see Fig. 4.7. The scenario is represented in ground–plane coordinates,
which allows the reasoning system to receive 3D information from different calibrated
cameras. Moreover, this allows the system to work with centimeters instead of pixels.

The design of the experiments takes into account the main differences between
both scenarios:

1. In the HERMES Outdoor scenario, there is no a–priori information about the
number of agents that will appear. Also, there are at least two kinds of agents
that will interact, i.e. pedestrians and vehicles. On the contrary, the Football
scenario leads to make some assumptions about the number and type of agents.
In a normal configuration, a football match contains 22 playes and a referee,
who are also known beforehand. We must consider the ball as an active agent
as well, since its movement determines also the behavior of the rest of agents.

2. Regarding agent interactions, there are no a–priori assumptions about the rela-
tionships between agents in the Outdoor Scenario. These relationships could go
from the simplest, no relation at all, to more complex relations like friendship,
work, enemies, etc. On the other hand, relationships can be well established

3Information about the HERMES project can be found at http://www.hermes-project.eu
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(a)

(b)

Figure 4.7: Conceptual scene models. (a) Pedestrian crossing scenario divided into
semantic regions (b) Football scenario. The semantic labels specify the defense fields
for the teams A and B. Note that each semantic region can be referred as attacking
regions for the opposite team. For instance, the left–defense region of team A is the
right–attack region of team B.

in the Football scenario. The initial 23 human agents are divided into two
teams plus the referee, and assumptions can be made between inter–team and
intra–team interactions.

3. Finally, the set of expected behaviors are also different between these two sce-
narios. While the HERMES Outdoor scenario allows to develop a wide set of
possible behaviors, being some of them are specific of this particular domain
(e.g. crossing the road), and being the rest a raw set of human behaviors that
can take place unexpectedly (e.g. meeting another pedestrian), the Football
scenario entails a limited set of this specific sport domain, whose rules are well
known and can be easily reproduced and recognized,.

This list of scenario features allows to bound the degree of complexity of each
proposed scenario. Even in a very restricted domain, like the HERMES Outdoor
scenario, the set of possible behaviors is wide and confusing. Therefore, we are forced
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Figure 4.8: SGT describing general pedestrian behavior within the HERMES Out-
door scenario.

(a) (b)

Figure 4.9: Describing interaction between vehicles and human beings. (a) Runover
situation. This situation is a specialization of the ED SIT2 situation of Fig. 4.8. (b)
Two human agents are crossing the crosswalk while a car is approaching. The system
triggers a danger–of–runover alarm.

to specify an a–priori subset of behaviors that will be recognized.

4.4.1 Experiment 1: Understanding the Semantics of Agent
Interaction

Experiments in the HERMES Outdoor scenario have coped with complex human be-
haviors and interactions between pedestrian and vehicle agents. The semantic analysis
includes interactions between pedestrian and (i) other moving objects, such as vehi-
cles; (ii) static objects, such as picking up a left bag; and (iii) other pedestrians, e.g
chasing.

A general SGT is designed to model pedestrian location at each frame step, see
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(a)
(b)

Figure 4.10: Describing interaction between human agents and objects. Further
details in text.

Fig. 4.8. Given the conceptual scene model, the agent location is inferred using the
spatial coordinates obtained from tracking. Hence, a traversal of this SGT produces
a conceptual description of agent motion within the scenario. This SGT constitutes
the starting point towards the recognition of more specific situations, as explained
next.

First, the interaction between vehicles and pedestrians is evaluated by consid-
ering a dangerous event, the possibility of runover. This event is defined as the
concurrent existence of a vehicle and a pedestrian moving within a pedestrian cross-
ing. Such event is modeled by specializing the situation ED SIT4 of the general
SGT in Fig. 4.8. The new situation, needs to satisfy three FMTL predicates,
namely on crosswalk(Vehicle,CSeg), is vehicle(Vehicle), and has speed(Vehicle, mov-
ing), which mean that V ehicle is a vehicle agent that is moving along the crosswalk,
see Fig. 4.9(a). Since the new situation is a specialization of ED SIT4, it also carries
the condition from its parent, which is that Agent is a pedestrian also moving along
the crosswalk. While this situation remains true, the system triggers the predicate
danger of runover. An example frame of this situation is shown in Fig. 4.9.(b).

Secondly, the interaction between pedestrians and static objects is inspected. To
this end, a new SGT has been modeled in order to describe the behavior of a static
object in the scenario. For instance, static objects can carried by other agent in
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the scene. However, we would like to have a description of the scenario centered on
objects, in order to study their relationships with other agents along time.

Fig. 4.10.(a) shows a SGT modeling the interaction between pedestrians and
objects from the scenario. In the vision subsystem, objects are not detected until
they separate from their owner, thus becoming a new moving target in the tracking
system. When it occurs, the low–level predicate is splitting(A,B,C) indicates that the
agent A has been divided into agents B and C. This predicate allows to instantiate a
higher–level predicate, belongs to(Agent, Owner) which will be permanently satisfied
from the time step when the low–level predicate was instantiated:

always(belongs_to(Object, Owner):-

event past (is_splitting(Owner, Object, Owner);

is_splitting(Owner, Owner, Object)),

is_pedestrian(Owner)).

The prefix event past indicates that the subsequent predicate was satisfied at some
time step in the past. Therefore, if Object and Owner were created by the separation
of another agent at time t, this predicate will remain true from t + 1 on.

Situation ED SIT41 describes the situation where the object has been abandoned
in the scenario. This is inferred when the owner of the object maintains a long distance
to the object and the predicate object is alone is instantiated:

always(object_is_alone(Object):-

belongs_to(Object, Owner)

not(agent_near_object(Agent, Object)).

and the predicate agent near object is defined in terms of the fuzzy membership func-
tion has distance described in Section 4.1:

always(agent_near_object(Agent, Object):-

have_distance(Agent, Object, small),

is_pedestrian(Agent),

is_object(Object)).

Third situation scheme, ED SIT39, models the situation where another pedestrian,
different from the owner, takes the object. The predicate agent takes object is defined
in terms of the low–level predicate is grouping, instantiated when two targets are
grouped into a single one in the tracking level.

always(agent_takes_object(Agent, Object):-

is_pedestrian(Agent),

is_object(Object),

have_distance(Agent, Object, zero),

(is_grouping2(Group, Agent, Object);

is_grouping2(Group, Object, Agent))).

Note that we impose that the ground–plane distance between the object and the
pedestrian must be zero, in order to avoid as much as possible the instantiation of
this predicate due to an eventual occlusion in the image plane.
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Figure 4.11: Describing interaction between human agents: The first agent has
taken an object belonging to another agent. The system outputs the note thief

chasing.

In the case of Fig 4.10.(b) object 23 appeared in the scenario and previous reason-
ing has stated that the object belongs to pedestrian 2. At frame 1167 the distance be-
tween object 23 and agent 2 allows the instantiation of situation ED SIT41. Later, in
frame 1196, agent 22 takes the object, instantiating situation ED SIT39. This makes
the system output the conceptual description object taken by another pedestrian. Nev-
ertheless, no further reactions can be taken at this precise time step because there
are possible interpretations for this situation, i.e., relationship between agent 2 and
agent 23 is not known.

Lastly, Fig. 4.11 shows a specialization of the situation ED 39 in Fig. 4.10, to
describe a case of interaction between pedestrians. Such scheme describes the owner
of the object chasing the pedestrian that has taken his object. If both pedestrians
are running in similar direction, deduced by the predicate has direction described in
Section 4.1, and the owner is following the thief, the system outputs the conceptual
description thief chasing.

The complete behavior analysis of the HERMES Outdoor scenario is depicted
in Fig. 4.12. There the conceptual descriptions are indexed by the frame step of
instantiation. Blue descriptions refer to the entrance of new moving agents inside the
scenario and their classification between vehicle or pedestrian. Red descriptions refer
to the complex behaviors described so far.

4.4.2 Experiment 2: Semantic Video Annotation of Sport Im-
age Sequences

Our second experiment focuses on the recognition of high–level events in the domain
of a football match. The SGT depicted in Fig. 4.13 represents a simplified version
of the model used to represent football player behavior. This SGT copes with the
most general interaction between one player and the ball, such as driving the ball
(ED SIT1), shooting/passing the ball (ED SIT3) and the possible end situations given
that the ball is alone within the field: (i) ball in goal (ED SIT5) (ii) ball out of field
(ED SIT4) (iii) ball taken by a player of the same team (ED SIT8), and (iv) ball taken
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Figure 4.12: Complete sequence of conceptual descriptions in the Outdoor Scenario.
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Figure 4.13: SGT for football player description. Further details in the text.

by a player of the opposite team (ED SIT9). Note that the predicates concerning the
ball, e.g. ball in goal, or ball is alone do not carry parameters, since the ball is unique
inside a football field, and therefore there is no need to refer the ball with a name.

This SGT is assigned to each player, so that the traversal describes the interaction
between one player and the ball. The traversal finishes when the situation ED SIT2
is instantiated, which means that another player has got the ball. In that precise
moment, the SGT associated to that player begins the traversal, and so on. Table 4.1
shows the results obtained processing the sequences VS–PETS 2003. Since these se-
quences are recorded not for human behavior analysis but for tracking evaluation, not
too complex behavior patterns are observed. However, a fair conceptual description
can be obtained for the sequence Testing camera 3 in the frame interval [187, 465].
This table is created by joining the results obtained by traversing the SGT of Fig.
4.13 for each agent involved in that sequence. A complete description of the game
performance is obtained: The ball is initially carried by the team B but a failed pass
is caught by the team A. Next, the ball is passed through different players and the
last player reaches the attacking field.

