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ABSTRACT

Massively Parallel Processor systems provide the required computational power to solve

most large scale High Performance Computing applications. Machines with physically

distributed memory allow a cost-effective way to achieve this performance, however, these

systems are very difficult to program and tune. In a distributed-memory organization

each processor has direct access to its local memory, and indirect access to the remote

memories of other processors. But the cost of accessing a local memory location can be

more than one order of magnitude faster than accessing a remote memory location. In

these systems, the choice of a good data distribution strategy can dramatically improve

performance, although different parts of the data distribution problem have been proved

to be NP-complete.

The selection of an optimal data placement depends on the program structure, the pro-

gram’s data sizes, the compiler capabilities, and some characteristics of the target ma-

chine. In addition, there is often a trade-off between minimizing interprocessor data

movement and load balancing on processors. Automatic data distribution tools can assist

the programmer in the selection of a good data layout strategy. These use to be source-

to-source tools which annotate the original program with data distribution directives.

Crucial aspects such as data movement, parallelism, and load balance have to be taken

into consideration in a unified way to efficiently solve the data distribution problem.

In this thesis a framework for automatic data distribution is presented, in the context of a

parallelizing environment for massive parallel processor (MPP) systems. The applications

considered for parallelization are usually regular problems, in which data structures are

dense arrays. The data mapping strategy generated is optimal for a given problem size

and target MPP architecture, according to our current cost and compilation model.
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A single data structure, named Communication-Parallelism Graph (CPG), that holds

symbolic information related to data movement and parallelism inherent in the whole

program, is the core of our approach. This data structure allows the estimation of the

data movement and parallelism effects of any data distribution strategy supported by our

model. Assuming that some program characteristics have been obtained by profiling and

that some specific target machine features have been provided, the symbolic information

included in the CPG can be replaced by constant values expressed in seconds representing

data movement time overhead and saving time due to parallelization. The CPG is then

used to model a minimal path problem which is solved by a general purpose linear 0-1

integer programming solver. Linear programming techniques guarantees that the solution

provided is optimal, and it is highly efficient to solve this kind of problems.

The data mapping capabilities provided by the tool includes alignment of the arrays, one

or two-dimensional distribution with BLOCK or CYCLIC fashion, a set of remapping actions

to be performed between phases if profitable, plus the parallelization strategy associated.

The effects of control flow statements between phases are taken into account in order to

improve the accuracy of the model. The novelty of the approach resides in handling all

stages of the data distribution problem, that traditionally have been treated in several

independent phases, in a single step, and providing an optimal solution according to our

model.
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Estic molt en deute amb l’Eduard Ayguadé, el meu director de tesi, per la seva orientació,
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cional. Però em sento endeutat amb l’Uli Kremer per les bones xerrades en aquesta àrea
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1
INTRODUCTION

Automatic data distribution in the context of a parallelizing environment for massive

parallel processors systems is a key topic of current research. In this Chapter we intend

to provide the background of our research, covering architectural issues, the data parallel

programming model, and assistant tools for parallelization. This introduction is followed

by a motivating example that illustrates the importance of data distribution in a real

program. Then, an overview of our environment is presented, which includes a descrip-

tion of the main modules of our tool. At the end of this Chapter we provide a Section

introducing the main HPF data mapping features that will be used along the following

Chapters, and a survey of current HPF compiler implementations.

1.1 BACKGROUND

High performance computing systems provide practical solutions to complex problems,

with accuracies not possible some years ago. Their applicability includes fields such

as weather modeling, environmental modeling and management, manufacturing de-

sign, biomedicine, molecular biology, computational chemistry or computational physics

[HPC97]. For instance, weather models allow meteorologists to track severe storms and

hurricanes with sufficient accuracy to implement more precise evacuation plans so as to

save lives and property. Researchers use numerical simulations to estimate the effect

of major storms and floods on the distribution of toxic materials in lakes and streams.

Ground water contamination is a serious environmental and economic problem, with

detoxification costs for existing sites estimated in the hundreds of billions of dollars. A

1



2 Chapter 1

simulation analysis of the flow about a Delta II rocket, demonstrated an anomaly that

had sent a launch vehicle into the wrong orbit. The modeling of biological membranes

allows researchers to design drugs that need to pass through membranes effectively. The

combination of hardware technology, improvements in parallel languages and compilers,

and development of high performance mathematical and scientific libraries, allows very

large scale applications in science and engineering to be successfully executed.

To meet the high computational requirements of such applications, high performance

computers are needed. Currently high performance computers can be constructed from

available hardware components and produce machines that are highly reliable and ef-

ficient. Massively Parallel Processor systems (MPP) built from off-the-shelf powerful

microprocessors are one of the current trends in affordable high performance computing

systems. Tipically all processors in these systems work together to obtain higher speed in

the program execution. The peak performance provided by these systems is the addition

of the individual performance of each processor. However, programs for these machines

are much more difficult to design, implement, and debug, than sequential programs. The

programmer has to organize the concurrent execution of the program on the parallel

machine. There are two main architectural trends towards the design of MPP: Shared

memory multiprocessors and Distributed memory multicomputers.

Shared Memory Multiprocessor (SMM) systems connect several processors that share a

single physical memory through a switching network or a shared bus. The memory access

. . .
P1 P2 Pn

Main memory

Switching network

Program

Data

Code

parallelization

Figure 1.1 Shared memory multiprocessor architecture.
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time is uniform for each processor. Each processor computes a part of the same program

over a common data set stored on the main memory, as shown in Figure 1.1. With a

small number of processors these systems compute efficiently, but in larger numbers the

access to the main memory causes bottlenecks. The number of processors connected in a

SMM system is heavily limited to the bandwidth of the interconnection network.

Distributed Memory Multicomputer (DMM) systems provide a cost-effective scalability

to solve many large scale scientific problems. In DMM systems, each processor has direct

access to its local memory, and indirect access to the remote memories of other processors

through an interconnection network, as can be seen in Figure 1.2. The key drawback

in DMM systems is that communicating data between processors can be more than one

order of magnitude higher than the cost of accessing a local memory location. These

systems are also called Non-Uniform Memory Access (NUMA), since the memory access

time depends on the location of a datum in memory. Reducing the impact of the high

memory latency may be achieved by restructuring the data in order to make more accesses

local. A good data placement minimizes the remote memory accesses while keeping the

parallelism inherent in the program. Unfortunately, the efficiency of the resulting program

depends on many complex factors of the target machine, such as the processor topology,

synchronization or inter-processor communication overhead.

. . .P1 P2 Pn

Interconnection network

M1 M2 Mn

data distribution

parallelization

Program

Data

Code

Figure 1.2 Distributed memory multicomputer architecture.

The first approach to program DMM machines is to use an existing sequential program-

ming language enhanced with message-passing constructs. The programmer has to design
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the creation, synchronization and communication of parallel processes. This is achieved

by distributing data and work over processors, and keeping track of the program exe-

cution at a very low level of detail. The references of data owned by other processors

are satisfied by inserting appropriate message-passing statements in the code. Managing

communication through low-level constructs is time consuming, error prone, and inhibits

portability between different DMM machines. The resulting programming style can be

compared to assembly programming on a sequential machine.

Data parallel programming languages provide code portability across both shared memory

and distributed memory architectures. For this purpose, data parallel programs must be

able to be compiled on different target machines, and to achieve reasonably high efficiency

on different machines with the same number of processors. These languages allow the

programmer to write code using global data references, but require the specification of

data distribution over the individual memories of the physical processors. In the late

eighties and early nineties, much research has been carried out to design and implement

the first data parallel programming and compilation systems. Some early implementations

such as Superb, Kali, and Booster are summarized in [CP95]. The main interest in

data parallelism was generated by languages such as CM Fortran [TMC91], Fortran D

[FHK+90], and Vienna Fortran [CMZ92]. These languages not only produced features

to assist the user with data alignment and distribution, but also implemented many of

the features. These languages also preceded the effort in producing High Performance

Fortran, or HPF [HPF93]. In fact, HPF was heavily influenced by the language designers

and implementers involved in these languages.

Data distribution is then used to guide the compiler to generate a Single Program Multiple

Data (SPMD) program [Kar87] for execution on the target distributed memory multipro-

cessor. Each processor executes the same program, but operates on different data. This

is implemented by loading the same program image into each processor, and then, each

processor allocates and operates on its own local portion of distributed arrays. The com-

piler has to translate global data references into local and non-local references based on

the data mapping specified by the programmer. All non-local references must be satisfied

by inserting explicit message-passing statements, usually respecting the owner computes
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rule [CK88], according to which it is the processor owning a data item that has to perform

all computations for that datum.

Much work remains to be carried out in the development of these compilers, however the

programmer still has to specify the placement of the data, and understand some features

of the target machine. The choice of a good data distribution is important as it determines

the amount of remote data accesses and the potential parallelism in the resulting program.

The optimal data distribution depends on the program structure, the compiler capabilities,

the characteristics of the target machine, and the program’s data sizes. The layout of the

data may be changed during program execution, this is known as remapping. Due to their

influence on the amount of inter-processor communication, the choice of data mapping

and remapping have a significant impact on the performance of the parallel program. In

addition, there is often a trade-off between minimizing interprocessor data movement and

load balancing on processors. Crucial aspects such as data movement, parallelism, and

load balance have to be taken into consideration in a unified way to efficiently solve the

data distribution problem.

Automatic data distribution tools can assist the programmer in this task. These may be

source to source tools, which annotate the original high level program with data distribu-

tion directives and executable statements offered by data parallel languages. Automatic

data distribution maps arrays onto the physically distributed memory of the processors

according to the array access patterns and parallel execution of operations within com-

putationally intensive blocks of code, named phases. If there is a single mapping for the

whole program, then the solution is said to be static. However, in large problems where

several computationally intensive phases occur, remapping actions between phases may

improve the efficiency of the solution. In this case, the solution is said to be dynamic.

There are many other tools to support the development of parallel programs that can

help the final success of High Performance Fortran. Run-time systems providing pro-

cess management and execution control features, such as breakpointing facilities and

instrumentation services. Parallel debugging tools providing views of different program

levels. Performance analysis and monitoring tools for the identification and tuning of

performance problems. Program restructuring tools that free the user from manually
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transforming the parallel application during the optimization process. Visualization tools

and interactive graphic user interfaces that provide more comprehensive information. All

these tools should be carefully integrated to provide a friendly and unified environment,

useful enough to assist the programmer to write his parallel application codes efficiently.

1.2 MOTIVATING EXAMPLE

In this Section we intend to demonstrate the impacts of the program data sizes and the

target architecture parameters on the data mapping selection. For this purpose we use

the Alternate Direction Implicit (ADI) integration kernel, which defines a two-dimensional

data space of size 256 in each dimension. It has a sequence of initialization loops, followed

by an iterative loop that performs the computation. In each iteration of the loop, forward

and backward sweeps along rows and columns are done in sequence. The ADI source code

can be found in Appendix A.

The computational weight of the program is within the iterative loop, which contains 6

loop nests. In the first three loop nests, data movement takes place across the second

dimension of the arrays, and parallelism can be exploited in their first dimension. There-

fore a row distribution of the arrays may achieve a good performance. However, in the

last three loop nests data movement takes place across the first dimension of the arrays,

and the parallelizable loops traverse the second dimension of the arrays. In this case a

column distribution of the arrays is advisable. This trade-off suggests several data map-

ping choices. The optimal choice depends on the program data size and certain target

architecture parameters.

In order to illustrate the importance of choosing a good data mapping, we will consider

the following five data distributions:

Sequentialization of all arrays within a single processor. This data distribution does

not benefit from the parallel capabilities of the target architecture, but will be con-

sidered for comparison purposes. For shorter, this strategy will be named sequential.
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Static one-dimensional data distribution of the first dimension of each array. This

data mapping will be referenced row for shorter.

Static one-dimensional data distribution of the second dimension of each array. This

data mapping will be named column for shorter.

Dynamic one-dimensional data distribution. In this case the first dimension of the

arrays will be distributed in the first three loop nests within the iterative loop, and

the second dimension of the arrays will be distributed in the last three loop nests

within the iterative loop. This data mapping will be referenced dynamic for shorter.

Static two-dimensional data distribution. Both array dimensions will be distributed

over a two-dimensional processors grid, whose topology is assumed to be squared,

assigning the same number of processors at each array dimension. This data mapping

will be named two dim for shorter.

The number of processors considered for this example is 16, and the data movement

bandwidth assumed is 106 bytes/second. Profiling of the execution time for this code has

been performed on a HP PA-RISC workstation. Table 1.1 shows the estimated speed-up

of the ADI code with different data sizes. The original ADI code has been modified,

declaring arrays of 64× 64, 128× 128, 256× 256, and 512× 512 elements.

N = 64 N = 128 N = 256 N = 512

sequential 1.00 1.00 1.00 1.00

row 1.53 1.69 1.77 1.85

column 1.58 1.72 1.83 1.88

dynamic 2.39 2.48 2.58 2.74

two dim 3.21 3.57 3.79 3.93

Table 1.1 Speed-up for the ADI code with different data sizes.

Note that with this code, all data mapping strategies improve speed-up when the data

sizes are larger. Both the row and the column static distributions tend to reach a speed-

up of 2. Speed-up in the dynamic data mapping is better than any static data mapping.

However high remapping costs limits the speed-up growth. Finally, the two-dimensional

data mapping strategy behaves better than the rest, although speed-up is also limited to

4.
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The impact of the bandwidth of the target machine is much higher. We have compared

the speed-ups of the column, dynamic, and two-dimensional data mapping strategies, with

different bandwidths, ranging from 103 bytes/second to 109 bytes/second, and assuming

16 processors. Results are shown in the graphic of Figure 1.3. Note that with a low

bandwidth, all data mapping strategies tend to a speed-up of zero. With a bandwidth

of 106 the best data mapping strategy is the two-dimensional, although its speed-up is

limited to 4. But with higher bandwidth, the dynamic data mapping strategy grows up

to the optimal speed-up of 16.
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Dynamic mapping
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Figure 1.3 Speed-up for the ADI code with different bandwidths.

1.3 OVERVIEW OF OUR TOOL

Our thesis proposes a new framework for an automatic data mapping tool in the context

of a parallelizing environment for Massive Parallel Processor (MPP) systems. The ap-

plications considered for parallelization are usually regular patterned problems in which

data structures are dense arrays. The tool analyzes Fortran 77 programs and determines

a data mapping and parallelization strategy for this program. This data mapping is used

to annotate the original sequential Fortran program using HPF data mapping and loop

parallelization directives. The data mapping strategy generated is optimal for a given
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problem size and target MPP architecture, according to our current cost and compilation

model.

Profiling the sequential execution of the original Fortran 77 program is required in order to

obtain some problem specific parameters, such as array sizes, loop bounds and execution

time, and probabilities of conditional statements. The main steps performed during the

optimization process are outlined below:

Program Analysis. DDT [AGG+97] acts as a preprocessing platform that parses the

sequential program, and analyzes the code. The analysis includes reference patterns

recognition and optimization, data dependence analysis and phase control flow graph

construction.

Internal Data Structure Construction. The data structure defined in our framework

is the core of our tool. It contains all the information required to estimate the effects

of any possible data mapping and parallelization strategy according to our model.

Optimization Problem Modeling. The main internal data structure is used to model

a minimal path problem. Linear 0-1 integer programming techniques are used to find

the optimal solution.

Data Mapping Strategy Generation. The output of a general purpose linear program-

ming solver is captured and interpreted to generate the data mapping and paralleliza-

tion strategy. The solution derived is optimal according to our model.

Profiling information is obtained using the APR Forge Explorer’s performance profiler

[APR95]. There exists a configuration file which allows the user to specify machine re-

lated parameters, such as number of processors and its grid topology, and interconnection

network bandwidth. The main components in our environment, shown in Figure 1.4, are

described next.

The parsing of the code is performed using the parser module of DDT, another research

tool for automatic data distribution implemented by our group. DDT is built on top of

ParaScope [KMT90], an interactive parallel programming environment developed at Rice
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0-1 Output
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Information

File

Fortran 77
Program

0-1 Model

Figure 1.4 Main components in our optimization environment.

University. All reference patterns are obtained from the source code after performing a

set of optimizations, such as expression substitution, subscript substitution, and induc-

tion variable detection, which improve the quantity and quality of the reference patterns

analyzed [AGG+94].

All this information is used by our tool to generate the internal data structure which

contains all the information regarding data movement and parallelism inherent in the
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original Fortran 77 program. This structure is used to model an optimization problem in

which the optimal data mapping, according to our model, is obtained. The optimization

problem is based on a minimal path problem with a set of additional constraints that

ensures the correctness of the solution. The formulation of this problem as a linear 0-1

integer programming problem is written in a data file which contains the set of constraints

and the objective function that has to be minimized.

LINGO [LIN94] is a general purpose linear programming solver used to find the optimal

solution to the modeled problem. The solver generates an output data file with the value

of each 0-1 integer variable. This file is interpreted by our tool to generate the final file

containing information about the data mapping and the parallelization strategy suggested.

This information can be finally used to annotate the original Fortran 77 source code with

HPF data mapping and loop parallelization directives.

The data mapping strategy generated can be static or dynamic, one or two-dimensional,

with either BLOCK or CYCLIC distribution fashion. The tool estimates the effects of control

flow statements between phases, although when performing estimations of the cost of

different strategies, we assume that the compiler does not perform any loop transformation

or communication optimization. Inter-procedural analysis is not supported.

1.4 HIGH PERFORMANCE FORTRAN

The goal of HPF is to define a Fortran language extension to achieve high performance

in MPP systems. Data parallel constructions allow data parallel programming (single

threaded, global name space, loosely synchronous computation), data mapping features

allow top performance in NUMA computers and multi-machine portability, and intrinsic

functions and extrinsic procedures allow access to low level programming to tune the code

in a specific architecture. In addition to the HPF specification, an official subset is also

defined to allow earlier implementations. The more recent projects in this area, such as

HPF2 or F90D are concerned with adding support to irregular computations and other

less structured work and data distribution strategies.



12 Chapter 1

In this Section we provide an overview of the HPF data mapping features that will be

used along the remainder of this Thesis. In addition, a survey of current HPF compilers

implementation is presented.

1.4.1 Data Mapping with HPF

The HPF directives are structured comments that suggest implementation strategies to

the compiler. They may affect the efficiency of the program, although they do not change

the program semantics. The program should generate the same results whether the di-

rectives are processed or not.

HPF includes data alignment and distribution directives that allow the user to specify

how the compiler allocates data objects across the processors memory. The HPF compiler

interprets these annotations and manages the data placement, minimizing data movement

while retaining parallelism.

There is a three-level mapping of data objects to the physical memory. Data objects,

typically array elements, are first aligned relative to one another. Alignment is performed

across dimensions (inter-dimensional alignment) and within dimensions (intra-dimensional

alignment). This group of aligned arrays is then distributed on an abstract grid of pro-

cessors, according to a given pattern. Finally there is an optional mapping step from

abstract to physical processors.

The ALIGN directive specifies relationships among array dimensions. Arrays are usually

aligned onto a common array declared as the template. The TEMPLATE directive declares

the name, size and dimensionality of a template. Arrays aligned to the same template

are automatically aligned with each other. Inter-dimensional alignment is concerned with

permuting the array dimensions with respect to the template. Intra-dimensional align-

ment allows, for each aligned dimension, shifting, striding, and reversing the ordering.

For instance, in the following code:

REAL A(8, 8), B(8, 8)

!HPF$ TEMPLATE T(8, 8)

!HPF$ ALIGN A(I, J) WITH T(I, J)
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!HPF$ ALIGN B(I, J) WITH T(J-1, I+2)

the array A is exactly mapped onto the template, whereas the array B is transposed with

respect to the template. In addition, the first dimension of B is shifted by +2 with respect

to the template, and the second dimension of B is shifted by −1. This is shown in Figure

1.5.
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REAL A(8, 8), B(8, 8) !HPF$ TEMPLATE T(8, 8) !HPF$ ALIGN A(I, J) !HPF$ ALIGN B(I, J)
WITH T(I, J) WITH T(J-1, I+2)

Figure 1.5 HPF template and alignment directive examples.

The DISTRIBUTE directive specifies a mapping of a group of arrays onto an abstract pro-

cessors grid according to a given distribution fashion, either BLOCK or CYCLIC. A BLOCK

distribution splits an array dimension by slicing it uniformly into blocks of contiguous

elements. The CYCLIC distribution splits an array dimension in such a way that succes-

sive array elements are assigned to successive processors in a round-robin fashion. The

CYCLIC(m) distribution, also known as block cyclic, assigns blocks of m consecutive ele-

ments to each processor in a round-robin fashion. By definition, CYCLIC(1) means the

same than CYCLIC. The symbol * is used to specify the dimensions that are not dis-

tributed. The group of arrays to distribute is usually specified by means of the template.

In addition, the processor arrangement may be specified with the PROCESSORS directive,

which declares its rank and the number of processors in each dimension. For instance, in

the following code:

!HPF$ PROCESSORS P1(4)

!HPF$ TEMPLATE T1(8, 8), T2(8, 8)

!HPF$ ALIGN · · ·
!HPF$ DISTRIBUTE T1(BLOCK, *) ONTO P1

!HPF$ DISTRIBUTE T2(*, CYCLIC) ONTO P1
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the processors arrangement P1 is one-dimensional with 4 processors. The first dimension

of template T1 is distributed in a blocked fashion, and the second dimension is sequen-

tialized. All arrays aligned to template T1 are distributed the same way. Similarly, the

second dimension of template T2 is distributed in a cyclic fashion, as shown in Figure

1.6.a and 1.6.b. Alternatively, in the next code:

!HPF$ PROCESSORS P2(4, 2)

!HPF$ TEMPLATE T3(8, 8)

!HPF$ ALIGN · · ·
!HPF$ DISTRIBUTE T3(BLOCK, CYCLIC) ONTO P2

the processors arrangement P2 is two-dimensional, with 4 processors assigned to the first

dimension, and 2 processors assigned to the second one. In addition, the first dimension

of template T3 is distributed in a blocked fashion across 4 processors, and the second

dimension is distributed cyclically across 2 processors, as shown in Figure 1.6.c. Note

that the first array dimension is distributed by chunks, and the second array dimension

is distributed to successive processors in a round-robin fashion.

