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A algunos ya los conocı́a de antes, como a Xavi Verdú y Fran Cazorla, dos buenos amigos
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con nostalgia y una sonrisa en los labios aquellas partidas alQuakecon Ayose Falćon,
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Canal. Ḿas adelante, elQuakedaŕıa paso alNeed for Speedy al Wormsy nuevos “conten-
dientes”, como Jaume Abella, y otros no tan nuevos como Marco Galluzzi, Ale Garcı́a, y
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pacientes con mi incipiente catalán. En este apartado quiero hacer una mención especial
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J.R. Tolkien bueno, ḿas bien a Peter Jackson que al otro nunca lo tragué demasiado, por
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Abstract

As enter into the so-calledBillion Transistor Era, with billions of transistors on a sin-
gle chip, the Computer Architecture faces new challenges. The performance achievable
by traditional superscalar processor designs does not scale with the increasing transistor
count due to limitations imposed by theInstruction Level Parallelism (ILP). As a conse-
quence,Thread Level Parallelism (TLP)has become a common strategy for improving
processor performance. Since it is difficult to extract moreILP from a single application,
multithreaded processors focus on the processor throughput, executing multiple applica-
tions instead. Obviously, multiple execution threads coming from a single application
may be simultaneously executed, but sometimes it is not that trivial exploitingILP: we
can not simply rely onParallel Programming. As the number of cores on a single chip in-
creases, the Computer Architecture community wonders whether this new trend towards
having hundreds of cores on a single chip, also calledmany-cores, is worthwhile.

The complexity of state-of-the-art designs is translated into power and thermal chal-
lenges. Power efficiency can often be traded for performance or cost benefits. With the
increasing power density of modern circuits, as the number of transistors per chip scales
(Moore’s Law), power efficiency has increased its importance. Thus, current processor
designs must becomplexity-effective: i.e. get the highest throughput possible with the
lowest power consumption. In addition, power dissipation issues constrain the designs of
the next processor generations. The quest for simpler ways of increasing the processor
throughput under a reasonable power cost is on the way.

In this thesis we analyze the heterogeneity in the behavior of applications and match
it with the processor design itself. We show that this heterogeneity turns current general-
purpose processors overdesigned for most cases. We also show that currentmultithreaded
multicore (CMP+SMT)processors are not explicitly aware of this software heterogeneity,
that is they are notHeterogeneously-Aware. We propose architectural changes in order to
turnHeterogeneously-AwaretheCMP+SMTprocessors. Our proposals strive to improve
thecomplexity-effectivenessof future generations ofCMP+SMTprocessors.
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Chapter 1

Introduction

The process technology advances are propelling the computer industry towards the so-
calledBillion Transistor Era. Optical and lithographic improvements allows that every
two or three years the industry produces a new level of manufacturing technology that
shrinks die area by a factor of two for the same number of transistors. Figure 1.1 shows
the feature size and gate lengths of various processes Intel expects to put into production
every two years through this decade. In addition, the size comparison of these features
and the influeza virus is shown in Figure 1.1 as an illustrative example of the process
technology’s potential.

The arrival of theBillion Transistor Erais also impeled by the development of new
materials in the industry. Figure 1.2 shows a Transmission Electron Microscope (TEM)
photo. The left side depicts a closeup of a transistor in Intel’s 90nm process. The image
is really only about 1/10th of the actual channel length. The little round structures in Fig-
ure 1.2 are atoms, and they are only about 0.3 nanometers apart in the silicon substrate,
which has a highly regular structure. The size of the insulating SiO2 gate dielectric layer
is only about 4 or 5 atomic thick. While transistors get faster at these smaller dimensions,
leakage current becomes a much greater problem, and the gate structures become much
more fragile. The right-hand side uses a new insulating material with a higher dielec-
tric (K) value, and it can be much thicker and stronger, yet still maintain the same fast
electrical properties as the SiO2 while reducing gate leakage by two orders of magnitude.

From a Computer Architecture’s point of view, the future does not look so promising.
Since the appearance of the firstSuperscalardesign in the 60’s, computer architects have
striven to employ the increasing hardware resource count to boost the performance of ap-
plications. Thus, many processors exploitInstruction Level Parallelism (ILP)to execute

1
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several instructions from a single stream (thread) in parallel. However, there is only a lim-
ited amount of parallelism available in each thread due todataandcontrol dependences,
among other factors [76] :

1. Control dependences: every time a control flow instruction changes the flow of
instructions to a new target instruction, it takes several cycles to start fetching from
that target, which degrades the number ofInstructions committed Per Cycle (IPC).

2. Data dependences: data dependences limit theIPC as well since an instruction
can only start its execution when all its input dependences are resolved. For short-
latency operations the out-of-order mechanism of currentSuperscalarprocessors
hides part of this latency. However, when the processor experiences a long-latency
operation, i.e., a miss in the outer cache level, this mechanism is not able to hide
it causing a stall of the processor. Literature claims these dependences to comprise
probably the ultimate frontier of Parallelism: theMemory Wall.

Computer architects use many hardware resources in order to reduce the effect of
these problems, e.g., bigger and more complex branch predictors to control dependences
and deeper windows to further exploitILP when a long-latency instruction is executed.
However,data andcontrol dependencessignificantly limit performance, degrading the
performance/cost ratio of processors.

Since it is difficult to extract moreILP form a single program, architects opted for exe-
cute multiple programs. Thus,Thread Level Parallelism (TLP)rapidly became a common
strategy for improving processor performance.Multithreaded (MT)processors constitute
a solution to improve the performance/cost ratio of processors, allowing threads to share
hardware resources. There are several categories ofMT processors, each dealing with
the above problems in a different way. The classification ofMultithreadedprocessors is
not well established. In this thesis, we have used a classification similar to that presented
in [73, 74], as explained in Figure 1.3. In this figure, A, B, C and D represent four different
applications. White squares denote unutilized slots.

1. In aSuperscalararchitecture, like theIntel Pentium III [3], only one thread is run-
ning at a given time.

2. In aMulticore processor, like theIntel Core 2 Duo[77], resources are not shared
between threads1. Each thread uses a different set of resources.

3. In aCoarse-Grain Multithreadedprocessor [10, 66], like theIBM Northstar/Pulsar[1]
, threads share more execution resources than in aMulticoreprocessor. Instructions

1These applications likely share some levels of the cache hierarchy.
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Figure 1.3: A possible classification of Multithreaded Architectures.

can be issued from a single thread in a given cycle. ACoarse-Grainprocessor
switches to a different thread when a thread experiences a long-latency operation,
e.g., an outer cache miss. This allows the processors to hide part of the latency of
long-latency operations.

4. Fine-Grain Multithreading[12, 28, 36, 61]: The main difference betweenCoarse-
Grain andFine-Grain Multithreadingis the granularity at which context switches
occur. In aFine-Grain Multithreadedprocessor context switches are caused by
other, not necessarily long-latency, events, e.g. branch misprediction. In this way,
Fine-Grain processors can hide the latency of short-latency operations. Another
difference betweenFine-Grain and Coarse-Grain Multithreadingis that the lat-
ter approach switches between threads much more frequently than the former ap-
proach. As a result, inFine-Grain Multithreading, like theSun UltraSparc T1[7]
andT2 [4], context switches have lower cost (probably 1 cycle) than inCoarse-
Grain Multithreading.

5. The main characteristic ofSimultaneous Multithreading (SMT)processors [30, 43,
72, 71, 79], like theIntel Pentium 4[5], is their ability to issue instructions from
the different threads in the same cycle. As a result,SMTsnot only can switch to a
different thread to use the idle issue cycles in a short-latency operation (likeFine-
Grain Multithreaded), but also fill unused issue slots in a given cycle. Executing
several threads at the same time providesTLP in addition toILP. This parallelism
comes from the additional parallelism provided by the freedom to fetch instructions
from different independent threads, and from mixing them in an appropriate way in
the processor.
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6. TheMultithreaded Multicoreprocessors, like the recentIBM POWER5[60] and
POWER6[39], represent the lattest incorporation to theMT group. The increasing
transistor count on die has made possible to build aMulticore processor in which
each of its execution cores implementsSMT feature. The example on the right side
of Figure 1.3 shows a 2-core implementation with 2-hardware contexts per core.
The private hardware resources within each execution core are shared among the
two applications running simultaneously.

Regardingcontrol dependences, MT processors reduce the dependence of throughput
on branch prediction accuracy. That is, branch prediction accuracy is not of the utmost
importance when running multithreaded applications [47, 53]. This is mainly due to the
fact that the opportunity of fetching from several threads reduces the percentage of spec-
ulative instructions on a wrong path [67].

Regardingdata dependences, MT processors have shown to be successful in reducing
the effect of data dependences [24, 42, 70]. This is due to the ability ofMT processors to
execute instructions from several threads2.

Given all these advantages ofMT processors, current trends in Computer Architec-
ture show that forthcoming processor generations will involve some form of multithread-
ing [11, 41]. In fact, many of the main processor vendors already have some multithreaded
processors. Some examples are theIntel Pentium 4[5], a dual threadSMT, theIntel Core
2 Duo [77], a dual core processor, the IBMPOWER5[60] andPOWER6[39], dual core
processors comprised of 2-contextSMT cores, and theSun Niagara T1[7] and T2 [4],
with eight 4 and 8-contextFine-Grain Multithreadedcores respectively.

The processor generation’s state-of-the-art also reveals a trend towards increasing the
exection core count on a single chip [69]. Potentially down the road, assuming a contin-
ued trajectory, the current trend could lead to the development of a massive core future
whereby one chip could contain thousands of processing cores. We would then jump to a
new step in theMT roadmap: TheMany-CoreProcessors.

With this sea change in the architecture of the hardware, we are witnessing the Soft-
ware Community wrestling with a massive shift from serial-based thinking to parallelism.
However, the general feeling in the Software Community reveals a quite blunt and nega-
tive reaction to this grandiose trajectory that the Hardware Community has set in motion.
With this type of feedback coming from the Software Community, could it be we are
witnessing the end of an era?

2MT is orthogonal to the out-of-order mechanism of the processor, if it exists.
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Figure 1.4: A continous spectrum of Multithreaded approaches.

As Computer Architects we can not unilaterally decide the future of the whole Com-
puter Community. Sometimes we have to sit back and consider alternative ways of reach-
ing our goal; ways that take into account the perspective of other communities. In this
sense, if we have a look at the executed applications it is straightforward that they have
anheterogeneousbehavior, as we will see in Chapter 3. Thisheterogeneitycan be found
comparing the behavior of both different applications and different portions of execution
within the same application. It is then logical that we should start designing processors
explicitly aware of thisheterogeneityin the software they execute. We call this new ap-
proachHeterogeneity-Aware Architectures.

1.1 Simultaneous Multithreading and Multicore Processors

Simultaneous Multithreading (SMT)[71, 72, 79] andMulti-Core processors, orChip
Multiprocessors (CMP)[48, 29], represent opposity edges of the same continuous spec-
trum, as shown in Figure 1.4. The first one evolves the traditionalSuperscalararchitecture
by sharing all the processor resources among more than one running thread. The latter
relies on simpler execution cores, replicating them on a single chip and allocating running
threads to these cores. Each one represents a different approach to optimize the perfor-
mance that a fixed transistor budget can produce:A big machine where every resource is
shared versus several simpler machines where the sharing locality is restricted. But they
also imply a commitment:the single thread high-performance ofSMT, at a complexity
cost, against the low complexity but limited single-threaded performance ofCMP. How-
ever, there is also a wide spectrum in betweenSMTandCMP approaches as we vary the
amount of shared resources on chip [21].

Multithreaded Multicore (CMP+SMT)processors represent a new trend in industry.
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The advances in process technology have made possible to replicate multiple execution
cores withSMT facilities on a single chip. In this processors, the whole transistor count
is splitted among all the constituent cores, reducing the overall complexity of the chip.
However, each of these cores can simultaneously execute multiple threads in order to
boost the throughput of each core. The use ofSMT within each core allows to increase
the resource budget of the execution cores without severely increase the possibility of
resource underuse. Notice that whileCMPsmainly rely onTLP SMTshelp to balance
bothTLP andILP.

In this thesis it is explored the continous spectrum shown in Figure 1.4. On the one
hand, new architectures are proposed that lay on the same spectrum but emphasize the
complexity-effectiveness of the processor design. On the other hand, some proposals are
given to improve the performance of current and futureCMP+SMTprocessors. It is also
detected a potential hazard of currentCMP+SMTdesigns; a solution that does not involve
excessive complexity is proposed.

1.2 Heterogeneity-Awareness

As mentioned earlier, the behavior of the applications is inherently heterogeneous. We
deeply analyze this heterogeneity in typical general-purpose workloads in Chapter 3. In
advance, we could say that different behaviors can be identified comparing both different
applications and different portions of the same applications’ execution. Consequently, the
hardware support required for each application may vary as applications exhibit different
behaviors. However, current architectures are designed for the common case. Homoge-
neous designs hold sway in the current state-of-the-art, like theIntel Core 2 Duo[77] and
the IBM POWER5[60] andPOWER6[39]. However, some vendors have already real-
ized the benefits of heterogeneous microprocessors. Thus, theCell [49] processor, first
released in 20053 and used in thePlayStation 3video game console, is comprised of 1
masterPowerPCprocessor that feeds 8 slaveSIMDaccelerators, that make extensive use
of theAltivec ISA.

In this thesis theHeterogeneity-Awarenessis a key factor in the processor design.
As far as we would be able to identify heterogeneous behaviors in applications and match
them with the appropriate amount of resources, it is possible to envision more complexity-
effective processors. In this sense, we give proposals built on top of both heterogeneous
and homogeneous hardware layouts. In all cases, the objective is the same: consume less
power maintaining a similar performance level than bigger and more complex machines.

3This thesis started in 2003.
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1.3 Thesis Contributions

The main contribution of this thesis is that we introduce for the first time the concept of
Heterogeneity-Awarenessin Multithreaded Multicoreprocessors; as well as mechanisms
that make use of this concept to yield both more complexity-effective and productive
machines. We define asHeterogeneity-Awarenessthe processor feature that explicitly
takes into account the heterogeneity in the behavior of the running applications. This
heterogeneity in software is matched with an heterogeneous hardware, or heterogeneous
application assignment over an homogeneous hardware layout. The better the matching
the better the results, since we would be assigning each application exactly the amount of
resources needed according to its requirements during that time slice.

The main purpose of this thesis is to explicitly reflect theHeterogeneity-Awareness
concept in the design of theMultithreaded Multicoreprocessors, with a twofold objec-
tive. First, to improve thecomplexity-effectivenessof current and future designs, in order
to fulfill the harder power and thermal constraints that industry is leading Computer Ar-
chitecture to. Second, to improve the throughput obtained in both current and future
complexity-effectiveprocessors. Being aware of the heterogeneity in the software exe-
cuted allows to react accordingly, improving the performance of available resources by
performing a better resource sharing; that is, giving each application exactly the hardware
resources needed for each time slice’s requirements.

We show that by reflecting the heterogeneity in software on the hardware itself, and
performing the appropriate matching, it is possible to achieve our first objective, namely to
improve thecomplexity-effectivenessof current and future designs. Moreover, it is possi-
ble to improve the performance of a purely homogeneousSMTmachine appropriately dis-
tributing the workload among the available homogeneous resources on the hardware. We
also envision the gradual transition of current state-of-the-art homogeneousCMP+SMT
processors to future heterogeneousCMP+SMT processors, in which theHeterogeneity-
Awarenessallows greater improvements in terms of both complexity-effectiveness and
throughput. The full list of the contributions of this thesis is enumerated following:

1. The hdSMT Architecture. To accomplish complexity-effectiveness in hardware de-
signs we combed some wide regions of the continuous spectrum that lie in between
theCMP andSMTapproaches. We first made an exhaustive analysis of the hetero-
geneity in hardware and its relation to software. Then, we employed the conclusions
of this analysis to establish the foundations of theheterogeneously distributed SMT
(hdSMT)architecture, that allows to improve thecomplexity-effectivenessof the
processor design. We show that the proposedhdSMT architecturehas pretty much
potential than currentmonolithic SMTprocessors.
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2. The TCA Algorithm. Since the hardware distribution proposed by our first con-
tribution, thehdSMT architecture, may look difficult to be handled by current
CAD/CAM and layout verification processes, we then moved to a more feasable
layout: aCMP+SMTprocessor, using theIBM POWER5[60] as point of reference.
The lack ofHeterogeneity-Awarenessin an homogeneousCMP+SMT processor,
comprised ofSMTcores with 2 hardware contexts, generally turns into a through-
put degradation. Although its hardware does not directly reflect theHeterogeneity-
Awarenessconcept, as thehdSMTdoes, it is posible to add slight modifications
that turned such a processor into a moreHeterogeneity-Awarenessmachine. In this
sense, we proposed one of the main contributions of this thesis: theThread to Core
Assignment (TCA) Algorithm. Involving a negligible overhead, theTCA Algorithm
boosts the throughput of current and futureCMP+SMT processors by explicitly
exposing the heterogeneity in software to the hardware, and appropriatelly match-
ing them. We show evidences that confirm theTCA Algorithmsupposes a quite
significativeHeterogeneity-Awareimprovement for state-of-the-art processors.

3. The hTCA Algorithm. Once shown that even state-of-the-art homogeneousCMP+SMT
processors may be improved turning themHeterogeneity-Awareness, we envision
the next straightforward step in processor designs. Thus, once our processor is
Heterogeneity-Awareness, by means of a proper management of theTCA, we in-
troduce some amount of heterogeneity in the hardware itself. This additional het-
erogeneity is aimed at allowing a better matching between software requirements
and hardware facilities. In this sense, we propose theheterogeneous TCA (hTCA)
Framework. Involving some minor hardware additions and assited by anhTCA Al-
gorithm, the hTCA Framework proves to expose thecomplexity-effectivenessto the
user, being possible to dynamically decide thedegree of complexity-effectivenessin
our executions.

4. The MFLUSH mechanism. Finally, we analyze further considerations arised while
moving from single-core to multi-core scenario. We realized that some well-known
SMT techniques were altered in this transition. In particular, theFLUSH [70],
mechanism proves to yield worse results than theICOUNT [72] policy4. As a
solution, we proposed theMFLUSH mechanism, anHeterogeneity-Awaremech-
anism that yields good results in current and futureCMP+SMT processors. The
MFLUSH mechanism adapts theFLUSH/STALLphilosophy to a highly variable
multithreaded multicore scenario, adapting its response according to the memory
banks and traffic contention.

4Built on top of ICOUNT, theFLUSH mechanism was developed to improve theICOUNT response to
long-latency loads, which degrade its throughput.
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Although not considered as a thesis contribution itself, I would like to emphasize the
special effort put on theMPsim, a highly-flexible Simulation Tool specifically designed
for this PhD dissertation, that allows to cover a very wide design space. Such a tool is
desirable in order to face up the researching of coarse regions of the continuous spectrum
between theCMP andSMT approaches. TheMPsimhas evolved throughout the whole
thesis and continues evolving. It already has gone beyond the scope of this PhD disser-
tation, becoming the main tool used by a group of researchers spread over the Computer
Architecture Department (DAC) of the Polythecnic University of Catalonia (UPC), the
Barcelona Supercomputing Center (BSC) and the University of Las Palmas de Gran Ca-
naria (ULPGC). A detailed description of theMPsimSimulation Tool can be found in the
Apendix.

1.4 Thesis Structure

This thesis is organized in chronological order, in a similar fashion as the research
was done. The only exception is theMPsimsimulator, which was evolving (and contin-
ues evolving) as the thesis proceeded. Regarding theMFLUSH policy, it was developed
in parallel toTCA AlgorithmandhTCA Framework. It raised from the observation of
the poor results obtained in our first simulations of theFLUSH policy in multithreaded
multicore scenarios.

We started analyzing the design space that lays in betweenSMTsandCMPs. From
this analysis we identified the main problems to be faced up by the introduction of the
Heterogeneity-Awarenessconcept in current architectures. This was done firstly from an
SMT-likeapproach and later from aCMP-likeapproach, both converging to an intermedi-
ate point in the continuousSMT-CMPdesign space. The final idea is to improve state-of-
the-art processors by introducing theHeterogenity-Awarenessconcept in both software
and hardware.

This thesis is structured as follows:

1. Chapter 2is devoted to explain our experimental environment. This includes both
the simulation tools and the benchmarks used in this thesis. Since each specific
experiment throughout the whole research may have specific methodology issues,
we cover here the common methodology issues, postponig

Among the simulation tools used we put special emphasis on theMPsimsimulator,
since this tool has covered the whole research and continues evolving with a long-
term life expentacy.
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2. Chapter 3defines theHeterogeneity-Awarenessconcept in detail. This concept
emerges from a deep analysis into the heterogeneity exhibited by current5 applica-
tions and their relation with the main processor resources. This chapter also shows
our first contribution to meet theHeterogeneity-Awarenessconcept : thehdSMT
Archicteture.

3. InChapter 4we analyse the main challenge faced up by state-of-the-artCMP+SMT
processors, like theIBM POWER5[60] andPOWER6[39], which are notHeterogeneity-
Aware. We then identify the need of a new layer in the OS scheduling process in
order to makeCMP+SMT processorsHeterogeneity-Aware. Finally, we propose
our second contribution, theTCA Algorithm, as candidate to manage the additional
scheduling layer inCMP+SMTprocessors.

4. Chapter 5presents the lastHeterogeneity-Awarecontribution of this thesis: the
hTCA Framework. In this chapter we envision the next straightforward step in pro-
cessor designs, that is moving toHeterogeneity-AwareArchitectures with an hetero-
geneous layout. ThehTCA Frameworkrepresents a first step into a new generation
of HeterogeneousandHeterogeneity-Awareprocessors, in which thecomplexity-
effectivenessinvolved into theResource Sharingstep of theOS Scheduling Process
is explicitly exposed to the user. The user can then dynamically specify the desired
degree of complexity-effectiveness.

5. In Chapter 6we analyse the main challenges faced up when moving from single-
coreSMTprocessors toMultithreaded Multicore (CMP+SMT)processors, as seems
to happen nowadays according to the current trend in industry. In parallel to both the
TCA Algorithm and hTCA Framework we identify the need of moreHeterogeneity-
Awarenessin well-knownSMT Instruction Fetch policies when applied to the new
multithreaded multicore scenario. In particular, we propose theMFLUSH policy
as a solution to the static response to a highly-variable multithreaded multicore
scenario of priorFLUSH [70] SMTpolicy.

6. Chapter 7shows the conclusions of this thesis.

5By the year 2003, when this thesis started, the most referenced benchmarks in General-Purpose Com-
puter Architecture came from theSPEC2000 Benchmark Suite. We do believe that the conclusions obtained
during this PhD dissertation may be applied to more recent benchmark suites. However, such a verification
is left for Future Work.
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Chapter 2

Experimental Framework

This chapter is devoted to explain the evaluation tools we have used in order to analyse the
design space and evaluate our proposals. We show the benchmarks used for that purpose
as well.

2.1 Simulation Methodology

During the research covered by this thesis a great number of experiments were per-
formed. Each of these experiments involved thousands of simulations, each one com-
prising several hundreds of millions of simulated instructions. As a consecuence, it was
critical to reach some commitment regarding the computational cost constraints. In this
sense it was decided to opt for thetrace-drivensimulation methodology, to be employed
in our experiments.

In order to benefit from thetrace-drivenreduced computational cost, without severely
compromising the accuracy of the results obtained, the simulation tool was adapted ac-
cordingly. Thus, the simulator employed permits simulating the impact of executing along
wrong paths on the branch predictor and the instruction cache by having a separate basic
block dictionary in which information of all static instructions is contained.

13
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Benchmark Remarks Input Language Fast Forward
name (Millions)

164.gzip Data compression utility graphic C 68.100
175.vpr FPGA circuit placement and routingplace C 2.100
176.gcc C compiler 166.i C 14.000
181.mcf Minimum cost network flow solver inp.in C 43.500
186.crafty Chess program crafty.in C 74.700
191.parser Natural language processing ref.in C 83.100
252.eon Ray tracing cook C++ 57.600
253.perlbmk Perl splitmail.535 C 45.300
254.gap Computational group theory ref.in C 79.800
255.vortex Object Oriented Database lendian1.raw C 58.200
256.bzip2 Data compression utility inp.program C 13.500
300.twolf Place and route simulator ref C 324.300

Table 2.1: FastForward used for each Spec INT 2000 Benchmark.

2.2 Benchmarks

In the experiments performed during this research we use theSPEC2000 benchmark
suite1. From them we collected traces of the most representative 300 million instruction
segment of each benchmark, following the idea presented in [55]. Whenever a benchmark
is used more than once in a single workload, each additional instance is forwarded 1 mil-
lion instructions more than the prior one (marked with a+1 in the workload definition).
Each program is compiled with the–O2 –nonsharedoptions using DEC Alpha AXP-
21264 C/C++ compiler and executed using the reference input set. Fortran programs are
compiled with the DIGITAL Fortran 90/Fortran 77 compilers. The fast forwards applied
to each application, in order to obtain the traces, are shown in Tables 2.1 and 2.2.

In the study of the workloads’s heterogeneity benchmarks from theSPEC2000 bench-
mark suiteare divided into two groups based on their cache behavior, as shown in Ta-
ble 2.3. Since we employ a great variety of processor and memory configurations in
our experiments we defined a single and easy-to-handle benchmark classification. To
establish such a classification we use for each benchmark the results of a single-thread
execution in a typical superscalar processor with an L2 cache of 512 KB. This L2 Cache
size comes from the observation of an state-of-the-art processor like theIBM POWER5,
that have fourSMT hardware contexts and a shared L2 cache of approximately 2MB.

1By the year 2003, when this thesis started, the most referenced benchmarks in General-Purpose Com-
puter Architecture came from this benchmark suite. Due to the analysis of the applications involved, we
did not migrate to the next release in 2006.
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Benchmark Remarks Input Language Fast Forward
name (Millions)

168.wupwise Quantum chromodynamics wupwise.in Fortran77 263.100
171.swim Shallow water modeling swim.in Fortran77 47.100
172.mgrid Multi-grid solver in mgrid.in Fortran77 187.800

3D potential field
173.applu Parabolic/elliptic applu.in Fortran77 10.200

partial differential
equations

177.mesa 3D Graphics library frames100 + msea.in C 294.600
178.galgel Fluid dynamics: analysis gagel.in Fortran90 175.800

of oscillatory instability
179.art Neural network simulation; -scanfile c756hel.in C 13.200

adaptive resonance theory -trainfile1 a10.img
-trainfile2 hc.img
-stride 2 -startx 110
-starty 200 -endx 160
-endy 240 -objects 10

183.equake Finite element simulation; inp.in C 27.000
earthquake modeling

188.ammp Computer vision: ammp.in C 13.200
recognizes faces

189.lucas Computational chemistry lucas2.in Fortran90 30.000
191.fma3d Finite element crash simulationfma3d.in Fortran90 10.500
200.sixtrack Particle accelerator model sixtrack.in Fortran77 173.500
301.apsi Solves problems regarding apsi.in Fortran77 192.600

temperature, wind, velocity
and distribution of pollutants

Table 2.2: FastForward used for each Spec FP 2000 Benchmark.

Consequently, for single-thread executions we used a quarter of the L2 cache size of the
IBM POWER5, that is 512KB. From the results obtained after simulating 300 millions of
instructions selected according to the idea presented in [55], and according to the bench-
mark taxonomy applied in [20], we classify each program asMemory Bounded (MEM)
whether its L2 cache miss rate is greater or equal than 1%,CPU Bounded (ILP)otherwise.
The L2 cache miss rate is calculated with respect to the number of dynamic loads. Ac-
cording to the constituent benchmarks, we denote each workload asMEM or ILP whether
all their benchmarks belong to the respective group. In presence of bothMEM andILP
benchmarks we denote the resulting workload asMIX.
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Benchmark Benchmark L2 cache
type name miss rate

mcf 29.6
twolf 2.9

INTEGER vpr 1.9
parser 1.0
art 18.6
swim 11.4

FP lucas 7.47
equake 4.72

(a) Memory bounded benchmarks

Benchmark Benchmark L2 cache
type name miss rate

gap 0.7
vortex 0.3
gcc 0.3

INTEGER perl 0.1
bzip2 0.1
crafty 0.1
gzip 0.1
eon 0.0
apsi 0.9

FP wupwise 0.9
mesa 0.1
fma3d 0.0

(b) CPU bounded benchmarks

Table 2.3: Cache behavior of each benchmark in a 512Kb L2 cache.

2.3 Complexity-Effectiveness Metrics

WheneverComplexity-Effectivenessis involved in a research it generally arises the
issue of comparing the relative complexity involved in several architectural proposals.
Since the results, obtained with multiple and different microarchitectures involving dif-
ferent hardware budgets, have to be compared some complexity measurement is required
to guide such unfair comparisons. The most of the times it is straightforward that larger
hardware budgets would yield higher throughput/performance; directly comparing their
rough throughput/performance would not lead to a reasonable comparison. So, there is
no point on directly comparing the performance obtained using an 8-wide Out-of-Order
Superscalar processor with that of a 1-wide In-Order Uniscalar processor. In any case,
the throughput/performance obtained for a single workload/application is only compara-
ble as a relative measurement involving both throughput/performance and the complexity
involved in its execution.

Quantifying complexity is always a tricky task and giving a single and comparable
measurement is even harder to accomplish. A quite generalized approach [59, 64, 65]
to estimate the complexity involved in any proposal establishes a direct relation between
complexityandarea(measured in mm2). Although complexity is not proportional to area
in all cases, it gives a quite accurate idea of the resultant complexity and is reasonably
easy to be measured.

During this thesis it was employed theKarlsruhe Simultaneous Multithreaded Simu-
lator [59, 64, 65] to estimate the area required by different microarchitectures. This chip
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space and transistor count estimation tool receives its input from the baseline architecture
and the configuration file of the microarchitecture performance simulator sim-outorder of
theSimpleScalar Tool Set. The estimation tool yields a pre-silicon chip space and transis-
tor count estimation and allows to compare different microprocessor configurations with
respect to their potential chip space requirements. The estimation method, which is the
basis of this tool, is validated by configuration parameters of a real processor, yielding a
transistor count and a chip space estimation very close to the real processor numbers.