Events 1, 2, 3 were obtained in the traversal for agent player teamB 4 and the
events 4, 5 come from the traversal for agent player teamA 2. Next, events 6, 7, 8
are obtained for the agent player teamA 5. Finally, events 9,10,11 are obtained for
the agent player teamA 4. Note that events 1, 4, 6, 9, 10 denote the interaction of the
player with the environment (attack or defense). Situations ED SIT6 and ED SIT7
could be further specialized into situation graphs that completely describe the agent
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(a) Event 1 (b) Event 2 (c) Event 4

(d) Event 5 (e) Event 8 (f) Event 10

Figure 4.14: Sequence of the behavior explained in Table 4.1. The events 1, 2, 4,
5, 8, 10 correspond to Fig. 4.14.(a),(b),(c),(d),(e),(f), respectively.

position over the football field, like in the SGT of Fig. 4.8. Fig. 4.14 shows the key–
frames of the sequence, where the events above mentioned can be observed; namely
the events 1, 2, 4, 5, 8, 10 correspond to Fig. 4.14.(a),(b),(c),(d),(e),(f), respectively.

Start Situation Event Num.

187 player carries ball defense(player teamB 4) 1
279 threw the ball(player teamB 4) 2
296 lost the ball(player teamB 4) 3
296 player carries ball defense(player teamA 2) 4
305 passed the ball(player teamA 2, player teamA 5) 5
305 player carries ball defense(player teamA 5) 6
332 threw the ball(player teamA 5) 7
357 passed the ball(player teamA 5, player teamA 4) 8
357 player carries ball defense(player teamA 4) 9
403 player carries ball attack(player teamA 4) 10
465 threw the ball(player teamA 4) 11

Table 4.1

Sequence of conceptual descriptions obtained for the frame interval [187, 465]

in the VS–PETS image sequence. More details in the text.
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4.5 Discussion

This chapter has presented a complete framework for the analysis of behavior in
image sequences, specially focused in human beings. The challenge represented by
the complexity and unpredictability of human behavior has been addressed by using
a conceptual approach which discretizes the quantitative data obtained by vision
systems into concepts, later combined to describe behavior patterns.

The proposed framework cope with the Conceptual Integration and Behavior In-
terpretation Levels of the Human Sequence Evaluation scheme, introduced in Section
1.4. The input data supplied to the framework has passed all the lower levels of HSE,
and each of them may introduce errors or noise to the quantitative data. Therefore,
the accuracy of the proposed approach is not dependant only on itself, but also on the
accuracy of the lower levels, i.e. image acquisition, segmentation and tracking. These
lower levels entail problems that are not completely solved for every type of scenario.
For instance, sudden illumination changes still cause problems in the segmentation,
while long occlusions can lead to lose the tracks of a target in the tracking process.

An important advantage of this framework is the feasibility for the incorporation of
additional knowledge from a netwoork of cooperative cameras and alternative vision
processes, like those described in Section 1.5.3. Thus, predicates relative to face
expressions or more detailed body actions would extend the level of specificity of the
described behaviors, but without the need to change the behavior models obtained so
far.

On the other hand, the framework has to minimize the need of scene–dependent
knowledge. This means that new discourse domains will require to specify new knowl-
edge, i.e. the design of new FMTL predicates and new SGTs must be performed by
a human expert. Even, a different scenario from the same domain will require some
modifications, e.g. the conceptual scene model. Nevertheless, SGTs base their defi-
nition on semantic predicates, thereby letting to an easy understanding of the results
by human readers. In fact, this contrasts with the results by pure statistical methods,
which, despite of representing automatically learnt behavior models, are difficult to
interpret since are not based on a semantic interpretation of the scenario.

4.6 Resum

L’aprenentatge automàtic a partir d’observacions té com a principal avantatge que
els models de comportament obtinguts representen fidelment les dades usades per a
l’aprenentatge, i per tant estan exempts de la desviació subjectiva produida pel dis-
seny d’un expert humà. En canvi, la informació obtinguda és purament quantitativa
i no permet extreure una explicació semàntica del resultat. Els models obtinguts rep-
resenten el comportament normal dins d’una escena determinada, i tot el que sigui
diferent és considerat una anomalia.

En aquest caṕıtol proposem un model de comportament determinista que permet
definir acuradament els comportaments esperats en un escenari, fent us de coneixe-
ment semàntic definit prèviament. El model està format per dos eines encarregades
de convertir la informació quantitativa generada per un sistema de visió, en in-
formació qualitativa, o conceptes, entenibles per un humà i que permeten explicar
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semànticament les observacions. En primer lloc, fem servir el motor de raonament
Fuzzy Metric Temporal Logic (FMTL) que instància un conjunt de predicats d’alt niv-
ell a partir de les observacions. En segon lloc, construim Arbres de Grafs de Situacions
(AGS) que permeten organitzar aquests predicats per representar comportaments.

Per tal de demostrar l’eficàcia del model proposat, hem construit models en dos
camps d’aplicació diferents. En primer lloc, hem generat models de comportament per
a entorns de video–vigilància oberts. Mostrem descripcions conceptuals d’alt nivell
per a comportaments observats en un entorn urbà, com per exemple robatori o risc
d’atropellament. En segon lloc, utilitzem nous models de comportament dins l’entorn
d’esdeveniments esportius, generant permetent la generació automàtica de comentaris
sobre les jugades observades.
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Chapter 5

Augmenting Reality with Virtual
Behaviors

A desirable feature of every modeling formalism is that model instances can not only
be represented and recognized, but also synthetically generated. This chapter demon-
strates the feasibility of the previous framework to simulate behavioral synthethic
agents in a virtual environment.

Next sections present an efficient and general approach to combine virtual agents
with real agents in a real world image sequence, using the FMTL + SGT framework.
Real agents are detected using a motion–based multi–object tracking algorithm and
joined with synthetically generated virtual agents in real–time.

5.1 Virtual Agent Modeling

This section adapts the FMTL + SGT framework described in last chapter towards
the creation of synthetic instances of agent trajectories. As explained before, the SGT
is traversed given the quantitative information obtained from tracking at each frame
step, which can instantiate situation schemes and can raise reactions. In previous
chapter these were basically semantic annotations of observed behavior. Next, these
reactions will be used to generate synthetic behaviors. Given an initial configuration
for a virtual agent, the system will recursively generate the activities of an agent
within its environment.

The generation of synthetic trajectories requires to adapt the prior knowledge ini-
tially designed for behavior recognition. Thus, each virtual agent behavior is modeled
using three different generation processes, enclosed in the SDL, BIL, and CIL levels of
the HSE, see Section 1.4. Firstly, the physical motion of the virtual agent is defined
in short term, e.g. human actions like walk, bend. Secondly, the virtual agent activity
represents the intermediate goals that each agent should accomplish in order to sat-
isfy a particular objective, such as going to a particular position. Finally, the virtual
agent behavior describes the capabilities of the agent to reach the goals specified by its
activity, thereby interacting with other agents, static objects and different locations
in the scene. Examples comprise crossing a crosswalk or catching a bus.

83
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Figure 5.1: (a) Generic human body model represented using a stick figure similar
to [26], here composed of twelve limbs and fifteen joints. (b) Different human models
used performing dancing and running actions.

Figure 5.2: p–actions computed in the aRun aSpace, see [46] for details: by vary-
ing the parameter pose p, we actually move along the manifold, thus obtaining the
temporal evolution of the human body posture during the prototypical performance
of any learnt action.

5.1.1 SGT Traversal for Motion Generation

The movement of the agent can be considered as the low–level behavior: it defines
the physical actions that can be performed by a virtual agent. An agent exists inside
a virtual environment during a period of time steps. The information of agent A at t
is defined by the state vector of the agent sA

t :

sA
t = (x, y, o, v, a, p) (5.1)

This state vector embeds the 2-D spatial position (x, y) in the ground plane, in
addition to velocity v and orientation o. The parameter a refers to the human action,
e.g. walking or running. Finally, the parameter p ∈ [0, 1] refers to the human body
posture given a, as explained next.

A human action is defined as a discrete sequence of movements of body parts. In
this work we use a human model based on the stick figure, see Fig. 5.1. The learnt
sequence of movements for a particular action is called the prototipical action or p–
action and is represented by a parameter p ∈ [0, 1] where p = 0 and p = 1 indicate the
start and end of an action, respectively. Using p–actions, we can model both cyclic
actions, e.g. walk or run, and non–cyclic ones, e.g. wave or bend [47].
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Figure 5.3: Scheme of the process since the reaction predicate is raised from the
traversal until the new state vector is generated.

The trajectory of a virtual agent during its existence within the virtual environ-
ment is defined as the sequence of state vectors over time:

TA = {sA
1 , . . . , sA

n } (5.2)

A proper representation for behaviors allows to synthetically generate the trajec-
tory for a virtual agent by taking into account the previously mentioned interactions.
This is accomplished by enhancing the use of the SGT formalism presented in previous
chapter. The reaction scheme, used to generate conceptual descriptions for observed
behaviors, will now be used to modify the agent status for future frame steps. These
generated frames are fed back to the SGT as a feed–back, and the traversal considers
them in next traversal loops.

This recursive procedure is depicted in Fig. 5.3. The traversal starts with an
initial status of a virtual agent, containing its position, orientation, speed, and action
at the very first time. Then, for each time step t, the traversal takes the current
agent status SA

t to generate the next one SA
t+1. In the example used in Fig. 5.3,

the situation instantiated at time t generates the action predicate turn(agent1, right).
This predicate will modify the agent status so that the agent will be turning to the
right for the next frame steps. The computation of SA

t+1 is based on SA
t and the p–

action modeled previously. The semantic concept right is converted into a numerical
value by combining the current orientation o and speed v, and is used to generate the
new position (x′, y′), speed v′, and orientation o′ for the next time step. The obtained
values are used to construct the agent status for the time step t + 1 and will be used
as input for time step t + 2 in the next traversal loop.

Action predicates, like turn determine particular movements and actions for a
virtual agent. This is achieved by modifying its position, velocity, orientation, and
action, for example:

• accelerate(Agent, Value) modifies the velocity of the agent for the next time
step. The fuzzy concept Value describes the discretized value of speed that the
agent will reach in some future time step.

• change to performing(Agent, Action): it makes the agent change from its
current physical action to Action, by varying the pose parameter p, as described
in the Movement Level.
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(a) (b)

Figure 5.4: Simple behavior to describe the SGT traversal in behavior simulation.
(a) SGT model of the walking in spiral behavior. (b) Several virtual agents walking
in spiral while performing different actions.