4

3

2

!HPF$ PROCESORS P1(4) !HPF$ PROCESORS P1(4) !HPF$ PROCESORS P2(4,2)
!HPF$ DISTRIBUTE T1(BLOCK,*)

ONTO P1
!HPF$ DISTRIBUTE T2(*,CYCLIC)

ONTO P1
!HPF$ DISTRIBUTE T3(BLOCK,CYCLIC)

ONTO P2
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Figure 1.6 HPF processors and distribute directive examples.

An object can be remapped by realigning or redistributing it. In this case communication is

required to move the data, in order to reflect the new mapping. Realignment is performed

using the REALIGN directive, which is considered executable. Redistributing an object

causes all objects aligned with it also to be redistributed to maintain the alignment

relationships. This is performed using the REDISTRIBUTE directive, which is considered

executable as well. Realignment and redistribution directives may appear only in the

execution part of a program at any time, provided the objects have been declared dynamic,

using the DYNAMIC directive.
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For instance, in the following code fragment:

REAL A(8, 8), B(8, 8)

!HPF$ PROCESSORS P(4)

!HPF$ TEMPLATE T(8, 8)

!HPF$ DYNAMIC A, B, T

!HPF$ ALIGN A(i, j) WITH T(i, j)

!HPF$ ALIGN B(i, j) WITH T(i, j)

!HPF$ DISTRIBUTE T(BLOCK, *) ONTO P

· · · code · · ·

!HPF$ REDISTRIBUTE T(*, CYCLIC)

· · · code · · ·

!HPF$ REALIGN A(i, j) WITH T(j, i)

both arrays A and B have been declared dynamic, as well as the template T . The redistri-

bution directive causes all arrays aligned to the template to be dynamically redistributed,

and the realignment directive causes array A to be realigned, transposing it with respect to

the template. Remapping can require a lot of communication effort at run time, therefore

the programmer must take care when using these directives.

There are many other HPF features not included in this Section, either related to data

mapping or data parallelism. However they are not relevant to our work on automatic

data mapping. A full HPF language description can be found in [HPF93].

1.4.2 Compilers for HPF

The HPF standards became publicly available by Spring of 1993. In the following years

substantial progress has been made in finding solutions to many problems of implementing

the language and data features defined in HPF. In addition to the HPF specification, an

official subset has also been provided to allow earlier implementations. A wide range

of systems are currently being implemented by various research groups and commercial

companies.

Commercial HPF compilers have appeared for a broad range of architectures, from work-

station clusters to massive parallel processor systems. However, many research groups
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Compiler Name Research Institution Support

ADAPTOR GMD - SCAI F+

Annai Environment CSCS - NEC O+

The D System Rice University S+

HPFC Ecole de Mines de Paris S+

PANDORE IRISA S

PARADIGM University of Illinois at Urbana-Champaign S

shpf University of Southampton O+

vfcs University of Vienna S+

Table 1.2 List of currently available research compilers for HPF. F: full language defi-

nition; O: official subset; S: some features; +: additional features.

have targeted their efforts toward a more effective compilation of HPF programs, includ-

ing in some cases features not included in the official definition of the language. Table 1.2

shows a list of some of the available compiler prototypes for HPF developed at research

institutions or universities. HPF compilers presented in Table 1.3 are commercial. Both

tables show whether the compiler handles the full definition of the language (F), the offi-

cial subset defined for it (O), or just some features (S). They also show if new features (+)

Compiler Name Company Name Support

EXPERT HPF Associated Computer Experts O

Fortran 90 HPF Digital Equipment Corporation F+

HPF Mapper N.A. Software O

Paragon HPF Intel Corporation F-

pghpf Portland Group Inc. F-

TM/HPF Thinking Machines Corporation O+

VAST-HPF Pacific Sierra Research Corporation F-

xHPF Applied Parallel Research S

XL HPF IBM Corporation S

Table 1.3 List of currently available commercial compilers for HPF. F: full language

definition; O: official subset; S: some features; +: additional features.
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have been included in the standard definition. A more detailed study of these compilers

can be found in [PAGT97] 1.

In summary, only one implementation is available for the full language, but it also includes

extra features, namely, DEC Fortran 90 HPF. Some other implementations have omitted

some features of the official HPF standard, like GMD-SCAI’s Adaptor, Intel Paragon

HPF, The Portland Group pghpf, or VAST-HPF. The same is true for the official subset

with the Annai Tool Environment, Southampton’s shpf, ACE Expert HPF, and Thinking

Machines TM/HPF. The other implementations still have to implement some features for

the official set or subset.

1This information is also available and updated at http://www.ac.upc.es/HPFSurvey/





2
RELATED WORK

In this Chapter we present the work related to automatic data distribution that we think

that is the most representative on this topic. Some of this work has influenced on our re-

search. In addition, an overview of previous research developed by our group is also given.

From this experience, we started from the scratch with a novel approach towards finding

an optimal data distribution and parallelization strategy. The main aspects of our work

are described and compared to the related work, and the most important contributions

of this Thesis are finally enumerated.

2.1 RELATED WORK

There is a large number of researchers that have addressed the problem of automatic

data distribution in the context of regular applications. The main differences between the

proposed methods is the kind of structure selected to represent the problem, the perfor-

mance estimation model adopted, and the techniques applied to find a solution. Most of

them split the static problem into two main independent steps: alignment and distribu-

tion. The alignment step tries to relate the dimensions of different arrays, according to

the access patterns between them. A good alignment will minimize the overall overhead

of inter-processor data movement. The distribution step decides which of the aligned

dimensions are distributed, and the number of processors assigned to each of them. A

good distribution maximizes the potential parallelism of the application, and offers the

possibility of further reducing data movement by serializing. The main features of some

systems are described below.

19
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Li and Chen

Li and Chen [LC90, LC91], have been involved in the Crystal language and compiler

project at Yale University. Crystal is a high level functional language, compiled for

execution on a massively parallel distributed-memory machine. They address the generic

problem of automatic data layout, although they concentrate on the problem of finding a

static inter-dimensional alignment within a single phase. In addition, they have developed

a methodology for communication synthesis in generating parallel programs for DMM

systems.

On compilation, a Crystal program is first decomposed into code blocks, named phases,

each of which is treated as a unit in the layout problem. The alignment and distribution

problems are independently solved for each phase, and the results of different phases are

finally merged.

They solve the alignment problem in two separate steps: the inter-dimensional alignment

step, in which permutation and embedding are considered; and the intra-dimensional

alignment step, in which shift and reflection is considered. The inter-alignment problem

is modeled as a graph problem. The graph is called the Component Affinity Graph (CAG),

and it is constructed from an analysis of the reference patterns in the source program. The

nodes in the graph represent array dimensions, and are grouped by columns, where each

column represents the components of the same array. An edge represents a preference for

alignment between the connected dimensions. They assign weights to the edges of the

CAG to reflect the strength of the preference, however their metric is reduced to weights

of ε or 1. All edges between a pair of nodes are replaced by a single edge whose weight is

the sum of the original weights.

For instance, consider the following code fragment:

do i = 2, N

do j = 1, N

A(i, j) = B(i-1, j) + 1

B(i, j) = A(i, j) + 2

C(j, i) = B(i, j) + 3

enddo

enddo
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with a loop nest, in which three reference patterns are identified:

A(i, j)← B(i− 1, j)

B(i, j)← A(i, j)

C(j, i)← B(i, j)

The reference patterns determine affinity relations between array dimensions. The gener-

ated CAG is illustrated in Figure 2.1. This consists of three columns with two nodes each.

According to the affinity relations in the reference patterns, six edges are included, but

only four of them are different. The graph contains global information about alignment

preferences.

A B C
2

2

1

1

Figure 2.1 Example of a Component Affinity Graph.

The alignment problem is formulated as an optimization problem where edges in the CAG

may carry different weights. They proved the alignment problem to be NP-complete in

[LC90], so they present a heuristic algorithm to solve it. The algorithm is an enhanced

greedy algorithm where a single array is chosen at each step for aligning with the target

domain, and there is no back-tracking.

For the distribution step they propose to match the aligned reference patterns to a prede-

fined set of data movement routines [LC91]. Each routine has an architecture-dependent

cost parameterized in terms of number of processors involved in the data motion and the

amount of data moved. The cost function for all the patterns is minimized by generating

all possible distributions and selecting the most effective. They did not solve the dynamic

problem, although their CAG has been used by many other researchers as the main data

structure to solve the alignment problem.
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Wholey

Wholey [Who92] at Carnegie-Mellon University developed a compiler for the ALEXI high

level language. Communication and parallelism are expressed by using a small set of

primitives, that manipulate elements of arrays in parallel. The ALEXI system breaks the

data mapping problem into two parts, alignment and layout, as they assume the alignment

problem to be architecture independent.

For the alignment step, he adopted the Preference Graph defined by [KLS90] in the

framework of SIMD architectures, which allows the addition of parallelism related infor-

mation while solving the alignment problem. However, its solution is based on heuristic

techniques.

The execution time is estimated using a cost estimate function which is constructed from

the source program in a straightforward way. Each primitive has an associated cost

function which computes the running time given the descriptions of the mapping of its

arguments. When the problem size is not known at compile time, default values are used

instead of profiling information. The estimated time of a program is then computed as

the addition of the estimated times of each individual array primitive.

In order to solve the layout step, he uses a hill climbing search method as an approx-

imation. Initially all data is assigned to a single processor, and this cost is computed.

Then the number of available processors is doubled and the new cost is computed. This

process is iteratively performed until all available processors have been distributed, or

until the total cost is not further reduced. Multi-dimensional distributions are supported,

but only for communication purposes. Nested parallelism is not addressed, nor dynamic

data layouts.

Gupta and Banerjee

Gupta and Banerjee [GB93] at the University of Illinois at Urbana-Champaign, imple-

mented the PARADIGM compiler on top of the Parafrase-2 system, which is used to

provide internal information about the program. They developed a methodology for auto-
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matic data partitioning given a sequential or shared-memory parallel program, generating

SPMD programs with explicit communication.

They split the automatic data distribution process in four passes. The align pass maps

each array dimension to a processor-mesh dimension. The block-cyclic pass determines

for each array dimension, whether it should be distributed in a blocked or cyclic manner.

The block-size pass determines the block size for each dimension distributed in a cyclic

manner. And the num-procs pass determines the number of processors assigned in each

of the processor-mesh dimensions, assuming that the maximal number of distributed

dimensions is two.

They estimate computational costs from the estimation of the computation of a single

instance of each statement, and the count of the number of times that statement is ex-

ecuted. They also consider synchronization delays. For the communication costs they

perform an accurate analysis of data sizes, number of processors involved in the commu-

nication, where the communication would be placed, and number of iterations that the

communication takes place.

During the alignment step, they use the CAG defined in [LC90], although their metric

to weight edges is more accurate. They assume a default distribution, and for each edge,

they try to estimate the extra communication cost incurred if those dimensions are not

aligned. Unfortunately, it is not possible to find a single alignment configuration under

which the communication costs may be compared to determine this extra communication

cost. However, this proposal is more accurate than the previous one, although they use

the same heuristic algorithm to solve the alignment problem.

For each aligned array dimension, they decide if the distribution fashion has to be block

or cyclic. This is performed by estimating the penalty incurred in execution time if the

distribution is block, and if the distribution is cyclic, and the compiler chooses the one

with the higher value. If the distribution selected is cyclic, they obtain a block size for

the corresponding dimension.
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Finally, they decide the candidate dimensions to distribute, assuming again a default

number of processors to be assigned in each dimension and estimating the total data

movement plus computation cost. When more than one dimension is candidate to be

distributed, they choose two of them and decide the number of processors to be assigned

at each dimension by generating all possible combinations.

The final data partitioning generated is static, i.e. dynamic remapping is not supported.

A solution for the dynamic approach has actually been proposed by Palermo and Banerjee

in [PB95] using [GB93] to find the static mapping for each phase in the program. They

propose a divide-and-conquer approach in which the program is recursively decomposed

into a hierarchy of candidate phases. Then, estimating the costs of remapping between

these candidate phases, a shortest path algorithm determines the final sequence of phases

with the lowest cost.

Kremer and Kennedy

Kremer and Kennedy [KK95, Kre95] at Rice University, designed a framework to be

used inside a data layout assistant tool for Fortran 77 that generates Fortran D or HPF.

A prototype based on their framework has been implemented as part of the D system

[ACG+94].

Their framework for automatic data layout consists of four steps. First they partition

the program into program segments named phases. Then a set of candidate layouts are

built for each phase. In the third step, each candidate data layout and their possible

data remapping are evaluated in terms of estimated execution time. And finally, based

on these estimations, the optimal data layout strategy is selected.

As usual, they split the static data layout problem for a single phase in two stages:

alignment and distribution. The first stage is based on the CAG, but they formulate the

inter-alignment problem as a linear 0-1 integer programming problem, which provides an

exact solution for their model. Instead of selecting the best alignment, a promising set

of alignment candidates is selected, and the decision of selecting the final alignment is

postponed until all distribution candidates are known.
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Distribution analysis is performed after the alignment analysis. An exhaustive distribution

search is performed, considering BLOCK and CYCLIC distribution. Once the distribution

candidates have been determined, the cross product of alignment candidates and distri-

bution candidates defines the candidate data layout search spaces for each phase. The

user can limit the number of candidate data layout selected for each phase.

Each candidate data layout and each possible remapping action between candidate data

layouts are evaluated in terms of expected execution time. Their approach to estimate

performance is based on training sets [BFKK91]. A training set is a collection of kernel

routines that measure the cost of several communication and computation patterns. The

statements in the source code are matched to a previously defined training set, and the

measured cost is used as the execution estimation.

As a result of the performance estimation step, estimated execution times for all candidate

data layouts and possible remapping between layouts are available. The data layout search

space is modeled with the Data Layout Graph, which has one node for each candidate data

layout, and edges represent possible remapping between phases. Again, the problem is

modeled as a minimal path linear 0-1 integer programming problem suitable to be solved

by a state-of-the-art general purpose integer programming solver [BKK94b]. Kremer

proved in [Kre93] that this exploration is NP-complete.

Anderson and Lam

Anderson and Lam [AL93] have implemented their algorithms in the SUIF compiler at

Stanford University. They propose a methodology to for automatically decompose both

data and computation onto a virtual processor array. Their main interest is to find

the shape of the decompositions, and do not worry about load balancing, block size of

cyclic distributions, or determining the number of physical processors to lay out in each

dimension. In addition, as the target compiler used is SUIF, they can generate data

decompositions that can not be specified by means of HPF directives.

Initially, the compiler apply unimodular transformations in order to leave loop nests

in a canonical form (fully permutable), and positions parallel loops at the outermost
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level. They have developed a mathematical framework for expressing and calculating

data and computation decompositions, and propose an iterative algorithm that looks for

communication-free static decompositions for a single loop nest.

If communication-free decompositions can not be found, they propose to remove the con-

straints that force the sequential execution of a loop. This simplification requires to

introduce nearest-neighbor communication, and will result in pipelined execution. The

resulting decomposition is solved as a communication-free decomposition. Their commu-

nication cost estimation model is reduced to inexpensive and expensive data movements.

Finally, they describe the Communication Graph to model dynamic decompositions, and

a heuristic algorithm to find the final dynamic decompositions. The algorithm tries to join

loop nodes in order to eliminate possible remapping costs. Two nodes are merged if the

performance of both nodes with the same decomposition is higher than the performance

of each individual decomposition plus the remapping cost. They proved in [AL93] that

the dynamic data distribution problem in the presence of control flow between loop nests

is NP-hard.

Schreiber et al.

Schreiber et al. [CGS93, CGSS94] at the Research Institute for Advanced Computer Sci-

ence and at Xerox Park, in the framework of the Excalibur project, propose a methodology

for compiling array-oriented languages, such as Fortran 90.

They have developed a data flow representation called the Alignment Distribution Graph

(ADG), consisting of ports, nodes and edges. Ports represent array objects, nodes rep-

resent program operations and edges connect definitions of array objects to their usage

in these operations. In [CGS93] they solved the alignment problem using a dynamic pro-

gramming approach, trying to minimize data movement costs. In [CGSS94] they use a

divide-and-conquer approach to the dynamic mapping problem. They initially assign a

static mapping valid for all the nodes and then recursively divide them into regions which

are assigned different mappings. Two regions are merged when the cost of the dynamic
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mapping is worse than the static mapping considering computation, data movement, and

remapping costs.

They also propose techniques in [SSGC95, SSP+95] to reduce the graph complexity trans-

forming the ADG into the Constraint Graph, and further simplifications by graph con-

traction techniques.

Other Proposals

There are several other researchers that in the last few years have developed some other

new data distribution approaches. A summary of some of them is given as follows.

The FCS system [CP93] considers the problem in the framework of a data distribution

tool for Fortran90 source codes. A phase is basically a DO-loop containing array-syntax

assignment statements or WHERE masks in its body. Instead of looking for the optimal

solution, they use a tree-exhaustive algorithm with some heuristics to prune the search

space. A Conflict Table storing the conflicts between the mappings of the arrays from

one phase to the other is the basis of the remapping algorithm. From this information, a

tree showing all the different alternatives of remapping is built. The aim is to determine

the path in the tree with the lowest cost. The full remapping tree can easily grow to

intractable proportions.

In [CFZ93], a prototype to be included into their VFCS system is described, with the

CAG as a basis for the alignment step. In the distribution step they propose as heuristic

a bottom-up pass over the call graph to select a set of considered distributions for the

arrays, and a top-down pass to select the final array distributions.

[DHR93] describe a parallelizing process, in which a methodology for data distribution

is proposed. An exhaustive exploration tree of all possibilities is generated to solve the

dynamic problem, and limits redistribution at the outermost loop level in order to reduce

the complexity. Their cost model is based only in the data movement, and propose

branch-and-bound to further reduce complexity.
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[Fea93] considers the static distribution of data and computation among a two-dimensional

processors geometry, in a DMM. The source code is restricted to assignments and DO

loops. He constructs the Dataflow Graph that allows the representation of communication

patterns in the source program. He concerns in minimizing communication, and seeks

parallelism by scheduling statements. The algorithm used is a greedy algorithm based on

the gauss-Jordan elimination.

[XN94] solve the alignment and distribution problems. During the alignment step they

define the Alignment Graph, and propose a greedy algorithm as a heuristic to compute

the graph. In the distribution step trapezoid distributions are considered as a universal

distribution pattern to maximize processor load balance and minimize neighboring data

movement.

[NDG95] as part of their EPPP system, describe a technique to decompose computation

and data for distributed memory machines. The program is divided into collections of

loop nests (Clustering Algorithm), and for each nest, decomposition and data locality

constraints are formulated as a system of homogeneous linear equations (Locality Algo-

rithm). Both algorithms are polynomial in complexity. They exploit several types of

parallelism.

[Lee95] extends the CAG for two-dimensional alignments but uses the same heuristic to

compute the graph. He proposes a dynamic programming algorithm that heuristically

determines the dynamic data distribution for the full program. Some optimizations to

hide data movement latency by data pipelining are described.

[KP96] define a weighted graph to solve the dynamic data distribution problem, taking

into account several loop transformations, such as loop interchange and distribution. The

graph includes communication and parallelism information. They formulate a minimal

path algorithm, and perform an exhaustive search with pruning strategies to find the

solution.

Some other authors [RS91, BKK+94a] present methods to obtain communication-free

data distributions using matrix notation, and solving the problem with linear algebra.
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When communication-free partitioning of the arrays is not possible, they propose different

problem formulations to minimize communication costs.

2.2 PREVIOUS WORK IN OUR GROUP

Some of the work referenced previously has influenced our research, however we obtained

a lot of experience with the implementation of our first automatic data distribution tool

(DDT and later PDDT), that derives inter-procedural dynamic multi-dimensional data

distributions. Following there is a description the previous work developed by our group.

DDT

In 1992 our group started a research project to evaluate the quality of some methods which

automatically derive data partitions from sequential code. The name of the project is Au-

tomatic Data Distribution for the Convex MPP, and was supported by Convex Computer

Corporation and Convex Supercomputer S.A.E. The objective of the research project was

the implementation and evaluation of two existing techniques for automatic data dis-

tribution: one based on the CAG by Li and Chen [LC90] and the other based on the

communication-free approach by Huang and Sadayappan [HS91]. The platform chosen

for the development of the tool was the ParaScope [KMT90] parallel programming envi-

ronment developed at Rice University. In a first phase the group performed an exhaustive

study and selection of application codes. Some results of this study have been published

in [ALG+93, ALG+94, ALG+95]. In a second phase we implemented both methods and

obtained the first preliminary results. The approach by Li and Chen was improved, and

its results have been published in [AGG+94]. The tool, called Data Distribution Tool

(DDT), was enhanced in order to support a wider range of distributions, redistributions,

and to perform inter-procedural analysis [AGG+95].

DDT analyzes Fortran77 programs and annotates them with directives and executable

statements of HPF. The decisions are done so that the amount of remote accesses is re-

duced as much as possible, while maximizing the parallelism achieved. DDT is targeted

to generic Non-Uniform Memory Architectures (NUMA) with local and remote memory
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accesses. Each processor has its own memory hierarchy and can access the memories

in other processors through the interconnection network. Data movement costs are esti-

mated as the number of remote accesses multiplied by the remote access time. Given a

parallelization strategy, computation costs are estimated from a profile of the sequential

execution on a workstation based on the same processor and with the same memory hier-

archy than the parallel machine (which is a common fact in most of the hardware vendor

product lines).

Profiling the sequential execution of the original Fortran 77 program is required in order

to obtain some problem specific parameters, such as array sizes, the number of iterations

for the loops and their execution time, and the probabilities of the different branches in

conditional statements. There exists a configuration file that allows the user to specify

some machine specific parameters (such as number of processors, overhead of parallel

thread creation and local and remote memory access costs), and to restrict the kind

of solutions explored by DDT (such as number of distributed dimensions and loops to

parallelize, static or dynamic solutions or number of candidate mappings for phases and

procedures). All cost estimations in DDT are performed numerically assuming the above

mentioned problem and machine specific parameters.

The main steps of the unified data distribution and loop parallelization process performed

by DDT are outlined below:

Program analysis. ParaScope acts as a preprocessing platform that parses the sequen-

tial program into an intermediate representation and analyzes the code to generate

flow, dependence and call graphs. DDT performs some optimizations in the anal-

ysis, such as expression substitution, subscript substitution, and induction variable

detection, in order to obtain more information from the source program.