2.4 Cache Configuration

During the development of this thesis we have employed a wide range of different
cache configurations. The different cache alternatives employed include monolithic and
multibanked, single and multiported, and first and second on-chip hierarchical levels.
Since the size of the workloads considered ranges from 1 to 32 running programs, each
cache configuration employed strives to assure a minimum cache share. Otherwise, the
negative effects of an insufficient cache share may alter the experiment results and, as a
consequence, the conclusions obtained. Thus, for each program running on an experi-
ment’s workload the cache hierarchy simulated tries to assure at least twice the first level
of cache share accessible in the second cache level (e.g., using 4 private L1 caches of
4KBs for a 4-core CMP implementation, with a total thread count of 4, we would employ
a minimum L2 cache size of 32KBs). The size of each cache used, split into different
access banks, is then set according to the number of running applications.

For each cache configuration employed in an experiment, some additional size-related
parameters must be defined, such as access delay. In order to appropriately set these con-
figuration parameters, regarding the access delay to each of these banks, it was employed
CACTI 3.2[68].

2.5 MPsim

In order to evaluate all the contributions proposed during the reseach time covered
by this PhD dissertation it was required a simulation tool which provided high flexi-
bility. The selected simulator should allow to simulate both single-core and multi-core
processor implementations, including homogeneous and heterogeneous clustered multi-
threaded implementations. It must also offer a wide range of research (i.e., allow multiple
simulation alternatives to cover a wider design space) with a simple interface. Due to
these special requirements it was developed theMulti-Purpose (MPsim)simulation tool,
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Branch Predictor perceptron (4K local, 256 perceps)
BTB 256 entries, 4-way associative
RAS* 256 entries
ROB Size* 256 entries
Rename Registers 256 regs.
L1 I-Cache 64KB, 2-way, 8 banks
L1 D-Cache 64KB, 2-way, 8 banks
L1 lat./misspenalty 3/22 cyc.
L2 Cache 512KB, 2-way, 8 banks
L2 latency 15 cyc.
Main Memory Latency 250 cyc.
I-TLB/D-TLB/TLB missp. 48 ent. / 128 ent. / 300 cyc.

Table 2.4: Simulation parameters (resources marked with * are replicated per thread)

a highly-flexible tool that allow researchers to cover wide ranges of the design space.
Using the MPsim Simulation Tool it may be easily simulated the execution of multi-
threaded multicore scenarios involving very different processor layouts, from clustered
Superscalars/SMT processors to full-fledged multithreaded multicore processors or even
many-cores. Full details of theMPsimare given in the Appendix.

Unless explicitly indicated otherwise, all execution cores and memory subsystems
used in the microarchitectures evaluated throughout this research have a similar configu-
ration, shown in Table 2.4. In some cases, this configuration is used as a baseline reference
when reducing the amount of resources per execution core and in other cases it is sim-
ply altered. Use the simulation parameter information shown in Table 2.4 as a common
reference throughout the remainder of this document.

Regarding simulation itself, in a wide range ofSMT experiments it is required to
compare the results (in terms of committed instructions) using different Instruction Fetch
(IFetch) policies. Since IFetch policies alter the amount of instructions committed per
each thread we opted to takeIPC measurements during fixed amount of simulation cy-
cles: the very same amount of cycles starting from the very same execution point. Conse-
quently, with similar constraints the one with higher results (i.e., higher IPC) would be the
best since is able to commit more instructions under similar conditions. The main reason
to settle for this approximation, instead of using a more reliable measurement system like
FAME [32], is the simulation time. Considering that a wide design space exploration, like
the one done during this research, is likely to involve hundreds of thousands of simula-
tions, the simulation time per experiment should be a prime concern. Consequently, such
an approximation had to be taken in order to keep a reasonable computational cost.



Chapter 3

Heterogeneous Simultaneous
Multithreading Processors

Today’s application behavior is inherently heterogeneous. This heterogeneity spreads out
applications at two levels:inter-applicationandintra-applicationlevel. In this chapter it
is analyzed the application heterogeneity and how this heterogeneity affects the design of
the main structures of current processors. Thus, while increasing the size of the instruction
queues may yield considerable benefits for some applications, like181.mcfand175.vpr,
others may experience no significative improvements, like252.eonand186.crafty.

From the study of the application heterogeneity in current typical workloads it may
be asserted that forthcoming processor generations should take into account this hetero-
geneity; that is, being“Heterogeneity-Aware”. In this chapter we deeply analyze the
main proposals in theHeterogeneity-Aware Architecturesfield. They all seek to yield
complexity-effectiveexecutions, giving each application exactly the hardware it requires
for an optimal execution. By clustering some of the main processor structures some of
these proposals go along the sometimes fuzzy frontier that differentiates theSMT and
CMPparadigms.

The present study of the heterogeneity in theSMTprocessors ends up with the first the-
sis contribution: theheterogeneously distributed Simultaneous Multithreading (hdSMT)
architecture. ThehdSMTarchitecture is based on a novel combination ofSMTandclus-
tering techniques in an heterogeneity-aware fashion. The results included in thehdSMT
evaluation enclosed, including both performance and performance per area evaluations,
show thehdSMTbenefits when optimizing performance per area over both monolithic
and homogeneously clusteredSMTprocessors.

19
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3.1 Application Heterogeneity

The heterogeneity in the application’s behavior is not a new issue in the Computer
Architecture field. From the very firstSuperscalarprocessor to the modernSimultaneous
Multithreading (SMT)and Chip Multiprocessors (CMP), it has been realized that pro-
cessor resources are not equally used by the running applications. In fact, this is one of
the fundamentals that led toMultithreading (MT). Since not allSuperscalarprocessor re-
sources are used by a single application, they may be shared with additional active threads
in the same processor.

In order to make a better use of the available resources, multithreaded architectures
need to perform the resource distribution among co-scheduled tasks. This scheduling step
is known asResource Sharing. In a CMP processor this step is implicitly performed,
since the processor resources are statically splitted into replicated single-thread cores;
only L2 caches are typically shared among all running applications. However, the hetero-
geneity in the behavior of different applications, that is theinter-application heterogene-
ity, may turn an static hardware partition into non-effective for some workloads. While
some applications’ execution may be hampered by such a partition, others may waste
hardware resources within a single-thread core.SMT processors solve this problem by
dynamically sharing all processor resources among all active threads. Thus,Thread Level
Parallelism (TLP)is exploited without renouncing to single threadInstruction Level Par-
allelism (ILP). However, an inappropriateResource Sharing, generally performed by the
Instruction Fetch (IFetch) Policy, may hardly affect the system throughput in anSMT
processor. Resource conflicts may occur when several applications, with conflictive be-
haviors, are executed together in the sameSMT processor. In this sense, the literature is
plenty of techniques [19, 20, 24, 25, 70, 71, 72] that try to reduce these kind of conflicts.

Inter-application heterogeneityrepresents only one half of the heterogeneity present
in the behavior of current applications. In fact, applications do not behave the same
during the whole execution [56]; that is they experienceintra-application heterogeneity.
Due to this fact, while a great amount of processor resources are wasted during some
execution phasesthey are pushed to their limits during otherexecution phasesof the same
application. The straight conclusion is that the most appropriate amount of resources
for a single application execution can not be expressed as a single number —it varies
along its execution. According to this conclusion, it may be inferred that forthcoming
processor generation designs should be conscious of this application heterogeneity, that
is they should beHeterogeneity-Aware. Both inter- and intra-application heterogeneity
should be explicitly taken into account inHeterogeneity-Awaredesigns to better profit the
available hardware resources.
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In this chapter both kind of application heterogeneity are evaluated —intra- andinter-
application heterogeneity. We focus on theSMT approach, since it represents the most
prone to suffer the negative effects ofapplication heterogeneity—multiple running threads
sharing all the processor resources. From this evaluation it is justified the need ofHeteroge
neity-Aware architectures. Then, it is proposed the first contribution of this thesis: thehet-
erogeneously distributed SMT (hdSMT)Architecture. In this novelMultithreaded (MT)
Architecturethe hardware is heterogeneosly distributed along the chip’s surface. The het-
erogeneity in software is then matched with the appropriate cluster of resources in order
to maximize the execution’scomplexity-effectiveness.

3.1.1 Heterogeneity Considerations in the Processor Design

General-purpose microprocessors are built up from an on-chip transistor budget with
the goal of maximum performance for all applications. As the process technology ad-
vances, the amount of available transistors on a single chip increases. The advances in the
process technology has kept an steady improvement rate for the last decades. TheMoore’s
Law describes this important trend in the history of computer hardware:”the number of
transistors that can be inexpensively placed on an integrated circuit is increasing expo-
nentially, doubling approximately every two years1” . The observation was first made by
Intel co-founder Gordon E. Moore in a 1965 paper [45, 46]. The trend has continued for
more than half a century (See Figure 3.1) and is not expected to stop for at least another
decade, and perhaps much longer [35].

As the number of transistors on a single chip increases, the issue of how to effectively
employ them to improve the applications’ performance gains importance. In the last
decades we have witnessed many architectural approaches to exploit the ever-growing
amount of transistors on a single chip. From the earlyScalarsto the modernMulti-
threaded Multicores, the processor design has always striven to yield the highest perfor-
mance possible with the available hardware budget. Nowadays, the power and temper-
ature constraints in the state-of-the-art processors are somehow turning the performance
primary goal into acomplexity-effectivenesssearch. A single processor design should ob-
tain the highest performance reachable for a fixed hardware budget, for a wide range of
applications, involving the least power consumption possible. The processor design has
also to balance the heat dissipation throughout the chip’s surface so that harmfulhotspots
are prevented. Whenever an small portion of the chip experiences an exhaustive utiliza-
tion, the heat generated supposes a challenge for the chip heat dissipation system. This

1Although originally calculated as a doubling every year, Moore later refined the period to two years. It
is often incorrectly quoted as a doubling of transistors every 18 months.
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Figure 3.1: Moore’s Law.

situation tends to occur with some important processor structures which also have the dis-
advantage of possessing low design regularity, like theInstruction QueuesandReorder
Buffersused inOut of Orderexecution pipelines.

The Scalarprocessors executed one instruction at a time. In these processors, each
executed instruction typically manipulates one or two data items at a time. In contrast,
each instruction executed by aVector processor operates simultaneously on many data
items. TheSuperscalarprocessors arised as a sort of mixture of the two. While each
instruction processes one data item, the addition of multiple redundant functional units
within each CPU allowed theSuperscalarprocessors to execute multiple instructions at
a time; thus multiple instructions can process separate data items concurrently. Seymour
Cray’sCDC 6600(1965) is often mentioned as the firstSuperscalardesign. It is not until
the late 80’s that appeared the first commercial single chip superscalar microprocessors:
TheIntel i960CA(1988) and theAMD 29000-series 29050(1990) microprocessors.

TheSuperscalarCPU design emphasizes the instruction dispatcher accuracy, allowing
it to keep the multiple functional units in use at all times. This has become increasingly
important when the number of units increased. While earlySuperscalarCPUs had two
ALUs and a single FPU, a modern design like thePowerPC 970(2002) includes four
ALUs and two FPUs and a couple of SIMD units too. If the dispatcher is ineffective at
keeping all of these units fed with instructions, the performance of the system will suffer
altogether. The introduction of better conditionalBranch Predictors, like thegshare[44],
bimodal [81], 2bcgskew[54], stream[52], and theperceptron[34] predictor, consider-
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ably improved the achievable performance. Reducing the amount of instructions exe-
cuted along the wrong path allows more aggressive execution pipelines, simultaneously
dispatching more instructions per cycle. Betterbranch predictions, together with theOut
of Order execution[31, 62], were crucial in the search of wider execution pipelines.

In a SuperscalarCPU the dispatcher reads instructions from memory and decides
which ones can be run in parallel, dispatching them to redundant functional units con-
tained inside a single CPU. Therefore aSuperscalarprocessor may be envisioned as hav-
ing multiple parallel execution pipelines, each of which is processing instructions simul-
taneously from a single instruction thread. This seemed for a time the best choice to invest
the hardware budget on within each chip. Employing the additional transistors to enlarge
the main processor structures allows to increase the number of parallel execution pipelines
within the processor. However, architects soon realized that the performance achievable
by this execution scheme does not scale with the available transistors due to the limi-
tations imposed by theInstruction Level Parallelism (ILP). Regardless of the additional
transistors employed to design a more aggressive execution pipeline, the application char-
acteristics finally impose a hard limit to the achievable performance. Furthermore, this
limit is different depending on the specific characteristics of each given application; that is
depends oninter-application heterogeneity. Thus, while devoting the additional transis-
tors to enlarge some processor structures, like theInstruction Queues, could yield benefits
for some applications, for others we could experience diminishing returns.

As a consequence of the hard limitations imposed by theILP, theThread Level Paral-
lelism (TLP)has become a common strategy for improving processor performance. Since
it is difficult to extract moreILP from a single program, multithreaded processors rely
on using the additional transistors to obtain more parallelism by simultaneously execut-
ing several programs. This strategy has led to a wide range of multithreaded processor
architectures likeSMT [71, 72, 80],CMP [48], or combinations of both. They all extend
theSuperscalardesign by simultaneously sharing the processor resources among multi-
ple running applications. Whenever theILP of a single application prevents from having
busy all available resources in the processor, the idle resources are devoted to other ap-
plications, which are simultaneously run on the same processor. The main difference be-
tween theSMTandCMPapproaches resides in the amount of on-chip processor resources
shared among all running applications. Thus, while a typicalCMP implementation only
shares the outter on-chip cache layer (typically the L2 Cache), anSMTprocessor shares all
processor resources. Due to the inherent heterogeneity in the application’s behavior, the
resource utilization pattern of each running application may collide during the execution
ending up with resource contention. Since they share more resources among the running
threads thanCMP processors, these resource conflicts affect more severely toSMT pro-
cessors. Thus, the literature is plenty of techniques [19, 20, 24, 25, 70, 71, 72] that try to
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1 i, 1f, 1l3 i, 2f, 2l6 i, 3f, 4lExecution Units (i = int, f = fp, l = ld/st)

122Max. Number of Threads/cycle

IC 1.2IC 2.4IC 2.8Fetch Policy (IC = ICOUNT)

248Max. Number of Instructions/cycle (per thread)

248Processor Width

124Number of Contexts

64128256Renaming Registers

163264Queues Entries
(int / fp / ld-st)

M2M4M8

(a) Processor model configuration.

512KB, 2-way, 8 banks,
12 cycles lat, 64-byte linesL2 cache

100 cyclesMain Memory latency

64KB, 2-way, 8 banks,
64-byte lines, 1 cycle accessIcache, Dcache

Memory Configuration

128 ent. / 48 ent. /160 cyclesDTLB size/ ITLB size/ TLB miss penalty

256 entriesRAS
256 entries, 4-way associativeBranch Target Buffer

2K entries gshareBranch Predictor

Branch Predictor Configuration

256 entriesROB Size / thread

Processor Configuration

(b) Baseline configuration.

Table 3.1:Application Heterogeneity Simulation Configuration.

reduce these kind of conflicts inSMT processors. In all cases, the goal it to allocate to
each application the appropriate amount of hardware resources, avoiding monopolization
by any individual application. Whether each application needs are appropriately matched
with the allocated processor resources the system throughput may experience significative
improvements. This proper match requires from a deep analysis of the application needs
and the differences among them; that is an analysis of theapplication heterogeneity.

State-of-the-art microprocessors suggest a trend towards building multithreaded mul-
ticore processors with an increasing amount of multithreaded cores on-chip. As a conse-
quence, forthcoming processor generations will face harder challenges related to on-chip
resource contention. In order to appropriately handle this contention, theapplication het-
erogeneityshould be deeply analyzed in typical execution workloads. In the following
sections it is analyzed the heterogeneity in theSPECINT2000 Benchmark Suite, both at
inter- andintra-application level. From this analysis some further processor design con-
siderations are asserted.
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3.1.2 Methodology

Table 3.1.(a) shows the three processor models simulated. From now on, the three
processor models shown in Table 3.1.(a) will be referred to asM8, M4, andM2. These
processor models are used to compare application needs and so showinginter-application
heterogeneity. The name of each of these models give a quick idea of the resource budget
comparison. Thus, in general terms, anM8 processor has twice the hardware budget
devoted for the main processor structures than anM4; the same happens between theM4
andM2 processor models.

Table 3.1.(b) shows the main parameters of the simulated processors, which have 8-
stage execution pipeline. Three different processor models, with varying number of some
specific resources (e.g. instruction queues, renaming registers, issue width, etc), are used
to evaluate the heterogeneity in applications. Please, refer to Chapter 2 for full details on
the experimental framework.

3.1.3 Inter-Application Heterogeneity

The resource utilization pattern significantly differs from one application to another.
While some applications make an intensive use of some resources, like rename registers
and instruction queues, others obtain good performance results with a more moderated
hardware budget. As a matter of example, Figure 3.2 shows the rename registers needed
by each of the SPECINT2000 benchmarks to reach a90% of their peak performance2,
executed in anM8 processor (see Table 3.1) in single-thread mode. Although the rename
registers are not the only critical resource in an out-of-order execution processor, they
suppose a serious bottelneck whenever parallelism is to be exploited. Devoting additional
resources to other critical processor resources, such as better conditional branch predictors
or memory, would end up requiring to increase the amount of rename registers to increase
the processor’s peak performance.

Figure 3.2 shows that176.gccrequires only 32 rename registers. However, other
applications, like175.vpror 255.vortex, require 128 rename registers. We also find a
group ofmoderatedapplications, like181.mcfor 256.bzip2, requiring 64 rename registers
to obtain the90-pp. Let beG1,G2, andG3 the groups of applications which require 32,
64, and 128 rename registers to reach the90-pp, respectively. From the results shown in
Figure 3.2 it may be inferred that simultanously executing, on the same execution pipeline,

2Maximum performance obtained using an unlimited resource budget. In this case, the application’s
characteristics limit the maximum performance level reachable.
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Figure 3.2:Rename Registers needed to reach 90% Performance.

applications from the groupG3may yield diminishing returns. Due to their eager usage of
the rename registers, multiple applications of the groupG3may experience high resource
contention, with the subsequent reduction in the system througput. Therefore, the best
candidates to be simultaneously executed with aG3 application belong to groupsG1 and
G2. That is, those that exhibit different rename register utilization patterns.

Statically splitting the processor resources among all the active threads, as done in
CMP processors, gets rid of the resource contention and may be beneficial in some sce-
narios; although it supposses ahard commitment. Whenever the executed workload pos-
sesses highTLP, and moderate per-applicationILP, statically partitioning the processor
resources may be productive. However, the differences in the resource needs from one
application to another, that is theinter-application heterogeneity, may turn this static
partition into a serious drawback. While somehigh-ILP applications may require more
resources, than the ones allocated to a single execution core, otherlow-ILP applications
may be wasting resources within an execution core.

As an illustrative example, Figure 3.3 shows the benefits of sharing the L1 caches
among all constituent cores in aCMPprocessor comprised of fourM2 cores. That is, any
of the four constituent exection cores in the CMP processor may access up to an overall L1
cache budget of 64KB. Assuming the case of single-thread execution3, the results shown
in Figure 3.3 indicate the benefit obtained whether each application may access to each of

3This would represent the worst scenario in aCMP; there is only a single ready task ready to be executed
by the Operating System.
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Figure 3.3:Benefits of Sharing L1 caches in a four-cored CMP.

the four 16Kb L1 caches4, with a total L1 cache budget of 64Kb, compared to exclusively
accessing its private 16Kb L1 cache. The results obtained significantly vary depending
on thememory footprintsize of each application (i.e., the extent of memory that it uses or
references while executing ), as depicted in Figure 3.3. Whenever thememory footprint
of an application fits into a single 16Kb L1 cache, as is the case of256.bzip2, no benefit is
obtained from sharing the remainder cache budget. However, as thememory footprintof
each application grows the potential benefit obtained from sharing partitioned resources
increases; as is the case of186.craftywith an improvement close to 32%. Obviously,
CMP processors were not designed for single-thread mode; the most of the time the Op-
erating System can provide enough ready tasks to keep busy more than execution core.
However, this example illustrates the potential drawback from statically partitioning the
processor resources. Whenever the Operating System in aCMP processor, or whatever
design with an static resource partition, is unable to select for execution enough ready
tasks, the system performance is hardly affected. The only running application may ex-
perience a performance degradation, due to limited access to processor resources, while
other resource partitions are wasted. In this case, due to a lowTLP in the workload, the
ILP and specific characteristics of each application, as thememory footprint, may be de-
cisive for the system performance. If this is the case, an statically partitioned hardware
may suppose a serious drawback.

As Raasch and Reinhardt show in [51], there are some cases in which statically par-

4To ease the example, it is assumed no additional overhead when accessing to the private L1 cache from
a different core.
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Figure 3.5:Average LQ Size.

titioning some of the processor structures, like the instruction queues, may be beneficial
to achieve better results. Due to the applications’ heterogeneous usage of some processor
structures, giving a fixed resource share to each of the running applications may yield
significative performance improvements. To further illustrate this heterogeneous usage,
Figure 3.4 shows the average size —occupancy— of theinteger instruction queue (IQ)
of eachSPEC2000 INT benchmark, executed in single-thread mode on anM4 processor
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with private 64KB L1 caches. Figure 3.5 shows the equivalent results for theload/store
instruction queue (LQ). While theIQ usage exhibits a moderate variation from one appli-
cation to another, theLQ usage is quite balanced among all applications. The instruction
queue usage exhibited by the181.mcf represents a pathological case, in which a bad
memory behavior may clog the instruction queue if unproperly handled. An staticIQ/LQ
partition gets rid of these clogs, avoiding applications from monopolizing processor struc-
tures. As a consequence, statically allocating an equal portion of the instruction queues to
each simultaneously executed application provides good performance, in part by avoiding
starvation. However, although not highly pronounced in the case of instruction queues,
the different application usage of some processor resources, like the rename registers (See
Figure 3.2), may turn an homogeneous resource partition into a bad choice.

The heterogeneous applications’ behavior (i.e.,inter-application heterogeneity) shown
in all prior resource usage examples directly affects the overall system performance. Fig-
ure 3.6 shows the execution results of eachSPECINT2000 benchmarkexecuted in single-
thread mode in each of the three processor models simulated. For each application and
processor model, it is shown the performance obtained measured inInstructions Per Cy-
cle (IPC). TheseIPC values are compared with the processor’speak performance(the
horizontal bars in Figure 3.6), obtained using all the available hardware resources in each
processor model in an ideal case.

A glance at Figure 3.6 is enough to realize that not all applications exploit the available
processor resources with the same effectiveness. Thus, while256.bzip2use the available
hardware resources in anM2 processor with an80,5%of effectiveness5, 181.mcfexhibits
an effectivenessbelow 10%. Therefore, devoting allM2 processor resources to execute
181.mcfyields a very poorcomplexity-effectiveexecution. This situation gets worse as it
is augmented the processor hardware budget. As shown in Figure 3.6, all applications
experiencediminishing returns, in terms ofcomplexity-effectiveness, when moving to
a bigger processor model. So, even ahigh-ILP application like256.bzip2experiences
a reduction in itseffectivenessof factor of×2,5 when moving from anM2 to an M8
processor. However, the256.bzip2’s performance also experiences a growth of factor of
2,5× when moving fromM2 to M8; justifying the additional hardware budget in terms of
complexity-effectiveness.

The straight conclusion is that theInter-Application Heterogeneitymay turn a given
hardware budget into anon complexity-effectivechoice. On the one hand, the specific
characteristics of each application determine theapplication’s peak performance. In an
ideal case, with plenty of execution resources, it is theapplication’s peak performancethe
key factor that imposes the top performance limit. On the other hand, the combination of

5That is, the performance obtained is 19,5% lower than the processor’speak performance.
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Figure 3.6: Heterogeneity at Inter-Application level.

all the hardware resources devoted to a processor define itsprocessor’s peak performance.
The more similar both peak performance levels, application’s and processor’s, the more
complexity-effective executions achieved. Thus, while it is worthwhile executing the
256.bzip2on anM4 processor, or even anM8, the181.mcfdoes not need more than an
M2 processor. AnHeterogeneity-Awarearchitecture should explicitly take this fact into
account, allocating the appropriate amount of resources to each application according to
its specific needs.

3.1.4 Intra-Application Heterogeneity

It is not necessary to compare the behavior of different applications to find heterogene-
ity. In fact, comparing two differentProgram Phases6 from a single application is enough
to find an heterogeneous behavior; that isIntra-Application Heterogeneity. To illustrate
this phenomenon, Figure 3.7 shows performance histograms of someSPECINT2000ap-
plications, simulated on anM8 processor in single-thread mode during an specific interval
of their execution.

6That is, a differentiated portion of the execution of an application, with a particular behavior.
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Figure 3.7: Heterogeneity at Intra-Application level.
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Each histogram in Figure 3.7 shows the performance, measured inIPC, reached by
the first 32000 execution intervals of each application7. Each of these intervals comprises
1000 consecutive cycles of the application’s execution. Although these histograms are
not representative of the whole application execution, it is clearly noticeable that they
exhibit heterogeneous behaviors. In Figure 3.7 there are examples of highly-periodic
behavior, like164.gzipand181.mcf, and steadier ones, like256.bzip2. There are also
examples of multipleProgram Phasetransitions, as is the case of253.perlbmkin which
3 differentProgram Phasesare clearly noticeable. During this 32-million-cycle period
of execution the253.perlbmkgoes through an initial highly-variable high-ILP phase (first
15.000 intervals), a second highly-variable low-ILP phase (following 13.000 intervals),
and finally an steady high-ILP phase. Comparing the variability of the results in each
of these three phases, Figure 3.7.(c) also shows high heterogeneity in this sense. Thus,
while the first twoProgram Phasesof 253.perlbmkexhibit a highly-variable behavior,
with quick performance variations of up to 50X, the thirdProgram Phaseexhibits a quite
steady behavior, with performance variations lower than 15%.

Focusing on two applications with a very different overall performance,181.mcfand
256.bzip2, their execution histograms exhibit some interesting characteristics. While both
applications experience similar performance variations considering average results, about
99% and 60% for181.mcfand256.bzip2respectively, they represent opposite behaviors.
While the steadier and common behavior in the case of181.mcf is very low-ILP, in the
case of256.bzip2is high-ILP. Nevertheless, both applications experiment isolated perfor-
mance fluctuations of up to 15X and 25X, in case of181.mcfand256.bzip2respectively.

From the results shown in Figure 3.7 it may be inferred that theIntra-Application Het-
erogeneitymay alter, during some periods of the execution, the complexity-effectiveness
of the decisions took according to theInter-Application Heterogeneity. Thus, while the
most complexity-effective processor assignments for each application (M2 for 181.mcf
andM8 for 256.bzip2) are still valid, there are some periods —about 1 million cycles
each time— in which these assignments do not represent the best choice. Notice in Fig-
ure 3.7 that181.mcfexperiences periodic high-ILP intervals, with an averageIPC higher
than 2. As a consequence, the181.mcfexecution during these high-ILP intervals would
be hampered if executed on anM2 processor, with a peak performance of 2. Just the oppo-
site happens in the 3 low-ILP intervals that exhibit256.bzip2in Figure 3.7.(d). Devoting
a full M8 processor during these intervals, with an averageIPC lower than 3, involves
some resource wasting. In these cases, such a resource waste (or resource lack in case
of 181.mcf) may no significatively alter the overall system performance, due to the re-

7For each application, the simulated execution intervals comes immediately after applying the corre-
sponding forwarding, as shown in Chapter 2.
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Figure 3.8: Heterogeneity at Intra-Application level at coarser granularity (1M cycles).

duced extension of these intervals. However, in case of longer steady variations in the
application’s dynamic behavior, the system performance may be severely affected by this
Intra-Application Heterogeneity.

Figure 3.7 also suggests another important conclusion regarding the duration of the
intervals considered. In fact, thegranularity at whichIntra-Application Heterogeneityis
exploited directly determines both its applicability and the results obtained. Thus, while
this heterogeneity may be detected and exploited using a 1000-cyclegranularity (as used
in Figure 3.7) the resulting performance variations are not steady enough to be exploitable
using a coarser granularity of 1 million of cycles, as shown in Figure 3.8. Although there
are still noticeable variations in the application’s behavior shown in Figure 3.8 they do not
alter the complexity-effectiveness of the decisions taken from anInter-Application Het-
erogeneityperspective; that is executing181.mcfand256.mcfonM2 andM8 processors,
respectively. In both cases, there is not an steady interval of execution that reach anIPC
value above the peak performance of the respective processor model.
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The applicablegranularity in each case would depend on the system specifications.
Once detected the heterogeneity in the application’s behavior its execution must be re-
scheduled. The resource needs of each detectedProgram Phaseshould be matched with
the available hardware partitions in an heterogeneously partitioned hardware. This match-
ing process may involve costly migrations between different hardware partitions. For an
heterogeneous behavior to be profitable, the overhead involved by the re-scheduling or
migration of the applications must be low enough as compared to the length of each de-
tectedProgram Phase.

The straight conclusion is that theIntra-Application Heterogeneitymay alter thecom-
plexity-effectivenessof the decisions taken from anInter-Application Heterogeneityper-
spective. That is, a single resource assignment, that best fits the resource needs of each
application, may not be valid for the whole execution. However, the exploitability of
this Intra-Application Heterogeneityis subject to both thedetection granularityandre-
scheduling overhead. First, the differentProgram Phasesmust be appropriately detected.
Next, the cost involved in the corresponding resource reassignment must be low enough
as compared to theProgram Phaselength. Thus, in order to appropriately exploit the peri-
odic 1-million-cycle high-ILP phases detected in the181.mcfbehavior using a 1000-cycle
granularity (Figure 3.7.(b)), the cost involved by the corresponding resource reassignment
(e.g., migrating from anM2 to anM4 core) must involve an insignificant overhead as com-
pared to 1 million of cycles.

3.2 Heterogeneity-Aware Architectures

The Heterogeneity-Awarenessof a processor design could be defined as the way in
which it explicitly manages theApplication Heterogeneityto achieve acomplexity-effective
execution. The degree of success in assigning to each application the processor resources
it needs determines the degree ofHeterogeneity-Awarenessof each processor design. Giv-
ing each application strictly the required processor resources helps to reduce the execution
power consumption without reducing the performance; that is, to improve the execution’s
complexity-effectiveness. From theApplication Heterogeneityanalysis performed in prior
sections it may be inferred that anHeterogeneity-Awaredesign should take into account
bothInter- andIntra-Application Heterogeneity.

