ADVERTIMENT. La consulta d’aquesta tesi queda condicionada a I'acceptacio de les seglents
condicions d'Us: La difusié6 d’'aquesta tesi per mitja del servei TDX (www.tesisenxarxa.net) ha
estat autoritzada pels titulars dels drets de propietat intel-lectual Gnicament per a usos privats
emmarcats en activitats d’'investigacio i docéncia. No s’autoritza la seva reproduccié amb finalitats
de lucre ni la seva difusio i posada a disposicio des d'un lloc alie al servei TDX. No s’autoritza la
presentacio del seu contingut en una finestra o marc alie a TDX (framing). Aquesta reserva de
drets afecta tant al resum de presentacio de la tesi com als seus continguts. En la utilitzacié o cita
de parts de la tesi és obligat indicar el nom de la persona autora.

ADVERTENCIA. La consulta de esta tesis queda condicionada a la aceptacion de las siguientes
condiciones de uso: La difusién de esta tesis por medio del servicio TDR (www.tesisenred.net) ha
sido autorizada por los titulares de los derechos de propiedad intelectual Gnicamente para usos
privados enmarcados en actividades de investigacién y docencia. No se autoriza su reproduccién
con finalidades de lucro ni su difusion y puesta a disposicidon desde un sitio ajeno al servicio TDR.
No se autoriza la presentacién de su contenido en una ventana o marco ajeno a TDR (framing).
Esta reserva de derechos afecta tanto al resumen de presentacion de la tesis como a sus
contenidos. En la utilizacién o cita de partes de la tesis es obligado indicar el nombre de la
persona autora.

WARNING. On having consulted this thesis you're accepting the following use conditions:
Spreading this thesis by the TDX (www.tesisenxarxa.net) service has been authorized by the
titular of the intellectual property rights only for private uses placed in investigation and teaching
activities. Reproduction with lucrative aims is not authorized neither its spreading and availability
from a site foreign to the TDX service. Introducing its content in a window or frame foreign to the
TDX service is not authorized (framing). This rights affect to the presentation summary of the
thesis as well as to its contents. In the using or citation of parts of the thesis it's obliged to indicate
the name of the author

UNIVERSITAT POLITECNICA DE CATALUNYA

PHD THESIS
2009

Heterogeneity-Awareness in
Multithreaded Multicore Processors

Author:
Carmelo Alexis Acosta Ojeda

Advisors:

Mateo Valero Corés
Universitat Poliecnica de Catalunya

Alex Ramirez Bellido
Universitat Politcnica de Catalunya

Francisco J. Cazorla Almeida
Barcelona Supercomputing Center

A thesis submitted in fulfillment of the requirements for the degree of
DOCTOR OF PHILOSOPHY / DOCTOR PER LA UPC

Departamentdrquitectura de Computadors
Universitat Politcnica de Catalunya

cacosta
Texto escrito a máquina

cacosta
Texto escrito a máquina

cacosta
Texto escrito a máquina

cacosta
Texto escrito a máquina

A mis padres, Puritay Carmelo, y a Hema,
por todo el amor que me danala da.

Agradecimientos

Esta tesis doctoral ha supuesto uno de los hitas importantes de toda mi vida. A

lo largo de todos estosias he madurado no solo como profesional sino como persona.
Como en lavida misma, ha habido un poco de todo, momentos buenos y momentos malos.
Incluso, como no, ha habido momentos en los que e nunca llegéa este th. En
ocasiones no somos capaces de ver la luz al finalidel ty nos da la sens@cti de estar

solos y perdidos vagando a la deriva. En esos momentos te planteas el sentido de todo,
incluso de la vida misma. Hoy echo la vistagatileno de ale@a y pienso que todo tiene

su radn de ser, lo bueno y lo malo. Las grandes lecciones de la vida suelen costar un
poco, pero una vez aprendidas te permiten disfrutar con mayabnlysalegra de las

cosas buenas qusta tiene que ofrecerte . .. si estas atento para que no se te escapen.

En este sentido quiero dar mias profundo y sincero agradecimiento a mi futura
esposa Hema, el amor de mi vida, y a mis padres, Purita y Carmelo, mis referentes en
la vida que lo son todo paraimGracias por haber estado siempré, @poyandome y
conforandome en los momentos malos,andome tanto amor como me dais y me $ggu
dando. Desde lo &s profundo de mi corén ... gracias, os quiero.

Esta tesis doctoral me ha cambiado la vida, en todos los sentidos. &pwdmcerme
cambiar de ciudad de residencia, propiciando mi emandpacsi bien 24 &os es en
general una buena edad para emanciparse y “dejar por fin tranquilos a los padres”, hay
gue reconocer que con los tiempos que corren no suele ser lo habitual. Tener que mudarme
de Las Palmas de Gran Canaria, la ciudad que me vio nacer y a la que siempre llevo en
el coradn, a Barcelona, una gran urbe muy lejos de todo y todos los queiepsapuso
un gran reto. Doy las gracias en este sentido a EnriquéiRdez y a Mateo Valero por
creer en m ayudarme y permitirme vivir esta experiencia.

Por suerte, el hecho de dejaragitanto y a tantos, incluyendo a mi paciente pareja, se
hizo mas llevadero gracias a la gente tan estupenda con la que me érmoBarcelona.
A algunos ya los conda de antes, como a Xavi Very Fran Cazorla, dos buenos amigos
a los que conddaciendo la carrera de Infoatica en la ULPGC.

La vida siempre te depara sorpresas y muchas de ellas son incluso agradahles. As
si bien deg até&s muchos amigos en Barcelona cdreomuchas personas excepcionales,
entre las que me enorgullece decir que enégtandes amistades. Siempre recardar
con nostalgia y una sonrisa en los labios aquellas partid@siakecon Ayose Falon,

Oliver Santana, Daniel Ortega, dssCorbal, Fernando Latorre, Lloren¢ Cruz y Ram
Canal. Mas adelante, €)uakedaiia paso aNeed for Speey al Wormsy nuevos “conten-
dientes”, como Jaume Abella, y otros no tan nuevos como Marco Galluzzi, AléaGwprc
Tana se unian a esos momentos especiales que cohgpaos y que hdan las jornadas

de trabajo ras llevaderas. En este sentido, contar con Tana, amigo de toda la vida al
gue “medio converit para venirse a Barcelona, supuso un gran apoyo para sentiasie m
“como en casa”. Gracias por estai.ah

Recuerdo tamién con especialfranza aquellas gratas sobremesas, primero en el
Nexus y nas tarde en la cocina del departamento, tanto en su antigua @icaciel
edificio D6 (actual sala de impresoras) como en su nueva ubitaei el C6. A todos
los anteriores he de unir en la lista a Josepi®alosepe” Codina, Enric Gibert, Jordi
Guitart, Alex Pajuelo y Ruen Gran. A todos ellos doy las gracias por hacer de mi paso
por el DAC una experiencia tan agradable y memorable.

Y como olvidarme de esos & y paseos en los que halbhmos un poco de todo,
desde rétricas de simulabn hasta filosdé de la vida. Seguramente me déjar mu-
chos y muchas en el tintero, pero la lista no puede prescindir de figuras comarGerm
Rodiiguez, Isidro Gonalez, Gemma Reig y Miquel Mor@t Agradezco tamin a mis
“profesores particulares” de caaal. . . gracias Josepe Codina y Miquel Mérpbr ser tan
pacientes con mi incipiente caal En este apartado quiero hacer una néenespecial
para una gran amiga que encéngén Barcelona. A ella le debo mucho, pues como buena
amiga supo confortarme en los momentoscilés y ayudarme a superarlos. Gracias Bea
Otero por estar aly poder contarte entre mis amigas.

Aunque no lo parezca, entre partidas de videojuegos, charlas en la sobremé&sa y caf
tambén hubo tiempo para investigar y sacar adelante una tesis doctoral. Llegados a este
punto, quiero dar mi &s sincero agradecimiento a mi director de tesis, Mateo Valero,
por creer en mdesde el principio, incluso cuando ni siquiera yo mismdacen m.

Esta tesis no hubiera sido posible éiry desde estasneas quiero expresar mi gratitud.
Profesionalmente, soy lo que soy gracidd,as que ... muchas gracias, Mateo.

No quiero olvidar mi agradecimiento a mis co-directores de tesis, AlexiieamFran
Cazorla. A lo largo de todo este tiempo juntos he aprendido mucho de ambos emambi
quiero agradecer en este sentido a Ayosedrafmor su aportadin a mi tesis en su etapa
como co-director de la misma. Como profesional, he madurado mucho junto a tan buenos
investigadores. Parte de lo que soy hoy tantse lo debo a ellos.

Pero como dda desde un principio, esta tesis doctoral ha supuesto grandes y pro-
fundos cambios en mi vida, no solo en el aspecto profesional. Coriésshee llegado
a considerar a Barcelona como “mi hogar” (de hecho ya me he establecidooagumi
pareja con la que ya he pasado por el rito-bancario de “ ... hasta que el Euribor nos se-
pare ..."). Ambos hemos tenido la suerte de encontrarnos cadsibmels personas que
han conseguido hacernos sentir como en casa. Ahora somos canario-catalanes y orgul-
losos de serlo. Entre la lista de personas que han heab@gradable nuestra estancia en
Barcelona me guste citar, entre otros, a Sara (Saray) Guardias, AlbaiAna Beén
Rodiiguez,Angel Melgar, Pilar Boira y Trini Carneros. Tanto a los queiaaparecen
como a todos y todas los désy gracias por haceras amena esta etapa de mi vida. Sin
vosotros no hubiera sido lo mismo.

Afortunadamente, “emigrar” a Barcelona no supuso perder a los amigos de Canarias
solo reduce la cantidad de momentos que puedes compartir con ellos. A lo largo de estos
anos, en los “ires-y-venires” Barcelona-Gran Canaria, he seguido manteniendo dichos
amigos y tengo la suerte de poder decir que incluso he podido incrementdmesen
Me gustara citar entre otros a Selene, DaviniapMca y Zaida Cabello, Jony, Dani
Montelongo, Mbnica Suarez, Ana, Jaime, Dani, Ruti, Raquel y Rosi. Gracias a todos y
todas por hacer de cada viaje a Canarias a lo largo de é€sissia momento inolvidable.
Ocupa un lugar destacado en esta lista de amigosaRpaigo nads que un amigo ...Si
fuéramos hermanos seguro que no nosallamos tan bien. Gracias por estar siempte ah
...Como espero que @sten una celebram que tenemosia pendiente, “padrino”.

Y no puedo terminar sin agradecer entre otros a Stan Lee, pdianse que inde-
pendientemente de la ropa que lleves, si eres bombardeado por rayos gamma y te hacen
cabrear, siempre acaldarcon unos pantalones cortos azules/violeta “irrompibles”. A
J.R. Tolkien bueno, @s bien a Peter Jackson que al otro nunca lo &atpmasiado, por
recordarme gque nunca compre un anillo en la Tierra Media, pues las devoluciones son
complicadas (Presentar una solicitud en persona a Monte del Destino S/N, TMO Mordor,
Tierra Media). Y finalmente a George Lucas, por &asme que no todo aquel que es
seducido por el lado oscuro frecuenta los locales de “ambiente”.

Vi

Abstract

As enter into the so-calleBillion Transistor Erg with billions of transistors on a sin-

gle chip, the Computer Architecture faces new challenges. The performance achievable
by traditional superscalar processor designs does not scale with the increasing transistor
count due to limitations imposed by thestruction Level Parallelism (ILR)As a conse-
guence,Thread Level Parallelism (TLP)as become a common strategy for improving
processor performance. Since it is difficult to extract mafefrom a single application,
multithreaded processors focus on the processor throughput, executing multiple applica-
tions instead. Obviously, multiple execution threads coming from a single application
may be simultaneously executed, but sometimes it is not that trivial explditfPgwe

can not simply rely orfrarallel Programming As the number of cores on a single chip in-
creases, the Computer Architecture community wonders whether this new trend towards
having hundreds of cores on a single chip, also cattedy-coresis worthwhile.

The complexity of state-of-the-art designs is translated into power and thermal chal-
lenges. Power efficiency can often be traded for performance or cost benefits. With the
increasing power density of modern circuits, as the number of transistors per chip scales
(Moore’s Law), power efficiency has increased its importance. Thus, current processor
designs must beomplexity-effectivei.e. get the highest throughput possible with the
lowest power consumptioin addition, power dissipation issues constrain the designs of
the next processor generations. The quest for simpler ways of increasing the processor
throughput under a reasonable power cost is on the way.

In this thesis we analyze the heterogeneity in the behavior of applications and match
it with the processor design itself. We show that this heterogeneity turns current general-
purpose processors overdesigned for most cases. We also show thatrouttiéhiteaded
multicore (CMP+SMT processors are not explicitly aware of this software heterogeneity,
that is they are ndtleterogeneously-Awar&\Ve propose architectural changes in order to
turn Heterogeneously-Awatbe CMP+SMT processors. Our proposals strive to improve
the complexity-effectiveness future generations dMP+SMT processors.

vii

viii

Contents

1 Introduction

1.1 Simultaneous Multithreading and Multicore Processors
1.2 Heterogeneity-Awarenesso e e

1.3 Thesis Contributions,
1.4 ThesisStructure e

2 Experimental Framework

2.1 Simulation Methodology
22 Benchmarks
2.3 Complexity-Effectiveness Metrics
2.4 Cache Configuration
25 MPSIM

3 Heterogeneous SMT Processors

3.1 Application Heterogeneity

3.1.1 Heterogeneity Considerations in the Processor Design

3.1.2 Methodology
3.1.3 Inter-Application Heterogeneity
3.1.4 Intra-Application Heterogeneity
3.2 Heterogeneity-Aware Architectures
3.3 The hdSMT Architecture
3.3.1 Mapping policiesinhdSMT
3.3.2 AreaCostModel
3.3.3 SimulationSetup o oL
3.3.4 Microarchitectures and Metrics
3.3.5 SimulationResults 0oL
3.4 ChapterSummary

4 Heterogeneity-Awareness in CMP+SMT Processors

iX

CONTENTS

4.1 Introduction 56
4.2 Methodology 59
4.3 Scheduling in Multicored SMT Processors 60
4.4 Thread to Core Assignment and the IFetch Policy 62
4.5 Threadto Core Assignment Algorithm 65
4.5.1 TCA Algorithm Foundations 66
452 TCAAlgorithm 67
453 TCACalbration 70
4.5.4 TCA Algorithm Evaluation. 72
46 RelatedWork 75
4.7 ChapterSummary e e 76
Heterogeneity-Aware CMP+SMT Processors 77
5.1 Introduction 78
5.2 Methodology 79
5.3 IFetch Policy in SMT Processors 81
5.3.1 Instruction Energy Consumption in SMT Processors 82
5.4 Thread to Core Assignment in SMT On-Chip Multiprocessors 83
55 ThehTCAframework. 85
5.5.1 Hardware/Software co-design 86
55.2 ThehTCAAlgorithm. 87
553 hTCAevaluation 89
56 RelatedWork 92
57 ChapterSummary 93
Further Considerations 95
6.1 Introduction 96
6.2 Methodology 97
6.3 Analysis 97
6.3.1 Single-coreanalysis, 99
6.3.2 Multiple-coreanalysis, 100
6.3.3 Detection Moment Analysis 102
6.4 TheMFLUSHPolicy 103
6.4.1 MFLUSH Hardware Support. 105
6.4.2 MFLUSH Throughput Evaluation 105
6.4.3 MFLUSH Power Consumption Evaluation 107
6.5 RelatedWork 108
6.6 ChapterSummary 109

CONTENTS

7 Conclusions

7.1 Thesisconclusions
7.2 Futurework

8 Appendix: The MPsim Simulation Tool

8.1 MPSIMOVEIVIEW @ i i
8.2 Parameterinterface
8.3 ThePipeline.
8.3.1 Thread Migration
8.4 The Memory Subsystem
8.4.1 Multibanked & Multiported Caches
8.4.2 L2 Cache AccessArbiter
8.5 PowerMeasurement
8.6 ComputationalCost
8.7 Conclusions & Future Work

8.7.1 Further Considerations and Acknowledgements
Publications
List of Figures
List of Tables

Bibliography

Xi

142

143

Xii CONTENTS

Chapter 1

Introduction

The process technology advances are propelling the computer industry towards the so-
calledBillion Transistor Era Optical and lithographic improvements allows that every
two or three years the industry produces a new level of manufacturing technology that
shrinks die area by a factor of two for the same number of transistors. Figure 1.1 shows
the feature size and gate lengths of various processes Intel expects to put into production
every two years through this decade. In addition, the size comparison of these features
and the influeza virus is shown in Figure 1.1 as an illustrative example of the process
technology'’s potential.

The arrival of theBillion Transistor Erais also impeled by the development of new
materials in the industry. Figure 1.2 shows a Transmission Electron Microscope (TEM)
photo. The left side depicts a closeup of a transistor in Intel’s 90nm process. The image
is really only about 1/10th of the actual channel length. The little round structures in Fig-
ure 1.2 are atoms, and they are only about 0.3 nanometers apart in the silicon substrate,
which has a highly regular structure. The size of the insulating §#@e dielectric layer
is only about 4 or 5 atomic thick. While transistors get faster at these smaller dimensions,
leakage current becomes a much greater problem, and the gate structures become much
more fragile. The right-hand side uses a new insulating material with a higher dielec-
tric (K) value, and it can be much thicker and stronger, yet still maintain the same fast
electrical properties as the Si@hile reducing gate leakage by two orders of magnitude.

From a Computer Architecture’s point of view, the future does not look so promising.
Since the appearance of the fig&iperscaladesign in the 60’s, computer architects have
striven to employ the increasing hardware resource count to boost the performance of ap-
plications. Thus, many processors explagtruction Level Parallelism (ILPjo execute

CHAPTER 1. INTRODUCTION

90nm Node
Lgate = 50nm
Production - 2003 Influenza virus

65nm Node
Lgate = 30nm
Production - 2005

45nm Node
Lgate = 20nm
Production - 2007

30nm Node
Lgate = 15nm
Production - 2009

Figure 1.1: Process Advancements Fulfill Moore’s Law.

Gate’ i Gate

1. 25 Ssqz =.0nm High-k

silicon substrate

90nm process Experimental high-k
Capacitance 1x 1.6x
Leakage 1x <0.01x

Figure 1.2: Nanotechnology Gate Dielectrics.

several instructions from a single stream (thread) in parallel. However, there is only a lim-
ited amount of parallelism available in each thread dugsatiaandcontrol dependences
among other factors [76] :

1. Control dependencesevery time a control flow instruction changes the flow of
instructions to a new target instruction, it takes several cycles to start fetching from
that target, which degrades the numbehstructions committed Per Cycle (IPC)

2. Data dependencesdata dependences limit tHBC as well since an instruction
can only start its execution when all its input dependences are resolved. For short-
latency operations the out-of-order mechanism of curBngerscalamprocessors
hides part of this latency. However, when the processor experiences a long-latency
operation, i.e., a miss in the outer cache level, this mechanism is not able to hide
it causing a stall of the processor. Literature claims these dependences to comprise
probably the ultimate frontier of Parallelism: tMemory Wall

Computer architects use many hardware resources in order to reduce the effect of
these problems, e.g., bigger and more complex branch predictors to control dependences
and deeper windows to further explditP when a long-latency instruction is executed.
However,data and control dependencesignificantly limit performance, degrading the
performance/cost ratio of processors.

Since it is difficult to extract morlP form a single program, architects opted for exe-
cute multiple programs. Thu$hread Level Parallelism (TLRpapidly became a common
strategy for improving processor performanbtultithreaded (MT)processors constitute
a solution to improve the performance/cost ratio of processors, allowing threads to share
hardware resources. There are several categorid&Toprocessors, each dealing with
the above problems in a different way. The classificatioMatftithreadedprocessors is
not well established. In this thesis, we have used a classification similar to that presented
in[73, 74], as explained in Figure 1.3. In this figure, A, B, C and D represent four different
applications. White squares denote unutilized slots.

1. In aSuperscalamarchitecture, like théntel Pentium I11[3], only one thread is run-
ning at a given time.

2. In aMulticore processor, like théntel Core 2 Duo[77], resources are not shared
between threadsEach thread uses a different set of resources.

3. InaCoarse-Grain Multithreadegrocessor [10, 66], like thi®M Northstar/Pulsafl1]
, threads share more execution resources thaialaicore processor. Instructions

1These applications likely share some levels of the cache hierarchy.

4 CHAPTER 1. INTRODUCTION

SuperScalar Multicore Coarse-grain Fine-grain Simultaneous Multithreaded
Multithreading Multithreading Multithreading Multicore

[ATATALL [[[ATAlB]B]|[ATATAIJ{{[ATATAL Jj[[AlAlB]B]||[AlA]B][E]

[ATATL I ATAL T | ATATJC I{ATAT T J|[[ATATATA] [Alc]BID]

HEEN|ENE |‘ B>|B||B|| ||l _I_]j|<l<]plp]

[ATAIC T |[fATALB]| DAATATAIL I el]

(AL T I falAls]| (Bl T Bl Bl||BIB] I Jj{[AlBlB]EB]||[AlA]|BID]
v (LA BB |[[ATATATAl|[Alc]B]B]
(C-;'(T:S) Context Switch

Functional Units, Delay

Figure 1.3: A possible classification of Multithreaded Architectures.

can be issued from a single thread in a given cycleCaearse-Grainprocessor
switches to a different thread when a thread experiences a long-latency operation,
e.g., an outer cache miss. This allows the processors to hide part of the latency of
long-latency operations.

4. Fine-Grain Multithreading[12, 28, 36, 61]: The main difference betwe€narse-
Grain andFine-Grain Multithreadingis the granularity at which context switches
occur. In aFine-Grain Multithreadedprocessor context switches are caused by
other, not necessarily long-latency, events, e.g. branch misprediction. In this way,
Fine-Grain processors can hide the latency of short-latency operations. Another
difference betweelrine-Grain and Coarse-Grain Multithreadings that the lat-
ter approach switches between threads much more frequently than the former ap-
proach. As a result, ifine-Grain Multithreading like the Sun UltraSparc T17]
and T2 [4], context switches have lower cost (probably 1 cycle) thaRaarse-
Grain Multithreading

5. The main characteristic &multaneous Multithreading (SMpyocessors [30, 43,
72, 71, 79], like thdntel Pentium 4[5], is their ability to issue instructions from
the different threads in the same cycle. As a re&NMTsnot only can switch to a
different thread to use the idle issue cycles in a short-latency operatiori-fike
Grain Multithreaded, but also fill unused issue slots in a given cycle. Executing
several threads at the same time provi@ie® in addition tolLP. This parallelism
comes from the additional parallelism provided by the freedom to fetch instructions
from different independent threads, and from mixing them in an appropriate way in
the processor.

6. TheMultithreaded Multicoreprocessors, like the recel@M POWER5[60] and
POWERG{39], represent the lattest incorporation to & group. The increasing
transistor count on die has made possible to builduticore processor in which
each of its execution cores implemeB¥IT feature. The example on the right side
of Figure 1.3 shows a 2-core implementation with 2-hardware contexts per core.
The private hardware resources within each execution core are shared among the
two applications running simultaneously.

Regardingcontrol dependenceMT processors reduce the dependence of throughput
on branch prediction accuracy. That is, branch prediction accuracy is not of the utmost
importance when running multithreaded applications [47, 53]. This is mainly due to the
fact that the opportunity of fetching from several threads reduces the percentage of spec-
ulative instructions on a wrong path [67].

Regardinglata dependenceBIT processors have shown to be successful in reducing
the effect of data dependences [24, 42, 70]. This is due to the abillyTgirocessors to
execute instructions from several threads

Given all these advantages MIT processors, current trends in Computer Architec-
ture show that forthcoming processor generations will involve some form of multithread-
ing [11, 41]. In fact, many of the main processor vendors already have some multithreaded
processors. Some examples areltitel Pentium 45], a dual thread&MT, thelntel Core
2 Duo[77], a dual core processor, the IBROWERS60] andPOWER{39], dual core
processors comprised of 2-cont&S#T cores, and th&un Niagara T17] and T2 [4],
with eight 4 and 8-contextine-Grain Multithreadedcores respectively.

The processor generation’s state-of-the-art also reveals a trend towards increasing the
exection core count on a single chip [69]. Potentially down the road, assuming a contin-
ued trajectory, the current trend could lead to the development of a massive core future
whereby one chip could contain thousands of processing cores. We would then jump to a
new step in theT roadmap: Thélany-CoreProcessors.

With this sea change in the architecture of the hardware, we are witnessing the Soft-
ware Community wrestling with a massive shift from serial-based thinking to parallelism.
However, the general feeling in the Software Community reveals a quite blunt and nega-
tive reaction to this grandiose trajectory that the Hardware Community has set in motion.
With this type of feedback coming from the Software Community, could it be we are
witnessing the end of an era?

2MT is orthogonal to the out-of-order mechanism of the processor, if it exists.

6 CHAPTER 1. INTRODUCTION

All Hardware Resorces All Hardware Resorces
Statically splitted Shared
€ m e e o B

: Less Complexity '

® ® ®

CMP CMP+SMT SMT

More Shared Resources
Figure 1.4: A continous spectrum of Multithreaded approaches.

As Computer Architects we can not unilaterally decide the future of the whole Com-
puter Community. Sometimes we have to sit back and consider alternative ways of reach-
ing our goal; ways that take into account the perspective of other communities. In this
sense, if we have a look at the executed applications it is straightforward that they have
anheterogeneoukehavior, as we will see in Chapter 3. Thisterogeneitgan be found
comparing the behavior of both different applications and different portions of execution
within the same application. It is then logical that we should start designing processors
explicitly aware of thisheterogeneityn the software they execute. We call this new ap-
proachHeterogeneity-Aware Architectures

1.1 Simultaneous Multithreading and Multicore Processors

Simultaneous Multithreading (SMTJ1, 72, 79] andMulti-Core processors, o€hip
Multiprocessors (CMP)48, 29], represent opposity edges of the same continuous spec-
trum, as shown in Figure 1.4. The first one evolves the traditiSoperscalaarchitecture
by sharing all the processor resources among more than one running thread. The latter
relies on simpler execution cores, replicating them on a single chip and allocating running
threads to these cores. Each one represents a different approach to optimize the perfor-
mance that a fixed transistor budget can prodécbig machine where every resource is
shared versus several simpler machines where the sharing locality is restriguethey
also imply a commitmentthe single thread high-performance 8MT, at a complexity
cost, against the low complexity but limited single-threaded performanGig?. How-
ever, there is also a wide spectrum in betw8iT andCMP approaches as we vary the
amount of shared resources on chip [21].

Multithreaded Multicore (CMP+SMTjprocessors represent a new trend in industry.

1.2. HETEROGENEITY-AWARENESS 7

The advances in process technology have made possible to replicate multiple execution
cores withSMT facilities on a single chip. In this processors, the whole transistor count

is splitted among all the constituent cores, reducing the overall complexity of the chip.
However, each of these cores can simultaneously execute multiple threads in order to
boost the throughput of each core. The us&MIT within each core allows to increase

the resource budget of the execution cores without severely increase the possibility of
resource underuse. Notice that wh@®Psmainly rely onTLP SMTshelp to balance
bothTLP andILP.

In this thesis it is explored the continous spectrum shown in Figure 1.4. On the one
hand, new architectures are proposed that lay on the same spectrum but emphasize the
complexity-effectiveness of the processor design. On the other hand, some proposals are
given to improve the performance of current and fulQMP+SMT processors. It is also
detected a potential hazard of curr@MP+SMTdesigns; a solution that does not involve
excessive complexity is proposed.

1.2 Heterogeneity-Awareness

As mentioned earlier, the behavior of the applications is inherently heterogeneous. We
deeply analyze this heterogeneity in typical general-purpose workloads in Chapter 3. In
advance, we could say that different behaviors can be identified comparing both different
applications and different portions of the same applications’ execution. Consequently, the
hardware support required for each application may vary as applications exhibit different
behaviors. However, current architectures are designed for the common case. Homoge-
neous designs hold sway in the current state-of-the-art, likinteeCore 2 Dud77] and
the IBM POWERY60] and POWERE[39]. However, some vendors have already real-
ized the benefits of heterogeneous microprocessors. Thu€ethpl9] processor, first
released in 2005and used in th@layStation 3video game console, is comprised of 1
masterPowerPCprocessor that feeds 8 sla88VID accelerators, that make extensive use
of the Altivec ISA

In this thesis theHeterogeneity-Awareness a key factor in the processor design.
As far as we would be able to identify heterogeneous behaviors in applications and match
them with the appropriate amount of resources, it is possible to envision more complexity-
effective processors. In this sense, we give proposals built on top of both heterogeneous
and homogeneous hardware layouts. In all cases, the objective is the same: consume less
power maintaining a similar performance level than bigger and more complex machines.

3This thesis started in 2003.

8 CHAPTER 1. INTRODUCTION

1.3 Thesis Contributions

The main contribution of this thesis is that we introduce for the first time the concept of
Heterogeneity-Awareness Multithreaded Multicoreprocessors; as well as mechanisms
that make use of this concept to yield both more complexity-effective and productive
machines. We define ddeterogeneity-Awareneghe processor feature that explicitly
takes into account the heterogeneity in the behavior of the running applications. This
heterogeneity in software is matched with an heterogeneous hardware, or heterogeneous
application assignment over an homogeneous hardware layout. The better the matching
the better the results, since we would be assigning each application exactly the amount of
resources needed according to its requirements during that time slice.

The main purpose of this thesis is to explicitly reflect theterogeneity-Awareness
concept in the design of thdultithreaded Multicoreprocessors, with a twofold objec-
tive. First, to improve theomplexity-effectiveness current and future designs, in order
to fulfill the harder power and thermal constraints that industry is leading Computer Ar-
chitecture to. Second, to improve the throughput obtained in both current and future
complexity-effectiv@rocessors. Being aware of the heterogeneity in the software exe-
cuted allows to react accordingly, improving the performance of available resources by
performing a better resource sharing; that is, giving each application exactly the hardware
resources needed for each time slice’s requirements.

We show that by reflecting the heterogeneity in software on the hardware itself, and
performing the appropriate matching, itis possible to achieve our first objective, namely to
improve thecomplexity-effectiveness current and future designs. Moreover, it is possi-
ble to improve the performance of a purely homogen&M3 machine appropriately dis-
tributing the workload among the available homogeneous resources on the hardware. We
also envision the gradual transition of current state-of-the-art homoge@Bs SMT
processors to future heterogene@MP+SMT processors, in which thdeterogeneity-
Awarenessllows greater improvements in terms of both complexity-effectiveness and
throughput. The full list of the contributions of this thesis is enumerated following:

1. The hdSMT ArchitecturefTo accomplish complexity-effectiveness in hardware de-
signs we combed some wide regions of the continuous spectrum that lie in between
the CMP andSMT approaches. We first made an exhaustive analysis of the hetero-
geneity in hardware and its relation to software. Then, we employed the conclusions
of this analysis to establish the foundations of hie¢terogeneously distributed SMT
(hdSMT)architecture, that allows to improve tloemplexity-effectiveness the
processor design. We show that the propds@8MT architecturdas pretty much
potential than curremhonolithic SMTprocessors.

1.3. THESIS CONTRIBUTIONS 9

2. The TCA Algorithm Since the hardware distribution proposed by our first con-
tribution, the hdSMT architecture, may look difficult to be handled by current
CAD/CAM and layout verification processes, we then moved to a more feasable
layout: aCMP+SMT processor, using tH8M POWERF60] as point of reference.
The lack ofHeterogeneity-Awareness an homogeneouS€ MP+SMT processor,
comprised ofSMT cores with 2 hardware contexts, generally turns into a through-
put degradation. Although its hardware does not directly refledtifterogeneity-
Awarenesoncept, as thedSMT does, it is posible to add slight modifications
that turned such a processor into a mdegerogeneity-Awarenessachine. In this
sense, we proposed one of the main contributions of this thesihtiead to Core
Assignment (TCA) Algorithmnvolving a negligible overhead, thiBCA Algorithm
boosts the throughput of current and fut@®P+SMT processors by explicitly
exposing the heterogeneity in software to the hardware, and appropriatelly match-
ing them. We show evidences that confirm @A Algorithmsupposes a quite
significativeHeterogeneity-Awaramprovement for state-of-the-art processors.

3. The hTCA AlgorithmOnce shown that even state-of-the-art homogen€MR+SMT
processors may be improved turning theteterogeneity-Awareneswe envision
the next straightforward step in processor designs. Thus, once our processor is
Heterogeneity-Awarenesby means of a proper management of @A we in-
troduce some amount of heterogeneity in the hardware itself. This additional het-
erogeneity is aimed at allowing a better matching between software requirements
and hardware facilities. In this sense, we proposehtterogeneous TCA (hTCA)
Framework Involving some minor hardware additions and assited by BEDA Al-
gorithm, the hTCA Framework proves to expose tmenplexity-effectiveness the
user, being possible to dynamically decide degree of complexity-effectiven@ss
our executions.

4. The MFLUSH mechanisntinally, we analyze further considerations arised while
moving from single-core to multi-core scenario. We realized that some well-known
SMT techniques were altered in this transition. In particular, Fh&JSH [70],
mechanism proves to yield worse results than BOUNT [72] policy*. As a
solution, we proposed theRIFLUSH mechanism, ameterogeneity-Awarenech-
anism that yields good results in current and futGMP+SMT processors. The
MFLUSH mechanism adapts tHLUSH/STALLphilosophy to a highly variable
multithreaded multicore scenario, adapting its response according to the memory
banks and traffic contention.

4Built on top of ICOUNT, the FLUSH mechanism was developed to improve lBOUNT response to
long-latency loads, which degrade its throughput.

10 CHAPTER 1. INTRODUCTION

Although not considered as a thesis contribution itself, | would like to emphasize the
special effort put on th&Psim a highly-flexible Simulation Tool specifically designed
for this PhD dissertation, that allows to cover a very wide design space. Such a tool is
desirable in order to face up the researching of coarse regions of the continuous spectrum
between theCMP and SMT approaches. Th®IPsimhas evolved throughout the whole
thesis and continues evolving. It already has gone beyond the scope of this PhD disser-
tation, becoming the main tool used by a group of researchers spread over the Computer
Architecture Department (DAC) of the Polythecnic University of Catalonia (UPC), the
Barcelona Supercomputing Center (BSC) and the University of Las Palmas de Gran Ca-
naria (ULPGC). A detailed description of thPsimSimulation Tool can be found in the
Apendix.

1.4 Thesis Structure

This thesis is organized in chronological order, in a similar fashion as the research
was done. The only exception is tMPsimsimulator, which was evolving (and contin-
ues evolving) as the thesis proceeded. RegardingyifleUSH policy, it was developed
in parallel toTCA AlgorithmandhTCA Framework It raised from the observation of
the poor results obtained in our first simulations of HH&JSH policy in multithreaded
multicore scenarios.

We started analyzing the design space that lays in bet@&hsand CMPs From
this analysis we identified the main problems to be faced up by the introduction of the
Heterogeneity-Awarenes®ncept in current architectures. This was done firstly from an
SMT-likeapproach and later from@MP-likeapproach, both converging to an intermedi-
ate point in the continuoUSMT-CMPdesign space. The final idea is to improve state-of-
the-art processors by introducing thieterogenity-Awarenessoncept in both software
and hardware.

This thesis is structured as follows:

1. Chapter 2is devoted to explain our experimental environment. This includes both
the simulation tools and the benchmarks used in this thesis. Since each specific
experiment throughout the whole research may have specific methodology issues,
we cover here the common methodology issues, postponig

Among the simulation tools used we put special emphasis oklBsg@msimulator,
since this tool has covered the whole research and continues evolving with a long-
term life expentacy.

1.4. THESIS STRUCTURE 11

2. Chapter 3defines theHeterogeneity-Awarenesoncept in detail. This concept
emerges from a deep analysis into the heterogeneity exhibited by Cuapgiica-
tions and their relation with the main processor resources. This chapter also shows
our first contribution to meet theleterogeneity-Awarenes®ncept : thehdSMT
Archicteture

3. InChapter 4we analyse the main challenge faced up by state-of-théNMR+SMT
processors, like th&8M POWERY60] andPOWERE39], which are noHeterogeneity-
Aware We then identify the need of a new layer in the OS scheduling process in
order to makeCMP+SMT processordieterogeneity-Awarte Finally, we propose
our second contribution, thECA Algorithm as candidate to manage the additional
scheduling layer i€CMP+SMT processors.

4. Chapter 5presents the ladtleterogeneity-Awareontribution of this thesis: the
hTCA Frameworkln this chapter we envision the next straightforward step in pro-
cessor designs, that is movingHleterogeneity-AwarArchitectures with an hetero-
geneous layout. TheTCA Frameworkepresents a first step into a new generation
of Heterogeneousnd Heterogeneity-Awar@rocessors, in which theomplexity-
effectivenesmvolved into theResource Sharingtep of theOS Scheduling Process
is explicitly exposed to the user. The user can then dynamically specify the desired
degree of complexity-effectiveness

5. In Chapter 6we analyse the main challenges faced up when moving from single-
coreSMT processors tMultithreaded Multicore (CMP+SMTprocessors, as seems
to happen nowadays according to the current trend in industry. In parallel to both the
TCA Algorithm and hTCA Framework we identify the need of mbteterogeneity-
Awarenessn well-known SMT Instruction Fetch policies when applied to the new
multithreaded multicore scenario. In particular, we proposeMR&USH policy
as a solution to the static response to a highly-variable multithreaded multicore
scenario of prioFLUSH [70] SMT policy.

6. Chapter 7shows the conclusions of this thesis.

5By the year 2003, when this thesis started, the most referenced benchmarks in General-Purpose Com-
puter Architecture came from tI&®PEC2000 Benchmark Suilé/e do believe that the conclusions obtained
during this PhD dissertation may be applied to more recent benchmark suites. However, such a verification
is left for Future Work.

12

CHAPTER 1. INTRODUCTION

Chapter 2

Experimental Framework

This chapter is devoted to explain the evaluation tools we have used in order to analyse the
design space and evaluate our proposals. We show the benchmarks used for that purpose
as well.

2.1 Simulation Methodology

During the research covered by this thesis a great number of experiments were per-
formed. Each of these experiments involved thousands of simulations, each one com-
prising several hundreds of millions of simulated instructions. As a consecuence, it was
critical to reach some commitment regarding the computational cost constraints. In this
sense it was decided to opt for thrace-drivensimulation methodology, to be employed
in our experiments.

In order to benefit from thezace-drivenreduced computational cost, without severely
compromising the accuracy of the results obtained, the simulation tool was adapted ac-
cordingly. Thus, the simulator employed permits simulating the impact of executing along
wrong paths on the branch predictor and the instruction cache by having a separate basic
block dictionary in which information of all static instructions is contained.