Detection of phases or computationally intensive portions of code, which mainly cor-

respond to nested loops and calls to procedures. A phase control flow graph is built,

where nodes represent phases or control flow statements, such as loops surrounding

phases or conditional statements, and edges connect nodes when there is a flow of

control between them. Redistribution actions can only happen between these phases.
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Figure 2.2 Main components of DDT.

Alignment for each previously detected phase. This selection is performed based on

an analysis of the reference patterns and data dependences within the scope of phases.
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The inter-dimensional alignment is based on the Component Affinity Graph defined

in [LC90], but improved in order to include parallelization information. The heuristic

algorithm used has also been improved in order to obtain better alignments. Intra-

dimensional alignment is also performed.

Distribution of the set of aligned arrays. For the distribution step, an exhaustive

exploration is performed. In this step, the data movement and parallelism costs are

estimated. Each solution represents a particular distribution of the elements of the

arrays and a parallelization strategy for the loops in the nest. The kind of solutions

currently handled by DDT are BLOCK or CYCLIC multidimensional distributions. After

this step, a set of candidate solutions has been generated for each phase.

Analysis of compatibility among phases, and selection of solutions for each of them.

This selection is done by analyzing the cost of phases in terms of data movement

and computation time, and its benefits in the cost of successive phases. A recursive

algorithm (that includes a cost function to control the pruning of the search space)

explores the combination of the alternative solutions for each phase.

Code generation. Generation of HPF directives to specify the data distribution strate-

gies and parallelization directives that determines loops that are run sequentially or

in parallel, according to the data distribution strategy. These directives are inserted

to the Fortran 77 source program, generating a new HPF source file.

The process described above is done under control of the inter-procedural analysis module;

this module builds the call graph for the entire program and records information about

call sites and actual arguments. Once built, a bottom-up pass over the call graph decides

the order in which procedures are analyzed, analyzes them and records information into

the DDT inter-procedural database.

The native HPF compiler for the target machine is used to translate the annotated For-

tran77 code generated by DDT into an efficient code, taking care of all the aspects related

to scalar optimizations, further locality exploitation and proper storage of the arrays. All

this work is summarized in [AGG+97].
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For instance, an outline of the HPF program generated by DDT as a result of analyzing the

ADI program is shown in Figure 2.3. Statements in the loop bodies have been intentionally

omitted for simplicity. The HPF directives inserted to the original source code can be

seen in bold font.

program adi
double precision x(256,256)
double precision a(256,256), b(256,256)

CHPF$ TEMPLATE TARGET(256,256)
CHPF$ ALIGN a(i,j) WITH TARGET(i,j)
CHPF$ ALIGN b(i,j) WITH TARGET(i,j)
CHPF$ ALIGN x(i,j) WITH TARGET(i,j)
CHPF$ DYNAMIC, DISTRIBUTE TARGET(BLOCK,*)

do 1 i = 1,  256
...

1 continue
do 2 j = 2, 255

do 2 i = 1,  256
...

2 continue
do 3 i = 1,  256

...
3 continue

do 10 iter = 1, 10
C ADI forward & backward sweeps along rows
CHPF$ REDISTRIBUTE TARGET(BLOCK,*)

do 4 j = 2,  256
do 4 i = 1,  256

...
4 continue

do 5 i = 1,  256
...

5 continue
do 6 j = 255 , 1, -1

do 6 i = 1,  256
...

6 continue
C ADI forward & backward sweeps along columns
CHPF$ REDISTRIBUTE TARGET(*,BLOCK)

do 7 j = 1,  256
do 7 i = 2,  256

...
7 continue

do 8 j = 1,  256
...

8 continue
do 9 j = 1,  256

do 9 i = 255 , 1, -1
...

9 continue
10 continue

end

Figure 2.3 Source code for ADI with HPF data mapping and remapping directives

generated by DDT.

PDDT

In 1995 the project was extended with the name Integrating Data and Work Distribution

in the Exemplar Systems. The goal is to apply the techniques developed for distributed

memory multiprocessors to cache-coherent shared memory parallel systems. In these

systems, cache miss penalties can be significantly large and false sharing, invalidations

and excessive data replication can have negative effects in performance. In some cases,

these effects can easily offset any gain due to parallel execution.
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The motivation of this change is that the technology developed for distributed memory

compilers can be useful for shared memory architectures in which each processor has access

to a high-capacity private cache. In these systems, the cache behaves as an attraction

local memory that stores data referenced by the processor. Trying to minimize true and

false sharing reduces data motion through the interconnection network. The techniques

we have developed represent the application of the owner computes rule, frequently used

in distributed-memory systems, to shared-memory machines.

The name of this new tool is Parallelization and Data Distribution Tool (PDDT), which

accepts programs written in Fortran 77, and generates code for either distributed network

caches like the Globally Shared Memory Convex SPP systems [CON94], or private caches

in bus based symmetric multiprocessor systems like the Power Challenge SGI systems

[Sil96]. This work has been published in [AGGL96].

Most current shared-memory compilers choose a loop in each nest for parallelization, and

it is interchanged as far out as data dependence analysis allows. Inner loops are strip-

mined and blocked to exploit all possible data reuse in the processor cache. Iterations in

each parallel loop are distributed across the parallel threads according to a fixed scheme.

Some compilers also ensure that each major data structure in the program is aligned

on a cache line boundary and make the contiguous dimension of an array (i.e., the first

dimension in Fortran) an integer multiple of a cache line. This is useful to avoid false

sharing of cache lines so that each processor works with complete cache lines.

In a parallel loop, a chunk of iterations is assigned to each processor. The execution of this

chunk will bring any remote data to its cache. Notice that data remapping is implicitly

done by the caching mechanism itself. We propose to parallelize loops taking into account

the data that is stored in the private cache of each processor, either because it has been

previously computed or fetched in other loops, or that needs to be stored in the cache

because it will be useful in the following loops. PDDT keeps track of the array sections that

are accessed during the execution of the different computational phases in an application

in order to decide, with a global view, the parallelization strategy for each loop. This

is done by analyzing the reference patterns inside computational phases and predicting

the cache behavior that different parallelizations would imply. The generation of code
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for the target shared-memory programming models makes intensive use of well known

techniques, such as loop tiling and loop limit adaptation to partition the iteration space,

loop interchange to reduce the overhead of parallel thread creation and improve spatial

locality, and parallel synchronized execution of dependent loops to minimize execution

time.

In cache-coherent shared-memory systems, false sharing might also introduce additional

data motion. Since data is transferred in cache lines, for instance 128 bytes long in SGI

Power Challenge multiprocessors, different processors may share the same cache line and

never access to the same data items. Every time a processor writes a data item in the

line, other copies of the same line are invalidated. When another processor re-uses a

data item (col-located on the same cache line), the item may no longer be in its cache

due to the access by the other processor. Therefore, spatial locality may be lost and

additional data movement may happen. PDDT also addresses the problem of minimizing

false sharing by synchronizing the access to cache lines shared by different processors in

parallel loops. In addition to that, PDDT also pads the contiguous dimension of arrays

to make it multiple of cache line size and aligns major data structures to cache line

boundaries. Other techniques oriented to the optimization of code for uniprocessor cache

performance are left to the native compiler of the target parallel machine.

PDDT transforms the original source code in order to provoke the program to behave as

assumed by PDDT. For instance, the transformed code for phases 4 and 7 of program ADI

generated by PDDT can be seen in Figure 2.4. Note that phase 4 has been parallelized

with pipelining to minimize false sharing. Phase 7 has been parallelized for chunk affinity

and pipelined to minimize the sequentialization due to data dependences. The number of

processors assumed is 8, and the chunk size is 4 in both phases.

PDDT is a research tool in the sense that it is flexible to specify machine dependent

characteristics and to specify different compilation options and strategies. In addition to

automatic parallelization, PDDT is also a performance prediction tool that may help the

user in the task of writing parallel code for the target machine; it accepts directives in the

source program which narrows the search space of solutions and provides the user with

information about the behavior of the program.
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do 10 iter = 1, MAXITER
...
do jj = 1, NUM, 2

token(jj) = NUM/2
token(jj+1) = 0

enddo
C$PAR PARALLEL DO LOCAL(i, j, jj, my$p, lb$i, ub$i, next$p)

do my$p = 0, 7
lb$i = max((my$p * NUM / 8) + 1, 1)
ub$i = min((my$p + 1) * (NUM / 8), NUM)
next$p = 1
do jj = 2, NUM, 4

444 if (next$p .gt. token(my$p+1)) goto 444
do 4 j = jj, min(jj + 3, NUM)

do 4 i = lb$i, ub$i
...

4 continue
token(my$p + 1) = token(my$p + 1) + 1
next$p = next$p + 1

enddo
enddo
...
do jj = 1, NUM

token(jj) = 0
enddo

C$PAR PARALLEL DO LOCAL(i, j, jj, my$p, lb$i, ub$i)
do my$p = 0, 7

lb$i = max((my$p * NUM / 8) + 1, 2)
ub$i = min((my$p + 1) * (NUM / 8), NUM)
do jj = 1, NUM, 4

777 if (token(jj) .ne. my$p) goto 777
do 7 j = jj, min(jj + 3, NUM)

do 7 i = lb$i, ub$i
...

7 continue
token(jj) = token(jj) + 1

enddo
enddo
...

10 continue

Figure 2.4 Transformed code for phases 4 and 7 of ADI generated by PDDT.

2.3 CONTRIBUTION OF THIS THESIS

Most automatic static data distribution approaches [LC90, Gup92, KK95, SSGC95,

AGG+94] decompose the data mapping process into two main steps: alignment and dis-

tribution. The alignment step finds appropriate relative alignments between all arrays in

a block of code; for each array: (i) it decides the dimensions that will be combined with

the dimensions of another array called the template (inter-dimensional alignment) and,

(ii) for each aligned dimension, it decides the relative offset between the array and the

template dimensions (intra-dimensional alignment). In [LC90] the authors proof that the

inter-dimensional alignment problem is NP-complete. Once the alignment has been per-

formed, the distribution step decides which dimension or dimensions of the template are

distributed, the number of processors assigned to each of them, and the distribution fash-

ion, i.e. BLOCK or CYCLIC. Alignment tries to minimize interprocessor communication and

distribution tries to maximize the potential parallelism of the code, balance the compu-

tational load, and further reduce communication by serializing. However, these two steps
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are inter-related and should be important to examine the opportunities for parallelism

when considering the alignment of the arrays.

In large programs where different computationally intensive phases occur, remapping

actions between phases can increase the efficiency of the solution. In this case, a reasonably

good solution is assumed independently for each phase, and remapping actions ensure

that each phase executes with its solution. Note that the data mapping selection for one

phase affects the decision of how to map the data and parallelize the loops in the next

phase. Since it may be advantageous to select suboptimal mappings for some phases most

dynamic data mapping methods proposed [CP93, BKK94b, SSP+95, PB95, AGG+95]

consider a set of suboptimal mappings for each phase in order to perform the global

analysis. However, this approach is a simplification, as long as only a subset of possible

mappings are taken into account. In [Kre93] Kremer demonstrates that the optimal

selection of a single mapping for each phase between a set of candidate mappings, is again

NP-complete. And in [AL93] Anderson and Lam show that their model of dynamic data

mapping problem in the presence of control flow statements between phases is NP-hard.

Our work has focussed on developing a novel approach towards automatically finding

the best static or dynamic, BLOCK or CYCLIC, one-dimensional or two-dimensional data

mapping strategy for a program, given the number of available processors and the problem

size. The applications considered are regular problems, in which data structures are dense

arrays. The solution generated takes into account the effects of control flow statements

between phases, and includes the alignment and distribution of all the arrays at each

phase, a set of remapping actions between phases if profitable, and the loop parallelization

strategy induced by the data mapping.

The main contributions of our work can be summarized as follows:

We have defined a new data structure named Communication-Parallelism Graph

(CPG), that contains all the information required to consider all phases of the data

mapping problem. This single data structure holds all data movement and paral-

lelism information inherent in each phase of the program, plus additional information

between phases denoting the data movement cost occurred if the distribution of one
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array in one phase is different than the distribution of the same array in another

phase.

The CPG allows us to easily estimate the performance effects of any selected mapping.

This may be useful as a training tool, in which the user can obtain comprehensive

information about the application, or identify performance problems.

Due to the nature of the CPG, it can be extended in a straightforward way in order to

support new features, such as sequentialization or replication of arrays in a phase, or

some communication related optimizations. These features have to be tightly related

to the capabilities of the target HPF compiler that will be used.

The CPG can be modeled as a minimal path problem with a set of additional con-

straints that ensures the correctness of the solution, in which the parallel execution

time of the program is the objective function to minimize. This is computed in a

single step, which allows the alignment, distribution, and remapping problems for the

whole program to be solved together. The solution found will be optimal globally

instead of good solutions individually for each phase.

Linear 0-1 integer programming techniques are used to find the solution to the minimal

path problem. This technology guarantees that the solution provided is optimal,

therefore avoids the use of heuristics while computing the solution. The idea of using

linear programming techniques is based on the experience of Kremer et al. [BKK94b],

although our problem structure and formulation is different than their model.
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ONE-DIMENSIONAL DISTRIBUTION

In this Chapter we describe our framework to automatically generate one-dimensional

data mappings. A valid data mapping strategy distributes at most one dimension of

each array over the one-dimensional processors topology, either with a BLOCK or CYCLIC

fashion. The distribution derived might be dynamic, and it takes into account the effects

of control flow statements between computationally intensive code blocks. The number

of processors p of the target architecture is assumed to be known at compilation time.

3.1 THE COMMUNICATION-PARALLELISM GRAPH

In our framework, we intend to define a single data structure able to represent the effects

of any data mapping strategy allowed in our model. The name of this data structure is

the Communication-Parallelism Graph (CPG), and it is the core of our approach. The

CPG is a directed graph that contains all the information related to data movement and

parallelism of the program under analysis. It is created from the analysis of all assignment

statements within loops that reference, at least, one array.

The idea of the CPG is to have as many nodes as distributable array dimensions in the

source program, therefore, each node represents one dimension of one array. The data

movement and parallelism related information connect nodes when the distribution of such

node has an impact on the performance. In order to estimate the effects of a given data

mapping strategy, the corresponding array dimension for each array has to be selected.

39
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All data movement and parallelism related information contained within the selected set

of nodes, is considered for the parallel performance estimation.

In the following Sections the creation of the CPG is described, initially allowing just BLOCK

distributions. The analysis is then improved in order to consider the effects of control-flow

statements in the program, and the CPG is enhanced to support the generation of CYCLIC

distributions. And finally, the interpretation of the information contained in the CPG is

fully detailed. As a short working example along this Chapter to illustrate the creation

of the CPG, the sample Fortran 77 code in Figure 3.1 will be used.

do i = 2, N

do j = 1, N

A(i, j) = B(i-1, j) + 1

B(i, j) = A(i, j) + 2

C(j, i) = B(i, j) + 3

enddo

enddo

do i = 1, N

do j = 1, i

C(i, j) = D(i, j) + 1

E(j, i) = D(i, j) + 2

enddo

enddo

Figure 3.1 Sample code used to illustrate the components of the Communication-

Parallelism Graph.

3.1.1 Nodes in the CPG

The first step in our framework is to decompose the program into computationally in-

tensive code blocks named phases. Each phase will have its own data mapping strategy,

and realignment or redistribution actions might be performed only between phases. The

definition of phase is a topic of current research, and can lead to different solutions. In

our approach we have adopted the following definition of phase made by [KK95]:
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A phase is a loop nest such that for each induction variable occur-

ring in a subscript position of an array reference in the loop body,

the phase contains the surrounding loop that defines the induction

variable. This operational definition does not allow the overlapping

or nesting of phases.

Nodes in the CPG are organized in columns. There is a column in the CPG associated

to each array in a phase. If one array is used in several phases, there will be a column

for each phase in which this array appears. Each column contains as many nodes as the

maximal dimensionality d of all arrays in the program. If the array has dimensionality

d′ < d, then the column is padded with d− d′ additional nodes.

Each column in the CPG represents all possible mappings of the array associated to it. At

this point, only one-dimensional BLOCK distributions are allowed, therefore each node in

a column represents one of the distribution choices for the array. Each node in a column

will be mapped into one of the dimensions of the common array called template with

dimensionality d. Additional nodes added for the arrays with dimensionality lower than

the template are included to allow an embedding of the array on the template. Note that

if the same array appears in two different phases, the CPG will have two different columns

for this array, allowing the array to have a different mapping at each phase.

For instance, consider the sample code in Figure 3.1. The phases analysis detects that

there are only two phases, each one surrounded by a loop i. Three arrays are used within

each phase, say arrays A, B, and C in the first phase, and arrays C, D, and E in the

second one. The maximal dimensionality d of the arrays is 2, so the CPG will have 6

columns with 2 nodes each, as can be seen in Figure 3.2.

Nodes are the basis of the CPG, over which the data movement and parallelism informa-

tion is added in terms of data movement edges and parallelism hyperedges.
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Figure 3.2 Nodes in the CPG.

3.1.2 Data Movement Edges

Data movement information is represented by means of edges that reflect possible align-

ment choices between pairs of arrays. An edge connecting two nodes represents the effects,

in terms of data movement, of aligning and distributing these two nodes. This information

is captured from the analysis of reference patterns within phases, and a data flow analysis

between phases that derives the realignment patterns.

Reference Patterns

For each phase Pi in the program, the data movement information is obtained by per-

forming an analysis of reference patterns between pairs of arrays within the scope of Pi.

The meaning of reference patterns is defined in [LC90], and represents a collection of

dependences between arrays in both sides of an assignment statement. When the same

array is used in both sides, the reference pattern is called a self-reference pattern. For

instance, in the first phase of the sample code of Figure 3.1, there are the following three

reference patterns:

A(i, j)← B(i− 1, j)

B(i, j)← A(i, j)

C(j, i)← B(i, j)

For each reference pattern between two different arrays, d × d directed edges are added

connecting each node associated to the right-hand side array of the assignment to each
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node associated to the left-hand side array of the assignment. These edges represent the

behavior of all alignment alternatives between dimensions of these two arrays. The weight

that is assigned to each edge is a symbolic expression that represents the data movement

cost to be carried out if these two dimensions are aligned with respect to each other and

distributed. And the edge direction indicates the direction of the data flow. When a

self-reference pattern is found, d self edges are added in the column associated to the

referenced array, one in each node. As in the previous case, the weight assigned to each

edge is a symbolic expression that represents the data movement cost to be carried out

if this dimension is distributed. Several edges between a pair of nodes are replaced by a

single edge with weight equal to the sum of the original ones. In Section 3.3.1 the data

movement cost model assumed in our framework is fully described.

For instance, the first reference pattern of the sample code of Figure 3.1 connects all nodes

in column B to all nodes in column A. The edge that connects the first dimension of

array B to the first dimension of array A (written A[1]← B[1]) is labeled with a symbolic

expression representing a One to One data movement primitive, as this is the expected

data movement performed if these two dimensions are aligned and distributed. The

edge A[1] ← B[2] is labeled with a symbolic expression representing a Many to Many

data movement primitive, as this means that if these two dimensions are aligned and

distributed, a data movement involving all processors will be performed while executing

the loop. Similar analyses can be applied to all other edges in the reference pattern. The

resulting CPG filled with data movement information is shown in Figure 3.3. Dotted edges

represent Local Memory Access, which implies that, if the corresponding two dimensions

are aligned and distributed, the required memory accesses to execute this statement are

local.

Note that the CPG when filled only with data movement information, is different than

the Component Affinity Graph (CAG) used by other authors [LC90, Gup92, KK95]. The

meaning of the edges in the CAG is a preference for alignment, this is, how good is the

alignment of two dimensions. Their weight should reflect benefits in terms of data move-

ment if the corresponding dimensions are aligned. However, it is not possible to identify

a unique alignment configuration for the whole CAG, under which the data movement

cost may be estimated and compared to determine these benefits. In our framework,
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A B C C D E

phase 1 phase 2

2xNtoN2xN
toN

1to1 NtoN

NtoN

NtoN

NtoN

NtoN

NtoN

Realign

Realign

NULL

NULL

Figure 3.3 CPG with data movement information.

the meaning of an edge is just the opposite, this is, how expensive is, in terms of data

movement, to align and distribute the corresponding dimensions. This cost is computed

in seconds, therefore it is independent of any other alignment strategy.

Realignment Patterns

Realignment information is included in terms of data movement edges, and allows realign-

ment actions of an array in a sequence of phases. Note that arrays may only be realigned

between phases, therefore the data flow analysis detects if an array A in a phase Pi is used

in a later phase, say Pj . In this case, d× d edges are added connecting each node of the

column associated to array A at phase Pi to each one associated to array A at phase Pj.

The weight of each edge is a symbolic expression representing the data movement cost

incurred if the corresponding dimensions are aligned and distributed. When the array

keeps the same alignment across these phases, the weight of the edges connecting the

same dimension of the array between phases Pi and Pj is null. Otherwise the weight is

the cost of a realignment data movement primitive.

The addition of the realignment information in terms of data movement edges, allows our

model to easily combine both types of data movement information within the same data

structure. Section 3.1.4 describes how to analyze realignment in a sequence of phases

with presence of control flow constructions between phases, such as iterative loops or

conditional statements.
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For instance, the data flow analysis of the sample code of Figure 3.1 detects that array C

is used in both phases, so a new set of edges allowing different realignment for this array

is added, as shown with thick edges in Figure 3.3. The expression associated to the edges

that connect the same dimension of array C in both phases is NULL. The other edges

have a Realignment data movement primitive associated to them.

3.1.3 Parallelism Hyperedges

Parallelism information is obtained after performing a data-dependence analysis [KMT91].

All loops that can be executed in parallel are detected and marked as candidate parallel

loops. In distributed memory machines a loop can be fully parallelized if it does not

carry any data flow dependence [Tse93]. According to the owner computes rule [CK88],

the processor that owns a datum is the one that performs all computations to update it.

Therefore if a loop has to be parallelized, the array dimensions subscripted by the loop

control variable of all arrays accessed in the left hand side of each assignment statement

inside the loop, have to be distributed.

