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Introduction

It is difficult, in the Theory of Dynamical Systems, to draw a boundary line between con-
servative laws and symmetries because often their effects on the dynamics are very similar.
This is the case of the Hamiltonian and reversible systems. Briefly, a system of ordinary
differential equations

(1) z = F(z,1), zeR", teR

is called time-reversible if there exists a phase space involution & (that is, &% = id, & # id)
such that system (1) remains invariant under the action of & and a reversion in time’s arrow
t — —t. From an analytical point of view, this is equivalent to say that & conjugates F
with its opposite field —F. If the involution & is linear we will refer to them as (time) linearly
reversible systems. In the case of diffeomorphims, & conjugates the corresponding diffeo with
its inverse. From a dynamical point of view, one of the main consequences is that if z = ¢(t)
is a solution of (1) then so is the same solution evolving backwards in time and applying the
phase space involution &, that is z = &(p(—t)). For instance, consider the motion of an ideal
pendulum (with no loss of energy due to friction) and film its evolution. If we, later, played
this film with a projector, we could not distinguish from the images if we were playing the
film forwards or backwards. This is only a simple example of a time-reversible system but,
in fact, this is not a coincidence. Reversibility and time-reversibility are present in a lot of
branches of Mathematics, Physics, Astronomy, Biology, Chemistry, ...

For years, reversibility (from now on, we will use the terms reversible and reversibility to
indicate time-reversible and time-reversibility) was considered a property of some Hamiltonian
systems, which allowed a reduction of the number of significant variables and a simplification,
in general, of the model.

It was not until the end of the 1970’s and, specially during the decade of the 80’s, that re-
versibility received again the interest of scientist as a feature independent of the Hamiltonian
character (see, for instance [29, 3, 4, 51]). An example of the richness of this kind of systems
is the fact that they can exhibit simultaneously conservative-like and dissipative-like behav-
iors. Indeed, the reversible systems can have Kolmogorov tori which are invariant under the
phase flow and the involution & (see [44, 3, 51, 52] and satisfy some other results concerning a
reversible version of Lyapunov center theorem [29] and Lyapunov stability [38, 39]. However,
Nekhoroshev-like results concerning exponential stability (effective stability) cannot be car-
ried out to reversible systems. These results depend strongly on some geometrical properties
which are satisfied by the Hamiltonian system but are not by the reversible ones. For more
information about this topic see, for instance, [7] and [9, §4.2.5]. For a discussion concerning
also the reversible case, see [39]. Moreover, outside the manifold Fix & of fixed points by the
involution &, reversible systems can exhibit attractors and repellers (in fact, if they have an
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attractor at a point o then the symmetric point & z is a repeller, and vice versa), which is a
typical dissipative feature. Although they are not very common, there exist in the literature
examples of reversible systems that are not Hamiltonian. For instance:

Ezample 1: Tt is due to Sevryuk [51, page 144]. Consider the following system in C2:
21 = iz1(a1+ 292
@) {32 jalutan
2 = logz

where a1, a9 € R. This system is reversible with respect to the involution (z1, z2) — (21, 22).
However, there does not exist any symplectic structure with respect to which system (2) is
Hamiltonian.

Ezample 2: (Politi et al. [47]) Under some conditions, an externally injected class B laser can
be described by a 3-dimensional system of differential equations of the form

T = zrt+y+a
(3) Yy = zy—zx
3 = cg—x2—y?

where c¢1, ¢o are parameters. This is system is reversible with respect to the linear involution
& : (z,y,2) — (—z,y,—z) and presents conservative-like structures and typical dissipative
ones. A related simplified 2-dimensional model of system (3) is

4) {iﬂ = fiy+ foy® + f32?
Y = q1T+ gawy

where f;, g;, j = 1,2 are real parameters. This system is reversible with respect to the
involution & : (z,y) — (—z,y). If we take values of f1, fo # 0, g1 and go satisfying

fig1 <0 and  f1(fig2 — fag1) f2 <0,

then system (4) has two symmetric fixed points (lying on Fix & = {z = 0}): the origin
that is an elliptic point and another equilibrium point which is hyperbolic. Around them,
Hamiltonian-like structure is observed. But, moreover, it has two other fixed points, lying
outside {z = 0} that are symmetrical, in the sense that one is the image by & of the other
one, being one of them an attractor and the other one, a repeller.

Ezample 3: This third example is due to Champneys [17] and comes from a model for
an optical 0 with grating which generalizes the classical Massive Thirring model. Roughly
speaking, the partial differential equations arising from this problem can be led into a second-
order complex ordinary differential equation, which is Hamiltonian, with Hamilton function
given by
1 _
H=D|U'"+ QU+ |U|*+ 5 (U2 +(0)%).

Here u(z,t) = e “%U(z) represents the solitary wave we are looking for, D is the effective
diffraction coefficient and U denotes the conjugate of U. To model the effects of nonlinear

dispersion (or diffraction) Champneys introduces an extra term depending on a coefficient 3,
giving rise to an equation

_ !
(5) DU" +iU' + QU+ U |[UP + U =ip (U|U|2) .
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This equation can be viewed as a four-dimensional dynamical system in the real variables
RU, SU, RU' and SU’ and, in particular, it is reversible with respect to the involutions

&: (U, U — (U,-U"), & :(UU)— (-U,0").

It can be seen that, for § = 0 this Hamiltonian system has a saddle-center equilibrium point
at the origin with a homoclinic connection, provided one takes D > 0 and || < 1. Using a
numerical approach, Champneys proves that for non-zero values of 8 equation (5) is not any
more Hamiltonian (but still reversible).

This memory deals with reversible systems. More precisely, we have focused our attention
on two topics intimately related to the person of Henri Poincaré (next year it will be celebrated
the 150th anniversary of his birth). This topics, which Poincaré introduced in his thesis
(1890), are the Normal Form Theory and the phenomenon of the Splitting of Separatrices. The
first one has become one of the most useful tools to study the dynamics of a nonlinear system
around an equilibrium. The second one is related to the transversal intersection of invariant
manifolds arising from the perturbation of a system having an homoclinic connection.

The aim of this work is to contribute to the study of this two topics, looking for similar
results to the ones obtained in the Hamiltonian context and establishing some connections
between both type of systems.

Let us start with Normal Forms. Since they were introduced by Poincaré, they have been
one of the most used tool in Dynamical Systems Theory. The literature devoted to them
is very extensive as well as the number of authors involved (for instance, see [14, 20] for a
general overview on this topic). Very briefly, the main problem of the Normal Form Theory
is, given a system

(6) 2=F(z) = Az + 0(z?),

with an equilibrium point (say the origin), to seek for a change of variables z = ®({) =
¢+ O(¢?) (usually called a normalizing transformation) leading system (6) into its simplest
form, say

(7) {=N()=A+0(Ch).

This is called normal form and is just formed by the so-called resonant terms (see the intro-
duction of Chapter 1), terms closely related to the characteristic exponents of system (6) at
the origin (Poincaré-Dulac Theorem).

Our first idea was to study the convergence of the normal form for an analytic reversible
system in the vicinity of a saddle-center or a saddle-focus equilibrium point. This is the
case if their characteristic exponents are {£\, ai} or {£A £ ai}, A,a > 0, respectively.
The proof of this convergence becomes the reversible version of a celebrated result due to
Moser [43], which generalized the well-known Lyapunov’s Theorem to the case of a 2-degrees
of freedom Hamiltonian system. Devaney [29] proved an analogous result of Moser’s Theorem
for reversible systems, but using a topological argument. Later, other proofs were given due
to Moser and Webster [45] and Sevryuk [51]. Our aim was to give a new proof of this
theorem of Moser based on a completely constructive scheme (and, therefore, implementable
on a computer). However, at that moment, we became aware of a paper of DeLatte [22],
inspired on ideas of Moser. The thesis of that paper can be summarized as follows. Take,



iv On normal forms and splitting of separatrices in reversible systems

for instance, a general 2-dimensional analytic system (6) with a hyperbolic equilibrium point
at the origin (that is, with characteristic exponents {+A}, A > 0). To normalize it we must
seek for an analytic transformation z = ®(() leading (6) into a normal form (7). This means
that N = ® F = (D®)~'F(®) or, in other words, that the equation

DO N = F ()

is satisfied. For example, if we are dealing with a Hamiltonian system, the vector field N will
be the one of the Birkhoff Normal Form (BNF in short) [42]. The idea of Moser and DeLatte
is to consider another vector field B, formed also by resonant-type terms, in such a way that
the equality

(8) D®N + B = F(9)

holds. DeLatte proved that these vector fields N(¢), B(¢) and the transformation z = ®(()
converged (analytically) in some cases. And moreover, in those cases, if the system was
Hamiltonian then B had to vanish and we met therefore the usual BNF.

This result led us to the possibility of extending this method to the problem we wanted
to solve. That is, if there exists an analytic transformation z = ®((), leading a general (non-
necessarily reversible) system (6) into a form satisfying (8), in a vicinity of saddle-center or a
saddle-focus equilibrium point. If such a transformation exists we say that it leads system (6)
into pseudo-normal form (UNF in short). Since we know that in the Hamiltonian case this
problem is already solved by the BNF theory, it is natural to look for a vector field N, in
the expression (8), of the same type as the one provided by the BNF. Moreover, if we expect
WNF to become a generalization of the BNF, they will have to coincide when we deal with a
Hamiltonian system. Consequently, B will have to vanish.

Chapter 1 is devoted to the proof of the convergence of this WNF, as claimed in Theo-
rem 1.2. The methodology employed to do it has consisted essentially on handling formal
power series in several variables, performance of constructive recurrent schemes and formal
solution of vectorial homological equations. The convergence is linear with respect to the
order in the spatial variable ( € C*. To prove such convergence it has not been used the
celebrated majorants method, but another one similar to one used in [25].

Later, we applied Theorem 1.2 to the particular cases of a Hamiltonian system and a
reversible system (with the reversibility non-necessarily linear). The result obtained (as it was
expected) is that in both cases B vanishes and, therefore, we have a local equivalence between
Hamiltonian and reversible systems around saddle-center or saddle-focus equilibrium points.
In particular, several consequences can be derived for planar systems around hyperbolic and
elliptic equilibrium points (see Theorem 1.3), specially in the case that B does not vanish. It
is remarkable that this YNF-method permits to measure, in some sense, the Hamiltoniability
(and, therefore, its local integrability) by means of an analytic vector field B. This B(()
has a particular form (see (1.7), for instance) which depends on two (one in the planar case)
analytic scalar-valued functions by, by. Consequently, one can apply methods coming from the
Theory of Analytic functions to estimate the number of zeros of these functions by, bs. In fact,
the idea of using these ¥NF (suggested by Moser) is closely related to the Translated curve
approach suggested by Moser in 1962 to find invariant curves and first used by Riissmann
(1982).

Chapter 2 is devoted to the study of the WNF in the planar case. Like it was done by
Moser in [42], we prove some properties about the UNF, the transformations preserving such
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a form and their effect on the coefficients of N and B. A possible interesting application of
these results is to the case of an analytic planar system having a linear center at the origin,
namely,

j":_y"i_f(x,y)
©) R

with fand g analytic functions starting with terms of order at least 2 in z, y. It is known (see,
for instance, [51, page 144]) that system (9) is Hamiltonian if and only if it is reversible. Even
more, this is also equivalent to say that (9) has a center at the origin and that there exists a
convergent transformation leading it into BNF. A possible way to ensure this convergence is,
using Bruno’s approach, to check that the formal normal form N obtained satisfies the so-
called Condition A (see the introduction of Chapter 1). Unfortunately, this is a very strong
restriction since it must be checked at any order (in the spatial variables). Consequently,
given an analytic planar system with a linear center at the origin, that is of the type (9) it is
not possible, as a rule, to determine whether the BNF is convergent or not. In other words,
if the origin is a center or a focus (see, for example, [14, §1.11,84]).

Interesting results concerning the convergence of Poincaré-Dulac normal forms (that is,
non necessarily Hamiltonian) for general analytic systems have been obtained in presence of
symmetries (see [19, 20, 15] and references therein). R

Coming back to system (9), we can consider the particular case where f and g are poly-
nomials,

T = -y + P(a:,y)
(10) {y = T + Q("I"’y) ‘

The problem can be then formulated as looking for the conditions one has to impose on the
coefficients of P and @ ensuring that the origin (a linear center) is in fact a center (and,
therefore, not a focus). This apparently simple question is known as the center-focus problem
and is a famous question intimately related to a local version of 16th Hilbert’s Problem. In
fact, it still remains open and it has been solved in just a few cases: when P and @) are
quadratic polynomials, if they are cubic polynomials without terms of order 2, if they form a
Liénard-type system, ... As an example, this problem with (full) cubic polynomials P and @
has not been solved yet. For more information on this topic see, for instance, [6, 53, 54, 50].

One of the usual tools to approach this problem is based on the computation of the
Lyapunov-constants which are related to the coefficients of a formal first integral of the
system (see Lemma 2.2) and are polynomials in the coefficients of P and Q. It is known that
system (10) has a center at the origin if and only if all these Lyapunov constants vanish. An
interesting problem is to find which is the minimal number of Lyapunov constants one has
to take equal to zero in order to ensure that the equilibrium point is a center.

Applying the YNF method to system (10) it follows that B depends on an analytic
scalar-valued function b. In Section §3, Chapter 2, it is proved that the coefficients of this
function b (in its turn also polynomials in the coefficients of the system) satisfy some similar
properties to the ones satisfied by the Lyapunov constants. This fact, lead us to approach
the center-focus problem for some known cases (essentially, when P and @ have degree 2 or
3) using a YNF-scheme. The idea is to consider generic polynomials P and @, perform WNF
up to a given order in the spatial variables and study the polynomial functions forming the
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coefficients of b. For this purpose we built our own algebraic manipulator (an example of the
outputs obtained are given at the end of Chapter 2) and studied the use of Gréibner Bases
to factorize polynomials in several variables. The problems we found are given in the same
Chapter. It is worth mentioning that this project was a joint work with A. Guillamon and
F. Planas, supported by an UPC-grant. Our aim is to continue with this problem in a close
future.

Coming back to the problem of the WNF, it is quite natural to wonder if this method
is also convergent in some other situations. Since the second topic we are interested in is
the Splitting of Separatrices for reversible systems, it seems reasonable to consider the prob-
lem of the convergence of the normal form around a hyperbolic periodic orbit and around
a whiskered torus. It is reasonable to expect that in both cases the YNF can be also con-
vergent. Chapter 3 is devoted to the first case. There, it is considered a general analytic
periodic perturbation of an integrable Hamiltonian system (whose corresponding BNF is con-
vergent). Although the idea is essentially the same as the one used for the saddle-center
and saddle-focus equilibria, the perturbative approach employed here introduced changes ho-
mological equation (see formula (3.31) in Chapter 3) as well as in its solution. We expect
this formal perturbative approach to be very close to the one appearing in the quasi-periodic
problem, which arises when considering a quasi-periodic perturbation of an integrable system
around a whiskered torus. The main result of Chapter 3 is given in Theorem 3.1. Like in
Chapter 1, the same consequences concerning WNF and BNF can be derived for Hamiltonian
and Reversible systems. The methodology applied consists on handling formal expansions
in Taylor-Fourier series, solving vectorial equations by means of recurrent procedures and
proving their (analytic) convergence following a similar argument to the one in Chapter 1.

As mentioned in Chapter 5, one of our future works will be devoted to the proof of the
convergence of the UNF in a vicinity of a whiskered torus. Although the formal solution can
be analogous to the periodic situation, the problems of the small denominators will require
a quadratic order scheme to ensure the convergence.

Finally, we arrive to the last part of this memory, which concerns the topic of the Splitting
of Separatrices in reversible systems and to which Chapter 4 is devoted. This is an impor-
tant phenomenon which seems to be one of the main causes of the stochastic behavior in
the Hamiltonian systems. When Poincaré introduced in his thesis a perturbative method to
measure the size of this splitting, he was already aware that its predicted size was exponen-
tially small in the perturbative parameter. However, it was not until the end of the 80s and
during the 90s that effective measurements and asymptotic formulas of such exponentially
small splitting were given. In 1997, A. Delshams and T.M. Seara wrote a paper [24] that
pretended to expound a general method to deal with this problem when one perturbed with
a rapidly oscillatory forcing a 1%—degrees of freedom Hamiltonian system having a homoclinic
connection. In that paper they obtained an asymptotic formula for the area of the lobe re-
maining between the invariant curves and the angle at the first homoclinic point. The size
of this splitting was exponentially small in the perturbative parameter and was given in first
order by the Melnikov function.

Thus, it seem to us that it could be interesting to reproduce this result in the case
of a 2-dimensional linearly reversible system subjected to a fast periodic perturbation that
preserved the same reversibility. There are essentially two the basic results that support
the method presented in [24]: the convergence of the BNF around the hyperbolic periodic
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orbit and the transversal intersection on the invariant curves. In our reversible case, the
convergence of the BNF around a hyperbolic periodic orbit had been given in Chapter 3.
Like in the Hamiltonian problem, the size of this domain of convergence is independent of
the perturbative parameters. On the other hand, the transversal intersection between the
invariant curves of the associated Poincaré map (with respect to time) is ensured by the
linear reversibility of the system. The final result is given in Theorem 4.1 (Chapter 4) and is
completely analogous to the Hamiltonian one given at [24] for the angle between the invariant
curves at the first homoclinic intersection. Due to the reversibility of our system, this first
homoclinic point lies always at the symmetry line, the set of points which are fixed by the
linear spatial involution. We want to stress the fact that in a reversible context the area of
the lobes between these curves it is not an invariant and, therefore, its measurement has no
interesting meaning.

The methodology employed in this chapter contains the use of the normal forms (linear
normal form, non-linear BNF and an extension of this normal form along an invariant mani-
fold, based on results from Da Silva, Ozorio, Douady and Vieira [21, 46]), parameterization
of invariant manifolds, extension of solutions and construction of flow-box coordinates to
measure the splitting size.

Then, a suggestive question arises: provided we were able to prove the convergence of
the BNF for quasi-periodic reversible systems around a whiskered torus, could we extend the
results given at [25] concerning the measurement of the splitting of the invariant whiskers for
a suitable Hamiltonian system, to the case of a linearly reversible system ? This problem is
still open. We are planning to study it following similar ideas to those used in Chapters 3
and 4.

To end, let us stress the following significant fact: in 1890 Poincaré introduced the Normal
Form Theory and a perturbative method to measure the Splitting of Separatrices; nowadays,
113 years later, they continue been basic tools in the study and understanding of the dynamics
in nonlinear dynamical systems.



On normal forms and splitting of separatrices in reversible systems




Chapter 1

UNF near saddle-center or
saddle-focus equilibria.

81 Introduction and main results

Since normal forms were introduced by Poincaré they have become a very useful tool to
study the local qualitative behavior of dynamical systems around equilibria. Consequently,
the literature devoted to this topic has been very extensive as the amount of authors involved
(Poincaré, Dulac, Siegel, Birkhoff, Lyapunov, Sternberg, Arnold, Moser, Bibikov, Bruno and
many others; for a general background see for instance [2, 14, 20] and references therein). In
a few words, given a system

(1.1) X = F(X) = AX + 0(X?),

around an equilibrium, say the origin X = 0, a general normal form procedure consists on
looking for a (formal power series close to the identity) transformation X = ®() in such a
way that the new system xy = ®*F() takes its simplest form. This is called normal form and
contains only the so-named resonant terms, monomials whose powers are intimately related
to the characteristic exponents of system (1.1) at the origin.

More precisely, if A = (A1, A2, ..., A ) is the vector formed by the characteristic exponents
of system (1.1) at the origin, i.e. the eigenvalues of the m x m-matrix A, then A is called
resonant if there exist p1,po,...,pm € {0,1,2,3,...}, satisfying |p| :==p1+p2+--- +pm > 2,
such that

(1.2) As = p1A1 +pado + -+ pmAm = (P, A)

for some s € {1,2,...,m}. If z = (z1,22,...,2m) € C™ and p = (p1,p2,...,Pm) €
(NU{0})™, we say that

b1 P2 |

2Peg = 271257 - 2bmeg

(s) .
with ¢'= (0,...,0, 1,0,...,0), is a resonant monomial if p and s satisfy (1.2). Thus, an
analytic system

(1.3) x = N(x),

1
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with x = ((1,{2,-.-,(m) and N(x) = (n1(x),n2(x),---,nm (X)), is said to be in normal form
if all the terms in N(x) are resonant.

In this work, we will focus our attention on analytic vector fields and will be specially
concerned with the convergence of the normalizing transformation ®.

There are two well-known cases where a polynomial normal form is achieved. The con-
vergence of its normalizing transformation depends only on the location of the vector of
characteristic exponents A = (A1, Ag, ..., A,) on the complex plane and on some arithmetical
properties. Namely,

(¢) when A belongs to the Poincaré domain, that is, the convex hull of the set { A1, Ag,..., Ay}
does not contain the origin;

(1) when X belongs to the complementary of this domain, the so-called Siegel’s domain,
and satisfies a Diophantine condition.

In the first case, the Theorem of Poincaré-Dulac ensures the convergence of a normalizing
transformation conjugating the original system to a system having only resonant terms. Since
in this situation there is just a finite number of resonant monomials, the normal form is a
polynomial. In the second case, the Diophantine condition permits to bound the small divisors
appearing in the normalizing transformation (see, for instance, [2, Chapter 5, §24]) and its
convergence is also derived (Siegel’s Theorem). The original system is conjugated to its linear
part, again a polynomial.

However, resonant normal forms with an infinite number of terms do arise in some im-
portant families of dynamical systems, like the Hamiltonian or the reversible ones. In such
contexts the characteristic exponents come in pairs {£A} and, therefore, they always belong
to the Siegel’s domain. In these cases, convergence results depend not only on the location of
the characteristic exponents and their arithmetical properties but also on the kind of formal
normal form they exhibit. In 1971, Bruno (see [11, Chapter II, §3, §4]) provided sufficient
and, in some particular sense, necessary conditions ensuring this convergence. He denomi-
nated them conditions A and w. The so-called condition w depends on arithmetic properties
of the vector of characteristic exponents A = (A1, A2,...,An,) and can be checked explicitly.
On the contrary, condition A imposes a strong restriction on the normal form forcing it (up
to all order !) to depend only on one or two scalar functions (see [11, pages 173-175]). These
conditions read as follows.

Condition A: There exist formal power series a(x), b(x) such that in equation (1.3)

MG MG
Aol PMe

N(x) = 2 * ato + 2 b0,
AmSm AmCm

where )\_] denotes the conjugate of A;.

Condition w: Set
w = min [As — (p, A)]

for As — (p,A) # 0 and 2 < [p| < 2*. Then

Z 27%1n Wk

E>1
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converges.

Typically, for any vector of characteristic exponents A = (A1, A2,..., An), wg tends to
zero as k goes to infinity. Since A; — (p, ) appear as denominators in the normalizing
transformation @ this is the so-called small divisors phenomenon. If A = (A, A2, ..., Ap)

satisfies condition w then these small divisors can be bounded. Notice that this condition is
imposed only on the non-resonant terms of the system. If condition w is satisfied it follows
the existence of ¢, v > 0 such that

[As — (p, A)| > c exp (—v|p|)

(see [11, page 140]). With respect to these two conditions, in [11, Theorem 4, page 186],
Bruno asserts

Theorem 1.1 ([Bruno]) Given a system (1.1), if its characteristic exponents (A1, A2, ..., A\m)
satisfy condition w and its (formal) normal form satisfies condition A, then there ezists a
convergent analytic transformation X = ®(x) transforming system (1.1) into normal form.

In some sense conversely, if a normal form (1.3) can be obtained from an analytic system,
such that neither of the two conditions w and A is satisfied, then there exists a system (1.1)
having (1.3) as its normal form and such that any transformation leading it into normal form
is divergent [11, page 186].

In order to show how difficult is to check condition A, it is particularly interesting to
consider the case of a planar analytic vector field with the origin being a linear center equi-
librium point, that is, with purely imaginary characteristic exponents. Although a formal
normalizing transformation can be built for such system, its convergence can be ensured a
priori just in case one knows that the origin is a center. Indeed, this fact forces the corre-
sponding formal normal form to satisfy condition A. On the other hand, if the origin is a
focus, we have as a rule divergence (for more details, see [14, pages 121-122]). In the case this
planar vector field is polynomial, one can look for the minimal number of conditions on their
coefficients ensuring the origin to be a center. This is a famous question intimately related
to a local version of the 16th Hilbert’s problem called the center-focus problem, which still
remains open.

There are very few cases where the fulfillment of condition A follows from the nature of the
original system. Some of them arise in Hamiltonian systems, where the normal form is called
the Birkhoff normal form (BNF in short). We recall that a system (1.1) is (locally) Hamil-
tonian if there exists a function H € C"(U), where r = 2,...,00,w and U is a neighborhood
of the origin, and a 2-form @ € Q2?(U) such that @(F,-) = dH. Note that for a Hamiltonian
system condition A admits an equivalent reformulation in terms of the Hamiltonian function
(the so-called condition H, [12, page 225]).

Thus, let us consider a Hamiltonian system and assume it has no small divisors. This
implies that condition w is trivially satisfied. However, this means that we can only deal
with Hamiltonian systems of one or two degrees of freedom, since any Hamiltonian system
having more than 2 degrees of freedom presents always small divisors. Indeed, for a 1-degree
of freedom system, BNF becomes x = N(x), with x = (¢,n) € C,

10 v=( et )
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and characteristic exponents £, where A\ = a(0) € R. The assumption A # 0 makes this
normal form to satisfy condition A.

Consider now a 2-degrees of freedom system and denote by {£A1, £A2} its characteristic
exponents at the origin. It is not difficult to check that if A; /A2 ¢ R then its BNF x = N(x)
satisfies condition A. This means that the origin has to be

(i) a saddle-focus, if {£X1, £} = {£X ia} with A\,a € R\ {0}, or
(13) a saddle-center, if {£A1, £Ao} = {£\, *ia} and A\, € R\ {0}.

In these cases N can be written as

faléﬁn,uvg éalgm uz + ”2

| —mai(én,uv | —mai(én,pt +v

(1.5) (@) N = paz(&n, pv) o0 () N= vag(én, p? +v2) |’
—vag(én, pv) —pag(én, p? +v?)

respectively, where a;(0,0) = )\;, j = 1,2 and x = (¢,n,p,v) € C.

It was Lyapunov [36] in 1907, who provided a first result in this direction. Namely, he
proved that given a real analytic Hamiltonian system with characteristic exponents at the
origin

{£A1(pure imaginary), £, ..., £A,}
satisfying that
As #mAy

for any m € N and s € {2,3,...,n}, there exists always a one-parameter analytic family
of periodic solutions in a neighborhood of this equilibrium point (for a detailed proof, see
for instance [55]). In other words, he proved the existence of a convergent normalizing
transformation leading this system into BNF with respect to the variable associated to the
characteristic exponent Aj.

Later, in 1958, Moser [43] extended this result to the case of the equilibrium having
characteristic exponents

{£A, £ A0, ..., A}

verifying that
(2) A1, Ao are independent over R;
(i1) As # maiA1 + made for any mq, mg € N, and s € {3,4,...,n}.

As it has mentioned above, this corresponds to the origin being a saddle-focus or a saddle-
center equilibrium point. Moser proved the existence of an analytic convergent transformation
leading the original system into BNF (with respect to the variables associated to A1, A2).

Recently, a new proof of this theorem has been provided by Giorgilli [30] putting special
emphasis on the Hamiltonian character of the system (a characteristic which does not appear
in Moser’s proof).

At this point, it seems natural to wonder about the convergence of a normalizing trans-
formation ® in the case of a general system. The analogy with the Hamiltonian case suggests
to consider 2-dimensional and 4-dimensional systems with characteristic exponents at the
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equilibrium point being (i) £A, A € C\ {0} and (i7) {£A1, £}, respectively, since they
have no small divisors and condition w is clearly satisfied. Thus, the problem becomes to
investigate how far (and in which way) are these systems from the fulfillment of condition
A (and, therefore, of having a convergent normalizing transformation ®). The case (i) was
studied in [26]. The aim of the present work is to deal with case (i), a general analytic
system (1.1) with a saddle-focus or a saddle-center equilibrium point at the origin.

Our intention is to compare such system with a Hamiltonian one, where BNF is convergent,
and to build a kind of convergent extended BNF. We will ask it to have BNF as a particular
situation and we expect to obtain some interesting information even in case condition A is
not satisfied.

Let us be more precise. As it has been said, it is well-known in the saddle-focus or saddle-
center Hamiltonian cases the existence of a convergent transformation X = ®(x) leading
system (1.1) into BNF, that is, the transformed system being of the form

(1.6) X =(®"F) (x) = N(x),

where N is of the first or second type in (1.5) respectively. Notice that equation (1.6) is
equivalent to say that

D® N=Fod.

Our approach, which comes from ideas of Moser and DeLatte [22], consists on looking for a
remainder term of the form

5/\1 (5777 IU‘V) 521 (5’[7, '[,[,2 =+ 1/2)
1.7 Fo | nou€n ) 0 B | mnut )
wn pba(&n, pv) 0 pba(En, 1 +v%) |
vba(§n, pv) vbo(€n, p? + 12)

depending if we are considering the saddle-focus or saddle-center case, respectively, satisfying
b1(0,0) = b2(0,0) = 0 and such that the equality

(1.8) DON+B=Fod

holds. Hence forward G will denote vector fields constituted by formal powers series starting
with terms of order at least 2. Notice that (1.8) is equivalent to saying that the new system
is of the form

X =N(x) + (D2(x)) " B(x)

which is not, as a rule, a normal form. Thus, we will say that X = ®(x) transforms sys-
tem (1.1) into pseudo-normal form (¥NF in short).

The interest, we think, of this construction lies in the following facts: first, it constitutes an
extension of the BNF and, therefore, in the contexts where BNF converges they must coincide;
second, this procedure is convergent in some situations where BNF does not apply and, thus,
it translates the problem of the existence of a convergent normalizing transformation to the
one of determining if some analytic scalar-valued functions b1 and by vanish. Moreover, even
in the case that these functions do not vanish, some interesting dynamical consequences can
be derived from this pseudo-normal form.
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Theorem 1.2 (Main Theorem) Given a system
(1.9) X = F(X) = AX + F(X),

analytic around the origin (an equilibrium) and with characteristic exponents {£A1, £A2}
equal to

o {£) tia} with \,a € R\ {0} (saddle-focus case), or
o {£)\ tia} with \,a € R\ {0} (saddle-center case),

there exist an analytic transformation X = O(x)=x+ 6()() and convergent analytic vector
fields N, as in (1.5), and B as in (1.7) in such a way that the equality

D3 N+B=Fod
holds.
Section §2 is devoted to the proof of this theorem.

Remark 1 The proof of this theorem is constructive. It is based on a recurrent scheme which
provides the coefficients of ®, N and B order by order. Moreover, a condition for determining
the radius of convergence of these vector fields is provided in equation (1.75).

Remark 2 As it is usual in Normal Form Theory, computations will be carried out com-
plexifying the variables. It is not difficult to check that the corresponding WNF wvector fields
in the real case are of the form

Ear(En, p? +1v?) £b1(&n, pu? +v°)
_ | —nai(én,p’ +07) son | mbi(én,p® +07)
N(C) - I/ag(f’f],/,t2 + 1/2) B(C) - ,U/A2(€77;,U12 + VQ) ’
—pén 4+ e+
in the saddle-center case and
Ear (n, pv) &b (&n, pv)
_ | —mea(En, p) Ay | o1&, pv)
N(©) = paz(én, pv) B = pba(&n, pv)
—vas(&n, pv) vby(En, pv)

in the saddle-focus one, where (£,m,u,v) € R* and the functions ag and by, £ = 1,2, are real.

A first consequence of Theorem 1.2 is that, if the initial system is Hamiltonian then the
WNF becomes BNF. This is the thesis of the following proposition whose proof has been
deferred to Section §3.

Proposition H1 System (1.9) is Hamiltonian in a neighborhood of the origin if and only if
B vanishes (and, therefore, YNF becomes BNF ).

In the case that system (1.9) is a 2-degrees of freedom Hamiltonian, this proposition provides
a new proof for the celebrated Moser’s-Lyapunov theorem
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Corollary H2 [Lyapunov, Moser] For an analytic Hamiltonian system around a saddle-focus
or a saddle-center equilibrium, BNF s convergent.

Some other consequences can be derived from a partial reading of Theorem 1.2. Namely, a
linear center can be seen as a particular subsystem of the general saddle-center case. Indeed,
if we write explicitly system (1.9),

Aw+f1(:v Y,4,p)
—Ay+f2(:v Y,4,p)
ap+f3( 29,45 D)
= —aq+ fa(z,y,4,p)

(1.10)

" L8
Il

for ﬁ(O, 0,9,p) = f;(O, 0,¢,p) = 0 and fix z = y = 0, we obtain the following planar system

(1.11) i = ap+fslep)
p = —aq+ fi(g,p)

Here f;-(q,p), j = 3,4 denote ]/”;-(O, 0,q,p) This is the framework where the previously cited
center-focus problem takes place. In this case Theorem 1.2 provides the existence of a trans-
formation (g,p) = ®(u,v) and vector fields N(u,v) and B(u,v), of the form

va(u® +v°) ) s pb(u? +v?)
1.12 N = B =
( ) < _HG(H2+V2) ’ I/b( 2) 3
analytic in a neighborhood of the origin, with a(0) = «, b(0) = 0, and satisfying D® N +
4(

B = F, 0 ®, where F, c(p,q) = (ap + fg(q,p) —aq + f1(q,p)).- The following corollary is a
reformulation of Proposition H1.

Corollary H3 Assume ng, ]?4 analytic at the origin. Then, the following statements are
equivalent.

(1) System (1.11) is (locally) Hamiltonian.
(12) The origin is a center.
(1) The function /b\(u2 + 1v2) in (1.12) provided by Theorem 1.2 vanishes identically.

On the other hand, assuming f3 f4 = 0 in system (1.10) (that is, the origin is a center in
the (g, p)-variables), taking polar coordinates, scaling time if necessary and fixing an invariant
cycle, we have a system of the form

T = A$+§1($,y,9)
(1.13) y = —My+0g(zy,0)
6 = 1 :

where v = {w =y= 0} is now a hyperbolic periodic orbit (of characteristic exponents £,
A > 0) and g1, go are analytic functions of z, y and 6. For such a system we have from
Proposition H1 the following result.
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Corollary H4 [Moser [42]] Assume (1.13) is an analytic Hamiltonian system. Then, there
ezists a convergent transformation leading system (1.13) into UNF in a neighborhood of ~y
and this YNF coincides with the BNF.

Remark 3 The original result due to Moser is also valid assuming only §; and G to be C*
with respect to the angular variable 0. With a similar scheme to the one presented in this
paper, Corollary H4 can also be proved under these weaker assumptions.

Up to this point, the results already presented follow from a suitable reading of Theo-
rem 1.2 in a Hamiltonian framework. However, this is not the unique context where they
can be applied. Namely, these results have a counterpart in the well known setting of the
reversible systems.

We say that a system X = F(X) is &(time-)reversible (or simply, &-reversible) if it is
invariant under X —— &(X) and a reversion in the direction of time ¢ — —¢, with & being
an involutory diffeomorphism, that is, &2 = id and ® # id. From this definition, it turns out
that F' satisfies

(1.14) &*F = —F,

where *F = (D®) "' F(®). The diffeomorphism & is commonly called a reversing involution
of this system and is, in general, non linear. In this work we are dealing with analytic
systems, so we will consider analytic involutions &. A set S which is invariant under the
action of & (that is, &(S) C S) is called &-symmetric or, simply, symmetric if there is no
problem of misunderstanding. Since we are dealing with systems in a neighborhood of an
equilibrium point or a periodic orbit, from now on we will assume always that these elements
are symmetric with respect to the corresponding involution &.

