

ADVERTIMENT. La consulta d’aquesta tesi queda condicionada a l’acceptació de les següents
condicions d'ús: La difusió d’aquesta tesi per mitjà del servei TDX (www.tesisenxarxa.net) ha
estat autoritzada pels titulars dels drets de propietat intel·lectual únicament per a usos privats
emmarcats en activitats d’investigació i docència. No s’autoritza la seva reproducció amb finalitats
de lucre ni la seva difusió i posada a disposició des d’un lloc aliè al servei TDX. No s’autoritza la
presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de
drets afecta tant al resum de presentació de la tesi com als seus continguts. En la utilització o cita
de parts de la tesi és obligat indicar el nom de la persona autora.

ADVERTENCIA. La consulta de esta tesis queda condicionada a la aceptación de las siguientes
condiciones de uso: La difusión de esta tesis por medio del servicio TDR (www.tesisenred.net) ha
sido autorizada por los titulares de los derechos de propiedad intelectual únicamente para usos
privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción
con finalidades de lucro ni su difusión y puesta a disposición desde un sitio ajeno al servicio TDR.
No se autoriza la presentación de su contenido en una ventana o marco ajeno a TDR (framing).
Esta reserva de derechos afecta tanto al resumen de presentación de la tesis como a sus
contenidos. En la utilización o cita de partes de la tesis es obligado indicar el nombre de la
persona autora.

WARNING. On having consulted this thesis you’re accepting the following use conditions:
Spreading this thesis by the TDX (www.tesisenxarxa.net) service has been authorized by the
titular of the intellectual property rights only for private uses placed in investigation and teaching
activities. Reproduction with lucrative aims is not authorized neither its spreading and availability
from a site foreign to the TDX service. Introducing its content in a window or frame foreign to the
TDX service is not authorized (framing). This rights affect to the presentation summary of the
thesis as well as to its contents. In the using or citation of parts of the thesis it’s obliged to indicate
the name of the author

1

Computer Architecture Department

PhD. Thesis

“A Dynamic Validation Infrastructure for
Interoperable Grid Services”

Jesús Luna García

Advisors:

Dr. Manel Medina Llinas

Dr. Oscar Manso Cortés

February, 2008

 2

Abstract
Grid Resource owners can authorize access to their computing elements by means of
well-established Authentication and Authorization processes for End-entities, through
the use of cryptographic credentials that in most of the cases have a defined lifetime.
Nevertheless, despite the fact that the adoption of Certification Authorities –CAs- has
partially solved the problem of identification and authentication between the involved
parties, and that Public Key Infrastructure –PKI- technologies are mature enough, we
cannot make the same assumptions when untrusted domains are involved. Let us take
for example two different Grid-CAs which do not have a direct interoperability
agreement (i.e. explicit cross-certifying procedure), but their researchers need to work
together. Furthermore to make this scenario even more complex, in the last years a lot
of Grid Virtual Organizations -VOs- have been proliferating, each one usually installing
its own Certificate Authority and thus giving birth to a large set of different and
possibly untrusted security domains. This represents one of the biggest interoperability
problems that could arise among all Grid users and therefore one of the major security
challenges to be faced before building a widely distributed infrastructure allowing the
cooperation of existing Grid installations.
There is a clear need of mechanisms for the computational Grid able to determine
whether a particular end-entity’s credential can be trusted at a given moment. This
process is commonly named validation and traditionally it is performed via the
placement of Certificate Revocation Lists (CRL) on a public directory accessible
through protocols like HTTP. However this solution tends to be cumbersome for both
the CA and the application. In terms of the CA it is difficult to manage because it
involves providing revocation information efficiently (in some scenarios near real time
notification is a must). Also on the client side such a solution penalizes efficiency,
because it becomes forced to periodically download and parse the whole list of revoked
certificates – which can be extremely large –in order to perform the validation process.
In consequence, more efficient mechanisms to allow for the provision of real time
certificate status information to relying parties have begun to be adopted in some
demanding environments, where highly efficient and secure solutions are required.
Among these available validation mechanisms, the Online Certificate Status Protocol
(OCSP) stands out in the Grid community due to its ability to carry near real time
certificate status information.
Despite its importance for security, OCSP not only faces considerable challenges in the
computational Grid but also, in its current form, this protocol is unable to guarantee a
secure degree of interoperability among all the involved Grid-Certification Authorities.
Given the fact that interoperability among Virtual Organizations is becoming more and
more important, the community is circumventing this problem using two main
approaches:
1. Involved CAs explicitly build a trusted domain, defining a new CA hierarchy

through cross certification techniques. In this case each CA explicitly trusts the
others and therefore is able to accept their certificates.

2. Involved CAs do not build an explicit trusted domain, but interoperate through a
“federation”: any CA belonging to the federation implicitly trusts the others thanks
to the definition of a well-established policy-based framework.

Even if the explicit trusted domain (first approach) is an attractive solution, it is not
always possible to implement in Grid environments, because of the required agreements
between the involved organizations, administrative overheads and technical problems
that arise with current software.

 3

For the computational Grid, the second of the aforementioned options (building a
Federation of CAs) has been the most suitable solution for real-world projects so far. At
this aim, the Policy Management Authorities (PMAs) represent "Federations of Grid
PKIs" whose CA members accomplish minimum levels of security. These minimum
requirements comprise the PMA’s Authentication Profile. In the case of the existing
Grid PMAs (America’s TAGPMA, Europe’s EUGridPMA, Asia-Pacific’s APGridPMA
and International’s IGTF) compliance with their respective Authentication Profile is
given through a well-defined -but mostly manual- process involving a careful analysis
of the applicant PKI’s Certification Policy -CP-, performed just once, when a new CA
wishes to be part of an existing PMA. This is known as the PMA’s accreditation
process. Even though all the Grid CA members of a PMA must fulfill with the
established authentication profile, not all of them accomplish these minimum
requirements on the same level.
With independence of the interoperability mechanism chosen (explicit trust or CA-
federation), any end-entity invoking a Grid Service’s operation from the server,
activates an authentication process that validates the end-entity’s digital certificate
according to the traditional path validation procedure.
When involved CAs interoperate thanks to explicit trust agreements, only Basic Path
Validation is required: cryptographic verifications and status’ checks over the involved
certificates. State of the art Grid software like the Globus Toolkit, provides static
mechanisms for the Basic Path Validation, i.e. the administrators manually declare the
accepted CAs, and locally update respective CRLs. This is a cumbersome process in
nowadays Virtual Organizations.
Therefore, despite the importance that an automated and complete security validation
process has got in order to build dynamic trust relationships among Grid PKI’s, to date
there is no mechanism to automatically obtain this information.
This thesis presents a novel methodology and architecture for enabling Extended Path
Validation in Grid environments for CAs that are part of the same PMA, thanks to the
use of a Validation Infrastructure based on a Grid-enabled Online Certificate Status
Protocol and, a policy evaluation methodology that compares the involved CAs’
Certificate Policies to assert that they fulfil with a particular Authentication Profile and
that they can therefore interoperate among them. The policy evaluation technique is
based on a formal methodology originally proposed by researchers of the “Università di
Napoli, Federico II” and the “Seconda Università di Napoli”. A working prototype of
the proposed Validation Infrastructure was also developed during our research, and is
widely explained along this thesis.

 4

Index

Abstract ... 2
Index .. 4
Index of Tables.. 6
Index of Figures .. 7
Acknowledgments. .. 8
1 INTRODUCTION .. 10

1.1 Grid and Web Services: a new paradigm... 11
1.2 Grid Services: eScience meets eBussiness .. 12
1.3 Authentication and Authorization for Grid Services 13

1.3.1. Public Key Infrastructure in a glimpse .. 14
1.3.2. The Grid Security Infrastructure ... 14
1.3.3. Proxy Certificates ... 16
1.3.4. Grid Authorization Framework.. 18

1.4 Motivation: bridging the interoperability gap through Validation 24
1.5 Grid Validation ... 24
1.6 Originality and contributions .. 25

1.6.1. Methodological contributions.. 25
1.6.2. Architectural contributions ... 26

1.7 Thesis organization... 26
2 STATE OF THE ART.. 27

2.1 Grid Authentication and Authorization ... 28
2.1.1. Virtual Organization Membership Service (VOMS) 28
2.1.2. Community Authorization Service (CAS).. 28
2.1.3. PRIMA... 30
2.1.4. Akenti... 32
2.1.5. PERMIS... 34
2.1.6. Shibboleth.. 36
2.1.7. Cardea ... 38

2.2 Certificate Validation ... 39
2.2.1. The Online Certificate Status Protocol (OCSP) 40
2.2.2. Server-based Certificate Validation Protocol (SCVP) 43
2.2.3. Enabling multi-PKI OCSP Validation: the CertiVeR Project 44

2.3 Trust and Grid Services ... 45
2.3.1. OGSA Security.. 47
2.3.2. Web Services Security .. 48
2.3.3. Grid interoperability through Policy Management Authorities 51

2.4 Open issues .. 52
3 GRID-OCSP: A CONTRIBUTION TO CERTIFICATE VALIDATION 54

3.1 Motivation ... 55
3.2 OCSP Relying Party requirements for Grids .. 55

3.2.1. Revocation Source Requirements ... 55
3.2.2. OCSP Latency and Cautionary Period .. 56
3.2.3. Caching OCSP Responses.. 57
3.2.4. Responder Discovery .. 57
3.2.5. Nonce ... 58
3.2.6. Error Handling and the Unknown Status Code 58
3.2.7. OCSP Request Signing ... 59

3.3 OCSP Responder Requirements ... 59

 5

3.3.1. Performance, Key Protection .. 59
3.3.2. Responder Certificate... 59
3.3.3. Revocation Information Sources ... 59
3.3.4. Transponder Mode ... 60

3.4 Certificate Authority Requirements ... 60
3.4.1. Certifying Authorized Responders ... 60
3.4.2. Certificate Revocation Lists... 60
3.4.3. Delta CRLs .. 61
3.4.4. CRL Latency ... 61

3.5 OCSP Service Architecture ... 61
3.5.1. Relying party expectations... 61
3.5.2. OCSP Responder viewpoint .. 62

3.6 Open Issues.. 64
4 STATIC POLICY EVALUATION: A CONTRIBUTION TO ACCREDIT
GRID PKIS ... 65

4.1 Motivation ... 66
4.2 Quantifying the PMA’s accreditation process ... 67
4.3 The Reference Evaluation Methodology .. 67

4.3.1. Policy Structuring... 68
4.3.2. Policy Formalization .. 70
4.3.3. Policy Evaluation .. 71
4.3.4. Global Security Level ... 73

4.5 Static Certification Policy evaluation of Grid PKIs 74
4.6 Open Issues.. 77

5 DYNAMIC POLICY EVALUATION: A CONTRIBUTION TO EXTENDED
PATH VALIDATION .. 79

5.1 Motivation ... 80
5.2 Basic path validation with Grid-OCSP .. 81
5.3 Extended Path Validation .. 83
5.4 The Interoperability System .. 84
5.5 Open issues .. 85

6 IMPLEMENTATION AND RESULTS ... 86
6.1 Implementing a Grid-OCSP Validation Infrastructure 87
6.2 OGRO: the Open GRid Ocsp middleware for the Globus Toolkit.......... 87

6.2.1. Customizing OGRO: The Grid Validation Policy............................. 88
6.2.2. Performance results.. 89
6.2.3. Enhancing Grid-OCSP performance with Prevalidation 92
6.2.4. Prevalidation: performance results .. 92
6.2.5. Second-level caching with OGRO ... 93
6.2.6. Performance comparison between prevalidation and caching 94
6.2.7. Enabling Proxy Revocation with OGRO ... 96

6.3 POIS: Policy and OCSP based Interoperability System........................... 97
6.3.1. Use case 1: POIS and the End-Entity ... 98
6.3.2. Use case 2: POIS and the Grid Services Container 99
6.3.3. Use case 3: a SOAP based POIS.. 100

6.4 Open issues .. 101
7 CONCLUSIONS AND FUTURE WORK.. 103
References ... 106
Appendix A: Global Grid Forum’s CP Model’s formalized template 110
Appendix B: Published Material... 117

 6

Index of Tables

Table 1. AAI technologies: a comparison for building Grid interoperability 53
Table 2. Partial GSLs from EUGridPMA's CAs .. 76
Table 3. Main features in the OGRO client API ... 88
Table 4. Tests performed with OGRO and CertiVeR into GT4.................................... 90
Table 5. The Grid Validation Policies being tested... 95

 7

Index of Figures

Fig. 1. Authorization Architecture based on the pull sequence.............................. 20
Fig. 2. The VOMS Authorization model.. 28
Fig. 3. The CAS Authorization model…………………………………………… 29
Fig. 4. An overview of the PRIMA system.……………………………………… 31
Fig. 5. The PRIMA Authorization model………………………………………... 32
Fig. 6. The Akenti Authorization model... 33
Fig. 7. PERMIS: privilege allocation subsystem.. 35
Fig. 8. PERMIS: privilege verification subsystem... 36
Fig. 9. Shibboleth interactions.. 38
Fig. 10. Cardea: system architecture... 39
Fig. 11. OCSP Responder in Authorized mode.. 42
Fig. 12. OCSP Responder in Transponder mode.. 42
Fig. 13. OCSP Responder in Trusted mode.. 43
Fig. 14. The CertiVeR OCSP service architecture.. 45
Fig. 15. An overall Grid-OCSP Responder architecture…………………………. 63
Fig. 16. The extended Grid-OCSP Validation Architecture................................... 74
Fig. 17. GSLs from EUGridPMA's Certification Authorities................................. 75
Fig. 18. Kiviat Diagram for CP’s Identification and Authentication provisions.... 77
Fig. 19. Invoking a Grid Service from GT4’s Container.. 81
Fig. 20. Creating a Proxy Certificate.. 82
Fig. 21. Using Grid-OCSP and prevalidation when a proxy certificate is created. 83
Fig. 22. Using Grid-OCSP and prevalidation when a Grid Service is invoked...... 83
Fig. 23. Functional blocks of the proposed Interoperability System (IS)............... 84
Fig. 24. DTD of OGRO’s Grid Validation Policy.. 88
Fig. 25. Generic Grid Validation Policy used with OGRO and CertiVeR into

GT4...

90
Fig. 26. Proxy Certificate initialization times with CertiVeR and different

OGRO Policies over HTTP..

91
Fig. 27. Proxy Certificate initialization times with CertiVeR and different

OGRO Policies over HTTPS..

91
Fig. 28. Results obtained with the Grid client when creating the Proxy

Certificate...

93
Fig. 29. Results obtained with the WSRF Container when validating the Proxy

Certificate..

93
Fig. 30. Grid-OCSP performance comparison: Prevalidation versus Caching....... 96
Fig. 31. POIS’ Architecture.. 99
Fig. 32. End-Entity performing Extended Path Validation with POIS................... 99
Fig. 33. Modified Server for Extended Path Validation with POIS....................... 100
Fig. 34. Messages exchanged via POIS' Web Service interface............................. 101

 8

Acknowledgments.

Nunca hubiese llegado hasta este punto de no ser por el esfuerzo de dos personas que
lo han dado todo por sacar adelante a sus hijos y han estado siempre conmigo, en las
buenas y en las malas: mi padres, María Elena y Antonio. ¡A ustedes, gracias!

El esfuerzo de mis padres ha dado ya frutos muy valiosos en la figura de mis hermanas
y mi hermano que me han apoyado en todo momento. Lilia, Lulú, Rosa y Toño ¡les doy
también las gracias!

Una persona llena de cualidades, que me ha brindado su amor y llenado de su energía
para seguir siempre adelante: Silke, ¡muchas gracias!

A ustedes, Miguel y Gabriel que creyeron en mi y me dieron su apoyo incondicional
para que iniciase el Doctorado. ¡Gracias!

Quienes me han brindado no solamente su experiencia profesional y académica, sino
también su amistad sincera estos años. Valentina, Manel, Oscar y Massimiliano. Moltes
mercès! Grazzie!

Y a mis grandes amigos y familiares, con quienes he pasado momentos inolvidables:
Nikolas, Elli, Alejandro, Angel, Jetzabel, Carlos Ll., Oscar C., Rubén, Javier R., David
H., Lluis M. y muchos mas que siempre estarán en mi mente. A todos ustedes, ¡mil
gracias!

 9

Humanity needs practical men, who get the most out of their work, and, without
forgetting the general good, safeguard their own interests. But humanity also needs

dreamers, for whom the disinterested development of an enterprise is so captivating that
it becomes impossible for them to devote their care to their own material profit.

Without doubt, these dreamers do not deserve wealth, because they do not desire it.

Even so, a well-organized society should assure to such workers the efficient means of
accomplishing their task, in a life freed from material care and freely consecrated to

research.

Marie Curie (1867-1934) Physicist and chemist

Basic research is what I am doing when I don't know what I am doing.

 Werner Von Braun (1912-1977) Rocket engineer

 10

CHAPTER
1 INTRODUCTION

 11

1.1 Grid and Web Services: a new paradigm
The past several years have seen a remarkable maturation and standardization of Grid
technologies around the banner of the Open Grid Services Architecture (OGSA) as
introduced in the “Physiology of the Grid” [OGSA], where was defined a clear
separation between protocols and messages -mostly based on XML- required for
interoperability among virtual organization (VO) components from the nature of the
services responding to those messages. OGSA Grid technologies are based on a service-
oriented architecture, where a service is defined as an entity that provides some
capability to its clients by exchanging messages. By thus defining these operations only
in terms of message exchange, it is possible to achieve great flexibility in how services
are implemented and where they may be located. A service-oriented architecture is one
in which all entities are services, and thus any operation visible to the architecture is the
result of message exchange.
Therefore the Grid was envisioned as an extensible set of Grid Services able to be
aggregated in various ways to meet the needs of VOs, which themselves can be defined
in part by the services that they operate and share. OGSA is commonly referenced as the
alignment of Grid and Web Services, defining a Grid Service as a transient, stateful and
dynamically instantiated Web Service that provides a set of well-defined interfaces and
that follows specific conventions.
In analogy to Web Services environments, a goal of the OGSA design is to allow
common service behaviors (i.e. monitoring their status) to be expressed in standard
ways regardless of context, so as to simplify application design and encourage code
reuse. To achieve this reuse of behaviors, operations are often grouped together to form
a service interface. Interfaces can then be combined –composed- to specify a service
with the desired behaviors. By encapsulating service operations behind a common
XML-based message-oriented service interface, service-oriented architectures
encourage service virtualization, isolating users from details of service implantation and
location.
Interaction with a given service is facilitated by using a standard interface definition
language (IDL) to describe the service’s interface(s). An IDL defines the operations
supported by a service, by specifying the messages the service consumes and produces.
An interface specification describes the messages the service expects but does not
define what the service does in response to those messages -its behavior-. This behavior
can be specified either informally through human-readable specification documents or
via a formal semantics description. In either case, an important role of an IDL is to
provide well-known names to which such semantics can be attached, in order to
facilitate discovery of services that perform desired functions.
A well-defined interface definition language and a separation of concerns between
service interface and implementation simplify the manipulation and management of
services in four important respects:
• Service discovery: is important in distributed computing because it is frequent to

operate in unfamiliar environments in which the identity and detailed characteristics
of available services are unknown. In a service-oriented architecture, is easy to
create registries containing information about the interfaces of available services,
which users can query to find suitable candidates.

• Service composition: it enables code reuse and the dynamic construction of complex
systems from simpler components. A well-defined IDL simplifies composition
because a client need only know a service’s interface to invoke it. Support for
multiple protocol bindings can be important for service composition, by allowing

 12

for optimizations designed to reduce the cost of service invocation within
specialized settings.

• Specialization: refers to the use of different implementations of a service interface
on different platforms. This strategy can facilitate seamless overlay, not only to
native platform facilities, but also to virtual ensembles of resources via the nesting
of service implementations.

• Interface extension: is an important feature of an interface definition language, as it
allows for specialized implementations to add additional, implementation-specific
functionality, while still supporting the common interface, This allows for the
development of standard service interfaces, without requiring a “least common
denominator” approach to implementation.

An important merit of this service-oriented model is that all components of the
environment can be virtualized. By providing a core set of consistent interfaces from
which all Grid services are implemented, it is possible to ease the construction of
hierarchical, higher-order services that can be treated in a uniform way across layers of
abstraction. Virtualization also enables mapping of multiple logical resource instances
onto the same physical resource, composition of services regardless of implementation,
and management of resources within a VO based on composition from lower-level
resources. It is virtualization of Grid services that underpins the ability for mapping
common service semantic behavior seamlessly onto native platform facilities.

1.2 Grid Services: eScience meets eBussiness
Nowadays there is no doubt about the importance of Grid Services, as they are bridging
the gap between eScience and eBussiness by building cheaper and faster solutions. A
clear example of this importance can be clearly seen into the workgroups members of
the Open Grid Forum (OGF) [OGF], a new organization that resulted from the merger
of the Global Grid Forum (GGF) and the Enterprise Grid Alliance (EGA).
The GGF grew out of a series of conversations, workshops, and Birds of a Feather
(BoF) sessions that addressed issues related to grid computing. The first of these BoFs
was held at SC98, the annual conference of the high-performance computing
community. That meeting led to the creation of the Grid Forum, a group of grid
developers and users in the U.S dedicated to defining and promoting grid standards and
best practices. By the end of 2000, the Grid Forum had merged with the European Grid
Forum (eGrid) and the Asia-Pacific Grid Forum to form the Global Grid Forum. The
first Global Grid Forum meeting was held in March 2001. Since then, the GGF has
produced numerous standards and specifications documents and held successful events
around the world.
On the other hand, the EGA was formed in 2004 to focus exclusively on accelerating
grid adoption in enterprise data centers. The EGA addressed obstacles that organizations
face in using enterprise grids through open, interoperable solutions and best practices.
The alliance published the EGA Reference Model and Use Cases, a Security
Requirements document and Data and Storage Provisioning document. The EGA also
significantly raised awareness worldwide of enterprise grid requirements through highly
effective marketing programs and regional operations in Europe and Asia.
The efforts of the OGF to deliver Grid infrastructures to both, research centers and the
industry, have raised multiple taskforces to fulfill in several cases sets of quite
restrictive requirements (i.e. in eHealth environments, where privacy is a must).

 13

A major concern related with Grid adoption is related with security, which plays a very
important role in all the computational environments where a need for authentication,
authorization, privacy, integrity and fault tolerance is a must.
For the research presented in this thesis, Authorization refers to the process of granting
privileges to processes and, ultimately, users. This differs from Authentication in that
authentication is the process used to identify a user. Once identified (reliably), the
privileges, rights, property, and permissible actions of the user are determined by
authorization. The next section will focus in these two of these aspects.

1.3 Authentication and Authorization for Grid Services
The problem of authentication (AuthN) and authorization (AuthZ) in computer systems
and more specifically in distributed systems has been an area of growing interest these
last years. Its beginnings can be distinguished since 1984, when Henry Levy introduced
the concept of “capabilities” in computer systems [CapSys] making a through survey of
early capability-based and object-based hardware and software systems. On his book,
Levy defines a capability as a “token, ticket, or a key that gives the possessor
permission to access an entity or object in a computer system” and as we shall see later,
nowadays this term is still valid to define authorization schemes for a wide variety of
distributed systems ranging from Web Services to the computational and data Grid.
However we can find some interesting common properties shared between current
security implementations, mainly related with the integration of the authentication and
authorization processes in one system often referred as “Authentication and
Authorization Infrastructure” or AAI as we shall call it along this document.
Many AAI implementations have developed secure mechanisms to express user’s
attributes and resource’s use-conditions, in such a way that a decision capable engine
may derive a correct, traceable, unambiguous and promptly response for an AuthN or
AuthZ query. However the development of such a wide range of AAI solutions has
caused a lot of interoperability issues and even “redundancies”, where identical
functionalities are being implemented with different technologies on the same
distributed system thus resulting in performance problems and even in the impossibility
to offer a consistent security level among them.
A new generation of security mechanisms is policy-driven, where policy means a set of
rules that are used by the system to determine whether an authenticated subject can be
permitted to gain access to a protected object. Computer systems must enforce a
mandatory security policy that can effectively implement access rules for handling
sensitive information. Base requirements for AAIs can be specified in frameworks
describing basic architectural entities along with its trust relationships, message
sequences and use case scenarios, privilege and policy management, and in some cases
even enforcement mechanisms. In this section we introduce one of these frameworks
specifically designed for Grid environments, which even though is more biased towards
authorization, is important to review because of its relevance for the proposal presented
in this document.
Despite the Grid authentication process is not directly referenced in the framework to
introduce, it is providing most of the underlying security features related with the
identity of involved participants. The following section will provide a quick review on
the concepts of a widely used authentication mechanism for today’s Grid installations:
the Public Key Infrastructure.

 14

1.3.1. Public Key Infrastructure in a glimpse
Public Key Infrastructure or PKI is the general term for a security infrastructure based
on public-key cryptography. Such an infrastructure defines message formats, protocols
and procedures that allow entitled to securely communicate claims and statements. The
most commonly used assertions are those that bind identity, attributes, and authorization
statements either to keys or to identities.
The most popular PKI is defined by the IETF’s PKIX working group [RFC3280], which
defines a security system used for identifying relying parties (users and resources)
through the use of X.509 identity certificates [X509]. In this PKI, highly trusted entities
known as Certificate Authorities (CAs) issue X.509 certificates where essentially a
unique identity name and the public key of a client (also called end-entity) are bound
through the digital signature of that CA. As a trusted third party, the CA can be used as
an introducer: through the proof of private key possession and the validation of the
CA’s issued X.509 certificates, relying parties are able to associate a trusted, unique
identity name with the communicated claims and statements of end-entities.
Although the use of PKI-related technologies has achieved a fair amount of adoption in
the Web through the use of X.509 certificates for secured Web Servers, they have
encountered some drawbacks in other scenarios. For example X.509 certificates’ life
cycle management (i.e. issue and revocation) has been a factor delaying its deployment
in applications where the potential number of users is quite large (i.e. eGoverment).
Besides, there are administrative and legal factors that need to be solved in order to
avoid incompatibilities with national legislations; this is the particular case of privacy
issues in eHealth systems based on PKI technologies.
The emerging XML-based security assertions formats and protocols are providing
equivalent technologies to those defined by X.509/PKIX, with the added advantage of
being more agnostic toward the underlying Public Key Infrastructure. The latter
property will make it easier for organizations to choose or to migrate to public-key
technologies that deploy alternative assertions formats and trust models. Having that
flexibility is important to Grid security, as identities associated with services can be
dynamically created and short-lived and may not have identity names associated with
them –a situation that does not allow to fit properly the traditional X.509/PKI model
with its centralized CA and focus on identity assertions-.
To provide an alternative that will address the dynamically created and short-lived
identities within the X.509/PKIX framework, the Grid security community is actively
involved in the specification of extensions to the X.509 certificate format to use these
same certificates for the dynamic issuance of identities and delegation of rights by users
[RFC3820]. The advantage of this approach is that those certificates can be used
transparently in existing technologies that already adopted X.509/PKIX such as the
transport layer security (TLS or SSL) [RFC2246].
In the following section we will present in more detail the underlying system called
“Grid Security Infrastructure”, an X.509-based mechanism that implements PKI
authentication through the so-called Proxy Certificates in widely deployed Grid
installations.

1.3.2. The Grid Security Infrastructure
The open source Globus Toolkit [Globus] is a fundamental enabling technology for the
Grid, letting people share computing power, databases, and other tools securely online
across corporate, institutional, and geographic boundaries without sacrificing local
autonomy. The toolkit includes software services and libraries for resource monitoring,
discovery, and management, plus security and file management. In addition to being a

 15

central part of science and engineering projects that total nearly a half-billion dollars
internationally, the Globus Toolkit is a substrate on which leading IT companies are
building significant commercial Grid products.
Grid computing research has produced security technologies based not on direct
interorganizational trust relationships but rather on the use of the Virtual Organization
concept (VO) as a bridge among the entities participating in a particular community or
function. The results of this research have been incorporated into the Globus Toolkit
that uses public key technologies to address issues of single sign-on, delegation, and
identity mapping, while supporting standardized APIs. The Grid Security Infrastructure
(GSI) is the name given to the portion of the Globus Toolkit that implements the base
security functionalities. GSI is a combination of various existing and custom developed
security technologies that have been carefully integrated to support computational and
data Grid projects.
During its first versions GSI was implemented on top of the Generic Security Services
application programming interface (GSS-API) [RFC2078]. As the name implies,
GSSAPI provided security services to callers in a generic fashion. These services could
be implemented by a range of underlying mechanisms and technologies, allowing
source-level portability of applications to different environments. GSS-API allowed
constructing GSI simply by transcribing the grid security protocols into GSS calls. Thus
it was possible to exploit various grid-level security mechanisms without altering the
GSI implementation.
The recent definition of the Open Grid Services Infrastructure specification and other
elements of the Open Grid Services Architecture [OGSA] within the Open Grid Forum,
introduced new challenges and opportunities for Grid security. In particular, integration
with Web services and hosting environment technologies introduced opportunities to
leverage emerging security standards and technologies such as the Web services
security.
Integration of GSI with OGSA enabled the use of Web services techniques to express
and publish policies, allowing applications to determine automatically what security
policies and mechanisms are required of them. Implementing security in the form of
OGSA services allows those services to be used as needed by applications to meet these
requirements. Advanced hosting environments enable security functionality to be
implemented outside of the application, simplifying development.
In particular, GSI defines a cryptographic credential format based on X.509 identity
certificates. An X.509 certificate, in conjunction with an associated private key, forms a
unique credential set that a Grid end-entity (requestor and service provider) uses to
authenticate itself to other Grid end-entities. As mentioned before, each GSI certificate
is issued by a trusted party known as a Certificate Authority (CA), usually run by a
large organization or commercial company. A CA acts as a root of trust for identity
name assertions. In order to trust the X.509 certificate presented by an entity, one must
trust the CA that issued the certificate. In most of the cases, this trust relationship is
manually established and managed from inside the Globus Toolkit installation.
X.509 identity certificates are used within GSI because the establishment of trust
between two administrative domains through this public key technology is relatively
lightweight and unambiguous. Trust in a CA can be established unilaterally, which
means that a single end-entity in an organization can decide to trust any CA without
necessarily involving the organization as a whole. This is a key feature to the
establishment of Virtual Organizations (VOs) that involve only some portions of the
real organization, where the latter as a whole may provide little or no support for the
VO and hence have little or no interest in trusting any CAs used by that VO.