• follow(Agent, Agent2) makes agent Agent move towards the location of agent
Agent2. A path between Agent and Agent2 is computed and the next status
contains the first step towards following this path.

5.1.2 Activity Generation

In this process we define the conceptual knowledge required to specify the goals that
a virtual agent is intended to accomplish. Such knowledge is classified into two parts:

1. Facts that are true, even if only for a time interval, e.g. being at a particular
position or performing some movement.

2. Objectives to be accomplished in middle term, e.g. going to a position, changing
to another action.

So, objectives are defined using predicates that require an adaptation of the agent
trajectory to be valid in future time steps. For instance, given an agent with state
vector sA

t = (xt, yt, vt, ot, at, pt), the predicate go to location(A, Location) computes
the shortest trajectory {sA

t+1, . . . , s
A
n } to go to Location and infers the next position

(xt+1, yt+1) of such a trajectory, according to the current speed value vt.
The activity generation is explained using the SGT depicted in Fig. 5.4.(a), which

models the example spiral behavior. Placing a virtual agent at some starting position,
the agent will keep walking creating a spiral trajectory, as shown in Fig. 5.4.(b). The
SGT traversal starts by instantiating the most general situation (AGENT ACTIVE )
in the first frame step. Furthermore, the specialized situation LOOPING, will be
also instantiated since its two state predicates, i.e. has speed and inside scene, are
satisfied. While those conditions hold, the reaction scheme of that situation will be
executed every frame. Hence, the action predicates turn and accelerate will modify the
orientation and speed of the agent, thus generating state vector for next time steps.
When the position of the agent falls out of the scenario boundary at some time step t,
the traversal instantiates the situation OUT OF BOUNDS and the traversal finishes
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since no more prediction edges are available to other situations. Given the result of
the traversal, a synthetic image sequence Iv is rendered by a 3D rendering engine,
containing the silhouette of the virtual agent over the virtual environment. The
spiral behavior performs isolated actions, which can be solved withouth considering
the interaction with the environment.

5.1.3 Behavior Generation

In order to define the consistent co–existence of agents inside a virtual environment,
the previously defined level does not cover our requirements, because:

• Complex behaviors, defined as a sequence of activities, need to be specified in a
higher level of abstraction, such as catching the bus or crossing the crosswalk.

• The existence of other agents in the virtual environment can affect the agent
activity due to interactions and therefore some higher level mechanism must be
provided to manage changes of and transitions between goals.

We consider two types of interactions: (i) interactions between agents, in which
every virtual agent knows about the existence of other agents and adapts its behavior
according to them; and (ii) interactions with the environment, in which a virtual
agent acts depending not only on its spatial coordinates but also on the semantics of
that location. In order to assign semantic properties to different regions of the virtual
environment, we use the conceptual scene model introduced in Chapter 4, Section
4.1.2, thereby dividing the ground–plane into semantic regions.

Regarding path planning, action predicates already take into account the seman-
tics of the agent’s position and the goal the agent is going to achieve, planned by
the behavior. The family of predicates go to location compute the minimum path, in
terms of a list of segments, to go from the current agent position to a particular lo-
cation segment. If no further restrictions are imposed, the path computation directly
takes neighbour segments that most approximate to the goal location. However, some
restrictions in terms of the semantic regions crossed can be explicitly specified. For
instance, if the path towards a segment seg 1 should contain only segments of type
type 1, only those neighbor segments whose type is type 1 would be considered to
create the path.

The behavior generation is fully tested on the following SGT, depicted in Fig. 5.5,
describing the behavior cross street. Such behavior implies the accomplishment of
several goals, related to specific semantic regions of the scenario. A virtual agent is ini-
tially located at a sideway region, specified by the situation GO TO WAITING LINE.
While this situation is instantiated, the agent performs a path towards the waiting
line, i.e. a narrow region between the sidewalk and the crosswalk. Then, the be-
havior has been designed in a way that the agent stops before crossing the road, to
allow possible vehicles to notice its action. Thus, the situation REDUCE SPEED
BEFORE CROSSING forces the agent to reduce its speed to eventually stop just
after entering the crosswalk. Subsequently, the CROSS situation is instantiated and
the path towards the contrary waiting line is performed by the agent by means of
the predicate walk towards(. . . ). Finally, the agent arrives to the contrary waiting
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(a)

(b)

Figure 5.5: (a) SGT describing the cross street behavior, used to test the agent in-
teraction with the environment. (b) Simulatin of a crowd of virtual agents performing
the cross street behavior.

line and leaves the scenario walking along the sidewalk. Fig. 5.5.(b) shows exam-
ple frames obtained by simulating a crowd of simultaneous agents performing the
cross street behavior.

5.2 Augmented Sequences with Virtual Agents

We have demonstrated so far the feasibility of the FMTL–SGT framework in the field
of behavior modeling. On the one hand, SGTs have been used to recognize and inter-
pret behavior patterns observed in image sequences. On the other hand, SGTs have
led to generate synthetic image sequences involving virtual agents. Subsequently, the
next challenging step is to combine both capabilities towards the generation of aug-
mented image sequences. The objective is to include virtual agents into real image
sequences in a consistent manner, so that virtual agents interact not only with other
virtual agents, but also with real agents that are performing a simultaneous activity
in the scenario. The process is done on–line in two steps: (i) real agent informa-
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Figure 5.6: Overall scheme of the virtual representation of a real scenario. The
virtual scenario is modeled using the measurements from the camera calibration.

tion is acquired at each frame step, so that can be taken by the behavior models
governing the virtual agents, and (ii) virtual agents are rendered inside the image
sequence taking into account the moving real agents, in order to create consistent
spatial occlusions. The proposed approach has applications in several domains, in-
cluding cinema, computer games, human computer interaction. In last section, we
propose two applications in the fields of tracking evaluation and virtual storytelling.

5.2.1 Converting real agents into virtual agents

The straightforward way to integrate real agents into a virtual environment is trans-
lating their information in a way that there are no differences between virtual and
real agents. Thus, virtual agents will interact with other agents independently from
whether they are real or virtual. This process implies the acquisition of real agent
data from image sequences and its conversion into sequences of state vectors. Such
information contains the values listed in Eq. (5.1), required to reason about real
agent behavior, and the estimated silhouette, compulsory for the consistent creation
of augmented sequences. Real agent information is acquired by means of a real–time
tracking algorithm based on efficient background substraction [4, 88].

Subsequently, the virtual environment must be adapted in order to match with the
real scenario. Let Sr be a real scenario and let Cr be a calibrated static camera1. In
order to have a consistent correspondence between real and virtual perspective view,
a virtual scenario Sv is modeled by using the real scene dimensions obtained with the
calibration of Cr, see Fig. 5.6. Finally, a virtual camera Cv is located in Sv at the
same location of Cr in Sr.

The overall procedure to combine real and virtual agents is depicted in Fig. 5.7
and is explained next. An image sequence Ir is recorded using Cr and processed
by the tracker. At time step t, the tracker generates a list of k targets’ position
coordinates over the image plane and their estimated silhouette, which are stored
in Ira. We obtain the ground plane representation of the k agents’ positions Or

t by
applying a 2D homography using the DLT algorithm [50], thus obtaining:

Or
t = {{x1

t , y
1
t }, . . . , {x

k
t , yk

t }} (5.3)

1The superindexes r and v denote real and virtual, respectively.
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Figure 5.7: Generation of an augmented reality image sequence Irv. More details
in the text.

which embeds the 2D ground–plane position for the k targets i at time step t.
Next, position coordinates are converted into state vectors, i.e. has status pred-

icates, and incorporated to the list of state vectors for the current time step. Thus,
the information obtained by the tracker has the same structure as that generated by
the traversal of a SGT and will be considered as a virtual agent by the actual ones.

t ! has status(agenti, x
i
t, y

i
t, o

i
t, v

i
t, a

i
t, p

i
t) (5.4)

where the values oi
t, v

i
t are computed using the previous agent location (xi

t−1, y
i
t−1).

The action ai
t is valued either standing, walking, or running, depending on vi

t, and the
pose parameter pi

t is incremented frame by frame, looping in the range [0, 1]. Finally,
at time step t+1, the graph traversal will receive the data from both real and virtual
agents at time t. As a result, the system renders the silhouette of each virtual agent
in intermediate images Ira.

5.2.2 Composing the augmented sequence

Once all agents have been processed at time t, a new frame is rendered containing the
silhouettes of all the virtual and real agents. In order to provide the resulting image
sequence with consistence and realism inside the 3D environment, occlusions between
virtual and real agents must be taken into account. Let At = {a1, . . . , an} be the list
of agents that are moving inside the scenario and let Pt = {(x1, y1), . . . , (xn, yn)} be
the list of their positions on the ground plane. The agents are sorted in terms of the
distances between their current position and the position of the camera Cr. Fig. 5.8
shows one real agent and one virtual agent at distances d1 and d2 from the camera,
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Figure 5.8: Ordering agents by the distance between their position and the camera.
More details in the text.

respectively. Since d2 > d1, the agents can be sorted in depth. Their silhouette
images (Ira and Iva) are plotted on the image background and hence agents occlude
each other in a consistent manner.

5.3 Experiments

This section describes the experiments performed in order to evaluate the performance
of the proposed framework, by simulating virtual agents real indoor and outdoor image
sequences.

5.3.1 The Circle Activity sequence

The first experiment tests the silhouette estimation and the augmented sequence com-
position over a simple sequence called Circle Activity, where a real agent is walking
in circles in a room. The sequence is augmented with a virtual agent, whose behavior
consists on walking in circles in front of the real agent. The SGT used to model such
behavior is similar to that of the spiral behavior, used in Section 5.1.3. Fig. 5.9 shows
example frames of the resulting sequence. In frames (a) and (b), the image composi-
tion is consistent with the occlusions and with the camera perspective. However, in
(c) the leg of the virtual agent appears in front of the real agent, although the real
agent is closer to the camera position and is thus rendered after the virtual agent.
This is due to errors in the segmentation, in particular due to the similarity between
skin color and floor color, which produces a camouflage and thus the silhouette is
wrongly estimated.
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(a) (b) (c)

Figure 5.9: Example frames of the augmented Circle Activity sequence.

