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Abstract

Computer networks and especially the Internet have allowed some common activities

such as shopping or gambling to become remote (e-shopping and e-gambling). The

poker game played over a network is known as mental poker. The problem with mental

poker is the difficulty of keeping it practical while guaranteeing the same standards of

security, fairness and auditability offered by standard casinos for physical poker. The

important aspects to take into account when designing mental poker protocols are:

functionality, security, and computational and communication cost. Proposals in the

literature usually focus on the first two items only. This makes comparisons difficult.

This thesis starts with a formal cost analysis of the main proposals in the literature.

The analysis is not limited to costs, though; security is also analyzed and, in fact,

our study detected a fundamental weakness in one of the compared mental poker

protocols. The attack is presented in a separate chapter after the global comparative

analysis. The three following chapters of this thesis present three new protocols

that enhance the proposals in the literature in different ways. The first proposal

belongs to the family of TTP-free protocols and does not preserve the confidentiality

of player strategies; it reduces the computational cost by avoiding the use of zero-

knowledge proofs. The second proposal is TTP-free, preserves the confidentiality of

player strategies and reduces the computational cost by requiring players to perform

less mathematical operations. The third proposal addresses a novel functionality

usually not offered in the literature, namely player dropout tolerance, i.e. the ability

to continue the game even if some players leave it.
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3.3.4 Cryptoprotocols: subscription to a public key, secret blocking

and multi-player mental poker game (Yung) . . . . . . . . . . 56

3.3.5 A secure poker protocol that minimizes the effect of player coali-
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3.38 Costs of Crépeau’s shuffling protocol . . . . . . . . . . . . . . . . . . 75
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Chapter 1

Introduction

1.1 Situation

The growth of the computer networks has allowed many activities that were ususally

made physically to become remote, such as shopping, information search o gambling.

We concentrate on gambling over a computer network, also called e-gambling.

The drawback of e-gambling is the difficulty of guaranteeing the same standards of

security, fairness and auditability offered by physical gambling. Since each game has

his different rules, every game needs specific security measures. Casino games fall

into three groups according to their security requirements:

• Random draw games, with a single draw (e.g. dice, roulette) or with multiple

draws (e.g. bingo, keno).

• Games where a value or a set of values are obtained in a non-secret way. Games

where cards are visible (e.g. blackjack) fall into this category.

• Games where a value or a set of values are obtained in a secret way. Games

where cards are reversed (e.g. poker) fall into this category.
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Our contributions are focused to the third and more complex category, i.e games

where a value or a set of values are obtained in a secret way. In cryptography this

problem is known as mental poker.

The main contributions in the literature can be divided into two main groups:

TTP-based and TTP-free.

In general, TTP-based proposals are computationally efficient and are usable in

practice. However, some authors argue that a TTP is neither desirable nor realis-

tic. The TTP is often in a privileged position, because it manages the game and

participates in it.

TTP-free proposals are more desirable as far as security is concerned, but they

have non-negligible computational and communication costs.

No formal comparative study exists in the literature on the computational effi-

ciency of mental poker protocols. Such a study should take care of the following

items:

Computational cost : Cryptographic protocols use modular exponentiation and

multiplication as basic operations. The number of these operations determines

the computational cost of a cryptographic protocol;

Communications cost : The communications cost can be split into two compo-

nents:

Number of messages : Sometimes the time used to open a communication

and send a message is not negligible; the number of messages accounts for

this cost;

Total length of messages : The amount of information sent during the pro-

tocol also is an indication of efficiency: a great volume of transmitted data

results in little efficiency.

1.2 Objectives

A first objective of this thesis is to undertake a formal study of the efficiency of the

main contributions to mental poker, based on the above items.
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Security must not be forgotten in an efficiency comparison, though. The reason is

that we cannot compare two proposals with different security properties. The study

must also evaluate the security properties of each protocol. Thus, the second objective

of this thesis is to study the security properties of the available contributions.

The third objective of the thesis is the design of secure and efficient mental poker

proposals to advance the state of the art.

Security and efficiency of mental poker must be increased without reducing func-

tionality. Two relevant functionalities are the following:

Confidentiality of player strategies : In the poker game, it is very important

that the losing players may keep their cards secret at the end of a hand. The

whole concept of bluffing is based on this fact.

Player dropout : If one player leaves the game, the remaining players should be

able to continue playing.

Some proposals provide these two functionalities, but they open the possibility that

a coalition of several players discovers the cards of other players.

Thus, the fourth objective of this thesis is to design a secure mental poker protocol

providing confidentiality of player strategies, dropout tolerance and player security.

1.3 Structure of this thesis

This thesis is organized as follows.

Chapter 2 presents the notation and basic concepts used in the following chapters.

Chapter 3 presents a comparative analysis of mental poker protocols in the liter-

ature. Insofar as this long chapter exhaustively compares the performance and the

security of published mental poker methods, it constitutes an original contribution in

its own right. To the best of our knowledge, no such comparative survey was available

up to this date.

Chapter 4 presents an attack that exploits a security flaw of one of the mental

poker protocols analyzed in Chapter 3. In fact, we found this flaw when perform-

ing the comparative analysis. The authors of the broken protocol have presented a

7



modification of their protocol. Nevertheless, the new proposal still has an important

security flaw, which is also described in the chapter.

Chapter 5 presents a new mental poker protocol that falls in the category of TTP-

free protocols that do not preserve the confidentiality of player strategies. It reduces

the computational cost by avoiding the use of zero-knowledge proofs. Especially

remarkable is the representation used for cards and card permutations, which allows

permutation of an encrypted card using an additive and multiplicative homomorphic

cryptosystem. This protocol has been patented by Scytl Online World Security S.A.

Moreover, it has been implemented in a case study of mutual distrust. The authors

of the implementation argue that our protocol is “practical in terms of computational

requirements” as compared to the rest of proposals in the literature.

Chapter 6 presents a new mental poker protocol that does not require a TTP and

preserves the confidentiality of the strategy of players. The amount of computation

required stays reasonably low. We present a cost analysis and we compare the result-

ing cost with one of the most efficient previous proposals. The security of the proposal

is analyzed and it is shown that it fulfills all security properties usually required for

mental poker protocols. We conclude that the protocol is perfectly usable in practice,

unlike most previous TTP-free solutions.

Chapter 7 presents our solution for player dropout in mental poker without a TTP.

The solution is based on zero-knowledge proofs and allows the game to continue after

dropout. Unlike prior contributions, a player coalition cannot know the cards in the

hand of the rest of players. Moreover, the number of players that can leave the game

is not limited. We give a theoretical assessment of the security of the proposal.

The concluding remarks and a summary of the results presented in this thesis can

be found in Chapter 8. Some guidelines for future research are also hinted.
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Chapter 2

Notation and basic concepts

In this chapter we introduce the notation and the basic cryptographic concepts

used in the rest of this thesis.

2.1 Notation

The following notation is used in order to describe the protocols presented or

analyzed.

• Pentity, Sentity: Asymmetric key pair of entity, where Pentity is the public key

and Sentity is the private key.

• Sentity(m): Digital signature of message m by entity, where digital signature

means computing the hash value of message m using a collision-free one-way

hash function and encrypting this hash value under the private key of entity.

• Eentity(m): Encryption of message m under the public key of entity.

• Dentity(c): Decryption of message c under the private key of entity.

• H(m): Hash value of message m using a collision-free one-way hash function.

9



• m1|m2: Concatenation of messages m1 and m2.

• Kentity: Secret symmetric key of entity.

• E(Kentity, m): Encryption of message m under the symmetric key of entity,

Kentity.

• D(Kentity, c): Decryption of message c under the symmetric key of entity,

Kentity.

2.2 Basic concepts

In this section we introduce some definitions and basic concepts that we use in sub-

sequent protocol descriptions.

2.2.1 Definitions

Definition 1 Let a ∈ Z∗
n. a is said to be a quadratic residue modulo if there exists

an x ∈ Z∗
n such that

x2 mod n ≡ a mod n (2.1)

Otherwise, a is a quadratic nonresidue modulo n. Any x satisfying Equation (2.1)

is a square root of a modulo n.

The set of all quadratic residues modulo n is denoted by Qn, and the set of all

quadratic non-residues is denoted by Qn.

Definition 2 Let p be an odd prime and a an integer. The Legendre symbol
(

a
p

)
is

defined to be

(
a

p

)
=


0, if p|a
1, if a ∈ Qp

−1, if a ∈ Qp
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Theorem 1 Suppose p is an odd prime. For any integer a ≥ 0 the Legendre symbol

can be computed as follows: (
a

p

)
≡ a(p−1)/2(modp)

Definition 3 Let n ≥ 3 be odd with prime factorization n = pe1
1 pe2

2 · · · p
ek
k , and a an

integer. Then the Jacobi symbol
(

a
n

)
is defined from the Legendre symbol as(a

n

)
=

(
a

p1

)e1
(

a

p2

)e2

· · ·
(

a

pk

)ek

Lemma 1 Given x, y ∈ Z∗
n such that x2 ≡ y2 mod n, and x 6= ±y mod n, there is a

polynomial-time algorithm to factor n. (The gcd of n and x ±y is a factor of n).

Lemma 2 Let n = pq such that p ≡ q ≡ 3 mod 4. For all x, y ∈ Z∗
n, if x2 ≡ y2 mod n

and x 6= y mod n then
(

x
n

)
= −

(
y
n

)
.

In [MvOV96] we can find the following procedure for computing square roots

modulo a prime p where p ≡ 3(mod4). Let a ∈ Qp, where p ≡ 3(mod4) and p is an

odd prime.

Procedure 1 (a, p)

1. Compute r = a(p+1)/4 mod p;

2. Return (r,−r).

In [MvOV96] we can find the following procedure for computing square roots

modulo a prime p where p ≡ 5(mod8). Let a ∈ Qp, where p ≡ 5(mod8) and p is an

odd prime.

Procedure 2 (a, p)

1. Compute d = a(p−1)/4 mod p;

2. If d ≡ 1 then compute r = a(p+3)/8 mod p;

3. If d ≡ p then compute r = 2a(4a)(p−5)/8 mod p;

11



4. Return (r,−r).

In [MvOV96] we can find the following procedure for computing square roots

modulo a prime p. Let a ∈ Qp, and p is an odd prime.

Procedure 3 (a, p)

1. Choose random b ∈ Zp until b2 − 4a is a quadratic non-residue modulo p, i.e.(
b2−4a

p

)
;

2. Let f be the polynomial x2 − bx + a in Zp[x];

3. Compute r = x(p+1)/2 mod f ;

4. Return (r,−r).

In [MvOV96] we can find the following procedure for computing square roots

modulo n = pq given its prime factors p and q. Let a ∈ Qp, where n = pq and p and

q are prime numbers.

Procedure 4 (a, n, p, q)

1. Use Procedure 3 (or Procedures 1 or 2 if applicable) to find the two square roots

r and −r of a modulo p;

2. Use Procedure 3 (or Procedures 1 or 2 if applicable) to find the two square roots

s and −s of a modulo q;

3. Use the extended Euclidean algorithm to find integers c and d such that cp+dq =

1;

4. Let x = (rdq + scp) mod n and y = (rdq − scp) mod n;

5. Return (±x,±y);
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2.2.2 Zero-knowledge proofs

A zero-knowledge protocol allows a prover to demonstrate knowledge of a secret while

revealing no information that can be used by the verifier to convey this demonstration

of knowledge to third parties.

We can define very informally a zero-knowledge proof as a technique that allows a

prover to convince the verifier about the truth of some specific statement, but at the

end of the protocol, the verifier has no idea how to prove the statement to himself or

to third parties.

For more rigorous definitions of zero-knowledge proofs, see [GMR89],[BC90] or

[MvOV96].

We next recall some zero-knowledge proofs that are used in the rest of the thesis.

Proof of knowledge of a discrete logarithm

Let p a prime number, where p = 2q + 1 and q is a prime number. The following

protocol [Sch91] allows a prover to convince a verifier that, given y = gα mod p, the

prover knows α:

1. The prover sends a = gω mod p to the verifier for some random value ω ∈ Zq;

2. The verifier responds by sending a random challenge c ∈ Zq;

3. The prover responds with r = ω + αc (mod q);

4. The verifier checks whether gr mod p
?
= ayc mod p.

We shall denote this protocol by CP (y, g; α) or CP (y, g) when the value α is not

relevant.

Proof of equality of discrete logarithms

Let p a prime number, where p = 2q + 1 and q is a prime number.

Given u = gα mod p and v = yβ mod p, the following protocol [CP92] allows a

prover to convince a verifier that the prover knows α, β and that α = β holds, where

g and y have order q.
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1. The prover sends (a, b) = (gω, yω) to the verifier for some random value ω ∈ Zq;

2. The verifier responds by sending a random challenge c ∈ Zq;

3. The prover responds with r = ω + αc (mod q);

4. The verifier checks whether gr mod p
?
= auc mod p and yr mod p

?
= bvc mod p.

We shall denote this protocol by CP (g, y, u, v; α) or CP (g, y, u, v) when the value

α is not relevant. Note that this proof is easily generalizable to prove equality of an

arbitrary number of discrete logarithms.

d-out-of-n proof of knowledge

In [CDS94] a solution is presented which allows a prover to show that she can corretly

perform at least d executions out of a set of n zero-knoledge problem instances without

revealing which.

2.2.3 n-out-of-n threshold ElGamal encryption

This is a multi-party protocol [DF90] between n parties in which they generate a

single public key y. The corresponding unknown private key α is distributed in n

shares αi.

Key generation

Let p a prime number, where p = 2q + 1 and q is a prime number.

Each player generates a random private key αi ∈ Zq and publishes yi = gαi . The

public key is formed as y =
∏n

i=1 yi = gα, where α = α1 + · · ·+ αn.

Message encryption

Message encryption is done using the ElGamal cryptosystem[ElG85]. Given a message

m and a public key y, a random value r is generated and the ciphertext is computed

as

Ey(m, r) = (c1, c2) = (gr, m · yr)
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We shall denote this encryption by Ey(m, r) or Ey(m) when the value r is not

relevant.

Message decryption

Given a message encrypted with public key y, Ey(m, r) = (c1, c2) = (gr, m · yr), a

decrypter j can confidentially obtain m as follows. Each party i 6= j publishes cαi
1 .

The message m is computed by participant j as

m =
c2

c
αj

1 (
∏

i6=j cαi
1 )

This decryption can be rendered verifiable by each participant i by performing

CP (g, c1, yi, c
αi
1 ; αi).

2.2.4 ElGamal re-masking

Given a ciphertext Ey(m), it can be re-masked by computing Ey(m) · Ey(1, r) for

r ∈ Zq randomly chosen, where · means componentwise scalar product —ElGamal

ciphertexts can be viewed as vectors with two components. The resulting ciphertext

corresponds to the same cleartext m.
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Chapter 3

A comparative survey of mental

poker protocols

Mental poker is played like ordinary poker but without physical elements (like

cards) nor verbal communication; all exchanges between players must be accomplished

using messages [Den83]. Any player may try to cheat.

A mental poker protocol must guarantee the fairness of the game and, if a player

tries to cheat, the protocol must detect or avoid the cheating. In [Cré85], Crépeau

enumerated the requirements and properties that must be met by a mental poker

protocol.

Uniqueness of cards: Traditional decks of cards can be verified before the game

starts, and players can be assured that there are not duplicate cards. In a

mental poker protocol players should be able to verify that each card appears

once and only once.

Uniform random distribution of cards: In a traditional hand of poker, one player

shuffles the deck and the rest of players can see it. Cards are uniform randomly

distributed, so that the card set of one player does not depend on the opponents’

actions because the latter have no control on the shuffled deck. The hand of

each player depends on decisions made by every player.
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Cheating detection with a very high probability: A mental poker protocol must

detect any attempt to cheat, e.g seeing a face-down card, changing a face-up

card, etc.

Complete confidentiality of cards: If the deck is face-down then no partial or

total information about any card from the deck ought to be disclosed. Also when

a player draws a card, the rest of players should not be able to get information

on that card.

Minimal effect of coalitions: A secret communication channel between the play-

ers of a coalition is possible in mental poker, e.g. one player can ring another

player to tell her her cards. A mental poker protocol should reduce the effect of

coalitions, so that if a player is not cheating then nobody can learn more about

her hand, or about the cards in the deck, than what they can infer form the

cards in their coalition.

Complete confidentiality of strategy : It is strategically very important in the

game of poker that the losing players may keep their cards secret at the end of

a hand. The whole concept of bluffing is based in this fact.

The last security requirement is that a mental poker protocol ought to be TTP-

free.

Absence of trusted third party : It is not realistic to rely on a trusted third

party, since any human can be bribed, and no machinery is entirely safe because

no fully tamper-proof device has yet been produced.

Nonetheless, there are authors who argue the need of a TTP in a mental poker

protocol. The main reasons are fairness and protocol efficiency.

Fairness : In [CY02] the following fact is justified; Without a TTP, the fairness of

card dealing in the mental poker game is uncertain.

Efficiency : An implementation of the TTP-free protocol in [Cré86] on three Sparc

workstations took eight hours to shuffle a deck [Edw94]. This time is not prac-

tical in a real hand.

18



In next sections, the main contributions to mental poker protocols are divided

into those using a TTP and those that are TTP-free.

3.1 Protocol analysis

A mental poker protocol is not a single protocol but a suite of subprotocols,

because there is a subprotocol for each action. Most mental poker protocols specify

subprotocols for the following actions:

• Shuffling the deck

• Drawing a card

• Discarding a card

• Shuffling a discarded card

• Opening a card

Nevertheless, other contributions only specify subprotocols for the two most ba-

sic actions: shuffling the deck and drawing a card. We have decided to describe

contributions in terms of the following subprotocols:

Preparation : Steps done before game starts;

Deck shuffling : Steps done by players when the deck is shuffled;

Card drawing : Steps done when a player extracts a card from the deck.

In our study we analyze the following items for each protocol (this analysis is only

feasible when there is enough detail in the description):

• The number of messages;

• The total length of messages;
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• The computational cost.

Based on our knowledge this is the first complete study about the main contri-

butions in mental poker, that presents theoretical results about these three items.

With this information we can state if one protocol is more or less efficient than other

protocol.

Furthermore, we have analyzed the security properties of each protocol. We have

take the requirements and properties enumerated in [Cré85] as reference.

Wherever we have made some assumptions, these are justified. For instance, if a

player publishes or writes a message in a board we have assumed that n− 1 messages

have been sent.

The following notation has been used in the analysis:

• ξ: time cost of one modular exponentiation;

• ρ: time cost of one modular product;

• ε: negligible time cost;

• [p]: number of bits of one value x in Zp or Zn;

• [r]: number of bits that are used to represent a value r in {1, . . . , 52}, where

6 ≤ [r]. We assume that the bitlength of one permutation π of 52 values is

denoted as 52[r];

• [S(m)]: number of bits of the digital signature on m;

• [P (m)]: number of bits of the encryption of m;

• [H(m)]: number of bits of the hash on m;

• [m]: number of bits of a message m;

• k: is the number of shares in which a secret is divided;

• s: security parameter;

• n: number of players.
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3.2 Mental poker with a TTP

In this section we describe the main mental poker protocols using a TTP. These

contributions follow the order in which they were published.

3.2.1 Poker protocols (Fortune-Merritt)

Fortune et al. in [FM85] presented a mental poker Protocol using a TTP called Card

Salesman. The Card Salesman only participates at the beginning of the hand by

choosing a secret permutation π and receiving in a secure way from every player as

many permutations as there are players. The Card Salesman composes π and the

permutations from players, so that the final permutation is the shuffled deck of cards.

For every player, the Card Salesman computes the information needed by that player

to take part in the game. To authenticate the information, the Card Salesman uses

a one-way function.

Let us assume that the number of players is n, and Pi is the i-th player in the

ordered set of n players.

Protocol 1 (Card Shuffling)

1. The Card Salesman randomly chooses a permutation π;

2. For each Pi in {P1, . . . ,Pn} do:

(a) Pi chooses n permutations {πi,1, . . . , πi,n} of 52 elements;

(b) Pi secretly transmits {πi,1, . . . , πi,n} to the Card Salesman;

(c) Pi encrypts the permutations using a one-way function, and broadcasts

the resulting cryptograms;

3. The Card Salesman does:

(a) For i = 1 to n compute πi = π−1
i+1,i ◦π−1

i+2,i · · ·π−1
n,1 ◦π−1

1,i · · ·π−1
i,i ◦π−1, where

i ∈ {1, . . . , n};

(b) Broadcast {π1, . . . , πn}.
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Let us assume that Pi draws a card.

Protocol 2 (Card Drawing)

1. Pi chooses y = π(x) not in any player’s hand and broadcasts y and πi(y);

2. For each Pj in {Pi+1,Pi+2, . . . ,Pn,P1, . . . ,Pi−1}, i, j ∈ 1, . . . , n, and following

the specified order do:

(a) receive xj−1 from the previous player;

(b) compute xj = πj,i(xj−1);

(c) send xj to the following player;

3. Pi receives xi−1 from Pi−1;

4. Pi computes x = πi,i(xi−1);

5. All players record that Pi has got y = π(x) in his hand.

The proposal [FM85] does neither present an opening protocol nor a discarding

protocol. At end of the game, each player publishes her permutations, and checks

that every other player played fairly.

Protocol analysis

We have made some assumptions that are detailed next. When the protocol specifies

that a message is broadcast to n users, i.e. n − 1 players and the TTP, we assume

that n messages are sent.

In Step 2b of Protocol 1, Pi secretly sends to the TTP a message. We assume that

Pi uses a secure channel (for instance [FKCK96]) instead of encrypting the message.

In Table 3.3 we summarize the security properties satisfied by the Fortune-Merritt

protocol. It can be concluded that the final publication of the players’ permutations

reveals their strategy.
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Table 3.1: Costs of the Fortune-Merritt shuffling protocol
Number of Total length Computational
messages of messages cost
Pi TTP Pi TTP Pi TTP

Card shuffling n + 1 n n(52[r] + [H(m)]) n52[r] ε ε

Step 1 ε

Step 2 n + 1 n(52[r] + [H(m)]) ε

Step 2a ε

Step 2b 1 n52[r] ε

Step 2c n n[H(m)] ε

Step 3 n n52[r] ε

Step 3a ε

Step 3b n n52[r] ε

Table 3.2: Costs of the Fortune-Merritt drawing protocol
Number of Total length Computational
messages of messages cost
Pi TTP Pi TTP Pi TTP

Card drawing 2n− 1 (2n− 1)[r] ε

Step 1 n n[r] ε

Step 2 n− 1 (n− 1)[r] ε

Step 2a ε

Step 2b ε

Step 2c 1 [r] ε

Step 3 ε

Step 4 ε

Step 5 ε
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Table 3.3: Security properties of the Fortune-Merritt protocol suite

Uniqueness of cards X
Uniform random distribution of cards X
Cheating detection with a very high probability X
Complete confidentiality of cards X
Minimal effect of coalitions X
Complete confidentiality of strategy
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3.2.2 Remote electronic gambling (Hall-Schneier)

Hall in [HS97] introduces an audit trail. If a player suspects that another player is

cheating, she can use the audit trail to verify it. These audit trails are based on

hash chains. The concept of hash chain was introduced in [Lam81]. A hash chain is

digitally signed so that it can be used to convince a judge. The outcome of the game is

determined by players and the TTP. The TTP chooses a random permutation of the

deck, commits to the permutation and sends the output of the commitment to players.

Every player receives the TTP commitment, generates a random permutation of the

deck, signs the permutation and the TTP commitment, encrypts her permutation

and TTP commitment and sends encrypted values to the TTP. The TTP decrypts

the player permutations and composes her permutation with them. The resulting

permutation is the shuffled deck of cards.

Let the number of players be n and let Pi be the i-th player in the ordered set of

n players.

Protocol 3 (Initialization)

1. Each player Pi has a certified key pair (PPi
, SPi

), where PPi
is the public key

and SPi
is the secret key;

2. The TTP has a certified key pair (PTTP , STTP ).

Protocol 4 (Card shuffling)

1. The TTP generates a permutation πT of 52 elements;

2. The TTP chooses a random salt R0;

3. The TTP computes hTTP = H(πT , R0), STTP (H(πT , R0));

4. The TTP sends hTTP to the rest of players;

5. For each Pi (i = 1, . . . , n):

(a) Pi generates a permutation πi of elements;
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(b) Pi computes ei = ETTP (πi, SPi
(H(πT , R0), πi));

(c) Pi sends ei to the TTP;

6. The TTP composes all permutations, πD = πT ◦πn◦πn−1◦· · ·◦π1. The shuffled

deck of cards is πD.

Let us assume that Pj draws a card.

Protocol 5 (Card drawing)

1. Pi picks a random number R0;

2. Pi generates a request M for a card;

3. Pi computes M0 = R0, M, SPi
(R0, M);

4. Pi sends M0 to the TTP;

5. The TTP verifies the signature;

6. The TTP picks the y-th card; if y − 1 < 52 have previously been extracted, the

y-th card is cy = πD(y);

7. The TTP generates a random salt R1;

8. The TTP computes M1 = EPi
(R1, M, cy, STTP (M0, R1, M, Cn));

9. The TTP sends M1 to Pi;

10. Pi decrypts the message M1;

11. Pi verifies the signature STTP (M0, R1, M, Cn);

12. Pi adds the card cy to her hand.
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Protocol analysis

The proposal [HS97] does not specify the public key cryptosystem to be used. Let us

assume that the digital signatures and encryptions are based on Rivest et al. [RSA77]

public key criptosystem. In Step 5c of Protocol 4 we assume that Pi builds a digital

envelope, see [Sch96] for further details. In Step 4 of Protocol 4 it is implicit that

all players verify the TTP’s digital signature. In Step 6 it is implicit that the TTP

must decrypt the n encrypted messages sent by players, and must verify the digital

signatures.

Table 3.4: Costs of the Hall-Schneier shuffling protocol

Number of Total length Computational
messages of messages cost
Pi TTP Pi TTP Pi TTP

Card shuffling n n 52[r] + [S(m)] + [P (m)] [H(m)] + [S(m)] 3ξ ξ(2n + 1)
Step 1 ε

Step 2 ε

Step 3 ξ

Step 4 n [H(m)] + [S(m)] ξ ε

Step 5 n 52[r] + [S(m)] + [P (m)] 2ξ ε

Step 5a ε

Step 5b 2ξ

Step 5c 1 52[r] + [S(m)] + [P (m)] ε

Step 6 n(2ξ)

In Table 3.6 we can see that the protocol satisfies the same security properties as

[FM85] but does not preserve the confidentiality of strategies. The players verify the

fairness of the game when the TTP reveals the secret values used in the game.

27



Table 3.5: Costs of the Hall-Schneier drawing protocol
Number of Total length Computational
messages of messages cost
Pi TTP Pi TTP Pi TTP

Card drawing 1 1 [S(m)] + 2[m] 3[m] + [S(m)] + [P (m)] 3ξ 3ξ

Step 1 ε

Step 2 ε

Step 3 ξ

Step 4 1 [S(m)] + 2[m] ε

Step 5 ξ

Step 6 ε

Step 7 ε

Step 8 2ξ

Step 9 1 3[m] + [S(m)] + [P (m)] ε

Step 10 ξ

Step 11 ξ

Step 12 ε

Table 3.6: Security properties of the Hall-Schneier protocol suite
Uniqueness of cards X
Uniform random distribution of cards X
Cheating detection with a very high probability X
Complete confidentiality of cards X
Minimal effect of coalitions X
Complete confidentiality of strategy
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3.2.3 Online casinos (Oppliger-Nottaris)

In [ON97] a model is presented that can be used to set up and run an online casino.

The proposal was implemented in a prototype at the University of Berne. The cryp-

tographic protocol is focused on Mental Black Jack instead of Mental Poker. Never-

theless, it can be easily adapted to Mental Poker with TTP. The security offered is

similar to the one of the Hall-Schneier [HS97] proposal. In our view, this is a relevant

contribution.

Let the number of players be n and Pi be the i-th player in the ordered set of n

players.

