Table of Contents

Table of C	ontents	Ι
List of Var	iables and Parameters	IX
List of Fig	ures	XIII
List of Tab	les	XIX
1. Introduc	etion	1
1.1 The	MOTIVATION	1
1.2 The	OBJECTIVES	2
1.2.1	To Deepen the Knowledge of Hydroelectric System Models	2
1.2.2	To Design Controllers from Well Proven Models	2
1.3 Res	EARCH AIMS	2
1.3.1	Hydroelectric Generation Systems	2
1.3.2	The Frequency Control	5
1.4 Org	GANISATION OF THE DISSERTATION	
2. Previous	s Related Work	11
2.1 Mo	DELS OF HYDROELECTRIC SYSTEMS	11
2.1.1	Nonlinear Models	
2.1.2	Linearized Models	
2.1.3	Models for Particular Applications.	14
2.2 Fre	QUENCY (SPEED) CONTROLLERS	15
2.2.1	Controllers Designed from Linearized Models	15

2.2.1	.1 Classical Controllers
2.2.1	.2 Controllers with Specific Characteristics
2.2.2	Controllers Designed from Nonlinear Models
2.2.3	Controller Implementation
2.3 CON	CLUSIONS
3. Hydroele	ectric System Models 21
3.1 Prei	LIMINARY CONCEPTS
3.1.1	Definitions
3.1.2	System Dynamic Equations
3.1.3	Linearized Equations
3.1.4	Classification of the Models
3.2 Non	LINEAR MODELS
3.2.1	Models with Surge Tank Effects
3.2.1	.1 Model with an elastic water column in the penstock and a non-elastic water column in the tunnel (Kundur, 1994) - Model K5, K51, K52
3.2.1	 Model with an elastic water column in the penstock and a non-elastic water column in the tunnel (IEEE Working Group, 1992; Quiroga and Riera, 1999) Models WG5, QR52, QR51
3.2.1	.3 Model with non-elastic water columns (Kundur, 1994) – Model K4
3.2.3	.4 Model with non-elastic water columns (IEEE Working Group, 1992) – Model WG4
3.2.7	1.5 Comparisons between the models with an elastic water column in the penstock and a non-elastic water column in the tunnel (3.2.1.1 and 3.2.1.2)
3.2.1	.6 Comparison between models with non-elastic water columns (3.2.1.3 and 3.2.1.4)
3.2.2	Models with no Surge Tank Effects
3.2.2	2.1 Model with an elastic water column in the penstock (Kundur, 1994) – Models K3, K32, K31
3.2.2	2.2 Model with an elastic water column in the penstock (IEEE Working Group, 1992; Quiroga and Riera, 1999) – Models WG3, QR33, QR32, QR3134
3.2.2	2.3 Model with a non-elastic water column in the penstock (Kundur, 1994) – Model K2
3.2.2	2.4 Model with a non-elastic water column in the penstock (IEEE Working Group, 1992) – Model WG2
3.2.2	2.5 Comparison between the models 3.2.2.1 and 3.2.2.2

