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Quantum Confinement of Gaseous Molecules in Nanostructures: Effects on the
Dynamics and Internal Structure

by Manel MONDELO–MARTELL

Quantum confinement effects, understood as the changes on the structure and
dynamics of a molecule when it goes from a free environment to a cavity with some
characteristic length of the order of the nanometer, represent both a challenge and an
opportunity. A challenge, because there is still work to be done in order to be able to
understand and model them properly. An opportunity, because they offer the means
to tune molecular properties such as adsorption, diffusion, or even reactivity.

The present Doctoral Thesis is focused on the theoretical and computational
study of the system consisting on a single H2 (or D2) molecule trapped in the hollow
cavity of a narrow Single–walled Carbon Nanotube. Since Dillon and coworkers
suggested in 1997 the existence of quantum confinement effects as an explanation
for the unexpectedly high H2 uptake in carbon nanotubes, this particular system has
received much attention from theoretical and experimental points of view. Here we
intend to gain more insight on it by developing new analysis tools for high dimen-
sional eigenstates, and by improving the model with respect to previous works. The
former has been achieved through the use of overlap and partial overlap functions,
which has provided with an intuitive way to understand the coupling between the
different degrees of freedom by comparison of the actual eigenstates of the system
with a separable model. Regarding the improvement of the model, we have worked
on it from two perspectives: first, we have included new molecular degrees of free-
dom to the system, namely the motion of the center of mass of the molecule along
the axis of the nanotube. This has allowed us to obtain diffusion rates for H2 and D2
inside the nanotube in a full quantum mechanics framework, which to the best of
our knowledge had not been achieved before. The study of the diffusion dynamics
has also allowed us to define an adiabatic representation of the Hamiltonian, taking
advantage of the quasi separability of the diffusion coordinate and the remaining de-
grees of freedom, to increase the efficiency of the propagations with high accuracy.
As a second means to improve the model, we have developed a system–bath cou-
pling Hamiltonian in order to see how the phonons of the nanostructure affect the
dynamics of the confined molecule. We have seen that both sets of degrees of free-
dom (molecular and phonons) are strongly coupled due to the linear momentum
exchange between them. Time–dependent Perturbation Theory calculations have
determined that the characteristic time for the momentum exchange is shorter than
that for diffusion, which suggests that the friction with the nanotube may have a
relevant effect on the transport properties of the confined molecule.
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Confinament Quàntic de Molècules Gasoses en Nanoestructures: Efectes sobre la
Dinàmica i l’Estructura Interna
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Els efectes de confinament quàntic, entesos com els canvis en l’estructura i la
dinàmica d’una molècula quan va des d’un entorn lliure a una cavitat amb alguna
longitud característica de l’ordre del nanòmetre, representen un repte i una oportu-
nitat. Un repte, perquè encara hi ha feina per poder comprendre-les i modelar-les
correctament. Una oportunitat, perquè ofereixen els mitjans per ajustar les propi-
etats moleculars, com adsorció, difusió o fins i tot reactivitat.

La present tesi doctoral es centra en l’estudi teòric i computacional del sistema
consistent en una sola molècula de H2 (o bé de D2) atrapada a la cavitat interna
d’un nanotub de carboni estrets d’una sola paret. Desde que Dillon i coautors van
suggerir al 1997 l’existència d’efectes de confinament quàntic com a explicació de
la inesperadament alta adsorció de H2 en nanotubs de carboni, aquest tema ha re-
but molta atenció des de punts de vista teòrics i experimentals. La intencid́’aquesta
Tesi és obtenir més informació sobre aquest fenòmen mitjançant el desenvolupa-
ment de noves eines d’anàlisi per a estats propis d’alta dimensionalitat, i la millora
del model respecte a treballs anteriors. El primer s’ha aconseguit mitjançant l’ús
de funcions de solapament i solapaments parcial, que han proporcionat una man-
era intuïtiva d’entendre l’acoblament entre els diferents graus de llibertat per com-
paració amb estats propis reals d’un model separable del sistema. Pel que fa a la
millora del model, hem treballat des de dues perspectives: en primer lloc, hem in-
clòs nous graus de llibertat moleculars al sistema, concretament el moviment del
centre de massa de la molècula al llarg de l’eix del nanotub. Això ens ha permès
obtenir coeficients de difusió per al H2 i el D2 dins del nanotub utilitzant un for-
malisme totalment mecànic–quàntic, cosa que no s’havia fet prèviament. L’estudi
de la dinàmica de difusió també ens ha permès definir una representació adiabàtica
de l’Hamiltonià del sistema, aprofitant la quasi separabilitat entre la coordenada de
difusió i la resta de graus de llibertat, per tal d’augmentar l’eficàcia de les propaga-
cions amb gran precisió. Com a segon mitjà per millorar el model, hem desenvolu-
pat un Hamiltonià d’acoblament sistema–bany per tal de veure com els fonons de
la nanoestructura afecten la dinàmica de la molècula confinada. Hem vist que amb-
dós conjunts de graus de llibertat (moleculars i fonons) estan fortament acoblats a
causa de l’intercanvi de moment lineal entre ells. Càlculs de Teoria de Perturbacions
Dependents del Temps han determinat que el temps característic de l’intercanvi de
moment és més curt que el de la difusió, cosa que suggereix que la fricció amb el
nanotub pot tenir un efecte rellevant sobre les propietats del transport de la molècula
confinada.
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Chapter 1

Introduction: Nanoscience and
Quantum Confinement Effects

Nanoscience and Nanotechnology are interdisciplinary fields which deal with the
study and manipulation of systems with at least one characteristic dimension be-
tween 1 and 100 nm. Many of the main ideas and concepts which would latter define
these disciplines were laid out by Feynman in his lecture There’s Plenty of Room at the
Bottom in the meeting of the American Physical Society held in Caltech in 1962[1].
There, he envisioned how we would be capable of the observation and manipula-
tion of matter with ever increasing precision, and how this would lead to an extreme
miniaturization of electronic and mechanical components, and even to individually
control of the atoms and molecules themselves. In spite of the revolutionary ideas
of Feynman’s seminar, its impact in the scientific community was rather low due to
the technical limitations of the Scanning Electron Microscopes (SEM), which were
the most potent instruments at the time: according to Feynman, their resolution was
100 times too low to be able to actually see or manipulate atoms, and that value was
already in the theoretical limit for a SEM’s resolution. The lack of better instrumen-
tation caused the ideas of the talk to be seen as little more than interesting science
fiction exercise. The technical limitations, however, were overcome in 1982 with the
invention of the Scanning Tunneling Microscope (STM)[2], an instrument based on
measuring the current which appeared between a metallic surface and an extremely
sharp tip. With this brand new instrument the actual observation and manipulation
of matter at atomic scale became a real possibility: the atomic resolution was first
observed in 1983 for the Au(110) surface[3], metallic structures were manipulated in
1987[4], and individual molecules manipulated in 1988[5]. Finally, in 1990 individual
Xe atoms were arranged onto a nickel surface to conform a pattern reading IBM[6]:
control of matter at atomic level had been achieved. The importance of this inven-
tion granted the main contributors to its development the Nobel Prize in physics in
1986[7]. That very same year the Atomic Force Microscope (AFM) was developed
by Binnig[8, 9], one of the developers of the STM, broadening the possibilities of
visualization and manipulation at the most fundamental level.

However, the advent of nanotechnology came not only from technical develop-
ment, but also from new discoveries. A new breakthrough in the field was the dis-
covery of buckminsterfullerene in 1985[10], during the simulation in the laboratory
of chemical reactions in the atmospheres of red giant stars. This structure was the
first nanostructured material to be found in nature. The subsequent discovery of car-
bon nanotubes by Iijima[11] in 1991, together with the large amount of technical pos-
sibilities that these materials offered, boosted the newly created field of Nanoscience
and Nanotechnology. Moreover, new phenomena at the nanoscale were discovered
which did not appear in larger systems: as the dimensions of the systems got close to
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the de Broglie wavelength of the atoms and electrons, the properties of the bulk ma-
terial changed appreciably due to the strong interactions present. As new research
was conducted on nanostructured materials, the potential applications increased
and broadened from nanoelectronics to medicine, and nowadays nanotechnology
is a topic of general interest onto which a large amount of resources are invested.

1.1 Quantum confinement effects and Nanotechnology

Energy storage: a driving force for research

One characteristic which clearly distinguishes a nanostructured material from a reg-
ular bulk system is the high surface-area ratio of the former. It is well known that mi-
croporous materials can present a high uptake of gaseous substances by physisorp-
tion of the molecules in the different cavities of the material, thus storing large quan-
tities of low-density compounds in a reduced space[12]. Research made on micro
and nanoporous materials (such as amorphous silica) in the late 1980s already hinted
at interesting new behavior of the adsorbed molecules[13]. Therefore, the natural
step was to try to use nanostructured materials as storage devices for particularly
light gases, such as hydrogen or methane. The first attempts to use carbon nan-
otubes to capture pure hydrogen were made in the late 90s and resulted in promis-
ing uptake values: the first Temperature programed Desorption experiments made
in 1997 predicted storage densities ranging from 5 to 10% in weight[14]. These val-
ues seemed to indicate again a change of the behavior of the H2 molecules when they
were trapped in the nanomaterial, since the density of molecules was reported to be
2.5 to 5 times larger than the theoretical predictions. The theoretical works around
that time also predicted a change in the inner structure of CO and H2 when adsorbed
in solid C60[15, 16], and a change of the dynamics of H2 and D2 in carbon nanotubes
and zeolites[17], thus supporting the interpretation. Further experiments at room
temperature, however, reported a slightly lower storage capacity of 4.2%[18]. The
interest for the storage of gases in nanostructured materials increased due to the
enormous popularity of hydrogen as an alternative to fossil fuels in modern soci-
eties[19, 20], and the difficulties to store it for transport and mobile applications.
At the time, either conventional tanks at very high pressures –which required thick
walls, and therefore high weight of the container— or liquid storage —involving
very low temperatures, and thus more energy consumption— where used, which
drastically decreased the overall efficiency of H2 as a fuel. According to the US De-
partment of Energy, the storage capacity of hydrogen for a new device to be accepted
should have been of 6% in weight by 2010 and 9% by 2015. With such a high quality
standard, the research for more efficient storage devices based on nanostructured
materials was a driving force leading to great advances in the beginning of the 21st
century, both at experimental and theoretical levels, with hydrogen and different
nanostructured carbon materials as protagonists. These investigations confirmed
the special behavior of the molecules adsorbed in nanostructured materials.

A new behavior in nanospace

The interaction between bulk solid materials and molecules lies at the origin of crit-
ically important phenomenon such as gas adsorption or liquid wetting, and have
been studied since the early days of physical chemistry. These same interactions,
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usually consisting on attractive Van der Waals forces and other electrostatic influ-
ences, also appear when a molecule approaches a nanostructured material. How-
ever, in contrast to the well-known phenomena occurring in bulk systems, the prop-
erties of the adsorbate change notably in this latter case: molecules might be packed
more tightly than expected in nanoporous materials, or usually wetting liquids might
become repelled by a nanostructured surface. The underlying reason for all these
unexpected behaviors is the presence of some characteristic dimension of the ma-
terial of the order of the nanometer, being it one (thin–layers), two (nanotubes) or
three (nanopores). The interactions between substrate and adsorbate then appear
in a range comparable to the de Broglie wavelength of molecules, and therefore the
very same quantum structure of the system is affected. This results in the unex-
pected properties of nanoconfined species. In a molecular context, the changes in
the electronic structure, conformations and dynamics of molecules resulting of their
adsorption in cavities with a characteristic length of the order of the nanometer are
collectively known as quantum confinement effects1. These phenomena have arose a
great interest in the scientific community, both for their fundamental implications
and for the possibility to take advantage of them to design better storage and gas
separation devices, and even to tune the reactivity of certain chemical systems, and
its theoretical study is the main topic of this Thesis.

The origins of the research on quantum confinement are the experimental evi-
dences of special behavior of adsorbates trapped in nanostructured amorphous sil-
ica (see Ref. [13] and references therein). Those works led Beenakker et al. to the
theoretical study of gas flow through nanoscopic channels[21] and of the adsorption
of structureless particles in tight confining potentials[22]. Earlier studies[23] had
already proposed that separation of H2 and D2 in bulk alumina could be possible
due to their different diffusion coefficient. Beenakker et al. were able to explain this
phenomenon by studying the Zero Point Energy (ZPE) remaining in the confining
degrees of freedom when a particle entered in a nanoscopic pore: if the cavity had
a diameter small enough, the energy levels associated with the motion of the center
of mass, which form a continuum in the case of a free particle, would quantize. This
quantization would lead to a ZPE, which would be inversely proportional to the
mass of the particle. The authors coined the term quantum molecular sieve to describe
materials capable to separate species based on these purely quantum effects. The
theory was latter revisited by Wang et al.[17], introducing explicit molecules such as
H2 and T2, and more realistic potential to model the nanopore.

Experimental and Theoretical advances

The end of the 90s and the beginning of the 21st century witnessed an expansion of
the quantum confinement field, with numerous contributions appearing at both ex-
perimental and theoretical levels. Experimentally, neutron diffraction experiments
provided with accurate information about the structure of confined molecules, show-
ing that H2 in solid C60 was adsorbed preferentially in octahedral sites in the inter-
stitial space with no preferred orientation[16]. Moreover, ortho–para conversion of
the diatoms was observed. In the case of single–walled carbon nanotubes, initial
findings did not find any critical confinement effect in the eigenvalue spectrum of
hydrogen[24], while a quasi–one dimensional phase appeared for Xenon[25]. At the

1In more physics or condensed matter contexts, this name accounts for the change on electronic and
optical properties of a material with some dimension of the order of 10 nm or less.
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same time, semiclassical electronic structure calculations were used to study the co–
adsorption of lithium and hydrogen in zig–zag nanotubes[26], suggesting that a fun-
cionalization of the nanostructure could improve its adsorption properties. On an-
other research line, model Hamiltonians where used to compute the nuclear eigen-
states of hydrogen in fullerenes[27, 28] or narrow carbon nanotubes[26, 29], thus
helping to explain the experimental findings in terms of rotational–translational cou-
pling and to propose these materials as potential separation devices for hydrogen
isotopologues. In the following years some other works appeared which studied,
at both experimental and computational level, other adsorbates, such as CO2[30] or
CH4[31, 32], and adsorbents, such as Metal–organic Frameworks[33]. Still, the sim-
plicity of H2, its relevance as a potential fuel and the problem of its storage, and
the interest in its isotopic separation, kept the hydrogen molecule and its isotopo-
logues as the most prominent subjects of study. A major impact work was released
by Lu et al., who computed nuclear eigenstates of rigid H2, D2 and T2 embedded
in carbon nanotubes with different diameters, and predicted a huge selective ad-
sorption of the heavier isotopes in narrow SWCNTs, with D2 being adsorbed up to
106 times more favorably than H2 for nanotubes with less than 3.5 Å of radius[34].
The analysis of the eigenstates of the system allowed them to propose Extreme Two–
dimensional Confinement, as appearing when the nanotube’s radius was almost equal
to the characteristic length of the C–H interaction, as the reason for this high selec-
tivities. This work was complemented by Garberoglio et al., who carefully assessed
several C–H interaction models to justify the different results obtained[35]. A similar
contribution including the molecule’s vibration on the system, acting as a precursor
to our work, appeared in 2012[36]. At roughly the same time as the description of
the extreme 2D confinement and the huge selectivities predicted, Kumar and Bhatia
revisited the topic of kinetic quantum sieving, i.e. the possibility to use the different
diffusion velocity of hydrogen isotopologues, rather than its selective adsorption,
to induce separation in Carbon Molecular Sieves (CMS). They performed different
computational techniques, namely Monte Carlo and Feynman–Hibbs molecular dy-
namics[37–39], and found an inverse isotope kinetic effect at low temperatures which
made D2 diffusion faster than that of H2 in those materials, due to the same ZPE ef-
fects inducing selective adsorption. Later, Hankel et al. used Transition State Theory
to get to similar conclusions[40] which were backed up by experimental findings[41,
42]. Recently, we have also contributed in this area by presenting quantum dynamics
studies on the diffusion in carbon nanotubes[43, 44] and showing that in this system
the tunnel effect, neglected in previous works, is so important at the temperature
range studied that the zero–point effects are overcomed, and H2 diffuses faster than
D2 at all temperatures. Lately this effect has been also predicted for He isotopes
crossing nanoporous graphene membranes[45].

In the last decade the general availability of powerful computers and computa-
tion clusters has permitted research on more complex systems with different tools,
such as molecular dynamics[46] or purely ab initio electronic structure calculations[47–
49]. Due to the practical limitations of pure Carbon Nanotubes as storage devices
for hydrogen[50] attention has been shifted to functionalized carbon materials[49,
51–53], MOFs[54–62], and also on different substrates as methane[63–66], CO2[33,
51, 67–69] or water[39, 70–74]. The contribution of Bazic and coworkers[58, 75–
80], combining inelastic neutron scattering experiments and theoretical modeling
and computation of nuclear eigenfunctions for a number of different systems has
been particularly multidisciplinar and comprehensive, and therefore deserves spe-
cial mention.
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1.2 Overview and main objectives

It is clear from the historical development of nanoscience, specifically regarding
molecular confinement effects, that experiments and theory complement each other:
either experimental evidences need to be theoretically investigated in order to un-
derstand and model them, or theoretical predictions must be confirmed, thus pro-
viding with new ideas and challenges for experiments.

This Thesis is focused on the modeling, theoretical and computational investiga-
tion of the hydrogen molecule confined in narrow SWCNTs using quantum dynam-
ics tools. The Objectives pursued during the development of this work have been
the following:

• Constructing a model to describe a molecule confined in the hollow cavity of
a SWCNT. This will be done in two steps: first considering only the DOFs of
the adsorbate, and secondly adding the vibration of the nanostructure and its
coupling to the molecular DOFs.

• Understanding the coupling between different degrees of freedom of the ad-
sorbate, from two different perspectives: first, the coupling between the con-
fined degrees of freedom; second, the correlation between these confined DOFs
and the motion along the nanotube axis.

• Obtaining diffusion rates for the hydrogen and deuterium molecules in a fully
quantum formalism. This will allow us to better understand the diffusion
mechanism, as well as to investigate the Kinetic Isotope Effect in this system.

• Investigating the time scales of the different motions of the adsorbate when
confined in carbon nanotubes, with the prospect of developing alternative rep-
resentations based on the adiabatic theorem.

• Improving the model of the system by including the vibrations of the nanos-
tructure and their coupling to the adsorbate’s motion.

Contribution of the Thesis

Our final goal has been to improve the simulation model and to study different pro-
cesses in the nanoscale. The research performed during this Thesis has advanced
always towards an increase of the complexity and understanding of the system. In
our first contribution, we developed a tool to visualize the effects of quantum con-
finement in the molecular structure of a diatom fixed in a particular point along
the nanotube. This was done by partially overlapping its wave function with some
reference system, as explained in Chapter 5 and Publication 1. The results clearly
confirmed previous observations about the importance of rotranslational coupling
in the system. Then, by adding the motion of the c.o.m. of the molecule along
the axis of the nanotube and using the tools previously made we assessed the cou-
pling between the diffusing motion of the molecule and the remaining degrees of
freedom. Our simulations showed that these two sets of coordinates were nearly
decoupled (Publication 3). This lead to the elaboration of a time–scale separation
scheme, based on considering the motion of the fast, high–frequency motion in the
confined degrees of freedom as averages, generating a potential for the motion along
the nanostructure. This part of the Thesis has been reported in form of two publi-
cations (Publication 3 and Publication 4), and is reviewed in Chapter 7. With the
6 degrees of freedom taken into account, we were able to find diffusion rates for
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H2, and to investigate the kinetic quantum sieving effect predicted by Beenakker et
al.[22] and confirmed by Kumar and Bhatia[37]. During the first full–dimensional
calculations, deuterium was found to diffuse faster than hydrogen at low tempera-
tures. This was consistent with computational and experimental studies on diffusion
along Carbon Molecular Sieves. However, a posterior study using the time–scale
separation scheme allowed us to extend the propagation times, yielding numerically
converged results, and unveiled the importance of the tunnel effect in the diffusion
of both isotopologues, being this effect so important at low temperatures that H2
diffused faster than D2 in all the temperature range studied. The first results were
published in Publication 2, and together with the final results in Publication 4 and
some unpublished data conform Chapter 6. The final contribution of this Thesis is
related to going beyond one of the most widely spread approximations used when
dealing with confined systems: the frozen structure approximation, which considers
all the atoms forming the substrate as fixed in their equilibrium positions, without
any kind of vibration. This procedure vastly simplifies the study of the system,
since one only considers the degrees of freedom of the adsorbate itself. However,
due to the importance of phonon dispersion in most dynamical events appearing in
the solid state, it is expected that its inclusion has a major effect on processes such as
diffusion. This is the reason why we have developed a system–bath coupling model,
considering an arbitrary number of phonons of the nanostructure as acting as a bath
of harmonic oscillators coupled with our system, which is the adsorbate molecule.
By using time–dependent perturbation theory, we computed the transition rates be-
tween 6D states of the system and also their life times as a function of the bath’s
temperature. These results are found in Chapter 8, and are to be published soon.
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Chapter 2

Quantum Dynamics

Ranging from the exchange of energy when a molecule interacts with an electro-
magnetic field to the conformational changes of a protein, through the rearranging
of atoms during a chemical reaction, change is the essence of chemistry. It is precisely
the microscopic evolution of the different components of a chemical system (the dy-
namics of the electrons and nuclei) that explains observations such as the kinetics or
spectroscopic phenomena in the macroscopic world. The study of these processes
require of specialized tools due to their scale and complexity. For instance, classical
mechanics laws are not able to describe electrons, present in any chemical process,
due to their size, and for this reason a quantum mechanical framework is needed for
them, as well as for light atoms such as hydrogen. The complexity of the resulting
equations require several assumptions and approximations in order to be solvable,
and the implementation of the final problem in a computer program is also an im-
portant issue. And finally, one has to bridge the microscopic results with something
meaningful at a macroscopic level, which requires the use of statistical mechanics.

The present Chapter is dedicated to the description of such tools, and is orga-
nized in three different sections. The first section will serve as a reference for the
basic concepts of quantum mechanics, specially focusing in the branch dealing with
the motion of the particles in the system, known as quantum dynamics. Here we
will discuss generally relevant topics such as the Born-Oppenheimer approximation,
which allows to deal with otherwise impossible to study systems. The second sec-
tion is devoted to the representation of the wave function and operators in a finite–
dimension Hilbert space, which is required for the numerical resolution of quantum
systems. The third section is specifically devoted to Time-dependent Quantum dy-
namics, and will present this approach to Quantum Dynamics by using wave pack-
ets, defining the evolution operator and the approximate methods for propagating a
function in time.

2.1 Formalism of Quantum Dynamics

In classical mechanics, the concept of dynamics is intrinsically linked with that of
trajectory and action: at each time it is possible to perfectly reproduce the position of
a particle as a function of time, as well as its energy, by knowing the instantaneous
forces acting on it in a single time instant and applying Newton’s second law. This
view is blurred in a microscopic system: instead of a trajectory for each particle, the
whole system is described by a wave function, Ψ(x, t) which contains the probability
density amplitude at each point in space for each value of time. For a function to be
able to describe a particular physical system, and therefore to be a wave function, it
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must be complex, square–integrable and double differentiable. The set of all func-
tions obeying these criteria form an infinite–dimensional vector space known as the
Hilbert Space, H[81].

For time–independent Hamiltonians, which define conservative systems, a par-
ticularly important basis of the Hilbert space arises from the set of solutions to the
Time–independent Schrödinger Equation (TISE):

ĤΨj = EjΨj, (2.1)

where the operator Ĥ is the Hamiltonian of the system, which reads:

Ĥ = − h̄2

2m
∇2 + V(~x), (2.2)

with ∇2 the Laplacian of the system. Classically, this operator corresponds to the
total energy of the system, and therefore in a quantum mechanical context its eigen-
values, Ej, correspond to the available energy levels of the system. Similarly, the
eigenfunctions of this equation, Ψj, correspond to stationary states of the system un-
der study, i.e., states with a well-defined energy which, unless perturbed, will not
change in time1. They are extremely relevant in physics and chemistry, since their
energies are related to spectroscopic transitions.

For such conservative systems it is possible to build the whole formalism of
quantum dynamics from this time–independent view of the system: one needs to
set the correct boundary conditions to Eq (2.1) and obtain the scattering functions for
each energy, Ψf (E). This was the first approach developed in the early stages of
the field, due to the suitability for the problems of interest at the time, which were
basically related with understanding line spectra of different bound systems[82].
However, the everyday familiarity of human minds with classical mechanics and
its trajectory-based approaches might make it difficult to obtain an intuitive under-
standing of a dynamical process in a time–independent framework. If we include
time in the formalism, the dynamics of the system is then related with the time evo-
lution of the wave function, which is given by the Time–dependent Schrödinger
Equation (TDSE)2:

ih̄
∂Ψ(x, t)

∂t
= ĤΨ(x, t). (2.3)

Note that, as in the Hamilton formulation of classical mechanics, the total energy
operator (the Hamiltonian) rules the motion of the system. There is some contro-
versy[83] to whether this equation can be simply postulated or must be rigorously
derived from the TISE of a system interacting with a classical environment, as origi-
nally made by Schrödinger.

It can be shown[82, 84] that a function Φ f (x, t) propagated in time following
Eq. (2.3) is related with the solutions of the TISE by a Fourier Transform:

Ψ(x, E f ) =
∫ ∞

−∞
dteiE f t/h̄Φ f (t). (2.4)

1Except for a complex phase factor. We will talk again about this topic later on, when the propagation
of a wave function is discussed.

2This is the so-called Schrödinger Picture. Another equivalent view on the time evolution of a
quantum system, is given by the Heisenberg and Interaction Pictures, into which the time evolution is
applied to a operator rather than a wave function. Only the first formalism will be used in this work.
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This expression allows us to establish a fundamental equivalence between the time–
dependent and the time–independent formalisms: a function propagated for infi-
nite time holds the information of all the eigenstates of a dynamical event, while
a given eigenstate of the system for a given energy contains information about all
times of the process. This connection, which shows that both the time–dependent
and time–independent formalism lead to the same results[84], will be further an-
alyzed and used in Chapters 3 and 5. However, the intrinsic nature of the math-
ematical problem they present, as well as the interpretation of the results, differs
significantly. The time–independent formalism is an eigenvalue, or boundary con-
ditions problem. Therefore, it is solved by setting specific constraints to the wave
functions, and finding all the eigenvalues and eigenvectors of the time–independent
Schrödinger equation, i.e., all its possible states and energies. On the other hand, the
time–dependent formalism is an initial value problem: one needs to specify a well–
defined function at t = 0, and the system is solved by propagating it up to infinity.
This kind of problem is, mathematically, much simpler than an eigenvalue problem,
and furthermore is more suited for our cause–consequence perspective of dynamical
processes. For these reasons, and in spite of the fact that they ultimately lead to the
same final result, both formalisms are not equivalent in terms of numerical efficiency
and interpretation. In some cases, such as when studying spectroscopic transitions,
a time–independent formalism is preferred: since just some specific eigenstates are
involved, it is easier to solve the TISE for the desired energies right off. However, if
many energies are involved in a certain process, a time–dependent formalism might
be preferred, since it is not necessary to propagate up to infinity: only until the wave
function leaves the interaction region. Similarly, there are certain problems which
are simply best understood in one of the frameworks, so the interchange between
the time and energy domains is a useful tool to work with. The choice is ultimately
a matter of the specific situation at hand. See Ref. [84] for an interesting discussion
on the equivalence of both formalisms and their applications.

2.1.1 The Born-Oppenheimer Approximation and the Potential Energy
Surface

The full dimensional Schrödinger Equation, whether in its time–dependent or time–
independent form, only has an analytical solution for systems with up to two parti-
cles. For larger systems, which in a molecular simulation context implies anything
beyond the hydrogen atom, it is only possible to find approximate numerical solu-
tions based on variational principles, perturbation theory or simplified Hamiltoni-
ans. The number of atoms and nuclei present in most systems of chemical interest
prevent one to obtain even an approximate wave function of the system in a rea-
sonable computational time. In order to turn a molecular system into a manageable
problem, Born and Oppenheimer[85] proposed a factorization of the wave function,
separating the motion of the heavy nuclei from that of the fast and light electrons,
proving through perturbation theory that the approximation was valid in most cir-
cumstances.

A molecular Hamiltonian composed of N nuclei with coordinates ~R and n elec-
trons with coordinates~r can be in general written as:

Ĥ = T̂el(~r) + T̂nuc(~R) + Û(~r, ~R), (2.5)

where T̂el(~r) and T̂nuc(~R) stand for the electronic and nuclear kinetic energy opera-
tors, respectively, and Û(~r, ~R) represents all the electron–electron, nucleus–electron
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and nucleus–nucleus potential energy terms. This last term couples the motion of
electrons and nuclei together. The first step for the factorization of the Hamiltonian
is to set the kinetic energy of the nuclei to zero, thus effectively freezing them at a
given configuration, ~R0. Then, we can define an electronic Hamiltonian, Ĥel(~r; ~R0),
with eigenvalues

{

Vj

}

and eigenfunctions {Φj(~r; ~R)}, which will depend parametri-

cally on the nuclear coordinates, ~R0:

ĤelΦi(~r; ~R0) = ViΦi(~r; ~R0). (2.6)

As these electronic eigenfunctions form a complete basis set (and can be taken as
orthogonal), we use them to represent the full–dimensional wave function:

Ψ(~r, ~R, t) = ∑
j

χj(~R)Φj(~r; ~R), (2.7)

This equation, known as the Born Representation of the wave function, is formally
exact. It can be shown that by substitution of Eq (2.7) in the TDSE, Eq (2.3), after
some rearranging one obtains the equations of motion for the expansion coefficients,
χj(~R):

ih̄
∂χj(~R)

∂t
=
[

T̂nuc(~R) + Vj(~R)
]

χj(~R)− ∑
i

Λjiχi(~R), (2.8)

where the second term of the right–hand side of Eq.(2.8) contains the so–called non-
adiabatic coupling matrix elements:

Λ̂ji = T̂nucδij −
〈

Φi|T̂nuc|Φj

〉

, (2.9)

that couple the different electronic eigenstates. The non-adiabatic coupling matrices,
Λ, are operators on the space spanned by χj(~R), which consist of a matrix represen-
tation of the nuclear KEO onto the electronic basis set, {Φj(~r; ~R)} (hereafter referred
to as the scalar part) and a direct application of this KEO to the unbound functions
(the operator part). If the effect of T̂nuc onto the {Φj(~r; ~R)} set is small and the basis
changes smoothly with ~R, then the adiabatic theorem holds and the non-adiabatic
coupling operator becomes small enough to be safely neglected (See for instance
Ref. [86] for details). Then Eq (2.8) can be simplified to:

ih̄
∂χj(~R)

∂t
=
[

T̂nuc + Vj(~R)
]

χj(~R), (2.10)

which is known as the adiabatic approximation to the nuclear TDSE. The interpretation
of Eq (2.10) can be given in terms of a set of electronic states, Φj, each one provid-
ing with a potential energy surface (PES), Vj(R), onto which a quasi-particle with
coordinates equal to the nuclear coordinates, ~R, evolves. Through this approxima-
tion, the dynamics of a molecular system can be divided in two essential steps: first,
the PES of the system is obtained by solving the electronic Schrödinger equation for
different electronic configurations; then this PES is used to find the solution for the
nuclear Hamiltonian.

It is precisely this separation of the problem into electronic and nuclear degrees
of freedom that allows the treatment of chemically relevant systems. However, the
structure of the Hamiltonians involved in each step is different enough so that the
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methods to solve the respective equations vary vastly, up to the point that each prob-
lem has given rise to different areas in physical chemistry. Generally, the branch
dealing with the electronic Schrödinger equation is known as Electronic Structure or
Quantum Chemistry, while the one facing the nuclear problem goes by the name of
Quantum Dynamics or Molecular Dynamics, depending on whether classical or quan-
tum laws are applied to the particular problem.

A way to illustrate the differences between the electronic and the nuclear prob-
lem is to observe the size of systems that can be treated at each level using state–
of–the–art methods. Nowadays it is straightforward to effectively obtain electronic
energies and states for systems with hundreds of electrons. On the contrary, nowa-
days it is not possible to solve the nuclear Schrödinger equation for that many atoms:
except for particular model systems coupled to bath modes, even the most advanced
methods are limited to the study of some tenths of atoms. The main reason why the
nuclear problem is so much complicated to tackle is the different behavior of the
Potential Energy Operator in Eqs (2.5) and (2.8) (or (2.10)). In case of the electronic
problem, this operator is a sum of rather structureless, electrostatic terms. Due to
this, the solutions to the problem are smooth functions, so that the size of the basis
set needed to represent them accurately is generally small. In contrast, the potential
energy surfaces ruling the nuclear motion are much more complex and introduce
a different amount of correlation between the degrees of freedom, thus resulting
in larger basis sets needed and more complicated equations to be solved. More-
over, while usually only the first few electronic excited states (if any) are relevant
in most chemical contexts, many vibrational and rotational excitations occur at the
nuclear level, and thus a large number of states are involved in molecular processes.
Due to all this, numerical methods which proved effective for solving the electronic
Schrödinger equation are not valid for its nuclear counterpart.

The Born–Oppenheimer approximation, albeit powerful and accurate, rests on
the assumption that the coupling between electronic and nuclear motion is negligi-
ble: electrons "move" so fast that they can instantly adapt to any nuclear configura-
tion. However, in cases where different electronic states become degenerate this is
no longer true: the coupling terms then become strong, and any small change in the
nuclear configuration results in a huge modification of the electronic structure. This
is a relevant issue of molecular dynamics which must be kept in mind when work-
ing with any problem. The treatment of these non–adiabatic systems is still possible
through ab initio direct dynamics approaches[87], and was reviewed by Worth and
Cederbaum[86].

2.2 Representation of the nuclear wave function: discretiza-
tion of the space.

Although the theory of quantum mechanics is developed in an infinite dimensional
Hilbert Space of complex functions, H, the numerical resolution of the differential
equations that describe the dynamics of molecular systems requires a discretization
of the simulation space. This is achieved by the truncation of the complete basis set,
{

φi

}

, to a finite dimension N. Fortunately, this finite–dimensional space can be de-
fined as a subspace of H, thus retaining its mathematical structure and thus the for-
mal definitions of quantum mechanics. One can therefore represent the continuous



12 Chapter 2. Quantum Dynamics

functions, Ψ(x), as a linear combination of the N basis elements,
{

φi

}

N
:

Ψ(x) ≈
N

∑
i=1

aiφi(x). (2.11)

If a basis of delocalized, orthonormal functions is used in the previous Equation,
then one refers to the spectral method3. The truncation can be interpreted as the ef-
fect of an operator, P̂N , which projects the functions from the infinite–dimensional
Hilbert space to the subspace spanned by the basis, so that we have:

P̂NΨ = P̂N

∞

∑
i=1

aiφi =
N

∑
i=1

aiφi = ΨN . (2.12)

With this truncated representation come three main sources of deviation from the
infinite–dimensional solution to a molecular system. First, and most obvious, the
wave functions defined in the N–dimensional subspace of H are only approximation
to the actual functions Ψ. By the variational theorem of time–independent quantum
mechanics[81], we know that the larger the dimension N of the basis set, the better
the approximation to Ψ, and that the more the basis functions φi resemble the actual
solutions of the TISE, the fewer we will need to generate an accurate representation,
ΨN . The second error source comes from the approximate evaluation of operators
in the subspace, which is again directly related to the basis set chosen. As a last
source of error, we have the resolution to the TDSE itself, which is again only exact
in an infinite dimensional Hilbert space. We will deal with this problem in the next
Section, where the approximation to the evolution operator and the Dirac–Frenkel–
McLachlan Variational principle will be presented.

In the first approaches to the quantum resolution of the nuclear Hamiltonian,
which were based on a time–independent formalism, the wave functions were rep-
resented using the spectral method, Eq (2.11), which had been successfully used
for the representation of the electronic wave function: the basis set was constructed
from a set of stationary functions, and the Hamiltonian matrix was diagonalized in
this basis (See Ref. [88] and references therein). In the context of quantum dynamics,
after Light et al.[89], this is also known as the Variational Basis Representation (VBR).
However, the representation of the nuclear Hamiltonian in a spectral basis suffers
from both an efficiency and an accuracy problem which does not appear as starkly
in electronic structure calculations. Even though the kinetic energy operator, T̂, can
be efficiently and accurately computed using derivative relations between orthog-
onal functions[82], the complex shape of the potential energy operator compared
to that of the electronic Hamiltonian makes the evaluation of V̂ in a spectral basis
both numerically demanding and inaccurate. It would be beneficial, both efficiency
and accuracy–wise, to find an alternate representation of the wave function which
minimized the problems with V̂ evaluation. In this section we will review the main
tools to obtain the representation of the wave function and the Hamiltonian in an N–
dimensional space, so that the evaluation of the different matrix elements needed to
perform a quantum dynamics calculation becomes efficient and accurate.

3This method is widely used in Quantum Chemistry, where the basis functions are generally chosen
to be Gaussian or Slater–type orbitals centered at the different atoms of the system (technique known
as Linear Combination of Atomic Orbitals).
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FIGURE 2.1: Scheme showing an orthogonal and a non-orthogonal
projection in 3D. In the first case, the projection affects only the z co-

ordinate, while the latter affects other coordinates too.

2.2.1 Grid representation of the wave function

A grid representation is based on writing a wave function as a set of complex am-
plitudes in discrete points in space, {xg}, so one may write Ψ(x) 7→ Ψ̄(xg). The
main advantage of such an approach, as we will see, is that the representation of
the potential energy matrix becomes diagonal, and it can thus be more efficient than
spectral methods. Once the grid is defined, the amplitudes of the function in the
grid points xg are then related with a spectral basis of functions φi by the expansion
coefficients. These are found by collocation:

Ψ(xg) ≈ Ψ̄N(xg) =
N

∑
i=1

ciφi(xg), (2.13)

which allows one to define a transformation matrix between the grid–represented
function and the spectral basis (the collocation matrix):

Ψ̄ = φc, (2.14)

with Ψ̄g = ψ̄(xg) and matrix elements φig = φi(xg). This is formally equivalent to
projecting the wave function onto the N–point grid:

Ψ̄N(xg) = P̂NΨ(xg) =
N

∑
i=1

ciφi(xg). (2.15)

This representation, using a truncated functional basis only on the gridpoints {xN},
is sometimes named Finite Basis Representation (FBR). Note that the expansion coef-
ficients differ in Eq (2.12) and Eq (2.13), which means that, even though both the
spectral projector and the grid projector map to the same N–dimensional space, the
actual state resulting from the projection will differ, as illustrated in Figure 2.1. The
accuracy of the collocation will critically depend on a choice of the grid points and
on this mapping between the collocation scheme and the spectral basis. One of the
main problems of grid collocations methods is that, since we do not impose any
orthogonality condition, it is possible to have quasi–linear dependencies in the spec-
tral basis related to the grid points, which would lead to singularities in the φ matrix
and therefore numerical inaccuracies.
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The work by McCullough and Wyatt[90] was the first to use a grid representa-
tion of the wavefunction, rather than a VBR, to solve the collinear H2+H reaction in
a time–dependent formalism using a finite difference representation of the evolution
operator (see Section 2.3.2). However, their method was not able to compete with
time–independent formalisms based on spectral representations in terms of accu-
racy and numerical stability[91]. The development of accurate grid representations
allowing accurate, numerically stable, and efficient evaluation of functions and op-
erators came only later, with the development of pseudospectral representations.

The idea behind these methods is to obtain a representation with the benefits of
a collocation scheme (i.e., a better evaluation of the local potential energy operator)
but retaining the structure of a variational spectral basis set (namely, orthonormality
and completeness relations). It can be shown that these properties can be obtained
if the spectral basis set is built from functions obeying the discrete orthogonality
relation:

N

∑
g=1

φm(xg)φn(xg)∆g = δn,m, (2.16)

with ∆g the weight of the gth point. Similarly, by defining Φi(xg) = φi(xg)
√

∆g:

N

∑
g=1

Φm(xg)Φn(xg) = δn,m. (2.17)

In this case, the collocation matrix in Eq (2.14) becomes unitary, and therefore no
numerical problems related with overcompleteness of the basis appear. Moreover,
this unitarity forces another relation, since it implies:

Φ
†
Φ = ΦΦ

† = 1, (2.18)

and therefore:
N

∑
n=1

Φn(xi)Φn(xj) = δi,j. (2.19)

This last equation is an orthogonality relation for the grid points, and allows the
definition of the pseudospectral functions, χ, by using it to unitarily transform the
spectral basis, φ:

N

∑
n=1

φn(x)Φ∗
n(xj) ≡ χj(x). (2.20)

Since the spectral and pseudospectral basis are connected by a unitary transforma-
tion, the mapping to the N–dimensional subspace of H spanned by the

{

φ
}

and {χ}
functions is maintained, and therefore one obtains a collocation scheme equivalent
to a variational basis representation.

The pseudospectral functions behave as δ–functions in the discrete grid points,
since following Eq (2.19) we have:

N

∑
n=1

φn(xi)
√

∆iΦ
∗
n(xj) = δi,j =

√

∆iχj(xi). (2.21)

Furthermore, as expected from their relation to an spectral basis, it can be shown
that they present the analogous completeness and orthogonality relations.

It can also be shown that a pseudospectral basis behaves as a Gaussian quadra-
ture scheme with the grid points

{

xg

}

being the quadrature nodes, and weights
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wj:
∫

w(x) f (x)dx =
N

∑
j=1

wj f (xj), (2.22)

thus allowing the exact evaluation of polynomial integrals of 2N − 1 dimensions
(see Apendix B in Ref. [92] and [82]). It can be shown that the quadrature points and
weights can then be found by diagonalization of the position operator x̂:

I = Φ
† IΦ (2.23)

X = Φ
†Xcol

Φ, (2.24)

with the diagonal elements of Xcol being the collocation points, or by general quadra-
ture theory. The VBR of the Hamiltonian operator in a spectral basis

{

φ
}

is given
by:

H = T + V (2.25)

TVBR
ij =

∫ ∞

−∞
φ∗

i T̂φj dx (2.26)

VVBR
ij =

∫ ∞

−∞
φ∗

i V̂φj dx. (2.27)

The objective of pseudospectral representations is to ease the computation of the
Hamiltonian matrix. This is specially relevant in case of the potential energy op-
erator, because for low–dimensional problems the kinetic energy operator has an
analytic expression in most representations.

The most relevant pseudospectral approaches generally used nowadays in quan-
tum dynamics are the Fourier Method (FM or FFT, from Fast Fourier Transform)
by Kosloff and Kosloff[88, 91] and the Discrete Variable Representation (DVR) by Light
et al.[89]. Now we will briefly review these representations, focusing on 1D real
functions for the sake of clarity. See Refs [89], [91] and Appendix B in Ref. [92] for
a rigorous description of these methods. Chapter 11 in Ref. [82] contains a compre-
hensive review on general pseudospectral methods.

2.2.2 The DVR method

The DVR method is based on using a set of classical orthogonal polynomials, pn(x)
as spectral basis. The first step is to select an adequate basis set of dimension N,
whose elements should ideally resemble as much as possible the solutions of the sys-
tem under study. Then, taking advantage of the quadrature equivalence in Eq. (2.22),
one can compute the position operator matrix, X. This will make it possible to obtain
the transformation matrix Φ and the grid points {xα} by diagonalization. Once these
quadrature points are found, the potential energy operator can be approximated as:

VVBR
ij ≈

N

∑
α

wα pn(xα) = VFBR
ij . (2.28)

The evaluation of Eq. (2.28) is still computationally demanding. However, if the
potential energy operator can be written as an analytic function, then one can write:

V FBR = V(XDVR), (2.29)
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which means that in the DVR the potential energy matrix becomes diagonal, with
elements VDVR

ij = V(XDVR
i )δij. This expression holds because an analytic function

can be locally decomposed as a power series, and for a Hermitian matrix (such as X)
we can write any power of it as:

ΦXn
Φ

† =
(

ΦXΦ
†
)n

=
(

XDVR
)n

. (2.30)

This decomposition is exact only in the limit of an infinite basis set. It can be shown
that the approximation introduced by an incomplete basis is exactly equivalent to
the quadrature approximation in Eq. (2.28)

Although the potential energy matrix becomes easy to compute in the DVR, the
kinetic energy operator has no direct analytic expression in this representation. In-
stead of computing it numerically, it is often beneficial (accuracy and efficiency–
wise) to compute the matrix in the FBR, and then transform the resulting matrix to
the DVR:

TDVR = Φ
†TV BR

Φ. (2.31)

To sum up, the algorithm for the computation of the Hamiltonian matrix through a
DVR scheme is as follows:

1. Compute the position operator matrix in the spectral basis of orthogonal poly-
nomials, and diagonalize it to obtain the DVR functions and grid points.

2. Obtain the potential energy matrix in the DVR by evaluation of the potential
energy function at the grid points.

3. Calculate the kinetic energy matrix in the spectral basis, using analytical rela-
tions for the operators, and transform to the DVR basis with the unitary trans-
form obtained in 1.

4. Obtain the Hamiltonian as a sum of the kinetic and potential energy matrices.

The DVR method was preceded by the Harris–Engerhorn–Gwinn (HEG) method[93],
who represented the operators in the spectral basis instead of using the localized
functions. Even though the DVR does not present relevant advantages over the
HEG method for 1D problems, it allows for an straightforward generalization of the
formalism to non–classical polynomial spectral basis (the so–called improper DVR
method) and to multidimensional grids[89, 94].

2.2.3 The Fast Fourier Transform scheme

The Fourier Method or Fast Fourier Transform (FFT) representation scheme was the first
successful pseudospectral method developed for quantum dynamics. It is based on
the use of exponential functions as a spectral basis set, with a general form:

ei2πkx/L , k = −(N/2 − 1), . . . , N/2, (2.32)

with L = N · ∆x being the length of the interval represented in the coordinate. These
functions present orthonormality and completeness relations similar to those of a
proper DVR, and therefore act also as a collocation scheme. It can be shown that the
grid resulting from a FFT representation is made of equidistant points, and therefore
the weight function is constant.
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The FFT representation also provides with a direct relation between the coordi-
nate and momentum representations of the simulation space, linked by the expres-
sions:

∆k =
2π

L
(2.33)

|kmax| =
π

∆x
(2.34)

which permits a very efficient evaluation of the kinetic energy operator by trans-
forming the wave function onto the momentum domain, where the momentum op-
erator becomes multiplicative instead of differential.

2.3 Time–dependent Quantum Dynamics

As it was pointed out above, both the time–dependent and time–independent for-
malisms of quantum mechanics give an equivalent result in the limit of an infinite
propagation time and a complete basis set, respectively. The suitability of one over
the other will depend mainly on the problem at hand, and on the relevant informa-
tion to be extracted from the calculations. For instance, time–dependent methods
give more emphasis to the cause–effect relation in a chemical process, since we can
actually see how the system evolves with time. However, it might be more diffi-
cult to converge for low–energy processes such as resonances, and in those cases a
time–independent formalism can give more accurate information.

The general scheme for a time–dependent quantum dynamics calculations is as
follows: first, an initial non–stationary state, whose properties will depend on the
specific problem at hand, is constructed and represented in a pseudospectral basis
set. This state will then be propagated in time. The convergence of the calculation
is generally achieved once the propagated wave function abandons any interaction
region of the PES. Finally, the full story of the propagation is analyzed in order to
obtain the required information, for instance process rates or spectroscopic transi-
tions. This formalism of quantum dynamics has a number of features which makes
it very attractive for the study of physical processes, namely its direct call on the
concepts of trajectory and time evolution —which might result in a simpler interpreta-
tion based on intuitive analogies with classical mechanics—, its nature as an initial
value problem —which eases the implementation of new algorithms—, and the pos-
sibility to treat several energies, including discrete and continuum spectra using the
same formalism. However, it only started to become popular in the 80s and 90s due
to several breakthroughs which increased its performance and accuracy, namely the
development of better representation schemes for the wave function and of accu-
rate and efficient propagation schemes. From that point, time–dependent methods
started to rival time–independent ones for certain applications. See Refs [91, 95] for
an overview on the history of these breakthroughs.

This Section is devoted to the main aspects of the time–dependent formalism
which distinguishes it from its time–independent counterpart: the non-stationary
states, wave packets, propagation of wave functions, and the time–dependent Dirac–
Frenkel–McLachlan variational principle.

2.3.1 Stationary vs Non-stationaty states. Wave packets

The relevance of the individual solutions of the TISE, the stationary states, was clear
from the very beginning of quantum mechanics due to their direct relation with
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spectral transitions of atoms and molecules. With suitable boundary conditions,
the eigenstates of a given Hamiltonian can also give information about dynamical
processes, which forms the basis of the Time–independent approach to quantum
molecular dynamics. It can be shown that any stationary state is also a solution
of the TDSE. A particularly important feature of the Hamiltonian’s eigenfunctions
appears if we introduce them in the TDSE: if ψ(x, t) is a solution of the TISE, we can
integrate Eq (2.3) to obtain:

ψ(x, t′) = e−
i
h̄ Ĥψ(x, t) = e−

i
h̄ Eψ(x, t), (2.35)

which, since E is constant, means that a stationary state evolving under the effect
of a time–independent Hamiltonian will remain constant in time, except for a com-
plex phase factor. Therefore, a stationary state is not a suitable function for a time-
dependent formalism, since it will not give any information upon propagation: it
will just remain the same function as that at t = 0. How can we then connect the
time–independent formalism, whose solutions are stationary states, with the time–
dependent view, which requires an evolution of the wave function? The answer lies
in the fact that, even though stationary states are particular solutions of the TDSE,
any linear combination of those functions will also be a solution of the TDSE. These
superposition states do change in time, and are thus called non–stationary states. A
general solution to the TDSE is thus given by a linear combination of all eigenstates
of a system:

Ψ(x, t) =
∞

∑
n=1

cnψn(x)e−
i
h̄ Ent (2.36)

By analogy to an infinite sum of plane waves with well defined energy, this general
superposition state is called a wave packet. It is possible in fact to use the eigenstates
of the free particle, which have a continuous eigenvalue spectrum, to build a wave
packet centered at certain values of position and momentum:

Ψ(x, t) =
∫ ∞

−∞
c(k)e−iEkt/h̄eik(x−x0) dk, (2.37)

where the coefficients c(k) correspond to the Fourier Transform of the wave packet
itself at t = 0:

c(k) =
1

2π

∫ ∞

−∞
Ψ(x, 0)e−i(k−k0)x dx. (2.38)

In the previous equations, k is the wavenumber of the function, a measure of the
number of oscillations of the wave per unit distance which is directly related with
the linear momentum of the particle, p = h̄k.