13

14 CHAPTER 2. EXPERIMENTAL FRAMEWORK

Benchmark | Remarks Input Language| Fast Forward
name (Millions)
164.9zip Data compression utility graphic C 68.100
175.vpr FPGA circuit placement and routing place C 2.100
176.gcc C compiler 166.i C 14.000
181.mcf Minimum cost network flow solver | inp.in C 43.500
186.crafty Chess program crafty.in C 74.700
191.parser | Natural language processing ref.in C 83.100
252.eon Ray tracing cook C++ 57.600
253.perlbmk| Perl splitmail.535| C 45.300
254.gap Computational group theory ref.in C 79.800
255.vortex | Object Oriented Database lendianl.raw| C 58.200
256.bzip2 Data compression utility inp.program | C 13.500
300.twolf Place and route simulator ref C 324.300

Table 2.1: FastForward used for each Spec INT 2000 Benchmark.

2.2 Benchmarks

In the experiments performed during this research we us8REC2000 benchmark
suitet. From them we collected traces of the most representative 300 million instruction
segment of each benchmark, following the idea presented in [55]. Whenever a benchmark
is used more than once in a single workload, each additional instance is forwarded 1 mil-
lion instructions more than the prior one (marked with &in the workload definition).

Each program is compiled with theD2 —nonsharedoptions using DEC Alpha AXP-
21264 C/C++ compiler and executed using the reference input set. Fortran programs are
compiled with the DIGITAL Fortran 90/Fortran 77 compilers. The fast forwards applied

to each application, in order to obtain the traces, are shown in Tables 2.1 and 2.2.

In the study of the workloads’s heterogeneity benchmarks frosBfeC2000 bench-
mark suiteare divided into two groups based on their cache behavior, as shown in Ta-
ble 2.3. Since we employ a great variety of processor and memory configurations in
our experiments we defined a single and easy-to-handle benchmark classification. To
establish such a classification we use for each benchmark the results of a single-thread
execution in a typical superscalar processor with an L2 cache of 512 KB. This L2 Cache
size comes from the observation of an state-of-the-art processor liIkBNMh® OWERS
that have fourSMT hardware contexts and a shared L2 cache of approximately 2MB.

1By the year 2003, when this thesis started, the most referenced benchmarks in General-Purpose Com-
puter Architecture came from this benchmark suite. Due to the analysis of the applications involved, we
did not migrate to the next release in 2006.

2.2. BENCHMARKS

15

Benchmark | Remarks Input Language| Fast Forward
name (Millions)
168.wupwise| Quantum chromodynamics | wupwise.in Fortran77| 263.100
171.swim Shallow water modeling swim.in Fortran77| 47.100
172.mgrid Multi-grid solver in mgrid.in Fortran77| 187.800
3D potential field
173.applu Parabolic/elliptic applu.in Fortran77| 10.200
partial differential
equations
177.mesa 3D Graphics library frames100 + msea.in C 294.600
178.galgel Fluid dynamics: analysis gagel.in Fortran90| 175.800
of oscillatory instability
179.art Neural network simulation; -scanfile c756hel.in | C 13.200
adaptive resonance theory -trainfilel a10.img
-trainfile2 hc.img
-stride 2 -startx 110
-starty 200 -endx 160
-endy 240 -objects 1(
183.equake | Finite element simulation; inp.in C 27.000
earthquake modeling
188.ammp | Computer vision: ammp.in C 13.200
recognizes faces
189.lucas Computational chemistry lucas2.in Fortran90| 30.000
191.fma3d Finite element crash simulationfma3d.in Fortran90| 10.500
200.sixtrack | Particle accelerator model sixtrack.in Fortran77| 173.500
301.apsi Solves problems regarding apsi.in Fortran77| 192.600
temperature, wind, velocity
and distribution of pollutants

Table 2.2: FastForward used for each Spec FP 2000 Benchmark.

Consequently, for single-thread executions we used a quarter of the L2 cache size of the
IBM POWERS5that is 512KB. From the results obtained after simulating 300 millions of
instructions selected according to the idea presented in [55], and according to the bench-
mark taxonomy applied in [20], we classify each progranMasnory Bounded (MEM)
whether its L2 cache miss rate is greater or equal tharClP4l Bounded (ILPdtherwise.

The L2 cache miss rate is calculated with respect to the number of dynamic loads. Ac-
cording to the constituent benchmarks, we denote each worklddé&&sor ILP whether

all their benchmarks belong to the respective group. In presence oMiokh andILP
benchmarks we denote the resulting workload/iX.

16 CHAPTER 2. EXPERIMENTAL FRAMEWORK

Benchmark| Benchmark| L2 cache

Benchmark| Benchmark| L2 cache type name miss rate
type name miss rate gap 0.7
vortex 0.3
mcf 29.6 0.3
twolf 2.9 INTEGER | por 0.1

INTEGER | vpr 1.9 per '

10 bzip2 0.1
pa}[rser 1'8 6 crafty 0.1
art - gzip 0.1
S e b
: apsi 0.9
equake 4.12 FP wupwise 0.9
(a) Memory bounded benchmarks mesa 0.1
fma3d 0.0

(b) CPU bounded benchmarks
Table 2.3: Cache behavior of each benchmark in a 512Kb L2 cache.

2.3 Complexity-Effectiveness Metrics

WheneverComplexity-Effectiveness involved in a research it generally arises the
issue of comparing the relative complexity involved in several architectural proposals.
Since the results, obtained with multiple and different microarchitectures involving dif-
ferent hardware budgets, have to be compared some complexity measurement is required
to guide such unfair comparisons. The most of the times it is straightforward that larger
hardware budgets would yield higher throughput/performance; directly comparing their
rough throughput/performance would not lead to a reasonable comparison. So, there is
no point on directly comparing the performance obtained using an 8-wide Out-of-Order
Superscalar processor with that of a 1-wide In-Order Uniscalar processor. In any case,
the throughput/performance obtained for a single workload/application is only compara-
ble as a relative measurement involving both throughput/performance and the complexity
involved in its execution.

Quantifying complexity is always a tricky task and giving a single and comparable
measurement is even harder to accomplish. A quite generalized approach [59, 64, 65]
to estimate the complexity involved in any proposal establishes a direct relation between
complexityandarea(measured in mA). Although complexity is not proportional to area
in all cases, it gives a quite accurate idea of the resultant complexity and is reasonably
easy to be measured.

During this thesis it was employed th@rlsruhe Simultaneous Multithreaded Simu-
lator [59, 64, 65] to estimate the area required by different microarchitectures. This chip

2.4. CACHE CONFIGURATION 17

space and transistor count estimation tool receives its input from the baseline architecture
and the configuration file of the microarchitecture performance simulator sim-outorder of
the SimpleScalar Tool SeThe estimation tool yields a pre-silicon chip space and transis-
tor count estimation and allows to compare different microprocessor configurations with
respect to their potential chip space requirements. The estimation method, which is the
basis of this tool, is validated by configuration parameters of a real processor, yielding a
transistor count and a chip space estimation very close to the real processor numbers.

2.4 Cache Configuration

During the development of this thesis we have employed a wide range of different
cache configurations. The different cache alternatives employed include monolithic and
multibanked, single and multiported, and first and second on-chip hierarchical levels.
Since the size of the workloads considered ranges from 1 to 32 running programs, each
cache configuration employed strives to assure a minimum cache share. Otherwise, the
negative effects of an insufficient cache share may alter the experiment results and, as a
consequence, the conclusions obtained. Thus, for each program running on an experi-
ment’s workload the cache hierarchy simulated tries to assure at least twice the first level
of cache share accessible in the second cache level (e.g., using 4 private L1 caches of
4KBs for a 4-core CMP implementation, with a total thread count of 4, we would employ
a minimum L2 cache size of 32KBs). The size of each cache used, split into different
access banks, is then set according to the number of running applications.

For each cache configuration employed in an experiment, some additional size-related
parameters must be defined, such as access delay. In order to appropriately set these con-
figuration parameters, regarding the access delay to each of these banks, it was employed
CACTI 3.2[68].

2.5 MPsim

In order to evaluate all the contributions proposed during the reseach time covered
by this PhD dissertation it was required a simulation tool which provided high flexi-
bility. The selected simulator should allow to simulate both single-core and multi-core
processor implementations, including homogeneous and heterogeneous clustered multi-
threaded implementations. It must also offer a wide range of research (i.e., allow multiple
simulation alternatives to cover a wider design space) with a simple interface. Due to
these special requirements it was developedMhéi-Purpose (MPsimyimulation tool,

18 CHAPTER 2. EXPERIMENTAL FRAMEWORK

Branch Predictor perceptron (4K local, 256 perceps)
BTB 256 entries, 4-way associative
RAS* 256 entries

ROB Size* 256 entries

Rename Registers 256 regs.

L1 I-Cache 64KB, 2-way, 8 banks

L1 D-Cache 64KB, 2-way, 8 banks

L1 lat./misspenalty 3/22 cyc.

L2 Cache 512KB, 2-way, 8 banks

L2 latency 15 cyc.

Main Memory Latency 250 cyc.

I-TLB/D-TLB/TLB missp. | 48 ent. / 128 ent. / 300 cyc.

Table 2.4: Simulation parameters (resources marked with * are replicated per thread)

a highly-flexible tool that allow researchers to cover wide ranges of the design space.
Using the MPsim Simulation Tool it may be easily simulated the execution of multi-
threaded multicore scenarios involving very different processor layouts, from clustered
Superscalars/SMT processors to full-fledged multithreaded multicore processors or even
many-cores. Full details of tHdPsimare given in the Appendix.

Unless explicitly indicated otherwise, all execution cores and memory subsystems
used in the microarchitectures evaluated throughout this research have a similar configu-
ration, shown in Table 2.4. In some cases, this configuration is used as a baseline reference
when reducing the amount of resources per execution core and in other cases it is sim-
ply altered. Use the simulation parameter information shown in Table 2.4 as a common
reference throughout the remainder of this document.

Regarding simulation itself, in a wide range 8MT experiments it is required to
compare the results (in terms of committed instructions) using different Instruction Fetch
(IFetch) policies. Since IFetch policies alter the amount of instructions committed per
each thread we opted to takeC measurements during fixed amount of simulation cy-
cles: the very same amount of cycles starting from the very same execution point. Conse-
quently, with similar constraints the one with higher results (i.e., higher IPC) would be the
best since is able to commit more instructions under similar conditions. The main reason
to settle for this approximation, instead of using a more reliable measurement system like
FAME [32], is the simulation time. Considering that a wide design space exploration, like
the one done during this research, is likely to involve hundreds of thousands of simula-
tions, the simulation time per experiment should be a prime concern. Consequently, such
an approximation had to be taken in order to keep a reasonable computational cost.

Chapter 3

Heterogeneous Simultaneous
Multithreading Processors

Today’s application behavior is inherently heterogeneous. This heterogeneity spreads out
applications at two levelsnter-applicationandintra-applicationlevel. In this chapter it

is analyzed the application heterogeneity and how this heterogeneity affects the design of
the main structures of current processors. Thus, while increasing the size of the instruction
gueues may yield considerable benefits for some applications] 8ikencfand175.vps,

others may experience no significative improvements,dik2.eorand186.crafty

From the study of the application heterogeneity in current typical workloads it may
be asserted that forthcoming processor generations should take into account this hetero-
geneity; that is, beingHeterogeneity-Aware” In this chapter we deeply analyze the
main proposals in théleterogeneity-Aware Architecturdeld. They all seek to yield
complexity-effectivexecutions, giving each application exactly the hardware it requires
for an optimal execution. By clustering some of the main processor structures some of
these proposals go along the sometimes fuzzy frontier that differentiat€dMtiieand
CMP paradigms.

The present study of the heterogeneity in&MT processors ends up with the first the-
sis contribution: théneterogeneously distributed Simultaneous Multithreading (hdSMT)
architecture. Th&@édSMTarchitecture is based on a novel combinatio®bfT andclus-
tering techniques in an heterogeneity-aware fashion. The results included ol 8MT
evaluation enclosed, including both performance and performance per area evaluations,
show thehdSMT benefits when optimizing performance per area over both monolithic
and homogeneously cluster8MT processors.

19

20 CHAPTER 3. HETEROGENEOUS SMT PROCESSORS

3.1 Application Heterogeneity

The heterogeneity in the application’s behavior is not a new issue in the Computer
Architecture field. From the very fir@uperscalaprocessor to the modeB8imultaneous
Multithreading (SMT)and Chip Multiprocessors (CMR)it has been realized that pro-
cessor resources are not equally used by the running applications. In fact, this is one of
the fundamentals that led Multithreading (MT) Since not alSuperscalaprocessor re-
sources are used by a single application, they may be shared with additional active threads
in the same processor.

In order to make a better use of the available resources, multithreaded architectures
need to perform the resource distribution among co-scheduled tasks. This scheduling step
is known asResource SharingIn a CMP processor this step is implicitly performed,
since the processor resources are statically splitted into replicated single-thread cores;
only L2 caches are typically shared among all running applications. However, the hetero-
geneity in the behavior of different applications, that isititer-application heterogene-
ity, may turn an static hardware partition into non-effective for some workloads. While
some applications’ execution may be hampered by such a partition, others may waste
hardware resources within a single-thread cA@®IT processors solve this problem by
dynamically sharing all processor resources among all active threads.THnead Level
Parallelism (TLP)is exploited without renouncing to single threladtruction Level Par-
allelism (ILP). However, an inappropriateesource Sharinggenerally performed by the
Instruction Fetch (IFetch) Policymay hardly affect the system throughput in 8NMT
processor. Resource conflicts may occur when several applications, with conflictive be-
haviors, are executed together in the sé&8MT processor. In this sense, the literature is
plenty of techniques [19, 20, 24, 25, 70, 71, 72] that try to reduce these kind of conflicts.

Inter-application heterogeneityepresents only one half of the heterogeneity present
in the behavior of current applications. In fact, applications do not behave the same
during the whole execution [56]; that is they experieimtea-application heterogeneity
Due to this fact, while a great amount of processor resources are wasted during some
execution phasdbey are pushed to their limits during otlextecution phases the same
application. The straight conclusion is that the most appropriate amount of resources
for a single application execution can not be expressed as a single number —it varies
along its execution. According to this conclusion, it may be inferred that forthcoming
processor generation designs should be conscious of this application heterogeneity, that
is they should béHeterogeneity-AwareBoth inter- andintra-application heterogeneity
should be explicitly taken into accountlieterogeneity-Awardesigns to better profit the
available hardware resources.

3.1. APPLICATION HETEROGENEITY 21

In this chapter both kind of application heterogeneity are evaluatedia—andinter-
application heterogeneityWe focus on the&SMT approach, since it represents the most
prone to suffer the negative effectsagplication heterogeneity-multiple running threads
sharing all the processor resources. From this evaluation it is justified the ndetkodge
neity-Aware architecturesrhen, itis proposed the first contribution of this thesis:hiae
erogeneously distributed SMT (hdSMArchitecture. In this noveMultithreaded (MT)
Architecturethe hardware is heterogeneosly distributed along the chip’s surface. The het-
erogeneity in software is then matched with the appropriate cluster of resources in order
to maximize the executionsomplexity-effectiveness

3.1.1 Heterogeneity Considerations in the Processor Design

General-purpose microprocessors are built up from an on-chip transistor budget with
the goal of maximum performance for all applications. As the process technology ad-
vances, the amount of available transistors on a single chip increases. The advances in the
process technology has kept an steady improvement rate for the last decadée.oféie
Law describes this important trend in the history of computer hardwé#ne:number of
transistors that can be inexpensively placed on an integrated circuit is increasing expo-
nentially, doubling approximately every two yedrsThe observation was first made by
Intel co-founder Gordon E. Moore in a 1965 paper [45, 46]. The trend has continued for
more than half a century (See Figure 3.1) and is not expected to stop for at least another
decade, and perhaps much longer [35].

As the number of transistors on a single chip increases, the issue of how to effectively
employ them to improve the applications’ performance gains importance. In the last
decades we have witnessed many architectural approaches to exploit the ever-growing
amount of transistors on a single chip. From the e&tgalarsto the modernMulti-
threaded Multicoresthe processor design has always striven to yield the highest perfor-
mance possible with the available hardware budget. Nowadays, the power and temper-
ature constraints in the state-of-the-art processors are somehow turning the performance
primary goal into a&omplexity-effectivenesgarch. A single processor design should ob-
tain the highest performance reachable for a fixed hardware budget, for a wide range of
applications, involving the least power consumption possible. The processor design has
also to balance the heat dissipation throughout the chip’s surface so that hiaotsfubts
are prevented. Whenever an small portion of the chip experiences an exhaustive utiliza-
tion, the heat generated supposes a challenge for the chip heat dissipation system. This

1Although originally calculated as a doubling every year, Moore later refined the period to two years. It
is often incorrectly quoted as a doubling of transistors every 18 months.

22 CHAPTER 3. HETEROGENEOUS SMT PROCESSORS

Moore's Law

10,000,000,000,

Number of transistors doubling ewery 18 morths.
1.000.000. 000
100,000 OO e . = T e i

S - Pentium 4
= i - Hant
110,000,000 =25 S = - Perthunm 11
o A

1,000,000 2 _.-=aes

Number of transistors on
anintegrated circuit

100, 000— er e o caan

10.000 —

2300 —! S recos

Figure 3.1: Moore’s Law.

situation tends to occur with some important processor structures which also have the dis-
advantage of possessing low design regularity, likeltiséruction QueuesndReorder
Buffersused inOut of Orderexecution pipelines.

The Scalarprocessors executed one instruction at a time. In these processors, each
executed instruction typically manipulates one or two data items at a time. In contrast,
each instruction executed by\ector processor operates simultaneously on many data
items. TheSuperscalamprocessors arised as a sort of mixture of the two. While each
instruction processes one data item, the addition of multiple redundant functional units
within each CPU allowed th8uperscalaprocessors to execute multiple instructions at
a time; thus multiple instructions can process separate data items concurrently. Seymour
Cray’sCDC 6600(1965) is often mentioned as the fi&tperscaladesign. It is not until
the late 80’s that appeared the first commercial single chip superscalar microprocessors:
Thelntel I960CA(1988) and théMD 29000-series 29051990) microprocessors.

TheSuperscalaCPU design emphasizes the instruction dispatcher accuracy, allowing
it to keep the multiple functional units in use at all times. This has become increasingly
important when the number of units increased. While e&dperscalaitCPUs had two
ALUs and a single FPU, a modern design like fPmverPC 970(2002) includes four
ALUs and two FPUs and a couple of SIMD units too. If the dispatcher is ineffective at
keeping all of these units fed with instructions, the performance of the system will suffer
altogether. The introduction of better conditioBainch Predictorslike thegshare[44],
bimodal[81], 2bcgskew54], stream[52], and theperceptron[34] predictor, consider-

3.1. APPLICATION HETEROGENEITY 23

ably improved the achievable performance. Reducing the amount of instructions exe-
cuted along the wrong path allows more aggressive execution pipelines, simultaneously
dispatching more instructions per cycle. Betteanch predictionstogether with thedut
of Order executio31, 62], were crucial in the search of wider execution pipelines.

In a SuperscalarCPU the dispatcher reads instructions from memory and decides
which ones can be run in parallel, dispatching them to redundant functional units con-
tained inside a single CPU. Therefor&aperscalaprocessor may be envisioned as hav-
ing multiple parallel execution pipelines, each of which is processing instructions simul-
taneously from a single instruction thread. This seemed for a time the best choice to invest
the hardware budget on within each chip. Employing the additional transistors to enlarge
the main processor structures allows to increase the number of parallel execution pipelines
within the processor. However, architects soon realized that the performance achievable
by this execution scheme does not scale with the available transistors due to the limi-
tations imposed by thinstruction Level Parallelism (ILRP)Regardless of the additional
transistors employed to design a more aggressive execution pipeline, the application char-
acteristics finally impose a hard limit to the achievable performance. Furthermore, this
limit is different depending on the specific characteristics of each given application; that is
depends omnter-application heterogeneityThus, while devoting the additional transis-
tors to enlarge some processor structures, likértseeuction Queugcould yield benefits
for some applications, for others we could experience diminishing returns.

As a consequence of the hard limitations imposed byltRetheThread Level Paral-
lelism (TLP)has become a common strategy for improving processor performance. Since
it is difficult to extract morelLP from a single program, multithreaded processors rely
on using the additional transistors to obtain more parallelism by simultaneously execut-
ing several programs. This strategy has led to a wide range of multithreaded processor
architectures lik&&MT[71, 72, 80],CMP [48], or combinations of both. They all extend
the Superscaladesign by simultaneously sharing the processor resources among multi-
ple running applications. Whenever thd® of a single application prevents from having
busy all available resources in the processor, the idle resources are devoted to other ap-
plications, which are simultaneously run on the same processor. The main difference be-
tween theSMTandCMP approaches resides in the amount of on-chip processor resources
shared among all running applications. Thus, while a typ@dP implementation only
shares the outter on-chip cache layer (typically the L2 Cach&§Miprocessor shares all
processor resources. Due to the inherent heterogeneity in the application’s behavior, the
resource utilization pattern of each running application may collide during the execution
ending up with resource contention. Since they share more resources among the running
threads thalfCMP processors, these resource conflicts affect more sever&8iopro-
cessors. Thus, the literature is plenty of techniques [19, 20, 24, 25, 70, 71, 72] that try to

24 CHAPTER 3. HETEROGENEOUS SMT PROCESSORS

M8 M4 M2
Processor Configuration
QueuesEntries : -
(it p /10-5) 64 2 16 ROB Size/ thread 256 entries
Branch Predictor Configuration
Renaming Registers 256 128 64 Branch Predictor 2K entries gshare
Branch Target Buffer 256 entries, 4-way associdtive
Number of Contexts 4 2 1 RAS 256 entries
Processor Width 8 4 9 Memory Configuration
64KB, 2-way, 8 banks,
: I mEe 64-byte lines, 1 cycle access
Max. Number of Ingtructions/cycle (per thread) 8 4 2 oot 512KB, 2:v, B berks,
12 cycleslat, 64-bytelines
Max. Number of Threadscycle 2 2 1 Main Memory latency 100 cycles
. o .)) DTLB size/ ITLB sizel TLB miss penalty 128 ent. / 48 ent. /160 cycles
Execution Units(i =int, f =fp, | = 1d/st) 6i,3f,4 | 3i2f,2 | 1i1f 1
Fetch Policy ~ (IC=1COUNT) IC28 IC24 IC12
(a) Processor model configuration. (b) Baseline configuration.

Table 3.1:Application Heterogeneity Simulation Configuration.

reduce these kind of conflicts ®MT processors. In all cases, the goal it to allocate to
each application the appropriate amount of hardware resources, avoiding monopolization
by any individual application. Whether each application needs are appropriately matched
with the allocated processor resources the system throughput may experience significative
improvements. This proper match requires from a deep analysis of the application needs
and the differences among them; that is an analysis cdippéication heterogeneity

State-of-the-art microprocessors suggest a trend towards building multithreaded mul-
ticore processors with an increasing amount of multithreaded cores on-chip. As a conse-
guence, forthcoming processor generations will face harder challenges related to on-chip
resource contention. In order to appropriately handle this contentioapthiEation het-
erogeneityshould be deeply analyzed in typical execution workloads. In the following
sections it is analyzed the heterogeneity in 8RECINT2000 Benchmark Syiteoth at
inter- andintra-application level From this analysis some further processor design con-
siderations are asserted.

3.1. APPLICATION HETEROGENEITY 25

3.1.2 Methodology

Table 3.1.(a) shows the three processor models simulated. From now on, the three
processor models shown in Table 3.1.(a) will be referred th1&sM4, andM2. These
processor models are used to compare application needs and so simberiagpplication
heterogeneityThe name of each of these models give a quick idea of the resource budget
comparison. Thus, in general terms, 88 processor has twice the hardware budget
devoted for the main processor structures thaMdnthe same happens between ké
andM2 processor models.

Table 3.1.(b) shows the main parameters of the simulated processors, which have 8-
stage execution pipeline. Three different processor models, with varying number of some
specific resources (e.g. instruction queues, renaming registers, issue width, etc), are used
to evaluate the heterogeneity in applications. Please, refer to Chapter 2 for full details on
the experimental framework.

3.1.3 Inter-Application Heterogeneity

The resource utilization pattern significantly differs from one application to another.
While some applications make an intensive use of some resources, like rename registers
and instruction queues, others obtain good performance results with a more moderated
hardware budget. As a matter of example, Figure 3.2 shows the rename registers needed
by each of the SPECINT2000 benchmarks to rea®@% of their peak performanée
executed in a8 processor (see Table 3.1) in single-thread mode. Although the rename
registers are not the only critical resource in an out-of-order execution processor, they
suppose a serious bottelneck whenever parallelism is to be exploited. Devoting additional
resources to other critical processor resources, such as better conditional branch predictors
or memory, would end up requiring to increase the amount of rename registers to increase
the processor’s peak performance.

Figure 3.2 shows that76.gccrequires only 32 rename registers. However, other
applications, likel75.vpror 255.vortex require 128 rename registers. We also find a
group ofmoderatedapplications, likel81.mcfor 256.bzip2requiring 64 rename registers
to obtain the0-pp Let beG1,G2, andG3 the groups of applications which require 32,

64, and 128 rename registers to reach3@ep respectively. From the results shown in
Figure 3.2 it may be inferred that simultanously executing, on the same execution pipeline,

2Maximum performance obtained using an unlimited resource budget. In this case, the application’s
characteristics limit the maximum performance level reachable.

26 CHAPTER 3. HETEROGENEOUS SMT PROCESSORS

160 -
128 — — — — —
96 -

64 +

#Rename Registers

Figure 3.2:Rename Registers needed to reach 90% Performance.

applications from the groug3 may yield diminishing returns. Due to their eager usage of
the rename registers, multiple applications of the gr@@pnay experience high resource
contention, with the subsequent reduction in the system througput. Therefore, the best
candidates to be simultaneously executed wiGBapplication belong to grougs1 and

G2 That s, those that exhibit different rename register utilization patterns.

Statically splitting the processor resources among all the active threads, as done in
CMP processors, gets rid of the resource contention and may be beneficial in some sce-
narios; although it suppossefiard commitmentWhenever the executed workload pos-
sesses higiLP, and moderate per-applicatidioP, statically partitioning the processor
resources may be productive. However, the differences in the resource needs from one
application to another, that is theter-application heterogeneitymay turn this static
partition into a serious drawback. While soimigh-ILP applications may require more
resources, than the ones allocated to a single execution core J@thHrP applications
may be wasting resources within an execution core.

As an illustrative example, Figure 3.3 shows the benefits of sharing the L1 caches
among all constituent cores iNGMP processor comprised of fo2 cores. That is, any
of the four constituent exection cores in the CMP processor may access up to an overall L1
cache budget of 64KB. Assuming the case of single-thread exeguti@nresults shown
in Figure 3.3 indicate the benefit obtained whether each application may access to each of

3This would represent the worst scenario i@MP; there is only a single ready task ready to be executed
by the Operating System.

3.1. APPLICATION HETEROGENEITY 27

31,62
30
25
‘S
S 20 - 18,66
[am}
=X 315
[= Y
— 10,85 10,64
10 4 9,11
5 4,53 4,22
s w N E N
’ 0,28 0,00 0,00
(o] T T T T T
! < ~ S - AN S
vgs\/\Q X 2 /\bg}g) ’\«é\g <}?§Q\ &= oSVQ'o S @V'Q?Q Ao\.@, ‘<>;\>qu Q’@o @Qy?
& ~ N3 o < & 3 PN S

Figure 3.3:Benefits of Sharing L1 caches in a four-cored CMP.

the four 16Kb L1 cachéswith a total L1 cache budget of 64Kb, compared to exclusively
accessing its private 16Kb L1 cache. The results obtained significantly vary depending
on thememory footprinsize of each application (i.e., the extent of memory that it uses or
references while executing), as depicted in Figure 3.3. Wheneven¢hsory footprint

of an application fits into a single 16Kb L1 cache, as is the cag&®bzip2no benefit is
obtained from sharing the remainder cache budget. However, asatmory footprinof

each application grows the potential benefit obtained from sharing partitioned resources
increases; as is the case 186.craftywith an improvement close to 32%. Obviously,
CMP processors were not designed for single-thread mode; the most of the time the Op-
erating System can provide enough ready tasks to keep busy more than execution core.
However, this example illustrates the potential drawback from statically partitioning the
processor resources. Whenever the Operating SystenCMRprocessor, or whatever
design with an static resource patrtition, is unable to select for execution enough ready
tasks, the system performance is hardly affected. The only running application may ex-
perience a performance degradation, due to limited access to processor resources, while
other resource partitions are wasted. In this case, due to all&wn the workload, the

ILP and specific characteristics of each application, asrtemory footprintmay be de-

cisive for the system performance. If this is the case, an statically partitioned hardware
may suppose a serious drawback.

As Raasch and Reinhardt show in [51], there are some cases in which statically par-

4To ease the example, it is assumed no additional overhead when accessing to the private L1 cache from
a different core.

28 CHAPTER 3. HETEROGENEOUS SMT PROCESSORS

28
24 A
20

16 -

12 — 11 10,54

Average 1Q Size

9,24
8
4.28 4,92 5i5 4,96 4,79
1] 3,25] —
Nl
o | 0 B = B
- > < S~ N < S x>
SN R <5 <& S < s S o NS
SRS SNSRI S S Y S =T S S
~ > N (ﬁ,;& &S s >

Figure 3.4:Average 1Q Size.

32
28,87
28
24 A

20

12

Average LQ Size

— — 4,81 —— 3,98 4,11
> g1 —
4 1,87 y 1,64 I:l 45
o | HH 1 o | | | | | |
: =~
9,)\>Q < < (}6\@\ &2:* s
~>

<&
N oS> N
N

N
<
<5 <
D> > <
~

<> N <R &

~ S

Figure 3.5:Average LQ Size.

titioning some of the processor structures, like the instruction queues, may be beneficial
to achieve better results. Due to the applications’ heterogeneous usage of some processor
structures, giving a fixed resource share to each of the running applications may yield
significative performance improvements. To further illustrate this heterogeneous usage,
Figure 3.4 shows the average size —occupancy— ofrtteger instruction queue (IQ)

of eachSPEC2000 INT benchmar&xecuted in single-thread mode ond processor

3.1. APPLICATION HETEROGENEITY 29

with private 64KB L1 caches. Figure 3.5 shows the equivalent results fdo#ukstore
instruction queue (LQ)While thelQ usage exhibits a moderate variation from one appli-
cation to another, theQ usage is quite balanced among all applications. The instruction
gueue usage exhibited by ti81.mcfrepresents a pathological case, in which a bad
memory behavior may clog the instruction queue if unproperly handled. An EftQ
partition gets rid of these clogs, avoiding applications from monopolizing processor struc-
tures. As a consequence, statically allocating an equal portion of the instruction queues to
each simultaneously executed application provides good performance, in part by avoiding
starvation. However, although not highly pronounced in the case of instruction queues,
the different application usage of some processor resources, like the rename registers (See
Figure 3.2), may turn an homogeneous resource partition into a bad choice.

The heterogeneous applications’ behavior (irger-application heterogeneijyshown
in all prior resource usage examples directly affects the overall system performance. Fig-
ure 3.6 shows the execution results of eSEHECINT2000 benchmaséxecuted in single-
thread mode in each of the three processor models simulated. For each application and
processor model, it is shown the performance obtained measuhestinctions Per Cy-
cle (IPC) TheselPC values are compared with the processpesak performancéthe
horizontal bars in Figure 3.6), obtained using all the available hardware resources in each
processor model in an ideal case.

A glance at Figure 3.6 is enough to realize that not all applications exploit the available
processor resources with the same effectiveness. Thus, 286lbézip2use the available
hardware resources in &2 processor with aB80,5%of effectiveness 181.mcfexhibits
an effectivenesbelow 10% Therefore, devoting aM2 processor resources to execute
181.mcfyields a very poocomplexity-effectivexecution. This situation gets worse as it
is augmented the processor hardware budget. As shown in Figure 3.6, all applications
experiencediminishing returnsin terms ofcomplexity-effectivenessvthen moving to
a bigger processor model. So, evehigh-ILP application like256.bzip2experiences
a reduction in itseffectivenessf factor of x2,5 when moving from a2 to an M8
processor. However, tH&56.bzipZ performance also experiences a growth of factor of
2,5x when moving fromM2 to M8; justifying the additional hardware budget in terms of
complexity-effectiveness

The straight conclusion is that theter-Application Heterogeneitgnay turn a given
hardware budget into aon complexity-effectivehoice. On the one hand, the specific
characteristics of each application determinedpplication’s peak performancedn an
ideal case, with plenty of execution resources, it isgpglication’s peak performandbe
key factor that imposes the top performance limit. On the other hand, the combination of

SThat is, the performance obtained is 19,5% lower than the procegpsatsperformance

30 CHAPTER 3. HETEROGENEOUS SMT PROCESSORS

8

4,50 98,19% ! 49,31%1
4,00 — M O 164.gzip
350 - | 175.vpr
' 96,55% 32,65% o 176.gcc
3,00 I |0O181.mcf
- W 186.crafty
& 2,50 - —‘ @ 197.parser
o 200 I | | 252.eon
' 93,65% 19.5% | 0 253.perlbmk
1,50 ~ W 254.gap
1,00 - i | I\ 255.vortex
0 256.bzip2
0,50 - _‘ —‘ @ 300.twolf
0,00 -+ \ . \

M2 M4 M8

Figure 3.6: Heterogeneity at Inter-Application level.

all the hardware resources devoted to a processor defpredsssor’s peak performance

The more similar both peak performance levels, application’s and processor’s, the more
complexity-effective executions achieved. Thus, while it is worthwhile executing the
256.bzip2on anM4 processor, or even a8, the 181.mcfdoes not need more than an

M2 processor. ArHeterogeneity-Awararchitecture should explicitly take this fact into
account, allocating the appropriate amount of resources to each application according to
its specific needs.

3.1.4 Intra-Application Heterogeneity

Itis not necessary to compare the behavior of different applications to find heterogene-
ity. In fact, comparing two differerProgram Phasesfrom a single application is enough
to find an heterogeneous behavior; thalniga-Application HeterogeneityTo illustrate
this phenomenon, Figure 3.7 shows performance histograms of SBEBEINT200@p-
plications, simulated on avi8 processor in single-thread mode during an specific interval
of their execution.

5That is, a differentiated portion of the execution of an application, with a particular behavior.

3.1. APPLICATION HETEROGENEITY 31

e
ORNUADO NG

I
b
0| e—=
0
N
U i
W
1
4
ol =
)
1 =
4 p

interval

(a) 164.gzip

¥

(b) 181.mcf

2 _
R m l
o B g T e ,,,,,,m, e
(c) 253.perlbmk

interval

(d) 256.bzip2

Figure 3.7: Heterogeneity at Intra-Application level.

32 CHAPTER 3. HETEROGENEOUS SMT PROCESSORS

Each histogram in Figure 3.7 shows the performance, measul@Cjrreached by
the first 32000 execution intervals of each applicatidach of these intervals comprises
1000 consecutive cycles of the application’s execution. Although these histograms are
not representative of the whole application execution, it is clearly noticeable that they
exhibit heterogeneous behaviors. In Figure 3.7 there are examples of highly-periodic
behavior, likel64.gzipand 181.mcf and steadier ones, likKB56.bzip2 There are also
examples of multiplé>rogram Phasdransitions, as is the case 253.perlbmkn which
3 differentProgram Phasesre clearly noticeable. During this 32-million-cycle period
of execution th&53.perlbmlgoes through an initial highly-variable high-ILP phase (first
15.000 intervals), a second highly-variable low-ILP phase (following 13.000 intervals),
and finally an steady high-ILP phase. Comparing the variability of the results in each
of these three phases, Figure 3.7.(c) also shows high heterogeneity in this sense. Thus,
while the first twoProgram Phase®f 253.perlbmkexhibit a highly-variable behavior,
with quick performance variations of up to 50X, the thirtbgram Phas@xhibits a quite
steady behavior, with performance variations lower than 15%.

Focusing on two applications with a very different overall performath8&,mcfand
256.bzip2their execution histograms exhibit some interesting characteristics. While both
applications experience similar performance variations considering average results, about
99% and 60% fol.81.mcfand256.bzip2espectively, they represent opposite behaviors.
While the steadier and common behavior in the case8df mcfis very low-ILP, in the
case oR256.bzip2s high-ILP. Nevertheless, both applications experiment isolated perfor-
mance fluctuations of up to 15X and 25X, in casd.81.mcfand256.bzip2espectively.

From the results shown in Figure 3.7 it may be inferred thatritra-Application Het-
erogeneitymay alter, during some periods of the execution, the complexity-effectiveness
of the decisions took according to th&er-Application HeterogeneityThus, while the
most complexity-effective processor assignments for each applicaidrfqr 181.mcf
and M8 for 256.bzip2 are still valid, there are some periods —about 1 million cycles
each time— in which these assignments do not represent the best choice. Notice in Fig-
ure 3.7 thatl81.mcfexperiences periodic high-ILP intervals, with an averdf@ higher
than 2. As a consequence, th@l.mcfexecution during these high-ILP intervals would
be hampered if executed on B2 processor, with a peak performance of 2. Just the oppo-
site happens in the 3 low-ILP intervals that exh#6.bzip2n Figure 3.7.(d). Devoting
a full M8 processor during these intervals, with an averdi®f@ lower than 3, involves
some resource wasting. In these cases, such a resource waste (or resource lack in case
of 181.mc) may no significatively alter the overall system performance, due to the re-

"For each application, the simulated execution intervals comes immediately after applying the corre-
sponding forwarding, as shown in Chapter 2.

3.1. APPLICATION HETEROGENEITY 33

o.s
oO.,.a45
o.a
o.35
o.=3

p=uil 0,25
o.=

o.15

o.3
0,05

interval

(a) 181.mcf

5

IC
N
CURONTOTATD

y

iy

0

interval

(b) 256.bzip2

Figure 3.8: Heterogeneity at Intra-Application level at coarser granularity (1M cycles).

duced extension of these intervals. However, in case of longer steady variations in the
application’s dynamic behavior, the system performance may be severely affected by this
Intra-Application Heterogeneity

Figure 3.7 also suggests another important conclusion regarding the duration of the
intervals considered. In fact, tliganularity at whichlIntra-Application Heterogeneitis
exploited directly determines both its applicability and the results obtained. Thus, while
this heterogeneity may be detected and exploited using a 1000¢gnacialarity (as used
in Figure 3.7) the resulting performance variations are not steady enough to be exploitable
using a coarser granularity of 1 million of cycles, as shown in Figure 3.8. Although there
are still noticeable variations in the application’s behavior shown in Figure 3.8 they do not
alter the complexity-effectiveness of the decisions taken frorinear-Application Het-
erogeneityperspective; that is executidgl.mcfand256.mcfon M2 andM8 processors,
respectively. In both cases, there is not an steady interval of execution that reidD an
value above the peak performance of the respective processor model.