Protocol 6 (Initialization)

1. Each player Pi has a key pair (PPi
, SPi

);

2. The TTP has a key pair (PTTP , STTP ).

The deck of cards is shuffled using Protocol 7. The TTP chooses a permutation

of 52 elements and commits herself to the permutation. Each player chooses a list of

52 values and also commits herself to the list. The card at position j is computed by

permuting the value x using the TTP permutation, where x is the sum all values at

position j in the players’ list.

Protocol 7 (Card Shuffling)

1. The TTP selects a permutation πTTP of 52 elements at random, πTTP =

{c1, . . . , c52} and 1 ≤ ci ≤ 52;

2. The TTP computes mTTP,s = STTP (TTP, g,H(πTTP )), where g is the game

identifier;

3. The TTP commits herself to πTTP by multicasting the message mTTP , mTTP =

(TTP, g,H(πTTP ), mTTP,s), to all players;

4. For each Pi (i = 1, . . . , n) do:
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(a) choose at random a list of 52 numbers Li = {li,1, . . . , li,52}; Li is kept

secret by Pi;

(b) compute mi,s = SPi
(Pi, g, H(Li));

(c) publish the message mi, mi = (Pi, g, H(Li), mi,s).

The TTP and the rest of players run Protocol 8 every time a player extracts a

new card from the deck. Let us assume that Pj wants a card, and during the game

d− 1 cards have already been drawn, where 1 ≤ d ≤ 52.

Protocol 8 (Card drawing)

1. The TTP computes mTTP,r = STTP (TTP, g, d);

2. The TTP sends (g, d, mTTP,r) to the rest of players as a card request;

3. For each Pi (i = 1, . . . , n) do:

(a) compute mPi,r = SPi
(Pi, g, d, li,d);

(b) make public (g, d, li,d, mPi,r);

4. The TTP does the following steps.

(a) compute x = (
∑n

i=1 li,d) mod n− d;

(b) compute the card c for Pj, c = πTTP (x);

(c) remove the element c in πTTP , so that the list becomes shorter;

(d) compute mTTP,c = STTP (TTP, g, d,Pj, c);

(e) send (g, d, c, mTTP,c) in a secure way to Pj.

Protocol analysis

In Step 2 of Protocol 7 the TTP makes a digital signature. Proposal [ON97] does not

specify the public key cryptosystem to be used (like in [HS97]). Let us assume that

the digital signatures and encryptions are based on the RSA public key cryptosys-

tem [RSA77].
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In Step 3 of Protocol 7 each player Pi receives the digital signature of Step 2. We

consider that verification of this signature is implicit (and must be included in the

computational cost).

We have made the same consideration in Steps 4b and 4c of Protocol 7, and

Steps 1, Steps 2, Steps 3a, Steps 3b, Steps 4d and Steps 4e of Protocol 8.

Table 3.7: Costs of the Oppliger-Nottaris shuffling protocol
Number of Total length Computational
messages of messages cost
Pi TTP Pi TTP Pi TTP

Card shuffling 1 1 2[m] + [H(m)]+ 2[m] + [H(m)]+ 2ξ ξ(n + 1)
+[S(m)] +[S(m)]

Step 1 ε

Step 2 ξ

Step 3 1 2[m] + [H(m)]+ ξ ε
+[S(m)]

Step 4 1 nξ

Step 4a ε ε

Step 4b ξ ε

Step 4c 1 2[m] + [H(m)]+ ε ξ
+[S(m)]

The strategy is revealed in order to verify the game fairness. The TTP publishes

the permutations and players can verify the game.
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Table 3.8: Costs of the Oppliger-Nottaris drawing protocol
Number of Total length Computational
messages of messages cost
Pi TTP Pi TTP Pi TTP

Card drawing 1 2 3[m] + [S(m)] 5[m] + 2[S(m)] 3ξ ξ(n + 2)
Step 1 ξ

Step 2 1 2[m] + [S(m)] ξ ε

Step 3 1 3[m] + [S(m)] ξ

Step 3a ξ

Step 3b 1 3[m] + [S(m)] ξ

Step 4 1 3[m] + [S(m)] ξ ξ

Step 4a ε

Step 4b ε

Step 4c ε

Step 4d ξ

Step 4e 1 3[m] + [S(m)] ξ ε

Table 3.9: Security properties of the Oppliger-Nottaris protocol

Uniqueness of cards X
Uniform random distribution of cards X
Cheating detection with a very high probability X
Complete confidentiality of cards X
Minimal effect of coalitions X
Complete confidentiality of strategy
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3.2.4 Fair on-line gambling (Zhao-Varadharajan-Mu)

A payment protocol is proposed in [ZVM00]. This protocol can be used in remote

electronic gaming, and more specifically in electronic bets. The protocol uses a TTP,

and if any player is not honest the TTP enforces the payment of the bet. The basic

protocol with one player and a casino runs as follows.

Protocol 9 (Payment)

1. The bank has a certified public key. He digitally signs one token, where the

maximum credit of the player is specified. The token also contains the player’s

credit card number and her personal identification number (PIN).

2. The player has a certified public key, and she digitally signs the following infor-

mation: the token sent by the Bank, the bet amount and information about the

player against whom she bets.

3. The player encrypts the previous digital signature with the TTP’s public key.

4. Using [Sta96], the player obtains a proof that she encrypted a digital signature,

so that she does not need to show the actual signature.

5. The casino does the same operations. Both player and casino can verify that

the encrypted data are a digital signature, but they cannot use it.

6. The game runs, and the result is obtained. The loser sends the digital signature

and the winner gets the money of the bet. The digital signature prevents the

loser from repudiating the payment.

7. If the loser does not send the digital signature, the TTP decrypts the digital

signature and sends the result to the winner.

In addition to the above payment protocol, the paper [ZVM00] also contains a

mental poker protocol, but the latter is basically equivalent to the one previously

presented in [HS97].
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Protocol analysis

This protocol offers the same properties and has the same cost as [HS97].

3.2.5 Mental poker game based on a bit commitment scheme

through a network (Chou-Yeh)

In [CY02], the TTP shuffles and draws the cards. A bit commitment protocol is used

when the deck is shuffled. This bit commitment is described next.

A bit commitment protocol consists of two distinct stages: commitment and open-

ing. Assume that Pi uses Procedure 5 to commit to a bit bi ∈ Z2 without revealing

it.

Procedure 5 (Commitment(bi ∈ {0, 1}))

1. Compute βi = mbix2
i mod n, where n = pq and p and q are large primes,

xi ∈ Z∗
n, m ∈ Qn;

2. Return βi and xi.

Pi later opens the commitment with Protocol 10. Furthermore, she cannot open

the commitment to show a value different from bi.

Protocol 10 (Commitment opening)

1. Pi publishes xi;

2. Anybody can check that:{
if ((xi)

2)−1 · βi = m then bi = 1

if ((xi)
2)−1 · βi = 1 then bi = 0

This bit commitment protocol is basically equivalent to the probabilistic encryp-

tion presented in [GM82].

We now describe the mental poker protocol in [CY02]. The TTP generates the

deck V with Procedure 6.
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Procedure 6 (Card shuffling)

1. The TTP does the following steps:

(a) Choose a random set D = {d1, . . . , d52} to represent the deck of cards,

where the element at j-th position represents the j-card; let us assume that

dj is r bits long, dj = {dj,r, . . . , dj,r};

(b) Publish D;

(c) For every dj ∈ D do:

i. For k = 1 to r run Procedure 5 with dj,k and obtain βj,k and xj,k;

ii. Compute the card vj = (βj, xj), where βj = {βj,1, . . . , βj,r} and xj =

{xj,1, . . . , xj,r};

(d) Compute the deck of cards V = {v1, . . . , v52}.

The TTP and one player Pi use Protocol 11 when Pi wants a card.

Protocol 11 (Card drawing)

1. The TTP chooses a card vj = (βj, xj) in deck V such that vj has not been

drawn previously;

2. The TTP sends βj to Pi;

3. The TTP encrypts xj with the Pi’s public key, cj = EPi
(xj);

4. The TTP sends cj to Pi;

5. Pi decrypts cj and obtains xj = DPi
(cj);

6. Pi verifies the bit commitment with xi and gets di; this verification is done with

r executions of Protocol 10.
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Table 3.10: Costs of the Chou-Yeh shuffling protocol

Number of Total length Computational
messages of messages cost
Pi TTP Pi TTP Pi TTP

Card shuffling 1 [r]52 78ρ[r]
Step 1 1 [r]52 78ρ[r]
Step 1a ε

Step 1b 1 [r]52 ε

Step 1c 52[r](3
2ρ)

Step 1(c)i [r](3
2ρ)

Step 1(c)ii ε

Step 1d ε

Table 3.11: Costs of the Chou-Yeh drawing protocol

Number of Total length Computational
messages of messages cost
Pi TTP Pi TTP Pi TTP

Card drawing 2 [p][r] + [P (m)] ξ + 2[r]ρ ξ

Step 1 ε

Step 2 1 [r][p] ε

Step 3 ξ

Step 4 1 [P (m)] ε

Step 5 ξ

Step 6 [r](2ρ) ε

Protocol analysis

Players do not verify any TTP action. If the TTP is completely trusted, this proposal

meets all of Crépeau’s requirements.

Authors criticize the proposal [HS97] because it “is based on the assumption that

there is no secret communication link among any players”. Nevertheless, in [CY02]

the TTP does all the work: it shuffles the deck and draws the cards. Players must

trust the TTP blindly. It could be interesting to explore the result of a confabulation

between the TTP and a player.
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Table 3.12: Costs of the Chou-Yeh Procedure 5

Computational cost
Procedure 5 3

2ρ

Step 1 ρ + 1
2ρ

Step 2 ε

Table 3.13: Costs of the Chou-Yeh Protocol 10

Number of Total length Computational
messages of messages cost
Pi TTP Pi TTP Pi TTP

Protocol 10 1 [p] 2ρ ε

Step 1 1 [p] ε

Step 2 2ρ

A second point is the use of a bit commitment protocol, whose properties are not

fully exploited. The TTP sends the commitment and opens it in the next message.

Why? The bit commitment protocol adds to the computational load without adding

security.

Finally, the bit commitment protocol used is very similar to the encryption pre-

sented in [GM82]. The paper should mention that their bit commitment is inspired

on the encryption presented in [GM82].

Table 3.14: Security properties of the Chou-Yeh protocol

Uniqueness of cards X
Uniform random distribution of cards X
Cheating detection with a very high probability X
Complete confidentiality of cards X
Minimal effect of coalitions X
Complete confidentiality of strategy X
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3.2.6 Conclusions on the comparison of TTP-based protocols

Once we have described the main mental poker protocols using a TTP, we can draw

some conclusions about the computational cost, the number of messages and the

length of the messages.

In Table 3.15 we can see the costs of shuffling a deck of cards for every proposal.

[CY02] is the most efficient protocol as far as the number and the length of messages

are concerned. This efficiency is due to fact that the TTP does all the work. The

players do not compute nor send anything. [ON97] is very efficient in the number

of messages; however we must remember that it uses multicast. [ON97] without

multicast would send about n messages, like [HS97].

The computational cost of the Protocol in [FM85] is ε because a secure channel is

assumed between the TTP and the players. If the transmitted values are encrypted,

the computational cost becomes similar to the cost of the other proposals.

Table 3.15: Costs of the card shuffling protocols using a TTP
Number of Total length Computational
messages of messages cost
Pi TTP Pi TTP Pi TTP

[FM85] n + 1 n n(52[r] + [H(m)]) n52[r] ε ε

[HS97] n n 52[r] + [S(m)] + [P (m)] [H(m)] + [S(m)] 3ξ ξ(2n + 1)
[ON97] 1 1 2[m] + [H(m)] + [S(m)] 2[m] + [H(m)]+ 2ξ ξ(n + 1)

+[S(m)]
[ZVM00] n n 52[r] + [S(m)] + [P (m)] [H(m)] + [S(m)] 3ξ ξ(2n + 1)
[CY02] 1 [r]52 78ρ[r]

In Table 3.16 we show the results of our analysis of drawing a deck of cards

for every proposal. The number of messages is similar in all protocols but [FM85].

In [FM85] the TTP does not take part in the drawing, which is done co-operatively

by all players. Player co-operation increases the number of messages.

The total length of messages in [FM85] is the lowest, (2n − 1)[r]. Note that

r ≈ 6bits, because a value x in {1, . . . , 52} can be represented with 6 bits (log2 52).

The maximum number of players in poker is 5, so in the drawing protocol the total
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length of messages is 54 bits. The rest of proposals send two or more values in Zn,

that is 2(1024) bits.

The computational cost is ε in [FM85] because players do not compute any cryp-

tograhic operation. [HS97], [ON97] and [ZVM00] have a similar computational cost.

Finally, the cost of [CY02] is greater than the cost of [FM85] and less than the cost

of the rest of protocols.

Table 3.16: Costs of the card drawing protocols using a TTP
Number of Total length Computational
messages of messages cost
Pi TTP Pi TTP Pi TTP

[FM85] 2n− 1 (2n− 1)[r] ε

[HS97] 1 1 [S(m)] + 2[m] 3[m] + [S(m)] + [P (m)] 3ξ 3ξ

[ON97] 1 2 3[m] + [S(m)] 5[m] + 2[S(m)] 3ξ ξ(n + 2)
[ZVM00] 1 1 [S(m)] + 2[m] 3[m] + [S(m)] + [P (m)] 3ξ 3ξ

[CY02] 2 [r][p] + [P (m)] 2rρ + ξ ξ

The protocols presented so far have a reasonable load, so they can be used in

practice.

In all cases we must trust the TTP to some extent. In [FM85] players only use

the TTP when the deck is shuffled. This is the proposal that requires less trust in the

TTP. On the other side, the TTP in [CY02] does all operations. The players must

trust it completely.

After reviewing the main TTP-based contributions to mental poker, we notice

that in [FM85], [HS97], [ON97] and [ZVM00] the strategy of players is revealed (see

Table 3.17). Nevertheless, in these protocols players take part in shuffling the deck.

Also, when the game is over players can verify whether the TTP was honest.

In [CY02] the strategy is not revealed, but players must trust the TTP completely.
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Table 3.17: Security properties of TTP-based mental poker protocols

[FM85] [HS97] [ON97] [ZVM00] [CY02]
Uniqueness of cards X X X X X
Uniform random X X X X X
distribution of cards
Cheating detection with X X X X X
a very high probability
Complete confidentiality X X X X X
of cards
Minimal effect X X X X X
of coalitions
Complete confidentiality X
of strategy
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3.3 TTP-free mental poker protocols

TTP-free mental poker protocols are more complex than mental poker protocols with

a TTP. Next we present the main TTP-free protocols in the literature. We present

contributions in the order in which they were published.

3.3.1 Mental poker (Shamir-Rivest-Adleman)

The TTP-free mental poker proposal is [SRA81]. This protocol is for two players

only and is based on a commutative cryptosystem. The encryption algorithm is the

following:

Preparation :

1. The players choose a prime number p.

2. Each player chooses her private key k secretly.

Encryption A message m is encrypted as follows:

Ek(m) = xk mod p = c

Decryption A cryptogram c is decrypted as follows:

Dk(m) = ck−1

mod p = m

It is easy to see that the above cryptosystem is commutative, i.e. EP1(EP2(x)) =

EP2(EP1(x)). Based on this cryptosystem, the mental poker protocol is constructed

as:

Let us assume that Protocol 12 is run between P1 and P2. All operations are

(modp).

Protocol 12 (Initialization)

1. P1 and P2 agree on a public p;
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2. P1 chooses a secret key k1;

3. P2 chooses a secret key k2.

Let us assume that P2 is the dealer in Protocol 13.

Protocol 13 (Card shuffling)

1. P2 chooses 52 values to represent the cards: D = {x1, . . . , x52}, where 1 < xi <

p;

2. P2 computes C∗ = {c∗1, . . . , c∗52}, where c∗i = xk2
i and xi ∈ D;

3. P2 randomly chooses a permutation π;

4. P2 computes C = {c1, . . . , c52}, where cπ(i) = c∗i and c∗i ∈ C∗;

5. P2 sends C to P1.

Let us assume that P1 and P2 draw one card using Protocol 14.

Protocol 14 (Card drawing (C))

1. P1 randomly selects an encrypted message c1 and sends it to P2;

2. P2 decrypts the cryptogram c1 to determine her card;

3. P1 randomly selects an encrypted message c′1;

4. P1 encrypts c′1 under k1 to get d1 = (c′1)
k1;

5. P1 sends d1 to P2;

6. P2 decrypts d1 under k2 to get e1 = d
k−1
2

1 ;

7. P2 sends e1 to P1;

8. P1 decrypts e1 under k1 to determine her card.

During the game, additional cards may be dealt with by repeating the procedure.

At the end of the game, both players reveal their keys to prove they did not cheat.
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Protocol analysis

In this section we present the analysis of the protocols for cards shuffling and card

drawing.

Table 3.18 shows the number of messages, the total length of messages and the

computational cost of the shuffling protocol (Protocol 13).

Table 3.18: Costs of the Shamir-Rivest-Adleman shuffling protocol
Number of Total length Computational
messages of messages cost
P1 P2 P1 P2 P1 P2

Card shuffling 1 52[p] 52ξ

Step 1 ε

Step 2 52ξ

Step 3 ε

Step 4 ε

Step 5 1 52[p] ε

Table 3.19 shows the number of messages, the total length of messages and the

computational cost of the drawing protocol (Protocol 14).

Table 3.19: Costs of the Shamir-Rivest-Adleman drawing protocol
Number of Total length Computational
messages of messages cost
P1 P2 P1 P2 P1 P2

Card drawing 2 1 2[p] [p] 2ξ 2ξ

Step 1 1 [p] ε

Step 2 ξ

Step 3 ε

Step 4 ξ

Step 5 1 [p] ε

Step 6 ξ

Step 7 1 [p] ε

Step 8 ξ

Table 3.20 shows the security properties of [SRA81].
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Table 3.20: Security properties of the Shamir-Rivest-Adleman protocol suite

Uniqueness of cards X
Uniform random distribution of cards X
Cheating detection with a very high probability
Complete confidentiality of cards
Minimal effect of coalitions X
Complete confidentiality of strategy

The confidentiality of strategy is not guaranteed and only two players can partici-

pate in the game. [SRA81] has another additional drawback: Lipton in [Lip81] shows

that cards can be marked as explained below.

For any message M = a, encrypting (or decrypting) with the [SRA81] cryptosys-

tem M preserves membership in Qn, as shown by the following theorem:

Theorem 1 Given a, 0 < a, it holds that a ∈ Qn if and only if EK(a) = ae mod n

∈ Qn, where K = (e, n).

Proof: 1 First, assume a ∈ Qn. Then x2 mod n = a for some x. Since

EK(a) = ae mod n

= (x2)e mod n

= (xe)2 mod n

EK(a) is in Qn. Now, suppose EK(a) in Qn. Since decrypting is the same operation

as encrypting but with exponent d, (EK(a))d mod n = a must also be in Qn.

P1 can exploit the above result by recording which cards have messages in Qn. For

example, if she observes that the plaintext messages for all four aces are quadratic

residues, she could select quadratic residues for her hand and quadratic non-residues

for P2. This is called card marking.
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3.3.2 Probabilistic encryption and how to play mental poker

keeping secret all partial information (Goldwasser-Micali)

The Goldwasser-Micali mental poker protocol [GM82] is also for two players only,

but nonetheless it is an important contribution to cryptography. Players choose at

random 52 values to represent the deck of cards. Every player computes a key pair of

a public-key cryptosystem for every card. Every card is encrypted with a different key

pair. Players publish encrypted values and the public keys used. When a player wants

a card, she asks a question about every encrypted card, but for only one card she

gains enough information to decrypt it. At the end of game players publish private

components of key pairs used and game fairness is verified.

The probabilistic encryption concept is also introduced in that paper. A cryp-

tosystem is probabilistic if it has the following property: if a message d is encrypted

several times under the same public key, the cryptograms obtained are different each

time.

We next review the Goldwasser-Micali probabilistic cryptosystem and the mental

poker protocol that is built on the cryptosystem.

The players use Procedure 7 in order to create the cryptosystem key pair.

Procedure 7 (Initialization)

1. Two large prime numbers p and q are chosen and n = pq is computed. p and

q have the following properties p ≡ 3 mod 4 and q ≡ 3 mod 4;

2. A value y is chosen at random so that
(

y
p

)
= −1 and

(
y
q

)
= −1.

A message d = {d1, . . . , dr}, where d ∈ Z∗
n and d1, · · · , dr are the bits representing

d, is encrypted using Procedure 8.

Procedure 8 (Encryption(d))

1. For every bit di ∈ d do:

(a) randomly choose xi ∈ Z∗
n;
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(b) if di ≡ 0 then compute ei = x2
i mod n;

(c) if di ≡ 1 then compute ei = yx2
i mod n;

2. Let the cryptogram corresponding to d be e = {e1, · · · , er};

3. Return e.

Given a cryptogram e = {e1, . . . , er} and the factors p, q of n (secret key), d =

{d1, . . . , dr} can be retrieved using Procedure 9.

Procedure 9 (Decryption(e))

1. For every value ei ∈ e = {e1, . . . , er} do:

(a) if
(

ei

p

)
≡

(
ei

q

)
≡ 1 then di = 0;

(b) if
(

ei

p

)
≡

(
ei

q

)
≡ −1 then di = 1;

2. Let the message corresponding to e be d = {d1, · · · , dr};

3. Return d.

When 0 is encrypted, the resulting cryptogram is in Qn and, if a 1 is encrypted,

the resulting cryptogram is in Qn. An observer cannot decide whether a cryptogram

is in Qn or Qn because she does not know the factors of n. If the observer computes

the Jacobian symbol of ei and n, she always gets 1 as a result, i.e. she gains no

information about di.

The Goldwasser-Micali mental poker protocol can now be described. Let us as-

sume that P1 and P2 participate in the protocols.

Protocol 15 (Initialization)

1. P1 and P2 choose 52 values D = {d1, . . . , d52} to represent the cards. Let us

assume that di is r bits long, where 6 ≤ r;

2. P2 chooses at random 52 pairs of large prime numbers,

{(p2,1, q2,1), . . . , (p2,52, q2,52)}, such that p2,i ≡ q2,i ≡ 3 mod 4, where 1 ≤ i ≤ 52;
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3. P2 computes 52 large composite numbers N2 = {n2,1, . . . , n2,52}, where n2,i =

(p2,i) · (q2,i), and 1 ≤ i ≤ 52;

4. P1 goes through the same steps as P2, so as to get {(p1,1, q1,1), . . . , (p1,52, q1,52)},
and N1 = {n1,1, . . . , n1,52}, where n1,i = p1,iq1,i and 1 ≤ i ≤ 52.

P1 and P2 shuffle the deck of cards using Protocol 16.

Protocol 16 (Card shuffling (D))

1. P2 uses Procedure 10 with D and N2 and obtains C2 = {c2,1, . . . , c2,52};

2. P2 publishes the pairs (c2,i, n2,i), where c2,i ∈ C2 and n2,i ∈ N2;

3. P1 uses Procedure 10 with D and N1 and obtains C1 = {c1,1, . . . , c1,52};

4. P1 publishes the pairs (c1,i, n1,i), where c1,i ∈ C1 and n1,i ∈ N1.

Procedure 10 permutes and encrypts the deck D. For each di ∈ D, it uses one

ni ∈ N .

Procedure 10 (Deck encryption(D, N))

1. Generate at random a permutation π of 52 elements;

2. Compute the set D′ = {d′1, . . . , d′52}, where d′π(i) = di, di ∈ D;

3. For each d′i ∈ D′ encrypt d′i using Procedure 8 and obtain ci;

4. Compute the set C = {c1, . . . , c52};

5. Return C.

Let us assume that P2 deals a card to P1, and P1 decides to pick the k-th card in

C2, that is, (c2,k, n2,k).

Protocol 17 (Card drawing)

1. For 1 ≤ i ≤ 52, P1 does:
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(a) choose ti at random;

(b) compute hi = t2i mod n2,i;

(c) if i = k then send hi and −
(

ti
n2,i

)
to P2;

(d) if i 6= k then send hi and
(

ti
n2,i

)
to P2;

2. For 1 ≤ i ≤ 52, P2 does:

(a) compute the square roots of hi, (x,−x, y,−y);

(b) if −
(

ti
n2,i

)
was received, then send y to P1;

(c) if
(

ti
n2,i

)
was received, then send x to P1;

3. P1 factors n2,k = (p2,k) · (q2,k). She can factor n2,k because she knows x 6=
y mod nk for the k-th card (c2,k, n2,k) by Lemma 2. With x and y, by Lemma

1, P1 can factor n2,k. She cannot factor n2,i 6= n2,k, because she only knows x;

4. P1 decrypts c2,k with n2,k = (p2,k) · (q2,k) using Procedure 9.

At the end of the game, P1 reveals the ti used, so that P2 can verify that P1 has

picked only one card.

Protocol analysis

Once the proposal [GM82] has been described, we present the analysis for Protocol 16

(Card shuffling) and Procotol 17 (Card Drawing).

Table 3.21 shows the number of messages, the total length of messages and the

computational cost of the shuffling protocol (Protocol 16).

Table 3.22 shows the number of messages, the total length of messages and the

computational cost of the drawing protocol (Protocol 17). In Step 2a of Protocol 17

we have assumed that Procedure 4 is used to compute the square roots. Authors

choose p and q with the following properties, p ≡ 3 mod 4 and q ≡ 3 mod 4, so that

Procedure 1 can be used. With these assumptions we have a computational cost of

2ξ + 4ρ in Step 2a.
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Table 3.21: Costs of the Goldwasser-Micali shuffling protocol
Number of Total length Computational
messages of messages cost
P1 P2 P1 P2 P1 P2

Card shuffling 1 1 52[p]([r] + 1) 52[p]([r] + 1) 78[r]ρ 78[r]ρ
Step 1 78[r]ρ
Step 2 1 52[p]([r] + 1) ε

Step 3 78[r]ρ
Step 4 1 52[p]([r] + 1) ε

We next detail the cost of Procedure 8, Procedure 9 and Procedure 10 in Tables

3.23, 3.24 and 3.25, respectively.

Decryption of c2,k using Procedure 9 has a cost of 2[r]ξ. We next break down

this decryption cost. For every bit c2,k,i in c2,k = {c2,1, . . . , c2,r} the Jacobi symbol

is computed. The cost of computing the Jacobi symbol is twice the cost of the

Legendre symbol (see Definition 3). Finally the cost of the Legendre symbol is ξ (see

Theorem 1).

In Steps 1c and 1d of Protocol 17 P1 could send −
(

ti
n2,i

)
for more than a card.

Thus P1 would obtain more than one card, or she could discover the cards in P2’s

hand. This cheating is detected when game is verified at the end. In game verification

the players reveal their secret information.

In conclusion, this protocol is only designed for two players, whose strategy is

made public at the end of the game.

49



Table 3.22: Costs of the Goldwasser-Micali drawing protocol
Number of Total length Computational
messages of messages cost
P1 P2 P1 P2 P1 P2

Card drawing 52 52 52[p] 52[p] 52ρ + 2[r]ξ 52(2ξ + 4ρ)
Step 1 52 52[p] 52ρ

Step 1a ε

Step 1b ρ

Step 1c 1/52 (1/52)[p] ε

Step 1d 51/52 (51/52)[p] ε

Step 2 52 52[p] 52(2ξ + 4ρ)
Step 2a (2ξ + 4ρ)
Step 2b 1/52 (1/52)[p] ε

Step 2c 51/52 (51/52)[p] ε

Step 3 ε

Step 4 2[r]ξ

Table 3.23: Costs of the Goldwasser-Micali Procedure 8
Computational

cost
Procedure 8 [r]ρ3/2

Step 1 [r]ρ3/2
Step 1a ε

Step 1b ρ

Step 1c 2ρ

Step 2 ε

Step 3 ε
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Table 3.24: Costs of the Goldwasser-Micali Procedure 9
Computational

cost
Procedure 9 2[r]ξ

Step 1 2[r]ξ
Step 1a 2ξ

Step 1b 2ξ

Step 2 ε

Step 3 ε

Table 3.25: Costs of the Goldwasser-Micali Procedure 10
Computational

cost
Procedure 10 78[r]ρ

Step 1 ε

Step 2 ε

Step 3 78[r]ρ
Step 4 ε

Step 5 ε

Table 3.26: Security properties of the Goldwasser-Micali protocol suite

Uniqueness of cards X
Uniform random distribution of cards X
Cheating detection with a very high probability X
Complete confidentiality of cards X
Minimal effect of coalitions X
Complete confidentiality of strategy
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3.3.3 Mental poker with three or more players (Banary-Füredi)

In [BF83] a simple mental poker protocol is presented which does not use cryptogra-

phy. Let us illustrate the protocol with an ordered set of n players {P1, . . . ,Pn}.