 16

GSI has been used, in turn, to build numerous middleware libraries and applications,
which have been deployed in large-scale production and experimental Grids. GSI has
emerged as the dominant security solution used by Grid efforts worldwide and this
experience has proven the viability of using X.509 credentials as a basis for
authorization, furthermore has allowed the use of a special subset of these, the so-called
X.509 Proxy Certificates, as the mechanism for providing useful features like job
delegation into the computational Grid. The following section explains in more detail
these credentials.

1.3.3. Proxy Certificates
GSI introduces the X.509 Proxy Certificates (PC), an extension to X.509 identity
certificates that allows a user to assign dynamically a new X.509 identity to an end-
entity and then delegate some subset of their rights to that identity. Users create a proxy
certificate by issuing a new X.509 certificate signed with their own private key instead
of involving a CA. This mechanism allows new credentials and identities to be created
quickly without requiring the use of a traditional administrator. Thus, this approach
solves the issue of how to delegate rights to entities, both dynamic and static while
keeping a trusted certification path from the PC to the CA that originally issued the user
certificate.
A Proxy Certificate is an X.509 public key certificate with the following properties:
• It is signed by either an X.509 End Entity Certificate (EEC), or by another Proxy

Certificate (PC). This EEC or PC is referred to as the “Proxy Issuer” (PI).
• It can sign only another PC. It cannot sign an EEC.
• It has its own public and private key pair, distinct from any other EEC or PC.
• It has an identity derived from the identity of the EEC that signed the PC. When a

PC is used for authentication, it may inherit rights of the EEC that signed the PC,
subject to the restrictions that are placed on that PC by the EEC.

• Although its identity is derived from the EEC's identity, it is also unique. This
allows this identity to be used for authorization as an independent identity from the
identity of the issuing EEC.

• It contains a new X.509 extension to identify it as a PC and to place policies on the
use of the PC. This new extension, along with other X.509 fields and extensions are
used to enable proper path validation and use of the PC.

• Although a PC also contains a validity period, they are quite short lived in
comparison with the EEC. Formally speaking, a PC should live only for the duration
of the task that was delegated to execute into the Grid.

The process of creating a PC is as follows:
1. A new public and private key pair is generated.
2. That key pair is used to create a request for a Proxy Certificate that conforms to the

profile described in [RFC3820].
3. A Proxy Certificate, signed by the private key of the EEC or by another PC, is

created in response to the request. During this process, the PC request is verified to
ensure that the requested PC is valid (e.g., it is not an EEC, the PC fields are
appropriately set, etc).

When a PC is created as part of a delegation from entity A to entity B, this process is
modified by performing steps #1 and #2 within entity B, then passing the PC request
from entity B to entity A over an authenticated, integrity checked channel, then entity A

 17

performs step #3 and passes the PC back to entity B. We can imagine the procedure just
described like a special case of cross-certification for Proxy Certificates.
Path validation of a PC is very similar to its analogous for End Entity Certificates, with
a few additional checks to ensure, for example, proper PC signing constraints.
Using Proxy Certificates to perform delegation has several features that make it
attractive:
• Ease of integration:

o Because a PC requires only a minimal change to path validation, it is very
easy to incorporate support for Proxy Certificates into existing X.509 based
software. For example, SSL/TLS requires no protocol changes to support
authentication using a PC. Further, an SSL/TLS implementation requires
only minor changes to support PC path validation, and to retrieve the
authenticated subject of the signing EEC instead of the subject of the PC for
authorization purposes.

o Many existing authorization systems use the X.509 subject name as the basis
for access control. Despite its obvious disadvantages (there are no rules
controlling the use of namespaces per Certification Authority), Proxy
Certificates can be used with such authorization systems without
modification, since such a PC inherits its name and rights from the EEC that
signed it and the EEC name can be used in place of the PC name for
authorization decisions.

• Ease of use:
o Using PC for single sign-on helps make X.509 PKI authentication

easier to use, by allowing users to "login" once and then perform various
operations securely.

o For many users, properly managing their own EEC private key is a nuisance
at best, and a security risk at worst. One option easily enabled with a PC is
to manage the EEC private keys and certificates in a centrally managed
repository. When a user needs a PKI credential, the user can login to the
repository using name/password, one time password, etc. Then the
repository can delegate a PC to the user with proxy rights, but continue to
protect the EEC private key in the repository.

• Protection of private keys:
o By using the remote delegation approach outlined above, entity A can

delegate a PC to entity B, without entity B ever seeing the private key of
entity A, and without entity A ever seeing the private key of the newly
delegated PC held by entity B. In other words, private keys never need to be
shared or communicated by the entities participating in a delegation of a
PC.

o When implementing single sign-on, using a PC helps protect the private key
of the EEC, because it minimizes the exposure and use of that private key.
For example, when an EEC private key is password protected on disk, the
password and unencrypted private key need only be available during the
creation of the PC. That PC can then be used for the remainder of its valid
lifetime, without requiring access to the EEC password or private key.
Similarly, when the EEC private key lives on a smartcard, the smartcard
need only be present in the machine during the creation of the PC.

• Limiting consequences of a compromised key:
o When creating a PC, the PI can limit the validity period of the PC, the depth

of the PC path that can be created by that PC, and key usage of the PC and

 18

its descendents. Further, fine-grained policies can be carried by a PC to even
further restrict the operations that can be performed using the PC. These
restrictions permit the PI to limit damage that could be done by the bearer of
the PC, either accidentally or maliciously.

o A compromised PC private key does NOT compromise the EEC private key.
This makes a short term, or an otherwise restricted PC attractive for day-to-
day use, since a compromised PC does not require the user to go through the
usually cumbersome and time consuming process of requesting the CA to
reissue another EEC with a new private key.

Next we describe an authorization framework used by most Grid installations, which is
mostly based on the features delivered by the underlying GSI system just explained.

1.3.4. Grid Authorization Framework
The framework described in [AuthZFwk] is based on a more generic one previously
introduced in [RFC2094], but in this case aimed to the Grid community although its
concepts and ideas can be extended to other distributed systems and service oriented
architectures (i.e. Web Services). The authors introduce the basic concepts and models
of authorization, specifying a conceptual framework for Grids and classifying state-of-
the-art and proposed authorization mechanisms with regard to it. Also this document
considers the various authorization concepts and their relationships, describing a
framework that is expected to be general and abstract enough to allow for the
classification of any type of authorization system. Abstract entities and functions are
defined and fundamental communication sequences for authorization requests and
decisions are shown. As mentioned in the previous section, despite this framework does
not consider authentication issues explicitly, they are highlighted as an essential element
for the authorization process.
Authorization decisions are made based on information provided by authorities that
must have a direct or a delegated relationship with either the authorization subject or
with the resource that is the target of the request that triggered the authorization process,
or even with both of them. These relationships may be implemented using a trust
mechanism based on some cryptographic method or may be implemented completely
off-line.
There are then three basic high-level entities involved in the Grid authorization process
depicted in this framework:
• Subject: An entity that can request, receive, own, transfer, present or delegate an

electronic authorization as to exercise a certain right.
• Resource: A component of the system that provides or hosts services and may

enforce access to these based on a set of rules and policies defined by entities that
are authoritative for the particular resource. Access to resources may be enforced by
the resource owner or by some entity that is located between this resource and the
requestor, thus protecting against unauthorized use.

• Authority: An administrative entity that is capable of and authoritative for issuing,
validating and revoking by electronic means any proof such that the named subject
of the issued electronic means is authorized to exercise a certain right or assert a
certain attribute. Right(s) may be implicitly or explicitly present in the electronic
proof. A set of policies may determine how authorizations are issued, verified, etc.
based on the contractual relationships the Authority has established. Currently three
types of authorities are in common use: Attribute Authorities, Policy Authorities and
Identity Authorities.

 19

The component performing the evaluation of the executable policy by computing an
authorization decision on behalf of the authorities is sometimes referred to as an
Authorization Server. Typically this entity may make or do a combination of: an
authorization decision, an authorization lookup, and the delegation or proxy of an
authorization decision to another AuthZ Server.

1.3.4.1.Authorization sequences
Entities introduced in this framework can be mapped into its correspondent principal
according to [RFC2094] in the following manner:
• User → Subject.
• Service Provider → Resource.
• AuthZ Server → itself.

Considering this mapping the use cases for authorization sequences are described next.
The Push Sequence where the Subject first requests an authorization from an Authority.
The Authority may or may not honor the Subject´s request. It then may issue and return
some message or secured message that acts as a proof of right (called “authorization
assertion”). Typically such an assertion has a validity time window associated with it.
The assertion may subsequently be used by the Subject to request a specific service by
contacting the Resource. The Resource will accept or reject the authorization assertion
and will report this back to the requesting Subject.
Next is the Pull Sequence, consisting in the Subject contacting the Resource directly
with a request. In order to admit or deny the service request, the Resource must contact
its Authorization Authority, which will perform an authorization decision and return a
message that obtains the result of this operation. The Resource will subsequently grant
or deny the service to the Subject by returning a result message.
In the Agent Sequence, the Subject will contact a higher level agent with a request to
obtain a service authorization. This agent will make an authorization decision based on
the rules established by the authorization authority and if successful it will contact the
Resource to provision a certain state as to enable the service. After receiving a
successful feedback from the service, the agent will report success to the requesting
Subject. This model is relevant to Grid users when requesting a certain QoS from the
Grid system (i.e. resource reservation through a scheduler), as only then they may
interact directly with the resource to access the service.
Finally is the Hybrid Sequence, which combines the basic sequences to cover particular
authorization situations.

1.3.4.2.Domain considerations
An administrative domain defines the scope of authority. In Grid environments we
frequently see scenarios where there are separate domains for identity, subject
attributes, resource policy, and community policy authorities. For these Grid
installations, a community or virtual organization (VO) domain is present. A VO
domain can provide the Authorities that perform privilege management for all of its
members. Grid Service Providers may also provide resources to users in multiple VO or
home domains enhancing in this way the complexity of the authorization infrastructure
required.
Almost in every case contractual relationships (often involving agreements) between the
domains of the different Subjects, Authorities and Resources are frequently necessary to
enable the acceptance and issuing of authorizations (trust relationships).

 20

1.3.4.3.Authorization policies and Attributes
Authorization information such as policies, attributes, identities and environmental
parameters are utilized and combined when making authorization decisions. Many
policies use the concepts of “conditions” and “actions” which have to be evaluated with
respect to the actual request, the requesting subject’s identity and the attributes this
subject holds.
Authorization attributes are statements about properties bound to an entity that
implicitly or explicitly define its allowed actions on some resource. Attributes can be
grouped into descriptive and privilege attributes. Descriptive attributes associate a
feature with an entity, while privilege attributes define directly applicable access rights
of an entity with respect to a resource.

1.3.4.4.Authorization Architecture
The framework explained in this section considers an authorization architecture
consisting of a set of entities and functional components that allow authorization
decision to be made and enforced based on attributes, parameters and policies that
define authorization conditions. Figure 1 shows a Grid authorization architecture based
on the pull model, even though similar structures can be generated for the push, agent
and hybrid scenarios. This architecture will be used to explain some important details of
the present framework, some of which are referenced along this thesis.

This framework uses the following two access control functions:
• Access Control Decision Function (ADF): Makes authorization decisions about a

subject’s access to a service. It is equivalent to the Policy Decision Point (PDP)
defined in [RFC2904]. It is normally part of an Authorization Server and is
independent of the Resource or Application, but it may be co-located with the
Access Control Enforcement Function.

• Access Control Enforcement Function (AEF): Mediates access to a resource or
service. It is equivalent to the Policy Enforcement Point (PEP) defined in
[RFC2904]. It is often either integrated into or located in front of the Resource it
protects.

Obviously the ADF, AEF, Subject and Resources may be embedded inside one or more
administrative domains in a variety of combinations. In any case, there are three
categories of information that may need to be passed between the subject, resource and
various attribute authorities:

Fig. 1. Authorization Architecture based on the pull sequence.

 21

• Attributes: The subject may get the attributes from the attribute authority, the
authority could pass the attributes directly to the relevant ADF, or it could put them
in an attribute repository. When the ADF needs an attribute to make and
authorization decision, it may get it from the subject either as part of the original
request, during a negotiation phase or even may pull it from either a local repository
or a repository associated with the attribute authority, the subject or virtual
organization. Security considerations about attributes and its management (i.e.
security controls) should be taken into account.

• Policy flow: Policies are typically stored in a repository or provisioned directly to
the decision functions by the policy authorities. The transferring of policies has
similar requirements to the transferring of attributes as it is imperative to securely
establish the authority of the issuer and to protect the integrity of a policy.

• Authorization queries and responses: Authorization requests and responses are
similar to attributes in that it is necessary to provide a secure binding. An
authorization request must be securely bound to a subject and the subject’s service
request; on the other hand, the response must be securely bound to a request and
when required also to its originator.

Evaluating a policy is the heart of the authorization decision process. The components
responsible for expressing, storing, retrieving and evaluating policies can be thought of
as a policy subsystem.
Policy expression is usually done by a policy language which contains the vocabularies
to express various policy artifacts. If the policy language is extensible, then domain
specific vocabularies and characteristics can be incorporated in the future without
requiring fundamental changes. Access policy for resources is written by policy
authorities that generally get their authority from the owner of the resource. The policy
processing engines are likely to be proprietary to the various systems.
Some authorization decision may be indeterminate because there are conditions in the
policy that the ADF cannot evaluate, involving the current state of the resource. In this
case the conditions may be passed back to the AEF to evaluate, thus requiring from it to
understand the policy language that is used to express these conditions.
Policy repository is also important to consider because once written the policies, they
must be stored for use by an ADF. For security and efficiency reasons in most of the
cases it is collocated with the ADF.
Finally, to exchange policies a substrate consisting of messages and protocols is
required. Similar security considerations as in the case of attributes flow are required for
policies transport.

1.3.4.5. Management Issues
In this framework trust management defines the authorities shown in figure 1 and
specifies what they should be trusted to do. Policy and resource authorities both issue
policies about resources, but the policy authority operates at a higher level and may
issue access control policy for a whole site or VO. Attributes authorities assign
attributes to subjects and may belong to the subject’s domain or to a VO. Environmental
authorities may define features about the resource environment (i.e. disk usage), or
about the distributed environment (i.e. security of the connection).
Once a VO or resource domain knows how to represent various authorities, it needs to
define which ones are to be trusted and for what purposes. The entity that defines these
trust relationships is determined by the risk management strategy being used. The AEFs
need to know exactly which ADFs to trust for authorization decisions.

 22

A final item that comes under the category of trust management is the policy about who
can create proxies which have all or some of the rights of the delegating entity, and who
can delegate rights to other entities.
Privilege management covers the definition, assignment, storage, presentation,
delegation and revocation of both privilege and descriptive attributes. For the
management of privilege and descriptive attributes there are three distinct phases:
granting the privilege, using the privilege, and removing the privilege. For privilege
attributes there are two primary actors: the authority granting/removing the privilege,
and the subject requesting-using the privilege. For descriptive attributes a third actor,
called the policy authority, is required to associate authorization semantics in the access
control policies with the descriptive attributes.
An attribute is granted to some entity by an authority for its relevant home domain.
Sources of Authority –SOAs-, their delegates and the domains that will accept the
attributes must have a common understanding of the authority’s scope. This should be
expressed in a privilege management policy, which among other features, defines which
authority may grant what attributes, with what values and to what entities. An attribute
authority may run on behalf of a number of authorities –delegation-, such as a real or a
virtual organization. In most of the cases a method for querying the privilege
management policy in order to determine the appropriate SOA for a given attribute is
required.
Privilege management describes the process of defining who is allowed to which access
rights. Privileges can be assigned by issuing a policy component describing direct
access rights of a subject. The policy rule defining such a privilege typically consists of
the three-tuple (subject, resource, action). If scalability is desirable then the presence of
a descriptive subject attribute may be required (i.e. roles or group membership); in this
case the policy rule consists of a three-tuple (attribute, resource, action) and the attribute
is a two-tuple (subject, attribute). Hierarchical role assignment extend this concept even
more by allowing for access right inheritance from less privileged to more privileged
roles. As part of privilege management also shall be considered the revocation of such
roles.
Attribute assertions are proofs of the right to assert a descriptive attribute or privilege
attribute. The list of attributes one has is generated from the list of attribute assertions
one possesses and this may allow the subject to act as a SOA for those attributes within
its own domain (even allowing delegation as described by the correspondent attribute
authority). These assertions must be stored pending their use in the so-called “attribute
repository”, which may need special security considerations as mentioned in previous
sections. As attributes must be understood by relying parties in often multiple
administrative domains (following the Grid’s philosophy), a common schema for its
syntax is required. In any case the attribute authority may choose to issue attributes in a
variety of ways, but it is recommended to keep them separated from identity tokens (i.e.
identity certificates). Finally, these attributes must be asserted to the ADF by some
protocol (special considerations may arise in the case of distributed attribute
management).
Policy management for static resources is commonly solved by the use of a repository.
However creating a policy for dynamically created objects is even more challenging and
in many cases is preferable to control access to a whole class of objects by a static
policy and then just create the new ones within these classes.
Some of the issues that are addressed by policy management are: who can create,
modify and delete policies for each resource; also important are: how quickly policies
can be revoked and where does the ADF finds them -considering trust relations-. In

 23

many cases an additional challenge is raised with distributed policy management (i.e.
how to find all the relevant pieces to take a decision, displaying the current policy to the
resource owner or to anyone trying to add to the policy). State of the art technologies
reviewed in section 2.1 will show several approaches to solve this problem.

1.3.4.6. Authorization context
This consists of those properties of the Authorization Request which are neither
provided via Authorization Attributes nor included in Authorization Policies, but which
are relevant to the decisions made by the Authorization Server. The Authorization
Context may include environment information (i.e. disk usage) and authentication
information (i.e. key lengths, etc.).
The authorization context and its relationship with authentication and authorization
parameters will be important for the establishment of the proposal presented later in this
thesis.

1.3.4.7.Authorization server
The Authorization Server is an entity that evaluates authorization requests and issues
responses, taking into account relevant attributes, policies and environmental
parameters.
Commonly the authorization algorithm used takes all or some of the following inputs:
• Nature of request.
• Attributes of requestor.
• Attributes of resources.
• Authorization context.
• Environmental factors.
• Policy statements.

Authorization responses are typically the output from these algorithms and may be
specified in a particular assertion language.

1.3.4.8.Enforcement mechanisms
This work is done by limiting the delegated operations performed on resources -on
behalf of a subject- to those permitted by an authoritative entity. A common practice on
these mechanisms focuses only on user’s access to an application. However this is not
completely certain in Grid environments, where applications and services can be
provided by software components that are staged by the user to the computer resource
and are not necessarily trusted by the resource owners. The resources act as hosting
environments for these services, which often are transient and migrating between
different resources to meet a certain performance criteria. In other words, it is important
to control not only the access of a subject to a service but also the access of a service to
its current service-hosting environment.
Enforcement functions can either receive the set of authorized operations as part of the
service request, or also by querying an ADF (it depends on the message sequence being
used). In any case, enforcement mechanisms can be characterized in two different
groups:
• Application dependent enforcement mechanisms: these are often integrated into the

application or service and perform enforcement functions before attempting to
access underlying operating system resources.

• Application independent enforcement mechanisms: are separated from the service or
application and take the approach of running the service in a very constrained
execution environment (maybe being enforced by the kernel or by intercepting the
respective call before being passed to the operating system).

 24

1.4 Motivation: bridging the interoperability gap through Validation
Current Grid Authentication and Authorization (AA) frameworks are capable of
delivering a certain level of assurance to resource owners in relation to a Grid user, but
lack of important features required to build Grid interoperability among untrusted
domains. When dealing with users belonging to well-known domains, these AA
mechanisms are enough to provide a minimum trust level related to the identity
assertions contained in the authentication credentials; for example in the case of
cryptographic X.509 digital certificates, the resource owner will implicitly trust in the
underlying registration process performed by the respective Certificate Authority. If a
minimum level of confidence or trust can not be given to these identity credentials, then
subsequent authorization processes can not proceed.
Nowadays however, we have seen in this chapter that Grid technology is beginning to
expand out of the traditional academic field where it was created and it is starting to
reach new frontiers: industrial, financial, eHealth, etc. In these scenarios there are so
many new variables being introduced that explicit trust assumptions are no longer valid:
researchers belonging to different Institutes -under possibly unknown Certification
Authorities’ domains- that wish to interoperate, users from private companies with
certificates issues by complex PKI hierarchies, Virtual Organizations dynamically being
created and removed, etc. Under these new scenarios Grid authentication and
authorization mechanisms have been unable to convey enough information to build trust
relationships among the different administrative domains that usually appear into the
Grid.
A first approach took by this research to bridge this interoperability gap, was the
Unified AAI framework for Grid Services, which considered the following elements:
• A Conceptual Framework from researching Grid Services’ features related to

Authentication and Authorization that may be unified (opposed to the traditional
vision of treat them as independent features), in such a way that important security
and performance issues may be obtained.

• An Accreditation Policy that implemented such Unified Framework through a set of
rules about Authentication and Authorization.

• A Trust Engine system that evaluated the distributed accreditation policy.
• An AAI architecture for the Globus Toolkit built upon the Unified Framework,

Accreditation Policy and the Trust Engine concepts mentioned above.

However after a few months, it was clear from our initial work within other research
communities like the Open Grid Forum that more important than unifying the
underlying authentication and authorization processes, it was necessary to bridge them
together so only trusted and interoperable credentials could be conveyed from the
authentication to the authorization subsystem. In this way our research focused on the
properties required to build the mentioned “bridge”, which resulted finally into the
concept of Grid Validation just as explained next.

1.5 Grid Validation
One question common to current Grid scenarios is: How can Grid relying-parties trust
each other in order to interoperate? More specifically, is it possible to quantitatively
measure the trust level associated with a Grid identity at a certain moment? Both of
these questions are related with a concept that, despite it is not new to other distributed
systems, it is just being introduced into Grid environments: validation of end-entities.

 25

In the context of the present thesis, Validation is defined as the process that, staying
between the Authentication and Authorization processes, asserts that a cryptographic
credential is related with a specific trust level. For example, validating a Proxy
Certificate -the most widely used X.509 credential in nowadays Grid installations-, is
an iterative process that involves performing a cryptographic verification on its digital
signature, checking its validity period and asserting that it has not been revoked
previously. This process is known as Basic Path Validation [RFC3820].
Despite the fact that Basic Path Validation represents a step forward towards improving
Authentication and Authorization processes, it is still quite limited when a Grid relying
party requires to associate an end-entity credential or identity assertion with a particular
trust level, for example in order to allow an specific subset of actions on a Grid
resource.
In the present thesis, the process that associates a Grid Identity (i.e. an X.509 end-entity
certificate) with a specific trust level is called Extended Path Validation.
Any Grid security system implementing the Extended Path Validation process must at
the very least supply to the relying parties:
• A near-real time mechanism to provide up-to-date status information about an end-

entity certificate, and
• A formal methodology to evaluate the trust level associated with this end-entity

certificate.

This thesis proposes the use of a Grid Validation Infrastructure that implements the
Extended Path Validation procedure for Proxy Certificates to provide interoperability
among unrelated Grid-PKIs. The next section briefly describes the main components of
this validation system.

1.6 Originality and contributions
The contributions presented in this thesis can be classified in two classes. In first place a
methodological approach for the Extended Path Validation in Grid environments, and in
second place an approach that proposes an architecture for implementing a Grid
Validation Infrastructure. Sections 1.6.1 and 1.6.2 briefly introduce the particular
contributions offered by both approaches.

1.6.1. Methodological contributions
This thesis presents the following contributions to the Grid validation arena:
• Grid-OCSP: Despite the fact that the Online Certificate Status Protocol (OCSP) was

released in 1999, its use in Grid environments has just begun to be studied a couple
of year ago. This may explain why most of our research represented an original
achievement, especially to the Open Grid Forum where we have been actively
working in the development of an open recommendation for the Grid Community.
An article about our Grid-OCSP proposal achieved a best paper award in an
international Grid conference, and also was published in an international journal.

• Static Policy evaluation: The second goal of our research on Grid validation was
achieved in a joint research with Neapolitan researchers by extending the Reference
Evaluation Methodology (REM) to be used in Grid environments. When the first
phase of this research finished, the Grid-PKI static evaluation technique proved
useful to aid Grid Trusted Third Parties (usually called Policy Management
Authorities or PMAs) in their accreditation process: evaluating if a Grid Certificate
Authority fulfills the minimum security requirements of the PMA, so it may become
a member and thus could interoperate with Grid users from other accredited CAs. At

 26

the time of writing this thesis, the static policy evaluation technique was about to be
presented to the Grid community in an international conference so we expect it to be
adopted into the PMA’s “toolbox” in the near future.

• Dynamic Policy Evaluation: This milestone represents the fusion of both the Grid-
OCSP and the static policy evaluation, to implement the Extended Path Validation
algorithm for Proxy Certificates. The approach is simple (use OCSP to convey
evaluation data), but quite useful to help entities from different CAs to dynamically
decide if they can interoperate into a new Grid Virtual Organization. Comments
from the Grid community have been positive about the usefulness of our approach,
and also a paper was published in an international conference about this topic.

1.6.2. Architectural contributions

The methodological research presented in this thesis has been complemented with an
architecture proposed to implement a Grid Validation System with the following
elements:
• The Open GRid Ocsp (OGRO) API, an open source prototype that along with the

project CertiVeR formed –at our best knowledge- the first Grid-OCSP Validation
Infrastructure.

• A module implementing a formal technique extended from the “Reference
Evaluation Methodology (REM)” (originally proposed by researchers of the
“Università di Napoli, Federico II” and the “Seconda Università di Napoli”), which
can be applied to Grid-PKIs to i) determine if an end-entity certificate is compliant
with the minimum security requirements defined by the relying party, and to ii)
define a security metric that quantitatively computes a Global Security Level (GSL)
representing how much better the end-entity’s Certification Policy security
provisions are when compared against the relying party’s requirements.

• The Policy and OCSP based Interoperability System (POIS), an infrastructure able
not only to convey the status and associated GSL of any end-entity’s Proxy
Certificate in almost real-time (via OCSP or SOAP), but also designed to solve the
special challenges posed by the computing and the data Grid.

1.7 Thesis organization

The rest of thesis work has been structured in chapters ordered according to the
milestones of our research. Each one of these chapters denotes in some degree an
original contribution made to the Grid-security community, and in most of the cases this
is illustrated by the correspondent publications or developed prototype.
In Chapter 2 is presented the State of the Art related with Validation and Grid Services;
this will clearly show the open issues found with current technologies.
Chapter 3 presents our Grid-OCSP proposal, a methodological contribution towards
using OCSP as a validation mechanism for the Grid.
In Chapter 4 is explained our approach for extending a security evaluation technique to
accredit Grid PKIs via a trusted party (Policy Management Authority).
Chapter 5 describes the methodology proposed for implementing an Extended Path
Validation mechanism, which is able to dynamically provide interoperability to the
Grid.
The details behind the implementation, deployment and performance of the proposed
Interoperability System are presented in Chapter 6.
Finally conclusions and future work are presented in Chapter 7, while published articles
are referenced in Appendix B.