34 CHAPTER 3. HETEROGENEOUS SMT PROCESSORS

The applicableggranularity in each case would depend on the system specifications.
Once detected the heterogeneity in the application’s behavior its execution must be re-
scheduled. The resource needs of each detéutagtam Phasehould be matched with
the available hardware partitions in an heterogeneously partitioned hardware. This match-
ing process may involve costly migrations between different hardware partitions. For an
heterogeneous behavior to be profitable, the overhead involved by the re-scheduling or
migration of the applications must be low enough as compared to the length of each de-
tectedProgram Phase

The straight conclusion is that tihetra-Application Heterogeneitgnay alter thecom-
plexity-effectivenessf the decisions taken from dnter-Application Heterogeneitger-
spective. That is, a single resource assignment, that best fits the resource needs of each
application, may not be valid for the whole execution. However, the exploitability of
this Intra-Application Heterogeneitis subject to both theetection granularityandre-
scheduling overheadFirst, the differenProgram Phasemust be appropriately detected.
Next, the cost involved in the corresponding resource reassignment must be low enough
as compared to tHerogram Phaséength. Thus, in order to appropriately exploit the peri-
odic 1-million-cycle high-ILP phases detected in ft&1.mcfbehavior using a 1000-cycle
granularity (Figure 3.7.(b)), the cost involved by the corresponding resource reassignment
(e.g., migrating from aivi2 to anM4 core) must involve an insignificant overhead as com-
pared to 1 million of cycles.

3.2 Heterogeneity-Aware Architectures

The Heterogeneity-Awareness a processor design could be defined as the way in
which it explicitly manages th&pplication Heterogeneityp achieve @omplexity-effective
execution. The degree of success in assigning to each application the processor resources
it needs determines the degreéHaiterogeneity-Awarenes$ each processor design. Giv-
ing each application strictly the required processor resources helps to reduce the execution
power consumption without reducing the performance; that is, to improve the execution’s
complexity-effectivenesBrom theApplication Heterogeneitgnalysis performed in prior
sections it may be inferred that &teterogeneity-Awardesign should take into account
bothInter- andintra-Application Heterogeneity

The way in which the hardware is heterogeneosly distributed along the chip surface
also contributes to théleterogeneity-Awareness the processor design. Partitioning
hardware structures and resource pools, like the instruction queues and register files, into
heterogeneous clusters, with different number, sizes, and types of these structures, helps to
achieve moreomplexity-effectivprocessor designs. Recall that the main goal of almost

3.2. HETEROGENEITY-AWARE ARCHITECTURES 35

all general-purpose processor consists of achieving the highest performance with the least
energy consumption possible. Distributing the hardware into smaller and heterogeneous
clusters, which have a lower energy consumption, and assigning the applications to the
cluster that best fits the application’s resource needs contributes to improve the design’s
complexity-effectiveness

Inside theHeterogeneity-Awareategory there could be included a wide range of pro-
cessors, both single-threaded and multithreaded. In fa@Mianprocessor implementing
an Instruction Fetch (IFetch) Poligythat dynamically distributes the shared resources
among the running applications, could be seen as some kirttetdrogeneity-Aware
design. However, the difference between the resource sharing, performed by a typical
IFetch Policy and theHeterogeneity-Awarenedigs in explicitly considering the appli-
cation heterogeneity to give each application the hardware resources it needs. Typical
IFetch Policies like ICOUNT [72], try to balance the resource usage among all the run-
ning applications. Instead of giving each application the resources they need, they tend to
give each application a similar portion of the available resources.

More advancedFetch Policies like DCRA[20], explicitly classify the running appli-
cations inteslowandfast Additionally, according to the usage of each resource type by
each application, a further classification ictiveandinactivehelps to assign each ap-
plication an amount of processor resources in tune with the application’s needs. Although
its hardware is not partitioned, &@MT processor implementinpCRA policy may be
included into theHeterogeneity-Awareategory.

There are some examples in the literature that combine an explicit management of the
Application Heterogeneitwith an heterogeneous hardware distribution. In spite of they
all strive to achieve aomplexity-effectivexecution, the main difference among them lies
in thegranularity at which application heterogeneity is exploited.

TheDual Speed Pipelind®0] architecture can be defined aSaperscalacomprised
of an heterogeneous set of components. As shown in Figure 3.9, different types of pro-
cessor resources, such as functional units and reservation stations, are gathered into two
different execution pipelineslowandfast The slow components of the processor can be
driven at lower supply voltages and thus present an opportunity to save power; contribut-
ing to improve itscomplexity-effectivenesslowever, slow components also imply lower
IPCs. In order to avoid harmful performance degradations, a variant of the critical path
analysis technique [75] is moved from the circuit level to the architecture level. In this
architecture, a criticality predictor is used, in a cycle-by-cycle rate, to correctly identify
the critical instructions. Once identified, critical instructions are dynamically scheduled
on high-performance, high-power consumption components. Thus, the processor per-
formance is retained while achieving power savings by dynamically scheduling all other

36 CHAPTER 3. HETEROGENEOUS SMT PROCESSORS

instructions to the low-power (and lower performance) execution units.

TheDual Speed Pipelinearchitecture represents an extremist exampleaiérogene
ity-Awarearchitecture, in which thintra-Application Heterogeneitis detected at an in-
structiongranularity, and measured in terms of instruction criticality. According to this
heterogeneity, each instruction uses the resources that best fits with its needs, consuming
the least power possible without severely compromising the system performance.

The Heterogeneous Multicorf88] architecture can be defined a<CMP processor
comprised of an heterogeneous set of execution cores. In the example shown in Fig-
ure 3.10, the processor is comprised of four Alpha cores EV4 (Alpha 21064), EV5 (Al-
pha 21164), EV6 (Alpha 21264) and a single-threaded version of the EV8 (Alpha 21464),
referred to as EV8-. Although all the cores execute the skskeuction Set Architec-
ture (ISA) there exist differences between cores regarding their raw execution bandwidth
(issue width), cache sizes, and many other fundamental characteristics (e.g., in-order vs.
out-of-order execution, single-thread vs. multithread execution). In this architecture, the
Operating System (OS3 in charge of migrating the application’s execution based on
performance metrics. To obtain these metrics, the execution has to go through periodic
sampling phasesDuring each of thessampling phasethe applications are executed in
each of the heterogeneous cores, in order to determine the one that best fits the current
application behavior. According to the workload size, thesmpling phasemay sup-
pose a significant execution overhead. In order to mitigate this overhead, that may involve
millions of execution cycles, some heuristics are applied.

TheHeterogeneous Multico@ chitecture represents a clear exampldetierogeneity-
Awarearchitecture. Thé\pplication Heterogeneitis matched with an heterogeneously
distributed hardware, striving to assign each application to the heterogeneous execution
core that best fits the application’s needs. Since each execution core involves a differ-
ent energy consumption, depending on the amount of resources and complexity involved,
smartly assigning applications to cores improves the executon'plexity-effectiveness
However, due to thenigration cost thegranularity at which theApplication Heterogene-
ity can be detected in addeterogeneous Multicorarchitecture is limited to hundreds of
millions of execution cycles. This constraint may limit the amount of exploitable hetero-
geneity that may be detected.

In this thesis we present theeterogeneously distributed SMT (hdSMifghitecture.
Based on a novel combination &MT, Clusteringand Heterogeneity-Awarenesthis

8Each time an application is migrated to a different core its architectural state must be saved and moved.
This process involves copying the registers that keeps the application architectural state. Besides, the con-
tent of the L1 caches is lost.

3.2. HETEROGENEITY-AWARE ARCHITECTURES 37

Reservation Stations

Fowka [LILTLILIL LI E okl =2x F clk2

width = 1

Figure 3.9: Dual Speed Pipelines Architecture.

Figure 3.10: Heterogeneous Multicore Architecture.

Heterogeneity-Awararchitecture proposes a multithreaded alternative that lays on the
spectrum that extends in betweSMT and CMP processors. Thus, from &MT point

of view, thehdSMTcould be defined as a cluster8MT processor comprised of an het-
erogeneous set of execution pipelines, which execute instruction streams fetched by a
multithreaded fetch engine. From a CMP point of view, the hdSMT could be defined as
an heterogeneous CMP processor, comprised of heterogeneous cores, in which some re-
sources are shared. Among these shared resources we find the fetch engine, register file,
and caches —even the L1 caches. In the following section it is deeply analyZzedSNe
architecture, including an evaluation that confirmgasplexity-effectiveness

38 CHAPTER 3. HETEROGENEOUS SMT PROCESSORS

Register
Renaming
N
FQIIQ]LQ

§

RF (7)) Ds

I | —~| Fetch

Figure 3.11: The hdSMT Architecture.

3.3 The hdSMT Architecture

The foundations of théneterogeneously distributed SMT (hdSMiFghitecture are
comprised of a threefold combination of well known principles and techniq8a4T,
Clustering andHeterogeneity-Awarenes8n hdSMTprocessor proposes a multithreaded
alternative that lays on the spectrum that extends in bet@&&hand CMP processors.

As evaluated in [21], there are multiple possible hardware configurations in beBMEN

and CMP processors. As it is augmented the amount of shared resources among the
hardware contexts available in the processor, it is covered the distance betwédn a
processor, which typically only shares the L2 cache, an8Mm processor, which shares

all the available resources. As Collins et al. indicate in [21], it may be achieved the best
of both approaches by clustering some of the main processor structureSMTpro-
cessor. However, thApplication Heterogeneitynay turn some of the evenly clustered
approaches in [21] into not optimal. THelSMTarchitecture maximizes fully exploita-

tion of the available hardware budget by partitioning the hardware into heterogeneous
clusters. TheApplication Heterogeneitis then matched with this heterogeneously dis-
tributed hardware, assigning to each application the cluster that best fits its resources
needs.

ThehdSMTarchitecture overview is depicted in Fig. 3.11. As in a conventiGhAT
processor, all threads share the caches, register file, and fetch engine. However, the re-
mainder execution pipeline stages and resources are arranged in heterogeneous clusters
(or simply pipeline. That is, eaclpipelinecomprises all the execution pipeline stages
of the conventional processor but the fetch stage. pguodlinealso has got its own pri-
vate instruction queues, renaming map tables and functional units, that could be shared
among more than one thread; that is, epigfelinemay be multithreaded. Consequently,
the maximum amount of threads that can be simultaneously run bd@MTprocessor

3.3. THE HDSMT ARCHITECTURE 39

is not equalt to the amount @ipelines but the sum oSMT hardware contexts spread
over all the constituentipelines The size and number of processor resources may vary
from pipelineto pipeline Additionally, each thread’s instructions are stored in a private
reorder buffer (ROB), one per thread.

In this clustered multithreaded architecture, entire threads are assigpguelimes
according to thé\pplication HeterogeneityThis implies that there are no dependenties
between instructions in different clusters, since all instructions from a single thread are
mapped to the same pipeline. Thketerogeneity-Awaréetch engine strives to match
both the needs of each running application and the interaction among each application
with the heterogeneously distributed hardware. This software-hardware mapping is per-
formed each time the Job Scheduler of thperating Systerselects a new workload
from the list of ready tasks. At this time, just after being assigned the applications to
the pipelines by the OS Job Scheduler and just before starting the execution itself, the
Program Counter and the remainder architectural state is updated in each pipeline in the
same way as in aonolithid® SMT processor. In order to determine on which specific
pipelinewould be executed each application it is triggered a hardware-based mapping
policy (see Section 3.3.1). Whenever an application is assigned to the verygaatiee
it was in the exactly previou®S quantunof execution, no additional changes within
the pipelineshould be made. Otherwise, thipelineis flushed in order to accommodate
the new execution thread. The whole subsequent workload’s execution is done accord-
ing to this mapping, without any intermediate thread migration. Notice that the reduced
migration cost! between differenpipelinesprovided by thendSMTarchitecture allows
to implement mapping policies which work at lower granulariie$he mapping policy
implemented ihdSMTis described in detail in Section 3.3.1.

The number of hardware contexts and width (i.e., max. number of instructions is-
suable per cycle) may vary fropipelineto pipeline So, anhdSMT implementation
may be comprised of both narrow single-thread and wide multithreaded pipelines, as well
intermediate pipelines. Depending on the workload size, the resource needs of each appli-
cation, and the interaction between application behavior, more than one application may
be mapped to a singlgipeline This distribution of the hardware contexts along the chip
can be profited to turn off idle pipelines whenever the number of running applications

%We use exclusively independent threads in our experiments. Multithreaded applications are left for
future work.

0That is, a conventional non-partitioned processor.

11Since both the caches and the register file are shared among pilb&ti@es migrating an application
to a differentpipelineonly involves re-fetching the in-flight instructions.

12|n an state-of-the-art Operating System like Linux kernel 2.6 the length of the OS execution quantums
may vary from a few tens of millions of cycles to several hundreds or even thousands of millions of cycles.

40 CHAPTER 3. HETEROGENEOUS SMT PROCESSORS

does not reach the number of hardware contexts. This is also applied in the Heterogenous
MultiCore architecture [37], turning off idle heterogeneous cores. The main difference of
our proposal in this sense is that we can still use the whole budget of physical registers
and memory space to improve the performance of the running applications, since they are
shared by alpipelines

Notice thatmultipipeline-awareness hdSMTuncovers newfFetch Policiesnot avail-
able in conventional and monolith®MT processors. The shared fetch engine is limited
by the number and width of the instruction cache ports. However, the number of instruc-
tions that eaclpipelineaccepts per cycle may vary fropipelineto pipeline In order
to decouple the fetch engine from the characteristics of each specific pipeline it feeds,
some small buffers are added before each pipeline (see Fig. 3.11). The fetch engine in-
serts instructions at its own rate while each pipeline extracts instructions according to its
width. The fetch policy takes into account these buffers in order to appropriately balance
the instructions fetched among the pipelines. Depending on the characteristics of the set
of pipelines this may result in a wider global decode bandwidth sinceipklinesare
fed from their private buffer each cycle.

3.3.1 Mapping policies in hdSMT

The impact of statically partitioning the hardware into homogeneous clusters may be
either productive or counterproductive, depending on the resource partitioned. Raasch
et al. show in [51] that for storage resources, such as the instruction queue and reorder
buffer, statically allocating an equal portion to each thread provides good performance, in
part by avoiding starvation. Additionally, the enforced fairness provided by this partition-
ing obviates sophisticated fetch policies to a large extent. SMé&spotential ability to
dynamically allocate storage resources across threads does not appear to be of significant
benefit. In contrast, an static division of the issue bandwidth has a negative impact on the
system throughput. Th&@MTsability to dynamically multiplex bursty execution streams
onto shared function units contributes to its overall throughput.

In the hdSMTarchitecture the hardware is heterogeneously distributed into different
clusters. As a consequence, both the storage resources and the issue bandwidth are stati-
cally distributed among all the constituent clusters. Since each of this static partitions has
a different size, the success in avoiding the negative effects of such a partition depends on
themapping policy Its ability to map high-performing threads to wide pipelines, to better
profit both their wider issue bandwidth and higher amount of resources, determines the
overall system performance. Theemory behavioof each running application is used
as an indicator of the resource needs of each application. Threadgeathmemory
behavior are assigned to bigger hardware partitior@p®lines In this sense, we define

3.3. THE HDSMT ARCHITECTURE 41

the goodness of an application’s memory behavior as the amount of L1 data cache misses;
the lesser L1 data cache misses the better the memory behavior of that specific applica-
tion. To classify each running applications according to their memory behavior without
adding excessive overhead, it is used profile information of the number of L1 data cache
misses of each application for a similar execution interval. This profile information may
come either from a prior off-line application’s execution or from a prior OS quantum of
execution. Since applications go through different program phases throughout their exe-
cutions, with very different behaviors, the closer the behavior exhibited during the profile
information fed from the OS to tHedSMTmapping policy to the real behavior the better
results would be obtained. In this PhD dissertation we assume the OS to successfully feed
the hdSMT mapping policy with appropriate profilitgs

By means of this profile information fed by the OS, the active threads are arranged
by the number of data cache misses and assigned taifgeénes The pipelines present
in the microarchitecture are also arranged, but in this case by the width of the pipeline.
Then, threads are mapped to the pipelines starting from the thread with the lower misses
count and from the widest pipeline. Recall that the OS is suppossed to select a workload
with a maximum execution thread count lower or equal to the sum of hardware contexts,
spread over all the constituent pipelines inl@SMTprocessor.

The proposed hdSMT mapping policy assigns as many threads per pipeline as hard-
ware contexts it has got. If a pipeline does not admit more threads, the mapping policy
continues assigning threads to the next pipeline in the list. The only exception to this
simple rule is the first thread. Whenever possible, the first thread is mapped alone in
the first pipeline. The rationale to this procedure is to prevent the resource competition
between the highest-performing thread and other simultaneosly running threads. Since
the highest-performing thread is the one which contributes the most to the final processor
throughput, isolating it improves the overall processor throughput.

Regarding the interaction between applications, it is assumed that applications with a
similar number of L1 data cache misses behave similarly and therefore can share a sin-
gle pipeline without involving counterproductive contention. Thus, the negative scenario
in which applications with a bad memory behavior hinder the forward progress of ap-
plications with a better memory behavior is avoided. In this sense, our mapping policy
assumes that adjacent applications in theTidiehave similarly and consequently can
share a singlpipeline

13puringhdSMTresearch we employed information from a single profile for each application used, cor-
responding to a complete execution of trece(see Chapter 2) of instructions, selected for each application
according to[55].

42 CHAPTER 3. HETEROGENEOUS SMT PROCESSORS

In order to match each application with the most appropn@peling and so ad-
equately matching thépplication Heterogeneityith the heterogeneously partitioned
hardware, our mapping policy makes the following simple assumptitwe: number of
L1 data cache misses of an application is inversely proportional to the required pipeline
width”. The more L1 data cache misses occurred during an application execution interval
the more resources will be held by that application while each miss is resolved, hinder-
ing other applications from making forward progress using those resources. By doing so,
we expect to match each application with the most appropriate pipeline, that is the one
in which it is obtained the highest performance but involving the lowest resource bud-
get. The full mapping process of the profile-based heuristic policy employed is detailed
following in pseudo-algorithmic form:

1. Arrange all active threads, by the number of L1 data cache misses, indlishe
first thread inT is the one with the lesser number of misses.

2. Arrange all pipelines, by their width, in a lisP). The first pipeline inP is the
widest one.

3. Map the first thread ift to the first pipeline irP.

4. If this is the first assignment, and there are more available hardware contexts than
active threads, then remove the top of thefist

5. Remove the top of the ligt

6. If all the hardware contexts of the pipeline in the top of the Bisire busy then
remove the top of the lig®.

7. Iflist T is not empty continue in step 3.

Our results show that the effectiveness of the mapping policy depends on each spe-
cific hdSMTmicroarchitecture it is designed for. Hence, as we will see in Section 3.3.5, a
singlehdSMTmapping policy can not obtain the optimal results fort@lEMTmicroar-
chitectures. The proposdédiSMTmapping policy described in this section, and used in
the evaluation of thedSMTarchitecture itself, is aimed at tielSMTmicroarchitecture
evaluated with the best performance per area ratioZM#+2M2). For thishdSMTmi-
croarchitecture the proposédSMTmapping policy exhibits an average 92% accuracy.
Consequently, obtaining an appropriadSMTmapping policy for each specifftdSMT
microarchitecture opens new lines of research, left for future work.

3.3. THE HDSMT ARCHITECTURE 43

3.3.2 Area Cost Model

Several microarchitectures were evaluated dund8§MTresearch. Each of these mi-
croarchitectures involve a different hardware budget. Since an straight comparison of
the results obtained for microarchitectures with a different amount of resources may be
quite unfair, some additional complexity measurement is needed in order to guide this
evaluation. However, quantifying complexity is a tricky task and giving a single and com-
parable measurement is even harder to accomplish. In this research it is followed a quite
generalized approach which uses the area (if)whthe processor as a metric of its
“complexity”. Althoughcomplexityis not proportional to area in all cases, it gives a quite
accurate idea of the resultazamplexityand is reasonably easy to be measured.

To estimate the area of each configuration it is use&#msruhe Simultaneous Mul-
tithreaded Simulatof59, 64, 65]. On top of thisrea estimation toolve develop our
area cost model Since bothhdSMTand SMT approaches share the same register file
and caches, they are removed from éinea cost modetio simplify the results. However,
since inhdSMTthese resources are shared amongipklines the cost of the additional
access logic is taken into account. It is added to the execution core opgaadime as
additional hardware for multiplexing the data access. Ad®MTfetch engine also needs
some additional logic. Although its characteristics are similar toSNE one, multip-
ipeline support requires some extra logic. In fact, serd8MTimplementations, while
requiring less area, provide more hardware contexts than a mond@iticprocessor.
Taking into consideration Burns and Gaudiot’s work in quantifying3MT layout over-
head [16, 17], we have extrapolated single to multipipeline environment area overhead
from single to multithreading environment. Thus, we have estimated the additional area
overhead of the execution core within each pipeline in a 10%. The convengbMmal
fetch engine area overhead, when applied ted&@MT multipipeline environment, has
been estimated in a 20%.

In our evaluation, four different models pipeline are used, namel18, M6, M4,
andM2. The number in the name of each model gives a hint of the amount of resources
assigned to the correspondipgeline The SMT baseline, omonolithic SMTsince its
hardware is not partitioned into clusters, is represented biv@eipeline The remain-
der models represeptipelineswith reduced resources budget with respect to the baseline.
Starting from thévVi8 processor model, basically we estimated the hardware budget of the
remainder processor models by dividing the original hardware budget by two (i.e, once
per M4 and twice peM2). The M6 processor model was introduced as an intermedi-
ate step in betweel8 and M4 models to allow some further high-performihgSMT
microarchitectures.

44 CHAPTER 3. HETEROGENEOUS SMT PROCESSORS

The functional units are among the private resources of each pipeline. In order to
choose the most appropriate number of functional units for each pipeline, we evaluated
the performance obtained as we reduced them, starting from the baseline M8jel (
With all other resources changed to fhipelinés new values, it was chosen in each case
the number of functional units that kept a performance slowdown below 2%. The result-
ing amount of processor resources assigned to pigehineis shown in Figure 3.12.(a).
Additionally, it is used a private 256-entieorder Buffer (ROBper each thread in all
configurations, botsMTandhdSMT

Except for themonolithic SMTbaseline, all the configurations evaluated are com-
prised of a set opipelines For each of thespipelines the area estimation is obtained
from the sum of the area occupied by the instruction fetch, decode, dispatch, execu-
tion core, and instruction completion stages plus the decode, dispatch, and completition
gueues. ImdSMTandhomogeneously clustered SMdnfigurations, comprised of com-
binations ofM6, M4, andM2 pipelinemodels, only one instruction fetch stage is included
in the total area calculus, since it is shared among all the constjysziines According
to the definedirea cost modethe area estimation for each of the configurations evaluated
is shown in Figure 3.12.(b). All estimations have been made in Pr8as in [16], to
ease our area overhead extrapolations. Notice in Figure 3.12.(b) that the area estimation
for the M6, M4, andM2 pipelinesincludes an instruction fetch stage a 20% bigger than
the one included in the baselind@). Each of these bars may be considered asd8MT
processor comprised of a singlgeling the one measured in each case.

Finally, as shown in Figure 3.12.(a), oomonolithic SMTbaseline (8) is not able
to execute more than four threads simultaneously. Although adding additional hardware
contexts increases the total area occupied il processor, as evaluated by Burns and
Gaudiot in [16], ourarea cost modaloes not assume any additional area overhead for the
baseline in case of executing more than 4 threads simulatenously. As a consequence, the
usedarea cost modefavors the baseline when 6-thread workloads are evaluated, which
require two additional hardware contexts to M8 model.

3.3.3 Simulation Setup

Additionally to the reference simulation parameters shown in Chapter 2 (Table 2.4)
Figure 3.12.(a) shows the main characteristics of ggoblinemodel used ildSMTex-
periments. In botmonolithicandmultipipelineconfigurations, the register file is shared
among all the threads running on 8-stage execupipelines Any of the integer and
load/storefunctional units included in eaghipelineis connected to each of tH2-read
and 6-write portof theinteger register file FP functional units are connected to each of

3.3. THE HDSMT ARCHITECTURE 45

Hardware Contexts| 4 2 2 1
Max. Instr./cycle 8 6 4 2
Max. Threads/cycle| 2 2 2 1
Queues (IQ/FQ/LQ) 64 | 32 | 32 | 16
Integer Func. Units| 6 4 3 1
FP Func. Units 3 2 2 1
LD/ST Units 4 2 2 1

a) Resources.

0O Completion Queue
140 B Dispatch Queue —
@ Decode Queue

O Instruction Completion |
m Execution Core

O Instruction Dispatch
B Instruction Decode
@ Instruction Fetch

a0 = —
— —
o T T T

M8 M6& M4 M2

i

b) Area estimation.
Figure 3.12: Pipeline models.

the 6-read and 3-write portef the FP register file Since the amount of functional units
included in amultipipelineconfiguration, obtained as the sum of the functional units in-
cluded in each of the constitugpipelines may be much highét than the baseline’s, the
access to the read/write ports of the shared register files is multiplexed in these configura-
tions. In order to model the cost of the additional logic, required to handle the multiplexed
accesses to the shared register file ports, it is doubled the number of cycles required by
any register read/write in multipipeline configurations. Thus, register reads/writes have a
latencyof 1 cyclein case of anonolithic SMTprocessor as against tRecycle latencyf

the multipipeline configurations.

In the experiments related to this chapter, it is adoptedttidSH [70] instruction
fetch policy for the baseline (M8) case. Built on toplBIOUNT 2.8[72], that prioritizes

4wider pipelinesare prioritized in case of register file port contention in a single cycle. That is,
read/write accesses from wider pipelines are served first.

46 CHAPTER 3. HETEROGENEOUS SMT PROCESSORS

threads according to the number of instructions in the preissue stagedvihigtch pol-

icy predicts an L2 cache miss every time a load spends more cycles in the cache hierarchy
than needed to access the L2 cache. It is uskxkd 30-cycle triggeraccording to the
memory simulation parameters shown in Table 2.4. That is, whenever a load instruction
last more than 30 cycles to be resolved, an L2 cache miss is predicted. Whenever an L2
cache miss is predicted, the instructions after the L2 missing load are flushed away from
the execution pipeline, and the offending thread is stalled until the load is resolved. As a
consequence, the resources used by the offending thread are freed and it does not compete
for new resources until the load is resolved. This allows the other threads to proceed and
use the freed resources to make forward progress, while the stalled thread is waiting for
the outstanding cache miss.

For the case o6, M4 andM2 pipelines, it is adopted tHeLMCOUNT fetch policy,
a variant of theDCache Warrfetch policy [19]. ThisSMT fetch policy keeps track of the
number of inflight loads. Threads are arranged by the number of inflight loads they have
and given fetch priority accordingly. Threads with fewer number of inflight loads have
priority. In case of equal number of inflight loads, threads allocated to wider pipelines
have priority over those in narrower pipelines. Finally, in case of pipeline coincidence,
the ICOUNT 2.8policy is applied. Regardless of tI&MT fetch policy, all simulations
are limited to 8 instructions fetchable per cycle, from a maximum of 2 threads. In order
to decouple the shared fetch engine from the specific characteristics opipatineg it
is allocated a buffer in between the fetch engine and @godline (see Fig. 3.11). The
size of these buffers is 32 entries, fd6 andM4 pipeline models, and 16 entries, fdi2
pipeline model.

In our experiments, it is employed tf8PECINT2000 benchmark suitErom them,
we have collected traces of the most representative 300 million instruction segment of
each benchmark, following the idea presented in [55]. Each program is compiled with
the —O2 —nonsharedoptions using DEC Alpha AXP-21264 C/C++ compiler and exe-
cuted using the reference input set. Tables 3.2 and 3.3 show the workloads used, includ-
ing 2, 4, and 6 threads. Workloads are classified according to the characteristics of the
included benchmarks: with high instruction-level parallelism (ILP), with bad memory be-
havior (MEM), or a mix of both (MIX). Due to the characteristicsSSFPECINT2000with
few benchmarks that are really memory boundd&M workloads are only feasible for
2 and 4 threads. The reason to focusSS' ECINT200®enchmarks, not including others
asSPECFP2000is to delimit theApplication HeterogeneityWe seek to show that even
within an apparently homogeneous, and not highly parallel, suite of applications there is
enoughinter-Application Heterogeneitp be exploited by ahdSMTarchitecture. In any
case, we believe that even in the lack of thig&M workloads our results are significative
enough to reach interesting conclusions.

3.3. THE HDSMT ARCHITECTURE a7

| Wid | Benchmarks |

2W1 | eon, gcc
2W2 | crafty, bzip2
2W3 | gap, vortex

T || Wid | Benchmarks \

| || 4W1 | eon, gcc, gzip, bzip2

I || 4W2 | crafty, bzip2, eon, gzip

| || 4W3 | gap, vortex, parser, crafty
2W4 | mcf, twolf M || 4W4 | mcf, twolf, vpr, perlbomk
2W5 | vpr, perlbmk M || 4W5 | vpr, perlbmk, mcf, twolf
2W6 | vpr, twolf M || 4W6 | gzip, twolf, bzip2, mcf

X

X

X

2W7 | gzip, twolf AW7 | crafty, perlbmk, mcf, bzip2
2W8 | crafty, perlbmk 4W8 | parser, vpr, vortex, twolf
2W9 | parser, vpr 4W9 | vpr, twolf, gap, vortex

XXXXZIZ———|Hd

Table 3.2: Two and four threaded workloads (I=ILP, M=MEM, X=MIX)

|

[WId | Benchmarks | T
6W1 | gzip, gcc, crafty, eon, gap, bzip2 I
6W?2 | gcc, crafty, parser, eon, gap, vortex | |
6W3 | gzip, vpr, mcf, eon, perlbomk, bzip2 | X
6W4 | vpr, mcf, crafty, perlbmk, vortex, twolf X

Table 3.3: Six threaded workloads.

In each experiment, it is strictly focused on the period of time in which all the initial
threads share the processor. The objective in each case is to evaluate the behavior of each
microarchitecture with workloads comprised of two, four and six threads. This means that
each simulation finishes as soon as any of the threads contained in the evaluated workload
finishes executing 300 million instructions.

3.3.4 Microarchitectures and Metrics

In our experiments, several multipipeline microarchitectures are evaluated, both ho-
mogeneously and heterogeneously distributed. All these multipipeline microarchitectures
are implementations of tHedSMTarchitecturé®, with a shared fetch unit feeding all the
constituenpipelines The area estimation for each of the microarchitectures evaluated is
shown in Figure 3.13. The name of each microarchitecture, below each area estimation
in Figure 3.13, indicates the number and typeipleline models involved in each case.
Thus, the2M4+2M2 microarchitecture is comprised of two pipelines of tyy plus two
pipelines of typeM2 (see Figure 3.12 for an area estimation of each pipeline type). From
left to right, the first microarchitecturd|8) in Figure 3.13 represents ooronolithic SMT

15Although the homogeneous ones do not obeyhit®MTprinciple of heterogeneous distribution of the
hardware resources.

48 CHAPTER 3. HETEROGENEOUS SMT PROCESSORS

190 +10,14%

=
- - i
140 ;
130 :
120
110
E 100 oca
gg | moiQ
70 moDEQ
60 - mic
Zg | DEX
30 ool
20 ®mODE
o —
N N

— — =
\g} e}
W= N N Y

Figure 3.13: Area estimation of evaluated microarchitectures.

baseline. The next two microarchitectur884 and4M4) are homogeneously clustered
hdSMT microarchitectures; a shared fetch engine feeds multiple pipelines of the same
type. Finally, the last three microarchitectures represent the bd®&MT microarchi-
tectures, with multiple pipelines of different types comprising the system. According to
Figure 3.13, all but two microarchitecturefiM4 and1M6+2M4+2M?2) require less area
than the monolithiSMT baseline. That is, they afeimpler” than theSMT baseline.

For each microarchitecture and workload it is evaluated the performance obtained;
measured irinstructions Per Cycle (IPC)Since each microarchitecture has a different
resource budget, and consequently a different performance potential, we also take into
account thecomplexityinvolved. In order to make a fairer comparison we combine the
performance and the complexity of each microarchitecture in a single metric. Thus, we
additionally provide results measuredRarformance per Areavhich is obtained divid-
ing the resulting performance of a microarchitecture by its area (if)mihhis addi-
tional metric allows to evaluate tffeomplexity-effectiveness3f each microarchitecture.
Whilst comparing raw performance may lead to unfair comparisons, only justified in case
of unlimited resource budgéfs in a more general case the processor design may obey
stricter complexity constraints; both in terms of area, power and thermal disipation.

8Whenever a microarchitecture is designed with the only purpose of maximum throughput, the com-
plexity involved in the processor’s design may be obviated.

3.3. THE HDSMT ARCHITECTURE 49

3.3.5 Simulation Results

In this section we evaluate and comparenolithic SMThomogeneously distributed
hdSMT andheterogeneously distributed hdSMT processdfsr each workload, three
measurements are given. First, BESTresult, obtained using asracle!’ thread map-
ping policy, gives thenaximum performanagf the microarchitecture. Second, tHEUR
result gives the performance obtained by the microarchitecture usirgpthiesticthread
mapping policy presented in Section 3.3.1. Finally, WORSTresult gives the per-
formance obtained by the microarchitecture in case of applying in each casmitsie
possiblethread-to-pipeline mappingSpecial cases are the baseline (M8) and the two-
thread workloads of homogeneous distributions (3M4 and 4M4). Since the baseline is not
multipipelined, no thread-to-pipeline mapping policy is needed and so only one measure-
ment is given. In two-thread workloads, when all pipelines are of the same sort the three
measurementB8EST HEUR, WORSY coincide.

Figure 3.14 shows theaw performanceaesults (measured ilPC) for all microar-
chitectures evaluated. In each case, it is shownhimenonic mearof all workloads
of a same type and size. These results point out that, although Is88MT sresults
are quite similar tcSMT baselineones, thehdSMT’sresults are exceeded by t&MT
baselineones in some cases. Comparing the baselM® @ndbest-performing hdSMT
(IM6+2M4+2M2) means, we got baseline speedups over hdSM3%f4% and 15%
in ILP, MEM, andMIX workloads respectively. In the first two cases, the mean perfor-
mance ofhdSMTis not quite bad considering that thd SMTmicroarchitecture is able
to executeup to 8 threadswhile the resource budget of the baseline (M8) is not able to
execute more thad threads(as mentioned in Section 3.3.2). Recall that the maximum
amount of threads that dmdSMTmicroarchitecture is able to execute simultaneously is
equal to the sum of hardware contexts of each constitpipeline Hence, according to
Figure 3.12.(a), theM4+2M2 hdSMTprocessor is able to execute up to 6 threads simul-
taneously, whilsiM6+2M4+2M2 can handle up to 8 threads simultaneously. Neverthe-
less, the ability to flush and re-execute instructions of the baseline (M8) is crucial in the
MIX scenario. Although this is the general trend, notice idE8MTis able to outperform
the SMT baselineén the six-threadLP workload scenario (see Figure 3.14.(a)).

"Obtained using brute force, that is simulating all different application-to-pipeline assignments and
choosing the one with the highest value.

CNZHINZ+INT
CINZHPINE
UNZHING
vy
e
8N

CNZHINZ+INT
UNZHINE
UNZ+ING
vy
e
BN

HMEAN

6 THREADS

CNZHINZ+INT
NZ+PINE
Ng+iNe
vy
e
BN

CHAPTER 3. HETEROGENEOUS SMT PROCESSORS

4 THREADS

CNZHINZ+INT
NZHPINE
UNZHING
vy
e
8N

2 THREADS

50

a) ILP Workloads.

ﬁ CNZHINZ+INT

CNZHIINE
CNTHING

vy

g

8N

HMEAN

CNZHINZ+INT
CNZHINE
CNZHIING

vy

g

ll

4 THREADS

CNCHINZ+INT

CNCHINE

CNZHING

vy

g

Ll

2 THREADS

b) MEM Workloads.

CNZHINE
CNZ+IING

CTNZHINZ+INT

HMEAN

8N

6 THREADS

CUNZHINZ+INT
CNZHINE
CNZHING
il
NE
8N

4 THREADS

TN
s
TN+
iy

e

_ 8N

_I

0

14

0

3

0
iy
e
8N
CNZHINCHIINT
CNZHIINE
CNZ+IING
vy
PINE

2 THREADS

¢) MIX Workloads.

Figure 3.14: Performance comparison.

3.3. THE HDSMT ARCHITECTURE

IPC/Area

s =zx|la|lalale s lx|lalalale g 2|la|alale | = x| oo | o
= ===l =EE=
S| F|S|S|S S| S| S|s|S S| F|S|S|S S| TS| S|
AR o9 <SS AR
I || = | = || = || =
=== === === ===
S]|Ss|S S| &S| S| S|]| S|
> & & >
S S S S
= = = =
= = = =
2 THREADS 4 THREADS 6 THREADS HMEAN
0,016
0,014
0,012
3]
§ oo02
=L o0.,008
(&)
Q- 0,006
0,004
0,002
o
o | | x|l |la|lale | = xla|la|lale | = = o o o
O BEST = = = = = = = = = = = = = = = = = =
m HEUR D e D R R~ e D N IS RS
= = = = = = = = =
COWORST = | = | = = | = | = = | = | =
S| s | & S| &S| S S| s | &
& & &
S S 2}
= = =
= = =
2 THREADS 4 THREADS HMEAN
0,025
0,02
[a=]
@ 0,015
=
£ o1
0,005
o
ol x| |lalale| x| alale || x| alalale || = a oo
O BEST S|z =zl sSI=E=Ess= ==
B HEUR T e *ITIYIYE D e R D N e R
= = = = = = = = = = = =
COWORST === === === ===
S| S| S| &S| S| s | S S| S|
+ S+ 4+ +
S S) S
= = = =
= = = =
2 THREADS 4 THREADS 6 THREADS HMEAN

c) MIX Workloads.

Figure 3.15: Performance per Area comparison.

51

52 CHAPTER 3. HETEROGENEOUS SMT PROCESSORS

The previous results strictly take into consideration the performance that each mi-
croarchitecture obtains executing the given workloads. However, each microarchitecture
involves a different amount of resources; and a different power consumption among oth-
ers. To make a fairer comparison we show in Figure 3.15Pdr@ormance per Area
results for all microarchitectures evaluated. Again, it is showrhtérenonic mearof all
workloads of the same type and size. From these results, we can infer thetSMT
architecture achieves higher performance per area ratios thamathelithic SMTarchi-
tecture, that ispetter relative results than SMT using fewer resourcEemparing the
baseline K18) andbest-performance-per-area hdSNAM4+2M?2) means, we gdtdSMT
improvements over th8MT baselinef 15% 18%and10%in ILP, MEM, andMIX work-
loads respectively. The rationale behind these results, that clearly indicated®isiT
microarchitectures are mooemplexity-effectivéhan amonolithic SMTcan be found on
the amount of resources needed to execute each application; nartezhApplication
HeterogeneityseeHeterogeneity Analysishown in the first half of this chapter). Since
processor resources atatically partitionedamong all the constituempipelines and the
mapping policy employed istatic (i.e., only reassigns applications to pipelines on a OS
context switch granularity) the results highly depend on the mapping policy. Hence, good
results would come from the ability to accurately matching the application’s hardware
requirements and each pipeline’s hardware budget during each OS quantum of execution.