The way in which the hardware is heterogeneosly distributed along the chip surface
also contributes to theHeterogeneity-Awarenessof the processor design. Partitioning
hardware structures and resource pools, like the instruction queues and register files, into
heterogeneous clusters, with different number, sizes, and types of these structures, helps to
achieve morecomplexity-effectiveprocessor designs. Recall that the main goal of almost
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all general-purpose processor consists of achieving the highest performance with the least
energy consumption possible. Distributing the hardware into smaller and heterogeneous
clusters, which have a lower energy consumption, and assigning the applications to the
cluster that best fits the application’s resource needs contributes to improve the design’s
complexity-effectiveness.

Inside theHeterogeneity-Awarecategory there could be included a wide range of pro-
cessors, both single-threaded and multithreaded. In fact, anSMTprocessor implementing
an Instruction Fetch (IFetch) Policy, that dynamically distributes the shared resources
among the running applications, could be seen as some kind ofHeterogeneity-Aware
design. However, the difference between the resource sharing, performed by a typical
IFetch Policy, and theHeterogeneity-Awarenesslies in explicitly considering the appli-
cation heterogeneity to give each application the hardware resources it needs. Typical
IFetch Policies, like ICOUNT [72], try to balance the resource usage among all the run-
ning applications. Instead of giving each application the resources they need, they tend to
give each application a similar portion of the available resources.

More advancedIFetch Policies, like DCRA[20], explicitly classify the running appli-
cations intoslowandfast. Additionally, according to the usage of each resource type by
each application, a further classification intoactiveandinactivehelps to assign each ap-
plication an amount of processor resources in tune with the application’s needs. Although
its hardware is not partitioned, anSMT processor implementingDCRApolicy may be
included into theHeterogeneity-Awarecategory.

There are some examples in the literature that combine an explicit management of the
Application Heterogeneitywith an heterogeneous hardware distribution. In spite of they
all strive to achieve acomplexity-effectiveexecution, the main difference among them lies
in thegranularityat which application heterogeneity is exploited.

TheDual Speed Pipelines[50] architecture can be defined as aSuperscalarcomprised
of an heterogeneous set of components. As shown in Figure 3.9, different types of pro-
cessor resources, such as functional units and reservation stations, are gathered into two
different execution pipelines:slowandfast. The slow components of the processor can be
driven at lower supply voltages and thus present an opportunity to save power; contribut-
ing to improve itscomplexity-effectiveness. However, slow components also imply lower
IPCs. In order to avoid harmful performance degradations, a variant of the critical path
analysis technique [75] is moved from the circuit level to the architecture level. In this
architecture, a criticality predictor is used, in a cycle-by-cycle rate, to correctly identify
the critical instructions. Once identified, critical instructions are dynamically scheduled
on high-performance, high-power consumption components. Thus, the processor per-
formance is retained while achieving power savings by dynamically scheduling all other
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instructions to the low-power (and lower performance) execution units.

TheDual Speed Pipelinesarchitecture represents an extremist example ofHeterogene
ity-Awarearchitecture, in which theIntra-Application Heterogeneityis detected at an in-
structiongranularity, and measured in terms of instruction criticality. According to this
heterogeneity, each instruction uses the resources that best fits with its needs, consuming
the least power possible without severely compromising the system performance.

The Heterogeneous Multicore[38] architecture can be defined as aCMP processor
comprised of an heterogeneous set of execution cores. In the example shown in Fig-
ure 3.10, the processor is comprised of four Alpha cores EV4 (Alpha 21064), EV5 (Al-
pha 21164), EV6 (Alpha 21264) and a single-threaded version of the EV8 (Alpha 21464),
referred to as EV8-. Although all the cores execute the sameInstruction Set Architec-
ture (ISA), there exist differences between cores regarding their raw execution bandwidth
(issue width), cache sizes, and many other fundamental characteristics (e.g., in-order vs.
out-of-order execution, single-thread vs. multithread execution). In this architecture, the
Operating System (OS)is in charge of migrating the application’s execution based on
performance metrics. To obtain these metrics, the execution has to go through periodic
sampling phases. During each of thesesampling phasesthe applications are executed in
each of the heterogeneous cores, in order to determine the one that best fits the current
application behavior. According to the workload size, thesesampling phasesmay sup-
pose a significant execution overhead. In order to mitigate this overhead, that may involve
millions of execution cycles, some heuristics are applied.

TheHeterogeneous Multicorearchitecture represents a clear example ofHeterogeneity-
Awarearchitecture. TheApplication Heterogeneityis matched with an heterogeneously
distributed hardware, striving to assign each application to the heterogeneous execution
core that best fits the application’s needs. Since each execution core involves a differ-
ent energy consumption, depending on the amount of resources and complexity involved,
smartly assigning applications to cores improves the execution’scomplexity-effectiveness.
However, due to themigration cost8 thegranularityat which theApplication Heterogene-
ity can be detected in anHeterogeneous Multicorearchitecture is limited to hundreds of
millions of execution cycles. This constraint may limit the amount of exploitable hetero-
geneity that may be detected.

In this thesis we present theheterogeneously distributed SMT (hdSMT)architecture.
Based on a novel combination ofSMT, Clusteringand Heterogeneity-Awareness, this

8Each time an application is migrated to a different core its architectural state must be saved and moved.
This process involves copying the registers that keeps the application architectural state. Besides, the con-
tent of the L1 caches is lost.
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Heterogeneity-Awarearchitecture proposes a multithreaded alternative that lays on the
spectrum that extends in betweenSMT andCMP processors. Thus, from anSMT point
of view, thehdSMTcould be defined as a clusteredSMTprocessor comprised of an het-
erogeneous set of execution pipelines, which execute instruction streams fetched by a
multithreaded fetch engine. From a CMP point of view, the hdSMT could be defined as
an heterogeneous CMP processor, comprised of heterogeneous cores, in which some re-
sources are shared. Among these shared resources we find the fetch engine, register file,
and caches –even the L1 caches. In the following section it is deeply analyzed thehdSMT
architecture, including an evaluation that confirms itscomplexity-effectiveness.
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3.3 The hdSMT Architecture

The foundations of theheterogeneously distributed SMT (hdSMT)architecture are
comprised of a threefold combination of well known principles and techniques:SMT,
Clustering, andHeterogeneity-Awareness. An hdSMTprocessor proposes a multithreaded
alternative that lays on the spectrum that extends in betweenSMT andCMP processors.
As evaluated in [21], there are multiple possible hardware configurations in betweenSMT
and CMP processors. As it is augmented the amount of shared resources among the
hardware contexts available in the processor, it is covered the distance between aCMP
processor, which typically only shares the L2 cache, and anSMTprocessor, which shares
all the available resources. As Collins et al. indicate in [21], it may be achieved the best
of both approaches by clustering some of the main processor structures in anSMT pro-
cessor. However, theApplication Heterogeneitymay turn some of the evenly clustered
approaches in [21] into not optimal. ThehdSMTarchitecture maximizes fully exploita-
tion of the available hardware budget by partitioning the hardware into heterogeneous
clusters. TheApplication Heterogeneityis then matched with this heterogeneously dis-
tributed hardware, assigning to each application the cluster that best fits its resources
needs.

ThehdSMTarchitecture overview is depicted in Fig. 3.11. As in a conventionalSMT
processor, all threads share the caches, register file, and fetch engine. However, the re-
mainder execution pipeline stages and resources are arranged in heterogeneous clusters
(or simply pipelines). That is, eachpipelinecomprises all the execution pipeline stages
of the conventional processor but the fetch stage. Eachpipelinealso has got its own pri-
vate instruction queues, renaming map tables and functional units, that could be shared
among more than one thread; that is, eachpipelinemay be multithreaded. Consequently,
the maximum amount of threads that can be simultaneously run on anhdSMTprocessor
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is not equalt to the amount ofpipelines, but the sum ofSMT hardware contexts spread
over all the constituentpipelines. The size and number of processor resources may vary
from pipelineto pipeline. Additionally, each thread’s instructions are stored in a private
reorder buffer (ROB), one per thread.

In this clustered multithreaded architecture, entire threads are assigned topipelines
according to theApplication Heterogeneity. This implies that there are no dependencies9

between instructions in different clusters, since all instructions from a single thread are
mapped to the same pipeline. TheHeterogeneity-Awarefetch engine strives to match
both the needs of each running application and the interaction among each application
with the heterogeneously distributed hardware. This software-hardware mapping is per-
formed each time the Job Scheduler of theOperating Systemselects a new workload
from the list of ready tasks. At this time, just after being assigned the applications to
the pipelines by the OS Job Scheduler and just before starting the execution itself, the
Program Counter and the remainder architectural state is updated in each pipeline in the
same way as in amonolithic10 SMT processor. In order to determine on which specific
pipeline would be executed each application it is triggered a hardware-based mapping
policy (see Section 3.3.1). Whenever an application is assigned to the very samepipeline
it was in the exactly previousOS quantumof execution, no additional changes within
thepipelineshould be made. Otherwise, thepipelineis flushed in order to accommodate
the new execution thread. The whole subsequent workload’s execution is done accord-
ing to this mapping, without any intermediate thread migration. Notice that the reduced
migration cost11 between differentpipelinesprovided by thehdSMTarchitecture allows
to implement mapping policies which work at lower granularities12. The mapping policy
implemented inhdSMTis described in detail in Section 3.3.1.

The number of hardware contexts and width (i.e., max. number of instructions is-
suable per cycle) may vary frompipeline to pipeline. So, anhdSMT implementation
may be comprised of both narrow single-thread and wide multithreaded pipelines, as well
intermediate pipelines. Depending on the workload size, the resource needs of each appli-
cation, and the interaction between application behavior, more than one application may
be mapped to a singlepipeline. This distribution of the hardware contexts along the chip
can be profited to turn off idle pipelines whenever the number of running applications

9We use exclusively independent threads in our experiments. Multithreaded applications are left for
future work.

10That is, a conventional non-partitioned processor.
11Since both the caches and the register file are shared among all thepipelines, migrating an application

to a differentpipelineonly involves re-fetching the in-flight instructions.
12In an state-of-the-art Operating System like Linux kernel 2.6 the length of the OS execution quantums

may vary from a few tens of millions of cycles to several hundreds or even thousands of millions of cycles.
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does not reach the number of hardware contexts. This is also applied in the Heterogenous
MultiCore architecture [37], turning off idle heterogeneous cores. The main difference of
our proposal in this sense is that we can still use the whole budget of physical registers
and memory space to improve the performance of the running applications, since they are
shared by allpipelines.

Notice thatmultipipeline-awarenessin hdSMTuncovers newIFetch Policiesnot avail-
able in conventional and monolithicSMTprocessors. The shared fetch engine is limited
by the number and width of the instruction cache ports. However, the number of instruc-
tions that eachpipelineaccepts per cycle may vary frompipeline to pipeline. In order
to decouple the fetch engine from the characteristics of each specific pipeline it feeds,
some small buffers are added before each pipeline (see Fig. 3.11). The fetch engine in-
serts instructions at its own rate while each pipeline extracts instructions according to its
width. The fetch policy takes into account these buffers in order to appropriately balance
the instructions fetched among the pipelines. Depending on the characteristics of the set
of pipelines, this may result in a wider global decode bandwidth since allpipelinesare
fed from their private buffer each cycle.

3.3.1 Mapping policies in hdSMT

The impact of statically partitioning the hardware into homogeneous clusters may be
either productive or counterproductive, depending on the resource partitioned. Raasch
et al. show in [51] that for storage resources, such as the instruction queue and reorder
buffer, statically allocating an equal portion to each thread provides good performance, in
part by avoiding starvation. Additionally, the enforced fairness provided by this partition-
ing obviates sophisticated fetch policies to a large extent. TheSMTspotential ability to
dynamically allocate storage resources across threads does not appear to be of significant
benefit. In contrast, an static division of the issue bandwidth has a negative impact on the
system throughput. TheSMTsability to dynamically multiplex bursty execution streams
onto shared function units contributes to its overall throughput.

In thehdSMTarchitecture the hardware is heterogeneously distributed into different
clusters. As a consequence, both the storage resources and the issue bandwidth are stati-
cally distributed among all the constituent clusters. Since each of this static partitions has
a different size, the success in avoiding the negative effects of such a partition depends on
themapping policy. Its ability to map high-performing threads to wide pipelines, to better
profit both their wider issue bandwidth and higher amount of resources, determines the
overall system performance. Thememory behaviorof each running application is used
as an indicator of the resource needs of each application. Threads withgood memory
behavior are assigned to bigger hardware partitions orpipelines. In this sense, we define
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the goodness of an application’s memory behavior as the amount of L1 data cache misses;
the lesser L1 data cache misses the better the memory behavior of that specific applica-
tion. To classify each running applications according to their memory behavior without
adding excessive overhead, it is used profile information of the number of L1 data cache
misses of each application for a similar execution interval. This profile information may
come either from a prior off-line application’s execution or from a prior OS quantum of
execution. Since applications go through different program phases throughout their exe-
cutions, with very different behaviors, the closer the behavior exhibited during the profile
information fed from the OS to thehdSMTmapping policy to the real behavior the better
results would be obtained. In this PhD dissertation we assume the OS to successfully feed
the hdSMT mapping policy with appropriate profilings13.

By means of this profile information fed by the OS, the active threads are arranged
by the number of data cache misses and assigned to thepipelines. The pipelines present
in the microarchitecture are also arranged, but in this case by the width of the pipeline.
Then, threads are mapped to the pipelines starting from the thread with the lower misses
count and from the widest pipeline. Recall that the OS is suppossed to select a workload
with a maximum execution thread count lower or equal to the sum of hardware contexts,
spread over all the constituent pipelines in anhdSMTprocessor.

The proposed hdSMT mapping policy assigns as many threads per pipeline as hard-
ware contexts it has got. If a pipeline does not admit more threads, the mapping policy
continues assigning threads to the next pipeline in the list. The only exception to this
simple rule is the first thread. Whenever possible, the first thread is mapped alone in
the first pipeline. The rationale to this procedure is to prevent the resource competition
between the highest-performing thread and other simultaneosly running threads. Since
the highest-performing thread is the one which contributes the most to the final processor
throughput, isolating it improves the overall processor throughput.

Regarding the interaction between applications, it is assumed that applications with a
similar number of L1 data cache misses behave similarly and therefore can share a sin-
gle pipeline without involving counterproductive contention. Thus, the negative scenario
in which applications with a bad memory behavior hinder the forward progress of ap-
plications with a better memory behavior is avoided. In this sense, our mapping policy
assumes that adjacent applications in the listT behave similarly and consequently can
share a singlepipeline.

13DuringhdSMTresearch we employed information from a single profile for each application used, cor-
responding to a complete execution of thetrace(see Chapter 2) of instructions, selected for each application
according to[55].
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In order to match each application with the most appropriatepipeline, and so ad-
equately matching theApplication Heterogeneitywith the heterogeneously partitioned
hardware, our mapping policy makes the following simple assumption:”the number of
L1 data cache misses of an application is inversely proportional to the required pipeline
width” . The more L1 data cache misses occurred during an application execution interval
the more resources will be held by that application while each miss is resolved, hinder-
ing other applications from making forward progress using those resources. By doing so,
we expect to match each application with the most appropriate pipeline, that is the one
in which it is obtained the highest performance but involving the lowest resource bud-
get. The full mapping process of the profile-based heuristic policy employed is detailed
following in pseudo-algorithmic form:

1. Arrange all active threads, by the number of L1 data cache misses, in a list (T). The
first thread inT is the one with the lesser number of misses.

2. Arrange all pipelines, by their width, in a list (P). The first pipeline inP is the
widest one.

3. Map the first thread inT to the first pipeline inP.

4. If this is the first assignment, and there are more available hardware contexts than
active threads, then remove the top of the listP.

5. Remove the top of the listT.

6. If all the hardware contexts of the pipeline in the top of the listP are busy then
remove the top of the listP.

7. If list T is not empty continue in step 3.

Our results show that the effectiveness of the mapping policy depends on each spe-
cific hdSMTmicroarchitecture it is designed for. Hence, as we will see in Section 3.3.5, a
singlehdSMTmapping policy can not obtain the optimal results for allhdSMTmicroar-
chitectures. The proposedhdSMTmapping policy described in this section, and used in
the evaluation of thehdSMTarchitecture itself, is aimed at thehdSMTmicroarchitecture
evaluated with the best performance per area ratio (i.e.2M4+2M2 ). For thishdSMTmi-
croarchitecture the proposedhdSMTmapping policy exhibits an average 92% accuracy.
Consequently, obtaining an appropriatehdSMTmapping policy for each specifichdSMT
microarchitecture opens new lines of research, left for future work.
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3.3.2 Area Cost Model

Several microarchitectures were evaluated duringhdSMTresearch. Each of these mi-
croarchitectures involve a different hardware budget. Since an straight comparison of
the results obtained for microarchitectures with a different amount of resources may be
quite unfair, some additional complexity measurement is needed in order to guide this
evaluation. However, quantifying complexity is a tricky task and giving a single and com-
parable measurement is even harder to accomplish. In this research it is followed a quite
generalized approach which uses the area (in mm2) of the processor as a metric of its
“complexity”. Althoughcomplexityis not proportional to area in all cases, it gives a quite
accurate idea of the resultantcomplexityand is reasonably easy to be measured.

To estimate the area of each configuration it is used theKarlsruhe Simultaneous Mul-
tithreaded Simulator[59, 64, 65]. On top of thisarea estimation toolwe develop our
area cost model. Since bothhdSMTandSMT approaches share the same register file
and caches, they are removed from thearea cost modelto simplify the results. However,
since inhdSMTthese resources are shared among allpipelines, the cost of the additional
access logic is taken into account. It is added to the execution core of eachpipeline, as
additional hardware for multiplexing the data access. ThehdSMTfetch engine also needs
some additional logic. Although its characteristics are similar to theSMT one, multip-
ipeline support requires some extra logic. In fact, somehdSMTimplementations, while
requiring less area, provide more hardware contexts than a monolithicSMT processor.
Taking into consideration Burns and Gaudiot’s work in quantifying theSMT layout over-
head [16, 17], we have extrapolated single to multipipeline environment area overhead
from single to multithreading environment. Thus, we have estimated the additional area
overhead of the execution core within each pipeline in a 10%. The conventionalSMT
fetch engine area overhead, when applied to ahdSMTmultipipeline environment, has
been estimated in a 20%.

In our evaluation, four different models ofpipeline are used, namedM8, M6, M4,
andM2. The number in the name of each model gives a hint of the amount of resources
assigned to the correspondingpipeline. TheSMT baseline, ormonolithic SMTsince its
hardware is not partitioned into clusters, is represented by theM8 pipeline. The remain-
der models representpipelineswith reduced resources budget with respect to the baseline.
Starting from theM8 processor model, basically we estimated the hardware budget of the
remainder processor models by dividing the original hardware budget by two (i.e, once
per M4 and twice perM2). The M6 processor model was introduced as an intermedi-
ate step in betweenM8 andM4 models to allow some further high-performinghdSMT
microarchitectures.
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The functional units are among the private resources of each pipeline. In order to
choose the most appropriate number of functional units for each pipeline, we evaluated
the performance obtained as we reduced them, starting from the baseline model (M8).
With all other resources changed to thepipeline’s new values, it was chosen in each case
the number of functional units that kept a performance slowdown below 2%. The result-
ing amount of processor resources assigned to eachpipelineis shown in Figure 3.12.(a).
Additionally, it is used a private 256-entryReorder Buffer (ROB)per each thread in all
configurations, bothSMTandhdSMT.

Except for themonolithic SMTbaseline, all the configurations evaluated are com-
prised of a set ofpipelines. For each of thesepipelines, the area estimation is obtained
from the sum of the area occupied by the instruction fetch, decode, dispatch, execu-
tion core, and instruction completion stages plus the decode, dispatch, and completition
queues. InhdSMTandhomogeneously clustered SMTconfigurations, comprised of com-
binations ofM6, M4, andM2 pipelinemodels, only one instruction fetch stage is included
in the total area calculus, since it is shared among all the constituentpipelines. According
to the definedarea cost model, the area estimation for each of the configurations evaluated
is shown in Figure 3.12.(b). All estimations have been made in 0.18µm, as in [16], to
ease our area overhead extrapolations. Notice in Figure 3.12.(b) that the area estimation
for theM6, M4, andM2 pipelinesincludes an instruction fetch stage a 20% bigger than
the one included in the baseline (M8). Each of these bars may be considered as anhdSMT
processor comprised of a singlepipeline, the one measured in each case.

Finally, as shown in Figure 3.12.(a), ourmonolithic SMTbaseline (M8) is not able
to execute more than four threads simultaneously. Although adding additional hardware
contexts increases the total area occupied by anSMTprocessor, as evaluated by Burns and
Gaudiot in [16], ourarea cost modeldoes not assume any additional area overhead for the
baseline in case of executing more than 4 threads simulatenously. As a consequence, the
usedarea cost modelfavors the baseline when 6-thread workloads are evaluated, which
require two additional hardware contexts to theM8 model.

3.3.3 Simulation Setup

Additionally to the reference simulation parameters shown in Chapter 2 (Table 2.4)
Figure 3.12.(a) shows the main characteristics of eachpipelinemodel used inhdSMTex-
periments. In bothmonolithicandmultipipelineconfigurations, the register file is shared
among all the threads running on 8-stage executionpipelines. Any of the integer and
load/storefunctional units included in eachpipelineis connected to each of the12-read
and 6-write portsof the integer register file. FP functional units are connected to each of
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M8 M6 M4 M2

Hardware Contexts 4 2 2 1

Max. Instr./cycle 8 6 4 2

Max. Threads/cycle 2 2 2 1

Queues (IQ/FQ/LQ) 64 32 32 16

Integer Func. Units 6 4 3 1

FP Func. Units 3 2 2 1

LD/ST Units 4 2 2 1
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Figure 3.12: Pipeline models.

the6-read and 3-write portsof theFP register file. Since the amount of functional units
included in amultipipelineconfiguration, obtained as the sum of the functional units in-
cluded in each of the constituentpipelines, may be much higher14 than the baseline’s, the
access to the read/write ports of the shared register files is multiplexed in these configura-
tions. In order to model the cost of the additional logic, required to handle the multiplexed
accesses to the shared register file ports, it is doubled the number of cycles required by
any register read/write in multipipeline configurations. Thus, register reads/writes have a
latencyof 1 cyclein case of amonolithic SMTprocessor as against the2-cycle latencyof
the multipipeline configurations.

In the experiments related to this chapter, it is adopted theFLUSH [70] instruction
fetch policy for the baseline (M8) case. Built on top ofICOUNT 2.8[72], that prioritizes

14Wider pipelinesare prioritized in case of register file port contention in a single cycle. That is,
read/write accesses from wider pipelines are served first.
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threads according to the number of instructions in the preissue stages, thisSMTfetch pol-
icy predicts an L2 cache miss every time a load spends more cycles in the cache hierarchy
than needed to access the L2 cache. It is used afixed 30-cycle trigger, according to the
memory simulation parameters shown in Table 2.4. That is, whenever a load instruction
last more than 30 cycles to be resolved, an L2 cache miss is predicted. Whenever an L2
cache miss is predicted, the instructions after the L2 missing load are flushed away from
the execution pipeline, and the offending thread is stalled until the load is resolved. As a
consequence, the resources used by the offending thread are freed and it does not compete
for new resources until the load is resolved. This allows the other threads to proceed and
use the freed resources to make forward progress, while the stalled thread is waiting for
the outstanding cache miss.

For the case ofM6, M4 andM2 pipelines, it is adopted theL1MCOUNTfetch policy,
a variant of theDCache Warnfetch policy [19]. ThisSMT fetch policy keeps track of the
number of inflight loads. Threads are arranged by the number of inflight loads they have
and given fetch priority accordingly. Threads with fewer number of inflight loads have
priority. In case of equal number of inflight loads, threads allocated to wider pipelines
have priority over those in narrower pipelines. Finally, in case of pipeline coincidence,
the ICOUNT 2.8policy is applied. Regardless of theSMT fetch policy, all simulations
are limited to 8 instructions fetchable per cycle, from a maximum of 2 threads. In order
to decouple the shared fetch engine from the specific characteristics of eachpipeline, it
is allocated a buffer in between the fetch engine and eachpipeline(see Fig. 3.11). The
size of these buffers is 32 entries, forM6 andM4 pipeline models, and 16 entries, forM2
pipeline model.

In our experiments, it is employed theSPECINT2000 benchmark suite. From them,
we have collected traces of the most representative 300 million instruction segment of
each benchmark, following the idea presented in [55]. Each program is compiled with
the –O2 –nonsharedoptions using DEC Alpha AXP-21264 C/C++ compiler and exe-
cuted using the reference input set. Tables 3.2 and 3.3 show the workloads used, includ-
ing 2, 4, and 6 threads. Workloads are classified according to the characteristics of the
included benchmarks: with high instruction-level parallelism (ILP), with bad memory be-
havior (MEM), or a mix of both (MIX). Due to the characteristics ofSPECINT2000, with
few benchmarks that are really memory bounded,MEM workloads are only feasible for
2 and 4 threads. The reason to focus onSPECINT2000benchmarks, not including others
asSPECFP2000, is to delimit theApplication Heterogeneity. We seek to show that even
within an apparently homogeneous, and not highly parallel, suite of applications there is
enoughInter-Application Heterogeneityto be exploited by anhdSMTarchitecture. In any
case, we believe that even in the lack of theseMEM workloads our results are significative
enough to reach interesting conclusions.
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Wld Benchmarks T Wld Benchmarks T

2W1 eon, gcc I 4W1 eon, gcc, gzip, bzip2 I
2W2 crafty, bzip2 I 4W2 crafty, bzip2, eon, gzip I
2W3 gap, vortex I 4W3 gap, vortex, parser, crafty I
2W4 mcf, twolf M 4W4 mcf, twolf, vpr, perlbmk M
2W5 vpr, perlbmk M 4W5 vpr, perlbmk, mcf, twolf M
2W6 vpr, twolf M 4W6 gzip, twolf, bzip2, mcf X
2W7 gzip, twolf X 4W7 crafty, perlbmk, mcf, bzip2 X
2W8 crafty, perlbmk X 4W8 parser, vpr, vortex, twolf X
2W9 parser, vpr X 4W9 vpr, twolf, gap, vortex X

Table 3.2: Two and four threaded workloads (I=ILP, M=MEM, X=MIX)

Wld Benchmarks T

6W1 gzip, gcc, crafty, eon, gap, bzip2 I
6W2 gcc, crafty, parser, eon, gap, vortex I
6W3 gzip, vpr, mcf, eon, perlbmk, bzip2 X
6W4 vpr, mcf, crafty, perlbmk, vortex, twolf X

Table 3.3: Six threaded workloads.

In each experiment, it is strictly focused on the period of time in which all the initial
threads share the processor. The objective in each case is to evaluate the behavior of each
microarchitecture with workloads comprised of two, four and six threads. This means that
each simulation finishes as soon as any of the threads contained in the evaluated workload
finishes executing 300 million instructions.

3.3.4 Microarchitectures and Metrics

In our experiments, several multipipeline microarchitectures are evaluated, both ho-
mogeneously and heterogeneously distributed. All these multipipeline microarchitectures
are implementations of thehdSMTarchitecture15, with a shared fetch unit feeding all the
constituentpipelines. The area estimation for each of the microarchitectures evaluated is
shown in Figure 3.13. The name of each microarchitecture, below each area estimation
in Figure 3.13, indicates the number and type ofpipelinemodels involved in each case.
Thus, the2M4+2M2microarchitecture is comprised of two pipelines of typeM4 plus two
pipelines of typeM2 (see Figure 3.12 for an area estimation of each pipeline type). From
left to right, the first microarchitecture (M8) in Figure 3.13 represents ourmonolithic SMT

15Although the homogeneous ones do not obey thehdSMTprinciple of heterogeneous distribution of the
hardware resources.
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1M6+2M4+2M2

3M4+2M2

2M4+2M24M43M4M8

Figure 3.13: Area estimation of evaluated microarchitectures.

baseline. The next two microarchitectures (3M4 and4M4) are homogeneously clustered
hdSMTmicroarchitectures; a shared fetch engine feeds multiple pipelines of the same
type. Finally, the last three microarchitectures represent the trulyhdSMTmicroarchi-
tectures, with multiple pipelines of different types comprising the system. According to
Figure 3.13, all but two microarchitectures (4M4 and1M6+2M4+2M2) require less area
than the monolithicSMTbaseline. That is, they are“simpler” than theSMTbaseline.

For each microarchitecture and workload it is evaluated the performance obtained;
measured inInstructions Per Cycle (IPC). Since each microarchitecture has a different
resource budget, and consequently a different performance potential, we also take into
account thecomplexityinvolved. In order to make a fairer comparison we combine the
performance and the complexity of each microarchitecture in a single metric. Thus, we
additionally provide results measured inPerformance per Area, which is obtained divid-
ing the resulting performance of a microarchitecture by its area (in mm2). This addi-
tional metric allows to evaluate the“complexity-effectiveness”of each microarchitecture.
Whilst comparing raw performance may lead to unfair comparisons, only justified in case
of unlimited resource budgets16, in a more general case the processor design may obey
stricter complexity constraints; both in terms of area, power and thermal disipation.

16Whenever a microarchitecture is designed with the only purpose of maximum throughput, the com-
plexity involved in the processor’s design may be obviated.
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3.3.5 Simulation Results

In this section we evaluate and comparemonolithic SMT, homogeneously distributed
hdSMT, andheterogeneously distributed hdSMT processors. For each workload, three
measurements are given. First, theBESTresult, obtained using anoracle17 thread map-
ping policy, gives themaximum performanceof the microarchitecture. Second, theHEUR
result gives the performance obtained by the microarchitecture using theheuristicthread
mapping policy presented in Section 3.3.1. Finally, theWORSTresult gives the per-
formance obtained by the microarchitecture in case of applying in each case theworst
possiblethread-to-pipeline mapping. Special cases are the baseline (M8) and the two-
thread workloads of homogeneous distributions (3M4 and 4M4). Since the baseline is not
multipipelined, no thread-to-pipeline mapping policy is needed and so only one measure-
ment is given. In two-thread workloads, when all pipelines are of the same sort the three
measurements (BEST, HEUR, WORST) coincide.