 27

CHAPTER
2 STATE OF THE ART

 28

2.1 Grid Authentication and Authorization

During the last years, security problems related with authentication and authorization on
distributed systems have been widely studied and also an equal number of AAI systems
have been deployed in production environments. New problems related with
interoperability and scalability issues arose when AAIs entered into the Grid arena,
where also existed a need for reusing legacy technologies to reduce the total cost of
ownership.
This section reviews a set of widely deployed Authentication and Authorization
Infrastructures, with a particular emphasis in Computational and Data Grid
environments.

2.1.1. Virtual Organization Membership Service (VOMS)
VOMS [VOMS] is an Attribute Authority that exposes attributes and encodes the
position of the holder inside the Virtual Organization (VO). VOMS uses X.509 identity
and proxy certificates and it is being extended to support SAML protocol and assertions
as defined in [SAML].
Nowadays VOMS is a widely-used attribute authority service and also the de-facto AAI
in most European production Grids.
VOMS works according to the push authorization model: the user, before contacting the
Grid service, will contact a VOMS server to obtain his corresponding Attribute
Certificates (ACs) [RFC3281] and then convey them to the target Grid service using
conventional X.509 proxy certificates compliant with [RFC3820]. These operations are
depicted in figure 2.
A VOMS holder may be a member of several groups, and may hold a special role inside
some of his groups. Groups are organized in a tree structure that comprises groups and
subgroups, while roles are not hierarchical and therefore are associated to the group
membership. Worth to notice is that the internal structure of a VO, as defined in VOMS,
is not a full hierarchical Role Based Access Control (RBAC).

2.1.2. Community Authorization Service (CAS)
The CAS authorization service [CAS] is built on top of the underlying GSI subsystem.
A user requesting access to a resource contacts the CAS server which, after a GSI-based
authentication, issues a restricted proxy certificate with an embedded access-control
policy. The user utilizes this credential to connect to the requested resource, and then
the resource itself applies its local policy to further restrict this access. CAS does not

Fig. 2. The VOMS Authorization model.

 29

record groups or roles, but only permissions. A schematic view over CAS’ policy
management and enforcement is shown in figure 3.

CAS allows a VO to maintain its own set of policies explicitly and communicate those
policies to sites. The sites then combine their local policies (about what the VO is
allowed to do) with the VO’s policies (about what the individual user is allowed to do
as a VO member) and enforce this combined policy.
The VO, through administration of the CAS server, maintains the VO’s portion of this
combined policy. This portion of the policy includes the following:
• The VO’s access control policies regarding its resources: which rights are granted to

which users (e.g., which users can read which files);
• The CAS server’s own access control policies, such as who can delegate rights or

maintain groups with the VO. These policies can be expressed at a fine grained level
(e.g., a user may be allowed to grant rights on only certain resources, or add users to
only certain groups);

• The list of VO members.

The other part of this combined policy, the resource provider’s policy regarding the VO,
is maintained by the resource provider himself by using the same native mechanisms
implemented for non-VO users. For example, a site may create a local identity
representing a VO and add local configuration mapping users presenting credentials
from that VO’s CAS server to that identity. The site would then use local mechanisms
to set policy on the VO as whole, for example, change file ownerships to allow the VO
identity read and write access to a particular subset of the file system, or set file system
quotas limiting the amount of space that the VO can use. A resource provider may use
this mechanism to maintain policies for several VOs, each running its own CAS server.
Resource providers participating in a VO with CAS will deploy CAS-enabled services
(i.e. services modified to enforce the policy in the CAS credentials) onto resources they
assign to the VO. A user wishing to access those resources first contacts the VO’s CAS
server and requests a CAS credential. The CAS server replies with a CAS credential
that contains a policy statement of that user’s rights, cryptographically signed by the
CAS server.
When making a request to the resource, the user presents the CAS credential. Upon
receiving the CAS credential, a CAS-enabled service takes several steps to enforce both
VO and local policy:

Fig. 3. The CAS Authorization model.

 30

• Verify the validity of the CAS credentials (e.g., signature, time period).
• Enforce the site’s policies regarding the VO, using essentially the same method as

an unmodified server. However, the identity used when enforcing the site’s policies
is the identity of the signer of the policy assertion (i.e., the VO’s CAS server), not
the identity of the individual user authenticating.

• Enforce the VO’s policies regarding the user, as expressed in the signed policy
statement in the CAS credential.

• Optionally, enforce any additional site policies in regard to the user (for example, a
site may keep a blacklist of end users who are not allowed to perform any action,
regardless of any VO policy).

2.1.3. PRIMA

PRIMA [PRIMA], is a system for PRIvilege Management and Authorization that
provides enhanced grid security services. The requirements for these services are
derived from usage scenarios and supported by a survey of grid users performed by the
authors. These basic requirements for added flexibility, increased expressiveness, and
more precise enforcement are met by a combination of three mechanisms:
Use of secure, fine-grained privileges representing externalized access rights for grid
resources that can be freely created, shared, and employed by grid users;
A dynamic policy generated for each request combining the request’s user-provided
privileges with the resource’s access control policy; and Dynamic execution
environments specially provisioned for each request that are enforced by the resource’s
native operating system and which support legacy applications.
Figure 4 provides a high-level overview of the PRIMA system using numbered arrows
to represent a general sequence of actions. In step 1, resource administrators configure
grid resources with access policies that regulate usage of the resource. These policies
can be created and managed at the grid layer using platform independent languages such
as XACML [XACML]. Access rights of resource objects are externalized and
represented to both administrators and users on the grid layer as PRIMA privileges (step
2). For example, a privilege for a file access right is abstracted from the way file access
rights are stored in the file meta information by the native operating system. The
PRIMA representation uses XACML constructs to encode the externalized form of the
privilege. A privilege is self-contained in that its meaning is fully determined by the
information contained in the privilege. Step 3 shows that privileges can be traded
among and between grid users, administrators, and other grid entities (such as grid
services, proxies, agents, etc.). Grid users holding privileges can selectively use (step 4)
and apply these privileges to grid resource requests (step 5).
Because the holder of privileges can selectively provide individual privileges to grid
resources when requesting access, least privilege access to resources is enabled and the
user is ensured of fine-grained control over resource usage of requested services.
Privileges form a key element of PRIMA. Authorization decisions are made based on
the resource’s access policy and the privileges provided with the request. The
combination of the user’s privileges with the resource’s security policy prior to the
assessment of the user’s request is termed a “dynamic policy”. Finally, the request is
executed in an environment configured with the minimal set of fine-grained access
rights required for the specific access. Enforcement via the execution environment
provides for the secure execution of non-trusted legacy applications without the need to
duplicate security code already present in the operating systems.

 31

When a subject issues a service request he also provides a set of privileges. The request
and the accompanying privileges are presented to a Policy Enforcement Point (PEP).
For each provided privilege, the enforcement point individually checks the:
• Applicability (does the privilege apply to the local resource and the entity requesting

the service),
• Validity (is the privilege within its lifetime and is the digital signature intact), and
• Authority (was the privilege issued by an authoritative party).

Authority to issue privileges is defined in a privilege management policy available to
the Policy Decision Point (PDP). The PEP queries the PDP for authoritativeness of each
privilege issuer before further considering a provided privilege. All permissible
privileges constitute the dynamic policy for the request. The enforcement point can now
contact the decision point with an authorization request which includes the dynamic
policy. The PDP evaluates the request against the combination of all applicable policies
(including the dynamic policy) and provides an authorization response back to the
enforcement point.
Conceptually two decisions are made by the PDP: (1) a relatively coarse decision
corresponding to the service request that specifies if the Policy Enforcement Point
(PEP) should allow access to the requested service in general; and (2) a set of
instructions, termed obligations, from the PDP to the PEP on how the requested service
should be confined and monitored during its execution. If the PEP cannot fulfill the
obligations then it should not allow the access to proceed. The enforcement point, upon
receiving a positive response from the decision point, instantiates a custom execution
environment configured with the access rights as specified in the obligations, and starts
and monitors the execution of the requested service in this environment. Finally service
responses are passed to the enforcement point and relayed to the subject. The overall
authorization model is shown in figure 5.

Fig. 4. An overview of the PRIMA system.

 32

2.1.4. Akenti
Akenti [Akenti] is an authorization infrastructure from the Lawrence Berkeley National
Laboratory in the USA, which can be considered an AAI as most of its security is build
around the previous authentication process. It represents the authorization policy for a
resource as a set of (possibly) distributed certificates digitally signed by unrelated
stakeholders from different domains. The policy certificates are independently created
by authorized stakeholders. When an authorization decision needs to be made, the
Akenti policy engine gathers up all the relevant certificates for the user and then the
resource verifies them, determining the user’s rights with respect to it.
The Akenti model consists of resources that are being accessed via a resource gateway
(PEP) by users. These users connect to the resource gateway using the SSL handshake
protocol to present authenticated X.509 certificates. The stakeholders for the resource
express access constraints on the resources as a set of signed certificates, a few of which
are self-signed and might be stored locally or remotely, but always in a secure way.
These certificates express the attributes a user must have in order to get specific rights
to a resource (called “Use-condition certificates”), who is trusted to create use-condition
statements and who can attest to a user’s attributes (called “Policy Certificates”). At the
time of the resource access, the resource gatekeeper (PEP) asks a trusted Akenti server
(PDP), what access the user has to the resource. The Akenti server finds all the relevant
certificates, verifies that each one is signed by an acceptable issuer, evaluates them, and
returns the allowed access. This authorization model can be seen in figure 6.
Akenti policies [AkPol] and [AkCom] are distributed and hierarchical. Each policy
compromises two components: Use-condition certificates and Policy Certificates. The
former comprise a root policy certificate, and optionally subordinate policy certificates
that inherit from the root policy. Akenti sees the target as a tree of resources (like a
filesystem with subdirectories). Each of the branches (subdirectories) can have a policy
of its own, but in addition to that the policy of the superior branch (directory) is
inherited. A stakeholder is a special kind of authority that is trusted to issue Use-
Condition certificates and digitally sign Policy Certificates. Each stakeholder can
impose his own access control requirements independently of other stakeholders.
Use-Condition certificates contain the name of the target resource, a condition (which
can be a constraint), a critical flag, the authorities of the certificates with the attributes
to be matched against these conditions, plus a list of rights/privileges that are granted.

Fig. 5. The PRIMA Authorization model.

 33

Conditions may include identity attributes that the users must have, role or group
membership and environmental parameters. Rights are comma separated lists of actions
on targets. Action names have to be unique for the whole domain of resources,
irrespective of the target type. The authority trusted to issue each attribute value must be
specified exactly, but each Use-Condition can include different authorities for each
attribute. In Akenti conditions are placed on which attributes certificates can be trusted
and on which attributes have which privileges on a certain moment of time (in the Use-
Condition certificates). The attributes issued to users in attribute certificates are
independent of each other, and cannot form a role hierarchy. Akenti supports the
distributed management of attribute certificates and an external Attribute Authority may
assign attributes to users if the Use-Condition certificate lists it under the relevant
attribute value.
Akenti’s Policy Certificates consists of:
• Name of the resource to which this policy applies.
• List of information about trusted CAs including:

o Distinguished name.
o Public key certificate (can be self signed).
o List of places to search for identity certificates issues by this CA (optional).
o List of locations where CA stores its CRLs (optional).

• List of Use-Condition issuers (defines the resource stakeholders).
• List of URLs to search for Use-Condition certificates.
• Optionally URLs to search for user attribute certificates.
• Maximum time in seconds that any certificates that are used in satisfying conditions

for this resource may be cached.

All Akenti credentials are built in a proprietary format using XML syntax.
In Akenti, Decision making is done in a single step, but the system is able to make
different types of decisions. The client may ask “What can a user do?”, as well as the
traditional “Can this user perform this action on this target?”.
Akenti always embeds its authorization responses in a Capability Certificate for export
back to the client. The Capability Certificate comprises the public key of the user, his
DN and his CA’s DN, the name of the resource, and the privileges that the user enjoys
with an optional list of conditions attached to each of them. The Capability Certificate is
then signed by Akenti and given to the client. The user can subsequently present this to
a gatekeeper for improved performance. The gatekeeper, which holds the Akenti public
key, merely needs to check the signature on the capability, then ask the user to sign a

Fig. 6. The Akenti Authorization model.

 34

challenge, before granting (or denying) the user access to the resource. Trust chains in
Akenti begin at the root policy, which is signed by a trusted stakeholder and must be
securely configured into Akenti itself.
Akenti is written in C++ and its compliance checker can be called either via a function
call in the gateway or as a standalone server via TCP/IP.
All related authentication processes are PKI-dependent and the user must present a valid
X.509 public key certificate at authentication time, so the authorization process can be
invoked later on.

2.1.5. PERMIS
PERMIS [Permis] is an authorization infrastructure from the European Comission
funded “PrivilEge and Role Management Infrastructure Standards validation”
(PERMIS) project. It implements a compliance checker that can be invoked as a Java
object from a proprietary gateway. All the cryptographic credentials used in PERMIS
are built according to the latest X.509 standard.
Being authentication agnostic, PERMIS leaves to the application the task of
determining what type of mechanism should be used for this function. On the
authorization side, policies are held into X.509 Attribute Certificates and PERMIS has
implemented role based access controls –RBAC-.
The PERMIS architecture comprises a privilege allocation subsystem and a privilege
verification subsystem (figure 7). There can be any number of privilege allocation
subsystems in a fully deployed system. This subsystem issues X.509 role assignment
attribute certificates to users and stores them in a LDAP directory for subsequent use by
the privilege verification subsystem. In addition to privilege allocation, each user will
also need to be issued with an application specific authentication token. If a PKI is
being used, this token will be a digitally signed public key certificate, but if a
conventional authentication system is being used, then it will be a username/password
pair. Authorization is performed in an application-independent manner according to the
PERMIS RBAC authorization policy. In this way one policy can control access to all
resources in a domain.
The PERMIS policy is bound to a specific subject and is stored in an LDAP directory as
a policy attribute certificate. It supports the classical hierarchical RBAC, in which roles
are allocated to users and privileges to roles. Superior roles inherit the privileges of
subordinate roles in the hierarchy. Multiple disjoint role hierarchies can be specified.
PERMIS has a very loose definition of a role so it may be any attribute assigned to a
user. The system also supports the distributed management of attribute certificates, and
multiple external Sources of Authority –SOAs- can be trusted to issue roles/attributes.
PERMIS policies are kept in the LDAP entry of the policy issuer and different policies
are distinguished by their unique object identifier (OIDs). There is no need for the
policies to be kept securely, since PERMIS engine validates the policy at run time to
ensure it is the correct one. However the name of the SOA has to be securely configured
into the PERMIS application at start up. Even though policy hierarchies are not
supported by PERMIS, they can be either enforced organizationally by management, or
by the application instantiating several PERMIS decision engines, one per level of the
hierarchy, and ensuring that each level grants permission.

 35

The PERMIS policy is expressed in XML and their components comprise:
• Policy OID, so the policy can be distinguished among others stored in the SOA’s

entry.
• Subject domains, specified as LDAP subtrees, which are the subjects who can assert

roles.
• Target domains, specified as LDAP subtrees, which are the targets governed by the

Target Access Policy.
• List of the distinguished names of trusted external attribute certificate issuing

authorities (SOAs), which are treated as roots of the delegation trees.
• Role hierarchy specification (list of the roles as ordered attribute values).
• A role assignment policy that tells which attribute authorities are trusted to issue

which roles to which subject domains, and whether delegation is supported or not.
• Action policy, saying what the actions and their parameters are, so they can be

referenced in the Target Access Policy.
• Target Access Policy, which specifies the set of roles/attributes required to perform

a particular action along with any conditions.

PERMIS operates in multi-step decision making mode (figure 8). In step 1 with the
function getCreds, the user’s credentials are obtained and validated, and roles
conforming to the policy are passed back to the calling application for caching. This
typically takes place during user login. In step 2 the requested action and target are
passed to the decision function along with the user’s validated roles, and at the end a
simple boolean decision is returned, either granting or denying access. As the user
attempts to perform different tasks, the second step can be repeated as many times as
required for different targets and different actions. In this model, a user accesses
resources via an application gateway. The Access Control Enforcement Function –AEF-
authenticates the user and then asks to the Access Control Decision Function -ADF- if
the user is allowed to perform the requested action on the particular target resource. The
ADF accesses one or more LDAP directories to retrieve the authorization policy and the
role Attribute Certificates –ACs- for the user, and bases its decision on these pieces of
information.

SOA

Privilege
Allocator

LDAP
directory

PKI

Remote
Application

User

Attri
bu

te

Cert
ific

ate
s

+ACRLs

Privilege

Policy

PK

Certs
+PK

CRLs

Certifies

Authorizes
Fig. 7. PERMIS: privilege allocation subsystem.

 36

The PERMIS API has been written in Java and due to its structure (the Target and the
AEF are co-located or can communicate with each other across a trusted LAN), the
authorization token carried between them doest not need any protection at all. Also was
assumed that only a single authorization service will be available at any time, and that
the API does not need to support the export of authorization tokens, as attribute
certificates are already in an exportable format.

2.1.6. Shibboleth
Shibboleth [Shib] is a joint project of Internet2/MACE (Middleware Architecture
Committee for Education) and IBM. It aims to develop an architecture for standard-
based and vendor-independent web access control infrastructure that can operate across
institutional boundaries.
The focus of Shibboleth is on supporting inter-institutional authentication and
authorization for access to web-based applications. The intent is to build upon existing
heterogeneous security systems in use on campuses today, rather than mandating
particular schemes like Kerberos or PKI based on X.509. The Shibboleth Project will
produce an architectural analysis of the issues involved in providing such inter-
institutional services, given current campus realities; it will also produce a pilot
implementation to demonstrate the concepts.
In Shibboleth the origin site (where the client belongs) is responsible for authenticating
the user, and for providing attribute information about the user to the target. The target
site (where the resource manager belongs) is responsible for comparing these statements
against the policy rules associated with the desired resource. Both sites will need to
satisfy themselves as to the true origin of a request or a set of assertions. Every site that
joins Shibboleth can decide to participate as an origin, as a target, or as both. In any case
the joining institution must make available a PKI certificate containing the public key of
their Shibboleth signing entity. All statements from the institution must be signed using
the matching private key. When a site receives a signed request from another site, it
must be easy for the recipient to securely obtain the requestor’s certificate, in order to
validate its signature.
Shibboleth uses pseudononymous identifiers in conversations between the origin and
target sites, thus protecting user’s privacy. In the case of Single Sign-On (SSO),
Shibboleth does not provide such mechanisms but instead provides a way for
intercampus SSO systems to interoperate between them.

Initiator Target

Submit
Access
Request

Present
Access
RequestDecision

Request Decision

AEF

Authentication
Service

LDAP
Directories

Retrieve Policy
and Role ACs (pull)

PKIADF

The PERMIS PMI API
PERMIS API
Implementation

Retrieve
Role ACs

(push)

Initiator Target

Submit
Access
Request

Present
Access
RequestDecision

Request Decision

AEF

Authentication
Service

LDAP
Directories

Retrieve Policy
and Role ACs (pull)

PKIADF

The PERMIS PMI API
PERMIS API
Implementation

LDAP
Directories

Retrieve Policy
and Role ACs (pull)

PKIADF

The PERMIS PMI API
PERMIS API
Implementation ADF

The PERMIS PMI API
PERMIS API
Implementation

Retrieve
Role ACs

(push)

Fig. 8. The Privilege verification subsystem.

 37

According to [AACE-B1] the primary design principles for Shibboleth are:
• No single central piece of infrastructure is required, thus providing scalability.
• Data protection and privacy are of importance for Shibboleth.
• The User is guided by HTTP redirections from the Resource to the Authentication

Server and back to the Resource for the authorization

Shibboleth uses a federated administration where a Resource Owner leaves the
management of User identities and attributes to the User’s Home Organization, which is
also responsible for providing attributes about a User (possibly but not necessarily
including a username) that the Resource Owner can use in making an access control
decision when the User attempts to use its Resource. Users are registered only at their
Home Organizations, and not at each Resource.
Shibboleth can be seen as a system for securely transferring User attributes from the
User’s Home Organization to the site of the Resource Owner, provided the Resources
are accessible via standard web browsers. In addition, Shibboleth enables the Users to
decide which information about them gets released to which site. The Users therefore
have to balance access and privacy.
The major components of Shibboleth (shown in figure 9) are:
• Where Are You From Server (WAYF): Redirects the User to the HS at his/her

Home Organization. At least one WAYF server is needed but it may be replicated as
desired.

• Handle Server (HS): Authenticates a local User according to the methods of the
Home Organization and provides an opaque handle identifying the User.

• Attribute Authority (AA): Retrieves the attributes, which a User allows to be given
to a Resource (according to the User’s Attribute Release Policy) and passes them to
the SHAR on behalf of the Resource.

• Shibboleth Indexical Reference Establisher (SHIRE): Makes sure that the Resource
gets a “pointer” (handle) back to the User without requiring more knowledge about
it. In case this handler is missing, then it refers the User via the WAYF Server back
to his/her HS to get one again.

• Shibboleth Attribute Requester (SHAR): Contacts the AA to fetch the available
attributes describing the User and passes them on to RM.

• Resource Manager (RM): decides on access to the Resource based on the
information received, and where necessary, in the information about sessions of the
same User.

 38

2.1.7. Cardea
Cardea [Cardea] is a distributed authorization systems, developed as part of the NASA
Information Power Grid, which dynamically evaluates authorization requests according
to a set of relevant characteristics of the resource and the requester rather than
considering specific local identities. Shared resources within an administrative domain
are protected by local access control policies, specified with the XACML (eXtensible
Access Control Markup Language) [XACML] syntax, in terms of requester and
resource characteristics. Further, potential users are identified by X.509 proxy
certificates, but only according to the characteristics they can reliably demonstrate. The
exact information needed to complete an authorization decision is assessed and
collected during the decision process itself using the Security Assertion Markup
Language –SAML- [SAML]. This information is assembled appropriately and
presented to the Policy Decision Point –PDP- that returns the final authorization
decision for the actual access requests together with any relevant details.
Figure 10 shows Cardea’s architecture. The system is currently implemented in JAVA
and contains a SAML PDP, one or more Attribute Authorities, one or more Policy
Enforcement Point –PEP-, one or more references to an Information Service (IAS), an
XACML context handler, one or more XACML Policy Access Points –PAP- and a
XACML PDP. Although all these components may be co-located on the same machine
to use local communication paradigms, they may also be distributed across several
machines and their functionality exposed as Web Services.
Communication between components is specified directly by the XACML and SAML
standards, such as the request and response formats for obtaining information. Although
both standards are transport independent, the initial implementation binds these
protocols to SOAP.
To preserve message integrity the body of each SOAP message is signed using OASIS
XMLSig [XMLDSig] before transmission to the intended recipient. As each message is
signed only after processing is complete, the native format of the signed content is
opaque to the signing process. Therefore, no dependencies between signature and
content must be supported.

User DB

HS

AA
Attributes

Handle

Credentials

Handle

WAYF

Attributes

Handle

SHAR

SHIRE

Resource
Manager

R
esource

Resource Manager

Home Organization
User

1

3

4

5

2

6 7

Fig. 9. Shibboleth interactions.

 39

Cardea attempts to provide a new resolution to portion of the overall authorization
problem that existing systems do not adequately address. The first goal is to model
distributed authorization in a way that separates local identity from authorization data.
Reaching this goal will permit representation and evaluation of access control decisions
using strictly the attributes of the entities involved, offering also a method to provide an
authorization enforcement point with sufficient information to manage access control
with a variety of enforcement mechanisms.
The second system goal is supporting distributed authorization while interoperating
with existing security infrastructures. This facilitates the communication of
authorization decisions through standard means.
Any characteristic of the subject, the requested resource, the desired action or the
current environment may be considered in the authorization decision. The model
adopted by Cardea represents these attributes as SAML assertions that are passed
between components. Each component is free to use the assertion data in any way it
needs, such as transforming it to a different native internal format. However, when
communicating the data between components, all characteristics are represented in this
common format, regardless of the source.
Cardea leverages the XACML model for authorization evaluation, and SAML for
obtaining assertion data used during the evaluation process. Cardea assumes that the
SAML PDP that accepts the initial request is responsible for providing the final
authorization decision details to the PEP. The SAML PDP depends upon the content of
the initial request to determine the correct XACML PDP to evaluate the request, and
then the flow of communication between entities is specified by these standards.

2.2 Certificate Validation
Trust and Validation are two important concepts to build interoperable Grid services,
despite the fact there is not a clear consensus about their definition. From RFC 3280
[RFC3280] the primary goal of a Path Validation process is to verify the binding
between a subject distinguished name or a subject alternative name and subject public

Fig. 10. Cardea: system architecture.

 40

key, as represented in the end entity certificate, based on the public key of the trust
anchor (i.e. a Certification Authority). This requires obtaining a sequence of certificates
that support that binding. To meet this goal, the path validation process verifies, among
other things, that a prospective certification path (a sequence of n certificates) satisfies
the following conditions:
• For all x in {1, ..., n-1}, the subject of certificate x is the issuer of certificate x+1;
• certificate 1 is issued by the trust anchor;
• certificate n is the certificate to be validated; and
• for all x in {1, ..., n}, the certificate was valid at the time in question.

The RFC 3280 goes beyond by introducing an “extended version” of the Path
Validation procedure, where trust anchors are literally trusted if listed into a set of
Certification Authorities given also as input to the validation algorithm. Then again this
process is inherently static, cumbersome and considers that all the trust anchors into this
list have the same level of trust.
In contrast, for the present work and revisiting the concepts given in section 1.5, the
term trust will be used from now on when referring to the qualitative or quantitative
level in which a set of Grid services decide to interoperate among them. In consequence,
validation will denote the mechanisms used to provide trust for the Grid.
In this section are reviewed the OCSP protocol and the CertiVeR project, two elements
widely referenced during this thesis. Also for completeness is presented the SCVP
protocol, despite it is still a draft proposal.

2.2.1. The Online Certificate Status Protocol (OCSP)
Specified in RFC 2560 [RFC2560] the Online Certificate Status Protocol or OCSP was
proposed to be used instead of or –as in most of the cases- in conjunction with other
mechanisms like CRLs to provide timely information regarding the revocation status of
a digital certificate. Even though it was initially aimed for applications carrying highly
sensitive and valuable information, nowadays it is being used in a wide variety of
systems ranging from Web Services to the computational Grid.
When deploying a PKI, certificate validation using OCSP may be preferred over the use
of CRLs for several reasons:
• OCSP can provide more timely information regarding the revocation status of a

certificate.
• OCSP removes the need for clients to retrieve the (sometimes very large) CRLs

themselves, leading to less network traffic and better bandwidth management.
• Using OCSP, clients do not need to parse CRLs themselves, saving client-side

complexity.
• An OCSP Responder –server- may implement billing mechanisms to pass the cost

of validation transactions to the seller, rather than buyer.
• CRLs may be seen as analogous to a credit card company's "bad customer list" -an

unnecessarily public exposure-.
• To a degree, OCSP supports trusted chaining of OCSP Requests between

Responders. This allows clients to communicate with a trusted Responder to query
an alternate Responder, saving client-side complexity.

OCSP is based on a request-response scheme in which an OCSP Client issues a
certificate status query to an OCSP Responder with the following data:
• Protocol version, which currently defaults to v1 in RFC 2560.

 41

• Service request, including the requestor name.
• Target certificate identifier, consisting of an unordered list of certificate identifiers

formed with the issuer’s distinguish name hash, issuer’s public key hash and finally
the serial number of the certificate whose status is being requested.

• Optional extensions which may be processed by the OCSP Responder, for example
to demand information about the Certificate Authority quality.

The OCSP request itself may be secured if the client uses a nonce (protection against
replay attacks) and digitally signs it.
Once received by the OCSP Responder, the request is verified (i.e. digital signature),
processed and a definitive response message is produced. The response message is
composed of the following data:
• Version of the response syntax -which also in RFC 2560 defaults to v1-.
• Name of the responder (i.e. its URL).
• Responses for each of the certificates in a request, which consist of the following

data:
o Target certificate identifier as included in the OCSP request by the client.
o Certificate status value, which can be any of the following definitive

responses: Good, Revoked (either permanently or temporarily) and
Unknown.

o Response validity interval indicating: the time when the status information
produced is known to be correct (thisUpdate), the time when the information
about the status of the certificate will be refreshed again (nextUpdate) and
the time when the OCSP Responder signed this response (producedAt).

o Optional extensions as requested by the OCSP for each certificate.
• Optional extensions as requested by the OCSP client for the whole response.
• Signature computed across hash of the response to protect the data.

In case of an error, the OCSP Responder will respond with the corresponding status
code (RFC 2560 defines the malformedRequest, internalError, tryLater, sigRequired
and unauthorized status codes).
The signing key of the OCSP Responder is a very sensitive issue in a PKI environment
and in fact, depending on the certificate being used to sign the responses, we can define
three different operation modes:
• Authorized OCSP Responder mode: Based in figure 11, the OCSP signing

certificate (subject B) is issued by the same hierarchy (subject A) as the one that
issues the certificate being requested (subject C) – i.e. the OCSP service is being
implicitly authorized by the CA-. In this way, the user (subject X) does not require
to trust any specific hierarchy other than the one that is being verified in order to
validate the OCSP response.