Protocol 18 (Card shuffling)

1. Each player Pi, i ∈ {1, . . . , n} chooses a random permutation πi of the 52

values;

2. Each player Pi, i ∈ {2, . . . , n}, sends πi to P1. Pi does this secretly, so that

she remains unaware of other players’ permutations;

3. P1 receives {π2, . . . , πn} from the rest of players;

4. For i = 2 to n P1 does:

(a) compute πi,1 = πn ◦ πn−1 ◦ · · · ◦ πi+1 ◦ πi−1 ◦ . . . π−1
1 ;

(b) secretly send πi,1 to Pi.

Once the Protocol 18 is run, the cards are ready to be dealt using Protocol 19. The

player P1 plays a special role in the shuffling protocol (Protocol 18). P1’s permutation

is the shuffled deck of cards. When a player Pk draws a card, the rest of players

without player P1 choose a value x ∈ {1, . . . , 52} that has not been previously chosen.

Let π1(x) be the drawn card. The set Hk,1 contains the values x that players have

chosen for Pk.

Assume that some cards have been dealt, and Pk wants a new card. She gets it

from Pk+1 using Protocol 19 below.

Protocol 19 (Card drawing)

1. Player Pk+1 chooses a number xn+1, 1 ≤ xn+1 ≤ 52 and xn+1 6∈ H1,1

⋃
H2,1

⋃
· · ·

⋃
Hn,1;

2. If k ≡ 1 then:

(a) Pk+1 sends xn+1 to the rest of players;
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(b) All players add xn+1 to the set H1,1;

(c) P1 obtains her card y = π−1
1 (xn+1);

(d) P1 adds y to H1;

3. If k 6≡ 1 then:

(a) Pk+1 sends xn+1 to the following players {Pn,Pn−1, . . . ,Pk+1,Pk−1, . . . ,P2};

(b) All players in {Pn,Pn−1, . . . ,Pk+1,Pk−1, . . . ,P2} add xn+1 to the set Hk,1;

(c) For each player Pi in {Pn,Pn−1, . . . ,Pk+1,Pk−1, . . . ,P2} do:

i. Receive xi+1;

ii. Compute xi = π−1
i (xi+1);

iii. Send xi to next player in {Pn,Pn−1, . . . ,Pk+1,Pk−1, . . . ,P2};

(d) Pk computes his card, y = π−1
1 (x2), and adds y to Hk.

When the game is over all players reveal their permutations. With this information

the players can show and prove their hands. At the same time, game correctness can

be verified.

Protocol analysis

In this section we analyze the number of messages, the total length of messages, the

computational cost and the security of [BF83].

Table 3.27 shows the cost of the shuffling protocol (Protocol 19).

The costs of the drawing protocol (Protocol 19) are shown in Table 3.28.

Step 2 of Protocol 19 is run by P1 and Step 3 of Protocol 19 is run by the remaining

n − 1 players. So, the average number of messages is 1/n in Step 2 of Protocol 19

plus (n− 1)/n in Step 3 of Protocol 19. This explains the figures in Table 3.28.

The deck of cards is a permutation of 52 values. Therefore a card has value x,

where 1 ≤ x ≤ 52. The size in bits of x is denoted by [r], where 6 ≤ [r].

The assumption that players do not collude is crucial to the security of the proto-

col. If any two players share their knowledge, they learn not only each other’s hands,

but their opponent’s hands as well.
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Table 3.27: Costs of the Banary-Furedi shuffling protocol
Number of Total length Computational
messages of messages cost

Card shuffling 2(n− 1) 104[r](n− 1) ε

Step 1 ε

Step 2 n− 1 52[r](n− 1) ε

Step 3 ε

Step 4 n− 1 52[r](n− 1) ε

Step 4a ε

Step 4b 1 [r]52 ε

If players want to verify correctness, all information should be revealed, so the

strategy of players is not kept confidential.

The security properties of the proposal [BF83] are summarized in Table 3.29.
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Table 3.28: Costs of the Banary-Furedi drawing protocol
Number of Total length Computational
messages of messages cost

Card drawing 2(n−1)2

n
2(n−1)2

n [r] ε

Step 1 ε

Step 2 1
n(n− 1) 1

n [r](n− 1) ε

Step 2a n− 1 [r](n− 1) ε

Step 2b ε

Step 2c ε

Step 2d ε

Step 3 n−1
n (2n− 3) [r](2n− 3)n−1

n ε

Step 3a n− 1 [r](n− 1) ε

Step 3b ε

Step 3c n− 2 [r](n− 2) ε

Step 3(c)i ε

Step 3(c)ii ε

Step 3(c)iii 1 [r] ε

Step 3d ε

Table 3.29: Security properties of the Banary-Furedi protocol suite

Uniqueness of cards X
Uniform random distribution of cards X
Cheating detection with a very high probability X
Complete confidentiality of cards X
Minimal effect of coalitions
Complete confidentiality of strategy
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3.3.4 Cryptoprotocols: subscription to a public key, secret

blocking and multi-player mental poker game (Yung)

In [Yun85], a TTP-free mental poker protocol is presented. More than two players

can participate in this protocol. When a player wants a card, she requests it from the

rest of players. The rest of players fix a card ordering, i.e. a permutation of 52 values.

Every player, independently, chooses at random a set of numbers that represent a deck

of cards. The order in the set is the value of the card. These numbers are coded with

a one-way function and the result is public. Note that this step is a bit commitment.

Next, she encrypts those numbers that represent a card that does not belong to her

hand. She makes these cryptograms public. The player who asked for a card runs

the oblivious transfer protocol with these cryptograms, and with the rest of players.

Finally, she obtains a set of numbers that represent the free cards, i.e. those cards

that do not belong to any player. She runs another oblivious transfer protocol using

this information and she gets the value of a free card.

This protocol also uses a threshold scheme, which increases security. The threshold

scheme is similar to the one presented in [Sha79]. Generally speaking, this protocol is

rather complex and has some similarity to Rabin’s oblivious transfer protocol [Rab81].

Let us assume that P1 and P2 run the oblivious transfer protocol (Protocol 20).

P2 can factor n, i.e. obtain the secret, with probability 1/2. P1 cannot be sure

whether she transferred the secret to P2 successfully.

Protocol 20 (Oblivious transfer)

1. P1 Chooses two large prime numbers p and q;

2. P1 Computes n = pq;

3. P1 Sends n to P2;

4. P2 Selects a random x;

5. P2 Computes z = x2 mod n;

6. P2 Sends z to P1;
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7. P1 Computes the four square roots of z = {x,−x, y,−y};

8. P1 chooses at random one of them and sends it to P2;

9. If P2 receives y or −y, she gets the secret (see Lemma 1);

10. If P2 receives x or −x, she gets nothing.

Let us assume that one player Pi wants to divide a secret m into k parts using

Procedure 11.

Procedure 11 (Embedding(m, k))

1. Choose at random k pairs of prime numbers, P = {(p1, q1), . . . , (pk, qk)};

2. Construct a polynomial of degree k: P mod R, where R is a large prime R >

(piqi) for 1 ≤ i ≤ k; to that end, use k + 1 interpolation points, (pi, qi) ∈ P and

(0, m);

3. Construct the set E = {R, n1, . . . , nk, (u, v)}, where ni = piqi, 1 ≤ i ≤ k and

(u, v) is a point v = P (u); u is chosen at random, so that u 6= 0; the set E is

called the embedding of m;

4. Return E.

Let us assume that the protocols are run by n players, {P1, . . . ,Pn}.
Before the game takes place the players run the initialization protocol (Proto-

col 21).

Protocol 21 (Initialization)

1. Players choose a one-way function f ;

2. Players choose the size of the embedding, let us assume that is k.

The deck of cards is shuffled when a player wants a card of the deck. In Protocol 22

let us assume that Pt wants a new card. We need the following notation in Protocol 22:
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• Di is the set of 52 values chosen by Pi (these values are mapped to cards in the

deck);

• Hi is the set of cards owned by playeri, i.e. Pi’s hand;

• Gi is the set of cards not owned by Pi, i.e. that are not in Pi’s hand, Gi =

Di −Hi; let ζ = |Gi|, 1 ≤ ζ ≤ 52.

Protocol 22 (Card shuffling)

1. Players in {P1, . . . ,Pt−1,Pt+1, . . . ,Pn} go through the following steps:

(a) Choose a permutation πg of 52 elements;

(b) Embed the 52 values of πg using Procedure 11 and obtain G; players are

now committed to permutation πg and cannot change it;

(c) Send G to Pt;

2. Each player Pi in {P1, . . . ,Pt−1,Pt+1, . . . ,Pn} does:

(a) Choose 52 values at random Di = {xi,1, . . . , xi,52}, and map each value to

a card in the deck;

(b) Compute the set Fi = {fi,1, . . . , fi,52}, where fi,j = f(xi,j) and xi,j ∈ Di;

(c) Permute the order of the elements in Fi using πg to get

F ′
i = {fi,πg(1), . . . , fi,πg(52)};

(d) Send F ′
i to Pt (F ′

i represents the deck of cards face down); Pi is committed

to these values and their order;

(e) Pi embeds each card xi,j in Gi using Procedure 11, and obtains Ei =

{ei,1, . . . , ei,ζ}, ζ = |Gi|;

(f) Choose a permutation πi and permute the order of the elements in Ei to

get E ′
i = {ei,πi(1), . . . , ei,πi(ζ)};

(g) Send E ′
i to Pt;
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3. Pt tries to open the cards in {E ′
1, . . . , E

′
t−1, E

′
t+1, . . . , E

′
n} using Protocol 20

(Oblivious Transfer) with the rest of players {P1, . . . ,Pt−1,Pt+1, . . . ,Pn};

(a) For every embedding value ei,j in E ′
i = {ei,πi(1), . . . , ei,πi(ζ)}, Pt does:

i. For every ni,j,l in ei,j = {Ri,j, ni,j,1, . . . , ni,j,k, (ui,j, vi,j)}, ei,j ∈ Ei, Pt

Pt and Pi run Protocol 20 with ni,j,l;

ii. If Pt can factor k of the ni,j,l values then she has enough information

to open the embedding and get a value xi,j;

(b) Let us assume that Pt has opened s values xi,j, and Ti is the set of xi,j

values known by Pt; now Pt computes Ti = {yi,1, . . . , yi,s}, where yi,j =

f(xi,j) and xi,j ∈ Ti; Ti is a subset of Fi (see step 2e) and also Ti is a

subset of cards that are not in Pi’s hand, Hi; Pt knows the xi,j values but

she does not know the card value associated to xi,j;

(c) Pt computes Ci = {ci,1, . . . , ci,s} with Ti = {yi,1, . . . , yi,s} and F ′
i =

{fi,πg(1), . . . , fi,πg(52)}, where ∀yi,j ∈ Ti ∃!fi,πg(j) ∈ F ′
i so that yi,j ≡ fi,πg(j)

and ci,j = πg(j).

4. Pt computes the free cards, Ct = C1

⋂
C2 . . . Ct−1

⋂
Ct+1 . . . Cn.

At this stage, only Pt and one of the remaining players interact to draw one card.

Let us assume that Pt interacts with Pi in Protocol 23.

Protocol 23 (Card drawing)

1. Pi randomly chooses 52 new values χj; each value is mapped to one card of the

deck, ∆ = {χ1, . . . , χ52};

2. Pi computes the set ∆ = {δ1, . . . , δ52}, where δj = f(χj), χj ∈ ∆;

3. Pi sends ∆ to Pt;

4. For each χj in Gi player Pi does:

(a) Embed χj in Gi with Procedure 11 to obtain λj.
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5. Pi computes the set Λ = {λ1, . . . , λζ};

6. Pi uses the permutation πi (see Step 2f of Protocol 22) and permutes the order

of elements in Λ to get Λ′ = {λπi(1), . . . , λπi(ζ)};

7. Pi sends Λ′ to Pt;

8. Pt chooses a free card; she knows which card in the permutation πi is free

because she has computed the set Ci and knows the relation between Ci and πg;

let us assume that she chooses λl;

9. For each nl,j in λl = {Rl, nl,1, . . . , nl,k, (ul, vl)} Pt and Pi do:

(a) Run Protocol 20 with nl,j in λl;

10. If Pt gets all k factors of the embedding of the free card, she recovers χ and

computes δl ≡ f(χ); she looks for δl in ∆ and the index of δl in ∆ (call it w) is

the value of the card she has drawn.

Protocol analysis

The above protocol description allows us to analyze the number of messages, the total

length of messages and the computational cost of proposal [Yun85].

The number of messages, the total length of the messages and the computational

cost of Protocol 22 are presented in Table 3.30.

A step can be computed by one player, a group of players or all players. We have

counted the cost of one step as the number of players times the operations in the

step. Thus, the average cost per player of a protocol can be calculated by dividing

the total cost by n, where n is the number of players.

Remember that ζ in Table 3.30 is the number of cards not owned by any player

Pi. It is difficult to estimate ζ; we only know that 1 ≤ ζ ≤ 52.

Table 3.31 shows the costs of the drawing protocol (Protocol 23).

The oblivious transfer protocol (Protocol 20) is used in the shuffling and drawing

protocols. Table 3.32 shows the cost of Protocol 20.
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Table 3.30: Costs of Yung’s shuffling protocol

Number of Total length Computational
messages of messages cost

Card shuffling 3(n− 1)(1 + r) (n− 1)[p](k + 3)(52 + ζ)+ (n− 1)kρ(2k − 1)(52 + ζ)+
+(n− 1)[p](3kζ)+ +(n− 1)kζ(6ρ + 2ξ)
+(n− 1)[H(m)]52

Step 1 (n− 1) (n− 1)(k + 3)[p]52 52kρ(2k − 1)
Step 1a ε

Step 1b 52kρ(2k − 1)
Step 1c 1 52[p](k + 3) ε

Step 2 2(n− 1) (n− 1)[H(m)]52+ ζρk(k − 1)
+(n− 1)ζ[p](k + 3)

Step 2a ε

Step 2b ε

Step 2c ε

Step 2d 1 [H(m)]52 ε

Step 2e ζρk(2k − 1)
Step 2f ε

Step 2g 1 ζ[p](k + 3) ε

Step 3 3ζ(n− 1) 3ζ(n− 1)k[p] ζk(n− 1)(6ρ + 2ξ)
Step 3a 3ζ ζk[p]3 ζk(6ρ + 2ξ)

Step 3(a)i 3 k3[p] k(6ρ + 2ξ)
Step 3(a)ii ε

Step 3b ε

Step 3c ε

Step 4 ε

In Step 2 of Procedure 11 we have assumed that Lagrange interpolation is used.

The cost shown in Table 3.33 is based on this assumption.

Table 3.34 summarizes the security properties of proposal [Yun85].

Furthermore, this proposal allow player drop-out. If a player Pj quits during a

game the rest of players can go on playing. If Pj leaves the game before shuffling,

the cards in Pj’s hand become free cards and are available to the rest of players. If

Pj leaves the game after the cards have been shuffled, any of the remaining players

can run the drawing protocol. The cards in Pj’s hand are not available, so the player
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Table 3.31: Costs of Yung’s drawing protocol
Number of Total length Computational
messages of messages cost

Card drawing 2 + 3k 52[H(m)] + [p](ζ(k + 3) + 3k) k(ρ(ζ(2k − 1) + 6) + 2ξ)
Step 1 ε

Step 2 ε

Step 3 1 52[H(m)] ε

Step 4 ζ(kρ(2k − 1))
Step 4a kρ(2k − 1)
Step 5 ε

Step 6 ε

Step 7 1 ζ[p](k + 3) ε

Step 8 ε

Step 9 k3 3k[p] k(6ρ + 2ξ)
Step 9a 3 3[p] 6ρ + 2ξ

Step 10 ε

who wanted a card does not obtain a card in Pj’s hand.

This protocol is quite complex and is insecure against player coalitions. If some

player Pi sends πg to Pt then she can choose the best free cards. Pi and Pt can

discover some cards of Pj’s hand. In practice, this protocol is for two players only.

Also, at the end of the game players must show all information, so that their strategy

is revealed.
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Table 3.32: Costs of the oblivious transfer protocol
Number of Total length Computational
messages of messages cost

Protocol 20 3 3[p] 6ρ + 2ξ

Step 1 ε

Step 2 ρ

Step 3 1 [p] ε

Step 4 ε

Step 5 ρ

Step 6 1 [p] ε

Step 7 (2ξ + 4ρ)
Step 8 1 [p] ε

Step 9 ε

Step 10 ε

Table 3.33: Costs of the embedding procedure
Computational

cost
Procedure 11 kρ(2k − 1)

Step 1 ε

Step 2 2k(k − 1)ρ
Step 3 kρ

Step 4 ε

Table 3.34: Security properties of Yung’s protocol suite

Uniqueness of cards X
Uniform random distribution of cards X
Cheating detection with a very high probability X
Complete confidentiality of cards X
Minimal effect of coalitions
Complete confidentiality of strategy
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3.3.5 A secure poker protocol that minimizes the effect of

player coalitions (Crépeau)

[Cré85] is an important contribution to mental poker protocols, because the security

requirements of mental poker were first identified and listed in this paper. Also, the

first mental poker protocol secure against coalitions of players was presented.

Assume that P1, . . . ,Pn want to play poker. Each card of the deck is mapped to

a value of the set D = {1, 2, . . . , 52}. Each Pi picks a permutation πi of {1, 2, . . . , 52}
and keeps it secret. The shuffled deck is πn◦· · ·◦π2◦π1, i.e. the functional composition

of these permutations. To get a card, player Pi picks a value v in D that nobody

else has picked before, and she gets her card by computing πn · · ·π2 π1(v). But, since

permutations are kept secret, the player must use a special trick in order to get her

value. Thus, Pi gets the values k′ = πi−1(· · · (π2 ◦ (π1(v)))) in the clear. Pi secretly

computes v′′ = πi(v
′) and she uses a hiding protocol to compute πn · · ·πi+1(v

′′) in

such a way that rest of players do not know the value of Pi’s card.

Let us assume that P1, . . . ,Pn want to play poker, and use the first option of the

protocol based in [RSA77] and [BG85].

Each player must specify some game parameters before the beginning of the game.

This is done with the Protocol 24.

Protocol 24 (Initialization)

1. Each player Pi does the following:

(a) Pi selects two larges prime numbers p and q;

(b) Pi computes n = pq and chooses a key pair (e, d) [RSA77];

(c) Pi defines the following sets:

i. the value space of Pi is Vi = {1, . . . , 52};

ii. The seed space of Pi is Si ∈ Z∗
n;

iii. The unlocking key space of Pi is Ki ∈ Z∗
n;

iv. The mask space of Pi is Mi ∈ Z∗
n;

v. The ambiguous value space of Pi is Ai ∈ Z∗
n;
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vi. The coded message space of Pi is Ci ∈ V × S;

(d) Pi defines the functions she uses in the protocol;

i. f(x, z) denotes the z least significant bits of x;

ii. Locking function Li: Li(v, s) = (f(s, 6)⊕v, (se mod n)) = c = (cv, cs)

where v ∈ Vi, s ∈ Si and c ∈ Ci;

iii. Unlocking function Ui : Ui(c = (cv, cs)) = ((cs)
d mod n), where c ∈

Ci;

iv. Hiding function Hi: Hi(m, c = (cv, cs)) = (csm
e) mod n, where m ∈

Mi, c ∈ Ci and s ∈ Si;

v. Revealing function Ri: Ri(m, c = (cv, cs), k) = f((m−1k mod n), 6)⊕
(cv), where m ∈ Mi, c ∈ Ci and k ∈ Ki;

vi. Public one-way function (Blum-Goldwasser [BG85]):

O(m) = BG(m, s), where m ∈ Mi and s ∈ Si.

Every player Pi runs Protocol 25 in order to shuffle the deck of cards.

Pi chooses a permutation πi of 52 values. For each value vi in {1, . . . , 52} she

computes πi(vi) and locks the result using function Li. In other words, every πi(vi)

is encrypted so that Pi is committed to πi. The encrypted values are made public

as {li,1, . . . , li,52}. If a player needs the permutation of a value v with πi in order to

compute her card she knows that li,v is the encryption of πi(v).

Protocol 25 (Card shuffling)

1. Each player Pi in {P1, . . . ,Pn} does:

(a) Pi picks at random a permutation πi of 52 values;

(b) Pi sends Li, Hi and Ri;

(c) Pi picks at random {si,1, . . . , si,52} ∈ Si;

(d) For each vj in {1, . . . , 52} Pi computes li,vj
= Li(πi(vj), si,vj

);

(e) Pi publishes {li,1, . . . , li,52}; note that, for every value vj in D, Pi sends

πi(v) in encrypted form.
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When a player, for instance Pi, wants a card all players run Protocol 26.

Protocol 26 (Card drawing)

1. Pi chooses at random v0 ∈ D and marks it as used;

2. Pi sends v0 to P1;

3. For Pj in {P1, . . . ,Pi−1} do:

(a) Pj receives vj−1 from the previous player;

(b) Pj computes vj = πj(vj−1);

(c) Pj sends vj to Pj+1;

4. Pi secretly computes vi = πi(vi−1);

5. Pi picks mi+1 ∈ Mi+1 and she computes hi+1 = Hi+1(mi+1, li+1,vi
);

6. Pi sends hi+1 to Pi+1;

7. For Pj in {Pi+1, . . . ,Pn} do:

(a) Pj receives hj from Pi;

(b) Pj computes kj = Uj(hj), and sends kj to Pi;

(c) Pi computes vj = Rj(m, li+1,vi
, kj);

(d) If Pj 6= Pn then

i. Pi picks mj+1 ∈ Mj+1 and she computes hj+1 = Hj+1(mj+1, lj+1,vj
);

ii. Pi sends hj+1 to Pj+1;

8. Finally Pi obtains her card.

When the game is finished, all players disclose and prove their πi, thus revealing

all hands. The strategy of players becomes public.

66



Protocol analysis

In this section we present the analysis of Crépeau’s protocol suite.

Table 3.35 shows the number of messages, the total length of messages and the

computational cost of the shuffling protocol.

Table 3.35: Costs of Crépeau’s shuffling protocol
Number of Total length Computational
messages of messages cost

Card shuffling 2n(n− 1) 52[p](n− 1)n 52nξ

Step 1 2n(n− 1) 52[p](n− 1)n 52nξ

Step 1a ε

Step 1b (n− 1) ε

Step 1c ε

Step 1d 52ξ

Step 1e (n− 1) 52[p](n− 1) ε

Table 3.36 shows the number of messages, the total length of messages and the

computational cost of the drawing protocol.

We have assumed that Pi is in the middle of the set of players, i.e. |P1, . . . ,Pi−1| =
|Pi+1, . . . ,Pn|. Thus, Steps 3 and 7 of Protocol 26 are run by (n − 1)/2 players,

respectively.

Finally, Table 3.37 shows the security properties satisfied by the proposal [Cré85].

In [Cré85], like in [GM82], a player Pi might draw a card which is in another

player’s hand or even draw more than one card from the deck. This cheating is

detected when the game is over and players reveal their secret information. The

verification implies revealing the strategy of players.
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Table 3.36: Costs of Crépeau’s drawing protocol
Number of Total length Computational
messages of messages cost

Card drawing (n−1
2 )2 + 1 [6](n+1

2 ) + [p](n2−4n+7
4 ) (ρ + ξ)(n2−2n+5

4 )
Step 1 ε

Step 2 1 [6] ε

Step 3
(

n−1
2

)
n−1

2 [6] ε

Step 3a ε

Step 3b ε

Step 3c 1 [6] ε

Step 4 ε

Step 5 (ξ + ρ)
Step 6 1 [p] ε

Step 7 (n−1
2 )(n−3

2 ) (n−1
2 )(n−3

2 )[p] (n−1
2 )((ξ + ρ) + (n−3

2 )(ξ + ρ))
Step 7a ε

Step 7b ξ

Step 7c ρ

Step 7d n−1
2 − 1 (n−1

2 − 1)[p] (n−1
2 − 1)(ρ + ξ)

Step 7(d)i (ρ + ξ)
Step 7(d)ii 1 [p] ε

Step 8 ε

Table 3.37: Security properties of Crépeau’s protocol suite

Uniqueness of cards X
Uniform random distribution of cards X
Cheating detection with a very high probability X
Complete confidentiality of cards X
Minimal effect of coalitions X
Complete confidentiality of strategy
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3.3.6 A zero-knowledge poker protocol that achieves confi-

dentiality of the players’ strategy or how to achieve an

electronic poker face (Crépeau)

[Cré86] is the first mental poker protocol that satisfies the security requirements laid

out in [Cré85]. The protocol keeps secret the strategy of players and is an extension

of [Cré85].

In [Cré85] a player could take cards that are in the hand of another player, or

still in the deck. For that reason, at the end of the game players had to reveal their

permutations for correctness to be verified. In [Cré86] a deck of cards and a shuffled

deck of cards are defined as in [Cré85]. When a player Pi picks a card in [Cré86] she

follows the same steps as in [Cré85] from P1 to Pi−1. Nevertheless, Pi runs the all-or-

nothing disclosure of secrets (ANDOS) [BCR86] from Pi+1 to Pn to obtain the result

of the permutations. Furthermore, the player picks also some random information

linked with her card. Players who wish to open their hands at the end of a game

reveal this information. If nobody is cheating, the information revealed at the end of

the game should match the information initially picked.

Let us recall the ANDOS protocol[BCR86]. Without loss of generality let us

assume that the protocol is run by P1 and P2, where P1 is the seller of secrets and

P2 is the buyer.

Let X = {x1, . . . , xm} be a set of secrets, where each secret xi is r bits long, i.e.

xi = {xi,1, . . . , xi,r}. P1 and P2 use Protocol 27 in order to exchange a secret.

P1 obtain the initial parameters that are needed to run the ANDOS protocol using

Procedure 12.

Procedure 12 (ANDOS: init)

1. Choose p and q, two large prime numbers;

2. Compute n = pq;

3. Choose y ∈ Qn such that
(

y
n

)
= +1;

4. Return y, p, q and n.
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P1 uses Procedure 13 to encrypt her secrets. P2 computes one question for every

secret using Procedure 14. P2 uses Protocol 27 to prove to P1 that questions are well

constructed. Further details on the ANDOS protocol can be found in [BCR86].

Protocol 27 (ZKP (X = {x1, . . . , xm},Z = {z1, . . . , zm},Q = {q1, . . . , qm},π))

1. P1 and P2 agree on a security parameter s;

2. For i = 1 to s, P2 does:

(a) Use Procedure 14 with Z and y, and obtain Qi, ∆i, Ai and πi;

(b) Send Qi and keep secret ∆i, Ai and πi;

3. P1 selects a random subset S ⊆ {1, . . . , s} and sends it to P2 as a challenge;

4. For i = 1 to s P1 and P2 do:

(a) If i ∈ S do:

i. P2 sends ∆i, Ai and πi to P1;

ii. P1 uses Procedure 15 with Z, Qi, ∆i, Ai and πi in order to verify

whether Qi has been computed properly;

(b) If i 6∈ S do:

i. P2 computes π′
i = π−1

i ◦ π;

ii. P2 uses Procedure 16 with ∆, ∆i, A, Ai, y and π′
i, and obtains ∆′

i

and A′
i;

iii. P2 sends ∆′
i, A′

i and π′
i to P1;

iv. P1 uses Procedure 15 with Q, Qi, ∆′
i, A′

i and π′
i in order to verify

whether Qi has been computed properly.