5.3.2 The Police Behavior sequence

The purpose of the second experiment is demonstrate the feasibility of the SGT in
modeling human and vehicle behavior taking into account external affectors produced
by real agents in the scenario. Moreover, this experiment tests the extensibility of
the approach to work not only with tracking information, i.e. real agent positions
and silhouettes, but also with additional information about body action. To this end,
a sequence has been recorded in the real urban scenario introduced in last chapter.
In this second sequence, called the Police Behavior sequence, a single real agent acts
as a policeman, who is recorded while giving driving directions near the pedestrian
crossing, thereby allowing the pass of vehicles and pedestrians alternatively at certain
time intervals.

The position of the policeman is tracked over time and its action is recognized
using Motion History Images [17]. In an MHI H, pixel intensity is a function of the
temporal history of motion at that point. The result is a scalar–valued image where
more recently moving pixels are brighter. We then develop the recognition method
matching temporal templates against stored instances of multiple views for known
actions. The method automatically performs temporal segmentation, is invariant to
linear changes in speed, and runs in real–time on standard platforms. As a result, the
recognized actions are converted into FMTL predicates, see Fig. 5.10:

• police orders stop(Policeman) indicates that the policeman is authorizing the
pass to pedestrians, and vehicles must stop.

• police orders pass(Policeman) indicates that the policeman is authorizing the
pass to vehicles, and therefore pedestrians must stop.

Regarding the scene model, four semantic labels have been considered, namely
road, crosswalk, sidewalk, and waiting line (the area separating sidewalk and cross-
walk). The following SGTs have been designed to model pedestrian and vehicle
behavior, respectively, taking into account the policeman actions:

• Crossing the Crosswalk (CC), depicted in Fig. 5.11: A virtual pedestrian is
located somewhere in the scenario. After instantiating the general situation
sit ED SIT0, two possible specializations are available as starting situations:
sit ED 2, if the agent is on the sidewalk, or sit ED 3, if the agent is already in
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(a) (b)

Figure 5.10: The actions performed by the policeman in the Police se-
quence allow to instantiate two predicates: (a) police orders stop(Police) (b)
police orders pass(Police).

Figure 5.11: Pedestrian behavior for the Police experiment (CC). The predicates
police orders stop and police orders pass are the police action recognized for each
time step.
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Figure 5.12: Vehicle behavior for the Police experiment DR. The predicate
police orders stop represents the police action authorizing the pass to pedestrians.
In that case, the other action (the police authorizing the pass to the vehicle) is not
considered for this model since no specific behavior needs to be performed when such
action is recognized.

the waiting line. In the first case, the predicate path to waiting line computes
the minimum path for the agent to reach the waiting line and the agent follows
the path for the following time steps. When in the waiting line, the predi-
cate path towards other waiting line computes the path to cross the crosswalk.
Then, situation sit ED SIT1 is instantiated and the possible specialization is
tested. If the predicate police orders pass is satisfied for that precise time step,
the situation sit ED 6 is instantiated, producing the agent to stop before cross-
ing. When the policeman action changes, the agent accelerates and follows
previously computed path, reaching the other waiting line and eventually leav-
ing the scene. On the other hand, if the predicate police orders pass was not
satisfied when situation sit ED SIT1 was instantiated, the agent would continue
the path without stopping.

• Driving on the Road (DR), depicted in Fig. 5.12: A virtual vehicle appears
from one of the road limits. The situation sit ED SIT11 is instantiated and
the predicate path to end road computes the path to reach the end of the road.
Then, if the vehicle has not passed the policeman, then the sit ED SIT9 is
instantiated and two possible specializations are available. On the one hand, the
vehicle stops before crossing the crosswalk if the predicate police orders stop is
satisfied at the current time step (sit ED SIT12 ), and the vehicle is approaching
the crosswalk. In any other case, the vehicle continues driving normally by the
road until it reaches the end of the scenario.

Fig. 5.13 shows sample frames obtained after simulating 20 virtual agents, 10
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(a) (b)

(c) (d)

(e) (f)

Figure 5.13: Result frames of the augmented Police sequence.
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vehicles and 10 humans, in the Police sequence: (a) The policeman grants the pass
to pedestrians and vehicles stop before the crosswalk; (b) Vehicles are granted to
pass and pedestrians wait in the waiting line (c) Policeman silhouette is consistently
maintained in the augmented sequence.

Finally, another sequence, so–called Outdoor sequence, has been recorded in or-
der to refine interaction between virtual agents. Thus, the CC behavior has been
specialized as follows: When being in a crosswalk, the virtual agent checks if there
is a vehicle crossing at the same time. If so, the virtual agent raises the arm as a
complaint. Fig. 5.14.(a) shows a sample frame of the real sequence Ir. The result of
tracking is shown in Fig. 5.14.(b). A virtual agent has been added to the sequence
and it arrives to the crosswalk while one real vehicle is crossing. The agent detects a
danger of runover situation and then behaves as explained above, see Fig. 5.14.(c).
Since the system is working in ground–plane coordinates, we have independence from
the point of view, so a multi–camera system can reproduce the same result, as shown
in Fig. 5.14.(d).

5.3.3 Quantitative Evaluation

The results shown in this section have been performed using a Pentium D 3.21 GHz
with 2GB of RAM, and the system has been developed using C++ and the OpenGL
library. The augmented sequences have been obtained using mid–resolution image
sequences (696× 520 pixels). The system has been quantitatively evaluated in terms
of accuracy and scalability.

On the one hand, the overall performance of the system is highly dependent on
the data acquisition from the real world, performed by the segmentation and multi–
object tracking system. In fact, the estimation of real agent silhouettes conditions
on the resulting augmented sequence. The accuracy of the silhouette estimation is
analyzed using a manually labeled ground–truth from the Outdoor sequence, and the
percentage of false positives (FP) and false negatives (FN) is computed as follows:

FN(%) = (#IFN/#IGT ) ∗ 100

FP (%) = (#IFP /#IGT ) ∗ 100 (5.5)

where IGT is the ground–truth image, and IFP , IFN contain the false positives and
negatives respectively.

The obtained FP and FN are shown in Fig. 5.15, and have been compared
to other existing approaches in background subtraction [60, 93] by using 4 image
sequences sampled from the Outdoor sequence.

Subsequently, the scalability of the AR generation is tested, where AR generation
involves (i) simulation and rendering of each virtual agent, and (ii) composition of
the augmented sequence. Fig. 5.16 shows a serie of speed tests performed by varying
the number of virtual agents and the quality of rendering in the Police sequence.
The human and vehicle agents performed the CC and DR behaviors, respectively,
and all agents appeared in the scenario simultaneously. The maximum frame rate
of the system (25fps) is achieved in most of the cases. However, as the number of
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(a) (b)

(c) (d)

(e) (f)

Figure 5.14: Result frames of the steps shown in Fig. 5.7. (a) Original frame (b)
Graphical output of the tracking algorithm (c) Augmented frame with one virtual
agent (d) Same frame from another point of view. (e-f) Another example from
different views, which shows the spatial consistency between real and virtual agents.
More details in the text.
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(a) (b)

Figure 5.15: Silhouette segmentation errors (a) False Positives (FP) (b) False Neg-
atives (FN)

Figure 5.16: Evaluation of the rendering frame–rate by increasing the number of
simultaneous agents.

agents grows, the SGT traversal needs to recompute paths to avoid collisions, thereby
decreasing the rendering frame–rate.

5.4 Applications: Evaluation of Tracking

In this work we focus on the evaluation of tracking systems specialized in open–world
image sequences. Within this context, the tracked targets are expected to be the
typical elements in urban environments, i.e. pedestrian, animals and vehicles.

Nowadays, research in multi–object tracking algorithms has achieved great re-
sults when tracking non–grouped targets in few frames image sequences including
non–severe illumination changes. However, several problems, inherent to computer
vision in general, are still unsolved and constitute a big challenge towards an uncon-
strained multiple–target tracking, namely long occlusions, grouping disambiguation
and camouflage. So, performance evaluation of multi–objects tracking algorithms
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for video–surveillance has recently received significant attention [107, 98]. Indeed,
evaluation metrics for surveillance are almost as numerous as multi–object tracking
methods themselves.

One typical drawback comes up when evaluatin the tracking algorithm in a dif-
ferent environment or image sequence [14]. As long as difficult frames appear in the
new image sequence, some modifications must be done to the algorithm (parameters,
thresholds) in order to achieve good results. However, these modifications could dam-
age the results obtained in former image sequences. Instead of using completely new
sequences, it would be useful to have a method to gradually increase the difficulty of a
given sequence. However, when recording a new sequence, even in the same scenario,
we are exposed to several condition changes due to illumination, weather, or scenario
configuration. In addition, it is sometimes hard to record image sequences containing
crowds of people in public urban environments for legal or security reasons.

5.4.1 Evaluation Framework

This section describes two different methods to evaluate the performance of tracking
algorithms. Firstly we define the elements involved in our framework. Let Tracker be
the tracking algorithm to evaluate and let Sr be a real scenario. An image sequence Ir

is recorded using a static camera Cr. Let Or be the output obtained when processing
Ir by Tracker. Although this output may vary from different trackers, most of them
include either a list of target positions for each frame, frame–oriented [98], or a list
of targets including their tracked trajectory, target–oriented [45]. In this work we
assume a target–oriented output, therefore

Or = {T r
1 , . . . , T r

n} (5.6)

is a list of tracked targets where T r
i = {ti1 , . . . , tik

} is the sequence of position coor-
dinates in each frame step for the target i, see Eqs. 5.1,5.3.

Subsequently, a synthetic scenario Sv is modeled by using the real scene dimensions
obtained with the calibration of Cr, see Fig. 5.6. Finally, a virtual camera Cv is
located in Sv at the exact location of Cr in Sr.