 42

• Transponder OCSP Responder mode (figure 12): some OCSP Responders are used
only as gateways or proxies, forwarding the request for certificate C from the client
(subject X) to a more authoritative server (which OCSP Signing Certificate’s subject
is any of A, Y or W), and then the response from this authoritative OCSP Responder
back to the client. In this case request and response are not signed again. The OCSP
transponder merely transports requests and responses from one side to the other.

• Trusted OCSP Responder mode: in this case (figure 13), the OCSP signing
certificate (subject T) belongs to a hierarchy that differs from that of the certificates
being requested (neither of A, Y or W) – i.e. the OCSP service has to be explicitly
trusted by the user with subject X-.

The Trusted and Authorized modes are frequently used to centrally provide a single
OCSP service connected to several different hierarchies; this feature is particularly
useful for Grid’s Virtual Organizations -VOs- that typically integrate users from more
than one PKI hierarchy.

CAAuthorized
OCSP

Responder

OCSP
Client

Subject: A
Issuer: A

Subject: B
Issuer: A

Subject: X
Issuer: Y

Subject: C
Issuer: A

¿ ?

OCSP Request

Fig. 11. OCSP Responder in Authorized mode.

OCSP Responder
Transponder mode

OCSP
Client

Subject: X
Issuer: Y

Subject: C
Issuer: A

¿ ?

OCSP Request

CA

Authorized
OCSP

CA

Authorized
OCSP

CA

Authorized
OCSP

Subject: A
Issuer: A

Subject: Y
Issuer: Y

Subject: W
Issuer: W

Fig. 12. OCSP Responder in Transponder mode.

 43

In practice, OCSP Responders working under such centralized models, implement a
response cache to increase their performance while reducing the number of queries to
external Authorized OCSP Responders and other revocation sources (like CRLs through
HTTP or LDAP).

2.2.2. Server-based Certificate Validation Protocol (SCVP)
SCVP1 [SCVP] is a request-response protocol that allows a client to delegate certificate
path construction and certificate path validation to a server. A design goal in SCVP is to
leverage certificate path construction’s overhead to specialized servers. In applications
where minimum latency is critical, delegating validation to a trusted server can offer
significant advantages. The time required to send the target certificate to the validation
server, receive the response, and authenticate the response, can be considerably less
than the time required for the client to perform certification path discovery and
validation. Even if a certification path were readily available to the client, the
processing time associated with signature verification for each certificate in the path
might (especially when validating very long paths or using a limited processor) be
greater than the delay associated with use of a validation server.
Two classes of applications are quite appropriate for using SCVP. In first place are
those systems that want just two things: confirmation that the public key belongs to the
identity named in the certificate and confirmation that the public key can be used for the
intended purpose. Such clients can completely delegate certification path construction
and validation to a trusted SCVP server. This is often referred to as delegated path
validation (DPV).
There is a second group of potential users: applications that in fact can perform
certificate path validation, but lack of a reliable or efficient method of constructing a
valid certification path. Such clients delegate certification path construction to an
untrusted SCVP server, but not validation of the returned certification path. This is
often referred to as delegated path discovery (DPD). DPD provides several benefits: for
example, a single query to a server can replace multiple repository queries, and caching
by the server can reduce latency. Another benefit to the client system is that it need not
incorporate a diverse set of software to interact with various forms of repositories,

1 At the moment of writing this thesis, SCVP was still an IETF draft.

OCSP Responder
Trusted mode

OCSP
Client

Subject: X
Issuer: Y

Subject: C
Issuer: A

¿ ?

OCSP Request

CA

Authorized
OCSP

CA

Authorized
OCSP

CA

Subject: A
Issuer: A

Subject: Y
Issuer: Y

Subject: W
Issuer: W

Subject: T
Issuer: Y

OCSP
cache

CRL through
LDAP

Fig. 13. OCSP Responder in Trusted mode.

 44

perhaps via different protocols, nor to perform the graph processing necessary to
discover certification paths, separate from making the queries to acquire path validation
data.
It is important to notice that in both cases (DPV and DPD), certificate validation may
involve querying the following revocation sources:
1. Full CRLs (or full Authority Revocation Lists);
2. OCSP responses;
3. delta CRLs; and
4. indirect CRLs.

Therefore SCVP does not exclude the use of other validation technologies.
The path construction or validation in SCVP is performed according to a validation
policy. In SCVP the validation policy is a RFC 3379 [RFC3379] compliant document
that specifies the rules and parameters to be used by the SCVP server when validating a
certificate.
A validation policy is built from three components:
1. Certification path requirements, which identify a sequence of trust anchors2 used to

start certification path processing and initial conditions for certification path
validation.

2. Revocation requirements: revocation information might be obtained through CRLs,
delta CRLs or OCSP responses. Certificate revocation requirements are specified in
terms of checks required on the end-entity certificate and CA certificates.

3. End-entity certificate specific requirements: the validation policy might require the
end-entity certificate to contain specific extensions with specific types or values (it
does not matter whether they are critical or non-critical).

The policy to be used by the SCVP server can either be fully referenced in the request
by the client (and thus no additional parameters are necessary) or it can be referenced in
the request by the client with additional parameters.
Policy definitions can be quite long and complex, and some policies may allow for the
setting of a few parameters. The request can therefore be very simple if an OBJECT
IDENTIFIER (OID) is used to specify both the algorithm to be used and all the
associated parameters of the validation policy. The request can be more complex if the
validation policy fixes many of the parameters, but allows the client to specify some of
them. When the validation policy defines every parameter necessary, an SCVP request
needs only to contain the certificate to be validated, the referenced validation policy,
and any run-time parameters for the request.
A server publishes the references of the validation policies it supports. When these
policies have parameters that may be overridden, the server communicates the default
values for these parameters as well. The client can simplify the request by omitting a
parameter from a request if the default value published by the server for a given
validation policy reference is acceptable. However, if there is a desire to demonstrate to
someone else that a specific validation policy with all its parameters has been used, the
client will need to ask the server for the inclusion of the full validation policy with all
the parameters in the response.

2.2.3. Enabling multi-PKI OCSP Validation: the CertiVeR Project
CertiVeR [CertiVeR] is an EU funded project that offers a comprehensive validation
service that, on top of providing validation information of a X.509 certificate in real
time through the Online Certificate Status Protocol.

2 Usually a trust anchor is defined as one public key, a CA name, and a validity time interval.

 45

CertiVeR has the following features:
• Implementation of a CRL Updater module, which is in charge of retrieving

revocation information directly from the CA’s CRL through protocols like LDAP
and HTTP. This information is stored in a local cache.

• Provision of a DeltaCRL connector which is used by the CRL Updater modules to
remotely push any new revocation information from the remote CA into the Cert
Status DB (figure 14). This connector is part of the CertiVeR service an does not
require any change on the side of the CA.

• A customizable set of extensions on the OCSP response. In this way, CertiVeR can
report information at several levels, such as technological – e.g. the reliability of the
degree of trust in the issuing authority of the certificate (i.e. Gold: highly trusted
registry and revocation procedures, Silver: highly trusted registry procedures,
Bronze: low confidence registry procedures) – or commercial – e.g. information
provided by the Chambers of Commerce about a company. Such type of information
may dramatically increase security and e-Trust.

• CertiVeR OCSP Responder can be configured in trusted or authorized mode.
• Fault tolerance (through replication techniques, backup sites and load balancers) and

high performance (using cryptographic hardware) are also provided for those
organizations requiring them.

CertiVeR’s multi-PKI validation features were the starting point for the “high-level
OCSP Responder” infrastructure proposed in this research, just as explained in section
3.5.

2.3 Trust and Grid Services
As mentioned in [CGTrust], traditional security mechanisms typically protect resources
from malicious users by restricting access to only authorized entities. However, in many
situations within distributed applications one has to protect oneself from those who
offer resources so that the problem is in fact reversed. For instance, a resource providing
information can act deceitfully by providing false or misleading information, and

Fig. 14. The CertiVeR OCSP service architecture.

 46

traditional security mechanisms are unable to protect against this type of threat. As
noted in [Jos07], trust systems can provide protection against such threats.
Grandison and Sloman [Gra00] have defined a trust classification as a useful way of
categorizing the literature related to trust in Internet services. In their work, trust is
specified in terms of a relation between a trustor, the subject that trusts a target entity,
and a trustee, the entity that is trusted. The following classes of trust are defined:
• Service Provision Trust describes the relying party’s trust in a service or resource

provider. The trustor trusts the trustee to provide a service that does not involve
access to the trustor’s resources.
This type of trust is essential for Grids, and can be seen as a minimal trust
requirement in dynamic Virtual Organizations. Many Grid applications assume this
type of trust implicitly; a partner in a VO presupposes a service provision trust as a
result of participating in VO, although the VO does not provide mechanisms to
enforce it. In general, service provision trust is related to the reliability or the
integrity of the trustee.

• Resource Access Trust describes trust in principals for the purpose of accessing
resources owned by the relying party. A trustor trusts a trustee to use resources that
he own or controls. Resource access trust has been the focus of security research for
many decades, particularly on mechanisms supporting access control. Generally,
resource access trust forms the basis for specifying authorization policies, which
then are implemented using access control mechanisms, firewall rules, etc.
[Gra00] highlights the distinction between trusting an entity to read or write a file on
your server and trusting an entity to execute code within your workstation. Simple
file access requires that the trustee will follow the correct protocol, will not divulge
information read, and will write only correct data, etc. Allowing an entity to execute
code on your workstation implies much higher level of trust. The code is expected
not to damage the trustor’s resources, to terminate within reasonable finite time and
not to exceed some defined resource limits with respect to memory, processor time,
local file space, etc.

• Delegation Trust denotes the case when a trustor trusts a trustee to make decisions
on his behalf, with respect to a resource or service that the trustor owns or controls.
Although delegation is conceptually simple, designing and deploying it within a
Grid environment has proved to introduce problems regarding security. A critical
point in this scenario is the level of trust assumed when delegation is employed.

• Certification Trust is based on the certification of the trustworthiness of the trustee
by a third party, so trust would be based on a criteria relating to the set of certificates
presented by the trustee to the trustor.
Trust systems that derive certification trust are typically authentication schemes
such as X.509. This class of trust is called “authentication trust” in Liberty Alliance
[Lin04] and “identity trust” in [Jos07]. Grandison [Gra00] views certification trust
as a special form of service provision trust, since the Certificate Authority is in fact
providing a trust certification service; however Josang [Jos07] views certification
trust and service provision trust as two layers on top of each other, where provision
trust normally cannot exist without certification trust; in the absence of certification
trust, it is only possible to have a baseline provision trust in an entity.

• Context Trust describes the extend to which the relying party believes that the
necessary systems and institutions are in place in order to support the transaction
and provide a safety net in case something should go wrong. It refers to the base
context that the trustor must trust. This type of trust is called infrastructure trust in
[Gra00] and context trust in [Jos07].

 47

The main motivation behind Grandison and Sloman’s classification is to define classes
of high-level trust specifications, which may be further refined to low-level
implementation policies, such as policies about access control, authentication and
encryption. Gambetta [Gam00a] has highlighted that to make a society prosper, one
needs rules (both written and unwritten), understanding of good and bad behavior with
its consequences and accountabilities, initial trust and earned trust, identification of the
risks associated with transactions, and so on. A similar view should be taken if we want
to achieve a secure Grid society. Many of the rules of the secure Grid society can be
expressed in the form of trust specifications, which can consequently be refined into
policies.
For the purposes of this thesis, Certification trust will play a very important role because
of its relationship with Certification Authorities, core of the Grid Security Infrastructure
(GSI) and widely exploited in production Grids.
The rest of this chapter reviews three important pillars associated with trust in Grid
Services: OGSA Security, WS-Security and finally the Policy Management Authorities.

2.3.1. OGSA Security
To address the specific security requirements of Grid Services (see section 1.3), the
OGSA Security Group has proposed an architecture leveraging as much as possible
from the Web Services Security specifications [OGSASEC]. As mentioned previously,
secure operation in a Grid environment requires that applications and services be able to
support a variety of security functionalities, such as authentication, authorization,
credential conversion, auditing and delegation. These functionalities are based on
mechanisms that may evolve over time as new devices are developed or policies
change. Therefore in a Grid environment, security mechanisms should be dynamic.
Exposing security functionalities as services (i.e. with a WSDL definition) achieves a
level of abstraction that helps provide an integrated, secure Grid environment. An
OGSA infrastructure may use a set of primitive security functions in the form of
services themselves. [OGSASEC] suggest the following security services:
• Authentication service: An authentication service is concerned with verifying

proof of an asserted identity. One example is the evaluation of a User ID and
password combination, in which a service requestor supplies the appropriate
password for an asserted user ID. Another example involves a service requestor
authenticating through a Kerberos mechanism, and a ticket being passed to the
service provider’s hosting environment, which determines the authenticity of the
ticket before the service is instantiated.

• Identity mapping service: The identity mapping service provides the capability of
transforming an identity that exists in one identity domain into an identity within
another identity domain. The identity mapping service is not concerned with the
authentication of the service requestor; rather it is strictly a policy driven name
mapping service

• Authorization service: The authorization service is concerned with resolving a
policy based access control decision. The authorization service consumes as input a
credential that embodies the identity of an authenticated service requestor and for
the resource that the service requestor requests, resolves based on policy, whether or
not the service requestor is authorized to access the resource. It is expected that the
hosting environment for OGSA compliant services will provide access control
functions (just like the ones mentioned in section 1.3.4), and it is appropriate to

 48

further expose an abstract authorization service depending on the granularity of the
access control policy that is being enforced.

• VO Policy service: The VO policy service is concerned with the management of
policies. The aggregation of the policies contained within and managed by the
policy service comprises a VO’s policy set. The policy service may be thought of as
another primitive service, which is used by the authorization, audit, identity
mapping and other services as needed.

• Credential Conversion service: The credential conversion service provides
credential conversion between one type of credential to another type or form of
credential. This may include such tasks as reconciling group membership,
privileges, attributes and assertions associated with entities (service requestors and
service providers). For example, the credential conversion service may convert a
Kerberos credential to a form that is required by the authorization service. The
policy driven credential conversion service facilitates the interoperability of
differing credential types, which may be consumed by services. It is expected that
the credential conversion service would use the identity mapping service. WS-Trust
defines such a service.

• Audit Service: The audit service similarly to the identity mapping and authorization
services is policy driven. The audit service is responsible for producing records,
which track security relevant events. The resulting audit records may be reduced and
examined as to determine if the desired security policy is being enforced. Auditing
and subsequently reduction tooling are used by the security administrators within a
VO to determine the VO’s adherence to the stated access control and authentication
policies.

• Profile Service: The profile service is concerned with managing service requestor’s
preferences and data which may not be directly consumed by the authorization
service. This may be service requestor specific personalization data, which for
example can be used to tailor or customize the service requestor’s experience (if
incorporated into an application which interfaces with end-users.) It is expected that
primarily this data will be used by applications that interface with a person.

• Privacy Service: The privacy service is primarily concerned with the policy driven
classification of personally identifiable information (PII). Service providers and
service requestors may store personally identifiable information using the Privacy
Service. Such a service can be used to articulate and enforce a VO’s privacy policy.

From the services mentioned above it is noticeable the lack of a validation service, able
to provide assurance to interoperable Grid Services by bridging the gap between the
authentication and authorization services through the concept of trust. A proposal for
this kind of Validation Service will be developed in the following chapters, but first
should be introduced the concept of Policy Management Authority, an administrative
entity currently providing interoperability for production Grids worldwide.

2.3.2. Web Services Security
Web services offer an interoperable framework for stateless, message-based and loosely
coupled interaction between software entities. These entities can be spread across
different companies and organizations, can be implemented on different platforms, and
can reside in different computing infrastructures. Web services expose functionality via
XML messages, which are exchanged through the SOAP protocol. The interface of a
Web service is described in detail in an XML document using the “Web Service
Description Language” (WSDL).

 49

In order to provide security, reliability, transaction abilities and other features,
additional specifications exist on top of the XML/SOAP stack. The creation of the
specifications is a cross-industry effort, with the participation of standardization bodies
such as W3C and OASIS. A key element in the Web services specifications is the so-
called combinability. Web services specifications are being created in such a way that
they are mostly independent of each other, however they can be combined to achieve
more powerful and complex solutions. Based on [Geu05] the following paragraphs
describe some individual specifications, with a special focus on those dealing with trust
and security.
The WS-ReliableMessaging specification describes a protocol for reliable delivery of
SOAP messages in the presence of system or network failures. To do so, the initial
sender retrieves a unique sequence identifier from the ultimate receiver of the sequence
to be sent. Each message in the sequence is uniquely bound to that identifier, together
with a sequence number. The receiver of the sequence acknowledges the sender what
messages have already been received, thus enabling the sender to determine based on
the sequence number which messages have to be retransmitted. WS-ReliableMessaging
should be used in conjunction with WS-Security, WS-Secure-Conversation and WS-
Trust in order to provide security against attackers at the network layer.
The Web Services Policy Framework, WS-Policy, provides a general-purpose model to
describe web service related policies. WS-Policy by itself only provides a framework to
describe logical relationships between policy assertions, without specifying any
assertion. WS-PolicyAttachment attaches policies to different subjects. A policy can be
attached to an XML element by embedding the policy itself or a link to the policy inside
the element or by linking from the policy to the subject that is described by the policy.
WS-PolicyAttachment also defines how policies can be referenced from WSDL
documents and how policies can be attached to UDDI entities and stored inside a UDDI
repository. WS-MetadataExchange defines protocols to retrieve metadata associated
with a particular web services endpoint. For example, a WS-Policy document can be
retrieved from a SOAP node using WS-Metadata. WS-PolicyAssertions specifies some
common WS-Policy assertions, related to text encoding, required SOAP protocol
version and so-called “MessagePredicate” assertions that can be used to enforce that a
particular header combination exists in a given SOAP message.
WS-SecurityPolicy defines certain security-related assertions that fit into the WS-Policy
framework. These assertions are used by WS-Security, WS-Trust and WS-
SecureConversation. Integrity and confidentiality assertions identify the message parts
that have to be protected and it defines what algorithms are permitted. For instance, the
“SecurityToken” assertion tells a requestor what security tokens are required to call a
given Web service. Visibility assertions identify what particular message parts have to
remain unencrypted in order to let SOAP nodes along the message path being able to
operate on these parts. The “MessageAge” assertion enables entities to constrain after
what time a message is to be treated as expired.
The WS-Security specification defines mechanisms for integrity and confidentiality
protection, and data origin authentication for SOAP messages and selected parts thereof.
The cryptographic mechanisms are utilized by describing how XML Signature and
XML Encryption are applied to parts of a SOAP message. That includes processing
rules so that a SOAP node (intermediaries and ultimate receivers) can determine the
order in which parts of the message have to be validated or decrypted. These
cryptographic properties are described using a specific header field, the
<wsse:Security> header. This header provides a mechanism for attaching security-
related information to a SOAP message, whereas multiple <wsse:Security> header may

 50

exist inside a single message. Each of these headers is intended for consumption by a
different SOAP intermediary. This property enables intermediaries to encrypt or decrypt
specific parts of a message before forwarding it or enforces that certain parts of the
message must be validated before the message is processed further.
Besides the cryptographic processing rules for handling a message, WS-Security defines
a generic mechanism for associating security tokens with the message. Tokens generally
are either identification or cryptographic material or it may be expressions of
capabilities (e.g. signed authorization statements). WS-Security 1.0 does only define a
simple user name token, a container for arbitrary binary tokens (base64 encoded) and a
container for XML-formatted tokens. Additional specifications define various ‘token
profiles’ that introduce special token formats. For instance, the ‘WS-Security X.509
Certificate Token profile’ defines how X.509 certificates, certificate chains or PKCS#7
certificate revocation lists may be used in conjunction with WS-Security.
The WS-Trust specification introduces the concept of “security token services” (STS). A
security token service is a Web service that can issue and validate security tokens. For
instance, a Kerberos ticket granting server would be an STS in the non-XML world. A
security token service offers functionality to issue new security tokens, to re-new
existing tokens that are expiring and to check the validity of existing tokens.
Additionally, a security token service can convert one security token into a different
security token, thus brokering trust between two trust domains. WS-Trust defines
protocols including challenge-and-response protocols to obtain the requested security
tokens, thus enabling the mitigation of man-in-the-middle and message replay attacks.
The WS-Trust specification also permits that a requestor may need a security token to
implement some delegation of rights to a third party. For instance, a requestor could
request an authorization token for a colleague that may be valid for a given time
interval.
WS-Trust uses WS-Security for signing and encrypting parts of SOAP messages as well
as WS-Policy/SecurityPolicy to express and determine what particular security tokens
may be consumed by a given Web service. WS-Trust is a basic building block that can
be used to rebuild many of the already existing security protocols and make them fit
directly in the web services world by using Web service protocols and data structures.
WS-Federation introduces mechanisms to manage and broker trust relationships in a
heterogeneous and federated environment. This includes support for federated identities,
attributes and pseudonyms. “Federation” refers to the concept that two or more security
domains agree to interact with each other, specifically letting users of the other security
domain accessing services in the own security domain. For instance, two companies that
have a collaboration agreement may decide that employees from the other company
may invoke specific web services. These scenarios with access across security
boundaries are called “federated environments” or “federations”. Each security domain
has its own security token service(s), and each service inside these domains may have
individual security policies. WS-Federation uses the WS-Security, WS-SecurityPolicy
and WS-Trust specifications to specify scenarios to allow requesters from the one
domain to obtain security tokens in the other domain, thus subsequently getting access
to the services in the other domain.
Some of the requirements presented in the analysis of requirement through the VO
lifecycle can be met by application of Web services specification, as shown in [Are05].
The identification phase includes defining VO wide policies as well as selecting
potential business partners who are both capable of providing the required services and
of fulfilling the trustworthiness requirements of the VO. The selection of potential
business partners involves looking at repositories, which can realize. The usual Web

 51

service technology to be applied is WSDL/UDDI, WSDL describes messages and
operations while UDDI offers a discovery mechanism. To include the provision of SLA,
“Web Service Level Agreements” (WSLA) has been developed, a XML language for
specifying and monitoring SLA for Web Services, which is complementary to WSDL.
Determining the required service providers and a proper negotiation requires secure
communication. The WS-Security specification and data origin authentication for
SOAP messages can be used between the entities to secure the communication.
The realization of the VO requires the creation of federations, where two or more
security domains agree to interact with each other, specifically letting users of the other
security domain accessing services in the own security domain. The WS-Federation
specification deals with federations by providing mechanism to manage and broker trust
relationships in a heterogeneous and federated environment. This includes making use
of WS-Trust to support for federated identities, attributes and pseudonyms. The
dissemination of configuration information requires secure communication as provided
by the WS-Security specification.
Throughout the operation of the VO, service performance will be monitored. This will
be used as evidence when constructing the reputation of the service providers. Any
violation –i.e. an unauthorized access detected by the access control systems- and
security threats –i.e. an event detected by an intrusion detection system- need to be
notified to other members in order to take appropriate actions. VO members will also
need to enforce security at their local site. For example, providing access to services and
adapting to changes and the violations. Monitoring can be supported by event
management and notification mechanisms using the WS-Eventing and WS-Notification
specifications. This allows the monitoring service partner to receive messages when
events occur in other partners. A mechanism for registering interest is needed because
the set of Web services interested in receiving such messages is often unknown in
advance or will change over time.

2.3.3. Grid interoperability through Policy Management Authorities
As Grid computing became more popular also Virtual Organizations proliferated at the
same rate, and this finally resulted in the breed of several Certification Authorities (a
common practice as each organization installing a Grid environment was also used to
define its own Certificate Authority). Soon this represented a big interoperability
problem between the users and resources belonging to different institutions: their
computing resources where in different domains, but the need of cooperation through a
Grid environment required to share them all.
A suitable solution for this problem was given by the Policy Management Authorities
(PMAs) which define a minimum set of security provisions –in the form of an
Authentication Profile as in [GridAP]- that must be accomplished by all the Grid-PKIs
wishing to interoperate between them. The PMA’s Authentication Profile document
describes the minimum set of requirements posed on Certification Authorities (CA) that
traditionally issue long-term X.509 credentials to end-entities, who will themselves
posses and control their key pair and their activation data. These CAs act as an
independent trusted third party for both subscribers and relying parties within the
infrastructure.
In general, any CA requesting membership to a PMA must present its Certification
Policy (CP) document which will be in turn carefully evaluated by experts against a set
of rules or minimum security provisions defined into the PMA’s “Authentication
Profile” thus determining whether if it is fulfilled or not. This is performed just once
when the new Grid-PKI wishes to be part of an existing PMA and it is commonly called

 52

the “accreditation process”. Obviously a further auditing process could determine if in
practice the CP itself is also being satisfied by the PKI, but in most of the cases this
audit is out of the PMA’s scope.
In summary a PMA:
• Defines and issues minimum requirements and best practice documents; these

minimum requirements (also known as Authentication Profile) may govern any
aspect of certificate issuance and reliance.

• Maintains and revises these documents according to current developments.
• Accredits Certification Authorities with respect to the authentication profile.
• Accredits Certification Authorities only for those Grid applications that relate to

inter-organizational distributed resource sharing in a scientific context.
• Is primarily concerned with Grid communities in their region.
• Harmonizes and synchronizes minimum requirements with other regional PMAs.
• Fosters trust relations for authentication purposes within the context of Grid

communities.

Three regional Grid PMAs currently exist around the globe (Europe’s EUGridPMA
[EUGridPMA], America’s TAGPMA [TAGPMA] and Asia-Pacific’s APGridPMA
[APGridPMA]) and nowadays they are being harmonized and synchronized through the
International Grid Trust Federation –IGTF [IGTF]-.

2.4 Open issues
Despite the security advantages brought by current authentication and authorization
technologies to the computational Grid, there are still open issues related with trust
management and user’s validation that must be solved in production environments
requiring high levels of assurance, for example eHealth systems.
In an effort to summarize the main Grid-related authentication and authorization
features of the technologies reviewed in this section, table 1 presents a comparison of
them.
From table 1 it is easy to notice in the reviewed technologies the lack of features related
with trust and validation (Levels of Authentication, support to dynamic VO and real-
time validation), which are central for building interoperability relationships in Grid
environments.
On the validation arena we have found a lack of systems implementing real-time
checking of end user’s credential status, due mainly because of the complex deployment
issues that arise when trying to adapt existing mechanisms and protocols to the
computational Grid. This is one of the reasons to continue using “traditional” schemes
like Certificate Revocation Lists (CRLs) in current Grid installations around the globe.
In this chapter we have also overviewed the importance of the trust management
concept in Grid environments, where interoperability is a must for creating Virtual
Organizations grouping users and resources from multiple institutions. Despite the
efforts towards achieving this goal (i.e. with the Policy Management Authorities),
current procedures and mechanisms are poorly automated (let us mention as an example
the PMA’s accreditation process), therefore providing little or none information at all to
other processes about security features related with the user’s authentication and
identity assessment process, that is, its level of assurance.

 53

Table 1. AAI technologies: a comparison for building Grid interoperability
 Archi-

tecture)1(
PKI Requi-

red?)2(
Levels of
AuthN)3(

Dynamic
VO)4(

RT
Valida-
tion)5(

Grid
Inte-

gration)6(
GSI D Y N N N Y
VOMS D Y N N N Y
CAS C Y N N N Y
PRIMA C Y N N N Y
Akenti D Y N Y N Y
PERMIS D Y N N N Y
Shibboleth D Y N N N Y
Cardea D Y N N N Y
(1) Denotes if its components are Centralized (C) or Distributed (D) along the Grid.
(2) Requires the use PKI technology (Y)es or (N)o.
(3) Different mechanisms for entity’s authentication (therefore different levels of assurance), (Y)es or (N)o.
(4) Allows building dynamic, “on-the-fly” Virtual Organizations, (Y)es or (N)o.
(5) Entity’s authentication credentials are validated in real-time, (Y)es or (N)o.
(6) May be seamlessly integrated into Grid installations, (Y)es or (N)o.

A common belief into the Grid community is that this data becomes quite important
nowadays to take authorization decisions dependent on the security level associated
with the requestor identity. This argument has been already demonstrated by surveys
like [LoA].
To cope with the problems mentioned above and then “bridge” the gap between the
Grid authentication and authorization processes, the rest of this thesis presents our
contributions to build a Grid-OCSP protocol and moreover, to adopt a methodology
able to quantitatively evaluate a user’s level of security, thus providing the Extended
Path Validation features required by these environments.