3.3 LINEAR	IZED MODELS	. 36
3.3.1 M	odels with Surge Tank Effects	. 37
3.3.1.1	Model with an elastic water column in the penstock and a non-elastic water column in the tunnel (Quiroga, 1998a) – Model Q_{lin}	ater . 37
3.3.1.2	Model with non-elastic water columns (Quiroga, 1998a) – Model Q_{lin0}	. 37
3.3.2 M	odels with no Surge Tank Effects	. 37
3.3.2.1	Model with an elastic water column in the penstock (Kundur, 1994 Model K_{lin}	·) — . 37
3.3.2.2	Models with a non-elastic water column in the penstock (Gaden, 1945 Model G_{lin0}	6) — . 38
3.4 CONCLU	USIONS OF THE PRESENTED MODELS	. 38
3.5 STATIC	ANALYSIS	. 39
3.5.1 De	etermination of the Flow of the Turbine in Steady State	. 40
3.5.1.1	Deduction of \overline{U}_{tss} for a nonlinear model with surge tank effects	. 40
3.5.1.2	Deduction of \overline{U}_{tss} for a nonlinear model with no surge tank effects	. 41
3.5.1.3	Determination of \overline{U}_0 used in the models of Kundur (1994)	. 41
3.5.1.4	Determination of \overline{U}_0 by using the comparison between equations	. 43
3.5.1.5	Verification of supposition made in 3.5.1.4	. 43
3.5.2 De	etermination of the Mechanical Power	. 44
3.5.2.1	Calculations for nonlinear models with and with no surge tank effects	. 44
3.5.2.2	Calculations for a linearized model with and with no surge tank effects	. 45
3.5.2.3	Calculation of the gate opening (\overline{G}) for $\overline{P}_{mecss} = 0$. 46
3.6 TIME D	OMAIN ANALYSIS OF MODELS	. 48
3.6.1 No	onlinear Models with Surge Tank Effects	. 48
3.6.1.1	Models WG4, QR51, QR52, WG5	. 48
3.6.1.2	Models K4, K51, K52	. 52
3.6.2 Li	nearized Models with Surge Tank Effects	. 54
3.6.2.1	Model Q _{lin0}	. 55
3.6.3 No	onlinear Models with no Surge Tank Effects	. 56
3.6.3.1	Models WG2, QR31, QR32, QR33	. 57
3.6.3.2	Models K2, K31, K32	. 58
3.6.4 Li	nearized Model with no Surge Tank Effects	. 59
3.6.4.1	Model K _{lin}	. 59

3.6.4.2 Classic linear model with ideal turbine (Gaden, 1945) - Model G_{lin0}	60
3.6.5 Conclusions of Time Domain Analysis	60
3.7 FREQUENCY RESPONSE ANALYSIS OF MODELS	62
3.7.1 Models with no Surge Tank Effects	62
3.7.1.1 Models K _{lin} and G _{lin0}	62
3.7.1.2 Stability study	63
3.7.2 Models with Surge Tank Effects	64
3.7.2.1 Models Q _{lin} and Q _{lin0}	64
3.7.2.2 Stability Study	66
3.8 SUGGESTIONS FOR MODELLING HYDROELECTRIC POWER PLANTS	69
3.8.1 Models with Surge Tank Effects	69
3.8.1.1 Nonlinear Models	69
3.8.1.2 Linearized Models	70
3.8.2 Models with no Surge Tank Effects	70
3.8.2.1 Nonlinear Models	70
3.8.2.2 Linearized Models	70
3.9 SUMMARY	70
4. Identification of a Hydroelectric Power Plant	73
4.1 CHARACTERISTICS OF THE HYDROELECTRIC POWER STATION	74
4.2 GENERAL NONLINEAR EQUATIONS	75
4.2.1 Adjustment of the Equations	79
4.2.2 Output Power Adjustment	79
4.2.3 Surge Tank Natural Period	80
4.3 SIMULATION RESULTS	81
4.3.1 Identification Using the Models A	81
4.3.2 Identification Using the Models B	84
4.3.3 Identification Using the Model C	86
4.3.4 Identification Using the Model D	87
4.4 COMPARATIVE STUDY OF THE QUADRATIC ERROR	88
4.5 SUMMARY AND CONCLUSIONS	89

Technique	91
5.1 INTRODUCTION	
5.2 MODELS FOR HYDRAULIC TURBINES	
5.3 NONLINEAR CONTROLLERS FOR HYDRAULIC TURBINES WITH NO SURGE TAN 95	NK EFFECTS
5.3.1 The Cost Functions	95
5.3.1.1 The Cost Function A	
5.3.1.2 The Cost Function B	
5.3.2 PID Controllers	
5.3.2.1 Fixed PID controllers	
5.3.2.2 PI-PD controller	
5.3.2.3 Gain Scheduling Controllers	
5.3.3 Nonlinear Controllers	
5.3.4 The Zero Dynamics of Nonlinear System with no Surge Tank Effects	101
5.3.5 Comparative Studies Using $f_{cost(A)}$	
5.3.5.1 Comparison of Rotor Speed Behaviour for Different Load Change	es 104
5.3.5.2 Comparison of Cost Function Values $(f_{cost(A)})$	105
5.3.6 Controller Adjustment Surfaces Using $f_{cost(A)}$	
5.3.6.1 Adjustment for the PI-PD Controller	
5.3.6.2 Adjustment for the Nonlinear Controller NL B	
5.3.7 Comparative Studies Using $f_{cost(B)}$	109
5.3.7.1 Comparison of Cost Function Values $(f_{cost(B)})$	
5.3.8 Controllers Adjustment Surfaces Using $f_{cost(B)}$	
5.3.8.1 Adjustment for the PID Controller	111
5.3.8.2 Adjustment for the Nonlinear Controller NL B	113
5.4 Nonlinear Controllers for Hydraulic Turbines with Sui Effects	rge Tank 114
5.4.1 Nonlinear Controllers	114
5.4.2 The Zero Dynamics of Nonlinear System with Surge Tank Effects	117
5.4.3 Comparative Studies Using f _{cost(A)}	119
5.4.3.1 Comparison of Rotor Speed Behaviour for Different Load Change	es 119
5.4.3.2 Comparison of Cost Function Values f _{cost(A)}	120