The set X contains the secrets. P1 uses Procedure 13 in order to encrypt her

secrets. The cryptosystem used is probabilistic, like the one presented in [GM82].

Procedure 13 (X = {x1, . . . , xm})
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1. For each xi in X do:

(a) For each bit xi,j of xi = {xi,1, . . . , xi,r} do:

i. Choose at random a value ti,j, where ti,j ∈ Z∗
m;

ii. Compute zi,j = t2i,jy
xi,j ;

(b) Form the set ti = {ti,1, . . . , ti,r};

(c) Form the set zi = {zi,1, . . . , zi,r};

2. Form the set T = {t1, . . . , tm};

3. Form the set Z = {z1, . . . , zm};

4. Return T and Z.

P2 cannot request a secret in the clear because her interest would be revealed.

Thus, she uses Procedure 14 in order to compute a question for every secret. Questions

are encrypted so they do not reveal the secret they are associated to. When P2 wants

a secret she asks a question to P1, who gets no information on which secret P2 is

after.

Procedure 14 (Z = {z1,1, . . . , zm,r},y)

1. Choose at random a permutation π of {1, . . . ,m} elements;

2. Obtain at random the set ∆ = {δ1,1, . . . , δm,r}, where δk,j in Z∗
m, k ∈ {1, . . . ,m}

and j ∈ {1, . . . , r};

3. Obtain at random the set A = {a1,1, . . . , am,r}, where ak,j ∈ {0, 1}, k ∈
{1, . . . ,m} and j ∈ {1, . . . , r};

4. Compute Q = {q1,1, . . . , qm,r}, where qk,j = zi,jδ
2
k,jy

ak,j , k ∈ {1, . . . ,m}, j ∈
{1, . . . , r} and i = π−1(k);

5. Return Q, ∆, A and π.
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P2 may try to cheat so that one question reveals more than one secret. P1 must

be sure that questions are fair and one question only reveals one secret. The verifi-

cation in Protocol 27 opens some questions. P1 verifies the opened questions using

Procedure 15.

Procedure 15 (Z,Q,∆,A,π)

1. For each zi,j in Z = {z1,1, . . . , zm,r}, where Q = {q1,1, . . . , qm,r},
∆ = {δ1,1, . . . , δm,r} and A = {a1,1, . . . , am,r} do:

(a) Compute q′i,j = zi,jδ
2
i,jy

ai,j ;

(b) Verify q′i,j
?
= qπ(i),j;

Player P2 uses Procedure 16 to compute the sets A′
i and ∆′

i. These sets are used

when P1 verifies a set of questions using the Procedure 15.

Procedure 16 (∆, ∆i, A,Ai, y, π)

1. For each δj,k in ∆, where ∆ = {δ1,1, . . . , δm,r},∆i = {δi,1,1, . . . , δi,m,r},A =

{a1,1, . . . , am,r},Ai = {ai,1,1, . . . , ai,m,r} do:

(a) Compute a′i,j,k = aj,k ⊗ ai,π(j),k;

(b) If a′i,j,k ≡ ai,j ≡ 1 compute δ′i,j,k = δi,π(j),k(yδi,j)
−1;

(c) Else compute δ′i,j,k = δi,π(j),k(δi,j)
−1;

2. Form the set A′
i = {a′i,1,1, . . . , a

′
i,m,r};

3. Form the set ∆′
i = {δ′i,1,1, . . . , δ

′
i,m,r};

4. Return A′
i and ∆′

i.

P2 and P1 run Protocol 28 when P2 wants a secret from P1. P2 asks to P1 the

question she wants. P1 computes the Jacobi symbol for each element in the question,

and tells to P2 whether the element is a quadratic residue. With this information P2

can compute the secret.
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Protocol 28 (Get a secret (i,m,π,Q = {q1,1, . . . , qm,r},A = {a1,1, . . . , am,r}))

1. P2 computes k = π−1(i);

2. P2 sends k to P1;

3. For j = 1 to r, P1 does:

(a) Compute βj =
( qk,j

n

)
, where qk,j ∈ Q;

(b) If βj ≡ +1 set σj = 0;

(c) If βj ≡ −1 set σj = 1;

(d) Compute τj, where τ 2
j = qk,jy

σj ;

4. P1 forms the set S = {σ1, . . . , σr};

5. P1 forms the set T = {τ1, . . . , τr};

6. P1 sends S and T to P2;

7. For j = 1 to r, P2 verifies τ 2
j ≡ qk,jy

σj ;

8. P2 computes the secret c with A and S.

Each player Pi in {P1, . . . ,Pn} runs Protocol 29 in order to shuffle the deck of

cards. Pi chooses a permutation of 52 elements. She computes and publishes the

encryption of each element in the permutation. All players know that zi,j is the en-

crypted permutation of j. Each of the remaining players asks a question for each

cryptogram. Pi does not know the relation between the cryptograms and the ques-

tions. Each player proves in zero-knowledge to Pi that her questions are fair. This is

done using Protocol 27.

Protocol 29 (Card shuffling)

1. Each player Pi in {P1, . . . ,Pn} does:

(a) Run Procedure 12 and obtain yi, pi, qi and ni;
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(b) Choose a permutation πi of 52 elements;

(c) Use Procedure 13 with πi = {x1, . . . , x52}, where xi ∈ {1, . . . , 52} and

obtain Ti = {ti,1, . . . , ti,52} and Zi = {zi,1, . . . , zi,52};

(d) For each Pj in {P1, . . . ,Pi−1,Pi+1, . . . ,Pn} do:

i. Pi sends Zi to Pj;

ii. Pj uses Procedure 14 with Zi and yi, and obtains Qi,j, ∆i,j, Ai,j and

πi,j; the set Qi,j contains one question for each secret of Pi, i.e. for

Pi’s permutation;

iii. Pj sends Qi,j to Pi and keeps secret ∆i,j, Ai,j and πi,j;

iv. Pi and Pj run Protocol 27 with Zi, Qi,j, ∆i,j and πi,j; with Protocol 27,

Pj proves to Pi that all questions are fair with probability 1− (1/2)s,

where s is a security parameter;

(e) Pi forms the set Pi = {πi,1, . . . , πi,i−1, πi,i+1, . . . , πn}

Player Pi runs Protocol 30 with the rest of players when she wants a card. She

obtains the permutations in the clear from P1 to Pi−1. Pi obtains the rest of permu-

tations, i.e. those from Pi+1 to Pn, using Protocol 28 (ANDOS get a secret).

Protocol 30 (Card drawing (Pi, Qi, Ai))

1. Pi picks a free value k0 in {1, . . . , 52} and marks it as used;

2. Pi computes c0 = k0;

3. For j = 1 to i− 1, Pi and Pj do:

(a) Pi sends cj−1 to Pj;

(b) Pj computes cj = πj(cj−1);

(c) Pj sends cj to Pi;

4. Pi computes ci = πi(ci−1);

5. For j = i + 1 to n, Pi and Pj do:
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(a) Pi and Pj run Protocol 28 with (cj−1,52, πj,i, Qj,i, Aj,i), where πi,j ∈ Pi;

in this way, Pi obtains cj;

6. At the end of the previous iterations, Pi has obtained her card cn.

Protocol analysis

We present the cost of shuffling and drawing using the proposal [Cré86].

Table 3.38 shows the number of messages, the total length of the messages and

the computational cost of Protocol 29.

Table 3.38: Costs of Crépeau’s shuffling protocol

Number of Total length Computational
messages of messages cost

Card shuffling (n2 − n)(2s + 3) (n2 − n)s52[r]([p] + 1)+ nρ[r](n− 1)(299s + 130)+
+(n2 − n)104[r][p]+ +nρ[r]78 + nρ + n(2ξ)

+(n2 − n)s[r]105
2

Step 1 (n2 − n)(2s + 3) (n2 − n)s52[r]([p] + 1)+ nρ[r](n− 1)(299s + 130)+
+(n2 − n)104[r][p]+ +nρ[r]78 + nρ + n(2ξ)

+(n2 − n)s[r]105
2

Step 1a 2ξ + ρ

Step 1b ε

Step 1c 52[r]ρ(3/2)
Step 1d (n− 1)(2s + 3) (n− 1)s52[r]([p] + 1)+ (n− 1)[r]ρ(299s + 130)

+(n− 1)104[r][p]+
+(n− 1)s[r]105

2

Step 1(d)i 1 52[r][p] ε

Step 1(d)ii 52[r]ρ(5/2)
Step 1(d)iii 1 52[r][p] ε

Step 1(d)iv (2s + 1) s52[r](2[p] + 1)+ s52[r]ρ(23/4)
+s[r](105

2 )
Step 1e ε

Table 3.39 shows the cost of the Protocol 3.39.

Next, we can see the cost of the procedures and protocols used in the suffling and

drawing protocols. We have assumed that Steps 4a and 4b of Protocol 27 have the
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Table 3.39: Costs of Crépeau’s drawing protocol
Number of Total length Computational
messages of messages cost

Card drawing 2(n− 1) n−1
2 ([r]([p] + 1) + 3[r]) n−1

2 ([r](6ρ + 4ξ))
Step 1 ε

Step 2 ε

Step 3 (n−1
2 )2 (n−1

2 )2[r] ε

Step 3a 1 [r] ε

Step 3b ε

Step 3c 1 [r] ε

Step 4 ε

Step 5 (n−1
2 )2 n−1

2 ([r]([p] + 1) + [r]) (n−1
2 )[r](6ρ + 4ξ)

Step 5a 2 [r]([p] + 1) + [r] [r](6ρ + 4ξ)
Step 6 ε

same probability. That is why in Table 3.40 their costs are multiplied by 1
2
.

In Steps 3d and 7 of Protocol 28 we may compute an additional product depending

on the value of a bit. If the bit is 1 we compute the product, otherwise we do not

compute it. We assume the bit can be 1 or 0 wit a probability 1/2. Thus, ρ is

multiplied by 1/2. In the same Step 3d a square root is computed. Like in Step 2a

of Protocol 17, we assume that computing a square root has a cost of 2ξ + 4ρ.

In Table 3.43 m denotes the cardinal of the input set, in our case m = 52. In

Step 1(a)ii of Procedure 13 an additional product is computed only if a bit is 1, which

is assumed to happen with probability 1/2.

Again, in Step 4 of Procedure 14 we compute an additional product with proba-

bility 1/2 (see Table 3.44).

Table 3.45 shows the cost of Procedure 15. Again, in Step 1a of Procedure 15 we

compute a product if a bit is 1, which is assumed to happen with probability 1/2.

Steps 1b and 1c of Procedure 16 are run with the same probability, namely 1/2

(see Table 3.46).

We summarize the security properties of the proposal [Cré86] in Table 3.47.

In conclusion, this protocol suite is a complete solution to the problem presented in

[Cré85]. The negative side is the great computational cost incurred, which is pointed

76



Table 3.40: Costs of Protocol 27
Number of Total length Computational
messages of messages cost

Protocol 27 2s + 1 sm([r](2[p] + 1) + [r]) + (1/2)s[r] sm[r]ρ(23/4)
Step 1 ε

Step 2 s sm[r][p] sm[r]ρ(5/2))
Step 2a m[r]ρ(5/2)
Step 2b 1 m[r][p] ε

Step 3 1 (1/2)s[r] ε

Step 4 s s(m[r][p] + m[r][1] + m[r]) sm[r]ρ(13/4)
Step 4a (1/2)1 (1/2)(m[r][p] + m[r][1] + m[r]) (1/2)(m[r]ρ(5/2))

Step 4(a)i 1 m[r][p] + m[r][1] + m[r] ε

Step 4(a)ii m[r]ρ(5/2)
Step 4b (1/2)1 (1/2)(m[r][p] + m[r][1] + m[r]) (1/2)(m[r]ρ4)

Step 4(b)i ε

Step 4(b)ii m[r]ρ(3/2)
Step 4(b)iii 1 (m[r][p] + m[r][1] + m[r]) ε

Step 4(b)iv m[r]ρ(5/2)

out in [Edw94].
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Table 3.41: Costs of Protocol 28
Number of Total length Computational
messages of messages cost

Protocol 28 2 [r]([p] + 1) + [r] [r](6ρ + 4ξ)
Step 1 ε

Step 2 ε

Step 3 [r](2ξ + (1/2)ρ + 2ξ + 4ρ)
Step 3a 2ξ

Step 3b ε

Step 3c ε

Step 3d (1/2)ρ + 2ξ + 4ρ

Step 4 ε

Step 5 ε

Step 6 1 [r][1] + [r][p] ε

Step 7 [r](ρ + (1/2)ρ)
Step 8 ε

Table 3.42: Costs of Procedure 12
Computational

cost
Procedure 12 2ξ + ρ

Step 1 ε

Step 2 ρ

Step 3 2ξ

Step 4 ε
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Table 3.43: Costs of Procedure 13
Computational

cost
Procedure 13 mrρ(3/2)

Step 1 mrρ(3/2)
Step 1a r(ρ + (1/2)ρ)

Step 1(a)i ε

Step 1(a)ii ρ + (1/2)ρ
Step 1b ε

Step 1c ε

Step 2 ε

Step 3 ε

Step 4 ε

Table 3.44: Costs of Procedure 14
Computational

cost
Procedure 14 mrρ(5/2)

Step 1 ε

Step 2 ε

Step 3 ε

Step 4 mr(ρ + ρ + (1/2)ρ)
Step 5 ε

Table 3.45: Costs of Procedure 15
Computational

cost
Procedure 15 mrρ(5/2)

Step 1 mrρ(5/2)
Step 1a (ρ + ρ + (1/2)ρ)
Step 1b ε
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Table 3.46: Costs of Procedure 16
Computational

cost
Procedure 16 mrρ(3/2)

Step 1 mrρ(3/2)
Step 1a ε

Step 1b (1/2)2ρ

Step 1c (1/2)ρ
Step 2 ε

Step 3 ε

Step 4 ε

Table 3.47: Security properties of Crépeau’s 1986 protocol

Uniqueness of cards X
Uniform random distribution of cards X
Cheating detection with a very high probability X
Complete confidentiality of cards X
Minimal effect of coalitions X
Complete confidentiality of strategy X
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3.3.7 General public key cryptosystems and Mental Poker

Protocols (Kurosawa-Katayama-Ogata-Tsujii)

The mental poker protocol presented in [KKOT90] is a nice solution, because it fulfills

all properties described in [Cré85].This proposal introduces a new public key residue

cryptosystem, which is an additive homomorphism. The homomorphic property is

used when the cards are shuffled. Before the game begins, every player computes a

key pair for the cryptosystem, and her public key is sent to rest of players. A face-up

card of value k is defined as a sum of n values which add to k modulo 52. n is the

number of players, i.e. in every card sum there is one term per player. When a card

k is face down every different summed term is encrypted with a different player’s

public key. In this way, every player can decrypt only a part of the card. Players

shuffle the deck in turn. For every card, players compute n values such that they are

zero modulo 52. Each summed term is encrypted using the public key of a different

player. Each cryptogram is operated with the cryptogram of the card that has been

obtained with the same public key. Thus, the order of cards is permuted. When a

player wants a card, every other player decrypts her respective term in the card sum.

Next, a detailed description of the protocol is presented.

Procedure 17 (Public key residue cryptosystem: preparation (r))

1. Choose two large prime numbers p and q, and compute n = pq;

2. Compute the following parameters based on r; the plaintext m must be less than

r, 0 ≤ m < r;

(a) If r = 2 then
(

y
p

)
=

(
y
q

)
= −1;

(b) If r is a prime value then:

i. r|(p− 1), and r 6 |(q − 1);

ii. y must be an r − th non-residue, y 6= z53 mod n, z ∈ {1, . . . , n− 1}.

3. Return the public key (n, r, y) and the secret key (p, q).
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Procedure 18 (Public key residue cryptosystem: encryption, P = (n, r, y))

1. Choose a number x at random;

2. Compute C = EP (m,x) = ymxr mod n;

3. Return C and x.

Procedure 19 (Public key residue cryptosystem: decryption. S = (p, q))

1. For 0 ≤ j < r, compare

C(p−1)/r mod p
?
=

(
y(p−1)/r

)j
mod p

The above expression is satisfied when j = m, so the message in the clear is j.

2. Return j.

Public key residue cryptosystem: homomorphic property : The cryptosys-

tem is additive homomorphic.

1. EP (m + n mod r) = EP (m)EP (n) mod n

EP (m) = ymxr mod n

EP (n) = ynzr mod n

EP (m + n) = EP (m)EP (n) mod n

= ymxrynxr mod n

= ym+n(xz)r mod n

EP (m + n)(p−1)/r =
(
ym+n(xz)r

)(p−1)/r
mod p

=
(
ym+n

)(p−1)/r
((xz)r)(p−1)/r mod p

=
(
ym+n

)(p−1)/r
((xz))(p−1) mod p

=
(
ym+n

)(p−1)/r
mod p(

ym+n
)(p−1)/r

mod p
?
=

(
y(p−1)/r

)j
mod p
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Let us assume that the protocols are run by n players, {P1, . . . ,Pn}.
The first stage is to run Procotol 31 in order to compute a key pair for each player.

Protocol 31 (Preparation)

1. Each Pi in {P1, . . . ,Pn} does:

(a) Use Procedure 17 and obtain a key pair, where Si = (pi, qi) is the secret

key and Pi = (ni, yi, ri) is the public key;

(b) Write Pi on the public board.

All players run Protocol 32 in order to shuffle the deck of cards.

Protocol 32 (Card shuffling)

1. P1 uses Procedure 20 and obtains the deck R of face-up cards;

2. P1 writes R on the public board;

3. The rest of players verify the deck R of face-up cards;

4. P1 uses Procedure 21 and obtains the deck of face-down cards, C0, and the

random values X that have been used;

5. P1 writes C0 and X on the public board;

6. Each of the remaining players, {P2, . . . ,Pn}, uses Procedure 22 with R, X,

and C0 in order to verify whether C0 is well computed;

7. For i = 1 to n do:

(a) Pi chooses at random the set Si = {s1,0, . . . , sn,51}, where (
∑n

j=1 sj,k) mod

52 = 0,∀k ∈ {0, . . . , 51};

(b) Pi gets a permutation πi of 52 elements;

(c) Pi uses Procedure 23 with Ci−1, πi and Si, and obtains Ci and Xi;

(d) Pi writes Ci in the public board;
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(e) Pi and the rest of players run Protocol 33 with Ci−1, Ci, πi, Xi and Si.

She proves in zero-knowledge that Ci has been computed properly.

A face-up card is defined as a vector of n elements. Let us assume that we have

a card with value w, where 0 ≤ w ≤ 51. This card is represented by the vector

{sw,1, . . . , sw,n}, where (
∑n

j=1 sw,j) mod 52 = w. A player uses Procedure 20 in order

to compute a deck of face-up cards.

Procedure 20

1. For k = 0 to 51 do:

(a) For j = 1 to n do:

i. Randomly choose rj,k;

(b) Verify k ≡ r1,k + · · ·+ rn,k mod 52;

(c) Form the set rk = {r1,k, . . . , rn,k};

2. Form the set R = {r0, . . . , r51};

3. Return R;

The cards must be face down if we want to shuffle them. Any player can run

Procedure 21 in order to turn the deck of cards face down.

Procedure 21 (R)

1. For k = 0 to 51 do:

(a) For j = 1 to n do:

i. Compute cj,k = EPj
(rj,k, xj,k) = yrj,kxr

j,k, where Pj is the Pj’s public

key, ri,k ∈ R, and xj,k is a random value in [KKOT90] and xj,k ≡ 1

in [KKO97];

(b) Form the set ck = {c1,k, . . . , cn,k};

(c) Form the set xk = {x1,k, . . . , xn,k};
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2. Form the set C = {c0, . . . , c51};

3. Form the set X = {x0, . . . , x51};

4. Return the sets C and X;

A face-down deck of cards C can be verified using Procedure 22. The elements in

R are encrypted with X and the resulting set must be C.

Procedure 22 (R,X, C)

1. For each cj,k in C = {c1,0, . . . , cn,51} do:

(a) Compute c′j,k = EPj
(rj,k, xj,k) = yrj,kxr

j,k, where rj,k ∈ R, xj,k ∈ X and Pj

is the public key of Pj;

(b) Verify cj,k ≡ c′j,k.

The deck of cards is shuffled by all players. Each player does the following two

operations. The first operation is re-encryption or re-masking. An observer should

not know the relation between non-shuffled and shuffled cards. The second operation

is permuting the order of the cards. A player can do these two operations using

Procedure 23.

Procedure 23 (π, C, S)

1. For each sj,k in S = {s1,0, . . . , sn,51}, where k ∈ {0, . . . , 51} and j ∈ {1, . . . , n}
do:

(a) Choose at random a value xj,k;

(b) Compute c′j,k = cj,π(k)EPj
(sj,k, xj,k) = cj,π(k)(y

sj,kxr
j,k);

2. Form the set C ′ = {c′1,0, . . . , c
′
n,51};

3. Form the set X = {x1,0, . . . , xn,51};

4. Return the sets C ′ and X.
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Players can see the deck of cards before and after shuffling. They must make sure

that the deck of cards has been shuffled properly. Thus, whoever shuffles the deck

must prove the correctness of shuffling. This proof is done in zero-knowledge using

Protocol 33.

Let us assume that Pi is the prover, and the rest of players are the verifier.

Protocol 33 (ZKIP for shuffle (C,C ′,π,X,S))

1. All players agree on a security parameter s;

2. For l = 1 to s do:

(a) Pi chooses at random the set Sl = {sl,1,0, . . . , sl,n,51},
where (

∑n
j=1 sl,j,k) mod 52 = 0,∀k ∈ {0, . . . , 51};

(b) Pi gets a permutation πl of 52 elements;

(c) Pi uses Procedure 23 with C, πl and Sl, and obtains Cl and Xl;

(d) Pi writes Cl on the public board;

(e) The rest of players write a random bit e on the public board;

(f) If e ≡ 0 do:

i. Pi writes Sl, πl and Xl on the public board;

ii. The rest of players use Procedure 24 With C, Cl, Sl, Xl and πl in

order to verify whether Cl has been computed properly;

(g) If e ≡ 1 do:

i. Pi computes π′
l = πi ◦ π−1

l ;

ii. Pi uses Procedure 25 with X, S π, Xl and Sl; she obtains the sets S ′
l

and X ′
l ;

iii. Pi writes π′
l, S ′

l and X ′
l on the public board;

iv. The rest of players use Procedure 24 with C, Cl, S ′
l, X ′

l and π′
l in

order to verify whether Cl has been computed properly.

Procedure 24 verifies whether a deck of cards has been shuffled properly.
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Procedure 24 (C, C ′, R, X, π)

1. For each cj,k in C = {c1,0, . . . , cn,51} do:

(a) Compute c′j,k = cj,π(k)EPj
(rj,k, xj,k) = cj,π(k)(y

rj,kxr
j,k), where rj,k ∈ R and

xj,k ∈ X. Pj is the public key of Pj;

(b) Verify c′′j,k ≡ c′j,k, where c′j,k ∈ C ′.

Procedure 25 computes the sets X ′ and S ′. These sets are used when players

verify whether the deck has been shuffled properly.

Procedure 25 (X,S,π,Z,T )

1. For each xj,k in Xx1,0,...,xn,51 do:

(a) Compute x′
j,k = xπ(j),k(zπ(j),k)

−1, where xπ(j),k ∈ X and zπ(j),k ∈ Z;

(b) Compute s′j,k = sπ(j),k − tπ(j),k, where sπ(j),k ∈ S and tπ(j),k ∈ T ;

2. Form the set X ′ = {x′
1,0, . . . , x

′
n,51};

3. Form the set S ′ = {s′1,0, . . . , s
′
n,51};

4. Return the sets X ′ and S ′.

A player Pi uses Protocol 34 with the rest of players whenever Pi wants a new

card.

Protocol 34 (Card drawing)

1. Pi chooses a card cl = c1,l, . . . , cn,l that has not been previously chosen;

2. Pi writes on the public board that she has chosen ci;

3. Each player Pj in {P1, . . . ,Pi−1,Pi+1, . . . ,Pn} does:

(a) Decrypt cj,l using Procedure 19 to obtain tj,l;

(b) Send tj,l to Pi;
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4. Pi decrypts ci,l using Procedure 19 to obtain ti,l;

5. Pi computes her card c =
∑n

j=1 tj,l mod 52.

In the same paper, a second protocol suite is presented. This is a fault-tolerant

version of the first one. In the first suite, a face-up card consists of n values whose

sum is the card value. In the second protocol suite, the card value is divided in shares,

using an (n, k) threshold scheme. There are n players and, if k players are active,

they can open a card. A detailed description of this second protocol suite can be

found in [KKO97].

Protocol analysis

In this section we present the cost of shuffling a deck of cards (Protocol 32) and

drawing a card (Protocol 34) using the proposal [KKOT90].

Table 3.48 shows the cost in number of messages, the total length of the messages

sent, and the computational cost for shuffling a deck of cards.

Table 3.49 shows the cost in number of messages, the total length of the messages

sent, and the computational cost for drawing a card.

Each player Pi proves that she has correctly shuffled the deck of cards using

Procedure 33. The cost of Procedure 33 is given in Table 3.50. We assume that

Steps 2f and 2g have the same probability 1/2; this is why their costs are multiplied

by 1/2

Table 3.51 shows the cost of creating a key-pair using Procedure 3.51.

Table 3.52 shows the computational cost of encrypting a value using the cryp-

tosystem presented in [KKOT90].

In Procedure 19 r is 52, because there are 52 cards. We have assumed that the

average number of iterations of Step 1 of Procedure 19 is 52/2 (see Table 3.53).

It can be seen in Table 3.54 that the cost of Procedure 20 is negligible.

Table 3.55 shows the costs of Procedure 3.55.

The cost of Procedure 22 is shown in Table 3.56.

The computational cost of Procedure 23 is presented in Table 3.57.
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Table 3.48: Costs of Kurosawa-Katayama-Ogata-Tsujii’s shuffling protocol

Number of Total length Computational
messages of messages cost

Card shuffling (n− 1)n(1 + s3)+ (n− 1)n252[p](1 + s(n− 1))+ 104n2ξ(2 + sn)+
+(n− 1)2 +(n− 1)n104[p] + (n− 1)ns+ +156n2ρ+

+(n− 1)n52[r](1 + s(n + 1)) +26n2ρs(4n + 1)
Step 1 ε

Step 2 (n− 1) (n− 1)n52[r] ε

Step 3 ε

Step 4 52n(2ξ + ρ)
Step 5 (n− 1) (n− 1)n104[p] ε

Step 6 (n− 1)52n(2ξ + ρ)
Step 7 n(n− 1)(3s + 1) (n− 1)52[p]n2(1 + s(n− 1))+ 104n2ξ(1 + sn)+

+n(n− 1)(s)+ +26n2ρ104+
+n(n− 1)(s52[r](n + 1)) +26n2ρs(4n + 1)

Step 7a ε

Step 7b ε

Step 7c 104n(ξ + ρ)
Step 7d (n− 1) (n− 1)n52[p] ε

Step 7e 3s(n− 1) s(n− 1)104n[p]+ sn2156ξ+
+s(n− 1)+ +sn26ρ(4n + 1)

s(n− 1)52[r](n + 1)

The computational cost of Procedure 24 is the same of Procedure 23 as we can

see in Table 3.58.

Table 3.59 shows the computational cost of Procedure 25.

The proposal [KKOT90] satisfies all security requirements listed in [Cré85] (see

Table 3.60). However, some authors [Ask05] claim that [KKOT90] and [KKO97]

require a computation time unacceptable in practice.