The coefficients in Eq. (2.37) can be chosen to be any arbitrary function as long as
it obeys Parseval’s theorem:

∫ ∞

−∞

∣

∣c(k)
∣

∣

2 dk =
∫ ∞

−∞

∣

∣Ψ(x, t)
∣

∣

2 dx. (2.39)

Eq. (2.39) is a general expression for magnitudes related by a Fourier Transform, and
it ensures that the functions can be unitarily transformed between the position and
momentum representations. Then, it is straightforward to find that the coefficient
function must obey:

∫ ∞

−∞

∣

∣

∣

√
2πc(k)

∣

∣

∣

2
dk = 1, (2.40)
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in order for the wave function to be normalized at all times. Defining c(k, t) =
c(k)e−iEkt/h̄, one can invert Eq. (2.37), thus obtaining the momentum representation of
the wave packet:

c(k, t) =
1

2π

∫ ∞

−∞
Ψ(x, t)e−i(k−k0)x dx. (2.41)

Wave packets present a series of properties arising from their nature as super-
position states. Among the most important of them appear the phase space local-
ization, the group velocity, and the dispersion of the wave packet. The phase space
localization is a direct consequence of Heisenberg’s Uncertainty principle, which for
the conjugate variables position (x) and momentum (p) reads:

∆x∆p ≥ h̄

2
. (2.42)

From this equation we can see that the less uncertainty we have in momentum, the
more we will have in position and vice versa, which is consistent with the delocal-
ization in space of stationary states (which have a well–defined energy and momen-
tum). Moreover, this means that we can choose to define a wave packet localized in
space by adding different stationary states in Eq. (2.36) (or (2.37)) and thus increas-
ing the uncertainty in momentum. A particularly interesting case appears when the
coefficients of the linear combination, c(k) follow a Gaussian distribution:

c(k) =

(

a2

2π3

)1/4

e−a2(k−k0), (2.43)

with a being a parameter related with the width of the distribution. It can be shown[81,
82] that for these Gaussian wave packets the equality in Eq (2.42) holds, and thus they
are the minimum uncertainty wave packets which can be built. Moreover, for po-
tentials up to quadratic, a Gaussian wave packet will remain as a Gaussian upon
propagation, and according to Ehrenfest’s Theorem, its maximum will follow the
same trajectory as a classical particle. The group and phase velocities of the func-
tions are also well described. All these features make Gaussian wave packets the
most commonly used functions to represent a given particle in quantum dynamics.

Propagation of a wave packet: group and phase velocities, dispersion

Dispersion and group velocity are two concepts originated in wave mechanics. They
are defined from the so–called dispersion relation, i.e. how the angular frequency ω of
a wave depends on the different values of momentum k it contains. For a quantum
free particle, this relation is:

ω(k) =
h̄k2

2m
. (2.44)

The group and phase velocity are then defined respectively as:

vg =
∂ω

∂k
(2.45)

vp =
ω

k
. (2.46)

It can be shown that, for a quantum particle represented by a wave packet, the group
velocity is defined through the time evolution of the center of the wave packet, cor-
responding to the expectation value of x[81, 82]. It can be shown that the velocity of
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the center of the wave packet corresponds to the group velocity, vg:

vg =
dω

dk
=

d〈x〉
dt

=

〈

p
〉

m
. (2.47)

This is an important result, for it shows a correspondence between classical and
quantum mechanics: the center of a wave packet representing a free quantum par-
ticle, moves at the same velocity as a classical particle. Moreover, as in the classical
case, the momentum of the system is a constant of the motion and does not change
in time.

In spite of the correspondence just mentioned, the wave packet still presents
purely quantum phenomena. Since a wave packet is formed from an a priori infinite
sum of plain waves with different k values, and according to Eq. (2.46) each plain
wave has its own phase velocity, it is expected that the profile of the wave packet
changes with time: the components with lower k will move more slowly, while com-
ponents with high k values will move faster. It is the distribution of phase velocities
which gives rise to the phenomenon known as the dispersion of the wave packet,
which is the change in its width as a function of time.

Being an initial value problem, the efficiency of a time–dependent solution to
a problem will depend critically on the shape and properties of the function that
will be propagated at t = 0. Sometimes it will be required that the initial state is
similar to a previously calculated wave function. This is the case in photochemistry
applications, where the excited state is defined as a lower–energy stationary state
times the dipole moment operator. Since the Hamiltonian of the system changes, the
new function will not be an stationary state of the excited state, and therefore will
evolve in time. However, in most other cases the problem requires the description of
free or quasi–free particles, which start being confined to a certain region of space.
Gaussian wave packets might be a suitable choice in these cases. An appropriate
examination of the problem prior to the simulation is critical for the success of any
time–dependent study.

2.3.2 Time evolution of a wave function: propagation operators, varia-
tional principles and equations of motion.

The Time–dependent Schrödinger equation, Eq (2.3), is a first order differential equa-
tion with respect to time and a second order differential equation with respect to
each spacial coordinate. In the previous section we assumed that we knew a com-
plete basis set consisting on the stationary states of the Hamiltonian. Therefore
we could straightforwardly represent any function in this basis set, substitute the
Hamiltonian operator in Eq (2.35) by the corresponding eigenenergies and obtain
the time–evolved wave function from the different amplitudes and scalar products
of the linear combination. However, this spectral propagation cannot be used in practi-
cal problems, since it would imply the diagonalization of the Hamiltonian in order to
obtain its complete eigenstate spectrum, which is extremely expensive and takes us
again to the time–independent framework. Moreover, it would be impossible to do
so in the case of time–dependent Hamiltonians. The propagation of a wave packet
under the action of a general Hamiltonian is formally derived after the definition of
the time evolution operator, Û(t′, t).

The time evolution operator maps the wave function at a time t to itself at a time
t′:

Ψ(x, t′) = Û(t′, t)Ψ(x, t). (2.48)
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For this operator to have a physical meaning, it must fulfill two conditions: norm
conservation, and composition property[96]. The first feature reflects the fact that
the overall probability of finding a particle in space cannot change with time, i.e.:

〈

Ψ(x, t)|Ψ(x, t)
〉

=
〈

Ψ(x, t′)|Ψ(x, t′)
〉

=
〈

Ψ(x, t)|Û†(t′, t)Û(t′, t)|Ψ(x, t)
〉

(2.49)

and is fulfilled whenever U(t′, t) is an unitary operator. The second property is
related with the need that the evolution of a system from a time t1 to a time t3 > t1
must be the same as the evolution from t1 to an intermediate time t2, and a second
evolution from t2 to t3. Mathematically:

Ψ(x, t3) = Û(t3, t1)Ψ(x, t1) = Û(t3, t2)Û(t2, t1)ψ(x, t1). (2.50)

It can be shown that an operator thus defined is directly related to the TDSE[96].
Until now we have not given the time–evolution operator any explicit form. For

time–independent Hamiltonians, it is straightforward to see that it corresponds to
the exponential operator found in Eq (2.35):

Û(t′, t) = e
i
h̄ Ĥ(t′−t). (2.51)

Since Û(t′, t) has the form of an exponential function of the Hamiltonian, it is not
trivial to apply this operator on a wave function. If we discard the possibility to
diagonalize Ĥ there are two distinct approaches to the solution of the TDSE: the
global and the local propagator schemes. These approaches are thoroughly discussed
in several books and reviews (see, for instance, Refs [82], [96] and [95]) and, since
they are not directly used in this thesis, will now be only briefly described.

Global propagators are based on the idea of approximating the evolution opera-
tor as a polynomial expansion of the exponential function. Thus, for a general set of
N interpolating polynomials Pn, we have:

Û(t′, t) = e−
i
h̄ Ĥ(t′−t) ≈

N

∑
n=1

anPn

(

− i

h̄
Ĥ(t′ − t)

)

. (2.52)

The problem is then turned into choosing a set of interpolating polynomials which
minimizes the global representation error, or the error for a given function. How-
ever, they can only be used if the Hamiltonian is time–independent within that time
step. The most prominent examples of global propagators are the Chevysev[97] and
the Short Iterative Lanczos[98] schemes.

Short–time propagators, on the other hand, divide the time evolution operator
into N segments, so that the Hamiltonian operator does not vary in each time inter-
val:

Û(t′, t) =
N−1

∏
n=0

Û
[

(n + 1)∆t, n∆t
]

=
N−1

∏
n=0

e−
i
h̄

ˆH∆t. (2.53)

The approaches based on this representation are the only ones that can be used for
time–dependent Hamiltonians. However, the time step ∆t must always be smaller
than the convergence time step, ∆tc = h̄

Emax
(where Emax is the maximum energy

in the representation grid), otherwise the algorithm becomes extremely unstable or
even meaningless. Among the different short–time propagators, it is worthwhile to
mention the Second Order Differences scheme[99], the Split–operator method[100],
and the integral equation approaches[101]. Global propagators are generally more
efficient than Short–time propagators, because they are numerically stable for larger
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time steps, and also more accurate.

2.3.3 The Dirac-Frenkel-McLachlan Variational Principle

The time–dependent Schrödinger equation, as written in Eq (2.3), cannot be for-
mally solved for more than two particles due to the infinite dimension of the Hilbert
space, just like we cannot find exact eigenvalues and eigenfunctions of the time–
independent Schrödinger equation for such systems. Instead, since we must work
within a N–dimensional subspace of H, which we call M, we will only have approx-
imations to the actual wave function Ψ. Moreover, in this space it is not possible
to obtain the exact time evolution of a wave function, since it might have compo-
nents outside the subspace. All we can do then is to find the equations of motion
(EOM) which yield the optimal time evolution, i.e., that which minimizes the differ-
ence between the approximate wave function, u(t), and the actual wave function,
Ψ(t), when propagated from t to t′ = t + ∆t. In order to solve this problem, a
variational principle needs to be fulfilled. In quantum dynamics this is the Dirac-
Frenkel-McLachlan Variational Principle. Since the derivation of the main compu-
tational tool used during the development of these Thesis, the Multiconfigurational
Time–dependent Hartree approach, is based on this variational principle, here we
will briefly discuss its formula and interpretation, based on Ref. [102].

Suppose an approximation to the exact state of the system (Ψ(t)) in the N–
dimensional subspace M, which we will call u(t). This approximation will be a
linear combination of N basis functions with coefficients λn, and will correspond to
a state vector in M. Suppose also that, for t = 0, the real state of the system lies
within the subspace M, i.e. Ψ(0) = u(0). Our goal is to find a function such that
t 7→ u(t), where the difference between Ψ(t) and u(t) is minimal. This is equivalent
to say that we want to find the variation in the N λn coefficients that yields a final
state the most similar possible to Ψ(t). From the TDSE, we know that the exact time
evolution of the function will be given by:

dΨ

dt
=

1
ih̄

ĤΨ, (2.54)

which due to the initial boundary conditions can be set as:

dΨ

dt
=

1
ih̄

Ĥu. (2.55)

Furthermore, we know that the approximate time evolution, du
dt , will lie in the tan-

gent space of M, TuM. This space is formed by all partial derivatives of u with
respect to the coefficients λn which define its position on M, and therefore contains
all the allowed variations of u. This concept is illustrated in Figure 2.2, from which
is easy to see that the minimum difference between u(t) and Ψ(t) will be obtained
when this difference vector is orthogonal to the tangent space. Mathematically, this
can be put as:

〈

du

∣

∣

∣

∣

du

dt
− 1

ih̄
Ĥu

〉

= 0, (2.56)

i.e., the optimal time evolution of the approximate state, u(t), corresponds to the
orthogonal projection of Ψ(t) onto the tangent space TuM. This is the so–called
Dirac–Frenkel–McLachlan Time–dependent Variational Principle. It can be shown
that this principle conserves both the norm and the energy for a time–independent
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FIGURE 2.2: Representation of a reduced subspace M as a surface
embedded in a 3D space. The tangent space TuM is shown as a sur-
face tangent to the origin point u. The variational principle ensures
the best variation in the reduced space to be the orthogonal projection

of the true variation in the full (3D) space.

Hamiltonian (see Appendix A in Ref [92]). Note also that this principle is local in
time, since it assumes that we know precisely the wave function at t = 0. This is in
general true, since we can choose our initial wave function, but more importantly
after the application of the variational principle we do not have a perfect reference
anymore, and therefore any subsequent application of the variational principle will
be, in this sense, flawed. This means that the results from a global integration of
the equations of motion from a time t1 to t3 will not be the same as the result of
iteratively propagating the function from time t1 to an intermediate time t2, and
then to the final time t3, since the reference function at t2 will not be exact. This is in
general not a relevant issue, but must be kept in mind.

Other variational principles exist in the literature, namely the McLachlan:

δ

∣

∣

∣

∣

∣

∣

∣
θ − ĤΨ

∣

∣

∣

∣

∣

∣

∣

= 0, (2.57)

with θ = iΨ̇, and Lagrange variational principle:

δ
∫ t2

t1

〈

Ψ

∣

∣

∣

∣

dΨ

dt
− 1

ih̄
ĤΨ

〉

dt = 0. (2.58)

However, for complex parameters λn and complex differential functions u it has
been shown that all three variational principles are completely equivalent (see Ref. [92]
and references therein).

In order to derive the equations of motion of a system in a reduced Hilbert space
one must fix the functional form of the Ansatz, and then introduce it into the varia-
tional principle. Thus the differential equations ruling the evolution of the different
functions and coefficients forming it are obtained. An example of this would be
the so-called Standard Propagation method, which is based on the simplest Ansatz: a
sum of products of low–dimensional, time–independent functions, χk. Each one of
the functions represent a single degree of freedom qk of the system, and are usually
chosen as a DVR or FFT set. This method is discussed thoroughly in Ref. [82].
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For a system with f degrees of freedom, the Ansatz reads:

Ψ(q1, . . . , q f ) =
N1

∑
j1=1

. . .
N f

∑
j f =1

cj1,...,j f
(t)

f

∏
k=1

χjk(qk), (2.59)

where Nk is the number of basis functions used to represent the kth DOF, and where
the jth basis function of the kth DOF is labeled by jk. The evolution of the wave
function will be tied to the evolution of time–dependent coefficients of the linear
combination, cj1,...,jk , so we must find the equations of motion for this set. We start
by defining the possible elements of the tangential space, or allowed variations, δΨ,
as the partial derivative of Ψ with respect to the coefficients:

δΨ = ∑
cl1,...,lk

∂Ψ

∂cl1,...,lk

δcl1,...,l f
= ∑

l1,...,l f

f

∏
k=1

χ
(k)
lk
(qk)δcl1,...,l f

. (2.60)

Each one of the terms in the sum represent a component of the tangential space. By
the Dirac–Frenkel–McLachlan Variational Principle, the difference between optimal
variation of the Ansatz, written as:

dΨ

dt
= Ψ̇ = ∑

j1,...,j f

ċj1,...,j f

f

∏
k=1

χ
(k)
lk
(qk), (2.61)

and the actual evolution of the state, given formally by the TDSE, must be orthogonal
to each variation component in Eq. (2.60), i. e. to each term of the sum in that
equation. Substituting Eq. (2.61) and a given l1, . . . , l f term of Eq. (2.60) in the Dirac–
Frenkel–McLachlan Variational Principle, Eq. (2.56), one gets:

〈

f

∏
k=1

χ
(k)
lk
(qk)| ∑

j1,...,j f

ċj1,...,j f

f

∏
k=1

χ
(k)
lk
(qk)−

1
ih̄

Ĥ|Ψ
〉

= 0

which after introducing the Ansatz for Ψ, Eq (2.59) and rearranging becomes:

ih̄

〈

f

∏
k=1

χ
(k)
lk
(qk)| ∑

j1,...,j f

ċj1,...,j f

f

∏
k=1

χ
(k)
lk
(qk)

〉

=

〈

f

∏
k=1

χ
(k)
lk
(qk)|Ĥ|

N1

∑
j1=1

. . .
N f

∑
j f =1

cj1,...,j f
(t)

f

∏
k=1

χjk(qk)

〉

.

(2.62)

Finally, by defining the compound indexes J = j1, . . . , j f and L = l1, . . . , l f and the

configurations χJ = ∏
f
k=1 χ

(k)
jk
(qk), one can write the previous equation as:

ih̄ċL = ∑
J

〈

χL|Ĥ|χJ

〉

cJ , (2.63)

and integrate it with different methods available in order to obtain the evolution of
the coefficients cL as a function of time.

Eq (2.63), although accurate and easy to implement, has a major problem due to
the exponential increase of the basis size with the number of degrees of freedom of
the system: for a f –dimensional problem, considering we use an average number
of N basis functions (or grid points, in a pseudospectral representation), the total
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number of coefficients needed to describe the function will be N f . To put this in
perspective, a 5D wave packet expanded in a grid of 50 points per DOF will require
3.125 · 108 grid points, and storing it will require 5 GB of memory. This makes prob-
lems with more than 6 DOFs too expensive to be practical to solve, even with mod-
ern computers, thus limiting its application to at most 4–atomic systems. In the next
Chapter the MCTDH approach is presented as an approximate, yet very rigorous
and efficient method for propagating wave functions.
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Chapter 3

The Multiconfigurational
Time–dependent Hartree
(MCTDH) approach

In the previous Chapter we reviewed some of the most relevant aspects of Quan-
tum Dynamics as a whole. The actual propagation of wave packets in a finite–
dimensional Hilbert space is not a simple problem: either the exact propagator is too
complex, or the the Dirac–Frenkel–McLachlan Variational Principle yields too many
equations of motion to render a practically solvable problem. This later problem
arises from the exponential increase of the number of coefficients with the number
of degrees of freedom, a phenomenon which is known as the exponential wall and lies
at the core of the limitation of the size of systems treatable by quantum dynamics. In
this Chapter we will present the Multiconfigurational Time–dependent Hartree ap-
proach, developed in the early 90s by Meyer et al., an approach to the solution of the
TDSE based on an particular choice of the Ansatz. This method and its variants are
arguably the best algorithms currently available for efficiently and accurately prop-
agating wave packets, and have been the main simulation tool used in the research
undergone during this Thesis.

In the first part of this Chapter a precursor of the MCTDH approach, the Time–
dependent Hartree (TDH) method by McLachlan and Ba[104], will be briefly pre-
sented. It was the first method to use time–dependent basis functions, and the start-
ing point of more sophisticated algorithms. The description of the MTCDH method
itself will follow in Section 3.2, containing an overview of the most relevant achieve-
ments and mathematical aspects and including short introductions to the most pop-
ular post–MCTDH approaches: the Multilayer MCTDH scheme (ML–MCTDH) and
the State averaged MCTDH approach (SA–MCTDH). Finally, the algorithms for two
relevant applications of the method, namely the calculation of correlation functions
and eigenstates, will be presented. For simplicity, atomic units are used throughout
this Chapter.

3.1 The Time–Dependent Hartree approach

The so–called Standard Propagation Method, presented in previous Chapter, is a
straightforward application of the Dirac–Frenkel–McLachlan Variational Principle
to an expansion in a time–independent basis set. Its main problem, as already dis-
cussed, lies in the fact that a large number of basis functions per DOF are needed
in order to correctly describe a chemical system, which together with the exponen-
tial scaling law for the number of coefficients and coupled linear equations makes
problems with more than 4 DOFs impractical to solve.
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One way to overcome the size problem is to use a time–dependent basis set. The
functions of such a set would be able to evolve and adapt to the wave function, thus
providing an optimal basis at each time step. This property thus implies that a small
number of elements will be needed to describe each DOF of the system. This is the
idea behind the Time–dependent Hartee (TDH) approach, developed by McLachlan
in 1964[104]. This method uses the simplest Ansatz for a system with f degrees of
freedom, which reads:

Ψ(q1, ..., q f , t) = a(t)
f

∏
k=1

ϕ(k)(qk, t), (3.1)

i.e. just a single Hartree product of f time–dependent 1D functions, called the Single
Particle Functions (SPFs), ϕ(k)(qk).

Eq. (3.1) is fundamentally ill–defined, since any norm or phase variation in any
SPF can be compensated by an inverse change in any other SPF:

ϕ1 ϕ2 =
(

ϕ1λ
)

(

ϕ2

λ

)

. (3.2)

In order to correct this inconsistent definition of the wave function, one multiplies
each SPF by an arbitrary complex factor α, and gathers all these terms in a redundant
time–dependent quantity, a(t). It can be seen that, with the addition of this term,
non–redundant equations of motion are obtained by defining the constraint:

i
〈

ϕ(k)|ϕ̇(k)
〉

= g(k)(t), (3.3)

with g(k)(t) being any real number. The final value of the constraint will be chosen
in order to get the better equations of motion for the system.

In order to derive the equations of motion for the TDH approach, one starts by
defining the allowed variations, δΨ, which are the elements of the tangential space:

δΨ(q1, . . . , q f , t) =δa(t)
f

∏
k=1

ϕ(k)(qk) +
f

∑
k=1

a(t)δϕ(k)(qk)
f

∏
v=1
v 6=k

ϕ(v)(qv)

= δa(t)Φ +
f

∑
k=1

a(t)δϕ(k)(qk)Φ
(k),

(3.4)

where we have defined the configuration:

Φ =
f

∏
k=1

ϕ(k)(qk, t), (3.5)

and the single–hole function:

Φ(k) =
f

∏
j=1
j 6=k

ϕ
(k)
j , (3.6)

so that:
Φ = Φ(k)ϕ(k). (3.7)
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The time derivative of the Ansatz becomes:

Ψ̇ = ˙a(t)Φ + a(t)
f

∑
k=1

ϕ̇(k)(qk)Φ
(k). (3.8)

Introducing Eqs (3.4) and (3.8) into the Dirac–Frenkel–McLachlan Variational Princi-
ple, Eq (2.56), and taking into account that each variation is independent of the rest,
after some manipulations the equation of motion for the coefficient a(t) becomes:

iȧ = a



E −
f

∑
k=1

g(k)



 , (3.9)

where the expectation value of the energy is defined as
〈

Φ|Ĥ|Φ
〉

= E, and a sepa-
rate EOM for the time evolution of each SPF:

i ˙ϕ(k) =
(

H(k) − E + g(k)
)

ϕ(k), (3.10)

where H(k) denotes the mean–field operator:
〈

Φ(k)|Ĥ|Φ(k)
〉

. (3.11)

Note that the TDH scheme has turned the resolution of a single f–dimensional dif-
ferential equation to the solution of f one–dimensional differential equations. The
choice of constraints will not affect to the actual solution of the problem, but might
be important for the sake of efficiency and numerical stability, and even for interpre-
tation purposes. See Ref. [92] for details on the choice of constraints.

3.1.1 Validity of the TDH approximation

The simple form of the TDH Ansatz is at the same level of theory as the successful
and ubiquitous Self–consistent Field methods used in Electronic Structure Theory.
However, the results yielded by the TDH approach are in general much more in-
accurate than the electronic counterparts. This can be understood in terms of the
correlation between the different degrees of freedom in the electronic and the nu-
clear cases.

It can be shown[92, 105] that the TDH approximation becomes exact in case of a
separable Hamiltonian. The error in the approximation is therefore directly related
with the coupling between the different degrees of freedom. In case of electronic
Hamiltonians, the coupling appears in the electron–electron repulsion term, and this
electronic correlation cannot be correctly described with a direct product Ansatz.
The resulting error, even though relevant, is small when compared with the rest of
the terms. Conversely, in a nuclear Hamiltonian the structure of the PES generates
strong couplings between the different degrees of freedom, and the correlation energy,
i. e. the difference between the actual energy of the system and the one obtained with
the TDH approach, is comparatively much larger.
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3.2 The Multiconfigurational Time–dependent Hartree approach

The last part of the discussion on the TDH method showed that its main source of
error lies in its inability to describe correlation between different degrees of free-
dom. As in the case of electronic structure wave functions, an straightforward way
to include the correlation between the different DOFs in the system is to increase the
flexibility of the wave function by adding more configurations to it. Some attempts
based on this idea were made in the late 80s, but proved unsuccessful due to the dif-
ficulty to solve the resulting equations of motion. It was not until 1990 that Meyer,
Manthe and Cederbaum proposed a new method based on what could be called a
weighted configurations Ansatz: the Multiconfigurational Time–dependent Hartree
(MCTDH) approach. This method has proved to succeed in many areas of physics
and chemistry due to both its efficiency, which allows the simulation of systems
with tens of degrees of freedom, and its accuracy. The first relevant application of
the MCTDH algorithm treated the photodissociation of NOCl[106], and represented
a breakthrough in the molecular dynamics community. Later, the method was used
to accurately compute the photo–absorption spectrum of pyrazine using a realistic
24–D vibronic coupling Hamiltonian[107]. Many more spectra have been computed
in the last years, including photo–ionization and photo–detachment, showing out-
standing results (see Ref [108] and references therein). Studies of system–bath mod-
els with more than 100 DOFs are possible[109–111]. Reactivity studies combining
flux–correlation functions methods and the MCTDH propagation scheme have also
been extremely successful, breaking the barrier of 4–atoms systems in 2000 with the
full–dimensional calculation of the reaction rate for the CH4 + H −−→ CH3 + H2
and the CH4 + O −−→ CH3 + OH systems[112] . Nowadays, state–resolved reactiv-
ity information can also be obtained using the MCTDH method[113–117]. The com-
putation of nuclear eigenstates has also been achieved within the MCTDH frame-
work, through different imaginary time propagation and diagonalization techniques
which have been used to compute the vibrational spectrum of the protonated water
dimer[118, 119] and tunneling splitting of malonaldehyde[120, 121].

In the last years some extensions of the MCTDH method have been developed
to deal with indistinguishable particles (the MCTDHB and MCTDHF for bosons
and fermions, respectively, reviewed in Ref.[105] and references therein). Moreover,
the numerical efficiency of algorithm was increased through the the latter devel-
opment of the Multilayer MCTDH (ML–MCTDH) [122, 123], which has allowed to
treat even larger problems, performing calculations on model systems with up to
1000 correlated degrees of freedom. Finally, the State-Average MCTDH variation
(SA–MCTDH) has further increased the capabilities of the method by allowing the
simultaneous propagation of several wave packets without a significant increase of
the computational effort, which eases the calculation of eigenstates of different op-
erators, including the Hamiltonian and the Thermal Flux Operator[124]. Combined
with the ML–MCTDH approach, it has allowed the exact calculation of tunneling
splitting for ground and excited vibrational states of the malonaldehyde molecule
with 21 DOFs[125].

In this section we will review the MCTDH equations of motion and discuss some
of the particularities of the method, such as the Hamiltonian representation and the
particular integration scheme used, known as the Constant Mean–field integrator[126,
127]. The ML–MCTDH and SA–MCTDH variations will also be briefly outlined. For
a complete derivation of the methods and most relevant applications, see previous
comprehensive reviews given in Refs [92, 108, 128].
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3.2.1 The MCTDH Ansatz

The MCTDH approach relies in what is called a double–layer representation of the
wave packet: the wave function is given as a linear combination of Hartree products
of orthonormal, time–dependent low–dimensional (generally 1D) functions. The
functional form of the wave function then reads:

Ψ(q1, . . . , q f , t) =
n1

∑
j1=1

· · ·
n f

∑
j f =1

Aj1 ...j f
(t)

f

∏
k=1

ϕ
(k)
jk
(qk, t). (3.12)

As in the case of the TDH, these are called Single–particle Functions (SPFs), and
their time–dependency permits to significantly decrease the number of basis func-
tions needed to represent Ψ when compared to the standard propagation method,
Eq. (2.59). In the MCTDH approach, a second layer is needed in order to prop-
erly represent the SPFs. This primitive basis set,

{

χ
(k)
l

}

, onto which the SPFs are
expanded, is time–independent, and is generally constructed from pseudospectral
methods such as DVR or FFT:

ϕ
(k)
j (qk, t) =

Nk

∑
l=1

a
(k)
lj
(t)χ

(k)
l (qk). (3.13)

The primitive basis must span all the simulation space (as in the case of the standard
propagation method), but still the number of coefficients needed to define the wave
function is much lower than in the single–layer representation. It is clear now from
the previous Chapter that the number of coefficients needed to describe a wave func-
tion in a time–independent basis is N f , with N the number of basis elements and f
the number of DOFs. However, consider that we use the MCTDH Ansatz and intro-
duce a layer of n time–dependent SPF to represent each DOF. Then, we will have n f

Hartree products (i.e. n f A coefficients), plus N primitive basis elements per DOF
and SPF. The final number of coefficients then is n f + f · n · N for the MCTDH repre-
sentation1. Even though there is still an exponential scaling, the basis of this scaling
law is n rather than N, and therefore much larger problems can be treated. Follow-
ing the example in the previous Chapter, a 5D system using 50 grid points per DOF,
in a MCTDH representation with 5 SPFs describing each coordinate would be de-
scribed by 4375 coefficients, which can be stored in just 68 kB (compared with the
5 GB needed in the Standard method).

As mentioned during the discussion of the TDH approach, for a separable sys-
tem just a single Hartree product would suffice to exactly represent the motion of a
wave packet (in the finite–dimension Hilbert space). Keeping this in mind, one can
establish a correspondence between the double–layer representation and the sepa-
rability of the system in correlated and uncorrelated parts: the a

(k)
lj
(t) coefficients in

Eq. (3.13) evolve according to the separable contributions of Ĥ, so that the SPFs are
an optimal basis set at each time step. In a similar fashion, the Aj1,...,j f

(t) vector of
Eq. (3.12) contains the information about the correlation between different DOFs of
the system, and is ruled by the non–separable terms of the Hamiltonian.

1It should be noted that this expression considers that the SPFs are 1–dimensional. The use of
multidimensional SPFs, termed mode combination, will be discussed when presenting the ML–MCTDH
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3.2.2 The MCTDH Equations of Motion

Similarly to the case of the TDH method discussed previously, the description of
the SPFs in the Ansatz of the MCTDH approach is not unique: one can perform
an unitary transformation of the basis in a given DOF, and this rotation would be
compensated by an inverse transform on the expansion coefficients, Aj1,...,j f

. In order
to remove this inconsistency in the definition, a constraint or gauge condition must
be added to the equations. Just as the scalar product i

〈

ϕ|ϕ̇
〉

was fixed in the TDH
approach case, here the constraint chosen will be:

i
〈

ϕ
(k)
l |ϕ̇(k)

j

〉

=
〈

ϕ
(k)
l |ĝ(k)|ϕ(k)

j

〉

, (3.14)

with ĝ(k) an arbitrary hermitian operator. It can be shown that the hermiticity of
the constraint operator maintains the orthonormality of the SPFs basis set. Once the
constraint has been established, one needs to compute the elements of the tangent
space in order to use the Dirac–Frenkel–McLachlan variational principle, Eq. (2.56).
Before this, however, it is convenient to rewrite the MCTDH Ansatz, Eq. (3.12), as:

Ψ(q1, . . . , q f , t) =
n1

∑
j1=1

· · ·
n f

∑
j f =1

Aj1 ...j f
(t)

f

∏
k=1

ϕ
(k)
jk
(qk, t)

=∑
J

AJΦJ ,
(3.15)

where we have defined the composite index, J = j1, . . . , j f , and the configurations,

ΦJ = ∏
f
k=1 ϕ

(k)
jk
(qk, t). With these new nomenclature, the variation with respect to

the AJ vector becomes simply the Jth configuration:

∂Ψ

∂AJ
= ΦJ · δAJ . (3.16)

On the other hand, the variation with respect to a given SPF ϕ
(k)
l will be given by the

expression:

∂Ψ

∂ϕ
(k)
j

=δϕ
(k)
j

n1

∑
j1

· · · ∑
jk−1

∑
jk+1

· · ·∑
j f

Aj1,...,jk−1,l,jk+1,...,j f

f

∏
v=1
v 6=k

ϕ
(v)
jv

= δϕ
(k)
j ∑

Jk

AJk
l
ΦJk

= δϕ
(k)
j Ψ

(k)
l ,

(3.17)

where one introduces the composite indexes Jk = j1, . . . , jk−1, jk+1, . . . , j f and Jk
l =

j1, . . . , jk−1, l, jk+1, . . . , j f , and the single–hole function, Ψ
(k)
jk

. This last quantity, ob-

tained from removing the jkth SPF of the kth DOF, ϕ
(k)
jk

, from the total wave function,
allows for the elegant definition of the mean field operators as:

〈A〉(k)jm =
〈

Ψ
(k)
j |Â|Ψ(k)

m

〉

. (3.18)

Note that, in contrast to the TDH approach, now the mean field for each DOF is a
nk × nk matrix, where nk is the number of SPFs used to describe the kth coordinate.
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Another important quantity defined from the single–hole functions is the density
matrix, ρ(k), whose elements read:

ρ
(k)
jm =

〈

Ψ
(k)
j |Ψ(k)

m

〉

. (3.19)

With these new definitions, and knowing that the time derivative of the wave packet
will be:

Ψ̇ = ∑
J

ȦJΦJ +
f

∑
k=1

nk

∑
j=1

ϕ̇
(k)
j Ψ

(k)
j , (3.20)

we are ready to apply the Dirac–Frenkel–McLachlan Variational Principle. The equa-
tion of motion for the coefficient vector is then:

iȦJ = ∑
L

AL

〈

ΦJ |Ĥ|ΦL

〉

−
f

∑
k=1

nk

∑
l=1

g
(k)
jk l , (3.21)

and for the SPFs we have:

iϕ̇
(k)
m = ĝ(k)ϕ

(k)
m +

nk

∑
j,l

(

ρ(k)
)−1

mj

(

1 − P̂(k)
)

〈H〉jl ϕ
(k)
l , (3.22)

where a projector onto the SPFs basis, P̂(k) = ∑
nk
j=1

∣

∣

∣
ϕ
(k)
j

〉 〈

ϕ
(k)
j

∣

∣

∣
, is defined. Equa-

tions (3.21) and (3.22) are the standard equations of motion of the MCTDH approach.
Again, an f –order differential equation is turned into a set of f + 1 first order, cou-
pled differential equations. However, prior to have them in working form, there are
two issues to be dealt with: the choice of the constraint operator, and the regulariza-
tion of the density matrix.

Since the constraint operator is chosen to be hermitian, the space spanned by the
wave function will be the same regardless of the choice: gk merely distributes the
amount of time evolution described by the A coefficients and in the SPFs. The two
most usual choices for the constraint operator are:

• g(k) = 0: With this choice, the evolution of the SPFs is minimized, and the
EOM become:

iȦJ = ∑
L

〈

ΦJ |Ĥ|ΦL

〉

, (3.23)

iϕ̇(k) =
(

1 − P̂
) (

ρ(k)
)−1

〈H〉(k) ϕ(k) (3.24)

• g(k) = ĥ(k), with ĥ(k) the separable part of the Hamiltonian in the kth DOF.
This choice includes the uncorrelated motion of the SPFs as rotations.

iȦJ =∑
L

〈

ΦJ |ĤR|ΦL

〉

, (3.25)

iϕ̇(k) =

[

h(k)1nx +
(

1 − P̂
) (

ρ(k)
)−1

〈HR〉(k)
]

ϕ(k), (3.26)

with ĤR being the non–separable part of Ĥ.

As in the case of the TDH approach, the constraints do not affect to the final result
of the propagation, but the overall efficiency might be affected. For instance, the
Constant Mean–field integrator generally used in most MCTDH calculations benefits
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from setting the constraint operator to 0. Other integrators work better with the
second choice of constraints.

The presence of the inverse of ρk in the EOM of the MCTDH approach is a crit-
ically important point. The eigenvalues and eigenvectors of the density matrix,
known as the natural populations and natural SPFs respectively, form a unique rep-
resentation of the wave function of a given system which is not affected by the con-
straint operators ĝ(k) or the initial set of SPFs chosen. Moreover, the natural popula-
tions give the contribution of each natural SPF to the particular state of the system.
Since the SPFs and the natural SPFs span the same variational space, the natural
populations can be used as a convergence criterion: if the last natural SPF has a pop-
ulation near to 0, we are correctly sampling the variational space and therefore the
calculation is converging satisfactorily. However, this introduces some kind of para-
dox: the population of a natural SPF is required to be nearly 0 for good convergence,
but this implies that there are quasi–linear dependencies in the SPF basis set, which
would lead to a singular and non–invertible single density matrix. This problem has
been generally overcome by regularizing the density matrix:

ρ̃(k) = ρ(k) + ǫe−ρ(k)/ǫ, (3.27)

with ǫ ranging between 10−6 and 10−12. Recently, however, Manthe showed that
with a convenient choice of unoccupied SPFs it could be possible to obtain an in-
vertible single density matrix even with an overcomplete basis set[129].

3.2.3 Hamiltonian representation: Kinetic and Potential Energy Opera-
tors

The numerical efficiency of the MCTDH method depends most critically on the
evaluation of the several matrices appearing in the equations of motion for the A–
coefficients, Eqs (3.23) and (3.25), and the Single–Particle Functions, Eqs (3.24) and
(3.26), namely the mean–field operators and the Hamiltonian action onto the differ-
ent configurations. For general non–separable Hamiltonians, the evaluation of the
different matrix elements in these objects would require the explicit calculation of
multidimensional integrals in the primitive basis set, which is specially problematic
for the potential energy matrix elements:

〈

ϕ1
i1
· · · ϕ

f
i f
|V̂|ϕ1

j1
· · · ϕ

f
j f

〉

=

= ∑
k1,...,k f

a
(1)∗
k1...kd1

,i1
· · · a

( f )∗
k f−dp+1...k f ,i f

a
(1)
k1...kd1

,j1
. . . a

( f )
k f−dp+1...k f ,j f

V(q
(1)
k1

, . . . , q
( f )
k f

)
(3.28)

which would take the same effort as the standard propagation method. These mul-
tidimensional integrals can be avoided if the Hamiltonian is written as a sum of
products of operators, each of them acting on a single DOF:

Ĥ =
ns

∑
r=1

f

∏
k=1

ĥ
(k)
r . (3.29)

With Eq. (3.29), the evaluation of the matrix elements becomes a product of one–
dimensional integrals:

〈

ϕ
(1)
j1

· · · ϕ
( f )
j f

|Ĥ|ϕ(1)
j1

· · · ϕ
(1)
j f

〉

=
ns

∑
r=1

cr

〈

ϕ
(1)
k1
|ĥ(1)|ϕ( f )

k1

〉

· · ·
〈

ϕ
( f )
k f

|ĥ( f )|ϕ( f )
k f

〉

, (3.30)
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each of which can be efficiently evaluated in the primitive grid of pseudospectral
functions. Being clear that a Hamiltonian factorized as a sum of products of 1D
operators presents numerical advantages, the question stands to whether general
Hamiltonians can be written in such a form.

The product form representation of a kinetic energy operator is always achiev-
able since the introduction of the polyspherical approach developed by Gatti and
coworkers, reviewed in Ref. [130]. The potential energy operator, on the other hand,
is not generally available as a sum of products, since it is usually obtained from the
fitting of ab initio electronic structure calculations to general functions which are not
in the desired form. There are currently two approaches to solving this issue: us-
ing the potfit algorithm to convert a general PES into product form, or employing
the Correlation Discrete Variable Representation (CDVR) to compute potential energy
matrix elements directly on the grid of SPFs without resorting to the primitive grid.

The potfit algorithm was initially developed by Jäckle and Meyer[131]. It aims at
fitting any PES into a product form equivalent to that of the MCTDH wave function.
In order to do so, one computes the potential density matrices, ρ

(k)
nm:

ρ
(k)
nm =

N1

∑
i1

· · ·
Nk−1

∑
ik−1

Nk+1

∑
ik+1

· · ·
N f

∑
i f

Vi1...ik−1nik+1...i f
Vi1 ...ik−1mik+1...i f

=

=∑
Ik

V
(k)

Ik
n

V
(k)

Ik
m

,

(3.31)

with Ik defined as the composite index containing the indexes of the primitive basis
set elements in all but the kth DOF. The diagonalization of these matrices yields a set
of Nk eigenvectors, known as natural potentials, vi1 j1 and their respective weights for
each DOF. The potential energy function then can be written as a linear combination
of direct products of the natural potentials:

VI = Vi1,...,i f
=

N1

∑
j1

· · ·
N f

∑
j f

Cj1 ...j f
v
(1)
i1 j1

· · · v
( f )
i f j f

= ∑
J

CJ

f

∏
k=1

v
( f )
I J (q

(k)
ik
). (3.32)

If all Nk natural potentials are used for the representation of the potential, no approx-
imation is made and Eq. (3.32) is exact. However, its computation still requires the
same number of operations as the direct computation in the grid. In order to obtain
a computational advantage, the number of natural potentials used to represent each
DOF is truncated, so that the potential representation becomes approximate but its
evaluation much more efficient. The original potfit algorithm is limited to roughly
6 or 7 DOFs, since it needs to store the whole potential energy function evaluated
at each grid point in order to retrieve the natural potentials. More recently a new
algorithm that uses a coarse grid approach to obtain the natural potentials in a more
efficient way, the Multigrid potfit, has been developed by Peláez and Meyer[132].
This new algorithm expands the applicability of the representation to 12 DOFs, since
the number of PES evaluations scales linearly with the number of grid points.

The approach used in the CDVR method is entirely different: instead of fitting
the potential energy to an approximate sum of products form, the grid representa-
tion schemes explained in Section 2.2 are used to construct a time–dependent grid
onto which the potential energy operator is evaluated. In order to do so, the SPFs
(time–dependent) are used as a spectral basis, and by diagonalization of the coor-
dinate operator matrix at each time step one obtains the pseudo spectral localized
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functions ξ(qk) and grid points gk, analogously to Eq (2.24):

Xk = ξkQcol
k xik , (3.33)

where Xij;k =
〈

ϕ
(k)
i |x̂k|ϕ(k)

j

〉

, and the diagonal elements of Qcol
k are the time–dependent

grid points
{

gk

}

.
In the original formulation of the CDVR, the Time–dependent DVR (TDDVR)

presented in annex of Ref [106], the potential energy matrix was directly evaluated
as a function of the diagonal grid–points matrix, so that one obtained:

〈

ξ j1 · · · ξ j f
|V̂(q1, . . . , q f )|ξl1 · · · ξl f

〉

≈ V(gj1 , . . . , gj f
)δj1l1 · · · δj f l f

, (3.34)

and for the mean–field:
〈

ξ j1 · · · ξ jk−1 ξ jk+1 · · · ξ jk |V̂(q1, . . . , q f )|ξl1 · · · ξlk−1 ξlk+1 · · · ξl f

〉

≈ V(gj1 , . . . , g
(k−1)
jk1 , qk, g

(k+1)
jk+1 , . . . , g

( f )
j f

)δj1l1 · · · δjk−1lk−1 δjk+1lk+1 · · · δj f l f

(3.35)

The similarity with the usual DVR scheme would seem to indicate that the TDDVR
could give accurate results for the evaluation of the potential in the SPF basis. This
is however not the case, since this approach has a critical problem deriving from the
nature of the basis set used to define the time–dependent grid. This is clearly seen
by choosing a separable Hamiltonian, which can be perfectly described by a single
Hartree product, i.e. with just a single SPF in each DOF. If we compare the exact
evaluation of V̂ in this case:

〈

ϕ(1) · · · ϕ(k)|V|ϕ(1) · · · ϕ(k)
〉

=
〈

ϕ(1)|V1|ϕ(1)
〉

+ · · ·+
〈

ϕ( f )|Vf |ϕ( f )
〉 (3.36)

with the TDDVR representation:

〈

ϕ(1) · · · ϕ(k)|V|ϕ(1) · · · ϕ(k)
〉

≈ V1

(

〈

ϕ(1)|q1|ϕ(1)
〉

)

+ · · ·+ Vf

(

〈

ϕ( f )|q f |ϕ( f )
〉

)

,

(3.37)
it is clearly seen that the approximation is inaccurate. The underlying reason for this
is that the size of the SPFs basis depends only on the amount of correlation in the
different coordinates. Therefore, the basis obtained through a TDDVR scheme is too
small to be able to take into account all the information of the separable portions
of the potential: it only catches the correlation between the DOFs. In order to be
able to correctly describe a separable potential, the quadrature scheme in Eq. (3.34)
is modified to obtain the CDVR:

〈

ξ j1 · · · ξ j1 |V̂(q1, . . . , q f )|ξl1 · · · ξl1

〉

≈ V(gj1 , . . . , gj f
)δj1l1 · · · δj f l f

+

+
f

∑
k=1

〈

ξ
(k)
jk
|∆V(gj1 , . . . , g

(k−1)
jk1 , qk, g

(k+1)
jk+1 , . . . , g

( f )
j f

|ξ(k)lk

〉

×δj1l1 · · · δjk−1lk−1 δjk+1lk+1 · · · δj f l f
,

(3.38)
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FIGURE 3.1: Scheme of the CDVR approach for two degrees of free-
dom (solid and dashed lines, respectively): coarse grid represents the
SPFs collocation points, fine grid represents the primitive basis. Po-

tential evaluations are made at the grey points.

with the correction term defined as:
〈

ξ
(k)
jk
|∆V(gj1 , . . . , g

(k−1)
jk1 , qk, g

(k+1)
jk+1 , . . . , g

( f )
j f

|ξ(k)lk

〉

=

=
〈

ξ
(k)
jk
|V(gj1 , . . . , g

(k−1)
jk1 , qk, g

(k+1)
jk+1 , . . . , g

( f )
j f

)|ξ(k)lk

〉

−

−V
(

g1
j1

, . . . , g
( f )
j f

)

δjk lk .

(3.39)

This modified expression can be visualized by considering that the SPF basis gen-
erates a coarse, time–dependent grid, and the primitive basis a fine, fix one. The
evaluation of the potential energy operator is then made at the points of the coarse
grid, but corrected with evaluations in the intersections between the fine and the
coarse grid. This is represented in Figure 3.1 for a 2D problem with different num-
ber of primitive and SPFs basis sets in each one. It is important to note that the
CDVR scheme does not increase the numerical effort with respect to the simpler TD-
DVR, since the correction terms have to be computed in either case to evaluate the
mean–field potentials. However, it has two important issues that must be taken into
account. First, the evaluation of the mean–field potential matrices within the CDVR
scheme is usually the bottleneck of the calculation, taking up to 90% of the total com-
putation time[106]. Secondly, it is not possible to improve the quadrature scheme by
arbitrarily adding SPFs to the basis set. This is so because an overcomplete SPFs
basis, with some functions very poorly populated, will generate grid points in ir-
relevant areas of the simulation space, thus worsening the quadrature rather than
improving it. However, the trade–off between its problems and the capability of
using any PES in the MCTDH scheme is generally favorable.
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3.3 Beyond the MCTDH method

The success and popularity of the original MCTDH method propitiated the further
development of the algorithm in order to overcome some of its limitations and make
it suitable for different kind of systems. Probably the most important contribution
in this regard is the Multi–layer (ML) MCTDH approach developed by Wang and
Thoss[122], due to its success in breaking the exponential scaling up to a certain
point, thus allowing the study of systems with dozens or more degrees of freedom.
A second variant, which has been extensively used in this work, is the State–averaged
(SA) MCTDH method by Manthe[124], which greatly simplifies the computation of
eigenvalues of the Hamiltonian and the flux operators, and therefore is more suited
for the study of dynamics of complex systems.

3.3.1 The Multi–layer MCTDH approach

As it was already discussed, the main advantage of the MCTDH approach over the
standard wave packet method is that the double–layer representation decreases the

number of coefficients by a factor of roughly
(

n
N

) f
. However, the method still scales

exponentially as n f + Nn f . For problems with a large number of degrees of freedom,
the first term clearly dominates the effort, so a first step for increasing the numerical
efficiency is to try to reduce f by using multidimensional coordinates (Q) instead
of the one–dimensional coordinates (q). These new coordinates are termed logical
coordinates or particles, so that we have for instance Q1 = (q1, q2). This is known as
mode–combination.

In order to represent the multidimensional SPFs, one could use a multidimen-
sional primitive grid, so that the number of DOFs is reduced, but at the cost of
requiring the evaluation of multidimensional integrals to obtain the potential ma-
trix elements. The cost of this operation will scale exponentially with the number of
modes combined in a SPF, so that in the case of combining up to 4 or 5 coordinates in
a single DOF the effort for evaluating the matrix elements for that SPF becomes com-
parable with the number of coefficients in the upper layer. This rends this approach
unusable for high–dimensional problems.

Nevertheless, there is an alternative to the direct representation of multidimen-
sional SPFs in a multidimensional primitive grid: to represent them in a basis of
time–dependent, one–dimensional functions, just as the total wave function is rep-
resented in the regular MCTDH Ansatz. This is the idea of the Multi layer–MCTDH
approach: to recursively represent high dimensional SPFs in basis sets of lower–
dimensional SPFs, so that one has an additional representation layer. Suppose that
the kth DOF of an MCTDH wave function is represented by a set of nk dk–dimensional
SPFs, ϕ(1,k). The total wave function will then read:

Ψ(Q1, . . . , Qp, t) =
n1

∑
j1=1

· · ·
np

∑
jp=1

A1
j1...jp

(t)
p

∏
k=1

ϕ1;k
jk
(Qk, t), (3.40)

and the mth multidimensional SPF in the kth DOF becomes, in the ML–MCTDH
approach:

ϕ1;k
m (Qk, t) =

ñαk+1

∑
j1=1

· · ·
nαk+dk

∑
jdk

=1
A2,k

m;j1...jdk

(t)
dk

∏
λ=1

ϕ2;k,λ
jλ

(qαk+λ, t). (3.41)
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FIGURE 3.2: Schematic representation of different wave function
structures: the standard representation (a), the MCTDH wave func-
tion (b), the mode–combination form (c) and the ML–MCTDH

scheme (d).

This second–layer SPFs, ϕ2;k,λ
jλ

, can then be represented in a third SPF layer, ϕ3;k,λ
jλ

, or,

if their dimensionality is low enough, in the final primitive grid χ3;k,λ
jλ

. The different
structures of the representation of a wave function discussed up to now are repre-
sented schematically in Figure 3.2: the standard wave packet representation (panel
a), the MCTDH method (panel b), the mode combination scheme (panel a), and the
ML–MCTDH approach (panel d). In the schemes shown in this Figure, a f 1D prim-
itive basis of Nk elements are connected to p sets of nk′ SPFs (black dots). It is then
easy to visualize the addition of layers from the standard wave function represen-
tation to the ML–MCTDH approach. Mathematically, this procedure corresponds
to a tensor contraction scheme of the wave function. The ML–MCTDH approach
thus provides with the means to overcome the exponential scaling of the wave func-
tion with the dimensionality of the problem by recursively applying the MCTDH
representation to several levels of SPFs. See Ref. [129] and references therein for a
discussion on the scaling laws for the ML–MCTDH approach.

3.3.2 The State Averaged MCTDH approach

The different flavors of the MCTDH algorithm generally focus on the efficient prop-
agation of a single wave function, optimizing the SPF basis set at each time step.
The State Averaged MCTDH scheme, conversely, aims at the simultaneous propaga-
tion of a set of m wave packets sharing the same SPF basis set. The SA–MCTDH
approach has two main features which may make it beneficial in a number of appli-
cations: first, the fact that the SPF basis set is common between all simultaneously
propagated functions makes the operations between them straightforward. We will
deal with this later in this Chapter. The second important characteristic is the pos-
sible efficiency increase of the algorithm itself. This feature can be rationalized by
observing the EOMs of the SA–MCTDH approach. In order to derive the equations
of motion for this representation, a virtual index m is added to the coefficient vector
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A, so that we have:

Ψm(Q1, . . . , Q f , t) =
n1

∑
j1=1

· · ·
np

∑
jp=1

Aj1 ...jp,m(t)
p

∏
k=1

ϕ
(k)
jk
(Qk, t), (3.42)

where m ranges from 1 to the number of wave packets, npacket. The resulting EOM are
identical to those of the regular MCTDH approach, with only two differences: first,
instead of one differential equation for the time evolution of the coefficient, now we
have one for each wave function (i.e. m independent equations):

iȦm
J = ∑

L

Am
L

〈

ΦJ |Ĥ|ΦL

〉

−
f

∑
k=1

nk

∑
l=1

g
(k)
jk l , (3.43)

with Am
J = Aj1 ...jp,m. Secondly, the EOM for the common SPF basis set replaces the

individual mean–field operators and density matrices for its sum over all m wave
functions:

iϕ̇
(k)
j = ĝ(k)ϕ

(k)
j +

nk

∑
i,l

npacket

∑
m

(

ρ(k)
)−1

ji

(

1 − P̂(k)
)

npacket

∑
m

〈H〉il ϕ
(k)
l . (3.44)

It is readily seen from Eq. (3.44) that the cost of propagating the SPF basis set in the
SA–MCTDH approach is roughly independent of the number of wave functions are
simultaneously propagated, while Eq. (3.43) shows that the propagation time of the
A coefficients will scale linearly with the number of functions npacket. Therefore, the
efficiency SA–MCTDH approach will depend on the particular case under study.
If the propagation of the SPFs basis is the time–determining step of the computa-
tion, as it is the case when multidimensional SPFs are used in a mode–combination
approach, the SA–MCTDH scheme presents a huge advantage compared with the
individual propagation of m functions. Conversely, in the more common case where
the coefficient propagation is the time consuming step, the SA–MCTDH approach
will consume approximately the same amount of resources as the individual prop-
agation of the m wave packets. However, there is a last factor to take into account
when working with this approach: since a common SPF basis set is used to represent
a set of different functions, the SPF are no longer optimized for a single state of the
system, but rather are the optimal basis for the average of all wave packets propa-
gated. This might mean that a larger number of SPF could be needed to represent
correctly all the states than it would if only one function were propagated. As a final
remark, it is important to highlight that, if a CDVR scheme is used for the evaluation
of the potential energy operator, this operation will be the bottleneck of the compu-
tation. Since the CDVR is the same independently of m, the problem will benefit of
the SA–MCTDH scheme regardless of other considerations.