5. Nonlinear Controllers (I): Based on the Partial State Feedback Linearization Technique 91

	5.	.4.4	Controller Adjustment Surfaces Using f _{cost(A)}	121
		5.4.4	.1 Adjustment for the PI-PD Controller	121
		5.4.4	.2 Adjustment for the Nonlinear Controller NL D	122
	5.	.4.5	Comparative Studies Using f _{cost(B)}	123
		5.4.5	.1 Comparison of Cost Function Values f _{cost(B)}	123
	5.	.4.6	Controller Adjustment Surfaces Using f _{cost(B)}	124
		5.4.6	.1 Adjustment for the PI-PD Controller	124
		5.4.6	.2 Adjustment for the Nonlinear Controller NL D	126
4	5.5	LOAI	D REJECTION STUDIES	127
	5.	.5.1	Study for the Controller NL B	127
	5.	.5.2	Study for the Controller NL D	128
4	5.6	SUM	MARY AND CONCLUSIONS	128
6. I	Non	linea	r Controllers (II): Based on the Lyapunov Function Technique	131
(5.1	INTR	ODUCTION	132
(5.2	Non	LINEAR CONTROLLERS FOR HYDRAULIC PLANTS WITH SURGE TANK EFFECTS .	133
	6.	.2.1	Models for Hydraulic Turbines with Surge Tank Effects	133
	6.	.2.2	Construction of a Lyapunov Function	134
	6.	.2.3	Consideration of 'a ₂ ': Alternative Cases	139
(5.3	Сом	PARATIVE STUDIES	140
	6.	.3.1	Comparisons of Hydro Plants with Surge Tank Effects	140
		6.3.1	.1 Comparison of Cost Function Values Using f _{cost(A)}	140
		6.3.1	.2 Comparison of Rotor Speed Behaviour	142
		6.3.1	.3 Comparison of Cost Function Values Using $f_{cost(B)}$	142
	6.	.3.2	Comparison of Hydro Plants with no Surge Tank Effects	143
		6.3.2	.1 Comparison of Cost Function Values Using f _{cost(A)}	142
		6.3.2	.2 Comparison of Cost Function Values Using $f_{cost(B)}$	145
6	5.4	LOAI	D REJECTION STUDIES	146
	6.	.4.1	Study for the Lyapunov 2 Controller	146
	6.	.4.2	Study for the Lyapunov 4 and Lyapunov 51 Controllers	146
(5.4	SUM	MARY AND CONCLUSIONS	148
7. (Con	nclusio	ons and Contributions	149
-	7.1	Con	CLUSIONS	149

7.2	GENERAL CONTRIBUTIONS	. 152
7.3	FUTURE WORK	. 153
Appen	ndix A	157
Apper	ndix B	165
Refere	ences	169

List of Variables and Parameters

- a: wave velocity [m/s].
- A: cross section $[m^2]$.
- A_c : tunnel cross section $[m^2]$.
- A_p: penstock cross section [m²].
- A_s : surge tank cross section $[m^2]$.
- At: turbine gain [pu].
- c_{1,2,3}: weight coefficients of the cost function [pu].
- D: load-damping constant [pu].
- D₁: turbine damping [pu/pu].
- $D \cdot \overline{\omega}_r$: frequency-sensitive load [pu].
- E: Young's modulus of pipe wall material.
- f: wall thickness of penstock [m].
- f₀: surge chamber orifice head loss coefficient [pu].
- f_p, f_{p1}: penstock head loss coefficient [pu].
- fp2: tunnel head loss coefficient [pu].
- g: acceleration due to gravity $[m^2/s]$.
- G : gate opening [%]
- \overline{G} : gate opening [pu].
- \overline{G}_0 : initial value of the gate opening [pu].