In order to generate a synthetic sequence with moving targets, a set of virtual
agents is added to the created environment. Thus, two types of moving targets are
considered so far, pedestrians and vehicles. The development of a virtual agent inside
the environment is determined by one of the following strategies:

• Trajectory–based :a predefined, possibly manually provided trajectory T = {t1, . . . , tk}
is assigned to the virtual agent, where ti defines the agent position in the frame
i.

• Behavior–based : virtual agents are provided with SGT–based behavior models
which automatically generate the trajectories. This strategy better represents
the desired simulation since it is aware of interactions between the agent and
other participants in the scenario.
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Figure 5.17: Comparison of two outputs of the tracker with ground-truth trajecto-
ries (Ogt). Or is the output given by a real image sequence Ir and Ov is the output
obtained from processing the synthetic image sequence Iv, which has been generated
using n virtual agents performing the ground–truth trajectories Ogt = {T gt

1
, . . . , T gt

n }.

Generation of synthetic sequences using the ground truth

A common strategy to evaluate tracking performance is to compare an output with
the corresponding ground–truth data. In our case, the ground–truth is defined as a
list of targets obtained by means of manual annotation of the trajectories observed
in Ir, and it is considered as the ideal output Ogt of the tracker:

Ogt = {T gt
1 , . . . , T gt

n } (5.7)

where n corresponds to the number of targets. Given the ground–truth of Ir, a
synthetic image sequence is generated by modeling a set of virtual agents performing
the trajectories stored in Ogt. The resulting sequence, namely Iv, is processed by the
tracker and an output Ov is obtained, see Fig. 5.17.

The evaluation metric is based on the comparison between the ground–truth Ogt

and the outputs Or and Ov which are the results obtained by the tracker when pro-
cessing the real sequence and the virtual sequence, respectively. In order to perform
a qualitative evaluation of the results, a list of events is extracted by analyzing the
trajectories contained in Ogt, Or and Ov. These events can be related either to low or
high–level feature events. On the one hand, events like the target interaction with the
scene boundaries (entering or leaving the scene) or occlusions between agents (start /
end occlusion) require to analyze and compare the trajectory positions over time. On
the other hand, higher level events require a semantic evaluation of the trajectories
[49]. This implies to deal with semantic knowledge about human behavior in the se-
lected environment, as well as to know the semantic explanation of every part of the
scene [10]. For example, if a part of the scenario is labeled as crosswalk, a high–level
event can be defined as entering / exiting the crosswalk.

Augmenting scene complexity by adding virtual agents

In order to permit a gradual increase of complexity of a previously recorded image
sequence Ir recorded inside a real scenario Sr, the number of moving targets should
be increased. Thus, the more of agents involved in the scenario, the more complex the
image sequence will be. However, the initial conditions of the scenario must be kept
in order to avoid distortions prompted by e.g. illumination changes or alterations of
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the background configuration. To this end, a set of m virtual agents {A1, . . . , Am} is
modeled, either by assigning predefined trajectories or by simulating behavior models,
and those are rendered into a synthetic image sequence Iva. Finally, Ir and Iva are
fused into a new image sequence Irv, containing real and virtual agents in the real
scenario Sr, see Fig. 5.7. This resulting image sequence increases complexity in terms
of occlusions, camouflages, and events.

The obtained image sequence is processed by the tracker, thus generating an out-
put Orv. The evaluation of the results implies the comparison with a ground–truth
Ogtrv, which is a combination of the original ground–truth Ogt and the trajectories
{tA1 , . . . , tAm} performed by the virtual agents:

Ogtrv = {tgt
1 , . . . , tgt

n , tA1 , . . . , tAm} (5.8)

Finally, given Orv and its corresponding ground–truth Ogtrv, the event–based
metric explained above is applied to evaluate the tracker performance.

5.4.2 Case Study: Evaluation in a pedestrian environment

The architecture of the analyzed tracking algorithm is based on a modular and
hierarchically-organized system. A set of co-operating modules, which work following
both bottom-up and top-down paradigms, are distributed through three levels. Each
level is devoted to one of the main different tasks to be performed: Target Detection,
Low-Level Tracking (LLT), and High-Level Tracking (HLT) [88]. Since high-level
analysis of motion is a critical issue, a principled management system is embedded to
control the switching among different operation modes, namely motion-based track-
ing and appearance-based tracking. This tracking algorithm has the ability to track
numerous targets while they group and split while maximising the discrimination
between the targets and potential distracters.

Virtual Environment

The proposed tracking evaluation approach has been applied into the pedestrian cross-
ing scenario, introduced in Section 5.3.2. In order to obtain augmented reality image
sequences on the selected scenario, three simple behavior models related to pedestrian
crossings have been defined:

• Walking on the Sidewalk (WS): A virtual human agent is located over the sce-
nario. It reaches the closest sidewalk and exits the scenario walking to the
farthest point of the sidewalk.

• Crossing the Crosswalk (CC): A virtual human agent is located over the sce-
nario. It first reaches a sidewalk (if in another region) and then moves to the
crosswalk. After crossing it, the agent leaves the scene walking through the
opposite sidewalk.

• Driving on the Road (DR): A virtual vehicle agent is located over the scenario.
It reaches the road (if in another region) and finally leaves the scene driving to
the farthers point of the road.
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(a) (b)

Figure 5.18: Results of the tracking performed to (a) Real image sequence Ir (b)
Synthetic image sequence Iv generated using the ground–truth trajectories from Ir.

Events Ground–truth Ogt Output Or Output Ov

Entering Scene 6 6 6

Exiting Scene 4 4 4

Starting Occlusion 5 5 5

Ending Occlusion 5 5 5

Entering Crosswalk 6 6 7

Exiting the Crosswalk 5 5 6

Table 5.1

Event recognition results in both the real and virtual sequences, compared

to the hand–labelled ground–truth

Evaluation Results

Two different experiments have been applied to the real scenario and its conversion to
virtual environment. On the one hand, the real image sequence Ir and its correspon-
dent synthetic image sequence Iv have been processed by the tracker, see Fig. 5.18.
The outputs obtained have been compared in terms of low–level and high–level events
and the results are shown in Table 5.1. As can be observed, the tracker matched the
ground–truth with the real sequence. However, it has detected a false positive for
the events Entering / Exiting crosswalk in the synthetic sequence, produced by little
differences in the measurement of the scene dimensions.

On the other hand, a new image sequence Irv has been obtained by fusing the
original sequence Ir with a synthetic image sequence Iva generated by simulating 30
virtual agents. 15 agents were assigned the CC behavior, 10 were assigned the WS
behavior, and 5 were assigned the DR behavior. This sequence has been then input
to the tracker and an output Orv has been obtained. In order to balance this result,
a new ground–truth has been computed, joining Ogt with the trajectories generated
after behavior simulation. The results are depicted in Table 5.2. The entering /
exiting scene events were successfully recognized given the tracking results. However,
due to camouflage, the number of occlusions detected is higher than the annotated
ground–truth. Finally, most of the high–level events entering / exiting crosswalk have
been detected.
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(a) (b) (c)

Figure 5.19: Tracking results in the augmented reality sequence. Example frames
of the obtained image sequence containing both real and virtual agents.

Events Ground–truth Ogtrv Augmented Reality Tracking Orv

Entering Scene 36 36

Exiting Scene 35 35

Starting Occlusion 17 21

Ending Occlusion 17 21

Entering Crosswalk 20 19

Exiting the Crosswalk 20 19

Table 5.2

Event recognition results for the tracker T processing the augmented

reality sequence, compared to the augmented reality ground–truth, which

has been obtained by joining the hand–labelled ground–truth of the real

sequence with the trajectories generated by the virtual agents.

5.5 Applications: Interactive Virtual Storytelling

Virtual storytelling tools facilitate external users to generate dynamic content such
as image or video sequences, by writing natural language plots related to certain
scenarios, see Fig. 5.20. The main concern of this application is to provide a flexible
and natural solution to produce generally complex sequences automatically. One of
the main current challenges on these fields consists of bringing complex high-level
modeling closer to the final users, so that it becomes both intuitive and powerful for
them to automatically generate mixed scenes. The interactivity of the users is thus a
key factor on these research lines.

This work is an extension of the general approach presented in Section 5.2 and is
based on an interface that allows users to extend real image sequences with virtual
agents, by introducing goals for them at specific points along the video timeline.
Once a plotline is given for a certain time-step, the virtual agent tries to accomplish
its goal by following a defined scene model. The user can interactively extend the
behaviors of the agents in an easy and flexible way, being enabled to define arbitrarily
complex occurrences. In order to improve the naturalness of the virtual agents while
performing their goals, we base their concrete trajectories on the patterns learnt from
observed real agents in the scenario.

In this section, we first introduce the Natural Language Understanding (NLU)
module, which converts the plotlines into a set of specific goals. Subsequently, goals
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Figure 5.20: The goal of Virtual Storytelling is converting a text into an image
sequence.

Figure 5.21: Example showing the layout of the NLU module, in which a plotline
is converted into the most reasonable conceptual predicate available. Left side of the
figure shows the input text and the intermediate results of the analysis until the final
predicate. Right side contains rules and patterns applied for this specific example.

are structured into SGTs thereby defining virtual agent behavior. Then, we introduce
a sampling technique to produce virtual agent trajectories, based on a previously
learnt behavior model. Finally, we show experiments in two different scenarios to
demonstrate the flexibility of the proposed approach.

5.5.1 From Natural Language to Goals

NLU (Natural Language Understanding) has usually been regarded as a process of
hypothesis management that decides for the most probable interpretation of a lin-
guistic input [86]. Following this idea, the NLU module links plotline sentences to
their most accurate interpretations in the domain of interest, in form of high-level
predicates referring to known concepts or instances within the scene.

Once a proper formatting has been applied, an input sentence is analyzed through
a sequence of 3 processes: first, a morphological parser tags each input word with lin-
guistic features depending on the context of apparition. Secondly, a syntactic/semantic
parser recursively builds a dependency tree for the tagged sentence. Finally, the re-
sulting dependency tree, already having ontological references, is assigned to the most
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Figure 5.22: Example of SGT for Virtual Storytelling.

related high-level predicate found [38, 36]. Fig. 5.21 depicts the three referred process
in the processing of the sentence A car goes slowly from the right. The morphological
and syntactical processes convert the NL sentence into a tree representation, which
is finally converted into a goal predicate measuring the distances from the tree to the
predicates stored in the ontology.