The parallelism related information is added in the CPG in terms of hyperedges. A

hyperedge is a generalization of an edge as it can connect more than two nodes. Each

candidate parallel loop has a hyperedge in the CPG, that links all the array dimensions

that have to be aligned and distributed for the loop to be parallelized. In other words,

our tool searches for each assignment statement inside a candidate parallel loop, if an

array in the left hand side is subscripted by the loop control variable of the loop, then

the node associated to the corresponding array dimension is linked to the hyperedge. For

the candidate loop to be parallelized, all nodes connected by its hyperedge have to be

aligned and distributed. The weight of a hyperedge is a symbolic expression representing

the computation cost saved when the corresponding loop is parallelized. Therefore this

weight may be considered a benefit, as opposite to a cost. In Section 3.3.2 the computation

cost model assumed in our framework is fully described.

For instance, the data dependence analysis in the sample code of Figure 3.1 reveals that

the j loop in the first phase, and the i and j loops in the second one could be parallelized,

so three hyperedges are added to the CPG. The first one is associated to the first j loop,
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therefore it links the second dimension of arrays A and B, and the first dimension of C

in the first phase, and it is weighted with a symbolic expression function of the execution

time saved if the first j loop is finally parallelized. The second hyperedge corresponds

to the i loop in the second phase, and it links the first dimension of array C and the

second dimension of array E. Similarly, the weight associated to this hyperedge is a

symbolic function of the computation time saved if the associated loop is parallelized.

And finally the third hyperedge, associated to the j loop in the second phase, links the

second dimension of array C and the first dimension of array E. In Figure 3.4 the CPG

filled only with parallelism information is shown.

A B C C D E

phase 1 phase 2

loop j

loop i loop j

Figure 3.4 CPG with parallelism information.

3.1.4 Control Flow Analysis

Control flow statements between phases are taken into account when performing the data

flow analysis. Entry or exit points, conditionals or iterative statements can modify the

execution flow of a program, and can provoke a sequencing of the phases in the program

different than the lexicographic order. The Phase Control Flow Graph (PCFG) records

information about the sequencing of phases: nodes are phases, and edges link nodes

when there is a flow of control between them. From the information in the PCFG, the

different sequences of phases that might appear during the execution of the program are

generated. These sequences determine pairs of phases between which remapping actions

may be necessary.
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Conditional Statements

Conditional statements generate alternative phase sequences that are executed depending

on the condition evaluated in the statement. The probability of taking each alternative

branch is obtained by profiling, and it multiplies the costs of phases and realignment edges

in the branch.

phase1

if ( condition ) then

phase2

phase3

else

phase4

endif

phase5

CPG1 CPG2 CPG3 CPG4 CPG5
prob% prob%

(1-prob)%

(1-prob)%

100%

prob%

Figure 3.5 Sample code with a conditional statement, and its phase control flow anal-

ysis.

For instance, consider the code fragment in Figure 3.5 which contains a conditional state-

ment surrounding several phases. According to the phase control flow graph, if the condi-

tion evaluates TRUE, phases2 and phase3 will be executed after phase1. Alternatively if

the condition evaluates FALSE, phase4 will be executed after phase1. Assume that the

probability of evaluating TRUE is prob, therefore the probability of evaluating FALSE

is 1−prob. There are two possible paths in this code: one is 1−2−3−5 with probability

prob and the other is 1 − 4 − 5 with probability 1 − prob. The data flow analysis will

add realignment information between arrays used in two consecutive phases according

to the paths generated. The costs of the remapping patterns are weighted up with the

probability of the corresponding path, as well as the data movement and parallelism costs

of the phases within the path.

Note that an initial phase has to be added to guarantee the array mapping coherency for

the arrays used in both phase2 and phase4, but not in phase1. The initial phase contains



48 Chapter 3

all arrays used in the program, and ensures, for each array, that there is a single initial

mapping.

Iterative Loops

Iterative loops or loops whose loop control variables (or induction variables generated

by them) are not used to subscript arrays, provoke a sequence of phases different than

lexicographic: after executing the last phase inside the loop, the first phase inside it

is executed again. Remapping actions might be necessary between phases that are not

in the lexicographic order. The number of iterations of this outer loop, say N , is used

to compute the number of times that each phase is executed and to weight up its cost

according to this number. The cost of all remapping edges between phases is multiplied

by N except for backward remapping edges that are multiplied by N − 1.

When an outer loop is found in the source code, the analyzer generates a sequence of

phases that try to represent what happens during the actual execution. The body of the

outer loop is duplicated. Phases in the first sequence are assumed to be executed once,

while phases in the second one are assumed to be executed N − 1 times. This technique

can be applied to any random nest of loops.

phase1

do it = 1, 40

phase2

phase3

enddo

phase4

CPG1 CPG2 CPG3 CPG4
N times

N-1 times

1 time1 time

Figure 3.6 Sample code with an iterative loop statement, and its phase control flow

analysis.

For instance, the code fragment in Figure 3.6 contains an iterative statement. Assuming

that the outer loop iterates 40 times, remapping between phase2 and phase3 has to be

accounted for 40 times, while backwards remapping between phase3 and phase2 has to

be accounted for 39 times. In addition, each phase is assumed to be executed 40 times.
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Nesting Control Flow Statements

Both control flow statements could be randomly nested. The effects of several nested

conditionals is that a conditional tree with several branches is built, and different prob-

abilities are assigned to each branch. When several loops are nested, the same process

described above proceeds from the innermost loop upwards.

For instance, consider the sample code from Figure 3.7. It consists of a conditional state-

ment between phase1 and phase6. If the condition evaluates TRUE, then two nested

loops will be executed. Otherwise, another conditional statement will be executed. As-

sume that the probability of evaluating TRUE in the first conditional is prob1 and the

probability in the second conditional is prob2. Assume also that the first loop is ex-

ecuted N1 times, and the second loop is executed N2 times. The analysis indicates

that phase2, phase3, and phase4 will be executed with probability prob1; phase5 with

probability (1 − prob1) × prob2; and the above phases will be skipped with probability

phase1

if ( cond1 ) then

do it1 = 1, N1

do it2 = 1, N2

phase2

phase3

enddo

phase4

enddo

else

if ( cond2 ) then

phase5

endif

endif

phase6

N1*N2

N1*(N2-1)

N1

N1-1

prob1%

(1-prob1)*prob2%

(1-prob1)*(1-prob2)%
CPG1

CPG2 CPG3 CPG4

CPG5

CPG6

Figure 3.7 Sample code with conditional statements and iterative loops and its control

flow analysis.
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(1− prob1)× (1− prob2). We can also see that phase3 will be executed N1×N2 times

after phase2, that phase2 will be executed N1 × N2 − N1 times after phase3, and so

forth, as seen in Figure 3.7.

Note that it is not possible to predict the behavior of a conditional statement inside an

iterative loop, as any of both branches may be randomly taken during different iterations

of the loop. In our framework the control flow analysis is simplified, and we assume that

the evaluation of the conditional holds across all iterations of the loop. The analysis

performed generates a conditional tree with two independent branches, one for each case

in the conditional.

3.1.5 CYCLIC Distributions

Some applications perform computations over a triangular iteration space. According to

the owner computes rule, a triangular loop parallelized assuming a BLOCK distribution

lead to a poor load balancing, and therefore loss of performance. In Figure 3.8.a there

is an example of a triangular loop partitioned by blocks. The amount of data elements

to be computed by processor 1 is, in this case, seven times the amount of elements to be

computed by processor 4. Alternatively, a CYCLIC distribution balances the computational

load in triangular loops. As can be seen in Figure 3.8.b, all processors have to compute

a similar amount of data.

(a)

1 2 3 4

(b)

Figure 3.8 Effects of (a) BLOCK and (b) CYCLIC distributions in triangular loops.
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However, if neighbor communication patterns appear in the loop, a CYCLIC distribution

incurs in excessive data movement, as all processors have to send the whole array to its

neighbor one. This is illustrated in Figure 3.9.b. In this case, BLOCK distributions reduces

the amount of data to be moved. This may result in a trade-off between BLOCK and

CYCLIC distributions to be considered during the decision of the data distribution.

1 2 3 4 1 2 3 41 2 3 41 2 3 41 2 3 4

(a) (b)

Figure 3.9 Effects of (a) BLOCK and (b) CYCLIC distributions in neighbor communica-

tions.

In our framework by default, if the code does not contain any triangular loop, the dis-

tribution assumed is BLOCK. Alternatively, if the code contains triangular loops and it

does not contain any nearest neighbor like communication, then the CYCLIC distribution

is assumed. In case of conflict, the CPG is duplicated in order to represent both alterna-

tives. In the first copy of the CPG, named CPGBLOCK , all costs are estimated assuming

a BLOCK distribution; in the second one, named CPGCY CLIC , all costs are estimated as-

suming a CYCLIC distribution. Now, the distribution choices for each array in each phase

include both the BLOCK and CYCLIC distributions. In addition to the realignment infor-

mation between phases in a single copy of the CPG, another set of redistribution edges

connecting arrays in phases of different copies of the CPG has to be included, in order

to allow arrays to change their distribution fashion between phases. The weight of this

set of edges represents the cost of changing the distribution fashion, i.e. a redistribution.

The model does not allow both BLOCK and CYCLIC distributions to be mixed in a single

phase for those arrays related with data movement edges or parallelism hyperedges.

For instance, consider again the sample code in Figure 3.1. There is a nearest neighbor

communication in the first statement of the first phase, and the second phase generates
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a triangular iteration space. In this case, the CPG is duplicated as shown in Figure 3.10.

Note that although the information is apparently duplicated, the costs of CPGBLOCK

have to be computed assuming a BLOCK distribution, and the costs of CPGCY CLIC have

to be computed assuming a CYCLIC distribution. In addition, there is a set of edges

connecting array C in the first phase of CPGBLOCK , to array C in CPGCY CLIC , and vice

versa. Their weight is a symbolic expression representing the cost of changing from BLOCK

to CYCLIC distribution, i.e. a redistribution.

A B C D E

phase 1 phase 2

A B C D E

Redistribution
(BLOCK-CYCLIC)

C

C

Realignment

Realignment

CPGBLOCK

CPGCYCLIC

Figure 3.10 CPG with BLOCK and CYCLIC information.

3.2 ALIGNMENT AND DISTRIBUTION IN THE CPG

The CPG contains all the information required to estimate the performance effects of

the program for different mappings, in terms of data movement and parallel loops inside

each phase, and realignment and redistribution actions between phases. A valid mapping

strategy has to include a node for each column, which determines the array dimensions

distributed for each array in each phase. The estimated data movement cost for the

selected mapping strategy is determined with the set of edges that remain inside the

selected set of nodes. The estimated computation saving time due to parallelization for

the selected mapping strategy is determined with the set of hyperedges whose nodes are

all included within the selected set.
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For instance, to estimate the behavior of the sample code of Figure 3.1 when distributing

the first dimension of each array in each phase, all edges and hyperedges connecting nodes

corresponding to the first dimension of the arrays have to be considered, as can be seen

in Figure 3.11. The HPF data mapping directives that generate this mapping strategy

are the following:

!HPF$ PROCESSORS PROC GRID(P)

!HPF$ TEMPLATE T(N, N)

!HPF$ ALIGN A(i, j) WITH T(i, j)

!HPF$ ALIGN B(i, j) WITH T(i, j)

!HPF$ ALIGN C(i, j) WITH T(i, j)

!HPF$ ALIGN D(i, j) WITH T(i, j)

!HPF$ ALIGN E(i, j) WITH T(i, j)

!HPF$ DISTRIBUTE T(BLOCK, *) ONTO PROC GRID

where N is the matrix sizes, and P is the number of available processors in the one-

dimensional processors grid.

A B C C D E

phase 1 phase 2

1to1 NtoN NtoNNULL

Figure 3.11 Legal mapping in the CPG for the sample code.

The total data movement cost for this mapping is summarized with the addition of the

costs of the edges belonging to this set. Similarly, the computation time saved due to

parallel loop execution is summarized with the addition of the weights of the hyperedges

that belong to this set. According to this example, no candidate parallel loops can be

parallelized. In addition, there is a One to One data movement primitive flowing from

array B to array A, and a Many to Many data movement primitive flowing from array

B to array C in the first phase. In the second phase there is another Many to Many

data movement primitive from array D to array E. This mapping strategy leads to a

poor performance, as there is no parallelism, and some data has to be moved.
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A good solution for the sample code in Figure 3.1 is to align and distribute the second

dimension of arrays A and B, and the first dimension of array C in the first phase. In the

second phase the first dimension of arrays C and D, and the second dimension of array E

have to be aligned and distributed. This mapping strategy is illustrated in Figure 3.12,

and the HPF data mapping directives are specified below:

!HPF$ PROCESSORS PROC GRID(P)

!HPF$ TEMPLATE T(N, N)

!HPF$ ALIGN A(i, j) WITH T(j, i)

!HPF$ ALIGN B(i, j) WITH T(j, i)

!HPF$ ALIGN C(i, j) WITH T(i, j)

!HPF$ ALIGN D(i, j) WITH T(i, j)

!HPF$ ALIGN E(i, j) WITH T(j, i)

!HPF$ DISTRIBUTE T(BLOCK, *) ONTO PROC GRID

In this case the solution is static, there is no data movement during the execution of the

phases, and loops j in the first phase and i in the second one can be parallelized. Note

that the parallelism achieved is maximal, assuming one-dimensional distributions.

A B C C D E

phase 1 phase 2

loop j

loop i

LMA

LMA

NULL LMA

LMA

Figure 3.12 Optimal mapping in the CPG for the sample code.

If the CPG has been duplicated in order to model both BLOCK and CYCLIC distributions,

the definition of a valid mapping strategy stands. Note that in this case a node for a

column includes both the BLOCK and CYCLIC CPG copies. Similarly, the performance

effects in terms of data movement and loop parallelization results in the set of edges and

hyperedges that remain within the selected set of nodes. For instance, assuming the code

in Figure 3.1, the effects of aligning and distributing the first dimension of all arrays in the

first phase with a BLOCK distribution, and aligning and distributing the second dimension

of all arrays in the second phase with a CYCLIC distribution is illustrated in Figure 3.13,

and the HPF data mapping directives specifying this mapping strategy are the following:
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!HPF$ PROCESSORS PROC GRID(P)

!HPF$ TEMPLATE T1(N, N), T2(N, N), T3(N, N)

!HPF$ DYNAMIC T2

!HPF$ ALIGN A(i, j) WITH T1(i, j)

!HPF$ ALIGN B(i, j) WITH T1(i, j)

!HPF$ ALIGN C(i, j) WITH T2(i, j)

!HPF$ DISTRIBUTE T1(BLOCK, *) ONTO PROC GRID

!HPF$ DISTRIBUTE T2(BLOCK, *) ONTO PROC GRID

!HPF$ ALIGN D(i, j) WITH T3(i, j)

!HPF$ ALIGN E(i, j) WITH T3(i, j)

!HPF$ DISTRIBUTE T3(*, CYCLIC) ONTO PROC GRID

· · · 1st phase · · ·

!HPF$ REDISTRIBUTE T2(*, CYCLIC) ONTO PROC GRID

· · · 2nd phase · · ·

Note that the initial distribution of arrays A, B, and C is BLOCK and the initial dis-

tribution of arrays D, and E is CYCLIC. If we use template T1 to align array C, the

redistribution directive will redistribute arrays A, B, and C. However only array C has

to be redistributed, therefore we use a different template T2 for this purpose.

A B C D E

phase 1 phase 2

A B C D E

Redistribution

C

C

CPGBLOCK

CPGCYCLIC

1to1 NtoN

NtoN

Figure 3.13 Legal mapping for the sample code with the CPG supporting both BLOCK

and CYCLIC distributions.
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3.3 COST MODEL IN THE CPG

The predicted computation time for the selected mapping is estimated as the sequential

execution time, plus the effects of distributing data and parallelizing loops. In order to

decide the best data mapping strategy, a weight should have to be assigned to each edge

and hyperedge of the CPG that allows the comparison of the different kinds of information

contained in the CPG. The data movement cost estimates the communication time in

seconds spent in moving data across the processors memories, and the computation cost

estimates the computation time in seconds saved due to the parallel execution of parallel

loops. Both types of information are estimated in seconds, therefore the optimal solution

has to minimize the summation of the weights of the edges minus the summation of

the weights of the hyperedges. In the following Sections the cost model assumed in our

framework is described.

3.3.1 Data Movement Cost

The data movement cost of a reference pattern depends on the number of bytes to in-

terchange with remote memory accesses and on some machine specific characteristics,

such as the number of processors, communication latency and bandwidth. In our current

model, the memory latency is considered null.

For each reference pattern, d×d edges are added in the CPG, each with its corresponding

weight. In order to estimate its cost, each edge of a reference pattern is matched with a set

of predefined data movement routines [LC91]. The routines considered by our framework

are listed in Table 3.1, together with the reference pattern that matches them. Note that

the information in this Table is machine dependent and should be tailored to the specific

target architecture.

In this Table, p is each dimension of the left-hand side (lhs) array, q is each dimension

of the right-hand side (rhs) array, and ip and jq are the lhs and rhs subscripts of the

reference pattern in the p − th and q − th dimension respectively. Function const(expr)

returns true if expr contains a constant expression.
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Pattern Primitive

ip ' jq Local Memory Access

const(ip − jq) One to One

const(jq) One to Many

const(ip) Many to One

ip 6= jq Many to Many

Table 3.1 Matching between reference patterns and communication primitive.

For instance, assume the first reference pattern in the first phase of the sample code of

Figure 3.1:

A(i, j)← B(i− 1, j)

The first component of the left-hand side subscript of the reference pattern is i, and the

first component of the right-hand side subscript of the reference pattern is i−1. The type

of the pattern is a const(i − (i − 1)) function, therefore a One to One data movement

primitive is assigned to the edge A[1] ← B[1]. Similarly, the second component of the

left-hand side subscript of the reference pattern is j. The pattern matches with j 6= i,

therefore the data movement function associated to A[2] ← B[1] is a Many to Many

primitive. The same Many to Many data movement primitive is associated to the edge

A[1]← B[2], and a Local Memory Access is associated to the edge A[2]← B[2].

The matching between data movement routines and reference patterns is performed to

obtain an estimation of the remote accesses overhead. This cost is dependent on the

block size B of the data to transfer. Table 3.2 shows the estimated block size for BLOCK

distributions, for each data movement routine assumed in our model. Note that according

to the owner-computes rule, the data to be moved is the data that has to be read, i.e. the

data on the right-hand side.

In this Table, q is the dimension of the right-hand side array under consideration. Nq

is the array size at dimension q, and Pq is the number of processors assigned to that

dimension if finally the dimension is distributed. Bother is the product of the block size

of the other dimensions of the right-hand side array that are traversed by a loop control

variable, this is, the number of elements moved in another dimension different to q.
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Primitive Block Size

Local Memory Access 0

One to One 1×Bother

One to Many 1×Bother

Many to One (Nq/Pq)×Bother

Many to Many (Nq/Pq)×Bother

Table 3.2 Estimated block size B for each data movement primitive for BLOCK distri-

butions.

For instance, consider again the first reference pattern of first phase of the sample code of

Figure 3.1. Assume that the size of matrix B is N1×N2. The block size computed for the

One to One data movement primitive assuming a BLOCK distribution is 1 × Bother. The

block size of the other dimensions traversed by a loop control variable (j in this case) is

N2, therefore the block size computation for this edge is:

B = 1×N2 = N2 elements

If the distribution is CYCLIC then the block size computation is the same for all data

movement primitives but the One to One, in which case the block size is equivalent to a

Many to Many data movement primitive.

The final data movement cost is computed, expressed in seconds, as follows:

pattern cost =
block size (elem) × element size (byte/elem)

bandwidth (byte/sec)
(secs)

3.3.2 Computation Cost

The computation cost of a parallelizable loop depends on its sequential execution time

and on some machine specific characteristics, such as the number of processors, and the

parallel thread latency. In our current model, the parallel thread creation time is assumed

to be null.
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The weight assigned to each hyperedge reflects the computation time saved when the

corresponding parallelizable loop is effectively parallelized. When the parallelizable loop

is rectangular, and for both BLOCK and CYCLIC distributions, the saved computation time

is illustrated with the shaded fragment of the matrix in Figure 3.14.a and 3.14.b, and it

is computed, expressed in seconds, as:

paral loop saving = ((P − 1)/P ) × sequential loop time

where P is the number of processors assigned to that dimension, in this case, the total

number of available processors.

(c) (d)

(a) (b)

Figure 3.14 Amount of computation saved for different loop structures and distribution

fashion.

Alternatively, if the parallelizable loop is triangular, there is a performance difference

between BLOCK and CYCLIC distributions. If the distribution is assumed to be BLOCK,

then the saved computation time is illustrated with the shaded fragment of the matrix in

Figure 3.14.c, and it is computed as:

paral loop saving = ((P − 1)/P ) × ((P − 1)/P ) × sequential loop time
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If the distribution is assumed to be CYCLIC, then the load is balanced and therefore the

saved computation time is the same than in rectangular loops. This is illustrated with

the shaded fragment of the matrix in Figure 3.14.d.

3.4 MODELING THE PROBLEM

Once the CPG has been built, it contains all required information regarding data move-

ment and parallelism of the program. All weights in the CPG are expressed in seconds

assuming P processors. The optimal mapping for the problem is a set of nodes, including

one node for each column, such that the summation of weights of the corresponding edges

minus the summation of weights of the corresponding hyperedges is minimal.

Linear programming (LP) provides a set of techniques that study those optimization

problems in which both the objective function and constraints are linear functions. Opti-

mization means to maximize or minimize a function with usually many variables, subject

to a set of inequality and equality constraints [NW88]. A linear pure integer programming

problem is a LP in which variables are subject to integrality restrictions. In addition, in

many models, the integer variables are used to represent binary choices, and therefore are

constrained to equal 0 or 1. In this case the model is named linear 0-1 integer programming

problem.

In our framework, we translate the whole data mapping problem into a single minimal

path problem with a set of additional constraints that guarantees the correctness of the

solution. Our problem is not purely a minimal cost path problem, as long as multiple

additional restrictions are added to the problem. Therefore this is modeled as a linear 0-1

integer programming problem, in which a 0-1 integer variable is associated to each node,

edge and hyperedge. The final value for each binary variable indicates if the corresponding

node, edge or hyperedge belongs to the optimal solution. The objective function that has

to be minimized is the estimated execution time of the parallelized version of the original

sequential program.