Important examples of reversible systems are provided by the BNF (1.5). For instance,
the BNF around a saddle-center equilibrium point

¢ = Cai(én,p®+02)
0 = —nai(én, p? +v?)
po= vay(én,p? +v?)
U= —pag(én,p® +1v7)

is R-reversible, R being the linear involution (&,n, u,v) — (9, &, u, —v). Analogously, the
BNF around a saddle-focus equilibrium point is reversible with respect to the linear involution

(&, pv) = (0,60, 1)

Proposition R1 System (1.9) is reversible in a neighborhood of the origin if and only zf§
vanishes (and, therefore, UNF becomes BNF ).

Remark 4 The Reversible Lyapunov Theorem was proven by Devaney [29] in both the smooth
and the analytic case, using a geometrical approach. An alternative proof for this theorem is
due to Vanderbauwhede [57] (see also [51] and [37], for an extension to families of analytic
reversible vector fields).

The proof of this proposition is deferred to Section §3. Notice that, in particular, it
implies that locally Hamiltonian and locally reversible is the same around this equilibrium
point. Like in the Hamiltonian case, we have
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Corollary R2 Corollaries H3 and H4 also hold substituting Hamiltonian by reversible.

From these results, it seems natural to look for a summarizing statement connecting both con-
texts, the Hamiltonian and the reversible. Indeed, we can summarize the previous statements
in the following theorem.

Theorem 1.3 Let us consider an analytic system
(1.15) X = F(X)

and assume that one of the following three situations holds (corresponding to dimensions 2,
3 and 4, respectively),

(i) X = (q,p) € R? and the origin is a linear center equilibrium point (like in sys-
tem (1.11)).

(1) X = (z,9,0) € R2 xT and v = {x =y =0} is a hyperbolic periodic orbit (like in
system (1.13)).

(iii) X = (z,y,q,p) € R* and the origin is a saddle-center or saddle-focus equilibrium point
(like in system (1.10)).

Then, in a neighborhood of the corresponding critical element, the following statements are
equivalent

(i) System (1.15) is Hamiltonian (with respect to some suitable 2-form w).
(i1) System (1.15) is reversible (with respect to some suitable reversing involution &).

(iii) The analytic vector field B (as in (1.7)) provided by Theorem 1.2 vanishes.

Remark 5 This local duality around critical elements between Hamiltonian and reversible
systems is quite common. As an example, see for instance [40], where it is proved this
equivalence in the case of a non-semisimple 1 : 1 resonance, which occurs when two pairs of
purely imaginary eigenvalues of the linearized system collide. Nevertheless, there exist also
counter examples of such equivalence. For instance, see the one given at [49], where it is given
a class of area preserving mappings, with linear part the identity, which are not reversible.

Beyond the consequences provided by Theorem 1.2 in the Hamiltonian or reversible frame-
works, this WNF-approach can be useful to find out isolated periodic orbits in other situations.

For instance, in [26] it is shown that for the center-focus problem (case (7) in Theorem 1.3)
each zero of the analytic function b, defined in (1.12), gives rise to a limit cycle of system (1.11)
close to the origin.

Now, consider system (1.15) with the origin being a saddle-center equilibrium point (case
(747) in Theorem 1.3). Let N and B, as in (1.5b6), (1.7b), be the analytic vector fields provided
by Theorem 1.2. Assume this system (1.15) is not locally Hamiltonian (neither reversible,
therefore). Equivalently, functions b1, be in equation (1.7b) do not vanish simultaneously.
Then the transformed system becomes of the form

Xx=N(x) +(D2(x)) ' B(x)
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or, more precisely,

3 Ear(én, p® + 1) €b1(én, p® +v°)
7 —nai(&n, u* +v°) —1 | nbi(én,p? +0?)
(1.16) i = vas(En, p? + v?) + (D2(x)) MA2(£7”M2 +12)
v —pag(En, p? + v?) vby(én, u? + 1?)

Assume that by does not vanish identically but there exists, at least, a value I, > 0 satisfying
b2(0, I,) = 0. If we take initial conditions (Y = 7% = 0 in (1.16) it follows that £(t) = n(t) =0
Vt and, therefore, u? 4 v? = I, becomes a limit cycle of the restricted system

g = va(0,1)

(1.17) {;) = —paz(0, L)

where, for small enough values of I, we have a3(0,I,) = a+ O(I,) # 0. That is,
r,={+*=1}

is a hyperbolic periodic orbit of system (1.17) with period 27/a3(0,I,) and characteristic
exponent a1(0,1,) = A+ O(I,). Consequently,

r=9(r,) = {@(0, 0,1,v) :,u2 2= I*}

is a hyperbolic periodic orbit of system (1.15). It is also straightforward to parameterize
the corresponding (local) stable and unstable invariant manifolds of I'. Namely, there exists
6 > 0, given by the radius of convergence of the WNF, such that

WhoD) = {00,1e O, v s g0 < 6, 12407 = L},

(1.18)
W) = {0 ®0),0,u,0): %] <6, 12 +12 =L},

We finish this introduction summarizing this result.

Corollary 1.1 Consider system (1.15) where the origin is a saddle-center equilibrium point
(case (iii) in Theorem 1.3) and let N and B, as in (1.5b) , (1.7b), be the analytic vector
fields provided by Theorem 1.2. Assume that the (analytic) function I '_)/52(0, I), defined in
a neighborhood of the origin, does not vanish identically (so system (1.15) is neither Hamil-
tonian nor reversible). Thus, every positive zero Of/I;Q(O, %) gives rise to a hyperbolic periodic
orbit of system (1.15). Moreover, parameterizations for the (local) stable and unstable invari-
ant manifolds associated to this periodic orbit are given by (1.18).

82 Proof of the Main Theorem

§2.1 The formal solution: a first approach

It is worth noting that both cases, the origin being a saddle-focus or being a saddle-center,
can be treated formally with the same argument. Moreover, we will deal first with the
case of a complex YNF and will derive subsequently the case of a real WNF. Indeed, let us
assume that we have complexified the original variables in such a way that the new (complex)
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matrix A is diagonal. Under this common approach, we will refer often to {£A;, £X2} as the
characteristic exponents of the origin, meaning {£+\ + ia} in the first case and {+\, +ia} in
the second one, respectively, always with A\, o > 0. Moreover, it is not difficult to check that
with such unified notation the vector fields N and B take the same form (1.5a) and (1.7a),
respectively, in both cases. This will be their formal aspect along this proof if nothing against
is explicitly said.

The sketch of the proof follows the standard pattern: first, we will look for a formal
solution of equation

(1.19) DO N+B=Fod

by means of a recurrent scheme, that will consist on two steps, an initial approach and a
final refinement. Later on, it will be introduced a norm which will allow us to establish the
convergence of the functions involved.

Thus, let us start with the first part. We recall that G denotes that G is formed by
formal power series beginning with terms of order at least 2. Now, since the linear part of
F(X) = AX + F(X) (or shorter, F = A + F) is in normal form, we have that the linear part
of N is just A (notlce that A represents also the complex matrix of eigenvalues +Ay, +A9) .
Writing ® = id + ® and N = A + N, equation (1.19) becomes

(1.20) DI N-AP=Fod-N-B.

Assume that we already know 5, N and B up to some order K and let us see which difficulties
involves the computation of the terms of order K + 1 of ®. From equation (1.20) we realize
that we only have to consider the terms up to order K + 1 of equation

(1.21) D® N -A®=H.

where H = Fo & only contains terms up to order K of ®. The terms in N and B of order
K + 1 will be determined later. By direct computation, writing

I ORIORACORMON = 3B, 72 53 50,
with

a(i)(é‘an’/‘a V) Z¢Wm fj’/]kueljm
RO, pw) = > A, Entutm,
for i =1,...,4, and using that

£a1§§n,/w§ EMi+ -

| —mnai(én, pv AL+

(1.22) N = s (€n, u) Y
—vas(&n, pv) —vAg 4

the terms up to order K + 1 of equation (1.21) come from the following system,
(&Aﬁg) - na‘”) a(én, pv) + (u&?(l) - u$<1>) as e = RO,
(54222) )m(&mw) ( )GQ en, uv) + Md® = RO,
( )a1(£77,;w) (M ) — ,(,3 ) as(€n, pv) — Xod® = B,
(f‘ggg ) a1(én, pv) + (u o) — ) as(€n, pv) + dod® = H@,



12 On normal forms and splitting of separatrices in reversible systems

where $§ represents g—?, etc. Hence, since as(én, pv) = As + - -+, the terms of order K + 1 of

® have to satisfy

A,
(_1) — jkim i 1
¢]k£m )\l(j_k_l)_i_)\Z(e_m)a 1 ]#k‘l' or e#ma
@) 7
(1.23) ¢]kgm NG -kt 1)+l —m) if k#j4+1or £#m,
3) B
_ jkém e
¢jkem T NG-Rthl-—m—1) if j£kor £#£m+1,
A
¢§';Lc)ﬁm = gktm if j2kor m#L+1.

Al(j—k)+>\2(£—m+1),

It is clear from these equations that terms of the form

[ EX A o (E0)F ()™

N 8 0 (En)uw)!
(1.24)

BB st (ENF ()™

v\ 1 (En) (up)t

cannot be determined and remain in principle arbitrary. In terms of simply linear algebra
this amounts to say that the transformation ® is completely determined once it has been
fixed its projection on a suitable vectorial subspace, called resonant subspace.

§2.2 Definition of the projections

The type of coefficients appearing in expression (1.24) and the remarks above motivate the
following definition.

Definition 1 Given a formal series h(&,1,p4,v) = Y- hjkem Enkut™, we define the projec-

tions

Ph = ¢ Z hk+1,kmm (én)k(/v“/)mv

k>0, m>1
Ph = n Y hjjie (€n) (w)
§>0, e>1

Psh = pu Z hikm+1,m (fn)k(l“/)ma
E>1, m>0

Ph = v Z hjjeesr (€n)! (uv).
j>1, €0

Analogously, if H= (A a2 hG) h®) is a (formal) vector field we define
PH = (Plh(l),ch(Q),Pgh(3),P4h(4))
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and RH := H — PH.

As it has been noticed before, Pd corresponds to the terms which remain arbitrary from the
solution of equation (1.21). Moreover, vector fields N and B are invariant under the action
of P. This property will be used in the solution of equation (1.20). In this sense, we have the
following lemma, whose proof is omitted since it consists on straightforward computations.

Lemma 1.1 Given N=A+ N of the form (1.22), the operator Ly defined as
(1.25) LyU:= DU N — AT
satisfies the following properties.

(1) LN is linear with respect to ¥ and N, that is

Ly (T+T')=LyT+ LyT LyinV =Ly + LT,
(1) Ln preserves order, that is, LV and U start with terms in (§,n,u,v) of the same

order.

(791) The projections P and R commute with Ly, that is,

P(LyT) = Ly (PT), R(LnT) = Ly (RT).

§2.3 The recurrent scheme

Let us come back to the solution of equation (1.20). Having in mind the definition of the
operator Ly it can be written as

(1.26) Ly®=Fo®—N—B,

which is of type (1.21) provided we take H=Fo®—N—B. In a first approach to this
kind of equations we have shown that they could be solved recurrently for those terms in
® =id+ ® of type R@ remaining those of the form P arbitrary. This fact suggests the
idea of splitting the transformation we are looking for, ®, into id + PO + R<I' to determine
R® from equation (1.26) and to choose a suitable value for PD.

Remark 6 In Normal Form theory it is standard to set PP = 0 in order to simplify the
computations. However, it could be useful to take advantage of this freedom in some concrete
situations.

Applying R onto equation (1.26),
R (,/:N@) -R (ﬁ(cp)) ~ RN - RB,

using Lemma 1.1 and taking into account that RN = RB =0 if N and B are assumed to
be of the form (1.5a) and (1.7a), respectively, we obtain the equation

(1.27) Ly (R@) -R (ﬁ(cb)) .
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On the other hand, applying now P onto (1. 26) taking again into account Lemma 1.1, the
fact that PN = N PB = B and choosing PP = 0, it follows that

(1.28) N+B=7 (ﬁ(@)).

A usual way to deal with such kind of equations is to consider it as a fixed point problem.
Thus, we can set

~

P =0,
take initial values
1.29 o) =ig, N®=A, BW =9

(1.29)
and obtain, recurrently,

) = iq 4 RPEH
(1.30) NEH) = A 4 NE+D)

BE+1)
from equations

K+1 ~

(1.31) Ly (R<I>( )) = R (F <q><K)))
(1.32) NE+D) 4 BE+D — p (ﬁ (Q(K))) .

We will see now how these two equations can be solved formally.

§2.3.1 Solution of a LN(R@) = RfI-type equation

AssuIAning that we know the coefficients of N and RH up to a given order K, the coefficients
of R¥ of the same order will be determined from

(1.33) Ly (R\i) = RA.

Indeed, writing

QE (f nu,v ) El(éanauay)
I Qp ( ,naUa ) 77 h2(£7ﬁ7“ay)
1.34 RI=| ¥ , RE=| 2 ,
( ) Ilﬁ (5 mnu,v ) 23(57777,“"1/)
Ill) (5 nu,v ) h4(£7777,ufa’/)
where
boEmmy) = > P Entutm
GHkHe+m>2
hoEmmy) = D B Enfutum

Gtk+0+m>2
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for w =1,...,4, and taking into account that
gafl (57]1 /“/)
—nax (&, pv)
N 7 7 7 v =
(&m: ) paz(€n, pv)
—vaz(én, pv)

with a;(én, pv) = A\; +a;(én, pv), it follows that the left-hand side of (1.33) is equivalent to

D(R\TJ) N-ARU =

Pre Y Yiu Yy tay M
Vo Yo Pou Yo —nay | | A | _
V3e V3n Y3 Y3 Ha Aotp3
Yae Yam Yap Yap —vaz =A%y

EPre — M1y ) a1 + (L — vy ) az — My
5&2,5 - 7112)\2,7, a; + M%,u - V{ﬁ\zu ag + Ao
EPse — My ) a1 + (phsy — i3 ) az — Mot
EPug — Mhay) a1 + (Hhay — viPay ) az + Aoty

(G =k =DM+ (L —m)o) + (Ehre — b1y ) @1 + (b1 — vipr, ) G
(G =k + DA+ (£ —m)Xa) + (EPae — mibay ) @1 + (tho — vido, ) @
(G = k)M + (€ —m — Do) + (s e — nhag ) a1 + (i, — vips, ) G2
(G = k)M + (L= m+ 1)) + (EPae — mbay) @1 + (uthay — vipay ) @

We can refer to this vector field, in short, as
- 2) 3) =~ 4)
(L1, L2, L0 5, L79:)
and write its components, in formal power series expansions, as

(1.35) Lo mmv) = Y B n, ) WS ™,
Hk+l+m>2

being
Gd(Em uv) = A5 () + (G — k)@ (En, ) + (€ — m) @a(én, ),
with
G=k=Da+(E-mds  ifw=1
(w) G=k+DM+(E-mhe  ifw=2
’ijemo\) = i
G=R+E-—m-1)x  fw=3
(

k))\l + (f DAs if w=4.
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Notice, from equation (1.35), that Ly acts on R multiplying each coefficient v;xe by a
function of the products én and pr. To take advantage of this feature we will express our
formal series expansions in a more convenient way which will highlight those terms of the
form (én)P and (pr)?. A similar idea was suggested in [25]. In our case it works as follows.
For any component &w of RU we have

(1.36) PuEmpmr)= Y, P ™ =
jHk+E+m>2
Syl R En) utm ()™
jHk+E+m>2

Defining p = j — k, ¢ = £ — m and taking into account that j +k+£4+m > 2, p+k > 0 and
q +m > 0, this expansion is equivalent to

(1.37) > ke (En, pr) €2ps
P,qEZL

where

(1.38) W (enm) = S 8% € ()™
(k,m)EQpq

and

k —
= fem ceuiots 3 IERTY ka1 250)

In the same way, for RH we get

P&, m0) = > B8 (En, pv) €Pp
P,9EL

where

W& mmv) = D Bk gimm € ()™
(k;m)€Qpq

With this notation formula (1.35) becomes

> gl (&n, p) P52 (En, pv) €28

P9€EZ
where now
g§@)(€n, pv) :==TS(N) + pay(én, pv) + q@a(En, pv)

being

(p— 1A+ gX ifw=1

+ 1A + g ifw=2

(1.39) () ()) := P+ 1)hi + ko _

PA1L+ (g — 1) ifw=3

PAL+ (g4 1A if w= 4.
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Thus, equality

Ln(RY)=RH
gives rise to the equations
LW, —%
N ¢w(§a77’,ua’/) w(&ana:u’ay)

or, in formal series expansions,

D b (€, ) i) (En, ) EPpt = Boe) (€m, ) €t

DP,9EZ p,q€EZ

whose formal solution is given by

(1.40) ho(&mmv) =Y P (En, pv) € pl

P.9EZL

with the functions 1/11(,1;) (én, pv) coming from

(1.41) P9 (En, pv) = h%g) (&n, ) _ hyy (€n, )

Denpr) T8N + pay(€n, ) + qda(én, w)

for w =1,2,...,4 and p,q € Z. With this notation coeflicients with p = +1 and ¢ = 0 or
p =0 and g = %1 are those belonging to the projection PWV.

§2.3.2 Solution of a N+B= ’Pﬁ-type equation

As it has been done for equations of type £ N(R\I/) RH we are going to prove that equation
N+ B = PH determines uniquely the coefficients of Nand B provided they are of type (1.5a)
and (1.7a), respectively, and that H is known. Thus, writing

N = (&G, —nay, pty, —vas)
(1.42) B = (5/5177751,#/52, 1//5\2) )
Pﬁ = (6/,;17 77/’;2, /I',H3a V/h\4) ’
where @, ZZ and ﬁw are functions of ¢én and pv, for 1 = 1,2 and w = 1,2,...,4, the solution

of this equation is given explicitly by

(1.43) a1 =3 @1 —32) ; by =1 (ﬁ1 +ﬁ2)a
. 52:%(?;3—/};4), 322%(H3+ﬁ4).

Notice that the form of the functions a;, EZ and ﬁw implies that PH , N and B only contain
terms of odd order.
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§2.4 The recurrent scheme: an improvement

One of the features of this procedure is that it provides a constructive (and, therefore, im-
plementable on a computer) way to determine ®, N and B. To do it we need to define (and
allocate memory for them) data vectors representing these vector fields. Unfortunﬁ,tely, the
scheme above implies to handle (and to recompute) the complete vectors storing ®, N and
§, at any step of the process. This makes it slow and not much efficient. In this sense it is
easy to refine it by paying attention on the order of the solutions of equations (1.31)—(1.32).

Before going on with this refinement, let us introduce some notation. We will denote
G = O|k) if G is a homogeneous polynomial in the spatial variables £, 7, u, v of order exactly
K. Besides, we will write G = Ok if G contains only terms of order greater or equal than
K in these variables and G = O« if all the terms in G are of order less or equal than K.
Thus, we have

Lemma 1.2 At any step K > 1 of the process (1.29)—(1.32) the following estimates hold

RV _ 23" = 0p
NED  — N = O,
BE+D  _ BE) = Oy,

Proof. We proceed inductively.
e For K = 1, from the initial values (1.29)
MW =id, NO=A, BW=9

one has that R@m

(1.44) Loy (RA(Q)) =R (F(a)).

Its right-hand side becomes

R (ﬁ (é(l))) ~R (ﬁ (id)) — RF

= N@ = BM = 0. In this case formula (1.29) reads

and its left-hand side

2)

Lyo (R2?) =D (R3™”) A - AR3” = [4,R3"”],

where [G,H] = (DH) G — (DG) H stands for the Lie bracket of the vector fields G and
H. We recall also that, abusing of the notation, we denote with the same symbol A the
matrix A and the vector field Aid. Thus formula (1.44) becomes

[A,R@@)] — RF.

Using that RF = O, and that the Lie bracket preserves the order it follows that
R@m = (05 and, consequently, 7?,5(2) — 7?@(1) = 0s.

With respect to N and E, we have now that

N® L B® _p (1’5 ((1)(1))) —p (

)
a8
N’
I
A
My
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From formulas (1.43) and having in mind that PF = Os it turns out that N B® =
O3 so, in particular,

NO_NO —0,  B®_BO_ o,

e Assume now, as induction hypothesis, that

R — 3"V — o,
(1.45) NE)  — NE-D = O,
BEK)  _ BE-D  — o

hold for any arbitrary step K — 1. To avoid a cumbersome notation, let us denote

rA® = R g™
AN = JOCD - {0
AB") = By _ BE),
With such notation, hypothesis (1.45) becomes just
rABF Y — 0, ANV 20k, ABYTY — 0k
and we want to prove that
RAa(K) == OK_|_1, AN(K) - 0K+1, AE(K) - OK_|_1.

Subtracting equation (1.31) for two consecutive steps K — 1 and K we get

(1.46) Lo <R<I> L (RE(K)) _

(P (o)) R (F(0)).

Using the linearity of the operator £ (see Lemma 1.1) we have

<K+1>>

L) (R@Uﬂ—l))

= L) (7'\’,6([()) + Lo ('RA@(K))

K K ~
Ly (RE™) + £, coemn (RB) + Ly (RAZY),
so the left-hand side of equation (1.46) becomes

EN(K) (RQ(KH))

Ly -1 (7?@(10)

;CA]V(K—I) (7'\’,6( )) + L) ('RA@(K))

D (R3™) ANV 4 Ly (RAB™) =

ﬁN(K) (RA@UO) + OK—|—1;
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~(K—1
where we have taken into account that AN (K= has null linear part. With respect to

the right-hand side of (1.46), expanding it in Taylor series, it turns out that

7 (@(K)) _F (@(K*1)> —

(1.47) DF (<I>(K —1)) R 4
A~ ~(K—=1)\J
S LpiF (atx-1) (RAcI>(K 1)) .
‘41
Jj=>2
Since Dﬁ((I)(K*I)) = 0; and RAaKil) = Ok, by induction hypothesis, it turns out

that
R (ﬁ(cp(K))) ~-R (ﬁ(«b”‘*l))) = Ot

Consequently, equation (1.46) becomes of type

Lo (RA@UQ) = Ox1.

~(K
Since L preserves the order (see Lemma 1.1) it follows that ’RA@( - Ok41-

Concerning AN ") and AB™ we proceed in the same way. Subtracting formula (1.32)

for K — 1 and K one obtains that
AN 4 aB™ = p (F (210 - F (20)).
From (1.47) we know that

P (ﬁ (q>(K>) _F (<1><K>)) — Ok

(K) (K)

and therefore, using (1.43), it follows that AN, AB

the proof.

= Ok+1, which concludes

a

An important consequence of this lemma, is the reduction of the computational effort of

the recurrent scheme: in the K-th step of our recurrent scheme the coefficients of order less
or equal than K computed from the previous iteration will remain invariant. Therefore, from
now onwards we will consider

SE+) _ NE+1) BE+1)

O<k+1, = O<k+1, = O<k+1,

obtained from the equations (1.31)—(1.31) taken only up to order K + 1

(1.48)

(1.49)

{evo (RN, = {RE(9) ),y

RO L B = Lp (Pt}
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This implies in particular that

(K) (K) (K)

From a computational point of view, at any step K of this recurrent scheme it would be just
necessary to compute these incremental terms. Besides, notice that since N&) and B(¥)
contain only terms of odd order, it follows that

(1.50) N@) _ N@I-Y) Z g@) _ geI-1)

or, equivalently,
S(20-1) A§(2J—1) .

AN 0,

for any J > 2.

§2.5 Convergence of the recurrent scheme
§2.5.1 Definition of the norm, estimates and technical lemmas
The domains we consider are those of type

Dy ={2=(21,22,...,20) €EC" : |2j| <0 j=12,...,n},

where r > 0 and | - | denotes the standard modulo. By an analytic function f(z) on D, we
mean a function with Taylor expansion

(1.51) f@) = ), fa2®

ae(Nu{o})"
(absolutely) convergent for any z € D,. We use the standard multi-index notation: if

a=(a,a,...,a,) € (NU{O})" and z=(z1,22,...,2,) € C"

one sets
o] = ar+az+---+ay
al = alag!---ap!
Q _ a1 .02 Q
2T = 2 %y oz
«
Da ol

02710252 -+ - Oz

and 1 = (1,1,...,1), 0 = (0,0,...,0). Moreover, in (NU{0})" we consider the following
partial ordering;:
a >3 whenever a; > f; for j=1,2,...,n.

Given a function f analytic on D, we consider the following norms: the supremum norm

[flloo,e = sup [f(2)]

2€Ds
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and the 1-norm

(1.52) If

1o = D lfal g

a|>0

For a vector field F = (f1, f2,..., fn) : Do € C* — C"* we define

1
(153) ||F||oo,o' = . Slup ||fi||oo,a—? ||F 1,0 = E Z ||fi||1,a'
=

3ty z:l,...,n

and analogously if F' : D, C C" — M, ,, (C*). The next lemma list some properties of these
norms. We omit its proof since it is standard.

Lemma 1.3 Let f be an analytic function on Dy, satisfying that f(0) = 0 and assume
0 < 09 < 01. Then, the following properties hold:

(@) [1fllooey < N1fll1,0-
(i) Let ® = (d1,¢2,...,¢n) : Dyy C C* — C* be analytic on D,, and satisfying that

19|,y < 01 (that is, @ (Dsy) € Dgy). Then we have
|fo@ 1,09 <|f Lo -
If F = (f1,...,fa) is an analytic vector field on D,, the same estimate holds for
|F o @] ,,-
(iii) Let g be an analytic function on D, satisfying that |g(z)| > C Vz € D,. Then, one has
that
H 1 1
- < Z.
g 1,0 ¢

w) If Gign = O and Hip = Oy are homogeneous polynomials of orders K and L,
(K] (K] (L] (L]
respectively, with K # L, then

|Gy + Hiz ||, = IGially,, + 1 Hizll o, -

From this point up to the end of this section we will prove some technical results which
will be used during the proof of the convergence of the recurrent scheme introduced in Sec-
tions §2.3 and §2.4. In particular, next lemma provides a lower bound for |g1 A1 + g2A2| which
works in both cases, when the equilibrium point is a saddle-center or a saddle-focus (whose
characteristic exponents are given by {£J, ia} and {£X £ ia}, respectively).

Lemma 1.4 Let us define
(1.54) Woo = Woo(A) := min{\, a}

where we assume A\, a > 0. Then, we have that

lg1 A1 + g2Ao| > (\/ q} + q%) Woo

for any q1,q2 € Z.
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Proof. We proceed separately. Thus,

(a) Saddle-center case: as it has been mentioned above, we have \; = A and Ay = i« so

| A1 + @2he| = \/@IN? + g3a? >
(\/q% + q%) min{, a} = (\/q% + q%) Woo-

(b) Saddle-focus case: now we have A} = XA + i and Ay = A — iaw. Then,
g1 A1 + @222 = [(q1 + g2)A + (@1 — g)ic| =
V(g + @)2 X2+ (¢ — g2)%02.
If gigo > 0, using that |g1| + |g2| > 1/¢? + g2, one obtains that
Vi +@)222 + (g1 — ¢2)%02 > /(g1 + ¢2)° X% =
(ol + 103> (et +38)
On the other hand, if g;g2 < 0 then

V(g + @2)2X2 + (g1 — g2)202 > /(g1 — q2)%a? =

(lg1] + |g2|) @ > (\/q% + q%) Woo

which proves the lemma.

a

Remark 7 In fact, wy, constitutes a lower bound for the values wy, introduced by Bruno in
condition w (see Section §1). Moreover, notice that, in the saddle-center case, one has that

p(ATY) = w3

o0

where p(M) is the spectral radius of the matriz M, defined as the mazimum of the modulus
of their eigenvalues.

Now, we present a basic result which provides estimates for the vector fields ”R,lff, N and B
that are solution of the equations

N+B = PH

(1.55) L (R@) — RH

and whose formal approach has been derived in Sections §2.3.2 and §2.3.1, respectively.

Proposition 1.1 Let us consider a vector field H analytic on D, and let RYU and ]/\7, B
(of the form (1.5a) and (1.7a), respectively) be the solutions of equations (1.55), (formally)
derived in Sections §2.3.2 and §2.3.1. Then, the following estimates hold.
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(1) First, we have

R L e
1,0 1,0 1,0
(1) Moreover,
. |71
=¥, <
1,0 4 =5
o (1- 755 |A] )

provided we assume that the bound

OTWoo
1,0 4

N

(1.56) HI;T‘

1s satisfied.
Proof.

(i) From equation (1.42) and formulas (1.43) it follows straightforwardly that || N |1, and

(#7) In Section §2.3.1 we dealt with equation
cy (RY) =RH
where N had the form (1.5a) and we wrote RH = (ﬁl,/f;g, e ,34) where

(1.57) w& ) =Y hiw) (&, pv) €u0

D,9E€EZ

forw=1,2,...,4, with

(1.58) WO Enw) = Y B €D ()™
(kym)EQpq

and

Q= {em ey B2 IO sy rte)

We note that, by definition of the 1-norm (1.52), we have that

‘ h > |hjkem| o7 =

jHk+e+m>2
(1.59) Z Z ‘h;si)k,k,q+m,m‘ oPra+2(k+m) _

PEZL (kym)EQpq

> thq (én, pv) €2 p H

DP,9EZ
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From that section we also know that its solution RU = (121\1,121\2, .- ,121\4) is given, in
terms of formal power series, by
(1.60) Pulmm ) = D 4 (n, ) €

D€L

where 1/1,(,2;) (én, pr) are obtained from

hy (€n, uv)
TS (A) + pay (€, uv) + q @2 (€n, uv)

(1.61) () (én, pv) =

forw=1,2,...,4, p,q € Z and the coefficients F( )( A) as defined in (1.39). Notice that

the functions 1/1,(,15) in (1.61) are rational functions of £7, uv. Therefore, equation (1.60)
is not an standard representation in power series, that is, formula (1.58) does not apply

(w)

to Ppq”.

To estimate the 1-norm of RY on D, we have to bound their components. Indeed,
using Lemma 1.3(7), we can write

<Y v em ) e
DP,9EZ

K (¢n, pv)€Ppd
TS (N) + pan (&n, wv) + qas(En, uv) ||,

H,ww 1,0

(1.62) >

<

D,QEL
1
W) (en, pv)€P
%;ZH po S HESH H SV (N) + pas (€, ) + q@a(En, ) ||,

The next lemma gives an upper bound for the second norm appearing in this for-
mula (1.62).

Lemma 1.5 Consider F%)(z\) as defined in (1.39) and @1(§n, pv), a2(én, pv) coming
from (1.5a). Then, for any p,q € Z and ({,n,pu,v) € Dy, we have that

TN + pai(€n, pv) +qa2(€n,W)‘ > Weo (

OWeo

provided estimate (1.56) is satisfied.

Proof. (lemma) We will distinguish two cases:

(a) If |p| + |g| > 1 it follows that
(1.63) |T8(N) + pay (&n, pv) + qa2(§77,l“/)‘ > ‘ ‘PS(‘,’)(A)‘ —|lp@1 + qaz| o »
From the definition of I‘gg) in (1.39) and applying Lemma 1.4 it turns out that

T 2 My e,



26

On normal forms and splitting of separatrices in reversible systems

where we define
My 5= min { (o]~ 17+ 2+ (1}

We recall that the terms hz(fg) (én,pv) with [pl =1land g=0o0r p=0and |g| =1
vanish since they belong to the projection PH so, in particular, this implies that

(1.64) My, > 1.
Moreover, it is clear that
(1.65) pl, lal < 2My.

Coming back to equation (1.63) we have that

[P 0] = Ip@r + 4o,

>

>

My weo ‘1 —
[ee]

1 4
Woo 0 Woo 1,0 ’

where it has been taken into account the assumption (1.56) and, by (1.65), (1.43)
and Lemma 1.3(¢), that

lpa1 + qazll,
pq

|

lpa1 + qazll o, <

Mpq weo
L (1ol - a1~ 2 (1~ -
o (e i+ 4 B2l ) < 2 (i + el =
s o) < 7] <]
0 Woo (HUGIHC"”" + ||0a2”°°"’) T W ‘ 00,0~ 0 Weo Lo

If p = ¢ = 0 one has that

(1.66)

I‘(()1(‘)})0\)‘ > Woo,

1,0) ’

‘F%’)(z\) + pai(§n, pv) + qaz(én, pv)

and, in particular, assuming again (1.56),

el

[P 0] > woo > wee (1 -
This concludes the proof of this lemma.

[ )

Since we are assuming that (1.56) holds, we can apply this lemma together with
lemma 1.3(7%¢) and, therefore, it follows that

1
T () + pay (€, pv) + q a2 (€n, uv)

1

- 4
1,0 Woo (1 T wem

|

1,(7)
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Thus, estimate (1.62) jointly with (1.59) gives

- 1
H"/’w‘ by S A > thé’)(ﬁn,w)&”uqu =
o (1- 722 |E] ) Feee
[
1,0
4 ~ ?
Woo (1— - H‘ 10)

for w=1,2,...,4. Finally, using (1.53), it turns out that

1,0’ 4
Woo (1 - . U)

g

§2.5.2 Proof of the convergence

To ease the reading of this proof, let us recall briefly the problem we are dealing with. Let
consider a system

(1.67) X =F(X) = A+ F(X)

where F is analytic on a domain Dg and having at X = 0 a saddle-focus or saddle-center equi-
librium point with characteristic exponents {£A1, X2} equal to {£A + ia} and {£), tia},
respectively. As it has been seen at the beginning of Section §2.1, we can assume the matrix
A to be written in (complex) diagonal form. This allows us to deal with both cases using a
unified approach. We also recall that, again in Section §2.1, we introduced the notation A
to denote both the matrix A and the vector field Aid. We will only use explicitly the second
expression in cases of possible misunderstanding.

Our aim is the following: we are looking for an analytic transformation X = d(x) =
X + ®(x) and analytic vector fields N and B (that we can assume to be of the form (1.5a
and (1.7a), respectively) such that the equality

(1.68) D®N + B =F (9)

is satisfied. We say in that case that ® leads system (1.67) into YNF. To get such transfor-
mation and vector fields we have developed in Sections §2.3 and §2.4 the following recurrent
scheme to whose convergence proof is devoted this section. Setting the following condition
on @,

(1.69) PO =0,
we take initial values

(1.70) oM =id, NOW=A, BW=p
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and obtain, recurrently,

oK+ — g+ RBEFD
(1.71) NE+D) = A4 NE+D

BE+1)
with

K = Ocpeyy,  NED =0 gy,  BED = O gy,
from equations
~(K+1) _ P &)

(1.72) {EN(K) (Rq’ )}§K+1 - {R (F (CI) )) }5K+1
(1.73) NEHD 4 BEHD - = {P (ﬁ (cb(K))) }<K+1 '

Once set our problem, let us start with the proof. Let us consider a positive constant
0 < <y < 1 (in order to simplify the estimates, we can assume -y > 1/2, which is not restrictive).
As it is commonly done in Normal Form Theory, we can scale our system by means of a change
X = aZ, where a > 0 is a constant to determine. Thus we have a new system

(1.74) 7 = Fo(Z) = A+ a ' F(aZ),

with F, analytic on D,, where 7 := o ' R. Let us consider a positive constant 0 <y < 1. In
order to simplify the estimates, we can assume 7 > 1/2, which is not restrictive. Then, since
F, starts with terms of order at least 2, we can choose « big enough (so 7 small enough) in
such a way that the following estimate holds

(o),

Calling again Z and F, as X and F, respectively, we can assume our system (1.67) to be
analytic on D, and satisfying (1.75). We are going to prove that the limit vector fields ®,
N and B obtained from this recurrent scheme satisfy (1.68) and are analytic on D, (and
therefore, reversing the scaling, on Dyg).

(1.75) ) B,

For ease of reading we will itemize the proof in several parts: the first one will provide
some estimates on the approximations provided by the recurrent scheme; in the second one,
their convergence will be derived.

(i) Consider system (1.67) having F analytic on a domain D, and satisfying the assump-
tion (1.75). Apply onto it the recurrent scheme (1.69)-(1.73) and consider the sequences

SR | N
Ls) i 1s) i Lis) i

defined for K > 1 and being s = yr. Then, the following properties are satisfied.

(1.76) {Hqﬂﬂ‘
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(a) They increase monotonically, that is,

) 115
1,5 1,8
1,5 1,8

(b) All these sequences are uniformly upper-bounded. Precisely, for all K > 1 we have

that
(1.77) H@Uﬂ‘ <r
1,s
and that
(1.78) v B, <1FL,
1,s 1,s ’

Let us prove these assertions.