89



Table 3.49: Costs of Kurosawa-Katayama-Ogata-Tsujii’s drawing protocol
Number of Total length Computational
messages of messages cost

Card drawing 2(n− 1) (n− 1)([r] + [p]) nξ28
Step 1 ε

Step 2 (n− 1) (n− 1)[p] ε

Step 3 (n− 1) (n− 1)[r] (n− 1)28ξ

Step 3a 28ξ

Step 3b 1 [r] ε

Step 4 28ξ

Step 5 ε

Table 3.50: Costs of the ZKIP protocol
Number of Total length Computational
messages of messages cost

Protocol 33 3s(n− 1) s(n− 1)104n[p]+ sn2104ξ+
+s(n− 1)+ +sn26ρ(4n + 1)

+s(n− 1)52[r](n + 1)
Step 1 ε

Step 2 3s(n− 1) s(n− 1)104n[p]+ sn2104ξ+
+s(n− 1)+ +sn26ρ(4n + 1)

+s(n− 1)52[r](n + 1)
Step 2a ε

Step 2b ε

Step 2c 104n(ξ + ρ)
Step 2d (n− 1) (n− 1)52n[p] ε

Step 2e (n− 1) (n− 1)[1] ε

Step 2f 1
2(n− 1) 1

2(n− 1)52(n[p] + [r](n + 1)) 1
2(n− 1)(104n(ξ + ρ))

Step 2(f)i (n− 1) (n− 1)52(n[p] + [r](n + 1)) ε

Step 2(f)ii (n− 1)104n(ξ + ρ)
Step 2g 1

2(n− 1) 1
2(n− 1)52(n[p] + [r](n + 1)) 1

2(n− 1)104n(ρ + ξ)+
+1

2(n− 1)n52ρ

Step 2(g)i ε

Step 2(g)ii n52ρ

Step 2(g)iii (n− 1) (n− 1)52(n[p] + [r](1 + n)) ε

Step 2(g)iv (n− 1)104n(ξ + ρ)
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Table 3.51: Costs of Procedure 17
Computational

cost
Procedure 17 2ξ + ρ

Step 1 ρ

Step 2 2ξ

Step 2a 2ξ

Step 2b ε

Step 2(b)i ε

Step 2(b)ii ε

Step 3 ε

Table 3.52: Costs of Procedure 18
Computational

cost
Procedure 18 2ξ + ρ

Step 1 ε

Step 2 2ξ + ρ

Step 3 ε

Table 3.53: Costs of Procedure 19
Computational

cost
Procedure 19 28ξ

Step 1 ξ + ξ + ξ 52
2

Step 2 ε
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Table 3.54: Costs of Procedure 20
Computational

cost
Procedure 20 ε

Step 1 ε

Step 1a ε

Step 1(a)i ε

Step 1b ε

Step 1c ε

Step 2 ε

Step 3 ε

Table 3.55: Costs of Procedure 21
Computational

cost
Procedure 21 52n(2ξ + ρ)

Step 1 52n(2ξ + ρ)
Step 1a n(2ξ + ρ)

Step 1(a)i (2ξ + ρ)
Step 1b ε

Step 1c ε

Step 2 ε

Step 3 ε

Step 4 ε

Table 3.56: Costs of Procedure 22
Computational

cost
Procedure 22 n52(2ξ + ρ)

Step 1 n52(2ξ + ρ)
Step 1a 2ξ + ρ

Step 1b ε
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Table 3.57: Costs of Procedure 23
Computational

cost
Procedure 23 104n(ξ + ρ)

Step 1 104n(ξ + ρ)
Step 1a ε

Step 1b 2(ξ + ρ)
Step 2 ε

Step 3 ε

Step 4 ε

Table 3.58: Costs of Procedure 24
Computational

cost
Procedure 24 104n(ξ + ρ)

Step 1 104n(ξ + ρ)
Step 1a (ξ + ρ)
Step 1b ε

Table 3.59: Costs of Procedure 25
Computational

cost
Procedure 25 n52ρ

Step 1 n52ρ

Step 1a ρ

Step 1b ε

Step 2 ε

Step 3 ε

Step 4 ε
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Table 3.60: Security properties of Kurosawa-Katayama-Ogata-Tsujii’s protocol suite

Uniqueness of cards X
Uniform random distribution of cards X
Cheating detection with a very high probability X
Complete confidentiality of cards X
Minimal effect of coalitions X
Complete confidentiality of strategy X
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3.3.8 Bounded-to-unbounded poker game (Harn-Lin-Gong)

The protocol presented in [HLG00] is a modification of [SRA81] that prevents

card marking. In [SRA81], if the value used to represent a card is a quadratic residue,

then its encrypted value is also a quadratic residue. Thus, if the plaintext card is a

quadratic residue, the encrypted card is “marked”. In [HLG00], the values used to

represent cards are quadratic non-residues so that the card marking attack does not

work.

Assume that P1 constructs the deck of cards as follows.

Preparation :

1. P1 chooses a large prime number p such that p = 2q +1, where q is a large

prime too.

2. P1 chooses a primitive element α of Z∗
p.

3. P1 chooses at random a set of 52 odd numbers, S = {s1, . . . , s52}, where

si 6= q and 1 < si < p− 1.

4. P1 computes the values that will represent the deck of cards as T =

{m1, . . . ,m52}, where mi = (α)si .

The values mi are such that mi ∈ Qp and the attack presented in [Lip81] is not

possible. The authors of [HLG00] introduce no further modifications on [SRA81], so

the protocols for shuffling the deck and drawing a card are the same given in [SRA81].

At the end of the game, both parties reveal their secret keys to prove that they did

not cheat.

Protocol analysis

The shuffling and drawing protocols have the same computational cost as in [SRA81].

Moreover, the protocol [HLG00] is also limited to two players whose strategy must

be revealed when the hand finishes.

Table 3.61 lists the security properties of [HLG00].
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Table 3.61: Security properties of Harn-Lin-Gong’s protocol suite

Uniqueness of cards X
Uniform random distribution of cards X
Cheating detection with a very high probability X
Complete confidentiality of cards X
Minimal effect of coalitions X
Complete confidentiality of strategy
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3.3.9 A secure mental poker protocol over the Internet (Zhao-

Varadharajan-Mu)

In [ZVM03], a TTP-free mental poker protocol is presented whereby more than

two players can participate in the game. The protocol is similar to [SRA81] but uses

the ElGamal cryptosystem [ElG85] instead. All players use the same large prime

number p so that ElGamal becomes a commutative cryptosystem. To show how it

works, we can put an example in which x is first encrypted by player P1 and later by

player P2; next, the cryptogram is decrypted by P1 and later by P2, who obtains x

again.

1. P1 randomly chooses a factor r1 and encrypts x with her private key K1

EK1(x) = (y1,1, y2,1)

{
y1,1 = αr1

1 mod p

y2,1 = xβr1
1 mod p

2. P2 in a similar way chooses at random a factor r2 and encrypts y2,1 with her

private key K2:

EK2(y2,1) = (y1,2, y2,1,2)

{
y1,2 = αr2

2 mod p

y2,1,2 = xβr2
2 βr2

2 mod p

3. P1 decrypts y2,1,2:

DK1(y2,1,2) = y2,1,2(y
k1
1,1)

−1 mod p

= xβr1
1 βr2

2 (βr1
1 )−1 mod p

= y2,2

4. Later P2 decrypts y2,2 and obtains x:

DK2(y2,2) = y2,2(y
k2
1,2)

−1 mod p = x

Players choose a set of 52 values to represent a deck of cards. Every card is

encrypted by every player in turn, and a deck of encrypted cards is obtained. When a
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player wants a card, the rest of players decrypt that card. The player who requested

the card receives it encrypted with her key, and she secretly decrypts the card and

obtains the card in the clear. Next, we describe in detail the various protocols of

proposal [ZVM03], assuming there are n players, {P1, . . . ,Pn}.

Protocol 35 (Initialization)

1. Players choose a large prime number p and all subsequent operations are done

over Zp;

2. Each player Pi computes her secret key pair Ki, where Ki = {(p, αi, ki, βi) :

βi ≡ αki
i mod p};

3. The deck of cards is represented by 52 values, D = {d1, . . . , d52}, which are

agreed by all players.

In Protocol 36 every player encrypts xi chosen values with her public key and

obtains a set of cryptograms, which are sent to other players. Next, every player

encrypts the sets received from other players with her public key. The players finally

obtain as many sets with the same cryptograms as there are players. If one or more

players are not fair, then the sets are different.

Protocol 36 (Card shuffling (D))

1. For each Pi in {P1, . . . ,Pn} do;

(a) Use Procedure 26 with D, αi and βi and obtain E0,i and ri;

(b) Publish E0,i;

2. All players form the set E0 = {E0,1, . . . , E0,n};

3. For each Pi in {P1, . . . ,Pn} do;

(a) Receive the set Ei−1 = {Ei−1,1, . . . , Ei−1,n} form Pi−1;

(b) Compute βri
i and αri

i ;
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(c) For each Ei−1,j = {ei−1,j,1, . . . , ei−1,j,52} in {Ei−1,1, . . . , Ei−1,n} − {Ei−1,i}
do:

i. For each ei−1,j,k = (yi−1,j,k,1, yi−1,j,k,2) in Ei−1,j do:

A. Compute yi,j,k,2 = yi−1,j,k,2β
ri
i ;

B. Compute yi,j,k,1 = yi−1,j,k,1 ∪ {αri
i };

C. Compute e′i,j,k = (yi,j,k,1, yi,j,k,2);

ii. Compute the set E ′
i,j = {e′i,j,1, . . . , e′i,j,52};

iii. Choose a permutation πi of 52 values;

iv. Permute the order of cryptograms in E ′
i,j to obtain

Ei,j = {ei,j,1, . . . , ei,j,52}, where ei,j,πi(k) = e′i,j,k;

(d) Compute the set Ei = {Ei,1, . . . , Ei,n};

(e) Publish Ei;

4. All players verify that En,i ≡ En,j ∀i, j ∈ {1, . . . , n}.

Each player uses Procedure 26 in order to encrypt the deck of cards D. The

procedure returns and encrypted and shuffled deck of cards E ′ and the value r that

has been used to encrypt the deck.

Procedure 26 (D, α, β)

1. Choose one value r, where 1 < r < p− 1;

2. For each di ∈ D do:

(a) Encrypt di using r, where ei = (yi,1, yi,2) = (αr, diβ
r);

3. Compute the set of encrypted cards E = {e1, . . . , e52};

4. Choose a permutation π of 52 values;

5. Permute the order of cryptograms in E to obtain E ′ = {e′1, . . . , e′52}, where

e′π(i) = ei;

6. Return E ′ and r;
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When a player wants a card she chooses a cryptogram in En,i, where i ∈ {1, . . . , n},
and marks that cryptogram as chosen. Players can only take a cryptogram that is

not marked. The rest of players in turn decrypt the cryptogram chosen by the player.

The last player sends the cryptogram to the player that requested the card. At this

point, the card value is protected only by the key of the player drawing the card.

Let us suppose that Pk wants a card and uses Protocol 37.

Protocol 37 (Card drawing)

1. Pk chooses a cryptogram en,i,l ∈ En,i and marks it as chosen;

2. Pk sends c0 = en,i,l to the rest of players;

3. For each player Pj ∈ {P1, . . . ,Pk−1,Pk+1, . . . ,Pn} do:

(a) Receive cj−1 = (yj−1,1, yj−1,2);

(b) Compute cj = (yj,1, yj,2) where yj,1 = yj−1,1 = {yj−1,1,1, . . . , yj−1,1,n} and

yj,2 = yj−1,2 · ((yj,1,i)
ki)−1 = yj−1,2 · (((αi)

ri)ki)−1;

(c) Send cj to the next player;

4. Pk receives cn = (yn,1, yn,2);

5. Pk decrypts cn and obtains her card d = yn,2 · ((yn,1,k)
kk)−1

When the game is over, players reveal their secret random numbers {r1, . . . , rn}.
Every player can check whether the rest of players have been honest. This game

verification reveals the strategy of players. The authors suggest to use a TTP, named

Dealer, in order to keep the strategy of players confidential. At the end of the game

the Dealer receives the secret random numbers {r1, . . . , rn} and checks the fairness of

the game.

Protocol analysis

In this section we present the cost of the shuffling (Protocol 36) and drawing protocols

(Protocol 37) of the proposal [ZVM03].
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Table 3.62: Costs of Zhao-Varadharajan-Mu’s shuffling protocol
Number of Total length Computational
messages of messages cost

Card shuffling 2n(n− 1) (n− 1)n(n + 1)104[p] 4nξ + 52n2ρ

Step 1 n(n− 1) (n− 1)104[p]n n(52ρ + 2ξ)
Step 1a 52ρ + 2ξ

Step 1b (n− 1) 2[p]52(n− 1) ε

Step 2 ε

Step 3 n(n− 1) n(n− 1)n(104[p]) n(2ξ + (n− 1)52ρ)
Step 3a ε

Step 3b 2ξ

Step 3c (n− 1)52ρ

Step 3(c)i 52ρ

Step 3(c)iA ρ

Step 3(c)iB ε

Step 3(c)iC ε

Step 3(c)ii ε

Step 3(c)iii ε

Step 3(c)iv ε

Step 3d ε

Step 3e (n− 1) (n− 1)n104[p] ε

Step 4 ε

Table 3.62 shows the cost of Protocol 36.

The cost of the drawing protocol (Protocol 37) is presented in Table 3.63.

Table 3.64 shows the cost of Procedure26.

Unless a TTP is used, the strategy of players is made public when the game is over

and players verify the game. But, more important, this protocol has a security flaw:

any player can decrypt the cryptograms without knowing any private keys [CD04].

See Chapter 4 of this Thesis for more details. With this security flaw the protocol is

not usable in practice (see Table 3.65).
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Table 3.63: Costs of Zhao-Varadharajan-Mu’s drawing protocol
Number of Total length Computational
messages of messages cost

Card drawing 2(n− 1) 4(n− 1)[p] n(ρ + ξ)
Step 1 ε

Step 2 (n− 1) (n− 1)2[p] ε

Step 3 (n− 1) 2[p](n− 1) (n− 1)(ρ + ξ)
Step 3a ε

Step 3b ρ + ξ

Step 3c 1 2[p] ε

Step 4 ε

Step 5 ρ + ξ

Table 3.64: Costs of Zhao-Varadharajan-Mu’s Procedure 26
Computational

cost
Procedure 26 52ρ + 2ξ

Step 1 ε

Step 2 52ρ + 2ξ

Step 2a ρ

Step 3 ε

Step 4 ε

Step 5 ε

Step 6 ε

Table 3.65: Security properties of the Zhao-Varadharajan-Mu protocol suite

Uniqueness of cards X
Uniform random distribution of cards X
Cheating detection with a very high probability
Complete confidentiality of cards
Minimal effect of coalitions
Complete confidentiality of strategy
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3.3.10 Mental poker revisited (Barnett-Smart)

Last but not least, the Barnett-Smart [BS03] protocol suite is an interesting one.

On the positive side, this proposal seems to meet all requirements in [Cré85] and

relies on efficient zero-knowledge techniques to prove that the deck has been properly

shuffled. On the negative side, the paper [BS03] is not self-contained and fails to

precisely describe the proposed protocol in a way that can be readily implemented.

Several parts of the protocol are left implicit or undescribed (references to the liter-

ature are given). Also, no computing time figures are offered and no security proofs

are provided.

The protocol can be implemented using the ElGamal [ElG85] encryption, or the

Paillier probabilistic encryption function [Pai99]. We expose and analyze the ElGamal

version of the protocol suite.

If there are n players, {P1, . . . ,Pn}, they use Protocol 38 to set up the system.

Protocol 38 (Preparation)

1. All players agree on a prime number p, where p = 2q +1 and q is an odd prime

number. The computations are done over Zp;

2. All players agree on a generator g ∈ Zq;

3. Each player Pi generates a random private key xi;

4. Each player Pi publishes hi = gxi;

5. All players compute the public key h =
∏n

i=1(hi);

6. All players agree on a security parameter s.

Players then use Protocol 39 to shuffle the deck of cards. In Step 1 of Protocol 39

all players agree on the values to be used to represent the deck of cards. These values

are the deck of cards face up. The value of each card is public. In Step 2 all players

compute the face-down deck of cards. Cards are encrypted with the public key h using
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1 instead of a random factor in ElGamal encryption. Next, all players permute and re-

mask the face-down deck of cards as described in [SSG02] using ElGamal re-masking

(see Section 2.2.4 in Chapter 2 for details). Finally in Step 3d each player proves in

zero-knowledge that she has re-masked and permuted the deck of cards properly. The

zero-knowledge proof used is based on the zero-knowledge proof presented in [BCR86].

Protocol 39 (Card shuffling)

1. All players agree on 52 values D = {d1, . . . , d52} to represent the deck of cards;

2. All players use Procedure 27 with D, and obtain C0;

3. For i = 1 to n Pi does:

(a) Pi obtains a permutation πi of 52 elements;

(b) Pi uses Procedure 28 with Ci−1 and πi, and obtains Ci and Ri;

(c) Pi publishes Ci;

(d) Pi uses Protocol 40 with Ci, Ri and πi.

The set Cn is the encrypted and shuffled deck of cards. Procedure 27 computes

the face-down deck of cards from a face-up deck of cards.

Procedure 27 (D = {d1, . . . , d52)

1. For i = 1 to 52 do:

(a) compute ci = (ci,1, ci,2), where ci,1 = g and ci,2 = dih;

2. Form C = {c1, . . . , c52};

3. return C.

Procedure 28 computes a re-masked and permuted deck of cards from a face-down

deck of cards.

Procedure 28 (C = {c1, . . . , c52}, π)
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1. For i = 1 to 52 do:

(a) obtain a value ri at random, where 1 < ri < q;

(b) compute c′i = (c′i,1, c
′
i,2), where c′i,1 = ci,1g

ri and c′i,2 = ci,2h
ri;

2. Form C ′ = {c′π(1), . . . , c
′
π(52)};

3. Form R = {r1, . . . , r52}.

4. Return C ′ and R;

All players use Protocol 40 to verify that other players permute and re-mask the

deck of cards properly.

Protocol 40 (C, R, π)

1. For j = 1 to s do:

(a) Pi obtains a permutation πj of 52 values at random;

(b) Pi uses Procedure 28 with C and πj, and obtains Cj and Rj;

(c) Pi publishes Cj;

2. All players choose a random subset S ⊂ {C1, . . . , Cs} and send S to Pi;

3. For j = 1 to s do:

(a) if Cj ∈ S do:

i. Pi publishes πj and Rj;

ii. all players use the Procedure 29 to verify Cj;

(b) If Cj 6∈ S do:

i. Pi computes π′
j = π ◦ πj;

ii. Pi computes R′
j = {r′j,1, . . . , r′j,52}, where r′j,k = rj,k +rπ(j), and rπ(j) ∈

R;

iii. Pi publishes π′
j and R′

j;
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iv. all players use the Procedure 29 to verify Cj;

Procedure 29 verifies that a deck of cards C has been properly permuted and

encrypted in C ′.

Procedure 29 (C, C ′, R, π)

1. For i = 1 to 52 do:

(a) compute c′′i = (c′′i,1, c
′′
i,2), where c′′i,1 = ci,1g

ri and c′i,2 = ci−1,2h
ri, where

ci,1, ci,2 ∈ C and ri ∈ R;

(b) verify c′′i,1
?
= c′i,1 and c′′i,2

?
= c′i,2, where c′i,1, c

′
i,2 ∈ C ′.

All players run Protocol 41 whenever a Pi wants a new card. We see in Step 1

as Pi chooses a card that has not been selected previously. Next, all players decrypt

this card and they prove in zero-knowledge using the Chaum-Pedersen proof [CP92]

that they have properly decrypted the card.

Protocol 41 (C = {c1, . . . , c52})

1. Pi chooses a cryptogram ct = {ct,1, ct,2}, where 1 ≤ t ≤ 52 and t has not been

previously selected;

2. Pi publishes ct;

3. Each Pj in {P1, . . . ,Pi−1,Pi+1, . . . ,Pn} does:

(a) Compute ej = c
xj

t,1;

(b) Publish dj;

(c) Prove in zero-knowledge that logg(hi) = logct,1
(ej) using the Chaum-

Pedersen [CP92] zero-knowledge proof (see Section 2.2.2 in Chapter 2):

4. Pi computes ei = cxi
t,1;

5. Pi computes her card d = ct,2 (
∏n

k=1(ek))
−1
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Protocol analysis

In this section we analyze the number of messages, the total length of messages, the

computational cost and the security of the proposal [BS03].

Table 3.66 shows the cost of the shuffling protocol (Protocol 39).

Table 3.66: Costs of Barnett-Smart’s shuffling protocol
Number of Total length Computational
messages of messages cost

Card shuffling (n− 1)2n(s + 1)+ n(n− 1)[p]104(1 + 2s)+ n104(ρ + ξ)(ns + 1)+
+(n− 1) +[r](n− 1)n(1 + s52)+ +n52ρ

+[r](n− 1)52
Step 1 (n− 1) (n− 1)52[r] ε

Step 2 n(52ρ)
Step 3 n(2(n− 1)(s + 1)) n(n− 1)[p]104(1 + 2s)+ n(104(ρ + ξ)(ns + 1))

+n(n− 1)[r](1 + s52)
Step 3a ε

Step 3b 52(2ξ + 2ρ)
Step 3c (n− 1) (n− 1)104[p] ε

Step 3d (n− 1)(2s + 1) (n− 1)[p]208s+ ns104(ρ + ξ)
+(n− 1)[r](1 + s52)

Table 3.67 shows the cost of the drawing protocol (Protocol 41). In Step 3c we

assume that Chaum-Pedersen’s zero-knowledge proof has the following costs:

• Number of messages: 3(n− 1);

• Total length of messages: (n− 1)4[p];

• Computational cost: (2ξ + ρ)(2n− 1)

See Section 2.2.2 in Chapter 2 for more details.

Table 3.68 shows the cost of Protocol 40.

Table 3.69 shows the cost of Procedure 27.

Table 3.70 shows the cost of Procedure 28.

Table 3.71 shows the costs of Procedure 29.
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Table 3.67: Costs of Barnett-Smart’s drawing protocol

Number of Total length Computational
messages of messages cost

Card drawing (n− 1)(4n− 3) (n− 1)(6n− 4)[p] ξ(4n2 − 5n + 2) + ρ(2n2 − 2n + 1)
Step 1 ε

Step 2 (n− 1) (n− 1)[p]2 ε

Step 3 (n− 1)4(n− 1) (n− 1)(n− 1)6[p] (n− 1)((4n− 1)ξ + (2n− 1)ρ)
Step 3a ξ

Step 3b (n− 1) (n− 1)2[p] ε

Step 3c 3(n− 1) (n− 1)4[p] (2ξ + ρ)(2n− 1)
Step 4 ξ

Step 5 nρ

The security properties of the proposal [BS03] are summarized in Table 3.72. In

conclusion, this proposal is significant because it offers a complete solution to the

mental poker problem and has a moderate computational cost.
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Table 3.68: Costs of Protocol 40

Number of Total length Computational
messages of messages cost

Protocol 40 (n− 1)(2s + 1) (n− 1)([p]208s + [r](1 + s52)) ns104(ρ + ξ)
Step 1 s(n− 1) s(n− 1)104[p] s(104)(ξ + ρ)
Step 1a ε

Step 1b 52(2ξ + 2ρ)
Step 1c (n− 1) (n− 1)104[p] ε

Step 2 (n− 1) (n− 1)[r] ε

Step 3 104s(ξ + ρ)(n− 1)
Step 3a (1/2)(n− 1) (1/2)(n− 1)(104[p] + 52[r]) (1/2)(52(2ξ + 2ρ))(n− 1)

Step 3(a)i (n− 1) (n− 1)(104[p] + 52[r]) ε

Step 3(a)ii 52(2ξ + 2ρ)(n− 1)
Step 3b (1/2)(n− 1) (1/2)(n− 1)(104[p] + 52[r]) (1/2)(2ξ + 2ρ)(n− 1)

Step 3(b)i ε

Step 3(b)ii ε

Step 3(b)iii (n− 1) (n− 1)(104[p] + 52[r]) ε

Step 3(b)iv 52(2ξ + 2ρ)(n− 1)

Table 3.69: Costs of Procedure 27
Computational

cost
Procedure 27 52ρ

Step 1 52ρ

Step 1a ρ

Step 2 ε

Step 3 ε
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Table 3.70: Costs of Procedure 28
Computational

cost
Procedure 28 52(2ξ + 2ρ)

Step 1 52(2ξ + 2ρ)
Step 1a ε

Step 1b (2ξ + 2ρ)
Step 2 ε

Step 3 ε

Step 4 ε

Table 3.71: Costs of the Procedure 29
Computational

cost
Procedure 29 104(xi + ρ)

Step 1 52(2ξ + 2ρ)
Step 1a (2ξ + 2ρ)
Step 1b ε

Table 3.72: Security properties of the Barnett-Smart protocol suite

Uniqueness of cards X
Uniform random distribution of cards X
Cheating detection with a very high probability X
Complete confidentiality of cards X
Minimal effect of coalitions X
Complete confidentiality of strategy X
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3.3.11 Conclusions on the comparison of TTP-free protocols

In this section we draw some conclusions about the computational cost, the num-

ber of messages and the length of the messages for the various TTP-free proposals

examined.

Table 3.73 shows the security properties of the TTP-free mental poker proto-

cols described in this chapter. We group the protocol suites based on their security

properties. We cannot compare two protocols with different security properties. On

one hand, [Cré86], [KKOT90] and [BS03] are complete solutions to Crépeau’s re-

quirements [Cré85]. On the other hand, [Yun85] and [BF83] have similar security

properties, in that they reveal the strategy of players and do not withstand player

coalitions. A third group is formed by proposals [GM82] and [HLG00]. In the fourth

place, [Cré85] has the same security properties as [HLG00] and [GM82], but it can-

not be added to the third group because [GM82] and [HLG00] are two-player only

whereas [Cré85] has no limitation in the number of players. Finally, the propos-

als [SRA81], [Cré85] and [ZVM03] cannot be compared with any other proposal,

because each one has different security properties.

The proposals [SRA81], [GM82] and [HLG00] are two players only, and are ana-

lyzed in the following sections Section 3.3.1, Section 3.3.2 and Section 3.3.8 respec-

tively. Looking at the corresponding result tables it can be seen that the cost has

been split among the two players. Nevertheless in the rest of protocols the cost of all

participants in the game has been grouped. In the tables of this section we present

the addition of the cost of all players for each protocol. So, in the protocols for two

players only we have added the cost of the two players.

The notation used in the tables has been defined in Section 3.1. We just recall the

meaning of symbol ζ in Yung’s contribution [Yun85]: ζ is the number of cards that

are not owned by a player. It is difficult to estimate the value of ζ (we only know

that 1 ≤ ζ ≤ 52).

In Table 3.74 we show the computational cost of TTP-free mental poker protocols.

We maintain the protocol grouping based on the security properties.

We first compare [Cré86], [KKOT90] and [BS03]:
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Table 3.73: Security properties of TTP-free mental poker protocols

Scheme Uniqueness Uniform Cheating Complete Minimal Complete Number

of cards random detection confiden- effect of confiden- of

distribution with a very -tiality coalitions -tiality players

of cards high of cards of strategy

probability

[SRA81] X X X 2
[GM82] X X X X X 2
[BF83] X X X X 3 ≤ n

[Yun85] X X X X 2 ≤ n

[Cré85] X X X X X 2 ≤ n

[Cré86] X X X X X X 2 ≤ n

[KKOT90] X X X X X X 2 ≤ n

[HLG00] X X X X X 2
[ZVM03] X X 2 ≤ n

[BS03] X X X X X X 2 ≤ n

• In the shuffling protocol, the number of products is very high in [Cré86], but

the number of exponentiations is very low. The cost in time of a product is

very low in comparison with the cost of a modular exponentiation. When com-

paring the shuffling cost of [Cré86], [KKOT90] and [BS03] we see that [Cré86]

is the most efficient. This seems contradictory with the fact that in [Edw94] an

implementation of the protocol [Cré86] on three Sparc workstations is reported

to have taken eight hours to shuffle a deck. We must assume that this poor

performance was probably influenced by the cost of communication. [BS03] is

more efficient than [KKOT90], because the number of modular exponentiations

is lower in [BS03].