3.4 Working with the MCTDH approach

3.4.1 Eigenvalue calculation: Iterative Lanczos Scheme and the SA–MCTDH
approach

The Lanczos scheme is one of the most popular methods to obtain a limited number
of eigenstates and eigenvalues of hermitian operators. It is based on the construction
of a Krylov subspace of the operator Ô by choosing an arbitrary initial function Ψ0
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and then applying the recursion relation:

Ψm = N

(

ÔΨm−1 −
m−1

∑
i=0

Ψi

〈

Ψi|Ô|Ψm−1

〉

)

, (3.45)

with N a normalization constant. Once a set of M functions has been obtained,
one diagonalizes Ô in this basis to obtain the M first eigenstates and eigenvalues of
the operator. The dimension of the subspace M can be increased, if needed, until
convergence is achieved.

The scheme to generate the Krylov subspace presented in Eq. (3.45) is unfortu-
nately not suitable for the MCTDH algorithm. The reason for this is that the SPFs
basis will generally change after the operation of Ô, and therefore the addition of
two functions Ψ1 and Ψ2 function will lie in the direct sum space of all configura-
tions of the two functions. The increase of the basis size renders the Lanczos iterative
scheme unfeasible. A modified Lanczos scheme suitable for the MCTDH algorithm
was developed by Manthe and Matzkies[133]. It is based on the use of projection
operators onto a given configuration space, so that the addition operation does not
increase the SPF basis size:

Ψm = N

(

ÔΨm−1 −
m−1

∑
i=0

P̂Ψiαi

)

, (3.46)

with α the solution of the set of linear equations:

〈

P̂Ψj|Ô|Ψm−1

〉

=
m−1

∑
i=0

〈

P̂Ψj|P̂Ψi

〉

αi j = 0, . . . , m − 1. (3.47)

In this scheme the maximum order M of the Lanczos diagonalization scheme is
given by the number of configurations appearing in the initial wave function.

A second alternative to obtain the eigenstates and eigenvalues of hermitian op-
erators is based on the use of the SA–MCTDH approach to perform a block Lanczos
diagonalization approach[124]. The idea of such a method is to start not from a sin-
gle guess function, but from a set of npacket functions

{

Ψ
(0)
m , m = 1, . . . , npacket

}

, all of

them represented in the same SPF basis set. The operator Ô is then represented in
this set and diagonalized to obtain approximated eigenstates and eigenvalues:

〈

Ψ
(i)
m |Ô|Ψ(i)

m′

〉

=
npacket

∑
j=1

U
(i)
mj a

(i)
j U

(i)
jm′ . (3.48)

The original basis
{

Ψ
(i)
m , m = 1, . . . , npacket

}

is transformed to the approximate eigen-

state basis,
{

Φ
(i)
m , m = 1, . . . , npacket

}

, by the unitary transform matrix U. The re-
sulting states are rearranged in order of increasing absolute eigenvalue, and or-
thogonalized with a Gramm-Schmidt scheme to obtain a new basis{Ψ

(i+1)
m , m =

1, . . . , npacket}:

Ψ
(i+1)
m = Nm



Φ
(i)
m −

m−1

∑
j=1

Ψ
(i+1)
j

〈

Ψ
(i+1)
j |Φ(i)

m

〉



 . (3.49)

The procedure is repeated increasing the iteration counter i until convergence of
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the M eigenstates of the operator. Since all functions in the basis span the same
configuration space at each time step (because they are expanded in the same SPFs
basis), addition poses no problem in the orthonormalization step.

3.4.2 The Boltzmann Operator and Stationary States Calculations

When working with the MCTDH algorithm, it is not possible to use the Hamiltonian
operator, Ĥ, directly within a Lanczos scheme to obtain energy eigenstates. This is
so because the application of Ĥ to a wave function does not conserve the sum of
products form, thus preventing the recursive application of the operator to the wave
function in Eq. (3.45). Nevertheless, it can be shown that the eigenvalue spectrum
of the Boltzmann operator, defined as e−βĤ with β = 1

kBT , corresponds to that of
the Hamiltonian operator Ĥ. To see this, we can just define a given wave function
Ψ(x, t) which we express as a linear combination of stationary states φ(x):

Ψ(x, t) =
N

∑
i=1

ciφi(x), (3.50)

and see the action of the Boltzmann operator onto it:

e−βĤΨ(x, t) = e−βĤ
N

∑
i=1

ciφi(x) =
N

∑
i=1

e−βĤciφi(x) =
N

∑
i=1

e−βEi ciφi(x). (3.51)

There are two conclusions to be extracted from Eq. (3.51): first, it is readily seen that
the effect of the Boltzmann operator is to damp the high energy contributions to the
total wave function Ψ(x): the higher the energy of the basis function, the smaller the
exponential multiplying factor. In the limit of a single stationary state, Eq. (3.51) be-
comes an eigenvalue equation, and therefore both Ĥ and e−βĤ share the same eigen-
functions. A second feature of this operator can be seen by comparing the last term
in Eq. (3.51) with the propagation of a wave packet, Eq. (2.35). Both equations have
the same elements, and become equal when we make the relation β = it. Thus, the
application of the Boltzmann operator can be interpreted as a propagation of a wave
function in imaginary time, which has the effect of dampening the high–energy con-
tributions to Ψ. This operator can thus be used within the MCTDH framework for
the calculation of nuclear eigenstates following the Lanczos scheme above, since a
propagation (either in real or imaginary time) does conserve the MCTDH form, and
thus can be applied recursively.

A final remark on the use of the Boltzmann operator to find eigenstates of the
Hamiltonian is noteworthy. The spectrum of this operator does not depend on the
particular value of T, so in principle any temperature value will yield the same
eigenstates. However, the convergence efficiency of the calculation does depend
on T: since the effect of the imaginary time propagation is to damp high–energy
contributions to the wave function, longer propagations (meaning lower T values)
will remove more of these contributions. This will favor the convergence of low–
energy eigenstates, since the orthogonalization process will introduce less contami-
nation on them. On the other hand, these long propagations will make convergence
of high–energy eigenstates difficult, because their contribution will be minimal and
the orthogonalization process will introduce too much noise.
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3.4.3 Power spectra from the autocorrelation function

As it was discussed in Section 2.1, it is in principle possible to obtain all the infor-
mation of a system by computing all the stationary states of the Hamiltonian, or by
propagating a wave packet for a formally infinite time. This means that there must
be a way to convert the information from the time to the energy domain, and vice
versa. One of the simplest and more powerful relations in this regard is the corre-
spondence between the eigenvalue spectrum (or power spectrum) of a system, σ(ω),
and the autocorrelation function, S(t) of a wave packet. Using the definition of a wave
packet in a bonding potential as a sum of stationary states, Eq. (2.36), the spectrum
is defined as:

σ(ω) = ∑
n

|cn|2δ(ω − ωn), (3.52)

with ωn = En/h̄ and cn the amplitudes of the different energy components of the
wave packet (see Eq.(2.36)). It can be shown that this quantity can be also computed
as the Fourier Transform of the autocorrelation function of the wave packet, S(t) =
〈

Ψ(0)|Ψ(t)
〉

[84]:

σ(ω) =
1

2π

∫ ∞

−∞

〈

Ψ(0)|Ψ(t)
〉

eiωt dt

=
1

2π ∑
m

|cn|2δ (ω − ωn) .
(3.53)

If the initial function is chosen to be real, the autocorrelation function has the prop-
erty:

S(2t) =
〈

Ψ(0)|Ψ(t)
〉

, (3.54)

meaning that the propagation of a function for a total time tf allows us to calculate
the autocorrelation function up to 2tf .

It is interesting to remark some features of this relation in order to work effec-
tively with it. As in any pair of conjugate variables, the representation of the time
and energy domains are related by the general expressions:

Emax =
2π

∆t
(3.55)

∆E =
2π

t f
, (3.56)

where t f is the total time of the propagation of the wave packet, and ∆E and ∆t are
the energy and time resolution, respectively. This means that the total propagation
time will set the final resolution of the power spectrum, while the sampling interval
of the wave packet’s motion will fix the energy window onto which the spectrum
will be calculated. However, there is more to be extracted from these relations, since
one can apply them to individual features of the functions transformed. Consider
for instance a Gaussian wave packet trapped in a harmonic potential evolving ac-
cording to the TDSE. Its oscillation around the potential energy minimum results
in the periodic autocorrelation function shown in the left–hand side of Figure 3.3,
and the corresponding power spectrum obtained from Fourier transforming S(t),
also depicted in the right–hand side. Inspecting the autocorrelation function we can
see that there are three different time scales involved in this process. From shorter to
longer, we have the width of the peaks, the separation between consecutive features,
and the separation between consecutive recursions with the same amplitude. Each
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FIGURE 3.3: Autocorrelation function of a Gaussian wave packet
propagated under a harmonic potential (left) and the power spectrum

resulting from its Fourier transform (right)

one of these characteristic times will have an equivalent characteristic frequency pro-
file in the power spectrum: the width of the recurrences will determine the separa-
tion between the spectrum lines, the separation between peaks will fix the envelope
function in the frequency domain (note that there are two envelope functions, one
for each peak separation in the time domain). There is still more insight on the rela-
tion between the power spectrum and the autocorrelation function to be gained from
Figure 3.3 and Eq. (3.52). Note for instance that the spectrum is localized in a certain
region of the frequency domain, even though we know there are infinite eigenval-
ues for a harmonic oscillator. This is a direct consequence of the choice of the initial
wave packet: the amplitudes in the power spectrum have no physical meaning, they
just represent the amplitudes of the wave packet for a certain energy. This is a rele-
vant issue, since it means that in principle only those states which contribute to the
initial wave packet will appear in the frequency domain after Fourier Transforming.
Thus, the initial function propagated will be of crucial importance to obtain enough
information from the power spectrum. Another striking characteristic of the power
spectrum shown is the existence of negative amplitudes. These come from of the
truncation of the autocorrelation function at an arbitrary value of time: the Fourier
transform is defined for infinite times, and therefore using this operation for only a
short time window introduces aliasing errors. For decaying functions, this aliasing
error does not appear if the propagation time is long enough for the autocorrelation
function to go to zero, but bound states will always have this problem. Two ways to
overcome it are to propagate for long enough times, so that the error is minimized,
or to introduce a damping function which smoothly switches the autocorrelation func-
tion to 0. Figure 3.4 shows the same system as in Figure 3.3, but with the addition of
the damping function:

g(t) = cos

(

πt

2t f

)

Θ

(

|t|
t f

)

, (3.57)

with Θ
(

|t|
t f

)

a Heaviside function switching to 0 for values of t longer than t f . Now
the width of the peaks will be related with the frequency of the damping function.

The relation between the autocorrelation function and the power spectrum shown
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FIGURE 3.4: Same as Figure 3.3, but adding a cosine damping func-
tion (Eq. (3.57)) (dashed line)

by Eq. (3.52) is powerful but not always of practical use. This is so specially because
the information will depend on the relative weight of the different contributions to
the initial wave packet, which are in principle arbitrary. However, there are several
modifications of the autocorrelation function that yield results which are more di-
rectly related with practical observables. The most important of them in the context
of chemical dynamics is the flux–flux autocorrelation function, C f f (t, t′, T), which
was shown by Miller et al. to be related with the Cumulative Reaction Probability,
N(E)[134]. We will introduce this formalism later in Chapter 6.
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Chapter 4

Model of the H2@SWCNT system

The subject of study of this whole Thesis has been the system consisting of a single
H2 or D2 molecule adsorbed in the hollow cavity of a narrow Single–walled Carbon
Nanotube. Hereafter we will refer to the system as H2@SWCNT.

The modeling of the system, i.e. the definition of the specific geometries and in-
teractions by setting a particular coordinate set and Hamiltonian, is the first step in
any simulation, and will be discussed in this Chapter. Since we have two distinct
components in our problem, namely the adsorbate (H2 or D2) and the substrate (the
nanotube), we have 3 different parts to model: first, the nanostructure must be de-
fined and its geometry optimized, second the Hamiltonian of the confined molecule
has to be chosen, and last the interaction between both subsystems must be estab-
lished.

4.1 Optimization of the nanostructure

The geometry of the substrate is expected to have a critical importance in the out-
come of the simulations, since it defines the actual confining cage. Moreover, an
optimized structure is required in order to improve the interaction model by the
inclusion of phonon scattering, as it will be discussed later in this Chapter and in
Chapter 8, where we will present our approach to the molecule–phonon coupling.

The structure of Carbon nanotubes has been largely studied and modeled in
terms of a rolled graphene sheet[135, 136]. With this idea in mind, the usual nomen-
clature to describe a Carbon Nanotube is a pair of chiral indices, (m, n), which corre-
sponds to the rolling vector converting the 2D material into a cylinder. Due to the
resulting cylindric shape, a nanotube has a particular property: it is commensurate
in two dimensions of space, namely x and y, but arbitrarily long in the 3rd dimen-
sion (z), so that one can consider it to be infinite in order to simplify the structural
model. As any crystalline material, nanotubes are characterized for being periodic,
and therefore having a translational symmetry. This means that if one would move
the structure a certain distance along its axis, the resulting atomic disposition would
be indistinguishable from the initial one. Such property allows us to define a crys-
tal lattice, a set of points of the space related by this translational symmetry. For a
general 3D crystal, the lattice is defined as the set of points ~R related by:

~R = n1~a1 + n2~a2 + n3~a3, (4.1)

with (~a1,~a2,~a3) a set of linearly independent vectors connecting equivalent points of
the crystal, and (n1, n2, n3) a set of integer numbers. In order to recover an infinite
crystal, one defines a unit cell, which is the minimum arrangement of atoms in the
minimum volume needed to be able to reconstruct a whole infinite structure by us-
ing its translational symmetry, and copies this arrangement at all the points of the



48 Chapter 4. Model of the H2@SWCNT system

crystal lattice defined by Eq. (4.1). In our case, since we have periodicity only along
the z axis, the crystal lattice is defined by a single translation vector~a with module
L, and then the infinite structure is recovered by copying the unit cell at intervals L
following the direction of~a.

According to the chiral indices, SWCNTs are classified in three distinct types
presenting different geometries and properties: zig–zag –(m, 0)–, Armchair –(m, m)–,
and chiral –(m, n), with m 6= n–. Zig–zag and armchair nanotubes present a rela-
tively simple and short unit cell consisting on a ring of carbon hexagons sharing a
side or a vertex, respectively. The unit cell of a chiral nanotube has an helical sym-
metry, and can potentially be very long. Some properties, such as the conductivity of
the material, are directly linked with the symmetry of the nanotube, and therefore to
the chiral indices. Ref. [135] contains a brief introduction on the relation of the sym-
metry of SWCNT and their electronic structure, as well as a comprehensive review
on their vibrational properties. During this Thesis we will work with an insulating
(8,0) carbon nanotube, which has been reported to be the narrower one presenting
an attractive potential for the hydrogen molecule[46]. We will also briefly work with
a narrower (5,0) nanotube during the study of the rovibrational–translational cou-
pling.

The geometry optimization process, as it is common in molecular electronic struc-
ture theory,is based on finding an arrangement of atoms corresponding to a mini-
mum of the PES of the system. Due to the translational symmetry of a nanotube,
there are two approaches to optimize the geometry of such a system: the cluster
model, and the periodic model. The cluster model is based on representing just a
portion of the material by concatenating a certain number of unit cells, and then
saturating any partially coordinated atoms at the edges of the representation with
hydrogens. Once this supermolecule or cluster has been built, we can optimize its
structure using semiclassical or wavefunction methods, or Density Functional The-
ory (DFT). In order to obtain converged results, the number of unit cells included in
the model has to be large enough so that edge effects can be neglected. These calcu-
lations are usually very computationally time–consuming, due to the sheer number
of atoms present. Moreover, in some cases it might not be possible to sufficiently
reduce edge effects for the calculation of certain properties, thus leading to inaccu-
racies. On the other hand, the periodic model aims at the resolution of the TISE for
the electrons of a perfectly periodic crystal consisting of infinitely many atoms. Of
course, it is not possible to explicitly include infinite particles in out problem, and
one has to use a workaround to be able to obtain information of an a priori infinite
system only with a limited number of unit cells. Fortunately, the same translational
symmetry which generates an infinite number of atoms in the system also provides
with a scheme to solve the Schrödinger equation. First, one defines a reciprocal lat-
tice, which is a mathematical construct related with the crystal (or direct) lattice by
the expression:

ai · bj = 2πδij, (4.2)

where bj is the jth vector defining this reciprocal lattice. Secondly, it can be shown
that, for a lattice with cell parameters (~a1,~a2,~a3) which defines a potential with the
same periodicity, the eigenfunctions of the Hamiltonian of the system obey Bloch’s
Theorem:

Ψ(~r + ~R;~k) = ei~k·~RΨ(~r;~k). (4.3)

This theorem establishes a relation between the wave function at a given point in
the original unit cell with a translationally–equivalent point in any other unit cell
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through a wave vector, k. This wave vector is in turn related with the crystal momen-

tum of the lattice, ~K = h̄~k. This is a relevant quantity since it arises from a conser-
vation law derived from the translational symmetry of the crystal, and is therefore
conserved in different scattering processes. We will discuss this quantity again in
Chapter 8.

The eigenfunctions in the right–hand side of Eq. (4.3), named Bloch functions, are
still not normalizable, since the exponential factor spans the whole space. This is
consistent with the infinite number of units cells present in a bulk solid, but again
delivers a set of equations that we cannot work with. To maintain the periodicity
of the system and at the same time keep the number of unit cells finite, one defines
a certain number of unit cells, N = N1N2N3, and introduces the Born–von Karman
periodic boundary conditions (PBC):

Ψ(~r + Niai;~k) = Ψ(~r;~k) ; Ψ(0) = Ψ(N) . (4.4)

This model, containing a finite number of cells, results in a sampling of the wave
vector ~k, which due to the inclusion of the PBCs in Eq. (4.4) can be shown to be
directly related with the reciprocal lattice of the solid:

~k =
3

∑
i=1

2π

~Ri

ni

Ni
=

3

∑
i=1

~bi
ni

Ni
, (4.5)

with 2π
~Ri

= ~bi the cell parameters of the reciprocal lattice and ni any integer number
between 0 and Ni. In the limit of N → ∞, Bloch functions span the whole space
and k becomes a quasi–continuous variable. However, with a sufficient sampling
of k points it is possible to describe the whole system by interpolating between the
discrete values. Thus, by introducing the PBCs and using Bloch’s theorem one ap-
proximates the solution of a differential equation in the direct space, involving an
infinite number of particles in an infinite basis, to the solution of N equations in the
reciprocal space, each one involving a finite number of particles, corresponding the
number of electrons in a unit cell, Nel.

The periodic approach exploits the symmetry of the system better than the clus-
ter one, and therefore can be more efficient. Moreover, it is able to reproduce fea-
tures originated from the periodicity of the crystal lattice more accurately. How-
ever, it also has important drawbacks: defects are not straightforward to treat, and
wave function methods beyond Hartree–Fock become exceptionally expensive on
this framework, so one can generally is limited to DFT calculations to take electronic
correlation into account. Details on electronic structure calculations for periodic sys-
tems are beyond the scope of this Thesis, the interested reader is referred to excellent
books on general solid state physics[137, 138] and reviews on the specific topic of
electronic structure calculations[139, 140].

Unless otherwise noted, the studies carried out during this Thesis have been
done after optimizing the (8,0) SWCNT using the B3LYP functional implemented in
the Crystal09 code[141, 142], with a 6-311G basis set. The resulting unit cell, consist-
ing on 32 atoms and depicted in Figure 4.1, had a diameter d of 12.1 a0 and a length
L of 8.0 a0.

4.1.1 Nanotube’s vibration

For the most of the works conforming this Thesis, excluding the studies presented
in Chapter 8, we have relied on the so–called frozen structure approximation. This
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L

d

FIGURE 4.1: Representation of the unit cell of the (8,0) SWCNT after
optimization. Shaded atoms correspond to a different unit cell.

means that the carbon atoms are explicitly taken into account, but they are fixed
in their equilibrium positions. This means that they only contribute to the system’s
physics by providing the confining potential for the adsorbate, but otherwise there is
no energy exchange between the molecule and the nanostructure. This approxima-
tion is considered a valid first–order approximation for the system under study and
is used, to the best of our knowledge, in all works dealing with quantum confine-
ment effects. This is so due to the difficulty to obtain an accurate and computation-
ally affordable coupling model between the degrees of freedom of the adsorbate and
the substrate. One major contribution of this Thesis is to include the vibration of the
nanotube in the simulation model, together with the adsorbate–substrate coupling.
Chapter 8 will discuss our approach to this issue through a system–bath Hamiltonian
model.

4.2 The adsorbate’s Hamiltonian

The coordinate system chosen to describe the H2 molecule confined inside a SWCNT
is depicted schematically in Figure 4.2. For an isolated diatomic molecule one usu-
ally needs three coordinates accounting for the internuclear distance and the molec-
ular orientation to define the system, due to the translational invariance in the molec-
ular frame. In our case, the presence of the nanotube fixes the reference frame and
brakes the isotropy of space, so that we need to take into account all 3N = 6 degrees
of freedom (DOFs) to describe a diatomic molecule. Three of them are chosen to be
the Cartesian coordinates of the center of mass (c.o.m) of the diatom, x, y and z, with
z coinciding with the nanotube’s axis. Two more coordinates, θ and φ, will represent
the orientation of the molecule, being θ the polar angle formed between the nan-
otube’s and the diatom’s axes, and φ the azimuthal angle in the xy plane. Finally,
the sixth coordinate will be the internuclear distance, ρ, accounting for the vibration
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FIGURE 4.2: Scheme of the coordinate system used to describe the H2
molecule in the hollow cavity of a SWCNT (extracted from Ref [44]).

of the molecule. Thus, the Hamiltonian for the confined molecule will be:

ĤH2 = − h̄2

2µH2

(

∂2

∂ρ2 +
2
ρ

∂

∂ρ
+

1
ρ2

∂2

∂θ2 +
1
ρ2

1
sin2 θ

∂2

∂φ2

)

−

− h̄2

2mH2

(

∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2

)

+ V̂(ρ, θ, φ, x, y), (4.6)

with mH2 and µH2 the total and reduced masses of the molecule, respectively. It
shall be noted that the kinetic energy operator coincides with that of a free diatomic
molecule, and that all couplings between the different DOFs are considered without
approximation in this expression. Most works in the bibliography dealing with this
and similar molecules have used reduced dimensionality approaches, neglecting ei-
ther the vibration of the diatom (ρ), its motion along the nanotube’s axis (z), or both.
The first studies carried out during this Thesis, dealing with the coupling between
the different molecular DOFs and their effect on the energy spectrum and the shape
of the eigenfunctions, presented in Chapter 5, were also made at a fix z point. Vi-
bration, however, was always taken into account. On the other hand, the potential
energy surface is a sum of intramolecular and intermolecular terms. The intramolec-
ular potential is represented through the well-known Morse function which defines
the dissociation curve of H2[143]:

V(ρ) = De(1 − e−a(ρ−Re)2, (4.7)

with De = 0.1746 Hartree, a = 1.0271 bohr, and Re = 1.4 bohr.
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TABLE 4.1: Lennard–Jones parameters used to define H—C interac-
tions in the present work

ε (cm−1) σ (Å)
AH PES 21.16 2.82
FB PES 19.26 3.08

4.3 Adsorbate–substrate interaction

The interaction between the confined molecule and the nanostructure is the ultimate
reason of the very existence of quantum confinement effects: it defines the confining
potential and couples all degrees of freedom together, thus giving rise to the special
behavior of the trapped molecules. In most works dealing with quantum confine-
ment effects, this interaction has been modeled as a sum of pair-wise Lennard–Jones
(LJ) interactions:

V̂C−H(ρ, θ, φ, x, y, z) =
2

∑
i=1

NC

∑
j=1

VLJ
i,j (dHi−Cj

), (4.8)

V(dHi−Cj
)LJ = 4ε





(

σ

dHi−Cj

)12

−
(

σ

dHi−Cj

)6


 (4.9)

There is a number of possible choices for the parameters σ and ε appearing in Eq. (4.9)
that can be found in the literature. The different sets are derived from systems con-
taining H–C interactions that resemble those of a hydrogen molecule in a nanotube,
and have been reported to yield different results regarding the preferential adsorp-
tion (or selectivity) of D2 over H2 in narrow SWCNTs[34, 35]. Garberoglio et al.[35]
carefully studied these discrepancies, showing than variations of 10% in the values
of σ resulted in differences of up to two orders of magnitude in the preferential ad-
sorption results. Conversely, the changes in ε were much less relevant, needing to
multiply this factor by two in order to observe variations of a single order of magni-
tude in the selectivity. However, to the best of our knowledge there is still not a clear
answer to the question of which LJ interaction model defines better the H2@SWCNT
system. In this Thesis two sets of parameters have been used, which are shown in
Table 4.1. The first set was previously used in our group by Huarte-Larrañaga and
Albertí to study the adsorption of H2 in different carbon nanotubes using classical
molecular dynamics[46]. We will refer to this set as the AH PES. These parameters
were also used to investigate changes of the eigenstates of confined hydrogen in (8,0)
and (10,0) nanotubes[36]. Throughout the studies conforming this Thesis, the AH
PES has been used throughout the study of the rovibrational–translational coupling
in a z–fixed H2 molecule embedded in a SWCNT, presented in Chapter 5, as well
as in part of the works on diffusion of the diatomic molecule along the nanostruc-
ture, discussed in Chapters 6 and 7. The second set of parameters was proposed by
Frankland and Brenner[144] based on the interactions in the cyclohexane molecule.
This PES, hereafter referred to as the FB PES, has been used in relevant works in the
nanoconfinement field[34, 35, 40] yielding high selectivities, and seems to be widely
accepted in the community. In this Thesis, the FB PES has been used to calculate
diffusion coefficients of H2 and D2 in an (8,0) carbon nanotube, both with a full di-
mensional model and within an adiabatic approximation, and during the study of
the phonon–hydrogen coupling shown in Chapter 8.
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FIGURE 4.3: Relaxed projection of the AH (solid) and FB (dashed)
potential energy surfaces along the x (top–left), θ (top–right) and z

(bottom) DOFs.

The differences between the two PES are highlighted in Publication 2. In spite
of this, and for reference within this Thesis, we reproduce the in Figure 4.3 1D cuts
of both PESs along significant dimensions, such as the orientation of the molecule
(θ, upper right panel), its position along the axis of the nanotube (z, lower panel),
and the distance of the c.o.m. from this center of the nanotube. It is readily seen
that the FB PES produces a tighter potential, and therefore confinement effects are
expected to be more important for this set of parameters. This is specially noticeable
in the barriers for rotation and diffusion, which are approximately three times larger
in the case of the FB PES compared with the AH PES. However, as it is discussed
in Publication 2, these changes result mainly in quantitative differences, without a
change in qualitative behavior.

Taking a step back, we could consider the whole substrate–plus–adsorbate pair
as a whole system. Then, the total Hamiltonian would be a sum of the adsorbate
Hamiltonian, Eq. (4.6), and a set of operators describing the collective motion of the
carbon atoms in the nanotube. However, both sets of motions are not separable:
the vibrations affect the motion of the adsorbate, and in turn the presence of the
confined molecule distorts the vibration of the nanostructure. Therefore, we need
to account for the coupling between the DOFs of the substrate and the adsorbate in
some way. As already pointed out in Section 4.1, this correlation can be included as
a set of terms deriving from a system–bath coupling model. This will be presented
and discussed in Chapter 8.
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Chapter 5

Confinement effects in H2:
energetic and structural changes

5.1 Distortions of molecules in nanoconfined environments

When a molecule or atom is adsorbed in a nanocavity, the adsorbate–substrate inter-
actions appear within a range comparable to that of the de Broglie wavelength of the
confined species. For this reason the structure of the particle is affected much more
harshly than in case of adsorption on regular surfaces: new quantizations may ap-
pear due to the finite dimensions of the cavity, leading to relevant couplings between
otherwise independent degrees of freedom, other motions may become hindered or
favored, and the whole eigenvalue spectrum of the system can be altered at both
nuclear and electronic levels. All these aspects are part of what we call quantum
confinement effects. The understanding of these structural changes plays a critical
role in the explanation of other phenomena such as quantum molecular sieving or
reactivity changes of confined species, and many studies have been devoted to this
topic in several systems, as it was reviewed in the Introduction of this Thesis. This
Chapter is devoted to the qualitative and quantitative discussion of the effects of
confinement on the rovibrational levels of the H2 molecule, when it is embedded in
the hollow cavity of narrow carbon nanotubes.

During this first study of the H2@SWCNT system we wanted to focus our atten-
tion on the structural changes undergone by the adsorbate in the confined degrees
of freedom. In order to do so, and for better comparison with the isolated molecule,
all the simulations were made considering that the center of mass of the diatom was
fixed at a given point along the axis of the nanotube, i.e. we neglected the motion
along this particular coordinate. This assumption is generally believed to be rea-
sonable: due to the low corrugation of the PES in this DOF, the overall structure
of the wave function in the remaining coordinates is expected to be, to a large ex-
tent, independent of the particular position along the nanotube. This model has
been extensively used in relevant works in the field (see for instance Refs [28], [34]
or [36]) and has provided with a large amount of insight on nanoconfined systems.
In our model we have used the Hamiltonian described in Chapter 4, Eq. (4.6), only
removing the kinetic energy operator of the z dimension, so that all the remaining
coordinates, as well as the couplings between them, are taken into account without
approximation. Regarding the PES, this work was carried out exclusively using the
AH PES.

The study of the quantum confinement effects on the structure of H2 was tack-
led from two different points of view. First, the overall effect of confinement on
the eigenvalue spectrum of H2 was analyzed by computing the power spectrum of
the H2@(8,0) system through Fourier transforming its autocorrelation function, as
explained in detail in Section 3.4. Secondly, we focused on the inspection of the
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changes undergone by individual vibrational–rotational states when changing from
a free into a confined environment. I order to do so, we computed the eigenstates
of the first 50 nuclear eigenstates of hydrogen adsorbed in a (8,0) and a (5,0) carbon
nanotube, and analyzed them through comparison with the states of a separable 5D
model. This second part is discussed in greater detail in Publication 1.

5.2 Result Discussion

5.2.1 Overall assessment of quantum confinement: effect on the power
spectrum

The power spectrum of a system offers a general view of its eigenvalues, with each
band being related to the energy of a particular eigenstate. In contrast with diago-
nalization methods, which explicitly find a certain number of eigenstates and eigen-
values, the power spectrum gives results for a large energy window after just one
propagation. It is this feature that makes it a particularly convenient tool to exam-
ine the consequences of quantum confinement effects: by direct comparison of the
band structure of a confined molecule with the eigenenergies of the free species, we
can obtain relevant information about new quantization or couplings between the
eigenstates, just by the emergence at certain areas of the confined system spectrum
of new bands which are not present in the one for the free molecule.

In order to obtain the power spectrum for the H2@SWCNT system we propa-
gated a single wave packet for a total propagation time tfinal = 1000 fs, and we com-
puted the autocorrelation function of the propagated function. Then, in order to pre-
vent spurious bands due to aliasing, we added a cosine damping function (Eq. (3.57))
and computed the power spectrum through a Fourier Transform. The resulting spec-
trum, shown in Figure 5.1, spanned an energy window from 0 to 16000 cm−1 with a
resolution of 5 cm−1. In the figure, for the sake of clarity, only the window from 2000
to 6000 cm−1 is shown. Moreover, the eigenergies of the free hydrogen molecule,
shifted in order to match the ZPE of the power spectrum of the confined system, are
also depicted as vertical dotted lines.

The most relevant feature that can be extracted from Figure 5.1 is the abundance
of eigenstates appearing in the confined system, compared to those existing for the
free molecule. This already hints at the great effects that confinement causes in a
molecular system. This densification of the spectrum can be studied by direct obser-
vation of the projection of some eigenstates along relevant dimensions. This simple
analysis allows us to explain the differences in the spectrum of the free and confined
systems through three different, albeit related, factors. First, and probably foremost,
the adsorption inside the nanotube introduces the molecule in a tight potential in
the x and y coordinates. This leads to the quantization of these DOFs, thus result-
ing in the appearance of multiple bands corresponding to the new eigenstates of the
system. A second source of new bands is the breaking of the isotropy of the space,
which is a consequence of the cylindrical shape of the nanotube and the confining
potential that generates. This reduction of the symmetry causes the breaking of the
degeneracy of the rotational levels: states with same total angular momentum quan-
tum number l, but different absolute value of its z–projection |mz|, will no longer be
degenerate. As a final factor, we have the coupling between the rotational and trans-
lational degrees of freedom, which is much more important in the confined system
due to the tight potential, and gives some more fine structure to the eigenvalue spec-
trum. All these factors affect not only the number of eigenstates in a given energy
range, but also the overall ZPE of the system: the confined molecule presents a ZPE
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FIGURE 5.1: Top panel: Autocorrelation function (solid line) and
damping function (dotted line) for the H2@SWCNT system. Bottom
panel: Power spectrum (solid line), and energy values corresponding

to the eigenstates of the free H2 molecule (dotted vertical lines)
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of 2540 cm−1, which is 421 cm−1 above that of free H2. Part of this difference appears
due to the quantization on the translational degrees of freedom, x and y. However
this factor does not account for all the increase in the ZPE, as discussed in Ref. [36].
The remaining ZPE is explained precisely by the existence of a coupling between the
rotational and translational motions.

As it was already discussed in Section 3.4, a significant property of the power
spectrum obtained through Fourier Transform of the autocorrelation function is that
the intensities of the different bands depend only on the initial state propagated:
since the autocorrelation function contains the overlap of the function propagated at
a certain time t with the initial wave packet, the more a given eigenstate contributes
to the initial wave packet, the more intense will be the corresponding band in the
power spectrum. This can be a disadvantage, since it is possible that some bands
end up having intensities too low to be detected. However, we can also take profit of
this property to investigate different energy regions of the spectrum by propagating
initial states that resemble some excited levels of the system. This is clearly seen in
Figure 5.2, where we display 3 different power spectra for the H2@SWCNT system.
All them were computed after the same propagation time and using the same con-
volution function, but the initial state was different in each case. The red spectrum
(which coincides with that of Figure 5.1) was obtained using an initial state with a
high probability density around the equilibrium value of the internuclear distance
(ρ = 1.4 a0) and the center of the nanotube, x = y ≈ 0, but the probability density in
the polar angle was centered at θ = π/2, corresponding to a molecule perpendicular
to the nanotube’s axis. The resulting spectrum has intense bands corresponding to
rotationally excited eigenstates, but focused only in the region in which there are no
vibrational excitations. On the other hand, the green spectrum used a similar initial
state, but with the initial probability density in ρ set to values closer to 2 a0, result-
ing in a spectrum with similar relative intensities in the region without vibrational
excitations. However, we can now see clusters of bands at higher energies. Each
one of these clusters can be related with a vibrational excitation, so we see bands
up to v = 2. Finally, the blue spectrum is obtained when, in addition to the pre-
vious change, the maximum probability density of the initial state in the xy plane
is shifted away from the nanotubes axis to x = −y = 0.5. This yields a very low–
intensity spectrum with a large amount of numerical noise, and multiple spurious
bands not corresponding to any eigenstate of the system. This is better seen in Fig-
ure 5.3, where we display a close–up to the region between 2400 cm−1 and 3500 cm−1

for all three spectra just discussed together with the eigenenergies of the individual
H2@(8,0) molecular states, which will be discussed in the next Section. Note the dif-
ferent relative intensities of the bands. Consistently with the previous discussion,
we see how the bands correspond to different eigenstates of the system, and we
can identify some more trends. For instance, the rotationally excited wave packet
(red spectrum) has large intensities for a limited number of eigenstates, which are
expected to be rotational excitations, but at the same time a large amount of other
states do not appear clearly. Conversely, using a vibrationally excited initial wave
packet (green spectrum) decreases the intensity of some bands, providing with a
larger number of significant peaks corresponding clearly to molecular states. Finally,
if translational excitation is also included in the initial wave packet (blue spectrum),
the intensities of the bands are too low to be able to distinguish actual bands from
spurious peaks appearing due to aliasing and numerical noise. Note however that
none of the spectra are able to resolve all individual bands, due to the very low
energy separation between the eigenstates at energies higher than 2800 cm−1.



5.2. Result Discussion 59

4000 6000 8000 10000 12000

E (cm−1)

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

In
te
ns

ity
 (
a.
u.
)

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

In
te
ns

ity
 (
a.
u.
)

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

In
te
ns

ity
 (
a.
u.
)

FIGURE 5.2: Power spectra for the H2@(8,0) system, obtained from an
initially rotationally excited (red), rotation and vibrationally excited
(green) and rotation, vibration and translationally exited (blue) wave

packet.
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FIGURE 5.3: Close up to the low–energy region of three power spectra
of the H2@(8,0) system, obtained from an initially rotationally excited
(red), rotation and vibrationally excited (green) and rotation, vibra-
tion and translationally exited (blue) wave packet. The energies cor-

responding to H2@(8,0) eigenstates appear as dotted vertical lines.

5.2.2 Understanding the confinement of nuclear eigenstates

This Section summarizes the contents of Publication 1, reproduced in Section 5.3.
The discussion on the power spectrum just presented evidences the enormous

effect that adsorption onto a nanocavity has on the physics of the H2 molecule. How-
ever, rather than just confirming the existence of such changes we want to be able to
justify and understand their origin and implications. Although this can be made to
a certain extent by taking advantage of the propagation of different wave packets,
as seen in Section 5.2.1, in order to get the most information of the system we need
to compute the actual eigenstates of the confined molecule. Once they are found,
we can analyze them in order to understand the structural changes in H2 when it
goes from a free to a confined environment, as well as the coupling introduced by
the nanotube’s potential. However, a direct examination of the wave functions is not
possible: they are 5D objects, and therefore cannot be fully represented in our space.
For this reason we must resort to some other tools in order to extract information
from our eigenstates.

In our work we have employed three schemes for obtaining a picture of such
high–dimensional functions. The first one is to project the function onto particular
coordinates of the representation, so that we reduce its dimensionality until we are
able to graphically visualize the eigenstate in some DOFs. We can repeat the projec-
tion along different coordinates to obtain a more or less general picture of the wave
function. As reported in Publication 1, we used this simple procedure in our sys-
tem to confirm the hypothesis that the rotation of the H2 molecule is hindered inside
the nanotube, and that this symmetry breaking is reflected in the non–degeneracy
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of states with the same total angular momentum. We also found that the quanti-
zation in the xy plane was similar to that of an anharmonic oscillator, although the
projections of some excited states had unusual shapes. This prevented us to assign
quantum numbers to all DOFs of the system. A second common tool for the eigen-
state analysis is to compute the scalar product of a given eigenstate with a set of
reference functions, such as the ones obtained from analytically solving the eigen-
value equation for simple Hamiltonians or from the numerical solution of a similar,
better understood problem. In our case, we used as a reference an ad–hoc 5D function
consisting on the direct product of a Morse wave function (Mk(ρ)) to represent vi-
bration, an spherical harmonic (Ym

l (θ, φ)) for the rotation, and anharmonic oscillator
eigenstates (Ξnx ,ny(x, y)) for the motion of the c.o.m. of the molecule. The first two
sets of functions are described analytically, while for the third set we numerically
computed the eigenstates of an structureless particle in the actual confining poten-
tial. Thus, we obtained a reference function in an hypothetic separable system which
we understand, and can evaluate the confinement effects by computing the overlap
between these references and the actual eigenstates of the adsorbate. This proce-
dure confirmed that there was an important amount of mixing between the degrees
of freedom when compared with our separable model, as reported in Table ST1 of
Publication 1. This mixing, which comes as a result of the strong coupling between
the DOFs, indicates that the separable model is not suitable to label the eigenstates
of the confined system accurately.

Both of the approaches just discussed provided with a general interpretation of
the confinement effects of the H2 molecule in the hollow cavity of a SWCNT. How-
ever, we found that these approaches, although powerful and well-known, might
hide some information which might be useful to really understand the coupling
between the degrees of freedom: a scalar product quantifies the coupling, but we
lose all visual information after the operation; a projection helps us to visualize a
particular degree of freedom, but by averaging all the other ones we again lose the
possibility to see the coupling. In order to overcome this difficulty, we developed
an approach based on establishing a relationship between the 5D eigenfunctions of
the confined system and those of familiar low dimensional problems by computing
partial overlaps in selected degrees of freedom. Depending on the reference function
used for the overlap, we talk of translational partial overlap functions, when we use
anharmonic oscillator functions as reference:

σnx ,ny(ρ, θ, φ) =
〈

Ψ(ρ, θ, φ, x, y)|Ξnx ,ny(x, y)
〉

, (5.1)

and rotational partial overlap functions, when the overlap is made with spherical
harmonics:

σl,m(ρ, x, y) =
〈

Ψ(ρ, θ, φ, x, y)|Ym
l (θ, φ)

〉

. (5.2)

These objects offer a unique view of the coupling between two sets of DOFs: we
can visualize how the overlap between the whole wave function and a selected test
case in a given DOF changes as a function of other DOFs, thus obtaining a picture
of the global shape of the wave function at different points of the space. Several
examples of this can be seen in Publication 1 for the H2@(8,0) system, where for the
sake of clarity just 1D cuts of these functions are shown, keeping the other two co-
ordinates at the probability maximum. In addition to the hydrogen molecule inside
a (8,0) nanotube, the same procedure was applied in case of the H2@(5,0) system, an
hypothetical system which served as an example of how the methodology allowed
to understand even extremely distorted wave functions. The observation of these
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FIGURE 5.4: Absolute value of the Relative Partial overlap functions,
σrel

l,m(x, y), of the ground state of the H2@(8,0) system with different
spherical harmonics (top), and the shape of the rotational wave func-
tion (bottom) at different points along x: the center of the cavity (left),

and near the nanotube wall (right).

functions gives us an intuitive idea of the coupling between the DOFs, since we can
see how the contribution of a certain separable model function depends on the other
coordinates of the system.

In some particular cases, if the overlap with a single given reference function is
much larger than with the others, but still we have a relevant contribution of other
states, it can be useful to inspect the relative partial overlap function. For the rotational
partial overlap function, this is defined as:

σrel
l,m(ρ, x, y) =

σl,m(ρ, x, y)

σlmain,mmain(ρ, x, y)
(5.3)

Therefore, it gives us the relative contribution of a given reference function with re-
spect to the most relevant one, and that helps us to visualize the changes of the wave
function. As an illustrative case, the most relevant relative rotational partial overlap
function of the ground state of the H2@(8,0) system is shown in Figure 5.4, together
with the graphical representation of the wave function in the rotational degrees of
freedom in two different situations. These representations correspond to two differ-
ent positions of the c.o.m. of the diatom: on the left–hand side the translational DOFs
are fixed at the center of the cavity, while on the right–hand side the molecule is lo-
cated near the wall of the nanotube. It is clearly seen that the shape of this rotational
wave function changes from one position to the other, being cylindrically symmet-
rical at x = 0 a0 and becoming distorted at x ≈ 2 a0. The relative partial overlap
functions help us to rationalize such change in terms of the contribution of the dif-
ferent reference functions: as the c.o.m. is displaced towards the nanotube walls we
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see an increase of the contribution of the Y0
2 function, and of the asymmetric func-

tions Y±1
2 and Y±2

2 . Since we can represent these model functions to see their shape,
it becomes easier to visualize how the wave function will behave near the nanotube
wall. A potential drawback of the relative partial overlap functions appears in areas
with a low probability density, and particularly on nodal points or surfaces: on these
areas, the function will artificially grow to infinity, and therefore one must be careful
with their interpretation. Nevertheless, all things taken into account we find they
are a useful tool that provides with an intuitive vision of the system, and thus can
help in getting more insight on it.
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5.3 Publication 1: 5D quantum dynamics of the H2@SWNT

system: Quantitative study of the rotational–translational

coupling
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The dynamics of the dihydrogen molecule when confined in carbon nanotubes with different chiral-
ities and diameters are studied by using a 5 dimensional model considering the most relevant degrees
of freedom of the system. The nuclear eigenstates are calculated for an (8,0) and a (5,0) carbon
nanotubes by the State-Average Multiconfigurational Time-dependent Hartree, and then studied using
qualitative tools (mapping of the total wave functions onto given subspaces) and more rigorous
analysis (different kinds of overlaps with reference functions). The qualitative analysis is seen to
fail due to a strong coupling between the internal and translational degrees of freedom. Using more
accurate tools allows us to gain a deeper insight into the behaviour of confined species. C 2015 AIP

Publishing LLC. [http://dx.doi.org/10.1063/1.4913293]

I. INTRODUCTION

The study of the confinement of gaseous species inside
nanostructured materials (quantum confinement) has become
a matter of study in the last years, both theoretically and exper-
imentally.1–3 This interest arises due to the unique phenom-
ena that take place when a molecule is embedded in cavities
within the nanometric scale, which may be seen as quasi-
zero or quasi-one-dimensional spaces. Among these effects,
we find distortions of the electronic structure and geometry
of the species,4 as well as changes in their dynamic behavior
due to a strong translation-rotation coupling.5–8 These effects
lead to potential applications in chemistry and physics: they
allow a tight control of certain reactions,9 or the separation of
isotopes of gaseous species at the molecular level, known as
quantum sieving.3,10 In particular, the hydrogen molecule (H2)
has been a popular target for these studies due to the interest of
nanostructures as hydrogen storage devices for technological
applications. Back in 1999, FitzGerald et al.11 studied the
neutron scattering spectra of the hydrogen molecule confined
in the octahedral and tetrahedral interstitial sites of a C60 lat-
tice both theoretically and experimentally, in one of the first
works on the dynamics of a confined molecule considering
both rotation and translation. Later on, attention was shifted to
other carbon allotropes, such as carbon nanotubes (CNTs). For
this kind of system, Yildirim et al. made an extensive formal
study of the energetic levels of hydrogen using a cylindrical-
symmetry potential energy surface model.6,12 Later on, Gray
and coworkers improved the potential model and were able
to give deeper insight into the system with a four dimen-
sional Hamiltonian which did not take into account the vibra-
tional degree of freedom (DoF).5 The first five-dimensional
study of hydrogen confined in carbon nanotubes, consider-
ing hydrogen’s vibration, was later carried out by some of
us.13 This research field has been greatly benefited lately by

a)Electronic mail: fermin.huarte@ub.edu

the valuable contributions of Bačić and coworkers, who have
made rigorous calculations of the hydrogen molecule in metal-
organic frameworks (MOFs),7 of hydrogen endofullerenes,2

and of the HD molecule confined in a clathrate hydrate struc-
ture.1

In the absence of a confining potential, the internal (rota-
tion and vibration) and translational degrees of freedom of a
given molecule would be perfectly separable. This means that
the total wave function could be described as the direct product
of a free particle and an internal motion function, with quantum
numbers l, m (rotation), and v (vibration),

Φ
v(x⃗, θ, φ) = eik x⃗ψvm

l (ρ,θ,φ). (1)

When confinement appears, the potential does not only affect
the translational degree of freedom, which is now quantized as
it corresponds to a bound system, but also couples the internal
degrees of freedom and the translation of the molecule. Due
to this coupling term, the wave functions describing the final
system will not be a direct product of the functions for the
individual degrees of freedom, but rather a mixture of them

Φ
v(x⃗, θ, φ) =

∞


nx=0

∞


ny=0

∞


l=0

l


m=−l
cnx,ny,l,mHnxny

(x⃗)

×Ym
l (θ,φ), (2)

and therefore the internal and translational quantum numbers
cannot be considered good quantum numbers.

It is commonly accepted that very light molecules, such
as H2 and D2, represent an exception to the previous statement.
This is so because these species present an exceptionally large
moment of inertia that causes the separation between energy
levels in the unconfined problem to be very large. Therefore,
the mixing of states with different l values due to the coupling
with the translational degree of freedom in a confined case
is small enough to consider l as a good quantum number.
This is the idea followed by Yildirim et al. for their formal
analysis of the confinement of molecular hydrogen in different
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nanostructures.6 However, Gray et al. gave the first hints on the
fact that this assumption does not hold for the tightest confining
potentials, such as the one generated by a (8,0) Single-Walled
Carbon Nanotube (SWCNT).5

In the present work, we want to go one step further from
the previous studies of nanoconfined species by performing
a rigorous quantitative study of the quantum eigenstates of
a hydrogen molecule inside single-walled carbon nanotubes
of different chiralities: (8,0), which accounts for the narrow-
est nanotube in which physisorption of hydrogen is energet-
ically favourable, and (5,0), which will serve as example of
an extremely tight confining potential. The full dimensional
eigenstates of the nanoconfined molecule will be interpreted
in terms of the eigenfunctions of a separable H2@SWCNT
model.

This paper is organized as follows: first, the model used to
describe the physical system and the potential energy surface
is discussed. In Sec. III, the approach used to compute the
eigenstates of the system is explained. Also, details are given
of the multiconfigurational time-dependent Hartree method
(MCTDH), which is used to carry out the quantum dynamics
calculations. Section IV is devoted to the analysis of the eigen-
states themselves and is divided into Subsections IV A and
IV B. In Sec. IV A, we focus in the qualitative description,
based on the graphical inspection of two dimensional projec-
tions of the total wave function in different subspaces (namely,
the translational subspace, which takes into account the x and
y coordinates, and the rotational subspace in which we find
θ and φ). Subsection IV B presents a quantitative approach
that allows a rigorous description of the wave function based
on its overlap with a set of known basis functions. Section V
summarizes our results.

II. DESCRIPTION OF THE SYSTEM

Our model consists of a single hydrogen molecule
embedded in the hollow cavity of a SWCNT with either (8,0) or
(5,0) chirality, hereafter referred to as H2@(8,0) and H2@(5,0),
respectively. Both nanotubes are represented by concatenat-
ing 20 unit cells in order to mimic an infinitely long nano-
tube, thus making edge effects disregardable. The geometry
of the corresponding unit cells has been obtained from a
CRYSTAL0914,15 optimization using the B3LYP functional
and a 6-21G basis set. These optimizations yield a nanotube
diameter of 7.0 bohrs for the (5,0) CNT and 12.1 bohrs for the
(8,0), with an internuclear C-C distance of ∼4.5 bohrs.