(a) From Lemma 1.2 we have that
s+ — () 4 rA")

NEHD  — NK) p ANE)

BE+D) E(K)JFAE(K)’

where RA@K), AN and Aﬁ(K) are all three Ok 1), except in the case of odd
K where one has that

S27-1)

AN/ — AR 0.

Therefore, taking into account Lemma 1.3(iv), it turns out that

)

L= |29+ RAG™)|

1,s

|| 2 [

+ HRA(P(K)‘
1,s

1,s 1,s )

In the same way it can be proved for ||N(K+1) H1 , and HE(K“)‘

I

1,s

(b) To see it we proceed inductively. Thus, for K = 1 equation (1.72) becomes

(e (587)}, = (r (Fo")},-

Having in mind that N = A (so N = 0), ®1) = id and the definition (1.25)
of the operator L, this equation is equivalent to

(2)

D (R3”) A - AREY = R
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and to @)
[A,R<I> ] = Fy,

where [H,G] = (DG)H — (DH)G stands for the Lie bracket of the vector fields
H and G. Now, from Proposition 1.1(iz), taking into account that ?igl) = Zigl) =0

(the functions appearing in N (1)) and using estimate (1.66) it follows that

R < 1]l
1,s Weo
and, in particular,
oy IF]
(1.79) ) RS ‘ < Ly
1,s Weo

Thus, applying Lemma 1.3(iv), the assumption P = 0 and the estimate (1.75),
one obtains that

d
1—
§3+71’r§'yr+77r§7r+(1—7)r:r.

1,s Woo

|+

Concerning vector fields N and B® we have that

~

NO N A BO® B0 g

and, therefore, estimate (1.78) is trivially satisfied.
Thus, by induction hypothesis, assume that the following bounds

o

IA

T

1,s

]

§<K)‘

< Ff,

l,s’ H 1,s

hold. We are going to show that they are also true for K + 1. We start dealing
with equation (1.72), namely,

{ev (RE)} = (R (F(999)) L,

This equation is of type £N(R‘/I\') — RH provided we take
N=N®  RE-r3"TY  H_-F (<I><K>)

and consider just terms up to order K + 1. Setting ¢ = s and taking into account
estimate (1.75), the induction hypothesis and Lemma 1.3(%,47) it follows that

], = | Fa)|,, < 7], < (S22

<[

1,s
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Using that 1/2 <+ < 1 and that s = yr, this estimate reads

(1 —9)weo y SWeo  SWso
< | — < = =
s = ( 8 TSRYRrT Ty STy

|

which is assumption (1.56). Applying Proposition 1.1(i7) and that

- F ), = -l

VT Woo YT Woo 1,5
4 S Woo 1 1
1- ( _1_-—=
(swoo> 8 ) 2 2
we obtain
F (@)
HRi(K-H)H < H ( ) 1,97 <
1yr 4 5 K
Woo (1 VT Woo HF ((I)( ))H1,7r>
Cer  (1—qr
Woo/2 4
Finally, from Lemma 1.3(iv) one obtains that
. =(K+1)
H(I)(Iﬂ—l)‘ - H@(K—H)H = [[id|ly ,, + HR(I) H <
1,s 1,97 ? 17
1_
'yr+% <yr+1—y)r=r.

Concerning N(X+1) and B+ having in mind the induction hypothesis H@(K) || 16 S
r, equation (1.73) and section §2.3.2, one obtains that

<[
1,s

<[

v

1,r

and
e

<||F|l, -
LA <,

Since N(K+1) — A 4+ N(K+1) and F = A + F it turns out that
v <,
,S ’

which concludes the proof of (b).

(#7) At (4) it has been proved that the sequences

ool b el 1B

increase monotonically and are uniformly upper-bounded. Applying onto them the
Ascoli-Arzela theorem it follows that they admit convergent subsequences

{Hq><m } {HN(KJ> } {ngm }
Ls) s L,s) 7 L,s) ;
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Therefore, if we define a vector field ® given by
B(x) := lim ®Ks)(x)
J—=o0
for any y € Ds, it follows that the limit

. K
1], = Jim |8

1,s

exists ari is fﬂe. From Weierstrass theorem it follows that ® is an analytic vector
field on Dy = D.,,,. Moreover, since the recurrent scheme (1.69)-(1.73) and Lemma 1.2,
provide vector fields ®E+1 of the form

GE+) — oK) 4 RAGT

(K)

where RAD ) _ Ok +1), it can be derived that the subsequence {”CI)(KJ)”l S} is,

J
in fact, the complete sequence {”(I)(K )H1 S}K' In a similar way one obtains N and E,

analytic vector fields on D—W defined as

N :=1lim N&), B :=1im B®),
K K

Together with ®, they satisfy that
D®N + B = F ()

and therefore, they lead system (1.67) into WNF. This concludes the proof of the Main
Theorem.

83 Proof of Propositions H1 and R1

§3.1 Proof of Proposition H1

It is clear that if B = 0 then UNF is just BNF so, let us consider the converse situation.
To fix ideas, let us deal with a 4-dimensional Hamiltonian system with the origin being a
saddle-center equilibrium point. The saddle-focus case can be done in a similar way. Assume
moreover that the center variables have been complexified (becoming complex conjugated).
Applying Moser’s Theorem [43], we know the existence of an analytic convergent transfor-
mation U, close to the identity, leading it into BNF,

£ = é“algé“n,/w;
n = —na(én,pv
(1.80) po= pag(én,pv)
vo= —vay(én,p)

with a1(§n, pv) = A+ -+ and az(én, pv) = ia +---. It is clear that hi(én) = Enay(€n,0) =
An + -+ and ho(uv) = praz(0,uv) = iauv + --- are independent first integrals of sys-
tem (1.80) and, therefore,

hy = i],lo\II_l =gy +---

hy = heo¥U ! =icuv+---
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are independent first integrals of the original one. Let ® be the convergent analytic trans-
formation leading the initial system into WNF, that is, such that the new system is of the
form

(1.81) X =N(x) + (D®(x)) " B(x)

where x = (&, 7, u,v) denotes now the UNF-variables. Since ® starts with the identity and
h1, ho are independent first integrals of the original system, it follows that hi = hio®
and hy = hy o ® are first integrals of (1.81) and, moreover, they begin with A\én + --- and
iauv + - - -, respectively. Indeed, they satisfy

(1.82) Dh; (N + (D@)—lﬁ) =0

for j = 1,2. Assume now that B # 0 so its minimal order terms are

with b £ 0 or bf,?z, 7é,\0 (and 7+ s not necessarily equal to ' +s'). Using that iy = Aén+- - -
and (D®) ! =1— (D®) + ---, the term of type (£9)¢(uv)™ of minimal order corresponding
to the left-hand side of equation (1.82), for j = 1, is given by

&5 (€n)" (uv)®
M+ X+ 04+--- 04---) nbﬁ?(&n)"(uy)s _

2AD) (€)7+ () 4+

Since A # 0 it implies that b,(~13) = 0. Applying the same argument to equation (1.82) with
j = 2, and using that « # 0, it follows that bgz, = 0, which contradicts the assumption of
B # 0. Consequently, B vanishes.

§3.2 Proof of Proposition R1

The problem of the convergence of the YNF (and BNF) around an equilibrium is certainly a
local problem. In the reversible setting, this implies that both the linearized system and the
reversing involution can be taken in suitable way. Namely,

Lemma 1.6 Let us consider a system
X = F(X)

analytic around the origin, o saddle-center or a saddle-focus equilibrium, and assume it is
reversible with respect to an (in principle, non linear) involutory diffeomorphism &. Suppose
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that the origin is a fixed point of &. Then there exists an analytic change of variables X
Z, defined in a neighborhood of the origin, such that in the new coordinates the linearized
system becomes

A 0 O 0
. 0 —Xx 0 0
Z = 0 0 io 0 Z
0 0 0 —-ix
or
A+ ia 0 0 0
. 0 A —ia 0 0
Z=1 0 —(Atia) 0 2,
0 0 0 (i)

depending if we are in the saddle-center or saddle-focus case, respectively, and assuming
A, a > 0. Moreover, in these coordinates and for both cases, the symmetry & can be taken of
the form

Z — RZ,
where R is given by the matriz

0100

1000
(1.83) 0001

0010

Proof. The proof of this lemma is essentially contained in [51]. For the saddle-center case,
it is proved there the existence of a coordinate system, with center at the origin, in whose
variables, say Z = (u1,us2, 2,Z), the linearized system is given by

u'1 O XN 0 O Ul
g | [ A0 0 0 up
z | | 0 0 i O z
z 0 0 0 —ia z

and the linear part of the involution & has the form

g

N

|
SIS IS

with z € C and u1,uo € R. In that proof, it has been used that the linearization of an involu-
tion around one of its fixed points is also an involution. Performing the linear transformation

UL+ uo u; — U9

(’Ul,’Ug,Z,E) = ( 2 J 9 ,Z,E)

we reach the claimed result about the form of the linear parts of F' and &. Now, by Bochner’s
theorem (see [8, 41]) there exists an analytic change of variables, defined in a neighborhood
of the fixed point, the origin, which conjugates the symmetry & to its linear part

(vl,vg,z,E) — (’02,’01,5, Z) .
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With respect to the saddle-focus case, it works in a similar way. In this situation the first
change of variables takes X to

Z = (z1,22,23,24) = (21,71, 23,23) ,

the linearization of the system X = F(X) to

2.1 A + io 0 0 0 Z1
2’.2 o 0 A —ia 0 0 z92
23 - 0 0 — (A + iOé) 0 23
7 0 0 0 — (A —ia) 2

and the linearization of ® to Z —— Z, which is the involution given by the matrix (1.83).
The local analytic conjugacy with & is again provided by Bochner’s theorem.
O

Therefore, it is not restrictive to assume that our system is written, in a neighborhood of
the origin, in the form

X = A+ F(X),
with
A0 0 O
0 -2 0 0
A= 0 0 i O X
0 0 0 —i«x
in the saddle-center case, or
A+ia 0 0 0
0 A —ia 0 0
A= 0 0 — (A +ia) 0 X,
0 0 0 —(A—ia)

in the case of a saddle-focus, respectively. Moreover, we can assume it to be reversible with
respect to the linear involution

R: ($1,$2,$3,$4) — (.T2,$1,$4,(E3)-
Thus, the reversibility condition (1.14) reads
(1.84) RF(RX) =—-F(X).

Once we have set the linear framework, we present a property which characterizes those
transformations that preserve a given linear reversibility.

Lemma 1.7 Let VU be a diffeomorphism satisfying

(1.85) R (Ry) = V(x).

Then the transformation X = ¥(x) preserves the R-reversibility, that is, the new system
x=G(x):=(T"F) (x)

is also R-reversible.
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Proof. To see that x = G(x) is R-reversible we have to check that RG(Ryx) = —G(x)-
Differentiating both sides of equation (1.85) we get

R DY (Ry) R =DY(y).
Using this property and equations (1.84), (1.85) it follows that
RG(Ry) =R ((DU(SRx) ' F(T(%R))) =
% (DU F (RU(N)) = -R ((DI(HRx) ™ RF (3(x)))

% ((RDV(K) ' R) (RF (1)) = -~ (DU(K) ' F(¥(x)
—(¥°F) (x) = —-G(x),

which concludes the proof of this lemma.

The proof of Proposition R1 is based on the following two points:

o Applying Theorem 1.2, there exist an analytic transformation X = @(x) and analytic
vector fields N(x), B(x) leading the original system into YNF, provided the origin is a
saddle-center or saddle-focus equilibrium point. That is, satisfying the equality

DON+B=Fod.

e We will prove that the vector fields obtained from the recurrent scheme satisfy: (a)
the transformation X = ®(x) verifies relation (1.85), so it preserves R-reversibility; (b)
N and B are R-reversible. This last property will imply that B has to vanish and,
therefore, YNF will become BNF.

Lemma 1.8 Let us consider an R-reversible system
X =F(X) = A+ F(X)

with R : (x1,x9, 3, T4) — (T2, T1, T4, T3), analytic on a neighborhood of the origin, that we
assume to be a saddle-center or a saddle-focus equilibrium point. Let us take ®E), NK) gnd
B(K) the vector fields provided by the WNF-recurrent scheme: set PP = 0, take mztzal values

o) =44, NW =4 BW=0
and obtain, recurrently,
UKAD = g4 RPEHD
NOHD Z p  §O)
BE+D)

with

EH) = Ocpeyr,  NEW) =0 peyr,  BEYD = Oggey,
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from equations

(1.86) {ﬁN(K) (R5(K+1)>}SK+1 = {R(

(1.87) N+ 4 g+ {79(

)

()} s
()} i

)

Then, the following assertions hold,

(i) For any K > 1, the vector field ®F) satisfies (1.85) and the vector fields NU) and
BE) gre R-reversible, that is,

Rne) (My) = 8 (y),

and
RNE) (y) = -NF) (),  ®’BE) (mx) = —-BE) ().

(1) The vector fields ®, N and B provided by Theorem 1.2 and defined as
d= lim 9,  N= lim N = B= lim B®),
K—o0 K—o0 K—o0

verify that

— The change of variables X = ®(x) satisfies relation (1.85) and, therefore, it pre-
serves the R-reversibility;

— N and B are R-reversible.

(7i7) Since B is R-reversible it turns out that B vanishes.

Remark 8 As it happened in the general case, ® is also convergent if we fiz P equal to
any analytic function, convergent in the same domain as R® and verifying (1.85).

Proof. It is based in some statements that we list and prove separately. Namely,
(a) If a vector field H is R-reversible then its projections PH and RH are also R-reversible.

Having in mind the definition of the projections P and R we can write

Eha (En, ) h1(€,m,1,v)

_ _ | nh2(&n,pv) ha(&,n, 1, v)

H(x) = PHG) +RHG) = phs(En ) | T h3(€,m, 1, V)
1/h4(§7],u1/) E4(£7naﬂ‘ay)

Since H is R-reversible we have that R H(Rx) + H(x) = 0. With respect the first term
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it turns out that

0100 nhi(&n, pv)
_ 1000 || éhalenmw)
REG) = | 90 0 1 || vha(énm)
0010 pha(én, pv)
0100 ha(n,&,v, )
1 000 h2(’l7,£,l/,,U) _
0 0 01 ’:13(77’5,”’#) B
\0 01 O) 4(’,]7571/7“)
§h2(§7],MV) Zl (777&’ 7“)
nh1(§n, pv) hi(n, & v, )
pha(€n, pv) ha(n, &, v, p)
vha(én, pv) h3(n, &, v, 1)
Therefore, from
§(h2257h MV; + hlgﬁﬂ,/ﬂ/g;
n (h1(&n, pv) + ha(én, pv
RHEV) +HO) = | (hy(én, ) + ha(m ) |
v (h3(én, pv) + ha(én, pv))
ha(n, &, v, 1) + ha(€,m, 1, v)
’}1(%5##)‘*@ (fﬂ?a#a ) =0
ha(n,&,v, 1) + hs(&,m, 4, v)
h3(n, &, v, 1) + ha(§,m, p,v)
and using that ~ ~
}}2(7]7671/7,“) }}1(577]7/*511/)
{7’1(775657/’/1’) _ @2(5777’/1'71/) —
P 134(775651/7#’) P @3(6;7”’”1”) 0
h3(n, &, v, 1) ha(&,m, 1, v)
it follows that
ho(€n,pv) + hai(§n,pv) = 0
h4(£']’],,lﬂ/) + h3(£771/'“/) =0
and 5 -
@2(&777’/‘51/) + {7‘1(77751”7/1’) = 0
h4(£1n,/1'ay) + h3(7l,faV,M) = 0.
That is,
Eha(En, ) hi(&,m, 1, v)
_ | —nhi(n,pv) _ | & vp)
PHG) = phs(&n, pr) |’ RAG) h3(&,m, 1, v)
—vhs(&n, pv) —h3(n, &, v, 1)

From this expression, it is straightforward to check that

R (PH) (Rx) = —PH(x), R (RH) (Rx) = —RH(x)-
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(b) Let RY be the solution of an equation of type
Ly (R\/I}) — RH.
Then, if RH is R-reversible it follows that
% (R®) () = RI(),

this s, the transformation X = x + R\Tl(x) preserves the SR-reversibility.

To see it, let us consider

{/5(6 775:“’7’/) El(fﬂ?a,u,’/)
= 'lp (5,/1,,/1;,1/) 77 h2(§a77hu'a’/)
) 1£ 3(&, 1y 1, v) hs(&,m, 4, v)
(6 ,U,,[L,V) h4(€’n7l’l’7l/)
and write them in the form
DolEmpr) = > Wl EnFutem
jHkH4+m>2
ho(&mmy) = > K €ntutum
j+k++m>2

for w=1,2,...,4. Since RH is R-reversible one has that

(188) 7;2(5577’%1/) = _ﬁl(fanauay)a /};4(57777,“’1/) = —ﬁ?;(fa??a/% V)7

which is equivalent to

2
hgk)ém - hl(cj)mé’ gkem

In a similar way it follows that to prove that %(R‘i)(%x) = R{I\I(X) it is enough to
check that

12’\2(&77”“7’/) = {[;1(6577’”7’/)’ {ﬁ\4(§,77,l% V) = 123(&777’#” V)

or, as before, that

(189) ’lﬁﬂdm wk]mga 'lp]kzm wk]mﬁ

We will see that the first condition in (1.89) holds and, therefore, that hﬁ)em = hgj)mé

is also satisfied. With respect to the second condition in (1.89), and consequently

1‘24(5,777/% V) = 1‘23(5,777/% V)a

it works in the same way. Thus, we recall, from Section §2.3.1, that equation

~ ~

Ln(RT) = RH
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can be written, in a vectorial form, as

(1.90) (L%)Jb LS\Qr){ﬁ\za Lﬁ%, L%)@) = (51,32,};3,/};4)
where R
L 9w mmr) = Y Gtm(€n mv) ¥, Entuto™,
Gtk+e+m>2
being

G55 (€0, 1) 1= A5 V) + (G — B) @1 (&1, ) + (€ — ) Ba(€m, ),

with
(G—k—DA + (£ —m)A ifw=1
(w) ) U=E+DM+(E—m)r ifw=2
i) = G—k) M+ L—m-—1)X ifw=3
(G—E)M+ (£ —m+ 1) if w = 4.

It is also derived from the same section that, provided

N = (£a1(én, pv), —n a1 (én, pv), paz(&n, pv), —v az(én, pv))

and RH are known, the formal solution qu(f , M, i, V) of equations (1.90) is uniquely
determined. Thus, writing (1.90) for w = 1 and applying the involution 2R, one obtains

(1.91) LY %1 (0,6, 1) = Ba(n, €, 1, V).
From the left-hand side of (1.91) it follows

L0 & v = D Gy (16 vi) Y WE T =
Jtk+l+m>2

~(1 1
S GipmeCm ) i, EnFutm =
bm 2
k £ m

— Y G En, ) o
j+k+e+m>2

where it has been used that
Ve = (B = § = D)As + (m — )Xg =
— (G~ E+ DA+ (= m)Aa) = (V)
and
T (€0, 1) = Vg + (k — §) G (€n, ) + (m — £) G (€, pv) =
oY) = (G = k) @1 (En, p) — (£ — m) o (En, uv) = —G g (€0, p0).
Concerning the right-hand side of (1.91), having in mind (1.88), we have that

/Hl(nafa,u’a V) = _/};2(57777/1@1/)
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so, finally, equation (1.91) becomes equivalent to the equation

(1.92) S B mv) Wi Ent ™ = ha(€,m, ).
j+k+l+m>2

Since the unique solution of

g ~ ~
LYp(En,p,v) = > gjkgm(ﬁn,w)%umﬁjnkuevm ha(&,m, p, v)
j+k+L+m>2
is given by

PEmpr)= Y P EnF ™

jHk+L4+m>2

it follows, comparing with (1.92), that

2
Ilpk jml ¢§ k)ém

forj+k+44+m>2.

If H is R-reversible then H< (constituted by its terms of order less or equal than K)
1s also R-reversible, for any K > 1.

This assertion comes directly from the fact that the equality R H(Ry) = —H(x) must
be satisfied at any order.

We are now in conditions of proving the assertions (i), (i) and (7).

(4)

First, note that from its form, N(5) satisfies that
RN (9x) = —NTO ()
and, therefore, so does N(5),
RN (Ry) = N (x).

Thus, N¥) is R-reversible for any K > 1. We are going to prove that ®() verifies
condition (1.85) and B) is M-reversible using an inductive argument.

For K = 2 (the case K =1 is trivial) we have that
{ev (RBV)} = {R (F (2W))}.,

La (R@m

or, simplifying,
) Fly.

~(2
Applying properties &c ) and (b) above one obtains that ’R(I>( ) preserves R-reversibility.
On the other hand, B(?) = 0 so it is trivially a RM-reversible vector field.

Assume, by induction hypotheses that, for a given K > 1,
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(iid)

- oK) =jd+ ’R@(K) satisfies (1.85) (so it preserves R-reversibility),

— B ig a R-reversible vector field.

Using these induction hypotheses and applying properties (a), (¢) and (b) on equa-
tion (1.86) it follows that Ra(KH
o(K+1) = ja + R

preserves R-reversibility. Consequently, so does

. Besides, from equation (1.87) we have

B - (B}, 5

~(K
By induction hypothesis &) = id + Ré( ) preserves -reversibility so, taking into
account (a), (c) and the fact that N(K+D is 9R-reversible, it turns out that BK+D is
also R-reversible.

We have to prove now that the limit transformation X = ®(x), whose convergence
comes from the proof of Theorem 1.2, preserves R-reversibility. Using the result above,
we have that

1) (Ry) = a5 (x)

holds for any K > 1. Letting K tend to infinity it follows that

RE(NRx) = @(x),

~

so @ preserves R-reversibility. With respect to IV, its R-reversibility comes straightfor-
wardly from its form and its convergence. Concerning B a similar argument to the one
used for ® applies. Thus B is R-reversible and consequently we have that

(1.93) R B(Ry) = —B(x).

In particular, formula (1.93) implies that

)
)

0100 nb1(§n, pv) §b1(&n, pv) £b1(&n, pv)
1000 Eb1(&mopv) | _ | mbi(€mupv) | _ [ mbi(En, pv)
0001 vba(€n, pv) b2 (&, pv) b2 (&n, )
00 10 pb(&n, pv) vba(én, ) vba(én, uv)

and, therefore,
by(€n, ) = ~bi(€npv)  and  Dy(én, uv) = —by(én, p),
so by (&n,pv) = Eg(gn, pr) =0 and the lemma is proved.

a

From this lemma the proof of Proposition R1 follows straightforwardly. The transforma-
tion ® preserves R-reversibility, the vector field N is $R-reversible and B = 0 so, in fact, the
WNF is nothing else but the BNF.



Chapter 2

UNF for a planar system

81 Integrability and YNF

In Chapter 1 it was proved the convergence of the ¥NF in the case of an analytic system close
to a saddle-center or a saddle-focus equilibria. Moreover, it was noticed (see Theorem 1.3)
the equivalence between being Hamiltonian (and reversible) and the fact that UNF was just
BNF. A particular case of such situation is a planar analytic system in a neighborhood of a
hyperbolic equilibrium point. The next result expresses such equivalence in terms of local
integrability.

Theorem 2.1 (Criterium of integrability) Let us consider a planar system
(2.1) i=F(z)=Az+F(z), zeC

where A is a diagonal matriz {\, —A} with X\ # 0, analytic in some domain around the origin.
From Theorem 1.2 we know the existence of an analytic transformation

and analytic vector fields N, B ,

(2.2) N(&n) = ( _f,zgzg ) B(gm) = < SZEEZ; ) ’

where a(én) = X+ -- -, leading system (2.1) into UNF, that is, satisfying
(2.3) D® N + B = F(d).

Then, we have that system (2.1) has a first integral h(z) if and only if b = 0. Moreover, if
h(z) = h(z,y) is a first integral of system (2.1) then it has the form h = ho &1 where

h(¢) = h(én) depends only on the product &n).

Remark 9 We recall that an non-constant scalar function is called o first integral of sys-
tem (2.1) if it is constant on its solutions.

43
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Proof. If b = 0 then YNF becomes BNF and, therefore, any function of the form i&(&n) is a
first integral of the transformed system C = N(¢). Moreover, this is the only type of first
integrals it admits. From this first integral it is straightforward to obtain a first integral for
the initial system by applying the inverse change of variables. This prove the theorem in one
sense.

To prove it in the other one, we will follow some ideas given by Siegel and Moser in [55,
§30]. Concretely, we will assume that system (2.1) has a first integral h and that b(én) does
not vanish identically. This will lead us to a contradiction so , therefore, b(¢n) will have to
be identically zero. Thus, let us consider h(z) a first integral of (2.1) and assume that

(2.4) b(én) = be(én)’ + -

with by # 0, for some m > 1. In this proof --- denotes higher order terms.
Performing the change of variables z = ®(({) system (2.1) becomes

(2.5) (=N + (D)™ B(C)

and has h(¢) = (h o ®)(¢) as a first integral, that we can expand in power series as

hy(€,n) being homogeneous polynomials of order J in £, . We can assume also that har(€,m)
does not vanish identically. Since h is a first integral of (2.5) it derives that the equality

(2.6) Dh (N+ (ch)*lé) —0

holds at any order in the variable ¢ = (£,7). Since ® starts with the identity and Bis O3 in
€, n it follows that the homogeneous polynomial of minimal order appearing in the left-hand
side of (2.6) comes from Dh N

(2.7 (gehmen gt )-( 25700,

which corresponds to the lowest order terms in Dh N. Writing
. MY
hM(fﬂl) = Z h’gk; )gjnka

j+k=M
and equating (2.7) to the right-hand side of (2.6) it follows that
. M) .
A G- RRGeEnE =
J+k=M
Consequently, only coefficients hg-z/[) with j # k, can be different from zero, so then ﬁ(&,n)
starts with a term of th type h,,({n)™, where m = M/2 and hy, # 0. In a similar way, we

seek in equation (2.6) for those terms of type ({n)° having minimal order in . Notice first
that Dh(&,m) N(€,n) does not contribute to this kind of terms. Namely, writing

h(&,n) = -+ col€n)t + - - + djnt,
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where j # k, then it follows that

Dh(¢,1) N(¢,n)
= (- ledem) I+ o+

== 0EN -+ di( - R0 + -
= dj(j — K)En" + -+

so, all the terms of type (£n)° vanish and only remain those of type &/n¥. Therefore, these
terms must be provided by Dh (D(I>)_1§ . Since @ starts with the identity it turns out that
(D®)~'B = B +---. Then, taking into account (2.4) and that h(£n) = Ry (En)™ + --- it
follows that the terms of type (£1)® on the left-hand side of equality (2.6) come from

£y ...
()™ v (e o) (ST )

= 2mhpbe(En)™ T+ -

Equating to 0 we obtain that mh,,,by = 0, which is a contradiction since m, h,, and by, do not
vanish. Consequently, it follows that b(£n) must vanish.
O

82 The group of transformations preserving the WNF

From the last theorem it is clear that the (analytic) scalar function b(I) contains all the
information about the local integrability of system (2.1) around the origin.

Let us assume for a while that system (2.1) is locally Hamiltonian. In that case Moser [42]
proved the convergence of the pass to BNF and the existence of a set of analytic invariants
associated to (2.1). Moreover, in that paper, Moser also proved that the transformations
preserving the form of the BNF had a group-like structure which he called group of self-
transformations of the normal form. Later, this property was generalized by Bruno [11,
Chapter I] to the Poincaré-Dulac normal form, proving that any transformation close to
the identity containing only resonant-type terms preserved the same kind of normal form.
Conversely, he showed that any transformation preserving the form of the normal form had
to be necessarily of that type (that is, formed only by resonant terms).

The aim of this section is to extend these results to the UNF case, showing that similar
properties hold. This is given in the following proposition, which characterizes the set of
analytic transformations preserving the UNF. Like in the BNF case, this set presents a group-
like structure.

Proposition 2.1 Let us consider system (2.1) and assume that the hypotheses of theo-
rem (2.1) hold. Then we following assertions are satisfied.

(1) If we perform an analytic transformation

C=T(x)=x+T(x)
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given by
£ = EP(n)
2.8 ..
28) { n = 7y
then it follows that the form of the WNF is preserved, that is, the equality
(2.9) D(®oVU) N*+B*=F (®o 1),

holds, where R
N* = U*N, B*=BoV.

Moreover, we have that
P (@0 W) = (PD)o ¥,

P being the projection defined in the precedent Chapter.

Conversely, if

(2.10) C=T(x) =x+T(x)

is an analytic transformation preserving the form of the UYNF (2.5), that is, verifying
equality (2.9), then (2.10) must be of the form (2.8).

Proof.

(4)

Since z = ®(¢) leads system (2.1) into UNF it derives that equation (2.3) holds, that is

DO(C)N(C) + B(¢) = F (3(¢))

or, in other words, that the new system takes the form

(2.11) (= (2°F) (¢) = (DB(() ™" F(2(Q) = N(Q) + (DB(¢) ™" B(C).

Performing a transformation { = ¥(x) system (2.11) becomes

(2.12) X = (DU(x)) ™ N (¥(x)) + (D‘I’(X)A)_1 (DD) (T(x)) " b (¥(x)) =
(T*N) (x) + (D (@0 )™ () B (¥(x))-

To prove that this transformation preserves the form of the WNF it is enough to check
that

N*(x) = (¥*N) (x), B*(x) = B(¥(x))
are of type

( £ a*(€7) ) ( £b*(£) )
—na*(&n) )’ 7o (&n) )’
respectively. With respect to N* we have

~ ~ ESaly! €2,/
I = aeDuER) = | VISV T

=%+ (&) 02,
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where 1 = (£7j) and ' stands for %w(u). So, writing

N(\I,(X)):< E(€) alén > (€0) ) _.( € g(&7) )

—7(€R) a(Eii > (€R)) —ip g(€7)

it follows that
(T*N)(x) = (DT(x) " N(T(x)) =
1 ( Y&y €y ) ( €9 9(€n) )
JEq) \ -7ty &Ry ~711 g(£n)
1 ( E9? g+ Epy g+ Eq'p g ) _
J(ER) \ =€y g — i g —EP P g
1 ( &7 (&) g(€m) ) _ ( € 9(&) ) _ ( £ a* (7)) )
J(En) \ —1J(&n) g(&n) —ig(én) )\ —fa*(&q) )’
which is the claimed form. In particular, this means that

@' (i) = o (Env(ER))

It is straightforward to check that B* is of the same form as B. Namely,
. E(Ei) b (&7 (Eq) £ b (&)
B*(x) = R e 9,5~ ::<~b* £ )
9 () b (€79 (E) 76"(&)
Let us now consider ® = (¢1, ¢2) with
geem) = > oY ek,

jHE>1

where £ = 1,2. Since P® = (P11, Pagp2) to prove that P(Po¥) = (PP)o¥ is equivalent
to verify that
P1 (q51 [¢] \If) = (quﬁl) o} \I/,

for £ =1,2. We will do it for £ = 1. The second case works analogously. Thus,

Pi(¢1 0 U)(E, ) = P, ( DR (wl(éﬁ))j (w(éﬁ))k)
j+k>1

=S o (EvEn)" (7vEn)” = (B o v €.

k>0

(13) We know that our system (2.1) can be led into YNF by means of the transformation
z = ®(¢). This implies that equality (2.3) is satisfied. If we assume that the change
of variables ( = ¥(x) preserves the UNF it is derived that equation (2.9) is satisfied.
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Moreover, the relation between both expressions is given by (2.12), which leads to the
following equalities

~

(2.13) N*=U*N, B*=DBol.

If we write U(£,7) = (¥1(€,7),¥2(€,7)) then the first component in the last equality
of (2.13) reads

b (€0) = Y1 (€M) b (v1(E7) ¥2(E,7))

Expanding the right-hand side of this expression we obtain
z : z . < \2
€ (o EMVEn) + 1 (MEDRED) +--).

so it is clear that if we want it to be of type b*(éﬁ) no term of type Ejﬁk with j # k
can appear in the expansion of 11 and 2. Consequently, the transformation ¢ = ¥(y)
satisfies that R¥ = 0 or, in other words, that it is of the form

{Ezf%@)
n = 72(£7)
Using again that B* = Bo ¥ and that
Br= S0\
( 70" (£7)
it derives straightforwardly that 11 (£7) = v2(€7) and the assertion is proved.
O

Let us consider system (2/.\1) and assume again that the hypotheses of theorem (2.1) hold.
Then, the YNF vector field B is of the form

e - (3450 )

where

(2.15) b(&n) = > b (€)™
m>1

From the construction of the ¥NF it is clear that the b,,’s can be seen as analytic functions
depending on the precedent constants b1, bo, ..., b, 1 and with coefficients depending also 0
on the coefficients of the initial system (2.1), that is,

m—1
(2.16) bm = b (b1, -, b1, F) = O (F) + Y ome(F) be.
=1

In fact, since the term b,, has been computed at the 2m+ 1-th step of the recurrent process, it
follows that the coeflicients o, ; are polynomials in the coefficients of the system. Associated
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to the {by,},,>1, let us consider the sequence {f,,},,~,, where 3, is a polynomial in the
coefficients of the system (2.1) defined as -

(2'17) Bm = ﬁm(F) = 0Om,m-

In other words, if define J; as the ideal generated by the functions {b,bs,...,b;}, we have
that

Bm = omm(F) mod Jm_1-

Assume now that we have an analytic transformation ¢ = ¥(x) of the form (2.8), which
preserves the UNF, and consider B* the corresponding WNF-vector field. Let us assume that

B* can be written as L
S ( £b* () )
716" (£7)
with m
b(En) = Y b (€0) -
m>1

As before, we can assume b},’s to be of the form

m—1
by = b (015 - b1, F) = 0 (F) + Y 0 o(F) B
=1

and define, analogously, for any m > 1,

B = B (F) := o .-

Moreover, defining 7, as the ideal generated by the functions {b7,b},...,b},}, one obtains
also that

P = omm(F)  mod Ty

Then we have the following result.

Proposition 2.2 The sequences {fm},,~; and {6}, },,>, defined above satisfy, for any m >
1, that B B

/B:n :,Bma

as a function on the coefficients of the system (2.1).
Proof. From Proposition 2.1 it follows that B* and B verify that B*=Bo. Therefore,
218 5 ( Eb(én) ) ~ éap(f:ﬁ)b({ﬁw({ﬁ)?)

A(En) b (En(En?)

7 b*(£7)
Since the transformation ¥ is of the form (2.8) and starts with the identity we have that

(2.19) Y(E7) = 1+ 1(€7) + a(&7)* + -+
Thus, using (2.18) and the first step of the recurrent scheme, it is easily derived that

by =01,1(F) = 0],(F) = b]
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and, therefore, 37 = 1. So, let us assume by induction hypothesis that
Bs = Bs, s=1,2,...,m—1,
or, equivalently o5 ((F) = 05 5(F) for s =1,...,m — 1. Again, from (2.18) it follows that
~ 2q
(2:20) b (€n) = b (G702 EM) = Y b (€7)" (viém)
g>1

To determine the coefficient of b*(£7) accompanying (£7)™ we will use the following result,
called J. C. P. Miller formula

Lemma 2.1 ( [32, page 48]) Let us consider the following formal power series

o a a\ o a\ 3,
B, .—1+<1)$+<2>w +(3>w + ;

commonly called Binomial series, and P := pix + pox® + psx + - --. Then, the formal power
series corresponding to the composition B, o P s given by

2
¢y +ciz+ cox +03x3+---

where the coefficients ¢, can be computed recurrently from the formula

n—1 n

S (0l —K) —B) cxpn k= -3 ((@+ Dk —n) cu ki

k=0 k=1

Cp =

SHE

forn=1,2....