Regarding théhomogeneouBM4, 4M4) andheterogeneoudistribution @M4+2M2,
3M4+2M2, 1IM6+2M4+2M2) of hdSMTprocessors, results in Figures 3.14 and 3.15 point
out thatheterogeneous distributions are betfethan homogeneous oneBhus,for each
case there is at least one heterogeneous distribution that overcdoo#fs in terms of
absolute performance and performance per atkdomogeneous distributionsHow-
ever, homogeneous distributions represent an easier scenario in terms of mapping poli-
cies. Since all partitions have the same amount of processor resources, the amount of
differentassigments drastically decreases, leading to a more easy-to-assign scenario.

From all previous results it may also be inferred ttie thread-to-pipeline mapping
policy is a crucial factor in hdSMT architectureThis can be noticed by comparing
the BESTandHEUR results in Figures 3.14 and 3.15. As an example, notice that the
2M4+2M2 hdSMTmicroarchitecture obtains the highgsrformance per areaatios in
all but the four-threade®MEM workload case. In that case, although thracle map-
ping policy obtains ®% improvement over the baseline, theuristic accuracydrops to
76% resulting in a worse result than the baseline. From Figures 3.14 and 3.15 it is also
noticeable thathe effectiveness of the mapping policy depends on the sped8iT
microarchitecture Thus, while the heuristic applied achiev@% and96% accuracy in

8n terms ofcomplexity-effectiveness

3.4. CHAPTER SUMMARY 53

2M4+2M2 and 1M6+2M4+2M2 microarchitectures respectively, its accuracy drops to a
88% in 3M4+2M2 microarchitecture. As a consequence, Figures 3.14 and 3.15 clearly
indicate that when designingdSMTmicroarchitectures it must be payed special atten-
tion to the design of théddSMT mapping policy. Although covered in some sense in
multithreaded multicore scenario (see Chapter 4), a deep analysis of mapping policies in
clustered scenarios is left for future work.

To summarize, our results point out thhe hdSMT achieves its goal of minimizing
the amount of wasted resource® this sense, it obtains H3% and 14% improvement
in optimizing performance per areaver monolithic SMTandhomogeneously clustered
SMT, respectively. Regarding t@w performancemonolithic SMTobtains in mean a
6% speedup ovehdSMT NeverthelesshdSMTobtains in mean &% raw performance
speedup ovehomogeneously clustered SIVHinally, the results also indicate thtite
thread-to-pipeline mapping policy plays a very important role in hdSMT

3.4 Chapter Summary

The heteregeneity among application behaviors turns current architectures overde-
signed for most cases, obtaining high performance but wasting a lot of resources to do
so. In this chapter we have deeply analyzed the heterogeneity in software and its reflect
on the hardware itself. From this analysis we have settled the foundations of the first
contribution of this thesis: thideterogeneously Distributed Simultaneous Multithreading
(hdSMT) architecture

ThehdSMTarchitecture is aBMT alternative architecture in which the running threads
are mapped to a heterogeneosly clustered hardware according to this heterogeneity. The
results obtained in the evaluation of this first contribution indicate thatdi¥VTreduce
the waste of resources at reduced budget, obtaib3%g and 14% improvement in op-
timizing performance per area oweonolithic SMTandhomogeneously clustered SMT
respectively.

In hdSMT thethread-to-pipeline mapping polidg a prime concern. In this chapter,
we have presented@ample profile-based heuristic polidizat achieves 82% average
accuracy Raw performanceesults also point out that, in fututedSMTimplementa-
tions, this mapping should probably be made dynamically in order to better adapt to the
dynamic changes in the program behavior during execution. In this sense, the conclusions
obtained from the heuristic mapping policy proposed in this chapter shed some light into
the characteristics of future mapping policies over clustered layouts, opening new and
interesting research topics for future research.

54

CHAPTER 3. HETEROGENEOUS SMT PROCESSORS

Chapter 4

Heterogeneity-Awareness in
Multithreaded Multicore Processors

Once analyzed théleterogeneity-Awareoncept and its application to the single-core
scenario we move to the multicore scenario. In particular, we focus avititeéhreaded
Multicore Processorsa sort of processors that seem to constitute a general trend in indus-
try nowadays. So, state-of-the-art high-performance processors likBKh&OWERS

and POWERG comprised of two cores with twSMT hardware contexts each (i.e., an
overall four hardware contexts count), confirm this trend. In these processors, the set of
applications selected by tl@perating Systeno be simultaneously executed must be as-
signed to one of the available hardware contexts, distributed among all available cores.
We call to this intermediate step tii@read to Core Assignment (TCA)

In this chapter we show the relation between Tiieead to Core Assignment (TCA)
and the underlyingnstruction Fetch (IFetch) Poligymplemented in eacBMT core. On
the one hand, we show that the performance of a giveA depends on the underlying
IFetch Policy On the other hand, tiECAdetermines the performance of the underlying
Instruction Fetch (IFetch) Policimplemented in eacBMT core. We include evidences
which indicate that a goodCA can improve the results of any underlyitigetch Policy
yielding speedups of up to 28%.

Given the relevance ofCA we propose an algorithm to manage feead to Core
Assignmenin Multicore processors comprised 8MT cores. The proposetCA Algo-
rithm boosts system throughput, taking into accountwtioekload characteristicend the
underlyingSMT IFetch Policy It achieves its goal, yielding system throughput improve-
ments up to 21% as compared to the state-of-th&@#&policy in current processors.

95

56 CHAPTER 4. HETEROGENEITY-AWARENESS IN CMP+SMT PROCESSORS

4.1 Introduction

Process technology advances have considerably increased the amount of available
transistors on a single chip; and this count does not seem to stop increasing in the next
years. However, having more available transistors can not always be directly translated
into increasing the processor performance. The limitations imposed bypdtrection
Level Parallelsim(ILP) have madé& hread Level ParallelisniTLP) becoming a common
strategy to improve processor performance. Multithreaded processors execute multiple
applications to better profit the available hardware resources. Since it is difficult to ex-
ploit morelLP from a single application, Computer Architects have opted to exploit other
parallelism sources.

As we saw in Chapter 1, there are multiple multithreaded alternatives, depending on
the granularity of thelLP exploited. According to the specifidT alternative chosed
for an specific microarchitecture, tl@perating System (O3jas a different task when
selecting the execution workload for ea®l$ context switchTherefore, th@Sschedul-
ing process depends on the spedifit alternative implemented in the processor. In this
chapter we show how thEeterogeneity-Awarenesoncept could assist th®@S when
performing this task, in order to achieve subsequemplexity-effectivexecutions.

In anSMT processor, thecheduling process comprised of two main steps. Assum-
ing M runnable jobs, in the first step ti@perating System (OS) Job Scheddelects a
set of N from theseM jobs: the workloadN| is less or equal to the number of hardware
contexts of theSMT). This first scheduling layer is known as-schedule selectidd3].
Once theDScomposes the workload, the resource allocator oStid@ processor decides
how to prioritize threads. Usually the resource allocation is carried out biy-¢teh Pol-
icy [20, 24, 70, 72]. This second scheduling layer is knowreasurce sharing33].

In a CMP processor comprised &MT cores, like thdBM POWERS60] and PO-
WERG6[39], the traditionalSMT scheduling procesgquires an additional intermediate
step. Once th@S selects the applications to schedule together in the processor (
schedule selectigreach application must be assigned to one of the execution cores. We
call this additional scheduling step tii@éread to Core Assignment (TCA)hen, the un-
derlying IFetch Policymanages the resource distributisagource sharingbetween the
applications assigned to the same core. In cur@®like Linux 2.6[14], the TCAdoes
not have a significant role when co-scheduling threads. Basically, the decision whether a
job has to be scheduled in a given core depends on the fact whether that jodcesatdy
executed in that core and hence can take profit of the data that could remain in the cache.
Nevertheless, thread migrations between execution cores can be triggereddfyftre
load balancing purposes, losing the data in the cache.

4.1. INTRODUCTION 57

In SMT processors, thi#-etch Policyis usually designed to address a particular situa-
tion where the performance 8MTdegrades significantly. As an example, FiéJSH([70]
policy avoids the situation whereraemory-boundethread clogs the internal resources
of the SMT causing performance degradation. These policies improve performance in
workloads comprised of botmemory-boundedndILP-boundedhreads.

In this chapter, we analyze the new intermediate stepT @8 that we have identi-
fied in theOS scheduling process of curre@MP processors comprised &MT cores
(CMP+SMT). This analysis reveals that ti€CA heavily affects the performance of the
underlyinginstruction Fetch (IFetch) PolicyOur analysis focuses on the relation between
the TCAandIFetch Policyscheduling layers. That is, we assume a fixed workload after
someco-schedule selectibnThe results indicate that a baCAmay negate the perfor-
mance advantage ofrabus? IFetch Policy like the FLUSH [70] and STALL[70] poli-
cies. Thatis, if we continue designing multithreaded multicore processors without having
into account thedeterogeneity-Awarenessncept, we would go away froosomplexity-
effectiveprocessor designs; further as the on-chip transistor count increases.

The importance of th&@CAlies in the fact that it can prevent the situation in which
SMT suffers from performance degradation by appropriately assigning the threads to co-
schedule in eaclsMT core. Thus,a good TCA reduces the need of mbust IFetch
Policy. Oppositelya bad TCA may cause aobust IFetch Policyo perform poorly An
illustrative example is shown in Figure 4.1. It depicts the throughput of a 2-core processor
with 2 hardware contexts per core, using IB®©UNT andFLUSH policies, respectively
(See Section 4.2 for core details). The applications in the worklad| C,D are assigned
to theSMT cores (e.g., [A,BE A andB assigned to the same core). Notice in Figure 4.1
that while the firstTCAyields similar results for both policies, the secoh@A obtains
an improvement of 19%. Consequentlyg@od TCApolicy is required in order to fully
exploit the benefits of the underlyingetch Policyin CMP+SMT processors.

As the amount oSMT cores withinCMPsincreases, the number of possiGI€EAS
exponentially grows. Assuming 2 hardware contexts PEIT core, there are 3, 105,
and 280 millions of differenTCAsfor 2, 4, and 8-core implementations, respectively.
Therefere, the selection of gpod TCAfor each case should not involve an excessive
overhead, proportional to the number of cores. Otherwise, this selection scheme would
not scale with the ever-growing amount of on-chip cores. This chapter presents the second
contribution of this thesis, that can be break down into:

Certainly, there is a relation betweea-schedule selectiaandTCA, but is out of the scope of this PhD
dissertation, and left for future research.

2The termrobustis employed in this chapter to refer IFetch Policies which appropriately handle long-
latency loads.

58 CHAPTER 4. HETEROGENEITY-AWARENESS IN CMP+SMT PROCESSORS

TCA ICOUNT FLUSH Workload:
+02%o6 A,B,C,D
1) [A.B] [C,D] @ A =vpr
B = equake
~+19%0 - ——-~ C = fma3d
2) [A,C] [B.D] 1.6 __"\\1’8?,' D = vortex

Figure 4.1: TCA Example.

1. ANALYSIS.We analyze thescheduling proces;n CMP+SMT processors. We
identify the need of a new intermediate step in the scheduling proddssad
to Core Assignment (TCAYVe also do the first analysis in the literattiaf the
relation between thi$ CAand thelFetch Policy Our results indicate that a proper
TCAallows anaive IFetch Policylike Round Robir{72], yields similar through-
put results to those obtained withrabust IFetch Policy like FLUSH We show
results which indicate thatgood TCAcan yield speedups of up to 28%. Therefore,
the TCA Algorithm supposses a significative improvement in terms of complexity-
effective executions, sinaeivepolicies generally consume less energy than more
robustones.

2. PROPOSAL.We propose th&CA Algorithm which applies theHeterogeneity-
Awarenesgoncept to théMultithreaded Multicore Processarét selects an appro-
priate TCAfor each case, according to th@rkload characteristicand the under-
lying IFetch Policy Its simple design allows a real implementation without adding
excessive overhead, just requiring the numbecarhmitted Instructions Per Cy-
cle (IPC)during a prior and representative portion of execution. To assisi@#e
Algorithm with theselPC values, we also propose #C prediction mechanism
the TCA Calibration This simple but effective mechanism predicts th&ative
behavior(measured inPC) of the running applications using an smsdmpling
phase The obtainedPC values, whilst not fully accurate, catch the relative behav-
ior of the running applications. Feeding th€A Algorithmwith theselPC values,
we show evidences which indicate that the propdsed Algorithmobtains assign-
ments 3% close to the optimal assignation for each case, yielding system through-
put improvements up to 21%. Besides, @A Algorithmaccuracy scales with the
workload size and number of on-ch§MT cores.

4.2. METHODOLOGY 59

[Simulation Parameters i Benchmarks]
Pipeline depth 11 stages L1 I-Cache 64KB, 4-way, 8 banks|| gzip a | vortex j mesa s
Queues Entries 64 int, 64 fp, 64 Id/st| L1 D-Cache 32KB, 4-way, 8 banks|| vpr b | bzip2 k | fma3d t
Execution Units 4int, 3 fp, 2 Id/st L1 lat./miss 3/22 cycs. gcc c | twolf | sixtrack | u
Physical Registerg 320 regs. I-TLB ,D-TLB 512 ent. Full-assoc. mcf d | art m | facerec | v
ROB Size* 256 entries TLB miss 300 cycs. crafty e | swim n | applu w
Branch Predictor | perceptron L2 Cache 4MB, 12-way, 4 banks|| perlomk | f | apsi o | galgel X

(4K local, 256 pers) | L2 latency 15 cycs. parser g | wupwise | p | ammp y
BTB 256 entries, M. Memory lat. | 250 cycs. eon h | equake | g | mgrid z
4-way associative gap i lucas r
RAS* 100 entries

[Type [Workload][Type [Workload [Type |]
4W1 b,q,tj 8wW1 | d,I,b,g,h,jaf 16W1 | d,l,b,g,m,n,r,q,i,j, ¢, f, Kk, e, a h
4W2 l,n,o,e 8W2 | b,g,m,n, a h,wp 16W2 | I, I+1,1+2,1+3,g,g+1,g+2,9+3,k, e,a, h,0,p,s,t
4W3 ri,f,p 8W3 | m,n,r,q,f,jeh 16W3 | b, n, b+1, n+1, b+2, n+2, b+3, n+3, 0, p, S, t, W, U, X, Z
32W1 | d,l,b,g, m,n,r,q, m+l, m+2, b+1, b+2, q+1, g+2, g+1, g+2,1,j, c, f, k, e, a, h, p, s, w, 0, h+1, j+1, a+1, f+1
32W2 | |, I+1, b, b+1, m, m+1, n, n+1, g, g+1, g+2, b+2, q, g+1, g+2, 1, j, j+1, j+2, h, h+1, a, a+1, f, u, p, p+1, p+2, c, c+1, s, s+1
32W3 | d, b, b+1, b+2, n, n+1, n+2, g, m, m+1, m+2, m+3, |, I+1, I+2, [+3, u, h, h+1, h+2, h+3, j, j+1,f, a, a+1, a+2, p, p+1, w, wHl, f+1

Table 4.1: Simulation parameters and Workloads. (resources marked with * are replicated
per thread)

4.2 Methodology

We simulateCMP configurations using a a multibanked L2 Cache shared among all
cores. Each core implemer88T with two hardware contexts. Each workload is simu-

lated on aCMP comprised oiihr%adSSMT cores (e.g., 8-thread workloads simulated on
4-core CMPs). Additionally, in order to assure a minimal cache share 16-thread and 32-
thread workloads (16W & 32W) are simulated using a shared 6MB 6-banked L2 Cache
(instead of 4MB 4-banked). Since a complete study of all benchmarks is not feasible due
to excessive computational cost we have randomly chosen some of them. The workload
size is denoted by the prefiV, wherex stands for the number of benchmarks involved.
Table 4.1 shows the main simulation parameters and the chosed workloads.

Each workload is simulated employing 4 different IFetch Policksund Robin (RRY 2],
ICOUNT [72], STALL[70] andFLUSH [70]; in all cases, simulations are executed for
a fixed intervalof 140 millions of simulation cycledn our simulations we assume this
simulation interval as a singl®S quantum of execution. Although an state-of-the-art
general-purpos®Slike Linux 2.6does not have a fixed-leng®S quantumve make this
assumption for simplicity reasons. Théux kernel 2.614] establishe©©S quantums
with typical lenghts ranging fron® to 800ms In a 4 GHz general-purpose processor,

3To the best of our knowledge, there is no prior publication that explicitly identified the need of an
intermediate layer in th©Sscheduling process fdrultithreaded Multicore Processors

60 CHAPTER 4. HETEROGENEITY-AWARENESS IN CMP+SMT PROCESSORS

like the IBM POWER{39] 4, this would be translated in®0S quantumsvith a duration

of 0 to 3200 million of cyclesThe choice ofl40 millions of cyclesas fixed-length of

the OS quantums our simulations represent a commitment, since all applications in the
workload executes without being interrupted by @&

Despite theTCA Algorithmis a throughput-orientedoroposal, it must be said that
thefairnessconcept can not be directly applyied TI€Ain CMP+SMT, as done in prior
SMTsfor IFetch Policies This is true since the propos&@€A Algorithmdoes not add any
hardware/software mechanism to stop/interrupt the application’s execution; it just assign
threads tdSMT cores. This is the main reason to not include in this research additional
metrics like theHarmonic Mearor Weighted Speedup

4.3 Scheduling in Multicored SMT Processors

In a SMT processor thechedulingof a set of tasks requires decisions at two levels,
as shown on the left side of Figure 4.2. First, when the number of available ready tasks
M is larger than th& hardware contexts supported by 88T processor, we need to
determine which tasks to co-schedule, that is schedule togetherOS$himb Scheduler
seletcs a set dfl tasks (where N< T) from theM ready tasks: the workload. This first
scheduling layer is known a®-schedule selectidB3].

Second, we need to perform the resource distribution among co-scheduled tasks in
an SMT processor. Th&S passes the workload to the hardware, which must decide
how to distribute theSMT processor resources among all applications comprised in the
workload. This distribution is aimed at avoiding resource monopolization by the running
threads. This second layer is knownResource SharinfB3], as shown on left side of
Figure 4.2. There are several proposals in the literature [20, 24, 70, 72] to manage the
Resource Sharingrhese proposals improve the system throughput @M processor
solving the resource contention among all applications in the workload. In this research
we focus on foulFetch Policies RR[72], ICOUNT [72], STALL[70] andFLUSH [70].

Far from representing the state-of-the-artfedtch Policies we use them as an easy-to-
explain example, since the proposEGA Algorithm(see Section 4.5) do not degrade the
execution’s performance of the running threads within eabtT core. In fact, as will

see in following sections, there is no a sind@l€A Algorithmimplementation valid for

all IFetch Policies, as there is not a single thread-to-core assignment valid for all cases.
Consequently, there would be multiple possib@A Algorithmimplementations.

4Latest POWERS6 implementations reach a frecuency of 4.7 GHz.
5According to Chapter 7 in [14], 140M cycles represents a reasonable choice for such an approximation.

4.3. SCHEDULING IN MULTICORED SMT PROCESSORS 61

M/ﬁ Ready Tasks M/ﬁ

I I
|| Co-schedule Selection || 4’7 || Co-schedule Selection ||
N, — N, -
»" s
Workload ||
I
Thread to Core
Assignment
1 1 - I
T T T
TCA
Resource Sharing || Resource Sharing ||
SMT e c-core Multicore I e I
(T contexts) Tﬁ] Each core SMT] mﬁ' ‘il
where T 2N (Ti contexts, 1 =i <c)
= 1 2 ... c
where STi =N C C C

Figure 4.2: Scheduling Layers in SMTs and Multicored SMTs.

In a CMP+SMT processor, thd hardware contexts are distributed amongSMT
cores, as shown on the right side of Figure 4.2. Each execution core works as a different
SMT processor with its own resource allocation scheme. Consequently, we have to select
which of theN applications from the workload to co-schedule in e&8IT core, where
N = T. In this way, theN applications from the workload are distributed among d¢he
SMT cores. Since the multicore processor resources are statically distributed among all
SMT cores, the way in which we schedule together tasks in each core determines the
performance of the underlyingsource sharingn each core. Obviously, the more the
tasks () in the workload the more possible schedulingsTGAs growing exponentially
with the number of tasks. The three layers of the task scheduling in multicore processors
comprised oSMT cores are shown on the right side of Figure 4.2.

In an state-of-the-art general-purp@8like theLinux 2.6[14] theTCAdoes not have
a significant role in thecheduling algorithmin fact, it is not explicitly taken into account.
Linux 2.6 considers each hardware context as a diffefegical domain The logical
domainsare hierarchically organized according to the hardware contexts distribution on
the chip. Figure 4.3 depicts an illustrative example for a 2-cOk&P processor with
2 hardware contexts per core. Edolgical domainhas a different que§eof runnable

SLatest distributions of theinux Kernel 2.6 like the 2.6.23 manage these queues in a more sophisti-

62 CHAPTER 4. HETEROGENEITY-AWARENESS IN CMP+SMT PROCESSORS

| CORE 1 CORE 2
, : (domain 1) (domain 2)
mal mal
@ @ @ @ context 1 (1.1)|| ||context 1 (2.1)
context 2 (1.2) || || context 2 (2.2)
(a) Hierarchical domains. (b) OS-HW domain mapping.

Figure 4.3: Linux 2.6 logical domains - Example in a CMP+SMT with 2 SMT cores.

applications, sorted by process priority. In order to keep balanced these quieaes a
balancingprocess may be triggered, implying thread migrations from one core to another.
Besides the process priority, the decision whether a job has to be scheduled in a given core
basically depends on the fact whether that job veaentlyexecuted in that core, to take
profit of the data that could remain in the cache. However, the load balancing process
performed by th&©Smay involve thread migrations between execution cores, losing the
data in the private caches.

4.4 Thread to Core Assignment and the IFetch Policy

In order to analyze the relation between @A and the underlyindgFetch Policywe
simulate all 4-thread4W) and 8-thread&W) workloads in Table 4.1 on 2 and 4-core
CMP, respectively. Figure 4.4 breakdowns the results WORSTandBEST TCAThey
correspond to the results obtained using the worst and the best TCA in terms of throughput
(i.e., WORST TCA corresponds to the TCA that yields the worst throughput among all
possible TCAs). Figure 4.4 shows for each IFetch Policy the average results obtained
from the corresponding TCAs for all workloads with the same number of threads.

Figure 4.4 shows some interesting values on top of the graph itself. On the one hand,
the percentages on top of each bar in Figure 4.4 indicate the throughput improvement
achievable for the corresponditigetch Policyusing theBEST TCAas compared to the
throughput obtained using tMWORST TCAThat is, therelative importance of the TCA
or TCA Sensitivity On the other hand, the percentages on the right side of each group of

catedtree-basedstructure.

4.4. THREAD TO CORE ASSIGNMENT AND THE IFETCH POLICY 63

25 ORR MWICOUNT OSTALL OFLUSH 50 ‘ ORR WICOUNT OSTALL OFLUSH ‘

2 14% 110
12% |

23 45) —

11% 0% B

22 5 e [

- 0 [L

2l TI%
11%

IPC
~
>
\
|
IPC

19 — 35 [

17 4 — 30+ [

15 T 25+ T
WORST TCA BEST TCA WORST TCA BESTTCA

(a) 4-thread workloads. (b) 8-thread workloads.
Figure 4.4: TCA Sensitivity.

bars indicate the relative importance of tketch Policywhen using similar TCAs. That

is, the throughput obtained using tR€A that yields theWORST/BEST TCfor each
workload andlFetch Policy Comparing both results it is straightforward tilag TCA

has similar or even more importance @MP+SMT processors than thé-etch Policyin

SMT processors Four main conclusions can be inferred from the average results shown
in Figure 4.4:

1. A good IFetch Policy reduces the negative effect of an inappropriate TG4t is,
when counterproductive threads are assigned to the SifiTecore (i.e., inappro-
priateTCA) the goodness of the implementéetch Policyis of critical importance
to obtain high system throughput. As a consequence, the impact diGAdgor
TCA Sensitivityis on average lower in presence of gdédtch Policies As a mat-
ter of example, in 8-thread workloads (Figure 4.4(b))TigA's relative importance
ranges fron28%to 12%for RRandSTALL respectively.

2. An appropriate TCA improves the results obtained regarless the underlying IFetch
Policy. The results in Figure 4.4 show thatgaod TCAimproves the system
throughput by more than 10% even in presencerobast IFetch Policylike STALL
andFLUSH

64 CHAPTER 4. HETEROGENEITY-AWARENESS IN CMP+SMT PROCESSORS

3. Aninappropriate TCA could negate the performance advantange of a better IFetch
Policy. That is, theTCA should not be neglected even when implemengngd
IFetch Policies As an example, in both 4 and 8-thread workloads (Figure 4.4) the
results obtained witlRR usingBEST TCAsurpass those obtained using a better
IFetch Policylike FLUSH, usingWORST TCAThereforesimply investing in good
IFetch Policies does not assure the best results

4. There is not a single TCA good for all case&s a matter of example Figure 4.5
shows the results yielded by worklodw/2(see Table 4.1) using eatifetch Policy
considered and two differeliCAs While TCA 1lyields theBEST TCAresults
for RRandICOUNT policies and th&VORST TCAesults forSTALLandFLUSH
policies, TCA 2yields just the opposite results.

Finding theBEST TCAfor each case is not a trivial task since the number of possi-
ble TCAsexponentially grows with the number 8MT cores. As a matter of example,
there are 105 different CAsfor 8-thread workloads using a 4-co@MP+SMT proces-
sor. Some of them yield the highest throughput and are conside&%% TCAThe
remaindefTCAsmay incur in some throughput loss as compared t@BST TCASince
state-of-the-art OS like thieinux Kernel 2.6does not explicitly take into accoumCA a
RANDOM TCAs assumed astate-of-the-art TCA policyAs shown following, randomly
selecting a CAmay incur in significant throughput losses.

Figure 4.6 shows the probability of throughput degradation due to randomly obtain-
ing the TCA for each 8-thread workload and IFetch Policy considered. Since current
OSs does not explicitly take into accouRCAwhen assigning threads to cores in Multi-
threaded Multicore Processors, the probability distribution shown in Figure 4.6 reflects a
possible scenario in state-of-the-art processors. Notice in Figure 4.6 that the probability
of randomly obtaining th8EST TCA(loss lower than 1%) is in average close to 10%.
The remaindeil CAshighly depend on thé~etch Policyand the specificharacteristics
of each workload Thus, while randomly selecting BCA for workload 8W2incurs in
more than 5% of throughput loss with a probability of 71%, udRig this probability
drops to 20% using a bettdfetch Policy like FLUSH However, the same claim may not
be stated for workloa8W3 where this probability is close to 50% and 75% RiRand
FLUSH IFetch Policiesrespectively. Obviously, the specific characteristics of workload
8Wa3turn it into a more difficult target foFLUSH policy, yielding worse results and rais-
ing the probability of obtaining a high throughput loss. Consequeitily,important to
have a mechanism that assures some amount of relighilitgrms ofTCA selection for
each case.

4.5. THREAD TO CORE ASSIGNMENT ALGORITHM

Throughput (IPC)E

RR 1,69
ICOUNT | 1,72
STALL 1,63
FLUSH 1,74

Workload:
A4W21[1, n, o, €]

I = twolf
n =swim
o = apsi

e = crafty

- BEST
- BEST
- WORST
- WORST

TCA Classification
(among all possible TCASs) |

WORST -+ RR 1,51
WORST +{ ICOUNT | 1,56
(3%)BEST? STALL 1,67
BEST | FLUSH 2,00

65

TCA 2

Cc1

4

(@

Figure 4.5: Example with different TCAs for a 4-thread workload.

100%

90%

80%

70%

60%

50%

Probability

40% A

30%

20%

10% A

Throughput
Loss
Percentage
(compared
to BEST
TCA)

[120% < 25%
15% < 20%
[010% < 15%
5% < 10%
E31% < 5%
O0< 1%

0%

Figure 4.6: Probability of Throughput Loss in 8-thread workloads using Random TCAs.

swi ‘ 8wz ‘ 8ws3
ROUND ROBIN

8w1i ‘ 8wz ‘ 8ws3
ICOUNT

8w1i ‘ 8wz ‘ 8ws3
FLUSH

4.5 Thread to Core Assignment Algorithm

8w1i ‘ sw2 ‘ 8w3
STALL

In the following subsections we describe in detail the propdsed Algorithm so as

theTCA Calibrationmechanism, aimed at handle the TCA scheduling layer in CMP+SMT
processors. A complete evaluation is also included, with results revealing up to 21% of

improvement over current state-of-the-art scheduling.

66 CHAPTER 4. HETEROGENEITY-AWARENESS IN CMP+SMT PROCESSORS

4,5.1 TCA Algorithm Foundations

In order to properly manage tAe€CAin a CMP comprised ofSMT cores we take into
account both thevorkloads characteristicand the underlyingMT IFetch Policy The
proposedl CA Algorithmis designed for homogeneous implementations, with the same
IFetch Policyimplemented in each 2-hardware-context core, likelBidd POWERF60]
andPOWER(G39]. We focus on thenemory behavioand theLP of each application and
how thelFetch Policyreacts to these characteristics. Regardingreenory behaviowe
can distingish two types dfetch Policies (1) naive that perform badly witmemory-
bounded (MEM)applications likeRR or ICOUNT, and (2)robust with good response
to MEM applications likeSTALLor FLUSH Regarding théLP we must observe how
well thelFetch Policyboosts anigh-ILP application performance without critically affect
alow-ILP application running on the same core. As an indicator of both characteristics
we use thdPC obtained by each application during a prior and representative portion of
execution. The obtention of theHeCsis explained in detail in Section 4.5.3. The reason
for chosing the IPC as a simple indicator of the applications characteristics is twofold.

Onthe one hand, tH@C of the threads is usually directly proportional to theemory
behavior High IPC results generally indicate goademory behaviorsand vice versa.
MEM applications can monopolize the available resources in the execution core whether
the IFetch Policydoes not prevent it, as it is the casenaive IFetch Policies Thus, a
MEM thread wastes some of its assigned resources while waiting for memory, preventing
anlLP thread, co-assigned in the same execution core, from doing forward progress. The
robust IFetch Policiesolve this problem by stalling (and even flushing) MEM thread
whenever it waits for memory. Consequently, in case ofrtare IFetch Policiest is
better to assign threads with similar memory behavior to a single core, and the opposite
for robust policies.

On the other hand, theC of the threads is directly proportional to théirP. High
IPC results generally indicate highP. A thread with a highLP tend to eagerly con-
sume all available resources, such as functional units, to make forward progress, since
the available paralellism allows to keep all available resources busy. Therefore, schedul-
ing together two highLP applications in a single core increases the resource contention,
yielding a reduction in the overall throughput. Assigning these applications to different
cores and scheduling them with loweP applications helps solving this resource con-
tention and improves system throughput. Therefore, it is better to assign together threads
with differentIPC levels, that is high and loW.P threads.

Robustpolicies must detect when a thread is going to wait for memory in order to
perform properly. Reacting too early or too late may negatively affect the final through-

4.5. THREAD TO CORE ASSIGNMENT ALGORITHM 67

Algorithm 4.5.1: TCA(IPC)

1- Arrange threads by IPC.

2- Split sorted thread list into two halves, creating two different lists. Wertl&iH-list to the sublist obtained
from the upper half of the original list, with the higher IPC values. We ct@l\V-list to the other sublist,
with the lowest IPC values.

3- For i=0 to Number;)f Threads, |

3.1- Assign the last two threads on th@W-list to one empty core.
3.2- Assign the threads on the top and the tail ofth&H-list to one empty core.
3.3- Remove the assigned threads from the lists.

4- While (Not EmptyHIGH-list and LOW-list) do

4.1- Assign the thread on th#GH-list top andLOW-list tail to one empty core.
4.2- Remove assigned threads from the lists.

Figure 4.7: TCA Algorithm implementation for FLUSH/STALL policy.

put [70]. Applications with a high rate of memory misses may impose a severe obstacle
to a co-scheduled high performing application even in the presence of a robust policy. For
example, there is a 29% of performance degradation when co-schedafingth equake

(bad memory behavior) as comparedtotex using a FLUSH policy in an SMT core like

the one described in Section 4.2. Hence, tHEsé&h Policiesmay be assisted isolating

the threads with the worshemory behavioand scheduling them together with the less
sensitive thread, that is the following with the worst memory behavior. The number of
isolatedMEM threads depends on the workload size. The more threads in the workload
the more possibI®MEM threads present in the workload.

4.5.2 TCA Algorithm

The proposed CA Algorithmmanages th&hread to Core Assignment (TCHhler-
mediate layer in th®©Sscheduling process iNultithreaded Multicore Processordts
implementation forobust IFetch Policegi.e., FLUSH and STALL is presented in Fig-
ure 4.7. TheTCA Algorithmfoundations explained in the prior section, can be easily
identified in the implementation shown in Figure 4.7.

68 CHAPTER 4. HETEROGENEITY-AWARENESS IN CMP+SMT PROCESSORS

+IPC

1 T HEH LOW HIGH LOW HEH LOW HIGH LOW
? i 5 5] 5

ERERENE 2| o] [

2o Bl E B

50 [= B no00e

I _

3 BeHE BEHH BEER EEEE
=X 3 23 A | R Y A T [E
-IPC COC1 C2C3 COC1 C2C3 CoOC1cC2Cc3 cocCc1 cz2ces

(step 1) (step 2) (step 3) (step 4) (step 4+*1)

Figure 4.8: TCA Algorithm Example for FLUSH/STALL implementation (8 Threads).

First, in steps land 2, the workload applications are classified according to their
memory behavioandILP. Applications withgood memory behavidie in the HIGH-list
while the remainder applications lie in th©W-list Within each sublist the applications
are arranged according to th&C. Within each sublist, sinckP is directly proportional
to thelPC, applications with more ILP lie in the head of the list.

In the third stepthe threads with the worshemory behavioare isolated in order to
assist the underlying~etch Policy That is, thesenemory-bounded applicatiosse as-
signed together to the same core. In order to balanceHi@i andLOW thread lists, a
pair of HIGH threads are also scheduled together for each pdi©bY applications iso-
lated. According tdLP reasoning above, we choose those threads with the most different
IPC levels among all threads in thélGH-list. In the particular case of a 2-co@MP
(4-thread workloads) this step is skipped. Otherwise we would é&0AlLandFLUSH
policies from doing any work, since no mixed pairsGRPU andMEM applications would
be generated. For workloads wighor more threadsthis third stepis repeated accord-
ing to theworkload sizeandnumber of coresas the probable number of harmMEM
threads increases with theorkload size

In the fourth stepthe remainder threads are assigned according to rnetinory be-
havior andILP guidelines. That is, the thread with thegghest IPC(HIGH-list) is paired
with the thread with théowest IPC(LOW-lisf). Figure 4.8 shows an example in a 4-core
TCA Algorithmimplementation. The resulting assignment procedure is siotpleand
scalable with an asynthoti@)(NlogN') complexity, with/N being the application count.

4.5. THREAD TO CORE ASSIGNMENT ALGORITHM 69

+IPC

“T HEH LOW HIGH LOW HIGH LOW HEH LOW
ERERE 5 5| [

? 3 6 2 6 6 .
niEENE 3]
50 B o B O

I _

3 HHHE BEHH BEEH HEEE
] LI | 4][7][=]le

COC1 C2C3 COC1C2C3 CcoOC1cCc2cCc3 coc1cz2c3
(step 1) (step 2) (step 3) (step 4) (step 4+17)

3
0

Figure 4.9: TCA Algorithm Example for RR/ICOUNT implementation (8 Threads).

The main differencébetween th& CA Algorithmimplementation folFLUSH/STALL
(robust)policies, shown in Figure 4.7, and the corresponding implementatidRRACO-
UNT (naive)policies lies in thfourth step While in therobustimplementation threads
with different memory behavioré.e., from different sublists) are assigned to the same
core, in the naive implementation it is done just the oppossigecording to theTCA
Algorithm’s foundations That is, the threads assigned to any core come from the same
thread-list (i.e., both threads from HIGH-list or both from LOW-list). The example shown
in Figure 4.9 illustrates this difference in tfeurth step Notice that the difference comes
directly from the different response of the underlying IFetch Policy involved in each case.
Consequently, futurd CA Algorithmimplementations, involving different IFetch Poli-
cies, would require an analysis of the specific characteristics of the corresponding policy,
in order to match them with the heterogeneity exhibited by the applications.

There is also anothelifferencebetween theobustandnaive TCA Algorithmmple-
mentations, related to the number of co-assigdé&M pairs Etep J from the bottom of
the LOW-list While in therobustimplementation this step is repeated according to the
number of cores, in the implementation fonaivepolicy only one of these pairs is as-
signed to the same core. This difference comes frorb#aeresponse of tiRR/ICOUNT
policies to these type of applicatians

Notice that theT CA Algorithmdoes not hamper the execution of any running thread;
it does not stop threads but determines which threads should be assigned together to the
sameSMT core. This assignment is done according to the applicaticmaracteristics
and the underlyingiFetch Policyimplemented in eacBMT core.

70 CHAPTER 4. HETEROGENEITY-AWARENESS IN CMP+SMT PROCESSORS

45.3 TCA Calibration

The TCA Algorithmrequires, for each application, #fC predictionduring the fol-
lowing OSquantum of execution. The$BC predictionsmay come from any prediction
mechanism as long as they were representative. However, as the execution flows appli-
cations go through differergrogram phase$57, 23]. The behavior of an application
may significantly change from on@ogram phasdo another. Therefore, whatever the
mechanism employed to supply th€A Algorithmwith the requestetPC predictionst
must be periodically reevaluated, or at least take in care the behavior variability of each
application over time.

To assist the CA Algorithm we have developed dRC predictionmechanism: the
TCA Calibration On every context switch, once tikSpasses the workload to the hard-
ware, an initialTCA Calibration Phasés triggered. As shown in Figure 4.10, tR€A
Calibration simply consists of executing each applicatiorsingle thread (ST) moder
a short amount of time. Since the processor is comprised of 2-hardware-context cores,
two evaluation intervals (STand ST) are required, in the worst case, to fully test the
whole workload. Although th&PC predictionsobtained might not be fully accurate they
are valid for theTCA Algorithmas long as the relative order between applications would
be representative. That is, we are not interestedsopisticated IPC predictiomech-
anism, that yields accurate predictions, but isimplemechanism able to give accurate
relative values As long as the relative order is kept accurate TGA Algorithmresults
would be good.

Using theST modeluring an interval of the execution, each time it is required reevalu-
ating thelPC values for each application, involves a performance degradation. Obviously,
the shorter these intervals the lesser the negative effects. After several experiments, in
which we covered different portions of each application execution with an interval length
ranging from a few thousands to tens of millions simulation cycles, we adjusted the size
of these intervals ta0 millions of cycles Adding these single-thread intervals (Sahd
ST;) to theTCA Algorithns overhead itself (denoted &sin Figure 4.10) the maximum
overhead is 154%. Due to thesimplicity of the TCA Algorithmthe contribution ot, to
the final overhead may be consideredagligible

Notice that the additional cost involved by using 8iE moddor the TCA Calibration
is only required when n¢PC values are available for a new application. Whenever an
application has a priorly calculatédC value it may be directly fed to thECA Algorithm
to use it, without involving additional overhead. Obviously, as each application is exe-

"The research imuto-adjustable low-overheddtervals, to minimize the negative impact of th€A
Calibration on the system throughput, is left for future research.