One-dimensional Distribution 61

We have implemented two different models. The node based model is more intuitive but

its computation using general purpose techniques is not very effective. We include its

description for simplicity, although the current implementation is based on the edge based

model, which computes much faster than the first model.

Some considerations about the CPG have to be stated before going into details with the

linear 0-1 integer programming model.

Edges in the CPG can be considered undirected. The direction of the edges in useful

to understand the data flow of the reference patterns. Once their cost has been

translated into units of time, its direction is not relevant any more.

All pairs of edges connecting the same two nodes can be replaced by a single edge

with weight equal to the addition of the weights of the original ones.

There is a path between any pair of columns in the CPG. If a set of columns is

not connected, then this set can be analyzed independently and assigned a different

template.

In both models, a valid solution has to be specified by means of constraints and 0-1 integer

variables. The objective function to minimize is time, the execution time of the parallel

version of the original program, which is estimated as follows:

time = Sequential T ime − Paral Saving + Comm Cost

that is, the sequential execution time, minus the time saved due to the parallel execution

of loops that have been selected for parallelization, plus the overhead due to remote data

accesses. Note that this is only one estimation. Actually there are some other factors

that may affect this time, such as overhead for parallel thread creation, communication

latency, and some others. However we assume that this costs are not significant in the

overall problem.

3.4.1 Node Based Model

In this model, nodes are used to specify the correctness of the solution.
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A valid solution is a solution that contains one and only one node

for each column. The optimal solution is a valid solution which

minimizes the cost of the edges that remain inside the solution mi-

nus the cost of the hyperedges that remain inside the solution.

As it is usual in this kind of problems, one 0-1 integer variable is introduced for each

node, edge and hyperedge in the CPG. Let ncols be the total number of columns in the

CPG, and let XP denote the set of variables associated to nodes in column P , for each

P ∈ {1..ncols}. Each set XP contains d elements, named XP [i] for each i ∈ {1..d}. Its

value is one if the node is selected in the solution, and zero otherwise. Let YPQ denote

the set of variables associated to edges connecting nodes in column P to nodes in column

Q. Each set YPQ contains d × d elements. Let YPQ[i, j] be the variable associated to

the edge connecting node i in column P to node j in column Q. Its value is one if the

corresponding edge belongs to the path, and zero otherwise. Note that, as the graph

is undirected, YPQ[i, j] is the equivalent to YQP [j, i]. Finally, if an index is assigned to

each hyperedge, Zk will denote the 0-1 integer variable associated to the k−th hyperedge.

Similarly, its value will be one if all the nodes it links belong to the path, and zero

otherwise.

To ensure the correctness of the solution, three sets of constraints have to be specified:

NodeConstraints. This set of constraints guarantee the correctness of the solution in

terms of nodes that have to be selected.

EdgeConstraints. This set of constraints ensure that, if the nodes connected by an

edge are selected, the edge has to be selected.

HyperConstraints. This set of constraints ensure that, if the nodes connected by a

hyperedge are selected, the hyperedge has to be selected.

The set of node constraints ensures the validity of the solution, that is, one node has to

be selected in each column. In terms of 0-1 variables and their values, it can be stated

that for each column P , the summation of all nodes i in the corresponding set of nodes
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XP must be equal to 1.

d∑

i=1

XP [i] = 1; ∀P ∈ {1..ncols}

The set of edge constraints ensures that edges connecting selected nodes are taken into

account in the solution. In terms of 0-1 variables and their values, it can be stated, for

each edge YPQ[i, j] connecting node XP [i] to node XQ[j], that:

XP [i] ≥ YPQ[i, j]

XQ[j] ≥ YPQ[i, j]

XP [i] + XQ[j] ≤ YPQ[i, j] + 1

If node XP [i] or node XQ[j] equals zero, the first two constraints force the edge YPQ[i, j]

to be zero. The only case in which YPQ[i, j] could not be zero is when both nodes equal

one. In this case, the third constraint forces the edge to be equal to one. Note that the

first two constraints are not obligatory, because the preferred edge value is zero as long

as the objective function has to be minimized.

The set of hyperedge constraints ensure that hyperedges connecting selected nodes are

considered in the solution. Assume that hyperedge Zk connects h nodes XP 1[i1] · · ·XP h[ih]

in the CPG. The hyperedge belongs to the selection if all nodes linked by it have been

selected. Similarly to the set of edge constraints, in terms of 0-1 variables and their values,

it can be stated, for each hyperedge Zk, that:

XP 1 [i1] ≥ Zk

· · ·

XP h[ih] ≥ Zk

XP 1 [i1] + · · · + XP h[ih] ≤ Zk + (h− 1)

If any node XP 1[i1] · · ·XP h[ih] equals zero, the first h constraints force the hyperedge Zk

to be zero. Alternatively, when all nodes are one, the last constraint forces the hyperedge

to be one. Again note that the last constraint is not obligatory, because the preferred

hyperedge value in a minimization problem is one.
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Finally, the objective function has to be specified. Only edges and hyperedges have a cost

associated to them. Let m be the total number of edges in the CPG. The summation of

the cost of all selected edges can be expressed as the scalar product in the space <m of Y

by Ce:

cost of edges = Y . Ce

where Y represents the vector of all 0-1 integer variables associated to edges, and Ce

represents their respective weights. Similarly, let n be the nudger of hyperedges in the

CPG. The summation of the cost of all selected hyperedges can be expressed as the scalar

product in the space <n of Z by Ch:

cost of hyper = Z . Ch

where Z represents the vector of all 0-1 integer variables associated to hyperedges, and

Ch represents their respective weights. The objective function has to be minimized, and

can be expressed as:

min cost = cost of edges − cost of hyper

A general purpose integer programming solver finds the optimal solution subject to the

specified constraints.

3.4.2 Edge Based Model

In this model edges are used to specify the correctness of the solution. As 0-1 integer

variables associated to nodes are unweighted, they are eliminated from the model.

In this case a valid solution is a path that visits one and only one

node for each column. All transitive edges included in the path are

also included. The optimal solution is a valid solution that mini-

mizes the cost of the edges that remain inside the solution minus

the cost of the hyperedges that remains inside the solution.

To ensure the correctness of the solution, four sets of constraints have to be defined:

C1 - The solution is a path.
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C2 - The path visits one node in each column.

C3 - All edges connecting selected nodes have to be included in the solution.

C4 - Hyperedges whose nodes are all selected have to be included in the solution.

Constraint C1 ensures that the solution is connected. That is, for each column Q con-

nected to more than one column P and R, if one edge leading to a node in Q is selected

in the set YPQ, one edge leaving this same node must be selected in the set YQR.

P Q RP Q R

(a) (b)

YPQ[1,2]

YQR[2,1]

YPQ[1,1]

YQR[2,1]

Figure 3.15 Constraint C1. (a) right case and (b) wrong case.

In terms of the variables and their values, it can be stated that at each node i of each

column Q connected to more than one column P and R, the sum of the values of the

edges that connect this node to column P , must be equal to the sum of the values of the

edges that connect this node to column R.

d∑

j=1

YPQ[j, i] =
d∑

j=1

YQR[i, j]; ∀i ∈ {1..d}

This must be accomplished for each pair of sets YPQ−YQR with a column in common. In

the CPG shown in Figure 3.15.a we can see that edges YPQ[1, 2] and YQR[2, 1] are selected,

so:

YPQ[1, 1] + YPQ[2, 1] = YQR[1, 1] + YQR[1, 2] = 0

YPQ[1, 2] + YPQ[2, 2] = YQR[2, 1] + YQR[2, 2] = 1

which obeys this constraint. Figure 3.15.b shows a case in which the first node of Q is

selected within the set YPQ, and the second node is selected within the set YQR, which is

a wrong case.
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Constraint C2 ensures that one node per column is selected in each column, and constraint

C3 ensures that all edges that remain inside the selected path are selected as well. Both

constraints can be specified together. These can be accomplished forcing that, for each

non empty set of edges YPQ, exactly one edge must be selected.

P QP Q

(a) (b)

YPQ[2,1]

YPQ[1,2]

YPQ[2,1]

P Q

(c)

Figure 3.16 Constraints C2 and C3. (a) right case. (b) and (c) wrong cases.

This can be stated, in terms of variables and their values, that the summation of each

non empty set of edges YPQ must equal one.

d∑

i=1

d∑

j=1

YPQ[i, j] = 1

In the CPG of Figure 3.16.a only the edge YPQ[2, 1] is selected, so the set of edges YPQ

accomplishes that:

YPQ[1, 1] + YPQ[1, 2] + YPQ[2, 1] + YPQ[2, 2] = 1

The example in Figure 3.16.b shows a case where constraint C2 is not respected, and the

one in Figure 3.16.c shows a case where constraint C3 is not accomplished.

As a consequence of these constraints, the path found in the solution can be not simple.

This means that it could contain cycles, or that the same node could be more than once

in the path. Note that this is not contradictory with the constraint C2, since exactly one

different node in each column belongs to the path.

Finally, constraint C4 ensures the correct behavior of the hyperedges. The hyperedge

belongs to the selection if all nodes linked by it have been selected. According to this

model a node i in column P is selected if one of the edges YPQ[i, j] that connect it to any
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other column Q has been selected, that is:

d∑

j=1

YPQ[i, j] = 1

Assume that hyperedge Zk connects h nodes in the CPG, say nodes XP 1[i1] · · ·XP h[ih],

connected by sets of edges YP 1Q1 · · ·YP hQh respectively. It can be stated, in terms of

variables and their values, that:

d∑

j=1

YP 1Q1[i1, j] ≥ Zk

· · ·
d∑

j=1

YP hQh[ih, j] ≥ Zk

If any summation equals zero, the constraint forces the hyperedge Zk to be zero. Other-

wise, and by default, the value of the hyperedge is one.

The objective function specified for this model is the same than in the previous one.

The general purpose integer programming solver finds the optimal solution subject to the

specified constraints.

3.5 AN EXAMPLE: THE ADI INTEGRATION KERNEL

Assume the Alternate Direction Implicit (ADI) integration kernel, whose source code can

be found in Appendix A. According to the definition of phase, our tool identifies 9 phases

in this program. Each phase corresponds to one of the nested loops (labeled from 1 to 9)

in Figure A. The control flow analysis detects that phases 4 to 9 are within an iterative

loop, and according to the profiled information, the number of iterations of this loop is

10. The resulting phase control flow graph for the ADI program is illustrated in Figure

3.17, together with the data flow analysis. Note that remapping between phase 9 and

phase 4 is performed 9 times, and that the data flow analysis detects that array A is not

used in phases 5 and 8.
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CPG1 CPG2 CPG3 CPG6 CPG8

A, B, X A, B, X A, B, X B, XB, X

A

A, B, X B, X B, X

A

A, B, X

CPG4

(9 times)

CPG7 CPG9CPG5

10 times

Figure 3.17 Phase control flow graph and data flow analysis for the ADI program.

For each phase i the tool generates its own CPGi. For instance, when analyzing the 6th

phase, the following 4 reference patterns are detected:

x(i, j)← x(i, j)

x(i, j)← a(i, j + 1)

x(i, j)← x(i, j + 1)

x(i, j)← b(i, j)

and the following 8 reference patterns are detected in the 7th phase:

x(i, j)← x(i, j)

x(i, j)← x(i− 1, j)

x(i, j)← a(i, j)

x(i, j)← b(i− 1, j)

b(i, j)← b(i, j)

b(i, j)← a(i, j)

b(i, j)← a(i, j)

b(i, j)← b(i− 1, j)

The data movement information for these two phases is shown in Figure 3.18. As usual,

dotted edges are Local Memory Access. The edges connecting different dimensions of

different arrays within the same phase have assigned the weight of a Many to Many data

movement primitive, and the edges connecting different dimensions of the same array in

different phases have assigned the weight of a Realignemnt data movement primitive. All

other edges have assigned the weight of a One to One data movement primitive.

The dependence analysis detects 10 loops candidate to be parallelized. These loops are

the four initialization loops, three i loops in phases 4 · · ·6, and three j loops in phases

7 · · ·9. These 10 loops have their own hyperedge in the corresponding phases, and in
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particular, the hyperedge of the i loop in phase 6 and the hyperedge of the j loop in

phase 7 can be seen in the CPG of Figure 3.18.

phase 6

CPG

loop i

Realignment

loop j

phase 7

BA X

1to1

1to1

1to1

1to1

A B X

NtoN NtoN

Figure 3.18 CPG for phases 6 and 7.

In order to compute the weights in the CPG, assume a target system with 32 proces-

sors and a data movement bandwidth of 1Mbyte per second. According to our current

cost model, the cost of a Many to Many data movement primitive and the cost of a

Realignment data movement primitive is the same. This depends on the array block

size. As all arrays have the same size, this cost will be the same in all edges in the CPG

labeled with these data movement primitives, and it is computed as:

31

32
×

256 · 256

32
× 8×

1

1000000
= 0.01587 secs

where 8 is the number of bytes per each double precision array element. Similarly, the cost

of a One to One data movement primitive for all edges labeled with this data movement

primitive is computed as:

256× 8×
1

1000000
= 0.00205 secs

The profiling information for this code provides us with the sequential execution time

for each loop in the program, and the number of iterations of the iter loop. In order to

weight the hyperedges, the sequential execution time for each candidate parallel loop is

used. These times for the i loop in phase 6 and for the j loop in phase 7 are 0.53472 and

0.89654 seconds respectively. The weights assigned to each hyperedge is:

loopi in phase 6 →
31

32
× 0.53472 = 0.51801 secs

loopj in phase 7 →
31

32
× 0.89654 = 0.86852 secs
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The same analysis is performed for all other phases in the ADI code. Once the CPG has

been built, the minimal path problem with 0-1 integer variables is modeled. Both the node

and the edge based model have been implemented. Table 3.3 shows some characteristics

of these models.

Node based model Edge based model

Number of nodes 56 -

Number of edges 160 160

Number of hyper 10 10

Number of 0-1 variables 226 170

Number of constraints 535 164

Computation time 1.7 secs. 0.5 secs.

Table 3.3 CPG complexity for the ADI code in node and edge based models.

The difference in complexity of both models is significant in number of variables and

constraints, as long as in computation time 1. The solution found in both cases is dynamic,

distributing the first dimension of all arrays in phases 1 · · ·6 and the second dimension of

all arrays in phases 7 · · · 9. According to this distribution, one loop at each phase can be

parallelized. The mapping strategy for phases 6 and 7 can be seen in Figure 3.19. Note

that realignment has to be performed 10 times from phase 6 to 7, plus 9 times from phase

9 to 4.

phase 6

CPG

loop i

Realignment loop j

A B

phase 7

XA B X

Figure 3.19 Optimal data mapping for phases 6 and 7 of the ADI code.

In Chapter 6 the correctness and accuracy of this data mapping strategy will be illustrated.

1Times have been obtained executing on a Sun SuperSparc 20
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There are some systems in which data remapping is not allowed, or in which it is allowed

but only between procedure boundaries. Note that a static data mapping can be modeled

as a particular case in our model, reducing the complexity of the problem. Our first

CPG implementation was static, in which the whole program was analyzed as a single

phase. In Table 3.4 there is the complexity of the same ADI code, according to the static

implementation. Although the number of reference patterns in the ADI code is the same,

most of them are repeated, therefore they are collapsed within the same edge. The number

of 0-1 integer variables is 12, in front of 226 in the nodes based general model. The total

computation time required to find the optimal solution is only 0.1 seconds.

Static model

Number of edges 12

Number of hyper 10

Number of 0-1 variables 22

Number of constraints 30

Computation time 0.1 secs

Table 3.4 Complexity for the static CPG version with the ADI code.
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3.6 SUMMARY

In this Chapter we have described the Communication-Parallelism Graph, the main struc-

ture of our approach to automatically derive data mapping and parallelization strategies.

The novelty of the approach resides in that data movement as well as parallelism infor-

mation are contained within this single data structure. This allows us to solve several

dependent problems, such as alignment, distribution, and remapping, in a single step. In

addition, we model our problem as an optimization problem, based on the minimal path

problem, and use linear 0-1 integer programming technology, which guarantees that the

solution found is optimal according to our cost model.

The data mapping features described in this Chapter are one-dimensional BLOCK and

CYCLIC distributions, allowing dynamic data remapping between phases if required. In

addition, our model takes into account the effects of control flow statements between

phases, in order to perform a more accurate estimation of the cost of the data mapping

derived.

We have described with detail the data movement and parallelization cost models assumed

in our approach. And at the end of the Chapter, the formal specification of the linear

0-1 integer programming model has been provided. We have presented two different

approaches: the node based model and the edge based model. The first one is more

intuitive, but the computation time required to solve the model is quite high. This model

is useful as an introduction to the second one, which is faster. The model used along the

rest of this Thesis is the edge based model.



4
TWO-DIMENSIONAL DISTRIBUTION

WITH CONSTANT TOPOLOGY

In this Chapter, we describe how to extend the CPG in order to support two-dimensional

distributions, assuming that the processors topology is two-dimensional, constant, and

known at compilation time. Next we explain the modifications to our two-dimensional

cost model with respect to data movement and computation, and the extension in the

formulation of the minimal path problem. And finally, an example using the ADI code is

provided.

We believe that for most scientific programs, restricting the number of distributed di-

mensions of a single array to two, does not lead to any loss of effective parallelism. In a

study of array reference patterns in Fortran programs from the Perfect Club and SPEC

benchmark sets performed by our group in [ALG+95], we reported that 3.3% of the arrays

have 3 dimensions, and only 0.2% have more than 3. Even when higher-dimensional ar-

rays show parallelism in each dimension, restricting the number of distributed dimensions

does not necessarily limit the amount of parallelism that can be exploited.

4.1 EXTENDING THE

COMMUNICATION-PARALLELISM GRAPH

A valid data mapping strategy in the two-dimensional distribution with constant topol-

ogy, distributes two dimensions of the template, either with BLOCK or CYCLIC fashion,

over a two-dimensional processor grid. Let p be the number of processors in the target

architecture. Usually p is a number power of 2, i.e. p = 2q. The number of processors

73
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assigned to each distributed dimension is p1 and p2 respectively, where p1 × p2 = p. This

grid topology is constant during the execution of the program. Note that this general

case includes the trivial one, when p1 is set to p, and p2 is set to 1.

In order to support this model some extensions have to be defined in the CPG. In the

following Sections we describe these extensions.

4.1.1 Duplication of the CPG

In the one-dimensional data distribution model, we provide a graph structure with a node

for each distributable array dimension. In the two-dimensional data distribution model

the idea is to have a node for each distributable array dimension in the first processors

grid dimension, and another node for each distributable array dimension in the second

processors grid dimension.

With this purpose, two identical CPG with different weights are built. In the first CPG

copy, named CPG1, all weights are computed assuming p1 processors, and in the second

CPG copy, named CPG2, all weights are computed assuming p2 processors. Each CPG

copy represents one processors grid dimension. In order to distribute one array dimension

across the first processors grid dimension, the corresponding node for that array has to

be selected in CPG1. Similarly, to distribute one array dimension across the second

processors grid dimension, the corresponding node for that array has to be selected in

CPG2. Note that it has no sense to try to distribute the same array dimension across

two different dimensions of the processors grid.

Now, a valid mapping strategy for the two-dimensional distribution with constant topol-

ogy problem contains one node for each column in each CPG copy, with the additional

restriction that nodes selected in CPG1 have to be different than nodes selected in CPG2.

The data movement and parallelization effects for the selected two-dimensional data map-

ping is estimated as the summation of the weights of the edges plus the summation of the

weights of the hyperedges that remain inside the two paths.
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A B CC D E

A B CC D E

CPG1

CPG2

(p1 procs)

(p2 procs)

Figure 4.1 Valid solution in a 2-dimensional CPG.

In Figure 4.1 there is an example of a valid mapping, in which the second dimension of

arrays A and B and the first dimension of array C in the first phase, and the first dimension

of arrays C and D and the second dimension of array E in the second phase are aligned

and distributed along the first dimension of the p1×p2 processors grid. Similarly, the first

dimension of arrays A and B and the second dimension of array C in the first phase, and

the second dimension of arrays C and D and the first dimension of array E in the second

phase are aligned and distributed along the second dimension of the processors grid. This

data mapping strategy can be specified in terms of HPF directives as:

!HPF$ PROCESSORS PROC GRID(P1, P2)

!HPF$ TEMPLATE T(N, N)

!HPF$ ALIGN A(i, j) WITH T(j, i)

!HPF$ ALIGN B(i, j) WITH T(j, i)

!HPF$ ALIGN C(i, j) WITH T(i, j)

!HPF$ ALIGN D(i, j) WITH T(i, j)

!HPF$ ALIGN E(i, j) WITH T(j, i)

!HPF$ DISTRIBUTE T(BLOCK, BLOCK) ONTO PROC GRID

Note that in this case, even that the processors topology is assumed to be constant

along the program execution, the distribution derived might be non-static. There can be

changes in the array alignment between phases, i.e. realignments. However, the processors

topology will still be a p1 × p2 grid.
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4.1.2 Corrector Edges in the CPG

According to this model, the estimated data movement costs for a two-dimensional data

mapping is the addition of the computed data movement costs for CPG1 plus the com-

puted data movement costs for CPG2. However, the data movement in both dimensions is

inter-dependent each other, therefore this estimation is not accurate. Similarly, the actual

execution time saved due to a two-dimensional loop parallelization is not the addition of

the saving execution time of two one-dimensional loops.

To correct this the over estimation, edges connecting information in CPG1 to the related

information in CPG2 are inserted in the CPG. These edges are named corrector edges as

long as their utility is to correct the over estimation induced by our model. The weight

assigned to each corrector edge is a symbolic expression representing the cost that has

to be corrected. Therefore, data movement corrector edges correct the over estimation

amount of data movement, and parallelism corrector edges correct the over estimation in

parallelism.

One data movement corrector edge should have to be inserted connecting each edge in a

pattern in CPG1 to each edge of the same pattern in CPG2. However, the number of

data movement corrector edges in this case would grow up to intractable proportions. To

avoid this, we modify the data movement cost model explained in the previous Chapter,

in order to perform a proper data movement cost estimation. The model assumed in the

two-dimensional data mapping is described in Section 4.2.1.