Thus, using this result, formula (2.20) and the expression (2.19) for v, it follows that

= Son (@) (vén) " -

¢>1

S (6)(1+560) " = S (6" (1no5) 60 -
q>1

Sy (€7)" (14 0E) + 5 ) + o0 G + )
g1

(29) are polynomial functions depending on by, bs,...,b,—1 and the
coefficients of system (2.1) and can be computed from

where the coefficients ¢;;

n

1
C%Qq) — - kz_:l ((2¢+ 1)k — n) cgf?c Y

forn =1,2,... and provided we define c(()Qq) := 1. Therefore, the coefficient b}, accompanying

(€m)™ in b*(€7) is given by

m—1 m—1 m—1
qu 2 byl + b = Y by + (am,m(F) + Y oml(F) bg) :
g=1 =1

= g=1
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where we it has been used expression (2.16). Since

b = O (F) + D oy o(F) by

and using the induction hypothesis, it follows that 8, = oy, is equal to oy, ,,(F) and,
therefore, 3, = 3;,.
O

83 An approach to the center-focus problem using UNF

§3.1 The problem of a center

Let us consider in this section the case of real polynomial planar systems of the form

T = P(:C,y)
o2 {32 ot

where the origin is an equilibrium point. Following up Darboux works (1870’s), Poincaré
stated the problem of giving conditions on the polynomials P and () to ensure the existence
of a first integral of system (2.21). The work of Poincaré was also continued by Painlevé. A
proof of the interest that this kind of problems had aroused was the fact that this subject
figured on Hilbert’s list of problems (1900). When Hilbert formulated his 16th problem he
divided it in two parts, one of them concerning real algebraic curves and the other wondering
about the maximum number of limit cycles that could appear in a polynomial system (2.21)
as a function of its degree. As it will be seen later, this question is intimately related to the
problem of discerning whether a system (2.21) having a linear center at the origin (that is,
with pure imaginary characteristic exponents +ic) is in fact a center or a focus.

This second problem is known in the literature as the center-focus problem. Roughly
speaking, it consists on looking for the conditions on the coefficients of polynomials P and
@ in (2.21) ensuring that the origin is a center. A general answer to this question is still an
open problem and up to now it has been only possible to give satisfactory answers in partial
situations (for quadratic polynomials P and @ we point up the works of Bautin, Li and
Zoladek; systems with non linear homogeneous part of degree three were studied by Zoladek,
Sibirskii, ... and a wide list of authors; for more details and references about this problem
see, for instance, [1, 50]).

In these setting we have the following theorem which connects the existence of a center at
the equilibrium point with the local integrability of system (2.21). To simplify the exposition,
we will assume during this section that system (2.21) has an equilibrium point at the origin
with pure imaginary characteristic exponents, that we can consider to be +ia, o # 0. In a
short way, we will say that our system has a linear center at the origin.

Theorem 2.2 (Poincaré, 1885) The origin of a polynomial system (2.21), having a linear
center at the origin is a center if and only if it has a first integral which is analytic in a
neighborhood of the origin.

In 1892, Lyapunov generalized Poincaré’s result to the case of an analytic system (2.21).
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Theorem 2.3 (Lyapunov, 1892) Given a (2.21) with analytic functions P and Q and hav-
ing a linear center at the origin, we have that the origin is a center if and only if there exists
an analytic first integral on some domain around the origin.

In [53], Shi Songling stated the following lemma which allowed to compute formally this
first integral using computer algebra calculations.

Lemma 2.2 (Shi Songling, 1981) Consider system (2.21) with P and @ polynomials of
degree m, having a linear center at the origin. Then, if F' is a formal first integral (that is,
without determining its convergence but just formally) of this system, it follows that there
ezist Vi, Vo, ..., Vi, ... € Q[p20,- - -, q0om), where pa,...,qom are the coefficients of P and Q,
such that

o0 .

DF = ZVZ (x2+y2)Z+1 -0
=1
The polynomials V; in the coefficients of P and () are called Lyapunov constants. Nev-

ertheless, V7 is uniquely determined from the system this is not true, as a rule, for the rest.
The uniqueness comes in the following sense,

Theorem 2.4 (Shi Sonling [54]) Let A be the ring Q[p2o,---,qom]), where {p2,---,qom}
are the coefficients of P and Q). Given a set of Poincaré-Lyapunov constants Vi,Va,...,V;
let Jx—1 = (V1,Va,...,Vk_1) be the ideal of A generated by Vi,Vo,...,Vk_1.

Then, if {V{,Vy,...,V/'} is another set of Lyapunov constants, one has that

Vk = Vkl mod (jk—l) .

Therefore, having in mind Theorem 2.2, the origin is a center if and only if all the V}s 0.
If we define
J = (ma%a%a"'avka"')a

the ideal generated by all the Lyapunov constants, we have, applying Hilbert’s basis The-
orem, that J is finitely generated so there exist Wi, Ws,..., W, € J such that J =
(W1, Wsy,...,Wg). In other words, systems of type (2.21) for whose all the Lyapunov con-
stants vanish (so having a center at the origin) can be characterized by a finite number of
equations. These equations involve rational combinations of these Lyapunov constants.

§3.2 UNF and the center-focus problem

It is known that the convergence of the analytic (Birkhoff) normal form for planar analytic
systems cannot be a priori determined in the case of a system with a linear 0 at the equilibrium
point. Even more, in the general case Bruno and Walcher [15] have proved that this is
equivalent to the existence of a non-trivial local one-parameter group of symmetries of the
given system. In Chapter 1 we proved the equivalence between the convergence of the BNF
and the fact that the vector field B (2.14) appearing in its YNF vanished. In the particular
case of a planar system this means that the coefficients b; in (2.15) must be zero. Thus, for an
analytic planar system (2.21) around a linear center, the following assertions are equivalent

(7) the origin is a center,

(17) system (2.21) is (locally) Hamiltonian,
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(797) system (2.21) is (locally) reversible,

iv) BNF is convergent in a neighborhood of the origin
gim,
v) the coefficients b; in (2.15) vanish
J )
(vi) the corresponding Lyapunov constants of system (2.21) are zero.

The last two sentences suggest a possible relation between the set of coefficients {b;} j and the
Lyapunov constants of (2.21). This impression is also supported on the similarity between
the definition of the sequence {f,},, in (2.17) and the way that the Lyapunov constants are
defined for a general system. This led us to think that the ideal generated for both sets of
constants could be the same and was the motivation of a joint research project with F. Planas
and A. Guillamon that we developed from 1997 until 1999 (project UPC-9712). The aim of
that work was to apply the YNF-method to the case of a polynomial system of the plane
having a linear center at the origin. We built our own algebraic manipulator to carry out the
computation of the YNF of system (2.21) and provided explicit formulas for the coefficients
a; and b; as a polynomials on the coeflicients of P and Q. We considered Grobner basis in
order to recognize whether two polynomials in some variables belonged to the same ideal but,
unfortunately, this method presents to big difficulties: (a) the problem of the decomposition
of polynomial in some variables in terms of simpler polynomials is still not satisfactory solved;
(b) Second, the commonly used Buchberger’s algorithm to compute a Grobner basis from a
set of polynomials has an upper bound for the degree of the polynomials of the basis of the
order of
(nd)(n_H) 2S+1
(Giusti, Moller and Mora), where n is the number of variables (that is, the number of essential
coefficients of P and @), d is the maximal degree of P and @ and s is the dimension of the
ideal (which is bounded by n). In the simplest case, when d = 2, it is enough to consider
n = 5 coefficients and the previous bound is 1062 > 10%* I'. We will finish this section
showing some features of the ¥NF-procedure in the polynomial case (2.21). At the end of
this Chapter, there have been included two examples of 0 of our algebraic manipulator.
Thus, let us consider a planar system

~

& = Plz,y) = -y + P(z,y)

P and @ being polynomials of degree m. Complexifying the variables and scaling, if necessary,
this system can be written as

2= f(a,2)
(2.22) { 7o = flz1,22) = f(22,21)
where z9 = 77,

f(u,'u) = Zf]k ujvk f(u,v) = Zﬂujvk
gk gk

~

and f(z1,22) =121+ f(21,22). The second equation in (2.22) is just the complex conjugate of
the first one. Thus, any transformation z = ®({) = (+ ®(¢), with z = (21, 22) and ¢ = (&, ),
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of the form

oen-(43)

preserves this real structure. It is not difficult to check that the recurrent scheme presented
in Chapter 1 to compute the YNF preserves the structure (2.23) at any order. Moreover we
have the following result.

Lemma 2.3 Let us consider a system (2.22) and let z = ®(¢) = ¢ + ®(¢) be an analytic
transformation of type (2.23) leading it into YNF, that is verifying that

(2.24) D®N + B =F(d)

where F(z1,2) = (f(21, 22), f(22,21)), and N, B are analytic vector fields of the form
_( &alén) ) By oy _ < €b(&n) )

where a(én) =i+ ---. Then we have that

a(én) is pure imaginary <= b(én) is real.

Proof. From (2.25) it follows that equation (2.24) is equivalent to
Ti(&malgn) + &bEn) = f(AEn), d(n.€))

To(&maén) + ndén) = f(d(n,€),4(&n))
where we define
o¢; _, 0%;
o "om
for ¢1 = ¢ and ¢ = ¢. This operator T';(£,n) satisfies the following symmetry relation,

FZ(n’ f) = _fl(ga 77)

L;(,n) =¢

Actually, if we write

$Em) =Y ¢uén*
j+k>1
then it follows that B .
dn,8) = > i &int.
Jt+k>1
Thus, since

Tim) = Y, (G—k) dw&n

jHk>1
it derives that

Ti(n&) = Y, (k—j)ér&n" =

GHE>1

> (k= 35) ¢k &nF =1

j+k>1

En) g—f@,m — _Dy(em).

99
on
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Then, having in mind that
F (6 m), b(n,€)) = F (6(n, &), 8(&,m))

it turns out that

La(&,m) a(én) +nb(En) = T1(&,m) a(én) + £b(E

;1) @ n)
Ti(n, &) a(én) +nb(én) = —Ta2(&, ) alén) +n

f=all

(én)

and so
Ty (€,7) (a(én) + a(én)) = n (b(én) — b(én))

or, equivalently,

(2.26) [a(€,m) Ra(én) = —inSSb(&n).

Since I'y(&,m) = —n+ f‘;(é, n) # 0, where ~ means terms of order at least 2 in &, 7), it follows
the claimed result.
a

In the Qualitative Theory of planar systems, the function a(u) plays an important role
in the case that the linear center becomes a center. It is related to the periods of closed
orbits around this point. More precisely, if the origin is a center YNF becomes BNF and the
normalized system is

{ £ = Calén)

= —na(n)

Taking polar coordinates (£ = rcos#, n = rsinf) this is equivalent to
Po= 0

(2.27) { 6 — —ia(r?)

If we denote by (8, p) the solution of system (2.27) satisfying that (0, p) = p at time ¢t = 0,
we get that

rt) = p
6(t) = —ia(p?)t, t>0.

In this context it is known that a(u) is pure imaginary, a(u) = i (1 + a1u + agu?® + - --) so the
following expansion can be derived for the (real) angular variable 6(t)

0(t) = (1+a1p® +agp* + - +app +.-) ¢t

Defining the period function T'(p) as the time the solution (6, p) needs to reach the Poincaré
section § =0 (mod 27) we have

2r = 0(T(p)) = (1 +ai1p” + azp* +---) T(p)
and, consequently,
(2.28) T(p) = 2¢ (1 + arp® + agp* +---) .

A power series expansion of T'(p) in (2.28) is easily obtained using that (1+6)~t =1—6 +
0% — 63+ ... provided 6 small. Since UNF just generalizes BNF it is reasonable to expect that
the function a(én) provided by the WNF-procedure is also pure imaginary. And therefore,
applying the previous lemma, that b(¢n) is real.
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WNF up to order 9 in z,y and order 8 in the parameters
i = f(z,y)

y= g(x, y)

with
flz,y) ={ =1}y +{ +2a; +1las}zy + O(10)

gl@y) = { +1}a+{ +la} 2+ { ~la;}y* +0(10)
Performing the transformation

{m = { +1} 21+ { +1} 22 + O(10)

y = { —li}z +{ +1i} 2+ O(10)

the initial system can be written in the form
Z1 = (21, 22)

Zy = g" (21, 22)

with
f*(z1,2) = { +1i} 21 +{ —0.5ia,} 22 + { +2ia, +0.5ia,} 22 + O(10)
g*(21,22) = { —1i} 20 + { —2ia, —0.5ia,} 22 + { +0.5ia,} 22 + O(10)

Change of variables:

2 = ¢W(E )
20 = @ (€,m)

with fixed projections
PigM(g,n) = O(10)

P—1¢(2)({:a n) = 0(10)

Figure 2.1: Output of our algebraic manipulator (possible center) (1)
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Results:

A(&n) = { +1i} + 0O(10)

b(¢n) = O(10)

Checking:
I(D2)N + B — F(®)]]o

Ve (€, mN(E,n) - fO(@(E,7)) = O(10)

Error in the first component: 0.000000e+00

V@ (&,n)N(€,m) + nb(En) — A (D(&, 1)) = O(10)

Error in the second component: 0.000000e+00

Figure 2.2: Output of our algebraic manipulator (possible center) (2)
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WUNF up to order 11 in z,y and order 13 in the parameters

Z) = g('T’ y)
with
flz,y) ={ -1}y +{ —lag} 22 +{ +2a; +lag}zy+{ +laz}y?+0(12)
g(z,y) ={ +1}z+{ +la,} 22 +{ +2ay +laz}zy+{ —la,}y?+0(12)
Performing the transformation

{ +1}z1 + { +1} 2o+ O(12)

x

y = { —li}z1+{ +1li} 22 +0(12)
the initial system can be written in the form
7 = f*(21,22)
72 = g* (21, z2)

with

¥ (z1,22) = { +1i} z1+{ +0.5a, +0.5a3 —0.5ia; —0.5a5} 22 +{ —lay, +las} z122+{
+2ia; —1.5a, —0.5a3 +0.5ia, —0.5a5} 22+ O(12)

g*(z1,29) = { —litz +{ —2ia; —1.5a, —0.5a; —0.5ia, —0.5a5}2? + { —la,
+lag} z120 + { +0.5a5 +0.5a;3 +0.5ia;, —0.5a5} 23 + O(12)

Change of variables:

z = M (g, )
zo = @ (&)

with fixed projections
P (€n) = { +1}€+{ +lag} &0+ { +lag} €0 +{ +lag} 'n° +0(12)

Po1¢@ (&) ={ +1}n+{ +lagt&n® + { +1la;} E° + { +1lag} 0" + 0(12)

Results:

b(én) = { —0.5aya, +0.5a,a5} (én)t + { —1.5aga4as +1.5a,a505 +1.66667a,a3a,
+0.333333a,a003 —2.222220%a9a, —lada, —ladasa, +0.111111ay0%a, —1.44444a,a403
—0.222222a4a3 —3.33333a,a9a30; —0.333333a,a3a; +2.222220%2a,a; +1.33333a3a,a;
+1.55556a5a3a,a5 —0.111111a%a4a; +1.44444a,a3a; +0.222222a3a; +1.66667a,aza2
—1.88889a5a,a02 —0.555556a5a4a02 +1.55556a,a3) (€n)2+----vrvenn-

5 T 5

Figure 2.3: Output of our algebraic manipulator (no center) (1)
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--{ —1.5aqa,a; +1.5a4a50; +8.33333a,a3a3a +1.66667a,a0a3a5 —11.1111a3aza4a4

—bajasag —badasasag +0.555556a0a3a.a5 —7.22222a1 agatag —1.11111a0a3ag —16.6667a;asaza5a4
—1.66667a, a3aza +11.1111a2a4a5a¢ +6.66667a3a,a5a5 +7.77778aa3a4a5a5 —0.555556a%a,a5a4
+7.22222a1a§a5a6 +1.11111a2a5a6 +8.33333ala3a§a6 —9.44444a40,a2a —2.77778a3a,02a
+7.77778a,a3as +20a3ada; +18.75a,a3a; +3alaya? +18.125a,a3a% +3.91667a,aa}
+0. 208333a1a2a3 —11. 1605a1a2a4 —23. 66670,10,2114 —3.625a3a, —9.07407a}a3aza, —6.08333a3a3a,
+2. 96605a1a2a3a4 +0. 725694a2a3a4 +2.07176a3a3a, +0.213349a2a§a4 —14.1605a3 aqa?
—20.9444a, a3a? —15. 9815a1a2a3a4 —0. 0169753111112113(14 —5.82407a%aqai —4.51736a3a3
-3. 8588(12&3&4 —0. 281636(12&3(14 —0. 725309a1a2a4 +0. 00501543a2a4 40[11(120/30,? —45a1a2a3ar
—3a3a}a; —39.875a,a%a3a; —6.33333a,a5a3a5 —0.208333a,a3a; +11.1605a}a,a5 +57. 5185a1a2a4a—
+7.54167a3a,4a; +12.9877a?aya3a,4a5 +11.125a3a3a,a; —2.96605a2a2a,a; —0.417824a02a20,a;
—2.74383a4a3a,a; —0.213349a3a4a; +14.1605a3a2a; +51.5926a,a3a%a; +27.8827a,asa302a;
+0.0169753a, a3aa; +5.82407a2a}a; +9.98727a3a3a; +6.61728aa5a3a; +0.281636a3a3a;
+0.725309a,a3a; —0.00501543a5a; +20a3aza2 +42.50,a3a302 +28.375a, 0302 +2.41667a;ada?
766.358a§a2a4a§ —12.6944a3a,a2 73.91358a%a3a4a§ 713.6898a%a3a4a§ +0.334491a2a§a4a§
+0. 672068a3a4a5 —54. 5123a1a2a§a§ —11. 9012a1a3a4a5 . 9564a2a4a§ —2. 75849a3a4ar

—25a,a4a5a3 —6.625a,a3a3 +32. 5062111114@— +15. 6019a2a4a5 +13. 1775aza3a4a— —0.642361a%a,a
+23.8642a,a2a3 +2.4865a3a3 +8.75a,a3a8 —16.3225a5a,a8 —4.5293205a4a8 +9.49846a,a2} (En)3+

-~ —11457.9a, a3a3a3 —387.219a%a§a§ —2639.2a1a2a3a5 —231.808a, ayalad —5. 56018a1a3a5

+5191. 65a1a4a5 +60773. 9a1a2a4a5 +44262. 7a1a2a4a5 +1440. 13a2a4a5 +6842. 64a1a2a3a4a5
+18821.8a%a3aza,a3 +2177. 04a2a3a4a5 —3434. 98a1a3a4a5 —13516. 5a1a2a3a4a5 —389.588a3a3a,a}
—5884a1a2aga4a- —1830.27a3a3a,a? —445.95202a3a,a? —870.883a3a3a.08 —134.816a4a3a,a3
—6.30878aSa,a3 +11531.8a3a2a3 +92835.9a3a2a2ad +35436.7a;a3a2a3 +36140.8a3a,a402a3

+37645.2a, a3azaZa} +378.43a3a3a2a? +9349.93a1 a%a2alad —255.603a,aza3aZa? —106.308a; ajalad
+8873.19a}a3ad +45477.3a%a%alal +4770.58a%a2a§ +22075.4a3aya5a3a3 +6354. 260,%0,30,2@%
+1277.71a2a3ala? +2548.06a agaiag +276.922a2a3a ag +2.93504a§a2ar +3078. 060,10,40,5

+8375.88a, a3aja? +4702.46a1a2a3a4a5 +413. 907a1a3a4a5 +486. 948a1a4a5 +506. 33a2a4a5
+314.666a2a3aiag +38.6062a a4a5 +29 2916a1a4a— +0.286527ala3 +4740.44a}asai +29243.1a3a3a,a}
+9638. 44a1a2a3a5 +15994.3a aQasar +13251. 2a1a2a3a5 +1350. 670]1&30/? +5514. 76a1a2a3a§
+763.826a,a4a5a3 +29. 9299a1a3a5 —37468. 7a1a2a4a5 —44095. 9a1a2a4a5 —1807.26a3a,a?

—1754.79a% a0} —14846. 2a1a2a3a4a5 —2552. 08a2a3a4a5 +6573. 21a1a2a3a4a5 —116.365a30%a,a}
+1091.56a2a3a,af +854.689a3a3a,af +257.204aya50,a% +18.8122a3a,a —55063.9a3aya2al
—32768.6a, a3aZat —9519.99a3a5a2a} —25485.4a,a3a3a3at —3386.03a,aa3a%al +55.6956a;a3a%al
—25629.9a2{a2a2a§ —4091.91a: a2a5 —5773. 97a1a3aia5 —3966.08a3aza3at —981. 605a2a3a§a§

—46. 1242a3a4tz5 —4320. 5a1a2a4a5 —1207. 26a1a3a4a— —238.172a5a3af —75.674azalal —13774.511?02113(12
—6888. 29a1a2a3a5 —3250.25a a3a5 —6828. 25a1a2a3a5 —1637. 84a1a203a5 —104.796a, a3a?
+10758.7a}a a0 +33929.5a2a%aa? +1969.81a3a,a2 +7527.71a?aqya5a,403 +2369.53a3a50,a3
—1791.2603 a3aa? +226.501a3a%a4a2 —293.482a4a3a,4a3 —37.9326a3a,a2 +15350.8a3a%ad
+24038.6a,a3a3a +11644.9a1a2a3a2ag +341.294a, a3a3a3 +6676.38a%a3al +2860.88a2a3ad
+1690.27a5a3a3a2 +145.977a2a3ad +976.262a,a5ad +43.4479a3a3 +3355a3aad +4204.65a, a3aal
+2543.91a,a902a8 +212.54a,a3a¢ —18850a2a4a,0f —1993.39a3a,a8 —1740.63a2aa,a8
—1697.78a3aza,a¢ +29.3031ayaka,al +28.2903a§a4ag —13032.9a1a2azag —2665.01a1a3a2ag
—1455.47a,a3a8 —408.731a4a3al —2009.67@111203&— —483. 922&1113&5 +5463.53a%a4a? +1997.64a2a,al
+949.805a,a3a4a] —121.17a%aal +3727.57a;a2al +347.463a3al +543.238a,a3a8 —1673.26a5a4a8
—265.598a350,a8 +688.652a,a2} (¢n)® + O(12)

Figure 2.4: Output of our algebraic manipulator (no center) (2)
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Chapter 3

VUNF around a hyperbolic periodic
orbit

81 Introduction and main results

This chapter is devoted to the convergence of the pass to UNF for an analytic system in
a neighborhood of a hyperbolic periodic orbit. The tools used to build such a change of
variables and the corresponding WNF-vector fields N and B are essentially the same intro-
duced in Chapter 1 and the argument employed to prove their convergence is also similar.
However, there are some differences with respect to the treatment given there that have lead
us to include here a quite detailed study. Namely, in this case we will follow a perturba-
tive approach, starting from a integrable system (for what BNF is convergent) and looking
for a convergent WNF-scheme when a periodic analytic perturbation is added. This means
that the homological equation to solve is a bit more complicated than the one introduced
in Chapter 1 but presenting, however the same important features, the projections P, R
and the functional operator L. Apart from this, the notation, properties and initial formal
solutions presented in this chapter can be trivially extended to the quasi-periodic case by
assuming 0 = (01,02,...,0,) € T", w(e) = (wi(e),wa(€),...,wn(e)) € R* and taking Z"
instead of Z. The main difference arises when one is solving (formally) for the coefficients of
a given order K + 1 of the the transformation ®: in the quasi-periodic case we will have small
divisors (that is denominators close to zero in formulas similar to the ones given in (3.24) that
will difficult the convergence of the procedure; like in the Hamiltonian case, to control them,
we will need to assume that the frequency vector w(e) satisfies some Diophantine condition.
One of our future working plans is to study the convergence of this WNF in the case of an
analytic system depending quasi-periodically on time.
Coming back to the target of this chapter, let us consider an analytic system

(3.1) b= Fo(2) = Aoz + Fy(2),

A 0
w=(7 )

being z € C and A\, > 0. Henceforth we will denote by G to indicate that the vector field
G starts with terms of order at least 2 with respect to the spatial variable z. Assume that

where

61
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system (3.1) can be led into BNF, that is, there exists an analytic transformation

(3.2) 2= 8o(¢) = ¢+ To(C)

with ¢ = (§,n), taking it into the form (=N, (¢) where

w0 = (_oeelen)

and a.(€én) = Ao + a0 (én). Since N, = IF, = (D®,) "' F,(®,), this is equivalent to say that
the equality

(3.3) D®, N, = F, (®,)

holds at any point ¢ in the domain of convergence. We are interested on the study of the
UNF of an integrable system (3.1) when we modify it with an small periodic perturbation,
that is, when we consider a system

(34) { Z = F(Z,H,e,/j,) = FO(Z)-I_FN('Z?Oag)a

0 = w(e) ’

where F), is assumed to be analytic with respect the spatial variable z, 27-periodic and
analytic in €, with w(e) € R and p, € > 0 independent small parameters. Moreover, we will
suppose F), to be of the type

Fu(z,0,¢) = pelFi(z,0,¢),

where ¢ > 0 so, in fact, this system can be seen as a perturbation of system (3.1). Since (3.1)
has a hyperbolic equilibrium point at the origin, with eigenvalues ., it follows that

Yo = {(Oa 0, 0)}66’]1‘

is a hyperbolic periodic orbit of the system

{0

with characteristic exponents £\,.

Remark 10 Concerning w(e), two cases can be essentially considered: if w(e) = 1 it cor-
responds to a periodic perturbation; if w(e) = 1/e it can be seen as a rapidly forcing of
the original system (which appears when one is dealing with the problem of the splitting of
separatrices) or, taking 6 as the new time, as a nearly integrable system with slow dynamics.

On the other hand, the previous result can be also proved if the dependence of F, on 0 is
C! instead of analytic.

It is well known that, for y small enough, there is still a hyperbolic periodic orbit 7,
of system (3.4) which remains close to 7, (for an explicit construction of this vy, see, for
instance, [23, page 439]). Moreover, using Floquet Theory, we know the existence of a change
of variables leading the linear part of F' to constant coefficients. Therefore, in order to simplify
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the computations, let us assume that F), is given in such a way that F, vanishes at z =0 (so
Y, becomes 7y,) and that its linear part does not depend on 6. Moreover, we will assume also
that this linear part is in written in diagonal form, that is,

Fu(z,0,¢) = Au(e)z + F,(2,0,¢),

with

(3.5) Ay = ( A*‘ég) —Ai(e) )

and A,(e) € R. Denoting X = (z,0) = (z,y,0) and x = (¢,0) = ({,7,0), our aim is to seek
for an analytic transformation
X =®%(x,e,n)

of the form

(3.6) (Z):(Cb(z,%e,u)>:<g>+<5(z,00,5,u)),

and analytic vector fields

~

§a(én, e, 1) R b(&n, €, 1)
(37) N(C’ 65”) = —77‘1(57), 6:”) ’ B(Ca &, :u') = ﬁb(f?’], 6,[1)
w(e) 0

leading system (3.4) into YNF, that is, satisfying the equality
(3.8) D®* N + B = (F,w(e)) o ®%.

Thus, the main result concerning the existence and convergence of such a change of variables
and vector fields can be established as follows.

Theorem 3.1 (Main Theorem) Let us consider a system

(3.9) { Z - f((j)ﬁ,e,u) = Fu(2) + Fulz,0,),

where F is defined on a domain D, X T, (see Section §2.7.1), analytic in z and 2m-periodic
and analytic in 6. Moreover, F, is of the form peiFi(z,0,¢), w(e) > 0 and p, € > 0 are
small parameters. Let us assume that for the unperturbed system (u =0)

(3.10) b= Fo(2) = Aoz + Fy(2),

X 0
w=(7 )

and Ao > 0, we have the existence of a transformation z = ®,(¢) = ¢ + EI\)O(C) and a vector
field No(¢) = (€ao(€n),nas(€n)), with as(én) = Ao +0a5(€n), both analytic on D%TO and leading
system (3.10) into UNF, that is, satisfying that

where

D&, N, = F, (®s).
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Then, for p and € small enough, there exist a transformation X = ®*(x, e, p) of the form (3.6)
and vector fields N, B as in (3.7), defined for (¢,0) € Dro x T, analytic in ¢ and 2m-periodic
and analytic in 6, leading system (3.9) into UNF, that is, satisfying

D®* N + B = (F,w(e)) o ®*.
Moreover, we have that for y — 0, ¢ — 0t
" = (D,,0) + O(uel), N® = (No,w(e)) + O(ue?) and B = O(uef),
where O(ue?) denotes a generic function of the form pue? H, with H bounded.
Similar arguments to the ones used in Chapter 1 yield the following result.

Corollary 3.1 If system (3.9) is Hamiltonian or reversible then WYNF becomes BNF.

82 Proof of the Main Theorem

§2.1 Some notation

Before starting with a formal approach to our problem, let us introduce some notation in order
to simplify the exposition. Thus, we will use the same name for a vector field F(X, e, u) :
R? x T — R? as for a vector field
( F(X, ¢, p) )
0 .

On the contrary, we will add the symbol * if the vector field contains non-vanishing angular
component. For instance, applying it onto system (3.4), this can be written as

(3)-(5 )= () () (5)

or, equivalently, as

(3.11) X = F¥(X,e,p) == FX(z,¢) + F,(X,¢) = Q(e) + Fo(2) + F.(X, ),

20 = )

As mentioned above, we are considering F,(z) = Az + Fo(z) so, in a similar way, we can
express

where we define

Fu(z,0,e) = Au(e)z + ﬁu(z, 0,¢)

and assume the matrix A,(e) to be written in the diagonal form (3.5). Thus, system (3.11)
admits the following equivalent expressions

X = F*(X,e,u) =
FX(2) + Fu(X,e,pu) =

(3.12) (Q(e) + Aoz + ﬁo(z)) n (A“(s)z + BL(X,e, u)) -
Qe) + (Ao + Au(e)) 2 + (Fol2) + Bu(X,,m)) =
Qe) + Ale)z + F(X, e, p),
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where we have defined

Ae) == Ao + Au(e), ﬂx@m:(ﬂ@+?%&@)

Concerning the vector fields constituting its (in principle, formal) YNF we write them in the
following equivalent forms
X =2%(x,e,n) =
5 (x,€) + ulx,€) = x+ o({) + Pulx, ) =

(3.13) ( g )+ ( <T>OO(C) ) N ( éu(cée,e) )
(§)+($“%&m)=x+6mam,

with respect to the change of variables and
§a(én, e, 1) R §b(En, &, 1)
N*(Ce,p) = | —nalén,e;m) |, B(Ce,n) = | nbénep) |
w(e) 0
with respect to the WNF vector fields. Moreover, we can write N* as

N*(C e, 1) = N (¢ ) + Nu(Cre) =
Q(e) + No(C) + Nu(C,6) =

(3.14) ) + (Ao + Au(e)) ¢+ (Fo(Q) + Nu(,9)) =
Q(e) + Me)C + N(¢,e,)-
From equation (3.14), it is also derived that
a(én, &, p) = ao(§n) + au(én;€) =
(Ao +5(€n)) + (Aule) +au(én,e)) =
(Ao + Au(e)) + o (€n) +au(én, ) = Ae) +al(én, &, p)-
Once setting all this notation, the ¥NF equation (3.8) becomes
(3.15) D®* N* + B = F* (3%).
§2.2 Formal solution: starting up
Lemma 3.1 Assuming that equation (3.3),
D®, N, = F, (®,)
holds, it follows that the equality (3.8)

D®* N* 4+ B = F* (&%)
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is equivalent to
(3.16) (DB Ny - A,8.) + (DB, N* — 48, ) + N, + B = G (8,)

where

(3.17) u

Proof. With respect to the left-hand side of equation (3.8), using (3.13) and (3.14), one has
that

(3.18) DO* N* + B=D (05 +8,) (NS +N,) + B =
D®X NX + D&% N, + D&, N* + B.
Concerning its right-hand side, it follows that
F* (%) = F (®%) + F, (%) =
(3.19) X (0F) + (X (8%) - FX (2X) + Fy (%) =
F(05) + (F° (9%) = B (85)) + Fu () + (Bl (27) — Fu (25)) -
Dealing with each part separately we obtain
(a) first,
F(@%) - F(95)
Qe) + Ac® + F,
Ao (@ +F,

(@) - Q(s — Ao, — F, (BX) =
(8%) - F. ()
(b) Moreover, it follows that

Fy (%) - Fu (25) =

(c) Finally, F, (®%) = A, % —|—F (@
Applying formulas (a)—(c), equation (3.19) becomes

F* (&%) = FX (®X) + (Ac@u +AN§“ +A”<I>o) +
(3.20) ((F (@) - P (25)) + B (22) + (Fu (2%) - Fu (a5)) ) =
FX (%) + Ay®o + AD, + Gp (6“) ,
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where

Therefore, from equations (3.18) and (3.20), it follows that equation (3.8) is equivalent to
(8.21)  DOYNE + DX N, + DB, N* + B = F () + A, @0 + AB,, + G (8,,).
Moreover, we have that
D®, 0 N, D®, N
DOX NX = ° = N
o= (5 1) ()= (%)

with

where it has been used that F)(X,e) = Q(e) + F.(z). Since equation (3.3) is satisfied, it
follows that

D®X NX = F* ().

Applying it onto (3.21) one has the equation

DOX Ny + D&, N* + B = 4,0, + AB, + Gr (8,
with é’; defined in (3.17) or, reordering terms,
(3.22) (DO N, — Au®0) + (DB, N* — A8, ) + B = Gr (2X,8,).

Finally, since ®X(x) = x + (I\)O(C ) it follows that

DO N, — Ay®, = N, + DBy N, — A, B, =
(Aug n JVM) + DB, N, — Ay — A3, =
N, + D3, N, — A,&.,

and, therefore, equation (3.22) gives
(D3 N, — A,8.) + (DB, N~ A8, ) + N, + B = Gr (8,)
as the lemma, claims. O

The standard pattern to solve this kind of problems consists essentially of two steps:
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(4)

@)

A formal solution: let us consider a vector field G* (x, e, ) and write it in the form

g1 (6? 7, 93 &, :u’)
g2 (f’ m, 07 g, /1‘)
93(05 5)

where g3(0, ¢) takes the values 6, w(e) or 0. We recall that in the third case we denote
G instead of G*. Assume that the functions gy(x, ¢, 1), £ = 1,2, can be represented in
formal Taylor-Fourier series expansion, that is,

ge(€,m,0,6,m) = > g\ (e, 1) e

Jtk>2

SEL
Moreover, let us denote G = Oig if G is a homogeneous polynomial with respect to
the spatial variables £, of order exactly K. Besides, we will write G = Ok if G
contains only terms of order greater or equal than K with respect to these variables
and G = O« if all the terms in G are of order less or equal than K in £, 7. Henceforth,
when we refer to the order of a vector field (or a function) we will always mean with
respect to the spatial variables (and for any spatial order fixed, for any order with
respect to the angular variable).

The aim of this step of the procedure is to provide a recurrent scheme solving our
equation (3.16), for ®,, N, and B, order by order. In general this method does not
always work and needs some kind of triangular structure in the equation to solve.

The convergence of the recurrent scheme: in this step one has to prove that the formal
Taylor-Fourier expansions obtained for ®,, N, and B are absolutely convergent in a
suitable domain. Therefore they will represent analytic vector fields on that region.

Along this section, and their corresponding subsections, we will deal with the first step, the
formal solution. The second step, related to its convergence, is deferred to Section §2.7. Thus,
the development of this section will be divided in different parts

e Before presenting a recurrent scheme solving equation (3.16), we will consider a re-

stricted situation and will try to solve it for some terms. From that partial solution we
will learn which are the problems we will meet in the complete scheme. This will be
done in Section §2.3.

The considerations extracted from the previous item will lead us to the definition of
some suitable projections in Section §2.4. These projections will allow us to solve
formally equation (3.16) by means of a first recurrent scheme. Section §2.5 will be
devoted to it.

Finally, in Section §2.6 we will improve that sooner scheme, paying special attention
on its applicability on a computer.