Subsequently, each plotline predicate produced by the NLU module instantiates
a high-level event, which must be converted into a list of explicit spatiotemporal
actions. At this point, we are interested in providing the user with a device to define
behavioral patterns for the agents, still keeping it an intuitive solution with interactive
operability. The proposed conceptual planner is based on the framework formed by the
reasoning engine FMTL and the behavior modeling tool SGT, described in Chapter
4.

Finally, each high-level predicate is decomposed into a temporal sequence of lower-
level objectives. For instance, we may want to define a pedestrian situation “P1 meets
P2” as the sequence (i) “P1 reaches P2”, and (ii) “P1 and P2 face each other”, or
translated into FMTL predicates:

meet(P1, P2) ⊢ go(P1, P2)→ faceTowards(P1, P2)∨ faceTowards(P2, P1) (5.9)

Path Manager

The final step of the top-down process requires deciding about the trajectories to be
performed by the virtual agents. Concretely, storytelling plots cannot fully specify the
motion patterns of these agents, out of few conceptual scene locations considered by
the domain. We solve this by sampling normal trajectories from the statistical route
models learnt using the Off–line Scenario Learning algorithm described in Chapter 3,
Section 3.3.
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Figure 5.23: Roadmap for the HERMES Outdoor Scenario.

Hence, the route models contained in M are treated as a roadmap which drive
agent trajectories within the scenario. Fig. 5.23 depicts the roadmap obtained for the
HERMES Outdoor Scenario. Fig. 5.24.(b) shows a example case of sampling from M
to obtain a path from the depicted start and goal locations. The red, blue and green
circles represent intersections, splits and merge of paths, respectively. The magenta
curve represents a spline.

Given an initial position (x0, y0) and a goal position (x1, y1), we attempt to create
a path from (x0, y0) to (x1, y1) based on the route models contained in M. The
recursive algorithm is explained as follows:

1. Search for a route Rc from the routes P ∈M starting near (x0, y0) and ending
near (x1, y1).

2. If a match is found, then we return a route sampled from Rc.

3. Otherwise, we look for intersections between the paths starting near (x0, y0)
and the paths ending near (x1, y2)

4. If there is a match, we return a route computed as the proper combination of
intersected paths.

5. Otherwise, we create the list S = {(xI
1, y

I
1), . . . , (xI

n, yI
n)} formed by all the

intersections between paths starting in (x0, y0) and the rest of the routes inM.
Then, we apply recursively 1− 3 for each position (xI , yI) ∈ S.

After applying this algorithm, the output contains a combination of paths in M,
starting and ending near the desired positions. The resulting path maintains the same
structure as the original paths in M, and therefore consist of a sequence of gassian
models:

Rc = {G1, . . . , Gk} (5.10)

The gaussian models in Rc are sampled to generate a sequence of control points
(p1, . . . , pn). An intermediate trajectory is obtained by fitting a spline into (p1, . . . , pn).
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Figure 5.24: Example of path generation.

Figure 5.25: Selected frames from the first VST experiment.

Finally, the spline is sampled again to compute the virtual agent position for each
time step in the image sequence.

It may happen that no path has been generated, since there is no matching com-
bination of paths in M . In that case, the path would be generated in a deterministic
way, as explained in Section 5.1.3.

Experiments

We have conducted two experiments in order to test the feasibility of the proposed
framework. Those experiments comprise the generation of augmented sequences in
the HERMES Outdoor and Kingston Dataset scenarios. An external user accesses
the NL interface to provide plots for virtual agents. Then, the user receives the
augmented scene and is allowed to interactively change the plots or models towards
a desired solution.

The first experiment includes several pedestrians walking around an open scenario.
Since the system has learnt from the observed footage of real agents in the location,
virtual agents incorporate knowledge about typical trajectories to reach to any point.
Virtual agents select the shorter of the learnt paths, or the one that avoids collisions
with other agents, depending on the circumstances. The plot tells the agent to go to
different zones A, B, or C at different moments of time. Fig. 5.25 shows three snap-
shots of a example augmented sequence obtained through the concurrent simulation
of virtual agents.

The second experiment relies on the influence of real world into virtual agent
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Figure 5.26: Selected frames from the second VST experiment.

decisions. To this end, we use the previously described Police sequence, where a real
police agent gives way to vehicles or to pedestrians. There, a virtual agent can either
wait in the sidewalk or directly enter the crosswalk, in order to meet somebody in
the opposite sidewalk. Depending on the action being performed by the police, the
virtual agent will have to wait before crossing the crosswalk.

Fig. 5.26 shows three snapshots of the augmented sequence using the path gener-
ated in Fig. 5.24. The plot used for that sequence is as follows: “A person is standing
at the upper crosswalk. A second pedestrian appears by the lower left side. He meets
with the first pedestrian.”.

5.6 Discussion

This chapter has demonstrated the capabilities of the framework formed by FMTL
and SGTs to build behavior models not only to recognize and understand activity in
image sequences, but also to generate synthetic activity in terms of virtual agents.
The resulting simulation has led to combine virtual and real agents into consistent
augmented image sequences where virtual agents adapt their behavior depending on
the activity observed in the scenario.

Virtual agent behavior has been modeled based on intermediate goals, which are
expressed in terms of FMTL predicates. Those goals are hierarchically and sequen-
tially organized within a Situation Graph Tree. On the one hand, the sequential
organization of goals has enabled the specification of temporally ordered activities,
but without assigning a predefined duration to each event. On the other hand, the
hierarchical representation of situations has permitted modeling behaviors with any
desired level of specificity. Moreover, FMTL represents a homogeneous interface to
represent any sort of input data that can help to enrich the modeled behaviors, e.g.
the predicates used to indicate policeman actions in Section 5.3.2.

The consistence of the subsequent image composition is highly dependent on the
results obtained by the segmentation and tracking processes, devoted to obtain the
real agent silhouettes and their positions on the ground plane. We have shown results
in different sequences, where the current state–of–the–art methods show good perfor-
mance. However, there still exist problems that are currently under research in the
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image processing community, such as long–occlusions, crowded scenarios, cluttered
environments and camouflage.

The proposed augmented reality framework has a wide set of potential applica-
tions, and in this chapter we have shown two in different domains. First, we have
defined a new tracking evaluation method based on behavioral virtual agents that
augment the complexity of a given scenario. Second, an extension of the framework
has been applied to interactive virtual storytelling, producing image sequences from
a Natural Language input.

5.7 Resum

Aquest caṕıtol ha demostrat l’aplicació de l’entorn format per FMTL i AGS per con-
struir models de comportament que serveixen no només per a reconèixer sino també
per generar activitat sintètica en agents virtuals. La creació d’aquests agents i la seva
simulació en entorns virtuals ha permés combinar agents virtuals i reals en seqüencies
d’imatges augmentades, on els agents virtuals modifiquen el seu comportament depe-
nent de l’activitat observada en un escenari real.

El comportament dels agents virtuals està basat en l’aconseguiment de fites inter-
mitges, definides mitjançant predicats FMTL. Aquestes fites s’organitzen jeràrquica
i sequencialment mitjançant Arbres de Grafs de Situacions (AGS). En primer lloc,
l’organització sequencial de les fites permet l’especificació d’activitats ordenades tem-
poralment, sense assignar una durada espećıfica a cada event. D’altra banda, la
representació jeràrquica de les situacions permet modelar comportaments amb el niv-
ell desitjat d’especificitat. A més, FMTL representa una interf́ıcie homogènia per a
representar qualsevol tipus de dada d’entrada que ajudi a enriquir els comportaments
modelats, per exemple els predicats que representen les accions del polićıa dins la
Secció 5.3.2.

La consistència de la composició d’imatges per a la seqüència augmentada de-
pen dles resultats obtinguts pels sistemes de segmentació i seguiment, encarregats
d’estimar la posició i la silueta dels agents reals dins l’escenari. Hem mostrat resultats
en diverses seqüències, on els mètodes actuals de segmentació i seguiment mostren
un bon funcionament. Tanmateix, encara existeixen problemes, com per exemple
llargues oclusions o camuflatge, per als quals no s’ha trobat una solució general.

L’entorn de realitat augmentada proposat té un gran conjunt potencial d’aplicacions,
de les quals n’hem mostrat dues en aquest caṕıtol. En primer lloc, hem definit un
mètode per avaluar el funcionament de mètodes de seguiment en seqüències d’imatges.
El mètode està basat en agents virtuals que exhibeixen comportaments, afegint grad-
ualment complexitat a un escenari concret. Per altra banda, hem proposat una ex-
tensió dins del marc de la narrativa virtual, per tal de generar seqüències d’imatges
a partir d’un guió expressat en llenguatge natural.
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Chapter 6

Concluding Remarks

6.1 Summary

In this thesis, we have focused on developing behavior models for the analysis and gen-
eration of image sequences. Initial chapters have been devoted to tackle the problem of
analyzing the observed behaviors in video–surveillance scenarios. Consequently, two
different approaches for behavior analysis in images sequences have been described
and confronted.

First, the challenge of learning behavior models from the observation of activity in
surveillance scenarios has been faced. To this end, we proposed a statistical method
to learn motion patterns and to build up a normal behavior model in particular
regions of the scenario. Using this model, we have been able to differentiate between
normal and abnormal behavior in future observations. Moreover, the obtained model
allowed to predict the development of incoming observations under normal conditions.
Finally, the model we sampled from the obtained models in order to generate synthetic
instances of normal behavior.

However, we have shown that the unsupervised learning of behavior models from
quantitative data does not take care of the inherent semantics of human behavior. In
order to tackle this issue, we have proposed to use a deterministic top–down approach
for the analysis of human behavior which takes advantage of prior semantic knowledge
about the enviornment and about the behaviors that we expect to observe there.
Thus, we used the framework formed by the reasoning formalism called Fuzzy Metric
Temporal Logic and the behavior modeling formalism called Situation Graph Tree
for the recognition and description of a predefined set of human behaviors in outdoor
scenarios. The applicability of the proposed approach has been tested into different
discourse domains: video–surveillance and sport shows.