• In the drawing protocol, [Cré86] is the most efficient followed by [BS03] and [KKOT90].

We compare [Yun85] and [BF83].

• In the shuffling protocol [BF83] does not use modular exponentiations nor prod-

ucts. There is no doubt that [BF83] is more efficient that [Yun85]. However we
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must remark that [Yun85] is an important contribution. The author does not

mention that his proposal tolerates player drop-out.

• In the drawing protocol the comparison is similar.

We compare [GM82] and [HLG00].

• In the shuffling protocol [HLG00] is more efficient than [GM82], because the

number of modular exponentiations is lower in [HLG00]. Nonetheless, the

probabilistic encryption presented in [GM82] is a significant contribution to

cryptography. So, we can state that [GM82] is an outstanding work.

• In the drawing protocol [HLG00] is again more efficient than [GM82].

[SRA81] has a reduced computational cost for shuffling and drawing. We can state

that it opened the research in mental poker.

The computational cost in [Cré85] is moderated if we compare it with other con-

tributions with less security properties.

In principle, [ZVM03] was supposed to have the same security properties as [Cré85],

and [ZVM03] is more efficient than [Cré85]. However, [ZVM03] has a security flaw

that reduces its actual security.

In Table 3.75 we show the number of messages of TTP-free mental poker protocols.

We first compare the contributions [Cré86], [KKOT90] and [BS03]:

• In the shuffling protocol, [BS03] and [Cré86] require a similar number of mes-

sages. The number of messages is a bit higher in [KKOT90].

• In the drawing protocol, the number of messages is similar in [KKOT90] and

[Cré86] and a bit higher in [BS03].

We compare [Yun85] and [BF83].

• In the shuffling protocol the number of messages is higher in [Yun85] than

in [BF83]. The cryptographic protocol presented in [Yun85] is complex and

requires a non negligible number of communications.
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Table 3.74: Computational cost of TTP-free mental poker protocols

Computational Card Card Number
cost shuffling drawing of players

[SRA81] 52ξ 4ξ 2
[GM82] 156[r]ρ 260ρ + 2ξ([r] + 52) 2
[BF83] ε ε 3 ≤ n
[Yun85] (n− 1)k(ρ(2k − 1)(52 + ζ)+ kρζ(2k − 1)+ 2 ≤ n

+ζ(6ρ + 2ξ)) +kρ6 + 2kξ

[Cré85] 52nξ (ρ + ξ)(n2−2n+5
4

) 2 ≤ n
[Cré86] nρ[r](n− 1)(299s + 130)+ n−1

2
(r(6ρ + 4ξ)) 2 ≤ n

+nρ + nρ[r]78 + n(2ξ)
[KKOT90] 104n2ξ(2 + sn)+ n28ξ 2 ≤ n

+26n2ρ(6 + s(4n + 1))
[HLG00] 52ξ 4ξ 2
[ZVM03] n(4ξ + 52ρn) n(ρ + ξ) 2 ≤ n
[BS03] n(104ξ(ns + 1) + 52ρ(2ns + 3)) ξ(4n2 − 5n + 2)+ 2 ≤ n

+ρ(2n2 − 2n + 1)

• In the shuffling protocol the number of messages is higher in [BF83] than

in [Yun85]. When one card is drawn in [BF83] all players cooperate, nonetheless

in [Yun85] the protocol is run by two players only.

We compare [HLG00] and [GM82].

• In the shuffling protocol [HLG00] sends less messages that [GM82]. The protocol

in [HLG00] is less complex than [GM82] and this means less messages.

• In the shuffling protocol, the comparison is similar as in the shuffling protocol.

[SRA81] jointly with [HLG00] are the two proposal with the minimum number of

messages in both protocols.

The number of messages in [Cré85] is relatively moderated. There are proposals

with less security properties that send more messages.

[ZVM03] sends a great number of messages. In the shuffling protocol each player

creates a deck of cards. This deck is sent to the rest of players. So, each player
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computes n decks of cards and sends them to the rest of players. There are n players

and each sends one message to the rest n− 1 players.

Table 3.75: Number of messages of TTP-free mental poker protocols

Number of Card shuffling Card drawing Number
messages of players
[SRA81] 1 3 2
[GM82] 2 104 2

[BF83] 2(n− 1) 2(n−1)2

n
3 ≤ n

[Yun85] 3(n− 1)(1 + r) 2 + 3k 2 ≤ n
[Cré85] 2n(n− 1) (n−1

2
)2 + 1 2 ≤ n

[Cré86] (n2 − n)(2s + 3) 2(n− 1) 2 ≤ n
[KKOT90] (n− 1)(n(3s + 1) + 2) 2(n− 1) 2 ≤ n
[HLG00] 1 3 2
[ZVM03] 2n(n− 1) 2(n− 1) 2 ≤ n
[BS03] (n− 1)(2n(s + 1) + 1) (n− 1)(4n− 3) 2 ≤ n

In Table 3.76 we show the total length of messages of TTP-free mental poker

protocols.

We first deal with contributions [Cré86], [KKOT90] and [BS03].

• The total length of messages in the shuffling protocol is lower in [BS03] than

[Cré86] and [KKOT90]. The greater length of messages in [Cré86] could explain

the high cost reported in [Edw94].

• The total length of messages in the drawing protocol is lower in [Cré86] than in

[KKOT90] and [BS03].

We compare [Yun85] and [BF83].

• The total length of messages in the shuffling protocol is greater in [Yun85] than

in [BF83]. In [BF83] the messages contain a value in {1, . . . , 52}. On the other

side [Yun85] sends values in {1, . . . , n}, where n = pq and p and q are two large

prime numbers.
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• The total length of messages in the drawing protocol compares similarly .

We compare [HLG00] and [GM82].

• The total length of messages in the shuffling protocol is lower in [HLG00] than

[GM82]. In [HLG00] an encrypted card is in {1, . . . , p}, where p is a prime

number. A cryptogram in [GM82] is formed by [r] values in {1, . . . , n}.

• The total length of messages in the drawing protocol is greater in [GM82] than

[GM82]. The reason has been detailed previously.

The total length of messages in [SRA81] is minimal.

The total length of messages in [Cré85] is affordable and does not suppose a

drawback.

In [ZVM03] the total length of messages is great. In the shuffling protocol players

shuffle as many decks as players there are. Each deck is sent to all players. This

method increases the number of messages and the amount of information sent. In the

drawing protocol the length of messages is affordable in practice.

In general, if we compare the shuffling cost with the drawing cost, we see that the

former is higher than the latter. So, we can conclude that the efficiency of a protocol

suite is dominated by the shuffling protocol. In conclusion, card shuffling is what

distinguishes practical from impractical mental poker protocols.
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Table 3.76: Total length of messages of TTP-free mental poker protocols

Total length Card shuffling Card drawing Number
of messages of players

[SRA81] 52[p] 3[p] 2
[GM82] 104[p]([r] + 1) 104[p] 2

[BF83] 104[r](n− 1) 2(n−1)2

n
[r] 3 ≤ n

[Yun85] (n− 1)[p](k + 3)(52 + ζ)+ 52[H(m)]+ 2 ≤ n
+(n− 1)([p]3kζ + [H(m)]52) +[p](ζ(k + 3) + 3k)

[Cré85] 52[p](n− 1)n [6](n+1
2

)+ 2 ≤ n

+[p](n2−4n+7
4

)
[Cré86] (n2 − n)s52[r]([p] + 1)+ n−1

2
([r]([p] + 1) + 3[r]) 2 ≤ n

+(n2 − n)(104[r][p] + s[r]105
2

)
[KKOT90] (n− 1)n252[p](1 + s(n− 1))+ (n− 1)[r] + [p] 2 ≤ n

(n− 1)n52[p]2+
+(n− 1)n52[r](1 + s(n + 1))+

+(n− 1)ns
[HLG00] 52[p] 3[p] 2
[ZVM03] (n− 1)(n + 1)n104[p] 4(n− 1)[p] 2 ≤ n
[BS03] n(n− 1)[p]104(1 + 2s)+ (n− 1)(6n− 4)[p] 2 ≤ n

+[r](n− 1)(n(1 + s52) + 52)
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Chapter 4

On the security of an efficient

TTP-free mental poker protocol

We present in this chapter an attack that exploits a security flaw of the Zhao et

al. mental poker protocol [ZVM03]. We found this weakness when carrying out the

comparative survey presented in Chapter 3. The attack was published in [CD04].

The authors of [ZVM03] have presented a modification of their protocol in [ZV05].

Nevertheless, the new proposal still has an important security flaw, which we describe

briefly.

4.1 Introduction

As can be seen in Section 3.3.11, the Zhao et al. [ZVM03] proposal has a reason-

able computational cost. Unfortunately, the use by Zhao et al. of an ElGamal-like

commutative cryptosystem introduces a basic weakness. With little computation, a

player can decrypt the encrypted cryptograms and find the cleartext cards xi, for

i = 1 to 52.
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4.2 The attack

First of all, note that the attack scenario is a known-cleartext one. The cleartext card

values X = {x1, . . . , x52} are assumed to be public or at least known to all players.

However, when choosing an encrypted card or cryptogram, the player does not see

the cleartext card xi in it because this value is multiplied by a hiding factor, which

will be denoted by fh.

In Step 4 of Protocol 36 (shuffling protocol in Zhao et al.’s proposal, see Chapter 3)

we can see that all sets En,i have the same elements. Therefore, in order to simplify

the notation we will denote E = En,i∀i ∈ {1, . . . , 52}. This set has the following

elements E = {e1, . . . , e52}, where ei = (yi,1, yi,2). In Step 3(c)iB of Protocol 36 it

can be seen that αi
i is added to yi,2. This operation is done ∀i ∈ {1, . . . , 52}. Then

we can assert that yi,2 = {αr1
1 , . . . , αr52

52 } ∀i ∈ {1, . . . , 52}. Moreover, in Step 3(c)iA

of Protocol 36 we can see that all elements are multiplied by the same factor βri
i . In

other words, all values xi are hidden by the same hiding factor

fh = βr1
1 · · · βrn

n

If an attacker multiplies any encrypted card yi,1 by f−1
h , she will be able to find its

cleartext value xi without knowing the encryption key:

yi,1 · f−1
h = xi(β

r1
1 · · · βrn

n )(βr1
1 · · · βrn

n )−1 = xi

Now it remains to show how an attacker can find and invert fh. This computation

can be done as follows:

Procedure 30 (X)

1. Let xi and xj (i 6= j) be two card values chosen during the initialization step;

2. The attacker computes the multiplicative inverses x−1
i and x−1

j modulo p;

3. The attacker multiplies each encrypted card yk,1, for k = {1, · · · , 52} by x−1
i

and a first set of values D1 is obtained. One of the values in this set is fh:

yi,1 · x−1
i = xiβ

r1
1 · · · βrn

n x−1
i
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= βr1
1 · · · βrn

n = fh

4. The procedure of the previous step is repeated by the attacker with x−1
j and a

second set of values D2 is obtained. Again, one of the values in D2 is fh:

yj,1 · x−1
j = xi2β

r1
1 · · · βrn

n x−1
j,

= βr1
1 · · · βrn

n = fh

5. With overwhelming probability, D1 ∩ D2 contains a single element and this

element is fh.

6. Once fh is known, computing its multiplicative inverse f−1
h modulo p is trivial.

The cost of this attack is 52 products for Step 3 plus 52 products for Step 4; that

is, 104 products are enough to decrypt the deck of cards.

4.3 Efficient TTP-free mental poker protocols

Zhao et al. presented in [ZV05] a modification of [ZVM03]. Next, this new protocol

is briefly reviewed and its (new) security flaw is described.

Assume there are n ordered players. The cleartext card values X = {x1, . . . , x52}
are assumed to be public or at least known to all players. The deck of cards is

shuffled for all players. Player P1 encrypts and permutes the values xi in X for the

first time and sends the cryptograms to P2. Player P2 re-encrypts the cryptograms.

She permutes the re-encrypted cryptograms and sends them to P3. This process is

repeated up to Pn.

Player P1 knows the cleartext of each cryptogram in each iteration, and of course

she knows the cleartext of each cryptogram in the final shuffled deck of cards.

The encryption and decryption system used in [ZV05] is the same presented

in [ZVM03] (see Section 3.3.9 for more details).

Without loss of generality, we can assume that Protocol 42 is run by P1 and

P2, who have each an ElGamal-like key pair: K1 = {p, α1, k1, β1 = αk1
1 } for P1 and

K2 = {p, α2, k2, β2 = αk2
2 } for P2.

Let E0 = {e0,1, . . . , e0,52}, where e0,i = {y0,i,1 = 1, y0,i,2 = ∅}
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Protocol 42 (Card shuffling (X))

1. P1 uses Procedure 31 with E0, α1 and β1. She obtains E1 and π1;

2. P1 sends E1 to P2;

3. P2 uses Procedure 31 with E1, α2 and β2. She obtains E2 and π2

4. P2 publish E2;

The set E2 is the shuffled deck of cards. Procedure 31 encrypts and permutes the

elements in E.

Procedure 31 (E = {e1, . . . , e52},α,β)

1. Choose a set of secret random numbers R = {r1, . . . , r52};

2. Choose a random permutation π of 52 values;

3. Let ei = (yi,1, yi,2); for i = 1 to 52 do:

(a) compute y′i,1 = yi,1β
ri mod p;

(b) compute y′i,2 = yi,2 ∪ αri mod p;

(c) form e′i = (y′i,1, y
′
i,2);

4. form E ′ = {e′π(1), . . . , e
′
π(52)};

5. return E ′ and π;

We now examine the sets E1 and E2. We have that E1 = {e1,1, . . . , e1,52}, where

e1,i = {y1,i,1, y1,i,2} and y1,i,2 = {αr1,i

1 }. On the other hand, E2 = {e2,1, . . . , e2,52},
where e2,j = {y2,j,1, y2,j,2} and y2,j,2 = {αri

1 , α
rj

2 }.
P1 knows that e1,i is the encryption of a cleartext xs. P1 does not need to decrypt

e1,i to know this, because she knows the permutation π1. She can link y1,i,2 to the

cleartext xs. We can see as e2,j contains the element αri
1 = y1,i,2, so we can conclude

that e2,j is the encryption of xs.
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In this way, player P1 can find the cleartext of all cryptograms in E2. The second

element of e2,i reveals the value of the card. This shortcoming could have been

detected with an accurate security analysis.

One possible solution is to use the ElGamal re-masking (see Section 2.2.4) instead

of the proposed encryption and decryption system. This solution is used by other

authors, such as [SSG02] and [BS03]. However, in this case the novelty of [ZV05]

would be very thin.

4.4 Conclusions

We have shown that replacing an exponential commutative cryptosystem with an

ElGamal-like commutative cryptosystem as done in [ZVM03] turns a safe TTP-free

mental poker protocol (Shamir-Rivest-Adleman) into a weak protocol (Zhao et al.).

The weakness is that any player (or any outsider knowing the deck coding) can decrypt

encrypted cards without knowing the encrypted key.

In [ZV05], Zhao et al. do not re-use the same secret value in all cards. Never-

theless, the proposed encryption and decryption system allows the first player to find

the cleartexts of the final encrypted shuffled deck of cards.
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Chapter 5

TTP-free protocol based on

homomorphic encryption

A solution [CDRB03] for obtaining impartial random values in on-line gambling is

presented in this chapter. Unlike most previous proposals, our method does not

require any TTP and allows e-gambling to reach standards of fairness, security and

auditability similar to those common in physical gambling.

Although our solution is detailed here for the particular case of games with re-

versed cards (e.g. poker), it can be easily adapted for games with open cards (e.g.

blackjack) and for random draw games (e.g. keno).

Thanks to the use of permutations of homomorphically encrypted cards, the pro-

tocols described have moderate computational requirements. Askarov et al. imple-

mented [CDRB03] in their case study of mutual distrust [Ask05] because they argued

that [CDRB03] is “practical in terms of computational requirements”.

Our solution is described in detail in Section 5.1. A security analysis considering

various possible attacks is reported in Section 5.2. Section 5.4 is a conclusion.

This protocol has been patented by Scytl Online World Security, S.A. [CRBD02],

and all rights of this protocol are property of Scytl Online World Security, S.A. This

company have implemented some parts of this protocol in their gambling products.
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5.1 Our protocol suite for e-gambling with reversed

cards

In our protocol suite for e-games with reversed cards, deck shuffling is carried out in

an efficient and fair way and without the help of any TTP.

All players co-operate in shuffling, so that no player or player coalition can force

a particular outcome, i.e. determine the card that will be obtained after shuffling.

Every player generates a random permutation of the card deck and keeps it secret;

the player then commits to her permutation using a bit commitment protocol. The

shuffled deck is formed by the composition of all player permutations. The use

of permutations to shuffle the deck was introduced in [BF83], and also was used

in [Cré86] [Cré85].

Note that reversing cards in the physical world translates to encrypting cards in

e-gambling. Now, permuting (i.e. shuffling) encrypted cards requires encryption to

be homomorphic, so that the outcome of permuting and decrypting (i.e. opening)

a card is the same that would be obtained had the card been permuted without

prior encryption (i.e. reversal). The use of an additive homomorphic criptosystem to

shuffle the deck of cards and to maintain the privacy of the cards was used initially

in [KKOT90].

5.1.1 Card representation and permutation

In most e-gambling approaches, a prescribed ordering of cards in the deck is assumed,

so that a card is represented by a scalar corresponding to its rank. In our protocol, a

card representation is needed which allows card operations and permutations. Thus,

we will map the usual scalar representation to a vector representation in the way

described below.

Definition 4 (Card vector representation) Let t be the number of cards in the

deck. Let z be a prime number chosen by a player. A card can be represented as a

vector

v = (a1, · · · , at) (5.1)
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where there exists a unique i ∈ {1, · · · , t} for which ai mod z 6= 0, whereas ∀j 6= i it

holds that aj mod z = 0. The value of the card is i; assuming a prescribed ordering

of cards, i is interpreted as a rank identifying a particular card.

The above vector representation for cards allows card permutations to be repre-

sented as matrices in a natural way.

Definition 5 (Card permutation matrix) A permutation π over a deck of t cards

is a bijective mapping that can be represented as a square matrix Π with t rows called

card permutation matrix, where rows and columns are vectors of the form described

by Expression (5.1):

Π =


π11 π12 · · · π1t

...
. . .

...
...

. . .
...

πt1 πt2 · · · πtt

 (5.2)

The i-th row of matrix Π is card π(i), i.e. the card resulting from applying permutation

π to the card having rank i. Thus, all elements in the i-th row of Π are 0 mod z except

πij, where j = π(i).

See Example 1 in Section 5.3 for an illustration of the above definition. The result

below is straightforward from the above construction:

Proposition 1 (Permutation algebra) With the above representation for cards

and permutations, the result w = π(v) of permuting a card v using a permutation

π can be computed as w = v ·Π, where · denotes vector product. For this computation

to work properly, the same value z must be used for v and Π.

Example 2 in Section 5.3 illustrates the above proposition. Every player Pi will

use her own prime modulus zi for representing and permuting cards. In order for Pi

to be able to operate her card permutation matrix with a card coming from a previous

player Pi−1, player Pi must represent her permutation matrix using the modulus zi−1

corresponding to Pi−1. This means transforming her permutation matrix based on zi

into an equivalent permutation matrix based on zi−1, as defined below:
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Definition 6 (Equivalent card permutation matrices) Let Π and Π′ be two t×
t card permutation matrices using moduli z and z′, respectively. Then Π and Π′ are

said to be equivalent if they represent the same permutation π of a set of t cards.

Specifically, Π = {πij} and Π′ = {π′
ij} are equivalent if and only if, ∀i, j ∈ {1, · · · , t},

one has

πij mod z 6= 0 ⇔ π′
ij mod z′ 6= 0

πij mod z = 0 ⇔ π′
ij mod z′ = 0

5.1.2 Distributed notarization chains

In order to meet the game auditability requirement, we introduce in this paper a new

tool called distributed notarization chains (DNC). DNCs have a philosophy similar

to the one of Lamport’s hash chains [Lam81]. Each operation performed during the

e-game will be notarized as a link of a DNC. DNCs are efficiently computable and

consist of links which are constructed and chained as follows:

Link structure Every link mk of the DNC is formed by two fields: a data field Dk

and a chaining value Xk. The data field Dk consists of three subfields:

• Timestamp Tk, which contains the link generation time according to the

clock of the participant who generated the link (synchronizing the clocks

of all participants is not needed).

• Link subject or concept Ck, which describes the information contained in

the link, e.g. a step in the game, a commitment or an outcome.

• Additional attributes Vk, which depend on the subject Ck. For a link cor-

responding to a commitment, Vk will contain the encrypted commitment.

Link chaining Chaining is guaranteed by chaining values Xk included in each link.

First, the chaining value Xk−1 of the previous link is concatenated with the

data field Dk of the current link; then the hash value of the concatenation is

computed and signed with the private key of the author of the k-th link, i.e.

Xk = Sauthor(Dk|Xk−1) (5.3)
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There are moments during the game at which operations do not need to be sequen-

tial, but can be carried out in parallel by the participants. Parallel execution can be

accomodated in the distributed notarization system by introducing two operations:

Chain expansion Parallel execution can be notarized by expanding the DNC, whereby

participants {P1, · · · ,Pn} independently compute their chaining values

XP1
k , · · · , XPn

k

using the chaining value Xk−1 of the previous link:

XP1
k = SP1(D

P1
k |Xk−1)

...

XPn
k = SPn(DPn

k |Xk−1) (5.4)

Chain contraction It happens when the protocol requires sequential execution after

an expansion stage where n participants have computed links in parallel. A sin-

gle link is obtained which is chained to previous links. The participant initiating

the sequential execution concatenates its data field Dk with all chaining values

of previous links {XP1
k−1| . . . |X

Pn
k−1}, computes the hash of the concatenation and

signs it to obtain the chaining value Xk of the first sequential link:

Xk = SPi
(Dk|XP1

k−1| · · · |X
Pn
k−1) (5.5)

The following properties of a DNC make it a good tool for distributed notarization:

• The DNC is not possessed by a single participant, but by all of them. Whenever

a participant builds a link of a DNC, she sends it to the other participants, so

that all of them see the same DNC. If a participant recomputes the chain to

add false links to it, the manipulated chain will not match the copies held by

the rest of participants, and manipulation will be detected.

• If someone deletes or modifies one or more links, the chain will show an incon-

sistency at the point of deletion.
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• The chaining and the structure of links allows the exact sequence and time of

link construction to be securely determined.

• As links are signed by the participant who built them, link authorship can be

securely determined.

• Link computation is performed in parallel whenever the protocol allows it (us-

ing the expansion operation). This results in improved performance without

degrading security.

5.1.3 Protocol description

As mentioned above, DNCs are used for distributed notarization. Whenever a player

builds a link of a DNC, she sends it the other players, so that all of them see the same

DNC. Furthermore, each link is digitally signed by the player who built it, which

guarantees authentication, integrity and non-repudiability for that link. A link can

only be appended at the end of the chain and no participant can modify or delete

any link without being detected.

The initialization protocol is as follows:

Protocol 43 (Shuffle the cards)

1. Each player Pi is assumed to have an asymmetric key pair (Pi, Si) whose public

key has been certified by a recognized certification authority. Assume the card

deck consists of t cards.

2. Pi does:

(a) Generate a permutation πi of the card deck and keep it secret.

(b) Generate a symmetric secret key Ki corresponding to a homomorphic cryp-

tosystem allowing algebraic operations (additions and multiplications) to be

carried out directly on encrypted data. The preferred choice for this homo-

morphic cryptosystem is [DF02], also described in patent [DS00], which is

secure against ciphertext-only attacks; an alternative choice is [DF96].
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(c) Choose a prime value zi which falls within the range of the cleartext space

of the homomorphic cryptosystem used.

(d) Build a link of the DNC such that its subject Ck says that the link contains

zi used by Pi and the field Vk contains zi. Link building can be done in

parallel by all players, which expands the DNC at this point.

(e) Build the card permutation matrix Πi corresponding to πi, using zi.

(f) Commit to this permutation Πi using a bit commitment protocol [Sch96].

Denote the resulting commitment by Cpi.

(g) Build the next link of the chain using the previous expanded link. The

subject Ck indicates that this link contains the commitment and the field

Vk contains Cpi.

(h) Choose s values {δ1, · · · , δs} such that δj mod zi = 0, ∀j ∈ {1, · · · , s} and

s > t.

(i) Choose s values {ε1, · · · , εs} such that εj mod zi 6= 0, ∀j ∈ {1, · · · , s} and

s > t.

(j) Encrypt the previous values under the symmetric key Ki to get dj =

E(Ki, δj) and ej = E(Ki, εj), ∀j ∈ {1, · · · , s}.

(k) Build the next link of the chain with a field Vk containing the set D =

{d1, · · · , ds} and a subject Ck indicating that the link contains encrypted

versions of a set of values which are 0 modulo zi.

(l) Build another link of the chain with a field Vk containing the set E =

{e1, · · · , es} and a subject Ck indicating that the link contains encrypted

versions of a set of values which are different from 0 modulo zi.

(m) Generate the vector representation for the t cards in the deck {w1, · · · , wt}
and encrypt them under Ki using the aforementioned homomorphic cryp-

tosystem to obtain w′
j = E(Ki, wj).

(n) Permute the encrypted cards.

(o) Build the next link of the chain. The subject Ck indicates that the link
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contains a card deck encrypted by Pi. The field Vk contains the encrypted

cards in the order resulting from the permutation in Step (2n).

Once initialization is over, the player playing the croupier role performs chain

contraction by building a link with a chaining value mixing together the last link

created by every player Pi. The subject Ck of this link indicates that initialization is

over and that the game can start. The field Vk is empty.

Note that the initialization protocol results in each player Pi publishing in the

DNC her zi and a commitment to her permutation; the actual permutation stays

secret, though. When Pi wants a card, the following protocol is started:

Protocol 44 (Draw a card)

1. Pi does:

(a) Pick a value v0 such that it falls within the range of cards in the deck, i.e.

1 ≤ v0 ≤ t, and which has not previously been requested. This operation is

simple because it is public. All participants know the initial values chosen

in previous steps.

(b) Build the next link of the chain, where Vk contains the vector represen-

tation w0 of card v0, and the subject Ck indicates that Pi wants the card

represented by w0. The link is received by all players and, in particular, by

P1.

2. P1 does:

(a) Check the validity of the link sent by Pi, compute her equivalent card per-

mutation Π′
1 for the modulus zi published by Pi and permute w0 to obtain

w1 = w0 · Π′
1.

(b) Build the next link of the chain, whose subject indicates that the link con-

tains w1 and that P2 is supposed to perform the next computation; the field

Vk contains the value w1.

3. For j = 2 to i− 1, player Pj does:
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(a) Check the validity of the link sent by Pj−1, compute her equivalent card

permutation matrix Π′
j for the modulus zj−1 published by Pj−1 and permute

wj−1 to obtain wj = wj−1 · Π′
j.

(b) Build the next link of the chain, whose subject indicates that the link con-

tains wj and that Pj+1 is supposed to perform the next computation; the

field Vk contains the value wj.

4. Player Pi does:

(a) Check the validity of the link sent by Pi−1, compute her equivalent permu-

tation matrix for zi−1 and permute wi−1 to obtain wi = wi−1 · Π′
i.

(b) Modify the m-th row of Πi where m ∈ {1, · · · , t} is the value of card wi−1.

All values in the m-th row are changed to values that are nonzero modulo

zi

(c) Pick the encrypted card w′
i corresponding to clear card wi. Note that the

encrypted deck has been published in the last step of Protocol 43.

(d) Build the next link of the chain, with Vk = w′
i and a subject Ck indicating

that the link contains w′
i and that Pi+1 is supposed to perform the next

computation.