 54

CHAPTER
3 GRID-OCSP: A CONTRIBUTION
TO CERTIFICATE VALIDATION

 55

3.1 Motivation
Grids use X.509 [X509] certificates for authentication and as a basis for authorization.
A reliable, secure Grid infrastructure depends on the integrity and validity of these
certificates. While X.509 certificates have built-in lifetimes, this mechanism is not
adequate to deal with every aspect of certificate life cycle and management. Certificates
can be lost by their owners, can be “compromised”, or the justification for holding the
certificate may no longer apply. In such cases these certificates need to be revoked
before its expiration date is reached. Distribution of certificate revocation lists (CRLs)
partly supports this need, however CRL distribution and maintenance in the Grid has
proven difficult for practical reasons. In lieu of or as a supplement to checking against a
periodic CRL, it may be necessary to obtain timely information regarding the revocation
status of a certificate. Examples include high-value funds transfer or large stock trades.
The Online Certificate Status Protocol (OCSP) enables applications to determine the
(revocation) state of an identified certificate. OCSP may be used to satisfy some of the
operational requirements of providing more timely revocation information than is
possible with CRLs and may also be used to obtain additional status information. OCSP
provides a simple query protocol for relying parties to perform revocation check
lookups on certificates, without the need to maintain up-to-date sets of CRLs from a
number of different certification authorities, at each and every computer that is part of
the Grid.
The evolution of security concerns in Grids provides a number of scenarios for OCSP
usage. In the trust arena, the increasingly large number of Grid CAs, and the attendant
need for every end point in every Grid PKI to manage a relationship with each CA in
order to obtain revocation information, presents a scaling problem for designers and an
implementation problem for security and system administrators.
Next are given the contributions of this thesis related with a research to deploy an OCSP
architecture for the Computational Grid (a “Grid-OCSP” system), which may be able to
cope with the specific requirements and challenges identified for this environment. At
the time of writing this work, most of the proposed ideas were being considered as an
Open Grid Forum’s Recommendation [OCSPReq].

3.2 OCSP Relying Party requirements for Grids
For OCSP to be used in multi-organizational Grid environments, support for it must be
integrated in any path validation software used according to the following
recommendations.

3.2.1. Revocation Source Requirements
In some scenarios, CRLs provide a better mean of processing revocation than OCSP;
for instance, in offline environments, or in the case of a relying party validating many
different client certificates, it is better from a performance point of view to have all
revocation information cached locally. In other scenarios, CRLs may be used as a
backup source of revocation information in case the OCSP service fails (i.e. due to
temporary network outage). As OCSP is deployed, and becomes a production service in
Grids, not all CAs will be capable of providing Authorized responder service
immediately. According to the preset research, relying parties and security managers
will see a gradual transition from CRL to OCSP as the primary source of revocation
information.
In light of the issues listed above, relying parties must be capable of handling both
CRLs and OCSP, and it must be a configurable option which source of revocation to
prefer and which to use as a backup, on a per-issuer basis.

 56

CRLs revocation reason codes and their usage are largely outside the scope of this
thesis. However, one code needs to be discussed: certificateHold, which was provided
in the [X509] and [RFC3280] with little guidance in how it was supposed to be used.
Grid applicability has been suggested in a couple of use cases where temporary
blacklisting is needed. The research done for this thesis suggest, on an experimental
basis, the use of certificateHold to suspend a given certificate for a time; the manager of
the CRL may later decide to remove the certificateHold status, or change the revocation
status to another recognized revoked status. This constitutes a Grid-only usage. The
policies that govern how certificateHold status is applied or how its status is changed
are outside of the scope of this document.
Of all the reason codes, certificateHold appears to have the unique property of
impermanence. It can be applied to a certificate, and then withdrawn, unlike the other
reason codes (i.e. keyCompromise), for which no such behavior could be considered
reasonable. As a result, on removal of certificateHold status, the prior CRLs become
invalid. While CRL policy is outside the scope of this document, it seems desirable to
limit the certificateHold reason code to OCSP usage, or limit its appearance to Delta
CRLs if possible (see the Delta CRL usage subsection below). This may not be
possible in a scenario that requires blacklisting a certificate for use with a legacy service
unable to use OCSP, but such scenarios should take into account the possibility of stale
CRLs.

3.2.2. OCSP Latency and Cautionary Period
Latency is inherent in network transactions, and revocation has a built in quality of
uncertainty: Given an answer of Good, the relying party knows the certificate was
Good the last time somebody created a CRL. But will the certificate still be good the
next time the CRL is updated?
For trust evaluation purposes, the responder may want to quantify an upper bound
and/or approximation of the current latency, and convey that to the relying party. To
date, there is no well-defined technical means of augmenting an OCSP response with
such “cautionary period” information.
The “traditional OCSP” currently can provide three timestamps characterizing the
revocation response just ad mentioned in section 2.2.1. These timestamps are:
thisUpdate (the time at which the status being indicated is known to be correct),
nextUpdate (the time at or before which, newer information will be available about the
status of the certificate) and producedAt (the time at which the OCSP Responder signed
this response). If nextUpdate is not set, the responder is indicating that newer revocation
information is available all the time. Whenever this field is set, it is an indicator that the
revocation information has been retrieved from a CRL being released only at certain
intervals of time. In certain cases, this interval may be quite large -even in the order of
days-. Both thisUpdate and nextUpdate are from the underlying CRL timestamps.
Taking into account these parameters, we formulate the concept of “cautionary period”
as follows:

Definition 1. We denote as “cautionary period” the interval of time during which
relying parties assume a degree of uncertainly about the Proxy Certificate’s status being
reported by the OCSP Responder.

Given the fact that OCSP servers producing pre-computed responses (which fix a
producedAt value for that response very close to thisUpdate and with not relation to the
time at which the Request is being done by the OCSP client) have the potential to

 57

confuse relying parties when evaluating the cautionary period, a new timestamp called
receivedAt is introduced to specify the moment when relying parties are receiving the
OCSP Response. In terms of the mechanisms introduced in this document, receivedAt is
given by:
• For prevalidation receivedAtWSRF, which denotes the time at which the Grid

client’s (service invoker) Proxy Certificate is being validated.
• For the second-level caching mechanism cacheHit, denoting the time at which the

cached OCSP Response is being found and retrieved.

In this way, the cautionary period is given by the following interval:

[thisUpdate , receivedAt]

The longer such cautionary period is, the less precision resulted in the OCSP response
being provided. This factor is a measure of the risk level that the relying party is willing
to take when accepting the result status coming from an OCSP Response as is. Relying
party’s validation middleware should discard OCSP Responses conveying a cautionary
period greater than the one specified in the validation policy.

3.2.3. Caching OCSP Responses
A relying party might prefer to query a local, fast responding OCSP Responder; this
server manages a database of cached responses from previous queries based on lifetimes
supplied in those queries, perhaps with a pre-set time-to-live (i.e. computed from a
cautionary period). The expectation is that this responder is acting in Trusted mode (see
OCSP review in section 2.2.1) and must be configured with a default service locator
(high-level responder). This responder may poll CAs for CRL information, but this is
not recommended. OCSP Responders that cache responses may pre-sign those
responses for future use.
On the other hand, it is often the case that a relying party interacts with some OCSP
Responder on a frequent basis. Instead of each interaction triggering a new OCSP
request, causing unnecessary load and system latency, caching of responses should be
allowed and may be supported by the relying party software. Enabling local caches at
relying parties is recommended to reduce the number of queries made to the OCSP
infrastructure, thus optimizing available resources (also consider that some OCSP
providers sell their service on a per-request basis). In general should be noted that while
OCSP responses reporting a permanently revoked certificate status can be cached
indefinitely, it must be possible to configure the maximum size and lifetime/freshness of
the entries in an OCSP response cache (for a relying party cache it is advisable to use
the Cautionary Period parameter as defined in 3.2.2); this is especially important when
dealing with suspended certificates -certificateHold-.
Further details about caching and other OCSP optimizations schemes based on our
Grid-OCSP prototype are given in section 6.2.2.

3.2.4. Responder Discovery
At a minimum, the Grid-OCSP must be able to dynamically locate the OCSP
Responder. Local configuration must have precedence over any service locator
information located in the certificate’s Authority Information Access -AIA- extension.
OCSP relying parties should include any information about an Authorized responder
location (as indicated by OCSP service locator URLs in the AIA extension of the
subscriber certificate) in its OCSP request.

 58

To allow for high-availability and load balancing, it should be possible to associate each
issuer name with more than one responder URL. However a default responder for “all
other” issuers should be configurable as well.
Any OCSP server acting as Clearinghouse or Trusted Responder must be contacted
first. When the OCSP relying party is provided with more than one Responder URL or
even with more than one revocation source, then it must follow the recommendations
given in section 3.2.6 to obtain a definitive status code.

3.2.5. Nonce
A nonce is used to bind a specific query to a specific response, preventing replay attacks
(see [RFC2560], section 4.4.1). In practice it has been used to force an OCSP
Responder to issue a fresh response. Large-scale OCSP Responder implementations
continuously pre-produce OCSP responses in the background, for maximum
throughput.
Pre-produced OCSP responses cannot be used to service nonced requests, because they
require a signed answer from the responder, including the transaction-unique nonce.
Therefore, for efficiency reasons, OCSP relying parties may decide not to make use of
nonce in the requests. This decision should balance efficiency, availability of dynamic
information and replay attacks prevention.
Forcing a fresh response at first glance seems like a good way for a relying party to
insure an up-to-date, real-time validation check. However, OCSP does not specify
responder behavior in sufficient detail to guarantee this behavior; the nonce requires it
to do additional work, including an expensive digital signing that adds to the latency of
the response. Nonce should not be used in Grid configurations, except where
circumstances and replay vulnerability are a particular concern.

3.2.6. Error Handling and the Unknown Status Code
OCSP relying parties will occasionally encounter errors from their network stack, errors
returned from the OCSP Responder, or the Unknown status code: in most cases, such a
failure means “try somewhere else” or “try later”, indicating to the relying party to
probe other possible sources (including other OCSP Responders) for revocation
information, possibly a bit later in time. If, after an exhaustive search of all available
sources of revocation information, the status of a certificate is still Unknown, the relying
party will have to choose between three unpalatable alternatives: interpret “network
error or Unknown” as either Good or Revoked, or even trigger a fail-back mechanism
(i.e. allowing to wait a predefined timeout and start the whole search process over
again). Interpretation of an “Unknown” as a definitive Good leads to worry and conflict
with security policy, so a final Revoked status is the choice of most security experts
should all other alternatives fail. In practice, this policy may lead to an unnecessary
denial-of-service so it is recommended to implement high availability mechanisms at
both the OCSP Server and the relying party, just as the ones proposed in section 6.2.2.
In light of these issues, relying parties must be provided with a configuration option to
allow local rules and security policies to be applied in circumstances where the
revocation status is undetermined.
The relying party should perform additional checks before accepting an OCSP response;
let us take for example verifying the nonce returned against the nonce sent (if a nonce
was used), validating the OCSP Response’s signature (noticing the use of the ocsp-
nocheck extension) and verifying its freshness (checking that the producedAt timestamp
is within the allowed lifetime or cautionary period – this is especially important in the
case of cached or preproduced responses).

 59

3.2.7. OCSP Request Signing

The relying party may choose to sign the OCSP Request, in which case performance
and security implications must be considered. In general, to allow a wide range of
customizable options this research recommends using an OCSP configuration file. In
Chapter 6 will be introduced OGRO, a prototype developed with this feature.

3.3 OCSP Responder Requirements
In this section are explained the requirements for a Grid-OCSP Responder, mostly
based on the results of the research performed with the CertiVeR’s validation service
(explained in section 2.2.3).

3.3.1. Performance, Key Protection
Most OCSP Responder implementations can use cryptographic hardware to further
accelerate their performance and also to provide additional protection of the signing
keys. The OCSP signing key is the second-most important key in a PKI, just after the
CA’s even though some experts consider it to be the most important, since it is used to
assert the current status of an issued certificate. Moreover, by its very nature, OCSP
Responders are exposed to network connectivity, while most CAs work off-line.
While our research does not enforce the use of hardware protection, it does recommend
that the security of the OCSP Responder key should be in parity with the CA issuing
key.

3.3.2. Responder Certificate
An OCSP Responder implementation must support live updates of its signature key
material. It is important to consider that due to the sensitivity of relying parties to
network errors, service outages and disruptions must be avoided while updating the
OCSP Responder’s signing keys.
Authorized Responder scenarios (see section 2.2.1) may be implemented by enabling
the Responder to use (with the same key pair) multiple signing certificates
simultaneously: one for each issuer for which the OCSP Responder provides revocation
information.

3.3.3. Revocation Information Sources
An OCSP Responder must consider several sources and formats of revocation
information. These include CRLs, databases, and simple files (blacklisted users or Grid
services); it may also include several retrieving protocols (i.e. LDAP, HTTP, HTTPS,
FTP, etc.). The sources must be secure and trustable. Disclosure of access controls and
roles for such services is expected as part of the policy disclosure for OCSP services. It
is also expected that revocation or blacklisting events in such services will be
authenticated, authorized, and logged with the same care and detail provided by CRL
update operations in Certification Authorities.
Non-CRL databases such -as blacklists- must provide revocation information in
accordance with [RFC2560] expectations and requirements. In particular, these
databases must include a thisUpdate attribute value assertion; should include a
nextUpdate assertion and should provide the equivalent to CRL Entry Extensions (also
known as “CRL reason codes”) as defined in [RFC3280]. This is necessary in order to
provide a uniform presentation to the relying party.
In general, errors from external revocation services must be avoided, and when this is
not possible, they must be carefully logged, and in some cases they may need to trigger

 60

alarms. A suppressed error from a failed local blacklist service might inadvertently
allow a security breach.

3.3.4. Transponder Mode
While not part of the OCSP standard, it is common in real-world deployments for an
OCSP Responder to act in Transponder mode, in other words it will act as a
proxy/gateway and forward any relying party requests as-is to other, more authoritative,
Responders, and likewise transparently forward the response back without re-signing it.
Transponder mode is useful for organizations that want to control the outbound OCSP
traffic originating from within their own administrative domain(s). When combined
with an OCSP response cache, a local responder in Transponder mode can be useful to
cut response latencies, reduce network traffic, and minimize load on external
Responders.
In addition, a Responder in Transponder mode can be used for load balancing, to route
the OCSP request according to specified parameters (i.e. OCSP load, network traffic,
availability, etc.), or as a central “redirector”, thus consolidating configuration and
management issues.

3.4 Certificate Authority Requirements
3.4.1. Certifying Authorized Responders

A CA’s Authorized Responder should be issued a certificate with the ocsp-nocheck
extension as well as OCSPSigning in the extendedKeyUsage extension, as described in
[RFC2560]. Direct use of the CAs private key for OCSP Response signing is not
recommended and must be avoided. As a result, the Authorized Responder certificate is
not subject to revocation check through OCSP. In order to reduce the risk associated
with the Responder certificate, it is suggested that the Authorized Responder certificate
have a very short lifetime.
Current CA practice in Grid-PKIs suggests that Authorized Responders will be difficult
for many CA providers to operate. Many Grid-CAs are offline services, running on an
as-needed basis (perhaps once a day to produce a CRL). Very short lived certificates,
with lifetimes in minutes, and an always-available OCSP server, may be quite difficult
for some CA providers to deploy. In the case of an infrequently-operated offline CA, it
is recommended for the CA to produce a large number of signed OCSP certificates,
whose key pairs are securely managed, in order to cover the time gaps between its
operations. This is an ideal scenario for secure key storage devices.
CA providers who cannot easily operate an OCSP Responder service with practically
zero downtime can sign an OCSP Responder certificate for another OCSP Responder,
with the desirable reliability characteristics.

3.4.2. Certificate Revocation Lists
It is recommended that CRLs be type CRLv2, in order that revocation reason codes can
be made available for use in OCSP responses. If a CA provides or supports OCSP
services (such as providing an OCSP locator reference in end-entity certificates), the
CA must continue issuing at least a full CRL at regular intervals, in order to provide
relying parties a reasonable fallback strategy.
Revocation data from CRL and non-CRL information sources must be made available
to the OCSP Responder in a timely and reliable way.

 61

3.4.3. Delta CRLs
CAs should provide Delta CRLs (see [RFC3280] section 5, for a full discussion of CRL
issues). Delta CRLs provide two key benefits that can greatly enhance the quality of an
OCSP service:
• The smaller size of a delta CRL reduces the network load, and the amount of

processing time required by the OCSP Responder to integrate the new revocation
information into an existing database.

• Delta CRLs can also greatly enhance the timeliness of revocation information based
on CRLs. Delta CRLs come with their own nextUpdate field. OCSP Responders
capable of managing Delta CRLs will be able to assemble a new effective CRL, and
report a new effective nextUpdate from the information provided by the Delta CRL.

Both of these features, while relatively unimportant in current Grid-PKIs, will improve
the responsiveness and minimize latency in Grid deployed OCSP Responders.
In Grid PKIs today, CRLs are issued with fairly large nextUpdate periods (between 15
and 30 days are not uncommon). A nextUpdate field set far in the future allows
sufficient time for most temporary network or host problems to be resolved before Grid
end users are affected. This resolution of the problem does not meet current security
requirements very well (see also the recommendation for defining a cautionary period in
section 3.2.2)
Careful production of Delta CRLs and base CRLs will provide better quality, lower
latency revocation information to OCSP Responders (in particular to Trusted ones and
sophisticated relying party’s implementations), while shielding legacy CRL users and
lightweight implementations from the additional complexity.

3.4.4. CRL Latency
In order to minimize latency effects and provide the most current information available
to relying parties, our research found that CAs should push (publish) CRL information
immediately to such entities as soon as a revocation takes place. Obviously CAs will
not know about the existence of every Responder in the world, so at least Authorized
Responders for that particular CA should be updated in this fashion.
It is also advisable for CAs to develop a relationship with one or more “clearinghouses”
or large VO Trusted Responders. Section 3.5.1.2 provides further details about this
particular configuration.

3.5 OCSP Service Architecture
OCSP Responder deployments suitable for Grids can be viewed from two different
points of view: the relying party expectations and the OCSP Responder viewpoint. Let
us consider in this section both aspects and how they might be interpreted according to
the OCSP Responder capabilities.

3.5.1. Relying party expectations
3.5.1.1.Site or Organizational Responders

Local Responders, or even relying parties, may contact a site or Virtual Organization
Responder. This service will contain a full range of policy rules, path validation rules,
and certificate validation rules appropriate to the site or organization and may be
configured with one or more default service locators.
This OCSP Responder also should be acting in Trusted mode, but may act in
Transponder mode if necessary. VO and Site responders should poll and retrieve CRL
information from CAs, whereas this data is not directly published.

 62

3.5.1.2.OCSP Clearinghouse
Based on current operations, it is recommended that the emerging regional Grid PMAs
and even the IGTF [IGTF] itself consider creating several well-known OCSP
“clearinghouse” Responders. Middleware discovery software should look for these
well-known responders when no other methods succeed. Since the operational and
financial issues of such services are considerable, the details must be determined
elsewhere; but without such services the viability of revocation services in Grids is in
doubt. These clearinghouse Responders will operate in Trusted mode and it is expected
for them to gather CRL information from every known CA used by Grid PKIs. In order
for such a service to be trustable by Grid relying parties, signing certificates may have
to be publicly and securely distributed in a fashion similar to that currently provided by
Grid CAs.
By concept, OCSP Responders must provide the best quality revocation information to
their relying parties. Responders above the level of a local caching service will have
access to a variety of sources of revocation information about each certificate.
Responders acting as intermediaries must adjust their search strategies on a case-by-
case basis to provide the best quality information.

3.5.2. OCSP Responder viewpoint
An overall OCSP service architecture suitable for Grids is depicted in figure 15. It
consists of four classes of components:

• Authorized OCSP Responders.
• Trusted OCSP Responders.
• OCSP Transponders.
• OCSP relying parties.

All of the components from figure 15 may appear in multiple instances and should be
configurable according to the needs of their operators. A typical site (organization or
administrative domain) configuration includes at least two (for fault tolerance) Trusted
Responders, configured to serve certificate status information for every CA accepted by
the site, either by downloading the appropriate CRLs or by sending OCSP Requests to
an external Responder whenever such exists (indicated by local configuration or
presence of a service locator URL in the incoming OCSP Request, in turn copied by the
OCSP relying party from the subscriber certificate that is currently being validated). In
the latter case, the Trusted Responders may act in Transponder mode and CRL
information may be used as a fallback source of revocation information (as indicated by
path #1 in figure 15).
As indicated by path #2 in the figure 15, it is foreseen that “related CAs”, for instance
subordinate CAs or those members of the same PMA, may join efforts and set up a
shared Trusted Responder serving requests on behalf of all of the CAs (note that such
Responder can be Authorized only if every member of the PMA provides it with an
OCSP signing certificate).
To alleviate the need for complex configurations at each site, or allow for load
balancing, an OCSP Transponder may act as a redirector for some CAs as indicated by
path #3 in figure 15. Note that in this case the OCSP Transponder is not re-signing the
responses.

 63

3.5.2.1.Authorized Responders
The Authorized Responder is the most typical OCSP configuration, arguably the most
scalable and maintainable. The CA delegating this authority is directly responsible for
providing timely updates to its Authorized Responders.
However Authorized Responders create a circular dependency problem in that relying
parties may wish to know whether the responder certificate itself has been revoked or
not, before accepting the signature of the OCSP Response. To address this and other
similar problems, a certificate can be marked with the ocsp-nocheck extension,
indicating to relying parties not to attempt to verify the revocation status of it (at least
not using OCSP).
The ocsp-nocheck extension is typically combined with relatively short-lived
certificates and close supervision of the issuer. The use of hardware key protection can
mitigate some, but not all of the concerns with the Responder key-pair, since the
fundamental question of its revocation is being side-stepped. The ocsp-nocheck
extension can also be used to mitigate anticipated load problems: for instance, the TLS
certificate of a popular (but low-risk) server may be stamped with the ocsp-nocheck
extension to eliminate OCSP queries otherwise triggered by all relying parties
connecting to that server.
The operator of an Authorized Responder should ensure high availability of the OCSP
service, for instance by operating several independent instances of the Responder or
making use of fault-tolerant or mirrored systems.

3.5.2.2.Trusted Responders and Transponders
The Trusted Responder is one that may be particularly useful in scenarios requiring
additional controls and capabilities. Trusted Responders are usually operated by sites or
at an organizational level to provide service to local OCSP clients, thus centralizing the
complexity of the OCSP/CRL configuration and minimizing the need for providing
means to control outgoing network connectivity.
It is feasible to think that combinations of Authorized and Trusted Responders are likely
to be deployed in Grids. Trusted Responders should enable caching of OCSP responses,
to reduce the load on the Authorized Responders (and themselves). If required, also

Fig. 15. An overall Grid-OCSP Responder architecture.

 64

Trusted Responders may operate in Transponder mode, just as described in section
2.2.1., but this requires configuring the OCSP clients to trust these Responders.

3.5.2.3.OCSP Relying Parties
Relying parties (OCSP clients) must be provided with a configuration capability (like
the policy file proposed in section 6.2) sufficient to take advantage of the discovery
mechanisms for OCSP Responders, but always meeting local security and reliability
requirements.
OCSP overhead is a critical issue to take into consideration for relying parties, therefore
a minimum set of provisions should be taken to balance security and performance. Let
us mention for example that OCSP clients should not make use of a nonce in their
requests as it becomes critical for enabling OCSP caches. In section 6.2.3 we will revisit
the OCSP performance topic by showing the results of our research.

3.6 Open Issues
In this chapter have been presented the results of our research on deploying the Online
Certificate Status Protocol (OCSP) into the Computational Grid. We have reviewed the
main challenges that seem to be delaying OCSP adoption, but also have detailed a set of
recommendations towards easing this goal. There is still a lot of work to do with the
Grid community to push the use of OCSP as an alternative to CRLs and few other static
mechanisms being used in current installations, but prototypes like the one developed
during this research (Chapter 6) may be useful for testing purposes among system
administrators, developers and Grid users en general.
Despite this initial effort on implementing a validation infrastructure based on Grid-
OCSP, there are still open questions about interoperability issues in these multi-
authoritative environments. In particular it is easy to notice that OCSP (and this is true
also for other validation protocols) can only give information about a Grid user
credential’s status, but nevertheless about its assurance or security level. This
information is required to build the proposed Extended Path Validation process.
At the beginning of this thesis document we justified the importance of applying a
security evaluation for trust management purposes, beyond a binary valid/invalid reply.
But, how to perform this evaluation? A first step towards finding the “security level”
associated with a Grid identity (in particular with an end-entity certificate), may consists
in applying an evaluation methodology able to unambiguously quantify it.
In analogy with the trust model implemented by the Policy Management Authorities
(section 2.3.3), a suitable approach could focus in evaluating the issuing Certification
Policy and then associating the obtained security level to the end-entity certificate’s
status being requested to the OCSP Responder. Afterwards, an enhanced Grid-OCSP
client should be able to extract this information from the OCSP Response to perform a
comprehensive validation decision.
The next chapter focuses in explaining an investigated evaluation methodology, which
after some subtle extensions, was found to be quite useful to obtain a numeric value
representing a Grid-PKI security level. This technique is called, the Reference
Evaluation Methodology or REM.

 65

CHAPTER
4 STATIC POLICY EVALUATION:

A CONTRIBUTION TO
ACCREDIT GRID PKIS

 66

4.1 Motivation
In the last years, security research activities in the computational Grid context have been
focused on the definition of infrastructures that enable Single Sign On (SSO)
mechanisms to access distributed resources that belong to, and are administrated by,
different and independent domains. SSO mechanisms allow an end user to authenticate
upon his first access to a resource and let him use those verified credentials for the
following accesses to resources that belong to different machines in the same Virtual
Organization (VO). From a security point of view, this problem is faced first of all by
adopting Authentication and Authorization Infrastructures (AAI), implemented in
different ways that include organizational and technical procedures described by
policies, and security mechanisms enforcing them. Commonly used AAI were reviewed
in section 2.1
Nowadays it is a common approach to demand authentication-related operations to
external Authorities acting as Trusted Third Parties (TTP). Specifically in Grid contexts,
available solutions are based on the adoption of Public Key Infrastructures that enable
the implementation of authentication and authorization mechanisms on the basis of
X.509 digital certificates issued and signed by Certification Authorities (CA).
The VOs require the use of certificates that are trusted by all the involved parties, each
one of them issued by their home institution’s Certificate Authority. These
cryptographic credentials are the basis not only of entities authentication (end-users and
machines), but also of job delegation mechanisms and even of further authorization
processes.
Wide deployment of VOs and Grid-PKIs required the adoption of Policy Management
Authorities (PMAs) to establish explicit trust relationships among these (section 2.3.3
introduced basic concepts about PMAs). Even though all PMA’s members Grid CAs
must pass the accreditation process, not all of them accomplish the respective
Authentication Profile on the same level. As shown in [LoA] this information is very
important to build trust relationships among Grid installations, however to date there is
no automatic way to obtain it.
The contribution presented in the following sections is focused on the problem of
building a technique aimed for PMAs to automatically perform the Grid-PKI
accreditation process by evaluating its Certification Policy and obtaining useful
information from it, for example a numeric security level. This information can be used
later to assess Certification Authorities in improving their security features. The main
components for validating digital certificates under these premises are:
• An evaluation methodology (to be introduced in section 4.3), which is based on the

formalization of the CA’s Certification Policy to i) determine if a CA is compliant
with the Authentication Profile defined by the PMA and ii) by defining a security
metric to quantitatively compute a Global Security Level (GSL) representing how
much better the CP’s security provisions are when compared against the PMA’s
Authentication Profile.

• A Grid Validation Infrastructure –extended from the system introduced in chapter 3-
able to convey the status and associated GSL of any end-entity certificate through
the Online Certificate Status Protocol previously explained in section 2.2.1.

The security level obtained from the CP evaluation presented in this chapter, can then
be conveyed and used by relying parties to enhance the process of validating any client
submitting a job to the computational Grid. This topic will be further explained in
chapters 5 and 6, where the last contribution of the present thesis is covered: the Policy
and OCSP based Interoperability System.

 67

4.2 Quantifying the PMA’s accreditation process

As mentioned in section 2.3.3, the PMA’s Authentication Profile document describes
the minimum set of requirements imposed on Certification Authorities (CA) that
traditionally issue long-term X.509 credentials to end-entities, who will themselves
posses and control their key pair and activation data. These CAs act as an independent
Trusted Third Party for both subscribers and relying parties within the Grid
infrastructure.
In general, any CA requesting membership to a PMA must present its Certification
Policy (CP) document which will be in turn evaluated by experts against a set of rules
or minimum security provisions defined into the PMA’s “Authentication Profile”, thus
determining whether it is fulfilled or not. Obviously a further auditing process could
determine if in practice the CP itself is also being satisfied by the PKI.
According to practical experience in this field, it is possible for all the Grid-PKI
members of a certain PMA to not only fully satisfy the appropriate “Authentication
Profile”, but also to do so in different levels. Let us show the following example to
clarify this point of view:

Example 1. Suppose that both PKIa and PKIb are part of the same PMA whose
Authentication Profile document requires an end-entities’ private key minimum length
of 1024 bits. On the other hand, PKIa’s CP states that its users own private keys of at
least 1024 bits while PKIb’s CP states a minimum of 2048 bits. Even though both PKIs
fulfil the PMA minimum requirement, a certificate issued by PKIa may have a private
key smaller than one issued by PKIb. In a broad sense of the word, it could mean that
for this particular provision PKIa is less secure than PKIb. If the rest of the CP’s
provisions for both PKIs are exactly the same, then the global security level of PKIa
should be less than PKIb’s. Under these conditions a Grid resource owner may decide to
give access only to users with a certificate issued by PKIb.