4.5. THREAD TO CORE ASSIGNMENT ALGORITHM 71

' TCA Calibrationﬁi Run |Normal Execution|||
o Phase ||TCA Algorithm
_____ I___M--___7(
7,5%.7,5%.: 85%
ST ST, SMT
EEE RS oiseecees Soaseassad AAdAdAA: SHHEAH {opud s eonsanand Rdadds m e S
: I I | | | | | | | | |
i CMP i CMP+SMT :
4 >
20M 120M

? Time (cycs)

Figure 4.10: TCA Calibration.

cuted it goes through differeptogram phaseswith very different behavior. To reflect it,
we established fixed maximum agr eachlPC value; after many experiments we set-
tled on140 millions of cyclesWhenever an application’s priorly calculatdRiC value is
more tharil40 millions of cyclesld, it must be recalculated. As a consecuence, since we
focus onCMP implementations with ZMT hardware contexts per core, three possible
scenarios may arise iRCA Calibration

1. All or more than halthe applications need a nell?C value This is the worst
scenario, as shown in Figure 4.10, in which two consec8ilxanodentervals are
required for théT CA Calibration Recall that a neWPC value is required whenever
no priorlPC value is available for that application or tHeC value available is more
than 140 millions of cycles old.

2. No more than half the applications need a N& value In this case, just on8T-
modeinterval is required during thECA Calibration(i.e., only ST, in Figure 4.10
is required).

3. No application needs a nel?C value This situation may typically arise whenever
quick OScontext switches occur, as happens in case of exceptions arised in any of
the applications. In this case, just the application that experiences the exception is
typically removed from the execution workload, being replaced with another ready
task. Eventually, no additional overhead is involved sincd @@ Calibrationis
needed (i.e., neither STor ST, in Figure 4.10 are required).

72 CHAPTER 4. HETEROGENEITY-AWARENESS IN CMP+SMT PROCESSORS

RealOS quantums of executitiave a highly variable duration. So, in an state-of-the-
art general-purpos@Slike Linux 2.6[14], the lenght of th@DSquantums of execution
rangesfrom 0 to 3200 millions of cyclesvith typical values lying on thdOM to 500M
interval. We have simulated tA&CA Calibrationperformance, using the simulator’s mon-
itoring parameters and structures. However, in a real implementation it would be used the
processor'yerformance counteror any other specific monitoring hardware available.
An storage structurevould be used to keep, and read from, each application’s prior pre-
dictions. In case ofong OS quantumgi.e., more than 140M cycles long) the execution
may be momentarily interrupted by the hardware for an intermedi@é Calibration,
possibly requiring an intermediate n@WA depending on the behavior variations of the
workload’s applications. That is, bothT&CA Calibration Phasend aTCA Algorithm
triggering are required after every consecutive 140M of execution cycles.

4.5.4 TCA Algorithm Evaluation

In order to evaluate the performance of the propoB€é Algorithmand TCA Cali-
bration mechanisms we applied them to all 4-thredW and 8-threadg§W) workloads
in Table 4.1, simulated in 2 and 4-cadMP+SMTsrespectively. The average results are
shown in Figure 4.11. ThBEST TCAresults shown on the left side of Figure 4.11((a)
and (b)) are obtained by simulating all differen€As(i.e., 3 and 105 for 2 and 4-core
implementations respectively) for eaalorkload and IFetch Policy selecting the ones
which yield the highest throughput.

As we mentioned in the prior section, there are three different scenarios regarding
TCA Calibrationoverhead; that is the reason to show two groups of results usiigthe
Algorithmin Figure 4.11. The results shown on the middle of Figure 4.11((a) and (b)) are
obtained supplying th& CA Algorithmwith the IPC valuesobtained from a prior off-line
single-threaded 300M-cycle execution of each application on the same execution core;
that is, without requiring from anyPC predictionmechanism (i.e., the third scenario
shown in prior section). The results shown on the right side of Figure 4.11((a) and (b))
involve two consecutiv&€T-modentervals in theT CA Calibration That is, the worst case
(i.e., first scenario in prior section) in termsBEA Calibrationoverhead.

Figure 4.11 shows that thEBCA Algorithmyieldsresults very close to the optimér
each case, 8% in average. Since thECAis not explicitly taken into account by current
OSfor CMP+SMT processors, the state-of-the-a@Apolicy would be represented by a
RANDOM TCA Due to theprobabilistic distributionof the results, shown in Figure 4.6,
directly comparingT CA Algorithns results with aRANDOM TCAmay be misleading.
However, from the results in Figure 4.6 it can be inferred that the probability Ro&l-

4.5. THREAD TO CORE ASSIGNMENT ALGORITHM 73

DOM TCAto achieve similar results to the ones yielded by T&A Algorithm(i.e., 3%
close to the BEST TCA) are only @&6%?8, using theRR policy. Using a better IFetch
Policy, like FLUSH, this probability is increased t83% As a matter of example, the
TCA Algorithmyields a speedup &1%in 8W1using theRRpolicy, as compared to the
WORST TCA

Using theTCA Calibrationmechanism slightly reduces the speedup yielded by the
TCA Algorithm As shown on the right side of Figure 4.11, the single-threaded portion
of the execution, required by tRECA Calibrationmechanism, slightly reduces the final
throughput. The results in this case are in averageclose to the optimaior each
case. In this case, the probabilities foRANDOM TCAo achieve similar results to that
obtained using th& CA Algorithmraise to41%°2, using theRRpolicy. UsingFLUSH this
probability is increased t68%

As mentioned in Section 4.5.3, not all context switches would require frori @
Calibration Phase Thus, only threads that have executed for more than 140M cycles
since the lastalibration would require from a CA Calibration This fact would reduce
the overall use of the single-thread mode, and therefore reduce the final throughput reduc-
tion. Nevertheless, considering the minimal overhead involved, the TCA Algorithm sup-
ported by the TCA Calibration mechanism offers a quite interesting complexity-effective
improvement.

In order to evaluate thecalability of the proposed CA Algorithmin forthcoming mi-
croprocessor generations, we simulated all the 16 and 32-thread workloads in Table 4.1,
simulated in 8 and 16-cot@MP+SMT implementations, respectively. Due to exponen-
tional computational costs, we do not directly compareTtGé Algorithmresults for 16
and 32-thread workloads with tlBEST TCAas done for 4 and 8-thread workloads. In-
stead, we randomly selected a groud0D TCAs for eachworkloadandIFetch Policy
From them, we selected the TCA which yields the highest throughput and cal&®it
of 10Q As done in Figure 4.11, Figure 4.12 shows the average results obtained using the
TCA Algorithm The results on the middle group of Figure 4.12 shows figures very close
to the optimal for each case, a 3% in average. Therefore, from Figure 4.12 it can be in-
ferred that th& CA Algorithmscales to future 8 and 16-core implementations. As shown
on the right side of Figure 4.12, the effect of fh€ A Calibrationmechanism on th€CA
Algorithmis results is similar to that of 2 and 4-co@MP+SMT implementations.

8This is the average probability of a 3% throughput loss using random TCA with RR policy.
9This is the average probability of a 5% throughput loss using random TCA with RR policy.

74 CHAPTER 4. HETEROGENEITY-AWARENESS IN CMP+SMT PROCESSORS

25 ORR MICOUNT OSTALL OFLUSH 50 ‘ ORR MICOUNT (OSTALL OFLUSH
24
23
2 — — 1
21 — -
o 2,0 — —
194 — H
184 = .
17+ — —
16 — —
15+ T
BEST TCA TCA ALGORITHM TCA ALG+CALIBRATION BEST TCA TCAALGORITHM TCA ALG.+CALIBRATION
(a) 4-thread workloads. (b) 8-thread workloads.
Figure 4.11: TCA Algorithm results.
125 ORR MWICOUNT OSTALL OFLUSH 180 ORR WICOUNT OSTALL OFLUSH
— 175 T —
12,0 1 —
17,0 -
11,5 1 — | 165 —
2 £ 160 L
11,07 W 155 1 T
150 1 L
10,5 1 L
1451 L
10,0 - T 14,0 1 T
BEST of 100 TCA ALGORITHM TCA ALG.+CALIBRATION BEST of 100 TCAALGORITHM ~ TCA ALG.+CALIBRATION
(a) 16-thread workloads. (b) 32-thread workloads.

Figure 4.12: TCA Algorithm results.

4.6. RELATED WORK 75

4.6 Related Work

In [33] Jain et al. it is explored for the first time the soft realtime scheduling on an
SMT processor, focusing on theschedule selectiofsee Section 4.3). They propose
new coscheduling variations that considesource sharin@nd try to utilizeSMT more
effectively by exploiting application symbiosis. In this work we extend this exploration
to a new scenaricCMP+SMT. In this scenario, we identify the need of a new step in the
scheduling processhe TCA Similarly to what happens with the-scheduling selection
in SMTprocessors, thECAIs directly related with the next step of teeheduling process
theresource sharing

In [63] and [82] several schedulers and heuristics are proposed to manage-the
schedule selectioand increase system throughputdMT processors. We focus on the
next step of thescheduling proceser CMP+SMT processors. Once tl@@Shas selected
the workload to be executed in the n@©@&%quantum each application in the workload must
be assigned to one of ti¥MT cores. The goodness of this assignment determines the final
system throughput. These proposals might work in conjuction witii @& Algorithm
selecting easy-to-schedule applications forTi&A Algorithmin the underlying system.
Nevertheless, more reseach is required to analyze the relation betweamgbkedule
selectionrandTCAscheduling layers (left for future work).

Shin et al. propose aikdaptative Dynamic Thread Scheduling (ADTS8)] to manage
theresource sharingsee Section 4.3) iIBMT processors. ThADTSimproves the system
throughput inNSMT processors by adapting thigetch Policyto theworkload character-
istics In this work we focus on the prior step of tseheduling proces®r CMP+SMT
processors: th&d CA We do believe that botADTSand the propose@CA Algorithm
may benefit each other (left for future work).

Kumar et al. propose in [38] some assignment policies to increase system through-
put in Single-ISA Heterogeneous Multicggeocessors. They focus on obtaining the best
match betweesingle-thread heterogeneous corasdapplications Since in these pro-
cessors each single-thread core has a different amount of resources, the way in which each
application in the workload is assigned to one of the constituent cores determines the sys-
tem throughput. This assignment is typically obtained after an initial sample phase to
determine the best application-core match. We focus on a different scenaribdire;
geneous CMP+SM)Tand the assignment is focused on obtaining the best match between
co-scheduled applications eachSMT core. In our case the assignment only requires
a representativéPC value for each application in the workload. We propose T
Calibration mechanism to assist tHe&CA Algorithm providing it with these values with
minimal execution overhead.

76 CHAPTER 4. HETEROGENEITY-AWARENESS IN CMP+SMT PROCESSORS

4.7 Chapter Summary

The OS scheduling procesa the emergingMultithreaded Multicore (CMP+SMT)
Processordiffers from prior SMT and CMP processors’, requiring a new scheduling
layer, that we callThread to Core Assignment (TCAh this chapter we have shown
the importance of this new scheduling step in the system throughput. On the one hand,
we show that ggood TCAmay yield up to 28% system throughput improvemdittis
chapter also analyzes the relation betweenTtGé and theresource sharinggenerally
managed by thé~etch Policyimplemented in hardware. On the other hand,also show
that abad TCAcan negate the performance advantange gbad IFetch Policy. As a
consequence, better results can be obtained ustigrR+SMTimplementingRRpolicy,
and the appropriat€ECA than that of implementing a bettifetch Policylike FLUSH

The TCAwhich yields the best results depends on both the underlfaetgh Policy
and the specifigvorkload characteristicsConsequentlythere is not a singl&@ CA which
yield the best results for all casedoreover, due to th@CAresult distribution, it gets
harder to obtain the optimalCA as theworkload sizeincreases, since the number of
differentTCAsexponentially grows. According to the current trend, this problem is going
to get harder as the amount of replicated cores on the chip increases.

In order to manage thECA, we propose the third contribution of this thesis: T@A
Algorithm This is the firstTCA policy proposal in the literature. It generates close-to-
the-optimalTCAsfor each case, considering both therkloads characteristicand the
underlyinglFetch Policyimplemented in the hardware. To do so, @A Algorithmjust
requires a representatilleC value for each application in the workload. To assis{iG&
Algorithmwith theselPC valueswe also propose aiPC prediction mechanispthat we
call TCA Calibration Our results show that the propose@A Algorithmobtains thread-
to-core assignments 3% close to the optimal assignation for each case, yielding system
throughput improvements up to 21%. Besides, its accusaaleswith theworkload size
andnumber of on-chip SMTores.

Finally, we want to emphasizmplicity of the proposed CA Algorithm a key aspect
considered during its development. We do think the propd$ed Algorithns design
is simple enough to allow a real implementation. Thus, each vendor would develop the
correspondingfCA Algorithmimplementation for each new processor and distribute it
with its product, as currently done with the drivers. Ti@Amodule could be then added
to theOS just requiring an additional Kernel recompilation or dynamic linkage. State-of-
the-art processors like tHBM POWERSmay benefit from the direct application of this
contribution.

Chapter 5

Heterogeneity-Aware Multithreaded
Multicore Processors

After confirming the benefits of applying theeterogeneity-Awarenesoncept on the
Multithreaded Multicore Processarsn this chapter we go further and foresee future
Heterogeneity-Aware Multithreaded Multicore Architectures

In the prior chapter we directly applied thieterogeneity Awareoncept on state-of-
the-art processors, like tiHBM POWERS appropriately pairing running applications on
an homogeneously distributed processor layout. We showed thidetkeogeneity Aware
concept may be successfully applied despite of the hardware does not explicitly reflect the
Heterogeneity Awareoncept. In order to unleash the full potential of theterogeneity
Awareconcept we must turn the hardware itdddterogeneity Aware

In this chapter we envision the architecture of future generatiortsetérogeneity-
Aware Processorslin this sense, we propose theterogeneous Thread to Core Assign-
ment (hTCA) Frameworkvhich provides OS-driven complexity-effective executions in
the emergingMultithreaded Multicore (CMP+SMT$cenario. IrhTCA the IFetch Pol-
icy implemented within eacl®MT core is exposed to th®perating System (OSThe
OSis then in charge of deciding the bdbetch Policyfor eachSMT core according to
both theworkload characteristiceind theuser needsThe results included in theTCA
evaluation enclosed reveal an aver&386 hTCA accuracyvhen selecting the optimal
choice to reduce the energy consumption without severely harmingyitem through-
put Our results also show reductions up#b% in the additionalenergyrequired by
sophisticatedhigh-performance SMT IFetch Policigmplemented within eacBMT core
in aCMP+SMT processqgrcompromisingess than 8%ef the system throughput

s

78 CHAPTER 5. HETEROGENEITY-AWARE CMP+SMT PROCESSORS

5.1 Introduction

As analyzed in the prior chapter, the way in which the running threads are assigned
to the constituenBMT cores in theMultithreaded Multicore (CMP+SMT) Processors
processors heavily affects the final system throughput. Thus, an inapprofirrate to
Core Assignment (TCApuld negate the performance advantage of a full-fledgetth
Policy. In order to select an appropriat€€A by means of & CA Generator both the
workload characteristicand the underlyingFetch Policyshould be taken into account.
Moreover, both thd CA Generatoand the underlyingfFetch Policywork in conjunction.
Hence, anaive IFetch Policy like the Round Robin (RRpolicy [72], working in con-
junction with agood TCA Generatomay yield better system throughput results than a
morecomplex IFetch Policylike the FLUSH policy, working with abad TCA Generator
In case of optimall CAs the differences in the system throughput results obtained with
different IFetch Policiesmay be significantly reduced. Thus, the results included in the
prior chapter points out that the system throughput difference between implementing the
RRand theFLUSH policy may drop to an average 10%, regardless the workload size and
number ofSMT cores.

Among the state-of-the-a@MP+SMT processors we find tHeM POWERH60] and
POWERG[39], in which homogeneouSMT cores are replicated along the chip. Each
constituentSMT core implements, in hardware, its oumstruction Fetch (IFetch) Pol-
icy [20, 24, 70, 72], which determines the thread(s) to fetch instructions from each cycle.
Some proposetfetch Policies like the FLUSH [70] mechanism, explicitly handle load
instructions that experience L2 Cache Misses. These instructions represent a severe chal-
lenge to be faced up BMT execution cores, since they may block the execution; avoiding
all running threads on the sar88T core from doing forward progress. However, explic-
itly handling these instructions generally comes at an additional energy consumption cost.
Thus, in order to satisfy a high-throughput demandiRh&SH mechanism requires to re-
fetch some amount of instructions, with the consequent additional energy consumption.
This additional overhead is sometimes too much high to be paid in a real processor design,
eventually implementing less aggressive Instruction Fetch Policies.

In this chapter we start unleashing the full potential of iteterogeneity-Awareon-
cept inMultithreaded Multicore Processaorg-or a processor to fully exploit the hetero-
geneity in the behavior of the running applications it must reflect this heterogeneity itself.
Consequently, the hardware otrae Heterogeneity-Awarprocessor must dynamically
adapt to the variations in the applications’ behavior, aiming to devote the appropriate por-
tion of the processor resources to each execution thread. Only by doing such dynamic
resource alloation, that is being dynamicatigterogeneity-Awarecould be reach the

5.2. METHODOLOGY 79

higher ratios oftomplexity-effectiveness our executions. This must be kept in mind
whether we are interested in executing as much instructions as possible involving the
lowest energy consumption in the process; a goal of particular interest for future laptop
and mobile oriented processor designs.

According to the aim of this chapter, we present a n@8idriven framework aimed
at providingcomplexity-effectivexecutions in the emergingMP+SMT processors: the
heterogeneous Thread to Core Assignment (hnTTAg¢hTCAIs a hardware/software co-
designed proposal that lean on the benefits of implementing a §6édGeneratorin
tune with the user needs. Thus, thECAuser may specify (by means of a user interface
included in the OS) the desirgguality-of-Service (QoSAccording to its needs. This
QoSindicates, measured in a single percentage, the relative importance of bsyistitie
throughputand thepower consumptiom the system output. As a matter of example, if
the user specifies @oSof 50% thehTCAwould reduce the systepower consumption
comprimising at the most 50% of the systéiimoughput The hTCA according to the
specifiedQoS dynamically change thinstruction Fetch (IFetch) Policymplemented
in eachSMT core and alter th@ CA produced by thefCA Generator using anhTCA
Algorithm

Current commercial products, such aslifitel SpeedStep Technold®y and theAMD
PowerNow![2], already providecomplexity-effectivexecutions. They both provide a
user interface in th®©S which allows reducing the processor workifrgcuency(and
evenvoltagg. Thus, when the same processor is run at a lower frequency, it generates
less heatind consumeless power This can conserve battery power in notebooks, extend
processor life, and reduce noise generated by variable-speed fans. ldtdikepeedStep
Technologyand theAMD PowerNow! thehTCAworks at ararchitectural leveinstead of
aphysical level ThehTCAgradually reduces tharchitectural functionalitymplemented
in the processor without affecting the underlyiplgysical level As a consecuence, the
hTCAmay also work in conjunction with botimtel SpeedStep Technologgd theAMD
PowerNow! each one affecting at a different levedr¢hitecturalor physica).

5.2 Methodology

Table 5.1 shows the main simulation parameters so as the workloads chosed. Since
a complete study of all benchmarks is not feasible due to excessive simulation time we
have randomly chosen some of them. The name of each worklo&tlysvherex andy
stands for theaumber of threadgvolved and thevorkload identifierrespectively (e.qg.,
4W2identifies the second workload with 4 threads). Each workload ofaeimulated
on aCMP+SMTimplementation witré two-hardware-conteX3MT cores.

80 CHAPTER 5. HETEROGENEITY-AWARE CMP+SMT PROCESSORS

] Simulation Parameters \

Pipeline depth 11 stages

Queues Entries | 64 int, 64 fp, 64 Id/st
Execution Units | 4 int, 3 fp, 2 Id/st
Physical Registers 320 regs.

ROB Size* 256 entries

Branch Predictor | perceptron

(4K local, 256 perceps.

BTB 256 entries,
4-way associative

RAS* 100 entries

] Simulation Parameters \
L1 I-Cache 64KB, 4-way, 8 banks
L1 D-Cache 32KB, 4-way, 8 banks
L1 lat./miss 3/22 cycs.
I-TLB ,D-TLB 512 ent. Full-associative
TLB miss 300 cycs.
L2 Cache 4MB, 12-way, 4 banks
L2 latency 15 cycs.
Main Memory lat.| 250 cycs.

Number of Threads

Name| 2 [4 | 8

xW1 | b,j | b,qg,t,j | d]1Dbgijc,f

XW2 | n,e|l,np,e | b,g,mnahonp

xW3 |(d,a|d,s,r,a|mnrqijeh

xW4 | g,f|gbmf|lbgmnrfs

XW5 | rp|njfp g,b,c ke a ot
gzip a | eon h | apsi o | facerec| v
vpr b | gap i | wupwise| p | applu | w
gcc c | vortex | j | equake | g | galgel | x
mcf d | bzip2 | k | lucas r|ammp |y
crafty e | twolf | | mesa s | mgrid | z
perlomk | f | art m | fma3d t
parser | g | swim | n | sixtrack | u

Table 5.1: Simulation parameters and Workloads. (resources marked with * are replicated
per thread)

We simulate each workload employing 2 different IFetch Polid€©UNT [72] and
FLUSH [70]. Both ICOUNT andFLUSH are far from representing the state-of-the-art
in SMT IFetch Policiesbut constitute areasy-to-explain examplef a possiblehTCA
implementation. The analysis and developmeitii@ Aimplementations involving state-
of-the-artIFetch Policies[20, 25] are left for future work. All simulations are executed
for a fixed interval of 120 millions of simulation cycles.

5.3. IFETCH POLICY IN SMT PROCESSORS 81

1,35

1 o5 | E@ICOUNT + 36%
’ B FLUSH + 7% +11%

1,15 A

+ 22%
1,05 -

0,95 +
- 6% + 93%

IPC

0,85
0,75 +
0,65
0,55 —

0,45

0,35

2wW1 2W2 2W3 2w4 2W5 AVG

Figure 5.1: Throughput in single-core SMT.

5.3 IFetch Policy in SMT Processors

The IFetch Policyrepresents probably the most important issue ST execution
pipeline, determining from which thread(s) instructions are fetched every cycle. In or-
der to avoid hardware resource monopolization by any of the running threadBetble
Policy should explicitly handle long-latency loads. An L2 Cache Miss may block hard-
ware resources, and the wh@M T execution pipeline, thus avoiding forward progress
by any other running thread. We catlbust/goodto thoselFetch Policiesthat explicitly
handle long-latency loadsaive/badotherwise. The literature is plenty tfetch Policy
proposals [20, 24, 70, 72], some of them, like #ldJUSH [70], falling into therobust
category.

TheFLUSH [70] mechanism avoids any running thread from monopolizing the avail-
able hardware resources. Built on top of IB©UNT [72] policy, theFLUSHmechanism
detects loads that experience L2 Cache Misses (unhandled by the ICOUNT policy) and
reacts stalling the offending thread; preventing it from monopolizing more hardware re-
sources. Moreover, the newest instructions (until the blocked load) of the offending thread
are flushed away from the execution pipeline. So, by freeing the corresponding hardware
resources they are available for the remainder running applications. As shown in Fig-
ure 5.1, thcLUSH mechanism yields average system throughput improvements of 22%
in single-coreéSMT processors, with speedups of up to 93%.

82 CHAPTER 5. HETEROGENEITY-AWARE CMP+SMT PROCESSORS

i L2Cache |
i Others (4% I ' |

I/O(ZL;?'C (4%) Ll(é;s)tr. 1 Liicache H L1 DCache ‘
0 0 1 A S I
FPFU (1% L1 Data Lol 1 R or
(5%) . . .
Int FU (1%) L2 (12%) v Rename : ! nt o
! i Table ' 1| |FUs i
I i | ! I
ROB (27%) | F. i Dec. Inst. ||!{| Reg. i Reg. i L
Reg. File & i 0g{|i ||Logic Queues ||j|| File |} File || il
Ren. Table I i i i = o
(14%) b ROB : EN oo
| | 1 | | !
Vo 1 | W |

| I 1 D I |
Instr. C P w w Do i B E
1 [V
Quee el s e llolels
(26%) 0 z b ool 0 2
wo!ow u o T w0,
R S Y S A S LI R S X

(a) Distribution (% per resource). (b) Pipeline Stages/Resources Distribution.

Figure 5.2: Energy Consumption.

The FLUSH mechanism representsh&ggh-power-consumptioalternative, aimed at
throughput-oriented scenarios, in which thestem throughpus the main concern re-
gardless of the power required. Flushing away instructions from the execution pipeline,
and having to re-fetch them later on in the execution, implieadditional energy cost
This cost depends on the pipeline stage in which was the instruction by the flush time, as
described in Section 5.3.1.

5.3.1 Instruction Energy Consumption in SMT Processors

Folegnani et al. analyzed in [26] the energy consumption for each hardware resource
in a typical execution pipeline (See Figure 5.2(a)). Assuming that each instruction in a
given execution pipeline requiresehergy unit to be committed, and given the resource
usage for a typicaBMT core shown in Figure 5.2, Table 5.2 shows #weergy Con-
sumption Factor Using theEnergy Consumption Factpand tracking the pipeline stage
in which was each flushed instruction by the flush time, it may be easily estimated the
additional energy cost involved by tl.USH mechanism. Thus, Figure 5.3 shows the
additional energy consumption employed by the FLUSH mechanism to obtain the system
throughput improvements shown in Figure 5.1.

1The exact amount of energy depends on the specific microarchitecture characteristics.

5.4. THREAD TO CORE ASSIGNMENT IN SMT ON-CHIP MULTIPROCESSORS83

Energy Consumption Factor

Pipeline stage| Local Accumulated
Fetch 0.13 0.13
Decode 0.03 0.16
Rename 0.22 0.38
gueue 0.26 0.64

eg. Read 0.05 0.69
Execute 0.13 0.82
Reg. Write 0.05 0.87
Commit 0.13 1

Table 5.2: Energy Consumption Factor.

40

35

30 A

25

20

15

10

% Additional FLUSH Energy Consumption

2w1 2W2 2W3 2W4 2W5 AVG

Figure 5.3: Additional Energy Consumption in single-core FLUSH SMT.

5.4 Thread to Core Assignment in SMT On-Chip Multiprocessors

As analyzed in the prior chapter, tfidread to Core Assignment (TCAgtermines
the performance of the underlyingetch Policy implemented in eacBMT core, in the
emergingCMP+SMT processors. By properly pairing to the sa8MT core applications
with compatible characteristigsaccording to each corelgsetch Policy it is possible to
smooth the performance differences between diffelfegtch Policies As shown in Fig-
ure 5.4, agood TCA(e.i., BEST TCAresults) reduces the performance differences from
implementingl COUNT to a more sophisticatdelLUSH SMT IFetch PolicyFocusing on
the 8-thread workloads this difference goes from a 20% to 7% when movingMORST
to BEST TCAAs a consecuence, whenever gd@iAsare assured it is possible to reduce

84 CHAPTER 5. HETEROGENEITY-AWARE CMP+SMT PROCESSORS

5,0 \ B ICOUNT OFLUSH \ +7%
4,5
+20%
4,0
3,5
o
o
3,0
25 +10%
’ +25% 1
2,0
1,5 [
WORST TCA BEST TCA WORST TCA BEST TCA
4 threads 8 threads

Figure 5.4: TCA Sensitivity for 4 and 8-core CMP+SMTs.

the complexity involved in theglobal IFetch Policy of a CMP+SMT without severely
compromising theystem throughpufl hiscomplexity reductiommplies a disminution in
the processoenergy consumption

ThehTCA Frameworkeans on the smoothed difference between IFetch Policies pro-
vided by a good'CA Consequently, as part of this framework, the hTCA involv@€a
Generatorto assure this fact. As we saw in the prior chapter, randomly chosirgAa
does not assure reliable results. Therefore, in order to agswe TCAsve employ in
this chapter th& CA Algorithmproposed in the prior chapter (see Section 4.57@a
Generatorfor the hnTCAFramework. Nevertheless, thd CA Frameworls design does
not consider any specific implementation for (@A Generatorand could be replaced
with alternative TCA Generator implementations as long as they would provide accurate
TCAs

2The termglobal SMT IFetch Policyefers to the composition &MT IFetch Policiesmplemented in all
the SMT cores in aCMP+SMT processor. Since ea@MT core may implement a differetfEetch Policy
we refer to thdFetch Policyof eachSMT core adocal.

5.5. THE HTCA FRAMEWORK 85

M M
o K
ﬁ Ready ||User ﬁ
— Tasks || QoS —

Co-schedule Selection

Co-schedule Selection

N N 1
(]
~J workload
gy
heterogeneous
Thre‘?d to Core I* Thread to Core
Assignment A
SS|gnment
S Y | 5 s
B [0V - - —
Resource Sharing Algorithm # heterogeneous
I 2Ll e L c.core Multicore Resource Sharmg

S = f Each core SMT T TCD
! CU @ @ (T' contexts, 1 Si <c) - @
Cct c2 ... Cc i =
where >T'=N

without hTCA with hTca & o C

Figure 5.5: Scheduling Layers in CMP+SMTs with and without hTCA.

5.5 The hTCA framework

The heterogeneous Thread to Core Assignm@rtCA) Framework provides user-
definableComplexity-Effectiveness the emergingCMP+SMT processors. By defining
a single percentage, that we dalliality of Service (Qo0S) percentagemay be specified,
using theOSuser interface, the desired relation betweensygem throughpund the
energy consumptiom the system output This relation is provided by theTCAat an
architectural level altering both theglobal IFetch Policyand theTCA yielded by the
OS TCA Generator An hTCA Algorithm implemented as part of th®S scheduling
processheterogeneously modifies the two lowest layers inQisescheduling processr
CMP+SMT processors, as shown in Figure 5.5. Thus,H€A Algorithm according
to the QoS percentagspecified by the user, alters both tTh€ A(See Chapter 4) and the
Resource Sharinfgenerally implemented by tHEetch Policy) [33].

86 CHAPTER 5. HETEROGENEITY-AWARE CMP+SMT PROCESSORS

In order to reduce the systen®aergy consumptigmccording to the user need3ds,
the hTCA Algorithmheterogeneously change thalid IFetch Policyin eachSMT core.
Thus, an hTCA-like design for Multithreaded Multicore Processomust implement
more than one IFetch Policies on ea8MT core. Each of the implemented policies
must bevalidated/invalidatedusing a simple signal that must be exposed to the OS. By
means of a proper blend of bothroughput-aggressivebut power-hungry and more
moderated policies the hTCA Framework may provide the user the ability to chose the
desired performance/consumption ratio, according to her needs.

As an example, if we had amrCA-processom our mobile phone and we were run-
ning out the battery, we could reduce this ratio to a 30% to continue using it (although
with a some reduction in its performance) and increase the battery life expectance until
reaching a recharge point. This sort of adaption to low-energy conditions is quite different
from those that works at physical levelreducingfrequencyor voltage In the case of a
physical variation (i.e., reducing the clock frequency of the processor) the granularity of
the quality of service provided is much coarser. In fact, otthitectural (hnTCA)and
physicalactions are envisioned to work together, using the firstifi@-grain QoSand the
latter for acoarse-grain QoS

To achieve the desireghergy consumption reductiavithout severely compromising
the system throughputhe hTCAalso alters thd CAgenerated by th©S TCA Genera-
tor. As we saw in Chapter 4, thHECA depends on both theorkload andIFetch Policy
characteristics. Since th& CA Frameworlalters the latter, it is obvious that a n@WCA
must be calculated should we want to maintain an optin@Ain force.

In the following subsections we cover in depth all tieCAs specific details, both
from a hardware and software perspective so as its evaluation for an illustrative imple-
mentation using ICOUNT/FLUSH policies.

5.5.1 Hardware/Software co-design

ThehTCAFramework constitutes a hardware/software co-designed solution in which
the IFetch Policy implemented in hardware in each of the constituehtT cores of a
CMP+SMT processor, is exposed to ts According to theQoSspecified by the user,
the OSalters both the underlyintiFetch Policyand theTCAto fulfill the user demands
without severely harming the overall system throughput. This is done atcaitectural
level altering the functionality provided by the architecture (i.e., going frobetierto
aworstIFetch Policy), instead of at physical levelas done by some current solutions
such as théntel SpeedStep Technolof@} and theAMD PowerNow!2].

5.5. THE HTCA FRAMEWORK 87

The system throughput reductiaa limited by theQoS percentage Assuming two
availableSMT IFetch Policiescalledlow andhigh-performancg the hTCAestablishes
the number ofSMT coresLx that should use thiw-performanceé SMT IFetch Policy
using Equation 5.1. Next, theTCA Algorithmdecides both théx SMT cores that will
use thdow-performance IFetch Policgnd how should be modified tAHeCA yielded by
the OS TCA Generatorin order to maximize thaystem throughputFinally, thehnTCA
Frameworkactivates/deactivatethe correspondingfetch Policyin eachSMT core and
assigns threads accordingly. As a consecuencgjdial SMT IFetch Policys comprised
of Lx SMT cores withlocal low-performance poligywhile the remaindeEMT cores use
the high-performance poligywith the subsequemnergy consumption reduction

(5.1)

QoSx NumCoreT
100

Lz = NumCores- {

with LxeN, 0 < Lx < NumCoresand 0< QoS< 100
5.5.2 The hTCA Algorithm

In order to minimize theystem throughput degradatiaifue to using éow-performance
SMT IFetch Policyin someSMT cores, theT CA should be modified accordingly. In the
TCA stef thescheduling processheOSassumes that éaBMT cores implementslaigh-
performancepolicy, using the correspondinigCA GeneratorNext, thehTCAdetermines
the number ofSMT cores implementing &iw-performancepolicy (See Section 5.5.1)
and thehTCA Algorithmdecides which co-assigned threads should be allocated to the
low-performance SMTores.

ThehTCA Algorithmis designed according to both t&MT IFetch Policieswvailable
in the hardware (implemented within eaBMT core) and theTCA Generatorimple-
mented in theéDS This means that there is an specHitCA Algorithmimplementation
for each combination o8MT IFetch Policieand OS TCA Generator In this research
we focus on ammTCAiIimplementation fotCOUNT(low-performancgandFLUSH(high-
performancg Fetch Policies and theTCA Algorithmpresented in Chapter 4 &S TCA
Generator Figure 5.6 illustrates the application of the propos&&AFramework for a 2-
coreCMP processor with 2 hardware contexts S8 Tcore, implementingCOUNT/FLUSH
IFetch Policy like thelIBM POWERY60] andPOWERG39].

3Research with multipléFetch Policiesper SMT cores is left for future research.
4Thehigh-performancéFetch Policy is used by default.

88 CHAPTER 5. HETEROGENEITY-AWARE CMP+SMT PROCESSORS

® yser >
: B desired ! o) t
QoS E Energy System
m— !
:Consumption === Throughput
hTCA:—
Algorithm i
Operating?:f [FLusH _ FLUSH
e oo acion=ll echansy
i FETCH FETCH
orkload} | SMT SMT
+ TCA |
o . |CORE O CORE1

SW

Figure 5.6: hTCA Framework Example for 2-core ICOUNT/FLUSH CMP+SMT.

In a real implementation, each processor’s vendor would distribute the corresponding
hTCA Algorithmmplementation for each new processor implementinghthéAFrame-
work, as currently done with drivers. Then, an additional kernel recompilation (or dy-
namic module linkage) would be enough to update@sawith the correspondingTCA
Algorithm in the case oLinux, or a driver installation, in the case Wfindows

The proposedTCA Algorithmimplementation is shown in Figure 5.7. Th3ICA
Algorithm is throughput-oriented and selects tBBIT cores todeactivate(i.e., use the
low-performance IFetch Poligyminimizingthe correspondingerformance degradation
In order to keep simple enough tRS scheduling procesthehTCA Algorithnreassigns
to differentSMT cores the minimal amount of applications. To do sonh€A Algorithm
shown in Figure 5.7, reassigns applications according to their characteristics, starting from
the ones with the lowest impact on the overall system throughput.

5.5. THE HTCA FRAMEWORK 89

Algorithm 5.5.1: HTCA()

1- Split theSMT cores into threecore-lists according to the memory behavior of the assigned applications:
MEM-cores, ILP-cores and MIX-cores.
2- Arrange the threeore-listsby accumulatedPC of assigned applications.
3- If (Lx = NumCores) then
{ 3.1- Reevaluate thECA Algorithm usingICOUNT.
4- Else
4.1-MIX-pairs =0
4.2- For i=0 to Lx do
4.2.1- If NOT-EMPTY(MEM-list)) then
4.2.1.1- Select the core in thail of the MEM-list.
4.2.2- Else If Not-Empty(LP-list)) then
4.2.2.1- Select the core in thail of thelLP-list.
4.2.3- Else If Not-EmptyMIX-list)) then
4.2.3.1- Select the core in thep of theMIX-list .
4.2.3.2-MIX-pairs + = 1
4.2.4- Deactivate the selected core:Low-performanceore.
4.2.5- Remove the selected core from the corresporatirgylist
4.2.6- If MIX-pairs = 2) then
4.2.6.1- Reassign to the sai8¥T core the two applications with th@ghest-IPCralues in the last
two MIX-coresdeactivated .
4.2.6.2- Reassign to the sai8®T core the two applications with tHewest-IPCvalues in the last
two MIX-coresdeactivated .
4.2.6.3-MIX-pairs =0

Figure 5.7: hTCA Algorithm implementation for ICOUNT/FLUSH policies.
5.5.3 hTCA evaluation

We first evaluated theTCA Frameworls ability to select the best choice for each
level of complexity-effectivenesemanded by the user, that is for ed2bS percentage
Whenever the user defines an speaficnplexity-effectivene$svel, using theQosS per-
centageprovided by theOSinterface, thenTCA Frameworkuses aCore Selectorand a
TCA Generatoras shown in Figure 5.6, to adapt the execution at an architectural level.

Figure 5.8 shows the average system throughput results obtained both usidg an
acle TCA Generatorided by anOracle Low-Performance-Core Selecton the left),
ORACLEfrom now on, and those yielded using th€A Algorithm(see Section 4.5) as
TCA Generatomided by theh TCA AlgorithmasCore Selectar

5In this section, the terrALUSH-Lxstands for &£MP+SMTimplementation in which all butx cores
implement the&=LUSH mechanismlCOUNT otherwise.

90 CHAPTER 5. HETEROGENEITY-AWARE CMP+SMT PROCESSORS

gy —BrLUsH BFRLUSH1 BICOUNT o [DFLUSH MFLUSH-1 OFLUSH-2 CFLUSH-3 MICOUNT]

2,351 “ 49 4

230 IS WY | 481

4.7 1

IPC

Q 2251
- 46

2,201 .5

2,151 44

43

2,10

ORACLE hTCA ORACLE hTCA

(a) 4-thread workloads. (b) 8-thread workloads.