Figure 3.14 shows theraw performanceresults (measured inIPC) for all microar-
chitectures evaluated. In each case, it is shown theharmonic meanof all workloads
of a same type and size. These results point out that, although somehdSMT’sresults
are quite similar toSMT baselineones, thehdSMT’sresults are exceeded by theSMT
baselineones in some cases. Comparing the baseline (M8) andbest-performing hdSMT
(1M6+2M4+2M2) means, we got baseline speedups over hdSMT of5%, 4% and15%
in ILP, MEM, andMIX workloads respectively. In the first two cases, the mean perfor-
mance ofhdSMTis not quite bad considering that thehdSMTmicroarchitecture is able
to executeup to 8 threadswhile the resource budget of the baseline (M8) is not able to
execute more than4 threads(as mentioned in Section 3.3.2). Recall that the maximum
amount of threads that anhdSMTmicroarchitecture is able to execute simultaneously is
equal to the sum of hardware contexts of each constituentpipeline. Hence, according to
Figure 3.12.(a), the2M4+2M2 hdSMTprocessor is able to execute up to 6 threads simul-
taneously, whilst1M6+2M4+2M2can handle up to 8 threads simultaneously. Neverthe-
less, the ability to flush and re-execute instructions of the baseline (M8) is crucial in the
MIX scenario. Although this is the general trend, notice thathdSMTis able to outperform
theSMT baselinein the six-threadILP workload scenario (see Figure 3.14.(a)).

17Obtained using brute force, that is simulating all different application-to-pipeline assignments and
choosing the one with the highest value.
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Figure 3.14: Performance comparison.
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Figure 3.15: Performance per Area comparison.
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The previous results strictly take into consideration the performance that each mi-
croarchitecture obtains executing the given workloads. However, each microarchitecture
involves a different amount of resources; and a different power consumption among oth-
ers. To make a fairer comparison we show in Figure 3.15 thePerformance per Area
results for all microarchitectures evaluated. Again, it is shown theharmonic meanof all
workloads of the same type and size. From these results, we can infer that thehdSMT
architecture achieves higher performance per area ratios than themonolithic SMTarchi-
tecture, that is,better relative results than SMT using fewer resources. Comparing the
baseline (M8) andbest-performance-per-area hdSMT(2M4+2M2) means, we gothdSMT
improvements over theSMT baselineof 15%, 18%and10%in ILP, MEM, andMIX work-
loads respectively. The rationale behind these results, that clearly indicate thathdSMT
microarchitectures are morecomplexity-effectivethan amonolithic SMT, can be found on
the amount of resources needed to execute each application; namelyInter-Application
Heterogeneity(seeHeterogeneity Analysisshown in the first half of this chapter). Since
processor resources arestatically partitionedamong all the constituentpipelines, and the
mapping policy employed isstatic (i.e., only reassigns applications to pipelines on a OS
context switch granularity) the results highly depend on the mapping policy. Hence, good
results would come from the ability to accurately matching the application’s hardware
requirements and each pipeline’s hardware budget during each OS quantum of execution.

Regarding thehomogeneous(3M4, 4M4) andheterogeneousdistribution (2M4+2M2,
3M4+2M2, 1M6+2M4+2M2) of hdSMTprocessors, results in Figures 3.14 and 3.15 point
out thatheterogeneous distributions are better18 than homogeneous ones. Thus,for each
case there is at least one heterogeneous distribution that overcomes, both in terms of
absolute performance and performance per area,all homogeneous distributions. How-
ever, homogeneous distributions represent an easier scenario in terms of mapping poli-
cies. Since all partitions have the same amount of processor resources, the amount of
differentassigments drastically decreases, leading to a more easy-to-assign scenario.

From all previous results it may also be inferred thatthe thread-to-pipeline mapping
policy is a crucial factor in hdSMT architecture. This can be noticed by comparing
the BESTandHEUR results in Figures 3.14 and 3.15. As an example, notice that the
2M4+2M2 hdSMTmicroarchitecture obtains the highestperformance per arearatios in
all but the four-threadedMEM workload case. In that case, although theoracle map-
ping policy obtains a9% improvement over the baseline, theheuristic accuracydrops to
76%, resulting in a worse result than the baseline. From Figures 3.14 and 3.15 it is also
noticeable thatthe effectiveness of the mapping policy depends on the specifichdSMT
microarchitecture. Thus, while the heuristic applied achieves92%and96%accuracy in

18In terms ofcomplexity-effectiveness.
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2M4+2M2 and1M6+2M4+2M2microarchitectures respectively, its accuracy drops to a
88% in 3M4+2M2 microarchitecture. As a consequence, Figures 3.14 and 3.15 clearly
indicate that when designinghdSMTmicroarchitectures it must be payed special atten-
tion to the design of thehdSMTmapping policy. Although covered in some sense in
multithreaded multicore scenario (see Chapter 4), a deep analysis of mapping policies in
clustered scenarios is left for future work.

To summarize, our results point out thatthe hdSMT achieves its goal of minimizing
the amount of wasted resources. In this sense, it obtains a13% and14% improvement
in optimizingperformance per areaovermonolithic SMTandhomogeneously clustered
SMT, respectively. Regarding toraw performance, monolithic SMTobtains in mean a
6% speedup overhdSMT. Nevertheless,hdSMTobtains in mean a7% raw performance
speedup overhomogeneously clustered SMT. Finally, the results also indicate thatthe
thread-to-pipeline mapping policy plays a very important role in hdSMT.

3.4 Chapter Summary

The heteregeneity among application behaviors turns current architectures overde-
signed for most cases, obtaining high performance but wasting a lot of resources to do
so. In this chapter we have deeply analyzed the heterogeneity in software and its reflect
on the hardware itself. From this analysis we have settled the foundations of the first
contribution of this thesis: theHeterogeneously Distributed Simultaneous Multithreading
(hdSMT) architecture.

ThehdSMTarchitecture is anSMTalternative architecture in which the running threads
are mapped to a heterogeneosly clustered hardware according to this heterogeneity. The
results obtained in the evaluation of this first contribution indicate that thehdSMTreduce
the waste of resources at reduced budget, obtaining13% and14% improvement in op-
timizing performance per area overmonolithic SMTandhomogeneously clustered SMT,
respectively.

In hdSMT, the thread-to-pipeline mapping policyis a prime concern. In this chapter,
we have presented asimple profile-based heuristic policythat achieves a92% average
accuracy. Raw performanceresults also point out that, in futurehdSMT implementa-
tions, this mapping should probably be made dynamically in order to better adapt to the
dynamic changes in the program behavior during execution. In this sense, the conclusions
obtained from the heuristic mapping policy proposed in this chapter shed some light into
the characteristics of future mapping policies over clustered layouts, opening new and
interesting research topics for future research.
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Chapter 4

Heterogeneity-Awareness in
Multithreaded Multicore Processors

Once analyzed theHeterogeneity-Awareconcept and its application to the single-core
scenario we move to the multicore scenario. In particular, we focus on theMultithreaded
Multicore Processors, a sort of processors that seem to constitute a general trend in indus-
try nowadays. So, state-of-the-art high-performance processors like theIBM POWER5
andPOWER6, comprised of two cores with twoSMT hardware contexts each (i.e., an
overall four hardware contexts count), confirm this trend. In these processors, the set of
applications selected by theOperating Systemto be simultaneously executed must be as-
signed to one of the available hardware contexts, distributed among all available cores.
We call to this intermediate step theThread to Core Assignment (TCA).

In this chapter we show the relation between theThread to Core Assignment (TCA)
and the underlyingInstruction Fetch (IFetch) Policy, implemented in eachSMTcore. On
the one hand, we show that the performance of a givenTCAdepends on the underlying
IFetch Policy. On the other hand, theTCAdetermines the performance of the underlying
Instruction Fetch (IFetch) Policyimplemented in eachSMT core. We include evidences
which indicate that a goodTCAcan improve the results of any underlyingIFetch Policy,
yielding speedups of up to 28%.

Given the relevance ofTCA, we propose an algorithm to manage theThread to Core
Assignmentin Multicore processors comprised ofSMT cores. The proposedTCA Algo-
rithm boosts system throughput, taking into account theworkload characteristicsand the
underlyingSMT IFetch Policy. It achieves its goal, yielding system throughput improve-
ments up to 21% as compared to the state-of-the-artTCApolicy in current processors.

55
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4.1 Introduction

Process technology advances have considerably increased the amount of available
transistors on a single chip; and this count does not seem to stop increasing in the next
years. However, having more available transistors can not always be directly translated
into increasing the processor performance. The limitations imposed by theInstruction
Level Parallelsim(ILP) have madeThread Level Parallelism(TLP) becoming a common
strategy to improve processor performance. Multithreaded processors execute multiple
applications to better profit the available hardware resources. Since it is difficult to ex-
ploit moreILP from a single application, Computer Architects have opted to exploit other
parallelism sources.

As we saw in Chapter 1, there are multiple multithreaded alternatives, depending on
the granularity of theTLP exploited. According to the specificMT alternative chosed
for an specific microarchitecture, theOperating System (OS)has a different task when
selecting the execution workload for eachOS context switch. Therefore, theOSschedul-
ing process depends on the specificMT alternative implemented in the processor. In this
chapter we show how theHeterogeneity-Awarenessconcept could assist theOS when
performing this task, in order to achieve subsequentcomplexity-effectiveexecutions.

In anSMTprocessor, thescheduling processis comprised of two main steps. Assum-
ing M runnable jobs, in the first step theOperating System (OS) Job Schedulerselects a
set ofN from theseM jobs: the workload (N is less or equal to the number of hardware
contexts of theSMT). This first scheduling layer is known asco-schedule selection[33].
Once theOScomposes the workload, the resource allocator of theSMTprocessor decides
how to prioritize threads. Usually the resource allocation is carried out by theIFetch Pol-
icy [20, 24, 70, 72]. This second scheduling layer is known asresource sharing[33].

In a CMP processor comprised ofSMT cores, like theIBM POWER5[60] andPO-
WER6[39], the traditionalSMT scheduling processrequires an additional intermediate
step. Once theOS selects the applications to schedule together in the processor (co-
schedule selection) each application must be assigned to one of the execution cores. We
call this additional scheduling step theThread to Core Assignment (TCA). Then, the un-
derlying IFetch Policymanages the resource distribution (resource sharing) between the
applications assigned to the same core. In currentOS like Linux 2.6[14], theTCAdoes
not have a significant role when co-scheduling threads. Basically, the decision whether a
job has to be scheduled in a given core depends on the fact whether that job wasrecently
executed in that core and hence can take profit of the data that could remain in the cache.
Nevertheless, thread migrations between execution cores can be triggered by theOSfor
load balancing purposes, losing the data in the cache.



4.1. INTRODUCTION 57

In SMTprocessors, theIFetch Policyis usually designed to address a particular situa-
tion where the performance ofSMTdegrades significantly. As an example, theFLUSH[70]
policy avoids the situation where amemory-boundedthread clogs the internal resources
of the SMT causing performance degradation. These policies improve performance in
workloads comprised of bothmemory-boundedandILP-boundedthreads.

In this chapter, we analyze the new intermediate step, theTCA, that we have identi-
fied in theOSscheduling process of currentCMP processors comprised ofSMT cores
(CMP+SMT). This analysis reveals that theTCAheavily affects the performance of the
underlyingInstruction Fetch (IFetch) Policy. Our analysis focuses on the relation between
theTCAandIFetch Policyscheduling layers. That is, we assume a fixed workload after
someco-schedule selection1. The results indicate that a badTCAmay negate the perfor-
mance advantage of arobust2 IFetch Policy, like theFLUSH [70] andSTALL[70] poli-
cies. That is, if we continue designing multithreaded multicore processors without having
into account theHeterogeneity-Awarenessconcept, we would go away fromcomplexity-
effectiveprocessor designs; further as the on-chip transistor count increases.

The importance of theTCA lies in the fact that it can prevent the situation in which
SMTsuffers from performance degradation by appropriately assigning the threads to co-
schedule in eachSMT core. Thus,a goodTCA reduces the need of arobust IFetch
Policy. Oppositely,a badTCA may cause arobust IFetch Policyto perform poorly. An
illustrative example is shown in Figure 4.1. It depicts the throughput of a 2-core processor
with 2 hardware contexts per core, using theICOUNT andFLUSHpolicies, respectively
(See Section 4.2 for core details). The applications in the workload (A,B,C,D) are assigned
to theSMTcores (e.g., [A,B]= A andB assigned to the same core). Notice in Figure 4.1
that while the firstTCA yields similar results for both policies, the secondTCA obtains
an improvement of 19%. Consequently, agood TCApolicy is required in order to fully
exploit the benefits of the underlyingIFetch Policyin CMP+SMTprocessors.

As the amount ofSMT cores withinCMPs increases, the number of possibleTCAs
exponentially grows. Assuming 2 hardware contexts perSMT core, there are 3, 105,
and 280 millions of differentTCAsfor 2, 4, and 8-core implementations, respectively.
Therefere, the selection of agood TCAfor each case should not involve an excessive
overhead, proportional to the number of cores. Otherwise, this selection scheme would
not scale with the ever-growing amount of on-chip cores. This chapter presents the second
contribution of this thesis, that can be break down into:

1Certainly, there is a relation betweenco-schedule selectionandTCA, but is out of the scope of this PhD
dissertation, and left for future research.

2The termrobust is employed in this chapter to refer IFetch Policies which appropriately handle long-
latency loads.



58 CHAPTER 4. HETEROGENEITY-AWARENESS IN CMP+SMT PROCESSORS

Workload: 
A,B,C,D

A = vpr
B = equake
C = fma3d 
D = vortex2) [A,C] [B,D]

1) [A,B] [C,D]

TCA

1,871,63

1,571,57

FLUSHICOUNT
+0%

+19%

Figure 4.1: TCA Example.

1. ANALYSIS.-We analyze thescheduling processin CMP+SMT processors. We
identify the need of a new intermediate step in the scheduling process:Thread
to Core Assignment (TCA). We also do the first analysis in the literature3 of the
relation between thisTCAand theIFetch Policy. Our results indicate that a proper
TCA allows anaive IFetch Policy, like Round Robin[72], yields similar through-
put results to those obtained with arobust IFetch Policy, like FLUSH. We show
results which indicate that agood TCAcan yield speedups of up to 28%. Therefore,
the TCA Algorithm supposses a significative improvement in terms of complexity-
effective executions, sincenaivepolicies generally consume less energy than more
robustones.

2. PROPOSAL.-We propose theTCA Algorithm, which applies theHeterogeneity-
Awarenessconcept to theMultithreaded Multicore Processors. It selects an appro-
priateTCA for each case, according to theworkload characteristicsand the under-
lying IFetch Policy. Its simple design allows a real implementation without adding
excessive overhead, just requiring the number ofcommitted Instructions Per Cy-
cle (IPC)during a prior and representative portion of execution. To assist theTCA
Algorithm with theseIPC values, we also propose anIPC prediction mechanism:
the TCA Calibration. This simple but effective mechanism predicts therelative
behavior(measured inIPC) of the running applications using an smallsampling
phase. The obtainedIPC values, whilst not fully accurate, catch the relative behav-
ior of the running applications. Feeding theTCA Algorithmwith theseIPC values,
we show evidences which indicate that the proposedTCA Algorithmobtains assign-
ments 3% close to the optimal assignation for each case, yielding system through-
put improvements up to 21%. Besides, theTCA Algorithmaccuracy scales with the
workload size and number of on-chipSMTcores.
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Simulation Parameters Benchmarks

Pipeline depth 11 stages L1 I-Cache 64KB, 4-way, 8 banks gzip a vortex j mesa s
Queues Entries 64 int, 64 fp, 64 ld/st L1 D-Cache 32KB, 4-way, 8 banks vpr b bzip2 k fma3d t
Execution Units 4 int, 3 fp, 2 ld/st L1 lat./miss 3/22 cycs. gcc c twolf l sixtrack u
Physical Registers 320 regs. I-TLB ,D-TLB 512 ent. Full-assoc. mcf d art m facerec v
ROB Size* 256 entries TLB miss 300 cycs. crafty e swim n applu w
Branch Predictor perceptron L2 Cache 4MB, 12-way, 4 banks perlbmk f apsi o galgel x
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Type Workload Type Workload Type

4W1 b, q, t, j 8W1 d, l, b, g, h, j, a, f 16W1 d, l, b, g, m, n, r, q, i, j, c, f, k, e, a, h
4W2 l, n, o, e 8W2 b, g, m, n, a, h, w, p 16W2 l, l+1, l+2, l+3, g, g+1, g+2, g+3, k, e, a, h, o, p, s, t
4W3 r, i, f, p 8W3 m, n, r, q, f, j, e, h 16W3 b, n, b+1, n+1, b+2, n+2, b+3, n+3, o, p, s, t, w, u, x, z
32W1 d, l, b, g, m, n, r, q, m+1, m+2, b+1, b+2, q+1, q+2, g+1, g+2, i, j, c, f, k, e, a, h, p, s, w, o, h+1, j+1, a+1, f+1
32W2 l, l+1, b, b+1, m, m+1, n, n+1, g, g+1, g+2, b+2, q, q+1, q+2, r, j, j+1, j+2, h, h+1, a, a+1, f, u, p, p+1, p+2, c, c+1, s, s+1
32W3 d, b, b+1, b+2, n, n+1, n+2, q, m, m+1, m+2, m+3, l, l+1, l+2, l+3, u, h, h+1, h+2, h+3, j, j+1, f, a, a+1, a+2, p, p+1, w, w+1, f+1

Table 4.1: Simulation parameters and Workloads. (resources marked with * are replicated
per thread)

4.2 Methodology

We simulateCMP configurations using a a multibanked L2 Cache shared among all
cores. Each core implementsSMTwith two hardware contexts. Each workload is simu-
lated on aCMP comprised ofthreads

2
SMTcores (e.g., 8-thread workloads simulated on

4-core CMPs). Additionally, in order to assure a minimal cache share 16-thread and 32-
thread workloads (16W & 32W) are simulated using a shared 6MB 6-banked L2 Cache
(instead of 4MB 4-banked). Since a complete study of all benchmarks is not feasible due
to excessive computational cost we have randomly chosen some of them. The workload
size is denoted by the prefixxW, wherex stands for the number of benchmarks involved.
Table 4.1 shows the main simulation parameters and the chosed workloads.

Each workload is simulated employing 4 different IFetch Policies:Round Robin (RR)[72],
ICOUNT [72], STALL[70] andFLUSH [70]; in all cases, simulations are executed for
a fixed intervalof 140 millions of simulation cycles. In our simulations we assume this
simulation interval as a singleOS quantum of execution. Although an state-of-the-art
general-purposeOSlike Linux 2.6does not have a fixed-lengthOS quantumwe make this
assumption for simplicity reasons. TheLinux kernel 2.6[14] establishesOS quantums
with typical lenghts ranging from0 to 800ms. In a 4 GHz general-purpose processor,

3To the best of our knowledge, there is no prior publication that explicitly identified the need of an
intermediate layer in theOSscheduling process forMultithreaded Multicore Processors.
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like the IBM POWER6[39] 4, this would be translated intoOS quantumswith a duration
of 0 to 3200 million of cycles. The choice of140 millions of cycles5 as fixed-length of
theOS quantumsin our simulations represent a commitment, since all applications in the
workload executes without being interrupted by theOS.

Despite theTCA Algorithmis a throughput-orientedproposal, it must be said that
the fairnessconcept can not be directly applyied toTCA in CMP+SMT, as done in prior
SMTsfor IFetch Policies. This is true since the proposedTCA Algorithmdoes not add any
hardware/software mechanism to stop/interrupt the application’s execution; it just assign
threads toSMT cores. This is the main reason to not include in this research additional
metrics like theHarmonic Meanor Weighted Speedup.

4.3 Scheduling in Multicored SMT Processors

In a SMT processor theschedulingof a set of tasks requires decisions at two levels,
as shown on the left side of Figure 4.2. First, when the number of available ready tasks
M is larger than theT hardware contexts supported by theSMT processor, we need to
determine which tasks to co-schedule, that is schedule together. TheOS Job Scheduler
seletcs a set ofN tasks (where N≤ T) from theM ready tasks: the workload. This first
scheduling layer is known asco-schedule selection[33].

Second, we need to perform the resource distribution among co-scheduled tasks in
an SMT processor. TheOS passes the workload to the hardware, which must decide
how to distribute theSMT processor resources among all applications comprised in the
workload. This distribution is aimed at avoiding resource monopolization by the running
threads. This second layer is known asResource Sharing[33], as shown on left side of
Figure 4.2. There are several proposals in the literature [20, 24, 70, 72] to manage the
Resource Sharing. These proposals improve the system throughput of anSMTprocessor
solving the resource contention among all applications in the workload. In this research
we focus on fourIFetch Policies: RR[72], ICOUNT [72], STALL[70] andFLUSH [70].
Far from representing the state-of-the-art ofIFetch Policies, we use them as an easy-to-
explain example, since the proposedTCA Algorithm(see Section 4.5) do not degrade the
execution’s performance of the running threads within eachSMT core. In fact, as will
see in following sections, there is no a singleTCA Algorithmimplementation valid for
all IFetch Policies, as there is not a single thread-to-core assignment valid for all cases.
Consequently, there would be multiple possibleTCA Algorithmimplementations.

4Latest POWER6 implementations reach a frecuency of 4.7 GHz.
5According to Chapter 7 in [14], 140M cycles represents a reasonable choice for such an approximation.
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Figure 4.2: Scheduling Layers in SMTs and Multicored SMTs.

In a CMP+SMT processor, theT hardware contexts are distributed among allSMT
cores, as shown on the right side of Figure 4.2. Each execution core works as a different
SMTprocessor with its own resource allocation scheme. Consequently, we have to select
which of theN applications from the workload to co-schedule in eachSMT core, where
N = T. In this way, theN applications from the workload are distributed among thec
SMT cores. Since the multicore processor resources are statically distributed among all
SMT cores, the way in which we schedule together tasks in each core determines the
performance of the underlyingresource sharingin each core. Obviously, the more the
tasks (N) in the workload the more possible schedulings, orTCAs, growing exponentially
with the number of tasks. The three layers of the task scheduling in multicore processors
comprised ofSMTcores are shown on the right side of Figure 4.2.

In an state-of-the-art general-purposeOSlike theLinux 2.6[14] theTCAdoes not have
a significant role in thescheduling algorithm. In fact, it is not explicitly taken into account.
Linux 2.6considers each hardware context as a differentlogical domain. The logical
domainsare hierarchically organized according to the hardware contexts distribution on
the chip. Figure 4.3 depicts an illustrative example for a 2-coreCMP processor with
2 hardware contexts per core. Eachlogical domainhas a different queue6 of runnable

6Latest distributions of theLinux Kernel 2.6, like the2.6.23, manage these queues in a more sophisti-
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1.1 1.2 2.1 2.2
domain 1 domain 2

(a) Hierarchical domains.

(domain 1)

context 1  (1.1)

context 2  (1.2)

CORE 1
(domain 2)

context 1  (2.1)

context 2  (2.2)

CORE 2

(b) OS-HW domain mapping.

Figure 4.3: Linux 2.6 logical domains - Example in a CMP+SMT with 2 SMT cores.

applications, sorted by process priority. In order to keep balanced these queues aload
balancingprocess may be triggered, implying thread migrations from one core to another.
Besides the process priority, the decision whether a job has to be scheduled in a given core
basically depends on the fact whether that job wasrecentlyexecuted in that core, to take
profit of the data that could remain in the cache. However, the load balancing process
performed by theOSmay involve thread migrations between execution cores, losing the
data in the private caches.

4.4 Thread to Core Assignment and the IFetch Policy

In order to analyze the relation between theTCAand the underlyingIFetch Policywe
simulate all 4-thread (4W) and 8-thread (8W) workloads in Table 4.1 on 2 and 4-core
CMP, respectively. Figure 4.4 breakdowns the results intoWORSTandBEST TCA. They
correspond to the results obtained using the worst and the best TCA in terms of throughput
(i.e., WORST TCA corresponds to the TCA that yields the worst throughput among all
possible TCAs). Figure 4.4 shows for each IFetch Policy the average results obtained
from the corresponding TCAs for all workloads with the same number of threads.

Figure 4.4 shows some interesting values on top of the graph itself. On the one hand,
the percentages on top of each bar in Figure 4.4 indicate the throughput improvement
achievable for the correspondingIFetch Policyusing theBEST TCA, as compared to the
throughput obtained using theWORST TCA. That is, therelative importance of the TCA
or TCA Sensitivity. On the other hand, the percentages on the right side of each group of

catedtree-basedstructure.
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Figure 4.4: TCA Sensitivity.

bars indicate the relative importance of theIFetch Policywhen using similar TCAs. That
is, the throughput obtained using theTCA that yields theWORST/BEST TCAfor each
workloadand IFetch Policy. Comparing both results it is straightforward thatthe TCA
has similar or even more importance inCMP+SMTprocessors than theIFetch Policyin
SMT processors. Four main conclusions can be inferred from the average results shown
in Figure 4.4:

1. A good IFetch Policy reduces the negative effect of an inappropriate TCA. That is,
when counterproductive threads are assigned to the sameSMT core (i.e., inappro-
priateTCA) the goodness of the implementedIFetch Policyis of critical importance
to obtain high system throughput. As a consequence, the impact of theTCA (or
TCA Sensitivity) is on average lower in presence of goodIFetch Policies. As a mat-
ter of example, in 8-thread workloads (Figure 4.4(b)) theTCA’s relative importance
ranges from28%to 12%for RRandSTALL, respectively.

2. An appropriate TCA improves the results obtained regarless the underlying IFetch
Policy. The results in Figure 4.4 show that agood TCAimproves the system
throughput by more than 10% even in presence of arobust IFetch Policy, like STALL
andFLUSH.



64 CHAPTER 4. HETEROGENEITY-AWARENESS IN CMP+SMT PROCESSORS

3. An inappropriate TCA could negate the performance advantange of a better IFetch
Policy. That is, theTCA should not be neglected even when implementinggood
IFetch Policies. As an example, in both 4 and 8-thread workloads (Figure 4.4) the
results obtained withRR, usingBEST TCA, surpass those obtained using a better
IFetch Policylike FLUSH, usingWORST TCA. Therefore,simply investing in good
IFetch Policies does not assure the best results.

4. There is not a single TCA good for all cases. As a matter of example Figure 4.5
shows the results yielded by workload4W2(see Table 4.1) using eachIFetch Policy
considered and two differentTCAs. While TCA 1 yields theBEST TCAresults
for RRandICOUNT policies and theWORST TCAresults forSTALLandFLUSH
policies,TCA 2yields just the opposite results.

Finding theBEST TCAfor each case is not a trivial task since the number of possi-
ble TCAsexponentially grows with the number ofSMT cores. As a matter of example,
there are 105 differentTCAsfor 8-thread workloads using a 4-coreCMP+SMT proces-
sor. Some of them yield the highest throughput and are considered asBEST TCA. The
remainderTCAsmay incur in some throughput loss as compared to theBEST TCA. Since
state-of-the-art OS like theLinux Kernel 2.6does not explicitly take into accountTCA, a
RANDOM TCAis assumed asstate-of-the-art TCA policy. As shown following, randomly
selecting aTCAmay incur in significant throughput losses.

Figure 4.6 shows the probability of throughput degradation due to randomly obtain-
ing the TCA for each 8-thread workload and IFetch Policy considered. Since current
OSs does not explicitly take into accountTCAwhen assigning threads to cores in Multi-
threaded Multicore Processors, the probability distribution shown in Figure 4.6 reflects a
possible scenario in state-of-the-art processors. Notice in Figure 4.6 that the probability
of randomly obtaining theBEST TCA(loss lower than 1%) is in average close to 10%.
The remainderTCAshighly depend on theIFetch Policyand the specificcharacteristics
of each workload. Thus, while randomly selecting aTCA for workload8W2 incurs in
more than 5% of throughput loss with a probability of 71%, usingRR, this probability
drops to 20% using a betterIFetch Policy, like FLUSH. However, the same claim may not
be stated for workload8W3, where this probability is close to 50% and 75% forRRand
FLUSH IFetch Policies, respectively. Obviously, the specific characteristics of workload
8W3turn it into a more difficult target forFLUSHpolicy, yielding worse results and rais-
ing the probability of obtaining a high throughput loss. Consequently,it is important to
have a mechanism that assures some amount of reliability, in terms ofTCAselection for
each case.
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Figure 4.5: Example with different TCAs for a 4-thread workload.
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Figure 4.6: Probability of Throughput Loss in 8-thread workloads using Random TCAs.

4.5 Thread to Core Assignment Algorithm

In the following subsections we describe in detail the proposedTCA Algorithm, so as
theTCA Calibrationmechanism, aimed at handle the TCA scheduling layer in CMP+SMT
processors. A complete evaluation is also included, with results revealing up to 21% of
improvement over current state-of-the-art scheduling.
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4.5.1 TCA Algorithm Foundations

In order to properly manage theTCA in a CMP comprised ofSMTcores we take into
account both theworkloads characteristicsand the underlyingSMT IFetch Policy. The
proposedTCA Algorithmis designed for homogeneous implementations, with the same
IFetch Policyimplemented in each 2-hardware-context core, like theIBM POWER5[60]
andPOWER6[39]. We focus on thememory behaviorand theILP of each application and
how theIFetch Policyreacts to these characteristics. Regarding thememory behaviorwe
can distingish two types ofIFetch Policies: (1) naive, that perform badly withmemory-
bounded (MEM)applications likeRRor ICOUNT, and (2)robust, with good response
to MEM applications likeSTALLor FLUSH. Regarding theILP we must observe how
well theIFetch Policyboosts ahigh-ILPapplication performance without critically affect
a low-ILP application running on the same core. As an indicator of both characteristics
we use theIPC obtained by each application during a prior and representative portion of
execution. The obtention of theseIPCs is explained in detail in Section 4.5.3. The reason
for chosing the IPC as a simple indicator of the applications characteristics is twofold.

On the one hand, theIPC of the threads is usually directly proportional to theirmemory
behavior. High IPC results generally indicate goodmemory behaviors, and vice versa.
MEM applications can monopolize the available resources in the execution core whether
the IFetch Policydoes not prevent it, as it is the case innaive IFetch Policies. Thus, a
MEM thread wastes some of its assigned resources while waiting for memory, preventing
anILP thread, co-assigned in the same execution core, from doing forward progress. The
robust IFetch Policiessolve this problem by stalling (and even flushing) theMEM thread
whenever it waits for memory. Consequently, in case of thenaive IFetch Policiesit is
better to assign threads with similar memory behavior to a single core, and the opposite
for robust policies.