§2.3 A first approach

Take again equation (3.16)

(D% N, - A,8.) + (D&, N* = AB,) + N, + B = Gr- (2,8,
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and assume, for a while, that we have already computed the terms of N, B of order less
or equal than K + 1 and of 6# up to order K. Since ®, and N, are known by hypothesis
we also know N* up to order K + 1 (included). Therefore, we wonder about the following
questions: can be obtained, from these hypotheses, the terms of $u of order exactly K + 1
satisfying equation (3.16) ? Even in the case this can be done, do they present numerical
problems, like small divisors 7

Notice that, from the definition of é} (3.17), its terms of order exactly K + 1 are com-
pletely determined from those of ®, and 6/1 of order K or less. A similar argument works
for (D(/I;o N, — AHZ}FO) and NM + B with regard to ®,, IV, and B. So, in principle, the terms

~

of ®, of order K + 1 satisfying (3.16) can be determined from

)

{D(I)u N — A‘I’u}[K+1] = H[K+1]

where {G}[M] and Gy indicate the terms of order exactly M of the vector field G and

Hif 11) is known. Moreover,
D&, N* ~ A8, = D3, (e) + A+ N) — AF, =
D3, (Q(e) + AC) — AB, + DB, N = [Q(e) +AC, @] + D3, N,
where LGl,Gg] = (DG2) G1 — (DG1) Gy is the Lie bracket of the vector fields G1 and Go.

Since N starts with terms of order, at least, 3 (that is, N = Oj3), it follows that the first
equation where the terms of ®, of order K + 1 appear is of the type

(3.23) [90e) + A, 8] = Higea

where fI[KH] now contains also those terms of order K + 1 coming from D&;NJV (which

depend on the terms of N and 5“ of order less or equal than K). Then, let us assume

N 9}21 (65 n, 05 5) N El (67 m, 9, 6)
©,(&m,0,) = | ¢a(&m,0,e) |, H(En0.e) = hao(&,n,0,¢)
0 0

with

$o(€,n,0,e) = qu;i;)s(g)é“jnkeisﬂ

jHk>2

SEL

Rlem 0.9 = 3 W e
jt+k>2
SEL

for £ = 1,2, and recall that
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Indeed, an equivalent expression for equation (3.23) in terms of formal Taylor-Fourier series
is given by

91 0d1 91 ~ >

o on 99 Ae)¢ Ae)ér hi(&,n,0)

% %2 % —Xe)n - =) =1 h2(&n,0) |
w(e) 0 0

0 0 0

and also by

A©) (a¢1(6) e, _ al) L9 e = Ty

B¢ an 0
\C) (—Gf;f) e~ az) + 20 = B

Equating the previous equations, we obtain that the coefficients of 5“ accompanying those
terms of order exactly K + 1 are given by the following formulas

A%
1 jks e
Pips = G —F=1) 15w if j#k+1ors#0
(3.24) e
2 jks . .
Dips = NGkt 1) 1w if k#j7+1ors#0

for j + Kk = K + 1. From these expressions two important consequences can be derived.
Namely,

(i) Not all the terms of 5“ of order K + 1 can be computed. Precisely, the terms of 5“
which cannot be obtained from these formulas are those of type

EX ¢4 xole) (€m*

(3.25) Y 67,1 0(e) (€n)
0

That is, they correspond to those coefficients satisfying that A(j — k — 1) + isw(e) or
A(j — k 4+ 1) + isw(e) vanishes. In other words, they are resonant terms of our system.

()

(12) Even in those cases when we can compute ¢, () (and still missing how to compute the

terms of JV“ and B) this does not ensure a probable convergence of such a (still poor)
scheme. It is well known that the smallness of the denominators appearing in (3.24) can
lead to the divergence of the series involved. This phenomenon is the so-called small
divisors problem. In our case, like it happened in the saddle-center or saddle-focus
cases (see Chapter 1), there are no small divisors. In particular, this fact will have as
consequence the no reduction in the domain of convergence of the UNF (and, therefore,
of the BNF) with respect to the angular variable 6.
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§2.4 Definition of the projections

From the previous explanation, it seems natural to distinguish in 5“ between those terms
which can be obtained from equations (3.24) and those terms (3.25) which remain arbitrary.
This fact motivates the following definition.

Definition 2 Given a formal power series

f 7779 5 Z g]ks k isO’

Jj+k>1
SEZ

we define the projections

(Prg) (&m,8) = &) grrrmole) (En)*,

k>0
(P2g) (€,m,e) = nzgj,j+1,0(€) (fn)j .

320

Analogously, fO’I" a vector ﬁdd G(f, n, 05 6) = (gl (fa n, 9, 5)5 g2 (55 n, 95 5)’ g3 (9’ E))) where 93(05 E)
can take the values 0, w(e) or 0, we define

(Prg1) (&m,€)
(PG) (5177’ 8) = (P2 92) ( a 56)
93(0,¢)
Moreover, we define also the projection R as
RG =G - PG
or, in components
(Rl gl) (fanag) gl(&anae) - (Pl gl) (6377’8)
(RG) (fanag) = (R2 92) (557’56) = 92(5177’6) - (PZ 92) (657778)
(R3 93) (fﬂlae) 0

Remark 11 From this definition, it follows that the terms in $u which can not be computed
from equation (3.24), that is, those of type (3.25), all belong to the projection P®,,.

Lemma 3.2 Let us assume \T/, M being vector fields of the form

R 1(€,7,0,¢)
(326) ‘IJ(X76) = 1/12(6177’9’6)
0
and
u(én, €)
(327) M(Cag) = —ﬂu(fnag)
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where u(e) take the values w(e) or 0. In other words, M takes the form
M) =Q(e) + AC+ M(Ce)  or  M(Q) = AC + M(¢,e),

respectively. Then, we define the functional operator L as

(3.28) Ly := DU M — AT.

Moreover, let us consider vector fields \/ﬁ, \/ﬁl and \/I}g of the type (3.26), vector fields My, M,
of type (3.27) and B given by

~ £b(én,e)
B(C,e) = | nb(én, e
0

~—

Then, the following properties are satisfied.
(i) The operator L is linear with respect to both vector fields, that is,
»CM1+M2(I; = EMI{I\J +£M2‘/I\/
L (‘/1;1 + {I}Q) = Ly + Ly Ts.

(13) L preserves the order with respect to the spatial variables, that is, L’,M\/I} and U start
with terms of the same order with respect to ¢ = (£,7).

(149) We have that

or, equivalently, ~
RM =0, RB = 0.

(tv) The projections P and R commute with L, that is,
P (Lud) = L (PT), R (£n®) = Lu (RT).
We omit the proof of this lemma since it consists on straightforward computations.

§2.5 A recurrent scheme

Once the projections P, R and the linear operator £ have been defined and some of their
properties introduced, we come back to the solution of equation (3.16),

(DB N - A,8.) + (DB, N* — 48, ) + N, + B = G (8,)

From formulas (3.24) and (3.25) it is clear that we cannot determine from equation (3.16)
the terms of P®,. This fact suggests to split it in two complementary parts

3, =PI, +RI,,
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fix a value for P  and solve this equation for R - This is an standard procedure in Normal
Form Theory (see, for instance [42, 11, 12]). To simplify computations it is usual to consider

(3.29) Pe, =0,

but it could be useful in some situations to take advantage of this freedom. Notice that this
is also the case of vector field @, in (3.2) leading the unperturbed system (3.1) into BNF. As
before, we will assume @, to satisfy that

(3.30) Pd, = 0.

Moreover, having in mind the definition of the operator £ in (3.28) equation (3.16) can be
rewritten as

(3.31) ﬁNH$O+£NK$N+J\7M+§:é§($N>.
Applying now the projection R onto both sides of this equation, one obtains
(3.32) R(LNM$O+£NK$N+J\AIM+J§> :R(é} (@L)).
Using lemma, 3.2 there follow the linearity of R, that Rﬁu = RB =0 and that
R (£n,8.) = Ly, (RB.), R (LnxB,) = Lyx (RB,).
Thus, equation (3.31) is equivalent to
(3.33) L, (R®) + Lyx (RB,) =R (Gr (84))-
In a similar way, we can apply P onto (3.31) and obtain
P (EN,@O + Lawd, + N, + J§> =P (é} (5“)) .

As before, from lemma, 3.2 it is derived the linearity of P, the equalities P]VM = J/\\f“, PB =08
and

P(Lnd.) = L, (P8.) =0
P(Lyxdy) = Ly« (P8,) =0,

where assumptions (3.30) and (3.29) have been taken into account. Consequently, it turns
out the following equation

(3.34) N,+B=pP (é} (@)) .

From these formulas (3.33) and (3.34) we can establish a first recurrent scheme. Namely,
assuming that the vector fields @, (such that P®, = 0), N, and F, are known, we take initial
values

(3.35) 0 =0, NO=aM)¢, BY=o0.
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Then, taking P@M(K) =0, for any K > 1, and using that N* = N* + N,,, we look for
6&1(4—1) _ R@ﬂ(KH)
S(K+1
(3.36) NEFD = A ()¢ + NEFD
B(KE+1)

obtained from the recurrent equations

(3.37) Ly, (RE) + Lz w00 (RBS ) = = (Gr (319))
(3.38) NE+D L B~ p (é} (6&1())) .

The following subsections will be devoted to the formal solution of equations of type (3.33)
and (3.34). Precisely,

(7) with respect to (3.33), we will seek for a vector field R solution of an equation of type
;Cer (R‘i) == R.ﬁ,

where we assume N* and H known. In some sense this is natural if we have in mind our
intention of applying a triangular scheme: assuming that we know N* (or, equivalently,
N,) and 5# up to a given order K, we wonder about which equation must be satisfied
by the terms of R$u of order less or equal than K + 1.

(i7) Concerning equation (3.34), this can be seen as looking for vector fields JVN, B solving
an equation of the type

with H also known.

§2.5.1 Solution of a Ly« (R\/I\J) = Rf]-type equation

We will follow the same notation introduced in [25] and also used in [28]. The idea is to
rearrange the series expansions of the vector fields to facilitate the formal solution of

(3.39) L (R\i) — RA.

Thus, let us consider a function g((,0,¢) given in Taylor-Fourier series expansion,

9(¢,0,6) =G(&,m,0,€) = Y gjksle) Enfe?,
Jrk>2
SEZ

and rewrite it as

D gjks(e) (En)*F &R,

jt+k>2
SEL
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Defining £ = j — k, since j > 0, kK > 0 and j + k > 2, the new limits are given by £+ k > 0,
k > 0 and £+ 2k > 2. Therefore,

9(&m,0,8) = Y > Gerkns(€) (Em)F €lel! =

{,s€Z k>max{0,1—£/2,— £}

2 ( Do Gerkks(e) (én)k) g = 3 7 gus(€n,e) e,

{,s€Z \ k>max{0,1—£/2,—¢} L,sEL

where we have defined

(3.40) ges(€n,€) == > Getkks(€) (En)* .

k>max{0,1-£/2,—£}
Once introduced this notation, let us come back to equation (3.39) and write
N {b/:l (67777075) N El(ganaoa E)
qu(x> E) = ¢2(§J)>955) ’ RH(X,E) - h2(£’77’0’ E)
0 0
and take
§a(én,e) _
N*(¢e) = | —nalén,e) | =9Q(e) + Ale)¢ + N((,e),
w(e)

with a(én,e) = A(e) + a(én,€). In principle, assume that we express their components in
series expansion of the form

(341)  Pu(Enbe) = > Pl &t hu(En0,e) = > hl(e) kel
J+k>2 j+k>2
SEZ SEZ

for w = 1,2. Using the definition of £ (3.28), the left-hand side of equation (3.39) is given by

Ly« (R) =D (RT) N* - A(e)RT =

(%—%6—6@—%77) a(én, ) + v
(%2 € - %2 n) alen, &) + 53 w(e) + Me)d
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It is not difficult to check that these functions admit the following expression in Taylor-Fourier
series

(3.42) (£82) (€ m0,0) = 3 i) (en,e) Pnei™,
j+k%2
s€E

where, for w = 1,2, one has

(3.43) F(En,€) =15 (Ene) + (G — k) alén,e)
and

(w) MG k-1 +isw(e) if w=1
(344 'WJ&“Q"‘{Mau—k+n+mma if w=2

Applying onto expansions (3.41) the rearrangement introduced at the beginning of this sec-
tion, the following equivalent expression are derived

(3.45) (L5200) (€m.0,6) = D i en, e)ft (e, e) €4,

L,s€EZ

where, using (3.43) and (3.44), we have

¥ (n,e) = S Uk )
(3.46) k>max{0,1—£/2,—£}
g (Ene) = TV (N w,e) +La(en,e),
with
(3.47) ﬁmegyz{A@M—D+§Md%fw:1
AMe)(£+1) +isw(e) if w=2

Therefore, equation (3.39) becomes
(LS:]UQ TPw) (67 7,0, E) = hy (65 7,0, 6)7
for w = 1,2. Writing ;L\w in the form

,Hw ('51 m, 01 E) = Z hgz:) (677’ 8) gfeise,

0,sEZ

it turns out that the solution RU = ({b\l, 122, 0) of (3.39) is given by

(3.48) DulE,n,0,6) = 3 i) (En,e) €%,

L,sEL

where the functions wg))(én, €) are obtained from

(" (¢n, )
i) (Enye) = LoD
‘ 9" (en, )
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or, equivalently, from

) (¢n, e)
T (N w, ) + La(En, e)

(3.49) P (€n, €) =

with I‘f;:) defined in (3.47) and w = 1,2. Notice that ¢§18”) (én,¢€) is a rational function in
the variable &7 so (3.48) does not constitute an standard representation in Taylor (formal

)

power) series expansion. Consequently, formula (3.40) does not apply for 1&2‘) . Moreover,

since QZw(fn, 0,¢), w=1,2, are the components of the vector field R\Tl, it follows that
Pripy = Pypy = 0,

where Pj, P, are the two first components of the projection P (see Definition 2). With the
new notation (3.39)-(3.40), this is the same as saying that

P10(n,€) = P_10(én,€) = 0.

For El and /,;2 the same property holds.

§2.5.2 Formal solution of a JVN +B= Pf]-type equation

Let us consider

. &a,(én,e) . )
Nu(&anag) = —77%(577’5) ; 3(5,77’5) = ’/]b(f’/],é’)
0 0
and write in this case N
R gﬁl (fﬂa 8)
,PH(& n, 5) = —77h2 (57]7 5)
0
Then, equation
N,+B=PH

becomes
¢ (@ulen.e) +ien.e)) = €hien.e)
n (<Gu(éme) +b(en,e)) = nhien.),
whose solution follows straightforwardly,

(350)  aulene) = 5 (Aalme) ~Falen.e)),  Blene) = 5 (Baleme) + Palen,e))

~

Notice that equations (3.50) determine uniquely the coefficients of @, (£n,€) and b({n, €) as a
function of those of A1 and ho.
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§2.6 Improving the recurrent scheme

From the precedent sections it is clear that the recurrent scheme presented in this work is
implementable on a computer. Moreover, as it was done in Chapter 1 (and in [28]), it is
not difficult to modify the scheme (3.35)— (3.38) in order to save computations and space of
memory. This improvement is based on the following result.

(K+1)

Lemma 3.3 At any step K > 1, the vector fields R:I;u , NM(KH) and E(K+1), obtained

from equations (3.37)—(3.38) satisfy the following properties,

78,5 _ 23,5 _ 0.,

Nu(K+1) _ Nu(K) = Ok

BE+D) _ BW& = Ogi1.

Proof. We will prove it inductively. Thus,
(7) for K =1 equation (3.37) reads
(3.51) Ly (RB.) + Ly, 0 (RE) =R (G (30)).
Since ‘/I;Ll) = 0, from definition (3.17) it follows that
Gr(0) = F, ().
Moreover, we have that
DX = Q(e) + o, N, M = A, (e).

Applying all together onto (3.51) one obtains
~ ~ (2) N
[,A“(g)g (Rq)o) + LN°+Au(5)C ('R@'u ) =R (FM (@5))
or, equivalently,
~ ~ (2 ~
[A(&)C,R@o] + 'CNo+AM(E)C ('R,(I)u( )) - R (Fu ((I)ff)) :

where we recall that [H, Ho| stands for the Lie bracket of the vector fields H; and Hs.
This equation can also be written as

(3.52) Lnoin, e (R@u(”) —R (ﬁu (cI>g<)) . [A(e)g,R$o] .

Since 1/7\“ has order at least 2 and [A(S)C ,R@o] has the same order as R®, (which is
O3), we get that the right-hand side of (3.52) is Oy. Consequently,

LN, M) (R&’u@)) = Os.
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From Lemma 3.26(i7), we know that £ preserves order, so it turns out that

= (2

R®," = 0,.

)

Having in mind that RZI;H = 0 it follows, finally, that

= (2) = (1) = (2)
R3,” -R3," =R, = 0,.
With respect to JV“ and B, equation (3.38) becomes
(3.53) NP+ B2 =P (Gr (30)) =P (B (22))

which is of type N + B = PH. From its solvability (see section §2.5.2), it is derived
that N and B  are of the same order as the vector field PH. Thus, applied to (3.53) and
using that P(F, u(®%)) = Os, it follows that Nl(f) and B® are both O3. In particular,
since N(1) = B(l) = 0, we have that

~

N@ - NV = 0,, B® _ B = 0,,

and also that
N, -N,O = 0,.

This proves our lemma, for the case K = 1.

Let us assume now that the following estimates are satisfied for a given K > 1,

78,5 _ 73,57 _ o
NM(K) — NM(K_U = Ok
BE) — B(K-1) = Ogk.
We will prove first that R@u(KH) —’R@M(K) = Ok +1- To do it, consider equation (3.37)

for two consecutive values of K. Precisely,

(3.54) E, 0 (Rai) + Ly 00 (R (K;:) = R(
Ly, -1 (R<I>o> + Lyx gy, -1 (R<I> ) = R(

Subtracting them, its left-hand side becomes
= = (K+1) = (K)
(3.55) /CN#(K)iN“(K—l) ('R(I)O) + £N0+N“(K) (RCI)“ ) — ‘CN0+NM(K_1) (R@“ ) ,

where it has been taken into account the linearity of £. We deal with each part of this
equation separately.

— Concerning the first term, since the linear term of N“(K ) — NN(K ~1) vanishes, it
follows that

(8:56)  Ly,o0 00 (R8:) = D (R&,) (N, = N,ED) = O,

where it has been taken into account that D(R@o) = O and the induction hy-
pothesis N, (%) — N, (K= — 0.
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— Regarding to

~ (K+1)
(3.57) ‘CN0+NM(K) ('R@'u )

_'LAh+A@U“4><73$uUO)a

writing NM(K) as NM(Kfl) + (NM(K) - NN(Kfl)) and using again the linearity of
L, it turns out that

£N0+NM(K) (R(I)N

<K+1>)

=~ (K+1)
ENO-I—NM(K—1)+(NH(K)_NM(K—1)) (R‘I’M )

~ (K+1) ~ (K+1)
‘C’N0+NM(K_1) (RCI)M ) + ENH(K)_N#(K—l) (R‘I)u ) .
Since NN(K) — NN(K_U = Ok, this equation can be written as

‘CNO+NM () (Rau(lﬂl))

and therefore, the expression (3.57) becomes

~ (K+1)
= ENO+N”(K71) (R‘I’“ ) + Ok

~ (K+1 ~ (K
(3.58) Ly, inyoen (RE, S - R8,5) 4 0.
Consequently, from this estimate and using (3.56), expression (3.55) is given by
= (K+1) = (K)
(3.59) Ly, oy, k- (R@u ~R3, ) + Ot

Let us consider now the subtraction of both formulas in (3.54) and take its right-hand
side part, that is,

(3.60) R (GAF (6&“)) ) (é} (&\)LK*”)) :
Since .
Gr (Bu) = (22) + 3 D" F (22) (2,)"
m>1

one obtains that

(@ (37)) -» (G (36) -

L pmf (o) ((30)" - (dE-D)"
> P E (@) ((309)" - (3)").

m>1

whose lowest order term is achieved for m = 1, namely, for

(3.61) DF (o) (8 - 3{K).

Using that Dﬁ(q)('f) = 7 and that, by induction hypothesis, @(LK) — ZI;LK_I) = Ok, it
follows that (3.61) is Og4+1 and, consequently, so is (3.60). Joining this estimate and
the bound (3.59), one obtains from subtracting the two equations in (3.54) that

= = (K)
‘CN0+NM(K_1) (R(I)N —R®, ) =

R (63 (39)) (@ (8 )) + 05 =0

(K+1)
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Having in mind again that £ preserves the order in the spatial variables, it follows

finally that
= (K+1) = (K)

R®, ~R3, = O,

as the lemma claims.

We are proving now that

R {0 = B+ _ {K) _

Ok +1, Ok+1-

Indeed, following the same argument as above, we can consider the equation (3.38) and
write it for two consecutive values of K,

N B p(@ (@LK)))
NO o+ B = (G (3F7Y)).
Subtracting them, it follows
(3.62) (N = N{O) 4 (BU+D - BUO) =

P (G (3)) -7 (Gr (87))
Using the same argument as in (3.60), we obtain that
P (6 () - (@5 (38 ) ~nn
Since equation (3.62) is of type JVN + B =PH, one has that

N RO and BUCHD - BUO

have the same order as P (C/J} (:I;LK))) -P (é} (@(LK_I)». Therefore,

]VISKH) _ ﬁng) — Ok
BE+Y) _ BE) _— Ok 11,
analogously,
NN(KH) _ NN(K) = Oxi1
BE+Y)  _ BE)  — Oki1,

and the lemma is finally proved.

The main consequence of this lemma, is that it is enough to consider the vector fields

@LK)’ NN(K), BEK)

provided by the recurrent scheme (3.35)— (3.38) just up to order K, that is

3() N, BE)  are all Ok
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Therefore, our final recurrent scheme is rewritten in the following form: assuming that the
vector fields @, (such that P®, = 0), N, and F; are known, take again initial values

(3.63) V=0, NO=pa0) BY=0

(K

Taking P@M ) = 0, for any K > 1, and using that N* = N)* + N, we obtain

6&1@1} _ R(AI)N(KH)
(3.64) N,EHD = AL ()¢ + N
B\(K+1),

satisfying that
q);(LK—H)’ NM(K+1)’ BEAD  are all O<k 41,

from the recurrent equations

(3.65) {LN”(K) (R@o) }§K+1 + {£N5+N“<K) ('R/@”(K+l)) }§K+1 =
{~ (@ (%))} .
(3.66) Jv/SKH) +BUIHD = {P (é; (al(‘K))) }<K+1 '

Remark 12 Since P(é}(&)&m)) only contains terms of odd order, it is straightforward to
check that
ﬁ(2J+2) _ ]’\}(2J+1) §(2J+2) _ §(2J+1)
H I ’ ’

for any J > 0.

§2.7 Convergence of the recurrent scheme
§2.7.1 Definition of the norms

Given positive numbers ¢ and p, we consider the following type of domains

D, = {z2=(21,220) €C: |z| <0, £=1,2}
T, = {0€C: ROET, |30 < p}.

We deal with functions g(z,0) being 2m-periodic with respect to 6, so having an expansion
in Fourier series of the form

9(2,0) = gs(2) &’

SEZ

where we recall that its Fourier coefficients can be obtained from

1 )
gs(2) = = / g(z,0)e=*? db.
27'(' T
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Moreover, we will assume that these functions g4(z) satisfy gs(0) = 0 and admit an expansion
in formal (Taylor) power series around the origin,

9:(2) = Y giks 2175
Jtk>1

Thus, by a 2m-periodic in 6 function g(z,0) analytic on D, x 7, we mean a function with
Taylor-Fourier expansion

(3.67) 9(2,0) = _gs(2) e = Y g, 22,
SEZ j+k%1
s€

absolutely convergent for any (z,60) € D, x T,. In particular, this implies that, for any s € Z,
the functions g,(z) are also analytic on D,,.

We are going to introduce the norms we will use along this convergence proof. First of
all, and like it was done in Chapter 1, we consider the following norms for functions of the
type g(z): the supremum norm

19/l 0,0 = sup |g(2)]
2ED,

and the 1-norm

gl = D giro?™.
Jrk>1

For a vector field G = (g1,92,...,9m) : Do € C? — C™ we define

1
(3.68) 1Glooe = 590 loills  NGho = S il

i=1,....m .
LR z:l,...,m

and analogously if G : D, C C? — M, ;, (C™). These norms satisfy the following properties,
whose proof is standard.

Lemma 3.4 Let g be an analytic function on Dy, satisfying that g(0) = 0. Then, the following
properties hold:

(1) 119llo,0 < llgll1,0-

(17) Let 9ix] = Ok and hiyy = Opg) be homogeneous polynomials of orders K and L,
respectively, with K # L, that is

g[K](z): Z gjkzi.zga h[L](z): Z hjsz.zéc.
J+k=K j+k=L

Then, we have that

gy + Pl = oy, + izl -
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Now, for a function g(z,8) of the form (3.67), we consider the norms

(3.69) 19l = D 11952l €17
SEZ
(3.70) op = Z 19s(2)l1.4 elslp.
SEL
As above, we can extend these definitions to vector fields. Indeed, for G = (g1,92,---,9m) :

D_UXEQ(C?’r—)(Cm we define

1
(3.71) 1Glloco =51 lilocgpr  NGlhop=—" > lilli,,
2

=1,... .
U t=1,...,,n

and, in a similar way, for G : D, x T, C C* — M, , (C™). The following standard lemma
relates norms and composition. Precisely,

Lemma 3.5 (i) Let G((,0) be a vector field analytic on Dy, x T, and let us consider
D(¢,0) = (41(¢,0), $2(¢, 0),0), analytic on Dy, x Ty, 0 < 09 < 01, satisfying that

a1

for £ =1,2. Then, the following bound holds,

1G 0@l 4,, <NGlli0,,p-

(i3) If g is analytic on D, and satisfies that |g(¢)| > C V¢ € Dy, then it follows that

E
g
Proof. (i) is standard. With respect to (ii): since g(¢) is analytic on D, and verifies that
|g(¢)| > C for any ¢ € D,, it follows that h(¢) = 1/¢({) is also analytic on the same domain

and satisfies that |h(¢)| < 1/C V¢ € D,. Consequently, [l < 1/C. Then, applying (),
we have that

1
<

Ql

1,0

_ 1
c

o = lI¢ o h(C)

§2.7.2 Some technical lemmas and estimates

The aim of this section is to provide estimates for the vector fields solution of equations
of the type N +B = PH and L N (R\IJ) RH and whose formal approach has been
obtained in the precedent sections. These estimates will be presented in Proposition 3.1,
while next lemma gives a lower bound for the denominators appearing in the solution of
equation Ly« (RU) = RH.
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Lemma 3.6 Let us consider
T (A, w,€) + £a(en, e),

where £,s € Z, (£,m) € D, I‘g’) as defined in (3.47), that is,

Pgsv)(/\,w,e) = { Ae) (€ —1) +isw(e) if w=1

Ae) (0+1) +isw(e) if w=2

with s #0 or £ # £1, and @(én,e) coming from
R £a(én,e) € (@ (én) +au(én,€))
N(é.a m, 6) = —ﬂa(fﬂa 6) = -1 (ao (577) + a’\ll (5777 5))
Moreover, let us assume that

(3.72) 0<

Then, the following bound is satisfied

Ao /4 if s=20 (and, therefore, £ # £1)

Fg:)()\,w,g) + La(én, 5)‘ 2 { |w(e)| if s#0

provided that
(3.73) [@o (€M1 o 5 llauEne)ll; , < Aa/16
hold.

Proof. We will distinguish between the cases s # 0 and s = 0. Thus,

(1) Case s # 0. Since a(én,e) is a real function, w(e) € R and using the definition of
Fgl:)(A, w, €) it follows that

T (A w,8) +£dlEn,o)| > [sw(e)] > lw(e)],

for any (¢,7) € Do

(13) Case s = 0. From

‘Fﬁw)()\,w,s) +€6(§77,6)‘ — (Ae)(¢ —1) + La(én, )] if w=1 ’
’ AE)(E+1) +La(en,e)| i w=2
1t follows that
o 2 @l - @Ene)l  if w=2
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Recall that s = 0 implies that £ # +1. Let us consider the case w = 1. Taking into
account lemma 3.4(7), it turns out that

0 < [a(¢n, )| < [[aén, e)lloo,e < lla(éne)lly,o-
Using also assumption (3.72) and hypothesis (3.73) one obtains
~ Ao
[A(e)]€ — 1] — |€] [a(&n, e)l] >
Ao 17

— = laEn,e)ll o] =

—1]22 - a a >
£=11 |5~ g It o)l | > <5n,e>||1,a >
Ao ~ ~ Ao Ao
=122 2 (jaseml,, + ||au<sn,s)||1,g) > -1l -2 (32432 2
Ao Ao Ao Ao
S22 = 22> 22
=1 2 4 =1l 4 — 4
In a similar way, it can be proved for w = 2 that
~ Ao
(M) e+ 1] — €] [al€n, e)l] =

and therefore,
M (0w, 6) + (e )| > %2
O
Proposition 3.1 Let us consz'decvector ﬁ\elds H and N, analytic on Dy x T, and ]Vu, B
analytic on D, respectively. Let B and RV be the solutions of the equations
N,+B = PH
L (R\i) - R,
which have been formally obtained in Sections §2.5.1 and §2.5.2. Moreover, assume that

N¥(¢,€) = Qe) + A(e)¢ + No(C) + Nu(Cre) =

0 A(e) 0 13
(3.74) 0 |+ ( 0 =) ) ( U ) +
w(e) 0
£do (&n) £a,(én,e)
—nao(én) | + | —nau(én,e)
0 0

Then, the following assertions hold,
(i) Concerning JV“ and B we have that

(R 21 Y 121
1,0 Lo Lop
In particular,
i en 1 H‘
[@u(&nse)lly , < H Lowp
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(13) The bound

e, < £ i
150'79 A0 1,0—7,0
holds, provided that the estimates

15 Ao
- il,.,  men. <
(3.75) SN, o el < T

are satisfied.

Proof.

(¢7) From the formal solution of equation ﬁu + B = PH, derived in formula (3.50) it is

clear that H ]Vu )

ana |B]

are both bounded by HPfI
1,0 1,0 1,0,p
. Concerning the second part, writing

L0,

R ¢ (én,e)
’PH(fa m, 5) = _nhQ (§na 5) ’
0

using again formula (3.50) for @,(¢n),¢€),

~ 1/~ ~

au(ene) = 5 (Bien,e) —halen,e))
and definition (3.68) it turns out that

lau(énoll,, <

L (ienal, + fen

<
1o/ =

110~
=12
g

<[
1,0 g

1,0,p

(13) Let us recall that, in Section §2.5.1 we dealt with vector fields

N {0/:1 (57777078) N El(fﬂ?aeﬁ)
RU(x,e) = | 2(&mb,e) |+ RHOGE) = | ha(én,0,¢)
0 0

§a(én,e)
N* (C,E) = —77@(577,5) )

w(e)

and

where, from (3.74), we know that

(3.76) a(én,e) = Ae) +alén,e) = (Ao + Aule)) +@o(n, €) +au(én €).

and, consequently, by
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Moreover, we assumed for their components the following (rearranged) series expansions

hu(me) = 30 b (Eme) €t

C,SEL
{b\w (ga 1, Oa 8) = Z T/J(w) 6777 gfeise
L,sEZ

for w = 1,2, where

B (en, ) > e En”,

k>max{0,1—£/2,—£}

D (Ene) = 3 P s() (ENF,

k>max{0,1—£/2,—¢}

respectively. We recall also, that the formal solution of equation £y« (”lef) = RH was
given by the formula (3.49)

ht (€n,e)
T (A w, ) + £a(¢n, )

i (en, ) =

with I‘g)) defined in (3.47). To estimate the norm HR\/I;‘ we must deal first with

their components. Therefore, one can write e
[Futeno.0), < Py [ e o<
1
egz Hhes (eme §ZH Y\ w,e) + £a(n, ) 1o o
1
(3.77) é |16 en,e 4—“‘” Tovwe) s zaens
1
seZ\[0) Hh o §‘ZH W\ w,e) +Lalen.e) |, eMp’

where the initial series has been divided in two parts: a first one corresponding to those
terms having s = 0 and a second one with the rest. We proceed to bound each sum
separately.

(a) With respect to the sum for s = 0,

> | enae],

1
F(w (A w,e) +La(én,e) ||,

ez
we have from (¢) and hypothesis (3.75) that
~ Ao
aEnll, < 5
~ 15 Ao
< - < —.
lauten. e, < ||, <3
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Therefore, we can apply Lemma 3.6 to obtain

~ Ao
T Owe) + Lalen,e)| > T V) €D,
and use Lemma 3.5(4i) to get that
1 4
(w) & =3
F[O (>‘a w, 8) + e a(én’ 6) l.0 °
Thus, it follows that
1
> e o], <
ez /\ w e) +€a(£77 e) |l
Dol [0 <sn,e)ef
A ’
(b) Following the same idea as before, using
~ ~ ~ Ao Ao
[a(€n; e)ll1o < llae(€n)llyo + [@uEn,e)lly ;< 76+ 76 = Ae/8,

Lemma 3.6 for s # 0, Lemma 3.5(i7) and having in mind that w(e) = 1/e, the
following expression is derived,

w 1 s
S€Z\ {0} Hhﬁs o 6‘3H T (A w,e) + Laen,e) ||, s
DN % fwf‘Hlae‘s"’Sfof\m-
se%e\z{o} , v

Joining together the estimates obtained in (a) and (b) and assuming & small, equa-

tion (3.77) becomes
4 N
<(= il
lLo,p ()\O +8) H

Consequently, from definition (3.71), we get

5

L,o,p - Ao

(e

d

Loy

=%

1,0,p )\ l,0,p ’
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§2.8 Proof of the convergence

In this section we are going to prove the convergence of the UNF-recurrent scheme introduced
in formulas (3.63)— (3.66). Precisely, assume that the transformation z = ®,(() = (+R®,(()
leads system (3.1) into BNF, that is, verifies

D&, N, = F, (®,).

Take initial values

(3.78) 3 =0, NO=n)¢, BY=o,

fix P@M(K) =0, for any K > 1, and write N* = N* 4+ N,,. Then, we obtain recurrently
g = gy,

(3.79) N,EHD = A(e)C + ]VL(LKH)
B+

satisfying that @&KH), N,E+D) and BE+D are all O<k+1, from equations

(3.80) {;CNN(K) (R@o) }§K+1 + {LN3<+NH(K) (R@L(KH)) }§K+1 =
{R (G (#))}
(3.81) ﬁ;SKH) +BUH = {P (é; (6’({{))) }<K+1 )

Using exactly the same argument as in the saddle-center and saddle-focus case (see Chapter 1,
Section §2.5.2), the following result can be proved.

Proposition 3.2 Let us assume that system (3.4) is analytic on D, X T, and satisfies the
properties introduced in Section §1. Let us consider the sequences

(o + n8, )

157'0/279}1(
(3.82) { N 4+ N,U(K+1)‘

{ §(K+1))

1,r0/2 K

Lro/2 ) 5
Then, the following assertions hold:

(1) The sequences defined in (3.82) increase monotonically and are upper-bounded, that is,
satisfy that

|ox + R@u(””) > [ex + R@um‘
1,7'0/2,p 1,1"0/2,[)
HNOK + N,}K“)‘ > ||INX+ NN(K)‘
1,r0/2 1,r0/2
HE(K+1)‘ > BS(K)‘
1r0/2 1r0/2"
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(i4)

and

VAN

To,

|z + =3,
s

(K+1)‘

(3.83) e /2

HNg< n NH(K“)‘ Cre.