To perform validation decisions as the one presented in the previous example, it is
necessary to evaluate the distance between a particular Grid-CA’s Certification Policy
and a reference PMA’s Authentication Profile. Quantifying this “security level” may be
useful also for relying parties willing to take finer-grained authorization decisions.
From the research presented in this thesis, the Reference Evaluation Methodology or
simply REM [REM1] resulted as an appropriate mechanism for quantifying the security
level associated with a Grid-PKI. The proposed evaluation methodology is general
enough to be applied in all cases in which cooperation is possible only after explicit
agreements among parties, via for example a Trusted Third Party (i.e. the Policy
Management Authority).
The following section explains the basic concepts of this evaluation methodology.

4.3 The Reference Evaluation Methodology
In [REM1], [REM2], [REM3] and [REM4] were proposed the Reference Evaluation
Methodology to evaluate and compare different security policies, quantifying both their
Global Security Level (GSL) and their compliance to a declared SLA –Service Level
Agreement-.
In particular the REM is made of three different components:
• The policy formalization: defines how to express a security policy in a rigorous

way.

 68

• The evaluation technique: the process to evaluate a previously formalized policy.
Once defined an evaluation technique, it can be used to define a security metrics in
order to state the security level of the infrastructure.

• The reference levels: denotes how to get a security level relative to a minimum
policy used as reference

In this section is provided a high level description of the evaluation methodology, which
consists of the following phases:
1. Policy Structuring (section 4.3.1): consists in finding a common structure for

certificate policies that are usually expressed by means of a natural language.
2. Policy Formalization (section 4.3.2): a formal representation is obtained from the

structured policy.
3. Policy Evaluation (section 4.3.3): a distance function is defined to evaluate and

compare policies.

4.3.1. Policy Structuring
The Policy Structuring phase consists of three steps and its goal is to define a not
ambiguous policy framework and then use it to structure the Certificate Policy to
evaluate. For this research was decided to use the “Global Grid Forum Certification
Policy Model” [GFD16] as the document upon which the REM’s template could be
built. This was not only because it is a common practice for the Grid community to use
it for writing their own CPs, but also because all of the provisions from EUGridPMA’s
Authentication Profile [GridAP] can be easily mapped to it.
Parsing the GGF’s model CP into the form required by the REM is a tough process as it
requires not only clearly identifying each one of the possible security-related provisions,
but also organizing and placing them into the leaves of the formalization tree. The first
levels of this tree are precisely those defined in the RFC3647 [RFC3647]; this document
is actually the most important reference to a Certification Policy structure, so for the
first level we have allocated the following sections:
1. Introduction,
2. General Provisions,
3. Identification and Authentication,
4. Operational Requirements,
5. Physical, Procedural and Personnel Security,
6. Technical Security Control,
7. Certificate and Certificate Revocation List (CRL) Profiles,
8. Specification Administration.

For the Second level of the tree we describe all the details regarding every macro-
provisions (first level) by stating objects that despite their complexity, bring more
security bounded information. Let us take for example the “Technical Security Control”
provision which includes: “Key Pair Generation”, “Private Key Protection”, “Other
Aspects of Key Pair Management”, “Activation Data”, “Computer Security Controls”,
“Life Cycle Technical Control”, “Network Security Control” and “Cryptographic
module engineering controls”.
After the complete tree has been generated each node must be refined by introducing
enumerative and ordered data types, each representing a security provision (typing
step). The output of the typing step is a policy representation P that is used to represent
any Certificate Policy (translation phase). Translation of individual Certificate Policies
to evaluate is needed to map them into the formalized P. Up to date, almost all the steps

 69

of this phase are not automatable; nevertheless, while the tree generation and typing
steps could be performed just once, the translation step needs to be performed once for
each policy to represented by P. On the other hand it is worth highlighting that in most
of the cases Certificate Policies do not change drastically during a PKI lifetime.
At the end of the Structuring phase, each policy is represented by a non numeric vector
P of not heterogeneous provisions.
The fully structured CP template for Grid-PKIs is presented in appendix A (notice that
in this case n = 166). This template will be widely used for the rest of this chapter.

Example 2. Based on Appendix A let us take a couple of the provisions from the
“Technical security controls” section:

Key pair generation and installation = {generatedByCA, generatedByEntity}
Asymmetric key sizes = {512, 1024, 2048}

A wide number of Grid-PKIs have published policies supporting different security
levels, for this reason, before continuing, we need to introduce the definition of “Global
Security Level” associated to the Certificate Policy and “Local Security Level”
associated to the single provisions of the policies.
The Global Security Level (GSL) is representative of the class of the Certificates that a
CA could issue. A CA defines different classes of certificates that are strictly related to
the assurance level the certificate is able to guarantee and consequently to the different
applications the certificates are best suited for. For example if certain CA issues three
different classes of certificates (i.e. Silver, Gold and Platinum), then it must publish
three different Certificate Policies, one for each class.
The Local Security Level (LSL) is strictly related to the assurance level that each
provision is able to guarantee to the users. To formalize this concept it is necessary to
introduce some formal notations.
Let P be a policy consisting of a finite positive number n of provisions iK (i = 1..n).
We define each provision iK to be a data type, i.e. a set of m different values:

},{ ,2,1, miiii aaaK L= ; each value implies a different security level.
To introduce the concept of local security levels, a total order relation “ i< ” must be
defined on iK . An order relation could already exist (for example if iK is a numeric
set), otherwise the elements of iK must be ordered according to some criteria
established by the policymaker. Based on example 2, we show in example 3 the
corresponding local security levels:

Example 3. The following order relation shows that the greatest LSL is achieved if the
End-Entity generates its own key pair:

Key pair generation and installation = { 0L < 1L }
Where: 0L ={generatedByCA}, 1L ={generatedByEntity}
And for the key sizes:

Asymmetric key sizes = {512 < 1024 < 2048}

Each provision is now represented as an enumerative and ordered data-type; the policy
space "P" is then defined as the vector product of all n provisions iK i.e.

nKKKP ×××= K21 .

 70

The provisions shown in the previous examples can not be evaluated directly; they need
to be transformed into a numeric (normalization) and homogeneous (clusterization)
vector first. The definition of this vector is the goal of the “Formalization” phase.

4.3.2. Policy Formalization
Policies may be expressed in both, a formal or in an informal way. Despite its
advantages for an automatic processing a formalized policy is more difficult to manage
and understand, so often security policies are simply expressed into a semi-formal way,
but then again even though their structure is easier to understand -even for non technical
people-, they are still difficult to be automated. A formalized policy instance expresses
in a rigorous way, who, how and where security provisions will be applied. The way in
which a policy is formalized depends strongly on the evaluation technique intended to
adopt.
In this phase will be transformed the Policy Space P into an homogeneous space PS and
then, defined a distance criterion among policies to build a Metric Policy Space. This
Metric Policy Space is formally defined as the pair MPS = (PS, d) where PS is an
homogeneous Policy Space and d is a metric function. Given two policies PSQP ∈, ,
d(P,Q) is the distance from P to Q. The next step is to define the mentioned
homogeneous space; this task consists of two different steps: i) normalization and ii)
clusterization.
The normalization step aims at assigning a ”numerical value” to each provision while
the goal of the clusterization step is to associate a comparable security mean to each
provision by means of the formal definition of absolute LSLs. Only after clusterization,
the policy space can be considered homogeneous.
For the normalization, due to the total order relation i< it is possible to associate a
progressive numerical value to each value in iK , normalized with respect to the number
of values (m) that the element itself can assume. In the following example we associate
the numeric value i/m to the thi element of the provision.

Example 4. For the normalization phase:

Key pair generation and installation = { generatedByCA < generatedByEntity }
 generatedByCA := 1/2
 generatedByEntity := 2/2

Asymmetric key sizes = {512 < 1024 < 2048}
 512 := 1/3
 1024 := 2/2
 2048 := 3/3

After the normalization, each policy P can be represented by a numeric vector,
nevertheless, P is not homogeneous yet. Each element of the vector is, in fact,
representative of a different provision and its numerical value is not comparable with
the values associated to the other provisions, representing very different informative
contents; i.e. the comparison among numeric values associated to different elements is
meaningless. At the aim of giving to different provisions a comparable security value, it
is necessary to apply clusterization.
For the clusterization, the provisions will be literally grouped into clusters according to
the Local Security Level assigned to each cluster. At this aim it is suggested to adopt a
clusterization technique based on a family of transformations (the F-transformations) to
map the normalized provisions into a set of predefined LSLs.

 71

Formally speaking, let P be a policy and if
_

 be the transformation: LKf ii →:
_

, where

iK is a provision of P and L is the set of the values associated to the LSLs

(},{ 10 zLLLL L=). According to this if
_

-transformation, each instance of the provision

iK will be assigned to a local security level.
Let us assume that L consists of four elements),,,(3210 LLLL , this choice is a realistic one
since it is the case of several examples of PKIs (i.e. with certificate classes Copper,
Silver, Gold and Platinum). Let m be the number of instances of the provision iK , it is
possible to distinguish three different cases: m = 4, m < 4 and m > 4. Then the
suggested transformations are:
• If m = 4:

)1,1()(
_

mjnilaf jji KK =∀=∀= .
• If m < 4:

))1(2,1(},{)(,)(,)(32

_

4

_

11

_
−===== mjnillaflaflaf jimii KK .

• If m = 2p and p > 2:

⎪
⎪
⎩

⎪
⎪
⎨

⎧

−+=⇔
=⇔
=⇔
=⇔

=

)1()12/(
2/2

1

)(

3

2

4

1
_

mmjl
mjl

mjl
jl

af ji

K

K
.

• If m = 2p+1 and p ≥ 2:

⎪
⎪
⎩

⎪
⎪
⎨

⎧

−++=⇔
+=⇔

=⇔
=⇔

=

)1()12/)1((
2/)1(2

1

)(

3

2

4

1
_

mmjl
mjl

mjl
jl

af ji

K

K
.

Example 5. Applying the clusterization criteria to the provisions from Example 4:

Key pair generation and installation = { generatedByCA < generatedByEntity }
 generatedByCA := 1/2 0 L→
 generatedByEntity := 2/2 4 L→

Asymmetric key sizes = {512 < 1024 < 2048}
 512 := 1/3 0 L→

 1024 := 2/2),(32 LL→ Notice that in this case if
_

 maps to two LSLs,
 because it is not a function.
 2048 := 3/3 4 L→

Once the Certificate Policy has been structured and formalized, it is possible to proceed
directly to the evaluation just as explained in the following section.

4.3.3. Policy Evaluation
Different evaluation techniques represent and characterize the security level associated
to a security policy in different ways, for example with a numerical value [OSSTMM],
a fuzzy number [REM2] or a verbal judgment representing its security level.
Each PS (Certificate Policy structured, normalized and clusterized) can be represented
by a nx4 matrix as follows:

 72

• n rows represent the structured CP’s provisions.
• Four columns represent the possible LSLs.
• Each element ija (i = 1..n, j = 1..4) of the matrix is defined as follows:

⎩
⎨
⎧

>
≤

=
xj
xj

aij ,0
 ,1

where xii lKfx =∈)(and]4,1[

Example 6. For a particular CP the following values are specified:
Key pair generation and installation = { generatedByEntity } and
Asymmetric key sizes = {1024}

Therefore the following rows will be its representation into the correspondent matrix:
Key pair generation and installation = {1,1,1,1}
Asymmetric key sizes = {1,1,1,0}

For the Certificate Policy evaluation a distance criteria will be used to define the Global
Security Level –GSL- as the Euclidean distance among matrices, that is:

()()BABABAd −−= ,),(σ .
Where:

() ()()()TBABATrBABA −−=−− ,σ .
And TA is the transport of matrix A, while Tr(A) is the trace of A (the sum of all the
elements on its main diagonal).

Example 7. To demonstrate that the distance just defined represents the distance

between the policies being evaluated, below are shown 3 policies (P, X and Y)
with 10 provisions each. P is then compared against X and Y -both are globally
stronger than P since they have several provisions with a higher Local Security
Level-.

The following conclusions can be drawn from the previous figure:
• Just looking at the levels of the single provisions, X is a policy that appears stronger

than P. First we calculate:
()()() 6=−− TPYPYTr

So the distance between X and P is: d= 2.45
That mirrors the fact that X is just a little stronger than P.

• Y is a policy that appears stronger than X and much stronger than P:
()()() 19=−− TPYPYTr

P = X = Y =
1 1 0 0
1 1 0 0
1 0 0 0
1 0 0 0
1 0 0 0
1 0 0 0
1 0 0 0
1 0 0 0
1 1 0 0
1 0 0 0

1 1 1 0
1 1 1 0
1 1 0 0
1 0 0 0
1 0 0 0
1 1 0 0
1 0 0 0
1 1 0 0
1 0 0 0
1 0 0 0

1 1 1 1
1 1 1 1
1 1 1 0
1 1 0 0
1 1 1 0
1 1 1 1
1 1 1 1
1 1 0 0
1 1 0 0
1 1 1 1

 73

In this case the distance between Y and P is: d= 4.36 and this shows the evident security
difference between the both policies.

The previous example shows that it is very simple to evaluate the distance between
formalized and structured Certificate Policies, once they have been represented as a
matrix. This distance criterion will be adopted to define a metric function for the Global
Security Level just as explained next.

4.3.4. Global Security Level
The last component of the REM to compute a Global Security Level (GSL) is the set of
reference security levels from a minimum policy, which can be used as a scale for the
numerical evaluation of trustability. When these references are not available, the REM
could be used for direct numeric comparison among two or more policies as explained
in the previous sections.
At this point, to define the metric function for the GSL we must represent the reference
levels according to the REM’s procedure and then proceed to evaluate the target policy
against them. So, we first evaluate the distances among the different references (denoted
as iREFL) and the origin of the metric space (denoted as Ø) which is represented as

φ,REFLid
 Finally, the security metric function to evaluate the Global Security Level (GSL, for
short) associated to a target policy xP will be:

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

≤
<<
<<
<<

≤

=

0404

400303

300202

200101

1000

 iff
 iff
 iff
 iff
 iff

x

x

x

x

x

x

ddL
dddL
dddL
dddL

ddL

Lp .

Where xLp is the Global Security Level associated to xP and 0,id = φ,REFLid are the
distances among the references and the origin of the metric space. In this particular case
we have established five security levels (from 0L to 4L), but this decision may change
according to the scenario being evaluated.
Being an aggregated value, the GSL has a critical limitation: it is not able to take into
account single provisions which could be more critical than others. To face such
problems the REM can be enhanced by applying weights to provisions and introducing
a constraint-vector, which could guarantee that during the evaluation even if the
aggregated evaluation gives a high GSL, some critical provisions do not go under a
desired threshold. To take in consideration the weights in the matrix representation we
can multiply each elements of a row for the corresponding weight: let]1,0[∈β be a
weight, then the row)0,0,,()0,0,1,1(βββ =⋅ .
The rest of this chapter presents a proposal to use the REM technique for improving the
Grid-OCSP infrastructure introduced in Chapter 3.

4.4 A REM-enhanced Grid-OCSP Validation Infrastructure
To perform a comprehensive certificate validation process, it is necessary to query in
real-time its status and evaluate the security level of the issuing CA. For the first task
the proposed system uses a Grid Validation System able to retrieve the status of a digital
certificate through OCSP in a CA federation; this system (introduced in section 2.2.3)

 74

was developed as part of our research (section 6.2 presents all the details behind its
implementation).

On the other hand, for the security evaluation of a CA this proposal applies the
Reference Evaluation Methodology for testing compliance with a PMA’s
Authentication Profile and, quantitatively computing a Global Security Level. This
information can be used afterwards for a comprehensive Path Validation process.
Figure 16 shows the overall validation infrastructure proposed by this research, which
enhances the Grid-OCSP Architecture from chapter 3 by introducing the REM
evaluation. As a proof of concept, the following section will demonstrate the usefulness
of the REM’s methodology to evaluate a set of Certification Authorities from
EUGridPMA.

4.5 Static Certification Policy evaluation of Grid PKIs
The goal of this section is to show the practical utilization of the proposed validation
architecture by using the policy matrix obtained in the previous section and the
Reference Evaluation Methodology, to quantify a Global Security Level –GSL- for the
Certification Policies corresponding to the Grid-PKIs members of EUGridPMA.
With this aim all of the Certification Policy documents must be “translated” into a
policy matrix instance. This translation process is i) asynchronous (can be performed at
anytime prior to the Grid user validation), ii) semi-automatic (at this time CP’s parsing
is performed by a human) and iii) repeated every time the Certification Policy changes
(which in practice happens rarely).
When translating a CP, what really happens is a parsing and mapping of each provision
from this document to the policy matrix template shown in Appendix A. This is very
easy to perform (at least for a human) if we consider that most Grid-PKIs CPs are an
instance of the GGF’s CP model [GFD16] and therefore its provisions may be directly
mapped to the template.
In our particular case the first CP to evaluate was the EUGridPMA’s Authentication
Profile [GridAP], because its security level will determine the minimum reference GSL
for the policy space. It is expected that any other Grid-PKI’s GSL should be equal or

Fig. 16. The extended Grid-OCSP Validation Architecture.

 75

greater than this value (considering that all the evaluated CPs are only from
EUGridPMA members).
When evaluating a CP it is important to highlight two special cases: i) those provisions
found only into the CP under evaluation and not into the template will be omitted from
the evaluation process and, ii) those present in the template, but not in the policy, will
be mapped to the worst LSL (in the policy matrix this means a row with zero in every
column) and shall be considered notStipulated clauses. These two choices were
motivated because the PMA’s minimum requirements document defines by itself which
provisions must be considered in the evaluation process to accredit a new Grid-PKI,
thus with the REM methodology we have only extrapolated this criteria.
Once the CP has been translated, an API implementing the REM technique was used to
obtain the corresponding GSL. In its more general form this API (written in Java)
receives three vectors of integers as input parameters: a first one containing the values
for each provision of the CP to evaluate, a second one with the values of the CP to use
as a reference (i.e. the PMA’s authentication profile) and finally, a third vector with the
allowed cardinality for each provision. The output is a double representing the relative
distance among both Certification Policies.
Applying the methodology and API explained in this chapter was obtained the GSL for
each one of the Certification Authorities members of the EUGridPMA [EUGridPMA].
Figure 17 compares these levels in a graphical way for a sample composed of the
EUGridPMA’s minimum Authentication Profile [GridAP] and the Certification Policies
from IRIS Grid CA [IrisCP], US Department of Energy Grids CA [DoECP], CERN CA
[CernCP] and INFN CA [InfnCP].

First of all, it is easy to note that every CA had a GSL greater than the reference (in fact
the distance between CPs was quite large). This was an expected result as every CA
complies with EUGridPMA’s minimum requirements (that is a GSL greater than IGTF-
AP’s which GSL=14.03). However also was found that -just as stated at the beginning
of this chapter- these GSLs differ from one member CA to another, therefore this new
information may give the opportunity for a Grid-PKI to dynamically decide to
interoperate only with those institutions whose GSL is equal or greater than its own. Let
us take the following scenario as an example.

EUGridPMA: Grid-PKIs CP's Evaluation

IGTF-AP

pkIRISGridCA

DoE CA
CERN CA

INFN CA

0

5

10

15

20

25

Certification Authority

G
lo

ba
l S

ec
ur

ity
 L

ev
el

 (G
SL

)

Fig. 17. GSLs from EUGridPMA's Certification Authorities.

 76

Example 8. INFN Certificate Authority has a GSL=18.86, so it is possible to believe
that they could choose to work only in some projects with end-entities coming from the
IRISGrid CA (GSL=19.77). Moreover they also could establish their own minimum
requirements for some project -in other words a new CP template- and then work only
with those institutions fulfilling this new set of provisions.

As already said, the GSL is an aggregated value and by itself can not give information
about specific provisions of the Certification Policy; this could be a problem in those
contexts where it is mandatory that all provisions respect the minimal requirements.
Fortunately, thanks to the proposed formalization process it is even possible to evaluate
each section of the Certification Policy to obtain partial-GSLs that may allow the
relying party to perform a finer validation decision. Table 2 shows -for EUGridPMA’s
chosen set of CAs- the partial GSLs from each one of the sections composing the
Certification Policy template. In this table it is interesting to note the degree of detail
that can be obtained when further comparing these Grid-PKIs; it is particularly
noticeable the fact that even though all of them have an overall GSL greater than
EUGridPMA’s, there are some CA’s partial-GSLs that do not follow this criteria (i.e.
for the “Technical security controls” section: APIGTFpkIRISGrid partialGSLpartialGSL −<).

Table 2. Partial GSLs from EUGridPMA's CAs
CP Section IGTF-AP pkIRISGrid DoE CERN INFN

Introduction 5.00 5.57 5.48 5.66 5.39
General Provisions 7.00 10.05 8.37 9.06 9.43
Identification &
Authentication 4.90 5.10 4.69 5.29 5.92
Operation
Requirements 5.39 10.00 6.93 7.87 9.80
Physical, procedural
and personnel
security 1.73 7.35 3.32 2.45 4.69
 Technical security
controls 5.83 5.48 5.48 6.00 5.92
CA Certificates 3.87 5.39 5.66 5.00 5.83
 Certificate and CRL
profiles 2.00 2.83 3.46 3.46 2.83
Administration of
Specifications 3.16 2.45 2.45 0.00 1.41
Others 2.00 2.45 2.00 2.45 2.45

Apart from using this information for the validation process, it is feasible to think that it
can be also very useful for the PMAs to assess Certification Authorities (members or
applicants) in better refining or correcting their security policies by analyzing very
specific subsets of provisions.
In general, which may be the finest-grained GSL that can be obtained from our
methodology? The answer is simple, as it is feasible to get the GSL for each one of the
individual provisions from the Certification Policy being analyzed. Afterwards this set
of GSLs can be used by both the PMA -to accurately assess the CAs in improving weak
provisions- and the relying party itself –to take very granular validation decisions
according to a predefined template-.
A suitable way to graphically represent and compare the GSL for individual provisions
is through a Kiviat Diagram, where each provision is represented by an axis with one
division for each possible LSL – in this case, four-. In this way, given an axis
representing a particular provision, we can depict the LSLs corresponding to one or

 77

more Certification Policies, which facilitates their comparison at this specific level of
detail.
Let us take for example figure 18, where a Kiviat diagram -representing the CP
provisions related with the identification and authentication features- contains the LSLs
for the IRIS Grid CA and INFN CA. It is possible to notice that for provisions like
“Need for names to be meaningful”, the EUGridPMA’s minimum requirement (IGTF-
AP graph) is fulfilled by the CAs. Also there are some others like “Rekey after
Revocation” where the minimum requirement is also fulfilled, but with a different LSL
by each one of the CAs being evaluated.
On the other hand, a third group of provisions has been identified (i.e. “Authentication
of organization identity”) in which the EUGridPMA’s minimum requirement (face to
face identification with the Registration Authority) is not fulfilled by the IRIS Grid CA.

The API implemented by this research is also capable of aiding a PMA to carry out
automatically the assessment of individual provisions, just by subtracting the matrices
representing the Certification Policies being evaluated (rows with a negative number
mean a provision that should be enhanced).

4.6 Open Issues
This chapter presented a contribution of our research towards implementing a “static”
credential validation process for the computational Grid. As a way to ease
interoperability among different Grid-PKIs the Reference Evaluation Methodology
(REM) has been adopted and extended to cope with the challenges imposed by these
distributed environments, and as a proof of concept it was applied to obtain the security
level associated with Certification Authorities members of the IGTF.
The results obtained with the REM have proved quite useful also for assessing a CA
that whishes to become part of a certain PMA, because it is possible to identify the
individual provisions of the evaluated CP that must be improved in order to achieve the
minimum security requirements of an Authentication Profile.
Contrary to the current PMA accreditation process, which is mostly manual, our
proposal can be fully automated as shown by the Java API developed as a proof of
concept associated with this research.
Even though in section 4.4 was introduced the notion of a validation infrastructure that
uses the Grid-OCSP system and the extended REM technique, there was still the need to

Kiviat Diagram: Identification and Authentication provisions
Types of names

Need for names to
be meaningful

Interpretation of
name forms

Uniqueness of
Names

Name claim dispute Authentication of
individual identity

Rekey after
revocation

Trademarks
Proof of possession

of Private Key

Routine Rekey

Revocation Request

 Authentication of
organization identity

0

1

2

3

4

IGTF-AP pkIRISGridCA INFN CA
Fig. 18. Kiviat Diagram for CP’s Identification and Authentication provisions.

 78

investigate the issues related with its adoption into the Computation Grid as envisioned
at the beginning of this thesis, in particular when referring to the idea of an extended
and “dynamic” validation process able to ease the interoperability issues of Virtual
Organizations in real-world installations. The following chapter presents the
methodological approach for performing the Extended Path Validation process though a
dynamic validation infrastructure, called the Policy and OCSP based Interoperability
System (POIS).

 79

CHAPTER
5 DYNAMIC POLICY

EVALUATION: A
CONTRIBUTION TO EXTENDED

PATH VALIDATION

 80

5.1 Motivation
As Grid technology has become widely adopted, so the number of Virtual Organizations
has grown. This represents one of the biggest interoperability problems that could arise
among all Grid users and therefore one of the major security challenges to be faced
before building a wide distributed infrastructure that allows the cooperation of existing
Grid installations. From our point of view this problem is related to the definition of a
distributed validation infrastructure, able to guarantee a secure degree of interoperability
among all the involved Grid-Certification Authorities.
Currently there are two state of the art approaches that provide interoperability between
different security domains using PKI-based technologies:
• Involved CAs explicitly build a trusted domain, defining a new CA hierarchy

through cross certification techniques. In this case each CA explicitly trusts the
others and therefore is able to accept their certificates.

• Involved CAs do not build an explicit trusted domain, but interoperate through a
“federation”: any CA belonging to the federation implicitly trusts the others thanks
to the definition of a well-established policy-based framework.

Even if the explicit trusted domain (first approach) is an attractive solution, it is not
always possible to implement in Grid environments, because of the required agreements
between the involved organizations, administrative overheads and technical problems
that arise with current software (in fact this is the case of the Globus Toolkit [Globus]).
For the computational Grid, the second of the aforementioned options (building a
Federation of CAs) has been the most suitable solution for real-world projects so far. At
this aim, the Policy Management Authorities (see section 2.3.3) have established a
minimum set of requirements and best practices for Grid PKIs willing to join its
federation, these are called the PMA’s Authentication Profile. In summary, Policy
Management Authorities represent “Federations of Grid PKIs” whose CA members are
required to accomplish minimum levels of security through an accreditation process.
Moreover, in chapter 4 we showed that even though all the Grid CA members of a PMA
must fulfill the established authentication profile, not all of them accomplish these
minimum requirements on the same level. Despite the importance of this information
for building interoperability relationships and for Authentication/Authorization
purposes, to date there is no automatic way to obtain this data.
With independence of the interoperability mechanism chosen (explicit trust or CA-
federation), any end-entity invoking a Grid Service’s operation from the server,
activates an authentication process to attest his identity. This process requires validating
the end-entity’s digital certificate according to the Basic Path Validation procedure
described in [RFC3280]. When involved CAs interoperate thanks to explicit trust
agreements, only Basic Path Validation is required: cryptographic verifications and
status’ checks over the involved certificates. State of the art Grid software provides
static mechanisms for the Basic Path Validation, where the administrators manually
declare a list of accepted CAs, and locally update the respective CRLs. No need to say
that this is a cumbersome process.
However, if the involved CAs are part of a Grid-federation and fulfill the authentication
profile in different ways, then Extended Path Validation is also needed: Basic Path
Validation enhanced with a policy mapping process that evaluates and compares the
involved CAs’ Certificate Policies, therefore asserting that they are compliant with a
particular Authentication Profile and therefore can interoperate among them.
This chapter explains a proposal to enhance the “static” validation mechanism
introduced in Chapter 4; this contribution is the result a joint research on the trust topic

 81

performed along with the “Università di Napoli, Federico II” and the “Seconda
Università di Napoli”. Furthermore this research proposes in Chapter 6 an architecture
for implementing Extended Path Validation in Grid environments, using the Grid-OCSP
infrastructure presented in Chapter 3 and the REM technique from Chapter 4.