- \overline{G}_{d} : desired value of the gate opening [pu].
- H: inertia constant [MW·s/MVA].
- \overline{H} : hydraulic head at gate [pu].
- H_0 : total head [m].
- \overline{H}_0 : initial steady state value of \overline{H} [pu].

H_{base}: base head [m].

- $H_1 + H_{12}$: head losses [m].
- \overline{H}_1 : head loss in the penstock [pu].
- \overline{H}_{12} : head loss in the tunnel [pu].
- \overline{H}_{r} : surge tank head [pu].
- $\overline{H}_{\mbox{\tiny rss}}$: steady state value of the surge tank head [pu].

 \overline{H}_{t} : turbine head [pu].

k_f: Head loss constant due to friction [pu].

K_p: proportional gain of a PID.

- K_{p1}: proportional gain of a PID.
- K_i: integral gain of a PID.
- K_d: derivative gain of a PID.
- L_c: length of the tunnel [m].
- L_p: length of the penstock [m].
- P_{elec}: electric power [MW].

 $\overline{P}_{electric}$: electric power [pu], where: $\overline{P}_{electric} = \overline{P}_{load} + D \cdot \overline{\omega}_{r}$.

 $\overline{P}_{mechanical}$: turbine mechanical power [pu].

 \overline{P}_{mecss} : steady state value of the turbine mechanical power [pu].

- $\overline{P}_{load} \equiv P_l$: non-frequency-sensitive load [pu].
- Q: flow $[m^3/s]$.
- Q_{base} : base flow $[m^3/s]$.

 Q_{max} : maximum low $[m^3/s]$.

 Q_{rated} : rated flow $[m^3/s]$.

R_{1,2,3,4}: feedback gains [pu].

R_p: temporary droop [pu].

- T: surge tank natural period [s].
- T_e: elastic time [s].
- T_{ec}: elastic time of the tunnel [s].
- T_{ep}: elastic time of the penstock [s].
- T_g: main servo time constant [s].
- T_p: pilot valve and servomotor time constant [s].
- $T_{\overline{w}}$: water starting time at any load [s].
- T_W: water starting time at rated or base load [s].
- T_{WC}: water starting time of the tunnel at rated or base load [s].
- T_{WP}: water starting time of the penstock at rated or base load [s].
- u : control effort [pu].
- U : water velocity [m/s]
- \overline{U} : water velocity [pu].
- \overline{U}_0 : initial steady state value of water velocity or steady-state flow [pu].
- \overline{U}_{c} : water velocity in the tunnel or tunnel flow [pu].
- \overline{U}_{css} : steady state value of the tunnel flow [pu].
- \overline{U}_{p} : water velocity in the penstock or penstock flow [pu].
- U_{rated} : rated water velocity [m/s].
- \overline{U}_t : water velocity in the turbine or turbine flow [pu].
- \overline{U}_{tss} : steady state value of the turbine flow [pu].
- \overline{U}_s : water velocity in the surge tank or surge tank flow [pu].
- \overline{U}_{NL} : no-load flow [pu].
- x₁, x₂, x₃, x₄: state variables [pu].
- x, y, z, w: state variables [pu].
- z₁, z₂, z₃, z₄: state variables [pu].
- z_0 : hydraulic surge impedance of the conduit.
- z_c: hydraulic surge impedance of the tunnel.
- z_n: normalised hydraulic surge impedance of the conduit.
- z_p: hydraulic surge impedance of the penstock.