IA

Lro/2 1,ro/2

Using (i) and taking into account Lemma 3.3 it follows that the vector fields >, N™
and B, defined as

3= lim (35 +R3,")

K—oo
and R R
N* := lim (NOK+N,}K)), B:= lim B+,

K00 K00

are analytic on Dy, j2 X Tp, Dy,/2 and again Dy, /o, respectively. Moreover they lead
system (3.4) into UNF, that is, satisfying the equality

D®* N* + B = F (o%)

Proof. Because of the similarity with the proof given in Chapter 1, Section §2.5.2 and in
order to bore as less as possible the reader, we will present here only the proof (with details)
for the estimates (3.83). The rest of the results can be obtained following exactly the same
arguments employed in Section §2.5.2. With respect to the proof of (3.83) we will distinguish
two parts: the first one will provide necessary estimates on the unperturbed system and the
perturbation; in the second one the proof of estimates (3.83) following an inductive argument
will be carried out. Indeed,

(i) Estimates of the system

Lemma 3.7 Let us consider the unperturbed system (3.4),
i =F,(2) = Aoz + Fi(2),

with Ay a diagonal matriz {£X.}, Ao > 0. Since F\o starts with terms of order at least
2 in z, like is was done in Chapter 1, Sectz’on_§2.5.2, we can scale our system in such
a way that in the new domain of definition, D, the following bound holds,

Co Ao
< To
1,r0 16 ’

~

(3.84) ‘ F

o

for a constant 0 < ¢, < 1/2. Moreover, we know the ezxistence of analytic transformation

z=0o(() = (+ Do(C) and vector field No(C) = No(§,1) = (§ao(&n), —nas(&n)), where
as(€n) = Ao + @s(én), leading system (3.4) into BNF, that is, verifying that D®, N, =
F,(®,). Then, the following properties are satisfied,

(a) D, is analytic on D% verifies that P®, = 0 and that

To’

13 ~ 1
19oll1,3 1, < 7o HD (Rcbo) <7

s
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(b) Ns is analytic on D%ro and we have also that

Co Ao
<
[@s(€mll g, < 220 < 22

=&

Proof. (Lemma) These results come from the convergence proof of Chapter 1, Sec-
tion §2.5.2. In that section it was proved that, if D, was the domain of analyticity of
the initial system, then the corresponding iterates (leading to ®,) satisfied that

[R&) < (—1 ‘7) o
1,v7r0 4

for any K > 1 and 1/2 <+ < 1. Choosing v = 3/4 it follows that

~ (K+1) To
R <
‘ 1,%7‘0 — 16
(K+1)
for any K > 1. In particular, it also holds for the limit R®, = limg R, , SO
~ ’,'O
R®, —
H 1,%1‘0 — 16
and, consequently,
. 3 ro 13
||¢o||1,%7-° S ||1d||1,%7‘ ,%TO S Z o+ E Ero.
Applying now Cauchy estimates one obtains that
4 ro 1

Io(vs.)

< < -.2==C
1,7 T 1o /4 L3r, — 1y 16 4

2

Concerning N,, we have from the same section that
N, =P (F. (2.)),

and, therefore, using Lemma 3.5 and estimate (3.84),

|

< G Ao
1,7 16

F, To.

., SIP(F (@) g,, <|

, T

In particular,

1 3 ~
o = — || =70 | @ =
||mmd°%%(4)<mL%
4 4 Co )\o Co )\o >\O
) g < 2. . = <
ool < oo [N, <5 = <5
if one takes into account that 0 < ¢, < 1/2. &

With respect to the perturbation we have the following result, whose proof can be
derived 0.



WNF around a hyperbolic periodic orbit 93

(ii)

Lemma 3.8 Since the perturbation vector field

Fu(z,0,€) = Au(e)z + Fu(z,0,¢),

v= (M7 e )

and A, (e) € R, is assumed to be of the type

where

FN(Za 9, 8) = /,L&qFl(Z, 9, 8)7
then it follows that
[Eully o ,p < cube? o, [Aule)] < crpe? A,

for suitable positive constants c,, and cy.

Estimates for the recurrent scheme

To prove estimates (3.83) it is enough to check that

(3.85) HR$“(K)H

and )‘E(K)H are O(ue?), K >1

To
g L3

ro

o 15,

1,70
for small enough values of ;4 and ¢ and R@u(K), ]Vl(tK) and B¥) being the vector
fields provided by the recurrent scheme (3.78)—(3.81). Indeed, if inequalities (3.85) are
satisfied, having in mind (), we can choose p and € small enough such that

=~ 7
7%, < 557

16

T
L3

and, therefore,

9 7
S 1_To+_'ro:'ro-

191170 p < 1@ofly 2o + HR‘I’MH 6 16

L3p
For ||N||; ro a similar result can be obtained.
D)

Notice that all the estimates presented here are referred to the spatial components and
there is not any comment concerning the angular variable. This abuse of notation is
simply due to the fact that with respect to this angular component we just deal with
the identity.

Thus, let us prove estimates (3.85) inductively. From (3.78) it is clear that they hold

~ (K
for the case K = 1. So, let us assume by induction hypothesis, that ‘Rq)u( )Hl re
R4

%]

and “E(K))‘ .. are order O(ue?).

1,% 1,%e

Lemma 3.9 Assuming the induction hypothesis (3.85) holds, the following estimates
are satisfied:
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(@)
|6 (R85, 5, = 00

(b) We have that

In particular,

)Hl .. s also O(peT).
3

is O(ue?) and, consequently

o) HﬁNu(K) (Rao) ro
e,

|7 (G (R8.)) = £x,00 (R3:)

= O(ue?).

1,70 0
(d) Finally, for p and € > 0 small enough, it follows that

8, ., - ot

1 T'O ’
which concludes the of (3.85).

Proof. (Lemma)

(a) From the definition of Gr in 3.17) and using Lemma 3.5 it follows that

(
~ (K) 7 X (& X fal [><
Gr (R, = ||F, (@) — (F (@) — F (9))
1,72, 1,7 ,p
(3.86) |7 @)]| .. +||F @) -Fy)| .. <
1,2, 1,50
et + | B (@%) — B (ax)] . .
1,%2,0
Applying Taylor formula we have
|7 @) -F@], ., <|PF (o +88u)] . [5]]
1,% 1,50 1,% ,p
where 0 < 8 < 1. Since
H@“ +,8<I> H <||1®ll; 3, + H@ H Ero + cope? < zro
’ 2 5P 1711.0 17?“20, o 16 8

for p, € small enough, it follows that

~ ~ 8
o7 (v + 63|, <27, ., < L <

1 TD P 1787019 r 1:"'07P

8 ~ 8 (oo 8 CoXo

—_— F ) < - [¢] a < - 2 o = OAOa

To ( 1,70 + H K l,ro,p> - ( 16 +cupe ) T ( 16 T) ¢



WNF around a hyperbolic periodic orbit 95

where it has been used Cauchy estimates and Lemmas 3.7 and 3.8. Using that

H@u L < cpe? it turns out that
y 3P
Iop (o2 8, 84, =00
L3p Lp
—~ ~ (K) B
and, finally, |G (R(I)u ) .= Olue.
s 3P

(b) It follows straightforwardly from the fact that
T B < [P (Gr (R85)
2

1,50

To
1’2 2

(¢) We just need to prove that
HENM(K) (R@O)

since the claimed result is then obtained taking into account bound (a). Thus,
using the definition of L, it follows

Jenm ()] 4, <[ (75:)

Then, having in mind that || N, (&) and ||A,(€)]|; o are both O(ue?) and using
g I 110 uAE) 1, re

= O(ue?)
1,50

R,

N, ‘

180y 7

1,re

1,7 = ‘1L°
sg oP L) L)

To
LY

Lemma 3.7(a), it turns out that “ENu(K) (R@O) is O(ue?).

‘1,“;,/0
(d) Writing formula (3.80) in the form

{£N§+NM(K) (R:I;“(Iﬂ—l)) }§K+1 -

(26 (589) £ (5]
we can consider this equation as one of the type
Lx w00 (RS, V) =R
provided we take
= 1 (6 1) - £, 1)

Moreover, from Lemma 3.7(b) one has that

~ R )\O
8o €mly, e < 3o (€l gr, < 57 < T

<K+1

Ao

and from estimate (c) it follows that

= O(ue) < 2o (r) :

Rﬁ) To
H L =16 \2

= O(pe?).

K+1)‘
1,20

so we can apply Proposition 3.1 and obtain that HR@“(
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Chapter 4

Splitting of separatrices in
2-dimensional periodic reversible
systems

81 Introduction and main result

As it has been mentioned at the introduction of this thesis, the phenomenon of the splitting
of separatrices (that is, the transversal intersection of invariant manifolds coming from a
homoclinic connection) seems to be one of the main causes of the stochastic behavior in
Hamiltonian systems. To measure the size of this splitting, Poincaré (1890) introduced a
method based on a perturbative approach. Nevertheless the results he obtained were not
completely rigorous, he was already aware that the size of this splitting predicted by his
method was exponentially small in the perturbative parameter €. This method, rediscovered
70 years later, is known as Melnikov or Poincaré-Melnikov method.

It was at the end of the 80’s, that this problem received again the interest of the scientific
community (see, for instance, at [24] and references therein), providing effective computations
of this exponentially small splitting size in several situations and depending on the type and
size of the perturbative forcing.

Among these papers, there is one [24], written by Delshams and Seara, where a quite
general outline is given of the problem of measuring the size of splitting of separatrices for
a Hamiltonian system with one and a half degrees of freedom. In that paper the authors
validate Melnikov’s method to measure this splitting size, which appears to be exponentially
small in the perturbative parameter and given, in first order, by the Melnikov function.

The aim of this chapter is to extend the results given at [24] for reversible systems.
Precisely, we will consider an integrable system, with the origin being a saddle equilibrium
point and having an homoclinic connection (for some more details, see hypothesis (h1)). In
principle, we will consider this integrable system to be Hamiltonian but it could be also
possible to take it reversible, provided their local equivalence around this kind of equilibrium
point (see Chapter 1). Moreover, we will assume this system to be (time) linearly reversible,
that is, invariant under the action of a linear spatial involution and a reversion in the time
variable t — —t. We start this study with this simpler case since it is the first natural step
before consider a more general situation. Moreover, linear reversibilities are very common in
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dynamical systems and are, in fact, of easy detection. As usual, we will perturb this system
with an small perturbation, with a rapidly periodic dependence on time and preserving the
same reversibility as the initial system. Consequently, under the action of this perturbation,
the invariant manifolds associated to the new equilibrium (a periodic orbit close to the origin)
do not, as a rule, coincide and give rise to infinite number of intersections. The problem of the
Splitting of Separatrices consists, essentially, in measuring the distance between both invariant
manifolds. This can be estimate in 0 ways, namely, from measuring the distance, the angle at
the first intersection or, in the Hamiltonian case, the are of the first lobe contained between
them. In our reversible setting, the purpose of this chapter is to validate the exponentially
expressions provided by the Melnikov function for the angle between the invariant curves,
provided that the area of the lobes is not an invariant. We will follow closely the paper [24],
not only in many of the techniques employed but even the notation.

It is worth noting that the reversibility plays an important role in this problem. Namely,
it ensures the transversal intersection between the (symmetric) invariant curves, the fact
that this first homoclinic point lies on the symmetry manifold (formed by the points which
are fixed for the spatial involution) and provides suitable reversible parameterizations of the
invariant curves. As it will be notice later, this symmetry will be also present in the Melnikov
and the splitting functions.

Let us start in a more precise way. Thus, let us consider the Hamiltonian system

il = X9
(4.1) {iQ = f(=1)

with Hamilton function given by

2
KO (@) = O (a1, 02) = 57 +V (@)

and f(z1) = —V'(z1). This system is (time)-reversible with respect to the linear spatial
involution
R: (z1,22) — (21, —22).

Let us assume that system (4.1) satisfies the following hypotheses:

(h1) The origin is a saddle equilibrium point with characteristic exponents +\g, with Ay > 0.
Moreover, there exists a homoclinic solution z(© (¢) = (z1((t), 220 (t)) verifying that
(0 (t) — (0,0) for ¢ — Foco. This solution is commonly called a separatriz. Due
to the reversibility of (4.1) it follows that the homoclinic solution z(%) (t) satisfies that
(0 (1) = Rz (¢). Let us assume that it has been parameterized in such a way that
for £ = 0 it lies on the symmetry line, that is,

z0(0) € Fix R = {& = (z1,22) : Rz =x}.

(hg) The function f(z;) is real entire and () (¢) = a'cgo) (t) is analytic on a strip |Su| < a,
with a pole of order r at the points u = +ai as the unique singularity at the lines
|Su| = a.

Let us now consider the following perturbation of system (4.1)

&1 = xo+ pePgi(x,t/e)
(4.2) {g‘gQ = f(z1) + pePgo(z, t/e)
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or, in a more compact way,
i = JVhO(z) + uePG(z, t/e),

with
o~ (4).o-(23). cwr- (3210

where 0; denotes derivative with respect z;. Concerning the perturbation, let us suppose
that it satisfies the following hypothesis:

(h3) The vector field G(z,0) = (g1(x,0),g2(x,0)) is analytic in z, § and 27-periodic in 6,
and we assume it to be R-reversible, that is, satisfying

RGPz, —t/e) = —G(z,t/e).

Moreover, as it was done in [24], we introduce the assumption

2m
G(z,0)d6 = 0,
0
that is, G has zero mean. Like there, this is not essential but it allows, by means of
two steps of averaging, to increase the order of the perturbation and, consequently, to
get better final estimates. See [24] for more details.

We also assume that it takes the following forms with respect to the spatial variable x:

— If f is 2w-periodic, we will consider g1, g2 to be trigonometric polynomials in z1
and polynomials in 2. Moreover, the case G(z,0) = (0,z19(0)) is also allowed.

— If f is not 27-periodic, we will consider G only depending on 8, that is, of the form
(91(0),92(0)) and verifying the symmetry conditions

91(=0) = —g1(0),  g2(=0) = g2(0),
induced by the fi-reversibility.

Like it was done in [24], from this hypothesis (h3) we have that G = (g1,g92) can be
expressed as sums of monomials in z. Since z(?) (u) has poles of order r at the complex points
u = +ai, so have g1 (2(% (u)) and g2(2(9 (u)). Let us take £, £5 the greatest of the orders of
these poles for g1 (z(9) (u)) and g2(z(® (u)), respectively, and define £ = max {¢;,¢,}. In some
sense, ¢ can be considered as the maximal order of the perturbation on the separatrix. We
will call £ the order of the perturbation on the separatriz. For a detailed list of remarks and
comments concerning these hypotheses we refer the reader to [24].

Remark 13 In [24] an analogous definition for this order of the perturbation is introduced.
Howewver, since that paper deals with Hamiltonian systems, the perturbation is given in terms
of the Hamiltonian function

h(z,t/e) = h%(x) + pePh (z,t/e).
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Moreover, the homoclinic solution z°(u) is assumed to have a pole of order v > 1 at the com-
plex points u = +ai and, therefore, £ps is defined as the greatest order of the pole h'(z°(u), 0)
has at uw = Fai. From an straightforward computation it follows that O1h'(z°(u),0) and
Ooh! (20 (u), 0) have poles of order £ps+1—1 and £ps — T, respectively. In our notation, this
means that the perturbation vector field is given by

ot = ( SE49),

and, consequently, 1 = €ps — 1, b = bps+ 1 —r. Thus, £ = max{l1,ls} = bps+1—r.
In the Hamiltonian case it is not difficult to observe that {ps > 1 — 1 (see 24, Remark R3])
and, therefore, £ > 0.

Since system (4.2) is 2me-periodic we can consider its corresponding (time) Poincaré map
P, defined as the map which sends a given point x, to its image by the flow after a time 27,

P(zp) := z(zp, 27e).

Since (4.2) is R-reversible it is known (see, for instance [51, 48]) that its associated (time)
Poincaré map P is also reversible, with respect to the same reversing involution 2R. We recall
that, in the case of maps, this means that it satisfies Ro P o R =P L.

Let us come back to our system and make some comments about the dynamics before
and after considering the perturbation. For the case y = 0, since system (4.1) is autonomous,
we have that both phase portraits coincide. In fact, it is foliated by the level curves of the
Hamiltonian h(?). Assuming, as usual, that V(0) = 0 it follows that the homoclinic orbit
£(© is contained in the level curve h(®)(z) = 0. Because of the 9-reversibility, the orbits are
invariant under the action of the involution R and, in particular, the equilibrium point (0, 0)
is also fixed by fR.

For pu # 0, the dynamics of system (4.2) becomes more complicated and, consequently,
also the phase portrait of P. It presents a hyperbolic point ., close to (0,0), whose stable and
unstable invariant manifolds do not, in general, coincide. However, since our perturbation is
R-reversible, some important consequences can be derived:

(a) The hyperbolic point z, belongs to the symmetry line Fix 2R, that is, the set of points
that remain invariant when we apply R onto them.

(b) It is known that if zy is a hyperbolic point of an fR-reversible mapping L with stable
and unstable invariant manifolds W* () and W"(zg), respectively, then the following
equalities are satisfied

R{W?(zo)} = W¥(Rxo), R{W"(x0)} = W (Rzo).
In the particular case that oy € Fix R, that is SR zg = z¢, these equalities imply that
R{W*(z0)} = W"(z0),  R{W"(z0)} = W*(zo)

and therefore, they always intersect transversally each other at a homoclinic point in
Fix 8. In our case, since z, € Fix R it follows that their corresponding invariant
manifolds intersect transversally at the symmetry line.
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Remark 14 Although these properties have been presented for a linear involution R,
they also hold for general &-reversible system or map, with & a non linear involutory
diffeomorphism (see, for instance, [51, 48]).

The main result of this Chapter is to give an asymptotic formula for the value of the
angle between the invariant curves associated to z, at the first intersection. As in [24], this
formula validates the exponentially small terms provided by the Melnikov function

(4.3) M(s,e) = = Leh OOt + s,t/e)) dt =
+o0 - T
/ (VRO @O~ ) Gla® (e~ s),t/e)dr.

denoting Ly f the Lie derivative of the function f with respect to the vector field H. The
R-reversibility of systems (4.1) and (4.2) leads this Melnikov function to satisfy the following
properties, whose proof will be given in Lemma, 4.2:

(1) M(s,¢€) is 2me-periodic.

(13) M (s,¢e) is an odd function, that is M(—s,e) = —M (s,e). Consequently, M (0,e) = 0
and it has zero mean.

(797) From the previous properties it follows that the expansion of the Melnikov function in
Fourier series has no zero terms, that is,

M(s,e) = > My(e) /e
k#0

Thus, our main result reads as follows.

Theorem 4.1 (Main Theorem) Assume that systems (4.1) and (4.2) satisfy hypotheses
(h1)—(h3) and that v :=p — £ > —1. Then, for e — 07, u — 0, the following formula holds

!
sino = uepwﬂif#;),? + O (u2e771, puel) e/,
T

where M is the Melnikov function (4.3) and « is the angle between the invariant curves at
the symmetric homoclinic point = = (z,0).

Our proof will follow almost exactly the argument of [24]. Even more, to ease a paral-
lel reading we have preserved in many cases the same notation. However, in spite of this
similarity, there are some important points where the treatment will be different:

e The Normal Form Theorem: we need a procedure ensuring the convergence of the
Birkhoff Normal Form for periodic reversible systems in a neighborhood of a symmet-
ric periodic orbit (symmetric means here, invariant under the action of the reversing
involution). This result is given at Chapter 3.
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e Using the results from Da Silva, Ozorio and Douady [21] and Ozorio and Vieira [46],
the Birkhoff Normal Form obtained for our reversible system will be extended along
(for instance) the stable invariant manifold. Precisely, we will extend it beyond Fix SR
and will contain a rectangle R of length and width independent of y and e. It will be
in all this region evolving along the stable manifold where the flow-box coordinates will
be defined.

e Applying an slightly modified version of the Extension Theorem given at [24], we will
extend the parameterization of the unstable invariant manifold until it reaches this
region K.

e From the R-reversibility of the system, the transversal intersection (at Fix SR) between
the invariant manifolds is derived. The computations here will follow quite closely those
in [24].

Moreover, to ease the reading, next Section explains the argument and the results used in
the proof of this Main Theorem, while their proofs have been deferred to the following ones.

Before starting with the proof, let us notice that there are some well known integrable
Hamiltonian systems verifying hypotheses (h1), (h2) which are also linearly reversible. Among
them, we list the following classical examples:

1. The pendulum, given by the equations

1 = T9
.’i?g = —Sinxl

is reversible with respect to the spatial linear involutions
R : (z1,22) — (—21,72) and Ry : (z1,12) —> (71, —22).
It has homoclinic orbits I'y = {(xgo) (1), j:acgo) (t)) }, where xgo) (t) = 2arctan(sinht),
acgo) (t) = :icg)) (t) has a pole of order r = 1 at u = +mxi/2.
2. The Duffing equation,
{ L1 = g

L _ .3

9 = X1 it
is reversible with respect to the involutions Ry and Ry introduced above. Moreover,
it has two homoclinic orbits defined by I'y = {(:twgo) (t),a:go) (t)) }, where wgo) (t) =

V2/ cosht, xgo) (t) = :i:go) (t) has a pole of order r = 2 at u = +7i/2.
3. The cubic potential system
{ T1 = T
. 2
To = z1— 7
which is 9p-reversible and has the homoclinic orbit T'y = {(x§°) (1), 2 (t)) } with
xgo) (t) = (v/3/2)(cosh(t/2)) 2, a:éo) (t) = :bgo) (t) having a pole of order r = 3 at u = +i.
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82 Proof of the Main Theorem

Before dealing with the proof of the theorem, let us introduce some notation concerning
reversible systems. Along this work, if there is no problem of misunderstanding, we will
use the same letter R for the reversing involution as for the associated matrix. That is, for
instance, we will denote by R both the involution R : (z1,x2) — (21, —z2) and the linear

matrix
1 0
R = < 0 —1 )

Abusing of the language, we are writing in the same way (z) and Rz. Moreover, from the
definition of R, it follows that the manifold Fix fR is just the symmetry line {z9 = 0}.

Now, we list some basic properties of reversible systems that we will use during this
chapter. Its proof is omitted since it consists on straightforward computations.

Lemma 4.1 Let ¥(z,t) be a diffeomorphism satisfying that 97{‘11(5%:1;, —t) = U(x,1), with R
a linear involution. Let F' be an R-reversible vector field, that is, satisfying RF(Rz, —t) =
—F(x,t). Then, the following assertions hold:

(i) The transformation y = ¥(x,t) preserves the i%—revgrsz’bﬂity, that is, y = (V*F)(y,t)
is also R-reversible. If a diffeomorphism U satisfies RY( Rz, —t) = V(z,t) we will call
1t R-symmetric.

(13) If U is R-symmetric then U is also R-symmetric.

(131) DV is E)Nﬁi—symmetrz'c and DF is i)N%—reversible, where D denotes the differential with
respect to x.

(iv) The Lie bracket [U, F] (with respect to the spatial variable z) is R-reversible, that is,

R [V, F| (Rz,—t) = — ¥, F] (z, ).

(v) With respect to the time variable t it follows that 0,¥(x,1) is R-reversible. In a similar
way, one has that [ F(z,t)dt is R-symmetric.

Theorem 4.2 (Normal Form Theorem) The following properties are satisfied for the R-
reversible system (4.2):

(i) There exists a hyperbolic 2me-periodic orbit v,(t/e) close to the origin, with
Y(0) = pe 1 P(0,0) + O(ue?*?),
where P = (Py, P3) satisfies that

(4.4) 9P(z,0) = G(z,0)  and /0 " Pe.0)do = 0.

Moreover, 7, is R-symmetric, that is

(4-5) s)L{’_)’;D(_H) = ’_Yp(e)-



104 On normal forms and splitting of separatrices in reversible systems

(1) There exists a change of variables

with
V((,0) = U(C,0,p,6) = TO(Q) + pet TN ((,0),
where { = ((1,¢2) and 0 = t/e, leading system (4.2) into the normal form

{él = F'((¢Z-¢)/2,m¢) &
62 = FI((CIZ_CZQ)/2’/'L78) Cla

where F'(I) denotes derivative with respect to I. This transformation (4.6) satisfies the
following properties:

(4.7)

(a) ¥(C,0) is 2m-periodic and analytic in 6.

(b) With respect to ¢, U((,0) is analytic on a region D, which contains the ball
{¢=(¢1,¢) € C*: |¢;| < R.} and a strip of width R. along the stable invari-
ant manifold of system (4.7), crossing the symmetry line {(2 = 0} up to a point
p whose distance to this line is much bigger than 2we. The value R, is a positive
number independent of u, €

(¢) the transformation x = ¥((,0) is R-symmetric, that is, it verifies RV (R, —0) =
U((,0). In particular, this implies that it preserves R-reversibility.

(d) The function F verifies that
F(I,p,e) = X[+ O(I%), F'(I,p,e) =X+ 0(I), X=X+ O(ue*?).

Moreover, the change of variables z = \I'(O)(C) is R-symmetric and leads system (4.1)
into its normal form

(48) { G o= (FOY (3 -)/2) G

G = (FOY((¢E-¢)/2) ¢,
where FO(T) = AT + O(I?).
The main consequences of this theorem can be summarized as follows

(z) It determines a region of convergence for the normal form which is independent of u,
€. More precisely, this domain of convergence can be considered as Dr, = Br, U Vg,

where

(4.9) Br. ={(=((1,0) €C : |IC] < R.}

and

(4.10) Vi, ={¢=(1,¢) € C ¢ [[KII < Run, d(¢,{¢1 = G}) < R},

where ||¢[|* = |¢1]? + |G/
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(i4) The periodic orbit 7, and the normalizing transformation ¥ are O(ue?*!)-close to those
for the unperturbed system, 0 and (%), respectively.

(44i) The system in normal form for the full system (4.2), given by (4.7) is O(ueP*?)-close to
the corresponding one (4.8) for the unperturbed system. Besides, their characteristic
exponents A\ and \g are also O(uePt?)-close. This extra ¢ is due to hypothesis that
G = (g1, 92) has zero mean.

We will use the fact that system (4.7) can be explicitly solved, to obtain good parameter-
izations for the invariant manifolds associated to system (4.2). As it standard, the idea will
be to construct them for the normalized (-variables and to transport them to the z-variables
using the change of variables (4.6). The following corollary (analogously to the one given
at [24]) details this construction.

Corollary 4.1 (Local invariant manifolds) There exist parameterizations, x°(t,s) and
z%(t,s), of the stable and unstable invariant manifolds associated to system (4.2), defined
in the regions

D? = {(t,s) eRxC : t+Rs>-T1},
D* = {(t,s) eRxC : t+Rs < -Tp},

where Ty, Ty are positive constants independent of i, €. In these domains, the parameteriza-
tions x%(t,s) and z°(t,s) satisfy the following properties:

(1) Fized s, the function x“(t,s) is a solution of system (4.2). With respect to s, we have
that s — z%(t,s) is a real analytic function. The same properties hold for xz°(t,s).
Moreover, due to the R-reversibility of system (4.2), they can be chosen to satisfy the
relations

Rz¥(—t,—s) = z°(t, s), Rz’ (—t,—s) = z"(t, s).
(12) They verify that
2°(t + 2me, s) = x°(t, s + 2me), z%(t + 27e, ) = z"(t, s + 27e).

Therefore, the local stable and unstable invariant curves of the Poincaré map associated
to system (4.2) are just given by

Cioe = {z°(27n¢, 8) }en > Cloe = {2"(2mne, )} en s
respectively, in their domains of convergence D® and D.

(i43) The parameterizations £*(t,s), z°(t,s) coincide with the homoclinic solution z( (¢t + s)
for u = 0. Precisely, one has that

2 (t,s) = zOt+s)+ puePP (x(o) (t+ s), t/&t) + O(uePt?), t+Rs < -Tp
2(ts) = 3O +s)+ue P (sO+5),t/e) + Oue?™), ¢4+ Rs > -y,

where P is given at (4.4).
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(tv) For values (t,s) € D* we have the following asymptotic formula
(4.11) 2 (t,s) = p(t/e) + 2Ot + 5) + O(uePT M) 4 O(ueP2e!+9),
and for (t,s) € D?,

(412)  2*(t,s) = (t/e) + 2O (t + 5) + O(ue? e M) 4 O(ueP e ().

Remark 15 It is important to stress that the parameterizations z*(t,s) and z“(t,s) of the
stable and unstable manifolds, respectively, are not uniquely determined. In fact, as it was also
noticed in [24], any transformation s = S + $(S) with ¢ 2ne-periodic and of size O(uePt!),
provides new parameterizations z°(t, S) and T%(t,S) of the invariant manifolds. This change
produces a shift in their domain of analyticity and preserves the same properties. We will
use this freedom later, when introducing a suitable splitting function.

The domain where we are considering the parameterization of the unstable local manifold
W (7p) is essentially the image by ¥ of an closed ball around the equilibrium point ¢ = 0.
Therefore, it becomes an closed set around the periodic orbit 7, in the original variables
(z,0), that we can consider as {(z,0) € Cx R : |z —,(0)| <7}, with r, independent of
i, €. On the other hand, from the Normal Form Theorem, it follows that the domain where
the parameterization of the stable manifold W#(y,) has been defined, is a region evolving
along the unperturbed separatrix z(©) (u). This region U has an strip of width independent
of p, €, reaches and crosses the symmetry line {z2 = 0} and contains, beyond this line, a
rectangle R of length much bigger than 27e.

One important consequence of Theorem 4.2 and, precisely, from its normal form sys-
tem (4.7), is that it can be solved explicitly. In particular, defining new variables (S, F)
as

—log G—C 2 _ 42
(4.13) S = F,(C(12242§>)’ E=F (C1 . C2>

and composing it with the change ¥ provided by Theorem 4.2, we will have on the region
U\ WE. (7p) a flow-box coordinates system. Precisely,

Corollary 4.2 (Flow-Box Theorem) There exists a change of variables
(4.14) (S,E,0) = (5(z,0),£(2,0),0), (S, E,0) €V,

analytic in z, 6 and 2m-periodic in 6, defined on U \ WL (), leading system (4.2) into the
flow-box form

S=1, E=0.
Moreover, the following properties are satisfied:

() S(z,0) and E(z,0) are O(uePt)-close to SO (z) and £O)(z), respectively, the cor-
responding change (S©, E(©) = (8O)(z),£0) (z) = hO(z)) for the unperturbed sys-
tem (4.1).
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(ii) Denoting by (z,0) = (x(S, E,0),0) the inverse change of (4.14), we have
X(8, E,0) = x'V(S, B) + O(ue"™),
being = = x\9(S, E) the inverse change of (S, E) = (SO (), £ (z)).
(731) Along the stable manifold x*(t,s) we have

(4.15) S (z°(t, s),t/e) =t +s, & (z%(t,s),t/e) = 0.

Up to this moment we have proved the existence of flow-boz coordinates on the domain
U\ WE.(vp), defined along the stable manifold W#(vy,) and, in particular, on the rectangle
R defined above. The idea now is to extend the parameterization z"(t,s) of the unstable
local invariant manifold W (7,), defined on {(z,0) € C xR : ||z —,(8)|| < r+}, up to the
symmetry line. In this way, we would have defined on the rectangle R, both parameterizations
and a flow-box coordinates system: a good place to measure the splitting between both
manifolds. Unfortunately, the parameterization z%(t, s) is O(ueP™!)-close to the unperturbed
separatrix z(°) and this has, on its turn, singularities in the complex field placed at u = +ai.
This fact can difficult the control of the growth of this parameterization and a bit more
technical extension is needed. This result is provided by the following Extension Theorem,
which is an slightly adapted version of the one given by Delshams and Seara at [24]. Like
there, it is proved for general solutions of system (4.2).

Theorem 4.3 (Extension Theorem) Let 29 (¢t + s) be the separatriz of the unperturbed
system (4.1) and x(t,s) a family of solutions of system (4.2), satisfying the initial condition

(4.16) x(to,s) — & (tg + 5) — pe? ' P (iv(o) (to + 8),150/6) = O(ueP*?),

where P has been defined at (4.4), s € C, |Ss| < a —¢ and tg + Rs = —T. Then, if
v=p—4£>—1it follows that z(t,s) is defined on the domain

DY :={(t,s) e RxC : |Ss|<a—¢, —-T<t+Rs<O0}.
Moreover, in such domain, x(t,s) satisfies that
(4.17) z(t,s) — 2Ot + 5) = O(ue’*Y).
Remark 16 The main feature of this Extension Theorem is that it provides an extension of
the family of solutions x(t,s) in a complez strip (up to a distance ¢ of |Su| = a). The final
estimate (4.17) shows the price one has to pay in the distance to the unperturbed homoclinic.

With respect to the extension on the reals, there is no loss of accuracy. Indeed, if T is fized
and s € R, the real extended solution satisfies

o(t,8) — 2Ot + ) = ueP™P (x<0> (t+ s), t/&:) + O(uelt?),

which is of the same order as the initial condition (4.16).
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From Corollary 4.1 it follows that the parameterization z*(t, s) of the unstable local invariant
manifold W (v,) satisfies the condition (4.16) for to = —Tp — Rs. Applying to z%(¢,s) the
Extension Theorem, we obtain that it can be extended up to reach, for t + Rs = 0 the
symmetry line {x9 = 0}. Thus, since —Ty < —T) we have for —T1 < ¢+ Rs < 0 that both
parameterizations xz°(t,s) and z"(t,s) stay at the rectangle R, a region where the flow-box
coordinates are also defined. This implies that we can evaluate over z"(t,s) the flow-box

functions, giving rise to the following functions
(4.18) S%(s) := S (z"(t,s),t/e) — 1, E%(s) :==E (z"(t,9),t/e),

for -T7 < t+ Rs < 0 and |Fs| < a — e. From Corollary 4.2 it follows that S(z,t/e) —t
and &(z,t/e) are local first integrals of system (4.2) and, consequently, S* and &* do not
depend on ¢. Moreover, from the properties (i) and (i7) of Corollary 4.1, it is derived their
analyticity on |Qs| < a — ¢ and 27we-periodicity in s. Next proposition asserts that £%(s) can
be well-approximated by the Melnikov function.

Proposition 4.1 The functions S*(s) and E"(s) defined above, satisfy the following bounds,
provided y =p— (£ —1r) > 0:

(¢) For s € C such that |Ss| < a — e, we have that

E%(s) = peP M (s,e) + O (uspu57_r_e,uep+l> .

2me

1
(i1) For s € R and defining E} = Ime E%(s)ds, it follows that
e Jo

E%(s) — & = pePM(s,e) + O (ue”uﬁ‘“{ue”“) e"/e,

(791) For s € R, S = 8"(s) is real analytic and invertible, and its inverse s = s*(S) satisfies
that s*(S) — S is O(ueP™) and 2me-periodic in S.

Some properties and symmetries of system (4.2) have a counterpart in its corresponding
Melnikov function. In particular, we have the following result, where two of them are listed.

Lemma 4.2 The Melnikov function associated to the R-reversible system (4.2),

+o00
Mise) = [ Leh® @O b+ t/e)dt = [

—0o0 —00

+o0o

(Vh<°> (Ot - 3))) TGO (- s),t/e) dt

is odd and 2mwe-periodic in s, that is,
M(—s,e) = —M(s,¢), M(s + 2me,e) = M (s,¢).
In particular, since M is odd, it follows that M(0,e) = 0.

Proof. We start proving that it is odd. First, we will prove the following assertions:
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(a) The matrices R and J 1, that is, RJ = —J R, where
01
=(10)

L0 > is the matriz associated to the linear reversing involution R :

and R = ( 0 1
(z1,22) —> (z1, —22).

(b) We have also that (Vh(o) (%w))T = (Vh(o) (x))TER

Indeed, (a) is straightforward to check. Concerning (b), since our system & = JVA(O)(z)
is M-reversible, it turn out that | JVA®) (R z) = —JVA(O(z) and, in particular, that

VhO®z) = —J ' RIVAO (z).
Therefore, using that RJ = —J R, we get

and, consequently, (Vh(o) (Rx)) = (Vh(o) (ac))T R.

Having in mind these assertions, we have

M(=s,¢) = / T Leh® @O (¢ sy dt

-0

+00 T
/ (Vh<°> (Ot — s))) GO — s),t/¢) dt.

-0

Changing ¢ — —t and using that z(%)(—t — s) = R z(0 (¢ + 5) (since it is a solution of the
R-reversible system (4.1)), the latter expression is equivalent to

(4.19) /+oo (Vh(o) RO (¢ + s))) ! GRzO(t + ), —t/e) dt.

Since G is R-reversible it derives that
GRzO(t +5),—t/e) = RGOt + ), t/e).