Regarding the confined molecule, five degrees of freedom
(DoFs) are considered, as it can be seen in Figure 1: translation
of the center of mass of the molecule in the xy plane, full
rotation (θ, φ), and vibration (ρ). Note that we do not account
for the translation along the nanotube’s axis (z). This is justified
in terms of the length of the nanotube. Moreover, in case
of the (8,0) nanotube, the corrugation of the potential along
this direction is small enough not to expect changes of the
overall results due to the fixing of the coordinate in a given
arbitrary point of the z dimension. This corrugation is much
more important in case of the (5,0) nanotube, and the study is
carried out fixing the z coordinate of the c.o.m. at exactly the

FIG. 1. Scheme of the degrees of freedom considered for the H2 molecule in
the present work.

minimum of the Potential Energy Surface (PES) corresponding
to center of the unit cell of the system.

The full Hamiltonian for this system, H5D, is therefore
given by

Ĥ5D = −
~

2

2µH2

(

∂2

∂ρ2
+

2
ρ

∂

∂ρ
+

1
ρ2

∂2

∂θ2
+

1
ρ2

1

sin2θ

∂2

∂φ2

)

− ~
2

2mH2

(

∂2

∂x2
+

∂2

∂ y2

)

+ V̂ (ρ,θ,φ, x, y). (3)

To model the five dimensional potential energy operator,
we used the same 5D potential energy function used by Suárez
and Huarte-Larrañaga.13 This is a semiempirical potential
which accounts for two separable terms: the H–H interaction,
VH−H and the van der Waals interactions between the hydrogen
atoms and each of the carbon atoms in the nanotube, VC−H . The
covalent interaction is modelled by a Morse potential,16 using
the parameters De = 0.1746 hartree, a = 1.0271 bohr−1, and
Re = 1.4 bohrs. The weak dispersion forces are approximated
using the Novaco and Wroblewski potential17 previously used
by Gray:5 a pair-interaction Lennard-Jones potential with
parameters ϵ = 2.82 Å and σ = 0.0605 kcal/mol,

V̂5D = VH−H(ρ) + VC−H(ρ,θ,φ, x, y), (4)

V̂C−H(ρ,θ,φ, x, y) =

2


i=1

Nc


j=1

V LJ
i, j (dHi−C j

). (5)

It is worthwhile mentioning at this point that there has
been some controversy concerning the values of the Lennard-
Jones parameters to be used in this kind of systems. How-
ever, given that the aim of our work is providing a systematic
scheme to characterize the eigenstates of the confined molecule
rather than predicting accurate energy splittings, we restrain
ourselves to the Lennard-Jones values we have used in the
recent past.

Relevant qualitative information about H2@(8,0) and
H2@(5,0) systems can be extracted just from the shape of their
respective PES’s. Comparing some features of the potential
with experimental results tells us about the suitability of the
overall function, and it helps to understand the results of the
simulations in the different degrees of freedom. Therefore, a
brief discussion of the potential energy surface is given next.

Figure 2 shows a cut of the relaxed PES along the ρ coordi-
nate for the free hydrogen molecule and both the H2@(8,0) and
H2@(5,0). This representation allows us to find the equilibrium
internuclear distance of the molecule in different conditions, as
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FIG. 2. Potential cut along the ρ co-
ordinate for three different systems:
a free hydrogen molecule, a hydro-
gen molecule embedded in a (8,0) car-
bon nanotube, and the same molecule
in a (5,0) nanotube. Inset: detail of
the energy difference between the free
molecule and the H2@(8,0) system. En-
ergy values are referred to the energy
of the free H2 molecule at equilibrium
distance.

well as a first approximation to the adsorption energy. Concern-
ing the equilibrium distance, it is seen that there is not a signif-
icant change with respect to the free molecule (1.41 bohrs)
when the molecule is confined in a (8,0) nanotube. Instead, this
distance is slightly decreased to 1.3 bohrs when the nanotube
has a (5,0) chirality. This is related to the small diameter and
size of the unit cell of this last nanotube: the hydrogen molecule
feels a strong repulsion from the C atoms in the cage and
tends to shorten the bond to minimize this repulsion. This
is related to the second feature that can be extracted from
this particular potential cut: the system’s minimum energy
is slightly lower for the molecule trapped in a (8,0) nano-
tube than that of the free H2, which indicates that the absorp-
tion is energetically favourable. On the other hand, this mini-
mum is much higher for the (5,0) nanotube, which means that
now adsorption is not energetically favourable. This is consis-
tent with some molecular dynamics calculations which show
that these nanotubes are way too narrow for hydrogen to be
physisorbed in their endohedral sites.18 The H2@(5,0) system
is therefore not a realistic one, but nevertheless will be useful
to illustrate extreme confinement situations. Concerning the
translational degrees of freedom, the 2D relaxed energy plots
show that both nanotubes create an anharmonic potential with
an absolute minimum in the center of the structure. As it can be
seen in Figure 3, the potential created by the (5,0) structure is
much tighter than the one of the (8,0) CNT due to the smaller
diameter. Hence, the wave functions of the former system are
expected to be much more distorted than the ones obtained for
the latter.

Finally, the cut of the PES along the rotational (θ, φ) coor-
dinates gives us another feature of the system: the hindrance
that the potential imposes to the rotation of the H2 molecule
(see Figures SF1 and SF2 in the supplementary material19 for
the plots of these projections). For the wider (8,0) nanotube,
this rotation occurs through a quite low barrier (20 meV), and
the profile in the φ dimension is constant even for the perpen-
dicular orientation of the diatom (θ = 2/π). This may lead to
thinking that the rotational functions will be very similar to

the ones of a free rotator. Instead, the rotational barrier for
the H2 molecule in the (5,0) carbon nanotube is exceptionally
higher (3.41 eV). This energy is too high for the molecule to
overcome, and therefore rotation along the θ dimension would
not be possible inside this nanotube. Due to the symmetry of
the system and this high barrier, we end up with a symmetric
double-well potential, and the functions are expected to be only
loosely related to spherical harmonics.

III. CALCULATION OF THE NUCLEAR EIGENSTATES

The eigenstates of the studied system were calculated
following the State Average Multiconfigurational Time-
dependent Hartree (SA-MCTDH) scheme developed by Man-
the.20 It is based on the iterative application of the operator
to be diagonalised onto a set of wave functions. In the case
of energy eigenstates, one can apply the Boltzmann operator,
e−βĤ instead of the Hamiltonian operator, which is equivalent
to the propagation of the set of wavepackets in imaginary
time, β.

A. State-average multiconfigurational time-dependent
Hartree approach

The MCTDH approach is an efficient algorithm to prop-
agate high-dimensional wavepackets.21 In this method, an
f -dimensional system is described by p logical coordinates
Qk, such that p ≤ f . Then, an ansatz is constructed as linear
combination of Hartree products, each one of these being a
direct product of time-dependent functions corresponding to
the different logical coordinates, the so called Single Particle
Functions (SPFs). Hence, the expression for the ansatz is

Ψ(Q1, . . . ,Qp, t) =

n1


j1=1

· · ·
np


jp=1

Aj1· · · jp(t)

p


k=1

ϕ
(k)

jk
(Qk, t),

(6)
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FIG. 3. Cut of the relaxed 5D poten-
tial energy surface along the x coor-
dinate for both the (8,0) and the (5,0)
nanotubes. The energy origin has been
shifted to 0 in both cases.

where the SPFs are denoted by ϕ(k)
jk
(Qk, t) and k runs over all

coordinates of the system. Aj1· · · jp(t) represent the coefficients
of the different Hartree products of the linear combination, and
a sum runs for each coordinate in the system depending on the
number of SPFs used to describe each coordinate k, jk.

The SPFs are in turn represented in a primitive time-
independent basis set, which is in general based on a Discrete
Variable Representation (DVR) or FFT grid

ϕ
(k)

j
(Qk) =

Nk


l=1

a
(k)

l j
χ
(k)

l
(Qk). (7)

Applying the Dirac-Frenkel variational principle to this
ansatz, two sets of coupled equations of motion are derived:
one set for the Aj1· · · jp(t) coefficients and another one for
the SPFs. The double layer representation is the reason why
the MCTDH scheme has a such great efficiency compared to
the standard wavepacket approach, in which the total wave
function is represented completely in a time-independent ba-
sis: since the SPFs are time-dependent, they adapt to the total
wave function at each time step, and therefore, a relatively
small number of them are needed for a good description of
the system. This decreases the numerical effort required to
integrate the equations of motion for the ansatz, while retaining
much of the accuracy. For further detail, the reader is referred
to the monograph edited by Meyer et al.22

As mentioned before, the SA-MCTDH approach has been
used in the present work to obtain the eigenenergies and eigen-
states of the system under study, through diagonalization of
the Boltzmann operator on a basis formed by a set of ortho-
normal wavepackets propagated in imaginary time. This set
of wavepackets is represented in a common basis of SPFs,
which allows an easy orthogonalization of the set after each
propagation. However, it also carries implicitly an important
drawback: since the best basis set to represent the average wave
function will not be necessarily the optimal set for each indi-
vidual state, one may need more basis functions to converge
the results than if an individual wavepacket was propagated

for each state. Nevertheless, as it is shown elsewhere,20 it is
a powerful approach to calculate nuclear eigenstates.

One last remark must be made about the MCTDH scheme:
its maximum efficiency is reached when the whole Hamilto-
nian is expressed in a product-like form, since then the integra-
tion of the equations of motion is much more straightforward.
This can be easily achieved for the kinetic energy operator,23

but not for the potential energy operator in its general form.
The Correlation Discrete Variable Representation (CDVR)
scheme developed by Manthe24 allows using a general poten-
tial energy surface in a MCTDH calculation while largely
retaining the accuracy, and this approach was used in our pro-
gram to implement the potential function as shown in Eq. (5).

B. Numerical details

As it was outlined previously, the MCTDH approach is
based on a two layer representation of the full-dimensional
wave function. In our case, the wave function is expanded onto
a configuration space obtained from the direct product of five
sets of SPFs, one for each DoF of the system. Then, each of
these SPFs is represented in a suitable time-independent basis.
Four of the SPFs sets used in the present work (ρ, φ, x and y)
are represented in a Fourier method grid. However, a particular
issue appears when representing the orientation of the H2, θ:
due to the 1

sin2θ
term that appears in Eq. (3), a singularity

arises in the Hamiltonian for θ = 0, i.e., if the H2 molecule
is oriented parallel to the nanotube’s axis. This singularity
becomes specially important in the present case, due to the
strong alignment of the confined molecule along the nanotube
axis (z), θ = 0. For this reason, the θ degree of freedom was
represented in a cot-DVR scheme specially designed to avoid
this singularity.25

The size of the primitive basis set itself, as well as the
number of SPFs needed to represent each DoF, depends on the
potential to which the hydrogen molecule is exposed. Hence,
for the (8,0) nanotube, the number of SPFs for each degree
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TABLE I. Numerical details of the basis set used for the calculations of the
H2@(8,0) system. Magnitudes given in bohrs or radians, correspondingly.

Degree of
freedom

Number
of SPFs

Lower
limit

Upper
limit

Number of
functions

Initial
position

ρ 2 0.5 5.0 32 1.41
θ 7 0.0 π 64 π/2
φ 7 0.0 2π 64 0.0
x 5 −3.5 3.5 32 0.0
y 5 −3.5 3.5 32 0.0

of freedom was increased until the numerical convergence
of more than 40 excited states was achieved. The detailed
information about the parameters used for the representation
of the wave function is given in Table I.

Due to the extreme tightness of the potential generated by
narrower nanotubes, this basis had to be changed significantly
in the case of the H2@(5,0) system: first of all, the range of
the x and y coordinates was reduced to go just from −0.8
to 0.8 bohrs, since for larger distances from the nanotube’s
center, the potential was way too repulsive (see Figure 3). Then,
once this range was set, the number of SPFs was adjusted to
achieve the numerical convergence of up to 26 eigenstates. The
converged parameters for the wave function representation are
shown in Table II. Note that the number of SPFs needed to
converge the calculation increases in the vibrational degree of
freedom. This seems to indicate that the coupling between the
internal and translational DoFs will be much more important
for this system than for the previous one.

With these basis sets, the eigenstates for the H2@(8,0)
and H2@(5,0) were computed following the SA-MCTDH
approach explained above. A value of β = 525 a.u. was used
in both systems for the Boltzmann operator.

In the case of the (8,0) nanotube, the 50 lower energy
eigenstates were converged after 27 iterations. Energy values
are listed in the second column of Table III. Two main features
stand out in the energy spectrum. The first is its high zero
point energy of 2580 cm−1, which is 421 cm−1 larger than
that of the free H2. This feature was already pointed out in
a previous work by some of us,13 where it was argued that
this increase of the Zero Point Energy (ZPE) appears not
only because of the quantization of the translational degree of
freedom, but it is also an evidence of the coupling between the
different degrees of freedom. The second feature to highlight
is that the eigenstate spectrum is radically densified under
confinement conditions. The reason for this increase in the

TABLE II. Numerical details of the basis set used for the calculations of the
H2@(5,0) system. Magnitudes given in bohrs or radians, correspondingly.

Degree of
freedom

Number
of SPFs

Lower
limit

Upper
limit

Number of
functions

Initial
position

ρ 4 0.5 5.0 32 1.45
θ 8 0.0 π 64 π/2
φ 6 0.0 2π 64 0.0
x 4 −0.8 0.8 32 0.0
y 4 −0.8 0.8 32 0.0

TABLE III. Relevant results of the qualitative assignation of the calculated
eigenstates of the H2@(8,0) system. Energies are given in wavenumber units
related to the ground state energy of 2580 cm−1. See text for the meaning of
the h label.

State ∆E nx ny l |m| k

0 0 0 0 0 0 0
1 59 0 0 1 0 0
2 171 0 0 1 1 0
3 171 0 0 1 1 0
4 265 1 0 0 0 0
5 265 0 1 0 0 0
6 310 1 0 1 0 0
7 310 0 1 1 0 0
8 343 0 0 2 0 0
9 346 0 0 2 1 0
10 346 0 0 2 1 0
11 428 h h 2 2 0
12 429 0 0 2 2 0
13 429 0 0 1 1 0
14 462 h h 2 2 0
15 462 h h 2 2 0
16 503 h h 2 2 0
17 550 (1,0)/(0,1) 0 0 0
18 550 (1,0)/(0,1) 0 0 0
19 572 (2,0)/(0,2) 0 0 0
20 580 (1,0)/(0,1) 1 0 0
21 580 (1,0)/(0,1) 1 0 0
22 590 h h 2 1 0
23 597 (2,0)/(0,2) 1 0 0
24 615 1 0 0 0 0
25 615 0 1 0 0 0

density of eigenenergies is threefold: first of all, the confining
potential quantizes the translational motion of H2. Second, the
cylindrical symmetry of the potential breaks the degeneracy of
rotational eigenstates. And finally, mixed states are expected to
appear in the spectrum due to the coupling between the internal
and translational degrees of freedom.

Regarding the extremely confining (5,0) nanotube, 26
eigenstates were converged after 20 iterations. The corre-
sponding eigenenergies are reported in Table IV. In this case,
the ZPE for the system is outstandingly high (9273 cm−1). An
important part of this ZPE (4278 cm−1) is due to the quantiza-
tion of the translational degree of freedom, and its high value
is consistent with the extreme tightness of the potential created
by such a narrow nanotube. The remaining 4995 cm−1 comes
from the combined effect of the vibrational and rotational ZPE
(this latter is no longer 0, due to the hindrance to rotation) plus
the energy due to the coupling between the degrees of freedom.

IV. EIGENSTATE ANALYSIS

In this section, we present our analysis of the eigenstates
of the confined hydrogen system employing two schemes, one
based on the graphical inspection of the nodal structure of
the wave function and a more rigorous analysis consisting in
the study of the overlap of the system’s eigenfunctions with
models of reduced dimensionality. The strengths and weak-
nesses of each approach will be discussed next.
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TABLE IV. Results of the qualitative assignation of the different degrees of
freedom for the H2@(5,0) system. Energies are relative to the ground state
energy of 9273 cm−1.

State ∆E nx ny l |m| k

0 0 0 0 1 0 0
1 0 0 0 1 0 0
2 3552 0 0 1 1 0
3 3552 0 0 1 1 0
4 3552 0 0 1 1 0
5 3552 0 0 1 1 0
6 3591 0 1 1 0 0
7 3591 0 1 1 0 0
8 3591 1 0 1 0 0
9 3591 1 0 1 0 0
10 4636 0 0 1 0 1
11 4636 0 0 1 0 1
12 6674 0 0 1 3 0
13 6674 0 0 1 3 0

A. Low-coupling limit: Assignment based
on the nodal pattern

The first attempt in the description of the eigenstates of
our system was to carry out a qualitative analysis of the wave
functions. As it was discussed in Sec. I, for a fully separable
Hamiltonian, the total wave function would be described as a
product of individual wave functions, each being the solution
for each degree of freedom in the Hamiltonian. If the Hamil-
tonian is not separable but the coupling between the internal
and translational DoFs is small (low-coupling limit), one can
still write the total wave function approximately as a direct
product of a translational and a rovibrational wave function.
Our approach is based on the mapping of the total 5-D function
into subspaces corresponding to the translational (x and y),
rotational (θ and φ), and vibrational (ρ) degrees of freedom,
thus allowing a graphical representation of the reduced prob-
ability density in these subspaces. Then, these mappings can
be directly compared with the solutions for a hypothetical
separable system, which corresponds to direct products of a
two-dimensional harmonic oscillator function (Hnx,ny

(x, y))
accounting for the translational DoFs, a spherical harmonic
(Ym

l
(θ,φ)) accounting for the rotation, and a Morse function

(Mk(ρ)) to include vibration. Comparing the nodal pattern
of the mapped probability densities with the different states
of the separable problem, one tries to obtain a one-to-one
correspondence between the confined and the free systems,
and assigns a quantum number to each degree of freedom for
a given state: nx and ny for the translation, l and |m| for the
angular momentum, and k for the vibration. The quantity |m| is
used instead of simply m because of the cylindrical symmetry
of the system, which will force the degeneracy of the energy
of states with equal l and |m|.

Some relevant results of the qualitative analysis for
hydrogen confined in the wider nanotube are found in Table III.
As it is seen in this table, no excitation is found in the vibra-
tional degree of freedom, and therefore, the selection of the
rigid rotor functions to study the internal degrees of freedom
of the H2 molecule seems justified for low energy eigenstates.

This graphical inspection was enough to relate most of
the eigenstates of the system to a given pair of rotational and
translational reference functions and assign the corresponding
quantum numbers. The procedure is illustrated in Figure 4 for
the first excited state. In the figure, the projection of the total
wave function onto the rotational and translational subspaces
is shown. For the translational projection, the absolute square
value of the function is shown in the x y plane, while for the
rotational subspace, the function is given in spherical coordi-
nates. In this representation, the radius of the plot is related to
the squared absolute value of the function for a given pair of θ
and φ angles. The plane corresponding to a value of θ = π/2,
that is for the perpendicular orientation of the internuclear axis
with respect to the carbon nanotube, is also given to ease the
interpretation. One can observe that, in this state, this plane is
precisely a nodal plane in the θ coordinate. This nodal plane in
the θ dimension, together with the presence of no nodes in the
φ degree of freedom, corresponds to a Y 0

1 spherical harmonic,
so we assign the quantum numbers l = 1, m = 0 to the first
excited state. Since there are no nodal planes in the x y plane of
the translational subspace mapping, we also assign the quan-
tum numbers nx = 0 and ny = 0. Finally, for the internuclear
distance subspace, again no nodes are found and therefore the
state is labeled as k = 0. However, although the study of the
nodal pattern enables a one-to-one correspondence between
most of the H2@(8,0) states and the free H2 ones, a deeper study
of Table III shows that this assignation is not consistent in all
cases. This is evidenced by the fact that some of the states yield
exactly the same quantum numbers under the nodal planes’
criterion, even though they are clearly different functions with
different energies. This is the case of the set formed by the
2nd, 3rd (degenerate), and 13th excited states, for instance.
Oppositely, the 12th and 13th excited states are energetically
degenerate despite the fact that the analysis of nodal planes tells
us that they should have different values of |m|. A closer look to
the functions shows us why this method is not good enough to
establish a clear correspondence between the confined and free
H2 states. For instance, the ground state wave function mapped
on the orientational subspace (θ, φ), shown in Figure 5, shows
no nodal plane in this projection. In our qualitative approach,
this means that this function corresponds to a l = 0, m = 0
state. However, a significant depression is found for values of
the polar angle θ near to π/2, which indicates that there is
a significant mixing of rigid rotor states in order to give rise
to this function. A similar case is found in the translational
mapping of the 11th, 14th, 15th, 16th, and 22nd excited states.
These projections, shown in Figure 6 for the 11th excited state,
present a minimum of probability in the x = 0, y = 0 point,
which cannot be strictly considered a nodal point. This struc-
ture does not correspond to any eigenstate of an anharmonic
oscillator, and therefore, an h state is used to label the nx and
ny quantum numbers. Finally, a more subtle example is found
in the translational projection of the remaining eigenstates:
there are slight differences in the overall shape for many of
the functions without any nodal plane that may be therefore
labelled as H0,0. These variations imply that again there is a
significant coupling between rotation and translation.

As expected, the inaccuracies of the qualitative inspection
method are even more noticeable in case of the narrower (5,0)
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FIG. 4. Projection of the first excited
state of the H2@(8,0) system in the
translational (upper panel) and rota-
tional (lower panel) subspaces. The φ
plane shown corresponds to a θ value
of π/2.

nanotube: due to the tightness of the potential, all coordinates
are even more coupled than they were in the wider (8,0) nano-
tube, which makes the study more difficult. The results of the
qualitative analysis of the system are shown in Table IV. Note
that, as predicted in the discussion about the potential energy
surface, the energy pattern corresponds to that of a symmetric
double-well system with a very high energy barrier: the eigen-
states are numerically bidegenerate for all values of energy
far below the top of the rotational barrier. This degeneracy is
caused by a negligible tunnelling splitting. In the case of the
ground state, the corresponding eigenfunctions are shown in

FIG. 5. Rotational projection of the total ground state wave function of H2 in
the (8,0) CNT. Note the significant depression for θ = π/2.

Fig. 7, projected on the rotational degree of freedom. These
functions appear localized around θ = 0 and θ = π, with an
amplitude restricted to an arc of about 0.5 rad, which clearly
means that this distortion is far too large for this coordinate
to be inspected by direct comparison to rigid rotor functions.
However, some quantum numbers have been assigned in the φ
degree of freedom to represent the nodal planes which appear
in this dimension. Concerning the other degrees of freedom, it
should be pointed that the excitation energies are much larger
in this case than in the previously studied, again due to the
tighter potential. Note however that, in spite of the tightness
of the potential, translational excited states in x and y degrees
of freedom are still degenerate. As a final remark, in this system
we do see vibrational excitations, which were too high in
energy to be seen in the previous case and are now of the order
of translational and rotational excitations.

B. Quantitative description of the eigenstates

It has been seen that a qualitative description of the eigen-
states is not suitable for the H2@SWCNT systems: even in
the ground state, we find very significant deviations from the
reference 2-D problem in the rotational degrees of freedom,
and the translational functions also present variations between
different energy levels which are not in a good agreement
with a separable solution. Therefore, a quantitative analysis is
desirable to truly obtain a meaningful correspondence between
the eigenstates of the unbound and the confined molecule.
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FIG. 6. Translational projection for the
11th excited state of the H2@(8,0)
system.

In order to perform this more rigorous analysis of the
eigenfunctions of the system, a basis set is built from the solu-
tions of an hypothetical separable Hamiltonian. This means
that each element of the basis will be a direct product of
functions corresponding to the different degrees of freedom of
the system under study. For our specific problem, where the
degrees of freedom are the internuclear distance, rotation, and
translation of the center of mass of the molecule in the CNT
potential, these basis functions have the form

Φ
k,l,m,nx,ny(ρ,θ,φ, x, y) = Mk(ρ)Y

m
l (θ,φ)Ξnx,ny

(x, y),

(8)

where each function of the product corresponds to the solution
of a model system or to a eigenstate of a separable part of
the Hamiltonian. Therefore, the functions which represent the
internuclear distance, Mk(ρ), and the rotation of the mole-
cule, Ym

l
(θ,φ), were built from the solution of two well-known

problems, namely, the Morse potential and the rigid rotor,
respectively. On the other hand, the translational functions,
Ξnx,ny

(x, y), are chosen to be the solutions corresponding to
a structureless particle moving in the x y plane, subjected to
the potential created by the specific CNT under study, which
resemble two-dimensional anharmonic oscillators.

FIG. 7. Rotational projection of the degenerate ground state functions of the
H2@(5,0) system along the θ dimension, with φ = 0.

The basis set is then built by adding each time a quantum to
each degree of freedom. Once this is done, the actual system’s
eigenfunction can be represented in this basis

Ψ
n =

kmax


k=0

lmax


l=0

l


m=−l

nx max


nx=0

ny max


ny=0

cnk,l,m,nx,ny
Φ

k,l,m,nx,ny,

(9)

where the coefficients of the linear combination, cn
k,l,m,nx,ny

,
can be obtained by performing the scalar product between a
given function Ψn and each basis element

cnk,l,m,nx,ny
= ⟨Ψn | Φk,l,m,nx,ny⟩, (10)

where m labels the basis element. These quantities give us
a quantitative description of how much the actual eigenstate
resembles that of the separable problem and therefore allows
for a rigorous yet understandable interpretation of the quantum
confinement phenomena.

The results for this analysis are given in Table V for the
case of the H2(8,0) system. We can see that, except for the 1st
excited state, all other eigenfunctions are not directly related to
a single reference function, but rather with a linear combination
of at least two of them. This agrees with the inconsistencies
found during the interpretation of the wave function carried
out in Sec. IV A: concerning the ground state, we see an
important contribution of the |02000⟩ function, which implies
a contamination of the rotational subspace with theY 0

2 function.
Regarding the 11th excited state, whose projection we could
not relate with any anharmonic oscillator function, its nature
is also made clear by this analysis: the projection is just the
result of a mixing of (0,1) and (1,0) states of the anharmonic
oscillator. It should also be noted that, as the energy increases,
the more reference functions are needed to represent accurately
a given state.

For the case of the H2@(5,0) system, the results of the full
dimensional integration shown in Table VI differ significantly
from those corresponding to the (8,0) nanotube: every state is
a mixture of many more basis functions, even for the lowest
energies. This means, as it was already pointed during the
qualitative inspection of the mappings of the wave functions,
that the distortions with respect to the free hydrogen case are
much more important for the narrower nanotube.
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TABLE V. Representation of the H2@(8,0) system’s eigenfunctions in the
basis of direct product functions. Energies in cm−1 units. See Table ST1
in the supplementary material19 for a complete table with all converged
eigenstates.

State ∆E
Basis element
(| klmnxny⟩) |cn

k,l,m,nx,ny
|

0 0 |00000⟩ 0.92

|02000⟩ 0.06

1 59 |01000⟩ 0.98

2 171 |01100⟩ 0.48

|01−100⟩ 0.48

3 171 |01100⟩ 0.48

|01−100⟩ 0.48

4 265 |00001⟩ 0.87

|02001⟩ 0.11

5 265 |00010⟩ 0.85

|00030⟩ 0.02

|02010⟩ 0.10

6 310 |01001⟩ 0.95

|03001⟩ 0.02

7 310 |01010⟩ 0.92

|01030⟩ 0.04

8 343 |00000⟩ 0.06

|02000⟩ 0.90

9 346 |02−100⟩ 0.48

|02100⟩ 0.48

10 346 |02−100⟩ 0.48

|02100⟩ 0.48

11 428 |01−101⟩ 0.23

|01−110⟩ 0.25

|01110⟩ 0.25

|01101⟩ 0.23

12 429 |00010⟩ 0.02

|02−200⟩ 0.48

|02200⟩ 0.48

13 429 |02200⟩ 0.48

|02−200⟩ 0.48

14 462 |01110⟩ 0.23

|01101⟩ 0.23

|01−101⟩ 0.23

|01−110⟩ 0.23

15 462 |01110⟩ 0.23

|01101⟩ 0.23

|01−101⟩ 0.23

|01−110⟩ 0.23

16 503 |01110⟩ 0.23

|01101⟩ 0.23

|01−101⟩ 0.23

|01−110⟩ 0.23

17 550 |00010⟩ 0.74

|02110⟩ 0.16

18 550 |00002⟩ 0.46

|00020⟩ 0.27

|02002⟩ 0.10

|02020⟩ 0.06

19 572 |00002⟩ 0.30

|00020⟩ 0.44

|02000⟩ 0.03

|02002⟩ 0.06

|02020⟩ 0.08

TABLE VI. Representation of the H2@(5,0) system’s eigenfunctions in the
basis of direct product functions. Energies in cm−1 units. See Table ST2
in the supplementary material19 for a complete table with all converged
eigenstates.

State ∆E
Basis element
(| klmnxny⟩) |cn

k,l,m,nx,ny
|

0 0 |00000⟩ 0.072

|02000⟩ 0.282

|12000⟩ 0.032

|32000⟩ 0.018

|04000⟩ 0.096

· · · . . .

1 0 |01000⟩ 0.199

|03000⟩ 0.309

|11000⟩ 0.029

|13000⟩ 0.030

|31000⟩ 0.023

|33000⟩ 0.020

· · · . . .

2 3552 |02−100⟩ 0.017

|02100⟩ 0.065

|12100⟩ 0.012

|04−100⟩ 0.052

|04100⟩ 0.196

|14100⟩ 0.030

|34100⟩ 0.014

· · · . . .

3 3552 |02−100⟩ 0.065

|02100⟩ 0.017

|12−100⟩ 0.012

|04−100⟩ 0.196

|04100⟩ 0.052

|14−100⟩ 0.030

|34−100⟩ 0.014

· · · . . .

4 3552 |01100⟩ 0.016

|03−100⟩ 0.036

|03100⟩ 0.134

|13100⟩ 0.023

· · · . . .

5 3552 |01−100⟩ 0.016

|03−100⟩ 0.134

|03100⟩ 0.035

|13−100⟩ 0.028

· · · . . .

6 3591 |00010⟩ 0.067

|02010⟩ 0.264

|03010⟩ 0.013

|12010⟩ 0.031

|32010⟩ 0.017

|04002⟩ 0.091

· · · . . .

7 3591 |01010⟩ 0.186

|02010⟩ 0.012

|03010⟩ 0.291

|11010⟩ 0.023

|13010⟩ 0.031

|31010⟩ 0.012

|33010⟩ 0.019

· · · . . .
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Table VI shows an important feature of the system: note
that for some states, basis functions with both even and odd
quantum numbers, l, have a relevant contribution in the final
state. This feature is a result of the exceptionally large rota-
tional barrier of the confined hydrogen molecule. This hin-
drance in the angular degree of freedom, as it was discussed
earlier, forces a numerical bidegeneracy of the rotational en-
ergy levels of the hydrogen molecule. If symmetry conditions
are not imposed for the eigenstates of the system, two possible
solutions are equally valid: a delocalized representation of the
wave function or a localized representation made from the
linear combination of symmetric and antisymmetric states. In
our case, the basis set employed is formed of functions without
any parity, which favours (but does not force) the localized
representation of the eigenstates. Finally, another important
difference between the hydrogen molecules confined in the
(8,0) or the (5,0) nanotube is found in the ρ degree of freedom:
for the narrower CNT, vibrationally excited states contribute
to the wave function already in the 3rd excited state, while
no excitations were found during the analysis of the H2@(8,0)
system’s eigenstates.

The full dimensional overlap offers a direct and simple
view of the total wave function as a combination of well-known
reference states. Yet, it is still difficult to get an insight into the
dynamics of the confined hydrogen molecule just by observing
these quantities, since the actual wave function, which gives
information about the probability of finding the molecule in a
given position and orientation, is lost when performing the sca-
lar products. Our aim here is to develop a representation of the
wave function which allows an intuitive understanding of the
motion of H2 inside a confining structure, while maintaining a
rigorous approach.

Following this idea, we computed a partial overlap func-
tion, σ(x⃗red), between the full five-dimensional wave func-
tion corresponding to each eigenstate and a model function
corresponding to a logical coordinates of the system. These
logical coordinates are understood as strongly coupled degrees
of freedom which cannot be straightforwardly separable. In our
case, these will be rotation on one hand and translation of the
center of mass on the other. Hence, the magnitudes that we will
study will be

σl,m(ρ, x, y) = ⟨ψ(ρ,θ,φ, x, y) | Ym
l (θ,φ)⟩

=

 2π

0

 π

0
ψ(ρ,θ,φ, x, y)∗ Ym

l (θ,φ) sinθ dθ dφ, (11)

σnx,ny
(ρ,θ,φ) = ⟨ψ(ρ,θ,φ, x, y) | Ξnx,ny

(x, y)⟩

=

 ∞

−∞

 ∞

−∞
ψ(ρ,θ,φ, x, y)∗ Ξnx,ny

(x, y) dx dy, (12)

where the model functions for the rotational degrees of
freedom are the same that were used for the definition of
the full dimensional overlap. We will refer to these quantities
as rotational and translational overlap functions, respectively.

Note that the magnitudes in Eqs. (11) and (12) are sca-
lar products between functions of different dimensionalities.
Hence, there are three features that must be taken into account
for their correct interpretation:

1. Since we are integrating the functions in a 2-D subspace of
the 5-D total space, this product is a function of the three

non-integrated degrees of freedom. This will allow us to
see how the states corresponding to the reference problem
change their contribution as the potential changes.

2. Both the total 5-D function and the reference 2-D ones are
normalized in the space they span, and for that the scalar
product will not be normalized, but rather depend on the
norm of the total 5-D function in each point of the non-
integrated space. This will allow us to focus on the region
in which the total wave function is relevant.

3. For each point of the full 5-D space, the total wave function
can be obtained through a direct product of the sum of
partial overlaps for the different degrees of freedom. For a
system divided in q logical coordinates, each containing kq
degrees of freedom

Ψ
n(⃗x) =



q

*..
,


j1

· · ·


jkq

σq(x⃗q)
+//
-
. (13)

In our specific case,

Ψ
n(⃗x) = *

,


k

σk(θ,φ, x, y)Mk(ρ)+-
× *
,


l



m

σl,m(ρ, x, y)Y
m
l (θ,φ)+-

× *.
,


nx



ny

σnx,ny
(ρ,θ,φ)Ξnx,ny

(θ,φ)
+/
- . (14)

In short, from the study of the overlap function in the
different subspaces, we obtain quantitative information of both
the norm of the total wave function in a given point and
about its shape, through the interpretation of the overlap as the
coefficients of the linear combination of basis functions, which
gives rise to the eigenstate. Then, the study of these functions
allows a straightforward interpretation of the dynamics of
the hydrogen molecule, since we can see directly how the
coupling between different degrees of freedom affects the
dynamics.

Still, the analysis of a three-dimensional object is not a
trivial task; it is always easier to study the trends of one-
dimensional functions. To further reduce the dimensionality of
the problem, we take advantage of two characteristic features
of the system: first, no vibrational excitations are observed
within the first 50 calculated eigenstates. This feature will
allow us to explore the behaviour of σnx,ny

(ρ,θ,φ) and σl,m

(ρ, x, y) for a fixed ρ = 1.41 bohrs, which corresponds to the
internuclear distance with maximum probability density for
the vibrational ground state. The second feature is the symme-
try of the eigenfunctions studied: in the translational subspace,
they are all either cylindrical or mainly located along two
orthogonal axes, which we can consider as the x and y axes.
Therefore, we can focus on the values of the functions along
these axes. On the other hand, the rotational functions can be
scanned along the range of θ from 0 to π for, in principle, any
value of φ. However, in spite of the isotropy of the potential
for the (8,0) nanotube, the rotational eigenfunctions will not
be isotropic and may present several nodal planes in both θ

or φ coordinates. Therefore, we do not have a preferred value
of the coordinates to scan a priori, since any arbitrary value
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FIG. 8. Analysis of the ground state eigenfunction of the H2@(8,0) system. Upper panel: Radial overlap function along the x and y axes for the ground state
function. Lower panel: Translational overlap function along θ for φ = 0 and along φ for θ = π/2.

of the angle may in principle correspond to a nodal plane for
some eigenstate of the system. The pair of angles which will
be scanned therefore will depend on the particular function
under study. A general rule could be that the fixed value of

φ along which the θ dimension will be scanned may corre-
spond to the point in which the translational overlap function,
σnx,ny

(ρ,θ,φ), presents a maximum. The same can be used to
select the fixed value of θ for which φ will be studied. Yet, this

FIG. 9. Representation of the most rel-
evant relative rotational overlap func-
tions for the ground state in the
H2@(8,0) system.
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FIG. 10. Upper panel: Radial overlap function along the x and y axes for the ground state wave function in the H2@(5,0) system. Lower panel: Translational
overlap function along θ for φ = 0 and along φ for θ = 0.

criterion may be altered in favour of a more physically relevant
pair.

It shall be noted that this reduction of the dimensionality is
carried out only with the aim of easing the interpretation and
gives a general overview of the H2@SWCNT systems under
study. The overlap functions in the different subspaces are
obtained without calling on any approximation and therefore
can be used to study any wave function in an arbitrary point of
the space in a rigorous way.

Starting with the H2@(8,0) system, we have obtained the
three-dimensional overlaps with the rotational (Eq. (11)) and
translational (Eq. (12)) model functions. As an example, in
Figure 8, the absolute values of the rotational and translational
overlap functions for the ground state with the most relevant
test functions are shown along the four directions outlined
previously (θ, φ, x and y). Each line in the plot corresponds
to the overlap function related to a single reference state. It is
readily seen that this state does not correlate with a single state
of the free H2 molecule, but it rather has many contributions.
These contributions, as it was predicted, vary significantly
depending on the orientation and position of the c.o.m of the
H2 molecule, thus confirming the strong coupling between
the translational and internal degrees of freedom in all the
eigenstates of the system. In particular, it can be seen how,
although the major contribution to the ground state comes from

the Y 0
0 and H0,0 states, there is a significant contribution of the

Y 0
2 state in all the translational subspace. Similarly, we see an

important contribution of the H2,0 and H0,2 states, which hits a
maximum proportion in the region near θ = 0.

Therefore, these plots allow us to determine the shape of
the eigenstate at a given point. Furthermore, since the overlap
function is weighted by the total norm of the wave function in
a given point, non-relevant areas in the total sampling space
simply do not appear, which is a great advantage. However,
this feature introduces a problem in the interpretation for the
translational degrees of freedom: since the probability density
in these coordinates has a gaussian-like shape, it decreases
rapidly when the molecule gets closer to the nanotube’s walls.
This makes it difficult to see how the relative contribution of
the model states changes away from the center of the nanotube,
which is the key to see if the system becomes more distorted
as we approach the nanotube’s wall. To overcome this diffi-
culty, we plot the relative overlap function in the translational
space, which results from dividing the rotational overlap for
each reference function with the rotational overlap function
of the dominant state, i.e., the state which has the maximum
contribution to the total wave function, denoted σldom,mdom,

σrel
l,m(ρ, x, y) =

σl,m

σldom,mdom

, (15)
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TABLE VII. Results of the quantitative description of the eigenstates of the H2@(8,0) system. Energies referred to the ground state energy of 2580 cm−1,
contribution of the reference functions referred to the point of maximum probability density in the 5D space. See Table ST3 in the supplementary material19 for
a complete table with all converged eigenstates.

Model functions contribution

State ∆E ρ θ φ x y l,m |σn
l,m

| nx,ny |σn
nx,ny

|

0 0 1.4 0.0 0.0 0.0 0.0 (0,0) 0.097 (0,0) 0.11
(2,0) 0.021 (0,2) 0.02

1 59 1.4 π 0.0 0.0 0.0 (1,0) 0.096 (0,0) 0.14
. . . . . . (0,2) 0.02

2 171 1.4 1.8 π/2 0.0 0.0 (1,1) 0.011 (0,0) 0.11
(1,−1) 0.011 . . . . . .

3 171 1.4 1.25 π 0.0 0.0 (1,1) 0.073 (0,0) 0.11
(1,−1) 0.073 (2,0) 0.01

. . . . . . (0,2) 0.01
4 265 1.4 π π/4 0.55 0.0 (0,0) 0.084 (0,1) 0.12

(2,0) 0.028 (1,2) 0.02
5 265 1.4 π 3π/4 0.0 0.55 (0,0) 0.084 (1,0) 0.12

(2,0) 0.028 (0,3) 0.03
6 310 1.4 π 1.32 0.55 0.0 (1,0) 0.087 (0,1) 0.15

. . . . . . (1,2) 0.02
7 310 1.4 π 2.90 0.0 0.55 (1,0) 0.087 (1,0) 0.15

. . . . . . (0,3) 0.04
8 343 1.4 π 0.0 0.0 0.0 (0,0) 0.038 (0,0) 0.15

(2,0) 0.092 (0,2) 0.03
. . . . . . (2,0) 0.01

9 346 1.4 3π/4 π/2 0.0 0.0 (2,1) 0.070 (0,0) 0.14
(2,−1) 0.070 (0,1) 0.01

10 346 1.4 3π/4 π 0.0 0.0 (2,1) 0.070 (0,0) 0.14
(2,−1) 0.070 (0,2) 0.02

11 428 1.4 1.1 π/2 0.33 0.33 (1,−1) 0.048 (1,0) 0.08
(1,1) 0.048 . . . . . .

12 429 1.4 π/2 π/4 0.0 0.0 (2,2) 0.011 (0,0) 0.13
(2,−2) 0.011 (1,1) 0.01

. . . . . . (2,0) 0.01

. . . . . . (0,2) 0.01
13 429 1.4 π/2 π/2 0.0 0.0 (2,2) 0.073 (0,0) 0.13

(2,−2) 0.073 . . . . . .
14 462 1.4 2.18 4.76 0.32 0.32 (1,1) 0.050 (1,0) 0.07

(1,−1) 0.050 . . . . . .
15 462 1.4 2.09 1.62 0.0 0.55 (1,1) 0.048 (0,1) 0.08

(1,−1) 0.048 . . . . . .
16 503 1.4 h.0 0.0 0.0 0.0 (1,1) 0.050 (1,0) 0.08

(1,−1) 0.050 (0,3) 0.01
17 550 1.4 π π/4 0.55 0.55 (0,0) 0.067 (1,1) 0.13

(2,0) 0.031 . . . . . .
18 550 1.4 π 0.54 −0.76 0.0 (0,0) 0.067 (0,0) 0.01

(2,0) 0.031 (2,0) 0.11
. . . . . . (0,2) 0.08

19 572 1.4 0.0 3.0 0.0 0.0 (0,0) 0.085 (0,0) 0.03
(2,0) 0.051 (2,0) 0.08
. . . . . . (0,2) 0.10

20 580 1.4 3.0 π/4 −0.55 0.55 (1,0) 0.075 (1,1) 0.15
(3,0) 0.014 . . . . . .

always considering only the space in which the total wave
function has a relevant value, in order to have a well-behaved
function.

The plot of the relative overlap functions corresponding
to the upper left panel of Figure 8, corresponding to the
rotational overlap function along the x coordinate for the
ground state of the H2@(8,0) system, is shown in Figure 9. It is

readily seen that the percentage of contribution of high-energy
reference states increases as we get close to the nanotube’s
walls, changing from a mixture of Y 0

0 /Y
2

2 in a 5/1 propor-
tion in the center of the nanotube to a mixture of 5 states,
where the main one has less than a 50% of contribution.
This fact illustrates the effects of the coupling on the overall
function.
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The general trends observed in the study are that the higher
the energy of the studied state, the more eigenstates of the free
molecule contribute to it, even though in general there is always
a dominant contribution to a given state. This is consistent with
the fact that in excited eigenstates, the maximum probability
density is located in areas where the potential affects more
strongly, thus further increasing the distortion with respect to
the reference functions. Therefore, it is clear that the coupling
between the different degrees of freedom forces us to study the
whole subspaces in which the overlap function is represented
in order to understand the system.

The quantitative study of the eigenstates of the H2 mole-
cule in the narrower (5,0) nanotube confirms what was ex-
pected from all the previous studies (qualitative analysis of
both the PES and the projected eigenfunctions, as well as the
full-dimensional overlap study): a tighter potential increases
the couplings in the system, and therefore, the distortions away
from the model states are even more noticeable. However, the
partial overlap functions allow us to find how the different
degrees of freedom are distorted. As seen in Figure 10, for the
ground state of the system, the translational part of the wave
function does not differ much from the structureless particle
in the anharmonic potential. This apparent small coupling be-
tween the internal and translational degrees of freedom, which
is surprising at first glance, can be understood in terms of
the hindered rotation: for this system, the hydrogen molecule
is forced to remain almost parallel to the nanotube’s axis,
which is the disposition that is more similar in energy to a
structureless particle, in terms of the potential energy sur-
face. Therefore, there is indeed a strong coupling between the

degrees of freedom, but it is not seen as a mixing of states, but
rather as a localization of the wave function.

To obtain precise information of relevant points of the
whole 5D space spanned by the systems under study, we can
take advantage of Eq. (14), which expresses the wave function
in a given point as a direct product of the linear combination
of the different basis functions, with the coefficient of the
combinations being the value of the overlap function in that
point. This interpretation allows an intuitive understanding of
the high dimensional wave function in a single point of the
space in terms of the more familiar one or two dimensional
model functions.

In Tables VII and VIII, the lowest energy states are shown
for the H2@(8,0) and H2@(5,0), respectively, following this
idea: for each function, the point in the 5D space with the
highest probability density is selected. Then, for this point, the
model functions which contribute the most to the system are
listed together with the absolute value of their coefficient in the
linear combination (i.e., the value of the corresponding overlap
function). Note that, for the sake of clarity, the absolute value
of the coefficient is given instead of the complex number, and
therefore, the phase of the combination is disregarded.

Table VII offers a summary of the information obtained
for the H2@(8,0) system. It can be seen that the results are in
general consistent with the overlap with 5D basis functions and
the overlap functions plots. However, we must take into ac-
count a conceptual difference between these two analyses: the
full overlap carried out previously gave us information about
the averaged wave function in all the spanned space, whereas
these overlap functions focus on different points in a given

TABLE VIII. Results of the quantitative description of the eigenstates of the H2@(5,0) system. Energies referred
to the ground state energy of 9273 cm−1, contribution of the reference functions referred to the point of maximum
probability density in the 5D space. See the supplementary material19 (Table ST4) for a complete table with all
converged eigenstates.

Model functions contribution

State ∆E ρ θ φ x y l,m |σn
l,m

| nx,ny |σn
nx,ny

|

0 0 1.3 π 0 0.025 0.025 (0,0) 0.023 (0,0) 0.52
(2,0) 0.046 . . . . . .
(4,0) 0.027 . . . . . .

1 0 1.3 0.0 5.7466 −0.025 −0.025 (1,0) 0.039 (0,0) 0.51
(3,0) 0.049 . . . . . .

2 3552 1.3 0.22 π/4 −0.025 −0.025 (2,−1) 0.011 (0,0) 0.41
(2,1) 0.022 (2,0) 0.06
(4,−1) 0.020 . . . . . .
(4,1) 0.039 . . . . . .

3 3552 1.3 0.22 π 0.025 0.025 (2,−1) 0.022 (0,0) 0.41
(2,1) 0.011 (0,1) 0.06
(4,−1) 0.039 . . . . . .
(4,1) 0.020 . . . . . .

4 3552 1.3 2.91 π/4 −0.025 0.025 (1,−1) 0.006 (0,0) 0.41
(1,1) 0.011 (2,0) 0.06
(3,−1) 0.016 . . . . . .
(3,1) 0.032 . . . . . .

5 3552 1.3 2.91 2π 0.025 −0.025 (1,−1) 0.011 (0,0) 0.41
(1,1) 0.006 (2,0) 0.06
(3,−1) 0.032 . . . . . .
(3,1) 0.016 . . . . . .
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subspace. The different natures of the analysis can lead to some
inconsistencies. For instance, the translational contributions in
11th excited state indicate that only the nx = 1, ny = 0 function
contributes to that point. This apparent inconsistency arises due
to the cylindrical symmetry of this state in the x y subspace,
since we have selected just a point as representative of a whole
set of points which present the same density.

Table VIII summarizes an overview of the main contri-
butions to the different wave functions calculated for the
H2@(5,0) system. Oppositely from what was found for the
previous system, in which most states where a combination
of two or three functions of the model systems at most, what
is found here is that the wave function has many more contri-
butions. We refer to the supplementary material19 Table ST2
for information about higher energy states. Note that in this
case, the values of maximum probability on the internuclear
distance change on some states, due to the presence of excited
states in this DoF.

V. SUMMARY AND CONCLUSIONS

A novel view in the study of nuclear eigenstates of systems
with important couplings between different degrees of freedom
has been developed through the computation and analysis of
different overlap functions rather than of the reduced proba-
bility density. This method allows to get an insight into how
the system behaves in the different points of the space under
study. Our approach has been applied to two nanoconfined sys-
tems, being the first a technologically relevant system in which
confinement effects have been previously studied (a single
hydrogen molecule confined in an (8,0) carbon nanotube) and
the second an academic case in which the confining potential
is still more hindering (the H2@(5,0) system). In both cases,
the results extracted of a qualitative inspection of the reduced
probability density of the system were compared with the re-
sults of our quantitative study made through overlap functions.

The analysis shows clearly that the qualitative inspection
of reduced density functions can lead to erroneous interpreta-
tions, because the non-separability of the Hamiltonian prevents
the assignation of the usual quantum numbers to the different
degrees of freedom. The study of the overlap functions in
suitable subspaces, on the other hand, offers an intuitive and
rigorous image of the dynamics of the embedded molecule,
allowing to see the changes of the wave function in the different
points of the space.
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Table ST1: Representation of the H2@(8,0) system’s eigenfunctions in the basis of direct product functions. The basis functions have a norm of 0.5.
Energies in cm−1 units.

State ∆E Basis Element |cnk,l,m,nx,ny
|

(|klmnxny〉)
0 0 |00000〉 0.68

|02000〉 0.17
1 59 |01000〉 0.70
2 171 |01100〉 0.49

|01−100〉 0.49
3 171 |01100〉 0.49

|01−100〉 0.49
4 265 |00001〉 0.66

|02001〉 0.23
5 265 |00010〉 0.65

|00030〉 0.11
|02010〉 0.22

6 310 |01001〉 0.69
|03001〉 0.10

7 310 |01010〉 0.68
|01030〉 0.14

8 343 |00000〉 0.18
|02000〉 0.67

9 346 |02−100〉 0.49
|02100〉 0.49

10 346 |02−100〉 0.49
|02100〉 0.49

11 428 |01−101〉 0.34
|01−110〉 0.35
|01110〉 0.35
|01101〉 0.34

12 429 |00010〉 0.11
|02−200〉 0.49
|02200〉 0.49

13 429 |02200〉 0.49
|02−200〉 0.49

14 462 |01110〉 0.34
|01101〉 0.34
|01−101〉 0.34
|01−110〉 0.34

State ∆E Basis Element |cnk,l,m,nx,ny
|

(|klmnxny〉)
15 462 |01110〉 0.34

|01101〉 0.34
|01−101〉 0.34
|01−110〉 0.34

16 503 |01110〉 0.34
|01101〉 0.34
|01−101〉 0.34
|01−110〉 0.34

17 550 |00010〉 0.61
|02110〉 0.28

18 550 |00002〉 0.48
|00020〉 0.37
|02002〉 0.22
|02020〉 0.17

19 572 |00002〉 0.39
|00020〉 0.47
|02000〉 0.12
|02002〉 0.17
|02020〉 0.20

20 580 |01010〉 0.67
|03010〉 0.12
|31010〉 0.12

21 580 |01003〉 0.54
|01011〉 0.40

22 590 |02− 101〉 0.35
|02− 102〉 0.34
|02101〉 0.35
|02102〉 0.34

23 597 |01003〉 0.39
|01011〉 0.50
|03000〉 0.18
|03011〉 0.11

24 614 |00001〉 0.21
|02001〉 0.63
|32001〉 0.11

State ∆E Basis Element |cnk,l,m,nx,ny
|

(|klmnxny〉)
25 614 |00002〉 0.22

|02002〉 0.62
|02030〉 0.13
|32002〉 0.11

26 619 |02− 101〉 0.34
|02− 102〉 0.33
|02101〉 0.34
|02102〉 0.33

27 619 |02− 101〉 0.34
|02− 102〉 0.34
|02101〉 0.34
|02102〉 0.34

28 649 |02− 101〉 0.34
|02− 102〉 0.34
|02101〉 0.34
|02102〉 0.34

29 695 |01− 103〉 0.12
|01103〉 0.12

|03− 100〉 0.46
|03100〉 0.46

30 695 |01− 111〉 0.11
|01111〉 0.11

|03− 100〉 0.46
|03100〉 0.46

31 701 |01003〉 0.12
|01011〉 0.14
|03000〉 0.67
|33000〉 0.12

32 730 |00021〉 0.12
|02− 201〉 0.34
|02− 202〉 0.33
|02201〉 0.34
|02202〉 0.33

1
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Table ST2: Representation of the H2@(5,0) system’s eigenfunctions in the basis of direct product functions. Energies in cm−1 units.