5. For j = i + 1 to n, player Pj does:

(a) Check the validity of the link sent by Pj−1 and compute her equivalent

card permutation matrix Π′
j for the modulus zj−1 published by Pj−1. Use

Protocol 45 below to encrypt Π′
j as Πc

j under the key Ki corresponding to

Pi.

(b) Permute the encrypted card w′
j−1 using her encrypted matrix Πc

j to obtain

w′
j = w′

j−1 · Πc
j.

(c) Build the next link of the chain, with Vk = w′
j and a subject indicating

that the link contains w′
j; if j < n, the subject also indicates that Pj+1 is

supposed to perform the next computation.
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6. When Pi sees the link computed by Pn, she does:

(a) Check the validity of the link computed by Pn.

(b) Decrypt the card w′
n contained in the link computed by Pn under her private

key Ki to obtain the drawn card wn = DKi
(w′

n). This finishes the card draw

protocol.

A loose end that remains is how Pj encrypts her permutation matrix Π′
j under

Pi’s secret key Ki. To do that, player Pj can only use the sets of encrypted values D

and E published by Pi in Step (2k) of Protocol 43. The specific procedure is described

below:

Protocol 45 (Permutation matrix homomorphic encryption)

Let the homomorphic encryption of the cleartext matrix Πj = {πkl} under Ki be

Πc
j = {πc

kl}. To compute πc
kl, for 1 ≤ k, l ≤ t, player Pj does the following:

1. Generate a pseudorandom value g, such that 1 ≤ g ≤ s, where s is the size

of the sets D,E of encrypted values published by Pi in Protocol 43.

2. Randomly pick g values {d1, · · · , dg} of the set D and add them to obtain

h = d1 + · · · + dg. Remember that values in D are 0 modulo zi, because

they are homomorphically encrypted versions of values which are 0 modulo

zi, so by the homomorphic properties, h is also 0 modulo zi.

3. Generate a pseudorandom value c such that c mod zi 6= 0 and compute

h′ = c · h.

4. If πkl mod zi = 0, then πc
kl := h′.

5. If πkl mod zi 6= 0, then

(a) Generate a pseudorandom value g′ such that 1 ≤ g′ ≤ s.

(b) πc
kl := h′ + eg′, where eg′ is the g′-th element of the set E.

A player can also discard a card w by building a link of the DNC whose subject

says that the player is discarding a card and whose field Vk contains the encrypted

version of the discarded card.
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5.1.4 Extensions

In each run of Protocol 44, player Pi gets only one card. The protocol can be extended

so that the player draws several cards in a single protocol run. To do this, let us define

a way to pack several cards together:

Definition 7 (Multicard) Given a deck with t cards and a prime value z, a multi-

card ξ is a vector of t elements

ξ = (a1, · · · , at) (5.6)

where there are up to M < t components ai, such that ai mod z 6= 0. The index i of

each component ai that is nonzero modulo z represents one of the cards contained in

the multicard. By convention, a multicard with all t components nonzero modulo z is

not valid (it would contain the whole deck).

Protocol 44 can be adapted to multicards as explained below:

• At Step (1a) of Protocol 44, Pi should choose the cards she wishes. Let these

be w1
0, · · · , wx

0 , x < t in vector representation.

• A multicard ξ0 =
∑x

j=1 wj
0 is obtained by adding the chosen cards.

• At Step (1b), the chain link would be computed using the multicard ξ0 rather

than a single card w0.

• The protocol carries on until Step (4b), where all rows corresponding to values

of cards in the multicard are modified.

• The protocol then proceeds as described above. In the final Step (6b), Pi

decrypts the card computed by Pn and obtains a multicard.

5.1.5 Game validation

When a hand of the game is over, players should reveal their encryption keys and

their permutations. The validation process is specified next:
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Protocol 46 (Game validation) Each player does the following:

1. Check that the permutation revealed and used by each player Pi is the same

permutation πi to which she committed when publishing the commitment Cpi

in Protocol 43 (initialization). This check implies verifying the bit commitment

for player Pi.

2. Decrypt cards {w′
1, . . . , w

′
t} published by each player Pi in the last step of Pro-

tocol 43 and check that the card deck is correct.

3. Use the private key Ki of each player Pi to decrypt the result of permuting en-

crypted cards at Step (5b) of Protocol 44. Check that permutations were correctly

performed.

4. Check that cards discarded by players have not been used during the game.

5. If necessary, use the DNC chain to prove any detected misbehaviors by any

player to a third-party (casino, court, etc.).

5.2 Security analysis

Let us examine a collection of possible attacks and check that they fail:

A coalition wants to get the cards drawn by a player Player Pi draws one or

more cards in an instance of Protocol 44. In subsequent instances belonging to

the same hand, a coalition of players attempt to determine the cards drawn by

Pi. To do that, the coalition must construct a (multi)card with the card value(s)

drawn by Pi and encrypt that (multi)card. However, the coalition will not get

Pi’s card(s) because, if a card is requested which had been previously requested,

what is obtained is a vector with all components different from 0 modulo zi.

This is due to the modification of matrix Πi at Step (4b) of Protocol 44. The

resulting multicard has all components different from 0 modulo zi and is thus

a non-valid multicard (by definition).
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A player uses a wrong modulus Assume that, to permute a card coming from

player Pk−1, player Pk computes her equivalent permutation matrix Π′
k using

zj 6= zk−1. This is detected by Pi in the last step of Protocol 44, because w′
n

decrypts into a non-valid card (with more than M nonzero components modulo

zi). Player Pi has no option other than reporting the wrong decryption; other-

wise Pi would not be able to show her cards during game validation. Verification

performed during Protocol 46 discloses the identity of the cheater Pk.

A player does not use the permutation she committed to A player may choo-

se to use a permutation Π different from the one she committed to during ini-

tialization. If the player changes her permutation for the whole game, this is

detected during game validation. If the player changes her permutation only

during some parts of the game, two things may happen:

• Some of the other players get duplicated cards. A player getting a dupli-

cated card is forced to report it (otherwise she will not be able to show

her cards during game validation). Upon such report, the game is stopped

and game validation started.

• The change is not detected during the game. In this case, it is detected

during game validation and the dishonest player is identified.

A player supplies wrong sets D or E If, during initialization, a player does not

supply correct sets D = {d1, · · · , ds} or E = {e1, · · · , es}, then permutations of

encrypted cards cannot be correctly computed. Two things can happen:

• The card obtained by Pi at the end of Protocol 44 is not valid. In this

case, Pi is forced to report the problem.

• The card obtained by Pi is valid. In this case, the problem is detected

during game validation.

A player supplies a wrong encrypted deck The game validation protocol veri-

fies that all players have supplied correct encrypted decks during initialization.
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A player builds an incorrect chain link During execution of Protocol 44, each

player checks that the previous link of the chain has been correctly built. Any

wrong link is reported (all players see all links so it is risky not to report a

wrong link when discovered).

A player requests a card which had already been requested Cards requested

at the beginning of Protocol 44 are recorded in the DNC. If a player requests a

card that had already been requested, this is detected by the rest of the players

(all of them see the DNC links).

A player does not correctly encrypt her permutation An incorrectly encryp-

ted card permutation matrix can yield non-valid or duplicated cards, which is

detected during the game. Even if all cards are valid, a wrongly encrypted

permutation is detected during game validation.

Player withdrawal Depending on when a player withdraws from the game, different

things happen:

• If a player withdraws during initialization, the game simply proceeds with-

out her.

• If a player withdraws immediately after initialization, the game proceeds

without her. In this case, the composition of permutations must be com-

puted without using the permutation of the withdrawn player.

• If a player withdraws during the game (i.e. during Protocol 44), the game

stops at the moment of withdrawal. Players show their cards and game

validation is started. If the player has withdrawn without justification, she

is fined.

5.3 Examples

Example 1 Let t = 5 and consider the following permutation of five cards

π =
(

3 5 4 1 2
)

(5.7)
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If z = 5 is taken, the card permutation matrix is as follows

Π =



5 10 3 5 15

25 10 35 5 6

50 10 10 8 5

4 60 5 50 25

15 7 35 60 10


(5.8)

Note that, in the first row, the only element which is nonzero modulo 5 is the third one,

that is, the one in the position corresponding to π(1) = 3. Similarly, in the second

row, the only nonzero element modulo 5 is in the 6-th position, because π(2) = 6.

And so on for the other rows.

Example 2 Using t = 5, z = 5 and the permutation matrix of Example 1, card

v = (10, 15, 8, 20, 20) (with value 3) is permuted as

w = (10, 15, 8, 20, 20) ·



5 10 3 5 15

25 10 35 5 6

50 10 10 8 5

4 60 5 50 25

15 7 35 60 10


= (1205, 1670, 1435, 2381, 980)

(5.9)

Thus, the permuted card w has value 4 (the fourth card of the ranked deck). In this

way, π(3) = 4, which is consistent with the fact that the only nonzero component in

the third row of the permutation matrix is the fourth one.

5.4 Conclusion

A solution for obtaining impartial random values in on-line gambling has been pre-

sented in this chapter. Unlike most previous proposals, our method does not re-

quire any TTP and allows e-gambling to reach standards of fairness, security and

auditability similar to those common in physical gambling. In addition, our solution

has moderate computational requirements.
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The solution has been specified for the particular case of games with reversed cards

(e.g. poker), but it can be easily adapted for games with open cards (e.g. blackjack)

and for random draw games (e.g. keno).
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Chapter 6

A TTP-free mental poker protocol

achieving player confidentiality

Computationally efficient TTP-free mental poker has an interest beyond e-gambling,

namely as a testbed for multiparty computation. Indeed, many of the cryptographic

primitives and protocols devised for TTP-free mental poker can be re-used for other

multiparty applications such as e-voting, multiparty function evaluation, etc.

We present in this chapter a mental poker protocol [CSD04b] where:

• No TTP is required;

• The confidentiality of the strategy of players is preserved;

• The amount of computation required stays reasonably low. As will be shown in

the cost analysis presented, this protocol is perfectly usable in practice, unlike

most previous TTP-free solutions.

Section 6.1 describes our proposed protocol suite. The computational cost of our

proposal is assessed in Section 6.2. A security analysis is given in Section 6.3. Finally,

conclusions are drawn in Section 6.4.
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6.1 Our protocol suite

Our proposal consists of five stages: initialization, card shuffling, card draw, card

opening and card discarding. Each stage corresponds to the basic operations done

by players in one poker hand. All messages sent by players during the five stages are

posted on a bulletin board.

6.1.1 Initialization

The following public parameters are agreed upon by all players for card encryption:

• Two large prime numbers p and q such that p = 2q + 1;

• A generator α of a subgroup G of Z∗
p of order q, such that α is a quadratic

non-residue;

• A security parameter s.

• A poker deck is composed by 52 cards.

Next, every player Pi:

1. Selects her private key Ki so that 2 < Ki < q and Ki is an odd number.

2. Publishes her public key βi = αKi .

All players thereafter co-operatively generate a random set X = {x1, . . . , xm},
where xj are odd numbers 2 < xj < q.

Finally, players compute β = αK1···Kn without revealing their own keys Ki. This

can be done in a secure way using [BCPQ01].

6.1.2 Card shuffling

The deck of shuffled, face-down cards will be co-operatively computed by all players in

turn. We define an initial set C0 = {c0,1, . . . , c0,52}, where c0,j = (d0,j, α0,j) = (αxj , β).

Note that, by construction, any αxj is a quadratic non-residue.
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During shuffling, each player Pi takes Ci−1 and generates Ci. As a result of this

process, the set Cn of shuffled face-down cards is obtained. The shuffling protocol is:

Protocol 47 (Cards shuffling )

1. For i = 1 to n:

(a) Using Procedure 32 below, Pi computes

{Ci, Ri, πi} = Procedure 32(Ci−1);

(b) Pi runs Protocol 48(Ci−1, Ci, πi, Ri, s) below to prove that Ci has been prop-

erly computed;

(c) Pi broadcasts Ci (while keeping Ri and πi secret).

In the above protocol, the last player Pn obtains the set Cn, which is the deck

of cards encrypted and shuffled by all players Pi. Note that every player Pi in

{P1, . . . ,Pn} can verify that all cn,j ∈ Cn are quadratic non-residues. This require-

ment is meant to thwart the card-marking attack in [Lip81]: all cards share the same

property of being quadratic non-residues.

We describe below Procedure 32 used in Protocol 47.

Procedure 32 (C)

1. Generate a random set R = {r1, . . . , r52} of odd numbers rj so that 2 < rj < q,

using a uniform distribution;

2. For j = 1 to 52 compute c′j = (d
rj

j , α
rj

j ), where cj = (dj, αj) is the j-th element

of C;

3. Generate a random permutation π over {1, 2, . . . , 52} (e.g. using the Trotter-

Johnson unranking algorithm [KS98]);

4. Permute the values c′j and obtain C∗ = {c′π(1), . . . , c
′
π(52)};

5. Return {C∗, R, π}.
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As indicated in Protocol 47 above, Protocol 48 is used by Pi to prove to the rest

of players that she has properly computed Ci.

Protocol 48 (Ci−i, Ci, πi, Ri, s)

1. For k ∈ {1, . . . , s} Pi does:

(a) Using Procedure 32 above, compute {Ci,k, Ri,k, πi,k} = Procedure 32(Ci);

(b) Publish Ci,k;

2. The rest of players send a random index u = {u1, . . . , us} of s bits;

3. For uk ∈ {u1, . . . , us}:

(a) If uk ≡ 1 then:

i. Pi reveals the set Ri,k = {ri,k,1, · · · , ri,k,52} and the permutation πi,k;

ii. All players verify (Ci, Ci,k) using Procedure 33 (Ci, Ci,k, Ri,k, πi,k);

(b) If uk ≡ 0 then:

i. Pi computes π
′

i,k = πi,k ◦πi and R
′

i,k = {r′i,k,1, . . . , r
′

i,k,52}, where r
′

i,k,j =

ri,πi(πi,k(j)) · ri,k,πi,k(j) (note that ri,πi(πi,k(j)) ∈ Ri and ri,k,πi,k(j) ∈ Ri,k);

ii. Pi reveals R
′

i,k and π
′

i,k;

iii. All players verify (Ci−1, Ci,k) using Procedure 33 (Ci−1, Ci,k, R
′

i,k, π
′

i,k).

In Step 1 of Protocol 48, Ci is encrypted s times, so we obtain s encryptions of

Ci. When verifying whether Ci has been well encrypted into Ci,k using Ri,k, or Ci−1

into Ci,k using R
′

i,k, one just needs to verify whether the exponentiations are correct.

This is done in Procedure 33.

Procedure 33 (Ca, Cb, R, π)

1. For j = 1 to 52 do:

(a) Consider cb,j = (db,j, αb,j) ∈ Cb and ca,π(j) = (da,π(j), αa,π(j)) ∈ Ca and

rπ(j) ∈ R;

(b) Check db,j
?
= (da,π(j))

rπ(j);

(c) Check αb,j
?
= (αa,π(j))

rπ(j).
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6.1.3 Card draw

We now specify the card draw protocol. Let us assume that player Pu wants to draw

a card from the shuffled face-down deck Cn.

Protocol 49 (Card drawing )

1. Pu chooses an index j so that card cn,j = (dn,j, αn,j) ∈ Cn has not been drawn

yet;

2. Pu publishes e0 = αn,j. Let r = 0;

3. For each i in {1, · · · , u− 1, u + 1, · · · , n}:

(a) Let r = r + 1;

(b) Pi computes and publishes er = (er−1)
K−1

i ;

(c) Pi proves in zero-knowledge that logα βi = loger
er−1. This can be efficiently

done using the Chaum-Pedersen proof [CP92];

4. Pu computes en = (en−1)
K−1

u ;

5. The extracted card corresponds to the value x ∈ X that satisfies dn,j = (en)x;

6. Pu obtains x as the drawn card.

6.1.4 Card opening

In traditional poker, players can show their cards easily. In mental poker that is not

so easy: a player must prove to the rest of players that she is the owner of her cards.

We use the card opening protocol to prove it.

Let us assume that a player Pu has drawn a card cn,j and has received en−1 from

Pn. It is publicly known that en−1 was obtained during the card draw protocol and

is a card in Pu’s hand. In this scenario, Pu does the following steps:

Protocol 50 (Card opening )
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1. Publish en = (en−1)
K−1

u and x;

2. Prove in zero-knowledge that logen
en−1 = logα βu. This can be efficiently done

using the Chaum-Pedersen proof [CP92].

Any player can verify that x ∈ X satisfies dn,j = (en)x in G.

6.1.5 Card discarding

A player discards a card when she commits herself to not using it. Using the notation

of Protocol 50, let us assume that a player Pu has drawn a card cn,j and has received

ei−1. Pu discards cn,j when she sends the discard message with cn,j to the bulletin

board. If Pu wants to open one discarded card cn,j the rest of players can detect the

fraud because cn,j is on the bulletin board.

6.2 Computational cost

The computational cost of the protocol suite presented in Section 6.1 is dominated by

Protocol 47 (card shuffling). In general, card shuffling is what distinguishes practical

from impractical mental poker protocols. Therefore, we focus in this section on the

analysis of the computational cost of Protocol 47.

As we have noted in section 3.1 ξ and ρ are the computational cost (time) incurred

by exponentiation and multiplication, respectively. The computational cost of other

operations is assumed negligible and is denoted by ε. s is the security parameter that

we have defined in section 6.1.1.

Table 6.1 gives the breakdown of costs for the different steps of Protocol 47.

Table 6.2 shows the cost of Protocol 48.

Table 6.3 shows the cost of Procedure 32.

Table 6.4 shows the cost of Procedure 33.

We can compare the cost of shuffling cards using our Protocol 47 with the cost

of shuffling using the Barnett-Smart scheme [BS03]. In our proposal the cost of

shuffling and verifying a deck is n(104ξ(sn + 1) + 26sρ) (see Table 6.1). According
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Table 6.1: Costs of shuffling protocol
Number of Total length Computational
messages of messages cost

Card shuffling n2(n− 1)(s + 1) n([p]52((n− 1)(2 + s) + s))+ 104nξ(sn + 1)+
+n([r](n− 1 + s52)) +26nsρ

Step 1 n2(n− 1)(s + 1) n([p]52((n− 1)(2 + s) + s))+ 104nξ(sn + 1)+
+n([r](n− 1 + s52)) +26nsρ

Step 1a 104ξ

Step 1b (n− 1)(2s + 1) [p]52s(2n− 1) + [r](n− 1 + s52) sn104ξ + 26sρ

Step 1c (n− 1) [p]104(n− 1) ε

to our analysis of the operations required by Barnett-Smart (see section 3.3.10), the

total Barnett-Smart cost is at least (104(ρ+ ξ)(ns+1)+52ρ) (see Table 3.66). With

our proposal we save at least ρ26n((4n− 1) + 6) operations.

In order to give some empirical execution times for our proposal, average val-

ues for times ξ and ρ have been found using a program running on a PC with an

IBM T41 Centrino 1.5 GHz processor with 512MB of RAM and a Debian operating

system with a GNU/Linux 2.6.7-1 kernel. The program computes a large number

of exponentiations and multiplications and records the average time for each oper-

ation. Table 6.2 shows the estimated values for ξ, ρ and the overall running time

n(104ξ(sn + 1) + 26sρ) of Protocol 47 for several values of the security parameter s

and of the length |p| of p. The number of cards is m = 52, the number of players is

n = 5 and time is expressed in seconds. We can know the computational cost of one

player if we divide the total cost by 5.

6.3 Security analysis

In Subsection 6.3.1, we give several lemmata that will be used for the subsequent

security analysis. In Subsection 6.3.2 we examine the fulfillment of the security re-

quirements stated in Chapter 3.
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Table 6.2: Costs of Protocol 48

Number of Total length Computational
messages of messages cost

Protocol 48 (n− 1)(2s + 1) [p]52s(2n− 1) + [r](n− 1 + s52) sn104ξ + 26sρ

Step 1 s(n− 1) s(n− 1)104[p] s(104ξ)
Step 1a 104ξ

Step 1b (n− 1) (n− 1)(104[p]) ε

Step 2 (n− 1) (n− 1)[r] ε

Step 3 s(n− 1) s(52[p] + 52[r]) s(104ξ(n− 1) + 26ρ)
Step 3a (1/2)(n− 1) (1/2)(n− 1)52([p] + [r]) (1/2)(104ξ)(n− 1)

Step 3(a)i (n− 1) (n− 1)(52[p] + 52[r]) ε

Step 3(a)ii (104ξ)(n− 1)
Step 3b (1/2)(n− 1) (1/2)(52[p] + 52[r]) (1/2)(104(n− 1) + 52ρ)

Step 3(b)i 52ρ

Step 3(b)ii (n− 1) (n− 1)(52[p] + 52[r])
Step 3(b)iii (104ξ)(n− 1)

6.3.1 Supporting lemmata

Card shuffling lemmas

Lemma 3 If Protocol 48 is used to verify an encrypted deck of cards, a coalition of

n − 1 cheating players have a probability of success of (1/2)s, where s is a security

parameter.

Table 6.3: Costs of the Procedure 32

Computational cost
Procedure 32 104ξ

Step 1 ε

Step 2 52(2ξ)
Step 3 ε

Step 4 ε

Step 5 ε
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Table 6.4: Costs of Procedure 33

Computational cost
Procedure 33 104ξ

Step 1 52(2ξ)
Step 1a ε

Step 1b ξ

Step 1c ξ

Table 6.5: Estimated values (in seconds) for ξ, ρ and the running time of Protocol 47
for several values of s and |p|

|p|
256 512 768 1024

ξ 1.268e− 3 7.882e− 3 24.510e− 3 55.638e− 3
ρ 0.012e− 3 0.027e− 3 0.05e− 3 0.087e− 3

s |p|
256 512 768 1024

5 17.151 106.582 331.407 752.282
8 27.046 168.072 522.605 1186.292
10 33.642 209.0657 650.070 1475.633
15 50.135 311.549 968.7327 2198.983

Proof: Protocol 48 is used to verify that Ci is the encryption of Ci−1 without

revealing anything about Ci. We will show that, at the end of the protocol, there is

a probability (1/2)s that a wrong computation of Ci stays undetected, where s is a

security parameter.

In Step 1, Ci is encrypted s times, so s encrypted decks Ci,k are obtained. In

Step 2, a s-bit long value u is obtained between all players. This value is random if

at least one player is honest, and cannot be manipulated by any player. In Step 3,

it is verified for all s encrypted decks: i) that Ci has been well encrypted into Ci,k;

or ii) that Ci−1 has been well encrypted into Ci,k. These verifications are made using

Protocol 48. The uk-th bit of u is used to choose whether the first or the second

verification are made:
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• If Ci has been correctly computed from Ci−1 and Ci,k has been correctly com-

puted from Ci, both verifications pass;

• If Ci is not correctly computed from Ci−1 but Ci,k is correctly computed from

Ci, Step 3(a)ii of Protocol 48 passes, but Step 3(b)iii of Protocol 48 fails;

• If Ci,k has been correctly computed from Ci−1 but Ci is not correctly computed

from Ci−1, then Ci,k is not correctly computed from Ci. Therefore, Step 3(b)iii

of Protocol 48 passes, but Step 3(a)ii of Protocol 48 fails.

In order to cheat by taking a wrong Ci and then computing a suitable Ci,k, the

coalition must guess whether (Ci−1, Ci,k) or (Ci, Ci,k) will be verified, i.e. the value

uk. We have defined this value as random, so the coalition have a probability 1/2 of

guessing it for each deck. Since there are s decks, we can conclude that a cheating

coalition passes all verifications with probability (1/2)s. 2

Definition 8 The Decisional Diffie-Hellman Problem [Bon98] (DDH) consists of de-

ciding whether four elements (g1, y1, g2, y2) of a group are a valid Diffie-Hellman tuple,

namely, whether they satisfy logg1
y1 = logg2y2.

The DDH problem is believed to be hard over the multiplicative subgroup G of

Z∗
p of size q generated by α (see [Can02]).

Lemma 4 Given the encryption of c0,j by P1 as c1,j = (d1,j, α1,j) where d1,j = αxjr1,j

and α1,j = βr1,j , checking whether xj is the cleartext encrypted in c1,j without knowing

r1,j is as hard as solving the DDH problem in G.

Proof: Given xj,d1,j,α1,j, β, the problem of checking whether the cleartext is xj is

to decide whether logα d1,j = logβ(α1,j) ·xj. Assuming there exists a polynomial-time

algorithm A(xj, α, d1,j, β, α1,j) solving the above problem, an instance (g1, y1, g2, y2)

of the DDH problem in G could be solved in polynomial time taking a random x and

running A(x, g1, y
x
1 , g2, y2). 2

Lemma 5 Given two encrypted and permuted cards ci−1,j ∈ Ci−1 and ci,j ∈ Ci,

deciding whether ci,j is the encrypted version of ci−1,j without knowing ri,π(j) is as

hard as solving the DDH problem in G.
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Proof: An encrypted and permuted card ci,j in Ci has the form ci,j = (di,j, αi,j) =

((di−1,π(j))
ri,π(j)i, (αi−1,π(j))

ri,π(j)), where ri,π(j) ∈ Ri and ci−1,π(j) = (di−1,π(j), αi−1,π(j)) ∈
Ci−1.

Without knowledge of π nor ri,π(j), deciding whether ci,j corresponds to an encryp-

tion of ci−1,j is equivalent to deciding whether logdi−1,π(j)
di,j = logαi−1,π(j)

αi,j. This is

an instance of the DDH problem in G. 2

Card drawing lemma

Lemma 6 If a coalition of n− 1 players incorrectly decrypt in Protocol 49 the card

drawn by the remaining player, this is detected by that player.

Proof: At each stage of the protocol, a player Pi receives er−1, and then computes

and sends er = (er−1)
K−1

i . Let us assume that the coalition of n − 1 players send

e
′
r 6= (er−1)

K−1
i . In Step 3c of Protocol 49, they must prove that logα βi = loge′r

er−1

using the Chaum-Pedersen protocol [CP92]. The proof will fail if e
′
r 6= (er−1)

K−1
i . 2

6.3.2 Fulfillment of security requirements

We now use the above lemmata to assess the fulfillment of the properties enumerated

in Chapter 3:

Uniqueness of cards: This property is fulfilled by the zero-knowledge-proof tech-

nique used in Protocol 48. The probability that card non-uniqueness goes unde-

tected is the probability that the player who runs the protocol guesses a random

s-bit number, that is, (1/2)s (see Lemma 3).

Uniform random distribution of cards: Every player encrypts and permutes the

cards. If at least one player is honest and chooses a truly random permutation,

the deck of cards will be uniformly permuted.

Absence of trusted third party: No TTP is used in the described protocol suite.

All players have the same influence.
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Cheating detection with a very high probability: Cheating during card shuf-

fling is detected using a zero-knowledge proof with a probability 1− (1/2)s (see

Lemma 3). From Lemma 6, a player Pu drawing a card with Protocol 49 can-

not cheat some honest player Pi with whom Pu is interacting by replacing the

chosen card with another one or using a key K ′ 6= Ki (Ki is player Pi’s private

key).

Complete confidentiality of cards: As long as there is at least one honest player

Pi who keeps πi secret (πi is the permutation used by Pi in her unopened deck),

it is not possible for an intruder to discover the correspondence between the set

of cryptograms cn,j ∈ Cn and the set of cleartext cards xj. The other approach

to breaking card confidentiality is to try to decrypt the cryptograms. It follows

from Lemma 4 that α raised to values in X cannot be linked to the elements

in C1 by players P2, · · · ,Pn. On the other hand, it follows from Lemma 5 that

the elements in Ci−1 cannot be linked to those in Ci by players other than Pi.

In this way, after running the card shuffling protocol, nobody can link α raised

to values in X to those in Cn.

Minimal effect of coalitions As pointed out in [Cré85], a cryptographic protocol

cannot avoid player coalitions, but it must try to minimize their effect. In

practice, this means that a coalition of players should not be able to discover the

cards of an honest player. By Lemma 6, a coalition of n−1 players cannot change

the card that is being drawn, or avoid using their private keys in the protocol.