5.2 Basic path validation with Grid-OCSP
From the security point of view, a typical session with the computational Grid consists
on the steps shown in figure 19. These involve the Grid user (End-Entity) using its
passphrase to create a proxy certificate from its long-term credential (i.e. with the
command grid-proxy-init). The user may then use an application to invoke a Grid
service’s operation from a container [WSRF]. If Message Level Security is being used
for authentication [GT4SEC], then the user’s application would call the corresponding
proxy credential to authenticate to the remote host by means of a digitally signed
message containing the service invocation.

From the Grid resource point of view, to fully perform the authentication process a
certificate validation service interface should be defined to be used within the Open
Grid Services Architecture [OGSA] implementation to:
1. Parse a certificate and return the desired attribute values –i.e. the validity period-.
2. Perform path validation [RFC3280] on a certificate chain according to the local

policy and with local PKI facilities, such as certificate revocation lists (CRLs) or
through an online certificate status protocol [RFC2560].

3. Return attribute’s information for generic values, thus allowing the use of different
certificate formats or single keys.

Consequently a certificate’s path validation process (step 2 above) must comprise at
least the following four phases:
1. Cryptographic verifications over the certificate path (i.e. verifying the digital

signature of each certificate).
2. Verifying the validity period of each certificate.
3. Verifying that the first certificate in the chain is a Trust Anchor.
4. Verifying the certificate’s status to ensure that is has not been revoked or suspended.

The process just described is commonly called the Basic Path Validation. Modern Grid
installations like the Globus Toolkit provide static mechanisms to perform the last two
phases of the Basic Path Validation process described above (figure 20):
− The first certificate in the chain is considered a Trust Anchor if it has been stored into

the Grid node’s /etc/grid-security/certificates/ directory.

Fig. 19. Invoking a Grid Service from GT4’s Container.

 82

− The certificate’s status is retrieved from a locally stored Certificate Revocation List
(CRL).

Both processes have an inherent static nature, therefore diverse security problems may
arise into the computational Grid.

For the purposes of this thesis, the main detected problem was related with
interoperability issues between the users and resources belonging to different
institutions: the computing resources were in different domains, but the need of
cooperation through a Grid environment required sharing them all. Therefore a clear
need arose for methodologies, techniques and tools able to build interoperable systems.
According to [OGSASEC] the interoperability problem in Grid environments can be
subdivided into three levels:
• Protocol Level, i.e. the capability of Grid systems to communicate with known and

accepted standard protocols.
• Policy level, i.e. the capability of each party of the Grid to be able to specify its

security policy expressed in a way mutually comprehensible.
• Identity level, i.e. the capability of identifying users from one domain to another.

State of the art Grid solutions focus mainly on the first level, accepting the use of
SOAP/HTTP protocols as the common platform for system interoperability.
A first approach to enhance the Basic Path Validation process may use the Grid-OCSP
explained in Chapter 3. In this case is possible to introduce a high-level OCSP
Responder like CertiVeR (section 2.2.3) when i) the user creates a proxy certificate
(figure 21) or ii) when the Grid Services Container is verifying the digital signature
(figure 22) from a service’s request.
In the first case (figure 21), once Basic Path Validation has taken place, the Grid-OCSP
Client sends an OCSP Request to the Responder and the corresponding OCSP Response
data is embedded as an X.509 version 3 extension into the proxy certificate itself (the
prevalidation mechanism). At this point the proxy certificate is ready to be used.
On the Grid server-side (figure 22) when the user invokes a service’s operation from the
Grid-OCSP enabled GT4’s Container, the OCSP process is triggered after the Basic
Path Validation has been performed. If the proxy certificate has prevalidation
information, then the OCSP Response data is extracted, verified and processed as
explained in the previous section. Notice that the OCSP Responder does not need to be
contacted again by the Container, thus enhancing the performance of the validation
process.

Fig. 20. Creating a Proxy Certificate.

 83

The proposal presented in the rest of this chapter focuses on the Identity Level, adopting
a policy-based approach to implement an Extended Path Validation mechanism beyond
Grid-OCSP, just as introduced next.

5.3 Extended Path Validation

The main idea behind the Extended Path Validation mechanism is to define an approach
which enables any Grid relying-party to validate in real-time a digital certificate issued
by any other CA, even though they do not belong to the same trusted domain (i.e.
institution or project). To perform an Extended Path Validation we need:
• A mechanism to validate on-line and near-real time the certificate status of any entity,

therefore providing a minimum assurance to the involved parties. This mechanism is
the Grid-OCSP system, just as presented in the previous section;

• A methodology to automatically perform the policy comparison and evaluation, to
build a dynamic virtual-CA federation where its members fulfil a minimum security
level;

Fig. 22. Using Grid-OCSP and prevalidation when a Grid Service is invoked.

Fig. 21. Using Grid-OCSP and prevalidation when a proxy certificate is created.

 84

As mentioned in section 4.2, most Grid PKIs working together are not completely
unknown, but they have been previously accredited by a Policy Management Authority
(PMA), which defines a minimum set of security requirements – in the form of an
Authentication Profile- that must be accomplished for interoperability reasons. If we
measure the degree of compliance of a Grid-PKI’s Certification Policy with respect to
this Authentication Profile, then it may be possible to build comprehensive trust
relationships between those CAs.
In this part of our research we contributed with a methodology for the Extended Path
Validation, which guarantees secure interoperability among untrusted domains by (i)
using Grid-OCSP for retrieving in near real-time the status of any certificate issued by a
CA, and (ii) evaluating with the extended REM the security level associated with its
Certification Policy. The basic functionalities of this Interoperability System are
explained next.

5.4 The Interoperability System
The goal of the proposed Interoperability System is to enable Extended Path Validation
in untrusted Grid domains by building a dynamic federation of CAs. This goal is
achieved by evaluating their Certificate Policies with the REM technique. However, in
order to have grants about the CA’s compliance with its published Certification Policy,
there is still the need for the PMA as a Trusted Third Party that acts only as an auditor
instead of being also a CP evaluator.
At a coarse grain, the proposed Interoperability System (IS) -figure 23- acts as an
intermediary between the certificate verifiers (relying parties) and the issuing CAs by
managing (retrieving, elaborating and updating) the information required to perform the
Extended Path Validation process: the list of accredited CAs, the list of revocation
sources and the Certificate Policies.

The IS may be collocated with the Trusted Third party and must perform two main
tasks:
1. Online validation of the certificates’ status and,
2. Evaluation of the issuing CA’s security level through its Certification Policy.

Implementation details related with the proposed Interoperability System will be
analyzed in chapter 6.

Fig. 23. Functional blocks of the proposed Interoperability System (IS).

 85

5.5 Open issues
Along this chapter we have presented a Validation Infrastructure for Grid Services, the
Interoperability System, which has been designed to implement the Extended Path
Validation process. Thanks to this proposal it is feasible to dynamically evaluate an
end-entity certificate not only by retrieving its revocation status, but also obtaining a
numeric value that represents the security level associated with its Certification Policy.
Both features may enable the dynamic building of trust relationships among different
Certification Authorities, therefore easing Grid interoperability.
During this research however we found the need to develop a prototype of the proposed
system, not only as a proof of concept to backup our ideas, but also to allow feedback
from the Grid community and promote its adoption into widely used installations (i.e.
the Globus Toolkit). The next Chapter details, from an architectural point of view, the
implementation of the proposed Interoperability System.

 86

CHAPTER
6 IMPLEMENTATION AND

RESULTS

 87

6.1 Implementing a Grid-OCSP Validation Infrastructure

The Interoperability System introduced in section 5.4 was implemented during our
research in two different stages: the Grid-OCSP infrastructure and the REM technique.
In first place was developed and deployed a test Grid-OCSP Validation system able to
retrieve the status of a digital certificate through the Online Certificate Status Protocol
in a CA federation; this system was built over the CertiVeR high-level OCSP
Responder (section 2.2.3) and the novel Open GRid Ocsp –OGRO- API to be explained
in section 6.2.
In a second stage, for evaluating a CA’s security level, we have implemented a
Reference Evaluation Methodology API as presented in section 4.3. REM technique’s
advantages as a tool to ease the PMA’s accreditation and assessment processes have
been widely highlighted through this work. Section 6.3 uses the developed REM API
along with the Grid-OCSP infrastructure to implement our last contribution to the Grid
community: the Policy and OCSP based Interoperability System –POIS-.

6.2 OGRO: the Open GRid Ocsp middleware for the Globus Toolkit
In the paper [UniAAI] we introduced the basis of an OCSP client for the Globus Toolkit
4 (GT4) able to use CertiVeR (section 2.2.3) both, for proxy certificate’s OCSP path
validation, and also to request authorization information in OCSP extensions from such
service. As a proof of concept this client evolved since then and was published under an
open source license with the name of OGRO -Open GRid OCSP– [OGRO].
Besides implementing the relying party’s OCSP Requirements (section 3.2), the OGRO
API integrates a series of major performance enhancements like prevalidation and
second-level caches, which will be explained below.
Other minor contributions were also developed as part of OGRO; take for example the
implementation of a solution for validating full certificate chains in GT4 with just one
OCSP Request, just as described next:
1. Obtain from the Java Commodity Grid [CoG] classes the full proxy certificate path,

beginning with the Root CA certificate and from there down to the last proxy
credential (including the End Entity Certificate –EEC-). The Java Commodity Kit or
simply CoG, is used at the Java core of GT4.

2. Also from CoG classes obtain the GSIConstants’ certificate type for each entry from
the proxy’s path to validate: Proxy (any of GSI_2_PROXY, LIMITED_PROXY,
GSI_3_IMPERSONATION_PROXY, GSI_3_LIMITED_PROXY,
GSI_3_INDEPENDENT_PROXY or GSI_3_RESTRICTED_PROXY), CA or EEC.

3. Create one OCSP Request, containing a certificate identifier for each element from
the proxy certificate path.

4. Prepare the OCSP Request (i.e. apply nonce and signature as required) and send it to
the appropriate OCSP Responder.

5. If successful, then parse the OCSP Response status for each certificate of the
original request and process it as required.

A summary of features that make OGRO suitable for Grid environments is shown in
table 3. From the features mentioned in this table it is worth highlighting that OGRO
introduces a new concept, the Grid Validation Policy, which has been defined as a
flexible set of relying party’s XML rules to configure OCSP behavior in a typical Grid
installation. The next section covers the details related with the Grid Validation Policy.

 88

Table 3. Main features in the OGRO client API
Feature Explanation

Open source. OGRO API is currently available under an Apache like license.
Java based. It is 100% Java and as a proof of concept it has been integrated into

the GT4 WSRF Java Core and the Java Commodity Grid Kit.
Ease of
configuration.

The set of rules mandating its behavior are written in XML and are
also highly flexible.

Flexibility of
use.

With some minor changes OGRO may be used in other applications
(i.e. Web Services). In fact OGRO source distribution includes also a
stand-alone OCSP client.

Cryptographic
Provider
compatibility.

The current version of OGRO uses the Bouncy Castle’s libraries as its
cryptographic provider, however it can easily be modified to allow for
the use of others like IAIK, Cryptix, etc.

6.2.1. Customizing OGRO: The Grid Validation Policy

OGRO is configured through a set of rules -written in XML- called the Grid Validation
Policy or GVP, which customizes relying parties’ validation behavior. Figure 24 shows
the DTD of this policy document.

1 <?xml version="1.0" encoding="UTF-8" ?>
2 <!ELEMENT ocsppolicy (issuerdn+) >
3 <!ELEMENT issuerdn (source?,unknownstatus?,
 errorhandler?,request?,proxycert?) >
4 <!ATTLIST issuerdn dn CDATA #REQUIRED>
5 <!ATTLIST issuerdn name CDATA #REQUIRED >
6 <!ATTLIST issuerdn hash CDATA #REQUIRED >
7 <!ELEMENT revsources (source+) >
8 <!ELEMENT source EMPTY >
9 <!ATTLIST source order CDATA #REQUIRED >
10 <!ATTLIST source signingcert CDATA #IMPLIED >
11 <!ATTLIST source location CDATA #REQUIRED >
12 <!ATTLIST source type (trusted|authorized) "trusted" >
13 <!ATTLIST source timeout CDATA #IMPLIED >
14 <!ELEMENT unknownstatus EMPTY >
15 <!ATTLIST unknownstatus action (good|revoked) "revoked">
16 <!ELEMENT errorhandler (action+) >
17 <!ELEMENT action EMPTY >
18 <!ATTLIST action order CDATA #REQUIRED >
19 <!ATTLIST action type
 (tryLater|setFinalResp)"setFinalResp">
20 <!ATTLIST action value (good|revoked) "revoked" >
21 <!ATTLIST action maxRetries CDATA #IMPLIED >
22 <!ELEMENT request (signreq?, usenonce?, prot?, ext*) >
23 <!ELEMENT signreq EMPTY >
24 <!ATTLIST signreq value (true|false) "false" >
25 <!ELEMENT usenonce EMPTY >
26 <!ATTLIST usenonce value (true|false) "true" >
27 <!ELEMENT prot EMPTY >
28 <!ATTLIST prot value (http|https) "http" >
29 <!ELEMENT ext EMPTY >
30 <!ATTLIST ext order CDATA #REQUIRED >
31 <!ATTLIST ext oid CDATA #REQUIRED >
32 <!ATTLIST ext value CDATA #REQUIRED >
33 <!ELEMENT proxycert (unknownstatus, prevalidation) >
34 <!ELEMENT prevalidation EMPTY>
35 <!ATTLIST prevalidation value (true|false) "false" >
36 <!ATTLIST prevalidation noprevalinfo (ocsp|ommit) "ocsp" >

Fig. 24. DTD of OGRO’s Grid Validation Policy.

From figure 24 we can observe at line 2 that the OGRO’s policy allows per issuer
validation rules customization or even the option to configure a default issuer, that is,
rules applying to any user whose issuer is not referenced anywhere else in the policy.
A set of revocation sources (lines 8-13) can be also defined, which means that the
relying party may be able to consult more than one OCSP Responder thus providing

 89

fault tolerance and high availability. Moreover a customizable meaning of the
“Unknown” OCSP status –line 15- can be defined for any certificate on the path (Proxy
or non-Proxy). Also at lines 16-19, error handling mechanisms may be declared to take
a certain action if for example an OCSP Responder could not be contacted. The current
set of error handlers can be extended to fulfill special requirements of VOs.
Customization of OCSP Requests (i.e. use of signatures and nonces) is provided by
OGRO –lines 22 to 32- . Also important to note are Proxy Certificate’s pre-validation
rules (lines 34-36), which will be explained later in the next section.
More than being a set of configuration directives, OGRO’s Grid Validation Policy
represents a mechanism to tailor validation process’ security level. For example a VO
may decide to use only a defined set of internal OCSP Trusted Responders benefiting
performance (i.e. not using digital signatures, nonces nor HTTPS), while other VO may
use external OCSP Authorized Responders, however compelling its clients to employ
“strong” OCSP Requests (i.e. digitally signed, using a nonce and over HTTPS).
At moment of writing the present thesis, OGRO was published as a “dev.globus
Incubator Project” [Incubator], just in time to be included into the next major release of
the Globus Toolkit. No doubt that this is a major achievement of the research reported
in this document.
To demonstrate the flexibility of OGRO and its GVP, the following section compares
several policies for a Grid-OCSP infrastructure based on the CertiVeR Responder.

6.2.2. Performance results
In this section are shown the performance results for a validation architecture based on
the CertiVeR Service and the OGRO middleware for the Globus Toolkit 4. The setup
used for the tests is described next:
• CertiVeR Validation Service:

− Installed on a server with one Xeon processor @2.9 GHz, 1.5 Gb RAM and
Windows 2000. The Responder used an Oracle database.

− No cryptographic hardware was used in the Responder.
− An OCSP Responder in Trusted mode for the AC CertiVeR issuer.
− One OCSP extension is being handled: the "CA_RATING_EXTENSION"

(registered with the OID "1.3.6.1.4.1.4710.2.454.10.1.1").
− No fault tolerant architecture is being used in the test environment.
− Proxy certificate revocation was not configured to simulate a typical OCSP

service.
− No precomputed OCSP Responses were used.

• OGRO client:
− Integrated into the ProxyPathValidator class of the Java CoG version 4, so that

it could be used with the ProxyInit class from the same package. Remember that
the same classes are used by the Globus Toolkit 4 (Java Core).

− Apache Ant’s script to run 50 Grid clients concurrently (each one under a
different instance of the Java Virtual Machine) in a server with 4 Xeon
processors using RedHat Linux 7.2.

− OGRO always verifies the OCSP Response’s nonce and digital signature.
− If the validation was successful then the Proxy Certificate is written to disk.
− The Grid Validation Policy used for all the tests described in the table 4 can be

seen in figure 25.

 90

Table 4. Tests performed with OGRO and CertiVeR into GT4
Name of the test Explanation

No OCSP No OCSP validation at all.
NoNonce-NoSign-HTTP OCSP Requests without nonce, not being signed and

using HTTP.
Nonce-NoSign-HTTP OCSP Requests with nonce, not being signed and

using HTTP.
Nonce-Sign-HTTP OCSP Requests with nonce, digitally signed and using

HTTP.
NoNonce-NoSign-HTTPS OCSP Requests without nonce, not being signed and

using HTTPS.
Nonce-Signed-HTTPS OCSP Requests with nonce, digitally signed and using

HTTPS.

Before the tests, our research was expecting to identify a policy with the best
performance (presumably the NoNonce-NoSign-HTTP) and also the most secure policy
(in theory the Nonce-Signed-HTTPS).

<?xml version="1.0"?>
<!DOCTYPE ocsppolicy SYSTEM "ocsppolicy.dtd">
<ocsppolicy>
 <issuerdn dn="C=ES,O=CertiVeR,2.5.4.45=2003,CN=AC CertiVeR"
 name="AC CertiVeR" hash="o6MjoB5y4b2cNvILPcBxWafHs7k=" >
 <unknownstatus action="revoked" />
 <errorhandler>
 <action order="1" type="tryLater" maxRetries="2" />
 <action order="2" type="setFinalResponse" value="revoked" />
 </errorhandler>
 <request>
 <signrequest value="true" />
 <usenonce value="true" />
 <protocol value="https" />
 <extension order="1" value="CA_RATING_EXTENSION"
 oid=" 1.3.6.1.4.1.4710.2.454.10.1.1 " />
 </request>
 </issuerdn>
 <issuerdn name="default" dn="*" hash="na" >
 <revsources>
 <source order="1" location="http://tacar.certiver.com"
 timeout="3600" type="trusted" />
 <source order="2" location="http://globus-grid.certiver.com"
 timeout="3600" type="trusted" />
 </revsources>
 <proxycert>
 <unknownstatus action="good" />
 </proxycert>
 </issuerdn>
</ocsppolicy>

Fig. 25. Generic Grid Validation Policy used with OGRO and CertiVeR into GT4.

From the results obtained (see figures 26 and 27) it was found that on the client-side
there is really no big difference among any of them (in fact only a 2%-6% of variation
was observed). It is also interesting to note that the use of HTTPS did not imply a
visible overhead neither in OGRO nor CertiVeR. A policy commonly used by relying
parties in environments like Web Services is the Nonce-NoSign-HTTP (which protects
against replay attacks, does not identify the client to the OCSP Responder and goes over
clear-text HTTP), and also gave in the tests a fair balance between security and
performance.
Other important conclusions from the results shown above are the following:

 91

• From a performance point of view, the use of nonces in the OCSP Request is almost
irrelevant and it could be advisable only if CertiVeR was using precomputed
Responses. Otherwise, for security reasons, it should be enabled.

• Similar to the above observation is the use of digital signatures on the OCSP
Request (its use is only advisable if a special reason to justify it exists –i.e. service
accountability or access control purposes-).

• On the service-side it was observed that CertiVeR kept sustained response times for
all the clients. In other words, no bottlenecks were evident even though all OCSP
Requests were launched in parallel.

• None of the clients required to execute the error handlers or contact the secondary
revocation source as configured in the policy. This emphasizes CertiVeR’s observed
behavior.

• The use of OCSP validation is still time-expensive for the Grid clients, and it was
observed that in some cases it took little more than twice the time to create a Proxy
Certificate.

Even though the whole result set showed that overall performance was pretty similar
between tested configurations, the research presented in this thesis found that important
improvements could be done through a couple of mechanisms: prevalidation and
second-level caching, which are explained next.

OGRO-CertiVeR-GT4 Results over HTTP

0
20000
40000
60000
80000

100000
120000
140000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Client

Ti
m

e
(m

s)

No OCSP NoNonce-NoSign-HTTP Nonce-NoSign-HTTP Nonce-Sign-HTTP

Fig. 26. Proxy Certificate initialization times with CertiVeR and different OGRO Policies over
HTTP.

OGRO-CertiVeR-GT4 Results over HTTPS

0
20000
40000
60000
80000

100000
120000
140000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Client

Ti
m

e
(m

s)

No OCSP NoNonce-NoSign-HTTPS Nonce-Signed-HTTPS

Fig. 27. Proxy Certificate initialization times with CertiVeR and different OGRO Policies over
HTTPS.

 92

6.2.3. Enhancing Grid-OCSP performance with Prevalidation

When first faced the challenge of improving Grid relying parties’ OCSP performance
without affecting its overall security, the authorization push model (RFC2904
[RFC2904]) was extrapolated to the OCSP arena. In RFC2904, validation information
(namely “attributes“ in the push model) is included along the data itself, thus creating a
self-contained package able to be validated by relying parties without further contacting
the source of authority (i.e. the Attribute repository). In most of the cases the relying
party only requires to extract the embedded validation data, perform some cryptographic
verification over it (i.e. authenticity and integrity) and finally parse it. With mechanisms
like these, important performance improvements can be obtained in the validation
process.
In the case of the prevalidation mechanism proposed in this thesis, what if the OCSP
Response itself is embedded into the Proxy Certificate? The rationale behind this is very
simple given the fact that such a message is authenticated (digitally signed by the OCSP
Responder which is a trusted third party), tamper protected (again thanks to the digital
signature) and includes a validity period.
OGRO and its Grid Validation Policy implement prevalidation support into both, the
GT4’s WSRF Container and the Commodity Grid Kit. To validate an End Entity
Certificate with the prevalidation mechanism, the following procedure is performed by
OGRO:
1. When creating a Proxy Certificate, the OGRO-enabled Grid client requests OCSP

Validation for its whole Certificate Path to CertiVeR using the one-message
mechanism (only one OCSP Request is created for the complete chain). Note that
even though this OCSP Request is digitally signed, it does not require including a
nonce because in any case the relying party will not verify it later.

2. As soon as the OCSP Response is received from CertiVeR, it is validated and
embedded as a Proxy Certificate’s X.509 extension (identified under a specific
OID).

3. The OGRO-enabled Grid client invokes a Grid Service from the WSRF Container
using the Secure Messaging mechanism, in such a way that an XML message -
digitally signed by the prevalidated Proxy- is created.

The OGRO-enabled Grid Services WSRF Container extracts the prevalidation
information from the Proxy Certificate, then performs the OCSP Response’s security
checks defined in RFC2560 (digital signature, trust level, etc.) and finally validates the
Proxy Certificate Path according to the statuses already included into such OCSP
Response.

6.2.4. Prevalidation: performance results
The results obtained with OGRO’s prevalidation mechanism, under the same conditions
described in section 6.2.2 are shown in Figure 28. Just as expected in the client side, the
time consumed by OGRO’s validation and prevalidation processes, was almost 100%
above the time that elapsed when such mechanisms were not used. However it is
interesting to note that embedding the OCSP Response into the Proxy Certificate did not
result in a visible overhead. On the other hand, the results obtained with the Grid WSRF
container –server side- (figure 29) showed that the pre-validation process reduced in
little more than 30% the time required to validate a Proxy Certificate with OCSP. Even
more important to note is that the pre-validation checking at the server side did not
introduce a visible overhead (in fact less than 1%). On the other hand, even though a

 93

bottleneck at the WSRF Container itself was noticeable as the number of concurrent
invocations increased (around the 9th invocation in figure 29), again it does not deny
the fact that prevalidating improves OCSP performance and in the best of the cases (if
no bottleneck was generated at the WSRF Container) the gap between the OCSP No
Prevalidated and OCSP Prevalidated series (figure 29) could be reduced, but would
never be the same.

6.2.5. Second-level caching with OGRO
One of the recommendations given in section 3.2.3 refers to caching the OCSP
Responses for enhancing validation performance. Such a cache can be extended to
several levels of the Grid infrastructure to achieve this goal: a first-level cache at the
Grid client, at second-level cache at the Grid server (i.e. the WSRF container) and a
third-level cache at the local OCSP Server. Using such a cache hierarchy it is possible
to reduce not only the cryptographic and communications overhead caused by the
interaction with the global OCSP Responder, but also the total number of queries made
to the server – this last aspect can also result in economic advantages considering that
some OCSP providers sell their service on a per-request basis. When further considering
the idea behind the OCSP cache hierarchy, we expected that second-level caching

Concurrent Proxy Initialization (Client-side)

0

20000

40000

60000

80000

100000

120000

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

Concurrent Proxy Instance

Ti
m

e
(m

s)

No OGRO OCSP No Prevalidated OCSP Prevalidated

Fig. 28. Results obtained with the Grid client when creating the Proxy Certificate.

Concurrent CounterService Invocation (WSRF Server-side)

0

5000

10000

15000

20000

25000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Concurrent Invocation

Ti
m

e
(m

s)

No OGRO OCSP No Prevalidated OCSP Prevalidated
Fig. 29. Results obtained with the WSRF Container when validating the Proxy Certificate.

 94

would provide the best cost-benefit and secure solution for Grids. This is due to the fact
that in most Grids installations it is reasonable to think that first-level caches will serve
too few clients –in the worst of the cases a cache per Grid client- when compared with a
second-level cache. On the other hand, third-level caches -installed at the local OCSP
Responders– may create not only bottlenecks with all the Grid servers contacting them
(local Responders are not expected to be highly scalable or fault-tolerant in
contraposition to a Trusted Responder serving several domains), but also might be more
sensible to network failures than first- and second-level caches.
The latest version of OGRO implements OCSP validation with second-level caches
through the following steps:
1. The Grid client creates its Proxy Certificate in the usual way (it does not require

OGRO).
2. Cache initialization: When a Grid Service is requested from the OGRO-enabled

WSRF container (also through the Secure Messaging mechanism as with
prevalidation), the OCSP Responder is contacted to request validation for the whole
End Entity certificate chain. As soon as the Grid server receives the OCSP
Response, it is verified and stored into a local cache.

3. Cache searching: Client connections to the Grid server implying a cache-search
(OGRO can be configured to enable caching only for certain Certification
Authorities hierarchies) will use the native lookup methods from such data structure.
One of the following will occur i) In case of a cache hit, then OGRO retrieves the
stored OCSP Response, verifies it (to avoid outdated entries) and finally obtains the
correspondent status for the whole certificate chain or ii) In case of a cache miss, the
appropriate OCSP Responder will be contacted and the new Response stored into
the cache, so subsequent calls from the same user will result in a cache hit.

4. The cache is being frequently purged by a separate thread, so stale entries (outdated
OCSP Responses according to RFC 2560’s verification method) are removed when
detected. Responses reporting an invalid End-Entity Certificate Chain –i.e. those
with at least one revoked certificate- are permanently stored.

The following two sections will provide a comparison of the results obtained with the
prevalidation and the caching mechanisms, along with a security analysis of both related
with the Proxy Certificate Revocation problem.

6.2.6. Performance comparison between prevalidation and caching
With the purpose of comparing OGRO’s prevalidation and second-level caching
mechanisms, a CertiVeR’s OCSP Trusted Responder (server with one Xeon processor
@2.9 GHz, 1.5 Gb RAM and Windows 2000) was set up at http://globus-
grid.certiver.com. The Responder was using an Oracle database to store the revocation
information, but neither cryptographic hardware nor precomputed OCSP Responses
were utilized. For the Grid clients we created a set of 5 different End-Entity Certificates
and set up 50 OGRO-modified Commodity Grid Kit installations with such credentials
(same certificate for each 10 clients to test caching capabilities). The underlying
hardware was composed of a 4-Xeon processors server running over RedHat Linux 7.2.
Finally a GT4 WSRF Container was also integrated with OGRO and installed on a 2-
Xeon processors server running over RedHat Linux 7.2.
Each one of the three tests reported in this section consisted of concurrently run 50
clients to request the same Grid Service from the WSRF Container through the Secure
Messaging mechanism, in such a way that OCSP Validation could be triggered
according to the applicable Grid Validation Policy –GVP- shown in table 5.

 95

The results obtained from our tests are shown in figure 30, where the total GVP
performance is computed as the addition of i) the time required by the WSRF Container
to perform the OCSP call (when applicable) and ii) the time to cryptographically verify
and parse the OCSP Response (for second-level caching it is the time to read the
certificate’s status from the in-memory cache, while for the prevalidation will be the
time required to extract and verify the OCSP data from the Proxy certificate).