$$\begin{split} &\Delta \overline{P}_m : \text{deviation of the mechanical power [pu].} \\ &\Delta \overline{\omega} : \text{deviation of the rotor speed [pu].} \\ &\varphi: \text{ internal penstock diameter [m].} \\ &\varphi_i: \text{ initial diameter of the penstock [m].} \\ &\varphi_f: \text{ final diameter of the penstock [m].} \\ &\Phi_c: \text{ friction coefficient of the tunnel [pu].} \\ &\Phi_p: \text{ friction coefficient of the penstock [pu].} \\ &\kappa: \text{ bulk modulus of water [kg/m.s²].} \\ &\eta(\overline{G}): \text{ nonlinear function [pu].} \\ &\rho: \text{ density of water [kg/m³].} \\ &\omega: \text{ angular frequency [rad/s] (s=j\omega).} \\ &\overline{\omega}_r: \text{ rotor speed [pu].} \\ &\overline{\omega}_{ref}: \text{ reference speed [pu].} \end{split}$$

List of Figures

Figure 1.1: Representation of a hydroelectric power plant
Figure 1.2: Functional block diagram that shows the relation between the hydroelectric system and the controls for a complete system
Figure 3. 1: Plot of the distribution of parameters in a hydraulic power plant
Figure 3. 2: Plot of the distribution of heads and flows in a hydraulic power plant
Figure 3. 1: Block Diagram of the hydroelectric system used in the models of Kundur (1994)
Figure 3.4: Functional diagram of model WG5 from the IEEE Working Group (1992) including associated dynamics
Figure 3. 5: Diagram of heads and flows distribution in models WG3, QR33, QR32, QR31 and WG2
Figure 3.6: Plot of \overline{U}_0 in function of the variable \overline{G} for two hydroelectric power stations 42
Figure 3.7: Mechanical power generated by the turbine in hydroelectric plants with surge tank effects as function of \overline{G}
Figure 3.8: Representation of the block used for the calculation of the hyperbolic tangent (model WG5)
Figure 3.9: Representation of the block that can be used for the calculation of the hyperbolic tangent function in the models WG4 (n=0), QR51 (n=1) and QR52 (n=2)49
Figure 3.10: Comparison among the models WG4, QR51, QR52 and WG5, detail

Figure 3.11: Comparison among the models WG4, QR51, QR52 and WG551
Figure 3.12: Block diagram for the models of Kundur (1994) and his derived models52
Figure 3.13: Comparison among the models K4, K51 and K52, detail
Figure 3.14: Comparison among the models K4, K51 and K5253
Figure 3.15: Simulation of the linearized model Q _{lin0} , for a variation of 0.01 [pu] in the gate opening, detail
Figure 3.16: Simulation of the linearized model Q _{lin0} , for a variation of 0.01 [pu] in the gate opening
Figure 3.17: Functional scheme of a model WG3 from (IEEE Working Group, 1992)56
Figure 3.18: Comparison among the models WG2, QR31, QR32, QR33 and WG357
Figure 3.19: Comparison among the models K2, K31 and K32
Figure 3.20: Simulation of the model K _{lin} (n=0) by using the parameters of G-Gilboa 3, St. Lawrence 32 and Niagara 1
Figure 3.21: Simulation of the classic linear model G _{lin0}
Figure 3.22: Bode plot for models of K_{lin} , approximations $n = 0, 1$. Parameters B Gilboa362
Figure 3.23: Nyquist diagram for the model of K _{lin} , approximation n = 0. Parameters from B Gilboa3
Figure 3.24: Nyquist diagram for the model of K _{lin} , approximation n = 1. Parameters from B Gilboa3
Figure 3.25: Bode plot for the model of Q _{lin0} , approximation n = 0. Parameters from (IEEE Working Group, 1992)
Figure 3.26: Bode plot for the model of Q _{lin} , approximations n = 1, 2. Parameters from (IEEE Working Group, 1992)
Figure 3.27: Bode plot for the model of Q_{lin0} and Q_{lin} , approximations $n = 0, 1$. Parameters from Appalachia power plant
Figure 3.28: Nyquist diagram for the model Q _{lin} , approximation n = 0. Parameters from (IEEE Working Group, 1992)
Figure 3.29: Nyquist diagram for the model of Q _{lin} , approximation n = 1. Parameters from (IEEE Working Group, 1992)
Figure 3.30: Detail of Figure 3.2967