If they use other keys, this is detected. Finally, it follows from Lemmas 4 and 5

that it is hard to know the cleartext value w of an encrypted card.

Complete confidentiality of strategy The protocol does not require players to

reveal their secret keys Ki nor their permutations πi in order to verify the

game.
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6.4 Conclusions

We have presented a mental poker protocol which does not rely on trusted third

parties, while preserving confidentiality of player strategy. Our proposal uses zero

knowledge proofs for shuffling and drawing cards, but the proofs used are well-known

and efficient. Thus, unlike for some previous TTP-free schemes, the amount of com-

putation of the protocol suite presented here stays affordable and, as shown, can been

accurately quantified.
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Chapter 7

Dropout-tolerant TTP-free mental

poker

The properties that, according to [Cré85], should be satistied by any mental pro-

tocol have been recalled in Chapter 3.

Dropout tolerance was not listed in [Cré85] as a requirement, but nonetheless

stays a major challenge in remote gaming. In electronic gaming, no one can prevent

a player from quitting a game. Two kinds of dropout can be distinguished:

• Intentional: A player decides to quit the game. This may be attractive for a

player to whom the game is not being favorable.

• Accidental: A player cannot go on playing, for example due to a network

problem.

Whatever the reason for player dropout, the remaining players should be able to

continue the game. If a Trusted Third Party (TTP) is controlling the game, handling

player dropout is greatly simplified [CSD04a]. However, a TTP is not always available

or desirable: it may not be trusted by everybody, it may charge some fee, etc. When

no TTP is assumed, dropout becomes a nontrivial problem.

In this chapter, we proposes a solution for player dropout in mental poker without

a TTP [CSD05]. The solution is based on zero-knowledge proofs and allows the game
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to continue after the dropout.

Section 7.1 reviews literature on TTP-free mental poker offering player confiden-

tiality, and it analyzes what happens when one player leaves the hand during the

game. Our proposed protocol is described in Section 7.2. Security is examined in

Section 7.3. Finally, Section 7.4 is a conclusion.

7.1 Background on TTP-free mental poker offer-

ing player confidentiality

All schemes mentioned in this section fulfill all security requirements identified in

[Cré85], including the confidentiality of player strategy. We next review them by

focusing on their ability to handle player dropout.

Schemes [Cré86, Sch98] do not consider player dropout. In both proposals, each

player has some secret information needed to draw cards from the deck. Without this

information, the game cannot proceed.

In [BS03] it is proposed that players who quit the the game should disclose their

secret information. However, this solution is only applicable if dropout is intentional

and the player leaving the game is willing to collaborate. In case of accidental dropout

(e.g. due to a network problem) or malicious intentional dropout, there is no guar-

antee that the remaining players can go on playing.

Schemes [KKO97, SSG02] represent each card in the deck by a different numerical

value. During card shuffling, those values are encrypted and permuted by each player.

The effect of encryption is analogous to reversing cards in a physical deck. A secret-

sharing scheme is used, so that at least t players are needed to decrypt values. The

goal is that the game can proceed if at least t players remain, which allows for some

dropouts. In [KKO97] the secret sharing scheme is applied to cards. Each value

representing a card is divided into as many shares as there are players. Then each

share is encrypted under the public key of a different player. A card cannot be

decrypted unless at least t players co-operate. In [SSG02], players create a key pair

using the procedure proposed in [Ped92]. Players generate a public key so that each
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player gets a share of the private key; thus, the private key cannot be used unless

at least t players co-operate. Even if those schemes based on secret sharing do offer

some dropout tolerance, the bad news is that secret sharing makes it possible for a

sufficiently large collusion of players to obtain all deck information. Thus, dropout

tolerance is traded off against collusion tolerance. This is frustrating because collusion

tolerance is a basic security property already identified as relevant in [Cré85].

7.2 Our proposal

There is a first round where cards are dealt as in the poker game, and each player

obtains five cards. If a player discards some cards from her hand, a new dealing round

is started so that the player can obtain as many cards as she has discarded.

We use Protocol 51 to obtain a new deck of cards in each dealing round, in a

similar way as proposed in [Yun85]. In the second and successive dealing rounds each

player vetoes (i.e. marks as unavailable) those cards that she has previously drawn.

Protocol 52 is used to veto drawn cards. If a player obtains a vetoed card, she cannot

use it and she does not know either the value of the vetoed card or who vetoed it;

what the player can do is to show that she obtained a vetoed card and then draw a

new card.

If a player leaves the game, the rest of players generate a new deck and use it in

the game. The new deck includes the cards that were drawn by the player who left

the game, because the latter is no longer there to veto her cards when the new deck

is generated.

We shall use the following notation in the subsequent protocols.

n : number of players (we assume some ordering among the n players);

Pi : the i-th player in the ordered set of n players;

λi : set of cards in Pi’s hand;

Λ : set of all cards in the hands of all players, i.e. Λ = ∪n
i=1λi;

δi : set of cards discarded by Pi.
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7.2.1 System set-up

Before a game starts, players P1, . . . ,Pn must set some parameters. They choose a

large prime p so that p = 2q+1 and q is also prime; they also pick one element g ∈ Z∗
p

of order q.

Using the key generation protocol described in [DF90], players jointly generate

a public key y =
∏n

i=1 yi. Each player Pi keeps her corresponding share αi of the

private key and publishes yi = gαi .

7.2.2 Deck generation

Each card is represented by a value jointly computed by all players in Protocol 51.

We first explain what Protocol 51 does and then describe the protocol in detail.

Let us assume that we are in the k-th dealing round. We can see in Step 1 of

Procotol 51 below that every player uses Procedure 34 to compute 52 new values.

These values are sent to the rest of players in Step 2 of Protocol 51. Once every

player gets the new values from the rest of players, the new deck Dk is computed by

all players at Step 3. We use the term face-up deck of cards because every player can

see the value of each card; the j-th value dk,j in Dk represents the j-th card in the

deck.

If dk,j is a face-up card, then we denote by ek,j the corresponding face-down card.

ek,j contains the encrypted version of the exponents that have been used to compute

dk,j ∈ Dk from dk−1,j ∈ Dk−1. To prove ownership of a card dk,j, a player must

prove knowledge of those exponents, i.e. prove knowledge of the discrete logarithm

logdk−1,j
(dk,j).

In the first round, all cards are available and E1 = C1,0 is the face-down deck of

cards without shuffling (see Step 4 of Protocol 51). In subsequent rounds, each player

vetoes the cards in her hand using Protocol 52 (called at Step 5a of Protocol 51); the

goal is that cards already drawn should become unavailable. After using Protocol 52,

a player gets one re-masking factor for each card in the deck; a vetoed card is re-

masked with a factor which does not allow decryption, whereas a non-vetoed card is

re-masked with a factor allowing decryption.
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In Step 5b players re-mask the encrypted exponents with these factors, and obtain

the face-down deck of cards without shuffling, Ck,0.

We denote by Dl the deck of cards of the l-th round; we denote by D the set of

all decks that have been generated in all rounds, i.e. D = {D1, . . . , Dk}. In order to

run our protocol, we define D0 = {d0,1, . . . , d0,52}, where d0,j = g, ∀j ∈ {1, . . . , 52}.

Protocol 51 (k ≥ 1, Dk−1)

1. Each player Pi uses Procedure 34 on Dk−1 and obtains Dk,i = {dk,i,1, . . . , dk,i,52}
and Ek,i = {ek,i,1, . . . , ek,i,52}, where dk,i,j = d

mk,i,j

k−1,j and ek,i,j = Ey(mk,i,j);

2. Each Pi publishes Dk,i and Ek,i;

3. All players compute the face-up deck of cards Dk = {dk,1, . . . , dk,52} and

Ek = {ek,1, . . . , ek,52}, where dk,j =
∏n

i=1 dk,i,j = d
mk,1,j+···+mk,n,j

k−1,j and

ek,j = {ek,1,j, . . . , ek,n,j};

4. If k = 1, players compute the face-down deck of cards C1,0 = {c1,0,1, . . . , c1,0,52},
where c1,0,j = e1,j ∈ E1;

5. If k > 1 then players do the following

(a) Run the vetoing protocol (Protocol 52) and obtain Gk = {gk,1, . . . , gk,52},
where gk,j = {gk,1,j, . . . , gk,n,j};

(b) Compute the face-down deck of cards Ck,0 = {ck,0,1, . . . , ck,0,52}, where

ck,0,j = ek,j · gk,j = {ek,1,j · gk,1,j, . . . , ek,n,j · gk,n,j}. Drawn cards in this

face-down deck have been vetoed.

In the k-th dealing round, each player Pi computes a new value dk,i,j for each

card j. This new value is obtained from dk−1,j (the value used in round k − 1 to

represent card j) raised to a random value mk,i,j. The exponent mk,i,j is encrypted

into Ey(mk,i,j) and sent along with the new value. Players use Procedure 34 to

compute these new values for each card.

Procedure 34 (y, p, D)
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1. For each dj in D = {d1, . . . , d52} do:

(a) generate a random value mj, where 2 < mj < q;

(b) compute d
mj

j ;

(c) encrypt mj into Ey(mj) under public key y;

(d) prove in zero-knowledge to the rest of players that Ey(mj) is the encryption

of logdj
(d

mj

j ) using [Sta96];

2. Return the sets D′ = {dm1
1 , . . . , dm52

52 } and E = {Ey(m1), . . . , Ey(m52)}.

Prior to describing Protocol 52 we define ξl,i as the number of cards that Pi has

drawn in the l-th dealing round; we also define ξi as the sum of all cards drawn by

Pi in all previous dealing rounds, that is, ξi =
∑k−1

l=1 ξi,l.

In Step 1a of Protocol 52 each player in turn computes a re-masking factor for

each card dk,j ∈ Dk. Using the construction of [CDS94], Pi proves in Step 1b of

Protocol 52 that 52− ξi factors have been properly computed (as many factors as the

number of cards Pi has not drawn); in this proof, Pi does not reveal which subset of

factors was properly computed. In Step 1c, Pi again uses the construction of [CDS94]

to prove that she has computed ξi re-masking factors which veto the cards Pi has

drawn (see in Section 7.3 the lemma that a player vetoes the cards she has drawn).

The re-masking factors that veto all drawn cards by any player are pooled together

in Step 2.

Protocol 52 (Dk)

1. For each Pi (i = 1, . . . , n):

(a) Pi uses Procedure 35 with (Dk, λi, δi,D) and obtains

Gi = {(ui,1, vi,1), . . . , (ui,52, vi,52)};

(b) Pi proves in zero-knowledge that at least 52 − ξi values (ui,j, vi,j) prop-

erly re-mask a card, i.e. they do not veto the card. This is done us-

ing the construction of [CDS94] in order to show that Pi can correctly

perform at least 52 − ξi executions of the set of zero-knowledge proofs
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{CPi,1, . . . , CPi,52}, where CPi,j = CP (g, y, ui,j, vi,j) (CP (g, y, u, v) de-

notes the Chaum-Pedersen [CP92] zero-knowledge proof, see section 2.2.2).

(c) For l = 1 to k, Pi proves in zero-knowledge that she has vetoed as many

cards as the number ξl,i of cards she obtained in the l-th dealing round. This

is done using the construction of [CDS94] in order to prove that she can

perform at least ξl,i executions among the following set of zero-knowledge

proofs {CPl,i,1, . . . , CPl,i,52}, where CPl,i,j = CP (dl−1, ui,j, dl,j, dj);

2. Compute G = {g1, . . . , g52}, where gj = (uj, vj), and uj =
∏n

i=1 ui,j and vj =∏n
i=1 vi,j, with (ui,j, vi,j) ∈ Gi;

3. Let G0 = {(g0,1,1, . . . , g0,n,1), . . . , (g0,1,52, . . . , g0,n,52)} := G, that is, g0,ζ,j = gj

∀ζ ∈ {1, . . . , n} and ∀j ∈ {1, . . . , 52}, and gj = (uj, vj) ∈ G;

4. For each Pi (i = 1, . . . , n):

(a) receive Gi−1 = {(gi−1,1,1, . . . , gi−1,n,1), . . . , (gi−1,1,52, . . . , gi−1,n,52)} from Pi−1;

(b) compute Gi = {(gi,1,1, . . . , gi,n,1), . . . , (gi,1,52, . . . , gi,n,52)}, where gi,ζ,j =

g
ri,ζ,j

i−1,ζ,j = (u
ri,ζ,j

i−1,ζ,j, v
ri,ζ,j

i−1,ζ,j) and 1 < ri,ζ,j < q is a value obtained at ran-

dom;

(c) for each gi,ζ,j = (ui,ζ,j, vi,ζ,j) in Gi run CP (ui−1,ζ,j, vi−1,ζ,j, ui,ζ,j, vi,ζ,j);

(d) send Gi to the next player;

5. Return Gn.

Procedure 35 is used by every player to compute the values used in re-masking.

If card j is not vetoed then a pair (uj, vj) is computed such that logg uj = logy vj.

However, if card j must be vetoed, a pair (uj, vj) such that logg u 6= logy v is computed,

in order to prevent a correct decryption.

As will be described in Section 7.2.4, when Pi obtains a card j at round k, Pi

obtains the discrete logarithm τk,j = logdk−1,j
dk,j. In subsequent rounds Pi uses that

logarithm to veto this card.

Procedure 35 (D, λ, δ,D)
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1. For each dj in D = {d1, . . . , d52} do:

(a) if the card represented by dj is in λ ∪ δ do:

i. generate a random value Rj, where 1 < Rj < p;

ii. let us assume that the card represented by dj has been obtained in

round l. In this case τl,j = logdl−1,j
(dl,j) is known (where dl−1,j and dl,j

are in D), so gj = (uj, vj) is computed, where uj = d
τ−1
l,j

j and vj = Rj;

(b) if the card represented by dj is not in λ ∪ δ do:

i. generate a random rj, where 1 < rj < q;

ii. compute gj = (uj, vj), where uj = grj and vj = yrj ;

2. Return G = {g1, . . . , g52} = {(u1, v1), . . . , (u52, v52)}.

7.2.3 Card shuffling

This is done using the procedure described in [BS03]. The different players in turn

shuffle and re-mask the face-down deck C0 obtained with Protocol 51.

Protocol 53 (C0)

1. For each player Pi (i = 1, . . . , n) do:

(a) Generate a permutation σi of 52 elements;

(b) Permute the elements ci−1,j of the face-down deck Ci−1 with σi to obtain

C∗
i ;

(c) Re-mask the encrypted messages contained in each card of C∗
i without

modifying their content to obtain Ci; this is done by re-masking all ci-

phertexts contained in each face-down card C∗
i = {c∗i,1, . . . , c∗i,52}, where

c∗i,j = {e∗i,j,1, . . . , e∗i,j,n}; specifically, Pi computes Ci = {ci,1, . . . , ci,52},
where ci,j = {e∗i,j,1·Ey(1, ri,j,1), . . . , e

∗
i,j,n·Ey(1, ri,j,n)}; values {ri,j,1, . . . , ri,j,n}

are obtained at random;

(d) Use the proof in [BS03] to prove in zero-knowledge that Ci is a permuted

and re-masked version of Ci−1.
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After running the shuffling protocol, players get the set Cn, that is, the shuffled

face-down deck of cards.

7.2.4 Card drawing

The card extraction procedure is as follows. Let us assume that extraction is per-

formed by player Pi:

Protocol 54

1. Pi randomly selects an element from Cn, namely, cj = (ej,1, . . . , ej,n);

2. Pi asks the rest of players to verifiably send her information to decrypt the

messages ej,ζ contained in cj using [DF90];

3. After decrypting these messages, Pi obtains {m1, . . . ,mn}, where mζ = D(ej,ζ);

4. Pi searches for an element dk,t ∈ Dk (the k-th dealing round deck) such that

dm1+···+mn

k−1,t ≡ dk,t;

5. If dk,t ∈ Dk then Pi stores τt = (m1 + · · ·+ mn);

6. If dk,t 6∈ Dk then Pi has obtained a vetoed card. In this case, she shows that

the card was vetoed and requests a new one.

7.2.5 Card opening

A player must prove to the rest of players that she is the owner of her cards. The

card opening protocol is used to that end.

Let us assume that a player Pi has drawn a card cj ∈ Cn. Pi has received the

partial decryption from the rest of players, and she has verified that each partial

decryption is correct.

Pi opens a card when she publishes the remaining part of the decryption of cj.

With this information, all players can know the value of cj, that is, the decrypted card

exponents D(ej,1), · · · , D(ej,n). The decryption is verifiably performed as detailed

in [DF90].
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7.2.6 Card discarding

A player discards a card when she commits herself to not using it. Let us assume

that player Pi has drawn a card cj ∈ Cn using Protocol 54.

Pi discards cj by sending a message discard with cj to the rest of players. cj is

added to the set λi. If Pi wants to open a discarded card, the rest of players can

detect the cheating because the card is in λi.

7.2.7 Player dropout

In case one of the players leaves the game, the rest of players can go on playing.

Assuming that player Pi with public key yi leaves the game, the game public key is

updated as y := y/yi. Next, the rest of players continue as if player Pi had never

joined the game. This implies that cards once extracted by Pi will be back in the

deck.

7.3 Security

Security results in this section basically state that: i) vetoed cards cannot be opened;

and ii) the set of vetoed cards is the set of drawn cards. Each security result is

followed by the respective Proofs.

Lemma 7 If Pi succeeds in performing CPi,j = CP (g, y, ui,j, vi,j) at Step 1b of Pro-

tocol 52, then (ui,j, vi,j) will not veto the face-down card ck,0,j at Step 5b of Protocol 51.

Proof: A face-down card ck,0,j is formed by a set of ciphertexts (ek,1,j, · · · , ek,n,j).

When a card is not vetoed in Protocol 52, a re-masking factor (ui,j, vi,j) is used which

still allows recovery of the cleartexts from the card ciphertexts. To allow correct

decryption, the re-masking factor must satisfy logg ui,j = logy vi,j. This is exactly the

property proven by CP (g, y, ui,j, vi,j). 2

The Corollary below follows from the above lemma and from Step 1b of Proto-

col 52.
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Corollary: 1 Let 52 be the total number of cards. Let ξi be the cards drawn by a

player Pi. Then the number of cards xi not vetoed by Pi is such that xi ≥ 52− ξi.

Lemma 8 If, at round k, Pi succeeds in performing CPl,i,j = CP (dl−1, ui,j, dl,j, dj),

l < k, at Step 1c of Protocol 52, then (ui,j, vi,j) vetoes the face-down card ck,0,j at

Step 5b of Protocol 51.

Proof: Let us assume a card drawn in a dealing round l previous to the current

round k (i.e. l < k). Let the face-up value of that card be dk,j. CP (dl−1, ui,j, dl,j, dk,j)

proves that:

τ = logdl−1,j
(dl,j) = logui,j

dk,j (7.1)

From Equation 7.1 we have

ui,j = (dk,j)
τ−1

(7.2)

Now if (ui,j, vi,j) does not actually veto dk,j, the following holds:

logg(ui,j) = logy(vi,j) = loggα(vi,j) =
1

α
logg(vi,j)

The above is equivalent to

α · logg(ui,j) = logg(vi,j) (7.3)

Combining Equations (7.2) and (7.3) yields

logg((dk,j)
τ−1

)α = logg vi,j (7.4)

If logarithms are removed, we get vi,j = ((dk,j)
τ−1

)α. Thus, re-masking factor

(ui,j, vi,j) will pass CP (dl−1, ui,j, dl,j, dk,j) without actually vetoing dk,j only if it has

the form

(ui,j, vi,j) = (dτ−1

k,j , ((dk,j)
τ−1

)α) (7.5)

However, computing vi,j in Expression (7.5) without knowledge of α nor (dk,j)
α is

as hard as the Diffie-Hellman problem. Obtaining α from the public key y is as

hard as the discrete logarithm problem. Thus, passing the verification at Step 1c of

Protocol 52 implies that card dk,j is actually vetoed. 2
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Lemma 9 A player can only veto a card she has drawn.

Proof: Assume that the current dealing round is round k;

let {d1,j, · · · , dl,j, · · · , dk,j} be the expressions for the j-th card at each dealing round

l, where τl,j = logdl−1,j dl,j for 1 ≤ l < k. Assume now that Pi wants to construct a

proof of veto for dt,j, for some t < k. Then Pi needs to construct (ui,j, vi,j) so that she

can perform CPt,i,j = CP (dt−1, ui,j, dt,j, dk,j). This means logdt−1,j
dt,j = logui,j

dk,j,

which requires ui,j = d
τ−1
t,j

k,j so that Pi needs to know τt,j = logdt−1,j
(dt,j) But this

logarithm is only known to Pi if she drew the card at round t (see Protocol 54). 2

Lemma 10 The number of cards vetoed by a player is at least the number of cards

drawn by the player.

Proof: Let us assume that Pi has extracted ξi cards in previous dealing rounds.

At Step 1c of Protocol 52 Pi uses the proof by Cramer et al. [CDS94] for the ξi

re-masking factors corresponding to the ξi drawn cards. According to Lemma 8, this

guarantees that the ξi drawn cards are vetoed. 2

Theorem 2 The set of cards vetoed by a player is the same as the set of cards drawn

by the player.

Proof: If a re-masking factor (ui,j, vi,j) passes the proof that it is a vetoing factor

for card j, then by Lemma 8 it vetoes card j. On the other hand, if a re-masking

factor (ui,j, vi,j) passes the proof that it is a non-vetoing factor for card j, then by

Lemma 7, it does not veto card j. Now, a re-masking factor (ui,j, vi,j) cannot at the

same time veto and not veto card j. Thus, (ui,j, vi,j) cannot pass both the proof that

it is a vetoing factor and the proof that it is a non-vetoing factor.

Let us assume that player Pi has drawn ξi cards. By Lemma 1, the number of

cards not vetoed by Pi is at least 52− ξi. By Lemma 10, the number of cards vetoed

by Pi is at least ξi. Therefore, Pi vetoes exactly ξi cards. Finally, by Lemma 9, a

player can only veto cards she has drawn. Therefore the set of drawn cards is the

same as the set of vetoed cards. 2

Theorem 3 A vetoed card cannot be opened.
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Proof: Without loss of generality we assume n = 2 players P1 and P2. Assume

that a round k card dk,j is computed from dk−1,j by raising a round k− 1 card dk−1,j

to exponents m1 and m2, i.e. dk,j = dm1+m2
k−1,j . Note that mi is secret and only known

to Pi, for i = 1, 2, whereas dk,j is public and obtained at Step 3 of Protocol 51.

At Step 5a of Protocol 51 the vetoing protocol is called to compute re-masking

factors gk,1,j = (u1, v1) and gk,2,j = (u2, v2); at Step 5b these factors are applied to

the encrypted card exponents ek,j = (ek,1,j, ek,2,j) to veto card dk,j. Now, (u1, v1) and

(u2, v2) have been computed by the vetoing protocol (Protocol 52), so they satisfy

logg ui 6= logy vi for i = 1, 2 (7.6)

The computations for vetoing dk,j at Step 5b of Protocol 51 are:

ek,j · gk,j = {ek,1,j · gk,1,j, ek,2,j · gk,2,j} = {Ey(m1) · (u1, v1), Ey(m2) · (u2, v2)}

= {(gr1 · u1, m1 · yr1 · v1), (g
r2 · u2, m2 · yr2 · v2)} (7.7)

Opening card dk,j means extracting the secret exponents m1 and m2 from the face-

down card expression ek,j · gk,j. From Expression (7.7), we have that

m1 =
m1 · yr1 · v1

(gr1 · u1)α
, m2 =

m2 · yr2 · v2

(gr2 · u2)α
(7.8)

Some algebraic manipulation of Equations (7.8) leads to

logg u1 = logy v1 , logg u2 = logy v2 (7.9)

Equations (7.9) contradict Equations (7.6). Thus, the card cannot be opened. 2

7.4 Conclusions

We have presented a mental poker protocol which, to our best knowledge, is the first

TTP-free proposal tolerating both intentional and accidental player dropout. Future

research will explore applications of the protocol in this paper to secure multi-party

computation problems other than mental poker.
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Chapter 8

Conclusions

In this thesis, we have focused on the study and design of cryptographic protocols

that offer suitable security when poker is played over a computer network. This kind

of protocols are collectively known as mental poker.

8.1 Results of this thesis

Our first ambition has been to do a comparative analysis of the main contributions

to mental poker. We have divided mental poker protocols in two groups: TTP based

and TTP-free.

Using the presence or absence of a TTP as the main classification criterion is

justified because the assumption of a TTP dramatically diminishes the complexity

of the mental poker problem and the computational cost of the solutions. Thus,

TTP-based and TTP-free protocols cannot be compared and must stand in different

groups.

We have examined the following items for each protocol:

• Functionality

• Security

• Computational and communication cost
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Each protocol offers some functionality with a degree of security at a certain cost.

This cost is related to the mathematical operations performed and the messages

exchanged. We can compare two solutions only if they offer the same functionality

and security.

To the best of our knowledge, in Chapter 3 we have presented the first exhaustive

comparison of the main contributions to mental poker. Being novel, such an analysis

is a contribution in its own right.

In Chapter 4 we have presented an attack that exploits a security flaw in the

mental poker protocol by Zhao et al.. We found this weakness when carrying out the

comparative survey presented in Chapter 3. With little computation, a player can

decrypt the encrypted cryptograms and find the cleartext cards. As a reaction to our

attack, the same authors of the broken protocol have presented a modified version of

their initial proposal. Nevertheless, the new version still has an important security

flaw, which we discuss in the same chapter: the proposed encryption and decryption

system allows one of the players to find the cleartexts of the final encrypted shuffled

deck of cards.

In Chapter 5 we have presented a new mental poker protocol that falls in the

category of TTP-free protocols that do not preserve the confidentiality of player

strategies. The computational cost is reduced by avoiding the use of zero-knowledge

proofs. The method used to represent a card and a permutation allows an encrypted

card to be permuted using an additive and multiplicative homomorphic cryptosystem.

All rights on this protocol are owned by Scytl Online World Security S.A. through

a patent. Moreover, the protocol has been implemented in a case study of mutual

distrust. The authors of the implementation argue that our proposal is “practical in

terms of computational requirements” in comparison to the rest of proposals in the

literature.

In Chapter 6 we have presented a new TTP-free mental poker protocol which

preserves the confidentiality of the strategy of players. We remark that the amount

of computation required stays reasonably low. We have presented a cost analysis and

we have compared it with one of the most efficient previous proposals. The security of

this new protocol has been analyzed: we conclude that it fulfills all security properties
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normally required in a mental poker protocol.

In Chapter 7 we have presented a new TTP-free protocol which allows the game

to continue after player dropout without diminishing player security. This is an

unusual functionality. Our solution is based on zero-knowledge proofs, while previous

dropout-tolerant proposals were based on secret sharing (cards were encrypted with

a shared secret key and, if some player left the game, the rest of players could still

decrypt the remaining encrypted cards). One drawback of using secret sharing is

that a sufficiently large collusion of players can obtain all cleartext cards; another

drawback is that the number of dropouts that can be tolerated is fixed. Our new

dropout-tolerant solution does not allow any player coalition to find out the cards in

the hands of the rest of players. Moreover, the number of players that can leave the

game is not limited.

8.2 Future research

Although the computational and communication costs have been reduced by our three

new proposals with respect to the state of the art, further reductions are needed to

come up with commercial mental poker products. Our future research will be directed

to cost reduction while maintaining the same levels of security and functionality.

Player dropout opens a new research problem in mental poker. The efficiency of

our proposal must be increased. Our future research here will be directed to improving

our dropout protocol.

Finally, mental poker is a special case of secure multiparty computation. Thus, an

interesting research line is to explore applications of mental poker protocols to other

secure multiparty computation problems.
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[CD04] J. Castellà-Roca and J. Domingo-Ferrer. On the security of an efficient

ttp-free mental poker protocol. In International Conference on Informa-

tion Technology ITCC 2004, volume II, pages 781–784, Las Vegas, NV,

April 2004. IEEE Computer Society.
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