On the other hand, theIPC of the threads is directly proportional to theirILP. High
IPC results generally indicate highILP. A thread with a highILP tend to eagerly con-
sume all available resources, such as functional units, to make forward progress, since
the available paralellism allows to keep all available resources busy. Therefore, schedul-
ing together two highILP applications in a single core increases the resource contention,
yielding a reduction in the overall throughput. Assigning these applications to different
cores and scheduling them with lowerILP applications helps solving this resource con-
tention and improves system throughput. Therefore, it is better to assign together threads
with differentIPC levels, that is high and lowILP threads.

Robustpolicies must detect when a thread is going to wait for memory in order to
perform properly. Reacting too early or too late may negatively affect the final through-
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Algorithm 4.5.1: TCA(IPC)

1- Arrange threads by IPC.

2- Split sorted thread list into two halves, creating two different lists. We callHIGH-list to the sublist obtained
from the upper half of the original list, with the higher IPC values. We callLOW-list to the other sublist,
with the lowest IPC values.

3- For i=0 to Number of Threads
8 do 3.1- Assign the last two threads on theLOW-list to one empty core.

3.2- Assign the threads on the top and the tail of theHIGH-list to one empty core.
3.3- Remove the assigned threads from the lists.

4- While (Not EmptyHIGH-list andLOW-list) do 4.1- Assign the thread on theHIGH-list top andLOW-list tail to one empty core.
4.2- Remove assigned threads from the lists.

Figure 4.7: TCA Algorithm implementation for FLUSH/STALL policy.

put [70]. Applications with a high rate of memory misses may impose a severe obstacle
to a co-scheduled high performing application even in the presence of a robust policy. For
example, there is a 29% of performance degradation when co-schedulingeonwith equake
(bad memory behavior) as compared tovortex; using a FLUSH policy in an SMT core like
the one described in Section 4.2. Hence, theseIFetch Policiesmay be assisted isolating
the threads with the worstmemory behaviorand scheduling them together with the less
sensitive thread, that is the following with the worst memory behavior. The number of
isolatedMEM threads depends on the workload size. The more threads in the workload
the more possibleMEM threads present in the workload.

4.5.2 TCA Algorithm

The proposedTCA Algorithmmanages theThread to Core Assignment (TCA)inter-
mediate layer in theOSscheduling process inMultithreaded Multicore Processors. Its
implementation forrobust IFetch Polices(i.e., FLUSH andSTALL) is presented in Fig-
ure 4.7. TheTCA Algorithmfoundations explained in the prior section, can be easily
identified in the implementation shown in Figure 4.7.
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Figure 4.8: TCA Algorithm Example for FLUSH/STALL implementation (8 Threads).

First, in steps 1and 2, the workload applications are classified according to their
memory behaviorandILP. Applications withgood memory behaviorlie in theHIGH-list
while the remainder applications lie in theLOW-list. Within each sublist the applications
are arranged according to theirIPC. Within each sublist, sinceILP is directly proportional
to theIPC, applications with more ILP lie in the head of the list.

In the third stepthe threads with the worstmemory behaviorare isolated in order to
assist the underlyingIFetch Policy. That is, thesememory-bounded applicationsare as-
signed together to the same core. In order to balance bothHIGH andLOW thread lists, a
pair of HIGH threads are also scheduled together for each pair ofLOW applications iso-
lated. According toILP reasoning above, we choose those threads with the most different
IPC levels among all threads in theHIGH-list. In the particular case of a 2-coreCMP
(4-thread workloads) this step is skipped. Otherwise we would avoidSTALLandFLUSH
policies from doing any work, since no mixed pairs ofCPU andMEM applications would
be generated. For workloads with8 or more threads, this third stepis repeated accord-
ing to theworkload sizeandnumber of cores, as the probable number of harmfulMEM
threads increases with theworkload size.

In the fourth stepthe remainder threads are assigned according to bothmemory be-
havior andILP guidelines. That is, the thread with thehighest IPC(HIGH-list) is paired
with the thread with thelowest IPC(LOW-list). Figure 4.8 shows an example in a 4-core
TCA Algorithmimplementation. The resulting assignment procedure is bothsimpleand
scalable; with an asynthoticO(NlogN) complexity, withN being the application count.
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Figure 4.9: TCA Algorithm Example for RR/ICOUNT implementation (8 Threads).

Themain differencebetween theTCA Algorithmimplementation forFLUSH/STALL
(robust)policies, shown in Figure 4.7, and the corresponding implementation forRR/ICO-
UNT (naive)policies lies in thefourth step. While in therobust implementation threads
with different memory behaviors(i.e., from different sublists) are assigned to the same
core, in the naive implementation it is done just the oppossite, according to theTCA
Algorithm’s foundations. That is, the threads assigned to any core come from the same
thread-list (i.e., both threads from HIGH-list or both from LOW-list). The example shown
in Figure 4.9 illustrates this difference in thefourth step. Notice that the difference comes
directly from the different response of the underlying IFetch Policy involved in each case.
Consequently, futureTCA Algorithmimplementations, involving different IFetch Poli-
cies, would require an analysis of the specific characteristics of the corresponding policy,
in order to match them with the heterogeneity exhibited by the applications.

There is also anotherdifferencebetween therobustandnaive TCA Algorithmimple-
mentations, related to the number of co-assignedMEM pairs (step 3) from the bottom of
the LOW-list. While in therobust implementation this step is repeated according to the
number of cores, in the implementation for anaivepolicy only one of these pairs is as-
signed to the same core. This difference comes from thebad response of theRR/ICOUNT
policies to these type of applications.

Notice that theTCA Algorithmdoes not hamper the execution of any running thread;
it does not stop threads but determines which threads should be assigned together to the
sameSMT core. This assignment is done according to the applications’characteristics
and the underlyingIFetch Policyimplemented in eachSMTcore.
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4.5.3 TCA Calibration

TheTCA Algorithmrequires, for each application, anIPC predictionduring the fol-
lowing OSquantum of execution. TheseIPC predictionsmay come from any prediction
mechanism as long as they were representative. However, as the execution flows appli-
cations go through differentprogram phases[57, 23]. The behavior of an application
may significantly change from oneprogram phaseto another. Therefore, whatever the
mechanism employed to supply theTCA Algorithmwith the requestedIPC predictionsit
must be periodically reevaluated, or at least take in care the behavior variability of each
application over time.

To assist theTCA Algorithm, we have developed anIPC predictionmechanism: the
TCA Calibration. On every context switch, once theOSpasses the workload to the hard-
ware, an initialTCA Calibration Phaseis triggered. As shown in Figure 4.10, theTCA
Calibration simply consists of executing each application insingle thread (ST) modefor
a short amount of time. Since the processor is comprised of 2-hardware-context cores,
two evaluation intervals (ST0 and ST1) are required, in the worst case, to fully test the
whole workload. Although theIPC predictionsobtained might not be fully accurate they
are valid for theTCA Algorithmas long as the relative order between applications would
be representative. That is, we are not interested in asophisticated IPC predictionmech-
anism, that yields accurate predictions, but in asimplemechanism able to give accurate
relative values. As long as the relative order is kept accurate theTCA Algorithmresults
would be good.

Using theST modeduring an interval of the execution, each time it is required reevalu-
ating theIPC values for each application, involves a performance degradation. Obviously,
the shorter these intervals the lesser the negative effects. After several experiments, in
which we covered different portions of each application execution with an interval length
ranging from a few thousands to tens of millions simulation cycles, we adjusted the size
of these intervals to10 millions of cycles7. Adding these single-thread intervals (ST0 and
ST1) to theTCA Algorithm’s overhead itself (denoted asta in Figure 4.10) the maximum
overhead is 15+ta%. Due to thesimplicityof theTCA Algorithmthe contribution ofta to
the final overhead may be considered asnegligible.

Notice that the additional cost involved by using theST modefor theTCA Calibration
is only required when noIPC values are available for a new application. Whenever an
application has a priorly calculatedIPC value it may be directly fed to theTCA Algorithm
to use it, without involving additional overhead. Obviously, as each application is exe-

7The research inauto-adjustable low-overheadintervals, to minimize the negative impact of theTCA
Calibrationon the system throughput, is left for future research.
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Figure 4.10: TCA Calibration.

cuted it goes through differentprogram phases, with very different behavior. To reflect it,
we established afixed maximum agefor eachIPC value; after many experiments we set-
tled on140 millions of cycles. Whenever an application’s priorly calculatedIPC value is
more than140 millions of cyclesold, it must be recalculated. As a consecuence, since we
focus onCMP implementations with 2SMT hardware contexts per core, three possible
scenarios may arise inTCA Calibration:

1. All or more than halfthe applications need a newIPC value. This is the worst
scenario, as shown in Figure 4.10, in which two consecutiveST-modeintervals are
required for theTCA Calibration. Recall that a newIPC value is required whenever
no priorIPC value is available for that application or theIPC value available is more
than 140 millions of cycles old.

2. No more than half the applications need a newIPCvalue. In this case, just oneST-
modeinterval is required during theTCA Calibration(i.e., only ST0 in Figure 4.10
is required).

3. No application needs a newIPCvalue. This situation may typically arise whenever
quick OScontext switches occur, as happens in case of exceptions arised in any of
the applications. In this case, just the application that experiences the exception is
typically removed from the execution workload, being replaced with another ready
task. Eventually, no additional overhead is involved since noTCA Calibrationis
needed (i.e., neither ST1 nor ST0 in Figure 4.10 are required).
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RealOS quantums of executionhave a highly variable duration. So, in an state-of-the-
art general-purposeOS like Linux 2.6[14], the lenght of theOSquantums of execution
rangesfrom 0 to 3200 millions of cycles, with typical values lying on the40M to 500M
interval. We have simulated theTCA Calibrationperformance, using the simulator’s mon-
itoring parameters and structures. However, in a real implementation it would be used the
processor’sperformance counters, or any other specific monitoring hardware available.
An storage structurewould be used to keep, and read from, each application’s prior pre-
dictions. In case oflong OS quantums(i.e., more than 140M cycles long) the execution
may be momentarily interrupted by the hardware for an intermediateTCA Calibration,
possibly requiring an intermediate newTCA, depending on the behavior variations of the
workload’s applications. That is, both aTCA Calibration Phaseand aTCA Algorithm
triggering are required after every consecutive 140M of execution cycles.

4.5.4 TCA Algorithm Evaluation

In order to evaluate the performance of the proposedTCA AlgorithmandTCA Cali-
bration mechanisms we applied them to all 4-thread (4W) and 8-thread (8W) workloads
in Table 4.1, simulated in 2 and 4-coreCMP+SMTsrespectively. The average results are
shown in Figure 4.11. TheBEST TCAresults shown on the left side of Figure 4.11((a)
and (b)) are obtained by simulating all differentTCAs(i.e., 3 and 105 for 2 and 4-core
implementations respectively) for eachworkload and IFetch Policy, selecting the ones
which yield the highest throughput.

As we mentioned in the prior section, there are three different scenarios regarding
TCA Calibrationoverhead; that is the reason to show two groups of results using theTCA
Algorithmin Figure 4.11. The results shown on the middle of Figure 4.11((a) and (b)) are
obtained supplying theTCA Algorithmwith theIPC valuesobtained from a prior off-line
single-threaded 300M-cycle execution of each application on the same execution core;
that is, without requiring from anyIPC predictionmechanism (i.e., the third scenario
shown in prior section). The results shown on the right side of Figure 4.11((a) and (b))
involve two consecutiveST-modeintervals in theTCA Calibration. That is, the worst case
(i.e., first scenario in prior section) in terms ofTCA Calibrationoverhead.

Figure 4.11 shows that theTCA Algorithmyieldsresults very close to the optimalfor
each case, a3% in average. Since theTCA is not explicitly taken into account by current
OSfor CMP+SMTprocessors, the state-of-the-artTCApolicy would be represented by a
RANDOM TCA. Due to theprobabilistic distributionof the results, shown in Figure 4.6,
directly comparingTCA Algorithm’s results with aRANDOM TCAmay be misleading.
However, from the results in Figure 4.6 it can be inferred that the probability for aRAN-
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DOM TCAto achieve similar results to the ones yielded by theTCA Algorithm(i.e., 3%
close to the BEST TCA) are only of26% 8, using theRRpolicy. Using a better IFetch
Policy, like FLUSH, this probability is increased to33%. As a matter of example, the
TCA Algorithmyields a speedup of21% in 8W1using theRRpolicy, as compared to the
WORST TCA.

Using theTCA Calibrationmechanism slightly reduces the speedup yielded by the
TCA Algorithm. As shown on the right side of Figure 4.11, the single-threaded portion
of the execution, required by theTCA Calibrationmechanism, slightly reduces the final
throughput. The results in this case are in average5% close to the optimalfor each
case. In this case, the probabilities for aRANDOM TCAto achieve similar results to that
obtained using theTCA Algorithmraise to41%9, using theRRpolicy. UsingFLUSH this
probability is increased to58%.

As mentioned in Section 4.5.3, not all context switches would require from theTCA
Calibration Phase. Thus, only threads that have executed for more than 140M cycles
since the lastcalibration would require from aTCA Calibration. This fact would reduce
the overall use of the single-thread mode, and therefore reduce the final throughput reduc-
tion. Nevertheless, considering the minimal overhead involved, the TCA Algorithm sup-
ported by the TCA Calibration mechanism offers a quite interesting complexity-effective
improvement.

In order to evaluate thescalabilityof the proposedTCA Algorithmin forthcoming mi-
croprocessor generations, we simulated all the 16 and 32-thread workloads in Table 4.1,
simulated in 8 and 16-coreCMP+SMT implementations, respectively. Due to exponen-
tional computational costs, we do not directly compare theTCA Algorithmresults for 16
and 32-thread workloads with theBEST TCA, as done for 4 and 8-thread workloads. In-
stead, we randomly selected a group of100TCAs for eachworkloadandIFetch Policy.
From them, we selected the TCA which yields the highest throughput and called itBEST
of 100. As done in Figure 4.11, Figure 4.12 shows the average results obtained using the
TCA Algorithm. The results on the middle group of Figure 4.12 shows figures very close
to the optimal for each case, a 3% in average. Therefore, from Figure 4.12 it can be in-
ferred that theTCA Algorithmscales to future 8 and 16-core implementations. As shown
on the right side of Figure 4.12, the effect of theTCA Calibrationmechanism on theTCA
Algorithm’s results is similar to that of 2 and 4-coreCMP+SMT implementations.

8This is the average probability of a 3% throughput loss using random TCA with RR policy.
9This is the average probability of a 5% throughput loss using random TCA with RR policy.
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Figure 4.11: TCA Algorithm results.
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4.6 Related Work

In [33] Jain et al. it is explored for the first time the soft realtime scheduling on an
SMT processor, focusing on thecoschedule selection(see Section 4.3). They propose
new coscheduling variations that considerresource sharingand try to utilizeSMT more
effectively by exploiting application symbiosis. In this work we extend this exploration
to a new scenario:CMP+SMT. In this scenario, we identify the need of a new step in the
scheduling process: theTCA. Similarly to what happens with theco-scheduling selection
in SMTprocessors, theTCAis directly related with the next step of thescheduling process,
theresource sharing.

In [63] and [82] several schedulers and heuristics are proposed to manage theco-
schedule selectionand increase system throughput inSMT processors. We focus on the
next step of thescheduling processfor CMP+SMTprocessors. Once theOShas selected
the workload to be executed in the nextOSquantum each application in the workload must
be assigned to one of theSMTcores. The goodness of this assignment determines the final
system throughput. These proposals might work in conjuction with theTCA Algorithm,
selecting easy-to-schedule applications for theTCA Algorithmin the underlying system.
Nevertheless, more reseach is required to analyze the relation between theco-schedule
selectionandTCAscheduling layers (left for future work).

Shin et al. propose anAdaptative Dynamic Thread Scheduling (ADTS)[58] to manage
theresource sharing(see Section 4.3) inSMTprocessors. TheADTSimproves the system
throughput inSMT processors by adapting theIFetch Policyto theworkload character-
istics. In this work we focus on the prior step of thescheduling processfor CMP+SMT
processors: theTCA. We do believe that bothADTSand the proposedTCA Algorithm
may benefit each other (left for future work).

Kumar et al. propose in [38] some assignment policies to increase system through-
put in Single-ISA Heterogeneous Multicoreprocessors. They focus on obtaining the best
match betweensingle-thread heterogeneous coresandapplications. Since in these pro-
cessors each single-thread core has a different amount of resources, the way in which each
application in the workload is assigned to one of the constituent cores determines the sys-
tem throughput. This assignment is typically obtained after an initial sample phase to
determine the best application-core match. We focus on a different scenario (i.e.,homo-
geneous CMP+SMT) and the assignment is focused on obtaining the best match between
co-scheduled applicationsin eachSMT core. In our case the assignment only requires
a representativeIPC value for each application in the workload. We propose theTCA
Calibration mechanism to assist theTCA Algorithm, providing it with these values with
minimal execution overhead.
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4.7 Chapter Summary

The OS scheduling processin the emergingMultithreaded Multicore (CMP+SMT)
Processorsdiffers from prior SMT and CMP processors’, requiring a new scheduling
layer, that we callThread to Core Assignment (TCA). In this chapter we have shown
the importance of this new scheduling step in the system throughput. On the one hand,
we show that agood TCAmay yield up to 28% system throughput improvement. This
chapter also analyzes the relation between theTCA and theresource sharing, generally
managed by theIFetch Policyimplemented in hardware. On the other hand,we also show
that a bad TCAcan negate the performance advantange of agood IFetch Policy. As a
consequence, better results can be obtained using aCMP+SMT implementingRRpolicy,
and the appropriateTCA, than that of implementing a betterIFetch Policylike FLUSH.

TheTCAwhich yields the best results depends on both the underlyingIFetch Policy
and the specificworkload characteristics. Consequently,there is not a singleTCA which
yield the best results for all cases. Moreover, due to theTCA result distribution, it gets
harder to obtain the optimalTCA as theworkload sizeincreases, since the number of
differentTCAsexponentially grows. According to the current trend, this problem is going
to get harder as the amount of replicated cores on the chip increases.

In order to manage theTCA, we propose the third contribution of this thesis: theTCA
Algorithm. This is the firstTCA policy proposal in the literature. It generates close-to-
the-optimalTCAsfor each case, considering both theworkloads characteristicsand the
underlyingIFetch Policyimplemented in the hardware. To do so, theTCA Algorithmjust
requires a representativeIPC value for each application in the workload. To assist theTCA
Algorithmwith theseIPC valueswe also propose anIPC prediction mechanism, that we
call TCA Calibration. Our results show that the proposedTCA Algorithmobtains thread-
to-core assignments 3% close to the optimal assignation for each case, yielding system
throughput improvements up to 21%. Besides, its accuracyscaleswith theworkload size
andnumber of on-chip SMTcores.

Finally, we want to emphasizesimplicityof the proposedTCA Algorithm, a key aspect
considered during its development. We do think the proposedTCA Algorithm’s design
is simple enough to allow a real implementation. Thus, each vendor would develop the
correspondingTCA Algorithmimplementation for each new processor and distribute it
with its product, as currently done with the drivers. TheTCAmodule could be then added
to theOS, just requiring an additional Kernel recompilation or dynamic linkage. State-of-
the-art processors like theIBM POWER5may benefit from the direct application of this
contribution.



Chapter 5

Heterogeneity-Aware Multithreaded
Multicore Processors

After confirming the benefits of applying theHeterogeneity-Awarenessconcept on the
Multithreaded Multicore Processors, in this chapter we go further and foresee future
Heterogeneity-Aware Multithreaded Multicore Architectures.

In the prior chapter we directly applied theHeterogeneity Awareconcept on state-of-
the-art processors, like theIBM POWER5, appropriately pairing running applications on
an homogeneously distributed processor layout. We showed that theHeterogeneity Aware
concept may be successfully applied despite of the hardware does not explicitly reflect the
Heterogeneity Awareconcept. In order to unleash the full potential of theHeterogeneity
Awareconcept we must turn the hardware itselfHeterogeneity Aware.

In this chapter we envision the architecture of future generations ofHeterogeneity-
Aware Processors. In this sense, we propose theheterogeneous Thread to Core Assign-
ment (hTCA) Framework, which provides OS-driven complexity-effective executions in
the emergingMultithreaded Multicore (CMP+SMT)scenario. InhTCA, the IFetch Pol-
icy implemented within eachSMT core is exposed to theOperating System (OS). The
OS is then in charge of deciding the bestIFetch Policyfor eachSMT core according to
both theworkload characteristicsand theuser needs. The results included in thehTCA
evaluation enclosed reveal an average95% hTCA accuracywhen selecting the optimal
choice to reduce the energy consumption without severely harming thesystem through-
put. Our results also show reductions up to71% in the additionalenergyrequired by
sophisticatedhigh-performance SMT IFetch Policies, implemented within eachSMTcore
in aCMP+SMT processor; compromisingless than 8%of thesystem throughput.

77
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5.1 Introduction

As analyzed in the prior chapter, the way in which the running threads are assigned
to the constituentSMT cores in theMultithreaded Multicore (CMP+SMT) Processors
processors heavily affects the final system throughput. Thus, an inappropriateThread to
Core Assignment (TCA)could negate the performance advantage of a full-fledgedIFetch
Policy. In order to select an appropriateTCA, by means of aTCA Generator, both the
workload characteristicsand the underlyingIFetch Policyshould be taken into account.
Moreover, both theTCA Generatorand the underlyingIFetch Policywork in conjunction.
Hence, anaive IFetch Policy, like the Round Robin (RR)policy [72], working in con-
junction with agood TCA Generatormay yield better system throughput results than a
morecomplex IFetch Policy, like theFLUSHpolicy, working with abad TCA Generator.
In case of optimalTCAs, the differences in the system throughput results obtained with
different IFetch Policiesmay be significantly reduced. Thus, the results included in the
prior chapter points out that the system throughput difference between implementing the
RRand theFLUSHpolicy may drop to an average 10%, regardless the workload size and
number ofSMTcores.

Among the state-of-the-artCMP+SMTprocessors we find theIBM POWER5[60] and
POWER6[39], in which homogeneousSMT cores are replicated along the chip. Each
constituentSMT core implements, in hardware, its ownInstruction Fetch (IFetch) Pol-
icy [20, 24, 70, 72], which determines the thread(s) to fetch instructions from each cycle.
Some proposedIFetch Policies, like theFLUSH [70] mechanism, explicitly handle load
instructions that experience L2 Cache Misses. These instructions represent a severe chal-
lenge to be faced up inSMTexecution cores, since they may block the execution; avoiding
all running threads on the sameSMTcore from doing forward progress. However, explic-
itly handling these instructions generally comes at an additional energy consumption cost.
Thus, in order to satisfy a high-throughput demand theFLUSHmechanism requires to re-
fetch some amount of instructions, with the consequent additional energy consumption.
This additional overhead is sometimes too much high to be paid in a real processor design,
eventually implementing less aggressive Instruction Fetch Policies.

In this chapter we start unleashing the full potential of theHeterogeneity-Awarecon-
cept inMultithreaded Multicore Processors. For a processor to fully exploit the hetero-
geneity in the behavior of the running applications it must reflect this heterogeneity itself.
Consequently, the hardware of atrue Heterogeneity-Awareprocessor must dynamically
adapt to the variations in the applications’ behavior, aiming to devote the appropriate por-
tion of the processor resources to each execution thread. Only by doing such dynamic
resource alloation, that is being dynamicallyHeterogeneity-Aware, could be reach the
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higher ratios ofcomplexity-effectivenessin our executions. This must be kept in mind
whether we are interested in executing as much instructions as possible involving the
lowest energy consumption in the process; a goal of particular interest for future laptop
and mobile oriented processor designs.

According to the aim of this chapter, we present a novelOS-driven framework aimed
at providingcomplexity-effectiveexecutions in the emergingCMP+SMTprocessors: the
heterogeneous Thread to Core Assignment (hTCA). ThehTCAis a hardware/software co-
designed proposal that lean on the benefits of implementing a goodTCA Generator, in
tune with the user needs. Thus, thehTCAuser may specify (by means of a user interface
included in the OS) the desiredQuality-of-Service (QoS)according to its needs. This
QoSindicates, measured in a single percentage, the relative importance of both thesystem
throughputand thepower consumptionin the system output. As a matter of example, if
the user specifies aQoSof 50% thehTCAwould reduce the systempower consumption
comprimising at the most 50% of the systemthroughput. The hTCA, according to the
specifiedQoS, dynamically change theInstruction Fetch (IFetch) Policyimplemented
in eachSMT core and alter theTCA produced by theTCA Generator, using anhTCA
Algorithm.

Current commercial products, such as theIntel SpeedStep Technology[6] and theAMD
PowerNow![2], already providecomplexity-effectiveexecutions. They both provide a
user interface in theOS which allows reducing the processor workingfrecuency(and
evenvoltage). Thus, when the same processor is run at a lower frequency, it generates
less heatand consumesless power. This can conserve battery power in notebooks, extend
processor life, and reduce noise generated by variable-speed fans. UnlikeIntel SpeedStep
Technologyand theAMD PowerNow!, thehTCAworks at anarchitectural levelinstead of
aphysical level. ThehTCAgradually reduces thearchitectural functionalityimplemented
in the processor without affecting the underlyingphysical level. As a consecuence, the
hTCAmay also work in conjunction with bothIntel SpeedStep Technologyand theAMD
PowerNow!, each one affecting at a different level: (architecturalor physical).

5.2 Methodology

Table 5.1 shows the main simulation parameters so as the workloads chosed. Since
a complete study of all benchmarks is not feasible due to excessive simulation time we
have randomly chosen some of them. The name of each workload isxWy, wherex andy
stands for thenumber of threadsinvolved and theworkload identifierrespectively (e.g.,
4W2identifies the second workload with 4 threads). Each workload of sizex is simulated
on aCMP+SMT implementation withx

2
two-hardware-contextSMTcores.
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Simulation Parameters

Pipeline depth 11 stages
Queues Entries 64 int, 64 fp, 64 ld/st
Execution Units 4 int, 3 fp, 2 ld/st
Physical Registers 320 regs.
ROB Size* 256 entries
Branch Predictor perceptron

(4K local, 256 perceps.)
BTB 256 entries,

4-way associative
RAS* 100 entries

Simulation Parameters

L1 I-Cache 64KB, 4-way, 8 banks
L1 D-Cache 32KB, 4-way, 8 banks
L1 lat./miss 3/22 cycs.
I-TLB ,D-TLB 512 ent. Full-associative
TLB miss 300 cycs.
L2 Cache 4MB, 12-way, 4 banks
L2 latency 15 cycs.
Main Memory lat. 250 cycs.

Number of Threads
Name 2 4 8

xW1 b, j b, q, t, j d, l, b, g, i, j, c, f
xW2 n, e l, n, p, e b, g, m, n, a, h, o, p
xW3 d, a d, s, r, a m, n, r, q, i, j, e, h
xW4 g, f g, b, m, f l, b, g, m, n, r, f, s
xW5 r, p r, j, f, p q, b, c, k, e, a, o, t

gzip a eon h apsi o facerec v
vpr b gap i wupwise p applu w
gcc c vortex j equake q galgel x
mcf d bzip2 k lucas r ammp y
crafty e twolf l mesa s mgrid z
perlbmk f art m fma3d t
parser g swim n sixtrack u

Table 5.1: Simulation parameters and Workloads. (resources marked with * are replicated
per thread)

We simulate each workload employing 2 different IFetch Policies:ICOUNT [72] and
FLUSH [70]. Both ICOUNT andFLUSH are far from representing the state-of-the-art
in SMT IFetch Policies, but constitute aneasy-to-explain exampleof a possiblehTCA
implementation. The analysis and development ofhTCAimplementations involving state-
of-the-artIFetch Policies[20, 25] are left for future work. All simulations are executed
for a fixed interval of 120 millions of simulation cycles.
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Figure 5.1: Throughput in single-core SMT.

5.3 IFetch Policy in SMT Processors

The IFetch Policyrepresents probably the most important issue in anSMTexecution
pipeline, determining from which thread(s) instructions are fetched every cycle. In or-
der to avoid hardware resource monopolization by any of the running threads, theIFetch
Policy should explicitly handle long-latency loads. An L2 Cache Miss may block hard-
ware resources, and the wholeSMT execution pipeline, thus avoiding forward progress
by any other running thread. We callrobust/goodto thoseIFetch Policiesthat explicitly
handle long-latency loads,naive/badotherwise. The literature is plenty ofIFetch Policy
proposals [20, 24, 70, 72], some of them, like theFLUSH [70], falling into therobust
category.

TheFLUSH [70] mechanism avoids any running thread from monopolizing the avail-
able hardware resources. Built on top of theICOUNT [72] policy, theFLUSHmechanism
detects loads that experience L2 Cache Misses (unhandled by the ICOUNT policy) and
reacts stalling the offending thread; preventing it from monopolizing more hardware re-
sources. Moreover, the newest instructions (until the blocked load) of the offending thread
are flushed away from the execution pipeline. So, by freeing the corresponding hardware
resources they are available for the remainder running applications. As shown in Fig-
ure 5.1, theFLUSHmechanism yields average system throughput improvements of 22%
in single-coreSMTprocessors, with speedups of up to 93%.
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Figure 5.2: Energy Consumption.

The FLUSH mechanism represents ahigh-power-consumptionalternative, aimed at
throughput-oriented scenarios, in which thesystem throughputis the main concern re-
gardless of the power required. Flushing away instructions from the execution pipeline,
and having to re-fetch them later on in the execution, implies anadditional energy cost.
This cost depends on the pipeline stage in which was the instruction by the flush time, as
described in Section 5.3.1.

5.3.1 Instruction Energy Consumption in SMT Processors

Folegnani et al. analyzed in [26] the energy consumption for each hardware resource
in a typical execution pipeline (See Figure 5.2(a)). Assuming that each instruction in a
given execution pipeline requires 1energy unit1 to be committed, and given the resource
usage for a typicalSMT core shown in Figure 5.2, Table 5.2 shows theEnergy Con-
sumption Factor. Using theEnergy Consumption Factor, and tracking the pipeline stage
in which was each flushed instruction by the flush time, it may be easily estimated the
additional energy cost involved by theFLUSH mechanism. Thus, Figure 5.3 shows the
additional energy consumption employed by the FLUSH mechanism to obtain the system
throughput improvements shown in Figure 5.1.

1The exact amount of energy depends on the specific microarchitecture characteristics.
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Energy Consumption Factor
Pipeline stage Local Accumulated
Fetch 0.13 0.13
Decode 0.03 0.16
Rename 0.22 0.38
Queue 0.26 0.64
Reg. Read 0.05 0.69
Execute 0.13 0.82
Reg. Write 0.05 0.87
Commit 0.13 1

Table 5.2: Energy Consumption Factor.
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Figure 5.3: Additional Energy Consumption in single-core FLUSH SMT.