Subsequently, we have exploited the reaction capabilities of the SGT formalism to
generate synthetic instances of behaviors and thus simulate synthetic agents in virtual
environments. We have described a robust framework to simulate the development
of concurrent virtual agents that are able to interact and show complex behaviors
in a selected environment. A further step has been done to combine the SGTs for
recognition with the SGTs for simulation , thereby obtaining interactions between
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real and virtual agents. This has led to the generation of augmented reality (AR)
sequences in where real and virtual agents exist in a consistent manner.

The unified approach to produce AR sequences has been tested on two applica-
tion domains. First, we have described a virtual storytelling system that converts a
natural language explanation into its representation in images. A natural language
understanding (NLU) module is used to convert sentences into predicates that rep-
resent the goals to be accomplished by specific virtual agents. The acchievement of
these goals generated a virtual story and finally rendered into an augmented image
sequence. Second, we faced the problem of tracking evaluation by providing a mech-
anism to gradually increase the complexity of a given scenario. This is achieved with
the addition of behavior–based virtual agents into a real scenario, thereby generat-
ing new targets to be observed by the tracker. Since being synthetically generated,
these new agents automatically generate a ground–truth that enables a quantitative
evaluation of the tracking results.

Concluding, in this Thesis we have explored the current open issues in the long
path towards behavior analysis in image sequences and we have proposed a contribu-
tion to tackle each of them.

6.2 Discussion and Future Directions

The unavoidable influence of subjectivity in human behavior makes statistical ap-
proaches limited to provide an semantic explanation of the activity observed in an
uncontrolled environment. However, explicit behavior models depend on the expertise
of a human designer. An hybrid method which maintains a semantic layer and keeps
learning from the environment seems to be the long–term solution to this problem.

6.2.1 Learning Behavior Models

A considerable part of this Thesis has been devoted to the automatic learning of
behavior models by analizing the observations obtained by tracking systems. The
generated patterns constitute the definition of normal behavior in the studied sce-
nario. Given the structure of our scenario model, we have presented a proper holistic
definition of anomaly in the video–surveillance domain. We have proposed a hierar-
chical representation of anomalies in terms of Soft Anomalies, Intermediate Anomalies
and Hard Anomalies, which are detected depending on the degree of deviation from
the learnt model. The classification of incoming observations using this hierarchy
provides a richer explanation of the observation than other existing approaches.

All existing approaches, including our proposed methods, are based on the sta-
tistical definition of normality and anomaly: Those observations that occur more
frequently are considered normal, and observations distant from the normal model
are considered abnormal. However, considering the video–surveillance context, the
obtained model should be able to differentiate between normal and abnormal events
in terms of security: Abnormal events should coincide with the dangerours events
in order to fire an alarm when those are detected. Obviously, the notion of riski-
ness is human–subjective and must be informed beforehand and might be scenario–
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dependant. Filling the gap between the two definitions of anomaly constitutes cur-
rently the most important open issue for future work in the behavior learning area.

6.2.2 Behavior Description in Image Sequences

The presented top–down framework for the recognition and description of behaviors
in image sequences has a strong semantic layer, thus enabling the subsequenct trans-
formation of the predicate list into a natural language explanation [37]. As we have
already explained in Chapter 4, the inclusion of semantics in the behavior model en-
ables the subjective distinction between normal and abnormal activities, thus filling
the gap described in previous section.

However, the use of predefined semantic knowledge entails some limitations that
could restrict the set of application domains and must be therefore taken into account:

• The accuracy of the behavior models depends on human expertise on the selected
environment. Also, the level of specificity used for the design of the FMTL
predicates and SGTs will condition on the distinction between similar behaviors,
e.g. fighting or meeting. Moreover, the performance evaluation of the framework
is acchieved by means of visual inspection, since the correct identification of
behaviors in the image sequences is subjective.

• The framework has no learning capabilities, and behavior models will remain
unmodified along time. Possible changes in the environment do not affect the
models. A reaction of the system to observed patterns could be desirable in
order to evolve towards a more robust representation of behaviors.

• The framework is scenario–dependant. The selected set of behavior patterns are
especially designed for a given scenario, and might not be applicable to other
scenarios, even if they belong to the same discourse domain. For instance, be-
haviors in two different pedestrian crossing scenarios could differ due to specific
environmental conditions (e.g. the existence or inexistence of traffic lights).

• The performance of the system is obviously depending on the accuracy of data
acquisition by the computer vision systems, i.e. the detection and tracking
processes. The fuzzy component of the FMTL predicates help to reduce the
uncertainty produced by the sensory gap. However, there still exist unsolved
problems in the field of multi-object tracking, described in Chapter 1, that
may produce extremely noisy results, thereby affecting to the resulting behavior
descriptions.

The above listed features must be analized while considering the potential appli-
cations of the proposed approach. From a scientific point of view, there is still a long
ground towards building a complete system combining semantic knowledge with an
unsupervised learning capability. Nowadays, researchers are boosting the use of on-
tologies to standarize a unified representation of common sense knowledge, in order to
minimize the amount of prior knowledge that has to be predefined for each different
scenario [1].
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On the other hand, from a commercial point of view, behavior analysis systems in
video–surveillance are usually devoted to a single and controlled environment. More-
over, the set of behaviors is predefined and a differentiation between normal and
abnormal behaviors is provided by the client. This fact questions the need of auto-
matically learn behaviors instead of predefining them. In fact, most of the existing
learning approaches need to acquire hundreds of observations to use them as a training
set. Therefore, the use of predefined behavior models seems to be the most suitable
mechanism given the requirements of the potential commercial applications.

Nevertheless, an open issue that must be investigated is how to provide such a
deterministic framework with a proper response to the uncertainty carried from the
computer vision systems. Nowadays, the fuzzy component of the reasoning engine
FMTL is capable to deal with a certain level of noise, but sometimes the environmental
conditions make the tracking system fail, thereby losing tracks or confusing two or
more tracks due to long occlusions, weather conditions or crowded environments.

6.2.3 Generation of Augmented Sequences

In this Thesis we have focused on the generation of augmented sequences by com-
bining behavioral virtual agents with tracked real agents in real environments. The
framework formed by SGTs and FMTL has shown to be feasible for both describing
observed behavior in image sequences and generating synthetic behavior of virtual
agents.

Future work will be devoted to improve the different topics discussed in Chapter 5.
First, we need to provide our framework with more realism in terms of illumination
and shadows, as stated in [64]. Also, silhouette estimation in tracking algorithms
remains as an open problem when dealing with long occlusions or camouflage, and
research towards this end will improve the composition of the augmented sequences.

An important question issued about the proposed method is the lack of feedback
provided to the real agent in the augmented sequences. Since virtual agents are added
on–line, real agents do not know about their existence. Nevertheless, this problem,
which is has not been tackled in this Thesis, can be solved using external devices
to provide real agents with knowledge about virtual agents [35, 25]. For instance,
a combination of wearable cameras and video glasses would allow the generation of
augmented sequences from the point of view of the real agent, see Fig. 6.1. Since
the agent positions are expressed in real world coordinates, the augmented sequences
can be generated with independence from the point of view. Therefore, the images
taken by a wearable camera, whose position is also known in the ground–plane, can
be augmented by rendering the virtual agents that currently exist in the environment.
The augmented sequence is then transmitted to the video glasses, making the real
agent feel that is really interacting with the virtual agents.
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Figure 6.1: Scheme of the extension of our proposed approach in augmented reality
in order to provide a feedback to the real agents. More details in the text.
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Appendix A

Terminology of Predicates for
Behavior Modeling

In this Appendix, we describe the conceptual predicates used for the Situation Graph
Trees presented in Chapters 4 and 5. Basically, state predicates described here refer
to human actions and interactions with other agents or with modeled static objects
within the scene.

A.1 State Predicates Concerning Only the Actor

A.1.1 Spatial Predicates

active(Agent) : this predicate states that the agent Agent is presently active,
which means on the one hand that there is some state information for that
agent and, on the other hand, that this agent is being observed.

has speed(Agent, Value) : this predicate states that an agent Agent has a speed
which is associated to the conceptual speed value of Value. Acceptable con-
ceptual speed values are zero, small, normal, high, very high, and moving.

has direction(Agent, Value) : the agent Agent is altering its direction in a way
which is associated to the conceptual description Value. Possible conceptual
descriptions are straight, right, left, and not straight. All these values are inter-
preted in the agent’s ego-centric view.

A.1.2 Posture Predicates

is performing(Agent, Value) : the agent Agent is performing an action which is
associated with the conceptual description Value. Acceptable conceptual action
descriptions are aBend, aJump, aKick, aRun, aSit, aSkip, aSquat, aTumble, and
aWalk.

is standing(Agent) : the agent Agent is standing in an upright position. Com-
monly (not always), no spatial motion is observed for the agent.
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is performing transition(Agent) : the agent Agent is performing a transition
between two different actions (in the thief sequence, for example, there is a
transition from aBend to aRun).

has finished(Agent) : the agent Agent has finished to perform a given non-cyclic
action (like aBend or aJump), or the agent has stopped to perform a cyclic
action (like aRun or aWalk).

A.1.3 State Predicates Concerning Another Actor

is alone(Agent, Proximity) : the agent Agent is alone within a circle centered
on the agent’s position. The radius of the circle is defined by the conceptual
description Proximity. Possible conceptual descriptions are nearby, halfway,
and faraway.

have distance change(Agent, Patiens, Value) : the agent Agent and another
agent Patiens are moving in such a way that their distance is changing. The
change of their distances is associated with the conceptual value Value, whose
possible values are constant, diminishing and growing.

have distance(Agent, Patiens, Value) : the agent Agent and another agent Pa-
tiens are separated by a distance associated with the conceptual value Value,
whose admissible values are small, normal, and high.

A.2 State Predicates Concerning Only a Location
in the Scene

location(Loc, X, Y) : the coordinates (X, Y) are assigned to the abstract location
identifier Loc.

is free(S seg) : the segment S seg is not occupied by any agent.