Figure 5.8: Average System Throughput Comparison.

The ORACLEoption, usingpracle predictor§, yields theBEST TCAor each case and
selects the next core to deactivate so thaststem throughput degradatisiminimized
Obviously, theORACLEoption represents adeal scenario From Figure 5.8 it may be
inferred that thdnTCAFramework succeeds selecting both Ti@Aandcore deactivation
sequencewith an average 95% accuracy.

Next, it was evaluated theTCA Frameworls ability to obtaincomplexity-effective
executionan CMP+SMT processors. The users, by means @@S percentagemay
select the balance gfower conservatiomnd performancethat best suits them. Once
translated the specifigdoS percentagéSee Section 5.5.1) into a number of coresléo
activate(Lx), the hTCAFramework employs theTCA Algorithm to establish theore
deactivation sequencehat is the cores that will use tHew-performance SMT IFetch
Policy. Figure 5.9 breaks down thHer CAresults shown in Figure 5.8. Using tBmery
Consumption Factodescribed in Section 5.3.1, Figure 5.10 breaks dowrhi@A En-
ergy Consumption Reductiabtained as it is augmented the numbededctivatectores.
From Figures 5.9 and 5.10 it may be inferred thatit€AFramework succeeds yielding
complexity-effective executionghus, it provides reductions in the additional energy re-

6Simulated using brute force, that is, simulating all the different possibilities and chosing the ones with
the highest values

5.5. THE HTCA FRAMEWORK 91

6,00
270 \ OFLUSH WFLUSH-1 OICOUNT \ \EIFLUSH BFLUSH-1 OFLUSH-2 OFLUSH-3 IICOUNT\
250 f——‘] 5901
2301 5,00 |
O 0]
L 210 ¢
4,50
1,90 4
4,00 1
170+ — — W
1,50 4 ‘ ‘ H 3,50 4
4W1 4W2 4W3 4W4 4W5 AVG 8W1 8W2 8W3 8w4 8W5 AVG
(a) 4-thread workloads. (b) 8-thread workloads.

Figure 5.9: hTCA results.

w
o

| DFLUSH BFLUSHL |

1 [OFLUSH WFLUSH1 OFLUSH2 OFLUSH-3 ||

w
S

w
S
L

N
351
L
N
(32
L

S
i
|

N
o
L

—
a
‘

\

[N
o
L
=
o
I

3,1
L

o o
[1
[T

% Additional FLUSH Energy Consumption
=
o

% Additional FLUSH Energy Consumption

o
|
\

8W1 8W2 8W3 8w4 8W5 AVG

(b) 8-thread workloads.

4wl 4W2 4W3 4w4 4W5 AVG

(a) 4-thread workloads.
Figure 5.10: hTCA Energy Consumption Reduction.

quired by theFLUSH mechanism of 40% and 71%, compromising less than 5% and 8%
of thesystem throughputespectively for 4-thread and 8-thread workloads. These results
also give evidences of thel CAFrameworkscalability when passing from 2 to 4-core
CMP+SMTimplementations.

92 CHAPTER 5. HETEROGENEITY-AWARE CMP+SMT PROCESSORS

Finally, a deeper analysis of the results shown in Figure 5.9 reveals that, contrary to
what would be expected, the best results are not always yielded by implementimgtthe
performance IFetch Policin all the constituenSMT cores. Thus, botdW1and8W3
experiencesystem throughput improvementten deactivating on8MT core (e.i., all
SMT cores implementing thELUSH mechanism but one usin@OUNT). Furthermore,
some workloads even experiersyesstem throughput improvememtsen deactivating two
cores BW5; and even when deactivating all the cord¥/2 4W5. The rationale behind
this phenomenon is twofold.

On the one hand, the specific characteristics of SMET IFetch Policieemployed
may Yield, for some workloads, better results usingltve-performance IFetch Policy
than using thehigh-performanceone. Notice that this already happens in single-core
SMT processors, as is the case2W1lin Figure 5.1. On the other hand, the relation
between th& CAand thelFetch Policyallows to obtain, for some workloadSCAsusing
low-performance IFetch Policigbat improve the results yielded by employing thigh-
performanceones. This phenomenon opens the path for future research on automatic
detection of the optimahTCA execution modevhich would yield thehighest system
throughputevenreducingthe power consumptian

5.6 Related Work

There are already complexity-effective frameworks implemented in current commer-
cial processors. Thus, both theel SpeedStep Technology (I198) and theAMD Pow-
erNow! Technology (APT}] provide a significant reduction in both heat and power con-
sumption, allowing the users to select the balance of power conservation and performance
that best suits them. This can conserve battery power in notebooks, extend processor life,
and reduce noise generated by variable-speed fans.

The hTCAFramework proposed in this chapter provides an additional control over
the complexity-effectiveness of the executions in the emer@RP+SMT processors.
While both IST and APT reduce the microprocessirecuencyand voltage affecting
all running applications, theTCAreduces thearchitectural functionalityymplemented,
changing the validFetch Policyfor a lesspower-consumingne in some of the con-
stituentSMT cores. That is, whilédST and APT work at aphysical levelthe proposed
hTCAFramework works at aarchitectural level As a consecuence, bot8T andAPT
might be used in conjunction with theTCA Framework to increase the user control
over the complexity-effectiveness in the processor, performing different granularities of
complexity-effectivenessfine-grain in case ohhTCA andcoarse-grain in case ofiST
andAPT.

5.7. CHAPTER SUMMARY 93

Shin et al. propose in [58] ahdaptative Dynamic Thread Scheduli#PTS) to man-
age the resource sharing in single-c&MT processors, adapting the underlyifgtch
Policy to the workload characteristics. Th&@ CAFramework is designed fanulti-core
SMT processorsGMP+SMT) and strives taeducethe processoenergy consumption
without severely compromising tisystem throughpuaccording to the user needs. Both
ADTSandhTCAmay work in conjunction since they cover different scenarios; that is
single-coreandmulti-corerespectively.

Kumar et al. propose in [38] some assignment policiaateease system throughput
in Single-ISA Heterogeneous Multicopeocessors, which focus on obtaining the best
match betweersingle-thread heterogeneous corasd applications A global energy
consumption reductiois provided by properly matching each application with the het-
erogeneous single-threaded core which best fits the application requirementsTOhAe
Framework focus on a different scenario (dldamogeneous CMP+SNand its explicitly
aimed at matching thgystem energy consumptiarth theuser needby heterogeneously
modifyingboth theTCAand thelFetch Policyin CMP+SMT processors.

5.7 Chapter Summary

In this chapter we envision the architecture of future generatiortsetérogeneity-
Aware ProcessorsAfter analyzing in the prior chapter the benefits of directly applying
theHeterogeneity-Awarenessncept to currertultithreaded Multicore Processaorike
IBM POWERY60] andPOWER{39], in this chapter we start exploring the full potential
of future Heterogeneity-Aware Processors

For a processor to be fulldeterogeneity-Awarboth itshardwareandsoftware(i.e.,
the applications running on it) must explicitly take into account the inherent heterogeneity
in applications execution. To obtain complexity-effective executions, an Heterogeneity-
Aware processor dynamically adapts the amount of processor resources devoted to each
application so that it yieldethe highest throughput possible involving the lowest energy
consumption

In this sense, we propose theterogeneous Thread to Core Assignment (hnTCA) Frame-
work, which provides OS-driven complexity-effective executions in the emenying
tithreaded Multicore (CMP+SMT}¥cenario. InhTCA the IFetch Policyimplemented
within eachSMT core is exposed to theperating System (OSJheOSis then in charge
of deciding the bedfetch Policyfor eachSMT core according to both theorkload char-
acteristicsand theuser needsThe results included in tHelr CAevaluation enclosed reveal
an averag®5% hTCA accuracyhen selecting the optimal choice to reduce the energy

94 CHAPTER 5. HETEROGENEITY-AWARE CMP+SMT PROCESSORS

consumption without severely harming tegstem throughputOur results also show re-
ductions up t671%in the additionaknergyrequired by sophisticateugh-performance
SMT IFetch Policiesimplemented within eaclSMT core in aCMP+SMT processaor
compromisindess than 8%ef the system throughput

We do believe that theTCAimplementation presented in this chapter may represent
a first step towards futureleterogeneity-Aware Processoble to achieveomplexity-
effectiveexecutions in the emergingany-core era

Chapter 6

Further Considerations when Moving
to Multicore

When moving fromMultithreaded Singlecort Multithreaded Multicoresome additional
challenges may arise. Well-known techniqueSMTsmay need to be revisited prior to
their application to the emergi@VIP+SMTscenario. In particular, we show that a robust
FLUSH SMT IFetch Policynay yield worse results than a simp&OUNT. In particular,

it suffers a31% slowdown when moving from 2 to 4-coidultithreaded Multicoresce-

nario. Once analyzed the new challenge, related to the on-chip interconnection network
and theFLUSH mechanism’s static trigger-based design, we present the last contribution
of this thesis: théMulticore FLUSH (MFLUSH)Mechanism.

The FLUSH [70] mechanism avoids any running thread from monopolizing the avail-
able hardware resources. Built on top of IB®UNT [72] policy, theFLUSH mechanism
detects loads that experience L2 Cache Misses (unhandled by the ICOUNT policy) and
reacts stalling the offending thread; preventing it from monopolizing more hardware re-
sources. Moreover, the newest instructions (until the blocked load) of the offending thread
from the offending thread are flushed, freeing the corresponding hardware resources;
available for the remainder running applications.

The MFLUSH mechanism introduces théeterogeneity-Awarenessncept inlFetch
Policies It dynamically adapts to the varying conditions, yielding a mooenplexity-
effectiveresponse to thbeterogeneoubehavior exhibited by the running applications.
Yielding results similar to those obtained using an oracle-trigger-bBs&bH mecha-
nism, theMFLUSH mechanism allows power consumption reductions of upQ#, as
compared to a tradition&LUSH mechanism.

95

96 CHAPTER 6. FURTHER CONSIDERATIONS

6.1 Introduction

As the transistor count on a single chip augments, Computer Architects strive to find
better ways to fully exploit the available hardware budget from an architectural perspec-
tive. So,Uniscalarsgave way todSuperscalarsand the latter t&MTsandCMPs Nowa-
days, we are witnessing the raise of @l&P+SMTsand the advent of thiglany-core Era
with tens or even hundreds of execution cores along the chip’ surface. However, before
being able to handle such a great computational power, some basics should be carefully
revisited.

On the one hand, conventior@MP designs share the second level (L2) cache among
all the on-chip cores by means of an interconnection switch. As the number of on-chip
cores increases, the pressure on both the L2 cache and the interconnection network is also
augmented. As a result, the L2 cache access time turnsumpredictable

On the other hand, the L2 cache access time is us&\ih processors to detect L2
cache misses. As shown by Tullsen et al. in [70], L2 cache misses are of key importance in
SMTs Thus, a long latency instruction, like an L2 cache miss, in any running thread may
stall the whole machine. Thastruction Fetch (IFetch) Policynay avoid these harmful
situations, determining from which thread(s) instructions are fetched every cycle. Several
authors have shown that long latency operations have to be taken into account by the
IFetch Policyin order to boosEMT performance [20, 24, 70, 72]. Some of théSetch
Policiestrack the delay of loads when accessing the outer cache level (the L2 cache in
our processor setup) in order to determine whether they miss. Once an L2 cache miss is
detected the corresponding thread is stopped/flushed to prevent resource monopolization.

To conclude this PhD dissertation focused on the introduction oHeéterogeneity-
Awarenessoncept in the emerginlylultithreaded Multicore Processarave revisit a
well-known SMT technique in this emerging scenario. So, in this last chapter we shed
some light on the implications of having multipBMT cores sharing a single L2 cache.
We focus our analysis on the application of #l6dJSH [70] IFetch Policy to the emerg-
ing CMP+SMT scenario, with multipleSMT cores sharing an L2 cache. As we aug-
ment theSMT core count sharing the same L2 cache both the memory traffic (between
each core and L2 cache) and the contention (L2 cache banks and ports) increase. From
this analysis, we propose a noveétch Policydesigned to turideterogeneity-Awarthe
emergingCMP+SMT scenario: theFLUSH We include a complete evaluation of the
MFLUSH both in terms of throughput and energy consumption. Our results indicate that
the MFLUSH succeeds not only in overcoming the spec@iglP+SMT constraints but
also allowing a 20% reduction in the required energy consumption without a significative
(less than 3%) system throughput loss.

6.2. METHODOLOGY 97

gzip a | eon h | apsi o | facerec| v
vpr b | gap i | wupwise| p | applu | w
gcc c | vortex | j | equake | g | galgel | x
mcf d | bzip2 | k | lucas r|ammp |y
crafty e | twolf | | mesa s | mgrid |z
perlomk | f | art m | fma3d t
parser | g | swim | n | sixtrack | u
Number of Threads
Name|2 [4 | 6 | 8
xW1 | b,j|b,qtj |Lbqft]j d 1, b,g,ijcf
xXW2 | n,e|l,np,e |gl,np,ealbg,mnahonp
xW3 |d,a|ds,ra|dlswra|mnrq,ijeh
xW4 | g, f|gbmf|lrgbmhfllbgmnrfs
W5 | rnp|njfp h1,e,r,md| q,b,ck e ano,t

Table 6.1: Workloads used in MFLUSH research.

6.2 Methodology

Since a complete study of all benchmarks is not feasible, due to excessive simulation
time, we have randomly chosen some of them comprising 5 workloads for 4 different
workload sizes (i.e., 20 workloads). Table 6.1 shows the main simulation parameters and
the chosen workloads. The name of each workloadNg wherex andy stands for the
number of threads involved and workload identifier, respectively (@Wy2identifies the
second workload with 6 threads). Each workload si2ze simulated on &MP+SMT
implementation With%(two-hardware-context SMT cores. All workloads are simulated
for a fixed interval of 120 millions of cycles.

6.3 Analysis

We firstly analyze and evaluate the interaction between the shared L2 cache and the
IFetch Policyimplemented within eaclsMT core. We focus orCMPs comprised of
SMT cores, or simply\CMP+SMT. EachSMT core allows two threads running simulta-
neously and has its private instruction and data cache (see Chapter 2). The first cache
level is connected, through an on-chip bus-based interconnection network, to a shared
multibanked L2 cache. The Icache and Dcache of each core is connected to all the shared
L2 cache banks. Both the memory traffic, between L1 and L2 caches, and contention
effects, regarding the use of each shared L2 cache bank, are considered. Regarding re-
source sharing, two well-knon@MT IFetch Policiesre used in our researctCOUNT
andFLUSH

98 CHAPTER 6. FURTHER CONSIDERATIONS

The ICOUNT policy [72] prioritizes threads with fewer instructions in the pre-issue
stages, and presents good results for threads withihggfuction Level Parallelisn(ILP).
However,SMTshave difficulties with threads that experience many loads that miss in the
L2 cache. When this situation happens, IBOUNT does not realize that a thread can
be blocked on an L2 cache miss and will not make forward progress for many cycles.
Depending on the amount of instructions dependent of the blocked load, many processor
resources may be blocked and the total throughput suffers from a serious slowdown.

The performance offetch Policiesdealing with load miss latency depends on the
following two factors: theDetection Momen(DM) and theResponse Actio(RA). The
DM indicates the moment in which the policy detects a load that fails or is predicted to fail
in cache. Possible values range from the fetch of the load until the moment that the load
finally fails in the L2 cache. Two characteristics associated witlDieare thereliability
and thespeed The higher thespeedof a method to detect a delinquent load, the lower
its reliability. On the one hand, if we wait until the load misses in Nb-Speculative
implementatioly we know for certain that it is a delinquent loadtally reliable but too
late. On the other hand, we can predi@peculative implementatipmvhich loads are
going to miss by adding a load miss predictor to the front-end. In this caseptiesl
is higher, but thereliability is low due to predictor mispredictions. TIRAindicates the
behavior of the policy once a load is detected or predicted to miss in cache. That is, it
defines the measures that tketch Policytakes for delinquent threads.

In [70] severalRA are proposed. We focus on the mechanism leading to the best
performance, calle&LUSH As a result of applyindrLUSH, the offending thread tem-
porarily does not compete for resources. More importantly, the hardware resources used
by this thread are freed, giving the other threads full access to them. SBMralke
proposed for th&LUSH response action.

e Delay after issue DMWhen thisDM is used, a load is declared to miss in the
L2 cache when it spends more cycles in the cache hierarchy than needed to access
the L2 cache, including possible resource conflicts. We will refer toRhI$SH's
DM asSpeculativdFL-SX), whereX stands for the delay (cycles) after which the
mechanism is triggered.

e Trigger on miss DM:In this case we wait until the load miss in the L2 cache to
start the correspondin@A We will refer to thisFLUSHs DM asNon-Speculative
(FL-NS.

6.3. ANALYSIS 99

1,35

I ICOUNT + 36%
EFLUSH

1,25 +—

+ 7% +11%

1,15
+22%
1,05 +

0,95 ~
- 6% + 93%

IPC

0,85

0,75
0,65 ~
0,55 ~
0,45

0,35
2W1 2W2 2W3 2W4 2W5 AVG

Figure 6.1: Throughput in single-core SMT.

6.3.1 Single-core analysis

According to our simulation parameters (see Table 6.1) we cBosyclegFL-S30
asFLUSH trigger, that is the delay waited prior to activate fidJSH mechanism once
a load is issued from the corresponding queue.

Our results are consistent with [70]: tHelay-after-issue DMields better results than
trigger on miss both improvingICOUNT. For this experiment, we simulated a single-
core SMT configuration. In this uniprocessor, with two hardware contexts, we ran all 2-
thread RWA) workloads in Table 6.1. Figure 6.1 shows the comparison betW&@NT
and Speculative FLUSH (FL-S30gsults. From these results it can be asserted that the
FLUSHmechanism effectively reduces system throughput losses in workloads containing
threads with bad memory behaviors. Thus, BJSH mechanism yields speedups of up
to 93% with average speedup @2% However, as described in the following section,
these asserts are highly dependent on the amount of replid&dores.

100 CHAPTER 6. FURTHER CONSIDERATIONS

5,0
O ICOUNT
45 | |EFLUSH
' - 9%
4,0
3,5 + 6%
&)
o
3,0
2,5 1
+ 7%
o —.
1,5
2 cores (4Wy) 3 cores (6Wy) 4 cores (8Wy)

Figure 6.2: Average throughput in multicore CMP+SMT configurations.

6.3.2 Multiple-core analysis

Next, we simulated the remainder workloads in Table 6.1, replic&Mg cores with
two threads per core. Figure 6.2 shows the average results per each workload size. These
results point out that the prior asserts made for the single-core case, regarding the per-
formance of thé=LUSH mechanism, are not valid for the multicd@MP+SMT config-
urations. In fact, as we increase the amount of replic&d cores the22% average
speedup, obtained with tHeLUSH mechanism in a single-coi@MT when compared
to ICOUNT, experiences a progressive reduction. With a 4-core configuration (8 thread
workloads -8Wy), the FLUSH mechanism’s performance improvement disappears yield-
ing a9% average slowdown.

In order to shed some light into the rationale behind these results, we deeply analyzed
the influence of the access time to the shared L2 cache. Figure 6.3 shows the average
number of cycles required for each load that hits on the shared L2 cache, since it is issued
from the load/store queue until it is finally served. For this measurement we use the
ICOUNT policy since it does not alter the L2 cache access patern.

Figure 6.3 points out that the probability of suffering from high latencies in L2 cache
accesses increases with the amount of SMT cores. As indicated in Table 6.1, each of the
4 banks of the shared L2 cache is single-ported and has an access latency of 15 cycles.
That is, two consecutive accesses to the same L2 cache bank cannot be served in less than
15 cycles. EaclSMT core implements 2 Load/Store Units, shared by the two threads

6.3. ANALYSIS 101

100,00 ;
. -2 cores 3 cores =4 cores
25,00 i
10,00 f
lV\\:
| TR
I3) | NSV, V> g
§2]
=
S 0,10 : .
1
: '\\"\'\J\,\’\ \
; p
0,01 . NATINY
L 15 cycles V h\/
' |(L2 Cache latency) A\i -
0,00 '

1 13 25 37 49 61 73 85 97 109 121 133 145 157 169 181 193 205 217

cycles

Figure 6.3: Average L2 cache hit time.

running in the core. Within each core it is also implemented a 16-entry MSHR queue that
keeps track of the outstanding memory requests. In case of L2 hits, consecutive accesses
to the same L2 cache bank may overlap yielding a higher access time. As an example, the
fourth consecutive L2 hit to the same L2 cache bank would experience a 45-cycle delay.
Each additional SMT core increases in 2 the number of loads that can be issued in a single
cycle, with the consequent increment of the pressure on both the interconnection network
(L1-L2 bus) and the shared L2 cache.

Figure 6.3 also indicates that the dispersion of the L2 access time also increases with
the number oSMT cores. Focusing on the average L2 hit time for a 4-core implemen-
tation in Figure 6.3, about half the L2 hits are equally distributed in the range of 20-70
cycles. This fact points out that there is no a single threshold, to be used as trigger value
for the FLUSH mechanism, which provides good results for all cases. This high variabil-
ity in the L2 cache access time hampers the predictability of the L2 behavior:

e On the one hand, if we set a low threshold value the numbéalsé misse-
creases. That is, the number of long-latency L2 hits predicted as L2 misses. As a
result, the performance of tii.USH policy is heavily affected.

e On the other hand, if we set a high threshold value the number of cycles a thread
can clog resources increases, leading to performance loss. We comment this issue
in the next section.

102 CHAPTER 6. FURTHER CONSIDERATIONS

4,25 6,35

4,24

4,15 585 // N\“\ﬂ\\‘

417 535 -
o]
£ 4,05 8
4,85 1
4 \ /
JI— —-FLUSH
3,95 —+FLUSH \\/ 435 —
—ICOUNT
39— —ICOUNT

(@) (b)
385 -—— 385 ———
O R N R I R U R S RL LSS P PP V,&
SRR A A R P R R R RTINS €

Figure 6.4: Detection Moment Analysis.

To sum up, the performance of tik&USH mechanism exhibits a clear trend to get
diminishing returns as we increase the numbeBMfT cores in &CMP+SMTscenario. In
fact, theFLUSH mechanism turns ineffective just by passing from a dual core to a quad
core implementation, as depicted in Figure 6.2.

6.3.3 Detection Moment Analysis

The results in Figure 6.3 exhibit higher levels of dispersion as increases the amount of
SMT cores. In this section we analyze how does this issue affect the choice of the right
trigger for theFLUSH mechanism. Thus, we ran some additional simulations covering a
wider DM spectrum. For an explanatory analysis, we chose two representative 8-thread
workloads:(a) 8W3(see Table 6.1) anfb) an 8-thread workload comprised of instances
of bzip2 andtwolf, where instances of the two applications never share a single core.
Figure 6.4 shows the results obtained using different values foFthéSH's trigger,
ranging from30 to 150 cycles. TheNon-Speculative implementation (FL-NiS)also
included in Figure 6.4.

In Figure 6.4a), thetrigger that yields théhighest throughpuits 50 cycles However,
compared to speculative instances,ba-speculative FLUSknplementation yields the
highest overall throughput. In Figure b3, thebest triggervalue is90 cycles These ex-
amples illustrate thahere may be different trigger values which best balance the amount
of false misses and clog resourcgglding the highest overall throughput. That tise
choice of the right value depends on each specific workload

6.4. THE MFLUSH POLICY 103

Suspicious L2 miss

: prediction
Preventive
State

I STALL FLUSH
1 r—MT r—MT
1 1 1

(O] MIN BARRIER MA X

Time (cycles)
Figure 6.5: MFLUSH Operational Environment.

6.4 The MFLUSH Policy

The MFLUSH mechanism adapts tiie. USH[70] andSTALL[70] phylosophy to the
emergingCMP+SMT scenario. Built on top ofCOUNT [71], theMFLUSH mechanism
avoids the waste of resources by threads blocked waiting for meMdrgnever a thread
waits for a memory access to be resolved, MfeLUSH mechanism predicts its resolu-
tion time and reacts accordingly. Since BMP+SMT scenario has lessemory access
predictability than the priorfSMT scenario, this issue turns into a non-trivial task. The
MFLUSH is designed to cope with the varying workload behavior and memory traffic
conditions of the emerginGMPscomprised ofSMT cores sharing one or multiple L2
Caches. Thus, it adapts its L2 miss predictions to the varying conditions instead of using
an heuristic prediction value, as donéHbhUSH

The MFLUSH mechanism establishes, according to the specific system characteristis,
anOperational Environmenas shown in Figure 6.5. THRAFLUSH mechanism predicts
for each memory access its resolution time, based on prior accesses. These predictions
fall in the MIN - MAX range(See Figure 6.5), wherglIN andMAX correspond to the
L1 and L2 cache miss latenciespectively. As seen in prior sections, the access time
of an L2 cache may experience high variability when multiMT cores share it. The
more cores sharing a single L2 cache and interconection bus, the more traffic/memory
contention. In order to consider this factor, tRE-LUSH’s Operational Environment
includes aMulticore Traffic (MT) delaythat is added to botMIN and MAX values as
shown in Figure 6.5. Th®IT delayobeys the following equation:

MT = (L1_L2_Bus_delay + L2_Bank_Acc_delay) * (Num_Cores — 1)(cycles)

104 CHAPTER 6. FURTHER CONSIDERATIONS

Due to the high-variability of the L2 cache access tim€EMP+SMTimplementations
sharing a single L2 cache, it cannot be used an static value to predict L2 cache misses, as
done by the thé=LUSH mechanism irSMT processors. For each L2 cache access, the
MFLUSH mechanism predicts its resolution time according to the varying conditions of
memory traffiandcontention The mechanism to obtain thesedictionsis described in
Section 6.4.1. Based on each prediction, MELUSH dynamically estimates Barrier
value for each memory access. Whenever a memory access lasts mdaihancycles
without being resolved it is considered to miss in the L2 cache. In that casel tBsH
mechanism is triggered (See Figure 6.5), both stalling the offending thread and freeing
some of its hardware resources (e.g., rename registers, instruction queue entries, etc).
Exactly as in th&=LUSH mechanism, the offending thread remains idle until the memory
access is resolved. During this period of time, the freed resources, originally devoted to
the newest instructions of the offending thread, may be used by all other running threads
in the sameSMT core. TheBarrier estimation obeys the following equation:

BARRIER = L2predictiont MIN 1 A/ T (cycles)

In presence of high memory traffic/contentioriate L2 cache hitnay be as harmful
as anL2 cache missin that case, th8arrier value could be too high, involving a possi-
ble resource waste. In order to reduce the negative effedtatefL2 hits the MFLUSH
mechanism considesuspiciousall L2 cache accesses tHast more thanM/IN + MT
execution cycle® be resolved. As shown in Figure 6.5, M&LUSH’s Operational En-
vironmentestablishes ®reventive Statéor all suspiciousnemory accesses. Thus, any
threads with auspiciousn-flight memory access is stalled by th#-LUSH mechanism,
preventing it from obtaining additional hardware resources. However, a threadRnethe
ventive Statés still running and can make forward progress with the instructions priorly
fetched into the execution pipeline. Whether slispiciougnemory access is resolved be-
fore reaching th®arrier the corresponding thread is removed from Ereventive State
In that case, the thread is allowed to fetch new instructions into the pipeline. Otherwise,
the suspiciougmemory access is predicted as an L2 miss, andrtii¢SH mechanism is
triggered.

Triggering theFLUSHmechanism has@ost both in terms operformanceandpower
consumptionA flushed thread is stalled until the offending memory access (load instruc-
tion) is resolved, avoiding additional forward progress in the whole thread. Besides, all
the newest instructions issued, from the last fetched instruction to the offending mem-
ory instruction, are flushed away from the execution pipeline. By the time the offending
memory access is resolved, the thread resumes its execution, fetching again in the ex-
ecution pipeline all flushed instructions. ConsequentlyflaBhed instructions have a

6.4. THE MFLUSH POLICY 105

higher cost in terms of power consumptidrhe exact cost depends on the pipeline stage
the instruction was by the time it was flushed. Therefore, making an smart use of the
FLUSH mechanism is critical to obtain both good performance and a moderated power
consumption.

6.4.1 MFLUSH Hardware Support

In order to obtain botliast andaccuratedynamic predictions, th&®IFLUSH policy
requires somadditional hardware suppoytshown in Figure 6.6. EacBMT core holds
an 8-bit registerNMICReg per each L2 cache bank used. TMERegregister keeps the
latency of the last.2 cache hitin the corresponding L2 cache bank. THELUSH mech-
anismassumes the same behavior in consecutive accesses to the same L2 cache bank
Hence, theMFLUSH uses the value in the correspondiM@Regregister to quickly pre-
dict the latency of the next access to the same L2 cache bank.

Figure 6.6 shows an example for a 4-cQ@®IP implementation where all cores share
a 4-banked L2 cache. Each core is connected to each of the L2 cache banks by means of
a shared bus. In case of an L1 cache miss in core 0, the L2 cache bank that should contain
the requested data is first determined using the address of the corresponding memory
access. Th&FLUSH mechanism then accesses the correspondi@&egregister and
uses its content as prediction of the L2 hit latency. As a matter of example, if bank 2 was
acceded, the latency prediction would be&bfcycles, as shown in Figure 6.6. Using this
L2 cache hit latency prediction tHdFLUSH mechanism proceeds with the appropriate
response according to the varying memory traffic/contention conditions, as described in
Section 6.4.

The MCRegregisters admit more complex configurations, involving queues (i.e., his-
tory length :MCReg= 1 ; queues > 1) and more complex functions to determine the
prediction from all queue entries. However, to keep it simple and fast we use a single
MCRegregister per core and per L2 cache bank. Our results confirm that this choice
allows tracking quick memory behavior changes.

6.4.2 MFLUSH Throughput Evaluation

Figure 6.7 shows the system throughput evaluatiorCigiP+SMT implementations
with 2, 3, and 4 cores, using 4, 6, and 8-thread workloads respectively. The results
in Figure 6.7 include, for each workload, 4 evaluations using different IFetch Policies:
ICOUNT, Speculative FLUSH with 30-cycle trigger (FLUSH-S3Bpeculative FLUSH

106 CHAPTER 6. FURTHER CONSIDERATIONS

Last L2Hit Latency (L2 CACHE||L2 CACHE||L2 CACHE||L2 CACHE
Bank0 Bank 2 BANK O || BANK1 || BANK2 || BANK 3
1 1

| | | L ous

ool

COREO || CORE 1 ||CORE 2 || CORE 3

Figure 6.6: MFLUSH hardware support for a 4-core CMP with a 4-banked L2 Cache.

with 100-cycle trigger (FLUSH-S100andMFLUSH Figure 6.7 shows that in general,
the highest results are obtained uskgJSH-S100 However, this assert is not true for
all considered workloads, as in the casetéf4 6W4 and8W1, in which theMFLUSH
yields the highest results.

The results in Figure 6.7 also confirm tlabad trigger choice in Speculative FLUSH
as happens witRLUSH-S3Q30 cycles) in most of the casesay yield even worse results
than the ICOUNTIFetch Policy. Examples of this situation a4&/1, 6W1 and 8W4
Recall that this trigger choice yields an avero speedup ovelfCOUNT in single-
core SMT, as shown in Figure 6.1. Something similar occurs id¥8workload, where
theICOUNT IFetch Policy yield$1% speedup oveMFLUSH This isolated fact is due to
the specific workload and microarchitecture characteristics.

Focusing on average results, it can be asserted from Figure 6.7 thstRbdSH
effectively succeeds in giving high throughput resutés close to the best performing
Speculative FLUSHvption FLUSH-S10Q. This goal is achieved without requiring ad-
ditional information regarding neither the trigger value to be used nor the underlying
CMP+SMTimplementation. Recall th&peculative FLUSHequires to specify apriori a
trigger value (i.e., a 100-cycle trigger for tR USH-S10).

6.4. THE MFLUSH POLICY 107

6.4.3 MFLUSH Power Consumption Evaluation

The FLUSH mechanism representshaggh-power-consumption alternativaimed at
throughput-oriented scenarips which thesystem throughpus the main concern re-
gardless of the power required. Flushing away instructions from the pipeline, and having
to refetch them afterwards, implies additional energy costThis cost depends on the
pipeline stage in which the instruction was by tihesh time In order to measure the
proposedMFLUSH mechanismgower-efficiencyve use theenergy Consumption Fac-
tor described in Section 5.4. This factor allows to estimatattditional energyequired
by the FLUSH mechanismiracking the number of flushed instructions in each pipeline
stage and applying the corresponding factor val@®mpared td-LUSH, the MFLUSH
mechanism only adds a read access to a local 8-bit register on L1 cache misses. A write
access to that register is only required in case of L2 hits. Due to its reduced cost, the
MFLUSH hardware support is not added to taeergy Consumption Factor

Nowadays, the power-aware constraints in processor designs are present even for
throughput-oriented scenarios. Although there are still scenarios in which obtaining the
highest throughput is the main concern, the power constraints impose severe constraints
on how this goal is achieved. Consequently, any architectural advance which reduces the
energy consumption without hardly compromising the total throughput is of particular
interest.

Figure 6.8 shows thé/asted Energymplied by eaclSpeculative FLUSHmMplemen-
tation FLUSH-S30and FLUSH-S10) and MFLUSH IFetch Policy. Thiswasted En-
ergy strictly corresponds to the additional energy required byRhESH mechanism,
which requires refetching flushed instructions once resolved the corresponding memory
accesses. Thé/asted Energis measured ienergy unitsn Figure 6.8, that is the amount
of energy required to commit 1 instruction. The results in Figure 6.8 are obtained using
theEnergy Consumption Factg6ee Section 5.4) and the number of instructions flushed
in each pipeline stage.

The results in Figure 6.8 point out tHaLUSH-S10@vastes in average0% more en-
ergy thanFLUSH-S30 Although FLUSH-S100nvolves less total flushes th&iL.USH-
S3Q it involves more instructions to be reflushed on each pipeline refill. Waiting more
time implies more instructions fetched into the execution pipeline by the timeltb&H
mechanism is triggered, and therefore a greater amount of instructions to refetch. Fig-
ure 6.8 also confirm thaggressive flushing comes at an extra energy.closall cases
the MFLUSH obtains significant energy consumption reductions, reackit%gp when
compared with the best-performirgpeculative FLUSHhoice FLUSH-S10) that, as
seen in Section 6.4.2, obtains a margi@&b throughput improvement oveVIFLUSH

108 CHAPTER 6. FURTHER CONSIDERATIONS

Consequently, thtIFLUSH IFetch Policyconstitutesnot only a solution tothe unpre-
dictability of the L2 cache latency in the emergi@§IP+SMT scenario but alsprovides
an important energy consumption saving

6.5 Related Work

The FLUSH mechanism was proposed by Tullsen et al. in [70] as an improvement
for the ICOUNT [72] policy in single-coreSMT processors. Th&COUNT policy has
difficulties with threads that experience many loads that miss in L2 cache, being unable to
realize that a thread can be blocked on an L2 cache miss and do not make forward progress
for many cycles. Depending on the amount of instructions dependent on the blocked load,
many processor resources may become clogged and the total throughput suffers from a
serious slowdown. SeverBLUSHimplementation choices were analyzed in [70], focus-
ing on the simplest and less expensive ondsigger on Delayor Speculative FLUSH
With the rise of the emerginGMP comprised ofSMT cores, like thdBM POWERF60]
andPOWERG6[39], it must be faced up a new challenge: thgpredictabilityof the L2
cache hit latency.

TheMFLUSH mechanism adapts tiie.USHandSTALLphylosophy in prioSMTsto
the newCMP+SMT scenario, obtaining bottlynamic adaptabilityo the varying mem-
ory traffic/contention conditions and importagriergy consumption savingd his goal
is achieved applying theleterogeneity-Awareoncept to th&=LUSH mechanism; since
the workload behavior is inherently heterogeneous, so the traffic and memory contention
conditions would be. By giving to each execution thread the appropriate portion of the
processor resources, adjusting its mechanism’s trigger value, we would be able to achieve
morecomplexity-effectivexecutions.

Several authors have shown that long latency operations have to be taken into account
by the IFetch Policy in order to booSMT performance [20, 24, 70, 72]. In order to apply
them to the newCMP+SMT scenario a similar analysis, as done in this paper, should be
performed. Reuvisiting prior well-known high-performance proposals when moving to a
new application scenario generally requires this type of analyses.

Shin et al. propose ahdaptative Dynamic Thread Scheduli#ZPTS) [58] to manage
the resource sharing IBMT processors. ThADTSimproves the system throughput in
SMT processors by adapting the underlying IFetch Policy to the workload characteristics.
Thus, theADTSchanges the IFetch Policy used amd@@®UNT [72], BRCOUNT[72],
andL1DMISSCOUNT[72], according to the varyingvorkload characteristics In this
chapter we propose tiMFLUSH mechanism, which adapts tke USH andSTALLphi-
losophy to the emerginGMP+SMT scenatrio.

6.6. CHAPTER SUMMARY 109

6.6 Chapter Summary

In this chapter we analyze the new challenges to be faced up in future high-degree
MultithreadedCMPs with multiple SMTexecution cores sharing an L2 cackdP+SMT).
In particular we focus on probably the most import&MT issue: thdnstruction Fetch
(IFetch) Policy ConsideringCOUNT andFLUSH IFetch Policies we show results which
evidence thaCMP+SMT may not simply relly orSMT IFetch Policies to boost overall
throughput.SMT IFetch Policies must be revisited when moving to the @&MP+SMT
scenario.

From the exhaustive analysis included herein, it is proposed a novel IFetch Policy
designed to cope with the emergi@dMP+SMT scenario: theMFLUSH The MFLUSH
mechanism introduces théeterogeneity-Awarenesoncept inlFetch Policies It dy-
namically adapts to the varying memory conditions, yielding a ncoraplexity-effective
response to thbeeterogeneoubehavior exhibited by the running applications. Yielding
results similar to those obtained using an oracle-trigger-b&&&tSH mechanism, the
MFLUSH mechanism allows power consumption reductions of up0#, as compared
to a traditionaFLUSH mechanism.

We include a complete evaluation of tMFLUSH, both in terms othroughputand
energy consumptionOur results indicate that tHdFLUSH succeeds not only in over-
coming the specifiEMP+SMT constraints but also allowing a 20% energy consumption
reduction without a significative system throughput loss. These results confirm that giv-
ing each execution thread the appropriate amount of processor resources, by adjusting the
FLUSH mechanism’s trigger value so that the amount of refetched instructions would be
minimal, we are able to achieve more complexity-effective executionsuitithreaded
Multicore Processorghat is, beingHeterogeneity-Aware

110 CHAPTER 6. FURTHER CONSIDERATIONS

O ICOUNT B FLUSH-S30 OFLUSH-s100 B MFLUSH

2,70

2,50

2,30

IPC

2,10

1,90 4

1,70

1,50
a4w1i a4w2 a4wWs3 awa a4wWs AVG

(a) 4 threads

O ICOUNT B FLUSH-S30 OFLUSH-S100 B MFLUSH

4,50

4,00 +

3,50

IPC

3,00 -

2,50

2,00

6wl 6wW?2 6W3 ew4a 6W5 AVG

(b) 6 threads

EICOUNT B FLUSH-S30 O FLUSH-S100 = MFLUSH
6,00

5,50 1 —

5,00 {—

IPC

4,50 |— 7

4,00 —

3,50

8w1 swz2 8W3 3w4 8W5 AVG

(c) 8 threads

Figure 6.7: Throughput Results.