Figure 3.31: Nyquist diagram for the model Q _{lin} , approximation n = 2. Parameters from (IEEE Working Group, 1992)
Figure 3.32: Detail of Figure 3.31
Figure 4.1: Plot of heads and flows distribution in a hydroelectric plant with surge tan effects
Figure 4.2: Functional diagram for a general nonlinear model with surge tank effects
Figure 4.3: Schematic representation of the "In-Out" block used to calculate the exact hyperbolic tangent given by the mathematical expression $z_p \cdot tanh(T_{ep} \cdot s)$
Figure 4.4: Representation of the block used to calculate the approximations n=0, n=1 an n=2 of the hyperbolic tangent function
Figure 4.5: Plot of the nonlinear function $\eta(\overline{G})$ calculated by the quadratic and cubi polynomials
Figure 4.6: Identification of Susqueda using the Models A
Figure 4.7: Identification of Susqueda using the Models A
Figure 4.8: Detail of Figure 4.7
Figure 4.9: Identification of Susqueda using the Models A
Figure 4.10: Detail of Figure 4.9
Figure 4.11: Identification of Susqueda using the Models A
Figure 4.12: Detail of Figure 4.11
Figure 4.13: Identification of Susqueda using the Models A
Figure 4.14: Detail of Figure 4.13
Figure 4.15: Identification of Susqueda using the Models B
Figure 4.16: Identification of Susqueda using the Model C
Figure 4.17: Identification of Susqueda using the Model C
Figure 4.18: Identification of Susqueda using the Model D
Figure 4.19: Identification of Susqueda using the Model A
Figure 4.20: Detail of Figure 4.19

Figure 5.1: Functional block diagram showing the relation between the hydroele and the controls for a complete system	ctric system 93
Figure 5.2: General speed control scheme for a generic controller	94
Figure 5.3: PID Controller	97
Figure 5.4: PI-PD Controller	97
Figure 5.5: Nonlinear Controller A (NL A)	100
Figure 5.6: Nonlinear Controller B (NL B)	100
Figure 5.7: General speed control scheme for the controllers NL A or NL B	101
Figure 5.8: Comparison of rotor speed	104
Figure 5.9: Comparison of rotor speed	104
Figure 5.10: Comparison of rotor speed	105
Figure 5.11: Comparison of rotor speed	105
Figure 5.12: Comparison of rotor speed	105
Figure 5.13: Comparison of rotor speed	105
Figure 5.14: Comparison of cost function values (f _{cost(A)})	106
Figure 5.15: Adjustment surface for the PI-PD controller $(f_{cost(A)})$	107
Figure 5.16: Plane $K_i = 0.7$	107
Figure 5.17: Plane $K_p = 0.5$	107
Figure 5.18: Adjustment surface for the controller NL B (f _{cost(A)})	108
Figure 5.19: Plane $K_i = 0.3$	108
Figure 5.20: Plane $K_p = 1.5$	108
Figure 5.21: Comparison of cost function (f _{cost(B)})	111
Figure 5.22: Adjustment surface for the PID controller $(f_{cost(B)})$	112
Figure 5.23: Plane $K_d = 1.75$	112
Figure 5.24: Plane $K_p = 2.75$	112
Figure 5.25: Adjustment surface for the controller NL B (f _{cost(B)})	113

