111

Chapter 5

Conclusions and future work

5.1 Conclusions

We have showed that widely used, single-queue performance models of software
routers implemented with BSD networking software, or similar, and personal computing
(PC) hardware, or similar, incur in significant error when these models are used to study
scenarios where the router’s central processing unit (CPU) is the system’s bottleneck
and not the communications links. Furthermore, we have showed that a queuing net-
work model better models these systems under the considered scenarios.

Armed with a mature characterization process, we have showed that it is possible
to build a queuing network model of PC-based software routers that is highly accurate,
so this model may be use to carry out performance studies at several detail levels. Fur-
thermore, we have showed that model’s service times computed after some system may
be used for predicting the performance of other systems, if scaled appropriately, and
that model’s service times scale linearly with CPU’s operation speed but can be consid-
ered constant with respect to messages’ and routing table’s sizes. Moreover, model’s
service times related to the network interfaces layer have linear behavior with respect to
CPU’s operation speed and their offset varies with respect to the network interface
card’s and device driver’s technology and the cache memory performance.

Using our validated, parameterized, queuing network model, we have quantita-
tively showed that current CPUs allow a software routers to sustain high throughput
when forwarding plain Internet Protocol datagrams if some adjustments are introduced
to the networking software, and that current PC’s input/output (I/O) buses, however, are
the limiting factor for achieving system-wide high performance. Moreover, we have

PH.D. DISSERTATION OsSCAR IVAN LEPE ALDAMA



112 FUTURE WORK—b5.2

quantitatively showed how and when current PC’s I/O buses hamper a PC-based soft-
ware router of supporting system-wide communication quality assurance mechanisms,
or Quality-of-Service (QoS) mechanisms.

Under the light of the above statement, we proposed a mechanism for improving
the resource sharing of the input/output bus of personal computer-based software
routers. This mechanism that we called BUG, for bus utilization guard, does not imply
any changes in the host computer’s hardware, although some special features are re-
quired for network interface cards—they should have different direct memory access
channels for each differentiated packets flow and they should be able to give informa-
tion about the number of bytes and packets stored for each of these channels. When we
use this mechanism in combination with known techniques for CPU usage control, we
quantitatively showed that it is possible to obtain a nearly ideal behavior of the share of
the software router resources for a broad range of workloads.

5.2 Future work

A precise analysis of the results obtained when a BUG protected PCI bus was
loaded with self-similar traffic is missing in this document; see subsection 4.4.5. Recall
that although results confirmed that under the considered load conditions, a BUG pro-
tected PCI bus better follows the ideal behavior of a WFQ bus when compare to a plain
PCI bus. However, these results also showed a departure from the ideal behavior higher
than we expected.

A working implementation for a production system of the BUG is missing in this
document. Currently, an undergraduate student of the Facultad de Informética de Barce-
lona (FIB/UPC) is conducting his final project on this subject. He is implementing the
BUG for a software router running FreeBSD release 4.5 and wearing 3COM’s 3C996
PCI-X/Gigabit Ethernet network interface cards.

We find naturally pursuing to extend our modeling process to embrace the whole
networking software; that is, to model PC-based communication processes involving
Internet architecture’s transport layer protocols and BSD’s sockets layer. This, we think,
is no easy task, as most certainly it would involve user-level application programs that
are subject to the CPU scheduler. That is, the CPU’s extended model would have to in-
clude not only the priority preemptive scheduling policy, which models the software in-
terrupt mechanism, but also a round-robin preemptive policy for modeling the UNIX
CPU scheduler. Furthermore, the CPU’s extended model would have to switch between
scheduling policies depending on the kind of tasks pending execution. In turn, this
would require extending our characterization process for describing the tasks involve
when context switching occurs. Evidently, if such a model could be built it would be
valuable for capacity planning and as a uniform test-bed for Internet services.

We also find tempting to simplify the software router model’s assumptions and to
pursue to solve it analytically. The motivation would be to assess the trade-off between

the model simplification and the error incurred.

Current telematic systems research is focusing on embedded systems for personal
communications and ubiquitous computing. At the same time, current embedded sys-

OSCAR IVAN LEPE ALDAMA PH.D. DISSERTATION



5.2—FUTURE WORK 113

tems wear complex microprocessors (some of which provide performance-monitoring
counters like Intel’s Pentium-class microprocessors do) and execute full-blown PC op-
erating system kernels like OpenBSD or Linux. Under this light we find interesting try-
ing to use our characterization and modeling process for studying the performance of
telematic systems when executed over embedded hardware.

Other performance modeling challenges we find interesting are to study emerging
software router technologies like SMP PC- and PC clusters-based software routers.

PH.D. DISSERTATION OsSCAR IVAN LEPE ALDAMA