5.4 Thread to Core Assignment in SMT On-Chip Multiprocessors

As analyzed in the prior chapter, theThread to Core Assignment (TCA)determines
the performance of the underlyingIFetch Policy, implemented in eachSMT core, in the
emergingCMP+SMTprocessors. By properly pairing to the sameSMTcore applications
with compatible characteristics, according to each core’sIFetch Policy, it is possible to
smooth the performance differences between differentIFetch Policies. As shown in Fig-
ure 5.4, agood TCA(e.i., BEST TCAresults) reduces the performance differences from
implementingICOUNT to a more sophisticatedFLUSH SMT IFetch Policy. Focusing on
the 8-thread workloads this difference goes from a 20% to 7% when moving fromWORST
to BEST TCA. As a consecuence, whenever goodTCAsare assured it is possible to reduce
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Figure 5.4: TCA Sensitivity for 4 and 8-core CMP+SMTs.

the complexity involved in theglobal IFetch Policy2 of a CMP+SMT without severely
compromising thesystem throughput. Thiscomplexity reductionimplies a disminution in
the processorenergy consumption.

ThehTCA Frameworkleans on the smoothed difference between IFetch Policies pro-
vided by a goodTCA. Consequently, as part of this framework, the hTCA involves aTCA
Generatorto assure this fact. As we saw in the prior chapter, randomly chosing aTCA
does not assure reliable results. Therefore, in order to assuregood TCAswe employ in
this chapter theTCA Algorithmproposed in the prior chapter (see Section 4.5) asTCA
Generatorfor thehTCAFramework. Nevertheless, thehTCA Framework’s design does
not consider any specific implementation for theTCA Generator, and could be replaced
with alternative TCA Generator implementations as long as they would provide accurate
TCAs.

2The termglobal SMT IFetch Policyrefers to the composition ofSMT IFetch Policiesimplemented in all
theSMTcores in aCMP+SMTprocessor. Since eachSMTcore may implement a differentIFetch Policy,
we refer to theIFetch Policyof eachSMTcore aslocal.
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Figure 5.5: Scheduling Layers in CMP+SMTs with and without hTCA.

5.5 The hTCA framework

The heterogeneous Thread to Core Assignment(hTCA) Framework provides user-
definableComplexity-Effectivenessin the emergingCMP+SMTprocessors. By defining
a single percentage, that we callQuality of Service (QoS) percentage, it may be specified,
using theOSuser interface, the desired relation between thesystem throughputand the
energy consumptionin the system output. This relation is provided by thehTCAat an
architectural level, altering both theglobal IFetch Policyand theTCA yielded by the
OS TCA Generator. An hTCA Algorithm, implemented as part of theOS scheduling
process, heterogeneously modifies the two lowest layers in theOS scheduling processfor
CMP+SMT processors, as shown in Figure 5.5. Thus, thehTCA Algorithm, according
to theQoS percentagespecified by the user, alters both theTCA(See Chapter 4) and the
Resource Sharing(generally implemented by theIFetch Policy) [33].



86 CHAPTER 5. HETEROGENEITY-AWARE CMP+SMT PROCESSORS

In order to reduce the system’senergy consumption, according to the user needs (QoS),
the hTCA Algorithmheterogeneously change thevalid IFetch Policyin eachSMT core.
Thus, an hTCA-like design for aMultithreaded Multicore Processormust implement
more than one IFetch Policies on eachSMT core. Each of the implemented policies
must bevalidated/invalidatedusing a simple signal that must be exposed to the OS. By
means of a proper blend of boththroughput-aggressive, but power-hungry, and more
moderated policies the hTCA Framework may provide the user the ability to chose the
desired performance/consumption ratio, according to her needs.

As an example, if we had anhTCA-processorin our mobile phone and we were run-
ning out the battery, we could reduce this ratio to a 30% to continue using it (although
with a some reduction in its performance) and increase the battery life expectance until
reaching a recharge point. This sort of adaption to low-energy conditions is quite different
from those that works at aphysical level, reducingfrequencyor voltage. In the case of a
physical variation (i.e., reducing the clock frequency of the processor) the granularity of
the quality of service provided is much coarser. In fact, botharchitectural (hTCA)and
physicalactions are envisioned to work together, using the first forfine-grain QoSand the
latter for acoarse-grain QoS.

To achieve the desiredenergy consumption reductionwithout severely compromising
thesystem throughput, thehTCAalso alters theTCAgenerated by theOS TCA Genera-
tor. As we saw in Chapter 4, theTCAdepends on both theworkloadandIFetch Policy
characteristics. Since thehTCA Frameworkalters the latter, it is obvious that a newTCA
must be calculated should we want to maintain an optimalTCA in force.

In the following subsections we cover in depth all thehTCA’s specific details, both
from a hardware and software perspective so as its evaluation for an illustrative imple-
mentation using ICOUNT/FLUSH policies.

5.5.1 Hardware/Software co-design

ThehTCAFramework constitutes a hardware/software co-designed solution in which
the IFetch Policy, implemented in hardware in each of the constituentSMT cores of a
CMP+SMTprocessor, is exposed to theOS. According to theQoSspecified by the user,
the OSalters both the underlyingIFetch Policyand theTCA to fulfill the user demands
without severely harming the overall system throughput. This is done at anarchitectural
level, altering the functionality provided by the architecture (i.e., going from abetter to
a worst IFetch Policy), instead of at aphysical level, as done by some current solutions
such as theIntel SpeedStep Technology[6] and theAMD PowerNow![2].
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The system throughput reductionis limited by theQoS percentage. Assuming two
availableSMT IFetch Policies, calledlow andhigh-performance3, thehTCAestablishes
the number ofSMT coresLx that should use thelow-performance4 SMT IFetch Policy
using Equation 5.1. Next, thehTCA Algorithmdecides both theLx SMTcores that will
use thelow-performance IFetch Policyand how should be modified theTCA, yielded by
theOS TCA Generator, in order to maximize thesystem throughput. Finally, thehTCA
Frameworkactivates/deactivatesthe correspondingIFetch Policyin eachSMT core and
assigns threads accordingly. As a consecuence, theglobal SMT IFetch Policyis comprised
of Lx SMTcores withlocal low-performance policy, while the remainderSMTcores use
thehigh-performance policy, with the subsequentenergy consumption reduction.

Lx = NumCores−
⌊QoS× NumCores

100

⌋
(5.1)

with Lx∈N, 0≤ Lx ≤ NumCoresand 0≤ QoS≤ 100

5.5.2 The hTCA Algorithm

In order to minimize thesystem throughput degradation, due to using alow-performance
SMT IFetch Policyin someSMT cores, theTCAshould be modified accordingly. In the
TCA stepof thescheduling process, theOSassumes that allSMTcores implements ahigh-
performancepolicy, using the correspondingTCA Generator. Next, thehTCAdetermines
the number ofSMT cores implementing alow-performancepolicy (See Section 5.5.1)
and thehTCA Algorithmdecides which co-assigned threads should be allocated to the
low-performance SMTcores.

ThehTCA Algorithmis designed according to both theSMT IFetch Policiesavailable
in the hardware (implemented within eachSMT core) and theTCA Generatorimple-
mented in theOS. This means that there is an specifichTCA Algorithmimplementation
for each combination ofSMT IFetch PoliciesandOS TCA Generator. In this research
we focus on anhTCAimplementation forICOUNT(low-performance) andFLUSH(high-
performance) Fetch Policies, and theTCA Algorithmpresented in Chapter 4 asOS TCA
Generator. Figure 5.6 illustrates the application of the proposedhTCAFramework for a 2-
coreCMPprocessor with 2 hardware contexts perSMTcore, implementingICOUNT/FLUSH
IFetch Policy, like theIBM POWER5[60] andPOWER6[39].

3Research with multipleIFetch PoliciesperSMTcores is left for future research.
4Thehigh-performanceIFetch Policy is used by default.
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Figure 5.6: hTCA Framework Example for 2-core ICOUNT/FLUSH CMP+SMT.

In a real implementation, each processor’s vendor would distribute the corresponding
hTCA Algorithmimplementation for each new processor implementing thehTCAFrame-
work, as currently done with drivers. Then, an additional kernel recompilation (or dy-
namic module linkage) would be enough to update theOSwith the correspondinghTCA
Algorithm, in the case ofLinux, or a driver installation, in the case ofWindows.

The proposedhTCA Algorithmimplementation is shown in Figure 5.7. ThishTCA
Algorithm is throughput-oriented and selects theSMT cores todeactivate(i.e., use the
low-performance IFetch Policy) minimizingthe correspondingperformance degradation.
In order to keep simple enough theOS scheduling process, thehTCA Algorithmreassigns
to differentSMTcores the minimal amount of applications. To do so, thehTCA Algorithm,
shown in Figure 5.7, reassigns applications according to their characteristics, starting from
the ones with the lowest impact on the overall system throughput.
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Algorithm 5.5.1: HTCA()

1- Split theSMT cores into threecore-lists, according to the memory behavior of the assigned applications:
MEM-cores, ILP-cores and MIX-cores.

2- Arrange the threecore-listsby accumulatedIPCof assigned applications.
3- If ( Lx = NumCores ) then{

3.1- Reevaluate theTCA Algorithm usingICOUNT.
4- Else

4.1-MIX-pairs = 0
4.2- For i=0 to Lx do



4.2.1- If (NOT-EMPTY(MEM-list) ) then
4.2.1.1- Select the core in thetail of theMEM-list.

4.2.2- Else If (Not-Empty(ILP-list) ) then
4.2.2.1- Select the core in thetail of theILP-list.

4.2.3- Else If (Not-Empty(MIX-list) ) then
4.2.3.1- Select the core in thetopof theMIX-list .
4.2.3.2-MIX-pairs + = 1

4.2.4- Deactivate the selected core.↪→Low-performancecore.
4.2.5- Remove the selected core from the correspondingcore-list.
4.2.6- If (MIX-pairs = 2) then

4.2.6.1- Reassign to the sameSMT core the two applications with thehighest-IPCvalues in the last
twoMIX-coresdeactivated .

4.2.6.2- Reassign to the sameSMT core the two applications with thelowest-IPCvalues in the last
twoMIX-coresdeactivated .

4.2.6.3-MIX-pairs = 0

Figure 5.7: hTCA Algorithm implementation for ICOUNT/FLUSH policies.

5.5.3 hTCA evaluation

We first evaluated thehTCA Framework’s ability to select the best choice for each
level of complexity-effectivenessdemanded by the user, that is for eachQoS percentage.
Whenever the user defines an specificcomplexity-effectivenesslevel, using theQoS per-
centageprovided by theOS interface, thehTCA Frameworkuses aCore Selectorand a
TCA Generator, as shown in Figure 5.6, to adapt the execution at an architectural level.

Figure 5.85 shows the average system throughput results obtained both using anOr-
acle TCA Generatoraided by anOracle Low-Performance-Core Selector(on the left),
ORACLEfrom now on, and those yielded using theTCA Algorithm(see Section 4.5) as
TCA Generatoraided by thehTCA AlgorithmasCore Selector.

5In this section, the termFLUSH-Lxstands for aCMP+SMT implementation in which all butLx cores
implement theFLUSHmechanism;ICOUNT otherwise.
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Figure 5.8: Average System Throughput Comparison.

TheORACLEoption, usingoracle predictors6, yields theBEST TCAfor each case and
selects the next core to deactivate so that thesystem throughput degradationis minimized.
Obviously, theORACLEoption represents anideal scenario. From Figure 5.8 it may be
inferred that thehTCAFramework succeeds selecting both theTCAandcore deactivation
sequence, with an average 95% accuracy.

Next, it was evaluated thehTCA Framework’s ability to obtaincomplexity-effective
executionsin CMP+SMT processors. The users, by means of aQoS percentage, may
select the balance ofpower conservationand performancethat best suits them. Once
translated the specifiedQoS percentage(See Section 5.5.1) into a number of cores tode-
activate(Lx), thehTCAFramework employs thehTCAAlgorithm to establish thecore
deactivation sequence, that is the cores that will use thelow-performance SMT IFetch
Policy. Figure 5.9 breaks down thehTCAresults shown in Figure 5.8. Using theEnery
Consumption Factordescribed in Section 5.3.1, Figure 5.10 breaks down thehTCA En-
ergy Consumption Reductionobtained as it is augmented the number ofdeactivatedcores.
From Figures 5.9 and 5.10 it may be inferred that thehTCAFramework succeeds yielding
complexity-effective executions. Thus, it provides reductions in the additional energy re-

6Simulated using brute force, that is, simulating all the different possibilities and chosing the ones with
the highest values
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Figure 5.9: hTCA results.
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Figure 5.10: hTCA Energy Consumption Reduction.

quired by theFLUSH mechanism of 40% and 71%, compromising less than 5% and 8%
of thesystem throughput, respectively for 4-thread and 8-thread workloads. These results
also give evidences of thehTCAFrameworkscalability when passing from 2 to 4-core
CMP+SMT implementations.
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Finally, a deeper analysis of the results shown in Figure 5.9 reveals that, contrary to
what would be expected, the best results are not always yielded by implementing thehigh-
performance IFetch Policyin all the constituentSMT cores. Thus, both4W1and8W3
experiencesystem throughput improvementswhen deactivating oneSMT core (e.i., all
SMTcores implementing theFLUSHmechanism but one usingICOUNT). Furthermore,
some workloads even experiencesystem throughput improvementswhen deactivating two
cores (8W5); and even when deactivating all the cores (4W2, 4W5). The rationale behind
this phenomenon is twofold.

On the one hand, the specific characteristics of theSMT IFetch Policiesemployed
may yield, for some workloads, better results using thelow-performance IFetch Policy
than using thehigh-performanceone. Notice that this already happens in single-core
SMT processors, as is the case of2W1 in Figure 5.1. On the other hand, the relation
between theTCAand theIFetch Policyallows to obtain, for some workloads,TCAsusing
low-performance IFetch Policiesthat improve the results yielded by employing thehigh-
performanceones. This phenomenon opens the path for future research on automatic
detection of the optimalhTCA execution mode, which would yield thehighest system
throughputevenreducingthepower consumption.

5.6 Related Work

There are already complexity-effective frameworks implemented in current commer-
cial processors. Thus, both theIntel SpeedStep Technology (IST)[6] and theAMD Pow-
erNow! Technology (APT)[2] provide a significant reduction in both heat and power con-
sumption, allowing the users to select the balance of power conservation and performance
that best suits them. This can conserve battery power in notebooks, extend processor life,
and reduce noise generated by variable-speed fans.

The hTCAFramework proposed in this chapter provides an additional control over
the complexity-effectiveness of the executions in the emergingCMP+SMT processors.
While both IST and APT reduce the microprocessorfrecuencyand voltage, affecting
all running applications, thehTCAreduces thearchitectural functionalityimplemented,
changing the validIFetch Policy for a lesspower-consumingone in some of the con-
stituentSMT cores. That is, whileIST andAPT work at aphysical levelthe proposed
hTCAFramework works at anarchitectural level. As a consecuence, bothIST andAPT
might be used in conjunction with thehTCA Framework to increase the user control
over the complexity-effectiveness in the processor, performing different granularities of
complexity-effectiveness:fine-grain, in case ofhTCA, andcoarse-grain, in case ofIST
andAPT.
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Shin et al. propose in [58] anAdaptative Dynamic Thread Scheduling(ADTS) to man-
age the resource sharing in single-coreSMT processors, adapting the underlyingIFetch
Policy to the workload characteristics. ThehTCAFramework is designed formulti-core
SMT processors (CMP+SMT) and strives toreducethe processorenergy consumption
without severely compromising thesystem throughput; according to the user needs. Both
ADTSandhTCAmay work in conjunction since they cover different scenarios; that is
single-coreandmulti-corerespectively.

Kumar et al. propose in [38] some assignment policies toincrease system throughput
in Single-ISA Heterogeneous Multicoreprocessors, which focus on obtaining the best
match betweensingle-thread heterogeneous coresand applications. A global energy
consumption reductionis provided by properly matching each application with the het-
erogeneous single-threaded core which best fits the application requirements. ThehTCA
Framework focus on a different scenario (e.i.,homogeneous CMP+SMT) and its explicitly
aimed at matching thesystem energy consumptionwith theuser needsby heterogeneously
modifyingboth theTCAand theIFetch Policyin CMP+SMTprocessors.

5.7 Chapter Summary

In this chapter we envision the architecture of future generations ofHeterogeneity-
Aware Processors. After analyzing in the prior chapter the benefits of directly applying
theHeterogeneity-Awarenessconcept to currentMultithreaded Multicore Processors, like
IBM POWER5[60] andPOWER6[39], in this chapter we start exploring the full potential
of futureHeterogeneity-Aware Processors.

For a processor to be fullyHeterogeneity-Awareboth itshardwareandsoftware(i.e.,
the applications running on it) must explicitly take into account the inherent heterogeneity
in applications execution. To obtain complexity-effective executions, an Heterogeneity-
Aware processor dynamically adapts the amount of processor resources devoted to each
application so that it yieldedthe highest throughput possible involving the lowest energy
consumption.

In this sense, we propose theheterogeneous Thread to Core Assignment (hTCA) Frame-
work, which provides OS-driven complexity-effective executions in the emergingMul-
tithreaded Multicore (CMP+SMT)scenario. InhTCA, the IFetch Policy implemented
within eachSMTcore is exposed to theOperating System (OS). TheOSis then in charge
of deciding the bestIFetch Policyfor eachSMTcore according to both theworkload char-
acteristicsand theuser needs. The results included in thehTCAevaluation enclosed reveal
an average95% hTCA accuracywhen selecting the optimal choice to reduce the energy
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consumption without severely harming thesystem throughput. Our results also show re-
ductions up to71% in the additionalenergyrequired by sophisticatedhigh-performance
SMT IFetch Policies, implemented within eachSMT core in aCMP+SMT processor;
compromisingless than 8%of thesystem throughput.

We do believe that thehTCAimplementation presented in this chapter may represent
a first step towards futureHeterogeneity-Aware Processors, able to achievecomplexity-
effectiveexecutions in the emergingmany-core era.



Chapter 6

Further Considerations when Moving
to Multicore

When moving fromMultithreaded Singlecoreto Multithreaded Multicoresome additional
challenges may arise. Well-known techniques inSMTsmay need to be revisited prior to
their application to the emergingCMP+SMTscenario. In particular, we show that a robust
FLUSH SMT IFetch Policymay yield worse results than a simpleICOUNT. In particular,
it suffers a31%slowdown when moving from 2 to 4-coreMultithreaded Multicoresce-
nario. Once analyzed the new challenge, related to the on-chip interconnection network
and theFLUSHmechanism’s static trigger-based design, we present the last contribution
of this thesis: theMulticore FLUSH (MFLUSH)mechanism.

TheFLUSH [70] mechanism avoids any running thread from monopolizing the avail-
able hardware resources. Built on top of theICOUNT [72] policy, theFLUSHmechanism
detects loads that experience L2 Cache Misses (unhandled by the ICOUNT policy) and
reacts stalling the offending thread; preventing it from monopolizing more hardware re-
sources. Moreover, the newest instructions (until the blocked load) of the offending thread
from the offending thread are flushed, freeing the corresponding hardware resources;
available for the remainder running applications.

TheMFLUSHmechanism introduces theHeterogeneity-Awarenessconcept inIFetch
Policies. It dynamically adapts to the varying conditions, yielding a morecomplexity-
effectiveresponse to theheterogeneousbehavior exhibited by the running applications.
Yielding results similar to those obtained using an oracle-trigger-basedFLUSH mecha-
nism, theMFLUSH mechanism allows power consumption reductions of up to20%, as
compared to a traditionalFLUSHmechanism.

95
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6.1 Introduction

As the transistor count on a single chip augments, Computer Architects strive to find
better ways to fully exploit the available hardware budget from an architectural perspec-
tive. So,Uniscalarsgave way toSuperscalars, and the latter toSMTsandCMPs. Nowa-
days, we are witnessing the raise of theCMP+SMTsand the advent of theMany-core Era,
with tens or even hundreds of execution cores along the chip’ surface. However, before
being able to handle such a great computational power, some basics should be carefully
revisited.

On the one hand, conventionalCMPdesigns share the second level (L2) cache among
all the on-chip cores by means of an interconnection switch. As the number of on-chip
cores increases, the pressure on both the L2 cache and the interconnection network is also
augmented. As a result, the L2 cache access time turns moreunpredictable.

On the other hand, the L2 cache access time is used inSMT processors to detect L2
cache misses. As shown by Tullsen et al. in [70], L2 cache misses are of key importance in
SMTs. Thus, a long latency instruction, like an L2 cache miss, in any running thread may
stall the whole machine. TheInstruction Fetch (IFetch) Policymay avoid these harmful
situations, determining from which thread(s) instructions are fetched every cycle. Several
authors have shown that long latency operations have to be taken into account by the
IFetch Policyin order to boostSMTperformance [20, 24, 70, 72]. Some of theseIFetch
Policies track the delay of loads when accessing the outer cache level (the L2 cache in
our processor setup) in order to determine whether they miss. Once an L2 cache miss is
detected the corresponding thread is stopped/flushed to prevent resource monopolization.

To conclude this PhD dissertation focused on the introduction of theHeterogeneity-
Awarenessconcept in the emergingMultithreaded Multicore Processors, we revisit a
well-known SMT technique in this emerging scenario. So, in this last chapter we shed
some light on the implications of having multipleSMT cores sharing a single L2 cache.
We focus our analysis on the application of theFLUSH [70] IFetch Policy to the emerg-
ing CMP+SMT scenario, with multipleSMT cores sharing an L2 cache. As we aug-
ment theSMT core count sharing the same L2 cache both the memory traffic (between
each core and L2 cache) and the contention (L2 cache banks and ports) increase. From
this analysis, we propose a novelIFetch Policydesigned to turnHeterogeneity-Awarethe
emergingCMP+SMT scenario: theMFLUSH. We include a complete evaluation of the
MFLUSHboth in terms of throughput and energy consumption. Our results indicate that
the MFLUSH succeeds not only in overcoming the specificCMP+SMT constraints but
also allowing a 20% reduction in the required energy consumption without a significative
(less than 3%) system throughput loss.
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Number of Threads
Name 2 4 6 8

xW1 b, j b, q, t, j l, b, q, f, t, j d, l, b, g, i, j, c, f
xW2 n, e l, n, p, e g, l, n, p, e, a b, g, m, n, a, h, o, p
xW3 d, a d, s, r, a d, l, s, w, r, a m, n, r, q, i, j, e, h
xW4 g, f g, b, m, f r, g, b, m, h, f l, b, g, m, n, r, f, s
xW5 r, p r, j, f, p h, l, e, r, m, d q, b, c, k, e, a, o, t

Table 6.1: Workloads used in MFLUSH research.

6.2 Methodology

Since a complete study of all benchmarks is not feasible, due to excessive simulation
time, we have randomly chosen some of them comprising 5 workloads for 4 different
workload sizes (i.e., 20 workloads). Table 6.1 shows the main simulation parameters and
the chosen workloads. The name of each workload isxWy, wherex andy stands for the
number of threads involved and workload identifier, respectively (e.g.,6W2identifies the
second workload with 6 threads). Each workload sizex is simulated on aCMP+SMT
implementation withx

2
two-hardware-context SMT cores. All workloads are simulated

for a fixed interval of 120 millions of cycles.

6.3 Analysis

We firstly analyze and evaluate the interaction between the shared L2 cache and the
IFetch Policy implemented within eachSMT core. We focus onCMPs comprised of
SMT cores, or simplyCMP+SMT. EachSMT core allows two threads running simulta-
neously and has its private instruction and data cache (see Chapter 2). The first cache
level is connected, through an on-chip bus-based interconnection network, to a shared
multibanked L2 cache. The Icache and Dcache of each core is connected to all the shared
L2 cache banks. Both the memory traffic, between L1 and L2 caches, and contention
effects, regarding the use of each shared L2 cache bank, are considered. Regarding re-
source sharing, two well-knownSMT IFetch Policiesare used in our research:ICOUNT
andFLUSH.
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The ICOUNT policy [72] prioritizes threads with fewer instructions in the pre-issue
stages, and presents good results for threads with highInstruction Level Parallelism(ILP).
However,SMTshave difficulties with threads that experience many loads that miss in the
L2 cache. When this situation happens, theICOUNT does not realize that a thread can
be blocked on an L2 cache miss and will not make forward progress for many cycles.
Depending on the amount of instructions dependent of the blocked load, many processor
resources may be blocked and the total throughput suffers from a serious slowdown.

The performance ofIFetch Policiesdealing with load miss latency depends on the
following two factors: theDetection Moment(DM) and theResponse Action(RA). The
DM indicates the moment in which the policy detects a load that fails or is predicted to fail
in cache. Possible values range from the fetch of the load until the moment that the load
finally fails in the L2 cache. Two characteristics associated with theDM are thereliability
and thespeed. The higher thespeedof a method to detect a delinquent load, the lower
its reliability. On the one hand, if we wait until the load misses in L2 (Non-Speculative
implementation), we know for certain that it is a delinquent load:totally reliablebut too
late. On the other hand, we can predict (Speculative implementation) which loads are
going to miss by adding a load miss predictor to the front-end. In this case, thespeed
is higher, but thereliability is low due to predictor mispredictions. TheRA indicates the
behavior of the policy once a load is detected or predicted to miss in cache. That is, it
defines the measures that theIFetch Policytakes for delinquent threads.

In [70] severalRA are proposed. We focus on the mechanism leading to the best
performance, calledFLUSH. As a result of applyingFLUSH, the offending thread tem-
porarily does not compete for resources. More importantly, the hardware resources used
by this thread are freed, giving the other threads full access to them. SeveralDM are
proposed for theFLUSH response action.

• Delay after issue DM:When thisDM is used, a load is declared to miss in the
L2 cache when it spends more cycles in the cache hierarchy than needed to access
the L2 cache, including possible resource conflicts. We will refer to thisFLUSH’s
DM asSpeculative(FL-SX), whereX stands for the delay (cycles) after which the
mechanism is triggered.

• Trigger on miss DM:In this case we wait until the load miss in the L2 cache to
start the correspondingRA. We will refer to thisFLUSH’s DM asNon-Speculative
(FL-NS).
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Figure 6.1: Throughput in single-core SMT.

6.3.1 Single-core analysis

According to our simulation parameters (see Table 6.1) we chose30 cycles(FL-S30)
asFLUSH trigger, that is the delay waited prior to activate theFLUSH mechanism once
a load is issued from the corresponding queue.

Our results are consistent with [70]: thedelay-after-issue DMyields better results than
trigger on miss, both improvingICOUNT. For this experiment, we simulated a single-
core SMT configuration. In this uniprocessor, with two hardware contexts, we ran all 2-
thread (2Wy) workloads in Table 6.1. Figure 6.1 shows the comparison betweenICOUNT
andSpeculative FLUSH (FL-S30)results. From these results it can be asserted that the
FLUSHmechanism effectively reduces system throughput losses in workloads containing
threads with bad memory behaviors. Thus, theFLUSHmechanism yields speedups of up
to 93%, with average speedup of22%. However, as described in the following section,
these asserts are highly dependent on the amount of replicatedSMTcores.
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6.3.2 Multiple-core analysis

Next, we simulated the remainder workloads in Table 6.1, replicatingSMTcores with
two threads per core. Figure 6.2 shows the average results per each workload size. These
results point out that the prior asserts made for the single-core case, regarding the per-
formance of theFLUSH mechanism, are not valid for the multicoreCMP+SMTconfig-
urations. In fact, as we increase the amount of replicatedSMT cores the22% average
speedup, obtained with theFLUSH mechanism in a single-coreSMT when compared
to ICOUNT, experiences a progressive reduction. With a 4-core configuration (8 thread
workloads -8Wy), theFLUSHmechanism’s performance improvement disappears yield-
ing a9%average slowdown.

In order to shed some light into the rationale behind these results, we deeply analyzed
the influence of the access time to the shared L2 cache. Figure 6.3 shows the average
number of cycles required for each load that hits on the shared L2 cache, since it is issued
from the load/store queue until it is finally served. For this measurement we use the
ICOUNT policy since it does not alter the L2 cache access patern.

Figure 6.3 points out that the probability of suffering from high latencies in L2 cache
accesses increases with the amount of SMT cores. As indicated in Table 6.1, each of the
4 banks of the shared L2 cache is single-ported and has an access latency of 15 cycles.
That is, two consecutive accesses to the same L2 cache bank cannot be served in less than
15 cycles. EachSMT core implements 2 Load/Store Units, shared by the two threads
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running in the core. Within each core it is also implemented a 16-entry MSHR queue that
keeps track of the outstanding memory requests. In case of L2 hits, consecutive accesses
to the same L2 cache bank may overlap yielding a higher access time. As an example, the
fourth consecutive L2 hit to the same L2 cache bank would experience a 45-cycle delay.
Each additional SMT core increases in 2 the number of loads that can be issued in a single
cycle, with the consequent increment of the pressure on both the interconnection network
(L1-L2 bus) and the shared L2 cache.

Figure 6.3 also indicates that the dispersion of the L2 access time also increases with
the number ofSMT cores. Focusing on the average L2 hit time for a 4-core implemen-
tation in Figure 6.3, about half the L2 hits are equally distributed in the range of 20-70
cycles. This fact points out that there is no a single threshold, to be used as trigger value
for theFLUSHmechanism, which provides good results for all cases. This high variabil-
ity in the L2 cache access time hampers the predictability of the L2 behavior:

• On the one hand, if we set a low threshold value the number offalse missesin-
creases. That is, the number of long-latency L2 hits predicted as L2 misses. As a
result, the performance of theFLUSHpolicy is heavily affected.

• On the other hand, if we set a high threshold value the number of cycles a thread
can clog resources increases, leading to performance loss. We comment this issue
in the next section.
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Figure 6.4: Detection Moment Analysis.

To sum up, the performance of theFLUSH mechanism exhibits a clear trend to get
diminishing returns as we increase the number ofSMTcores in aCMP+SMTscenario. In
fact, theFLUSH mechanism turns ineffective just by passing from a dual core to a quad
core implementation, as depicted in Figure 6.2.