Moreover, from (b), we have that
T T
(Vh<0> %zt + s))) = (Vh(o) (2Ot + s))) R,

Hence, applying these properties onto expression (4.19) this becomes
+00 T
- / (Vh(o) (zO(t + s))) R2G (2O (t + s),t/e) dt = —M (s, ¢).
—0oQ

The 2me-periodicity in s of M (s, €) comes directly from performing the change ¢ — t+27e
on the integral defining M and using that G(z, ) is 2r-periodic in 6.
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a

Coming back to the flow-box variables (S, E), we recall that for the stable parameteriza-
tion z°(t, s) they admit the following simple expression

(S,E) =(t+s,0)
while, for the unstable one z"(t, s), they satisfied
(S, E) = (t+ S8“(s),E"(s)),

as defined in (4.18). This means, in particular, that the stable and unstable curves of the
Poincaré map associated to system (4.2) are given by

C* = {(S,E) = (2mne + 5,0)},,cn

and

C" ={(S,E) = (2rne + 8%(5),£"(5)) }nen »

respectively. Notice that in (S, E')-coordinates, C* has the equation E = 0. Thus, it is natural
to introduce the so-called splitting function 1, defined implicitly by

P(2mne + 8¥(s)) = £%(s)
or, simply,

(4.20) P(8%(s)) = £%(s),

if we take into account the 2me-periodicity of the functions S¥(s) — s and £%(s). This function
will allow us to study the evolution of the unstable curve C* with respect to the stable C*
(given by E = 0). To do it, it will be useful to get an equivalent explicit definition for ¢). The
idea is to rewrite formula (4.20) in terms of the S-variable. Indeed, from Proposition 4.1(%i3),
we know that S = §%(s) is invertible for any s € R and satisfies that its inverse s = s%(S) =
S + O(ueP™!) is analytic and 2me-periodic in S. Therefore, 1) admits the following explicit
definition

(4.21) $(5) = E(s*(5))-

This implies that we need to rewrite our parameterizations z°(t, s) and z*%(¢, s) in terms of the
new parameter S. From Remark 15, we know that any change of the form s = S+ ¢(.5), with
¢ analytic and 2me-periodic in S and of size O(uePT?!), provides new parameterizations for
the stable and unstable invariant manifolds. Since in our case, these properties are satisfied
by the change s = s%(S) = S + O(ueP™!) (see Proposition 4.1(iii)), we can consider the new
parameterizations

FU(t, 8) = 2(t, s4(S))

for the unstable invariant manifold and, using that S(z*(t, s),t/e) =t + s,

z%(t,S) = 2°(t, S)
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for the stable one. Therefore, having in mind that £(z°(¢, S),t/e) = £(Z°(¢, s),t/e) = 0, the
splitting function 1 admits the following equivalent expressions

P(S) = E(z"(t,s"(9)),t/e) =
E(z"(t,5"(9)),t/e) — E(z°(¢,5),t/e) =
E(@"(t,5),t/e) — E(Z°(¢,9),t/e) =
(4.22) E@E (t,S),/e).

H

Let us prove that ¢ measures the splitting. It is done in the following proposition. The proof
of Theorem 4.1 follows readily from it.

Proposition 4.2 The splitting function ¥ is analytic and 2mwe-periodic. Moreover it satisfies
the following properties:

(i) There exists a homoclinic point z" = z*(0,0) = z°(0,0) belonging to the symmetry line
Fiz R, with §*(0) = 0. Therefore, ¥ (h,) = 0 for hy, = 27wne, n € N and, moreover, we
have that

oz or’

o
8S(Oh) 6,5'(

oz" oz’
o8

0: )| || 55 ¢

P (hn) = 0,hy) = ‘ 0, hy) || sin o,

where u A\ v denotes the exterior product of the vectors u and v, an = a(0, hy,) is the
angle between z"(0,2mne) = T%(0, hy) and 2°(0, hy,). Furthermore, the value of ' (hy)
is independent of n.

(17) For S € R, the function v satisfies that

P(S) = peP M (S, €) + O(u2e2P=0 ety e=a/e,
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83 Proofs of Theorems, Corollaries and Propositions used in
the proof of the Main Theorem

§3.1 Proof of the Normal Form Theorem

This section is devoted to the proof of the Normal Form Theorem 4.2 and it has been divided
in several parts:

(1) Before starting with the normalization, we perform onto system (4.2) two steps of
averaging. Since the perturbation vector field G is assumed to have zero mean, this will
allow us to increase the order of the perturbation. This is not basic, but it is useful if we
are interested on sharp lower bounds for the parameter p, the order of the perturbation.

(1) Here we start the standard process of normalizing a system dealing, in principle, with
the linear normal form: we will prove the existence of a symmetric hyperbolic periodic
orbit, close to the origin, for the perturbed system; we will consider a reference system
around this periodic orbit and will apply reversible Floquet Theory.

(731) Having in mind the results presented in Chapter 3, we will obtain a non-linear Birkhoff
normal form (BNF in short) for our system. Since BNF is reversible with respect to
the involution R’ : (21, x2) — (z2, 1), before applying this theorem we will perform a
linear transformation {2 leading our 9-reversible system to another equivalent system
reversible with respect to R’

(iv) Following the ideas given by Da Silva, Ozorio and Douady [21] and Ozorio and Vieira [46],
we will extend the normalizing transformation provided by the Theorem above to a re-
gion, which contains a ball around the origin and evolves along the separatrix of the
unperturbed system up to a suitable point.

(v) Finally, we will perform the change of variables ! in order to have the normal form
system PR-reversible.

Let us deal with the details. First of all, to simplify the notation, we perform the change
of time 6 = t/¢ in system (4.2), which becomes

(4.23) . = exo+ pePtlg(x,0)
' zy = ef(x1) + pePtrga(x,0)

provided we denote ' = d/d#.

§3.1.1 Averaging the initial system

Lemma 4.3 There exists a change of variables

(4.24) z =1(%,0, p,€) = T + peP " P(z,0) + O(ueh*?),
with I satisfying

(4.25) RI(RZ, 0, u,€) = IL(%, 0, u, ),
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(that is, R-symmetric) analytic in T, 2mw-periodic and analytic in 0, leading system
(4.26) z' = eJVhO (2) + peP 1 G(z, 0, u, €)

into system

(4.27) 7' = eJVRO(Z) + peP3G(z,0, u, €)

where G is analytic in T, 2w-periodic and analytic in 6.

Proof. The idea is to apply two steps of averaging onto system (4.26). Precisely, performing
a change of the form (4.24),

T = H(ja 07”5 E) =+ M€p+1p(i', 9) =+ O(/j,gp+2) —
T + pePt P(z,0) + peP?P(z,0) + O(ueP™3)

onto (4.26) it follows

eJVRO (:E + pePtP + us’”‘zf’) + puePti@ (:E + pePtP + pePt2p, 9) =

4.28 - - - -
(4.28) z' + pePt! (81P:E'1 + 6, P 7l + 89P) + pePt? (81P T + 0. PThH + agp) ,

where 01, 0> and 9y denote differential with respect to the variables Z1, Zo and 6, respectively.
After some standard computations, the left-hand side of (4.28) can be expressed as

eJVRO(Z) + puePt'G(z, 0) + pePT2D (JVh(°)> (z) P(z,0) +
12 2Pt DG (z,0) P(z,0) + O(ueP™3).
In a similar way, the right-hand side of equation (4.28) becomes
(4.29) 7'+ pePt oy P(z,0) + pe”t? (alp(@, 0)zh + 5P (z,0) f(z1) + 0y P(z, 9)) +
p2e2PH) (9, P(x,0) g1(z,0) + 82P(z,0) g2(, 0)) + O(ueP+3).
Joining expressions (4.29) and (4.29) together, it follows
7' = eJVRO(Z) + peP*! (G(z,0) — 0y P(%,0)) +
1P+ (D (JVh<°>) () P(z,0) — 0\ P(%,0) &2 — 0, P(z,0) f(71) — Pz, 9)) +
p2e?PtY) (DG(z,0) P(z,0) — 8.P(Z,0) g1(Z,0) — 2 P(%,0) g2(%,0))
which is equivalent to

7' = eJVRO(Z) + pueP™ (G(z,0) — 0y P(%,0)) +
peP ([p(gz,o),Jvh(O)(g:«)] _ 3913(5,9)) + 22040 [P(3.0), Gz, 0)] + O(ueP*),

where [L, M| denotes the Lie bracket (with respect to the spatial variables) of the vector
fields L and M.
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To eliminate those terms of order ueP*! and peP*? we ask P, P to satisfy the equations

_ o _ . 2 _ _
(.30 { aep(x,z) = G(Z;,oé with [;" P(z,0)d0 = 0 _

0oP(z,0) = [P(z,9),VhO)(z)]
Once this is done, the previous equation reads
' = eJVAO (z) + p22PT) [P(z,0), G(z,0)] + O(ueP™?)

s0, in order to prove the lemma, we need to check that p2e2P+tD[P(z,0), G(z,0)] is, in fact,
O(uePt3). With regard to £ = max {/1, 45} we can distinguish two cases:

(a) If £ > 1: using y > p—£ > 0 it follows that p > ¢ > 1, so then O(u2e2@+1)) = O(ueP*?)
and p?e?PH[P(z,0),G(2,0)] = O(ueP*?).

(b) If £ = 0: by definition of ¢, this implies that /1 = o = 0. We are then in the
case where G(z,0) = (g1(0), 92(0)). From equations (4.30) it is derived that P(z,0) =

(1(8),2(6)) and, therefore, [®(1), G] vanishes. Consequently, u2e>®+V[P(z,0), G(z,0)] =
O(pePt3) also in this case.

We have to check that change of variables (4.24), with P, P defined from (4.30) are -
symmetric, but this follows straightforwardly from applying Lemma 4.1.
a

Remark 17 It could seem useful to continue with this averaging process. However, notice
that the resulting vector field G does not have zero mean, so a new averaging step would
change the integrable system and, therefore, their separatrices.

§3.1.2 The linear normal form

Recall that the unperturbed system z’' = eJVh°(z) has a hyperbolic fixed point at the origin.
Then, it is well known that for ueP*? small enough the full system (4.27)

7' = eJVRO(Z) + peP 3G (Z, 0, 1, €)
has a 2m-periodic hyperbolic orbit close to the origin. Precisely,

Lemma 4.4 System (4.27) has a hyperbolic 2m-periodic orbit 3,(6) = (71(0),72(0)) which is
O(ueP*?). Moreover, it verifies that R7,(—0) = ¥,(0), so {7 (0) }gerp is an R-symmetric set.

Proof. As it is standard, we consider the Poincaré map associated to the 2w-periodic sys-
tem (4.27), having in our case a hyperbolic fixed point at the origin. If pePt? small, it is
known that the Poincaré map of the full system has another hyperbolic fixed point which is
O(pePt?). Since the Poincaré map of a fR-reversible system is also reversible with respect to
the same 0 R (see, for instance [48)]) it follows that this new fixed point is also a fixed point
of R. Coming back to our system (4.27) it is derived the existence of a hyperbolic periodic
orbit 4,(6) invariant under the action of %R and a reversion of time’s arrow.
O
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From this lemma, it follows that the initial full system (4.2) has an 2R-symmetric 2me-
periodic orbit 7y,(t/€), near the origin, given by

1(8) = (1(0),72(8)) = pue? ™ P(0,6) + O(ue’*?),

where 9ypP(z,0) = G(z,0). Following the usual approach, to ease the study of the local
behavior around this R-symmetric periodic orbit 7,, we send it to the origin of coordinates.
It is done by means of the change of variables

y=T1(z,0) :=Z — %,(0).
Notice that this transformation preserves the Pi-reversibility. Indeed,
(431)  RIRz,-0) = R Rz — 3(-0)) = Rz — Ry(-0) = 2 - 7,(~6) = (z,0),

where it has been taking into account that ‘R is an involution and that 7, is R-symmetric.
Performing such a change of variables, system (4.27) becomes

(4.32) y = eJVEO (y) + ue? 3G (y, 0, , e)
which begins with

' = ¢ Y2 >+ €p+3é' ,0,u,6) =
Y ( Fl) p (y,6, p.€)

Y2 p+3é 0 — Y2 O (2 p+3
/\0y1 +O(y%) ) +:U’€ (ya ,,u,e) € ( /\0y1 ) + (yla:ug )

(4.33)

In Chapterl it was showed that BNF was reversible with respect to the linear involution
R : (21, 72) — (T2,71).

Since we are dealing with a similar (that is, equivalent by means of an invertible transfor-
mation) involution PR our first step will consist on performing a linear change of variables
transforming system (4.32) in a system PR'-reversible. The linear normal form will come from
applying Reversible Floquet Theory (see [51], for instance).

Lemma 4.5 The following assertions are satisfied:

(1) The linear change of variables y = Q z, given by
(0) =% 1)
Y2 \/i -1 1
transforms system (4.32) into system

(4.34) 7 = eJVE (2) + peP3G (2,0, u, €)

where 5
02) =2 'hOQ2)Q™,  G(z,0,u,e) = QG 2,0, 4, ).

System (4.34) is now R'-reversible and begins with

20\ 114X —(1-X) 21
(Zé)_g(l_% _(1+Ag))(22)+o<22>.
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(1) There exists a change of variables

z=A(0,p,e)Z,
linear in Z, 2m-periodic and analytic in 0, preserving the R'-reversibility
(4.35) R A(—0,p,e) R = A0, p, e),
with A0, u,e) = Ag + O(uePt?), being
(4.36) Aoch<ij§g i;ig)
cf # 0 a constant, leading system (4.34) into BNF up to order 2:
(4.37) 7' = eJVHO(Z) + pe?*3G(Z,0, pu,¢) = eAZ + O (Z?)
where

(0 5)

and X\ = Mu,€) = Ao + O(ueP*?). In particular, the change z = AyZ leads the unper-
turbed system z' = eJVk((z) into BNF up to order 2:

Z'=eMNZ +0 (2%,
(X O
AO_( 0 —>\0>'

(1) First, recall that our system (4.32) is R-reversible so this implies that
KO®Ry) = 1Oy) = RVAO(Ry) = VaO (y),

being

Proof.

4.38 “ ¢
( ) G(yagaﬂ,s) = _mG(%ya —9,[1,8)-
Now, let us consider the linear transformation y = Qz, where
1 11
am ol 11)
is a rotation of angle w/4. This change of variables satisfies that
(4.40) R =0"'R"0, Q=J0eJ0'=0"1)  detQ=1.

Applying the transformation y = Qz onto system (4.32) and using properties (4.40) the
new system becomes

(4.41) 2 = eJQ VRO (Q2) 4+ peP 3G (2,0, u,€),
where
(4.42) G(2,0,1,6) == Q' G(Qz,0, ,¢).

We need now to verify that the new system (4.41) is RR'-reversible. To see it is enough
to check that the following identities are satisfied
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(a) R (JQ'VRO(QR 2)) = —JQ VRO (Q2).
(b) R é(SRI Z, _Hauag) = _G’(Zaeauae)'

Indeed,

(a) Using properties (4.38) and (4.40) and the fact that 2’ JR' = —J it follows that
o’ (JQ—1Vh<0>(Q il z)) Y (JQ—1Vh<°> (mﬂz)) -
Dl (JQ_li)‘th(O)(Qz)) = (R JR) VRO (Q2) = —J VA0 (Q2).

(b) Analogously, using the same properties and the fact that 82 = id, it turns out
that

R GR z,—0) =R GR 2, -0, pu,e) =R Q 1G(sm'z —9) =
RO IGOQR O Ly, —0) = R QLG (Ry, —0) = ) Ye y,9)> —
RO IREG(Q2,0) = —QIR2G(Q2,0) = —Q 1G(Qz 0) = —G(z,0).

(13) It follows directly from applying reversible Floquet Theory to system (4.34), where this
change of variables can be chosen to preserve the PR'-reversibility. In the case of the
unperturbed transformation z = AygZ this implies that R’ AgR' = Ay.

§3.1.3 The non-linear normal form

Applying now the results presented in Chapter 3, we have that system (4.37) can be led
into (non linear) BNF in a neighborhood of Z = 0 by means of a convergent transformation.
Moreover, this transformation preserves the $R'-reversibility and its radius of convergence
does not depend on u, €. Precisely, we have the following result.

Proposition 4.3 (BNF-Theorem) There ezxists a change of variables
Z = (¢, 0,,¢) = DO (€) + pue? 2N (¢, 0, p )

analytic for € € ’D » with Ry > 0 and

(4.43) Dr, = {¢= (&) eC: gl < Ro, j=1,2],
27w-periodic and analytic in 0, satisfying

(444) ml (I)(ERI 57 _9) = ‘I’(f, 9)7
(that is, preserving R -reversibility), leading system (4.37) into BNF

(4.45) £=N(& p,e) = NO©E) + peP 2N (€ s e),
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1a(&162, py€) ) ( A0 ) ( 31 ) 2
N(& p,e) = = + O(&%).
SRR ( —&aa(&162, 1, €) 0 =X &2 (&)
It is important to stress the fact that the radius of convergence of :}5, that is ﬁo, does not

depend on u, €. Moreover, the transformation Z = ) Jeads the unperturbed system 7' =
eJVHO) (Z) into its BNF

() PP 5m®@&md>_<% 0)(&)
5‘N0“”‘(—@a@@¢%ma =0 —xn )& ) T0@

and 1s also convergent for € Dy, - Defining FO(I) = aO(1), FO(I, pu,e) = aV(I, u,e€)
and F(I,p,e) = a(l, pu,€), we can rewrite equation (4.45) as

(4.46) & = F'(&1&2, 1y€)E1, o = —F'(&160, 1, €) o,

where F'(I, pu,€) means derivative with respect to I. Moreover, it follows that

where

F(I,p,e) = FOT) + peP > FO(T, p, e)
with F(I,p,e) = M + O(I?) and A = g + O(uePt?).

Remark 18 As it was noticed in Chapter 1, this result implies that, in a neighborhood of
a symmetric hyperbolic periodic orbit, the Hamiltonian and reversible behaviors coincide. In
particular, locally around Z = 0, our system is Hamiltonian with Hamilton function e H where

H(,0,u,6) = F(&1&2, p,€) = FO(£16) + pePT2FD (€169, p, ).

§3.1.4 The extended normal form
From the results of Da Silva, Ozorio and Douady [21] and Ozorio and Vieira [46], we have

Proposition 4.4 (Extended BNF)) There exists a transformation Z = ®((, 0, u,€), with
®(¢, 0, 1 8) = OV (Q) + peP 8N (C, 0, 1, )

analytic in (, 2m-periodic and analytic in 6, preserving R -reversibility, leading system (4.37)
into BNF system (4.46).

This transformation is defined on a domain D* which evolves along the stable invariant
manifold W* associated to system (4.46) and crosses the symmetry line {(1 = (2} up to a
point p which is at a distance bigger than € from this line. This region D* contains an strip
of width w = O(1), containing W?, which is independent of u, €. Moreover, the origin belongs
to D* and in the regions where both ® and o (provided by the BNF-Theorem) are defined,
they coincide.

The transformation Z = ®©) (¢) corresponds to the extended normalizing transformation
of the unperturbed system.

Proof.
The proof follows essentially from the papers [21, 46]. The difference with respect to
the treatment given there is that they perform an infinite construction for the extended
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normalizing transformation ®. Such a scheme allows them to reach (with an exponentially

decay of the strip width) the homoclinic point and apply it for numerical purposes. In our

case this is easier since we are just interested on crossing (an a bit more) the symmetry line.

As a consequence, our extended normal form will be formed by a finite number of functions.
From Proposition 4.3 we know the existence of an analytic transformation

(4.47) 7 = ®(¢,0,p,) = 3O(¢) + peP 22N (¢, 0, 1, )
leading system (4.37) into the BNF

o= Fl(Glme)
(4.48) {C2 = —F'(C1l2, py€) G2

This transformation is convergent in a domain ’D—§0 given by (4.43). System (4.48) can
be solved directly and, therefore, the following explicit expression can be derived for its
associated map flow at time t
(%) = n(ch, 6§) = (et (1), ot (R 1))

with 19(¢°) = ¢°. This map v is O(ueP*?)-close to the map Z/t(O), the map flow at time t cor-
responding to unperturbed BNF. It is known (see, for instance [48]) that the map flow at time
t associated to a time-reversible system is symmetric with respect to the same spatial invo-
lution. In our case, this means that the map v; : (° — v4(¢?) preserves the SR'-reversibility,
where we recall that R’ : (¢1, () — (C2,1).

Let v, be flow at time ¢ associated to the initial system (4.37). Since this system was
R'-reversible it turns out that v : 2 — 94(2) is a R'-symmetric transformation. Then, we
define the following vector fields

0 .- 3
(4.49) @ =@ ~
olm) = P_moPouyy, m>1
where ® is the normalizing transformation (4.47) provided by Proposition 4.3. Since B, v,
and 1), preserve 9R'-reversibility, it follows that ®(™) is also $'-reversible preserving. From
definition (4.49) is clear that

3™ = yp_1 0 ®m D oy, m > 1
and that ®(™) is analytic on D(™) := v_,, (Dﬁo)' Moreover, since the origin is fixed by v
it turns out that it belongs to D(™), for any m > 1. These sets D(™) become thinner and
thinner deformations (hyperbolae-like) of the initial domain D o and evolve along the stable
invariant manifold W?* of the origin in system (4.48).
Let N > 1 be a number satisfying that D) has crossed the symmetry line {¢; = (2} and
contains a rectangle of length bigger than e starting at the line and going forwards. Notice

that this number N depends on Ay and Ry but is independent of y and e.
Hence, following [21], we consider the (finite) eztended normal form transformation

N
o= | J o™,
m=0
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defined on the region

D* = D(m),

1 C=

0

By construction, ®* is analytic on D* and preserves 9'-reversibility. Moreover, it is well
defined and constitutes an extension of the normalizing transformation @ provided by the
BNF-Theorem (4.3). Indeed, since ® transforms system (4.37) into (4.48) it conjugates
(analytically) their associated flows 1; and v, that is, & 'oy 0o® = v and, therefore,
PproPov_; =& Vi Thus, having this property into account, it follows, for any 7 > m >0
and in any region where both &), &™) converge, that

80 =¢_jodov; =1y (%’—m 0o ’/—(j—m)) ovj =
Y_jtj—m © do Um—j4j = P—m © do U = ®M).

The BNF-flow v4(¢?,(8) evolves following the hyperbolae (1 (o = ¢V¢Y so, the width of the
domains D(™) decreases with an approximative ratio

oM () — o~m(FO) () 4 O(ueP*?).

Therefore, for m = N the width of the last set DY) is close to e*N(F(O))’(ﬁg)Eo.

Remark 19 The main consequence of this Proposition is that we can extend our normal
form up to a region which contains a rectangle of length bigger than 2we and width of order
O(1), starting from the symmetry line and going forwards. This will be the region where we
will measure the size of the splitting of the separatrices.

§3.1.5 The R-reversible normal form

In order to recover again the initial S3-reversibility we perform the linear change ¢ = Q!¢
where the matrix Q has been defined at (4.39). Applying it onto system (4.46) we obtain the
system

&
4. )
(450 { &

F ((¢2-¢2)/2) ¢
F(G-3)/2) ¢’

where the vector field F is the one provided by the BNF-Proposition (4.3). Composing all
the transformations performed along these sections, we obtain the following expression for
the transformation leading system (4.2) into system (4.50):

where

(4.51) (¢, 0) =TI (3,(0) + QA0) 2(Q 1 ¢,0) , 0).
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Let us check that it verifies R U (R (, —0) = ¥((, d). Therefore, this implies that it preserves
the R-reversibility. Indeed, from properties (4.40) and (4.44) it follows that

B(QIRCE, —0) = (RO, —0) = R (071, 0).

On the other hand, from (4.35) one has that R’ A(6)R' = A(—0), and from (4.25) it is derived
that
RII(Rz, -0, p,e) =1(z,0,p,¢).

Thus, having in mind all these identities, it follows that
RU(RC,—0) = RIT (5,(—0) + QA(-0) (Q R, —0) , —0) =
RII (R7,(0) + QR AO) R R (Q1¢,0), —0) =
RIT (R (7,(0) + QAD) @(Q7'¢,0) , —0) =
I (7,(6) + QL A(6) 2(2'¢,6) , 6) = ¥(¢,0),

where it has been also used that 7,(—0) = R¥,(0), that QR = RQ and R?> = id. In
particular, from expression (4.51) and the fact that

¥(0) = O(ue?*?),  A(0) = Ao+ O(ue?*?),® = ) 4+ O(ue”*?),
it turns out that
(4.52) (¢,0) = WO ) + e L (W0(C),0) + O(ue?*?),
where z = U(0)(¢) leads system (4.1) into the normal form

{ G o= (FOY(CE-D)/2) &
G o= (FOY(E-@)/2) G,

is MR-symmetric and satisfies that

(4.53) TO(¢) =249 80(Q71¢) = QA2 ¢+ O(¢D).

§3.2 Proof of the Local parameterization Corollary

From the normalized system (4.7) it is clear that

LG =F (G- G+a), S G-G)=-F(@-3)1/2) G-6).

Therefore, it follows that

G+ G) @) = (Q+¢9) G2 (¢ =) () = (¢ — ¢§) e " (E=65)/2)

where (¥ and (9 are positive constants. Since F'(I) = A + O(I) with A > 0, and taking
¢V >0, ¢ = -, we get that ¢1(t) = —Ca(t) V¢ > 0 and

&1(t) = (PO = (e,
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Thus, the local stable manifold is given by
() = (¢fe, —¢fe ™) = (1,-1) (fe ¥,

for ¢ > 0. Introducing s + ¢s := —(1/))log ¢?, the following parameterization for the local
stable invariant manifold of system (4.7) is derived

(4.54) C5(t,8) = (1, —1) e Alttstes),

Proceeding in a similar way, one obtains that the local unstable invariant manifold can be
parameterizated by

(4.55) C¥(t,s) = (1,1) eXiFsten)

where s + ¢, := (1/X\)log (). The constants cs and ¢, are arbitrary and will be fixed later.

Since system (4.7) is fR-reversible and the origin is fixed by R, we know that the involution
R transforms its stable and unstable invariant manifolds one in each other plus a reversion
in time. Therefore, it is natural to extend such reversibility to their parameterizations and
ask them to satisfy R(*(—t, —s) = (%(t,s). Imposing it, we obtain that ¢, = —c¢; =: ¢ and
then

(030 )= (o0 e N0) g (A0 009

Once we have parameterizated the local invariant manifolds of system (4.7), a parame-
terization for the corresponding ones of the original system (4.2) can be achieved applying
the transformation ¥ (4.6). Imposing (e *(t+s+¢) —e=A(t+s+¢)) to belong to the extended
normal form domain Dg, = Bg, U Vg, defined by (4.9) and (4.10), one obtains

(4.57) z%(t,s) =¥ (e_A(t+5+c), e Alttste), t/e) , for R(t + s +c¢) > —T11,

where T :=

—(1/(2N)) log(RQh /2). Analogously, for the local unstable invariant manifold we
impose that ( At

t+s—c) eA(t+s— C)) belongs to Br, and get the parameterization
(4.58) 2 (t,5) = U (e’\(t“_c),e)‘(t“_c),t/a) . forR(t+s—c) < T,

for Ty := —(1/(2)X)) log(R3/2). Since ¥ is 2me-periodic in t, it follows straightforwardly that
z*(t + 2me, s) = z°(t, s + 2me), z(t + 2me, s) = z“(t, s + 2me).

Moreover, from the R-reversibility of ¥ and definitions (4.57), (4.58) it follows these param-
eterizations satisfy

R (—t,—s) = 2°(¢, ), Ra’(—t,—s) = z"(t, s).

We know that our system has a homoclinic solution z(%) (u) when we take ;1 = 0. Therefore,
it seems natural that, when we consider the case y = 0, the parameterizations z*(¢,s) and
z%(t, s) give rise to a parameterization of z(?). Indeed, from (4.53) we have that

z=09() = Q4,0 ¢ +0(¢Y),
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where
1 1 1 . 14+X 1—X
Q_\/ﬁ(—l 1) and Ao—Cf<1_>\0 14X )
have been defined at (4.39) and (4.36), respectively. This implies that the parameterization
provided by z°(t, s) and z%(¢, s) in the case y = 0 are

.’IIS’O(t, 3) — (2cfef)\o(t+s+c)’ _2cfAOef/\o(t+s+c)) +0 (efQ/\o(t—}—s—kc))

and
70 (t, S) — (2Cfe)\o(t+sfc), 2conef/\o(t+sfc)) +0 (e2x\o(t+sfc)) .

On the other hand, having in mind that the origin is a hyperbolic point of system (4.1), the
asymptotic approximation of the separatrix z(°¢+5)) around this equilibrium point are given
by

2Ot +5) = (ke)“)(t“), Ao k e’\O(t+5)) +0 (eQ’\O(HS)) ) t+RNs — —o0

and

Ot +s) = (ke_)‘o(t+s), =0 ke_)‘o(t""s)) +0 (e_”‘O(H’s)) , t+ RNs — +oo.

Imposing them to coincide with z%0(¢, s) and z%(¢, s), it yields to 2cpe ¢ = k. Choosing,
for instance, ¢ = 0 it follows that ¢y = k/2.
Coming back to the perturbed system, we know that

B((,0) = 9O + per P (90(), 0) + O(ue*?).
Therefore, taking into account that ¢ = 0, it follows that

2 (t,s) = U (C¥(t, s),t/e) = ©O (e)\(t-f—s)’e)\(t—f—s)) n

pePtip (‘I'(O) (e)‘(t+5),e’\(t+s)) ,t/e) + O(uel™?).

Since A = \g+O(ueP2), we can assume that |A—\g| < 1 and then, restricting ug if necessary,
to obtain that

H (e/\(t-l-s),e)\(t-l—s)) B (e)\o(t-l-s)’e)\o(t—l—s)) H < A= Aglett®e,

for t + s < —Tj and being ¢’ a positive constant depending on Ty. Applying this bound to
the expression of z%(t, s) above it yields to

24(t,s) = 0O (er(t+s),er(t+s)) 4 pePtlp (q,(o) (ef\o(t+8),e>\o(t+5)> ,t/g) 4 O(ueP*?) =
2Ot + 5) + pePtp (x<°> (t+ ), t/e) + O(ueP+2).

Proceeding in a similar way, an equivalent expression for z°(t, s) is derived and, if we take
into account that ¥(0,0) = 7,(0), also can be derived 0 (4.11) and (4.12).
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§3.3 Proof of the Flow-Box Theorem
It is clear that the change

T U, — V=T(U,)CC

(4.59)

(C1:¢) — (S.B) = ;Z’Eg_f)) P (59)

where U, = D, N{¢1 — {2 > 0} and D, defined at (4.9)-(4.10), transforms system (4.7) into
the flow-box equations S =1, E = 0.

Remark 20 This change of variables satisfies that

det DT(gl, CQ) = —

for any ¢ = ((1,¢(2) € Uy, so it preserves measure but reverses orientation. In fact, if we

consider the change
2 _ 2\ —log G—C
(E,S): F<C12§2>’ ( 2 )

()

instead of the change (4.59), we have that this new transformation preserves measure and is
R-symmetric.

Composing now this change T with ¥, the transformation provided by the Normal Form
Theorem, we obtain the transformation (4.14)

(S(z,t/e),E(z,t/e)) = T (¥ Yz,t/e)).

Since F(I) = FO(1) —I— O(u&:’”’z) we have that (S,E) = Y((1,(2) is = O(ueP™2)-close to
(SO, E®) = 1( %O), 5 ) the corresponding flow-box transformation for the unperturbed
case 4 = 0. As a consequence, estimates in (i) are derived. Concerning the inverse of

change (4.14), we consider first

(1]

1% — U,
(S,E) — (C1,62)

defined by
G = 2F‘1(E) eSF'(F—l(E)) + e—SF’(F—l(E)) (o= 2F‘1(E) eSF’(F—l(E)) _ e—SF’(F—l(E))_

7

Composing E with U we obtain x (S, F,t/c) = ¥ (E(S, E), t/¢) which clearly satisfies property
(#7). Finally, we want to compute the value of these flow-box functions § and & onto the
parameterization z°(t, s) of the stable manifold W#(~y,). Indeed, we have

(S (z°(t,s),t/e),E (2°(t, 8),t/e)) =V (\I/_1 (z°(¢, s),t/e)) .

From equation (4.57) we know that

z° (t, S) -0 (ef)\(t+s+c)’ _e*)‘(t+s+0)’t/€>
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so, applying it onto the expression above and using the definition of Y, it yields to

(S (2%(t,5),t/e) , € (2°(t, 8), t/€)) =
V(T (2%(,5), t/e)) = T (e—*<t+s+0>, —e_’\(t+s+c),t/e) = (t+s,0).

Remark 21 During the Normal Form Theorem and this Flow-Box Theorem, the region con-
sidered has evolved along the global stable invariant manifold W*(vy,). However, because of
the reversibility of our system, the same would work if we wanted to define these flow-bozx
around the unstable invariant manifold. In particular, it is straightforward to check that the
transformations

T() = R (R(),
given explicitly by

L log G+l 9 9
(S’ E) — ( ) , F (Cl C? ) ,
F (ﬁ) 2
2
defined for (1 + (2 > 0, leads system (4.50) into the flow-box system
S5—1, FE=o

Composing Y with U1 , we obtain that

( (z,t/¢), &z, t/e)) =T (O Y, t/e))

leads system (4.2) into flow-box coordinates in a region evolving along the unstable invariant
manifold W*(ry,). Moreover, since ¥~ is R-reversible (see Lemma 4.1(i1) ), it turns out that

( (z,t/¢), &z, t/e)) =T (T (z, t/e)) =
—RY (RU(z,t/e)) = —RY (T 'Rz, —t/e)) =
—R(SRz,—-t/e),ERz,—t/e)) = (—RSRz, —t/e), - RERz,—t/e)) .
§3.4 Proof of the Extension Theorem
The proof of this theorem is divided in several subsections and it follows almost exactly the
one given by Delshams and Seara at [24].
§3.4.1 Set up

In order to compare the solution z(t, s) of the full system with the homoclinic orbit (0 (¢ +s),
we introduce the variable

E(t) = &(ty 5) = x(t,s) — 2Ot + ),
with &(t,s) = (&1(t,8),&2(t,s)). Thus, the system of differential equations satisfied by the
new variable £(t, s) is
& = &+ puelg (zO(t + 5) + &, t/e)
b = @O+ +&) = f (@O0 +5)) + pePgs (Ot +5) + &, t/e)
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whose components can be expanded as

& =&+ pePgy (x(o) (t + ), t/a) +
ue (91 (20 +9) +&,1/e) — g1 (a0t +9), /)
and
b=f (2100 +9) &+ (f (200 +9)+6) = f (2100 +9) = ' (21Ot +5)) &) +
ue? (g2 (a0t + ), t/2) + (g2 (st +5) + &, 1/e) — g2 (a0t + ), 8/¢) ) ).

Defining

0 1
(4.60) A(u) := ( e Ow) O)

and

0
(4.61) F(&, u,t/e) = ( f (wl(o)(u) +£1) —f (:E1(O)(’u,)) —f (;[,'1(0) (u)) &1 > +

o 9 (@O(u) + &, t/e) — g1 (=0 (u),t/e) | ( Fi(&,u,t/e) )
"\ e (2O (u) + &, t/e) — g2 (2O (u), /) )\ Fa(& u,t/e)

this system admits the following expression

(4.62) € = A(t + )€ + pePG (w(o) (t+ ), t/e) + F(&, 1+ s,t/e),

where F' depends also on ueP. Therefore, our problem consists on looking for the solution
&(t) of system (4.62) with initial condition

(4.63) £(to) = pueP™LP (:1:(0) (to), to /s) + O(uer+?),

with P defined from equations (4.30). To solve it we proceed in the standard way: we first
seek for a solution of the corresponding homogeneous system

€ _

(4.64) ==

It is clear that £(%)(u) is a solution. Therefore, another independent solution can be obtained
of the form &;(u) = 220 (u) - W (u), & = € := dé /du with

(4.65) W () = /b ’ ﬁzv)y

where b € C is a suitable constant to determine later. Introducing now

() = 20(u) =i (),
Ou) = 2O W)W(u) = T(uw)W(u),
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it is straightforward to check that

is a fundamental matrix of system (4.64), verifying that det M (u) = 1. Consequently, the
fundamental solution ¢(u,o) of (4.64) satisfying that ¢(u,u) = id is given by ¢(u,0) =
M(u)M (o)L, being

'(u) —(u)

Moo = (gt et )

Thus, the solution of the non-homogeneous system (4.62) with initial condition (4.63) can be
written as

t
(4.66) E(t) = &(t) + M(t + s) t M(o +s) tF(&(o),0 + s,0/¢) do,
with

1
£p(t) := M(t + s) (M(to + 5) "¢ (to) + peP t M(o + s)"'G(z (o + 5),0/¢) da) .