With respect to the parallelism, we have to insert one parallelism corrector edge connecting

each couple of nested hyperedges between both CPG copies. A parallelism corrector edge

connects the outer loop of a CPG copy to the inner loop of the other CPG copy. Therefore,

for each two candidate parallel loops in a nest, there is a corrector edge from CPG1 to

CPG2, and vice versa. The first parallelism corrector edge corrects the over estimation

of parallelizing the outer loop with p1 processors, and the inner loop with p2 processors.

Similarly, the second parallelism corrector edge corrects the over estimation of parallelizing

the outer loop with p2 processors, and the inner loop with p1 processors. As parallelism
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corrector edges are the only corrector edges used in our model, in following references we

will call them just corrector edges.

As a general rule, a loop at level i can be the outer loop of the i − 1 loops inside it.

Assuming that in a loop nest there are n candidate parallel loops, the number of corrector

edges added connecting CPG1 to CPG2 is:

n− 1 + n− 2 + · · · + 1 =
1∑

i=n−1

i =
n× (n− 1)

2

and the same number of corrector edges connecting CPG2 to CPG1. Therefore the total

number of corrector edges in the CPG for a loop nest with n candidate parallel loops is:

n× (n− 1)

When two hyperedges linked by a corrector edge are selected in a solution, the corrector

edge has to be selected as well. In this case, the over estimation produced by considering

the addition of the weights associated to both hyperedges will be corrected by considering

the weight of the corrector edge. The weight assigned to a corrector edge is described in

Section 4.2.2.

4.2 TWO-DIMENSIONAL COST MODEL

The data movement cost model in the two-dimensional data distribution case has to be

modified in order to perform a proper. In addition, there are some corrector edges linking

hyperedges from CPG1 to CPG2, and vice versa. The modification of these costs, and

the weighting of the corrector edges is explained in the following Sections.

4.2.1 Data Movement Cost

In our framework, only simple data movement routines are considered, i.e. routines

that perform data movement in a single dimension of the template. If the reference

pattern requires data movement in more than one dimension, then the reference pattern
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is decomposed into sub-patterns and each sub-pattern is matched with a single data

movement primitive, each one performing data movement in a single dimension of the

arrays. Thus, the data movement primitive of each dimension is reflected in each copy of

the CPG.

However, the block size estimation has to be performed differently than in the one-

dimensional distribution. In this case, we assume that there is always another dimension

distributed. According to this assumption, block sizes for CPG1 copy are divided by p2,

and vice versa. Note that this particular cost model can be extended to the case in which

the topology is a p× 1 processors grid. When computing data movement costs for CPG1

(with p processors), block sizes will have to be divided by the number of processors in the

other processors grid dimension, i.e. by 1. Therefore the block sizes computed will be the

same than in the one-dimensional case.

For instance, consider the following reference pattern:

A(i, j, k)← B(i− 1, k, j)

3 × 3 edges are added connecting all nodes of array B to array A, with a one-

dimensional data movement routine assigned to each edge, as shown in Figure 4.2. Ac-

cording to the one-dimensional pattern matching model, the edge connecting A[1] ←

B[1] has a One to One data movement primitive associated; all other edges have a

Many to Many data movement primitive associated, except dotted ones, which are

Local Memory Access.

Assuming that p = 8 with p1 = 4 and p2 = 2, costs in CPG1 are computed assuming 4

processors, and costs in CPG2 are computed assuming 2 processors. When computing

data movement costs, the total block size for reference patterns in CPG1 have to be

divided by 2, and the total block size for reference patterns in CPG2 have to be divided

by 4. For instance, assume the data mapping specified by the following set of HPF data

mapping directives:

!HPF$ PROCESSORS PROC GRID(4, 2)

!HPF$ TEMPLATE T(N1, N2, N3)
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A B
1to1

A B

LocalMemoryAccess

CPG1

CPG2

(4 procs)

(2 procs)
NtoN

NtoN

1to1

LocalMemoryAccess

NtoN

NtoN

LMA

1to1

NtoN

Figure 4.2 Reference pattern for a 2-dimensional CPG.

!HPF$ ALIGN A(i, j, k) WITH T(i, j, k)

!HPF$ ALIGN B(i, j, k) WITH T(i, k, j)

!HPF$ DISTRIBUTE T(BLOCK, BLOCK, *) ONTO PROC GRID

where N1, N2, and N3 are the matrix sizes for their three dimensions. In this mapping

strategy the first dimension of arrays A and B are aligned and distributed in CPG1,

and the second dimension of array A and third dimension of array B are aligned and

distributed in CPG2. According to this mapping strategy, an edge labeled with a

One to One data movement primitive is selected in CPG1, and an edge labeled with

a Local Memory Access data movement primitive is selected in CPG2. The total data

movement involved in this pattern is the One to One data movement primitive in CPG1,

corresponding to the first dimension of the processors grid. In Figure 4.3.a the corre-

sponding two-dimensional data movement is illustrated. The block size estimated for this

pattern in CPG1 is:
1× Bother

2
=

1×N2 ×N3

2

being 1 the offset in the shift pattern, and 2 the number of processors assigned to the

other dimension of matrix B. Note that this block size is the same size than in the
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one-dimensional data mapping, but divided by 2. Moreover, it is not necessary to know

whether it is the second or the third dimension of matrix B which is distributed in CPG2,

as long as the division by 2 affects the total block size.

Matrix B

(b)

N1

N2

N3

Matrix B

(a)

N1

N2

N3

Figure 4.3 Examples of two-dimensional data movement.

Alternatively, assume the data mapping specified by the following set of HPF data map-

ping directives:

!HPF$ PROCESSORS PROC GRID(4, 2)

!HPF$ TEMPLATE T(N1, N2, N3)

!HPF$ ALIGN A(i, j, k) WITH T(i, j, k)

!HPF$ ALIGN B(i, j, k) WITH T(i, j, k)

!HPF$ DISTRIBUTE T(*, BLOCK, BLOCK) ONTO PROC GRID

According to this mapping strategy, the second dimension of arrays A and B are aligned

and distributed in CPG1, and the third dimension of arrays A and B are aligned and

distributed in CPG2. The data movement involved in this pattern is a Many to Many

primitive in both CPG copies. The expected data movement performed is illustrated in

Figure 4.3.b. The block size of a Many to Many data movement primitive in CPG1 is:

N2

4
×Bother

2
=

N1 ×N2 ×N3

4× 2

where 4 is the number of processors assigned to CPG1, 2 is the number of processors

assigned to another dimension of matrix B, and Bother is N1 × N3. Similarly, the block
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size of a Many to Many data movement primitive in CPG2 is computed as:

N3

2
×Bother

4
=

N1 ×N2 ×N3

2× 4

Note that the same block of data has to be moved across both processors grid dimensions.

4.2.2 Computation Cost

The estimation of the parallel loop saving execution time for two-dimensional distributions

is initially computed in the CPG as the summation of the saving execution time in both

CPG copies. However, when two loops are nested each other, this estimated saving

execution time is excessive, and corrector edges have to be inserted in the CPG. The

amount of excessive estimated execution time for two nested loops depends on the loop

shape as well as on the loops distribution fashion.

For instance, assume a squared two-dimensional iteration space as shown in Figure 4.4,

and that the two-dimensional processors grid is again 4× 2. In the upper-left side of the

Figure, the shaded portion corresponds to the saving execution time computed in CPG1,

and in the lower-left side of the Figure, the shaded portion corresponds to the saving

execution time computed in CPG2. The over estimation loop execution time in this case

is:
3

4
×

1

2
× inner loop time

This over estimation expression depends only on the inner loop execution time, because

it is the part of code affected by the assignment of processors in both dimensions.

As a general rule, assuming that pout processors are assigned to the outer loop and pin

processors are assigned to the inner one:

when both loops are balanced, i.e. are rectangular or are parallelized with a CYCLIC

distribution, then the over estimation time is computed as:

pout − 1

pout

×
pin − 1

pin

× inner loop time

which corresponds to the time computed for the example in Figure 4.4.
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Over estimation for

Saving execution time
with 4 processors

Saving execution time
with 2 processors

8 processors

Figure 4.4 Over estimation of the loop execution time with 4× 2 processors.

when the outer loop is balanced, and the inner loop is triangular and parallelized with

a BLOCK distribution, then the over estimation time is computed as:

pout − 1

pout

×
pin − 1

pin

×
pin − 1

pin

× inner loop time

alternatively, when the outer loop is triangular and parallelized with a BLOCK distri-

bution, and the inner loop is balanced, then the over estimation time is computed

as:
pout − 1

pout

×
pout − 1

pout

×
pin − 1

pin

× inner loop time

and finally, when both loops are triangular and parallelized with a BLOCK distribution,

then the over estimation time is computed as:

(pout − 1) · (pin − 1)− 1

pout · pin

×
(pout − 1) · (pin − 1)− 1

pout · pin

× inner loop time

Note that this over estimation is always positive, as long as pout and pin are greater

than one. In the trivial one-dimensional case, where pin is one, the product in the over

estimation expression is zero.
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For instance, assume the following nest of parallelizable loops, which has been measured

by profiling to spend 10 seconds in their sequential execution:

do i = 1, N

do j = 1, N

A(i, j) = · · ·
B(i, j) = · · ·

enddo

enddo

The CPG fragment in Figure 4.5 shows the parallelism related information which includes,

for each CPG copy, one hyperedge associated to loop i and another one associated to loop

j. In addition, there is a corrector edge connecting the i loop in CPG1 to the j loop in

CPG2, and another corrector edge connecting the i loop in CPG2 to the j loop in CPG1.

Assuming that p1 is 4, and p2 is 2, the weights assigned to each hyperedge in CPG1 are

set to 7.5 seconds. Similarly, the weights in each hyperedges in CPG2 are set to 5 seconds.

If the hyperedge associated to loop i is selected in CPG1, and the hyperedge associated

to loop j is selected in CPG2, the estimated saved execution time is:

7.5 + 5 = 12.5 seconds

which is greater than the sequential execution time. However, if the corrector edge is

selected as well, then its cost has to be subtracted to this estimated execution time.

According to the previous formulas, the weight assigned to each corrector edge is set to

A B

CPG1

CPG2

(4 procs)

(2 procs)

loop i

loop j

loop i

loop j

corrector: outer in CPG1 and

corrector: outer in CPG2 and
inner in CPG1

inner in CPG2

Figure 4.5 CPG fragment with two-dimensional parallelism information.
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3.75 seconds. In this case, the estimated saved execution time will be:

7.5 + 5− 3.75 = 8.75 seconds

4.3 MODELING THE PROBLEM

The definition of a valid solution for the two-dimensional distribution with constant topol-

ogy problem has to be extended in order to take into account both CPG copies, and the

corrector edges.

A valid solution is a path in each CPG copy that visits one and only

one node for each column, with the additional constraint that the

nodes selected in one path have to be different to the nodes selected

in the other path.

As in the one-dimensional edge based model, one 0-1 integer variable is associated to each

edge, hyperedge, and corrector edge. Note that there is an edge and a hyperedge at each

CPG copy, therefore a new superscript is added to each variable denoting the CPG copy

it corresponds to. In this case, let Y b
PQ[i, j] be the variable associated to the edge that

connects node i of column P to node j of column Q in the b − th CPG copy, for each

b ∈ 1..2. The same notation is used for hyperedges, where Zb
m represents the m − th

cariable associated to the hyperedge in the b − th CPG copy. Corrector edges connect

hyperedges of both CPG copies, therefore there is a single set of these variables. Let Wm

denote the 0-1 integer variable associated to the m− th corrector edge. Its value will be

one if both hyperedges it links belong to the path, and zero otherwise.

4.3.1 New Constraints

To ensure the correctness of the solution, the four constraint sets defined in Chapter 3 have

to be specified for each CPG copy, and modified in order to include the new superscripts

defined. In addition, the following two additional sets of constraints have to be specified:
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C5 - All corrector edges connecting selected hyperedges have to be included in the

solution.

C6 - Nodes selected in each CPG copy are distinct.

Constraints C5 ensure the correct behavior of each corrector edge. In a similar way than

in C4, a corrector edge belongs to the path if both hyperedges it links have been selected.

In terms of variables and their values, let Wm be the variable associated to the corrector

edge connecting hyperedge Z1
p to Z2

q associated to loop p in CPG1 and loop q in CPG2.

It can be stated in terms of variables and their values that:

Z1
p ≥ Wm

Z2
q ≥ Wm

Z1
p + Z2

q ≤ Wm + 1

which respects this constraint. When any hyperedge is not selected, the first two con-

straints force the corrector edge to be zero. And when both hyperedges are selected, the

third constraint forces it to be one.

Constraints C6 ensure that paths do not have nodes in common. This can be modeled

imposing that the summation of edges connecting each node of both CPG copies to any

other column is smaller than or equal to one. In terms of variables and their values, for

each node i in column P connected to another column Q by YPQ, the summation of the

values of the variables associated to the edges of both CPG copies that connect this node

to column Q has to be smaller than or equal to one.

2∑

b=1

d∑

j=1

Y b
PQ[i, j] ≤ 1; ∀i ∈ {1..d}

In the CPG shown in Figure 4.6.a the edges Y 1
PQ[1, 2] and Y 2

PQ[2, 1] have been selected,

so:

Y 1
PQ[1, 1] + Y 1

PQ[1, 2] + Y 2
PQ[1, 1] + Y 2

PQ[1, 2] ≤ 1

Y 1
PQ[2, 1] + Y 1

PQ[2, 2] + Y 2
PQ[2, 1] + Y 2

PQ[2, 2] ≤ 1

which respects this constraint, as long as both summations equal one. In Figure 4.6.b the

edges Y 1
PQ[1, 2] and Y 2

PQ[1, 1] have been selected, which is a wrong case.
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P Q

(a)

P Q

Y2
PQ[2,1]

Y1
PQ[1,2]

P Q

(b)

P Q

Y2
PQ[1,1]

Y1
PQ[1,2]

Figure 4.6 Constraint C5. (a) right case and (b) wrong case.

Now, the objective function has to consider the correcting costs of all corrector edges

selected. Therefore the objective function expression to minimize will be specified as:

min cost = cost of edges − cost of hyper + cost of corrector

where cost of corrector represents the scalar product of the vector of all 0-1 integer

variables associated to corrector edges by their respective weights.

4.4 AN EXAMPLE: TWO-DIMENSIONAL
DISTRIBUTION FOR THE ADI KERNEL

Consider again the Alternate Direction Implicit (ADI) integration kernel, whose source

code can be found in Appendix A. Assume that the target platform is a system with 32

processors, arranged in a two-dimensional 8× 4 processors grid. In order to compute the

weights in the CPG, assume a data movement bandwidth of 1Mbytes per second.

The CPG for the two-dimensional data distribution is duplicated, however each CPG

copy is the same than in the one-dimensional case. The only difference is the cost of the

weights associated to the edges and hyperedges, and the addition of the corrector edges

in the two-dimensional data distribution.

The cost of a Many to Many data movement primitive in CPG1 is computed considering

8 processors, but assuming that the other array dimension is distributed as well. Therefore
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this cost is computed as:

256·256

8
× 8× 1

1000000

4
= 0.01638 secs

The cost of the edges labeled with a Many to Many data movement primitive in CPG2

is the same in this case, as long as dividing the matrix size by 8 and then divide by 4 is

the same than dividing the matrix size by 4 and then divide by 8.

Similarly, the cost of a One to One data movement primitive for all edges labeled with

this data movement primitive in CPG1 is computed as:

256× 8× 1

1000000

4
= 0.00051 secs

and the cost of a One to One data movement primitive for all edges labeled with this

data movement primitive in CPG2 is computed as:

256× 8× 1

1000000

8
= 0.00025 secs

Note that in this case the cost in the second grid dimension, i.e. CPG2, is half the cost

in the first grid dimension, i.e. CPG1.

The weights assigned to each hyperedge in this case are computed like in one-dimensional

distributions, except that the number of processors assumed in CPG1 is 8, and 4 in CPG2.

The only loop nest with more than one candidate parallel loop is an initialization phase

whose profiled execution time can be considered null, therefore corrector edges are not

required.

Once the CPG has been built, the minimal path problem with 0-1 integer variables is

modeled with the edges based model. Table 4.1 shows the characteristics of this model.

The computation time spent in finding the optimal solution according to this model is

1.6 seconds 1.

The optimal solution generated by the solver is static, distributing the first dimension of

all the arrays across the second dimension of the processors grid, i.e. across 4 processors,

and the second dimension of all the arrays across the first dimension of the processors grid,

1Times have been obtained executing on a Sun SuperSparc 20
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Number of edges 320

Number of hyper 20

Number of corrector 2

Number of 0-1 variables 342

Number of constraints 386

Computation time 1.6 secs.

Table 4.1 CPG complexity for two-dimensional distributions of the ADI code.

i.e. across 8 processors. The optimal mapping strategy for phases 6 and 7 is illustrated

in Figure 4.7.

phase 6 phase 7

CPG1

CPG2
1to1

1to1

loop i

loop j

1to1

1to1

A B XA B X

A B X A B X

(8 procs)

(4 procs)

Figure 4.7 Optimal two-dimensional data mapping for phases 6 and 7 of the ADI code.
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4.5 SUMMARY

In this Chapter we have extended the Communication-Parallelism Graph in order to sup-

port two-dimensional data mappings, assuming that the processors topology is constant,

and known at compilation time. The basic idea under this model is that the CPG is

duplicated. Assuming that the topology is a p1× p2 processors grid, all weights in CPG1

are computed assuming p1 processors, and weights in CPG2 are computed assuming p2

processors.

The cost model for two-dimensional data mappings has been modified with respect to the

one-dimensional case. For data movement costs, we decompose the reference pattern into

two one-dimensional data movement primitives. The block size for each data movement

primitive is computed assuming that there is always another dimension distributed. For

the parallelism cost model, we have introduced the corrector edges, that connect each

couple of nested hyperedges. If two nested hyperedges are selected for the solution, the

corrector edge is selected as well. The weight assigned to the corrector edge corrects the

over estimation execution cost of selecting two nested hyperedges.

Finally, we have extended the minimal path problem formulation, in order to guarantee

the correctness of the two-dimensional solution. This includes a set of constraints to force

that both paths have to be different each other, and a set of constraints to ensure the

correct behavior of corrector edges.





5
TWO-DIMENSIONAL DISTRIBUTION

WITH VARIABLE TOPOLOGY

In this Chapter, we deal with the general two-dimensional distribution, in which the

processors topology might change along the program execution. We assume that the

processors geometry can be either one-dimensional or two-dimensional with different grid

topologies. The new extension of the CPG is described, as well as the whole problem

formulation in terms of 0-1 integer variables. The minimal path problem is reformulated

in order to cover both the one-dimensional data mapping and the two-dimensional data

mapping.

5.1 MULTIPLE

COMMUNICATION-PARALLELISM GRAPHS

A valid data mapping strategy distributes one or two dimensions of the template over a

processors grid topology that can be dynamic. The number of available processors p is

known at compile time, and it is assumed to be a number power of 2, i.e. p = 2q. Therefore

the one-dimensional topology is a p×1 processors grid, and the two-dimensional topology

is any couple p1 × p2 processors grid, where p1 × p2 = p.

The idea of this model is to build as many CPG as topologies may be considered. This

new data structure is named a multiple-CPG. The symbolic information contained in each

CPG is identical, but the weights assigned at each edge and hyperedge are different and

computed according to the number of processors assumed in the corresponding topology.

91
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For regularity, the one-dimensional data mapping is modeled as a two-dimensional p× 1

processors grid.

Actually, in our implementation we only consider two different topologies: the one-

dimensional p × 1 topology, and a squared two-dimensional p1 × p2 topology with

p1 = p2 = 2
q

2 . If q is an odd number, then p1 is set to 2 × p2. A valid general two-

dimensional data mapping strategy has to select one node for each column at each phase,

in both CPG copies within a single topology. The nodes selected at each CPG copy

within a single topology have to be different each other, and the topology selected at each

phase might change between phases if required. One change in the topology of an array

requires a redistribution, therefore additional data movement edges have to be inserted

in the CPG allowing this kind of change, and estimating the effects of the corresponding

data movement.

For instance, Figure 5.1 contains a valid general two-dimensional data mapping strategy,

which may be specified with the following HPF data mapping directives:

REAL A(N, N), B(N, N), C(N, N), D(N, N), E(N, N)

!HPF$ PROCESSORS PROC GRID 1D(P)

!HPF$ PROCESSORS PROC GRID 2D(P1, P2)

!HPF$ TEMPLATE T1(N, N), T2(N, N), T3(N, N)

!HPF$ DYNAMIC T2(N, N)

!HPF$ ALIGN A(i, j) WITH T1(j, i)

!HPF$ ALIGN B(i, j) WITH T1(j, i)

!HPF$ ALIGN C(i, j) WITH T2(i, j)

!HPF$ DISTRIBUTE T1(BLOCK, *) ONTO PROC GRID 1D

!HPF$ DISTRIBUTE T2(BLOCK, *) ONTO PROC GRID 1D

!HPF$ ALIGN D(i, j) WITH T3(i, j)

!HPF$ ALIGN E(i, j) WITH T3(j, i)

!HPF$ DISTRIBUTE T3(BLOCK, BLOCK) ONTO PROC GRID 2D

· · · i-th phase · · ·

!HPF$ REDISTRIBUTE T2(BLOCK, BLOCK) ONTO PROC GRID 2D

· · · j-th phase · · ·

In this case, the second dimension of arrays A and B, and the first dimension of array

C in the first phase are aligned and distributed on a one-dimensional processors grid of

p processors. Then the array C is redistributed, and the first dimension of arrays C and



2-D Distribution with Variable Topology 93

D, and the second dimension of array E in the second phase are aligned and distributed

on the first dimension of a p1 × p2 processors grid, and the second dimension of arrays

C and D, and the first dimension of array E are aligned and distributed on the second

dimension of the same two-dimensional processors grid.

CPG with constant

CPG with constant

p x 1 topology

p1 x p2 topology

CPG with

CPG with

CPG with

CPG with

p processors

1 processor

p2 processors

p1 processors

phase i phase j

A B C C D E

Figure 5.1 Valid solution in a general two-dimensional CPG.