6.3.3 Detection Moment Analysis

The results in Figure 6.3 exhibit higher levels of dispersion as increases the amount of
SMT cores. In this section we analyze how does this issue affect the choice of the right
trigger for theFLUSH mechanism. Thus, we ran some additional simulations covering a
wider DM spectrum. For an explanatory analysis, we chose two representative 8-thread
workloads:(a) 8W3(see Table 6.1) and(b) an 8-thread workload comprised of instances
of bzip2 and twolf, where instances of the two applications never share a single core.
Figure 6.4 shows the results obtained using different values for theFLUSH’s trigger,
ranging from30 to 150 cycles. TheNon-Speculative implementation (FL-NS)is also
included in Figure 6.4.

In Figure 6.4(a), thetrigger that yields thehighest throughputis 50 cycles. However,
compared to speculative instances, thenon-speculative FLUSHimplementation yields the
highest overall throughput. In Figure 6.4(b), thebest triggervalue is90 cycles. These ex-
amples illustrate thatthere may be different trigger values which best balance the amount
of false misses and clog resources, yielding the highest overall throughput. That is,the
choice of the right value depends on each specific workload.
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Figure 6.5: MFLUSH Operational Environment.

6.4 The MFLUSH Policy

TheMFLUSHmechanism adapts theFLUSH [70] andSTALL[70] phylosophy to the
emergingCMP+SMTscenario. Built on top ofICOUNT [71], theMFLUSHmechanism
avoids the waste of resources by threads blocked waiting for memory. Whenever a thread
waits for a memory access to be resolved, theMFLUSH mechanism predicts its resolu-
tion time and reacts accordingly. Since theCMP+SMTscenario has lessmemory access
predictability than the priorSMT scenario, this issue turns into a non-trivial task. The
MFLUSH is designed to cope with the varying workload behavior and memory traffic
conditions of the emergingCMPscomprised ofSMT cores sharing one or multiple L2
Caches. Thus, it adapts its L2 miss predictions to the varying conditions instead of using
an heuristic prediction value, as done inFLUSH.

The MFLUSH mechanism establishes, according to the specific system characteristis,
anOperational Environmentas shown in Figure 6.5. TheMFLUSH mechanism predicts
for each memory access its resolution time, based on prior accesses. These predictions
fall in the MIN - MAX range(See Figure 6.5), whereMIN andMAX correspond to the
L1 and L2 cache miss latency, respectively. As seen in prior sections, the access time
of an L2 cache may experience high variability when multipleSMT cores share it. The
more cores sharing a single L2 cache and interconection bus, the more traffic/memory
contention. In order to consider this factor, theMFLUSH’s Operational Environment
includes aMulticore Traffic (MT) delay, that is added to bothMIN andMAX values as
shown in Figure 6.5. TheMT delayobeys the following equation:

MT = (L1 L2 Bus delay + L2 Bank Acc delay) ∗ (Num Cores− 1)(cycles)
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Due to the high-variability of the L2 cache access time inCMP+SMTimplementations
sharing a single L2 cache, it cannot be used an static value to predict L2 cache misses, as
done by the theFLUSH mechanism inSMT processors. For each L2 cache access, the
MFLUSH mechanism predicts its resolution time according to the varying conditions of
memory trafficandcontention. The mechanism to obtain thesepredictionsis described in
Section 6.4.1. Based on each prediction, theMFLUSH dynamically estimates aBarrier
value for each memory access. Whenever a memory access lasts more thanBarrier cycles
without being resolved it is considered to miss in the L2 cache. In that case, theFLUSH
mechanism is triggered (See Figure 6.5), both stalling the offending thread and freeing
some of its hardware resources (e.g., rename registers, instruction queue entries, etc).
Exactly as in theFLUSHmechanism, the offending thread remains idle until the memory
access is resolved. During this period of time, the freed resources, originally devoted to
the newest instructions of the offending thread, may be used by all other running threads
in the sameSMTcore. TheBarrier estimation obeys the following equation:

BARRIER = L2prediction+MIN
2

+ MT (cycles)

In presence of high memory traffic/contention, alate L2 cache hitmay be as harmful
as anL2 cache miss. In that case, theBarrier value could be too high, involving a possi-
ble resource waste. In order to reduce the negative effects ofLate L2 hits, theMFLUSH
mechanism considerssuspiciousall L2 cache accesses thatlast more thanMIN + MT
execution cyclesto be resolved. As shown in Figure 6.5, theMFLUSH’s Operational En-
vironmentestablishes aPreventive Statefor all suspiciousmemory accesses. Thus, any
threads with asuspiciousin-flight memory access is stalled by theMFLUSHmechanism,
preventing it from obtaining additional hardware resources. However, a thread in thePre-
ventive Stateis still running and can make forward progress with the instructions priorly
fetched into the execution pipeline. Whether thesuspiciousmemory access is resolved be-
fore reaching theBarrier the corresponding thread is removed from thePreventive State.
In that case, the thread is allowed to fetch new instructions into the pipeline. Otherwise,
thesuspiciousmemory access is predicted as an L2 miss, and theFLUSH mechanism is
triggered.

Triggering theFLUSHmechanism has acost, both in terms ofperformanceandpower
consumption. A flushed thread is stalled until the offending memory access (load instruc-
tion) is resolved, avoiding additional forward progress in the whole thread. Besides, all
the newest instructions issued, from the last fetched instruction to the offending mem-
ory instruction, are flushed away from the execution pipeline. By the time the offending
memory access is resolved, the thread resumes its execution, fetching again in the ex-
ecution pipeline all flushed instructions. Consequently, allflushed instructions have a
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higher cost in terms of power consumption. The exact cost depends on the pipeline stage
the instruction was by the time it was flushed. Therefore, making an smart use of the
FLUSH mechanism is critical to obtain both good performance and a moderated power
consumption.

6.4.1 MFLUSH Hardware Support

In order to obtain bothfast andaccuratedynamic predictions, theMFLUSH policy
requires someadditional hardware support, shown in Figure 6.6. EachSMT core holds
an 8-bit register (MCReg) per each L2 cache bank used. TheMCRegregister keeps the
latency of the lastL2 cache hitin the corresponding L2 cache bank. TheMFLUSHmech-
anismassumes the same behavior in consecutive accesses to the same L2 cache bank.
Hence, theMFLUSHuses the value in the correspondingMCRegregister to quickly pre-
dict the latency of the next access to the same L2 cache bank.

Figure 6.6 shows an example for a 4-coreCMP implementation where all cores share
a 4-banked L2 cache. Each core is connected to each of the L2 cache banks by means of
a shared bus. In case of an L1 cache miss in core 0, the L2 cache bank that should contain
the requested data is first determined using the address of the corresponding memory
access. TheMFLUSH mechanism then accesses the correspondingMCRegregister and
uses its content as prediction of the L2 hit latency. As a matter of example, if bank 2 was
acceded, the latency prediction would be of55cycles, as shown in Figure 6.6. Using this
L2 cache hit latency prediction theMFLUSH mechanism proceeds with the appropriate
response according to the varying memory traffic/contention conditions, as described in
Section 6.4.

TheMCRegregisters admit more complex configurations, involving queues (i.e., his-
tory length : MCReg= 1 ; queues > 1) and more complex functions to determine the
prediction from all queue entries. However, to keep it simple and fast we use a single
MCRegregister per core and per L2 cache bank. Our results confirm that this choice
allows tracking quick memory behavior changes.

6.4.2 MFLUSH Throughput Evaluation

Figure 6.7 shows the system throughput evaluation forCMP+SMT implementations
with 2, 3, and 4 cores, using 4, 6, and 8-thread workloads respectively. The results
in Figure 6.7 include, for each workload, 4 evaluations using different IFetch Policies:
ICOUNT, Speculative FLUSH with 30-cycle trigger (FLUSH-S30), Speculative FLUSH
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Figure 6.6: MFLUSH hardware support for a 4-core CMP with a 4-banked L2 Cache.

with 100-cycle trigger (FLUSH-S100), andMFLUSH. Figure 6.7 shows that in general,
the highest results are obtained usingFLUSH-S100. However, this assert is not true for
all considered workloads, as in the case of4W4, 6W4, and8W1, in which theMFLUSH
yields the highest results.

The results in Figure 6.7 also confirm thata bad trigger choice in Speculative FLUSH,
as happens withFLUSH-S30(30 cycles) in most of the cases,may yield even worse results
than the ICOUNTIFetch Policy. Examples of this situation are4W1, 6W1, and8W4.
Recall that this trigger choice yields an average22% speedup overICOUNT in single-
core SMT, as shown in Figure 6.1. Something similar occurs in the4W3workload, where
theICOUNT IFetch Policy yields4%speedup overMFLUSH. This isolated fact is due to
the specific workload and microarchitecture characteristics.

Focusing on average results, it can be asserted from Figure 6.7 that theMFLUSH
effectively succeeds in giving high throughput results, 2% close to the best performing
Speculative FLUSHoption (FLUSH-S100). This goal is achieved without requiring ad-
ditional information regarding neither the trigger value to be used nor the underlying
CMP+SMT implementation. Recall thatSpeculative FLUSHrequires to specify apriori a
trigger value (i.e., a 100-cycle trigger for theFLUSH-S100).
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6.4.3 MFLUSH Power Consumption Evaluation

The FLUSH mechanism represents ahigh-power-consumption alternative, aimed at
throughput-oriented scenarios, in which thesystem throughputis the main concern re-
gardless of the power required. Flushing away instructions from the pipeline, and having
to refetch them afterwards, implies anadditional energy cost. This cost depends on the
pipeline stage in which the instruction was by theflush time. In order to measure the
proposedMFLUSH mechanismspower-efficiencywe use theEnergy Consumption Fac-
tor described in Section 5.4. This factor allows to estimate theadditional energyrequired
by theFLUSH mechanism,tracking the number of flushed instructions in each pipeline
stage and applying the corresponding factor value. Compared toFLUSH, theMFLUSH
mechanism only adds a read access to a local 8-bit register on L1 cache misses. A write
access to that register is only required in case of L2 hits. Due to its reduced cost, the
MFLUSHhardware support is not added to theEnergy Consumption Factor.

Nowadays, the power-aware constraints in processor designs are present even for
throughput-oriented scenarios. Although there are still scenarios in which obtaining the
highest throughput is the main concern, the power constraints impose severe constraints
on how this goal is achieved. Consequently, any architectural advance which reduces the
energy consumption without hardly compromising the total throughput is of particular
interest.

Figure 6.8 shows theWasted Energyimplied by eachSpeculative FLUSHimplemen-
tation (FLUSH-S30and FLUSH-S100) and MFLUSH IFetch Policy. ThisWasted En-
ergy strictly corresponds to the additional energy required by theFLUSH mechanism,
which requires refetching flushed instructions once resolved the corresponding memory
accesses. TheWasted Energyis measured inenergy unitsin Figure 6.8, that is the amount
of energy required to commit 1 instruction. The results in Figure 6.8 are obtained using
theEnergy Consumption Factor(See Section 5.4) and the number of instructions flushed
in each pipeline stage.

The results in Figure 6.8 point out thatFLUSH-S100wastes in average10%more en-
ergy thanFLUSH-S30. AlthoughFLUSH-S100involves less total flushes thanFLUSH-
S30, it involves more instructions to be reflushed on each pipeline refill. Waiting more
time implies more instructions fetched into the execution pipeline by the time theFLUSH
mechanism is triggered, and therefore a greater amount of instructions to refetch. Fig-
ure 6.8 also confirm thataggressive flushing comes at an extra energy cost. In all cases
the MFLUSH obtains significant energy consumption reductions, reaching20% when
compared with the best-performingSpeculative FLUSHchoice (FLUSH-S100) that, as
seen in Section 6.4.2, obtains a marginal2% throughput improvement overMFLUSH.
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Consequently, theMFLUSH IFetch Policyconstitutesnot only a solution tothe unpre-
dictability of the L2 cache latency in the emergingCMP+SMTscenario but alsoprovides
an important energy consumption saving.

6.5 Related Work

The FLUSH mechanism was proposed by Tullsen et al. in [70] as an improvement
for the ICOUNT [72] policy in single-coreSMT processors. TheICOUNT policy has
difficulties with threads that experience many loads that miss in L2 cache, being unable to
realize that a thread can be blocked on an L2 cache miss and do not make forward progress
for many cycles. Depending on the amount of instructions dependent on the blocked load,
many processor resources may become clogged and the total throughput suffers from a
serious slowdown. SeveralFLUSH implementation choices were analyzed in [70], focus-
ing on the simplest and less expensive ones :Trigger on Delayor Speculative FLUSH.
With the rise of the emergingCMPcomprised ofSMTcores, like theIBM POWER5[60]
andPOWER6[39], it must be faced up a new challenge: theunpredictabilityof the L2
cache hit latency.

TheMFLUSHmechanism adapts theFLUSHandSTALLphylosophy in priorSMTsto
the newCMP+SMTscenario, obtaining bothdynamic adaptabilityto the varying mem-
ory traffic/contention conditions and importantenergy consumption savings. This goal
is achieved applying theHeterogeneity-Awareconcept to theFLUSH mechanism; since
the workload behavior is inherently heterogeneous, so the traffic and memory contention
conditions would be. By giving to each execution thread the appropriate portion of the
processor resources, adjusting its mechanism’s trigger value, we would be able to achieve
morecomplexity-effectiveexecutions.

Several authors have shown that long latency operations have to be taken into account
by the IFetch Policy in order to boostSMTperformance [20, 24, 70, 72]. In order to apply
them to the newCMP+SMTscenario a similar analysis, as done in this paper, should be
performed. Revisiting prior well-known high-performance proposals when moving to a
new application scenario generally requires this type of analyses.

Shin et al. propose anAdaptative Dynamic Thread Scheduling(ADTS) [58] to manage
the resource sharing inSMT processors. TheADTSimproves the system throughput in
SMTprocessors by adapting the underlying IFetch Policy to the workload characteristics.
Thus, theADTSchanges the IFetch Policy used amongICOUNT [72], BRCOUNT[72],
andL1DMISSCOUNT[72], according to the varyingworkload characteristics. In this
chapter we propose theMFLUSHmechanism, which adapts theFLUSHandSTALLphi-
losophy to the emergingCMP+SMTscenario.
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6.6 Chapter Summary

In this chapter we analyze the new challenges to be faced up in future high-degree
MultithreadedCMPs, with multipleSMTexecution cores sharing an L2 cache (CMP+SMT).
In particular we focus on probably the most importantSMT issue: theInstruction Fetch
(IFetch) Policy. ConsideringICOUNTandFLUSH IFetch Policies we show results which
evidence thatCMP+SMTmay not simply relly onSMT IFetch Policies to boost overall
throughput.SMT IFetch Policies must be revisited when moving to the newCMP+SMT
scenario.

From the exhaustive analysis included herein, it is proposed a novel IFetch Policy
designed to cope with the emergingCMP+SMTscenario: theMFLUSH. TheMFLUSH
mechanism introduces theHeterogeneity-Awarenessconcept inIFetch Policies. It dy-
namically adapts to the varying memory conditions, yielding a morecomplexity-effective
response to theheterogeneousbehavior exhibited by the running applications. Yielding
results similar to those obtained using an oracle-trigger-basedFLUSH mechanism, the
MFLUSH mechanism allows power consumption reductions of up to20%, as compared
to a traditionalFLUSHmechanism.

We include a complete evaluation of theMFLUSH, both in terms ofthroughputand
energy consumption. Our results indicate that theMFLUSH succeeds not only in over-
coming the specificCMP+SMTconstraints but also allowing a 20% energy consumption
reduction without a significative system throughput loss. These results confirm that giv-
ing each execution thread the appropriate amount of processor resources, by adjusting the
FLUSH mechanism’s trigger value so that the amount of refetched instructions would be
minimal, we are able to achieve more complexity-effective executions inMultithreaded
Multicore Processors; that is, beingHeterogeneity-Aware.
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Chapter 7

Conclusions

This chapter lists the main conclusions of this thesis as well as future directions.

7.1 Thesis conclusions

Due to limitations in the applications’Instruction Level Paralellism (ILP), current
trends in Computer Architecture rely on exploitingThread Level Paralellism (TLP). Big
and complexprocessors, like theIntel Pentium 4[5], are now being replaced bysmaller
and simplermultithreadedProcessing Elements (PE), or cores, replicated along the chip’s
surface, as in the case of theIBM POWER5[60] andPOWER6[39]. In some cases, as with
theCell Processor[27], thesePEsare not just replicated: they configure an heterogeneous
processor layout.

Whenever the hardware is statically partitioned into clusters, as done inCMPs, CMP+
SMTs, and many other clustered processor implementations, it is crucial to properlymatch
theapplications’ needswith thehardware resourcesof each cluster. Despite applications
are inherently heterogeneous, that is they have different needs as compared to both other
applications and different portions of execution (program phases) of the very same ap-
plication, thismatching processis straightforward inhomogeneous partitions. However,
when not all the clusters do have the same amount of resources, unproperly matching
applications with clusters may involve a serious throughput degradation.

The main contribution of this thesis is the introduction of theHeterogeneity-Awareness
concept in the design ofMultithreaded Multicore Processors. A Heterogeneity-Aware
Multithreaded Multicoreprocessor explicitly takes into account the inherent heterogene-
ity in the applications’ behavior and compares it with the hardware characteristics to per-

113
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form the most appropriatesoftware-hardware matching, that is the one that yields the
highest throughputinvolving the lowest energy consumption. In this thesis it is shown
that thissoftware-hardware matchingis akey factornot only forheterogeneous hardware
partitions, in which this matching appears more evident, but also forhomogeneous hard-
ware partitions, in which multiple applications are run sharing the resources belonging to
a single partition.

• For heterogeneous hardware distributions, we propose theheterogeneously dis-
tributed SMT (hdSMT)architecture, that improves thecomplexity-effectivenessof
the processor. Our results confirm that thehdSMTapproach increases theIPC/Area
ratio in an average 14%, as compared to amonolithic SMTprocessor. Addition-
ally, our results also reveal that, depending on the characteristics of each workload,
reducing the resource contention of some applications we obtain improvements
not only in terms ofcomplexity-effectiveness(IPC/Area) but also in terms of raw
throughput (IPC), by assigning them to different clusters with private resources. In
this sense, memory-bounded workloads experience raw throughput improvements
of up to 18%.

• For homogeneous hardware distributions, we propose theThread to Core Assign-
ment (TCA) Algorithm. Although apriori less evident, an exhaustive analysis of the
homogeneously distributed hardware partitions reveals that the traditional schedul-
ing process performed in multithreaded processors required an additional and in-
termediate step when moving to the new multithreaded multicore scenario: the
Thread to Core Assignment (TCA). We also have studied the relation between this
new scheduling step and the resource sharing step, obtaining the following main
conclusions:

I A good IFetch Policyreduces the negative effect of an inappropriateTCA.

II An appropriate TCAimproves the results obtained regardless the underlying
IFetch Policy.

III An inappropriate TCAcould negate the performance advantage of a better
IFetch Policy.

IV There is not a singleTCAgood for all cases.

Due to its simple design, the proposedTCA Algorithmrepresents an easy-to-imple-
ment solution for the software-hardware matching in multithreaded multicore sce-
narios. So, main processor vendors could provide theTCA Algorithmimplemen-
tation for each of their new products just as device drivers are provided nowadays.
The results included in this thesis confirm that this algoritm yields average speedups
of up to 21%.
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Once analyzed the homogeneous hardware distributions, we have also started the way
back to the heterogeneous distributions. In this sense we focus on probably the most im-
portant issue in theSMT field: the IFetch Policy. The proposedheterogeneous Thread
to Core Assignment (hTCA) Frameworkis an OS-driven Framework forComplexity-
Effectivenessin Multithreaded Multicore Processors. Explicitly taking into account the
heterogeneity in the running software, thehTCA Frameworkadapts the hardware to the
workload in order to reduce the energy consumption without significantly affecting the
system throughput. Our results indicate that the proposed framework achieves a95%
accuracywhen selecting the optimal choice for each case.

When moving from heterogeneous to homogeneous hardware distributions we also
jumped from clusteredSMT processors toCMP+SMT processors. When doing this
change of scenario we realized that some of the well-known techniques in the priorSMT
field were not valid for the newCMP+SMTscenario. In particular we found that the tra-
ditionalCMPscheme, with a shared L2 cache among allSMTreplicated cores, while op-
timal in terms of cache usage, involves additional challenges that must be revisited in this
newCMP+SMTscenario. As an example, when revisiting some of the most well-known
Instruction Fetch Policies inSMTswe observed that theICOUNT fetch policy obtained
better results than theFLUSH fetch policy. Recall that theFLUSH policy was built on
top of ICOUNT to improve it against long-latency instructions. To solve this problem we
proposed theMFLUSH policy, specifically designed to adapt theFLUSH/STALLphylos-
ophy to the newCMP+SMT scenario. Our results indicate that theMFLUSH not only
success in adapting the FLUSH policy to theCMP+SMTscenario, avoiding degradation
as we increase the amount ofSMTcores, but also reduces its energy consumtion, with an
average 20% energy saving.

In the course of the thesis, throughout all these years of research we have been forced
to explore an extremelly wide design space. So, we have covered a very wide range of im-
plementations starting from an heterogeneosly distributed hardware, with a shared fetch
engine and multiple heterogeneous execution pipelines (from decode to commit), until
multithreaded multicore processor implementations with adaptable IFetch Policy (on/off
on demand). This would not have been possible without a very flexible simulation tool
that allowed to simulate a great amount of different scenarios and configurations. In this
sense, we want to emphasize the importance of theMulti-Purpose Simulator (MPsim),
designed and developed specifically for this thesis. TheMPsim’s relevance has growth
during the recent years, spreading out of this thesis to become akey toolin our reserach
group, both in theDAC and theBSC. Recently, theUniversity of Las Palmas de Gran Ca-
naria (ULPGC)has joined to theMPsim Community. What is more, theMPsimcontinues
evolving to offer more attendance to its users. Some temporalBSCworkers, asDomen
Novak, has been employed to specifically develop additionalMPsim modules, that have
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been added to the wholeMPsim Project. The latest item in theMPsim Projectinvolves
the integration of the brandnewCOTSontool, developed byHP Labs Barcelona, into the
MPsim Project.

As a final reflection exercise, after all the research done in the homogeneous/heterogeneous
hardware partition field, I do believe that the future of Computer Architecture will face
up heterogeneously distributed chips, with a high concern for complexity-effectiveness.
In this future processor generations the hardware would dynamically adapt to the varying
requirements of the running software over time, striving to yield the maximum through-
put involving at the same time the lowest energy consumption. This way for example,
we would see very-low-power mobile processors with a computational power that ex-
ceeds any of the current state-of-the-art high-end processors nowadays. Cell phones with
holoprojections, that would allow to physically intarct with 3D projections of people thou-
sands of miles away, would become a reality thanks to this kind of low-power/high-end
processors, designed to achievecomplexity-effectiveexecutions using a highly-adaptative
heterogeneously distributed hardware that dynamically reacts to the varying conditions of
the running software.

7.2 Future work

This thesis opens up several topics from which we emphasize the following:

• Aggressive hdSMT processorswith advanced fetch units and fully-dynamic migra-
tion policies. Currently we are working on a decoupled fetch unit which uses traces
of instructions as minimal fetching unit.

• TCA Algorithm implementationsfor heterogeneous Multithreaded Multiprocessors,
like theCell processor. We are now working on extensions of thehTCA Framework
in which we gradually introduce an heterogeneous distribution of the processor
resources among all the constituent replicated cores.

We are already working on some of these topics and many other more, opened up
throughout the research involved by this thesis. The perspectives are promising, with
plans of starting at least 3 more thesis from the final state of this thesis. Only time would
say how far this thesis would reach and how important/referenced would it be in the
future.
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Appendix:
The MPsim Simulation Tool

Computer Architecture has experienced great advances in the last decades. Thus, we
have witnessed the raise ofSuperscalars, Simultaneous Multithreading (SMT)andon-chip
Multiprocessors (CMP)among others. All these novel ideas had to be evaluated in order
to measure their benefits and potential. To perform this evaluation, computer architects
require simulation tools which model the corresponding idea and allow simulating its
execution results, employing a set of benchmarks. The accuracy of the model employed
is in tune with the research requirements. Thus, while in industry computer architects
are highly constrained to an specific product, requiring a highly accurate model, in the
academia computer architects generally focus on more long term and less specific research
topics. Obviously, the computational cost of the model employed is directly proportional
to its accuracy. Consequently, the research in the academia generally employs general-
purpose simulation tools, closer to their research interests and computational possibilities.

Among the general-purpose simulation tools typically employed in the academia dur-
ing the last decade we find Simplescalar [22] and SMTsim [71] simulators. The Sim-
plescalar models a single-coreSuperscalarprocessor with 5 pipeline stages while the
SMTsim models a single-coreSuperscalar/SMTprocessor with 8 pipeline stages. On
top of both simulators, several branch predictors and instruction fetch policies, so as new
proposals, may be added. Regarding the Memory Subsystem, both simulators model two
cache levels (optionally up to the third cache level), with a single Instruction Cache, Data
Cache, ITLB, DTLB, L2 Cache. However, while the Simplescalar has a very simple
memory model, in which each memory access is deterministically resolved, theSMTsim
non-deterministically manages the memory accesses by means of an event queue, which
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Figure 8.1: MPsim Processor Types.

cronologically stores all memory requests.Wattch[15] andALPSS[40] represent exten-
sions to bothSimplescalarandSMTsim, respectively. They add power measurements to
the functionality included in both simulators.

The MPsim is a highly-flexible simulator based on SMTsim. It allows simulating a
wide range of processor types both single core (Superscalar, SMT) and multi core (CMP,
CMP+SMT), both homogeneous and heterogeneous configurations; so as providing a
complete set of simulation alternatives. It is put special emphasis on the simulator flexi-
bility and how it is obtained. TheMPsim’s Parameter Interfaceallows to easily declare
complex system configurations without needing to recompile the simulator’s source code.
Both core-specific and memory subsystem configuration parameters may be gathered into
parameter files, comprising reusable configuration repositories. The simulation results in-
cluded indicate that high-flexibility may be obtained without hardly compromising the
computational cost in a general-purpose simulator.

8.1 MPsim overview

The MPsim is a cycle-accurate simulation tool based on theSMTsim[72] simulator.
Its design focuses on the simulator’sflexibility and functionality, striving at the same
time to involve the least computational cost possible. The simulator’sflexibility does not
only refer to the amount of simulation alternatives provided to the user but also to the
configurationeasinessandadaptabilityto future modifications. TheMPsim’s Parameter
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Interfaceease the declaration of complex simulation configurations. It allows to maintain
configuration file repositories that may be reused in different simulations without needing
to recompile the simulator’s source code.

TheMPsimallows simulating a wide range of processor types both single core (Super-
scalar, SMT) and multicore (CMP, CMP+SMT). By using theNUM CORESparameter
it may be specified the number of cores in the simulated system. All the remainder core-
specific parameters will carry the suffixPx, wherex stands for the core number (e.g.,
IFETCH POLICYP1 ICOUNTdeclares that the core number 1 use the ICOUNT IFetch
Policy). These suffixes allow to individually configure each core, making possiblehetero-
geneous1 system configurations. Thus, although each simulated system core is comprised
of at least 8 pipeline stages, the specific pipeline depth may be individually declared
for each constituent system core. To configure entire systems, bothhomogeneousand
heterogeneous, each simulated core may be individually declared by using both the com-
mand line or configuration files. TheMPsim’s Parameter Interfaceallows passing text
files comprising all core-specific parameters. These configuration files may be reused in
multiple declarations as simulation inputs to configure each simulated system core (e.g.,
-pf P1 POWER5specifies the file POWER5 to configure the core number 1). Figure 8.1
shows the processor types that can be simulated usingMPsim.

In order to reduce computational costs, theMPsimprovides a trace-driven2 front-end.
Although trace-driven, theMPsimalso permits simulating the impact of executing along
wrong paths on the branch predictor and the instruction cache by having a separate basic
block dictionary in which information of all static instructions is contained. TheMPsim
input traces are collected from the most representative 300 million instruction segment of
each input benchmark, following the idea presented in [55]. Each program is compiled
with the –O2 –nonsharedoptions using DEC Alpha AXP-21264 C/C++ compiler and
executed using the reference input set. These input traces can be indistinctly read from
little-endian/big-endian machines, since theMPsim automatically detects the machine
characteristics and read data accordingly.

TheMPsimfunctionality, provided to the user by means of its flexibleParameter In-
terface, includes a long list of simulation alternatives. Regarding simulation itself, the
MPsimprovides simulation forwarding, numerous simulation statistics and histograms,
so as six different simulation finalization modes. Regarding computer architecture al-
ternatives, theMPsimprovides a set of branch predictors and instruction fetch policies
from which select the desired one, thread migration between cores, so as multibanked

1The termheterogeneousrefers to different amount of processor resources, like instruction queue entries
and number of registers.

2Theexecution-drivenfunctionality is currently being developed.
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Simulator Call
Mpsim –NUMCORES 9 –pf_P0 cores/PPE   
–pf_P1 cores/SPE –pf_P2 cores/SPE
–pf_P3 cores/SPE –pf_P4 cores/SPE
–pf_P5 cores/SPE –pf_P6 cores/SPE 
–pf_P7 cores/SPE –pf_P8 cores/SPE
–pf mem/Cell  

Memory
Repository

## Cell-like mem. config. ##

DCACHE_TOTAL_SIZE_MG0 = 32768
ICACHE_TOTAL_SIZE_MG0 = 32768
SCACHE_TOTAL_SIZE_MG0 = 524288

…

Cell

## PPE-like config. ##

MAXTHREADS = 2
FETCHLIMIT     = 2

…
## SPE-like config. ##

MAXTHREADS = 1
FETCHLIMIT     = 2

…

PPE

SPE

Cores
Repository

Lexical
Analyzer

Simulator
Initialization

Phase

Init_fetch
For i=0; i<NUMCORES; i++ {

NeedValue(FETCHLIMIT_P(i))}
…

Init_multipipeline
NeedValue(NUMCORES)

For i=0; i<NUMCORES; i++ {
NeedValue(MAXTHREADS_P(i))}

…

Init_cache
…
…

Begin Simulation

Interface Library
NeedValue()

…

(NUMCORES, 9)
(MAXTHREADS_P0, 2)
(MAXTHREADS_P1, 1)
(MAXTHREADS_P2, 1)

…

Parameter
Data Base

Figure 8.2: Parameter Interface Example for a Cell-like configuration.

multiported caches. All these functionality items may be easily activated/deactivated by
the user, according to her needs, using the appropriate parameter for each case (e.g.,
STATSINTERVAL 0deactivates the intermediateIPC statistics). As a matter of example,
by means of theSTATSINTERVAL, MAX NUM INTERVALS, STATSFORWARDINGand
MAX NUM STATSFILES parameters it may be obtained intermediate simulationIPC
statistics (intervalIPC, IPC variability and in-flight L1 misses) in separate dump files.