6.6. CHAPTER SUMMARY

OFL-S30

B FL-S100

OMFLUSH

=

(6}

o
|

+11%

=
w
o

=

=

o
|

Wasted Energy / 10°

[(e]
o
I

~
o
I

4 threads

6 threads

8 threads

-7

+20%

AVERAGE

Figure 6.8: FLUSH Wasted Energy.

111

112 CHAPTER 6. FURTHER CONSIDERATIONS

Chapter 7

Conclusions

This chapter lists the main conclusions of this thesis as well as future directions.

7.1 Thesis conclusions

Due to limitations in the applicationghstruction Level Paralellism (ILR)current
trends in Computer Architecture rely on exploitiigread Level Paralellism (TLPBig
and complexprocessors, like thintel Pentium 4[5], are now being replaced tsmaller
and simplemultithreadedProcessing Elements (PE)r cores, replicated along the chip’s
surface, as in the case of titM POWERH60] andPOWERG39]. In some cases, as with
theCell Processof27], thesePEsare not just replicated: they configure an heterogeneous
processor layout.

Whenever the hardware is statically partitioned into clusters, as d&2iits CMP+
SMTs and many other clustered processor implementations, it is crucial to propeidi
theapplications’ needsvith the hardware resourcesf each cluster. Despite applications
are inherently heterogeneous, that is they have different needs as compared to both other
applications and different portions of executigmdgram phasesof the very same ap-
plication, thismatching process straightforward irhomogeneous partitionsiowever,
when not all the clusters do have the same amount of resources, unproperly matching
applications with clusters may involve a serious throughput degradation.

The main contribution of this thesis is the introduction of iHfeterogeneity-Awareness
concept in the design d¥lultithreaded Multicore ProcessorsA Heterogeneity-Aware
Multithreaded Multicoreprocessor explicitly takes into account the inherent heterogene-
ity in the applications’ behavior and compares it with the hardware characteristics to per-

113

114 CHAPTER 7. CONCLUSIONS

form the most appropriateoftware-hardware matchinghat is the one that yields the
highest throughpuinvolving thelowest energy consumptionn this thesis it is shown
that thissoftware-hardware matching akey factomot only forheterogeneous hardware
partitions in which this matching appears more evident, but alstnéonmogeneous hard-
ware partitions in which multiple applications are run sharing the resources belonging to
a single patrtition.

e For heterogeneous hardware distributionse propose thdeterogeneously dis-
tributed SMT (hdSMTarchitecture, that improves tlewmplexity-effectiveness
the processor. Our results confirm that likSMTapproach increases tHeC/Area
ratio in an average 14%, as compared tmanolithic SMTprocessor. Addition-
ally, our results also reveal that, depending on the characteristics of each workload,
reducing the resource contention of some applications we obtain improvements
not only in terms ofcomplexity-effectivenegd?C/Areg but also in terms of raw
throughput [PC), by assigning them to different clusters with private resources. In
this sense, memory-bounded workloads experience raw throughput improvements
of up to 18%.

e For homogeneous hardware distributionge propose th&hread to Core Assign-
ment (TCA) AlgorithmAlthough apriori less evident, an exhaustive analysis of the
homogeneously distributed hardware partitions reveals that the traditional schedul-
ing process performed in multithreaded processors required an additional and in-
termediate step when moving to the new multithreaded multicore scenario: the
Thread to Core Assignment (TCA)e also have studied the relation between this
new scheduling step and the resource sharing step, obtaining the following main
conclusions:

I A good IFetch Policyreduces the negative effect of an inapproprie@A

Il An appropriate TCAmproves the results obtained regardless the underlying
IFetch Policy

[l An inappropriate TCAcould negate the performance advantage of a better
IFetch Policy

IV There is not a singld CAgood for all cases.

Due to its simple design, the proposEGA Algorithmrepresents an easy-to-imple-
ment solution for the software-hardware matching in multithreaded multicore sce-
narios. So, main processor vendors could provideTi@@éd Algorithmimplemen-

tation for each of their new products just as device drivers are provided nowadays.
The results included in this thesis confirm that this algoritm yields average speedups
of up to 21%.

7.1. THESIS CONCLUSIONS 115

Once analyzed the homogeneous hardware distributions, we have also started the way
back to the heterogeneous distributions. In this sense we focus on probably the most im-
portant issue in th&MT field: thelFetch Policy The proposedheterogeneous Thread
to Core Assignment (hTCA) Framewoik an OS-driven Framework fa€omplexity-
Effectivenessn Multithreaded Multicore ProcessarsExplicitly taking into account the
heterogeneity in the running software, th€ECA Frameworkadapts the hardware to the
workload in order to reduce the energy consumption without significantly affecting the
system throughput. Our results indicate that the proposed framework achi®#% a
accuracywhen selecting the optimal choice for each case.

When moving from heterogeneous to homogeneous hardware distributions we also
jumped from clusteredMT processors t&CMP+SMT processors. When doing this
change of scenario we realized that some of the well-known techniques in th&ptior
field were not valid for the ne®CMP+SMT scenario. In particular we found that the tra-
ditional CMP scheme, with a shared L2 cache amondMIT replicated cores, while op-
timal in terms of cache usage, involves additional challenges that must be revisited in this
new CMP+SMT scenario. As an example, when revisiting some of the most well-known
Instruction Fetch Policies iBMTswe observed that thECOUNT fetch policy obtained
better results than thELUSH fetch policy. Recall that th€LUSH policy was built on
top of ICOUNT to improve it against long-latency instructions. To solve this problem we
proposed thdMFLUSH policy, specifically designed to adapt tReUSH/STALLphylos-
ophy to the newCMP+SMT scenario. Our results indicate that thi-LUSH not only
success in adapting the FLUSH policy to ®IP+SMT scenario, avoiding degradation
as we increase the amount®fT cores, but also reduces its energy consumtion, with an
average 20% energy saving.

In the course of the thesis, throughout all these years of research we have been forced
to explore an extremelly wide design space. So, we have covered a very wide range of im-
plementations starting from an heterogeneosly distributed hardware, with a shared fetch
engine and multiple heterogeneous execution pipelines (from decode to commit), until
multithreaded multicore processor implementations with adaptable IFetch Policy (on/off
on demand). This would not have been possible without a very flexible simulation tool
that allowed to simulate a great amount of different scenarios and configurations. In this
sense, we want to emphasize the importance oMhb#i-Purpose Simulator (MPsim)
designed and developed specifically for this thesis. MiRsim’srelevance has growth
during the recent years, spreading out of this thesis to becdwag toolin our reserach
group, both in thédAC and theBSC Recently, théJniversity of Las Palmas de Gran Ca-
naria (ULPGC)has joined to th&1Psim CommunityWhat is more, th&Psimcontinues
evolving to offer more attendance to its users. Some tem@Balworkers, adDomen
Novak has been employed to specifically develop additiddBsim modulesthat have

116 CHAPTER 7. CONCLUSIONS

been added to the whoMPsim Project The latest item in th&Psim Projectinvolves
the integration of the brandne@OTSortool, developed byHP Labs Barcelonainto the
MPsim Project

As afinal reflection exercise, after all the research done in the homogeneous/heterogeneous
hardware partition field, | do believe that the future of Computer Architecture will face
up heterogeneously distributed chjpsith a high concern for complexity-effectiveness
In this future processor generations the hardware would dynamically adapt to the varying
requirements of the running software over time, striving to yield the maximum through-
put involving at the same time the lowest energy consumption. This way for example,
we would see very-low-power mobile processors with a computational power that ex-
ceeds any of the current state-of-the-art high-end processors nowadays. Cell phones with
holoprojections, that would allow to physically intarct with 3D projections of people thou-
sands of miles away, would become a reality thanks to this kind of low-power/high-end
processors, designed to achi@amplexity-effectivexecutions using a highly-adaptative
heterogeneously distributed hardware that dynamically reacts to the varying conditions of
the running software.

7.2 Future work

This thesis opens up several topics from which we emphasize the following:

e Aggressive hdSMT processavigh advanced fetch units and fully-dynamic migra-
tion policies. Currently we are working on a decoupled fetch unit which uses traces
of instructions as minimal fetching unit.

e TCA Algorithm implementatiorfer heterogeneous Multithreaded Multiprocessors
like the Cell processorWe are now working on extensions of th€CA Framework
in which we gradually introduce an heterogeneous distribution of the processor
resources among all the constituent replicated cores.

We are already working on some of these topics and many other more, opened up
throughout the research involved by this thesis. The perspectives are promising, with
plans of starting at least 3 more thesis from the final state of this thesis. Only time would
say how far this thesis would reach and how important/referenced would it be in the
future.

Chapter 8

Appendix:
The MPsim Simulation Tool

Computer Architecture has experienced great advances in the last decades. Thus, we
have witnessed the raise®fiperscalarsSimultaneous Multithreading (SMa&hdon-chip
Multiprocessors (CMPamong others. All these novel ideas had to be evaluated in order

to measure their benefits and potential. To perform this evaluation, computer architects
require simulation tools which model the corresponding idea and allow simulating its
execution results, employing a set of benchmarks. The accuracy of the model employed
is in tune with the research requirements. Thus, while in industry computer architects
are highly constrained to an specific product, requiring a highly accurate model, in the
academia computer architects generally focus on more long term and less specific research
topics. Obviously, the computational cost of the model employed is directly proportional

to its accuracy. Consequently, the research in the academia generally employs general-
purpose simulation tools, closer to their research interests and computational possibilities.

Among the general-purpose simulation tools typically employed in the academia dur-
ing the last decade we find Simplescalar [22] and SMTsim [71] simulators. The Sim-
plescalar models a single-coBuperscalamprocessor with 5 pipeline stages while the
SMTsim models a single-cor8uperscalar/SMTprocessor with 8 pipeline stages. On
top of both simulators, several branch predictors and instruction fetch policies, so as new
proposals, may be added. Regarding the Memory Subsystem, both simulators model two
cache levels (optionally up to the third cache level), with a single Instruction Cache, Data
Cache, ITLB, DTLB, L2 Cache. However, while the Simplescalar has a very simple
memory model, in which each memory access is deterministically resolve8Mfsim
non-deterministically manages the memory accesses by means of an event queue, which

117

118 CHAPTER 8. APPENDIX: THE MPSIM SIMULATION TOOL

Homogeneous Heterogeneous
D
e
o
< |
=< SuperScalar SMT NASMT
= —_—
= _
(75}

SMT

SuperScalar SMT SuperScalar SuperScalar
SMT

SuperScalar SMT Stpenscalan SMT

SuperScalar SMT SuperScalar SMT SMT

CcMP CMP+SMT CcMP CMP+SMT CMP+SMT

Multi-core
N

4 CoreN ..+ Core2 Core?

Figure 8.1: MPsim Processor Types.

cronologically stores all memory requesWattch[15] andALPSS40] represent exten-
sions to botlSimplescalaand SMTsim respectively. They add power measurements to
the functionality included in both simulators.

The MPsimis a highly-flexible simulator based on SMTsim. It allows simulating a
wide range of processor types both single c@eperscalarSMT) and multi core CMP,
CMP+SMT), both homogeneous and heterogeneous configurations; so as providing a
complete set of simulation alternatives. It is put special emphasis on the simulator flexi-
bility and how it is obtained. Th#&Psim’s Parameter Interfacallows to easily declare
complex system configurations without needing to recompile the simulator’s source code.
Both core-specific and memory subsystem configuration parameters may be gathered into
parameter files, comprising reusable configuration repositories. The simulation results in-
cluded indicate that high-flexibility may be obtained without hardly compromising the
computational cost in a general-purpose simulator.

8.1 MPsim overview

The MPsimis a cycle-accurate simulation tool based on $MTsim[72] simulator.
Its design focuses on the simulatoflexibility and functionality, striving at the same
time to involve the least computational cost possible. The simuldtexibility does not
only refer to the amount of simulation alternatives provided to the user but also to the
configurationeasinesandadaptabilityto future modifications. Th#Psim’s Parameter

8.1. MPSIM OVERVIEW 119

Interfaceease the declaration of complex simulation configurations. It allows to maintain
configuration file repositories that may be reused in different simulations without needing
to recompile the simulator’s source code.

TheMPsimallows simulating a wide range of processor types both single Saneg(-
scalar, SMT) and multicore CMP, CMP+SMT). By using theNUM_CORESparameter
it may be specified the number of cores in the simulated system. All the remainder core-
specific parameters will carry the suffifex, wherex stands for the core number (e.g.,
IFETCH.POLICY_P1 ICOUNTdeclares that the core number 1 use the ICOUNT IFetch
Policy). These suffixes allow to individually configure each core, making podssiézo-
geneoussystem configurations. Thus, although each simulated system core is comprised
of at least 8 pipeline stages, the specific pipeline depth may be individually declared
for each constituent system core. To configure entire systems,hootiogeneouand
heterogeneoy®ach simulated core may be individually declared by using both the com-
mand line or configuration files. THdPsim’s Parameter Interfacallows passing text
files comprising all core-specific parameters. These configuration files may be reused in
multiple declarations as simulation inputs to configure each simulated system core (e.g.,
-pf_.P1 POWER5Specifies the file POWERS to configure the core number 1). Figure 8.1
shows the processor types that can be simulated hdHgim

In order to reduce computational costs, MEsimprovides a trace-drivérfront-end.
Althoughtrace-driven the MPsimalso permits simulating the impact of executing along
wrong paths on the branch predictor and the instruction cache by having a separate basic
block dictionary in which information of all static instructions is contained. Wisim
input traces are collected from the most representative 300 million instruction segment of
each input benchmark, following the idea presented in [55]. Each program is compiled
with the —-O2 —nonsharedoptions using DEC Alpha AXP-21264 C/C++ compiler and
executed using the reference input set. These input traces can be indistinctly read from
little-endian/big-endian machines, since tM&sim automatically detects the machine
characteristics and read data accordingly.

The MPsimfunctionality, provided to the user by means of its flexiBerameter In-
terface includes a long list of simulation alternatives. Regarding simulation itself, the
MPsimprovides simulation forwarding, numerous simulation statistics and histograms,
so as six different simulation finalization modes. Regarding computer architecture al-
ternatives, theviPsimprovides a set of branch predictors and instruction fetch policies
from which select the desired one, thread migration between cores, so as multibanked

1The termheterogeneousfers to different amount of processor resources, like instruction queue entries
and number of registers.
2Theexecution-driveriunctionality is currently being developed.

120 CHAPTER 8. APPENDIX: THE MPSIM SIMULATION TOOL

e Simulator Call) _ -
Repository s/ — Begin Simulationc—
|
f_P ¢
—p |
fr 1"

PPE-like config. ## ;

PPE | vaxtHrEADS -2
TTTTTTTTTT
Init_multipipeline
NeedValue(NUMCORES)
For i=0; i=sNUMCORES; i++ {
NeedValue(MAXTHREADS_P(i))}

TTTTTTTTTT

Memory
Repository

Init_fetch
For i=0; i=NUMCORES; i++ {
NeedVvalue(FETCHLIMIT_P(@()}

(NUMCORES, 9)

(MAXTHREADS_ PO, 2) =
(MAXTHREADS_P1, 1) Init_cache
Cell (MAXTHREADS_P2, 1) .
Cell-like mem. config. ## UD::>
DCACHE_TOTAL_SIZE_MGO = 32768
ICACHE_TOTAL_SIZE_MGO = 32768 =
SCACHE_TOTAL_SIZE_MGO = 524288 lnte'-face Library . s_;_r":-flatt?r
o —— nitialization
Phase

Figure 8.2: Parameter Interface Example for a Cell-like configuration.

multiported caches. All these functionality items may be easily activated/deactivated by
the user, according to her needs, using the appropriate parameter for each case (e.g.,
STATSINTERVAL Odeactivates the intermedidfeC statistics). As a matter of example,
by means of th& TATSINTERVAL MAX_ NUM_INTERVALSSTATSFORWARDINGand
MAXNUM_STATSFILES parameters it may be obtained intermediate simulalit®
statistics (intervalPC, IPC variability and in-flight L1 misses) in separate dump files.

The MPsimalso allows some extent @fusteringwhen definining the system to be
modeled. Thus, thEHAREDFETCHUNIT andSHAREDREGISTERFILE parameters
allow sharing a single Fetch Unit and Register File respectively, among all defined system
cores. Since a single Fetch Unit may be shared among multiple cores, we indistinctly refer
to pipeline/core in the remainder sections. However, recall that the only difference is the
value of theSHAREDFETCH.UNIT (i.e., pipeline = true, core = false). As a matter of
example, in atlndSMT[9](SeeChapter J processor (see Figure 8.1) both the Fetch Unit
and the Register File are shared among all constituent pipelines.

8.2 Parameter Interface

In order to provide high-flexibility théviPsimsimulator includes dexical analyzer
yielding a versatildParameter Interfacelt scans the simulator call creating pairs of pa-
rametemameandvalue which are inserted in an inn®arameter Data BaseThere is
not a fixed parameter declaration order, with the only assumption that every argument
which begins with a dash is consideregarameter nameand the immediate following
argument is considered italue (e.g., the simulator calhpsim -argl argdncludes the
parameteargl with valuearg2). Whenever a singlparameter names declared more

8.2. PARAMETER INTERFACE 121

than once, the value in tiearameter Data Baseorresponds to the last parameter dec-
laration. TheParameter Interface Libraryncludes functions to adquire each parameter
from theParameter Data Bast® the simulator inner structures. This way, the addition of
new functionality benefits from an easy way to adquire configuration parameters.

The speciaparameter name parmfe (or simply pf) is reserved to indicate a con-
figuration parameter file, with thearameter valuendicating the file path. The use of
parameter files permits to declare an unlimited number of parameters, allowing more
complex simulation configurations. Additionally, by using parameter files, that may also
include comments (using #), it is possible to kemmfiguration file repositories Al-
though the parameter files may include any sort of parameters, the main repositories used
are comprised ofores machinesandmemory subsystendeclarations. In order to ease
multicore configurations and repositories maintenance, it may be added the Buffix
a parameter file name declaration, wildentifying a given core. This suffix indicates
that all the parameters included in the corresponding file are related to the specdied
(e.g.,-pf_PO fileldeclares the filéilel as input to configure the first core in the simulated
system). TheParameter Interfacéhen automatically adds this suffix to each parameter
name included in the file. Thus, a single core’s parameter file may be used to configure
multiple cores in a multicore configuration; or in different simulation calls.

Once scanned the whole simulator call, the resuldagameter Data Basehat com-
prises all declared pairs parameter namandvalug is used in the subsequeBitnulator
Initialization Phase During this phase the content of tRarameter Data Bases used
to initialize the corresponding simulator structures and variables. Any sort of parame-
ters may be requested by the simulator developer by usinyeleeValueandGiveValue
functions from theParameter Interface Library Whenever a parameter is compulsory,
and does not admit a deffault value, it is used NezdValugwhich automatically stops
the initialization phase and prompts an error message in absence of the specified parame-
ter. Otherwise, it is used th@iveValuefunction.

Figure 8.2 illustrates the high-flexibility of thelPsim Parameter Interfaceln the
example, 3 configuration files stored in the simulator’s repositories are used to configure
a Cell-like processor with a simple simulator call. Given the flR#2E and SPE that
include all core-specific configuration parameters for Cell PPE-like and SPE-like cores
respectively, and the fil€ell, that include all Memory Subsystem related parameters and
relations for a Cell-like configuration, the simulator call shown in Figure 8.2 is enough to
configure a Cell-like simulatioh

3Although not included in the simulator call for simplicity, it should be also specified the workload to
simulate.

122 CHAPTER 8. APPENDIX: THE MPSIM SIMULATION TOOL

PIPELINE O PIPELINE O PIPELINE N

[commiT | [commiT |---[commiT |
I i .

[REGWRITE | The processor pipeline [REGWRITE |---[REGWRITE |
1 depth is equal to 7 + 1T T

[EXECUTE | NUM_DECODE_STAGES [EXECUTE |---| EXECUTE |
. (e.g. with 4 decode T .

[REGREAD | z::gzsé;:’ei V"D?(\Dfieig;rl [REGREAD |---[REGREAD |
T T > > - T T

[QUEUE | Pipeline) [QUEUE |---] QUEUE |
T i T

[REGRENAME]| [REGRENAME]|---[REGRENAME]|

[bECoODE,,, | ;gzg;’?;btﬁ;o;rgiggggr [DECODE,,, |---[DECODE., |
T pipeline can be defined L L
e by using the parameter o e

[DEcCobE, || NUM_DEcobE_staceEs || DECODE, |---[DECODE, |

[FETCH | SHARED. FETCH. UNIT [PREDECODE |- - [PREDECODE |
If true, all pipelines L L L L

’ FETCH |

share the same fetch
unit.

Figure 8.3: MPsim Processor Pipeline Stages.

TheLexical Analyzerincluded in theMIPsim’s Parameter Interfagescans the whole
simulator call shown in Figure 8.2 automatically accessing to the corresponding files in
the repositories. Theexical Analyzewses the suffix information included in the simu-
lator call (i.e.,_Pxin the -pf_Px argument, withx indicating the specific core) to create
the corresponding pairs pirameter namandvaluethat are inserted into tHearameter
Data Base Thus, although there is a singlAXTHREAD $arameter declaration in PPE
and SPE files stored in the cores repository (see Figure 8.2), mulipTHREADS
pairs are inserted in tHearameter Data Base@ne per each of the 9 delcared cores. Once
the whole simulator call is scanned, including the parameter files, the subs&igueitd-
tor Initialization Phaseuses the resultinBarameter Data Basand theinterface Library
functions to set up the simulator inner structures and prepare the subsequent simulation.
Thus, during the multipipeline environment initialization (iiait_multipipeline see Fig-
ure 8.2) it is used the functiodeedValudo initialize the simulator from the information
contained in thé’arameter Data Basenodeling an heterogeneous multi-core processor
comprised of 9 cores (i.eNUMCORES, each one containinglAXTHREAD $hardware
contexts (i.e., a dual-thread PPE and 8 single-thread SPESs). After the initialization phase,
the simulation begins.

8.3 The Pipeline

TheMPsimis a cycle-accurate simulator in which each simulated system core is com-
prised of at least 8 pipeline stages, as shown in Figure 8.3. However, each system core
may be defined with a differemqgipeline depth adding idle pipeline stages in between
DecodeandRegRenamstages. As a matter of example, to specify an 11-stage execution
pipeline in any of the declared cores it is set the parani¢tévl DECODE STAGES 4

8.3. THE PIPELINE 123

BEST_DYNAMIC s
Lookahead process launched i \L

MIGRATION_INTERVAL | MIGRATION_INTERVAL | MIGRATION_INTERVAL |

e — === === P - — = — === e - - >

' t ! BEST DYNAMIC ! t+_1 '
, . Lookahead Process. - .

i TCA 1 i | TCA 3 / i

; # TCA 1 # (:

i [TCA 2 i IPCrcaq = X, ","\"‘. ;

! Speculative ‘, + IPCrcaz = Xao '.ll .

i Executions | & TCA 3 ‘ l :

: 1 1 IPcTcAs = x3 [

M o - —— o o L ot -

Simulation time (cycs)

| X,>X,>X,> BEST TCA,,, =TCA 3 |

Figure 8.4: MPsim BEST DYNAMIC migration heuristic.

In case of sharing the Fetch Unit among all pipelines (see Section 8.1) a new pipeline
stage, calledPredecodeis automatically added by tHdPsimto each pipeline. There-
decodestage works as a buffer (with user-definable capacity usingRieEDECODEQU
EUE_SIZEparameter) between the shared Fetch Engine and the decode stage of each con-
stituent pipeline, which may have a different pipeline width. As a matter of example, in
a given cycle an 8-wide shared Fetch Engine passes 8 instructions to a 4-wide pipeline; 4
instructions passes to that pipeline decode stage while another 4 instructions are buffered
in Predecodeuntil the next simulation cycle.

The pipeline resources and implemented policies may be easily declared using the
MPsim Parameter Interfacésee Section 8.2). Each Fetch Unit declared in a simultane-
ous multithreaded system (i.e., the shared Fetch Unit md&MTprocessor or each Fetch
Unitin aCMP+SMT processor) may be configured with a different Instruction Fetch Pol-
icy, which determines from which thread/s to fetch instructions each cycle. To define the
IFetch Policy used by each Fetch Unit we employ HRETCH_POLICY Px parameter,
wherex corresponds to the processor pipeline number. The user may select any from
Round Robin [72], ICOUNT [72], STALL [70], FLUSH [70], and FLUSRLUS PLUS
[18]. In a similar way, each Fetch Unit declared in a system may be configured with a
different branch predictor, using tlpeedictor Px parameter, where x corresponds to the
processor pipeline number. In this case, the user may chose any from GSHARE [44],
PERCEPTRON [34] and PERFECT predictors.

124 CHAPTER 8. APPENDIX: THE MPSIM SIMULATION TOOL

8.3.1 Thread Migration

Multicore configurations can be simulated in eitf®&FATICor DYNAMIC fashion,
using theTHREADSMIGRATIONparameterSTATICsimulations assume no thread mi-
grations, from core to core, during the whole simulatidhY NAMIC simulations may
experience thread migrations according to the spedfiEBRATIONINTERVALparam-
eter value (measured in simulated cycles). The assignment of all simulated threads to any
of the defined cores is specified by tRlRSTT2P_ASSIGPOLICY parameter. It may be
chosed frorNRR(Naive Round Robin) an@USTOMpolicies, using th&ASSIGTH_X_P
parameter in the latter case to specify each assignmentA&8IGTH_1 P 0assigns the
thread 1 to the core 0).

In DYNAMIC simulations, thread migrations are triggered according to the specified
MIGRATIONHEURISTICparameter value. Among the available migration heuristics it
can be chosed tHBESTDYNAMIC As shown in Figure 8.4, every simulated interval (i.e.,
intervalst andt+1), with a fixed length oMIGRATIONINTERVALcycles, is executed
using theBEST Thread to Core Assignment (TG8geChapter 4). ThisBEST TCAs
obtained by means oflaookahead processhat simulates in parallel the next simulation
interval using each possiblECA (e.g., in the example shown in Figure 8.4 there are only
three possibl&CAg. Once determined the one that yields the highest throughput, the
execution selects thaiCAas the one to be used during the interwl.

8.4 The Memory Subsystem

The MPsimMemory Subsystem inherits tf&MTsim’sfoundations, having an event
gueue to manage all memory requests in a non-deterministic fashion. Whenever a mem-
ory request experiences an L1 Cache miss it is inserted a memory request in this event
gqueue, arranged by cronological request time (in simulated cycles). According to the
specific system configuration, memory hit/miss and contention, the memory request may
have to traverse the L2 Cache, the L1-L2 intercomunication bus, and the L3 Cache, so as
accessing to a TLB. If all this fails, an access to main memory (off-chip) is assumed. The
memory request queue is regularly accessed by the simulator, triggering each request in
the corresponding simulation cycle. As described in Section 8.4.AIBemstructures
this memory event queue into two layers for multicore configurations, implementing an
L2 Access Arbiter

Unlike SMTsim with afixedMemory Subsystem definition, thdPsimprovides the
user afully-flexible Memory Subsystem. Thus, it may be configured a Memory Sub-
system comprised of any number of memory components (DTLBs, ITLBs, DCaches,

8.4. THE MEMORY SUBSYSTEM 125

MEMORY GROUP\

\

L3, L3, .- L3,
[%;

I T I T I

L2, L2, .- - L2,
[%;

BUS, BUS, BUS,_
. . =P

ITLB, DTLB, | ITLB, DTLEB, 1ITLB, DTLB,
- - - o N o S
D, L 1,5 D, $
IT

I,

Figure 8.5: MPsim Memory Subsystem.

ICaches, L1-L2 Buses, L2 Caches and L3 Caches) so as relations, between memory com-
ponents and execution pipelines. TRE’sim’s Parameter Interfacallows to specify

the desired number of componehty using theNUM_L3_CACHESNUM_L2_CACHES
NUM_BUSESNUM_ICACHES NUM_DCACHES NUM_ITLBS NUM_DTLBSparame-

ters. Once declared, the user may configure each of the components’ characteristics indi-
vidually, using command line parameters or parameter files (e.g., a DTLB is configured
with DTLBPENALTYDPGSIZEandDTLB_SIZE parameters). As a consequence, not all
components of the same type must have the same characteristics, abh@tenggeneous
memory configurationsTo ease this configuration, each memory component is associ-
ated to a singldMemory Group (MG)as shown in Figure 8.5 (e.gls$, IT LBy, Dy$,
DTLBy, BUS,, L2, and L3, belong to the firsMemory Group. Thus, when specify-

ing a component’s characteristic we add the suffiGx, wherex stands for thévlemory

Group, to refer to a particular memory component (e.g.,Bié¢_.B_SIZE MGO parameter

value specifies the size of th&l L By, belonging to the firsMemory Group.

The MPsimMemory Subsystem does not assume any implicit relation between any
two components allowing the user to explicitly declare the desired relations. Meen-
ory Groups used to univocally refer to each memory component declared in the system,
do not imply real memory component relations (i/2,$ does not necessarily ugd/ S,
to communicate with the second level of cache). To specify the desired memory com-
ponent relations th&Psim Parameter Interfacprovides a simpldRegular Expression
Grammar (REG)shown in Figure 8.6. ThIREG implemented as part of theexical An-

4There must be at least 1 declared component of each type except for L3 Caches, which are optional.

SUnless a single component of any type was declared (e.qg., in a system with a single DCache all cores
must access to that DCache). In that case the corresponding relations with other components are implicitly
assumed.

126 CHAPTER 8. APPENDIX: THE MPSIM SIMULATION TOOL

X = {P_da 1 =da <= NUM_CORES
Y = {DC[_dil, IC[_dj 1} 1 =ab = NUNM_DCACHES
d = {db.,dc 1A =dc = NUM_ICACHES
A =ddd = NUM_DT7TILBS
or 1A =de = NUM_ITLBS
1 =dof = NUM_BUSES
> = {DC_ MGdb} 1 =dg = NUNM_ [2 CACHES
Y = 4{DTLB[_dk], BUS, L2, L3} O =dgdh <= NUNM_[3 CACHES
d = {dd.de.df,.dg} > O =di = Max. Core DCaches
> O =d9df = Max. Core ICaches
or > O =dk = Max. DS DTLBs
> O =9/ = Max. IS ITLBs

> = {IC__MGdc}
Y = {TLB[_dl], BUS, L2, L3}
d =

{de, df, dg, dh} * InNn case of Multi-Relations (N: M)

Figure 8.6: MPsim Memory Relation Regular Expression Grammar.

L3,

L2, =
BUS, I | I I i I BUS,
o || Do || Dus | | s || Dos | [DTLB, |
e, 1] [— ' oTLB,]
Po | Py | | P |

Figure 8.7: MPsim Memory Subsystem Example.

alyzerincluded in theMiPsim’s Parameter InterfacéSee Section 8.2), allows to establish

a relation between any two memory components. These relations are focused on the first
level of cache; the user specifies for each first level cache (i.e., D$ and 1$) both the exe-
cution pipeline and the remainder memory components that are related with that specific
component. The flexibility provided by this simple grammar allows to declare complex
memory configurations, includiny:M relations as is the case of first level caches and
TLBs (i.e., a single Data Cache may use more than one DTLB).

As a matter of example, Figure 8.7 shows an example of a Memory Subsystem for a
3-core system. To specify all the constituent memory components shown in Figure 8.7 it
should be used the following declaration:

-NUM_DCACHES 3 -NUMICACHES 2 -NUMDTLBS 2 -NUMITLBS 1

-NUM_BUSES 2 -NUML2_CACHES 2 -NUML3_.CACHES 1

8.4. THE MEMORY SUBSYSTEM 127

REL_P_O_DCO REL_DC_O_DTLB O
REL_P_O_IC O REL_DC_O_BUS O DCache O
Pipeline — L1 Caches REL_P_1 DC 1 REL_DC_O_L20 relations
relations REL_P_1 _IC O * REL_DC_O_L3O0
REL_P_2 DC 2
REL_P_2 1C 1 REL_DC_1 _DTLB O
REL_DC_1 BUsSO DCache 1
REL_IC_O_ITLB O REL_DC_1 L20 relations
ICache O REL_IC_O_BUS O *REL_DC_1_130
relations REL_IC_O_L20
* REL_IC_O_L3 0 REL_DC_2 DTLB 1
REL_DC_2 BUS 1 DCache 2
REL_IC_1_1TLB O REL_DC_2 L2 1 relations
ICache 1 REL_IC_1_BUS 1 *REL_DC_2 L3O0
relations REL_IC_1_ L2 1
*REL_IC_1_L3O0

* Optional : Since NUM_ L3_ CACHES = 1 itis
Nno needed this relation.

Figure 8.8: MPsim Memory Component Relations Example.

Once declared all the memory components, the relations between them are declared
using the memory relation grammar shown in Figure 8.6, as depicted in Figure 8.8. For
a Memory Subsystem to be fully declared, every first level cache (ICaches and DCaches)
must be related with some pipeline (or multiple pipelines), TLB (or multiple), L1-L2 bus,
L2 Cache and optionally with some L3 Cache. Finally, each memory component is con-
figured using its specific parameters (e:TLBPENALTYMG1 300 -DPGSIZBVIG1
13 -DTLBSIZEMGL1 512configures the DTLB number 1 with 512 entries, a miss pe-
nalization of 300 cycles and a 8Kb virtual page size -2 to 13-). As with pipeline con-
figuration, theMPsim’s Parameter Interfacallows to maintain a&Memory Subsystems &
Relations RepositorfmemHierarchieslirectory) and use them to declare more complex
configurations. As a matter of example, letP®@WERSMEM andPOWERSMEM . rels
the configuration files comprising all memory component configuration parameters and
the relations between them, respectively, to configuP©aVERS5-likg13] Memory Sub-
system. We would use the following declaration to fully configuRCAWERS5-likeMem-
ory Subsystem:

-pf memHierarchies/POWERYEM -pf memHierarchies/POWERBEM rels

The complete functionality of th®1Psimis deepthly explained in [8]. In the follow-
ing sections we focus on two main issues of the Memory Subsystem’s functionality. In
Section 8.4.1 we describe the Multibanked and Multiported Cache functionality and the
L2 Cache Access Arbiter in Section 8.4.2.

128 CHAPTER 8. APPENDIX: THE MPSIM SIMULATION TOOL

L2

Bank, Bank, Bankg Bank,

o~
=

o
o
o~
—1

BUS i
L1 Port 1 ”

|L2 Port 4

2 Port 1
ILZ Port 3

8
Hl| -
T
0
3
N

[
Q
S
X

Bank, | |Bank,| Bank;| Bank, 5| |[Bankg||Bank,| Bankg

L1
Figure 8.9: 4-bank 4-port L2 Cache and 8-bank 2-port L1 Cache Example.

8.4.1 Multibanked & Multiported Caches

For each cache declared in the Memory Subsystem, itis possible to specify the number
of banks in which it will be splitted. Th®IPsim’S Parameter Interfagerovides this func-
tionality by means of thlCACHEBANKSMGx, DCACHEBANKSMGx, L2ZCACHEBAN-
KS.MGx, andL3CACHEBANKSMGx parameters, wherestands for the specifiglem-
ory Group Additionally, each cache may be configured with a different number of ac-
cess ports, using thdUM_DCACHE PORTSMGx, NUM_ICACHE PORTSMGY, and
L2CACHEBANKPORMGXx parameters, whepestands for the specifidlemory Group
As a matter of example, the following declaration configures a 4-bank 4-port L2 Cache
and an 8-bank 2-port DCache, shown in Figure 8.9 :

-NUM_DCACHES 1 -DCACHEBANKSBIGO 8 -NUMDCACHEPORTSMGO 2
-NUM_L2_CACHES 1 -L2CACHEBANKS 4 -L2CACHEBANKPORMGO 4

8.4.2 L2 Cache Access Arbiter

The MPsim allows defining multicore system configurations in which many cores
may share a single L2 Cache. In order to cope with the L2 Cache contention among
all cores theMPsim provides anL2 Cache Access Arbitethat can be activated using
theL2 ACC ARBITERparameter. ThMPsim’'s L2 Cache Access Arbiteshown in Fig-
ure 8.10, manages the access to each L2 Cache bank using a queue per each shared core of

8.5. POWER MEASUREMENT 129

L2
Bank
L2 AC_CESS \|\ Np Each cycle Np (Number of
Arbiter Ports) bank requests are
Select the next { Arbiter selected by the Arbiter from
queue(core) to [the L2 Access Queues
access the L2 bank I T 1
Entry 1 || Entry 1 Entry 1
L2 Access Entry 2 || Entry 2 Entry 2 Each L2 Cache may
Queues have adiffgrent
i queue size
One different Entry N ||Entry N Entry N
queue per core [|
L2 Port 1
L2 Port 2
L2 Port Np

Figure 8.10: L2 Cache Access Arbiter.

each defined L2 Cache. Each of these queues buffer the t@€ache access requests

until the user-definable2 Arbiter removes it from the corresponding queue and triggers

the L2 Cache Bank access; as many requests allowed per simulated cycle as L2 Cache
ports defined in the Memory Subsystem declaration. Whenever an L2 Access Queue gets
full the corresponding core is temporarily stopped (no forward progress in any pipeline
stage) until some queue entry gets empty.

8.5 Power Measurement

TheMPsim’sPower Consumption Measuremgistmodelled based dattch 1.0415].
Before running the simulation, thdPsimcalculates the energy that each basic compo-
nent of the processor , according to the system configuration declared, would consume in
one cycle if it were fully utilized. Each basic unit is defined as one of four types (array,
CAM, functional unit, clock) and different estimation formulas are used for each type.
The Cacti 4.2[68] is used to provide the optimal specs for each array and CAM unit
based on the required total size, block size and associativity MAs@mkeeps track of
the number of times each unit is accessed during the simulation and calculates the energy
consumed accordingly. The total energy consumed by each component is shown at the
end of the simulation, along with average power per cycle.

5The current version only models the power consumption within each execution core. Interconnections
and memory related consumption will be included in subsegu@&simversions.

130 CHAPTER 8. APPENDIX: THE MPSIM SIMULATION TOOL

8.6 Computational Cost

Although high-flexibility constitutes a very important characteristic for a general-
purpose simulator it may not be achieved regardless its computational cost. Due to fi-
nite computational resources, computer architects require simulation tools that are able
to yield results in a limited amount of time, according to reseach deadlines. It must be
kept in mind that the results obtained from such a simulation tool generally constitute a
first step in a multistep evaluation process. Due to their limited accuracy, general-purpose
simulators are normally used to both identify architectural challenges and obtain general
trends. In this sense, the flexibility offered by the selected simulation tool is of crucial
importance. The tool’s ability to allow simulating multiple architectural alternatives with
low effort helps to both accelerate and improve this first evaluation step. Once identified
the architectural challenge and evaluated a possible solution, more accurate results may
be obtained employing either a more specific (and complex) simulator or FPGAs [78].