Note that in the first phase all selected nodes belong to the one-dimensional topology,

while in the second phase all selected nodes belong to the two-dimensional topology. In

addition, nodes selected in one CPG copy within a given topology are different than nodes

selected in the other CPG copy of the same topology.

5.1.1 Redistribution Information

In the general two-dimensional data mapping, the processors topology can change if de-

sired. As usual, this change is allowed only between phases. Therefore, the CPG has to

provide the required information to model this possibility. This information is included

in terms of redistribution edges. These edges have to reflect the data movement effects of

changing the topology.
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For instance, if an array used in phase i is used in a later phase, say phase j, realignment

information is added connecting all nodes of this array from phase i to phase j as explained

in Chapter 3. If one of these edges is selected, the topology is maintained, and the

alignment can change. In addition, redistribution information is inserted to allow a change

in the processors topology. This information is included connecting all nodes of one array

at phase i of a topology, to all nodes of the same array at phase j of the other topology.

The set of realignment and redistribution edges can be seen in Figure 5.2.

The first set of edges connect all nodes of one array in the first CPG copy of one topology,

to all nodes of the same array in the first CPG copy of the other topology. Similarly,

another set of edges connect all nodes of one array in the second CPG copy of one

topology, to all nodes of the same array in the second CPG copy of the other topology.

CPG with constant
p1 x p2 topology

CPG with
p procs

CPG with
1 procs

CPG with
p1 procs

CPG with
p2 procs

CPG with constant
p x 1 topology

phase i phase j

change topology

keep topology
change alignment?

Figure 5.2 Realignment and redistribution connections from the p× 1 topology.



2-D Distribution with Variable Topology 95

The set of realignment and redistribution edges leaving the first copy of the first topology

can be seen in detail in Figure 5.3.

phase jphase i

Redistribution

. . . . . .

. . .CPG with
p1 processors

CPG with
p processors

Realignment

. . .

Figure 5.3 Set of edges included in realignment and redistribution connections.

Note that according to our model, when an array changes the distribution topology, all

dimensions of this array have to be redistributed. This means that if one dimension of

one array aligned to the first dimension of the processors grid in a topology has to be

redistributed, the array dimension aligned to the second dimension of the processors grid

has to be redistributed as well. In addition, it is not necessary to connect the first CPG

copy in the first topology to the second CPG copy in the second topology. As can be seen

in Figure 5.3, realignment can be performed at the same time than redistribution with a

single set of redistribution edges.

5.2 COST MODEL FOR REDISTRIBUTIONS

The weight assigned to each edge is a symbolic expression representing a Redistribution

data movement primitive. Note that this cost is the same regardless the array changes

the alignment or not.

According to our cost model in which two-dimensional data movement is decomposed into

sub-patterns, and each sub-pattern is matched with a single data movement primitive,

the cost of a Redistribution data movement primitive is equivalent to a Many to Many

data movement primitive at each array dimension. Therefore, the weight assigned at each
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edge is a function of the block size at each processor, i.e. the total array size divided by

the total number of processors.

5.3 MODELING THE PROBLEM

At this point, the multi-CPG is composed by two topologies, each of which contains

two CPG copies. The definition of a valid solution for the general two-dimensional data

mapping is the following:

A valid solution has to select a single topology for each phase, al-

though the topology selected might change between phases. For a

given phase and a given topology, two paths have to be selected, one

at each CPG copy within the topology. The path has to include one

node for each column in the phase, and the nodes selected have to

be different.

In order to distinguish the CPG copy a variable belongs to, the CPG superscript will

contain two digits: the first digit a for a ∈ 1, 2 references the topology number, and the

second digit b for b ∈ 1, 2 references the CPG copy within the corresponding topology.

Therefore, let Y ab
PQ[i, j] be the variable associated to the edge connecting node i of column

P to node j of column Q, in the b − th CPG copy of the a − th topology. Similarly, let

V ab
PQ[i, j] be the variable associated to the redistribution edge connecting node i of column

P in the b − th CPG copy of the a − th topology to node j of column Q in the b − th

CPG copy of the other topology. Even when redistribution edges behave like regular data

movement edges, the set of 0-1 integer variables associated to redistribution edges is called

V for simplicity in the subscripts. Note that the superscript ab denotes the source CPG

copy of the edge, therefore let a′b denote the destination CPG copy, where a′ = (3− a).

Finally, let Zab
m represent the variable associated to the m − th hyperedge in the b − th

CPG copy of the a − th topology. In terms of corrector edges, the first CPG topology

represents a p× 1 grid, so no corrector edges for this topology are required. Therefore let

Wm denote the variable associated to the m− th corrector edge in the second topology.
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The original sets of constraints defined in Chapters 3 and 4 have to be modified in order

to guarantee the correctness of the general two-dimensional data mapping, therefore the

model will be rewritten in the following Sections. This model is valid for both one-

dimensional and two-dimensional data distributions.

5.3.1 New Set of Constraints

To ensure the correctness of the solution in the general two-dimensional data mapping,

the following sets of constraints have to be specified:

C1 - The solution is a couple of paths.

C2 - Each path visits one node in each column.

C3 - All edges connecting selected nodes have to be included in the solution.

C4 - All hyperedges whose nodes are all selected have to be included in the solution.

C5 - All corrector edges connecting selected hyperedges have to be included in the

solution.

C6 - Nodes selected in each path are distinct.

C7 - Both paths belong to the same topology.

Constraints C1 − C6 are basically the same than in previous Chapters, but adapted to

the structure of the multi-CPG. The main issue that has to be considered in this model is

that some columns P in the CPGab copy are connected to column Q in the same CPGab

copy throughout the set of edges Y ab
PQ and to column Q in the CPGa′b copy throughout

the set of edges V ab
PQ. Now a valid path has to choose one out of both set of edges.

Constraints C1 guarantee that a path in a CPG copy has to be connected. Thus for each

column Q connected to more than one column P and R, if one edge leading to a node in

Q is selected in the set Y ab
PQ or in the set V a′b

PQ when it exists, one edge leaving this same

node must be selected in the set Y ab
QR or in the set V ab

QR when it exists.
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In terms of the variables and their values, it can be stated at each CPGab copy, that for

each node i of each column Q connected to more than one column P and R, the sum of

the values of variables associated to the edges that connect this node to column P , must

be equal to the sum of the values of variables associated to the edges that connect this

node to column R.

d∑

j=1

Y ab
PQ[j, i] + V a′b

PQ[j, i] =
d∑

j=1

Y ab
QR[i, j] + V ab

QR[i, j]; ∀i, a, b

This must be accomplished for each pair of sets YPQ − YQR with a column in common.

As in the previous Chapter, constraints C2 and C3 can be specified together. These can

be modeled forcing one edge to be selected in a single dimension of any topology, for each

non empty set of edges Y ab
PQ and V ab

PQ.

This can be stated, in terms of variables and their values, posing that the summation of

each non empty set of edges Y ab
PQ and V ab

PQ in each dimension b of both topologies a has

to be equal to one.

2∑

a=1

d∑

i=1

d∑

j=1

Y ab
PQ[i, j] + V ab

PQ[i, j] = 1; ∀b ∈ {1, 2}

This must be accomplished for each set of edges YPQ.

Constraints C4 ensure the correct behavior of the hyperedges at each CPGab copy. The

hyperedge belongs to the selection if all nodes linked by it have been selected. According

to this model a node i in column P is selected in CPGab if one of the edges Y ab
PQ[i, j] or

V ab
PQ[i, j] that connect it to any other column Q has been selected.

Assume that hyperedge Zab
k connects h nodes in CPGab, say nodes i1 · · · ih in columns

P 1 · · ·P h respectively. It can be stated, in terms of variables and their values, that:

d∑

j=1

Y ab
P 1Q1[i1, j] + V ab

P 1Q1[i1, j] ≥ Zab
k

· · ·
d∑

j=1

Y ab
P hQh[ih, j] + V ab

P hQh[ih, j] ≥ Zab
k
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for each hyperedge k at each CPGab copy.

Constraints C5 ensure the correct behavior of each corrector edge. Note that corrector

edges link hyperedges only between CPG21 and CPG22. In terms of variables and their

values, let Wm be the variable associated to the corrector edge connecting hyperedge Z21
p

to Z22
q. It can be stated that:

Z21
p ≥ Wm

Z22
q ≥ Wm

Z21
p + Z22

q ≤ Wm + 1

for each corrector edge between CPG21 and CPG22.

Constraints C6 ensure that paths do not have nodes in common, or in other words, that

an array dimension is distributed at most once. This can be managed ensuring that the

summation of edges connecting each node in all CPGab to any other column, is lower or

equal than one.

In terms of variables and their values, for each node i in column P connected to another

column Q by Y ab
PQ or V ab

PQ, the summation of the values of the variables associated to the

edges of all CPGab copies that connect this node to column Q has to be lower or equal

than one.
2∑

a=1

2∑

b=1

d∑

j=1

Y ab
PQ[i, j] + V ab

PQ[i, j] ≤ 1; ∀i ∈ {1..d}

for each column P in the multi-CPG.

And finally, constraints C7 guarantee that both selected paths belong to the same topol-

ogy. This can be modeled, for each topology, ensuring that the summation of edges in

one dimension b of a topology, equals the summation of edges in the other dimension b′

of the same topology.

In terms of variables and their values, for each set of edges Y ab
PQ and for each topology a,

the sum of the values of variables associated to the edges in CPGab must be equal to the
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sum of the values of the edges in CPGab′.

d∑

i=1

d∑

j=1

Y ab
PQ[i, j] =

d∑

i=1

d∑

j=1

Y ab′

PQ[i, j]; ∀a ∈ {1, 2}

This must be accomplished for each set of edges.

5.4 AN EXAMPLE: GENERAL TWO-DIMENSIONAL

DISTRIBUTION FOR THE ADI KERNEL

If we consider again the Alternate Direction Implicit (ADI) integration kernel and look

for the optimal solution, the tool will suggest a two-dimensional data mapping like the

one illustrated in Chapter 4. In this Section, the original ADI kernel is slightly modified

in order to provoke a different optimal solution.

With this purpose, the three initialization phases are included within an iterative loop that

provides more computational weight, and a data flow dependence is added in the nested

j loop within the second phase. Therefore this j loop is not candidate to be parallelized.

With this change, we intend to give a higher weight to the initialization phases, and force

a row distribution for them.

According to the general two-dimensional model, two different topologies are built, each

one consisting of two CPG copies. Assuming that the target system has 32 processors

available, the first topology corresponds to a 32 × 1 processors grid, and the second

topology corresponds to a 8 × 4 processors grid. As usual, the bandwidth assumed is

1Mbyte per second.

The weights for edges and hyperedges in the 32×1 topology are the same than in Chapter

3, and the weights of edges, hyperedges, and corrector edges in the 8× 4 topology are the

same than in Chapter 4. However, in this model there are several redistribution edges

connecting both topologies. The cost of a redistribution between any couple of CPG

copies considers all 32 processors, and it is the same for all arrays. This can be computed

as:
256× 256

32
× 8×

1

1000000
= 0.01638 secs
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The resulting graph is used to model the minimal path problem with 0-1 integer variables.

The characteristics of the general two-dimensional data mapping model are summarized

in Table 5.1. The computation time spent to find the optimal solution increases up to 7.5

seconds 1.

General Model

Number of edges 1088

Number of hyper 36

Number of 0-1 variables 1124

Number of constraints 767

Computation time 7.5 secs

Table 5.1 CPG complexity for the ADI program in the general two-dimensional data

mapping model.

In this case, the optimal solution derived by the tool is a row distribution for the three

initialization phases, and a two-dimensional distribution for the remainder phases. The

optimal data mapping strategy for phases 3 and 4 can be seen in Figure 5.4. In the Figure,

superscripts in CPGab specify the b− th copy of the a− th topology. Note that a change

of topology, i.e. redistribution, is required for all arrays used in both phases 3 and 4.

1Times have been obtained executing on a Sun SuperSparc 20
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phase 3

CPG11

loop i

(32 procs)

A B X A B X
loop i

phase 4

1to1 1to1

CPG12

(1 procs)

CPG21

(8 procs)

CPG22

(4 procs)

Figure 5.4 Optimal one and two-dimensional data mapping for phases 3 and 4 of the

ADI code.
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5.5 SUMMARY

In this Chapter we have described the Communication-Parallelism Graph that supports

general two-dimensional data mappings, in which the processors grid topology can change

during the execution of the program. The idea is that a different CPG is built for each

topology considered, and redistribution edges that allow a change of topology are inserted

between phases in the CPG.

This new CPG with multiple copies of the original one, is called multi-CPG. Although

our implementation is limited to two different topologies, the idea of the model can be

extended to more topologies.

In addition, we have redefined the linear 0-1 integer programming formulation of the min-

imal path problem in order to support both the one-dimensional and the two-dimensional

models.





6
EXPERIMENTAL RESULTS

In this Chapter we describe some experiments performed in order to illustrate several as-

pects of the tool. First we intend to show the accuracy of the predictions of the tool. This

is performed by executing the parallelized code on a real parallel machine and comparing

the measured times to the estimated ones. Second, the complexity of the approach will

illustrated in terms of computation time spent to find the optimal solution. Solutions are

computed for both one-dimensional and two-dimensional data mappings.

6.1 PERFORMANCE PREDICTION TOOL

In order to validate the accuracy of the prediction of the tool, some of the solutions

generated have been compared to the actual execution of the parallelized program on a

Silicon Graphics ORIGIN 2000 with 32 processors. The ORIGIN 2000 is a non-uniform

memory access distributed-memory multiprocessor with a high capacity 4 Mbytes cache

memory for each processor, that may act as a first level distributed memory. We have

performed several experiments, trying different data mapping strategies, changing the

number of processors, and changing the data sizes in some programs.

In all predictions, we have assumed a bandwidth of 108 bytes per second, unless otherwise

stated. Profiling information has been obtained executing the sequential code on a single

processor of the same ORIGIN system.
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The run time behavior of the parallelized code depends on the data mapping and par-

allelization strategy selected for the source program, on some architectural parameters

of the target machine, but also on the compiler capabilities. To obtain accuracy in our

predictions, the parallel code has been generated by hand in order to avoid compiler

optimizations not supported in our model.

The programs selected for these experiments are the Alternating Direction Implicit (ADI)

integration kernel, the ERLEBACHER program written by Thomas M. Eidson at the In-

stitute for Computer Applications in Science and Engineering (ICASE), and the SHAL-

LOW benchmark weather prediction program from the xHPF benchmark set 1, written

by Paul N. Swarztrauber from the National Center for Atmospheric Research. For the

purpose of this evaluation, programs ERLEBACHER and SHALLOW have been inlined,

since our tool does not perform inter-procedural analysis.

6.1.1 ADI

The Alternating Direction Implicit (ADI) integration kernel has been used in several

Sections of this Thesis as an example code. The original source code can be found in

Appendix A.

The ADI kernel has three initialization phases, followed by an iterative loop with six

more phases within it. The first three phases within the iterative loop contain neighbor

data movement across the second array dimension, and can be parallelized by rows. Al-

ternatively the remainder three phases within the iterative loop contain neighbor data

movement across the first array dimension, and can be parallelized by columns.

Instead of using an HPF compiler that may apply some optimizations not dealt by our

model, we have implemented by hand the parallel single program multiple data version of

several data mapping strategies for the ADI kernel, according to our model. The strategies

considered are:
1The xHPF benchmark set is available by anonymous ftp at ftp.infomall.org in directory

tenants/apri/Bench
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Row static distribution, which allows the parallelization of the three initialization

phases, and the first three phases within the iterative loop.

Column static distribution, which allows the parallelization of one initialization

phases, and the last three phases within the iterative loop. When the cost of moving

data is high, both row and column strategies are effective.

Dynamic data distribution, which allows the parallelization of one loop in each phase,

but requires data redistribution inside the iterative loop. When the data movement

cost is low, this data distribution strategy is the most effective.

Two-dimensional p1 × p2 static data distribution, which allows the parallelization of

one loop in each phase. Loops that parallelize rows are executed with p1 processors,

and loops that parallelize columns are executed with p2 processors.

In Appendix B there is a description of the single program multiple data program used

in the executions.

The run time behavior of these implementations are listed in Table 6.1. All units in

the Table are expressed in seconds. The prediction has been performed using a profiled

sequential time of 13.793 seconds. The size of the matrices is 256×256, and the number of

iterations of the outer loop has been changed to 100 in order to obtain a better resolution.

2 4 8 16 32

Measured 9.90 8.87 8.75 8.22 15.11
ROW

Predicted 10.82 9.32 8.58 8.20 8.02

Measured 9.97 7.90 6.93 6.70 6.64
COL

Predicted 9.88 7.91 6.93 6.43 6.19

Measured 6.85 4.00 2.26 1.18 1.85
DYN

Predicted 7.68 4.03 2.07 1.05 0.52

Measured 9.97 6.63 4.13 3.73 2.19
2-D

Predicted 9.88 6.89 3.94 3.48 1.88

Table 6.1 Comparison of measured and predicted execution times for row, column,

dynamic, and two-dimensional data mapping.
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We have implemented the code parameterized for 2, 4, 8, 16, and 32 processors. According

to our model, two-dimensional data distributions have been generated such that processors

are apportioned as equally as possible across each distributed dimension.

Note that all predictions are within a 10% of the actual measured execution time, except

codes that incur in false sharing. False sharing occurs in executions with 32 processors

and when matrices are distributed by rows. These codes are the one-dimensional row

data distribution, and similarly, the dynamic data mapping in phases where arrays are

distributed by rows.

In addition, we have compared the execution times of our data mapping strategy to the

optimal solution found by the POWER FORTRAN Accelerator, the native SGI source-

to-source optimizing FORTRAN preprocessor that discovers parallelism in FORTRAN

codes and converts those programs to parallel code. The results of this comparison is

shown in Table 6.2. Note that our optimal solution reduces the execution time between

20% and 70% with the ADI code.

2 4 8 16 32

POWER FORTRAN Accelerator 8.84 5.07 3.32 2.67 6.18

Dynamic Mapping (measured) 6.85 4.00 2.26 1.55 1.83

Improvement 22.5% 21.1% 31.9% 41.9% 70.3%

Table 6.2 Comparison between the parallelization strategy proposed by PFA and the

one selected by our tool.

6.1.2 ERLEBACHER

The ERLEBACHER program is a 3D tridiagonal solver based on the ADI integration

kernel. The inlined program consists of 38 phases that perform symmetric forward and

backward computations along each dimension of four main 3-dimensional arrays. In the

first computation flow, data is moved across the first array dimension. Therefore par-

allelism exists along the second and third dimensions. Similarly, the second and third

computation flows move data across the second and third dimensions respectively.
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There are several equivalent parallelization strategies as long as the computation along

each dimension is symmetric. However and due to the profiled sequential execution time,

the parallelization strategy suggested by our tool is to distribute the third dimension of the

arrays in the first and second computation flows, and to distribute the second dimension

of the arrays in the third computation flow.

The resulting predicted and measured parallel times of the optimal data distribution

strategy using 2, 4, 8, 16, and 32 processors can be seen in Figure 6.1. All times are

expressed in seconds. Predicted parallel times have been performed using a profiled

sequential execution time of 0.873 seconds. Note that predicted times in this example

are within a 5% of the actual measured execution times.
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Figure 6.1 Predicted and measured execution times for the ERLEBACHER program

with 2, 4, 8, 16, and 32 processors.

6.1.3 SHALLOW

The SHALLOW water equations model is a 512 lines code, with a set of 512× 512 sized

arrays. The inlined program consists of 27 phases, most of them within an iterative loop

of NCY CLES iterations. The computation is composed by sets of three phases: a loop

nest that computes the core of some two-dimensional arrays, one loop that computes the



110 Chapter 6

first and last rows, and one loop that computes the first and last columns. All these loops

are parallelizable, and contains nearest-neighbour data movements.

A static two-dimensional squared data mapping would reduce the amount of data to be

moved around, however, the computation of loops that traverse single rows or columns will

be parallelized by the root of the number of processors. Alternativelly, and according to

our model, both the row and column static data mappings require more data movement

overhead, but can slightly reduce the computation time. Due to the profiling issues,

the optimal data mapping suggested by our tool is the static distribution of the second

dimension of all the arrays.

The resulting predicted and measured parallel times of the optimal data distribution

strategy using 2, 4, 8, 16, and 32 processors can be seen in Figure 6.2. All times are

expressed in seconds. Predicted parallel times have been performed using a profiled

sequential execution time of 45.152 seconds. Note that predicted times in this example

are within a 5% of the actual measured execution times.
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Figure 6.2 Predicted and measured execution times for the SHALLOW program with

2, 4, 8, 16, and 32 processors.
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6.2 COMPLEXITY OF THE APPROACH

In this Section we intend to illustrate the complexity of our model in terms of computation

time required to find the optimal data mapping strategy. In addition to the ADI inte-

gration kernel, the ERLEBACHER program, and the SHALLOW benchmark, we have

selected programs baro, tomcatv, and x42 from the xHPF benchmark set, and the routine

rhs which is the more time consuming routine from the APPSP NAS benchmark, also

included in the xHPF benchmark set. Program baro has been inlined, and routine rhs

has been transformed to a single program. All times presented in this Section have been

obtained using a Sun SuperSparc 20.

The set of programs selected are listed in Table 6.3. The table includes information about

the number of code lines, the total number of loops, the number of loops candidate to be

parallelized, the number of phases in each program, the number of different arrays and

their dimensionality, and the number of different reference patterns between arrays. These

characteristics are the parameters that determine the complexity of the final optimization

problem.

Program Lines Loops Parall Phases Arrays Dims Patts

adi 50 15 10 9 3 2 48

erle 449 83 68 41 13 3 151

rhs 535 37 37 4 4 4 24

tomcatv 178 18 9 11 7 2 77

x42 302 36 29 19 19 2 196

baro 1153 98 86 24 38 2 428

shallow 365 39 38 27 14 2 282

Table 6.3 Characteristics of the selected programs.

Table 6.4 shows the number of 0-1 integer variables and the number of constraints required

to formulate the minimal path problem for one-dimensional data mappings. In addition,

the last column shows the total CPU time (in seconds) required to find the optimal

solution. All these computations have been performed asssuming 16 processors and a

bandwidth of 108 bytes per second.
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Program edges hyper constr time

adi 160 10 164 0.50

erle 1359 68 804 4.90

rhs 336 37 176 0.70

tomcatv 248 10 249 0.80

x42 700 29 760 4.20

baro 1484 83 1608 15.80

shallow 936 38 1004 6.60

Table 6.4 Characteristics of the one-dimensional model.