The MPsimalso allows some extent ofclusteringwhen definining the system to be
modeled. Thus, theSHAREDFETCH UNIT andSHAREDREGISTERFILE parameters
allow sharing a single Fetch Unit and Register File respectively, among all defined system
cores. Since a single Fetch Unit may be shared among multiple cores, we indistinctly refer
to pipeline/core in the remainder sections. However, recall that the only difference is the
value of theSHAREDFETCH UNIT (i.e., pipeline = true, core = false). As a matter of
example, in anhdSMT[9](SeeChapter 3) processor (see Figure 8.1) both the Fetch Unit
and the Register File are shared among all constituent pipelines.

8.2 Parameter Interface

In order to provide high-flexibility theMPsimsimulator includes alexical analyzer,
yielding a versatileParameter Interface. It scans the simulator call creating pairs of pa-
rameternameandvalue, which are inserted in an innerParameter Data Base. There is
not a fixed parameter declaration order, with the only assumption that every argument
which begins with a dash is considered aparameter nameand the immediate following
argument is considered itsvalue(e.g., the simulator callmpsim -arg1 arg2includes the
parameterarg1 with valuearg2). Whenever a singleparameter nameis declared more
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than once, the value in theParameter Data Basecorresponds to the last parameter dec-
laration. TheParameter Interface Libraryincludes functions to adquire each parameter
from theParameter Data Baseto the simulator inner structures. This way, the addition of
new functionality benefits from an easy way to adquire configuration parameters.

The specialparameter name parmsfile (or simply pf) is reserved to indicate a con-
figuration parameter file, with theparameter valueindicating the file path. The use of
parameter files permits to declare an unlimited number of parameters, allowing more
complex simulation configurations. Additionally, by using parameter files, that may also
include comments (using #), it is possible to keepconfiguration file repositories. Al-
though the parameter files may include any sort of parameters, the main repositories used
are comprised ofcores, machinesandmemory subsystemsdeclarations. In order to ease
multicore configurations and repositories maintenance, it may be added the suffixPx to
a parameter file name declaration, withx identifying a given core. This suffix indicates
that all the parameters included in the corresponding file are related to the specifiedx core
(e.g.,-pf P0 file1declares the filefile1as input to configure the first core in the simulated
system). TheParameter Interfacethen automatically adds this suffix to each parameter
name included in the file. Thus, a single core’s parameter file may be used to configure
multiple cores in a multicore configuration; or in different simulation calls.

Once scanned the whole simulator call, the resultingParameter Data Base, that com-
prises all declared pairs ofparameter nameandvalue, is used in the subsequentSimulator
Initialization Phase. During this phase the content of theParameter Data Baseis used
to initialize the corresponding simulator structures and variables. Any sort of parame-
ters may be requested by the simulator developer by using theNeedValueandGiveValue
functions from theParameter Interface Library. Whenever a parameter is compulsory,
and does not admit a deffault value, it is used theNeedValue, which automatically stops
the initialization phase and prompts an error message in absence of the specified parame-
ter. Otherwise, it is used theGiveValuefunction.

Figure 8.2 illustrates the high-flexibility of theMPsim Parameter Interface. In the
example, 3 configuration files stored in the simulator’s repositories are used to configure
a Cell-like processor with a simple simulator call. Given the filesPPE andSPE, that
include all core-specific configuration parameters for Cell PPE-like and SPE-like cores
respectively, and the fileCell, that include all Memory Subsystem related parameters and
relations for a Cell-like configuration, the simulator call shown in Figure 8.2 is enough to
configure a Cell-like simulation3.

3Although not included in the simulator call for simplicity, it should be also specified the workload to
simulate.
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Figure 8.3: MPsim Processor Pipeline Stages.

TheLexical Analyzer, included in theMPsim’s Parameter Interface, scans the whole
simulator call shown in Figure 8.2 automatically accessing to the corresponding files in
the repositories. TheLexical Analyzeruses the suffix information included in the simu-
lator call (i.e., Px in the -pf Px argument, withx indicating the specific core) to create
the corresponding pairs ofparameter nameandvaluethat are inserted into theParameter
Data Base. Thus, although there is a singleMAXTHREADSparameter declaration in PPE
and SPE files stored in the cores repository (see Figure 8.2), multipleMAXTHREADS
pairs are inserted in theParameter Data Base, one per each of the 9 delcared cores. Once
the whole simulator call is scanned, including the parameter files, the subsequentSimula-
tor Initialization Phaseuses the resultingParameter Data Baseand theInterface Library
functions to set up the simulator inner structures and prepare the subsequent simulation.
Thus, during the multipipeline environment initialization (i.e.,init multipipeline, see Fig-
ure 8.2) it is used the functionNeedValueto initialize the simulator from the information
contained in theParameter Data Base, modeling an heterogeneous multi-core processor
comprised of 9 cores (i.e.,NUMCORES), each one containingMAXTHREADShardware
contexts (i.e., a dual-thread PPE and 8 single-thread SPEs). After the initialization phase,
the simulation begins.

8.3 The Pipeline

TheMPsimis a cycle-accurate simulator in which each simulated system core is com-
prised of at least 8 pipeline stages, as shown in Figure 8.3. However, each system core
may be defined with a differentpipeline depth, adding idle pipeline stages in between
DecodeandRegRenamestages. As a matter of example, to specify an 11-stage execution
pipeline in any of the declared cores it is set the parameterNUM DECODESTAGES 4.
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Figure 8.4: MPsim BEST DYNAMIC migration heuristic.

In case of sharing the Fetch Unit among all pipelines (see Section 8.1) a new pipeline
stage, calledPredecode, is automatically added by theMPsimto each pipeline. ThePre-
decodestage works as a buffer (with user-definable capacity using thePREDECODEQU
EUE SIZEparameter) between the shared Fetch Engine and the decode stage of each con-
stituent pipeline, which may have a different pipeline width. As a matter of example, in
a given cycle an 8-wide shared Fetch Engine passes 8 instructions to a 4-wide pipeline; 4
instructions passes to that pipeline decode stage while another 4 instructions are buffered
in Predecodeuntil the next simulation cycle.

The pipeline resources and implemented policies may be easily declared using the
MPsim Parameter Interface(see Section 8.2). Each Fetch Unit declared in a simultane-
ous multithreaded system (i.e., the shared Fetch Unit in anhdSMTprocessor or each Fetch
Unit in aCMP+SMTprocessor) may be configured with a different Instruction Fetch Pol-
icy, which determines from which thread/s to fetch instructions each cycle. To define the
IFetch Policy used by each Fetch Unit we employ theIFETCH POLICYPx parameter,
wherex corresponds to the processor pipeline number. The user may select any from
Round Robin [72], ICOUNT [72], STALL [70], FLUSH [70], and FLUSHPLUS PLUS
[18]. In a similar way, each Fetch Unit declared in a system may be configured with a
different branch predictor, using thepredictor Px parameter, where x corresponds to the
processor pipeline number. In this case, the user may chose any from GSHARE [44],
PERCEPTRON [34] and PERFECT predictors.
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8.3.1 Thread Migration

Multicore configurations can be simulated in eitherSTATICor DYNAMIC fashion,
using theTHREADSMIGRATIONparameter.STATICsimulations assume no thread mi-
grations, from core to core, during the whole simulation.DYNAMIC simulations may
experience thread migrations according to the specifiedMIGRATIONINTERVALparam-
eter value (measured in simulated cycles). The assignment of all simulated threads to any
of the defined cores is specified by theFIRSTT2P ASSIGPOLICYparameter. It may be
chosed fromNRR(Naive Round Robin) andCUSTOMpolicies, using theASSIGTH X P
parameter in the latter case to specify each assignment (e.g.,ASSIGTH 1 P 0assigns the
thread 1 to the core 0).

In DYNAMICsimulations, thread migrations are triggered according to the specified
MIGRATIONHEURISTICparameter value. Among the available migration heuristics it
can be chosed theBESTDYNAMIC. As shown in Figure 8.4, every simulated interval (i.e.,
intervalst andt+1), with a fixed length ofMIGRATIONINTERVALcycles, is executed
using theBEST Thread to Core Assignment (TCA)(SeeChapter 4). This BEST TCAis
obtained by means of aLookahead process, that simulates in parallel the next simulation
interval using each possibleTCA(e.g., in the example shown in Figure 8.4 there are only
three possibleTCAs). Once determined the one that yields the highest throughput, the
execution selects thatTCAas the one to be used during the intervalt+1.

8.4 The Memory Subsystem

TheMPsimMemory Subsystem inherits theSMTsim’sfoundations, having an event
queue to manage all memory requests in a non-deterministic fashion. Whenever a mem-
ory request experiences an L1 Cache miss it is inserted a memory request in this event
queue, arranged by cronological request time (in simulated cycles). According to the
specific system configuration, memory hit/miss and contention, the memory request may
have to traverse the L2 Cache, the L1-L2 intercomunication bus, and the L3 Cache, so as
accessing to a TLB. If all this fails, an access to main memory (off-chip) is assumed. The
memory request queue is regularly accessed by the simulator, triggering each request in
the corresponding simulation cycle. As described in Section 8.4.2, theMPsimstructures
this memory event queue into two layers for multicore configurations, implementing an
L2 Access Arbiter.

Unlike SMTsim, with a fixedMemory Subsystem definition, theMPsimprovides the
user afully-flexible Memory Subsystem. Thus, it may be configured a Memory Sub-
system comprised of any number of memory components (DTLBs, ITLBs, DCaches,
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Figure 8.5: MPsim Memory Subsystem.

ICaches, L1-L2 Buses, L2 Caches and L3 Caches) so as relations, between memory com-
ponents and execution pipelines. TheMPsim’s Parameter Interfaceallows to specify
the desired number of components4 by using theNUM L3 CACHES, NUM L2 CACHES,
NUM BUSES, NUM ICACHES, NUM DCACHES, NUM ITLBS, NUM DTLBSparame-
ters. Once declared, the user may configure each of the components’ characteristics indi-
vidually, using command line parameters or parameter files (e.g., a DTLB is configured
with DTLBPENALTY, DPGSIZEandDTLB SIZEparameters). As a consequence, not all
components of the same type must have the same characteristics, allowingheterogeneous
memory configurations. To ease this configuration, each memory component is associ-
ated to a singleMemory Group (MG), as shown in Figure 8.5 (e.g.,I0$, ITLB0, D0$,
DTLB0, BUS0, L20 andL30 belong to the firstMemory Group). Thus, when specify-
ing a component’s characteristic we add the suffixMGx, wherex stands for theMemory
Group, to refer to a particular memory component (e.g., theDTLB SIZEMG0 parameter
value specifies the size of theDTLB0, belonging to the firstMemory Group).

The MPsimMemory Subsystem does not assume any implicit relation between any
two components5, allowing the user to explicitly declare the desired relations. TheMem-
ory Groups, used to univocally refer to each memory component declared in the system,
do not imply real memory component relations (i.e.,D0$ does not necessarily useBUS0

to communicate with the second level of cache). To specify the desired memory com-
ponent relations theMPsim Parameter Interfaceprovides a simpleRegular Expression
Grammar (REG), shown in Figure 8.6. ThisREG, implemented as part of theLexical An-

4There must be at least 1 declared component of each type except for L3 Caches, which are optional.
5Unless a single component of any type was declared (e.g., in a system with a single DCache all cores

must access to that DCache). In that case the corresponding relations with other components are implicitly
assumed.
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REL_X_Y d
where

X = {P_da}
Y = {DC[ _di ], IC[ _dj ]}
d = {db,dc}

or

X = {DC_MGdb}
Y = {DTLB[ _dk ], BUS, L2, L3}
d = {dd,de,df,dg}

or

X = {IC_MGdc}
Y = {ITLB[ _dl ], BUS, L2, L3}
d = {de, df, dg, dh}

with

1 ≤ da < NUM_CORES
1 ≤ db < NUM_DCACHES
1 ≤ dc < NUM_ICACHES
1 ≤ dd < NUM_DTLBS
1 ≤ de < NUM_ITLBS
1 ≤ df  < NUM_BUSES
1 ≤ dg < NUM_L2_CACHES
0 ≤ dh < NUM_L3_CACHES

* 0 ≤ di  < Max. Core DCaches 
* 0 ≤ dj  < Max. Core ICaches 
* 0 ≤ dk < Max. D$ DTLBs
* 0 ≤ dl  < Max. I$   ITLBs

* In case of Multi-Relations (N:M)

Figure 8.6: MPsim Memory Relation Regular Expression Grammar.
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Figure 8.7: MPsim Memory Subsystem Example.

alyzerincluded in theMPsim’s Parameter Interface(See Section 8.2), allows to establish
a relation between any two memory components. These relations are focused on the first
level of cache; the user specifies for each first level cache (i.e., D$ and I$) both the exe-
cution pipeline and the remainder memory components that are related with that specific
component. The flexibility provided by this simple grammar allows to declare complex
memory configurations, includingN:M relations as is the case of first level caches and
TLBs (i.e., a single Data Cache may use more than one DTLB).

As a matter of example, Figure 8.7 shows an example of a Memory Subsystem for a
3-core system. To specify all the constituent memory components shown in Figure 8.7 it
should be used the following declaration:

-NUM DCACHES 3 -NUMICACHES 2 -NUMDTLBS 2 -NUMITLBS 1

-NUM BUSES 2 -NUML2 CACHES 2 -NUML3 CACHES 1
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REL_P_0_DC 0
REL_P_0_IC 0
REL_P_1_DC 1
REL_P_1_IC 0
REL_P_2_DC 2
REL_P_2_IC 1

REL_IC_0_ITLB 0
REL_IC_0_BUS 0
REL_IC_0_L2 0

* REL_IC_0_L3 0

REL_IC_1_ITLB 0
REL_IC_1_BUS 1
REL_IC_1_L2 1

* REL_IC_1_L3 0

* Optional : Since NUM_L3_CACHES = 1 it is
no needed this relation.

REL_DC_0_DTLB 0
REL_DC_0_BUS 0
REL_DC_0_L2 0

* REL_DC_0_L3 0

REL_DC_1_DTLB 0
REL_DC_1_BUS 0
REL_DC_1_L2 0

* REL_DC_1_L3 0

REL_DC_2_DTLB 1
REL_DC_2_BUS 1
REL_DC_2_L2 1

* REL_DC_2_L3 0

Pipeline – L1 Caches
relations

ICache 0
relations

ICache 1
relations

DCache 2
relations

DCache 1
relations

DCache 0
relations

Figure 8.8: MPsim Memory Component Relations Example.

Once declared all the memory components, the relations between them are declared
using the memory relation grammar shown in Figure 8.6, as depicted in Figure 8.8. For
a Memory Subsystem to be fully declared, every first level cache (ICaches and DCaches)
must be related with some pipeline (or multiple pipelines), TLB (or multiple), L1-L2 bus,
L2 Cache and optionally with some L3 Cache. Finally, each memory component is con-
figured using its specific parameters (e.g.,-DTLBPENALTYMG1 300 -DPGSIZEMG1
13 -DTLBSIZEMG1 512configures the DTLB number 1 with 512 entries, a miss pe-
nalization of 300 cycles and a 8Kb virtual page size –2 to 13–). As with pipeline con-
figuration, theMPsim’s Parameter Interfaceallows to maintain aMemory Subsystems &
Relations Repository(memHierarchiesdirectory) and use them to declare more complex
configurations. As a matter of example, let bePOWER5MEM andPOWER5MEM rels
the configuration files comprising all memory component configuration parameters and
the relations between them, respectively, to configure aPOWER5-like[13] Memory Sub-
system. We would use the following declaration to fully configure aPOWER5-likeMem-
ory Subsystem:

-pf memHierarchies/POWER5MEM -pf memHierarchies/POWER5MEM rels

The complete functionality of theMPsimis deepthly explained in [8]. In the follow-
ing sections we focus on two main issues of the Memory Subsystem’s functionality. In
Section 8.4.1 we describe the Multibanked and Multiported Cache functionality and the
L2 Cache Access Arbiter in Section 8.4.2.
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Figure 8.9: 4-bank 4-port L2 Cache and 8-bank 2-port L1 Cache Example.

8.4.1 Multibanked & Multiported Caches

For each cache declared in the Memory Subsystem, it is possible to specify the number
of banks in which it will be splitted. TheMPsim’S Parameter Interfaceprovides this func-
tionality by means of theICACHEBANKSMGx, DCACHEBANKSMGx, L2CACHEBAN-
KS MGx, andL3CACHEBANKSMGx parameters, wherex stands for the specificMem-
ory Group. Additionally, each cache may be configured with a different number of ac-
cess ports, using theNUM DCACHEPORTSMGx, NUM ICACHE PORTSMGx, and
L2CACHEBANKPORTMGx parameters, wherex stands for the specificMemory Group.
As a matter of example, the following declaration configures a 4-bank 4-port L2 Cache
and an 8-bank 2-port DCache, shown in Figure 8.9 :

-NUM DCACHES 1 -DCACHEBANKSMG0 8 -NUMDCACHEPORTSMG0 2

-NUM L2 CACHES 1 -L2CACHEBANKS 4 -L2CACHEBANKPORTSMG0 4

8.4.2 L2 Cache Access Arbiter

The MPsim allows defining multicore system configurations in which many cores
may share a single L2 Cache. In order to cope with the L2 Cache contention among
all cores theMPsimprovides anL2 Cache Access Arbiter, that can be activated using
theL2 ACC ARBITERparameter. TheMPsim’s L2 Cache Access Arbiter, shown in Fig-
ure 8.10, manages the access to each L2 Cache bank using a queue per each shared core of
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Figure 8.10: L2 Cache Access Arbiter.

each defined L2 Cache. Each of these queues buffer the core’sL2 Cache access requests
until the user-definableL2 Arbiter removes it from the corresponding queue and triggers
the L2 Cache Bank access; as many requests allowed per simulated cycle as L2 Cache
ports defined in the Memory Subsystem declaration. Whenever an L2 Access Queue gets
full the corresponding core is temporarily stopped (no forward progress in any pipeline
stage) until some queue entry gets empty.

8.5 Power Measurement

TheMPsim’sPower Consumption Measurement6 is modelled based onWattch 1.02[15].
Before running the simulation, theMPsimcalculates the energy that each basic compo-
nent of the processor , according to the system configuration declared, would consume in
one cycle if it were fully utilized. Each basic unit is defined as one of four types (array,
CAM, functional unit, clock) and different estimation formulas are used for each type.
The Cacti 4.2 [68] is used to provide the optimal specs for each array and CAM unit
based on the required total size, block size and associativity. TheMPsimkeeps track of
the number of times each unit is accessed during the simulation and calculates the energy
consumed accordingly. The total energy consumed by each component is shown at the
end of the simulation, along with average power per cycle.

6The current version only models the power consumption within each execution core. Interconnections
and memory related consumption will be included in subsequentMPsimversions.
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8.6 Computational Cost

Although high-flexibility constitutes a very important characteristic for a general-
purpose simulator it may not be achieved regardless its computational cost. Due to fi-
nite computational resources, computer architects require simulation tools that are able
to yield results in a limited amount of time, according to reseach deadlines. It must be
kept in mind that the results obtained from such a simulation tool generally constitute a
first step in a multistep evaluation process. Due to their limited accuracy, general-purpose
simulators are normally used to both identify architectural challenges and obtain general
trends. In this sense, the flexibility offered by the selected simulation tool is of crucial
importance. The tool’s ability to allow simulating multiple architectural alternatives with
low effort helps to both accelerate and improve this first evaluation step. Once identified
the architectural challenge and evaluated a possible solution, more accurate results may
be obtained employing either a more specific (and complex) simulator or FPGAs [78].

Although focused on high-flexibility, theMPsim design strives to involve the least
computational cost possible. The idea is to provide a flexible and easy-to-use simulation
tool, that allows the user to simulate a wide range of simulation alternatives with low
effort, able to yield simulation results in a reasonable time. Although these goals seem a
priori to conflict with each other, it may be found a satisfactory balance. Following are
enumerated some of the main design decisions employed in theMPsimdevelopment:

1. Parameter Interface. Providing high-flexibility should not interfere with the sim-
ulation itself. The parameter interface should be adaptable to accommodate future
simulation improvements but it should not interfere with the inner simulation struc-
tures.

2. Initialization Phase. The configuration parameters acquisition, performed by means
of a flexible and easy-to-useParameter Interface, should be immediately followed
by an Initialization Phase. During this preparatory phase it should be anticipated
all the work possible according to the simulation configuration. Thus, while some
simulator modules could be fully deactivated, without compromosing neither mem-
ory nor processing in the subsequent simulation, others could be devoted enough
memory to get rid of time consuming dynamic memory allocation/deallocation.
According to the specific simulation configuration and the available resources, the
Initialization Phasemay considerable reduce the subsequent simulation computa-
tional cost.

3. Avoid unnecessary work. Instead of requiring function calls to determine whether a
module is activated or not during the simulation, each module may includemacros.
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Without compromising neither the code legibility nor modularity, a macro including
a conditional branch to the corresponding function call may reduce the additional
cost for deactivated modules; adding only an extra conditional branch for activated
ones. Furthermore, since modules are activated/deactivated only durign theInitial-
ization Phase, these branches are easily predictable by the branch predictor imple-
mented on the hardware executing the simulator itself.

In order to give an idea of the computational cost involved by theMPsimsimulation
tool, following are included some simulation results. For this set of experiments we use
the SPEC2000 Benchmark Suite(See Section 2.2). We collected workloads comprised
of 1, 2, 4 and 8 benchmarks, shown in Table 8.1. Following we gather some comments
regarding the simulation parameters shown in Table 8.1:

1. The 22-cycle L1 misspenalty comes from the sum of L1 latency (3) plus the L2
latency (15) plus the L1-L2 bus trasnfer (2) plus the DFill Delay (2).

2. Both Instruction Cache (I-Cache) and Data Cache (D-Cache) follow an implemen-
tation of theLeast Recently Used (LRU)replacement policy andWrite Backwrite
policy. Since currentMPsimversion does not allow multithreaded workloads, no
memory coherence protocols are present.

3. Since the Memory Wall problem seems to still be problematic in the short and
medium term, a conservative 250-cycle main memory latency is used.

4. It is used a private TLB for both instructions (Instruction TLB, I-TLB) and data
(Data TLB, D-TLB). Whenever a TLB miss arises, it must be accessed to the main
memory to resolve the new page address and bring it back to the corresponding
TLB. Consequently, it must be paid the main memory latency (of 250 cycles) plus
the TLB resolution itself (50 cycles).

The name of each workload7 is xWy, wherex stands for the number of threads involved
andy stands for the workload identifier (e.g.,4W2identifies the second workload with 4
threads). Each workload with sizex is simulated on aCMP+SMT implementation with
shared L2 Cache andx

2
two-hardware-contextSMT cores implementingICOUNT [72]

policy; both single-thread and dual-thread workloads are simulated on a single-core im-
plementation. Both core-specific and memory subsystem configuration parameters are
shown in Table 8.1.

7Except for single-thread workloads, represented by the name of the corresponding benchmark.
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Simulation Parameters

Pipeline depth 11 stages L1 I-Cache 64KB, 4-way, 8 banks
Queues Entries 64 int, 64 fp, 64 ld/st L1 D-Cache 32KB, 4-way, 8 banks
Execution Units 4 int, 3 fp, 2 ld/st L1 lat./miss 3/22 cycs.
Physical Registers 320 regs. I-TLB ,D-TLB 512 ent. Full-assoc.
ROB Size* 256 entries TLB miss 300 cycs.
Branch Predictor perceptron L2 Cache 4MB, 12-way, 4 banks

(4K local, 256 pers) L2 latency 15 cycs.
BTB 256 entries, M. Memory lat. 250 cycs.

4-way associative
RAS* 100 entries

Number of Threads
Name 2 4 8

xW1 b, j b, q, t, j d, l, b, g, i, j, c, f
xW2 n, e l, n, p, e b, g, m, n, a, h, o, p
xW3 d, a d, s, r, a m, n, r, q, i, j, e, h
xW4 g, f g, b, m, f l, b, g, m, n, r, f, s
xW5 r, p r, j, f, p q, b, c, k, e, a, o, t
xW6 b, j b, q, t, j d, l, b, g, i, j, c, f
xW7 n, e l, n, p, e b, g, m, n, a, h, o, p
xW8 d, a d, s, r, a m, n, r, q, i, j, e, h
xW9 g, f g, b, m, f l, b, g, m, n, r, f, s
xW10 r, p r, j, f, p q, b, c, k, e, a, o, t

gzip a swim n
vpr b apsi o
gcc c wupwise p
mcf d equake q
crafty e lucas r
perlbmk f mesa s
parser g fma3d t
eon h sixtrack u
gap i facerec v
vortex j applu w
bzip2 k galgel x
twolf l ammp y
art m mgrid z

Table 8.1: Workloads used for evaluating the computational cost. Resources with * follow
a private per-thread implementation.

All workloads were simulated on a Dual-Core 2 Intel Xeon processor with 2,333GHz,
1.333MHz FSB, and 4MB cache running Linux 2.6.15. Figures 8.11, 8.12, 8.13, and 8.14,
show the time required to simulate each workload until any of the comprising benchmarks
finish simulating 300 million instructions. Except for the181.mcf, with a pathological bad
memory behavior due to nested memory references, all single-thread workloads are fully
simulated in about twelve minutes time, which constitutes a reasonably low computa-
tional cost. As could be a priori expected, doubling the number of benchmarks in the
workload (i.e., dual-thread workloads –2Wy–) doubles the required simulation time, as
shown in Figure 8.12. Adding more dual-threadSMTcores, and consequently simultae-
nously simulating8 more benchmarks, increases the required simulation time as shown in
Figures 8.13 and 8.14.
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Figure 8.11: Single-Core Single-Thread Simulation Cost.
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Figure 8.12: Single-Core Dual-Thread Simulation Cost.
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Figure 8.13: Dual-Core Dual-Thread Simulation Cost.

8.7 Conclusions & Future Work

TheMPsimis a highly-flexible general-purpose simulation tool. It constitutes a cycle-
accurate multi-purpose simulation tool which allows simulating a wide range of processor
types. Bothsingle core(Superscalar, SMT) andmulti core (CMP, CMP+SMT), so as
homogeneousandheterogeneousconfigurations, are available and may be employed by
means of its flexibleParameter Interface.

TheMPsimhas been developed, and keeps on evolving, to constitute a simulation tool
to assist computer architecture research in a wide range of scenarios. The programming
phylosophy employed in the development of theMPsim favorshigh-flexibility, without
critically compromising computational cost, so as new ideas could be easily added to
the simulation tool’s functionality. The simulation results included confirm that high-
flexibility may be provided in a general-purpose simulator without hardly compromising
its computational cost.

8Since theMPsimis designed using sequential code, as done by theSMTsim, increasing the size of the
workload linearly increases the simulation cost. A parallel programmed version of theMPsimsimulator is
currently being developed.
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Figure 8.14: Quad-Core Dual-Thread Simulation Cost.

TheMPsimsimulator is already being used as simulation tool byDACandBSCmem-
bers. The different researchs in which is getting involved have made it evolve, yielding
additional functionality to the one described herein. Among others, this additional func-
tionality added to theMPsimsimulator includesmulti Instruction Set Architecture (mul-
tiISA)simulation (ALPHA & PowerPC). TheMPsim communityis growing step by step,
using thegrup-mpsim@ac.upc.edu distribution list as meeting point.

8.7.1 Further Considerations and Acknowledgements

The MPsimsimulator is the product of a combinated effort that started long before
the beginning of this PhD dissertation. The original idea of developing such a simulation
tool comes fromDaniel Ortega, who also envisioned and developed the main functions of
the library upon which it is built theMPsim’s Parameter Interface. Some of theMPsim’s
single-threadfunctionality comes fromAyose FalconandOliverio Santana(fetch engine
& branch prediction). In theSMTfield, Francisco J. Cazorla’s contributions (IFetch Poli-
cies & some of the Simulation Finalization Methodologies) toMPsimwere of a crucial
importance. ThePower Measurementfunctionality has its origins in the work done by
Domen Novakat BSC. Others researchers asJeroen Vermoulen, Miquel MoretoandJose
C. Ruizhave contributed to increase theMPsim’srobustness.
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With all these contributions, the task of developping a highly-flexible simulation tool,
that would include all this stuff in a computationally and reasonable way, has comprised
a great challenge. It firstly was developped theMPsim’s Parameter Interfaceusing the
functions developped byDaniel Ortega, and adding some more to complete the interface
library. Then, the whole simulator had to be redesigned to create a centralizedParameter
Data Basefrom which all simulator parameters would be obtained9 With such aParam-
eter Data Baseavailable, each of the simulator components (execution pipeline stages,
memory, etc) was added a initialization phase, overall orchestrating theSimulator Ini-
tialization Phase. Using theMPsim’s Parameter Interfaceas a general input for all new
simulation functionality, multicore staff was added (fully configurable multicore config-
urations). To support covering unusual processor layouts, the whole memory subsystem
was revisited so that the user could specify how many components does he want to use
in each configuration, so as the specific parameters for each of these components. A reg-
ular expression grammar was added to theMPsim’s Parameter Interfaceto allow high-
flexibility when specifying the connections between each of these components. Other
simulation functionality such as dynamic thread migration (between execution cores),
L2 cache access arbiter, shared fetch engine or pipeline depth specification were added,
among others, also using theMPsim’s Parameter Interfaceto adquire the required simu-
lation parameters.

Regarding ongoing and future work,Miquel Moretois responsible for themultiISA
MPsim implementation which seems a very promising simulation functionality to cover
the incomingHeterogeneous Processor Generationswith multiple ISAson a single chip,
like theCell Processor (PowerPCandSIMD,Altivec).

Thank you very much indeed toDaniel Ortega, Ayose Falcon, Oliverio Santana, Fran-
cisco J. Cazorla, Domen Novak, Jeroen Vermoulen, Jose C. RuizandMiquel Moretofor
all their contributions to theMPsimsimulation tool.

9So far it was done using headers.c and having to recompile the whole simulator. The amount of variable
parameters that could be provided using the simulator input arguments was quite limited.
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