Figure 5.26: Plane $K_i = 0.3$	113
Figure 5.27: Plane $K_p = 1.5$	113
Figure 5.28: Nonlinear Controller C (NL C)	116
Figure 5.29: Nonlinear Controller D (NL D)	117
Figure 5.30: General speed control scheme for the controllers NL C or NL D	117
Figure 5.31: Comparison of rotor speed	120
Figure 5.32: Comparison of cost function for the controllers PID, PI-PD, Gain Scher PI-PD and NL D $(f_{cost(A)})$	eduling 120
Figure 5.33: Adjustment surface for the PI-PD controller $(f_{cost(A)})$	121
Figure 5.34: Plane $K_i = 0.04$	121
Figure 5.35: Plane $K_p = 1$	121
Figure 5.36: Adjustment surface for the controller NL D $(f_{cost(A)})$	122
Figure 5.37: Plane $K_i = 0.75$	122
Figure 5.38. Plane $K_n = 1$	122
	122
Figure 5.39: Comparison of cost function for the controllers: PID, PI-PD and $(f_{cost(B)})$	NL D 124
 Figure 5.39: Comparison of cost function for the controllers: PID, PI-PD and (f_{cost(B)}) Figure 5.40: Adjustment surface for the PI-PD controller (f_{cost(B)}) 	NL D 124 125
 Figure 5.39: Comparison of cost function for the controllers: PID, PI-PD and (f_{cost(B)}) Figure 5.40: Adjustment surface for the PI-PD controller (f_{cost(B)}) Figure 5.41: Plane K_i = 0.04. 	NL D 124 125 125
 Figure 5.39: Comparison of cost function for the controllers: PID, PI-PD and (f_{cost(B)}) Figure 5.40: Adjustment surface for the PI-PD controller (f_{cost(B)}) Figure 5.41: Plane K_i = 0.04 Figure 5.42: Plane K_p = 1 	NL D 124 125 125 125
 Figure 5.39: Comparison of cost function for the controllers: PID, PI-PD and (f_{cost(B)}) Figure 5.40: Adjustment surface for the PI-PD controller (f_{cost(B)}) Figure 5.41: Plane K_i = 0.04. Figure 5.42: Plane K_p = 1 Figure 5.43: Adjustment surface for the controller NL D (f_{cost(B)}) 	NL D 124 125 125 125 126
Figure 5.39: Comparison of cost function for the controllers: PID, PI-PD and $(f_{cost(B)})$ Figure 5.40: Adjustment surface for the PI-PD controller $(f_{cost(B)})$ Figure 5.41: Plane $K_i = 0.04$ Figure 5.42: Plane $K_p = 1$ Figure 5.43: Adjustment surface for the controller NL D $(f_{cost(B)})$ Figure 5.44: Plane $K_i = 0.75$	NL D 124 125 125 125 126 126
Figure 5.39: Comparison of cost function for the controllers: PID, PI-PD and $(f_{cost(B)})$ Figure 5.40: Adjustment surface for the PI-PD controller $(f_{cost(B)})$ Figure 5.41: Plane $K_i = 0.04$ Figure 5.42: Plane $K_p = 1$ Figure 5.43: Adjustment surface for the controller NL D $(f_{cost(B)})$ Figure 5.44: Plane $K_i = 0.75$ Figure 5.45: Plane $K_p = 0.25$	NL D 124 125 125 125 126 126 126
Figure 5.39: Comparison of cost function for the controllers: PID, PI-PD and $(f_{cost(B)})$ Figure 5.40: Adjustment surface for the PI-PD controller $(f_{cost(B)})$ Figure 5.41: Plane $K_i = 0.04$ Figure 5.42: Plane $K_p = 1$ Figure 5.43: Adjustment surface for the controller NL D $(f_{cost(B)})$ Figure 5.44: Plane $K_i = 0.75$ Figure 5.45: Plane $K_p = 0.25$ Figure 5.46: Load rejection study of the controller NL B for three different loads	NL D 124 125 125 125 126 126 126 126 127
Figure 5.39: Comparison of cost function for the controllers: PID, PI-PD and $(f_{cost(B)})$ Figure 5.40: Adjustment surface for the PI-PD controller $(f_{cost(B)})$ Figure 5.41: Plane $K_i = 0.04$ Figure 5.42: Plane $K_p = 1$ Figure 5.43: Adjustment surface for the controller NL D $(f_{cost(B)})$ Figure 5.44: Plane $K_i = 0.75$ Figure 5.45: Plane $K_p = 0.25$ Figure 5.46: Load rejection study of the controller NL B for three different loads Figure 5.47: Representation of the relation between $f_{cost(A)}$ and $\Delta \overline{P}_{load}$	NL D 124 125 125 125 126 126 126 126 127 127
Figure 5.39: Comparison of cost function for the controllers: PID, PI-PD and $(f_{cost(B)})$ Figure 5.40: Adjustment surface for the PI-PD controller $(f_{cost(B)})$ Figure 5.41: Plane $K_i = 0.04$ Figure 5.42: Plane $K_p = 1$ Figure 5.43: Adjustment surface for the controller NL D $(f_{cost(B)})$ Figure 5.44: Plane $K_i = 0.75$ Figure 5.45: Plane $K_p = 0.25$ Figure 5.46: Load rejection study of the controller NL B for three different loads Figure 5.48: Load rejection study of the controller NL D for two different loads	NL D 124 125 125 125 125 126 126 126 127 127 127 128
Figure 5.39: Comparison of cost function for the controllers: PID, PI-PD and $(f_{cost(B)})$ Figure 5.40: Adjustment surface for the PI-PD controller $(f_{cost(B)})$ Figure 5.41: Plane $K_i = 0.04$ Figure 5.42: Plane $K_p = 1$ Figure 5.43: Adjustment surface for the controller NL D $(f_{cost(B)})$ Figure 5.44: Plane $K_i = 0.75$ Figure 5.45: Plane $K_p = 0.25$ Figure 5.46: Load rejection study of the controller NL B for three different loads Figure 5.47: Representation of the relation between $f_{cost(A)}$ and $\Delta \overline{P}_{load}$ Figure 5.48: Load rejection study of the controller NL D for two different loads	NL D 124 125 125 125 125 126 126 126 126 127 127 127 128 128