Note that all steps of the data mapping process (including remapping) have been per-

formed with the specified time. The more time consuming application is baro with 15.8

seconds. shallow and erlebacher take 6.6 and 4.9 seconds respectively, and all other

programs are below one second.

In the two-dimensional data mapping model assuming a constant topology, the number

of 0-1 integer variables is duplicated. However the computation time spent in finding the

optimal solution increases exponentially. In Table 6.5 the number of edges, hyperedges,

corrector edges, and constraints, and the total computation time spent to find the optimal

solution can be seen.

Program edges hyper correct constr time

adi 320 20 2 386 1.60

erle 2718 136 74 2014 1542

rhs 672 74 138 543 77.70

tomcatv 496 20 2 583 2.50

x42 1400 58 30 1775 329

baro 2968 166 66 3703 8 hours

shallow 1872 76 22 2335 2 days

Table 6.5 Characteristics of the two-dimensional model with constant topology.

Note that the computation time does not depend only on the number of integer 0-1

variables nor on the number of constraints. In this model, the minimal path problem

structure is much harder to solve. For instance, the number of variables and constraints
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in the two-dimensional model for rhs is lower than in the one-dimensional model for

erlebacher. However the computation time in the two-dimensional model of rhs is 15

times higher than the one-dimensional model of erlebacher. Obviously, the time required

to solve adi, tomcatv, rhs, or even x42 is acceptable. All other times are out of range.

After Table 6.6, we will show how to reduce these times.

Finally, in Table 6.6 the characteristics on the general two-dimensional model is shown,

but only for programs that turns out to be feasible in terms of time. As usual, times are

expressed in seconds.

Program edges hyper correct constr time

adi 1088 40 2 795 7.90

rhs 2048 148 138 922 1 hour

tomcatv 1536 40 2 1168 16.30

x42 4304 116 30 3481 5 hours

Table 6.6 Characteristics of the general two-dimensional model for a subset of the

selected programs.

We have observed that our general purpose linear 0-1 integer programming solver tends

to find the optimal solution at the beginning of the search, although it requires many

more iterations to explore the whole search space. The number of iterations performed by

the solver can be provided by the user as a run-time parameter to limit the computation

time. In Table 6.7 the amount of seconds spent by the solver to find a good solution is

shown. In addition, we show the optimality of the data mapping strategy found.

Note that in this case, program baro spends less than 20 minutes in finding a solution

with an estimated performance of 87% the estimated performance of the optimal solution.

With a little bit more than 12 minutes, a solution is provided for erlebacher with an

optimality of 82%. Programs shallow and x42 require 5 and 3 minutes respectively to

obtain solutions with an optimality of 88% and 92%. Program rhs finds the optimal

solution with only 23.8 seconds, compared to one hour required when no limit is provided

to the solver. The other programs find the optimal solution with a matter of seconds.
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Program time optimality

adi 7.8 100%

erle 770 82%

rhs 23.8 100%

tomcatv 14.3 100%

x42 197 92%

baro 1191 87%

shallow 327 88%

Table 6.7 Behavior of the set of selected programs when limiting the number of itera-

tions of the solver.

6.3 SUMMARY

In this Chapter we have illustrated the accuracy of our model in terms of predictability

tool. The original sequential codes have been transformed by hand in order to force the

execution to behave as assumed in our model, and thus avoiding undesired optimizations

performed by the HPF compiler. We have shown the precision of the predictions with the

ADI integration kernel, the ERLEBACHER program, and the SHALLOW benchmark.

In addition, we have compared the data mapping strategy suggested by our tool for the

ADI code to the optimal solution generated by the Power Fortran Accelerator, the native

SGI source-to-source optimizing FORTRAN preprocessor. The results of this comparision

demonstrate the usefulness of our tool.

We have also shown the complexity of the approach in terms of computation time spent to

find the optimal solution. The one-dimensional model provides the optimal solution very

fast, while the time spent in the two-dimensional model increases exponentially. We have

observed that the linear 0-1 integer programming solver tends to find the optimal solution

at the beginning of the search, although it requires many more iterations to explore the

whole search space. Therefore we propose to reduce the computation time required to

find the optimal solution by limiting the number of iterations performed. The behavior

of this limitation has also been shown.



7
CONCLUSIONS AND FUTURE WORK

Automatic data mapping in the context of a parallelizing environment for massive parallel

processors systems is an important topic of current research. The choice of a good data

distribution is important as it determines the amount of remote data accesses and the

potential parallelism in a data parallel program. The optimal data distribution depends

on the program structure, the compiler capabilities, characteristics of the target machine,

and the program’s data sizes.

Due to their influence on the amount of inter-processor communication, the choice of

data mapping and remapping have a significant impact on the performance of the parallel

program. In addition, there is often a trade-off between minimizing interprocessor data

movement and load balancing on processors. Crucial aspects such as data movement,

parallelism, and load balance, have to be taken into consideration in a unified way to

efficiently solve the data distribution problem.

Our thesis proposes a new framework for an automatic data mapping tool in the context

of a parallelizing environment for massive parallel processor systems. The applications

considered for parallelization are usually regular problems, in which data structures are

dense arrays. The tool analyzes Fortran 77 programs and decides a data mapping and

parallelization strategy for this program. This data mapping is used to annotate the

original sequential Fortran program using HPF data mapping and loop parallelization

directives.
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The data mapping strategy generated can be static or dynamic, one or two-dimensional,

with either BLOCK or CYCLIC distribution fashion. The solution suggested takes into

account the effects of control flow statements between phases, and includes the alignment

and distribution of all the arrays at each phase, a set of remapping actions between phases

when profitable, and the loop parallelization strategy induced by the data mapping.

One-dimensional Communication-Parallelism Graph

We have defined a new data structure named Communication-Parallelism Graph (CPG),

that contains all the information required to consider in an unified way all steps of the data

mapping problem. This single data structure holds all data movement and parallelism

information inherent in each phase of the program, plus additional information between

phases denoting the data movement cost occurred if the distribution of one array in one

phase is different than the distribution of the same array in another phase.

Nodes in the CPG are organized in columns. In order to build the CPG, programs

are initially divided into phases, and each array in a phase defines a column with as

many nodes as the array dimensionality. Therefore, each node represents a distributable

dimension of one array. Over this set of nodes, data movement information is added in

terms of edges. One edge connects two nodes if the alignment and distribution of these two

nodes has effects related to data movement. Similarly, parallelism information is added

in the CPG in terms of hyperedges. All array dimensions that have to be distributed for

a loop to be parallelized are linked to a hyperedge.

A valid data mapping is made up of one node from each column. The data mapping

strategy associated is the distribution of the array dimension associated to the selected

nodes. The effects of this data mapping strategy are determined by the set of edges and

hyperedges that remain inside the selected set of nodes. Edges express data movement

and hyperedges express parallelization. Therefore the execution time of the parallelized

program is estimated as the sequential execution time, plus the time overhead of data

movement, minus the time saved due to parallelization.
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Two-dimensional Communication-Parallelism Graph

Given a two-dimensional processors grid topology, the two-dimensional data mapping

model builds two CPG copies. Each copy is associated to one dimension of the processors

grid, and costs are computed according to the number of processors assigned to that

dimension. In this case, the cost model has to be modified with respect to the one-

dimensional case. A valid two-dimensional data mapping has to select one node from

each column of each CPG copy, with the additional restriction that nodes selected in one

CPG copy have to be different than nodes selected in the other CPG copy.

If the data-mapping has to support different processors grid topologies, two CPG copies

are built for each two-dimensional topology modeled. The name of this set of CPG copies

in multi-CPG. All arrays within a phase have to be distributed with the same topology,

but this can change between phases. Therefore additional data movement information

is added connecting arrays between phases at different topologies. In this case, a valid

two-dimensional data mapping has to select one node from each column within a single

topology, with the additional restriction that nodes selected in one CPG copy have to be

different than nodes selected in the other CPG copy. The topology selected at each phase

can change between phases.

Optimization Problem Model

The CPG contains all data movement and parallelism related information of a whole

program. Assuming a number of processors, all symbolic information included in the

CPG is replaced by its estimated cost, computed in seconds. Therefore the CPG contains

all its weights in seconds. The optimal data mapping is the one that minimizes the

summation of data movement cost minus the summation of parallelization benefits.

Linear programming provides some techniques to solve some optimization problems. In

our framework, we translate the whole data mapping problem into a single minimal path

problem with a set of additional constraints that ensures the correctness of the solution.

The techniques used guarantee that the solution provided is optimal, therefore heuristic
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algorithms are avoided. A general purpose linear 0-1 integer programming solver is used

to find the optimal solution.

The solution derived includes the alignment and distribution of each array at each phase,

plus remapping actions between phases if profitable, plus the set of loops that have to

be parallelized according to the data mapping strategy. All this information is computed

independently by many other authors. However, in our framework this information is

exactly computed in a single step.

Experimental Results

Experimental results illustrate the accuracy of our model in terms of predictability tool.

The precision of the predictions using the ADI integration kernel, the ERLEBACHER

program, and the SHALLOW benchmark is shown. In addition, we have compared the

run time behavior of the optimal data mapping strategy for the ADI code suggested by

our tool to the execution of the optimal solution generated by the native SGI source-to-

source optimizing FORTRAN preprocessor. Our solution is at least 20% better for all

different number of processors evaluated.

In terms of complexity of the approach we have shown the feasibility of the approach with

the one-dimensional data mapping model. However, in the two-dimensional model the

computation time spent to find the optimal solution increases exponentially, and is some

cases the time is very high. We have proposed to reduce this computation time by limiting

the number of iterations of the linear 0-1 integer programming solver. This simplification

can produce sub-optimal solutions, however we have observed that the solver finds the

optimal solution in most cases even when the number of iterations have been limited.

Publications

The work presented in this thesis is based on our experience in the implementation

of another automatic data distribution tool, called DDT. In the first implementa-

tion [AGG+94], DDT supported static data distributions, including inter and intra-

dimensional alignment. The tool was then improved in order to perform inter-procedural
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analysis, and to support dynamic data distributions [AGG+95]. A whole description of

the tool can be found in [AGG+97]. The techniques proposed for distributed memory sys-

tems are currently applied to cache-coherent shared memory parallel systems, in which the

large cache sizes can perform as a local memory system. This is described in [AGGL96].

In [GAL95b, GAL95a] we presented the CPG as a novel approach towards static automatic

data distribution. The mappings supported at that point considered the whole program

as a single phase. The minimal path problem was formally specified in [GAL96c]. This

basic model was extended in [GAL96b] in order to support dynamic data mappings, and

in [GAL96a] it was enhanced in order to model both BLOCK and CYCLIC distributions, and

take into account the effects of control flow statements between phases. In [GAL97] we

presented some initial results towards the two-dimensional data mapping assuming that

the underlying processors topology is constant.

As a previous work, our group performed an exhaustive study and selection of application

codes from different benchmark suites. The results and conclusions have been presented

at [ALG+93, ALG+94, ALG+95] Finally, a discussion on current HPF implementations

will be published in [PAGT97].

Future Work

Our main interest in the future work is to study techniques to reduce the computation

time required to find a solution, keeping the condition that the solution has to be optimal.

One approach is the study and implementation of a specific purpose linear 0-1 integer

programming solver, taking into account the regularity of our model. Another option

is to develop one exhaustive search algorithm with aggressive pruning techniques. Both

alternatives will be implemented and compared.

A lot of additional aspects should be considered in the problem formulation in order to

improve the accuracy of the model, and therefore the quality of the solutions generated.

Data movement optimizations, such as detection and elimination of redundant communi-

cation, overlapping of communication and computation, and combination of communica-

tion messages have to be included in the model. Other parallelism related optimizations
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will enhance the functionality of the tool, such as loop transformations to eliminate data

dependences, or exploitation of pipelined computations.

The framework can also be extended in order to perform inter-procedural analysis, and

to accept both Fortran 77 and Fortran 90 programs. In addition, an automatic code

restructuring and generation module may be implemented to automate the whole process.

It would be interesting to integrate this tool into an unified parallelization environment

useful enough to assist the programmer in efficiently write his parallel application codes.

This environment may be an interactive graphical user interface that provides with more

comprehensive information.

Finally, we plan to apply the techniques developed in this work to other parallel system

architectures, such as distributed-shared memory systems, in which cache effects can

change the behavior of the parallel program. These techniques can also be applied to

other computer science fields, such as distributed database systems or special purpose

parallel multimedia systems.
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A
ADI: THE ALTERNATE DIRECTION IMPLICIT

INTEGRATION KERNEL

program adi

double precision x(256, 256), a(256, 256), b(256, 256)

parameter (MAXITER = 10)

c

c initialize

c

do i = 1, 256

a(i, 1) = 0.0

b(i, 1) = 3.0

x(i, 1) = 4.0

enddo

do j = 2, 255

do i = 1, 256

a(i, j) = 1.0

b(i, j) = 3.0

x(i, j) = 5.0

enddo

enddo

do i = 1, 256

a(i, 256) = 1.0

b(i, 256) = 3.0

x(i, 256) = 4.0

enddo
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do iter = 1, MAXITER

c

c ADI forward & backward sweeps along rows

c

do j = 2, 256

do i = 1, 256

x(i, j) = x(i, j) - x(i, j-1) * a(i, j) / b(i, j-1)

b(i, j) = b(i, j) - a(i, j) * a(i, j) / b(i, j-1)

enddo

enddo

do i = 1, 256

x(i, 256) = x(i, 256) / b(i, 256)

enddo

do j = 255, 1, -1

do i = 1, 256

x(i, j) = (x(i, j) - a(i, j+1) * x(i, j+1)) / b(i, j)

enddo

enddo

c

c ADI forward & backward sweeps along columns

c

do j = 1, 256

do i = 2, 256

x(i, j) = x(i, j) - x(i-1, j) * a(i, j) / b(i-1, j)

b(i, j) = b(i, j) - a(i, j) * a(i, j) / b(i-1, j)

enddo

enddo

do j = 1, 256

x(256, j) = x(256, j) / b(256, j)

enddo



ADI: The Alternate Direction Implicit Integration Kernel 131

do j = 1, 256

do i = 255, 1, -1

x(i, j) = (x(i, j) - a(i+1, j) * x(i+1, j)) / b(i, j)

enddo

enddo

enddo

print *, x

end





B
TRANSFORMED ALTERNATE DIRECTION

IMPLICIT INTEGRATION KERNEL

In this Appendix the implementation of the single program multiple data code used in the

experimental results Chapter is described. We have transformed the original program in

order to control the exact placement of the data during the execution. The transformation

consists on adding parallelization directives according to the ORIGIN 2000 programming

model, and on performing some well known loop transformations. For the description of

the transformations, we have selected phases 2, 4, and 5 of the ADI integration kernel, as

they cover the main aspects of the implementation.

Phase 2 is a fully parallelizable nest of loops, which initialize arrays a, b, and x. The

original sequential code contains two loops: the first one iterates from 2 to 255, and the

second loop iterates along the whole array dimension.

do j = 2, 255

do i = 1, 256

a(i, j) = 1.0

b(i, j) = 3.0

x(i, j) = 5.0

enddo

enddo

Assuming a one-dimensional column BLOCK distribution with 4 processors, each processor

owns 64 columns of each array. However the iteration space generates iterations 2 to 255.

In order to force the owner computes rule, we have to ensure that processor 0 executes

from column 2 to 64, processor 1 executes from column 65 to 128, processor 2 executes
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from column 129 to 192, and processors 4 executes from column 193 to 255. The single

program multiple data code generated strip-mines the loop in order to guarantee the

appropriate iteration space partition driven by the owner computes rule. The generated

program is the following:

C$DOACROSS LOCAL(lb$j, ub$j, i, j)

do my$j = 0, 3

lb$j = max(my$j * 64 + 1, 2)

ub$j = min((my$j + 1) * 64, 255)

do j = lb$j, ub$j

do i = 1, 256

a(i, j) = 0.0

b(i, j) = 1.0

x(i, j) = 5.0

enddo

enddo

enddo

where the C$DOACROSS statement directs the compiler to generate special code to run

iterations of the DO loop in parallel. The C$DOACROSS directive applies only to the next

statement which must be a DO loop. By default, the scheduling used partitions the itera-

tions among the processes by dividing them into contiguous pieces and assigning one piece

to each process. Therefore we guarantee that each processor executes its corresponding

chunk of iterations. The LOCAL clause provokes each processor to have its own local copy

of the variable. A variable can be local if its value does not depend on any other iteration

and if its value is used only within a single iteration.

Instead of computing chunks of iterations from the array sizes, functions max() and min()

have been inserted in the computation of the j loop bounds, for the code to be single

program multiple data. Note that function max() will only get the value 2 for processor

0, and function min() will only be 255 for processor 4.

This hand coded transformation is equivalent to the recently available AFFINITY clause

of the C$DOACROS directive. The affinity schedulling controls the mapping of iterations of
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a parallel loop for execution onto the underlying threads. However, we have preferred the

hand coded version due to implementation efficiency.

If the distribution is two-dimensional, and assuming 16 processors in a 4 × 4 processors

grid, rows and columns of the arrays are partitioned across 4 processors. In this case,

both the i and the j loop have to be strip-mined.

C$DOACROSS NEST(my$j, my$i) LOCAL(lb$i, ub$i, lb$j, ub$j, i, j)

do my$j = 0, 3

do my$i = 0, 3

lb$j = max(my$j * 64 + 1, 2)

ub$j = min((my$j + 1) * 64, 255)

do j = lb$j, ub$j

lb$i = my$i * 64 + 1

ub$i = (my$i + 1) * 64

do i = lb$i, ub$i

a(i, j) = 0.0

b(i, j) = 1.0

x(i, j) = 5.0

enddo

enddo

enddo

enddo

The C$DOACROSS NEST directive specifies that the entire set of iterations across the (my$j,

my$i) loops can be executed concurrently. The restriction is that both loops must be

perfectly nested.

The next phase whose transformation is worth thinking about, is phase 4, in which there

is a flow dependence in the j loop. The original sequential code is the following:

do j = 2, 256

do i = 1, 256

x(i, j) = x(i, j) - x(i, j-1) * a(i, j) / b(i, j-1)

b(i, j) = b(i, j) - a(i, j) * a(i, j) / b(i, j-1)
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enddo

enddo

Sequential loops that use shared data are executed by a single processor in most parallel

architectures. This means that if the data array dimension accessed in the sequential loop

is initially distributed, it will be moved to the local memory of that processor. To avoid

this, we have partitioned the iteration space in such a way that the processor who owns the

corresponding chunk is the one that performs the computation. Synchronization has to

be introduced to guarantee that the loop is executed preserving the sequential execution.

If the data mapping strategy suggests to distribute the second array dimension, and

again assuming one-dimensional BLOCK distribution with 4 processors, the generated single

program multiple data code is the following:

token = 0

C$DOACROSS LOCAL(lb$j, ub$j, i, j)

do my$j = 0, 3

1111 if ( token .ne. my$j ) goto 1111

lb$j = max(my$j * 64 + 1, 2)

ub$j = (my$j + 1) * 64

do j = lb$j, ub$j

do i = 1, 256

x(i, j) = x(i, j) - x(i, j-1) * a(i, j) / b(i, j-1)

b(i, j) = b(i, j) - a(i, j) * a(i, j) / b(i, j-1)

enddo

enddo

token = token + 1

enddo

Note that the shared variable token is used as a spin-lock that ensures the sequential

ordered execution of the inner loop nest. When processor p finishes the computation, the

token is incremented and processor p + 1 can start the computation of its chunk.



Transformed Alternate Direction Implicit Integration Kernel 137

Similarly, in the two-dimensional data distribution case and assuming 16 processors in a

4× 4 grid topology, the execution of the j loop has to be performed sequentially, but the

i loop can be executed in parallel.

do i = 1, 4

token$i(i) = 0

enddo

C$DOACROSS NEST(my$j, my$i) LOCAL(lb$i, ub$i, lb$j, ub$j, i, j)

do my$j = 0, 3

do my$i = 0, 3

1111 if ( token$i(my$i+1) .ne. my$j ) goto 1111

lb$j = max(my$j * 64 + 1, 2)

ub$j = (my$j + 1) * 64

do j = lb$j, ub$j

lb$i = my$i * 64 + 1

ub$i = (my$i + 1) * 64

do i = lb$i, ub$i

x(i, j) = x(i, j) - x(i, j-1) * a(i, j) / b(i, j-1)

b(i, j) = b(i, j) - a(i, j) * a(i, j) / b(i, j-1)

enddo

enddo

token$i(my$i+1) = token$i(my$i+1) + 1

enddo

enddo

In this case, vector token$i() of shared variables is required in order to synchronize the

sequential execution of columns within a row. One element of this token is provided for

each set of processors in the first array dimension.

Finally, phase 5 is a single loop that only traverses the last column of arrays x and b.

do i = 1, 256

x(i, 256) = x(i, 256) / b(i, 256)

enddo
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Again, we have to force the processor or processors that owns this column to be the one

that computes this loop. Assuming the BLOCK one-dimensional column distribution with 4

processors, a conditional statement has to be inserted to guarantee that processor number

3 is the only one that will execute all the iterations of the loop.

C$DOACROSS LOCAL(i)

do my$i = 0, 3

if ( my$i .eq. 3 ) then

do i = 1, 256

x(i, 256) = x(i, 256) / b(i, 256)

enddo

endif

enddo

Similarly, in the two-dimensional data distribution with 16 processors, the same condition

holds but for each processor owning elements in the last column. The inner i loop can be

parallelized, as can be seen in the following fragment of code:

C$DOACROSS NEST(my$j, my$i) LOCAL (lb$i, ub$i, i)

do my$j = 0, 3

do my$i = 0, 3

if ( my$j .eq. 3 ) then

lb$i = my$i * 64 + 1

ub$i = (my$i + 1) * 64

do i = lb$i, ub$i

x(i, 256) = x(i, 256) / b(i, 256)

enddo

endif

enddo

enddo

Note that the loop body has not been modified in any case. We have only transformed the

iteration space in order force that each processor computes the corresponding iterations,

and that according to the owner computes rule, the arrays remain distributed as desired.