Although focused on high-flexibility, th&Psim design strives to involve the least
computational cost possible. The idea is to provide a flexible and easy-to-use simulation
tool, that allows the user to simulate a wide range of simulation alternatives with low
effort, able to yield simulation results in a reasonable time. Although these goals seem a
priori to conflict with each other, it may be found a satisfactory balance. Following are
enumerated some of the main design decisions employed MRBsandevelopment:

1. Parameter Interface Providing high-flexibility should not interfere with the sim-
ulation itself. The parameter interface should be adaptable to accommodate future
simulation improvements but it should not interfere with the inner simulation struc-
tures.

2. Initialization Phase The configuration parameters acquisition, performed by means
of a flexible and easy-to-ugtarameter Interfaceshould be immediately followed
by anlnitialization Phase During this preparatory phase it should be anticipated
all the work possible according to the simulation configuration. Thus, while some
simulator modules could be fully deactivated, without compromosing neither mem-
ory nor processing in the subsequent simulation, others could be devoted enough
memory to get rid of time consuming dynamic memory allocation/deallocation.
According to the specific simulation configuration and the available resources, the
Initialization Phasemay considerable reduce the subsequent simulation computa-
tional cost.

3. Avoid unnecessary worknstead of requiring function calls to determine whether a
module is activated or not during the simulation, each module may inchadeos

8.6. COMPUTATIONAL COST 131

Without compromising neither the code legibility nor modularity, a macro including
a conditional branch to the corresponding function call may reduce the additional
cost for deactivated modules; adding only an extra conditional branch for activated
ones. Furthermore, since modules are activated/deactivated only durilgititie
ization Phasethese branches are easily predictable by the branch predictor imple-
mented on the hardware executing the simulator itself.

In order to give an idea of the computational cost involved byMfrsimsimulation
tool, following are included some simulation results. For this set of experiments we use
the SPEC2000 Benchmark Suii8ee Section 2.2). We collected workloads comprised
of 1, 2, 4 and 8 benchmarks, shown in Table 8.1. Following we gather some comments
regarding the simulation parameters shown in Table 8.1:

1. The 22-cycle L1 misspenalty comes from the sum of L1 latency (3) plus the L2
latency (15) plus the L1-L2 bus trasnfer (2) plus the DFill Delay (2).

2. Both Instruction Cache (I-Cache) and Data Cache (D-Cache) follow an implemen-
tation of theLeast Recently Used (LRW3placement policy an@/rite Backwrite
policy. Since currenMPsimversion does not allow multithreaded workloads, no
memory coherence protocols are present.

3. Since the Memory Wall problem seems to still be problematic in the short and
medium term, a conservative 250-cycle main memory latency is used.

4. It is used a private TLB for both instructions (Instruction TLB, I-TLB) and data
(Data TLB, D-TLB). Whenever a TLB miss arises, it must be accessed to the main
memory to resolve the new page address and bring it back to the corresponding
TLB. Consequently, it must be paid the main memory latency (of 250 cycles) plus
the TLB resolution itself (50 cycles).

The name of each worklo&ds x\Wy, wherex stands for the number of threads involved
andy stands for the workload identifier (e.g\W2identifies the second workload with 4
threads). Each workload with sizeis simulated on £&MP+SMT implementation with
shared L2 Cache an§ two-hardware-conteX8MT cores implementingCOUNT [72]
policy; both single-thread and dual-thread workloads are simulated on a single-core im-
plementation. Both core-specific and memory subsystem configuration parameters are
shown in Table 8.1.

"Except for single-thread workloads, represented by the name of the corresponding benchmark.

132 CHAPTER 8. APPENDIX: THE MPSIM SIMULATION TOOL

] Simulation Parameters \

Pipeline depth 11 stages L1 I-Cache 64KB, 4-way, 8 banks
Queues Entries | 64 int, 64 fp, 64 Id/st| L1 D-Cache 32KB, 4-way, 8 banks
Execution Units | 4 int, 3 fp, 2 Id/st L1 lat./miss 3/22 cycs.
Physical Registers 320 regs. [-TLB ,D-TLB | 512 ent. Full-assoc.
ROB Size* 256 entries TLB miss 300 cycs.
Branch Predictor | perceptron L2 Cache 4MB, 12-way, 4 banks
(4K local, 256 pers) | L2 latency 15 cycs.
BTB 256 entries, M. Memory lat. | 250 cycs.
4-way associative
RAS* 100 entries
Number of Threads 91p a | swim n
Nee[2 T2 [8 doc | o | wpwise| p
XWL |5, [B,at] | G150 0LLGT || o | g eanke g
XW2 | n,e|ll,np,e |b,g mnahonq crafty e | lucas r
XW3 |d,a|d,s,r,a | mn,rq,ijeh perlbmk | f | mesa s
xW4 | g,f | g,b,m,f| 1, b,gmn,rfs parser | g | fma3d t
XW5 1 r,p |1 fp q.b,c ke a0t eon h | sixtrack | u
xW6 | b,j | b,qtj |dlb,glijcf gap i | facerec | v
XW7 | ne|l,np,e | bgm, n,a h,o,p vortex i applu W
XxW8 |d,a|d,s,r,a | mn,rq,ijeh bzip2 k | galgel X
xW9 | g,f g,_b, m,f| l,b,g,m,n,rfs twolf | ammp y
XW10 | r,p | r,j, f, p g,b,c, ke ao,t art m | mgrid Z

Table 8.1: Workloads used for evaluating the computational cost. Resources with * follow
a private per-thread implementation.

All workloads were simulated on a Dual-Core 2 Intel Xeon processor with 2,333GHz,
1.333MHz FSB, and 4MB cache running Linux 2.6.15. Figures 8.11, 8.12, 8.13, and 8.14,
show the time required to simulate each workload until any of the comprising benchmarks
finish simulating 300 million instructions. Except for th®1.mcfwith a pathological bad
memory behavior due to nested memory references, all single-thread workloads are fully
simulated in about twelve minutes time, which constitutes a reasonably low computa-
tional cost. As could be a priori expected, doubling the number of benchmarks in the
workload (i.e., dual-thread workload2W\y-) doubles the required simulation time, as
shown in Figure 8.12. Adding more dual-threaT cores, and consequently simultae-
nously simulatin§ more benchmarks, increases the required simulation time as shown in
Figures 8.13 and 8.14.

133

8.6. COMPUTATIONAL COST

96

20

[ee]
I

©
I

T T T
< N o o] ©
— - -

(sd1nuiw) swiy

Figure 8.11: Single-Core Single-Thread Simulation Cost.

il

40

35 ~

30

25
20
15

(s1nuiw) awig

10

5

0,

2W2 2W3 2W4a 2W5 2W6 2W7 2W8 2W9 2W10 AVG

2W1

Figure 8.12: Single-Core Dual-Thread Simulation Cost.

134 CHAPTER 8. APPENDIX: THE MPSIM SIMULATION TOOL

70

60 -

50 4

40 |

30 A —

Time (minutes)
|
|
|

10 -

T T T T T T T T T T
4W1 4W2 4W3 4wW4 4W5 4W6 4W7 4W8 4W9 4W10 AVG

Figure 8.13: Dual-Core Dual-Thread Simulation Cost.

8.7 Conclusions & Future Work

TheMPsimis a highly-flexible general-purpose simulation tool. It constitutes a cycle-
accurate multi-purpose simulation tool which allows simulating a wide range of processor
types. Bothsingle core(Superscalar SMT) and multi core (CMP, CMP+SMT), so as
homogeneouandheterogeneousonfigurations, are available and may be employed by
means of its flexiblé®arameter Interface

TheMPsimhas been developed, and keeps on evolving, to constitute a simulation tool
to assist computer architecture research in a wide range of scenarios. The programming
phylosophy employed in the development of #@sim favors high-flexibility, without
critically compromising computational cost, so as new ideas could be easily added to
the simulation tool’s functionality. The simulation results included confirm that high-
flexibility may be provided in a general-purpose simulator without hardly compromising
its computational cost.

8Since theMPsimis designed using sequential code, as done byM&sim increasing the size of the
workload linearly increases the simulation cost. A parallel programmed version bfReensimulator is
currently being developed.

8.7. CONCLUSIONS & FUTURE WORK 135

100

90 -

80 -]]

50 + —

40 -

Time (minutes)

30 A

20 A

10 -

T T T T T T T T T T
8W1 8wW2 8W3 8w4a 8W5 8W6 8W7 8ws 8W9 8W10 AVG

Figure 8.14: Quad-Core Dual-Thread Simulation Cost.

TheMPsimsimulator is already being used as simulation tooD#\C andBSCmem-
bers. The different researchs in which is getting involved have made it evolve, yielding
additional functionality to the one described herein. Among others, this additional func-
tionality added to théPsimsimulator includesnulti Instruction Set Architecture (mul-
tilISA) simulation (ALPHA & PowerPC). Th&Psim communitys growing step by step,
using thegrup-mpsim @ac.upc.edu distribution list as meeting point.

8.7.1 Further Considerations and Acknowledgements

The MPsim simulator is the product of a combinated effort that started long before
the beginning of this PhD dissertation. The original idea of developing such a simulation
tool comes fronDaniel Ortega who also envisioned and developed the main functions of
the library upon which it is built th&1Psim’s Parameter InterfaceSome of theMPsim’s
single-threadfunctionality comes fronf\yose FalcorandOliverio Santangfetch engine
& branch prediction). In th&MTfield, Francisco J. Cazorlg contributions (IFetch Poli-
cies & some of the Simulation Finalization MethodologiesMBsimwere of a crucial
importance. Thd?ower Measuremerfunctionality has its origins in the work done by
Domen Novalat BSC Others researchers asroen VermoulerMiquel MoretoandJose
C. Ruizhave contributed to increase th#Psim’srobustness.

136 CHAPTER 8. APPENDIX: THE MPSIM SIMULATION TOOL

With all these contributions, the task of developping a highly-flexible simulation tool,
that would include all this stuff in a computationally and reasonable way, has comprised
a great challenge. It firstly was developped MBsim’s Parameter Interfacasing the
functions developped bpaniel Ortega and adding some more to complete the interface
library. Then, the whole simulator had to be redesigned to create a centidlirmteter
Data Basefrom which all simulator parameters would be obtaih#dth such aParam-
eter Data Baseavailable, each of the simulator components (execution pipeline stages,
memory, etc) was added a initialization phase, overall orchestratingithelator Ini-
tialization Phase Using theMPsim’s Parameter Interfacas a general input for all new
simulation functionality, multicore staff was added (fully configurable multicore config-
urations). To support covering unusual processor layouts, the whole memory subsystem
was revisited so that the user could specify how many components does he want to use
in each configuration, so as the specific parameters for each of these components. A reg-
ular expression grammar was added to Miesim’s Parameter Interfact allow high-
flexibility when specifying the connections between each of these components. Other
simulation functionality such as dynamic thread migration (between execution cores),
L2 cache access arbiter, shared fetch engine or pipeline depth specification were added,
among others, also using tMPsim’s Parameter Interfac® adquire the required simu-
lation parameters.

Regarding ongoing and future workjiquel Moretois responsible for thenultilSA
MPsimimplementation which seems a very promising simulation functionality to cover
the incomingHeterogeneous Processor Generatiovith multiple ISAson a single chip,
like the Cell ProcessorFowerPCandSIMD,Altiveq.

Thank you very much indeed f@aniel Ortega Ayose FalconOliverio SantanaFran-
cisco J. CazorlaDomen NovakJeroen VermoulenJose C. RuiandMiquel Moretofor
all their contributions to thé&Psimsimulation tool.

9S0 far it was done using headers.c and having to recompile the whole simulator. The amount of variable
parameters that could be provided using the simulator input arguments was quite limited.

Publications

International Conferences

e A Complexity-Effective Simultaneous Multithreading Architecture
Carmelo Acosta, Ayose Falcon, Alex Ramirez and Mateo Valero.
International Conference On Parallel Processing (ICPP-08slo
(Norway). June 2005.

e Core to Memory Interconnection Implications for Forthcoming On-
Chip Multiprocessors Carmelo Acosta, Francisco J. Cazorla, Alex
Ramirez and Mateo Valerolst Workshop on Chip Multiprocessor
Memory Systems and Interconnects (CMP-M&hpenix, USA. Febru-
ary 2007.

e MFLUSH: Handling Long-latency loads in SMT On-Chip Multipro-
cessors Carmelo Acosta, Francisco J. Cazorla, Alex Ramirez and
Mateo ValeroInternational Conference On Parallel Processing (ICPP-
08), Portland (USA). September 2008.

National Conferences

e Heterogeneity-Aware Architecture€armelo Acosta, Ayose Falcon,
Alex Ramirez and Mateo Valer&XV Jornadas de ParalelisméImera
(Spain). September 2004.

e hdSMT: An Heterogeneity-Aware Simultaneous Multithreading Ar-
chitecture Carmelo Acosta, Ayose Falcn, Alex Ramirez and Mateo
Valero. XVI Jornadas de ParalelismaGranada (Spain). September
2005.

137

138 PUBLICATIONS

Others

e Complexity-Effectiveness in Multithreading Architectur€sarmelo
Acosta, Ayose Falcon, Alex Ramirez and Mateo ValeACACES
2005 L'Aquila (Italy). August 2005.

Submitted Papers

e Thread to Core Assignmentin SMT On-Chip MultiprocessGezmelo
Acosta, Francisco J. Cazorla, Alex Ramirez and Mateo Val8tin-
mitted to SBAC - PAD 2009

e hTCA: An OS-driven Framework for Complexity-Effectiveness in SMT
On-Chip Multiprocessors Carmelo Acosta, Francisco J. Cazorla,
Alex Ramirez and Mateo ValerdPending due to dependences with
unpublished paper

Technical Reports

e A First Glance at a Heterogeneity-Aware Simultaneous Multithread-
ing Architecture Carmelo Acosta, Ayose Falcon, Alex Ramrez and
Mateo Valero.UPC-DAC-2004-23June 2004.

e Maximizing Multithreaded Multicore Architectures through Thread
Migrations Carmelo Acosta, Ayose Falcon, Alex Ramrez and Ma-
teo Valero.UPC-DAC-RR-CAP-2009;Jdanuary 20009.

e The MPsim Simulation ToolCarmelo Acosta, Francisco J. Cazorla,
Alex Ramrez and Mateo ValertlPC-DAC-RR-CAP-2009-1March
20009.

List of Figures

1.1
1.2
1.3
1.4

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

3.9

3.10
3.11
3.12
3.13

Process Advancements Fulfill Moore’sLaw.
Nanotechnology Gate Dielectrics.

A possible classification of Multithreaded Architectures. . 4
A continous spectrum of Multithreaded approaches. 6
Moore'sLaw. 22

Rename Registers needed to reach 90% Performance. 26

Benefits of Sharing L1 caches in a four-cored CMP. . . 27
Average lQ Size. oo 28
Average LQ Size.. o 28
Heterogeneity at Inter-Application level. 30
Heterogeneity at Intra-Applicationlevel. 31
Heterogeneity at Intra-Application level at coarser granu-
larity (IMcycles). oL 33
Dual Speed Pipelines Architecture. 37
Heterogeneous Multicore Architecture. 37
The hdSMT Architecture. 38
Pipelinemodels. 45
Area estimation of evaluated microarchitectures. 48

139

140

3.14
3.15

4.1
4.2
4.3

4.4
4.5
4.6

4.7
4.8

4.9

4.10
4.11
4.12

5.1
5.2
5.3
5.4
5.5
5.6

LIST OF FIGURES

Performance comparison. 50
Performance per Area comparison. 51
TCAExample. 58
Scheduling Layers in SMTs and Multicored SMTs. 61
Linux 2.6 logical domains - Example in a CMP+SMT with
2SMTcores. e 62
TCASensitivity. 63
Example with different TCAs for a 4-thread workload. . . 65

Probability of Throughput Loss in 8-thread workloads us-
ingRandom TCAs. 65

TCA Algorithm implementation for FLUSH/STALL policy. 67
TCA Algorithm Example for FLUSH/STALL implemen-

tation (8 Threads). 68
TCA Algorithm Example for RR/ICOUNT implementa-
tion(8Threads).. 69
TCA Calibration. 71
TCA Algorithmresults. 74
TCA Algorithmresults. 74
Throughput in single-core SMT. 81
Energy Consumption. 82

Additional Energy Consumption in single-core FLUSH SMT. 83
TCA Sensitivity for 4 and 8-core CMP+SMTs. 84
Scheduling Layers in CMP+SMTs with and without hTCA. 85

hTCA Framework Example for 2-core ICOUNT/FLUSH
CMP+SMT. e 88

LIST OF FIGURES 141

5.7

5.8
5.9
5.10

6.1
6.2
6.3
6.4
6.5
6.6

6.7
6.8

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9

8.10

hTCA Algorithm implementation for ICOUNT/FLUSH poli-

CIES. . . o i e 89
Average System Throughput Comparison. 90
hTCAresults. 91
hTCA Energy Consumption Reduction. 91
Throughput in single-core SMT. 99
Average throughput in multicore CMP+SMT configurations.100
Average L2 cache hittime. 101
Detection Moment Analysis. 102
MFLUSH Operational Environment. 103
MFLUSH hardware support for a 4-core CMP with a 4-
banked L2 Cache., 106
ThroughputResults. 110
FLUSHWastedEnergy. 111
MPsim Processor Types. 118
Parameter Interface Example for a Cell-like configuration. 120
MPsim Processor Pipeline Stages. 122
MPsim BEST DYNAMIC migration heuristic. 123
MPsim Memory Subsystem. 125
MPsim Memory Relation Regular Expression Grammar. . 126
MPsim Memory Subsystem Example. 126
MPsim Memory Component Relations Example. 127
4-bank 4-port L2 Cache and 8-bank 2-port L1 Cache Ex-
ample. 128

L2 Cache Access Arbiter. 129

142 LIST OF FIGURES

8.11 Single-Core Single-Thread Simulation Cost. 133
8.12 Single-Core Dual-Thread SimulationCost. 133
8.13 Dual-Core Dual-Thread Simulation Cost. 134

8.14 Quad-Core Dual-Thread SimulationCost. 135

List of Tables

2.1
2.2
2.3
2.4

3.1
3.2
3.3

4.1

5.1

5.2

6.1

8.1

FastForward used for each Spec INT 2000 Benchmark. . . 14
FastForward used for each Spec FP 2000 Benchmark. . . . 15
Cache behavior of each benchmark in a 512Kb L2 cache. . 16
Simulation parameters (resources marked with * are repli-
catedperthread) 18
Application Heterogeneity Simulation Configuration.. . 24

Two and four threaded workloads (I=ILP, M=MEM, X=MIX) 47
Sixthreaded workloads. a7

Simulation parameters and Workloads. (resources marked
with * are replicated perthread) 59

Simulation parameters and Workloads. (resources marked

with * are replicated perthread) 80
Energy Consumption Factor. 83
Workloads used in MFLUSH research. 97

Workloads used for evaluating the computational cost. Re-
sources with * follow a private per-thread implementation. 132

143

144 REFERENCES

References

http://researchweb.watson.ibm.com/journal/rd/446/borkenhagen.txt.

http://www.amd.com/us-en/Processors/Productinformation/

0,,301181022010221%5E964,00.html.
http://www.intel.com/design/intarch/pentiumiii/pentiumiii.htm.

UltraSPARC T2 Supplement to the UltraSPARC Architecture 2007.

Desktop Performance and Optimization for Intel Pentium 4 Processor

— Intel White Paper.

[6] Enhanced Intel SpeedStep Technology for the Intel Pentium M Pro-
cessorWhite Paper(2004).

[7] UltraSPARC T1 SupplemenbDraft D2.0, 17 Mar(2006).

[8] AcosTA, C., CAZORLA, F., RAMIREZ, A., AND VALERO, M. The
MPsim complete handbook. Tech. Rep. UPC-DAC2009, 2009.

[9] AcosTa, C., FALCON, A., RAMIREZ, A., AND VALERO, M. A
Complexity-Effective Simultaneous Multithreading Architecture. In
Proc. of ICPP-352005).

[10] AGARWAL, A., Lim, B. H., KRANZ, D., AND KUBIATOWICZ, J.
APRIL: A processor architecture for multiprocessing. Tech. Rep.
MIT/LCS/TM-450, 1991.

[11] ALPERT, D. WIill microprocessor become simpler? Microprocessor
Report, Nov. 2003.

[12] ALVERSON, R., CALLAHAN, D., CuUMMINGS, D., KOBLENZ, B.,
PORTERFIELD, A., AND SMITH, B. The Tera computer system,
1990.

[13] B. SINHAROY, R. N. KALLA, J. M. T. R. J. E.,AND JOYNER,

J. B. POWERS5 system microarchitectutBM Journal of Research
and Development. 49(4/5):505-82005).

[14] BovET, D. P.,AND CESATI, M. Understanding the Linux Kernel -
Third Edition.

[15] BROOKS, D., TIWARI, V., AND MARTONOSI, M. Wattch: a frame-
work for architectural-level power analysis and optimizations. In
ISCA(2000), pp. 83-94.

[16] BURNS, J.,AND GAuUDIOT, J. Quantifying the SMT Layout Over-
head - Does SMT Pull its Weight? IRroceedings of the 6th In-
ternational Conference on High Performance Computer Architecture
(2000), pp. 109-120.

[17] BURNS, J., AND GAUDIOT, J. SMT Layout Overhead and Scala-

bility. IEEE Transactions on Parallel and Distributed Systems2.3

OB W NH

REFERENCES 145

(Feb. 2002), 142 — 155.

[18] CAZORLA, F. J., ERNANDEZ, E., RAMIREZ, A., AND VALERO,

M. Improving Memory latency aware fetch policies for SMT proces-
sors. InProc. of ISHPC-\(2003).

[19] CAZORLA, F. J., ERNANDEZ, E., RAMIREZ, A., AND VALERO,

M. DCache Warn: An I-Fetch policy to increase SMT efficiency. In
Proc. of IPDPS-18§2004), pp. 24-34.

[20] CAZORLA, F. J., ERNANDEZ, E., RAMIREZ, A., AND VALERO,

M. Dynamically Controlled Resource Allocation in SMT Processors.
In Proceedings of 37th Annual ACM/IEEE International Symposium
on Microarchitecturg2004).

[21] CoLLINS, J. D.,AND TULLSEN, D. M. Clustered multithreaded
architectures — Pursuing both IPC and cycle timePtoc. of IPDPS-
18(2004).

[22] DESIKAN, R., ERNST, D., GUTHAUS, M., KiMm, N., LARSON, E.,
MUDGE, T., MURUKATHAMPOONDI, H., SANKARALINGAM , K.,
YODER, B., AUSTIN, T., AND BURGER, D. SimpleScalar Version
4.0 Releaseheld in conjunction with MICRO-3@ec. 2001).

[23] DHODAPKAR, A., AND SMITH, J. Comparing Program Phase De-
tection Techniques. IRroceedings of 36th Annual ACM/IEEE Inter-
national Symposium on Microarchitectui2003).

[24] EL-MOURSY, A., AND ALBONESI, D. H. Front-End Policies for
Improved Issue Efficiency in SMT Processors Pimceedings of the
9th International Conference on High Performance Computer Archi-
tecture(2003), pp. 65 — 76.

[25] EYERMAN, S.,AND EECKHOUT, L. A Memory-Level Parallelism
Aware Fetch Policy for SMT Processors. Pnoceedings of the 13th
International Conference on High Performance Computer Architec-
ture (2007).

[26] FOLEGNANI, D., AND GONzALEZ, A. Energy-Effective Issue
Logic. In Proceedings of 28th Annual International Symposium on
Computer Architecturé2001).

[27] GSCHWIND, M., HOFSTEE H. P., HLACHS, B., HOPKINS, M.,
WATANABE, Y., AND YAMAZAKI , T. Synergistic processing in cells
multicore architecturelEEE Micro 26 2 (Mar. 2006), 10-24.

[28] HALSTEAD, R.,AND FUJITA, T. MASA: A multithreaded processor
architecture for parallel symbolic computing, May 1988.

[29] HAMMOND, L., NAYFEH, B. A., AND OLUKOTUN, K. Single-
chip multiprocessor. IHEEE Computer Special Issue on Billion-

146 REFERENCES

Transistor Processorgl997).

[30] HIRATA, H., KIMURA, K., NAGAMINE, S., MOCHIZUKI, Y.,
NISHIMURA, A., NAKASE, Y., AND NISHIZAWA, T. An elemen-
tary processor architecture with simultaneous instruction issuing from
multiple threads. IrProceedings of the 19th Annual International
Symposium on Computer Architectiiiday 1992), pp. 136 — 145.

[31] Hwu, W. W., AND PATT, Y. N. HPSm, a High Performance Re-
stricted Data Flow Architecture Having Minimal Functionality. 25
Years ISCA: Retrospectives and Repr(it898), pp. 300-308.

[32] J. VERA, F. J. QAZORLA, A. PAJUELO, O. J. \NTANA, E. FER-
NANDEZ, AND M. VALERO. A novel evaluation methodology to ob-
tain fair measurements in multithreaded architectur@soc. of the
2nd. Workshop on Modeling, Benchmarking and Simula{20®6).

[33] JaIN, R., HuGHES, C. J., AND ADVE, S. V. Soft Real-Time
Scheduling on Simultaneous Multithreaded Processorsran. of
23th Intl. Real-Time Systems Sympos(@002).

[34] JIMNEZ, D., AND LIN, C. Dynamic Branch Prediction with Percep-
trons. InProceedings of the 7th International Conference on High
Performance Computer Architectuf2001), pp. 197-206.

[35] KANELLOS, M. Moore’s law to roll on for another decad€NET
News.confFeb. 2003).

[36] KUEHN, J. T.,AND SMITH, B. J. The horizon supercomputing sys-
tem: Architecture and software, Nov. 1988.

[37] KUMAR, R., FARKAS, K., JOUPPI, N. P., RANGANATHAN, P.,AND
TULLSEN, D. M. Single-ISA Heterogeneous Multi-Core Architec-
tures: The Potential for Processor Power ReductiorProteedings
of 36th Annual ACM/IEEE International Symposium on Microarchi-
tecture(2003).

[38] KUMAR, R., TULLSEN, D. M., RANGANATHAN, P., buPP|, N. P.,
AND FARKAS, K. I. Single-ISA heterogeneous multi-core architec-
tures for multithreaded workload performancePhoceedings of 31st
Annual International Symposium on Computer Architec{@4).

[39] LE, H., STARKE, W., FHELDS, J., O'CONNELL, F., NGUYEN, D.,
RONCHETTI, B., SAUER, W., SCHWARZ, E.,AND VADEN, M. IBM
POWERG6 microarchitecturéBM J. Res. Dev. 516 (2007), 639-662.

[40] LEE, S., AND GANDIOT, J.-L. ALPSS: architectural level power
simulator for simultaneous multithreading, version 1.0. Tech. Rep.
CENG-02- 04, 2002,

[41] LEVY, M. Multithreaded technologies disclosed at MPF. Micropro-

REFERENCES 147

cessor Report, Nov. 2003.

[42] LimousIN, C., SEBOT, J., VARTANIAN, A., AND DRACH-TEMAM,

N. Improving 3d geometry transformations on a simultaneous mul-
tithreaded simd processor. Rroceedings of the 15th International
Conference on Supercomputifigay 2001).

[43] M. J. SERRANO AND R. WOOD AND M. NEMIROVSKY. A Study on
Multistreamed Superscalar Processors. Tech. Rep. 93-05, University
of California Santa Barbara, 1993.

[44] MCFARLING, S. Combining Branch Predictors. Tech. Rep. WRL-
TN-36, 1993.

[45] MOORE, G. E. Cramming more components onto integrated circuits.
Electronics Magazine

[46] MOORE, G. E. Excerpts from A Conversation with Gordon Moore:
Moores Law.Intel Corporation - White Paper

[47] MULVIHILL , D., AND ALLEN, M. Evaluating branch predictors on
an SMT processor. Tech. Rep. CS 752, University of WisconsinMadi-
son, 2002.

[48] OLUKOTUN, K., NAYFEH, B. A., HAMMOND, L., WILSON, K.,
AND CHANG, K. The case for a single-chip multiprocessor Plioc.
of ASPLOS-71996).

[49] PHAM, D., ASANO, S., BOLLIGER, M., DAY, M. N., HOFSTEE
H. P., DHNS, C., KAHLE, J., KAMEYAMA , A., KEATY, J., MA-
SUBUCHI, Y., RILEY, M., SHIPPY, D., STASIAK, D., SUZUOKI,

M., WANG, M., WARNOCK, J., WEITZEL, S., WENDEL, D., YA-
MAZAKI, T., AND YAZAWA, K. The Design and Implementation of
a First-Generation CELL Processor. ImIntl. Solid-State Circuits
Conference Digest of Technical Pap€2605).

[50] PYREDDY, R.,AND TYSON, G. Evaluating design tradeoffs in dual
speed pipelines. IRroc. of WCED-22001).

[51] RAASCH, S. E.,AND REINHARDT, S. K. The Impact of Resource
Partitioning on SMT Processors. Rroc. of PACT-122003).

[52] RAMIREZ, A., SANTANA, O., LARRIBA-PEY, J., AND VALERO,

M. Fetching Instruction Streams. Rroceedings of 35th Annual
ACM/IEEE International Symposium on Microarchitect(@€0?2).

[53] RAMSAY, M., FEUCHT, C.,AND LIPASTI, M. H. Exploring efficient
smt branch predictor design. Froceedings of the 2003 Workshop
on Complexity Effective Desid@003).

[54] SEZNEC, A., FELIX, S., KRISHNAN, V., AND SAZEIDES, Y. De-
sign trade-offs on the EV8 branch predictor. Rroceedings of 29th

148 REFERENCES

Annual International Symposium on Computer Architec{@o?2).

[55] SHERwooOD, T., PERELMAN, E., AND CALDER, B. Basic Block
Distribution Analysis to Find Periodic Behavior and Simulation
Points in Applications. IfProc. of PACT-1q2001).

[56] SHERwoOD, T., PERELMAN, E., HAMERLY, G., SAIR, S., AND
CALDER, B. Discovering and Exploiting Program Phasd&EE
Micro 23, 6 (Nov. 2003), 84-93.

[57] SHERwoOOD, T., SAIR, S.,AND CALDER, B. Phase Tracking and
Prediction. InProceedings of 30th Annual International Symposium
on Computer Architectur€003).

[58] SHIN, C., LEE, S.-W.,AND GAUDIOT, J.-L. Dynamic scheduling
Issues in SMT architectures. Rroc. of IPDPS-1712003).

[59] SIGMUND, U., STEINHAUS, M., AND UNGERER T. On Perfor-
mance, Transistor Count and Chip Space Assessment of Multimedia-
enhanced Simultaneous Multithreaded Processors. Prbt. of
MTEAC-4(2000).

[60] SINHAROY, B., KALLA, R. N., TENDLER, J. M., HCKEMEYER,

R. J.,AND JOYNER, J. B. POWERS5 System microarchitectulidM
J. Res. Dev. 4A/5 (2005), 505-521.

[61] SMITH, B. Architecture and applications of the hep multiprocessor
computer system. IRroceedings of the Fourth Symposium on Real
Time Signal Processin@ 981), pp. 241 — 249.

[62] SMITH, J. E.,AND PLESZKUN, A. R. Implementation of Precise
Interrupts in Pipelined Processors.IBCA(1985), pp. 36—44.

[63] SNAVELY, A., TULLSEN, D., AND VOELKER, G. Symbiotic Job-
scheduling with Priorities for a Simultaneous Multithreading Proces-
sor. INSIGMETRICS Conf. Measurement and Modeling of Comput.
Syst.(2001).

[64] STEINHAUS, M., KOLLA, R., LARRIBA-PEY, J. L., UNGERER T.,
AND VALERO, M. Transistor Count and Chip-Space Estimation of
SimpleScalar-based Microprocessor Models. Phac. of WCED-2
(2001).

[65] STEINHAUS, M., KOLLA, R., LARRIBA-PEY, J. L., UNGERER
T., AND VALERO, M. Transistor Count and Chip-Space Estimation
of Simulated Microprocessors. M R. UPC-DAC-2001-16, UPC
(2001).

[66] STORINO, S., AIPPERSPACH A., BORKENHAGEN, J., HCKE-
MEYER, R., KUNKEL, S., LEVENSTEIN, S., AND UHLMANN, G.

A commercial multithreaded risc processor, Feb. 1998.

REFERENCES 149

[67] SWANSON, S., McDOWELL, L., SWIFT, M., EGGERS S., ,AND
LEVY, H. An evaluation of speculative instruction execution on si-
multaneous multithreaded processo®sCM Transactions on Com-
puter Systems 2B (2003), 314 340.

[68] TARJAN, D., THOZIYOOR, S.,AND JOUPPI, N. Cacti 4.0. Technical
Report HPL-2006-86, Hewlett-Packard. Tech. rep.

[69] TuLLOCH, P. Discussing the Many-Core Future, 2007.

[70] TULLSEN, D. M., AND BROWN, J. A. Handling Long-latency loads
in a Simultaneous Multithreaded Processor.Phceedings of 34th
Annual ACM/IEEE International Symposium on Microarchitecture
(2001), pp. 318 — 327.

[71] TULLSEN, D. M., EGGERS S., AND LEVY, H. M. Simultane-
ous multithreading: Maximizing on-chip parallelism.Pnoceedings
(()f 22r;d Annual International Symposium on Computer Architecture
1995).

[72] TULLSEN, D. M., EGGERS S. J., MER, J. S., LEVY, H. M., LO,

J. L.,AND STAMM, R. L. Exploiting Choice: Instruction Fetch and
Issue on an Implementable Simultaneous Multithreading Processor.
In Proceedings of 23rd Annual International Symposium on Com-
puter Architecturg1996).

[73] UNGERER T., RoBIC, B., AND SiLC, J. Multithreaded processors.
The Computer Journal 43 (Nov. 2002), 320341.

[74] UNGERER T., ROBIC, B., AND SILC, J. A survey of processors
with explicit multithreading. ACM Computing Surveys 33 (Mar.
2003), 2963.

[75] Usami, K., AND HOROWITZ, M. Clustered voltage scaling tech-
niques for low-power design. IAroc. of the Intl. Symposium on Low
Power Electronics and Desigii995).

[76] WALL, D. W. Limits of instruction-level parallelism. [Rroceed-
ings of the 4th International Conference on Architectural Support for
Programming Languages and Operating Systét®91), pp. 176 —
188.

[77] WECHSLER O. Inside Intel Core Microarchitecture - Setting New
Standards for Energy-efficient Performand&’hite Paper(2006).

[78] WoLF, W. FPGA-Based System Design. Prentice Hall, 2004.

[79] YAmAMOTO, W., AND NEMIROVSKY, M. Increasing superscalar
performance through multistreaming. MRroceedings of the 1st In-
ternational Conference on High Performance Computer Architecture
(1995), p. 49 58.

150 REFERENCES

[80] YAMAMOTO, W., AND NEMIROVSKY, M. Increasing superscalar
performance through multistreaming. Pmoc. of PACT(1995).

[81] YEH, T., AND PATT, Y. A comparison of dynamic branch predictors
that use two levels of branch history. Bioceedings of 20th Annual
International Symposium on Computer Architect(4893), pp. 257
— 266.

[82] ZAKI, O., McCORMICK, M., AND LEDLIE, J. Adaptively Schedul-
ing Processes on a Simultaneous Multithreading Processor.

	Agradecimientos

	Abstract

	Contents

	====================

	Chapter 1 - Introduction

	 1.1 Simultaneous
Multithreading and Multicore Processors
	 1.2 Heterogeneity-Awareness
	 1.3 Thesis Contributions

	 1.4 Thesis Structure

	====================

	Chapter 2 - Experimental Framework

	 2.1 Simulation Methodology

	 2.2 Benchmarks

	 2.3 Complexity-Effectiveness Metrics

	 2.4 Cache Configuration

	 2.5 MPsim

	====================

	Chapter 3 - Heterogeneous Simultaneous Multithreading Processors

	 3.1 Application Heterogeneity

	 3.1.1 Heterogeneity Considerations in the Processor Design

	 3.1.2 Methodology

	 3.1.3 Inter-Application Heterogeneity

	 3.1.4 Intra-Application Heterogeneity

	 3.2 Heterogeneity-Aware Architectures

	 3.3 The hdSMT Architecture

	 3.3.1 Mapping policies in hdSMT

	 3.3.2 Area Cost Model

	 3.3.3 Simulation Setup

	 3.3.4 Microarchitectures and Metrics

	 3.3.5 Simulation Results

	 3.4 Chapter Summary

	====================

	Chapter 4 - Heterogeneity-Awareness in Multithreaded Multicore Processors

	 4.1 Introduction

	 4.2 Methodology

	 4.3 Scheduling in Multicored SMT Processors

	 4.4 Thread to Core Assignment and the IFetch Policy

	 4.5 Thread to Core Assignment Algorithm

	 4.5.1 TCA Algorithm Foundations

	 4.5.2 TCA Algorithm

	 4.5.3 TCA Calibration

	 4.5.4 TCA Algorithm Evaluation

	 4.6 Related Work

	 4.7 Chapter Summary

	====================

	Chapter 5 - Heterogeneity-Aware Multithreaded Multicore Processors

	 5.1 Introduction

	 5.2 Methodology

	 5.3 IFetch Policy in SMT Processors

	 5.3.1 Instruction Energy Consumption in SMT Processors

	 5.4 Thread to Core Assignment in SMT On-Chip Multiprocessors

	 5.5 The hTCA framework

	 5.5.1 Hardware/Software co-design

	 5.5.2 The hTCA Algorithm

	 5.5.3 hTCA evaluation

	 5.6 Related Work

	 5.7 Chapter Summary

	====================

	Chapter 6 - Further Considerations when Moving to Multicore

	 6.1 Introduction

	 6.2 Methodology

	 6.3 Analysis

	 6.3.1 Single-core analysis

	 6.3.2 Multiple-core analysis

	 6.3.3 Detection Moment Analysis

	 6.4 The MFLUSH Policy

	 6.4.1 MFLUSH Hardware Support

	 6.4.2 MFLUSH Throughput Evaluation

	 6.4.3 MFLUSH Power Consumption Evaluation

	 6.5 Related Work

	 6.6 Chapter Summary

	====================

	Chapter 7 - Conclusions

	 7.1 Thesis conclusions

	 7.2 Future work

	====================

	Chapter 8 - Appendix: The MPsim Simulation Tool

	 8.1 MPsim overview

	 8.2 Parameter Interface

	 8.3 The Pipeline

	 8.3.1 Thread Migration

	 8.4 The Memory Subsystem

	 8.4.1 Multibanked & Multiported Caches

	 8.4.2 L2 Cache Access Arbiter

	 8.5 Power Measurement

	 8.6 Computational Cost

	 8.7 Conclusions & Future Work

	 8.7.1 Further Considerations and Acknowledgements

	====================

	Publications

	List of Figures

	List of Tables

	References