A.3 State Predicates Concerning the Actor and its
Location

path towards waiting line(Agent, WLine, WLPath) : from the position of the
agent Agent, WLine is the next waiting line segment. Then, WLPath holds
the list of segments constituing the path from the agent to WLine. The last
segment of WLPath is labeled as a waiting line segment.

path towards specific seg(Agent, Seg, Path) : from the current position of the
agent Agent, this predicate constructs the straightest path towards the specific
segment Seg, which is stored in Path

nearest segment of type(Agent, Type, Seg, Dmin) : this predicate computes
the nearest segment of type Type and stores it into Seg. The predicate also
stores the distance from the current position of Agent to Seg in Dmin.
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nearest disconnected segment same type(Agent, Seg) : this predicate com-
putes the nearest segment that shares the type with the segment where Agent
is currently located, but has different segments separating them. The predicate
stores the segment into Seg.

nearest crosswalk(Agent, Dist) : this predicate computes the distance between
the current location of Agent and the nearest segment of type crosswalk, and
stores it into Dist.

is walking through(Agent, Path) : the agent Agent is positioned on a segment
which belongs to the path Path.

on waiting line(Agent, WLine) : the agent Agent is positioned on the segment
WLine, which is labeled as a waiting line.

on sideway(Agent, SSeg) : the agent Agent is positioned on the segment SSeg,
which is labeled as a sidewalk.

on crosswalk(Agent, CSeg) : the agent Agent is positioned on the segment CSeg,
which is labeled as a crosswalk.

on road(Agent, RSeg) : the agent Agent is positioned on the segment RSeg,
which is labeled as a road.

no obstacle ahead(Agent, S seg) : the agent Agent can go towards the segment
S seg, because such a segment is not being presently occupied by any agent.

obstacle ahead(Agent, Patiens, S seg) : the agent Agent can not go towards
the segment S seg, because the agent Patiens presently resides on that seg-
ment.

A.4 Reaction Predicates

follow path(Agent, S seg, Path) : this predicate will modify the direction of the
agent Agent in order to go from S seg towards its next segment in the segment
list of Path.

turn(Agent, Value) : this predicate will modify the direction of the agent Agent
depending on the orientation value Value. Possible conceptual descriptions of
Value are left, and right.

accelerate(Agent, Value) : this predicate will modify the velocity of the agent
Agent depending on the acceleration value Value. Possible conceptual de-
scriptions of Value are high, normal, and small.

accelerate to(Agent, Value) : this predicate will modify the velocity of the agent
Agent in order to reach progressively the qualitative value of Value. Possible
conceptual descriptions of Value are highest, very high, high, normal, small,
and zero.
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go on performing(Agent, ALabel) : this predicate will increment the posture
parameter of the agent Agent in order to adopt the next posture described by
the ALabel p–action (that means, to increment the arc length parameter of
the p–action corresponding to ALabel).

change performing(Agent, ANewLabel) : this predicate will increment the pos-
ture parameter of the agent Agent in order to change from the current action
to the ANewLabel action. That means, to sample those points belonging to
a spline which interpolates between the current posture parameter and the first
posture of the ANewLabel p–action.

wait(Agent, Duration) : this predicate keeps the agent Agent performing the
aStand action during the period determined by the qualitative value Duration.
Possible conceptual descriptions of Duration are long, normal, and briefly.

keep on performing(Agent, Duration) : this predicate keeps the agent Agent
performing cyclic actions (like aWalk and aRun) during the period determined
by the qualitative value Duration. Possible conceptual descriptions of Dura-
tion are long, normal, and briefly.

freeze(Agent, Duration) : this predicate maintains the same posture parameter
for the agent Agent during the period determined by the qualitative value
Duration. Possible conceptual descriptions of Duration are long, normal,
and briefly.

A.5 Low–level predicates extracted from tracking

The following predicates are used to distinguish the different agents considered in
the HERMES Outdoor scenario. They are continuously instantiated while the target
keeps tracked and are estimated by analyzing the bounding box of the tracked targets.

is pedestrian(Agent) : this predicate states that the agent Agent is a pedestrian.

is vehicle(Agent) : this predicate states that the agent Agent is a vehicle.

is object(Agent) : this predicate states that the agent Agent is a static object that
might be previously carried by a pedestrian.

The next two predicates are provided by our tracking system [88] and indicate the
creation or split of a group of agents due to occlusions.

is splitting2(Owner, Agent, Owner) : This predicate states that a new agent
Agent has appeared due to the split of the agent Owner into two objects.

is grouping2(Agent, Agent2, Agent)) : This predicate states that the agents
Agent and Agent2 are grouped into a single agent Agent.
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A.6 High–level predicates for behavior understand-
ing

The following predicates are inferred by means of a combination of previously listed
predicates and constitute a higher level of abstraction for the recognition of complex
behaviors in the HERMES Outdoor scenario:

near other pedestrian(Agent1, Agent2) : This predicate states that the agent
Agent1 is near a pedestrian Agent2 at a given time step. Therefore, this implies
that the predicates is pedestrian(Agent2) and have distance(Agent1,Agent2, small)
must be also satisfied.

belongs to(Agent, Owner) : This predicate states that the agent Agent is prop-
erty of Owner. The property is stated by means of the low–level predicate
is splitting(. . . ), which indicates that Agent appeared as a split of Owner.

leaves object(Agent, Object) : This predicate states that the agent Agent has left
an object in the scene. This is a result of combining the predicates is object(Object)
and the a past instantiation of belongs to(Agent, Object).

object is alone(Object) : This predicate states that the agent Object is an object
(and therefore the predicate is object(Object) is satisfied) and does not have
any other agent near it.

agent near object(Agent, Object) : This predicate states that the agent Object
is an object (and therefore the predicate is object(Object) is satisfied) and the
agent Agent is near it.

no other agents near object(Agent, Object) : This predicate states that the
agent Object is an object (and therefore the predicate is object(Object) is sat-
isfied) and the agent Agent is the only agent near it.

agent takes object(Agent, Object) : This predicate states that the agent Agent
takes the object Object. It uses the low–level predicates is object(Object) to
indicate that Object is an object and is grouping(. . . ) to indicate that Agent is
a group that contains Object.

carries object(Agent, Object) : This predicate states that the agent Agent is car-
rying Object. This implies a past satisfaction of the predicate agent takes object.

going in similar direction(Agent1, Agent2) : This predicate states that Agent1
and Agent2 are moving in a similar direction. It uses the orientation of both
agent to compute a fuzzy degree of similarity.

is chasing(Ped, Thief) : This predicate states that Ped is chasing Thief. It is
based on the fact that both Ped and Thief are moving fast, following the same
direction and Ped is behind Thief given that direction.

danger of runover(Ped, Vehicle) : This predicate states that there the agent
Vehicle may runover Ped. It is instantiated when Ped is a pedestrian, Vehicle
is a vehicle and both are moving along the crosswalk in the same time step.
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Subsequently, the following list of predicates describe a set of high–level situations
that describe football player behavior in the football sequence of VS-PETS 2003.
Note that the ball is not included as a parameter in the predicates, since we assume
to have only one agent in the scene represented the ball, and is indicated with the
predicate is ball(Agent).

player with ball(Agent) : This predicate states that the player Agent has the
ball controlled at the current time step. This entails a past satisfaction of the
low–level predicate is grouping between Agent and the ball.

is from team(Agent,Team : This predicate states that the player Agent belongs
to the team Team, which in the case of football will be either team1 or team2.
Teams are distinguished based on the color model of their clothing.

player in defensive zone(Agent) : This predicate states that the player Agent is
located in its deffensive zone, according to the team that Agent belongs to.

player in attack zone(Agent) : This predicate states that the player Agent is
located in its attacking zone, according to the team that Agent belongs to.

different team(Agent, Agent2) : This predicate states that the players Agent
and Agent2 belong to opposite teams.

same team(Agent, Agent2) : This predicate states that the players Agent and
Agent2 belong to the same team.

ball is alone : This predicate states that there are no players near enough to the
ball in the current time step.

ball in goal : This predicate states that the ball is located in a segment of type goal.

A.7 Defining the Conceptual Scene Model

A.7.1 (Factual) Predicates

point(<x >, <y >, <p>) : the individual <p > is a point in the plane with coordi-
nates < x > and < y >, which are floating point numbers.

line(<p1>, <p2>, <l >) : the individual <l > constitutes a line between two points,
given as the two individuals <p1 > and <p2 >.

segment of lane(<l1 >, <l2 >, <seg >) : the two lines given by the individuals
<l1 > and <l2 > define a segment which is given by the individual <seg >.

sideway seg(<seg >) : the individual <seg > constitutes a sideway segment.

waiting line(<seg >) : the individual <seg > constitutes a waiting line segment.

road seg(<seg >) : the individual <seg > is labeled to be a road segment.

crosswalk seg(<seg >) : the individual <seg > constitutes an crosswalk segment.
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A.7.2 (Factual) Precomputed Predicates

The following predicates define facts which can be precomputed from the defined
conceptual model. The precomputation is done only for better performance during
the actual SGT-traversal.

lseg beside(<seg1 >, <seg2 >) : the segments < seg1 > and < seg2 > lie next to
each other (such that an agent could change from one segment to the other).

lseg in front(<seg1 >, <seg2 >) : the segment <seg1 > lies in front of the segment
<seg2 >.

lseg behind(<seg1 >, <seg2 >) : the segment < seg1 > lies behind the segment
<seg2 >.
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Computer Animated Sequences Based on Human Behavior Modeling 10th 3IA
International Conference in Computer Graphics and Artificial Intelligence (3IA
2007) Athens, Greece, May 2007.

• Carles Fernández, Pau Baiget, Xavier Roca, Jordi Gonzàlez Natural Language
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tion of Complex Human Scenes for Multimedia Surveillance Tenth International
Conference on Advances in AI (AI*IA 2007) Roma, Italy, September 2007

• Carles Fernández, Pau Baiget, Mikhail Mozerov, Jordi Gonzàlez Spanish Text
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