State ∆E Basis Element |cnk,l,m,nx,ny
|

(|klmnxny〉)
0 0 |00000〉 0.072

|02000〉 0.282
|12000〉 0.030
|32000〉 0.018
|04000〉 0.096
· · · · · ·

1 0 |01000〉 0.199
|03000〉 0.309
|11000〉 0.023
|13000〉 0.030
|31000〉 0.013
|33000〉 0.020
· · · · · ·

2 3552 |02−100〉 0.017
|02100〉 0.065
|12100〉 0.012
|04−100〉 0.052
|04100〉 0.196
|14100〉 0.030
|34100〉 0.014
· · · · · ·

3 3552 |02−100〉 0.065
|02100〉 0.017
|12−100〉 0.012
|04−100〉 0.196
|04100〉 0.052
|14−100〉 0.030
|34−100〉 0.014

· · · · · ·
4 3552 |01100〉 0.016

|03−100〉 0.036
|03100〉 0.134
|13100〉 0.023
· · · · · ·

State ∆E Basis Element |cnk,l,m,nx,ny
|

(|klmnxny〉)
5 3552 |01−100〉 0.016

|03−100〉 0.134
|03100〉 0.036
|13−100〉 0.023

· · · · · ·
6 3591 |00010〉 0.067

|02010〉 0.264
|03010〉 0.013
|12010〉 0.031
|32010〉 0.017
|04002〉 0.091
· · · · · ·

7 3591 |01010〉 0.186
|02010〉 0.012
|03010〉 0.291
|11010〉 0.023
|13010〉 0.031
|31010〉 0.012
|33010〉 0.019
· · · · · ·

8 3591 |00001〉 0.065
|01001〉 0.013
|02001〉 0.257
|03001〉 0.021
|12001〉 0.030
|32001〉 0.017
|04001〉 0.088
· · · · · ·

State ∆E Basis Element |cnk,l,m,nx,ny
|

(|klmnxny〉)
9 3591 |01001〉 0.181

|02001〉 0.019
|03001〉 0.283
|11001〉 0.023
|13001〉 0.030
|31001〉 0.012
|33001〉 0.019
· · · · · ·

10 4636 |10000〉 0.065
|12000〉 0.231
|22000〉 0.015
|14000〉 0.064
· · · · · ·

11 4636 |11000〉 0.174
|13000〉 0.231
|21000〉 0.013
|23000〉 0.014
· · · · · ·

12 6673 |03−200〉 0.032
· · · · · ·

13 6673 |04−200〉 0.086
|14−200〉 0.019

· · · · · ·
14 6673 |03200〉 0.031

· · · · · ·
15 6673 |04200〉 0.084

|14200〉 0.019
· · · · · ·

16 6833 |00000〉 0.073
|02000〉 0.165
|02020〉 0.014
|14000〉 0.014
· · · · · ·

1
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Table ST3: Results of the quantitative description of all the converged eigenstates of the H2@(8,0) system.
Energies referred to the ground state energy of 2580 cm−1, contribution of the reference functions referred

to the point of maximum probability density in the 5D space.

State ∆E ρ θ φ x y Model Functions contribution
l,m | σn

l,m | nx, ny | σn
nx,ny

|
0 0 1.4 3.1235 0.049087 -0.10938 -0.10938 (0, 0) 0.097 (0, 0) 0.11

(2, 0) 0.021 (2, 0) 0.01
1 58 1.4 0.067494 2.1108 -0.10938 -0.10938 (1, 0) 0.096 (0, 0) 0.14

(3, 0) 0.008 (2, 0) 0.02
2 171 1.8421 1.5217 -0.10938 -0.10938 (1,−1) 0.073 (0, 0) 0.11

(1, 1) 0.073 - -
(3,−1) 0.006 - -
(3, 1) 0.006 - -

3 171 1.4 1.8915 3.0925 -0.10938 -0.10938 (1,−1) 0.073 (0, 0) 0.11
(1, 1) 0.073 (0, 2) 0.01
(3,−1) 0.006 (2, 0) 0.01
(3, 1) 0.006 - -

4 265 1.4 3.1235 0.34361 -0.54688 -0.10938 (0, 0) 0.083 (0, 1) 0.12
(2, 0) 0.027 (0, 3) 0.01
- - (2, 1) 0.01

5 265 1.4 0.018094 2.9943 -0.10938 0.54688 (0, 0) 0.083 (1, 0) 0.12
(2, 0) 0.028 (3, 0) 0.03

6 310 1.4 3.0741 1.4235 -0.54688 -0.10938 (1, 0) 0.086 (0, 1) 0.15
(3, 0) 0.012 (0, 3) 0.01
- - (2, 1) 0.02

7 310 1.4 3.0741 3.0925 -0.10938 0.54688 (1, 0) 0.087 (1, 0) 0.14
(3, 0) 0.012 (3, 0) 0.03

8 342 1.4 3.1235 0.049087 -0.10938 0.10938 (0, 0) 0.038 (0, 0) 0.15
(2, 0) 0.092 (0, 2) 0.01
- - (2, 0) 0.03

9 346 1.4 2.4339 1.5217 -0.10938 -0.10938 (2,−1) 0.070 (0, 0) 0.14
(2, 1) 0.070 (1, 0) 0.01
- - (2, 0) 0.01

10 346 1.4 2.4339 3.0925 -0.10938 -0.10938 (2,−1) 0.070 (0, 0) 0.14
(2, 1) 0.070 (0, 1) 0.01
- - (0, 2) 0.01
- - (2, 0) 0.01

11 428 1.4 2.0394 1.5217 -0.32812 -0.32812 (1,−1) 0.047 (0, 1) 0.07
(1, 1) 0.047 - -

12 429 1.4 1.5955 0.73631 -0.10938 -0.10938 (2,−2) 0.073 (0, 0) 0.12
(2, 2) 0.073 (0, 2) 0.01
- - (1, 1) 0.01
- - (2, 0) 0.01

13 429 1.4 1.5955 1.6199 -0.10938 0.10938 (2,−2) 0.073 (0, 0) 0.12
(2, 2) 0.073 - -

1
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θ (rad)
Figure SF1: Plot of

the relaxed potential energy surface scanned along the θ coordinate for the H2@(8,0) system.

θ (rad)
Figure SF2: Plot of the

relaxed potential energy surface scanned along the θ coordinate for the H2@(5,0) system. Note the
significant increase of the barrier compared with the previous case, as well as its broadening.

1
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5.4 Summary and Conclusions:

In this Chapter we have presented a detailed study of the H2 molecule confined in
a (8,0) SWNCT: first, the overall power spectrum of the system has been discussed,
finding a great densification when compared with the spectrum of the free molecule.
We have also taken advantage of the study to discuss the pros and cons of the com-
putation of a power spectrum by Fourier transforming the Autocorrelation function
of an arbitrary wave packet propagated for 1000 fs. Secondly, the first 50 individ-
ual eigenstates of the system have been computed using the SA-MCTDH approach,
and analyzed in three distinct ways: by direct observation of the projected wave
function, by computation of the scalar product with known 5D reference functions,
and by performing partial overlaps with familiar functions only in relevant DOFs.
The joint use of all these tools has significantly increased the understanding of the
coupling between the different coordinates.

The main conclusions to be drawn from this Chapter are:

• It is possible to extract information of a system from both time–dependent and
time–independent formalisms. However, each one focuses on different aspects
of the problem.

• Power spectrum calculations allow us to have a general view of the system
through the number of lines present. However, the intensity of those lines is in
principle arbitrary and highly dependent on the initial state of the propagation.
More detailed procedures in this regard exist in the literature[145, 146].

• The SA–MCTDH approach is excellent for the computation of nuclear eigen-
states, even though the initial state to be propagated in imaginary time has an
important effect on the efficiency of the convergence.

• The confinement inside a nanotube induces a coupling, which is specially no-
ticeable between the translational DOFs, x and y, and the azimuthal angle of
rotation, θ. This is seen both in the mixed contributions of several spherical
harmonics to the ground state, and also in the clear dependence of this mix-
ing on the actual position of the c.o.m in the molecule, illustrated through the
partial overlap functions.
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Chapter 6

Diffusion of H2 along
Single–walled Carbon Nanotubes

6.1 Diffusion and quantum sieving

Quantum sieving refers to the change in transport properties that different isotopo-
logues exhibit when they are interacting with a nanostructured material. These
molecules have the same electronic structure, and therefore are exposed to identi-
cal potential interactions with the nanostructure. Classically, this would imply that
their dynamics would be slightly different, since the kinetic energy depends on their
mass. However, the quantum mechanical nature of molecular systems is known
to affect the dynamics of light atoms more strongly due to the effect of the mass
on other properties such as the ZPE or the tunneling permeability. This is notori-
ous in reaction dynamics under the name of kinetic isotope effects (KIE)[147], a term
that refers to the changes in the reaction rate of a given process upon the isotopic
substitution of one of the reactants. It has been seen that similar effects appear in
nanoconfined systems, giving rise to different transport properties of isotopologues
in nanostructured substrates and allowing to use these variations to separate iso-
topical mixtures of compounds, primarily H2 from D2.

Quantum sieving effects, just as KIE, appear due to the different ZPE of the iso-
topologues: even though the potential energy surface remains the same for the var-
ious species, their ZPE is proportional to 1/

√
m, with m the mass of the particle.

This is qualitatively illustrated in Figure 6.1, where the dissociation curve of the free
H2 molecule is represented together with hydrogen’s and deuterium’s ZPE. The dif-
ference in ZPE has a relevant effect in the dispersion of the wave function: in the
previous example, the dispersion in the vibrational DOF will be larger in H2 than in
D2. It is straightforward to understand quantum sieving taking this change of the
wave function into account: heavier isotopologues (D2) have a smaller effective size
compared to lighter ones (H2), and therefore they will experience more repulsion
from the substrate’s walls. Even though this effect was predicted in mesoporous
silica[13], it becomes more critical as the size of the pore is reduced[22].

Quantum sieving effects appear in different processes: adsorption into a porous
cavity, diffusion along a pore, or diffusion along a nanostructure itself. In general,
depending on the specific process, quantum sieving effects can be classified two
types: thermodynamic or kinetic. Thermodynamic sieving refers to the preferential
adsorption of one of the isotopologues over the other on a nanostructured mate-
rial. This can be understood in terms of the effective size of the adsorbate just dis-
cussed: since heavier molecules have a smaller effective size, they can pass more eas-
ily through a nanometric pore. Conversely, the larger dispersion in lighter species
will cause the adsorption process to be less favorable, due to the larger repulsion
with the cavity. On the other hand, kinetic quantum sieving regards the differences
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FIGURE 6.1: Schematic representation of the dissociation curve for
hydrogen (black) and the ZPE levels for H2 (blue) and D2 (brown).
Note how the expectation value of the internuclear distance is larger

for H2 than it is for D2.

in the diffusion dynamics of isotopologues, either when crossing a pore mouth or a
longer portion of a nanomaterial. It was generally believed that the trend in these
processes was similar to that of thermodynamic sieving: at low enough tempera-
tures, heavier isotopologues should diffuse faster than lighter ones because their
smaller effective size would generate lower diffusion barriers inside the nanostruc-
ture. This has been theoretically and experimentally confirmed for Carbon Molec-
ular Sieves (CMS)[40, 42]. In our first work on this subject, which is presented in
Publication 2, we wanted to check if this behavior was maintained for the diffusion
of H2 and D2 along an (8,0) SWCNT. We did so by calculating the diffusion coeffi-
cient of both isotopologues in a fully quantum formalism using a 6D model for the
adsorbate, so that all couplings and non–classical effects could be taken into account
without any approximation. The approach used to obtain the diffusion coefficients
will be the subject of Section 6.2. These first calculations, carried out on both the
AH and FB PESs (see Chapter 4), yielded results in agreement with previous stud-
ies in CMSs: deuterium, the heavier isotopologue, diffused faster than hydrogen at
temperatures below 50 K, when confinement effects become more noticeable. More-
over the thermodynamic sieving obtained with our full–dimensional Hamiltonian
was also consistent with the calculations by Lu et al.[34] on the FB PES using a 4D
model.

We will start this Chapter by reviewing the methodology needed to directly ob-
tain diffusion rates from a set of propagations, namely the flux–correlation function
approach, in Section 6.2 . Then the main results of Publication 2 will be discussed
in Section 6.3, followed by the paper itself. Finally, the results will be critically ana-
lyzed in Section 6.5, and the main conclusions of this Chapter drawn in Section 6.6
.
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6.2 Diffusion kinetics from Time-dependent Quantum Dy-
namics: Flux Correlation Functions

Quantum dynamics, as pointed out in Chapter 2, is the microscopic foundation of
the chemical reaction and its kinetics. Historically, phenomenological rate constants
of chemical processes were determined by experimental procedures based on the
concentration change of either reactants or products. Later, more evolved experi-
ments allowed for the calculation of reaction rates of elementary reactions through
crossed molecular beams set–ups. However, the thermal rate constant of a (elemen-
tary) chemical reaction can actually be computed from first principles, without re-
sorting to experimental data.

The general expression for a reaction rate is given as a thermal average of its
cumulative reaction probability (CRP), N(E):

k(T) =
1

2πh̄Qr(T)

∫ ∞

−∞
dEe−EβN(E), (6.1)

with β = 1/kBT. The mentioned quantity is in turn a sum of individual reactant state
to product state reaction probabilities.The calculation of rate constants for chemical
reactions by direct dynamics (that is, avoiding the calculation of the state-to-state re-
action probabilities) was introduced in 1974 by Miller[148], while working to obtain
a quantum mechanical equivalent of the classical transition state theory. In order to
do this, he started by defining a dividing surface separating reactants from prod-
ucts through a Heaviside function, h(s), so that h(q) = 1 for reactants (q < s) and
h(q) = 0 for products (q > s). Then, he defined the flux of a wave function through
this surface with the flux operator, F̂:

F̂ =
i
h̄

[

Ĥ, h(s)
]

, (6.2)

and showed that the reaction rate was directly related with the trace of this oper-
ator. Later, Miller et al. found that this trace could be computed as the integral of
the flux–flux autocorrelation function, C f f (t, t′, T); a result already pointed out by Ya-
mamoto[149]:

k(T) =
1

2πh̄Qr(T)

∫ ∞

0
dtC f f (t, t′, T0). (6.3)

It must be taken into account that the flux operator is singular, that meaning that its
eigenfunctions do not belong to a Hilbert space. One is then forced to use its regu-
larized version, the thermal flux operator, F̂T0 = e−βĤ/2F̂e−βĤ/2, to build the function
basis.The flux–flux autocorrelation function is then defined as:

C f f (t, t′, T0) = ∑
fT0

fT0

〈

fT0 |ei Ĥ
h̄ t′ F̂e−i Ĥ

h̄ t| fT0

〉

. (6.4)

where fT0 and | fT0〉 stand for the eigenvalues and eigenstates of the thermal flux
operator, respectively.

The interpretation of these equations is more clear when one considers their clas-
sical equivalent. The quantum mechanical trace is equivalent to an integral over all
the possible initial conditions spanned by the system. If we consider all possible
trajectories as starting from the dividing surface, the rate of the reaction will be de-
termined by how many of these trajectories end up in the reactant or the product
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FIGURE 6.2: Schematic representation of the procedure to compute a
diffusion rate from first principles in the single–hopping approach.

region of the space. The flux–correlation formalism evaluates this at a quantum me-
chanical level by the propagation of a series of thermal flux eigenstates, computed at
the dividing surface. Each one of these states can be seen as a vibrational state of
the activated complex of the reaction. Once the wave packets have abandoned the
interaction area, the integral of the flux–flux autocorrelation function (Eq. (6.3)) con-
verges and the cumulative reaction probability is obtained by a Fourier transform.
See Ref. [150] for a complete discussion on this interpretation, and Ref. [151] for more
specific mathematical details.

As it is readily seen in Eq. (6.4), obtaining k(T) implies a summation over all ther-
mal flux eigenfunctions. Fortunately, it is known that the flux operator has a limited
number of non-zero eigenvalues, so the number of terms in the sum is low enough
to make the equation computationally affordable. Within this representation, the
cumulative reaction probability is:

N(E) =
1
2

eβE ∑
fT0

fT0

∫ ∞

−∞
dt
∫ ∞

−∞
dt′eiEte−iEt′〈 fT0 | ei Ĥ

h̄ t′ F̂ei Ĥ
h̄ t | fT0〉. (6.5)

Note that the sum runs over the different flux eigenstates. This allows us to define
individual state contributions to the CRP. It is important to take into account that the
regularization of the flux operator has an important effect on N(E): the Boltzmann–
distribution type exponentials appearing in Eq. (6.5) introduce numerical noise in
energy values not populated according to statistical mechanics, which are translated
in large oscillations which negatively affect the quality of rate’s computation.

The methodology that we have just described was developed for the calcula-
tion of conversion rates in chemical reactions. Although diffusion is certainly not
a chemical reaction, it is possible to establish a direct connection between such a
process and diffusion: in both cases a certain initial atomic arrangement (reactants)
must cross a potential barrier to reach a new configuration (products). In the case of
diffusion, reactants and products will be the same chemical species, only adsorbed
in different adsorption sites. If the pressure of the gaseous species is low enough,
there will be no interaction between adsorbate molecules. Then, following Zhang
et al.[152], we use the single–hoping and nearest neighbor approximations[153] to
compute the diffusion rate. Figure 6.2 illustrates the idea of the whole process of
computing a diffusion rate through this approach: once the adsorption sites S1 and
S2 have been found, we set the dividing surface h(s) and use the flux correlation
functions formalism to obtain the rate of crossings from one adsorption site to the



6.3. Result Discussion 99

0.0 0.1 0.2 0.3 0.4
time (ps)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

C
fp
/1
0
−4

0
 (
a.
u.
)

0.34 0.35 0.36 0.37 0.38 0.39 0.40 0.41
E (eV)

0

1

2

3

4

5

6

7

8

N
(E

)

CRP
N1

N2

N3, N4

N5

FIGURE 6.3: Left: flux–position autocorrelation function for the dif-
fusion of H2 (bottom) along an (8,0) SWCNT. Right: Cumulative Re-
action Probability and individual contributions for the same process.

Vertical dotted line identifies the adiabatic barrier for diffusion.

other, khop. Then, the diffusion coefficient is obtained by applying Eq. (6.6):

D(T) =

(

l2

2d

)

khop(T), (6.6)

with l the distance between adsorption sites, here equivalent to the length of the unit
cell L, and d the symmetry number of the system, which in this case equals 2.

6.3 Result Discussion

6.3.1 Diffusion rates: first results and convergence issues

This Section contains a general overview of the main results found in Publication 2,
Section 6.4.

The study contained in Publication 2 represents, to the best of our knowledge,
the first attempt to calculate diffusion rates for H2 and D2 through a fully quantum
formalism and a 6D Hamiltonian considering all the DOFs of the adsorbate. Using
the flux–flux correlation function formalism we obtained the N(E) for both isotopo-
logues, by propagating the thermal flux eigenstates obtained at different reference
temperatures (75, 100 and 150 K) for a total time of 500 fs. Then the CRP (Eq. (6.5)
was thermally averaged in order to obtain the transmission rate, from which the dif-
fusion rate was obtained. This procedure was carried out for both the AH and the
FB PESs presented in Chapter 4.Details on the results in the AH PES can be found in
the main body of Publication 2.

It can be shown that the integral of C f f (t, t′, T0) (Eq. (6.3)) is formally equivalent
to the limit of the flux–position autocorrelation function, C f p(t), as t → ∞, an therefore
this function is a useful visual guide to check convergence. The flux–position au-
tocorrelation function and the resulting N(E) obtained with the FB PES are shown
for hydrogen and deuterium in Figures 6.3 and Figures 6.4, respectively. The energy
range shown in the CRP figures comprehends all energies with a relevant population
for temperatures up to 150 K for each system.

Since C f p(t) reaches a plateau at around 200 fs for both isotopologues, it would
seem that the calculations are correctly converged. Hydrogen’s cumulative reaction
probability presents an energy threshold slightly above 0.35 eV for H2 and slightly
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FIGURE 6.4: Left: flux–position autocorrelation function for the dif-
fusion of D2 (bottom) along an (8,0) SWCNT. Right: Cumulative Re-
action Probability and individual contributions for the same process.

Vertical dotted line identifies the adiabatic barrier for diffusion.

under 0.25 eV for D2. In both cases these energies are below the adiabatic barrier
for diffusion, which is 0.369 eV and 0.254 eV for hydrogen and deuterium, respec-
tively. This indicates the presence of some tunneling effects for the diffusion pro-
cess, which are more important in the case of the lighter isotopologue. In addition
to the total N(E), both figures include the individual contributions of the different
flux eigenstates to the total CRP. At this point it is worthwhile to discuss briefly
the implications of the regularization of the flux operator at a certain value of T.
Even though the flux operator has a virtually infinite spectrum, its regularized ver-
sion only has a limited number of eigenstates with non–zero eigenvalues, each one
weighted by a factor related with the population of the rovibrational eigenstates
of the activated complex at the regularization temperature according to a Boltz-
mann distribution[46]. The eigenstates with lower weight introduce numerical error
to N(E), which negatively affects the quality of k(T) at temperatures significantly
higher or lower than T. Therefore, since we can only get numerically accurate results
for a certain temperature range, it is convenient to limit the number of flux eigen-
states considered to those with a relevant weight in this range in order to maximize
the efficiency of the calculation. In our case, the number of flux eigenstates contribut-
ing to the diffusion process was of 5 for hydrogen and 11 for deuterium, significantly
lower than the amount of flux eigenstates computed with the SA-MCTDH approach
(50 in total). Since the size of the common SPFs basis needed is larger if we have to
describe 50 eigenstates than it would be if we only required to compute 20 of them,
the overall efficiency of the calculation was not optimal, even though we were able
to obtain the diffusion rates in a reasonable time. It is noteworthy that the number
of flux eigenstates contributing to deuterium’s diffusion is significantly higher than
that of hydrogen. This is consistent with the rovibrational spectrum of both isotopo-
logues: test calculations carried out at a fixed z point showed that D2 has a much
denser eigenstate spectrum compared to H2.

The diffusion coefficients for both hydrogen and deuterium are shown in Fig-
ure 6.5, together with the experimental data for diffusion of both isotopologues in
a carbon molecular sieve obtained from Ref. [41]. There are two main conclusions
to be extracted from this plot. First, the results obtained with both PESs suggest an
inverse kinetic isotope effect, so that deuterium would start to diffuse faster than hy-
drogen at low temperatures. This could be explained in terms of the change in ZPE
discussed in Section 6.1. Secondly, the turnover temperature is higher for the FB PES,
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which is consistent with the analysis of the potential energy profiles: since this set of
parameters generates a more confining potential than the AH set, the changes in ZPE
are more relevant and they affect more deeply the diffusion process. These results
were backed up by Transition State Theory (TST) computations, and agree qualita-
tively with the diffusion coefficients measured in a CMS, even though the structure
of such materials consists on relatively large cavities connected through narrow and
short pores rather than a single narrow cavity as it is the case of SWCNT.

6.3.2 Diffusion coefficients after time–extended propagation: resonance–
enhanced tunneling

During further studies on the H2@SWCNT system we developed an approach based
on separating the confined DOFs from the diffusion coordinate due to the different
characteristic times in these sets of coordinates. This development, which is thor-
oughly discussed in Chapter 7 and in Publication 4, allowed us to highly increase
the efficiency of our calculations. The outstanding performance of the new approach
permitted the propagation of the flux eigenstates for times up to 20 ps, thus revealing
new insight of the system which was not grasped in the previous computations.

The overall shape of the integral of C f f (t, t′, T0), as it was mentioned previously,
is a useful tool to asses convergence with respect to the propagation time, since it
reaches a plateau when the wave packet has left the interaction region. However,
the visual analysis of this function can lead to a misinterpretation of the results,
since the existence of a plateau in a given time range is not a sufficient condition for
convergence: it could be that the function stabilizes for a certain amount of time,
only to start evolving again. Figure 6.6, adapted from Publication 4 (to be discussed
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mulative Reaction Probability for the same system after 20 ps propa-

gation. Vertical dotted line marks the adiabatic diffusion barrier.

in the next Chapter), shows the flux–position autocorrelation function as a function
of time using the 6D model and the time–scale separation approach for hydrogen’s
diffusion. It is straightforward to see that the propagation was not converged at
500 fs: although we detected a plateau in the first 500 fs of the propagation, for
longer times we can see important oscillations in the function. These features (called
recurrences) are a sign of the existence of resonant states. Resonances appear when a
given quasi–bound state has an energy which coincides with another state beyond a
potential energy barrier. When this happens, the wave function tunnels through the
barrier very efficiently, giving rise to an increase of the transmission probability at
almost discrete energy values. These resonances are clearly seen in the CRP obtained
after 20 ps of propagation, shown again in Figure 6.6 for H2, as narrow peaks in the
cumulative reaction probability. A similar behavior appears in the case of D2, whose
C f p(t) and N(E) are plotted in Figure 6.7. It should be mentioned that the propaga-
tions are not completely converged either after 20 ps of propagation, since the C f p(t)
has not stabilized to a constant value. This is typical for resonant systems with a low
potential energy barrier. Thus, to obtain smooth N(E) functions a damping function
had to be added to the flux–flux correlation function. However, we are confident of
the results because the computed CRP did not change appreciably when increasing
or decreasing the propagation times.

The possibility of running time–extended simulations offered the chance to re-
visit the diffusion coefficients of nanoconfined hydrogen and deuterium. Compar-
ing the cumulative reaction probability for both H2 and D2, one can see two main
differences. On one hand, the energy at which the first resonances appear relative
to the adiabatic diffusion barrier, and their intensity, is significantly different for H2
and for D2. On the other, the density of the higher energy resonances is much larger
for the heavier isotopologue. The former feature is probably the more critical point,
since it will influence more heavily the behavior of the different molecules at low
temperature. The two first resonances in N(E) for the H2 molecule are both strong
and appear at energies significantly lower than the threshold. Moreover, a second-
order resonance appears at E=0.36 eV, just above the diffusion threshold, thus con-
tributing to increase the diffusion rate at all temperatures. On the contrary, for D2 we
find a quite negligible resonance at E=0.248 eV, while two strong resonances exist at
energies just below the energy threshold. Being that close to the diffusion threshold,



6.3. Result Discussion 103

0 5 10 15
time (ps)

0

2

4

6

8

10

12

14

16

C
fp
/1
0
−3

1
 (
a.
u.
)

0 100 200 300 400
time (fs)

0
2
4
6
8

10
12
14
16

C
fp
/1
0
−3

1
 (
a.
u.
)

0.24 0.25 0.26 0.27 0.28 0.29 0.30 0.31 0.32
E (eV)

0

1

2

3

4

5

6

7

8

N
(E

)

CRP
N1, N2

N3, N4

N5, N6

N7, N8, N9, N10

N11

FIGURE 6.7: Left: flux–position autocorrelation function for the dif-
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these resonances will have a smaller effect on Ddiff at low temperatures than those
present in H2. Regarding the denser resonance spectrum of D2 at higher energies, its
effect on the diffusion rate is minimal, since most of the contribution to the transition
probability comes from lower energy states.

These resonances prove to be of critical importance and change the qualitative
picture of kinetic sieving pictured by the previous results, as it can be seen by com-
paring the results of the first publication (500 fs propagation), Transition State The-
ory calculations, and the converged diffusion rate (20 ps propagation). The diffusion
rates computed with the three approaches are all plotted in Figure 6.8 for compar-
ison. It is clearly seen that the results after 500 fs propagation lie between the con-
verged and TST calculations. Since TST is a semiclassical theory, based on classical
assumptions, it is known that it cannot reproduce some pure quantum effects such
as tunneling. The Figure confirms that the issue in the first calculations was that
they were not able to fully resolve the resonances. This is true for both H2 and D2.
However, the relative importance of tunneling is larger for the former than for the
latter, which makes a qualitative difference in the results of our study: resonance en-
hanced tunneling overcomes the ZPE energy effects at low temperatures, and thus
H2 diffuses faster than D2 in the whole the temperature range studied (and presum-
ably at all temperatures). This is seen in Figure 6.9, where the diffusion rates for
both isotopologues is shown as a function of T. The results concerning hydrogen are
extracted from Publication 4, while the ones for deuterium are new results that we
expect to submit for publication shortly.

As a final note, these new results do not change the previous conclusions regard-
ing the thermodynamic sieving: the preferential adsorption of D2 in front of H2 is
still expected. This quantity is an equilibrium property depending only on the par-
tition functions of H2 and D2, and therefore was not affected by the unconverged
propagations in the first work. Neither are they necessarily in conflict with previous
works, which focused mainly on diffusion along CMS: both kind of nanostructures
are inherently different, and thus the behavior of confined molecules might also dif-
fer. However, the presence of tunneling remarks the importance to take into account
all quantum effects in dynamic studies.
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FIGURE 6.8: Diffusion rates for H2 computed with flux correlation
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propagation (dotted line), and using TST (dashed line).
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ABSTRACT: We present quantum dynamics calculations of the dif-
fusion constant of H2 and D2 along a single-walled carbon nanotube
at temperatures between 50 and 150 K. We calculate the respective
diffusion rates in the low-pressure limit by adapting well-known
approaches and methods from the chemical dynamics field using
two different potential energy surfaces to model the C−H interaction.
Our results predict a usual kinetic isotope effect, with H2 diffusing faster
than D2 in the higher temperature range but a reverse trend at temper-
atures below 50−70 K. These findings are consistent with experimental
observation in similar systems and can be explained by the different
effective size of both isotopes resulting from their different zero-point
energy.

1. INTRODUCTION

Nanostructured materials have received much attention in the
last years due to their unique properties in fields such as
mechanics, electronics, fluidics, and storage technologies.1−8

In particular, their suitability as storage devices for small gas-
eous molecules has comprised a great deal of the research in the
field due to its direct environmental impact. For instance, dan-
gerous pollutants or greenhouse effect compounds can be kept
off the atmosphere, or clean fuels such as hydrogen can be
transported from production to consumption sites, thus spreading
its use.1,9−16 The study of these substrate−gas systems has led
to the discovery of quantum confinement effects, distortions of
the molecular structure arising from the encapsulation in
cavities of the order of the nanometer.17 These effects have
opened a new field of research that tries to understand them to
design novel and better storage devices18−26 and find new
technological applications. These applications include isotopic
separation of compounds, either by selective adsorption17,27 or
kinetic effects,28 to nanoconfined tailored reactions.29−31

Among all relevant molecules studied in the field of
nanomaterial−gas interactions, hydrogen and its isotopologues
have been the most studied since the seminal work of Dillon
et al.14 The reason for this is 2-fold: First, there is obvious
economical interest in hydrogen, which is regarded as a
potential fuel for the near future and is much more efficient and
environmentally sustainable than current fossil fuels. However,
its low density makes its storage in conventional devices highly
inefficient, and this has pushed the research toward the study
of novel devices to make the storage and transport feasible
(See ref 11 and references therein). Second, hydrogen stands as
an interesting molecule itself due to its low mass, which makes
quantum effects much more highly noticeable and important

than in the case of heavier atoms. An especially interesting
effect appearing when these molecules are confined in nano-
structures is the so-called quantum sieving, a large difference in
the adsorption properties of two isotopologues due to their
different zero-point energy (ZPE). This effect has been posited
as a potential separation method between hydrogen and deu-
terium molecules.17,27 Inspired by this discovery, several theo-
retical works have been performed studying the dynamics of a
hydrogen molecule in different nanometric cavities such as
carbon nanotubes,23 zeolites,32 or metal−organic frameworks
(MOFs),21,33 most of them focusing on the study of a rigid
molecule with motion confined to a single unit cell of the
material. Some of the milestones in the field are the work of
Beenakker et al.,17 which first described the quantum sieving
effect, and the work of Lu et al.23 in which extreme conf inement
is presented. More recently, Bacǐc ́ and coworkers have made
important advances in this field through the use of modern
potential energy surfaces to study new systems and compare
their results with experimental data,20,21 thus providing new
evidence and explanations of the quantum confinement effects.
However, only a few works have considered so far the motion
of the molecule along the periodic dimensions of the different
nanomaterials at full quantum level, with the two most recent
by Skouteris and Lagana ̀34 and ourselves.19 The dynamics of
the diffusion process are important to explain an additional
effect, the kinetic molecular sieving predicted by Kumar and
Bhatia35 and experimentally confirmed by Nguyen et al.36 and
Contescu et al.,37 which involves a faster diffusion of D2 in front
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of H2 when confined in certain nanostructured materials. This
trend, which opposes the usual kinetic isotope effect, could
improve the separation of isotopologues. Although the quantum
sieving effect on carbon nanotubes has been previously studied
by several groups from a stationary point of view,23,38 focusing
on the selective adsorption of D2 in front of H2, a simulation
of the actual dynamics of the diffusion in these materials at a
quantum level is still missing.
In the present work, we make our first attempt to compute

diffusion rates of molecular hydrogen inside a carbon nanotube
using quantum dynamics approaches. Although diffusion is
known to be one of the processes most affected by quantum
confinement effects, full quantum simulations in nanoconfined
systems are still missing. On the contrary, diffusion has been
theoretically studied on heterogeneous gas-surface systems for a
long time, and diffusion rates have been calculated with
quantum dynamics methods, which provides a solid theoretical
ground for similar studies on nanostructures. These methods
range from the development of specific master kinetic
equations specific for diffusion processes39,40 to the adaptation
of chemical kinetics formalisms.41,42 Thus, our work focuses on
the rigorous quantum mechanical calculation of the diffusion
rate constant for a single hydrogen or deuterium molecule inside
an (8,0) single-walled carbon nanotube (SWCNT) through the
adaptation of the work of Zhang et al., who successfully repro-
duced the experimental behavior of a single H atom on a copper
surface using a fully quantum-mechanical approach. In addition
to this, the comparison of H2 and D2 diffusion rates inside
carbon nanotubes could provide some additional insight into
the sieving mechanism in other devices such as carbon molec-
ular sieves.
The paper is structured as follows. In the first section the

theoretical background of the study is described, including the
approach used to calculate diffusion rates, an overview of the
flux correlation function formalism, and the calculation of
partition functions. Also, a brief discussion on the model of the
system and on the calculation method (the multiconfigurational
time-dependent Hartree method) is presented. Section 3 is
devoted to the discussion of the actual results of the study,
focusing on the computed diffusion coefficients. The selectivity
factor for the isotopologues’ adsorption is also calculated.
Our results are summarized in Section 4, where the main
conclusions are drawn.

2. THEORETICAL METHODS

2.1. Diffusion Rate Calculation. The process of the
diffusion of a gas in a condensed phase, for low temperatures
and low concentration of adsorbate, can be described by a
hopping model.43,44 In this model, the diffusion rate D(T) is
considered to depend exclusively on the probability of a single-
molecule crossing from one binding site i to another binding
site j

∑=
≠

→D T d k T l( ) (1/2 ) ( )
j i

i j ij
2

(1)

where ki→j is the hopping frequency from site i to j, lij is the
distance between binding sites, and d is the symmetry number
of the system. A parallelism between this model of diffusion and
a chemical reaction can be established: In both cases we are
concerned with the probability to go from a given thermal
equilibrium configuration (reactants) to another (products), with
both configurations separated by a potential energy barrier.

There are nevertheless differences, one of them being that in
diffusion one has several equivalent sites at different distances,
while in a chemical reaction one is mainly concerned with
one minimum of the potential energy surface (PES). However,
as pointed out in ref 43, usually the most important hops occur
between adjacent binding sites, and eq 1 can be simplified,
obtaining

=D T l d k T( ) ( /2 ) ( )2
hop (2)

The problem of diffusion is then reduced to the calculation of
the hopping frequency between two adjacent binding sites, khop.
Several methods are found in the literature to compute khop,

either classically or using quantum mechanics. Within the
classical mechanics framework, molecular dynamics (MD) and
grand canonical Monte Carlo (GCMC) provide methods for
calculating either khop or even directly the diffusion rate via
velocity correlation functions. Taking advantage of the
similarities already outlined between chemical reactions and
diffusion, other tools such as transition state theory (TST) can
also be used. This latter approach implicitly implies two related
approximations: The first one is the nearest neighbor approxi-
mation already discussed, and the other is the uncorrelated
hopping approximation, which implies that once the substrate
crosses the dividing surface it is directly considered as belonging
to the product channel. This means, as it is well known, that the
TST hopping frequency is an upper bound to the real khop
because no recrossing is allowed. On the contrary, specific
models have been proposed to find khop in the quantum
dynamics formalism (see ref 43 and references therein). In the
present work we follow the work of Light and coworkers,41 in
which they calculated the hopping frequency using the tran-
sition state wave packet method.45 This approach is based on
the use the flux correlation function formalism first introduced
by Miller.46 Even though we will use the same basic concepts,
our calculation of khop will rely on the calculation and prop-
agation of the thermal flux operator eigenstates.

2.2. Description of the System. The model proposed for
describing the diffusion of the hydrogen (or deuterium) molec-
ule along a nanotube consists of a full dimensional representation
of a single diatomic molecule, confined in the hollow cavity of a
rigid (8,0) carbon nanotube made up from the concatenation of
20 unit cells to be able to disregard edge effects. The unit cell’s
geometry was obtained from a CRYSTAL0947 optimization
using the B3LYP functional and a 6-21G basis set in a periodic
model, obtaining a unit-cell length and diameter of 8.07 and
12.08 bohrs, respectively. Although the interaction between the
structure phonons and the diffusion is known to be an impor-
tant factor in diffusion,43,44 we consider that the frozen struc-
ture model is a reasonable assumption for a first approach to
the problem.
The system’s Hamiltonian is therefore a 6D operator with

the form
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where ρ stands for the internuclear distance between the atoms
in the diatomic molecule, θ and ϕ represent, respectively, the
polar and azimuthal angles of the molecular axis with respect to
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the nanotube’s axis, and x, y, and z are the coordinates of the
center of mass of the molecule, where z is coincident with the
nanotube’s axis. The 6D PES is given by a sum of Lennard-
Jones (LJ) pair interaction terms between the carbon and
the hydrogen (or deuterium) atoms to represent the dispersion
forces and a Morse potential to take into account the covalent
bond in the molecule

ρ ρ θ ϕ̂ = +− −V V V x y z( ) ( , , , , , )6D H H C H (4)

∑ ∑ρ θ ϕ̂ =−
= =

−V x y z V d( , , , , , ) ( )
i j

i jC H

1

2

1

NC

,
LJ

H Ci j

(5)

The parameters used to model the covalent interaction are
well known (De = 0.1746 hartree, a = 1.0271 bohr−1, and
Re = 1.4 bohrs). Instead, several sets of LJ parameters have been
used in the past to model the C−H interactions in a nanotube.
Among the available LJ parameters, we have first selected a
set used by us in our recent work,18,22,48 with σ = 2.82 Å and
ϵ = 0.0605 kcal/mol (this potential will referenced as ref 48
PES). Additionally, motivated by the large differences between
the different potentials reported by Garberoglio et al.,38 we
have also used a second potential for our calculations. We have
chosen the Frankland−Brenner potential, with σ = 3.08 Å and
ϵ = 0.0549 kcal/mol (FB PES). This potential was employed in
refs 23 and 38, predicting a remarkable quantum sieving.

Relaxed projections of the two potential energy surfaces
used in the present work are shown in Figure 1. The FB
PES presents a tighter profile on the x dimension, which is
consistent with the higher barriers for both rotation (θ)
and diffusion (z). This feature suggests a slower diffusion
when using the FB PES rather than the ref 48 PES. Note,
however, the energy scale of the potential energy cut along
the z coordinate, which is on the order of a few millielec-
tronvolts.

2.3. Flux Correlation Functions and Direct Rate
Constant Calculation. The methodology used to calculate
the hopping frequency in this work is explained in the
present section. Note that atomic units are assumed through-
out this section. For a complete discussion on the method
in the context of chemical reactions, the reader is referred to
ref 49.
The general expression for a reaction rate is given as a

Boltzmann thermal average of its cumulative reaction
probability (CRP), N(E)

∫
π

= β

−∞

∞
−k T

Q T
E N E( )

1

2 ( )
d e ( )E

r (6)

with β = 1/kBT. The calculation of this quantity through
direct dynamics methods is based on the correlation func-
tion formalism introduced by Miller and coworkers.46,50 In
the present work we use the approach by Matzkies and

Figure 1. Relaxed projection of the ref 48 (solid) and FB (dashed) potential energy surfaces along the x (top left), θ (top right), and z (bottom)
DOFs.
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Manthe,51,52 where the cumulative reaction probability is
obtained as

∫ ∫∑= ′ ⟨ ̂ ⟩β

−∞

∞

−∞

∞
− ′ ̂ ′ − ̂

N E f t t f F f( )
1

2
e d d e e e eE

f
T

Et Et

T

Ht Ht

T

i i i i

T0

0 0 0

(7)

or, alternatively, as

∫∑ ∑= ′ ⟨ | | ′ ⟩β

′
−∞

∞ ̂
N E f f t f f( )

1

2
e d e eE

f f
T T

Et

T

Ht
T

i
/2

i
/2

2

T T0/2 0/2

0 0 0 0

(8)

In eqs 7 and 8, f T0
and |f T0

⟩ stand, respectively, for the eigenvalues

and eigenstates of the thermal flux operator, F̂T0
= e−βĤ/2 F̂e−βĤ/2,

and F̂ is, in turn, the flux operator, defined as

̂ = ̂F i h H[ , ] (9)

where Ĥ is the system’s Hamiltonian and h is a Heaviside
function, which separates reactants from products. Note that in
eq 8 the reference temperature of the thermal flux operator is
divided by a factor of 2. This equation may be used when the
same flux operator is employed to obtain the flux eigenstates
and analyze their propagation, and it implies that for a value of
β = 1/kT0 we obtain information for temperatures equivalent
to T0/2. Regarding the Heaviside function, because we do not
have a real chemical reaction but a diffusion process, the
dividing surface is placed at a value of the diffusion coordinate
corresponding to a saddle point of the PES separating two
neighbor unit cells. Hence, we arbitrarily define the geometries
at one side of this dividing surface as reactants, and the
remaining as products. Then, to take into account diffusion on
both directions, we must multiply k(T) by a factor of 2 to
obtain the hopping frequency khop.
Equation 9 can be rewritten in terms of the flux−flux

correlation function, ′ = ∑ ⟨ | ̂ | ⟩
̂ ′ − ̂

C t t f f F f( , ) e e
f T T

iHt iHt

Tff
T0 0 0 0

∫ ∫= ′ ′β

−∞

∞

−∞

∞
′N E t t C t t( )

1

2
e d d e e ( , )E iEt iEt

ff (10)

This quantity and its time integral, the flux-position correlation
function, Cfp, are central because their shape and limits can
be used as convergence criteria for the computation of N(E).
In our case, the following scheme has been used to compute a
hopping frequency for a diffusion problem

1. Set a dividing surface at a maximum of the PES along the
diffusing coordinate (the nanotube’s axis).

2. Calculate the eigenstates of the thermal flux operator on
this dividing surface at a given reference temperature,

|f T0
⟩.

3. Propagate the eigenstates and Fourier transform the
matrix elements of the flux operator to obtain the CRP.
In this step, each flux eigenstate contribution is weighted
by its corresponding degeneracy number depending on
its rotational parity and whether it is D2 or H2.

4. Obtain the hopping frequency by thermal averaging of
N(E).

In the present work all of these steps are carried out using
the state-averaged multiconfigurational time-dependent Hartree
(SA-MCTDH) method by Manthe53 using the Bielefeld
MCTDH software package, which is briefly discussed in
Section 2.5.

2.4. Partition Function Calculation. Once the CRP is
obtained, according to eq 6, the second term needed to
calculate a rate constant is the reactant partition function,
Q(T). To compute this term we have relied on the assumption
of separability of this system19 into a 1D dif fusing degree of
freedom (DOF) and a set of five confined DOFs

=Q T q T q T( ) ( ) ( )
dif con (11)

The diffusing term in eq 11 is then evaluated following the
standard quasiclassical approximation for translational motion

π
=

⎛

⎝
⎜

⎞

⎠
⎟q

mk T

h
L

2
dif

B
2

1/2

(12)

where L is the length of the unit cell of the nanotube.
The calculation of the qcon(T) can be carried out either with a

semiclassical or a fully quantum approach. Even though the
semiclassical approximation is usually considered accurate
enough for diatomic molecules, either free or adsorbed on
surfaces, for a confined system it is not clear whether this model
is reliable enough. For instance, the model relies on the full
separability of all the DOFs, which is known to be too harsh an
assumption on nanoconfined systems.18,22,23 For this reason,
qcon is actually calculated as the trace of the Boltzmann operator
of the confined 5D Hamiltonian, Ĥcon(ρ, θ, ϕ, x, y). This
operator is equivalent to the one in eq 3, but fixes the position
along z at −1.36 bohr, corresponding to an energy minimum.
To take into account the total symmetry of the system with
respect to particle exchange, the eigenstates of Ĥcon are
classified according to their rotational parity and multiplied by
the corresponding degeneracy number

∑ ∑= +β β

∀

−

∀

−q g ge e
e

n

E

o
n

E

conf
n n
e o

(13)

where En
e and En

o stand, respectively, for the energies of the
eigenstates with even and odd parity with respect to rotation,
placing the energy origin at the bottom of the PES. As dis-
cussed in the Results section, a comparison between the semi-
classical and quantum partition functions reveals a difference of
several orders of magnitude, so the use of the latter is fully
justified in the present context.

2.5. MCTDH. As mentioned above, the SA-MCTDH
method has been employed in the thermal flux eigenstate calcu-
lation and corresponding time propagation. In the standard
MCTDH method,54 a single wave function is represented as a
sum of configurations Ansatz with the form

∑ ∑ ∏ φΨ = ···
= =

···
=

Q Q t A t Q t( , ..., , ) ( ) ( , )
p

j

n

j

n

j j

k

p

j
k

k1
1 1 1

( )

p

p

p k

1

1

1

(14)

where each degree of freedom (DOF) k is represented by a set
of low-dimensional time-dependent basis functions φjk

(k) known

as single particle functions (SPFs). These SPFs are, in turn,
represented on a time-independent (primitive) basis set, usually
consisting on DVR or FFT grids, thus giving rise to the two-
layer representation of the total wave function, which is behind
the outstanding numerical efficiency of the MCTDH algorithm.
The propagation is then carried out by integration of a set of
coupled equations of motion derived from the Dirac−Frenkel
variational principle.
The state-averaged multiconfigurational time-dependent Har-

tree (SA-MCTDH) is a modification of the MCTDH method
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that represents a set of wave functions using a common SPFs
set, which adapts at each time step to provide the best basis for
the average of the wave functions represented. This means that
more SPFs will be needed than if the wave functions were
represented independently but has the advantage that the effort
to propagate a set of wave functions is then roughly inde-
pendent of the number of wave functions in the set. Moreover,
overlap operations between these functions are straightfor-
wardly performed because they do not require projections on
the SPF basis. This advantage is exploited to calculate eigen-
states of general operators by iterative diagonalization, and it
has been effectively used in high dimension systems.55

2.6. Simulation Details. Three kinds of calculation were
needed to obtain the diffusion rates for either the H2 or D2:
(1) calculation of the 5D Hamiltonian eigenstates at a mini-
mum of the PES to compute the reactant partition function,
(2) calculation of the thermal flux operator eigenstates with a
dividing surface set at a maximum of the PES and, finally
(3) the propagation of the latter for a time long enough to
ensure convergence of the results. To be able to span a large
temperature range, the thermal flux eigenstates were calculated
and propagated for three different reference temperatures,
namely, 75, 100, and 150 K, so a total of seven calculations
were carried out on each PES. The wave function representation
parameters (number of SPFs, primitive functions, and grid

parameters for each degree of freedom) were employed for the
calculation and propagation of the thermal flux eigenstates at
150 K for the hydrogen molecule using the ref 48. PES are
found in Table 1. The details regarding the numerical
convergence and the basis used for the remaining calculations
are given in the Supporting Information. Note that the prim-
itive grid is maintained in all sets of thermal flux eigenstates
calculation and propagation, but the number of SPFs changes.
This is particularly noticeable in the z coordinate, associated
with the diffusion motion. A complex absorbing potential
(CAP) was placed at both edges of the z coordinate grid, with a
length of 9 bohr, to avoid aliasing during the propagation step.
It is worthwhile to point out that the grid on the z coordinate

is large. This is done to allow a good description of the
dynamics before the wave packet is absorbed by the CAP.
This differs from the work in ref 41, where the CAP was placed
just in the first minimum after the dividing surface, thus making
an uncorrelated hopping approximation somewhat equivalent
to a classical TST.

3. RESULTS AND DISCUSSION

The calculation of the 50 eigenstates for the H2 molecule, using
the ref 48 PES at a reference temperature of 150 K, required
10 h of calculation in a 32-core Intel Xeon E5-4620 0 @ 2.20 GHz
processor, while 9 h was needed for D2 under the same conditions.

Table 1. Quantum Dynamics of H2 Confined in a (8,0) SWCNT at 150 K and Using Ref 48 PESa

number of SPFs primitive grid

DOF eigenstates propagation number points type range

ρ 2 2 32 FFT 0.5−5.0 a0
θ 5 5 64 cot-DVR 0−π/2

ϕ 7 7 64 FFT 0−2π

x 3 4 32 FFT −3.5−3.5 a0
y 3 4 32 FFT −3.5−3.5 a0
z 2 6 256 FFT −28.033−28.033 a0

aBasis set and grid MCTDH representation for the calculation of thermal flux eigenstates and time propagation.

Figure 2. Total flux-position correlation function for the diffusion of H2 along an (8,0) carbon nanotube at T = 150 K using the ref 48 PES.
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With this number of eigenstates, the last (50th) eigenvalue was,
in all cases, at most 5 orders of magnitude smaller than the first
one. This guarantees that all relevant flux contributions were
taken into account for the calculation of N(E). The subsequent
propagation of these flux eigenstates for 500 fs took 105 h for
H2 and 76 h for D2 in the same machine for a reference temper-
ature of 150 K. Similar times were required for the calculation
carried out under the remaining reference temperatures and
with the FB PES.
For the sake of clarity, we focus the following discussion on

the results obtained using the ref 48 PES. The detailed results

corresponding to the FB PES can be found in the Supporting
Information, and here only the final diffusion coefficients and
selectivities will be discussed.
The flux-position correlation function obtained for the H2

diffusion simulation at T = 150 K is shown in Figure 2. Note
that a plateau is reached at ∼200 fs, although a small decrease
can be observed after 300 fs. This could be due to recrossing
effects at very large times, but nevertheless we consider that
the function is smooth enough to obtain relevant information.
On the contrary, Cfp for the deuterium molecule in the same
conditions is shown in Figure 3. Note the difference in scale

Figure 3. Total flux-position correlation function for the diffusion of D2 along an (8,0) CNT at T = 150 K using the ref 48 PES.