Again, as in [24], since G has zero mean, by hypothesis, it follows the existence of P(z,0)
(already introduced at (4.30)), with zero mean, and G(z,0) such that they verify

P =G and  0yG = P.
Thus, defining

(4.67) m(u,0) = M(u)~'G(z O (u),0),

the particular solution &,(¢) admits the equivalent expression

t
&) =M(t+s) (M(to +8) Y¢(to) + pe? | Oam(o +s,0/€) da) .

to
Denoting m' = &m/du and dgm(u,d) = M(u) ' P(z(%)(u),), the identity

2 2

OZm(o +s,0/e) —e?m" (0 + s,0/¢) = % (e0gm(o + s,0/e) — e*m' (0 + s,0/¢))

is derived. Taking it into account, it turns out the following expression for £,(t),
&, (t) = peP 1P (x<°> (t+5), t/e) +

(4.68) M(t + s) (M(to +5)7! (g(to) _ pePtlp (x<°> (to + 3), t /e)) .

t

to
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§3.4.2 Technical lemmas and estimates

The standard procedure to solve equations of type (4.66) consist on performing an itera-
tive scheme starting from the particular solution ,(¢). The convergence of such scheme is
based essentially on the natural assumption that the first iterate {, dominates any other
approximated solution. This hypothesis is usually supported on numerical simulations.

From a practical point of view, to get such convergence we need to control the size of
the vector fields appearing in formula (4.66). Namely, it is important to have a well behaved
fundamental matrix M (u) specially when we evolve close to the singularity of z(% (u). We
know by hypothesis, that :vg(()u) has a pole of order r > 1 at the points u = *ai so, close to
them, it behaves like

(4.69) 25 (u) = i (u) = ﬁ

(14+0(u=Feai)), C#O0.
This fact lead us to consider our problem restricted to the complex strip 0 < |Su| < a.
For simplicity, let us consider first the case 0 < Su < a and leave the case —a < Su < 0
to be discussed later. We will see, in fact, that both situations are analogous. Under this
assumption on the domain, estimate (4.69) reads

C .
(4.70) 25O (u) = 219 (u) = oy (1+0(u—ai)), C#0.
This pole, placed now at u = ai motivates the choice of b, the undetermined constant ap-
pearing at the definition (4.65) of W(u), as b = ai. Thus, W (u) has a zero of multiplicity
2r 4+ 1 at u = ai, 229 (u)W (u) has a zero of multiplicity » + 1 at u = ai and, therefore,

U(u) = ﬁ(l%—O(u—ai))
O(u) = ﬁ(u—ai)”’l(l—l—O(u—ai)).

Consequently, close to the pole u = ai, it follows that

¢ ! (u—ai)™!
O T I F T .

(u—ai)™+t  (2r+1)C

In order to express more precisely this behavior, let us introduce before some notation and
a suitable norm. First, we recall that ¢ is the real time and s is a complex parameter both
ranging over —T' < t+ Rs <0 and 0 < Js < a — e. We will denote

1/2
O0<7:=t+s—ail= ((t+§fis)2+(%s—a)2) /

as well as 7, = |t + s — ai|. Moreover, given 7 > 0 and v(t) = (v1(t),v2(t)) € C?, we define
the norm

(4.71) [o(®)]; := o ()] + |va(8)] 7.

After these considerations, the results above can be rewritten more precisely as follows.
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Lemma 4.6 For —T <t+ Rs, t. + RNs <0 and 0 < Fs < a the following bounds hold:

‘\If(k)(t—i—s)‘ <

- ’7'7"+k’ ‘(I.(k)(t + S)‘ S KTT+1_k’ k= Oa 15 21

K (M + 77“+1|v2(t)|> ,

7

IN

(4.72) |M(t + s)o(t)],

N

_ T\ 7" \"*!
(4.73)  |M(t+)M(t, +5) to(t)|. < Ko, ((?) +(T—) )
*
or every v(t) = (v1(t), ve € and where K = K(a,T,ty) denotes a generic positive
f t t),v2(t)) € C? and where K = K(a,T,ty) denot ic positi
constant independent of u and €.

To get bounds for f, g1 and g2 in a neighborhood of the singularity, we need previously
bounds for these functions on the unperturbed homoclinic. Such a estimates rely strongly on
the hypotheses concerning f and the perturbation G = (g1,g2). Thus, by the trigonometric
polynomial character of f and since f (219 (u)) = #1(® (u) has a pole of order r+1 at u = ai,
we obtain for - T <t+Rs<0and 0 < Js < a

K K
(4.74) ‘f(m) (xl(o)(t +3))‘ S ) ey 20

In a similar way, g1 and go are assumed to be trigonometric polynomials in 1 and polynomials
in z9. Moreover, from the definition of #; and #¢5, all the monomials in z of g1, go, when
evaluated on z = z(9) (u) have at most a pole of order #; and £y at v = ai, respectively.
Therefore, for (¢, s) ranging over —T' <t + Rs < 0, 0 < s < a, one has

K

< TKJ' —my(r—1)—mar’

(4.75) ‘a{'“ 352, (a0t + 5),t/e) ‘

for j = 1,2 and mj,mg > 0. Using these estimates and applying Taylor’s Theorem, the
following bounds are readily obtained.

Lemma 4.7 Let us consider £(t), £*(t) € C? such that [£(t)|,, |€* ()], < n(T) < §/771 with
0<d <1 Then, for -T <t+Rs<0,0<QVs<aande <17 =|t+s—ail <T, the
following bounds are satisfied:

‘f (xl(o)(t + 3) +€1) - f (-’El(o)(t +5) + 5?) < M
‘gj (ac(o)(t + s) +§,t/€) —gj ($(0)(t+ s) +§*,t/5)‘ < %
G (a0 +5) +&t/e) =G (s +5) + €7 1/e) | < %

|F (&,t+s,t/e) — F (£t +s,t/e)|], < K (Tfil + Z§TZ) 1€ =&,

where j = 1,2 and £ = max {¢1,/2}.

Proof. We proceed separately. Thus,
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e Expanding in Taylor series up to first order and taking into account estimate (4.74) it
yields
(@O0 +9+6) = F (0O +s) +6)| <

7 (210 +5) +ag + (1 - a)¢")

K _ *
& - g < KoL 2 S

where a € (0,1).

e Dealing as before,
‘gj (x(o)(t +38) +¢, t/s) — g (:z;(o) (t+s) + 5*,t/e) ‘ <
‘8193' (x(o) (t+s) + &+ (1 - al)é*at/g) ‘ & — &7+

9ag; (20t +5) + o + (1 - a2)€", 1/ ) | 162 — ] <
K& — &l | K& — & _K|€1—€ﬂ+K\§2—§5|7’_K|5—5*|T

Tfj—(r—l) Tfj*T’ Téj—(’r‘—l) 7-2]'*7"+1 7.2]'77'4»1 ’

with a1, as € (0,1) and 9, d» meaning 8/dz; and 9/dzs, respectively.
e From the previous bound it follows
‘G (x(o)(t ts) 4 g,t/e) —G (a;(o)(t ts)+ 5*,t/a) L -
‘91 (a:(o)(t +s)+ f,t/s) -0 (z(o) (t+s)+ f*,t/e) ‘ +
‘92 (x(o)(t +s)+ f,t/&:) ) (a:(o) (t+s)+ £*,t/&:) ‘ T <

Y __ L% lo—r 1 —r+1 K Y~
Kle—€), (KIE- €l (To 4Ty K=,
7-2177"4—1 7—(271"4—1 TK*T—Fl T TKfH—l

e With respect to the first component, using the previous bounds, one has
|F1(§7t+ S,t/&) - Fl(g*at+37t/€)| =
ueP ‘ <91 (w(o) (t+s)+ f,t/s) - q (x(o)(t + S),t/&‘)) -

(gl (w(o)(t +3s)+ f*,t/e) - g1 (x(o) (t+ s),t/e))‘ =

pe? g1 (2O + ) +&,t/e) — g1 (st + ) + €%, 1/e) | < ugp%.

Proceeding analogously for the second one, it follows that

& — & Kl§-¢|
7—2 + ugp T€2—T+1 T.

Fy(€.t + s,8/e) — BolE"t+ s,1/e)| < 2
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Therefore,
|F(£7t+35t/€) _F(f*,t+35t/€)|r =
|F1(§7t+37t/6) _Fl(é.*at-l_sat/g)' + |F2(§,t+8,t/€) - F2(6*5t+37t/6)|7- <
Kl (K161, GKIEE),

7—[1—7‘-}—1 7—[2—7‘-}—1

1 1 & — &7
P _g£* e I
Kpe (TE1T+1 + T@zr) ‘g 3 ‘T + K T <
& — &1

1 *
Kpe? (—T“H> € - €] + K=

Using that

K‘él §1| < K|§1 §1|'r _ = |£1 2_€1|T — - K ngiz |£1 i 5{'7—,
T T 1) T T T

the previous expression is bounded by

pe?  n(r) .
K (7-5—7“4—1 + 7-2—1") |£ _f |’T’

as the lemma claims.

Finally, we present the last technical lemma which will be used later.

Lemma 4.8 For t,ty, 3 real and s complex, such that

0<Ss<a, —T<ty+Rs<t+RNs <0,
let us denote )
bl =4 Mot —ail e
’ sup [log(|o + s — ail)| ifB=0

where the supremum is taken on o € [to,t]. Then, there ezxists K = K(a,t9,T,5) > 0 such
that the following inequalities hold

' do ~(8-1)
(4.76) . o +s—aiff < Koy (s)
t P (s)
(4.77)‘M(t +s) [ M(o+s) T v(o)do| < KC |21 o) |
to T T ’

where we recall that T = |t + s — ai| and v(t) € C? verifies that

(4.78) (o), < 5.

As it also mentioned in [24], the proof of (4.76) is straightforward and can be found in [23,
Lemma 7.1] for the case § = 3 and a = 7 /2. Estimate (4.77) follows from the third bound in
Lemma 4.6 and bound (4.76), provided (4.78) is satisfied.
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§3.4.3 Convergence of the recurrent scheme

Let us define
D={(t,s): - T<t+Rs<0,0<Vs<a—¢}.

We will prove (with very small changes from [24]) the convergence in this domain of an
extended solution £(¢) of equation (4.62) with initial condition (4.63). Precisely, we have

Proposition 4.5 [ [24, Prop. 4.4]] Given s € C such that 0 < Qs < a — ¢, let £(t) = &(t, 3)
be a solution of system (4.62) with initial condition (4.63) on to = —T — Rs. Then, if
v=p—£>—1 (where £ = max {l1,l2}) this solution £(t) can be extended for t € [ty, —Rs],
satisfying there the following estimates:

(4.79) E(t) — peP PO (t+ 5),t/e)| < g
(4.80) €@l < Kpe'*h

Proof. The idea is to perform a recurrent scheme providing successive approximations. We
start with £(0)(#) and obtain the following iterates from

(4.81) D (4) = &,(t) + M(t + 5) t M(o + s) " F(EM™(0),0 + s,0/¢) do.
to

Notice that (1) (t) = &,(¢). As it has been already mentioned, the idea of the proof is to check
that the first iterate £()(t) = &,(¢) satisfies the bound (4.79) and, later, that it dominates
the rest of the iterates in such a way that the bound remains valid.

Indeed, let us recall formula (4.68), where an explicit expression for {,(t) was given,

£p(t) = peP TP (a:(O) (t + s),t/e) +

M(t + s) (M(to + 3)_1 (ﬁ(to) — pePt'p (:E(O) (to + S),to/e)) -

t

pePt? (m'(t +s,t/e) —m/(to + s,to/e) — | m" (0 + s,0/¢) do)) .

to

We proceed to estimate it piece to piece. First, from the initial condition (4.63) and using
that tg + s = =T + s is far from the singularity, it follows that

M(to + )" (&(to) — pe" P (50 (to + 5), to/) ) = O(ue™*?)

and, taking into account estimate (4.72), that

M(t + s)M(to + s)_l (f(to) - Mgp"'lp (m(O)(tO + S),t()/z’;‘)) ‘T < Ku8p+2 (i 4 TT_H) .

7-'!'

With respect to

¢
pePT2M(t + s) (m'(t +s,t/e) —m/(to + s,to/e) — | m" (o + s,0/€) da)

to



Splitting of separatrices in 2-dimensional periodic reversible systems 133

we use definition (4.67), that is m(u,8) :== M (u)~'G(2(%) (u),0)), and the fact that (M) =
—~M~1A (since M is fundamental matrix of ¢ = d¢/du = A(u)€). Therefore, we have
m' = M~YG' — AG) =: M~1G; and m" = M~1(G} — AG;) =: M~1G,. Using that P and G
verify the same estimates of type Lemma 4.7 as G and having in mind the definitions of G,
Go and A (in (4.60)), the following estimates can be derived

K K K K
(4.82) Pl < = 161 <= 161, < 70 1G] < i

for —T < t+Rs <0, 0 < Fs < g and where K means a generic positive constant independent
of 4 and e. Thus, using (4.82) as well as estimates (4.73) and (4.77) (for f = £+ 2 and
C = peP*?), it follows that

(483) |&p(t) = e PO+ 5),1/0)| <

—(f—7r+1)

1 11
Kpueht? (T—T+TT+1+—+F+TT+1+L

1 —(+r+2)
+ 77t
S| s Po

where the functions p, b= p[;f t](s) have been defined at Lemma 4.8. Their bounds depend
on the value of the exponent 3 so, in our case, we have

pr BT < ()
(4.84) pmErHD 1> 0
—(f—r+1) . _
Po < [log 7| ifl—r+1=0
K ifl—r+1<0
Thus, inequality (4.83) becomes
(4.85) ‘5,,(15) — ueP PO (¢ + 8),t/e)| 7T <

1 (r— _
Kuep” (1 + . + Py (L—r+1) + 7_2r+1p0 (2+r+2)) )

Using that 7 > ¢ and estimates (4.84) we obtain that

—(t-r+1) 2r+1 —(E+7+2) o1, —(e+r+2) _ L 1
Po < |loge|, TPy < pPrtty ) = F-r+l1 < el—r+1°

which applied onto (4.85) yield to

T <

T

(4.86) \gp(t) — P PO (¢ + 5), t/e)

1 e
K puePt? (1 + | loge| + W) < KpeP™ Hr—1 _ Kpuertrtt,

where v = p — £. If we introduce the norm

€]l := sup [£(X)], 7",

where the supremum is taken for ¢ € [ty, —Rs], the previous expression can we written as

(4.87) ||§p - ue’”’lP”T < Kpertr+l,
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Lemma 4.9 Let us consider the sequence {f(")} of approxzimative solutions provided by the
formula (4.81). Assume that 1) = ¢, satisfies the bound (4.87). Then, if y =p —£ > —1
and p small enough, it follows that {5(” }n converges uniformly to the solution & of (4.62) in
[to, —Rs]. Moreover, in this domain the following bound holds:

e - ner1 P, < Kpersr

Proof. We will prove first that

o

< Kug’y+7‘+1
r

holds for any n > 1. We proceed inductively. For n = 1 is clear from equation (4.86), so let
us assume that for k =1,2,...,n we have

H&(k) - ugp-l-lPH < Kpertrtt,
T
Using that |P|, < K/7¢ it follows that

‘ g(k)

< ‘g(k) — u£p+1p‘ + uePt P <

Kugv-i—r—i-l K,usp"'l
— et 1P| 4 per Pl < S B ().

Notice that, since 7 > € one obtains

Kue'”‘l KH€p+1 Ku (87+r+1 an ) Ku€7+r

n(r) = + y; = 1 r + Fl—r+1

Tr T 7r=1

S / ™1 with § = Kue?*™ < 1 and we can apply the last estimate of
¢ and ¢* = ¢ Thus,

™), + s,t/e) _F (§<"—1) (1), ¢+ s,t/a) ‘T <

So, therefore, n(T)
Lemma 4.7 for £ =

T N e _ e
o ( = e Tr+<2—r>> e ] <
6p+1 €7+r+1 .
N et
Ep 6’7'1"""‘1 n 1)
Kp ('rZle + T2 ) H§ r

Applying twice Lemma 4.8 for § = £+ 1 and C = ¢? and B = r + 2 and C = &7+,
respectively, we get

<

t M(o+s)t (F (§<") (t),t+ s, t/e) —F (g("*l)(t),t + s,t/s)) do

to

(£—r)
(Ku&?p (pOTT + Tr+lpa(£+7‘+1)> +

+r+1 Pa(l) r4+1_—(2r+2) n
et (B g )| e o]

‘M(t + 3)

T

T
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Multiplying by 77, taking the supremum on [¢y, —¥s], using estimates of type (4.84) and that
v > —1 (and, therefore, v 4+ r > 0), it follows

<

r

Hg(nﬂ) _ ¢

<

r

HM(t + ) t M(o +s)™t (F (5(") (t), ¢+ s,t/e) _F (5("_1)(15),15 + s,t/a)) do

to

<

T

Ko (= (Itogel + 1 ) + 12 e — o
& 3

Kpu (8117(@4) + 87+7") Hg(nJrl) ¢

§(n+1) _ g(n)

< K,Lt€7+r
T

T

Taking po > 0 small enough, it follows that for n > 1 and |u| < uo,

IA

H§<n+1) _ g ‘gn) _ gl

1
<3
0 =] < e

r

IN

< Kpue'
T

As a consequence, the sequence {5 (”)}n converges uniformly on [tg, —Rs] to the solution &(t)
of (4.62) with initial condition (4.63). Moreover, in such domain, the estimate

|€ = ne 1P|, < Kperr

holds and, therefore, also (4.79). The bound (4.80) comes from

Kuehtl  Kpuevtr+l
< pe + pe <

€@, <

KuePtle ™ 4 Kpue"™mle™ < Kue'*t.

Tt T’

a

This proves the Extension Theorem for 0 < Qs < a —e. The proof for —a +e < Js <0
it works analogously provided we choose b = —a1i at the definition of W (u).

§3.5 Proof of Proposition 4.1
(z) From Corollary (4.2) we know that
E(z°(t,s),t)e) =0,  E(x,0) = EO(z) + O(ueP*t) = bV (2) + O(ue? ™)
so, therefore, it follows that

EU(s) = E(z¥(t, ), t]e) =
(4.88) E(z (L, 5), t/e) — E(z°(t, 5), /) =
hO (g% (¢, 5)) — b (2 (¢, 5)) + O(ueP™),

for —T1 <t+RNs <0, |Ss| < a— ¢ and z¥(t,s), z°(t, s) belonging to R. Since E(s),
does not depend on ¢, we can choose any value in the previous domain. In our case, for
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a given s € C we consider T := —Rs, defined in such a way that Ts + Rs = 0 (that is,
we are at the symmetric homoclinic point). As in [24], we consider the functions

A%(ts) = BO(a(t,5)) — KO (y,(t/e)),
Ad(t,s) == hO(@(t,5)) — KO (y(t/e)).
Lemma 4.10 The functions A" and A® defined above satisfy the following properties:
(a) ti}l—IFHOOA (t,s) =0 and ti:r_nooA (t,s) =0.
()
08 (ts) = et (LahO (@ (t,9),1/e) — Lh ((t/e),/e)) |
BAS(L,s) = ueP (th<0> (@°(t, 5), t/€) — Lah© (3 (t/e), t/e))

where we recall that
Lef(z,60) = (Vf(z,0)" G(x,0)
is the Lie derivative of the function f with respect to the vector field G.
(¢) KO (z%(t,s)) — RO (25(t,5)) = A%(t,s) — AS(t, s).

Proof. Since (a) and (c) are clear, we will just deal with (b). Indeed, using that z%(¢, s)
and 7,(t/e) are solutions of system (4.2), we have that

A%t s) = b0 (zU(t, 5)) — 8:h O (7, (t/e)) =
VRO (¥ (¢, 5)) pz™(t, s) — Vh(O)('Yp(t/e))at (w(t/e)) =

(t
(Vh(o) ) (JVh(O s)) + peP G(z" (¢, s),t/e)) -
(
“(t

]
TIRO (3 (t/6)) + e Gt/ /<)) =

(Vh(o) Yp(t/€))
e (V000,90 Gla®t,5),1/6) — (TR rp(0/e)
jeP (LGh(O) (@ (¢, 5), /) — LehO (1, (t/e), t/e)) .

In a similar way, one obtains that

808 (L, 5) = peP (th<°> (@5(t, 5),t/€) — LahO (3 (t/e), t /s)) .

T

G(%(UE)J/E)) -

Taking ¢t = T and applying this lemma onto (4.88) we have
WO (2" (Ts, ) (2° (T, 5)) =
Ts 0
AY(Ts, s) — A*(Ts, s) O A% (t, s) dt + Ot A*(t,s) dt =

—00 Ts

1e? ( / " (ﬁgh(o)(x“(t, s),t/€) — Lah© (y,(t/e), t/e)) di+

—0o0

/+°° (ggh(o) (z°(t,s),t/e) — Loh® (%(t/s),t/g)) dt.)
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Adding and subtracting the Melnikov function

M(s,e) / LhO (2Ot +5),t/e) dt
the last expression becomes
RO (2% (T, 5))hO (z° (T, 5)) =

Ts
e / (LGh(O) (@ (t,8),t/€) — Leh© (v, t/e) — Leh@ (2O (¢ + s),t/e)) dt +

+oo
pe? / (ﬁah“” (@°(t,5),t/e) — Lah® (3, t/e) — Lk (@ (¢t + 5), t/s)) dt +
pueP M (s, e).

Let us bound them. Using Corollary 4.1(iv), the second integral is O(ueP*!). With
respect to the first one, it can be divided between the integral over (—oo, —Tp] and
[~To,Ts), where Ty was introduced in the Corollary 4.1. Following again the same
point (iv), it follows that the first integral, considered over (—oo, —Tp] is O(uePt1). In
order to estimate the integral over [—T}, Ts] we need the following result.

Lemma 4.11 For s € C such that |Sa| < a — ¢ and Ty = —Rs, we have that

Ts
/ (£hO (", t/e) ~ LA Oy, t/e) — LahO (@D, 1/6)) dt = O (ne~", pe?*1)

_TO

where ¥, (0 and -y, denote z"(t,s), 2O (t + s) and v,(t/€), respectively.

Proof. We will bound this integral in two parts:
Ts
/ (L(;h(o) (2%, t/e) — Leh©® (x(o),t/5)> dt
—To

and

Ts
Leh O (y,,t/€) dt
—To

Concerning the first one, we have that

L6h® (@ t/e) = (VA (@) Gla,t/e) = —f(@n)an (@ 1/e) + 29w, 12).
Thus, we can write

Lch® (2" (t,5),t/e) — LchO (@0 (¢ + 5), t/g) =
—f(zH)g1(z%,t/e) + x5 go(z* t/&:)—i—f( ) 1(z ©) t/e) —zy )92( © yt/e) =
—£@%) (91" t/e) — 1O, t/e) ) + 1 (5@, t/e) (A7) - F(a1)) +

2 (9202, t/2) - 92(2®,1/0)) + g2, t/e) (s — o).
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Defining ¢ := z* — (%), we have from the Extension Theorem that [¢(t)], < Kpue't!.
Having these bounds in mind and using (4.74), (4.75) and Lemma 4.7, it yields to

‘Egh(o) (@¥, t/e) — Lch© (w(o),t/e)‘ <
1 €7+1 /JE%LI K M57+1
(Tm ) T T (T) +

1 per K
+1 +1
K (— + pe? ) + ) (Kpue'*') <

Tr l—r+1
K pertl Kpert! K\ pett  Kpert!
7-r+1 Fl-r+1 42 = TZ—r+1+ 42
Kue'yfr—kl
2

Applying formula (4.76) for f = £+ 2 and taking into account that p, (1) < ) <
1/e*+1 it follows that

Ts
/ LehO % t/e) — Lah O (2 t/e)| dt < Kpe?*.
T,

On the other hand, with respect to the integral of £Loh(® (Yp-t/€), we have that

Lh O (yp,t/e) = —f(11)g1 (v, /),

where vy, = (71,72). Since f(0) = 0 by hypothesis and vy, = O(ueP™!), by the Normal
Form Theorem, it turns out that Lgh(® (yy,t/e) = O(ueP™!) and, therefore, also its
integral over [—Ty, T§].

O
Joining all these estimates, the following bound is derived
RO (T, 5)) — hO (@ (T, 5)) = pe? M (s,€) + O (uePpe’™", u2e#+1)
and, finally, equation (4.88) becomes
E"(s) = uePM(s,e) + O (uepuﬁ_e,uep“) .

(#7) Since £%(s) is a 2mwe-periodic function, we can express it in Fourier series
u S) _ § :Elgelks/s'
kEZ

Therefore, using estimate (i) and shifting along complex lines Su = £(a —¢), it follows
that
e |kl(a—e)/e  r2me

E4o ti(a—¢))e /e do =
2me 0

pe? Mi(e) + O (ue”ueH, uep“) e Ikla/e,

for k # 0 and where My(¢) is the k-th Fourier coefficient of the Melnikov function. The
claimed bound follows readily.

(731) It follows exactly from applying the same argument given in [24, Prop. 2.6].
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§3.6 Proof of Proposition 4.2

The analyticity and periodicity of ¢ follows directly from the fact that £¥ and S — s are
analytic and 2me-periodic.

1) From Corollary 4.1 and for real s, we know that the stable and unstable invariant curves
y
C*, C* of the Poincaré map P associated to system (4.2),

P(zp) = z(zp, 27E),
are given by

¢ = {*(2nne,s) = 20,5 + 2 e

C* = {a"(2mne,s) = 7"(0,5 + 2mne) e -

Since system (4.2) is R-reversible, we know that P is also P-reversible and that the
invariant curves associated to the new symmetric hyperbolic point, intersect each other
at a point belonging to the symmetry line Fix %R. Let 2" be this homoclinic symmetric
point. Moreover, by construction, the parameterizations z"(t, s) and z*(t, s) are defined
in such a way that for ¢+ Rs = t+s = 0 they are placed at Fix 8. This implies that the
homoclinic point z” satisfies that =" = z°(0,0) = z*(0,0). As a consequence, we are
in the domain of definition of the flow-box coordinates and it follows that S(z",0) =
S(z°(0,0),0) = 04+ 0 = 0 and &£(z",0) = £(2°(0,0),0) = 0. Moreover, from the
definition of §*, we have

0 =8(2°(0,0),0) — 0 = S(z*(0,0),0) = S*(0).
These equalities and the definition (4.21) of 1) yield to
$(0) = 9(S*(0)) = £*(0) = £(x*(0,0),0) = £(°(0,0),0) = £(«",0) = 0.

Since 1 is 2we-periodic, it follows that v(h,) = 0, for h, = 2me, with n € N.

Using again the periodicity of 9, to know the value of ¢’(h,), for n € N, it will be
enough to compute ’(0). Indeed, differentiating the formula (4.22)

P(S) = E(z“(¢,5),t/e)
and evaluating it at S = 0, ¢t = 0, we obtain

U U
oz} ozy

! _ ~u ) ~u .
or, equivalently,
oxY oxY
! _ h . 1 h i 2

where z" = (z%,7%) and 01, 02 denote the derivatives with respect to z; and z3,
respectively. We look for an expression writing 9,€(z",0) and 6:€(z",0) in terms of
0z3 /08 and 075/0S. To do it, let us differentiate equations (4.15)

S(z°(t, s),t/e) =t + s, E(z°(t, s),t/e) =0
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with respect to s = S and evaluate them at (¢,s) = (0,0). Thus, regarding the first
equation, it follows that

(4.90) A S(z",0) - %(0 0) 4+ 8,8(z",0) - %(0 0)=1

- 1 ’ 98 ) ’ oS ) -

Proceeding analogously, form the second equation, it is derived that

ox} 0x}

4.91 h0) - —=(0,0) + 0a&(2",0) - —2(0,0) = 0.

(9) 818(3:70) aS(a)+2($7) as(a)

Besides, from Remark 20 we know that the change (S, E) = Y((1,(2) given at (4.59)
preserves measure but reverses orientation, that is, det DY (¢q,{2) = —1 for {; — (s >

0. Therefore, since (S(z,t/e),E(x,t/€)) are O(uePt!)-close to the flow-box functions
(8(0) (), &0 (z)) of the unperturbed system (see Corollary 4.2), it follows that A =
—A© 4+ O(uePt!) where

NSO (zh) 9,80 (2h)

818($h,0) 828($h,0)
A._
NEO (zh)  EO (zh)

| 81E(™,0)  8E(z",0)

b

A .— ‘

Taking into account that the transformation
(z1,2) — (S, B) = (§O(2), €0 (=) ,

leading system (4.1) into a flow-box system, can be chosen canonical, one has that the
solution of system (4.90)—(4.91) is given by

Ox] o o0 hy O3 _ A e(0)/h
99 (0,0) = =hEW ("), 99 (0,0) = 0:EWY ("),
or, equivalently,
oz} oz}
By 971 hogy — 972
825($ 30) - 98 (Oa O)a 81(9((5 50) oS (Oa 0)

plus terms of order O(ueP™!. Therefore A + 1 = O(ueP*!) and for real values of S,
it turns out that A = —1 4 O(uePt!)e~%/%. Substituting these formulas above in the
expression for ¢/(0) it follows that

ren O3 oz} 0z ozs B
o5 0u* || @aw o* . Pty —afe
(85(0’0)/\—85(0’0))_' 6S(O,O)H ‘—63(0,0) sina + O(peP™ )e ¥/¢.

where u A v denotes the exterior product of the vectors u and v, and « is the angle
between z%(0,0) and z°(0,0). As mentioned before, from the periodicity of z° and z*
one derives that the same formula apply for ¢'(hy), n € N.

(#2) From the definition of ¢ and Proposition 4.1(3%), it follows that

7/1(5) = Eff =+ HEpM(s"(S),g) + O(Iu28p+7%’u8p+1) efa/g'
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An straightforward computation shows that ueP M'(S,e) = O(ue”e%/¢). Applying this
bound and Taylor’s Theorem it turns out that

ueP M(s*(S),e) = pe? M(S + O(ueP*'),€) = pe? M (S, ) + O(u’eP*7+1e™9/*).
Since £ > 0 we have that p+ v+ 1 > p+ v — £ and, therefore, it yields
P(S) = EX + peP M (S, €) + O(u2ePt1 ¢, pePty e /e,
On the other hand, since £%(0) = 0 it follows that
EY = O(u?ePT7t pebtlyeale,
Substituting this bound into the expression for 1(S) we obtain that

P(S) = peP M (S, ¢) + O(Iu26p+7—£’ M5p+1) e—a/e —
ueP? M (S, €) + O(/L2627, ,Lt€p+1) efa/g’

as the proposition claims.
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Chapter 5

Open problems and future work

There are a lot of interesting problems related to the techniques employed in this memory.
Here we list some of them that we would like to investigate in a close future.

1. The center-focus problem.

Although it has been mentioned in Chapter 2, let us recall it very briefly. Thus, let us
consider a planar system

g = = + Qz,y)

where ﬁ, @ are polynomials in z, y. Moreover, from now on, ~ will denote that the
corresponding function (vector field) starts with terms of order at least 2 in the spatial
variables. It is clear that the origin is an equilibrium point of system (5.1), which is
a linear center. It is well-known (see, for instance [14]) that in this case the Birkhoff
Normal Form (BNF in short) is convergent if and only if the origin is a center. On the
contrary, if it is not convergent, we have in fact a weak focus on this point. The center-
focus problem (which is a local version of 16th Hilbert’s problem) consists on giving
conditions on the coefficients of P (z,y) and Q (z,y) ensuring that the equilibrium point
is a center. This apparently simple problem has not yet been solved and just some
partial results are known (see, for instance [50]).

In other words, this problem is devoted to seek for conditions on P (z,y), @(m, y) in such
a way that system (5.1) can be led into BNF by means of a convergent transformation.
From this point of view, this is closely related with the problem of the convergence
of the UNF (introduced in Chapter 1). In that Chapter it was proved that the WNF-
procedure was convergent, giving rise to a BNF-vector field N and a residual vector field
B (depending on an scalar analytic function b(r)). This analytic function b(r) contains
the obstructions for the (local) integrability of this system and, as it was noted in
Chapter 2, it seems to have a close relation with the Lyapunov constants (invariant
constants related to the fact that the equilibrium is a center). We think that it could
be interesting to apply this tool of the WNF, in some known examples, in order to
understand which could the algebraic relations between the coefficients appearing in b
and the Lyapunov constants associated to this system.
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Moreover, we know that the (isolated, of course) zeroes of the scalar analytic function
b(r) give rise to limit cycles close to the equilibrium. It could be nice to find interesting
examples of system where this kind of cycles could be obtained using this technique.

Convergence of the YNF for quasi-periodic systems around a hyperbolic torus

This could be the following natural step after proving the convergence of the WNF of a
periodic system in the vicinity of a hyperbolic periodic orbit. Quite briefly, the problem
would be the following: let us consider an analytic system

_dz F(z) = Az-l—ﬁ(z),

(5.2) i=— =

where z € C? and A is a diagonal matrix with values {#A}, A > 0. Suppose that it can
be led into BNF by means of a convergent transformation

2=30(¢) = ¢+ 3°(0).
Let us consider now the following perturbation of system (5.2)
(5.3) z=F(z) + pePG(z,0, u,€)
where G is analytic in z and analytic and periodic in 8, with
0=(01,09,...,0,) = (w1 t,wat,...,wpt)

and w = (wi,ws,...,w,) being a vector in R" satisfying some Diophantine condition.
¢ and e are small parameters. The problem consists on investigate if there exists a
(convergent) analytic in ¢ and # transformation

z2=8(C) = 30 (¢) + ueP@M (¢, 0, p,€)

leading system (5.3) into YNF. How big is its domain of convergence ? Does ¥NF
become BNF in the case that system (5.3) is Hamiltonian or reversible ? Can be this
method useful to find limit tori in non (locally) conservative systems ? Can we obtain
some interesting examples exhibiting this behavior 7

The formal approach to this YNF would be quite similar to the one presented at Chap-
ter 3 but introducing a quadratic scheme in the perturbative parameter £ which would
allow us to control the loss of the domain in the angular variable 6.

. Study of the splitting of the separatrices of a whiskered torus under a fast linear reversible

quasi-periodic perturbation.

This is problem intimately related to the previous item and to the Chapter 4. It is
concerned to measure the size of the splitting of the invariant whiskers of a hyperbolic
torus when we add a linear reversible quasi-periodic perturbation. The model to follow
would be the paper of Delshams, Gelfreich, Jorba and Seara [25], where they deal with
this problem in a Hamiltonian setting. Like in that paper, the first approach could be
done for the frequency vector w/e being of the form w = (1,7), where v = (/5 + 1)/2
is the golden mean number (the most irrational number).
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4. In [27], Delshams, Gutiérrez and Seara, introduce tools to study the splitting of the
invariant manifolds associated to a weakly hyperbolic torus of an integrable Hamil-
tonian system when an small perturbation is considered. The invariant torus of the
unperturbed system is assumed to have fast frequencies w/+/e and coincident whiskers.
Precisely, they deal with a Hamiltonian system (with n + 1 > 3 degrees of freedom)
that in canonical coordinates (z,y,¢,I) € T x R x T" x R™ takes the form

H(%%‘Pa]) = Ho(l',y,I) +MH1($,(,0)

where p = &P and

2

1
== 1)+ 5(ALD) + % 4 cosz—1

H()(.’E,y,I) = <\/ga
Hi(z,¢) = h(z)f(p)

Using suitable flow-box coordinates (defined on a piece of the stable whisker but ex-
cluding the torus), extending solutions and defining the corresponding splitting function
and splitting potential, they obtain exponentially small upper bounds for this splitting
function when considered on the real domain.

We would like to investigate an analogous situation of this singular problem when
considering reversible systems instead of Hamiltonian ones.
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