Figure 6.2: Comparison of the cost function (f _{cost(A)}) for the Lyapunov 4 and Lyapunov51 controllers
Figure 6.3: Comparison of rotor speed
Figure 6.4: Comparison of rotor speed, detail
Figure 6.5: Comparison of the cost function for the controllers: Lyapunov 4, Lyapunov51, NL C, PID, PI-PD and NL D (f _{cost(B)})
Figure 6.6: Comparison of the cost function for the controllers: Lyapunov 2, Gain Scheduling PID, PI-PD and NL B (f _{cost(A)})
Figure 6.7: Comparison of the cost function for the controllers: Lyapunov 2, PI-PD, PID, Gain Scheduling PID and NL B (f _{cost(B)})145
Figure 6.8: Representation of the relation between $f_{cost(B)}$ and $\Delta \overline{P}_{load}$ 146
Figure 6.9: Load rejection study of the controller Lyapunov 4 for two different loads147
Figure 6.10: Graphic of the relation between $f_{cost(B)}$ and $\Delta \overline{P}_{load}$, Lyapunov 4147
Figure 6.11: Graphic of the relation between $f_{cost(B)}$ and $\Delta \overline{P}_{load}$, Lyapunov51147

List of Tables

Table 3.1: List of parameters	. 22
Table 3.2: List of variables	. 23
Table 3. 3: Table of nonlinear models	. 27
Table 3. 4: Table of linearized models	. 36
Table 3.5: Parameters for different power plants	. 47
Table 4.1: Plant Characteristics	. 75
Table 4.2: Conduits Characteristics	. 75
Table 4.3: Parameters of Susqueda power station	. 76
Table 4.4: Values of the nonlinear function $\eta(\overline{G})$ for different gate positions deduced free experimental tests	rom . 79
Table 4.5: Polynomials obtained from the first and third columns of Table 4.4 using method of the least squares	the . 80
Table 4.6: Description of the Models A and their references	. 81
Table 4.7: Description of the Models B and their references	. 84
Table 4.8: Description of the Model C and its references	. 86
Table 4.9: Description of the Model D and its references	. 87

Table 4.10: Quadratic error found using the models A, where the nonlinear function $\eta(\overline{G})$ is approximated by two polynomials with degree 2 and 10
Table 5. 1: Parameters of PID, PI-PD, NL A and NL B controllers
Table 5. 2: Meanings of the parameters of the controllers
Table 5. 3: Values of the parameters for the Gain Scheduling PID and the Gain Scheduling PI-PD (f _{cost(A)}) 104
Table 5.4: Parameters of PID, PI-PD, NL A and NL B controllers109
Table 5.5: Parameter values of the Gain Scheduling PID and Gain Scheduling PI-PD $(f_{cost(B)})$
Table 5.6: Parameters of the PI-PD, PID, NL C and NL D controllers
Table 5.7: Parameters of the PI-PD, PID, NL C and NL D controllers