Figure 4. Total (darkest) and the five lower-energy individual reaction probabilities for the diffusion process of H2 along an (8,0) carbon nanotube at
a reference temperature of 150 K using the ref 48 PES. Symmetry numbers due to the rotational parity of H2 are not taken into account in the curves.
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between both figures, with the flux-position correlation function
for D2 being three orders of magnitude larger than the one for
H2. In this case there is no sign of decreasing of the function,
which remains flat at t > 200 fs.
A Fourier transform of the flux−flux correlation function

yields the cumulative reaction probability, N(E) (see eq 7).
This function is plotted as a function of the total energy for the
hydrogen and deuterium systems in Figures 4 and 5, respec-
tively. The total cumulative reaction probability, in the darkest
color at each figure, increases gradually starting from a certain
energy threshold. At first glance a higher energy threshold
is identified in the case of H2 diffusion with respect to D2.
However, given the low-energy barrier (11 cm−1 in ref 48 PES
and 37 cm−1 in FB PES) the different energy threshold observed
in the CRP plots can be mainly attributed to the different ZPE
of the reactants (2534 cm−1

∼ 0.31 eV for H2 and 1820 cm−1

∼ 0.22 eV for D2 in the ref 48 PES). Nevertheless, calculating
the adiabatic energy barrier (i.e., considering the ZPE of both
reactant and activated complex) reveals that this quantity is
slightly higher in the case of H2 (58 cm−1) than in the case of
D2 (45 cm−1). This difference in the adiabatic energy barrier
can be related to the different vibrational amplitude of both
isotopologues’ wave function. A smaller vibrational amplitude
for D2 (lower ZPE) compared with that of H2 results in a less
corrugated potential for the heavier molecule as it diffuses
along the nanotube. A similar reasoning has been employed by
Kumar and Bhatia when studying the quantum confinement
effects affecting H2 and D2 adsorption and diffusion inside a
ρ zeolite.35

Another difference between both systems is the rate of
increase in N(E), which is steeper for D2 than for H2. This issue
can be explained by decomposing the total CRP into individual
probabilities resulting from the flux eigenpairs contributing to
the process (25 in this case). In the Figures, the individual con-
tribution corresponding to the first five flux eigenstates is
depicted together with the CRP, showing the reason for the
different pattern between both isotopologues: The density of

states participating in deuterium is much larger than that in
hydrogen, thus explaining the faster increase in the total
CRP. The individual contributions oscillate around a prob-
ability of ∼1, which may be an indication of recrossing effects.
It must be pointed out that these contributions are not
weighted by the ortho/para symmetry degeneration numbers.
The CRPs obtained at the three reference temperature
values sampled are essentially the same, as can be seen in
Figures 6 and 7. In these Figures the total N(E) is shown for

the three values of β. Note, however, that the oscillations in
the CRP at high energies are more important for the calcu-
lation employing a lower reference temperature, which indicates
an increasing numerical error. This is the reason why several
reference temperatures must be sampled to span a larger tem-
perature interval.

Figure 5. Total (darkest) and the five lower-energy individual probabilities for the process of diffusion of D2 inside an (8,0) carbon nanotube at a
reference temperature of 150 K using ref 48 PES. Symmetry numbers due to the rotational parity of D2 are not taken into account in the curves.

Figure 6. CRP for the H2@(8,0) system at the different temperatures
sampled: T = 75 (solid line), 100 (dashed line), and 150 K (dotted
line). Symmetry numbers due to the rotational parity of H2 are not
included.
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The partition functions were initially calculated using both a
semiclassical and a quantum approach. The results obtained
with both methodologies were not consistent, with differences
of several orders of magnitude in their values even at low
temperatures. This fact can be explained by the different ZPE
resulting from both approaches: To calculate a semiclassical
partition function, one relies on the full separability of the
system. Considering this assumption, the total ZPE is the sum
of the vibrational ZPE and the ZPE appearing due to the
confining potential in x and y, which, in our case, is modeled as
a harmonic oscillator. However, as it is seen in Figure 1, the
potential along x and y is significantly anharmonic. In addition
to this, as it was reported by one of us,22 the coupling between
the rotational and translational degrees of freedom has a relevant

effect on the ZPE of a nanoconfined system. These differences
are enough to significantly change the value of the partition
function at low temperatures, and for this reason only the results
obtained with the quantum approach are shown hereafter.
After thermal averaging of the CRP to obtain the hopping

probability, diffusion rates are obtained for both H2 and D2

according to eq 1. The results are shown in Figure 8 as an
Arrhenius plot. The data obtained at three reference temper-
atures using eqs 7 and 8 is merged to span a broader tem-
perature range from 50 to 155 K. No attempt has been made to
go below this temperature because it is expected that inter-
molecular interactions become increasingly important below
this point. Additionally, the same diffusion rates have been calcu-
lated using TST, obtaining similar results to those calculated by
rigorous quantum dynamics. The TST results can be found in
the Supporting Information (SI).
Similarly to what has just been discussed, we have computed

the corresponding partition functions, CRPs, and hopping
frequencies for the self-diffusion of H2 and D2 along an (8,0)
CNT using the FB potential. Detailed results are available in
the SI, and the final diffusion coefficient values are shown in
Figure 8. Concerning the intermediate data (SI), we would like
to mention that there are noticeable differences between the
CRPs obtained from both surfaces, presenting a slightly larger
energy threshold and a much lower density of states in the
case of the FB potential. Nevertheless, the final diffusion rates
obtained with both PES are comparable, with a difference of
less than an order of magnitude. This seems to imply that even
though the PES affects the calculation of the CRP and the
partition functions, the effects compensate one another, thus
providing a similar final result.
The activation energy for the diffusion process is estimated

from the slope of the diffusion constant values plotted in Figure 8.
The calculated values, shown in Table 2, show that this activation

Figure 7. CRP for the D2@(8,0) system at the different temperatures
sampled: T = 75 (solid line), 100 (dashed line), and 150 K (dotted
line). Symmetry numbers due to the rotational parity of D2 are not
included.

Figure 8. Calculated diffusion rates for hydrogen (blue) and deuterium (red) along an (8,0) carbon nanotube for ref 48 (solid) and FB (dashed)
PES. The data obtained using different reference temperatures of 75, 100, and 150 K are combined to span the 50−155 K temperature range.
Gray markers correspond to the experimental H2/D2 diffusion data in a CMS, extracted from ref 36.
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energy is higher for H2 than for D2 for both PESs studied. This
supports our discussion on the reaction probability plots and
the corresponding adiabatic energy barriers. As a consequence
of this difference in Ea, a reverse kinetic isotope effect appears at
low temperatures; that is, even though at high temperatures
H2 diffuses faster than D2, at a certain point in the cold
temperature range, this trend is inverted and D2 starts to diffuse
faster than H2. This point is located at ∼50 K for the ref 48 PES
and at ∼62 K for the FB PES. At the lowest temperature
reached by our calculations, deuterium diffusion rate is just
slightly larger than hydrogen’s, but the difference is expected to
increase at even lower temperatures. To illustrate this effect, we
plot the ratio of diffusion rates (DD2

/DH2
) in Figure 9 as a func-

tion of temperature for both PES objects of study. This function
evidences an increasingly faster D2 diffusion with respect to H2

as the temperature is lowered, until for temperatures below
60−50 K the ratio is inverted. The effect is particularly more
noticeable in the case of the FB-PES. This trend is consistent
with the experimental diffusion rates obtained by Nguyen et al.
in a Takeda 3A carbon molecular sieve (CMS).36 The experi-
mental data are shown in Figure 8 only for qualitative
comparison purposes. Comparing the results obtained on
both ref 48 and FB PESs, the larger sieving effects and the
higher temperature at which the inversion of the diffusion rates
ratio takes place are consistent with the fact that the potential
energy barrier is ∼4 times larger in the FB PES than in the
ref 48. Despite the quantitative differences, the fact that two
inherently different systems such as a CMS and an SWCNT
present such a similar qualitative behavior regarding the dif-
fusion of H2 and D2 is promising for the development of new
molecular sieves taking advantage of the kinetic separation.

At this point it is interesting to consider again the selective
adsorption mentioned in the Introduction. The quantum sieving
effect between isotopologues has been traditionally related
with the selective adsorption of the heavier species (D2) over
the lighter (H2) due to the difference in ZPE for both
species.17,23,38 This magnitude is represented by the selectivity
factor, S0, defined as a ratio of equilibrium constants for the
adsorption process of both species implicated

= =S
K

K

Q Q

Q Q
(2/1)0

2

1

ads,2 free,1

ads,1 free,2 (15)

We have calculated this quantity using our partition functions
as explained before. The resulting selectivity factor is shown in
Figure 10 for the both ref 48 (top panel) and FB PESs (bottom
panel). The latter is compared with the results from ref 23 on
the same PES. Note that there is a significant difference between
both PESs, with the FB-PES predicting a larger adsorption
selectivity. This finding was also reported by Garberoglio et al.
in ref 38. Focusing on the FB potential, our S0 is in good agree-
ment with the one reported by Lu et al. The difference at lower
temperatures can be related with the different Hamiltonian
model used: While they considered a 4D Hamiltonian, freezing
the internuclear distance, we treat all DOFs, thus allowing all
couplings to appear. Additionally, the slightly different structure
of our optimized nanotube with respect to the one used in
previous works may lead to subtle changes in the global PES,
further explaining the differences between our calculations.

4. SUMMARY AND CONCLUSIONS

In the present work we have calculated the diffusion constant
for two isotopologues of molecular hydrogen (H2 and D2)
inside a SWCNT using, for the first time, full-dimensional quan-
tum dynamics methods within the single hopping and rigid
structure approximations. Two different sets of LJ parameters
have been used to model the H−C interaction potential. The
diffusion constants obtained by quantum dynamics are similar
regardless of the PES used, even though the electronic barriers

Table 2. Activation Energies, in cm−1, for the Diffusion of H2

and D2 inside an (8,0) CNT for the Two PESs Employed

ref 48 PES FB PES

H2 77 107

D2 60 94

Figure 9. Ratio between the diffusion rates of D2 and H2 inside an (8,0) carbon nanotube calculated using ref 48. PES (solid line) and the FB PES
(dotted line).
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for diffusion differ by a factor of 4. The general trend is a faster
self-diffusion of H2 in front of D2 at high temperatures, with this
tendency being inverted below 60 K. This difference can be
explained in terms of the activation energy, which is higher for
hydrogen, in part due to its larger effective size resulting from a
higher ZPE.
It is also found that the computed diffusion rates qualitatively

agree with experimental results obtained in carbon molecular
sieves,36 even though CMS and CNTs are not strictly com-
parable systems due to their different structures. The FB PES
gives results more similar to experimental data obtained in similar
nanostructured materials, which suggests that this potential
parameters might be more reliable. We do reproduce previously
reported quantum sieving effects in the selectivity factor, S0,
showing a preferred adsorption of D2 with respect to H2.

The full quantum dynamics formalism used here provides
reliable results and gives insight into the diffusion process of
light molecules and its isotopologues with valuable detail.
Investigation should now be focused on the improvement of
the interaction model between the nanotube and the confined
molecule to see further effects.
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Dynamics of the H2@SWNT System: Quantitative Study of the
Rotational-Translational Coupling. J. Chem. Phys. 2015, 142, 084304−
15.
(19) Mondelo-Martell, M.; Huarte-Larrañaga, F. Six Dimensional
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Department of Materials Science & Physical Chemistry and Institute of Theoretical and

Computational Chemistry (IQTCUB), Universitat de Barcelona, 08028 Barcelona, Spain

E-mail: fermin.huarte@ub.edu

Phone: +34 93 4031341. Fax: +34 93 4021231

∗To whom correspondence should be addressed

S1

6.4. Publication 2 121



Numerical details and convergence

Here we present the wavefunction representation parameters used for carrying out the cal-

culations detailed in the main text. For each molecule and PES, these are:

• Flux eigenstates calculation, at reference temperature 75, 100 and 150 K.

• Flux eigenstates propagation, at the same reference temperatures.

The Multiconfigurational Time-dependent Hartree (MCTDH) approach used in the present

work relies in a double layer representation of the wavefunction. Both levels are considered

in the following to discuss the numerical convergence of the results.

Primitive grid

The primitive grid is kept the same for all the calculations. The most critical step regard-

ing convergence at this level is the absence of aliasing or reflections at the edges of the

non-periodic coordinate grids. In a DVR or FFT basis, this is checked by looking at the

population of the primitive function at the limiting points the direct (position) and inverse

(momentum) spaces: if it is low enough in both, the grid is well balanced and it should not

pose convergence issues. Note that, in the case of periodic coordinates such as φ, aliasing

appears naturally and is not related with numerical errors. Table S1 contains the population

at the grid edges for the calculations carried out in this work. The θ coordinate is omit-

ted due to its special characteristics. Observing the data in the table it can be seen that

probability density does not exceed 10−9 in any of the ρ, x, y, z coordinates.

Single Particle Functions

The single particle functions (SPFs) constitute the time dependent basis set for the MCTDH

calculations. Within the Correlation Discrete Variable Representation (CDVR), they also

become the basis set used to evaluate the potential energy matrix elements. This allows
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Table S1: Order of magnitude of the primitive function population at the first

and last point of the coordinate grid. FB stands for the Frankland–Brenner

PES, eig and prp label eigenstate calculation or propagation, respectively, and

the number indicates the reference temperature for the calculation.

ρ φ x y z

min max min max min max min max min max
FB-eig-75K 10−9 10−12 10−2 10−2 10−25 10−26 10−17 10−14 10−23 10−23

FB-eig-100K 10−9 10−12 10−2 10−2 10−22 10−23 10−17 10−18 10−25 10−21

FB-eig-150K 10−9 10−12 10−2 10−2 10−20 10−21 10−13 10−16 10−12 10−11

FB-prp-75K 10−9 10−12 10−2 10−2 10−13 10−13 10−11 10−11 10−8 10−7

FB-prp-100K 10−9 10−12 10−2 10−2 10−12 10−12 10−10 10−9 10−9 10−9

FB-prp-150K 10−9 10−12 10−2 10−2 10−11 10−11 10−12 10−13 10−9 10−8

48-eig-75K 10−9 10−11 10−2 10−2 10−25 10−27 10−24 10−24 10−14 10−13

48-eig-100K 10−9 10−11 10−2 10−2 10−23 10−24 10−24 10−24 10−24 10−24

48-eig-150K 10−9 10−12 10−2 10−2 10−19 10−21 10−22 10−22 10−19 10−21

48-prp-75K 10−9 10−12 10−2 10−2 10−13 10−13 10−12 10−13 10−12 10−12

48-prp-100K 10−9 10−12 10−2 10−2 10−12 10−12 10−13 10−13 10−14 10−13

48-prp-150K 10−9 10−11 10−2 10−2 10−11 10−11 10−12 10−12 10−11 10−11

the utilization of general PES without the requirement of being expressed in product form,

but also makes the overall method non–variational, so the balance in the number of SPFs

in each degree of freedom becomes very important: a too large basis set can be as bad as a

too small one. Here we present, for each one of the calculations carried out in this work, the

results obtained using three different basis sets: a minimal basis set with at most 2 SPFs in

each DOF, and two differently balanced SPFs sets. For the flux eigenstates calculation the

eigenvalues obtained are shown, while for the propagations, the flux-position autocorrelation

functions, Cfp(t), illustrate the results.

Flux eigenstates calculation

Tables S2 to S13 show the absolute value for the 6 first flux eigenvalues obtained for the

each calculations, i.e. for each molecule (H
2
or D

2
) at three different reference temperatures

(75, 100 and 150 K) and for each PES. Each table contains the results obtained using three

different basis. The basis sets are labeled according to the number of SPFs in each degree

of freedom, ordered as ρ,θ,φ,z,x,y.
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Table S2: Absolute value for the first six eigenvalues for H
2
calculated at 75 K,

with Ref 48 PES.

Basis | f1〉 | f2〉 | f3〉 | f4〉 | f5〉 | f6〉
133222 1.2× 10−26 2.2× 10−27 5.7× 10−28 4.9× 10−28 9.7× 10−29 2.2× 10−29

145244 1.5× 10−26 4.6× 10−27 5.6× 10−28 5.6× 10−28 9.3× 10−29 9.3× 10−29

257233 1.5× 10−26 4.6× 10−27 6× 10−28 6× 10−28 9× 10−29 8.9× 10−29

Table S3: Absolute value for the first six eigenvalues for H
2
calculated at 100 K,

with Ref 48 PES.

Basis | f1〉 | f2〉 | f3〉 | f4〉 | f5〉 | f6〉
133222 4.3× 10−21 1× 10−21 3.8× 10−22 3.6× 10−22 1.2× 10−22 6.8× 10−23

145244 4.5× 10−21 1.9× 10−21 3.8× 10−22 3.8× 10−22 9.9× 10−23 9.9× 10−23

256233 4.6× 10−21 1.9× 10−21 4× 10−22 4× 10−22 9.7× 10−23 9.5× 10−23

Table S4: Absolute value for the first six eigenvalues for H
2
calculated at 150 K,

with Ref 48 PES.

Basis | f1〉 | f2〉 | f3〉 | f4〉 | f5〉 | f6〉
133222 1.5× 10−15 5× 10−16 3× 10−16 2.9× 10−16 1.4× 10−16 9.5× 10−17

145244 1.6× 10−15 9.1× 10−16 3× 10−16 3× 10−16 1.2× 10−16 1.2× 10−16

257233 1.5× 10−15 5× 10−16 3× 10−16 2.9× 10−16 1.4× 10−16 9.5× 10−17

Table S5: Absolute value for the first six eigenvalues for D
2
calculated at 75 K,

with Ref 48 PES.

Basis | f1〉 | f2〉 | f3〉 | f4〉 | f5〉 | f6〉
145233 1.5× 10−20 1.1× 10−20 1.7× 10−21 1.7× 10−21 5.7× 10−22 5.5× 10−22

155244 1.5× 10−16 1.2× 10−16 2.9× 10−17 2.9× 10−17 1.3× 10−17 1.3× 10−17

256233 1.5× 10−16 1.2× 10−16 2.9× 10−17 2.9× 10−17 1.3× 10−17 1.3× 10−17

Table S6: Absolute value for the first six eigenvalues for D
2
calculated at 100 K,

with Ref 48 PES.

Basis | f1〉 | f2〉 | f3〉 | f4〉 | f5〉 | f6〉
145233 1.5× 10−16 1.2× 10−16 2.8× 10−17 2.8× 10−17 1.3× 10−17 1.2× 10−17

155244 1.5× 10−16 1.2× 10−16 2.9× 10−17 2.9× 10−17 1.3× 10−17 1.3× 10−17

256233 1.5× 10−16 1.2× 10−16 2.9× 10−17 2.9× 10−17 1.3× 10−17 1.3× 10−17
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Table S7: Absolute value for the first six eigenvalues for D
2
calculated at 150 K,

with Ref 48 PES.

Basis | f1〉 | f2〉 | f3〉 | f4〉 | f5〉 | f6〉
145233 1.7× 10−12 1.4× 10−12 5.5× 10−13 5.5× 10−13 3.2× 10−13 3.2× 10−13

155244 1.7× 10−12 1.4× 10−12 5.6× 10−13 5.6× 10−13 3.3× 10−13 3.3× 10−13

257233 1.7× 10−12 1.4× 10−12 5.6× 10−13 5.6× 10−13 3.3× 10−13 3.3× 10−13

Table S8: Absolute value for the first six eigenvalues for H
2
calculated at 75 K,

with FB PES.

Basis | f1〉 | f2〉 | f3〉 | f4〉 | f5〉 | f6〉
133222 4.1× 10−29 2.5× 10−29 1× 10−31 1× 10−31 7.4× 10−34 4.3× 10−36

153244 5.1× 10−29 4.1× 10−29 1.4× 10−32 1.4× 10−32 1.2× 10−32 1.2× 10−32

245233 5.3× 10−29 4.2× 10−29 1× 10−31 1× 10−31 2.2× 10−32 2.2× 10−32

Table S9: Absolute value for the first six eigenvalues for H
2
calculated at 100 K,

with FB PES.

Basis | f1〉 | f2〉 | f3〉 | f4〉 | f5〉 | f6〉
133222 4.9× 10−23 2.9× 10−23 5.6× 10−25 5.6× 10−25 1.4× 10−26 2.6× 10−28

143244 6.3× 10−23 5.3× 10−23 5× 10−25 1.7× 10−25 1.4× 10−25 1.3× 10−25

248233 6.5× 10−23 5.4× 10−23 5.5× 10−25 5.5× 10−25 1.9× 10−25 1.9× 10−25

Table S10: Absolute value for the first six eigenvalues for H
2
calculated at 150 K,

with FB PES.

Basis | f1〉 | f2〉 | f3〉 | f4〉 | f5〉 | f6〉
133222 8.7× 10−17 3.9× 10−17 3.6× 10−18 3.5× 10−18 1.6× 10−18 1.1× 10−18

156244 9× 10−17 8.1× 10−17 3.7× 10−18 3.7× 10−18 1.8× 10−18 1.8× 10−18

245233 9.2× 10−17 8.2× 10−17 3.6× 10−18 3.6× 10−18 1.8× 10−18 1.8× 10−18

Table S11: Absolute value for the first six eigenvalues for D
2
calculated at 75 K,

with FB PES.

Basis | f1〉 | f2〉 | f3〉 | f4〉 | f5〉 | f6〉
145233 4.5× 10−22 4.4× 10−22 3.3× 10−24 3.3× 10−24 2.8× 10−24 2.8× 10−24

143244 4.4× 10−22 4.4× 10−22 3.5× 10−24 3.4× 10−24 2.9× 10−24 2.8× 10−24

255233 4.6× 10−22 4.5× 10−22 3.7× 10−24 3.7× 10−24 2.7× 10−24 2.7× 10−24
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Table S12: Absolute value for the first six eigenvalues for D
2
calculated at 100 K,

with FB PES.

Basis | f1〉 | f2〉 | f3〉 | f4〉 | f5〉 | f6〉
133222 1× 10−17 5× 10−18 2.7× 10−19 2.6× 10−19 1.8× 10−19 1.4× 10−19

243244 1.1× 10−17 1× 10−17 2.7× 10−19 2.7× 10−19 2.3× 10−19 2.3× 10−19

255233 1.1× 10−17 1× 10−17 2.8× 10−19 2.8× 10−19 2.2× 10−19 2.2× 10−19

Table S13: Absolute value for the first six eigenvalues for D
2
calculated at 150 K,

with FB PES.

Basis | f1〉 | f2〉 | f3〉 | f4〉 | f5〉 | f6〉
145233 2.8× 10−13 2.8× 10−13 2.4× 10−14 2.4× 10−14 2.2× 10−14 2.2× 10−14

148244 2.8× 10−13 2.8× 10−13 2.4× 10−14 2.4× 10−14 2.2× 10−14 2.2× 10−14

255233 2.9× 10−13 2.8× 10−13 2.5× 10−14 2.5× 10−14 2.2× 10−14 2.2× 10−14

Flux eigenstates propagation

The flux–position autocorrelation functions obtained with the different basis sets described

previously are shown in Figures S1 and S2 for the Ref. 48 and the FB PES, respectively.

Note that, of the three basis sets used for each calculation, two of them agree very well,

pointing to a good convergence of the results.

Taking all these data into account, we selected the basis sets for H
2
(Table S14) and D

2

(Table S15).

Table S14: SPF basis size for the two sets of simulations carried out: calculation

of thermal flux eigenstates and time propagation.

T PES Ref 48 FB PES
Eigenstates Propagation Eigenstates Propagation

75 K 257233 257633 245233 257744
100 K 256233 257644 248233 257844
150 K 257233 257633 245233 257844

S6

126 Chapter 6. Diffusion of H2 along Single–walled Carbon Nanotubes



0 50 100 150 200 250 300 350 400 450
time (fs)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

C
fp

 (a
.u

.)

1e−26

133633
157744
257633

0 50 100 150 200 250 300 350 400 450
time (fs)

0

1

2

3

4

5

6

C
fp

 (a
.u

.)

1e−21

133633
156744
257633

0 50 100 150 200 250 300 350 400 450
time (fs)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

C
fp

 (a
.u

.)

1e−15

133633
157744
257644

0 50 100 150 200 250 300 350 400 450
time (fs)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

C
fp

 (a
.u

.)

1e−20

145633
156744
257633

0 50 100 150 200 250 300 350 400 450
time (fs)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

C
fp

 (a
.u

.)

1e−16

145633
157744
257633

0 50 100 150 200 250 300 350 400 450
time (fs)

0

1

2

3

4

5

6

C
fp

 (a
.u

.)

1e−12

145633
168744
257644

Figure S1: Cfp(t) for the different calculations carried out on Ref. 48 PES. First column
correspond to the H

2
molecule, second column to D

2
. The rows contain the data at reference

temperatures of 75, 100 and 150 K from top to bottom
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Figure S2: Cfp(t) for the different calculations carried out on FB PES. First column corre-
sponds to the H

2
molecule, second column to D

2
. The rows contain the data at reference

temperatures of 75, 100 and 150 K from top to bottom
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Table S15: SPF basis size for the two sets of simulations carried out: calculation

of thermal flux eigenstates and time propagation.

T PES Ref 48 FB PES
Eigenstates Propagation Eigenstates Propagation

75 K 256233 257633 255233 257844
100 K 256233 257633 255233 257844
150 K 257233 257644 255233 257844

Quantum Dynamics on the Frankland-Brenner PES

Here we briefly discuss some qualitative aspects of the intermediate results obtained using

the Frankland-Brenner PES, which were omitted in the main text for the sake of clarity.

The number of flux eigenstates was sufficient to guarantee that no relevant states were

neglected in the calculation of the hopping probability, khop. It is worthwhile to mention that

the pairs of eigenvalues of the flux operator follow a pattern very similar to the one existing

in the energies of the 5D Hamiltonian, with relatively large gaps, as well as degeneracies.

The flux–position autocorrelation function, Cfp(t), at a reference temperature of 150 K ,is

shown in Figures S3 and S4 for H
2
and D

2
, respectively. The behavior is similar to the one

shown in the main text for the Ref 48 PES: a steep increase of the function, reaching a

plateau at arround 200 fs. Note that this is more clear for D
2
than for H

2
. Also, there is a

difference between one (for D
2
) to three (for H

2
) orders of magnitude when compared with

the results on the Ref. 48 PES. This is given by the value of the flux eigenstates and may

be related to the energy difference in the reaction barrier between both surfaces.

Regarding the cumulative reaction probability, N(E), and the corresponding contribu-

tion from the most significant flux eigenstates, the results for the FB PES at a reference

temperature of 150 K are shown in Figures S5 and S6 for H
2
and D

2
, respectively. There

are two main differences between both PES: first, the energy threshold to start the diffusion

process changes. This is directly related with the different ZPE obtained with both sets of

Lennard-Jones parameters. Secondly, the structure of the individual contributions to the

CRP is significantly different: N(E) computed on the Ref 48 PES increases with energy
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Figure S3: Flux–position autocorrelation function, Cfp, for H2
confined in an (8,0) carbon

nanotube at a reference temperature of 150 K.
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Figure S4: Flux–position autocorrelation function, Cfp, for D2
confined in an (8,0) carbon

nanotube at a reference temperature of 150 K.
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in a relatively smooth fashion. Instead, using the FB PES we find first a rather steep rise

of the CRP followed by a wide flat region. This is related with the structure of the flux

eigenvalues, which appear more clustered in this PES. We think the reason for this behavior

lies on the different profile of the potential energy surface, which is steeper for the FB PES,

and therefore causes the energy levels to split differently than in the other PES.
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Figure S5: N(E) and the first five individual contributions to the CRP, for H
2
confined in an

(8,0) carbon nanotube. Symmetry numbers from the rotational symmetry are not included.

Diffusion rates and adsorption selectivities are shown in the main text for both this and

the Ref 48 PES.
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Figure S6: N(E) and the first five individual contributions to the CRP, for D
2
confined in an

(8,0) carbon nanotube. Symmetry numbers from the rotational symmetry are not included.
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Transition State Theory results

Transition state theory (TST) is a useful tool to obtain preliminary results concerning chem-

ical kinetics. The rate for a chemical process within these approach is given by:

kTST (T ) =
kT

h

Q†(T )

Qr(T )
, (1)

where Q† is the partition function of the transition state structure, neglecting the reaction

coordinate DOF, and Qr is the full partition function for the reactants. The diffusion rates

for H
2
and D

2
, calculated with TST employing both Ref. 48 and FB PES, are shown

in Figures S7 and S8. The similarity of this results when compared with the quantum
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Figure S7: Diffusion rate constants for H
2
(blue) and D

2
(red) in an (8,0) CNT, computed

with the Flux correlation function formalism (solid) and TST (pointed) in the Ref. 48 PES.
Grey points correspond to experimental results in Ref 36.

dynamical calculations indicate a fairly low recrossing and tunneling effects in the diffusion
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Figure S8: Diffusion rate constants for H
2
(blue) and D

2
(red) in an (8,0) CNT, computed

with the Flux correlation function formalism (solid) and TST (pointed) in the FB PES. Grey
points correspond to experimental results in Ref 36.
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dynamics of this system.
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6.5 Summary and Conclusions

The presented Chapter has included the study of the diffusion of H2 and D2 along
an (8,0) SWCNT. Diffusion rates have been computed by using the flux correlation
function approach and the single hopping approximation. A first set of results using
a full dimensional Hamiltonian to define the adsorbate has been presented which
seemed to support the claim of the existence of an Inverse Kinetic Isotope Effect in
nanostructured materials. However, further calculations with a new representation
of the Hamiltonian allowed for extended propagations, thus improving the results
obtained in the first set of propagations. These new results have shown that the
lighter isotopologue diffuses faster than the heavier at all the studied temperature
values. This has been seen to be a consequence of sharp resonances in the tunneling
regime, which favor the diffusion of H2 at energies below the classical diffusion
threshold.

The main conclusions extracted from this Chapter are:

• The flux–flux correlation function formalism, together with the single–hopping
model for diffusion, can be used to compute diffusion rates in the low–pressure
limit in a full–quantum manner.

• Time–extended simulations are particularly necessary to simulate the diffusion
process, due to the low corrugation present in these systems.

• The ZPE effect enhances the diffusion of heavy isotopologues, as shown by the
TST and quantum unconverged calculations.

• Tunneling effects, including resonances, are more important for lighter molecules.

• The final effect is that resonance enhanced tunneling overcompensates ZPE
effects, and inverse kinetic sieving does not appear in this particular system.

• These results illustrate the importance of a quantum description of light atoms
in chemical dynamics.
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Chapter 7

Separation of time–scales in the
H2@SWCNT system

7.1 Coupling in the 6D model and adiabatic theorem

The cylindrical shape of a carbon nanotube gives the confined molecules some spe-
cial properties that do not appear in most other nanostructured materials: in con-
trast with zeolites, CMS or most MOFs, in the case of nanotubes we have two con-
fining dimensions of space (x and y), while the potential energy barriers along the
nanotube’s axis (z) are very low. Due to this particular shape, one can divide the
degrees of freedom describing the adsorbate in two sets: five of them (ρ, θ, ϕ, x,
and y) are considered the confined degrees of freedom (hereby referred collectively
as q), while the sixth (z) is an unbound or quasi–free DOF. As it was already said in
Chapter 5, it is generally accepted that the coupling between these two sets of co-
ordinates is low enough so that one can just worry about the confining degrees of
freedom, and therefore make studies keeping the molecule fixed at a certain z value.
This however limits the possible studies that can be carried out on this system, pre-
venting for instance the diffusion rates calculations presented in Chapter 6. To the
best of our knowledge, the first work treating a diatomic molecule moving along a
SWCNT in a full quantum framework was the study of the rigid OH radical along
a (10,0) SWCNT by Skouteris and Laganà in 2013, but that line of research was not
further explored. Here we present two methodological works which explicitly in-
clude motion along the nanotube’s axis. The first study consists on the assessment
of the coupling between the diffusion coordinate, z, and the remaining DOFs of the
confined molecule. The results obtained led us to a second work which we develop
a scheme to perform quantum dynamics propagations beyond 20 ps.

The work presented in Publication 3 conforms the first study in which a full–
dimensional Hamiltonian is used to simulate the motion of a H2 molecule along a
SWCNT. The main objective of such work was to confirm the assumption of negligi-
ble coupling between confined and unbound degrees of freedom by taking advan-
tage of the overlap function tools (Chapter 5). In order to do so, we built a set of
initial wave functions by diagonalizing the adsorbate’s Hamiltonian in a harmonic
trapping potential, so that they were restricted to a certain region of space. Then
gave them a certain amount of linear momentum, propagated them in time without
the trapping potential, and studied the outcome of such propagations. The idea be-
hind this setup was to see how the shape of the wave function changed between two
equivalent points of the nanotube: if the system were perfectly separable into con-
fined and unbound degrees of freedom, then the wave function after the propagation
would be equivalent to the initial state. The quantitative assessment of the coupling
between the two sets of DOFs was made by taking advantage of the overlap function
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tools developed previously, and presented in Chapter 5 and computing the convo-
lution function of the propagated functions with the initial static eigenstates at dif-
ferent points along z. The results of this first study confirmed the quasi–separability
of the system, and therefore the possibility to develop a time–scale separation of the
variables based on the adiabatic theorem. This theorem states that, in case of smooth
changes in a PES, the quantum numbers of a given state are maintained after a prop-
agation. This paves the way to applying a Born–Oppenheimer–like scheme to the
case of a confined molecule diffusing in a nanocavity, separating the fast, short am-
plitude motion in the confined degrees of freedom from the low–amplitude diffusion
motion. After following this idea, we obtained the two Hamiltonian representations
presented in Publication 4: a numerically exact diabatic Hamiltonian, and an approx-
imate but very accurate adiabatic approach for the propagation. Both schemes proved
to be successful in reproducing and improving diffusion rates calculations carried
out previously, as it has been seen in Chapter 6. For this reason they have been used
in further developments aiming at the inclusion of the phonons of the nanotube in
the description of the system, which will be the subject of Chapter 8.

7.2 Result Discussion

7.2.1 Study of the coupling between confined and unbound degrees of
freedom

This Section summarizes the contents of Publication 3, included in this Thesis as
Section 7.3.

Following a philosophy similar to the work presented in Chapter 5 and Pub-
lication 1, the aim of this work was to qualitative and quantitatively measure the
amount of coupling between the set of confined DOFs (hereby denoted by q) and
the z coordinate. As already explained in the previous Section, the correlation be-
tween q and z was examined by building particular wave functions and analyzing
their shape during their propagation along the nanotube.

The generation of the initial states was made by mimicking an experimental laser
trapping setup. In this technique, a laser beam would fix the position of a given
molecule at a certain point of the nanotube. This was simulated by the addition
of a harmonic potential only in the z dimension which prevented the motion along
the structure. The force constant of the trapping potential was chosen so that 10
eigenstates could be computed without generating translational excitations in the z
coordinate. With this setup, the resulting stationary states were close to the direct
product of the 5D eigenstates already studied in Chapter 5, times a ground state
harmonic oscillator function in the unbound coordinate. Once the initial states were
obtained, the harmonic potential was removed and the functions were propagated in
time according to the 6D Hamiltonian of Section 4.2. In order to accelerate the prop-
agations, we artificially added a certain linear momentum in the z and x coordinates
by means of a vector with impinging angle α with respect to the nanotube’s axis.
The module of the vector was chosen to be of 25.6 meV, so that it coincided with
the most probable velocity value of a particle, according to a Maxwell–Boltzmann
distribution, at a reference temperature of 298 K.

The qualitative measure of the correlation between q and z was made by direct
observation of the time evolution of wave function projected in each of the confined
DOFs: if the coupling were low, then the wave function would not change signifi-
cantly in the different confined coordinates, regardless of the changes in z. This is
indeed the case, as it is seen in Figure 7.1, where the projection of the ground state
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FIGURE 7.1: Projection of the 6D wave function onto the z (left) and
θ coordinates (right) for times t=0 (blue), 100 (yellow), 200 (grey), 300

(green), 400 (purple) and 500 fs (red).

wave function of H2 onto θ and z is shown at different propagation times, with an
added momentum of 25.6 meV and an impinging angle of 45◦. It is clear from this
Figure that the motion along the z coordinate has only a very limited effect on the
rotational distribution of the wave function. The other DOFs where checked, lead-
ing to similar or even lower levels of distortion. In the case of coaxial motion along
the nanotube (α = 0◦) the distortions were still less noticeable than in the case of an
impinging angle of α = 45◦. In all cases there was a clear and direct correspondence
between wave packet at any propagation time and its initial states, which reinforced
the idea that the coupling between the confined and unbound degrees of freedom
was small.

The qualitative study of the coupling already hints at the quasi–separability of
the system in q and z. However, the setup of the propagation allows us to go further
an perform a quantitative analysis on this matter by adapting the overlap functions
tools developed in Publication 1. Let us denote a set of functions computed in a
trapping potential centered at z0 as Φz0(q, z). Since the potential is periodic, it is clear
that the eigenstates would be exactly equivalent if the trapping potential were cen-
tered at a symmetric point z′0. Let Ψz0,n(q, z, t) be the nth function of the set

{

Φz0

}

,
propagated to a time t, so that Ψz0,n(q, z, t = 0) = Φz0(q, z). If there was no cou-
pling between z and the remaining DOFs, after a propagation the q components of
Ψz0,n(q, z, t) at z′0 would be the same as at t = 0 and z = z0. It is then possible to quan-
titatively evaluate the amount of coupling by computing the convolution function
of a propagated wave function Ψz0,n(q, z, t) with a set of static eigenstates centered at
z′0, as schematically represented in Figure 7.2. These convolution functions, termed
σ, are time–dependent functions yielding the overlap between the propagated wave
packet, Ψz0,n(q, z, t), and the static functions Φz0(q, z):

σn,n′
(t, z0) =

〈

Ψz0,n(q, z, t)|Φz′0,n′(q, z)
〉

=
∫

Φz′0
(q, z, t)∗Ψz0(q, z)dq dz.

(7.1)

They allow us to quantify the mixing between different eigenstates, and through
it the correlation between the degrees of freedom: if the coupling were negligible,
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FIGURE 7.2: Schematic representation of the convolution functions
calculation: a set of wave packets Ψz0(q, z, t) (grey) are computed
at a certain point z0 and evolved in time. The convolution function
σn,n′

(t, z) is defined as the overlap of the Ψz0(q, z, t) functions with a

set of static functions computed at z = z′0,
{

Φz′0

}

(black).

all overlaps would be zero except for the one corresponding to the initial state of the
wave packet. Conversely, high coupling would imply high mixing of the eigenstates,
and the increase of the value of the overlaps with other eigenstates. The convolu-
tion functions computed at a distance of one unit cell from the initial center of the
wave packet showed that the interstate mixing was minimal in case of coaxial lin-
ear momentum, as it is shown in Publication 3. On the other hand, increasing the
impinging angle also increased the amount of mixing, specially for long propaga-
tion times. The comparison of convolution functions computed at different points
along the z coordinate also seemed to confirm that the coupling was low, although
it increased as the wave packet reached regions further away from the initial point.
Finally, we also computed σ(t; z′0) for wave packets propagated without addition
of initial lineal momentum. The resulting functions showed a mixing significantly
higher than in the case of adding momentum with α = 0◦, albeit also much lower
than in the case of α = 45◦, indicating that the correlation becomes more important
at lower temperatures. However, all the results confirmed that the supposition of
negligible coupling between the confined and unbound degrees of freedom is valid,
thus justifying the time–scale separation developed in the next Section.

7.2.2 Time–scale separation between confined and unbound DOFs in the
H2@SWCNT system

The following Section presents a review of Publication 4, included in this Thesis as
Section 7.4.

Once the coupling between the set of confined DOFs and z was shown to be
small, we started to develop an approach to take advantage of this feature to reduce
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the dimension of the system by the separation of time scales. The arguments used
here are similar to those generally applied when deriving the Born–Oppenheimer
approximation (See Section 2.1.1), namely the different characteristic times of both
sets of DOFs and the adiabatic theorem.

We start by defining the z–parametrized 5D Hamiltonian, Ĥ5D(q; z). The eigen-
states of this operator fixed at z = z0, ξ(q; z0) ≡ ξz0 , correspond to the confined
eigenstates analyzed in Chapter 5. We can use these eigenstates as a basis set to
expand the total wave function of the system as:

Ψ(q, z, t) = ∑
j

ψj(z, t)ξ j(q; z0). (7.2)

Then, if we rewrite the full–dimensional Hamiltonian as:

Ĥ = T̂z +
Nz

∑
k=1

(

T̂q + V5D(q; zk)
)

|zk 〉〈 zk| = T̂z +
Nz

∑
k=1

Ĥ5D(zk)|zk 〉〈 zk|, (7.3)

and use Eq. (7.2), after some manipulation, one gets the diabatic representation of the
Hamiltonian:

Ĥij =
〈

ξz0
i |Ĥ|ξz0

j

〉

= T̂zδij +
Nz

∑
k=1

〈

ξz0
i

∣

∣

∣Ĥ5D(zk)
∣

∣

∣ξ
z0
j

〉

|zk〉〈zk| (7.4)

= (T̂z + ε i(z0))δij +
Nz

∑
k=1

〈

ξz0
i |V5D(q; zk)− V5D(q; z0)|ξz0

j

〉

|zk〉〈zk| . (7.5)

Note that we have used the fact that the basis in q is z–independent, so that we can
focus only on the effect of the 5D Hamiltonian, but otherwise no approximation has
been made.

In this representation we can distinguish two types of operator terms. On one
hand we have a 1D kinetic energy operator acting on the z coordinate, corrected
with the ith eigenvalue of the 5D Hamiltonian at the reference point z0. The repre-
sentation of this corrected kinetic energy operator will therefore be a diagonal ma-
trix. On the other hand, we have a sum of Nz terms, each one consisting on a matrix
which contains all information about the coupling between the set of confined coor-
dinates, q, and the diffusion coordinate, z, at a certain point zk. These matrices are
somehow comparable to the coupling operators appearing in the right–hand side of
Eq. (2.8), seen in the context of the BO approximation. They contain the information
about the non–adiabatic transitions between different 5D eigenstates. By observing
these matrices we see that the coupling appears as a result of the differences in the
5D potential at each representation point zk and at the reference point, z0. If the 5D
potential would not depend on z, then the potential energy difference matrix would
become zero and the system would become separable in q and z. Otherwise we can
consider two extreme cases: if there was a strong dependence of V5D on z, we would
have dense potential difference matrices at different zk points which we would have
to take fully into account. Conversely, in the case the dependence of the 5D poten-
tial with z was relevant, but still a smooth function (meaning that there are no points
onto which the steepness of the function is large), the potential energy difference
matrices would be quasi–diagonal, and we could apply the adiabatic approximation to
our Hamiltonian. The latter is indeed the case for our system.

To apply the adiabatic approximation it is convenient to rewrite Eq. (7.2) in an
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adiabatic representation, which is based on using a basis of z–dependent 5D eigen-
states,

{

ξ(q; zk) ≡ ξzk
}

. The expansion of the total wave function then reads:

Ψ(q, z, t) = ∑
j

ψ̃j(z, t)ξ j(q; z). (7.6)

The z–dependence of the 5D eigenstates basis prevents us from factorizing the Hamil-
tonian operator and thus focusing on the 5D basis as in Eq. (7.5). This correlation ap-
pears as a set of derivative coupling operators, so that the adiabatic representation
of the Hamiltonian therefore becomes:

Hij =

〈

∑
j

ψ̃j(z, t)ξi(q; z)|Ĥ|∑
j

ψ̃j(z, t)ξ j(q; z)

〉

(7.7)

The derivative coupling terms are analogous to the potential energy difference ma-
trices in the diabatic representation: they contain the information about the coupling
between q and z. If the dependence of the adiabatic basis with z is a smooth func-
tion, then the derivative coupling terms will be close to zero. If we neglect them, we
obtain the adiabatic approximation representation of the Hamiltonian:

Ĥ
(ad)
j = T̂z +

Nz

∑
k=1

ε j(zk) |zk〉〈zk| . (7.8)

We have termed the set of z–dependent eigenvalues, ε j(zk), as confined eigenstates
Potential Energy Surface (cePES), due to their analogy with the electronic PES. The
adiabatic approximation yields an straightforward understanding of the resonance
mediated diffusion discussed in Chapter 6: each cePES generates a certain number
of translational eigenstates in a given unit cell, each one with a given energy. These
levels are in resonance with the equivalent states in the neighboring unit cells, and
thus tunneling is extremely efficient in this system. This can be seen in Figure 7.3
(adapted from Publication 4), where the energies of the 6D eigenstates appear as
vertical lines superimposed to the CRP for the diffusion of hydrogen. The explana-
tion is confirmed when observing that the eigenenergies of the 6D Hamiltonian are
perfectly coincident with the resonance peaks appearing in N(E): dotted lines repre-
sent flux 6D states without a node along the diffusion coordinate (symmetric), which
resonate between the different energy minima and increase the transmission prob-
ability. Conversely, dotted lines represent states with nodal patterns between the
PES critical points (antisymmetric), which when in resonance result in a decrease in
N(E). We can also detect non-resonant transmission states, which are those which
contribute constantly to the CRP, such as the ones appearing at ≈ 36.8 and ≈ 36.5 eV,
and even two Feshbach resonances around 37.5 eV. The details of the analysis of the
structure of the resonances can be found in Section 7 (Publication 4).

Regarding the accuracy of the adiabatic approximation, our calculations show
that the results obtained through this approach were in almost perfect agreement
with those obtained with the formally exact diabatic representation. The N(E) func-
tions calculated using both formalism are compared in Figure 7.4. There, it becomes
clear that the final results are essentially the same in both cases: resonances appear at
the same energies and with similar intensities. However, it is also evidenced that the
results in the diabatic representation have a significant amount of numerical noise
that does not exist in the N(E) obtained using the adiabatic approximation. This
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noise tells us that the convergence of the propagation is still slightly incomplete af-
ter 20 ps This fact seems to indicate that the non–adiabatic couplings between the
confined eigenstates, even though minimal, have a certain effect on the propagation
of the flux eigenstates. This is not a surprising result, considering the observations
summarized in Section 7.2.1, where we saw that the coupling between confined
and unbound degrees of freedom began to become relevant at long propagation
times. Nevertheless, the numerical noise appears at high energies, and essentially
vanishes after Boltzmann averaging N(E) in the whole temperature range studied,
up to 150 K. For this reason, the diffusion rates obtained using either the diabatic
representation of the Hamiltonian or the adiabatic approximation are numerically
equivalent.
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A study on the quantum dynamics of the hydrogen molecule embedded in the hollow cavity of a Single-
walled Carbon Nanotube is presented, taking into account for the first time all six degrees of freedom of
the confined molecule. A set of initial eigenstates of the trapped H2 molecule are propagated for 500 fs
using the State Average Multiconfigurational Time-dependent Hartree approach. An initial linear
momentum is added to the hydrogen molecule in order to mimic high temperature behavior, forming
an angle of 0� and 45� with respect to the nanotube’s axis; an additional propagation is carried out with-
out adding any extra momentum. The wave packet dynamics are analyzed using projections and overlap
functions in the appropriate degrees of freedom. The study reveals little correlation between the trans-
lation of the confined molecule along the nanotube and the remaining degrees of freedom.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

In the last few years the development of new storage devices for
low-density gaseous species has become a field of intensive
research. Their interest arises with two basic objectives in mind:
to store large amounts of potential fuels in order to make their
transport from the production centers feasible, and to capture
known pollutants from the atmosphere to prevent, for instance,
the greenhouse effect [1]. A paradigmatic case of potential fuel
for the near future, due to its high efficiency and low impact in
the environment, is hydrogen. Nanostructured materials, such as
Carbon Nanotubes (CNTs) or some Metal–organic Frameworks
(MOFs) show the potential to be used for this purpose [1–4]. A
paradigmatic case is the research on hydrogen storage in nanos-
tructured materials, such as Carbon Nanotubes (CNTs) or Metal–
organic Frameworks (MOFs) [3,5–11], given the potentiality of this
gas a fuel for the near future. Due to its large economical interest,
the storage of hydrogen in nanostructured materials has been lar-
gely studied both theoretically and experimentally, specially in the
last few years. The research carried out in this kind of systems has
shown the effectiveness of some of these materials as storage
devices. A collateral effect of gas adsorption in nanostructures is
the distortion of the confined molecules at the molecular level
when the cavities in which they are trapped are of the order of
the nanometer. These distortions, which are changes of the

electronic structure and the dynamics of confined species, were
first studied by Beenakker [12] et al. in the middle 90s. In the early
2000s relevant studies of the hydrogen molecule in confining envi-
ronments, including a quantum treatment of the nuclei, were car-
ried out by Yildirim et al. [7,13,14] in different carbon structures.
Gray and co–workers latter calculated the distortions in the rota-
tion and translation of hydrogen in narrow Carbon Nanotubes
using a four–dimensional model [15]. Lately, more complex studies
have appeared on similar systems: the first 5–D quantum study of
hydrogen in a Carbon Nanotube was carried out by one of us [16],
and Bazic and co–workers have studied H2 confined in different
nanostructures such as metal–organic frameworks (MOFs) and
endofullerenes. More recently, we carried out a rigorous analysis
of the hydrogen molecule confined in different Carbon Nanotubes
correlating the eigenstates of the trapped molecule with those of
the free molecule [17]. The importance of these studies lies in
the fact that they would not only allow a better understanding of
the affinity of the confined molecules by the adsorbent, but they
may also allow the discovery of new potential applications for
nanostructured materials. A particularly interesting example of
these novel applications are quantum sieves, which allow the sep-
aration of isotopomers of a given molecule, like H2 and D2, due to
the different Zero-point energy (ZPE) of molecules with different
mass [4,18–20]. Also, some investigations point to the possibility
of controlling chemical reactions at the molecular level using
nanostructured materials [21].

Our aim in this work has been to go one step further with
respect to previous simulations and carry out full dimensional
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(6D) propagations for a single hydrogen molecule confined in an
(8, 0) Single walled Carbon Nanotube. Unlike Refs [7,15–17], the
hydrogen molecule is here able to diffuse along the CNT axis.
This is done in a fully quantum mechanical approach in order to
gain insight of the quantum confinement effects at an intimate
level. In spite of the number of studies in this kind of confined sys-
tems, to our knowledge few have been made which take into
account the diffusion of a molecule along a nanotube [22], and this
is the first one to take into account all possible degrees of freedom
of the adsorbate. In order to see the coupling between the degrees
of freedom when a hydrogen molecule is diffusing along the nan-
otube we employ the following strategy. First, a set of functions
is obtained simulating the eigenstates of a trapped H2 molecule.
These eigenstates are then given a linear impulse along the nan-
otube axis with different impingement angles and propagated in
time. The outcome of these propagations is analyzed using several
tools based on wave functions projections and overlap functions to
see whether the nature of the eigenstates is conserved when the
confined wave packet travels along the nanotube axis.

The work is therefore structured as follows. In Section 2 the
model used to describe the system is presented. Then the relevant
features of the computational tools are outlined in Section 3, focus-
ing first on the Multiconfigurational Time-dependent Hartree
approach. The remainder of Section 3 describes the procedure fol-
lowed in the dynamics simulation: the preparation of the set of ini-
tial states, the simultaneous propagation and the description of the
tools used to analyze them. The results of the study are discussed
in Section 4 and our conclusions summarized in Section 5.

2. Description of the model

Our system of study (hereafter, H2@SWNT) consists on a single
hydrogen molecule confined in the hollow cavity of a (8, 0) Single-
walled Carbon Nanotube. We implemented a 6–dimensional (6D)
Hamiltonian within the rigid nanotube approximation, that is, we
take into account explicitly all degrees of freedom (DOFs) of the
hydrogen molecule, but neglect the vibration of the carbon atoms.
To obtain the structure of the nanotube, a geometrical optimiza-
tion of its unit cell was carried out using a B3LYP functional and
a 6-21G basis set with the Crystal09 software [23,24]. The full nan-
otube is then represented by the concatenation of 20 unit cells,
each one with a length of 8 bohr, in order to mimic an infinitely
large structure and therefore minimize any edge effects.

Regarding the hydrogen molecule, the six DOFs are chosen as
the internuclear H–H distance (q), the polar angle of the diatomic
vector with respect to the nanotube’s axis (h), the azimuthal angle
(/), and the Cartesian coordinates of the c.o.m. of the diatom (x; y
and z, being z collinear with the nanotube’s axis) (Fig. 1). The 6D
Hamiltonian reads:

bH6D ¼ �
�h
2

2lH2

@2

@q2
þ

2
q

@

@q
þ

1
q2

@2

@h2
þ

1
q2

1

sin2
h

@2

@/2

 !

�
�h
2

2mH2

@2

@x2
þ

@2

@y2
þ

@2

@z2

 !
þ bV ðq; h;/; x; y; zÞ; ð1Þ

with lH2
and mH2

being respectively the reduced mass and the total

mass of the hydrogen molecule. Hence, all degrees of freedom are
explicitly defined and all couplings allowed.

The potential energy term is a 6 dimensional function of the
coordinates of the hydrogen molecule. Since the Van der Waals
interactions are the ones ruling the behavior of the system, we rep-
resent the potential energy surface (PES) as a sum of Lennard–
Jones pair potentials — as done in previous studies on similar sys-
tems [15–17]—. Additionally, the covalent interaction between the

hydrogen atoms is represented by a Morse potential [25]. The PES
then has the form:

bV 6D ¼ VH�HðqÞ þ VC�Hðq; h;/; x; y; zÞ; ð2Þ

bV C�Hðq; h;/; x; y; zÞ ¼
X2

i¼1

XNc

j¼1

V LJ
i;jðdHi�Cj

Þ; ð3Þ

with parameters De ¼ 0:1746 Hartree, a ¼ 1:0271 bohr�1 and
Re = 1.4 bohrs for the Morse potential, and � ¼ 2:82 Å and
r ¼ 0:0605 kcal/mol for the Lennard–Jones interaction. See Ref.
[17] for a discussion about the suitability of these parameters.

3. Simulation details

3.1. Wave function representation

The propagations have been carried out using the
Multiconfigurational Time-dependent Hartree (MCTDH) approach
[26,27]. This method allows an efficient propagation of multidi-
mensional wave packets due to the use of a two-layer representa-
tion for the wave functions: a relatively small basis set of time-
dependent, low-dimensional basis functions, known as Single-

Particle Functions (SPFs, uðkÞ
jk
ðQ k; tÞ), which in turn are expanded

in a time-independent basis of primitive functions. The Ansatz is
then constructed as a sum of configurations, each one being a
Hartree product of SPFs:

WðQ1; . . . ;Qp; tÞ ¼
Xn1

j1¼1

� � �
Xnp

jp¼1

Aj1 ���jp ðtÞ
Yp

k¼1

uðkÞ
jk
ðQ k; tÞ: ð4Þ

And the representation of the SPFs on the primitive basis of time-in-
dependent functions reads:

uðkÞ
j ðQ kÞ ¼

XNk

l¼1

aðkÞlj
vðkÞ
l ðQkÞ; ð5Þ

where the v functions are usually a Discrete Variable
Representation (DVR) or Fast Fourier Transform (FFT) grid. Eq. 4,
in combination with the Dirac-Frenkel variational principle, yields
a system of coupled equations of motion for the system which must
be integrated to solve the dynamics of the problem. This two-layer
approach allows an important decrease of the size of the matrices
during the integration of the equations of motion.

Fig. 1. Scheme of the DOFs considered in the present work.
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Another conceptual advantage of the MCTDH approach is that,
since the wave function is represented as a sum of configurations,
the correlation between the degrees of freedom is readily seen by
the coefficients of the linear combination: for a separable system
without correlation between the degrees of freedom, a single
Hartree product would be enough to describe the whole system.
This tool can therefore be used to analyze qualitatively the cou-
pling between the degrees of freedom.

In the present work we have used a particular variant of the
MCTDH approach: the State Averaged MCTDH method (SA-
MCTDH) developed by Manthe [28]. This scheme allows the simul-
taneous propagation of several independent wave packets under a
orthogonality constraint in a way that, in general, this simultane-
ous propagation is more efficient than the propagation of the indi-
vidual wave packets. This method is particularly useful to obtain
nuclear eigenstates of a given system by successive application of
the Boltzmann operator [28,29]. In our calculations we have taken
advantage of both particularities: the Boltzmann operator has been
used to obtain a set of physically meaningful states, and these
states are next propagated simultaneously –this simultaneous
propagation being more efficient than the individual propagation
of multiple wave packets–.

In our model, each degree of freedom is represented by a set of
1D SPFs. The primitive basis sets, listed in Table 1, are chosen as a
FFT equidistant grid for the q;/; x; y and z DOFs. For the remaining
degree of freedom (h) the cot–DVR [30] is used in order to avoid a
singularity in the 1

sin h
term of the Hamiltonian (see Eq. 1).

Regarding the SPF basis two comments ought to be made. First,
comparing the size of the primitive and SPF basis, the computa-
tional saving introduced by MCTDH with respect to standard wave
packet approaches is evident. Secondly, the degrees of freedom
with more correlation require a higher SPFs basis in order to take
all this effects into account. Thus, from our converged MCTDH
basis it can be predicted that the most correlated DOFs are the
x; y translations and the rotational coordinates while vibration
remains essentially uncoupled in our simulations.

Finally, a quartic complex absorbing potential (CAP) with length
4 Å has been added in the z coordinate in order to prevent any
aliasing of the wave packet when it reaches the edge of the simu-
lation grid.

3.2. Initial state calculation

Since solving the Time-dependent Schrödinger equation is an
initial value problem, it is important to obtain physically meaning-
ful initial states in order to extract correct information from a
propagation. This initial state could be constructed, following the
approach in Ref [22], as a direct product of the eigenstates of a free
hydrogen molecule for the internal coordinates (q; h and /) and
Gaussian functions for the c.o.m coordinates (x; y and z).
However, as shown in a previous study [17], there are important
deviations from this separable model when the hydrogen molecule

is confined in a (8,0) CNT. Therefore, in order to obtain more real-
istic initial states for the propagation, the initial states were calcu-
lated directly as eigenstates of the H2 confined molecule. Given
that the potential is essentially unbound along z, a virtual har-
monic potential was added in this degree of freedom, centered in
the center of a unit cell, where the potential energy is a minimum
(Fig. 2). This potential allows us to artificially trap the gas molecule
and obtain eigenstates, with only small dispersion along the z

dimension but taking into account all possible distortions due to
the effect of the confining potential and the coupling between
the degrees of freedom. Based on the results of the 5D calculations
on the same system found in Refs [16,17], the force constant for the
virtual trapping potential was chosen to be 200 cm�1, in a way that
there were no excitations in the z coordinate for the first 10 excited
states of the trapped system. The details on the SPF basis set used
to compute these eigenstates is shown in the first column of
Table 2. Note that due to the large force constant used in the trap-
ping potential, a single SPF can be used in the z coordinate.
Employing this basis set, the SA-MCTDH scheme was applied to
diagonalize the Boltzmann operator at a reference temperature of
300 K. After 20 iterations the energies of a total of 11 states were
converged. These are all eigenstates significantly populated at
298 K according to a Boltzmann thermal distribution.

3.3. Propagation of the initial states

The states obtained as reported above have a very low initial
linear momentum in the z coordinate and are therefore not well
suited for time propagation. In order to simulate the diffusion of
the hydrogen molecule inside the nanotube, the linear momentum
distribution of H2’s c.o.m in the z coordinate was shifted to match a
mean value of 25.6 meV, with an indetermination of 9.39 meV.
This energy value corresponding to the most probable kinetic
energy of a particle with mass mH2

following a Maxwell–
Boltzmann distribution at a temperature of 298 K.

Two sets of propagations were run with different impinging
angles a between the linear momentum vector and the nanotube
axis: 0� and 45�. For each set, the propagation of the set of initial
wave packets was carried out simultaneously during a total of
500 fs. For angles a significantly larger than 45�, the repulsion
coming from the nanotube walls proved to be too large for a satis-
factory convergence of the calculation, and therefore no propaga-
tions were carried out beyond this limiting value.

Although one may naively employ the same MCTDH basis
employed in the eigenstate calculation, we expect distortions of
the wave functions as it evolves along the nanotube axis. This will
basically the case in the z coordinate where the potential energy
landscape changes drastically but also in the x and y DOFs for the
a ¼ 45� case. For this reason the SPFs basis set used to generate
the initial states was expanded in order to provide a flexible
enough basis and allow for the convergence of the calculations.
See in Table 2 the MCTDH basis set representation in the a ¼ 0�

(second column) and a ¼ 45� (third column).

3.4. Analysis of the wave packets

The dynamics propagation of the H2@CNT eigenstates is studied
following two different and complementary approaches. Since the
direct observation of the full wave function evolution is not possi-
ble due to the high dimensionality of the wave packets, the first
tool at our disposal is the projection onto relevant subspaces.
This projection allows us to reduce the dimensionality of the func-
tions, yielding a result which can be plotted and visualized:

jWj2ð~r; tÞ ¼ hWð~R;~r; tÞjWð~R;~r; tÞi; ð6Þ

Table 1

Numerical details of the MCTDH wave function basis set: ni labels the SPF basis set
size, Ni the primitive basis set size, (qmin; qmax) correspond to the representation grid
edges and hqii0 the initial position expectation value. Magnitudes are given in bohr or
radians, correspondingly.

qi ni qmin qmax Ni hqii0

q 2 0.5 5.0 32 1.41
h 5 0.0 p 64 p=2
/ 6 0.0 2p 64 0.0
x 4 �3.5 3.5 32 0.0
y 4 �3.5 3.5 32 0.0
z 5 �18.0 18.0 128 �1.36
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where ~R and ~r represent the integrated and the projection sub-
spaces, respectively.

Through this method we are able to extract relevant informa-
tion about particular degrees of freedom of the system, but on
the other hand it may also cause the loss of detailed information
regarding, for instance, the coupling between the different degrees
of freedom. In order to overcome this limitation and be able to gain
insight on the coupling and how energy is transferred among the
DOFs, we have analyzed how the character of the H2 initial eigen-
states is conserved throughout the propagation, by calculating the
overlap, hðzÞ, between the propagated functions,W, and a set of sta-
tic H2 eigenstates computed at several points along the nanotube
axis, U:

rðz; tÞ ¼ hWð~R; z; tÞjUð~R; z; tÞi

¼

Z
Wðq; h;/; x; y; z; tÞ�Uðq; h;/; x; y; z; tÞdqdhd/dxdy ð7Þ

where ~R stands for the degrees of freedom taken into account for
the overlap. The U eigenstates are obtained following the same pro-
cedure described in Section 3.2 only the value of z0 in the trapping
potential is changed. The overlap between the propagated wave
packet and these reference functions tells us about the distortions
of the wave packets when they travel along the nanotube: if a
one-to-one correspondence between the wave packets and the
bound states was found, that would mean that there are no distor-
tions of the eigenstates due to the propagation along the nanotube,
and therefore that the coupling of the z DOF with the remaining 5 is

negligible. Oppositely, a large coupling would lead to a strong mix-
ing of states during the propagation. It should be mentioned that we
calculate a partial overlap function, since we integrate only in the
subspace complementary to the z DOF, and therefore the overlap
will depend on the total value of the wave function in that point,
thus allowing us to focus the analysis on the relevant areas of the
propagated wave packet at each time step. This analysis is done
at several points along the z coordinate to detect how the H2 states
are distorted as they evolve along the nanotube.

4. Discussion

Employing the SA-MCTDH approach and the parameters details
in Sections 3.2 and 3.3 the first 11 eigenstates of the H2@SWCNT
system were converged for a z value of the trapping potential,
z ¼ �1:36 bohr, corresponding to the center of a nanotube unit cell.
The corresponding eigenenergies relative to the ground state are
listed in Table 3. The reported energy values are in complete agree-
ment with those of previous 5D calculations shown in Refs [16,17].
Table 3 also contains the energies of the eigenstate calculations at
values of z = 0.73, 2.73, 4.73 and 6.74 bohr, corresponding to alter-
nating minima and maxima. As expected, due to the small

Fig. 2. Representation of the projection of the PES in the z dimension (black) and the virtual trapping potential (red). (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Table 2

Basis set size (ni) in the different degrees of freedom (qi) for the three calculations in
the present work: initial state calculation with trapping potential, and propagation of
a set of wave packets with a ¼ 0� and a ¼ 45� initial conditions.

Iterative diagonalization Collinear propagation a ¼ 45� propagation

qi ni ni ni

q 2 2 2
h 4 5 5
/ 6 6 6
x 4 4 5
y 4 4 5
z 1 5 5

Table 3

Computed eigenenergies (cm�1 units) of the H2@SWNT system with the H2 trapped
with an harmonic potential centered at different points along the z coordinate.
Ground state energies given in the first row, energy increments given for the
remaining of states.

State DE (cm�1)

z ¼ �1:36 z ¼ 0:73 z ¼ 2:73 z ¼ 4:73 z ¼ 6:74

0 2744 2798 2744 2798 2798
1 71 58 58 58 71
2 157 175 175 175 157
3 157 175 175 175 157
4 253 270 270 270 253
5 253 270 270 270 253
6 396 434 434 434 396
7 409 435 435 435 409
8 409 436 436 436 409
9 428 443 448 448 428
10 430 472 468 468 430

44 M. Mondelo-Martell, F. Huarte-Larrañaga / Chemical Physics 462 (2015) 41–50

152 Chapter 7. Separation of time–scales in the H2@SWCNT system



corrugation of the potential along the z coordinate, the eigenen-
ergies calculated at several points of the nanotube present only
minor differences among them in terms of energy (tenths of wave
numbers between calculations at maxima and minima). Note that
the zero point energy for this eigenstates includes � 200 cm�1 cor-
responding to the ZPE of the harmonic trapping potential added.

As detailed in Section 3.3 the resulting initial eigenstates are
next prepared for the time propagation. In order to do that, first
a linear impulse is given in the z DOF and second the SPF basis of
the MCTDH wave function is expanded. Two sets of propagation
have been carried out here, one simulating a set of confined H2

eigenstates traveling collinearly along the nanotube axis (a ¼ 0�)
and an average thermal translational energy of 298 K, and second
set with same energy content but an impinging angle of a ¼ 45�.
In both cases, the MCTDH wave function was propagated during
500 fs. In the case of the a ¼ 0� propagation, the calculation
implied 216 h of clocktime in a 12 core processor. For the
a ¼ 45� propagation, the required time was 190 h.

4.1. Projection analysis

The projection of the wave packet sets on the z coordinate
shows that the corrugation of the nanotube, even though it is quite
small, has a deep effect on the dynamics of the system: the wave
packet does not advance as it would for a free particle, even with
a considerably high kinetic energy (26 meV), but has to overcome
periodic potential barriers (� 8 meV) which give a clear structure
to the function. As an illustrative example, Fig. 3 displays four
snapshots of the z-projection of the ground state wave packet for
a ¼ 0� at 0, 100, 200, and 500 fs superimposed to a schematic pro-
jection of the PES is also given (dashed line). The initially localized
wave packet spreads as the propagation goes on, gaining structure
due to the presence of the periodic potential. The projections also
show that this propagation time is enough to separate the whole
the wave packet in two fractions: the one which has enough
energy to overcome the potential energy barrier created by the cor-
rugation of the nanotube, and the one which does not have the
necessary energy. The fraction of the wave packet trapped in the
initial potential energy well can be estimated integrating over
the region of the z coordinate which delimitates this well (from
�3.34 to 0.74 bohr). In the case of the collinear ground state, we
find that approximately a 23% of the initial wave packet remains
trapped in the initial potential energy well after 500 fs. The amount
of wave packet trapped after the propagation is related to the over-
all shape of the initial wave packet, since the probability distribu-
tion in the different coordinates will affect the potential felt by the
whole hydrogen molecule (Table 4). This means that some wave
packets, with a higher probability density in areas of the PES which
are more strongly repulsive, will have to overcome higher potential
barriers than others. In this respect, note for instance that the first
excited state, whose wave function presents a node in the h ¼ p=2
plane, is the one with less fraction remaining trapped in the well.
On the other hand, for other states with a high probability density
in this region the fraction of wave function remaining in the well
becomes much higher.

Concerning the remaining coordinates of the system, the
respective projections show a very small variation in time, which
points to a low coupling between the z coordinate and the other
five DOFs. This is explained by the small corrugation of the poten-
tial along the Carbon Nanotube: unlike the barrier posed for the
rotation along h and the confining potential in x and y, which are
large enough to generate a coupling between the degrees of free-
dom [17], the changes of the PES in z are not strong enough. This
lack of correlation is further confirmed by studying at the popula-
tion of the last occupied natural SPF in the different DOFs as a

function of time: we see clearly that the changes are of the order
of 10�3, which is pretty much insignificant.

Increasing the impinging angle to 45� changes significantly the
outcome of the propagation to what the projection on the z coordi-
nate is concerned. This projection is shown in Fig. 4 together with
the projection of the PES for 4 different time instants. As expected,
since there is less effective linear momentum along the z coordi-
nate, the amount of wave packet which remains trapped is signif-
icantly higher: around 36% for the ground state, and up to 43% for

Fig. 3. Several snapshots of the propagation using the bound ground state as the
initial state, projected on the z coordinate. The wave packet gains structure as time
advances. Note the change of scale on the axis corresponding to the probability
density.
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some excited states. Moreover, the distortions observed in the
remaining degrees of freedom are much stronger in this case than
in the previous one. The initial wave packet has a linear momen-
tum partially pointing to the nanotube wall, and explores a region
of the PES with muchmore corrugation along the z axis. In this new
landscape, the correlation between the different degrees of free-
dom, mainly z; x and h , is increased. In Fig. 5 we can see the pro-
jection of the ground state wave packet with impinging angle 45
in the h dimensions at four different time instants. These projec-
tions show how the probability distribution in h changes in time
due to the coupling with z.

4.2. Overlap study

As discussed earlier, the projection of the projected wave pack-
ets in different coordinates allows for an intuitive qualitative inter-
pretation of the propagation, but misses more detailed information
about the couplings between the degrees of freedom and the
energy exchange between them. This information can be obtained
by comparing the projection of the wave packets at different times
with a set of static eigenstates. These states are obtained using the
same trapping potential as in Section 3.2, but centered at different
z values.

The overlap between the propagated wave packet and this set of
static eigenstates is analyzed from two different points of view. In
the first place, we focus our attention on how crossing a complete
unit cell of the nanotube affects the wave packets. In order to do
this, the static eigenstates are computed at z ¼ 6:74 bohr, which
is an equivalent point to the initial position of the wave packet
(z ¼ �1:36 bohr) in the neighboring unit cell. On the other hand,
we are also interested on how the possible changes in the wave
packets are produced. To study this, we perform the same overlap
calculation with static eigenstates corresponding to several points
along the z coordinate. These analysis points were selected at the
critical points of the unit cell, i. e. the potential maxima (z ¼ 0:74
and 4.73 bohr) and minima (z ¼ 2:73 and 6.74 bohr). Through this
approach we intend to see if the mixing occurs mainly in certain
points along the nanotube, or if it is a gradual change.

The changes on a wave packet after crossing a whole unit cell
are shown in Figs. 6 and 7, where we show the overlap functions
between the ground state wave packet and the most relevant ele-
ments of the set of static eigenstates, computed at the point
z ¼ 6:74 bohr. Again, we take the ground state propagation as a
representative case, and discuss the changes between the different
impinging angles, a ¼ 0� and 45�. Note that for both figures there is
a clearly dominant overlap function, corresponding to the overlap
between the wave packet and the reference function most similar
to the initial state (upper panels), while the overlap with other
eigenstates is comparatively much smaller. This trend is main-
tained for all the initial states propagated, and confirms the idea
of small coupling discussed in Section 4.1. However, in spite of this
common trend, we find significant differences between the colli-
near and the a ¼ 45� propagation. The first difference between
the propagations carried out at different conditions is seen in the

overall shape of the dominant overlap function. It is readily seen
that the decrease on this function is much sharper for the a ¼ 0�

propagation. This is again related with the effective linear momen-
tum along the z coordinate, which is higher for this initial configu-
ration. Regarding the remaining overlap functions, the differences
between the collinear (a ¼ 0�) and the deviated (a ¼ 45�) propaga-
tions are even more noticeable. The collinear case presents almost
no mixing of states in any of the states propagated, the most signif-
icant contributions arises from states 8 and 10 but in both cases is

Table 4

Percentage of the probability density of the different wave packets that remains in the
initial potential energy well after 500 fs of propagation.

a ¼ 0� a ¼ 45�

State % in well State % in well State % in well State % in well

0 23 5 26 0 36 5 41
1 20 6 32 1 32 6 37
2 27 7 28 2 43 7 36
3 27 8 28 3 43 8 40
4 26 9 33 4 42 9 35

Fig. 4. Snapshots of the projection of the ground state wave packet for t = 0, 100,
200 and 500 fs on the z subspace.
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two orders of magnitudes smaller than the ground state contribu-
tion. This is in complete agreement with the observations made on
the base of the projections in different degrees of freedom. On the
other hand, in the a ¼ 45� case there is a higher overlap between
the wave packet and several other static eigenstates. In particular
the 5th excited state at approximately 200 fs reaches a value

comparable to the GS overlap. This indicates a higher dynamical
coupling and exchange of energy between the different degrees
of freedom. Additionally, this coupling increases in time, as it can
be seen by the fact that the main overlap function decreases, while
the overlap with other states remains basically constant; t the final
steps of the propagation, the proportion of mixed states reaches
almost a 20%. These results are again consistent with the analysis
of the projections of the wave packet.

The second part of the overlap functions’ analysis, carried out at
several points along the z coordinate of the nanotube, is shown in
Figs. 8 and 9, again, for the ground state with both impinging
angles. There, the two most relevant overlap functions are plotted
as a function of time for several z values (0.73, 2.73, 4.73 and
6.75 bohr). Note again the difference in scale: the primary overlap
function (upper panel) is much more relevant than the secondary
(lower panel). For the primary overlap, the changes in the function
seem to be mainly related with the different shape of the wave
packet when it crosses the different analysis points. However, if
we take a look to the secondary overlap, we see a trend not noticed
before: although the shape of the function is similar in all the anal-
ysis points, the overlaps at the points corresponding to a maximum
in the PES (z ¼ 0:73 and z ¼ 4:73 bohr) are significantly higher than
the ones computed in the minima (z ¼ 2:73 and z ¼ 6:74 bohr).
Therefore, it could be argued that the positive gradients in the
PES increase the mixing of states, whether the negative gradients
favor a partial recovery of the initial properties of the wave packet.
Therefore, for longer propagation times and farther analysis points,

Fig. 5. Projection on the h subspace for the ground state wave packet at t = 0, 25, 55
and 85 fs.

Fig. 6. Value of the overlap function of the lowest energy wave packet, with a ¼ 0� ,
with 10 reference functions at z ¼ 6:74 bohr. Upper panel: main overlap function,
corresponding to the ground bound state. Lower panel: overlaps for the remaining
relevant overlap functions.

Fig. 7. Value of the overlap function of the lowest energy wave packet, with
a ¼ 45� , with 10 reference functions at z ¼ 6:74 bohr. Upper panel: main overlap
function, corresponding to the ground bound state. Lower panel: overlaps of the
remaining relevant overlap functions.
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we should see an increase in the mixing of states, since as the wave
packet travels through the nanotube, the cumulative effect of max-
ima and minima might blur the properties of the initial state of the
propagation.

On the other hand, for the a ¼ 45� propagation we see a differ-
ent behavior. This can be seen in Fig. 9, which shows the two most
important overlap functions for the ground state propagated with
impinging angle of 45�. Note that for the final instants of the prop-
agation the primary overlap function decreases, while the overlap
with the 5th excited state, although oscillating, maintains its value.
This is again prove of a higher coupling and mixing of states with
respect to the collinearly diffusing H2. However, the maxima-min-
ima pattern observed for the collinear propagation is not clear any-
more, probably due to the fact that there is a strong coupling
between the x and h DOFs induced by the linear momentum added
to the x dimension: since this changes the area of the PES explored
by the wave packet, it may result in a different potential energy
landscape in which the analysis points do not correspond to critical
points anymore.

Note that our simulations correspond to a high temperature
frame. In these conditions, the kinetic energy of the molecules is,
as we have already seen, enough to overcome the corrugation of
the nanotube quite easily (even though not completely).
Quantum confinement effects are known to be more noticeable
at low temperatures [15,18,19]. In order to confirm this fact, we
have tried to mimic an experimental setup which would allow to
follow the diffusion of a single hydrogen molecule in the nanotube.
This setup would use laser light to trap a molecule in a certain

region of space (as does our virtual trapping potential). Then, once
the laser would be turned off (we remove our trap), the molecule
would evolve freely and diffuse. To reproduce computationally this
experiment, we carried out a calculation letting the system evolve
freely, without modifying the momentum of the individual wave
packets. Therefore, the linear momentum of the initial functions
is centered at 0 eV and the simulation would correspond to the free
diffusion of an eigenstate. This simulation was carried out using
the same basis set as for the collinear propagation with increased
initial linear momentum.

The analysis of this last propagation allows some final details of
the interpretation previously presented to be discussed. Figs. 10
and 11 correspond to the same analysis of the overlap functions
as the one made for translationally excited wave packets: Fig. 10
shows the main overlap functions for the propagation of the
ground state at z ¼ 6:74 bohr, and Fig. 11 gathers the two main
overlap functions at the same four analysis points presented
before. Regarding Fig. 10, we see that the shape of the main overlap
function differs significantly from those of Figs. 6 and 7: it is much
broader and starts to be relevant at larger time values. This is
clearly a result of the smaller kinetic energy of the wave packet.
This difference is even more noticeable when comparing the pro-
files of the overlap functions at different z points: whilst in the case
of increased initial linear momentum the overall shape of the main
overlap function seemed to decay smoothly, in Fig. 11 we see that
it changes significantly. This shows again that the structure that
the wave packets acquire during the propagation, as shown in

Fig. 8. Value of the overlap function of the lowest energy wave packet, with a ¼ 0� ,
at 4 different points along the z coordinate. Upper panel: most relevant overlap
function –see Fig. 6–. Lower panel: second most important overlap function.

Fig. 9. Value of the overlap function of the lowest energy wave packet, with
a ¼ 45� , at 4 different points along the z coordinate. Upper panel: most relevant
overlap function –see Fig. 7–. Lower panel: second most important overlap
function.
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Section 4.1, is much more important in this case. This is still more
noticeable in some excited states like the 9th. This fact makes dif-
ficult to establish a trend in the secondary overlap functions, but in
general and comparing with the systems studied with different ini-
tial conditions, the coupling is significantly higher in this case than
in the collinear propagation, although not as large as in the a ¼ 45�

one (Fig. 10). This indicates that an increased initial linear momen-
tum helps the wave packet to overcome the barriers with enough
kinetic energy, so that the coupling is less important. On the other
hand, when the wave packet has no net initial linear momentum it
explores areas with less kinetic energy, which are more affected by
the potential, and therefore the coupling between the DOFs is
stronger.

5. Summary and conclusions

In the present work we have presented a 6D study of the hydro-
gen molecule confined in Single-walled Carbon Nanotubes. The
system is modeled within the rigid nanotube approach, taking into
account the full coupling among all of hydrogen DOFs. The use of a
virtual trapping potential to compute eigenstates highly localized
in the z coordinate has provided a set of 11 physically meaningful
initial states for the propagation, and in full agreement with previ-
ous studies with 5D models [16,17]. The simultaneous propagation
of these states using the SA-MCTDH approach has proved both effi-
cient and rigorous.

We have carried out three propagations with different initial
conditions. In two of them we have added a linear momentum to
the center of mass of the molecule to account for a translationally
excited molecule, with average kinetic energy corresponding to
298 K. In one case, the initial momentum was directed along the
z coordinate, in the other one, the momentum vector formed a
45� angle with the nanotube’s axis. Finally, a propagation was
made without shifting the momentum distribution, in order to
mimic an experimental assembly of molecular hydrogen trapping
by laser cooling. The wave function projections of the three prop-
agations reveal a probability density structured in the z dimension,
whereas the distortions on the remaining DOFs are very weak in
comparison. This is taken as a first indication of the conservation
throughout the propagation of the nature of each initial eigenstate.
The complementary analysis relying on the calculation of the par-
tial overlap between the propagated wave packet and sets of eigen-
states calculated at different points along the Carbon Nanotube
axis, allows us to quantify the coupling between the degrees of
freedom, and shows that the wave packets with increased initial
momentum collinear to the nanotube’s axis are the ones with the
smallest coupling, whether the ones with an initial momentum
directed partially towards the nanotube’s walls present a much
higher mixing of states, although still not extremely high. The
wave packets with zero group velocity lie somewhere in between
the previous cases, showing that quantum effects are stronger at
lower temperatures due to the lower kinetic energy of the
particles.

The low coupling, in agreement with studies on similar systems
[22], suggests that a mean-field scheme could be used in this

Fig. 10. Value of the overlap function of the lowest energy wave packet with 0
group velocity. Upper panel: primary overlap function, corresponding to the ground
bound state. Lower panel: relevant secondary overlap function corresponding the
the 9th excited state. Note the difference in the maximum of probability with
respect to previous states with increased initial linear momentum.

Fig. 11. Value of the overlap function of the lowest energy wave packet, with
a ¼ 45� , at 4 different points along the z coordinate.
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context. Its development would allow an improvement of the
model by being able to find more complex and accurate potential
energy surfaces and leaving the rigid nanotube approximation
behind.
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Quantum confinement effects are known to affect the behavior of molecules adsorbed in nanostructured
materials. In order to study these effects on the transport of a single molecule through a nanotube, we
present a quantum dynamics study on the diffusion of H2 in a narrow (8,0) carbon nanotube in the low
pressure limit. Transmission coefficients for the elementary step of the transport process are calculated
using the flux correlation function approach and diffusion rates are obtained using the single hopping
model. The different time scales associated with the motion in the confined coordinates and the motion
along the nanotube’s axis are utilized to develop an efficient and numerically exact approach, in which
a diabatic basis describing the fast motion in the confined coordinate is employed. Furthermore, an
adiabatic approximation separating the dynamics of confined and unbound coordinates is studied. The
results obtained within the adiabatic approximation agree almost perfectly with the numerically exact
ones. The approaches allow us to accurately study the system’s dynamics on the picosecond time
scale and resolve resonance structures present in the transmission coefficients. Resonance enhanced
tunneling is found to be the dominant transport mechanism at low energies. Comparison with results
obtained using transition state theory shows that tunneling significantly increases the diffusion rate
at T < 120 K. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4995550]

I. INTRODUCTION

Nanostructured materials stand as one driving force in cur-
rent research, both for their interesting fundamental properties
and for their potential technological applications.1,2 Among
the different phenomena appearing in the nanoscale, the
structural and dynamical changes experienced by molecules
adsorbed in nanometric cavities, known as quantum confine-

ment effects, are of particular interest since they allow to
store light gases, achieve chemical and isotopical separation
of gaseous mixtures,3,4 and even tailor the reactivity of chem-
ical species using specific materials.5 The understanding of
these effects is of key importance when trying to design such
devices.

Since the first prediction of quantum confinement by
Beenakker,6 there has been intensive research both theoreti-
cally and experimentally on systems expected to present these
effects. As a result of this, the available knowledge on these
systems has increased steadily in the last years. Hydrogen
adsorbed in carbon-based nanostructured materials, such as
fullerenes and carbon nanotubes, was among the first systems
to be studied and still remain the most relevant in the litera-
ture.3,7–22 More recently, studies have appeared focusing on
different adsorbates, such as CO, CH4, CO2, SO2, or H2O,
and different substrates such as zeolites and metal-organic
frameworks.7,23–28

One particular feature present in single-walled carbon
nanotubes (SWCNTs) that makes them especially interest-
ing materials is their cylindrical shape, which gives rise to

the coexistence of a 2D confinement in the space perpendic-
ular to the nanotube’s axis and unbound motion along this
latter coordinate. Even though 2D confinement has been rel-
atively studied and reviewed in the literature,12,16,29,30 only
few studies have treated both the confined and the quasi-free
coordinates in a fully quantum formalism. To the best of our
knowledge, only Skouteris and Laganá,31 treating the motion
of an OH radical along a (10,0) SWCNT, and some of the
present authors,32,33 dealing with the H2 molecule in a (8,0)
SWCNT, have performed such studies. The most relevant con-
clusion drawn from these two studies is that the quasi-free
coordinate of the diatomic molecule is only weakly coupled to
the set of confined coordinates. This was shown quantitatively
in the case of H2

32 through the analysis of the convolution func-
tions of a set of 6D propagated wave packets and a set of 5D
eigenstates calculated at different points along the nanotube’s
axis. In that study, it was seen that the state mixing between
different initial states was small as the diatomic molecule pro-
gressed along the nanotube’s axis. This low mixing, together
with different characteristic times in the sets of confined and
unbound coordinates, suggests that the fast motions of the con-
fined degrees of freedom (DOFs) could be adiabatically sepa-
rated from the slow large amplitude motions in the quasi-free
coordinate.

The present work exploits the idea of separation of
time scales in different ways. First, a numerically exact
scheme is introduced which employs the separation of time
scales to reduce the numerical effort. In this scheme, first
“diabatic” basis functions describing the dynamics in the
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five confined coordinates are constructed. In the wave packet
dynamics calculation, the total wave function is then expanded
in this discrete basis and only the motion in the unbound
coordinate is described using a grid representation. Sec-
ond, an adiabatic approximation which separates the dynam-
ics in the unbound and the constrained coordinates is
investigated.

The increased numerical efficiency offered by both
approaches facilitates a detailed investigation of the dynam-
ics on a longer time scale not considered by previous work
by some of the authors,32 in which the diffusion rate of H2

in a (8,0) SWCNT was computed using a full 6D quan-
tum dynamics formalism for the first time. Interestingly,
the energy resolution provided by these long time simu-
lations allows one to identify resonances corresponding to
metastable states residing in the shallow potential wells along
the unbound coordinate. These resonances are found to cru-
cially enhance the transport through the carbon nanotube at low
energies.

This paper is organized as follows. In Sec. II, the theo-
retical modeling of the H2@SWCNT system is reviewed first.
Then a diabatic representation of the system’s Hamiltonian,
which allows one to efficiently compute numerically exact
results, is introduced (Sec. II B) and an adiabatic approxi-
mation separating the confined coordinates and the unbound
coordinate describing motion along the nanotube’s axis is dis-
cussed (Sec. II C). The description of the methodology used
to simulate the wave packet dynamics and to compute the
cumulative reaction probabilities (CRPs) (Sec. II E) completes
Sec. II. Finally, the resulting flux correlation functions and
cumulative reaction probabilities are discussed and analyzed
and used to compute the diffusion rate of H2 along the nan-
otube (Sec. III) and the main conclusions of the work are drawn
(Sec. IV).

II. THEORY AND METHODS

A. The H2@SWCNT system

Our system consists of a single H2 molecule trapped
inside the hollow cavity of a single-walled carbon nanotube
(SWCNT). The nanotube, aligned along the z axis, is treated
within the frozen structure approximation, i.e., the positions
of the carbon atoms are fixed and vibrations are not allowed.
The geometry of the CNT is obtained from quantum chem-
istry calculations using the Crystal0934 software with a B3LYP
functional, yielding a unit cell with 8.1 bohrs length and
12 bohrs diameter. On the other hand, we treat the hydrogen
molecule inside the nanotube as a six-dimensional system, tak-
ing into account all the molecular degrees of freedom (DOFs):
vibration of the H–H bond (ρ), orientation with respect to the
nanotube’s axis (θ), an azimuthal angle of rotation (φ), and
translation of the center of mass (c.o.m.) of the molecule in
Cartesian coordinates (x, y, and z). This coordinate system is
depicted in Fig. 1. Note that, since a spherical coordinate sys-
tem is used for ρ, θ, and φ, the volume element related to this
coordinate system, dV, is

dV = ρ2 sin θdθdφdρdxdydz.

The full Hamiltonian, Ĥ6D, thus reads

FIG. 1. Scheme of the coordinate system used in the present work.
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+ V̂ (ρ, θ, φ, x, y, z). (1)

(Note that atomic units are used throughout this paper, and
therefore ~ = 1.)

With the idea in mind of separating the motion of the
confined and the unbound coordinates, Eq. (1) can be rewritten
in a compact form, taking advantage of the separability of the
Kinetic Energy Operator (KEO),

Ĥ6D = T̂z + T̂q + V̂ , (2)

with T̂z being the z-dependent KEO term and T̂q gathering the
remaining KEO terms related with the set of confined coordi-
nates, ρ, θ, φ, x, and y. For the sake of clarity, we will refer
collectively to the set of confined coordinates as q.

The potential energy term, on the other hand, is not sep-
arable and couples all the DOFs. Following previous studies,
the overall H2-SWCNT potential is divided into a Morse term,
to account for the H–H bond, and a sum of Lennard-Jones pair
interactions that model the van der Waals interactions between
C and H,

V̂ = VH–H(ρ) + VC–H(ρ, θ, φ, x, y, z), (3)

V̂C–H(ρ, θ, φ, x, y, z) =
2



i=1

NC


j=1

VLJ
i,j (dHi–Cj

). (4)

The set of parameters used in VLJ
i,j correspond to the Frankland-

Brenner (FB) potential9 with σ = 5.82 bohrs and ϵ = 0.0549
hartree. This function has been used previously to define H2

adsorption and confinement in carbon nanotubes by several
authors.16,19,33 Standard parameters are used in the Morse
function VH–H: De = 0.1746 hartree, a = 1.0271 bohr☞1, and
Re = 1.4 bohrs.

B. Diabatic representation of the Hamiltonian

In order to introduce a diabatic representation of our sys-
tem, we start by defining a basis of states {zk } approximately
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localized at the points zk to represent the wave function along
the z coordinate. Applying the resolution of the identity gen-
erated by this basis set onto the last two terms of Eq. (2), we
obtain

Ĥ6D = T̂z +
Nz


k=1

(

T̂q + V5D(q; zk)
)

|zk 〉 〈zk |

= T̂z +
Nz


k=1

Ĥ5D(zk)|zk 〉 〈zk |, (5)

where we have introduced a reduced 5D Hamiltonian, Ĥ5D(z),
which parametrically depends on the value of z and operates
on the five coordinates q describing bound motion. We can
define an eigenvalue equation for this operator at a given point
zk and obtain a set of eigenstates ξj(q; zk) and eigenvalues,
ϵ j(zk),

Ĥ5D(q; zk)ξj(q; zk) = εj(zk)ξj(q; zk). (6)

These ξj(q; zk) functions form a complete basis set in the
reduced five-dimensional space. If the eigenstates of H5D(q; z)
at a fixed point z0, ξj(q; z0), are used as a basis to described the
wave function’s dependence on q, a diabatic representation is
obtained,

Ψ(q, z, t) =


j

ψj(z, t)ξj(q; z0). (7)

Here the vector of z-dependent functions ψj(z, t) represents
the motion along the quasi-free coordinate. Since the basis
functions ξz0

j
= ξj(q; z0) are z independent, the corresponding

matrix representation of the Hamiltonian operator reads

Ĥij =
〈

ξ
z0
i
|Ĥ |ξz0

j

〉

= T̂zδij +
Nz


k=1

〈

ξ
z0
i

���Ĥ5D(zk)��� ξz0
j

〉

|zk 〉 〈zk |

= (T̂z + εi(z0))δij +
Nz


k=1

〈ξz0
i
|V5D(q; zk)

−V5D(q; z0)|ξz0
j
〉 |zk 〉 〈zk |. (8)

It is useful to take a closer look at Eq. (8) in order to under-
stand some of its properties. First of all, note that we have not
included any additional approximation to go from the general
Hamiltonian, Eq. (1), to its diabatic form, Eq. (5). Therefore,
Eq. (8) is exact in the complete basis set limit (Nz → ∞).
The coupling between the confined and unbound coordinates
is contained in the 5D Hamiltonian matrix. Since z = z0 has
been used as reference point to obtain the diabatic basis, the
matrix representation of the 5D Hamiltonian is diagonal at
z = z0 but non-diagonal elsewhere. However, due to the low
coupling between the confined (q) and unbound (z) sets of
degrees of freedom, it is expected that the non-diagonal ele-
ments of the matrix will be rather small, and thus a relatively
low number of ξz0

i
basis functions will be enough to yield

numerically accurate results.

C. Adiabatic representation of the Hamiltonian

Although the diabatic approach just presented is rigor-
ous and numerically exact, its physical interpretation neither
is straightforward nor offers us a clear picture about the

separability of the confined and unbound degrees of freedom
beyond the number of basis functions needed to achieve con-
vergence. The adiabatic approximation, on the other hand, can
shed light on the physics of the system while, under certain cir-
cumstances, providing a reasonably accurate description of the
system’s dynamics.

An adiabatic representation is obtained by employing
the z-dependent eigenstates of H5D(q; z) as a basis for the
expansion of the wave function,

Ψ(q, z, t) =


j

ψ̃j(z, t)ξj(q; z). (9)

The corresponding matrix representation of the Hamiltonian
operator contains derivative couplings due to the action of the
kinetic energy operator T̂z on the z-dependent basis functions
ξj(q; z). To avoid the complications resulting from derivative
coupling terms, numerically accurate wave packet calculations
typically avoid the use of adiabatic representations.

If the adiabatic approximation is invoked and non-
adiabatic transitions between the different adiabatic states
ξj(q; z) are neglected, the motion of the one-dimensional
ψ̃j(z, t) can be given (approximately) by

i
∂

∂t
ψ̃j(z, t) = Ĥ

(ad)
j

ψ̃j(z, t), (10)

where the one-dimensional adiabatic Hamiltonian Ĥ
(ad)
j

takes
the simple form

Ĥ
(ad)
j
= T̂z +

Nz


k=1

εj(zk) |zk 〉 〈zk |. (11)

The above equations provide a simple physical picture: the
dynamics in each confined eigenstates,

{
ξj(q; z)

}
, evolves

independently on a confined eigenstate potential energy

surface (cePES), εj(z) onto which a quasi-particle with a sin-
gle DOF, ψ(z, t), evolves. Furthermore, it should be noted that
the adiabatic dynamics described by these equations can be
simulated with negligible numerical effort once the cePESs
have been determined.

The value of cePESs at all grid points zk can efficiently be
computed by diagonalizing the 5D Hamiltonian in the diabatic
representation at these grid points,



n,m

U∗jn(zk)
〈

ξ
z0
n |Ĥ5D(zk)|ξz0

m

〉

Umi(zk) = δjiεj(zk). (12)

The unitary transformation matrix U(zk) in the above equation
defines the transformation from the diabatic to the adiabatic
representation. The z-dependent wave packets in diabatic rep-
resentation, ψj(z, t), and the z-dependent wave packets ψ̃j(z, t)
obtained from a rigorous simulation in the adiabatic basis,
which can deviate from the wave packets calculated within
the adiabatic approximation, are related via

ψj(z, t) =


i

Uji(z)ψ̃i(z, t). (13)

It should be noted that the only difference in the imple-
mentation of both approaches is whether the Hamiltonian
matrix computed at the different grid points along z is diago-
nalized (adiabatic) or not (diabatic). Thus, the scheme to carry
out a calculation in our system using both approaches consists
of three steps:
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1. Calculation of the 5D eigenstates at a chosen point along
the z dimension, z = z0.

2. Evaluation (and diagonalization, in the case of the adia-
batic approach) of the reduced 5D Hamiltonian operator
at the different values of the z coordinate grid, using
the basis previously obtained. After this step, we obtain
a set of 5D-Hamiltonian matrices (diabatic) or cePESs
(adiabatic) at all the grid points zk .

3. Propagation of the wave packets using the Hamiltonian
matrices or the confined eigenstates potential energy
surfaces.

Both the 5D eigenstates and the Hamiltonian matrices (or
cePES) can be stored so that steps 1 and 2 need only to be
performed just once at the beginning of the study. The stored
eigenstates can be used as long as Ĥ5D remains unchanged
(i.e., neither the electronic potential energy nor the KEO is
modified) and the grid in the unbound coordinate is main-
tained. The storage of the 5D eigenfunctions is particularly
important, since this step is usually the most computationally
demanding.

D. Time dependent quantum dynamics:
Diffusion rates

Diffusion and adsorption rates stand among the most rel-
evant observables in nanoconfined substance studies, due to
the interest in the development of efficient storage devices. In
the present work, we will focus on obtaining diffusion rates
for the H2 molecule inside the hollow cavity of a narrow (8,0)
nanotube. Following the work of Zhang and Light,35 diffusion
rates are obtained directly from the transition rate between two
potential minima through the single hopping approximation,
khop(T ),

D(T ) =
l2

2d
khop(T ), (14)

where l is the distance between adjacent potential minima and
d is the dimension of the system, which equals 1 in the present
work. This equation implies that thermalization due to cou-
pling to degrees of freedom not explicitly considered in the
dynamical simulations is fast compared to the hopping rate
khop(T ). Furthermore, the hopping rate will be approximated
by the rate of transition through a dividing surface separating
two adjacent minima.

The transition rate through a dividing surface is calcu-
lated by the thermal averaging of the corresponding energy
dependent Cumulative Reaction Probability (CRP), N(E),

k(T ) =
1

2πQ(T )

 ∞
−∞

e−βEN(E)dE, (15)

where β = 1/kBT and kB is the Boltzmann constant. The par-
tition function, Q(T ), has been computed as the trace of the
5D Boltzmann operator of the system, eβĤ5D , and then multi-
plied by the contribution of the unbound coordinate, z, obtained
through the semiclassical expression for a particle in a peri-

odic potential, L
(

mT
2π

)1/2
(here, L stands for the length of the

unit cell and m stands for the mass of the diatom). The CRP is
the sum of all (energy-dependent) transition coefficients cor-
responding to open channels describing passage through the
barrier separating two adjacent potential minima.

The cumulative reaction probability will be computed
following the flux correlation function approach36–38 employ-
ing the scheme described in Refs. 39 and 40. As a starting
point, one defines the flux operator, F̂ = i[Ĥ, h], where h is a
Heaviside dividing surface discriminating reactant and prod-
uct geometries, and the thermal flux operator, FT = e−βĤ/2

F̂e−βĤ/2. In the first step of the calculation, the eigenvalues
f n and eigenstates |fn〉 of the thermal flux operator,

FT0 =


n

|fn〉 fn 〈fn |, (16)

for a conveniently chosen reference temperature T0 are com-
puted. Then N(E) is calculated via a Fourier transform of the
correlation function obtained from the time propagation of the
thermal flux eigenstates,

N(E) =
1
2

e2β0E


n



m

fnfm

�����
 ∞
−∞

dteiEt 〈fn |e−iĤt |fm〉
�����
2

. (17)

It should be pointed out that when the dividing surface is placed
at the top of the potential barrier separating both configura-
tions, a straightforward interpretation of the nature of the flux
eigenstates can be found: they correspond to the vibrational
states of the activated complex of the reaction.41,42

If the system’s dynamics shows long-living resonances,
the flux correlation function 〈fn |e−iĤt |f ′n 〉 converges only very
slowly. To avoid excessively large propagation times, then it is
preferable to compute the cumulative reaction probability with
limited energy resolution. The limited resolution CRP N̄(E) is
defined as the convolution of N(E) with a Gaussian function
of width ∆E,

N̄(E) =
 ∞
−∞

dE ′ N(E ′)
e
− 1

2
(E−E′)2

∆E2

√
2π∆E

. (18)

N̄(E) can directly be computed using the flux-correlation
function present in Eq. (17),

N̄(E) =
1
2

e2β0E


n



m

fnfm

×
�����
 ∞
−∞

dteiEte
− 1

8π2 ∆E2t2

〈fn |e−iĤt |fm〉
�����
2

. (19)

Here an additional damping factor appears in the Fourier inte-
gral which determines the required propagation time. If the
energy resolution ∆E is significantly smaller than kBT for all
temperatures considered, one can substitute N(E) by N̄(E) in
Eq. (15) without causing significant errors.

E. The Multiconfigurational Time-dependent Hartree
(MCTDH) approach

The Multiconfigurational Time-dependent Hartree
(MCTDH) approach43 has been used to represent the wave
function in the different quantum dynamical calculations
reported in this work. The efficiency of this method lies to
a great extent on the structure of the ansatz. In the MCTDH
approach, the f -dimensional wave function, Ψ(Q1, . . . , Qf , t),
is represented as a sum of Hartree products of time-dependent
basis functions called Single Particle Functions (SPFs),
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Ψ(Q1, . . . , Qf , t) =
n1


j1=1

· · ·
nf


jf =1

Aj1 · · ·jf (t)
f



k=1

ϕ
(k)
jk

(Qk , t), (20)

where Qi represent the DOFs of the system. The SPFs are
in turn represented in a time-independent or primitive basis
set, typically consisting of Discrete Variable Representation
(DVR) or Fast Fourier Transform (FFT) functions,

ϕ
(k)
jk

(Qk , t) =
Nk


i=1

ci(t)χ
(k)
i

(Qk). (21)

One can straightforwardly see that, due to the time-dependent
nature of the SPF basis set, the number of basis functions,
∏f

k=1 nk , required in Eq. (20) to achieve numerical conver-

gence will be significantly lower than
∏f

k=1 Nk , the corre-
sponding number of basis functions used in a standard wave
packet propagation scheme. The efficient implementation of
the MCTDH approach requires a specific representation of
the Hamiltonian. Preferably, the Hamiltonian is written as a
sum of products of operators acting only on a single Qk .43,44

While kinetic energy operator can almost always be written
as a sum of products of one-dimensional operators, multidi-
mensional PESs usually are not given in this form. Currently
there are two main approaches to address this problem within
the MCTDH framework: the fitting of the PES to product
form (e.g., using the potfit algorithm)45,46 or the Correlation
DVR (CDVR) approach.47 The latter approach, which uses
a time-dependent quadrature corresponding to the SPF basis
and allows the use of general potentials without fitting them
to product form, has been used in this work for the calculation
of the eigenvalues of the reduced 5D Hamiltonian. However,
once the diabatic basis is built, CDVR is no longer needed,
since the diabatic potential energy matrix depends only on a
single coordinate.

Besides the regular real-time propagations, the MCTDH
approach can also be used to obtain eigenvalues and eigenfunc-
tions of certain relevant operators which imply imaginary-time
propagations. In the present work, block relaxation of state-
averaged MCTDH (SA-MCTDH) wave functions40 is used
to obtain the eigenstates and eigenvalues of the 5D Hamil-
tonian operator, Ĥ5D(q; z). Furthermore, the eigenvalues and
eigenstates of thermal flux operator are calculated by the itera-
tive diagonalization of F̂T within the state-averaged MCTDH
approach.40

III. RESULTS AND DISCUSSION

In Sec. II B it was argued that the diabatic approach is
formally exact in the limit of a complete basis set. In the
case of a quasi-separable system, with a very small coupling
between confined and unbound coordinates, convergence will
be achieved with few eigenfunctions. Furthermore, an adia-
batic approximation which separates the motion of the fast
confined degrees of freedom from that of the slower unbound
ones will yield good results. In Sec. III, we will first discuss
the validity of the model by studying the cePESs obtained
with the adiabatic approach and the 5D Hamiltonian matrix in
the diabatic representation. Then the approach will be used to
rigorously compute CRPs using the diabatic representation.

The accuracy of the adiabatic approximation will be stud-
ied by comparison with full-dimensional Hamiltonian results.
Finally, the diffusion rates of H2 into the hollow cavity of the
nanotube will be computed.

A. Diabatic Hamiltonian matrices
and adiabatic cePESs

In the present work, a total of 50 confined 5D eigen-
states were used as a basis for the diabatic (and adiabatic)
representation of q. To ensure convergence of the 50 ξj(z0)
basis functions, a higher number of states was calculated in
the SA–MCTDH diagonalization, namely, 80. The numerical
parameters for the MCTDH wave function representation used
to calculate the confined eigenstates are given in Table I: SPF
basis size and primitive’s grid type, number of points, and the
span of the representation. Note that the primitive’s grid type
is a FFT grid, except for the angular coordinate θ, for which a
Cotangent DVR (cot-DVR)48 was chosen. This representation
was constructed specifically to avoid the singularity appearing
due to the term 1

sin θ in the Hamiltonian, Eq. (1). See Ref. 48 for
more details. The calculation of the 5D eigenstates at a value
of z = −1.36 a0, corresponding to a minimum in the electronic
PES, took 14 h in a 16 core Intel Xeon E5-4620 0@2.20 GHz
machine. The subsequent calculation of the diabatic Hamil-
tonian matrix and the adiabatic cePESs for 512 equidistant
values in the z ∈ [−56.066, 56.066] a0 range—corresponding
to the length of 14 (8,0)-SWCNT unit cells—took only few
seconds in the same machine.

Through the analysis of the adiabatic surfaces, one can
detect regions where avoided crossings appear, and therefore
the coupling between states could be stronger. The adiabatic
surfaces

{
εj(z)

}
of the H2 molecule inside the CNT are plotted

in Fig. 2 as a function of the diffusion coordinate, z. It should
be noted that only states transforming according to the same
irreducible representation of the system’s symmetry group can
interact. cePESs corresponding to states of different symme-
try can thus cross without giving rising to any coupling. In
Fig. 2, cePESs corresponding to states which are symmetric
with respect to the permutation of the two hydrogen atoms are
displayed by full lines while cePESs of antisymmetric states
are shown as dashed lines.

In Fig. 2, it is readily seen that the lower cePESs are well-
behaved, smooth functions and therefore the coupling between
them is expected to be negligible. However, as one goes up in
energy, the density of states is largely increased and avoided
crossings appear. This is seen in the higher energy surfaces
in Fig. 2. Considering the z-dependence, one finds that near

TABLE I. Basis set and grid MCTDH representation used in the calculation
of the 5D eigenstate basis for H2.

Primitive grid

DOF Number of SPFs Number of points Type Range

ρ 2 32 FFT 0.5–5.0 a0

θ 7 64 cot-DVR 0–π/2
φ 8 64 FFT 0–2π
x 5 32 FFT ☞3.5–3.5 a0

y 5 32 FFT ☞3.5–3.5 a0
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FIG. 2. Adiabatic cePESs generated by the 30 lowest energy eigenstates of the
H2@SWCNT system. cePESs corresponding to confined eigenstates which
are symmetric with respect to permutation of the two hydrogen atoms are
displayed by black solid lines while cePESs corresponding to antisymmetric
states are shown as red dashed lines.

the minima of the cePESs all surfaces are well distinguishable.
No avoided crossings are found in this region and the coupling
between the different cePESs can be expected to be negligi-
ble. However, in the steep regions of the PES and near the
maxima, avoided crossings are visible. The coupling between
different confined eigenstates is potentially significant in these
areas.

Following the analysis of the cePESs, we can graphically
represent the 5D Hamiltonian matrix of Eq. (8) at differ-
ent points of z, paying special attention to the areas where
avoided crossings appear in the cePESs. This representation
will provide further information about which confined states,
if any, are significantly coupled: large off-diagonal matrix
elements would indicate significant couplings and a break-
down of the adiabatic approximation. On the other hand, if
the couplings are small and H5D is quasi-diagonal, the adi-
abatic approximation can be expected to yield good results.

Furthermore, in this case just a few basis functions will
be required in the diabatic representation in order to obtain
accurate results.

Figure 3 shows a representation of the H5D matrix for
H2, using fifty 5D eigenstates as a basis for q, at two points
along the PES: a minimum of the PES (z = ☞1.36 bohr), and
at z = 0 bohr (indicated by the vertical dotted line in Fig. 2),
a point where many avoided crossings of the cePESs appear
and the largest couplings can be expected. The matrix ele-
ments are represented in logarithmic scale for the sake of
clarity. As it was expected, the off-diagonal terms at z = ☞1.36
bohr, the reference point used for the definition of the dia-
batic basis, effectively vanish. More interesting are the results
obtained at a point in the strong coupling region at z = 0 bohr.
Even here, the largest off-diagonal terms are roughly 50–100
times smaller than the diagonal elements. This finding indi-
cates a very low coupling between the unbound motion in z

and the dynamics in the confined DOFs q. It strongly sug-
gests the suitability of an adiabatic separation of the time
scales in studies of the quantum dynamics of nanoconfined
species.

B. Dynamics of H2 diffusion

The two approaches described in Secs. II B and II C were
used to run quantum dynamics simulations of H2 diffusion
inside the SWCNT. Cumulative reaction probabilities were
obtained at a reference temperature of 100 K and the diffusion
rate was computed by thermal averaging of N(E). Additional
calculations were preformed at a reference temperature of
1000 K to confirm the accuracy of the results.

In order to obtain converged results in the diabatic and
adiabatic schemes, several parameters need to be optimized,
namely: the primitive basis set used in both q and z, the prop-
agation time, the complex absorbing potential (CAP), and
the number of flux eigenstates contributing to N(E) in the
chosen temperature range. Using the relation between flux
eigenstates and eigenstates of the confined Hamiltonian, we
can get an approximate threshold for the number of relevant
flux eigenstates at a given temperature: they will correspond to
approximately twice the number of confined eigenstates rele-
vantly populated at that temperature. In our case, for the highest
temperature considered, 1000 K, up to 11 confined eigenstates
would be significantly populated. For the sake of numerical
accuracy, 26 flux eigenstates were obtained by the iterative
diagonalization of the thermal flux operator. These eigenstates
were propagated in real time to finally obtain N(E). Regarding

FIG. 3. Graphic representation of the Hamiltonian
matrix in the basis of SPFs at the point of minimum (right)
and maximum (left) coupling. Energy scale is in eV.
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the primitive basis, converged results were obtained using 50
diabatic basis functions in the q coordinate and 20 SPFs in the
unbound DOF z. The different basis sets used in the diabatic
and adiabatic calculations are given in Table II.

Finally, both time convergence and CAP optimization
required a special treatment due to the very low energies
involved in the diffusion process. Regarding the CAP, it was
seen that regular polynomial forms of the imaginary poten-
tial failed to avoid both reflexions and transmissions of the
wave packets in the energy range involved. To overcome this
issue, a transmission-free absorbing potential49,50 was used.
This potential has the advantage that no transmission of the
wave packet is possible. Hence, one could in principle reduce
the amount of reflexion arbitrarily by increasing the length
of the imaginary potential. In our case, to avoid all possible
reflections, a length of 20 Å was required. The thermal flux
eigenstates were propagated for 10 ps which allows one to
obtain the symmetric flux correlation in Eqs. (17) and (19) for
times up to 20 ps.41

As seen in Eq. (17), the cumulative reaction probability
is obtained as the Fourier transform of a flux autocorrelation
function. Although an infinite propagation time is in principle
needed to obtain N(E), generally convergence is achieved at
relatively short times, as the wave packet leaves the interac-
tion region. A measure to qualitatively check the convergence
of a quantum dynamics calculation is given by the flux-flux
correlation function,

Cff (t; T ) = tr

(

e−iĤtF̂T eiĤtF̂T

)

=


m

fnfm
���〈fn |e−iĤt |fm〉���2, (22)

an its time integral, the flux-position correlation function,

Cfp(t; T ) =
 t

0
Cff (t; T ). (23)

Generally, this function increases and potentially oscillates
while the wave packet remains in the interaction region, but
asymptotically reaches a constant value. The total Cfp for both
approaches developed in the present work, together with the
full dimensional data obtained from a previous work,33 is
shown in Fig. 4 for the reference temperature of 100 K.

There are several conclusions to be drawn from the explo-
ration of this quantity. First, focusing in the short-time region
(see the inset of Fig. 4), it is seen that the results obtained using
the three different approaches agree almost perfectly. The
agreement between the data from our previous 6D work and the
new results obtained using the diabatic approach described in
Sec. II B confirms that both numerically exact calculations (6D

TABLE II. Basis set and grid MCTDH representation used in the propaga-
tions.

Primitive grid

DOF Number of SPFs Number of points Type Range

q 25 50 Discrete . . .
z 20 512 FFT ☞56.066–56.066 a0

FIG. 4. Flux-position correlation function at T0 = 100 K for the diffusion of
H2 in an (8,0) CNT obtained with a 6D model (dotted), a diabatic approach
(solid), and an adiabatic approach (dashed). Inset: Close-up to the short-time
region.

and diabatic representation) are numerically converged. Fur-
thermore, it is found that the adiabatic approximation yields
very accurate results at this time scale. This finding confirms
the separation of time scales of the dynamics in the unbound
and constrained DOFs.

Second, one notes the complex, long-living structures in
the flux-position correlation function which does not reach to
a constant value even at 20 ps. This behavior indicates the exis-
tence of long-living resonances. Due to the long propagation
times required, these structures were not studied in a previous
work. Their investigation in the present study is facilitated by
the numerical efficiency of the diabatic approach described in
Sec. II B.

Finally, it must be noted that Cfp resulting from the dia-
batic and adiabatic propagations are very similar until about 10
ps but differ significantly beyond this value. The differences
indicate that the coupling between the motion in unbound and
constrained DOFs becomes relevant at about 10 ps. This time
scale corresponds to coupling constants of about 0.06 meV. It
should be noted that the gradual decay of accuracy resulting
from the assumption of separability of time scales in the adi-
abatic calculation is consistent with the results reported in a
previous work by some of the authors.32 Here it was shown that
the coupling between unbound and confined degrees of free-
dom increased each time a wave packet crossed a maximum
of the PES.

To investigate the resonances giving rise to the long-living
structures in the flux-correlation function in more detail, the
limited resolution CRP was computed as defined in Eq. (18),
N̄(E), with a resolution of ∆E = 0.12 meV, and is displayed
in Fig. 5. Comparing the rigorous results obtained by the
diabatic approach with the results of the adiabatic approxima-
tion, one immediately finds that the resonance structures are
well described within the adiabatic approach. The agreement
between the results of the diabatic and adiabatic calculations is
perfect at low energies, almost perfect at energies up to about
0.4 eV, and reasonably good at higher energies. It should be
noted that the results of diabatic calculation show a slightly
more noisy behavior at higher energies indicating remaining
numerical inaccuracies due to imperfect convergence.
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FIG. 5. Comparison of the total N(E) for the diffusion of H2 in an (8,0)
CNT obtained through the diabatic (solid, black) and adiabatic (dashed, red)
approaches.

As it was hinted by the complex shape of the flux-position
correlation function, N(E) presents a number of structures,
specially in the lowest energy region. These can be nicely
explained studying Fig. 6, where the CRP obtained in adi-
abatic approximation is plotted together with the individual
contributions arising from the first five flux eigenstates. In
order to investigate the resonant character of the peaks found
in the CRP, we have calculated the eigenstate spectrum of
H2 confined to a single unit cell of the carbon nanotube, i.e.,
applying the periodic boundary condition at the limits of the
box displayed in Fig. 2. The computed eigenenergies are plot-
ted in Fig. 6 as vertical lines. These eigenstates appear in pairs
corresponding to eigenstates which are either symmetric or
antisymmetric with respect to reflection in z-planes located
at the top of the potential barriers. In Fig. 6, solid vertical
lines correspond to symmetric eigenstates while dotted ones
are used for anti-symmetric ones.

The connection between the eigenenergies and the res-
onances is clearly visible in the figure: the contribution of a
given flux eigenstate to the CRP, N i, rises to unity whenever
the total energy coincides with the value of a symmetric eigen-
state. On the other hand, it decays again to zero when the energy

FIG. 6. Total N(E) and the first five individual contributions to the CRP
obtained with the adiabatic approach at a reference temperature T0 of 100 K.
N3 and N4 come from degenerate states. Vertical lines correspond to the eigen-
states of the 6D Hamiltonian computed in a unit cell with periodic boundary
conditions (see text for details).

FIG. 7. Diffusion rate for H2 in an (8,0) CNT computed using the diabatic
approach (solid line) and the adiabatic approximation (dashed). TST results
(dotted) are also given for comparison.

corresponding to an anti-symmetric eigenstate is reached. In
the energy interval between the two eigenenergies, resonance
enhanced tunneling through the barrier is possible. Compar-
ing the resonance positions in Fig. 6 with the cePESs in Fig. 2,
the low-lying resonances in the CRP can be straightforwardly
assigned. The two prominent resonances below 0.355 eV
result from resonance enhanced tunneling on the two low-
est cePESs. The corresponding resonance wave function is
mainly localized in the potential wells and shows no nodes
in this region. The corresponding tunneling splitting is in the
meV range. The next eigenstates appear about 5 meV above
the first ones. Comparing this excitation energy with the bar-
rier height of about 10 meV on the lowest cePESs, one would
expect a much larger tunneling splitting. Actually the corre-
sponding tunneling splittings seen in Fig. 6 are about 4 meV,
which confirms this expectation. The two overlapping CRP
contributions resulting from these states give rise to the inter-
esting feature seen at about 0.36 eV. At even higher energies,
the available energy exceeds the barrier height and both chan-
nels corresponding to the two lowest cePESs are completely
open. Therefore the CRP settles at a value of two until the first
resonance states located on the higher cePES appear between
0.38 and 0.39 eV.

After Boltzmann averaging and integration of the CRP
at different temperatures, we first obtain k(T ) and then, using
Eq. (14), the diffusion rate. This quantity, computed by both
approaches developed in this work, is shown in Fig. 7 for the
H2 molecule in an (8,0) CNT. Transition state theory results
are also plotted for comparison. As it was expected from the
study of the different N(E), the results obtained with the dia-
batic and adiabatic formalisms agree perfectly, both showing
a significant tunneling contribution below 125 K.

IV. SUMMARY AND CONCLUSIONS

The differences in the time scales of the fast motion
in the confined DOFs and the slow motion along the nan-
otube’s axis in the H2@(8,0) SWCNT system were exploited to
devise efficient numerical methods to study the system’s quan-
tum dynamics. In the rigorous, numerically exact approach,
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first a diabatic basis and a corresponding Hamiltonian matrix
describing the motion in the confined coordinates is con-
structed. The resulting diabatic Hamiltonian matrix only
depends on the z-coordinate describing the unbound motion
of H2 along the nanotube. Thus, the 6D Schrödinger equation
is turned into a 1D equation describing the motion on a set of
coupled diabatic potential energy surfaces. Due to the small
size of the couplings, converged results can be obtained with
a small number of diabatic basis states. The resulting scheme
is extremely numerically efficient and allows one to study the
system’s dynamics on a time scale which could not be accessed
in previous studies.32,33

Invoking an adiabatic approximation to decouple the slow
and fast motions, the description of the system’s dynamics
can be further simplified. In the adiabatic approximation, the
dynamics precede on uncoupled adiabatic potential energy
curves. Comparison with rigorous results shows that the adi-
abatic approximation works very well for the present system.
The adiabatic picture is then successfully utilized to interpret
the system’s dynamics.

The investigation of the long-time dynamics in the
H2@(8,0) SWCNT system facilitated by this methodological
development yielded interesting new insights. It was found that
the motion of H2 along the nanotube axis at low energies can
occur via resonance enhanced tunneling. Corresponding struc-
tures are clearly visible in the computed energy-dependent
transmission coefficients. The resonance can be assigned to
quantum states localized in the wells of the adiabatic PESs.
This result is particularly interesting as it suggests that tun-
neling might be the dominant mechanism for the motion of
individual H2 molecules trough narrow CNTs a low temper-
ature. The consequences of this finding should be investi-
gated more deeply, since it might affect potential applications
of carbon nanotubes, such as their usefulness as quantum
sieves.
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43M. Beck, A. Jäckle, G. A. Worth, and H.-D. Meyer, Phys. Rep. 324, 1 (2000).
44U. Manthe, H. Meyer, and L. S. Cederbaum, J. Chem. Phys. 97, 3199 (1992).
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7.5 Summary and Conclusions

During this Chapter we have investigated the relation between the confined degrees
of freedom, namely ρ, θ, φ, x and y, and the unbound or quasi–free coordinate, z,
of a hydrogen molecule confined in an (8,0) SWCNT. This distinction arises due to
the cylindrical shape of the nanotube, which imposes a tight confining potential in
two dimensions of space (x and y) and a low corrugation along the third (z). The
first 6D simulations on this system have been reported, based on the preparation of
bound states in a particular position along z by the addition of a trapping poten-
tial, and their posterior propagation (Publication 3). With this setup it was possible
to assign each wave packet to a confined 5D eigenstate. The analysis of the prop-
agated wave packets was made by computing convolution functions of the prop-
agated wave packet and different 5D eigenstates, showing a low mixing between
them during the propagation. This is a prove of the low coupling between the two
sets of coordinates, and has motivated the development of a representation of the
Hamiltonian based on a time–scale separation between confined and unbound de-
grees of freedom (Publication 4). An exact diabatic approach was developed by using
the eigenstates of the 5D Hamiltonian fixed at an arbitrary z point as a basis set for
the matrix representation of Ĥ, and tested by applying it to the problem of diffusion
of H2 along the nanotube. Its increased numerical efficiency allowed us to prop-
agate flux eigenstates up to 20 ps, thus providing with the converged cumulative
reaction probabilities for the process already discussed in Chapter 6. Then, an adia-
batic approximation, which was possible due to the smooth dependence of Ĥ5D with
z, proved to be as accurate as the exact approach and slightly reduce the numerical
noise.

The work presented here allows us to collect a set of conclusions:

• The particular shape of the nanostructure into which the adsorbates are con-
fined affects to the relative amount of coupling in the different DOFs. In the
particular case of the H2@(8,0) system, the z coordinate is only weakly coupled
with the remaining 5 DOFs.

• A correct design of the simulations can lead us to straightforward ways to
analyze our results: in this particular case, the previous preparation of the
wave packets and their relation to 5D eigenstates made possible the assessment
of the coupling by convolution functions.

• It is possible to take advantage of these particularities to develop more efficient
Hamiltonians without a significant lose of accuracy.

• The diabatic approach and the adiabatic approximation give accurate results
efficiently. Without these tools it would have been extremely expensive to con-
verge N(E) for this particular system, characterized by resonances and a very
low diffusion barrier.
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Chapter 8

Phonon coupling in the
H2@SWCNT system

8.1 Phonons and dispersion

The collective vibrations of the atoms in a material, its phonons, have a critical im-
portance in diffusion processes, since they act as a thermal bath which excites or
dampens the motion and vibrations of the adsorbates[153], and thus introduce dis-
sipation effects in the system. However, the inclusion of phonons in quantum me-
chanical calculations is not straightforward, since one must design a suitable model
containing the coupling between the adsorbate and the substrate, and possible dissi-
pation effects. For this reason, most of the theoretical works on quantum dynamics
are based on the frozen substrate assumption, as explained in Chapter 4. There are
notable exceptions of this, such as the work of Andrianov and Saalfrank[155], who
studied the effects of substrate vibration on the adsorption of a H atom on a Si (100)
surface. More recently Bonfanti et al.[156, 157], studied the sticking process of the
same atom on graphene, and Meng and Meyer[158] found vibrational states of CO
on a Cu (100) surface including surface vibrations. Note that these works are limited
to surface diffusion, and to the best of our knowledge there are no similar theoretical
studies for nanoconfined systems. For this reason, in this Chapter we present our ap-
proach to include the phonon coupling to the quantum dynamics of a H2 molecule
confined in the hollow cavity of an (8,0) carbon nanotube. This represents a highly
relevant milestone of this Thesis, and is expected to have an impact on the available
insight on quantum confinement effects.

This Chapter is organized as follows: first, the different portions of the model
Hamiltonian are discussed. Once the Hamiltonian is defined, the coupling model be-
tween the molecule and the nanostructure is tested by using time–dependent pertur-
bation theory to compute lifetimes of pure system states introduced in the phonon
bath. Finally, the main results and conclusions of the study are summarized.

8.2 The System–bath Coupling model

There are several ways to describe dissipative systems as the one which occupies us:
from using a density matrix–based formalism, to include some new terms into reg-
ular Hamiltonians[159]. In this Chapter we will focus on the well–known system–
bath coupling model, based on the partition of the Hamiltonian in three terms: a
system, a bath, and a third term to account for the coupling between them:

Ĥ = Ĥsys + Ĥbath + Ĥcoupl. (8.1)
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In our case, the system will be the hydrogen molecule embedded in a rigid (8,0)
carbon nanotube, as defined in Chapter 4. Hereafter we will indistinctly refer to this
portion of the model as system, adsorbate, or frozen model. The system will be coupled
to a bath of harmonic oscillators representing the phonons of the nanotube, and the
third term will be the one responsible of modeling such coupling.

There are three important changes in the description of the system with respect
to the model specified in Chapter 4. First, for practical reasons regarding the calcula-
tion of the phonon dispersion, in this Chapter the nanostructure used was optimized
using the VASP package[160–163] instead of Crystal09, as it will be discussed later.
Secondly, in order to increase the numerical efficiency and to ease the interpretation
of the results, we use the adiabatic approximation to the Hamiltonian presented in
Chapter 7 instead of the full–dimensional version. The third and final modification
of the system’s Hamiltonian is related with the need to define the linear momen-
tum of the hydrogen molecule, kmol: the exchange of this quantity with the phonon
bath is one of the most relevant effects of the dispersion, so to correctly quantify it
we need to have it perfectly defined for any adsorbate eigenstate. In order to turn
this quantity into a quantum number of the system to label the different eigenstates,
we Fourier transform the kinetic energy operator in the periodic dimension, T̂z, by

applying the unitary transform e
−ikmolz

L . Thus, we obtain:

e
−ikmolz

L T̂ze
ikmolz

L = − h̄2

2m

∂2

∂z2 − ih̄

m

kmol

L

∂

∂z
+

h̄2

2m

k2
mol

L2 ≡ ˆ̃Tz,kmol
. (8.2)

Then we can substitute T̂z in Eq. (7.8) by its transformed version, Eq. (8.2). With this
we can define the momentum–labeled Hamiltonian of the adsorbate as:

ˆ̃H(ad)
j = ˆ̃Tz,kmol

+
Nz

∑
l=1

ε j(zl) |zl〉〈zk| . (8.3)

We will now discuss the bath and coupling terms of the Hamiltonian.

8.2.1 The Phonon Bath

In condensed matter physics, phonons are usually treated in the harmonic approx-
imation, similarly to what is done for normal modes of vibration in molecules. As
discussed in Chapter 5, however, crystalline systems are characterized by their pe-
riodicity in some dimension of space. This periodicity implies some particularities
when performing the normal mode analysis which differ from what is usually seen
in molecular contexts, and will be reviewed in this section.

The first step in the computation of the phonons of a structure is to optimize
the geometry of its unit cell, as defined in Chapter 5. Since a single–walled carbon
nanotube is periodic only along the z dimension, we need to find a single cell param-
eter, and can restrict the analysis of the phonons to this particular coordinate. In this
case we used the VASP package, since coupled with another third–party software
for computing phonon dispersion called Phon[164], was more suitable for our pur-
poses than Crystal09, as it will be discussed later in this Section. The unit cell was
optimized with a PBE functional, using a set of plane waves with an energy cutoff of
400 eV as basis, which yielded a cell parameter L = 8.071 a0 and a tube’s diameter
d = 12.049 a0 .

Once the unit’s cell geometry has been optimized, one can perform the phonon
analysis. Phonons imply the collective motion of all atoms in the system, and there-
fore the analysis cannot be restricted to a single unit cell: an infinite number of them
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should in principle be taken into account. We have therefore the same problem as
in the case of the electronic Hamiltonian discussed in Chapter 4: we cannot work
with an infinite number of atoms. As in that particular case, we can take advantage
of Bloch’s Theorem, Eq. (4.3), which since we are working with a solid periodic only
along the z–coordinate, we can rewrite as:

Ψ(z + L; k) = eikLΨ(z; k), (8.4)

where the 3–D vector quantities~r, ~R and~k have become their scalar equivalents in
1–D: z, L, and k, respectively. We will maintain this 1–D notation throughout this
whole Chapter. Then, after applying the Born–von Karman PBCs, Eq. (4.4), for N
unit cells, we are able again to factor an infinite–dimensional differential equation in
the direct space into N finite–dimensional problems in the reciprocal space.

The number of unit cells considered will determine the sampling of the k–vector,
and therefore of reciprocal space. This is at the core of the supercell approach used
to compute phonon dispersion relations. If we consider a single unit cell, we will
be sampling a single point of the reciprocal space, which by convention is labeled Γ

and corresponds to k = 0. According to Bloch’s theorem, this means that all equiva-
lent atoms in all unit cells of the infinite solid we are representing will be moving in
phase. This implies that a translation of a unit cell will become a translation of the
whole crystal, and therefore this phonon will have frequency 0. The phonons with
frequency 0 at the Γ point are called acoustic phonons. In the particular case of nan-
otubes, there are 4 of such acoustic phonons: two degenerate modes accounting for
the translation perpendicular to the nanotube’s axis, a 3rd mode describing the lon-
gitudinal translation (the translation modes), and a final mode that characterizes the
rotation of the whole structure around its axis (the twisting mode). The remaining
3Natoms − 4 phonon modes are known as optical phonons, and correspond to actual
vibrations of the atoms in the unit cell. However, it is clear that the motions defined
by the phonons with k = 0 are not enough to describe all possible motions of a nan-
otube. Let us introduce a second unit cell in our model. With this representation
we are sampling two points of the reciprocal space: k = 0 and k = π/L, which
by Bloch’s theorem implies that we will have completely in–phase motion for the
atoms of consecutive cells in Γ point, and completely out–of–phase motion of in the
second sampling point. This is illustrated in Figure 8.1: we are breaking the symme-
try of the system, and therefore we allow equivalent atoms of contiguous unit cells
to move out of phase. It is important to note that for k = π/L the acoustic phonons
are no longer zero–frequency translations, but actual vibrations of the solid. By in-
creasing the number of unit cells we are able to reproduce the phonon dispersion
spectrum, which contains the dependence of the phonon’s frequency with the dif-
ferent k points. In general, the relation between the number of unit cells included
in the Born–von Karman model, N, and the k points of the reciprocal space implied
that the k points allowed by the Bloch Theorem are given by:

k =
2π

L

m

N
, (8.5)

for m integer between 0 and N, therefore we will have as many k points sampled as
unit cells considered. Note that this is a 1D version of Eq. (4.5).

Mathematically, the supercell approach we have just illustrated is translated into
the diagonalization of the dynamical matrix, D(k)[137, 138]. For our set of Natoms

atoms in a unit cell we can define a vector ~u of 3Natoms dimensions containing the
Cartesian coordinates of each atom of the unit cell at the equilibrium geometry.
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FIGURE 8.1: Scheme of the supercell approach for the calculation of
phonon dispersion. Unit cells are separated by dotted lines. If one
unit cell is considered, all atoms move in phase and we only sample
k = 0 (top). If two unit cells are included, we include out–of–phase
motion of consecutive cells and can sample k = 0 and k = π/L (bot-

tom).

Then, the dynamical matrix is defined as:

D
βj
αi (k) =

N

∑
m=1

e−i(rm−rn)kL

[

∂2V

∂unαi∂umβj

]

, (8.6)

with m ranging from 0 to the number of unit cells N, rm a lattice point of unit cell
m and unαi the ith coordinate of the atom α of the unit cell n. Upon diagonalization
of D

βj
αi (k), a set of eigenvalues Mjω

2
j (k) and eigenvectors ci j(k) are found for each

value of k:
Mω2(k)D(k) = c(k)D(k), (8.7)

with Mj and ωj(k) the reduced mass and frequency of the jth phonon at the point
k, respectively, and cij(k) the eigenvectors which unitarily transform the u vector to
the phonon coordinates, Qj,k:

Qj,k =
1√
N

∑
i,n

√

Mjc
i
j(k)e

inkL∆ui,n. (8.8)

The calculation of the phonon’s frequencies and eigenvectors has been done using
the Phon software together with the VASP package. Although Crystal09 worked
flawlessly for geometry optimizations and phonon calculations at the Γ point, we
were not able to obtain phonon dispersion relations due to problems with the ba-
sis set and the reciprocal space representation. This was due to the impossibility
to build the whole dynamical matrix: in order to rigorously sample the reciprocal
space, one should include more and more unit cells in the supercell, and calculate
the Hessian for these ever larger problems in order to obtain the dynamical matrix at
a given k point. Conversely, the Phon program uses the small displacement method[165,
166], which is based on setting a cutoff distance for the interaction of two atoms in
the supercell. This is done by building a relatively small supercell, and assuming
that all relevant atom–atom interactions can be restricted to the length of that small
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FIGURE 8.2: Phonon spectrum for an isolated (8,0) Carbon Nanotube.
The first (doubly degenerated) and second branches are the transla-
tional acoustic phonons, the third corresponds to the twisting mode.
The breathing mode is marked as a dashed line among the remaining

optical phonons.

supercell. One then finds the minimum number of displacements in that structure
to obtain the Hessian matrix appearing in Eq. (8.7). This matrix is then obtained
through single–point calculations in the small supercell with the VASP code, which
works with a plane wave basis set instead of Bloch functions build from localized
basis functions centered on the atoms. Once the force constants in this system are
build, the full dynamical matrix is built at arbitrary k points, considering that the
interactions between atoms at a distance larger than that defined in the small su-
percell are negligible. The resulting phonon spectrum for the (8,0) CNT using the
PBE functional and a basis set with an energy cutoff of 400 eV are shown in Fig-
ure 8.2. Acoustic phonons can be identified as the branches with frequency 0 at
k = 0. For symmetry reasons, the first of such branches is degenerated and contains
the two transversal translation phonons, and the more energetic one corresponds
to the longitudinal translation. The twisting mode appears, due to numerical error,
at frequencies slightly over 0, completing the set of four acoustic phonons. Of the
different optical phonons, it is interesting to highlight the breathing mode, shown as
a dashed line in Figure 8.2. This mode corresponds to a change of the nanotube’s
diameter due to the expansion and contraction of the unit cell’s rings. This mode is
expected to be relevant in the coupling with the adsorbate, but it is not sufficiently
populated at the temperatures sampled here to have important effects.

Once the phonon spectrum is defined, we can build the bath Hamiltonian within
the harmonic approximation as a set of Harmonic Oscillators with the required
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masses, Mj, and frequencies, ωj,k:

Ĥbath =
3N

∑
j=1

∑
k

− h̄2

2Mj

∂2

∂Q2
j,k

+
1
2

Mjω
2
j,kQ2

j,k. (8.9)

Each oscillator being associated with a phonon coordinate Qj,k.

8.2.2 System–bath coupling

The system–bath coupling term will be the one connecting the two fragments in-
volved in the problem. In order to build it, we perform a first order Taylor expansion
of the interaction potential, V(q, z), about the equilibrium geometry of the nanotube
along the phonon coordinates Qj,k:

V(q, z) ≈ V(q, z, Qj,k = 0) + ∑
j,k

∣

∣

∣

∣

∣

∂V(q, z)

∂Qj,k

∣

∣

∣

∣

∣

Qj,k=0

Qj,k + O2(Q). (8.10)

The truncation of the series to account only for linear coupling implies that only
1–phonon transitions will be taken into account in this model[155].

The derivative term is cumbersome and computationally demanding. However,
by using the definition of the phonon coordinates, Eq (8.8), the chain rule:

∂V(q, z)

∂Qj,k
=

N

∑
n=1

3Nat

∑
i=1

∂V(q, z)

∂xi,n

∂xi,n

∂Qj,k
, (8.11)

and the identity relation:
N

∑
n=1

3Nat

∑
i=1

∂Qj,k

∂xi,n

∂xi,n

∂Qj,k
= 1 , (8.12)

we can turn the derivative term into a Cartesian coordinate–dependent derivative,
which is easier to compute efficiently:

∂V(q, z)

∂Qj,k
=

√
N

N

∑
n=1

Nat

∑
i=1

∂V(q, z)

∂xin
c†

ije
−iknL ≡ f̂ j,k(q, z), (8.13)

where we have defined the coupling operator, f̂ j,k(q, z), which quantifies the coupling
of the system at coordinates (q, z) with the jth phonon at the point k of the reciprocal
space. Each operator is then a 6D function, and we have a total number of operators
equal to 3Natoms × N, with N the number of unit cells an therefore the number of k
points.

We can represent the coupling operators in an adiabatic basis consisting of S
eigenstates of the 5D Hamiltonian,

{

ξ(z)
}

(see Chapter 7), and write each coupling
operator as an S × S matrix with elements:

(

f̂ j,k

)

s,s′
(z) =

√
N

N

∑
n=1

Nat

∑
i=1

c†
ije

−iknL

〈

ξs

∣

∣

∣

∣

∣

∂V(z)

∂xi,n

∣

∣

∣

∣

∣

ξs′

〉

. (8.14)

These z–dependent matrices give us information about which adiabatic 5D eigen-
states are coupled by which phonons of the nanostructure, and which k momentum
transfer is more efficient.
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8.3 Transition rates through Time–dependent Perturbation The-
ory

If we neglect the coupling term in Eq (8.1) we obtain a separable Hamiltonian, whose
functions will be a direct product of the frozen model functions, ψv,nv,kmol

, and bath
(SWCNT phonons) functions, Φνj,kph

:

Ψv,nv,νj,kmol,kph
= ψv,nv,kmol

Φνj,kph
. (8.15)

The quantum numbers employed in the previous expressions label: the 5D rovi-
brational state of the confined molecule (v), the translational excitations within the
cePES generated by that state (nv), the excitation state in each phonon coordinate j,
(νj), the momentum of the hydrogen molecule along the z axis (kmol), and the crystal
momentum of the nanotube (kph).

A good quantitative measure of the coupling between the adsorbate and the sub-
strate’s vibration is given by the lifetime of pure H2 eigenstates obtained in the
frozen model, ψv,nv,kmol

, when we introduce the coupling term as a perturbation to
the separable system–bath Hamiltonian. Using Time–dependent perturbation the-
ory we can calculate the probability of an adsorbate eigenstate to make a transition
to another state. Within this framework, the general expression for the transition
rate from an initial state Ψi

v,nv,νj,kmol,kph
to a final state Ψ

f

v′,n′
v,ν′j ,k

′
mol,k

′
ph

is given by:

wi→ f =
2π

h̄

∣

∣

∣

〈

Ψ f |Ĥcoupl |Ψi
〉∣

∣

∣

2
δ(E f − Ei) . (8.16)

However, we are not interested in individual transitions between phonon states,
because they act as a bath for the system. Therefore, in order to obtain transition
rates between adsorbate states we must thermally average the contribution of the
phonon states:

wv,nv,kmol→v′,n′
v,k′mol

=
2π

h̄ ∑
ν′j ,k

′
ph

∣

∣

∣

∣

〈

Ψ
f

v′,n′
v,ν′j ,k

′
mol
| f̂ j,kph

Q̂j,kph
|Ψi

v,nv,νj,kph

〉∣

∣

∣

∣

2

×ρΦi
δ(E f − Ei) ,

(8.17)

with ρΦi
the thermal distribution of the phonon bath, according to Bose–Einstein

statistics, and h̄ωjkph
the energy of the jth phonon with momentum kph. This Equation

can be rearranged as:

wv,nv,kmol→v′,n′
v,k′mol

=
2π

h̄ ∑
ν′j ,k

′

∣

∣

∣

∣

〈

ψ
f

v′,n′
v,k′mol

| f̂ j,k′ph||ψ
i
v,nv,kmol

〉∣

∣

∣

∣

2

×
∣

∣

∣

〈

Φv′,n′
v,k′ph

|Q̂j,|k−k′||Φv,nv,kph

〉∣

∣

∣

2
ρΦi

× δ(E − E ± h̄ωjkph
).

(8.18)

After thermally averaging the phonon contributions, integrating all bath degrees of
freedom, and summing for all possible final states, we obtain the decay rate of an
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adsorbate state, ψv,nv,kmol
:

wv,nv,kmol
= π ∑

v′,n′
v







∫ 2π

0
∑

j

〈

nj

〉

ωj,kph
N

∣

∣

∣

〈

ψv′,n′
v,kmol

| f̂ j,kph
|ψv,nv,kmol

〉∣

∣

∣

2

×δ(E f − h̄ωj,kph
− Ei)dkph

+
∫ 2π

0
∑

j

〈

nj

〉

+ 1

ωj,kph
N

∣

∣

∣

〈

ψv′,n′
v,kmol

| f̂ j,kph
|ψv,nv,kmol

〉∣

∣

∣

2

× δ(E f + h̄ωj,kph
− Ei)dkph






,

(8.19)

with
〈

nj

〉

= 1

e
βωj,kph −1

the average number of excitations in a phonon mode j at a

temperature T given by β = 1
kBT , and Ei and E f the energies of the system’s Hamil-

tonian. Through this equation we can see that the transition probability essentially
depends on the matrix representation of the coupling operator, f̂ j,kph

, on the average

occupation of the phonon levels,
〈

nj

〉

, and on the energy difference between initial
and final state. Note that in Eq (8.19) the one–phonon adsorption or emission condi-
tion appears naturally through the matrix elements and the Dirac deltas. In order to
represent these functions, a normalized bump function is used:

δ
(

E f − Ei ± h̄ωj,kph

)

≈







1
∆E e−

1
1−x′ if | x′ |≤ 1

0 if | x′ |> 1
(8.20)

with x′ =
(

E f − Ei ± h̄ωj,kph

)

∆E−1.
A final constraint must be taken into account: the crystal momentum of the total

adsorbate–nanotube system must be conserved, so any momentum gained by the
molecule must be subtracted from the phonon bath, and vice versa. Therefore, we
can impose:

ktotal = kmol + ∑
j

kphj
= k′mol + ∑

j

k′phj
, (8.21)

and since only one–phonon transitions are allowed in this model, the values of kph

in Eqs (8.18) and (8.19) are restricted to:

kph =
∣

∣kmol − k′mol

∣

∣ . (8.22)



8.4. Results and discussion 181

With this condition, Eq. (8.19) becomes:

wv,nv,kmol
= π ∑

v′,n′
v







∫ 2π

0
∑

j

〈

nj

〉

ωj,|kmol−k′mol|N

∣

∣

∣

∣

〈

ψv′,n′
v,kmol

| f̂ j,|kmol−k′mol||ψv,nv,kmol

〉∣

∣

∣

∣

2

×δ(E f − h̄ωj,|kmol−k′mol| − Ei)d
∣

∣kmol − k′mol

∣

∣

+
∫ 2π

0
∑
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〈

nj

〉
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ωj,kph
N

∣

∣

∣

∣

〈

ψv′,n′
v,kmol

| f̂ j,|kmol−k′mol||ψv,nv,kmol

〉∣

∣

∣

∣

2

× δ(E f + h̄ωj,|kmol−k′mol| − Ei)d
∣

∣kmol − k′mol

∣

∣






,

(8.23)

which will be the equation used to obtain the decay rates of any adsorbate initial
state caused by the coupling with the phonons of the nanostructure.

8.4 Results and discussion

8.4.1 Adiabatic basis and system eigenstates

In this study we have used the adiabatic representation of the Hamiltonian, as pre-
sented in Chapter 7, to compute the adsorbate 6D eigenstates, ψv,nv,kmol

. First, a set
of 5D eigenstates of the H2 molecule within the frozen nanotube approximation,
{

ξ(z)
}

, was computed in order to obtain the cePESs, εv(z). Then the kmol–labeled
adiabatic Hamiltonian, Eq. (8.3), was used to obtain the 6D eigenstates for different
values of kmol using the SA–MCTDH approach. Recall, kmol accounts for the linear
momentum of the adsorbate’s c.o.m. A total of 50 wave packets were propagated
for 200 values of kmol between 0 and 2π

L , obtaining approximately 40 converged ad-
sorbate eigenstates for each kmol value. These states were found to be distributed
among the first five cePES. The energies of the first 22 eigenstates, as well as the as-
sociated cePES, are shown in Table 8.1 for kmol = 0. These eigenstates correspond
to the ones significantly populated at T = 100 K, according to a thermal Boltzmann
distribution.

The matrix representation of the coupling operators ( f̂ j,k(z)), given in Eq. (8.14),
can be used to extract qualitative information about which phonon modes couple the
different cePESs more efficiently. Large matrix elements will point out to strong cou-
pling and therefore a more probable transition between adsorbate states, mediated
by the jth phonon. Although these matrix representations are not included in the
Thesis for the sake of clarity, some representative examples are highlighted. For in-
stance, the two–fold degenerate lower energy acoustic modes, which correspond to
zero–frequency translation modes at the gamma point, kphon = 0, couple efficiently
cePESs with v = 0 and v = 6, as well as the v = 1 and v = 8 cePESs. However, the
most efficient coupling appears for the momentum exchange within the same cePES,
i.e. transitions of the type ω(v,nv,kmol)→(v,n′

v,k′mol)
. These are mediated more strongly by

the acoustic modes, and by the optical breathing mode (shown as a dashed line in
Figure 8.2). Overall, no clear selection rules apply for these coupling operators.
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TABLE 8.1: Eigenenergies of the first 22 eigenstates of the H2 molecule
confined in a frozen (8,0) CNT. Energies referred to a Zero–point En-
ergy of 2821.031 cm−1. v labels the cePES, and nv the adiabatic state

within the cePES.

State v nv ∆E(cm−1)
0 0 0 0.000
1 0 1 4.598
2 1 0 16.180
3 1 1 21.272
4 0 2 50.231
5 1 2 63.600
6 0 3 83.513
7 0 4 95.648
8 1 3 98.059
9 1 4 109.133

10 0 5 177.602
11 0 6 178.592
12 1 5 191.889
13 1 6 192.809
14 2 0 297.037
15 3 0 297.037
16 2 1 298.858
17 3 1 298.859
18 0 7 304.033
19 0 8 304.245
20 1 7 318.412
21 1 8 318.616
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FIGURE 8.3: Matrix representation of the transition rates of pure ad-
sorbate eigenstates, in reverse atomic units of time, for T = 100 K.
Rows correspond to initial states i and columns to final states f . See
Tables 8.1 and 8.2 for the characterization of such states in terms of v

and nv.

8.4.2 Decay rates and lifetimes

In order to quantitatively assess the amount of coupling between the phonon bath
and the hydrogen molecule we compute the decay rates and lifetimes for a hydro-
gen molecule in an initial energy state ψv,nv,kmol

, corresponding to a 6D eigenstate in
the frozen nanotube model, with no molecular momentum (kmol = 0). Due to the
coupling to the thermalized phonon bath, the hydrogen molecule might exchange
momentum or be excited (or decay) to different vibrorotational confined eigenstates
(cePES). The more efficient the coupling, the higher the decay rate and the shorter
the lifetime of the initial state.

The resulting state-resolved decaying rates for the first 22 adsorbate eigenstates
of the system are shown in Figure 8.3 in a matrix representation form for T = 100 K.
Each element of the matrix corresponds to the transition rate of a given initial eigen-
state ψi = ψv,nv,kmol=0 to a final state ψ f = ψv′,n′

v,k′mol
with any value of k′mol. It is readily

seen from this representation that the most efficient transitions generally correspond
to those in the diagonal of the matrix. These elements involve only momentum ex-
change, because the initial and final state have the same quantum numbers nv and v.
This is consistent with the analysis of the coupling operator matrices. As the energy
of the initial state increases, however, interstate transitions become more probable
due to the increase of the density of the phonon and adsorbate’s eigenstates spec-
trum.
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TABLE 8.2: Lifetimes for the first 22 6D system eigenstates.

State v nv Lifetime (ns)
0 0 0 0.6843·10−3

1 0 1 0.6955·10−3

2 1 0 0.7213·10−3

3 1 1 0.8946·10−3

4 0 2 0.5992·10−3

5 1 2 0.6100·10−3

6 0 3 0.5838·10−3

7 0 4 0.6066·10−3

8 1 3 0.5994·10−3

9 1 4 0.6116·10−3

10 0 5 0.6150·10−3

11 0 6 0.5838·10−3

12 1 5 0.5916·10−3

13 1 6 0.5822·10−3

14 2 0 0.6077·10−3

15 3 0 0.4463·10−3

16 2 1 0.4447·10−3

17 3 1 0.4382·10−3

18 0 7 0.6520·10−3

19 0 8 0.7226·10−3

20 1 7 0.7049·10−3

21 1 8 0.7850·10−3

By summing the decay rates for all final states as of Eq. (8.19) (i. e. over columns
in Figure 8.3) and inverting the resulting quantity, we obtain the lifetime of the differ-
ent adsorbate eigenstates. These are shown in Table 8.2. Consistently with the state-
resolved decay rates and the analysis of the coupling matrix, which showed that the
most efficient coupling appeared between states belonging to the same cePES, all
system eigenstates have a lifetime of the same order of magnitude, within tenths of
picosecond. These values are comparable to the lifetimes obtained for the vibroro-
tational states of a hydrogen atom adsorbed in an (100) surface of Si by Andrianov
and Saalfrank[155], who used a similar model.

It is instructing to compare this timescale with that of the diffusion process calcu-
lated in Publication 3 within a frozen nanotube approximation. The required time
to converge the cumulative reaction probability in that work, and therefore to ob-
tain diffusion rates, was around 20 ps. The fact that the lifetimes of the system’s
eigenstates are 2 orders of magnitude smaller than this value seems to imply that
the momentum exchange between the nanotube and the H2 molecule can produce
a significant friction which might alter the diffusion mechanism. A substantial step
forward in the study of this system would then be the calculation of diffusion rates
on the H2@SWCNT system including the coupling with the phonon bath. This could
be made directly by introducing all new DOFs in a ML–MCTDH scheme. It is known
that the a recursive multilayer representation of the wave function allows to carry
out propagations efficiently with even thousands of DOFs. Another possibility for
further studies is to find a way to relate the transition rates and life–times for mo-
mentum exchange to a some sort of phenomenological friction coefficient which can
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be externally included as a new term into the 6D calculations presented in the pre-
vious Chapters.

8.5 Summary and Conclusions

In this final Chapter we present the first attempt to go beyond the frozen nanos-
tructure approximation which has been used in all the Thesis, as well as in most
other works regarding quantum confinement of gaseous molecules. We have done
so by using a system–bath coupling Hamiltonian, and defining the H2 molecule as
the system embedded in a bath of harmonic oscillators representing the phonons,
being these two fragments coupled by a linear function. We have shortly reviewed
the methodology needed to perform the analysis of the phonon modes in a periodic
system, and the dependence of this modes with the crystal momentum of the material.
The frequencies of the phonons have been included in the bath Hamiltonian using a
second quantization formalism, and the eigenvectors which transform the Cartesian
coordinates of the atoms to the phonon modes have been used to define the coupling
functions. Finally, in order to test the model we have computed the transition rates
and lifetimes of the eigenstates of the separable system (i.e., the eigenstates of the
system–bath Hamiltonian without the coupling term). The equations yielding these
quantities have been obtained from Time–dependent Perturbation Theory. The final
results confirm that there is indeed a coupling between the adsorbate and the sub-
strate, with the initial functions exchanging a significant amount of momentum with
the phonon bath. However, in order to be able to see more relevant transitions be-
tween rovibrational levels induced by phonon coupling, further calculations should
be done increasing the temperature, so that we populate higher energy levels.

The final conclusions to be extracted from this Chapter are found below:

• A system–bath coupling Hamiltonian is a relatively simple, though effective
method for introducing dispersion in a quantum system.

• Time–dependent Perturbation Theory provides us with the means to extract
a limited amount of information about the dynamics of the system, such as
transition probabilities between different states, without actually running any
propagation.

• There is a significant amount of coupling between the nanotube and the H2
molecule.

• The characteristic times for momentum exchange are two orders of magnitude
lower than the total time needed to converge the diffusion calculations. This
result suggests the possibility that momentum exchange has a relevant effect
on the diffusion process. This observation is in good agreement with the gen-
eral experience on the importance of phonons in surface diffusion processes.
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Chapter 9

Conclusions

The Results of this Thesis are contained in Chapters 5 to 7, each of them containing
a Summary and Conclusions section drawing the main ideas to be extracted from
it. The aim of this Chapter is therefore to present all the conclusions of the Thesis in
an ordered and summarized manner, in order to provide with a general view of the
work.

General Conclusions

• Adsorption on cavities with some dimensions of the order of the nanometer
induces relevant changes on the internal structure and dynamics of the trapped
molecule.

• Confinement effects in the case of the hydrogen and deuterium molecules have
to be treated in a full quantum framework in order to obtain physically accu-
rate results.

On the confinement effects in the eigenstates of the adsorbate

• The confining potential of the nanotube introduces new quantizations on the
molecular degrees of freedom, as well as a rovibrational–translational coupling
which does not exist for the free molecule.

• Due to the couplings between the different degrees of freedom, the confined
system cannot be described with the rotational and translational quantum num-
bers of a separable system.

• The study through overlaps and partial overlaps with a reference separable
system provides with the means to identify and understand the system, de-
spite being described through a 5D wave function.

On the diffusion dynamics of H2 and D2 along an (8,0) SWCNT

• The motion along the diffusion coordinate is only weakly coupled with the
remaining degrees of freedom.

• This quasi–separability can be exploited to obtain an accurate and very effi-
cient adiabatic representation of the Hamiltonian.

• Purely quantum effects dominate the diffusion process of the confined molecules:
on one hand, the different ZPE of the isotopologues favor the diffusion of D2 in
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front of H2 at low temperatures; on the other hand, resonance enhanced tun-
neling overcompensate ZPE effects and critically increases the diffusion of H2
at T < 100 K.

• The flux correlation function formalism, together with the single–hopping ap-
proximation, yields diffusion rates in the low pressure limit in a quantum me-
chanics framework, which is essential to correctly describe the effects men-
tioned above, particularly tunneling.

• Time–extended propagations are needed to converge the results of the calcu-
lation, mainly due to the low energy barriers and the presence of low–energy
resonances.

On the coupling between adsorbate molecule and the nanos-
tructure

• A system–bath coupling model provides with a good framework to study the
interaction between the nanotube and the trapped H2 molecule.

• The lineal momentum exchange between the phonons of the nanostructure
and the adsorbate is the most relevant process at low temperatures.

• The characteristic time scale of the linear momentum exchange process, ob-
tained from Time–dependent Perturbation Theory, suggests that this exchange
could be relevant for the diffusion process.
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(76) P. M. Felker and Z. Bačić, The Journal of Chemical Physics, Aug. 2016, 145,
084310.

(77) M. Xu, S. Ye, R. Lawler, N. J. Turro and Z. Bačić, Philosophical transactions. Se-
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