Table 5. The Grid Validation Policies being tested
Grid

Validation
Policy

Explanation

OCSP WSRF Container uses OCSP to validate every Grid client request.
Cache Second-level caching enabled at the WSRF Container. OCSP

validation will be invoked only if a call to the cache is missed.
Prevalidated Prevalidation support enabled so the WSRF Container never has to

contact the OCSP Responder.

As we can see from figure 30, the use of plain OCSP -“Total OCSP” graph- conveys the
highest overhead for the validation process, something already concluded in section
6.2.2. In fact the peaks observed during this test are due to bottlenecks created at the
OCSP Responder when several instances from the WSRF’s OGRO API are
concurrently requesting validation, and afterwards when the container itself performs
the cryptographic verification and parsing over each one of the received OCSP
Responses. The observed performance peaks are repeated in almost regular intervals
comprehending from 5 to 7 WSRF requests. This behavior is only dependent on the
service and therefore, it is not a subject of study for this thesis.
On the other hand, the “Total Cache” test shows that before the 8th call it behaves
almost like the “Total OCSP” graph, something that even though was expected -because
the in-memory cache is still being filled- also corresponded with the performance peak
observed in the first test. However once such cache contains the statuses for all the
EECs, then the overall performance greatly improves as the OCSP Server is no longer
required to retrieve the status from the in-memory cache. The latter operation requires a
few tenths of microseconds due to the performance and concurrency-control
mechanisms of the underlying OGRO API; a future enhancement may provide a more
scalable database approach for implementing the OCSP cache.
Finally, the results obtained with the prevalidation mechanism (the “Total prevalidated”
graph) do not involve the high peaks from the two previous tests, because it never
required to contact the OCSP Server. On the other hand, we found some others peaks in
the graph and, maybe more surprisingly, a slightly worse performance than with the
second-level cache mechanism–once it has been filled-. This behavior is due to the fact
that cached EEC’s statuses are directly accessed from an in-memory data structure,
while prevalidation data must be extracted from Proxy Certificates read from network
sockets -thus requiring more system calls to the underlying system- while also requiring
cryptographic validation.

 96

6.2.7. Enabling Proxy Revocation with OGRO
Proxy Certificates were intended to be short term cryptographic credentials. This is the
case in most situations. However, as noted in the CAOPS-WG, there are some particular
situations where Proxy certificates can have long lifetimes or they are created for future
use in batch queues. Security and system administrators have discussed a number of
scenarios where revoking a Proxy Certificates might be useful:
• A long-running job, that in turn creates many jobs in other domains needs to be

cancelled because maybe its results are not good, it exceeds resource limits, or other
problems identified by the job owner or the resource manager warrant termination.
Part of the job clean-up and recovery would include revoking Proxy Certificates in
use to prevent orphaned processes from running across domain boundaries.

• A system that is used as one component of a complex job is compromised. Instead
of aborting the whole job and losing all the results, only the components affected by
the compromised system are stopped.

• A resource owner who does not want a particular process to be run at a certain
moment. Rather than blacklisting the user, assigning a low-level priority to such a
process or damaging the application, the resource owner can temporally blacklist
(“suspend” in OCSP language) the delegated Proxy Certificate.

• A compromised system holding a large number of proxy certificates that could have
been captured by an attacker need to be revoked to avoid its malicious use anywhere
in the system.

Based on the above arguments, we want to discuss in this section both approaches (the
prevalidation and the second-level caches) to study how these alternatives can fulfill and
even relieve the security and functional requirements of such a complex topic. This
study will be developed at two different phases: the request of a Proxy Certificate status
through OCSP and the revocation of a Proxy Certificate.
In first place let us suppose a scenario where the prevalidation process is performed, but
when the Proxy Certificate is being created (let us call it P), then it is sent along with its
full Certificate Path to the OCSP Responder -which is able to register P status- for

Grid OCSP: Prevalidation vs Caching

0

1000

2000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

GT4 WSRF Request

Ti
m

e
(m

s)

Total OCSP Total cache Total prevalidated

Fig. 30. Grid-OCSP performance comparison: Prevalidation versus Caching.

 97

prevalidation. In this case we must notice that a “new” Proxy Certificate P’ will be
created back at the Grid client with such prevalidation data, but keeping the same X.509
information already present in P (i.e. public key, subject DN, etc.). Afterwards the Grid
client only has to “register” P’ so the OCSP Responder may be able to provide its status
to interested parties afterwards. A critical security issue here is that P’ must be
registered before the embedded prevalidation data’s expiration. The notion of
cautionary period (section 3.2.2) is useful in this case to avoid security issues..
Therefore it is feasible to think that when querying Proxy Certificate’s status, the
Prevalidation mechanism offers a similar security level than traditional OCSP.
Obviously the same holds true for the second-level cache mechanism, which will
request and store the OCSP Response exactly “as is” on the Grid server. There is,
however, an advantage of the prevalidation mechanism over the traditional OCSP and
the second-level cache solutions: prevalidated data allows for the retrieval of a Proxy
Certificate status even in situations where the OCSP Responder is not accessible from
the WSRF Container domain (i.e. due to network failures).
As a second use case, if a Proxy Certificate is revoked then there will be several issues
to be solved, mainly related with the entity authorized to perform such process and the
means by which this revocation information is propagated through the Grid. For our
purposes only the propagation problem will be considered, as OCSP by itself is not
related with the mechanisms to authorize and perform the Proxy revocation. If the
revocation information is not propagated to other domains in a promptly way, then there
is the latent risk of keeping jobs running under the compromised Proxy control for quite
a time. The prevalidation mechanism is unable to alleviate this problem, because the
prevalidated data is embedded into the revoked Proxy itself. As for the second-level
cache, a pretty similar problem may arise if and only if it is not being refreshed or
purged constantly. Stale cache entries will represent always a security risk. The
“traditional OCSP” approach answers the last Proxy Certificate status known by the
OCSP Responder, however there is no guarantee that such status is the very last, as
there is obviously a time required to propagate any update through the whole OCSP
infrastructure. In this case, the concept of “Cautionary Period” (section 3.2.2) should be
used to provide greater assurance to the OCSP Response.

6.3 POIS: Policy and OCSP based Interoperability System
The proposed POIS is comprised of three basic elements: a revocation information
database, a Policy Evaluator implementing the REM technique and a high-level OCSP
Responder authoritative for multiple PKI hierarchies.
At a coarse view POIS offers the following features:
1. Manage (retrieve, update) the list of CAs accredited by PMA.
2. Manage (retrieve, update) the CAs policies.
3. Manage (retrieve, update) the revocation sources and/or data.
4. Communicate with relying parties through Grid-OCSP.
5. Perform Extended Path Validation:

o Perform Basic Path Validation.
o Evaluate and/or Compare Policies.

In order to manage the list of accredited CAs and their policies (features 1 and 2) POIS
assume an off-line communication with both PMA and CAs (the administrator manually
downloads the list of accredited CAs and their policies). The revocation information
(feature 3) from each accredited CA is managed using the high-level OCSP Responder
like CertiVeR (see section 2.2.3).

 98

POIS uses for its Policy Evaluator subsystem the REM API developed as part of our
research (section 4.5), which allows offline evaluation of a member CA’s Certification
Policy to obtain its respective Global Security Level.
Using the high-level OCSP Responder’s database, the obtained GSL data is linked to
the existing Certificate Authority information (i.e. its revocation data). When the end-
entity uses OGRO’s prevalidation mechanism (section 6.2.3), the OCSP Responder
embeds the Trust Anchor’s GSL into the OCSP Response itself. If required, it is
possible for our prototype to embed per-provision LSLs for a finer-grained comparison
at the relying party. Afterwards to convey this GSL to the relying-party (feature 4), the
OGRO middleware simply needs to extract the prevalidation data from the proxy
certificate itself.
In our prototype, POIS is able to perform both basic and Extended Path Validation
(feature 5) thanks to the OGRO middleware. Basic path validation is done using native
GT4 algorithms, while the Extended Path Validation is performed by i) extracting
certificates’ statuses from the OCSP prevalidation data and ii) comparing the embedded
GSLs according to OGRO’s Grid Validation Policy explained in section 6.2.1.
Figure 31 shows a typical POIS’ use case, where interoperability is achieved between a
Grid Client belonging to Institution A and a Grid Services Container from Institution B.
The next two sections will explain in greater detail this process from the point of view
of both entities, the Grid Client and the Grid Services Container.

6.3.1. Use case 1: POIS and the End-Entity
When an End-Entity uses POIS to dynamically build Grid interoperability among
different CAs, the phases depicted in figure 32 take place. If compared versus OGRO’s
prevalidation (figures 21 and 22), it is easy to note the addition of the GSL value in the
following steps:
1. In an offline manner the CA submits its Certification Policy (CP) to the POIS, and

then the Policy Evaluator subsystem feeds it to its REM API to obtain a GSL. As
mentioned in the previous section, this GSL is stored into the high-level OCSP
Responder’s database along with the corresponding CA data.

2. The End-Entity builds an OCSP Request with a specific extension field (fully
compliant with [RFC2560]), that the OCSP Responder will understand as a
requirement to include its corresponding GSL –let us call it EEGSL - along with the
OCSP Response. Note that each CA from the End-Entity’s certificate chain may be
associated with a different GSL, for the REM technique this is quite feasible.

3. Finally, when the End-Entity receives the OCSP Response (with EEGSL embedded
also as an extension field), the prevalidation mechanism is executed to create a
proxy certificate with this data embedded.

 99

Thanks to OGRO’s prevalidation mechanism not only the relying party is able to
improve the validation process’ performance, but also the Proxy Certificate is self-
contained in the sense that includes all the data required by relying parties to perform
the extended validation process without further contacting any authority. This validation
data has been digitally signed by the OCSP Responder.

6.3.2. Use case 2: POIS and the Grid Services Container
Once the proxy certificate has been created with prevalidation data and the GSL
value(s) according to the previous section, it is possible for the Grid Server to perform
the interoperability evaluation in order to take a final validation and interoperability
decision on the End-Entity invoking the Service’s operation. Figure 33 extends the
validation process previously introduced in figure 22 with the following enhancements:
1. If OGRO’s prevalidation mechanism was used, then the End-Entity’s EEGSL is

extracted from this data, Otherwise, this GSL value is requested directly from the
OCSP Server.

Fig. 31. POIS’ Architecture.

Fig. 32. End-Entity performing Extended Path Validation with POIS.

 100

2. The interoperability test is performed by comparing EEGSL with the minimum
required-GSL defined by the relying-party in OGRO’s Grid Validation Policy –let
us call it SVRGSL -. If SVREE GSLGSL ≥ then both Grid-CAs may interoperate.

Notice that with POIS it is possible to dynamically test for an interoperability condition
on the server-side, but the End-Entity could be also able to request a minimum expected
GSL from a Grid-node. This “mutual-interoperability” feature will be discussed in the
next chapter, when reviewing our future work.

6.3.3. Use case 3: a SOAP based POIS
At the moment of writing the present thesis, the use of XML protocols (i.e. SOAP) for
the computational Grid was quite generalized since the birth of concepts like OGSA
[OGSA]. Nobody questions anymore the flexibility of XML for implementing complex
protocols conveying a wide variety of data.
Besides enabling POIS to convey its responses via OCSP (sections 6.3.1 and 6.3.2), we
also designed a SOAP interface for the system, so it could be possible to hide all the
OGRO management (i.e. definition of the Grid Validation Policy) to the relying parties.
Another clear advantage of this approach was the flexibility that could be achieved via
this mechanism, as it may be possible to transport in a near future more validation
information (besides the GSL and the OCSP Response).
The WSDL definition of POIS' Web Service interface includes an operation that can be
invoked by the relying parties (the End-Entity or the Grid Services’ WSRF Container)
to perform an interoperability test on an end-entity certificate. In this case, the following
steps would take place (see also figure 34):
1. The WSRF Container sends to POIS a SOAP message containing its own digital

certificate and the one of the End-Entity requesting a Grid Service.

Fig. 33. Modified Server for Extended Path Validation with POIS.

 101

2. The POIS receives the SOAP message, extracts the end-entity and the WSRF’s
certificates and, based on their issuing CA, retrieves the GSLs associated with them.
Remember that Certificate Policy evaluation is performed offline.

3. Because POIS integrates an OGRO client, checks with Grid-OCSP the statuses of
both certificates (the End-Entity’s and the WSRF’s).

4. The SOAP response from POIS includes the following information related with the
End-Entity's and the WSRF's certificates: the final OCSP statuses (obtained after
applying OGRO's Grid Validation Policy) and the GSLs.

5. The WSRF receives the POIS’ response, parses the contained information and
performs the Extended Path Validation process to decide if it is possible to
interoperate with the Grid client that requested the service.

Notice that in this case the requesting End-Entity does not need to contact POIS
(obviously if mutual validation is not being used) and despite the WSRF does not
implement an OGRO client, still it has total control over the Extended Path Validation
process (i.e. it can decide under which OCSP statuses/GSLs should End-Entity access
be allowed). This design feature enforces the basic idea behind a Grid authorization
process: let the resource owner take the ultimate decision about who can access his
resources.

6.4 Open issues
A first open-source prototype implementing a basic SOAP-based POIS has been
developed as a proof of concept, using the building blocks from our previous research:
the Grid-OCSP infrastructure (including the OGRO API) and the REM API. Our belief
is that greater flexibility may be achieved in the future thanks to this design decision
and of course, the Grid community’s feedback.
However there are still important tasks that need to be solved in order to achieve a
sound validation solution with POIS, in particular referring to an automatic way to audit
the Certification Policy that is being evaluated with the REM API. This would provide
not only greater guarantees to the system, but also may leverage the PMA’s workload.

Fig. 34. Messages exchanged via POIS' Web Service interface.

 102

A second requirement for a production-level POIS refers to the security around the
Certification Policies being retrieved. An initial idea consists in expressing the CP as an
XML document, built and digitally-signed by the corresponding Certificate Authority.
The following section covers in more detail the future work related with the open issues
mentioned above, and also introduces new application fields that we are beginning to
explore for applying the basic ideas behind this thesis. In particular will introduce our
current work for evaluating the security level of storage elements used into a Data Grid
system.

 103

CHAPTER
7 CONCLUSIONS AND FUTURE

WORK

 104

The Computational Grid relies on the assumption of sharing resources from different
institutions to solve computationally intensive problems, that otherwise could need
expensive and dedicated hardware systems.
Nowadays production-level Grids can be seen not only in traditional academic and
research fields, but also in novel applications ranging from financial to eHealth
environments. However the adoption of this paradigm also have conveyed a broad range
of security concerns related with the authentication and authorization of users willing to
access resources and services available through the so-called Virtual Organizations.
Unfortunately, as seen at the beginning of this thesis (table 1) currently used
Authentication and Authorization Infrastructures (AAIs), that have proven reliable in
other environments, now face complex challenges when being deployed into the Grid.
In most of the cases the main problem is related with one basic concept:
interoperability.
In this thesis we have researched interoperability issues related with Grid authentication
and authorization mechanisms, and the resulting proposal is a system able to “bridge”
both concepts via an Extended Path Validation process. This novel concept has
contributed the Grid community with the following:
• A near-real time validation of the end-entity digital certificate via a Grid-OCSP

infrastructure and,
• A quantitative evaluation of the security level associated with the Certification Policy

of the issuing Certificate Authority (using an extension of the Reference Evaluation
Methodology –REM-).

Of course our contribution does not exclude current technologies; by the contrary, the
information obtained via the proposed system is able to complement current AAIs to
provide Grid relying parties (i.e. resource owners) with the ultimate control over access
decisions related with the services and resources shared with the Virtual Organization.
Another important contribution of this thesis to the Grid community has been the
implementation of an open source Grid-OCSP client (OGRO) and an API that performs
the Certification Policy evaluation (REM library). Both prototypes have been used to
create a Web Service that can be queried by Grid relying parties (i.e. a WSRF Grid
Services’ container) to take interoperability decisions (the POIS system).
At the moment of writing this thesis, we keep pushing forward the main contributions of
our research into the following areas:
• Open Grid Forum (OGF): a recommendation based in our Grid-OCSP architecture is

still being written, so hopefully in the following months and with more practical
experience on this field, it will be possible to publish it.

• Globus Toolkit: The OGRO client developed as part of this thesis is now being tested
by the Grid community as an Incubator project. So far the feedback is quite positive,
so our belief is that quite soon it may be possible to have a production-level version;
this is step is just prior to its integration into the next release of the Globus Toolkit.

• CoreGRID and “Second University of Naples”: mainstream adoption of the “Grid-
REM” technique is taking place, with a particular focus on the Data Grid just as
explained at the end of this section.

• Level of Assurance: this international project [LoA] aims to develop mechanisms for
evaluating the security level associated with authentication mechanisms in several
environments (not only Grids). We have just begun contributing a first deliverable
thanks to our experience with the “Grid-REM” technique.

 105

As future work we are still developing a production-level POIS by introducing new
security mechanisms (i.e. protection of the Certification Policies to evaluate),
enhancements (i.e. convey POIS information through a SAML protocol, thus achieving
compatibility with OGSA authorization profiles) and assurance mechanisms (i.e.
automatic audit of most elements from the policy being evaluated).
We are also exploring new application fields that may contribute to enhance the security
issues in current Grid installations, in particular those related with the Data Grid where
thanks to an on-going fellowship with the CoreGRID Network of Excellent
[CoreGRID] it has been possible to propose a novel mechanism to protect the data at-
rest from untrusted storage elements ([SC07] and [PCGrid08]). Basically we are using
the Grid-REM technique to evaluate the security level associated with the Virtual
Organization’s storage elements, afterwards this numeric value is used to service a
minimum “Quality of Security” requested by the Grid user (in analogy with the Quality
of Service requested when using a communication channel).
In general, despite this is a slow process our belief is that the Grid community is
accepting quite well the main ideas behind this thesis, just as shown by the publications
related with our research (see Appendix B).

 106

References

[AACE-B1] “TERENA TF-AACE: Deliverable B.1”. López, Diego. et. al. Version

1. July 2003.
[AkCom] “A comparison of the Akenti and PERMIS authorization

infrastructures”. Chadwick, David. et. al. 2003.
[Akenti] “Certificate-based Authorization Policy in a PKI Environment”.

Thompson, Mary. et. al. 2001.
[AkPol] “Akenti Policy Language”. Thompson, Mary. et. al. July, 2001.
[APGridPMA] “Asia-Pacific Grid Policy Management Authority”. October, 2006.

http://www.apgridpma.org/
[Are05] “Towards Web Services Profiles for Trust and Security in Virtual

Organizations”. Arenas A., et. al. In IFIP Working Conference on
Virtual Enterprises (PRO-VE’05), Valencia, Spain. 2005.

[AuthZFwk] “Conceptual Grid Authorization Framework and Classification”.
Lorch, Markus. et. al. Global Grid Forum. Rev. November, 2004.

[CapSys] “Capability-Based Computer Systems”. Levy, Henry. Ed. Digital
Press. 1984.

[Cardea] “Cardea: Dynamic Access Control in Distributed Systems”. NASA
Advanced Supercomputing Division. November, 2003.

[CAS] “A Community Authorization Service for Group Collaboration”.
Pearlman L., et. al. In Proceedings of the 4th International Workshop
on Grid Computing. November, 2003.

[CernCP] “CERN Certificate Authority: Certification Policy”. August, 2006.
http://service-grid-ca.web.cern.ch/service-grid-ca/cp_cps/cp_cps.html

[CertiVeR] “CertiVeR: Certificate Revocation and Validation Service”.
November, 2006. http://www.certiver.com

[CGTrust] “D.IA.16 Update of the Survey Material on Trust and Security”.
CoreGRID FP6. August, 2007.

[CoG] "A Java Commodity Grid Kit". Gregor von Laszewski, Ian Foster,
Jarek Gawor, and Peter Lane, Concurrency and Computation: Practice
and Experience, vol. 13, no. 8-9, pp. 643-662, 2001,
http:/www.cogkit.org/

[CoreGRID] “CoreGRID Network of Excellence”. November 2007,
http://www.conregrid.net

[DoECP] “US Department of energy Grids: Certification Policy”. August, 2006.
http://www.doegrids.org/Docs/CP-CPS.pdf

[EUGridPMA] “European Policy Management Authority for Grid Authentication”.
Octuber, 2006. http://www.eugridpma.org/

[Gam00a] “Trust: Making and Breaking Cooperative Relations”. Gambetta D.
(ed). Department of Sociology, University of Oxford, 2000.
http://www.sociology.ox.ac.uk/papers/trustbook.html .

[Geu05] “Web Services and Web Service Security Standards”. Geuer-
Pollmann C. and Claessens J. Information Security Technical Report,
Elsevier, 10(1)15:24, 2005.

[GFD16] “Global Grid Forum Certification Policy Model”. Butler, R.,
Genovese, T. Global Grid Forum. June, 2003.
http://www.ggf.org/documents/GFD.16.pdf

 107

[Globus] “Globus Toolkit Version 4: Software for Service-Oriented Systems”.
I. Foster. IFIP International Conference on Network and Parallel
Computing, Springer-Verlag LNCS 3779, pp 2-13, 2005.

[Gra00] “A Survey of Trust in Internet Applications”. Grandison T. and
Sloman M. In IEEE Communications Survey and Tutorials, 3, 2000.

[GridAP] “Classic AP Profile Version 4.03”. Approved by the EUGridPMA.
Edited by David Groep. 2005. http://wwww.eugridpma.org/igtf/IGTF-
AP-classic-20050905-4-03.pdf

[GT4SEC] “GT 4.0: Security: Message & Transport Level Security”. 2006.
http://www.globus.org/toolkit/docs/4.0/security/message/

[IGTF] “International Grid Trust Federation”. October, 2006.
http://www.gridpma.org/

[Incubator] “dev.globus Incubator” November, 2006.
http://dev.globus.org/wiki/Welcome

[InfnCP] “INFN Certificate Authority: Certification Policy”. August, 2006.
http://security.fi.infn.it/CA/CPS/

[IrisCP] “pkIRIS Grid Certificate Authority: Certification Policy”. August,
2006. http://www.irisgrid.es/pki/policy/

[Jos07] “A Survey of Trust and Reputation Systems for Online Service
Provision”. Josang A., Ismail R. and Boyd C. In Decision Support
Systems, 43(2), pp 618-644, 2007.

[Lin04] “Liberty Trust Models Guidelines”. Linn J. (ed). Liberty Alliance
Project, version 1.0, 2004.

[LoA] “ES-LoA Project Output”. October, 2007. http://www.es-loa.org/
[OCSPReq] “OCSP Requirements for Grids”. Luna, J. et. al. Open Grid Forum,

CA Operations Work Group. Working Document. May, 2005.
https://forge.gridforum.org/projects/caops-wg

[OGF] “The Open Grid Forum”. November, 2006. http://www.ogf.org/
[OGRO] “The Open GRid Ocsp API”. November, 2006.

http://globus-grid.certiver.com/info/ogro/
[OGSA] “The Physiology of the Grid: An Open Grid Services Architecture for

Distributed Systems Integration”. Foster, I., Kesselman, C., Nick, J.
and Tuecke, S. Globus Project, 2002,
http://www.globus.org/research/papers/ogsa.pdf

[OGSASEC] “The Security Architecture for Open Grid Services”. Nagaratnam N.,
et. al. 2002. http://www.cs.virginia.edu/~humphrey/ogsa-sec-
wg/OGSA-SecArch-v1-07192002.pdf

[OSSTMM] “OSSTMM: Open Source Security Testing Methodology Manual.”
August, 2006. http://www.isecom.info/mirror/osstmm.en.2.1.1.pdf

[PCGrid08] “Providing security to the Desktop Data Grid”. Luna J., et. al.
Submitted to the CoreGRID PCGrid 2008 Workshop. November,
2007.

[Permis] “The PERMIS X.509 Role based privilege management
infrastructure”. Chadwick, David. Otenko, Alexander. June, 2002.

[PRIMA] “The PRIMA Grid Authorization System”. Lorch M. and Kafura D.
In Journal of Grid Computing. Springer Netherlands. Vol. 2, no. 3.
pp- 279-298. September, 2004.

[REM1] “An innovative Policy-based Cross Certification methodology for
Public Key Infrastructures”. Casola V., Mazzeo A., Mazzocca N., Rak
M. In 2nd EuroPKI Workshop. Springer-Verlag LNCS 3545, pp 100-

 108

117, Editors: David Chadwick, Gansen Zhao. 2005.
http://sec.cs.kent.ac.uk/europki2005/

[REM2] “A Reference Model for Security Level Evaluation: Policy and Fuzzy
Techniques”. Casola V., Preziosi R., Rak M., Troiano L. JUCS -
Journal of Universal Computer Science. Editors: Ajith Abraham, L.C.
January, 2005.

[REM3] “A SLA evaluation methodology in Service Oriented Architectures”.
Casola V., Mazzeo A., Mazzocca N., Rak M” in Proceedings of
Quality of Protection Workshop 05, 15 September, 2005, Milan, in
Advances in Information Security book series, Springer-Verlag

[REM4] “A Policy Based Methodology for the Analysis, Modelling and
Implementation of Security Infrastructures”. Casola V., PhD Thesis,
Second University of Naples, 2004.

[RFC2078] “RFC 2078: Generic security service application program interface –
GSS API version 2”. Linn J. Internet Engineering Task Force. 1997.
http://www.ietf.org/rfc/rfc2078.txt

[RFC2246] ”RFC 2246: The TLS Protocol version 1.0”. Dierks T., and Allen C.
Internet Engineering Task Force. 1999.
http://www.ietf.org/rfc/rfc2246.txt

[RFC2560] “RFC 2560: X.509 Internet Public Key Infrastructure, Online
Certificate Status Protocol – OCSP”. Myers M, et. al. June 1999.
http://www.ietf.org/rfc/rfc2560.txt

[RFC2904] “RFC 2904: AAA Authorization Framework”. Vollbrecht J, et. al.
August Internet Engineering Task Force. 2000.
http://www.ietf.org/rfc/rfc2094.txt

[RFC3280] “RFC 3280: Internet X.509 Public Key Infrastructure Certificate and
Certificate Revocation List (CRL) Profile”. Housley R., et. al. Internet
Engineering Task Force. 2002. http://www.ietf.org/rfc/rfc3280.txt

[RFC3281] “RFC 3281: An Internet Attribute Certificate Profile for
Authorization”. Farrel S. and Housley R. Internet Engineering Task
Force. 2002. http://www.ietf.org/rfc/rfc3281.txt

[RFC3379] “RFC 3379: Delegated Path Validation and Delegated Path Discover.
Protocol Requirements”. Pinkas D. and Housley R. Internet
Engineering Task Force. 2002. http://www.ietf.org/rfc/rfc3379.txt

[RFC3647] “RFC 3647: Internet X.509 Public Key Infrastructure, Certification
Policy and Certification Practices Framework”. Chokhani S., et. al.
November 2003. http://www.ietf.org/rfc/rfc3647.txt?number=3647

[RFC3820] “Internet X.509 Public Key Infrastructure proxy certificate profile”.
Tuecke S., et. al. Internet Engineering Task Force. 2004.
http://www.ietf.org/rfc/rfc3820.txt

[SAML] “Assertions and Protocols for the OASIS Security Assertion Markup
Language (SAML) V1.1”. OASIS Security Services Technical
Committee. Version 1.1. September, 2003.

[SC07] “An analysis of security services in grid storage systems”. Luna J., et.
al. In CoreGRID Workshop on Grid Middleware 2007, June 2007.

[SCVP] “Server-based Certificate Validation Protocol”. Housley R., et. al.
Internet Engineering Task Force Draft. September, 2007.
http://www.ietf.org/internet-drafts/draft-ietf-pkix-scvp-33.txt

[Shib] “Shibboleth Overview and requirements”. Carmody, Steven.
February, 2001.

 109

[TAGPMA] “The Americas Grid Policy Management Authority”. October, 2006.
http://www.tagpma.org/

[UniAAI] “Towards a Unified Authentication and Authorization Infrastructure
for Grid Services: Implementing an enhanced OCSP Service Provider
into GT4”. Luna J., Manso O., Manel M. 2nd EuroPKI 2005
Workshop. Proceedings by Springer in Lecture Notes in Computer
Science series. July 2005. http://sec.cs.kent.ac.uk/europki2005/

[VOMS] “VOMS Architecture v1.1”. EU DataGrid. March, 2007. http://grid-
auth.infn.it/docs/VOMS-v1_1.pdf

[WSRF] “The WS-Resource Framework”. 2006. http://www.globus.org/wsrf/
[X509] “ITU-T X.509 (03/00): Information technology – Open systems

interconnection, the directory: Authentication framework”. ITU,
Recommendation. 2002.

[XACML] “OASIS eXtensible Access Control Markup Language (XACML)
2.0”. Moses, Tim. et. al. December, 2004.

[XMLDSig] “XML-Signature Syntax and Processing”. Bartel, Mark. et. al. W3C
Recommendation. February, 2002. http://www.w3.org/TR/xmldsig-
core/

110

Appendix A: Global Grid Forum’s CP Model’s formalized template

Section Subsection Provision Cardinality Possible Values
 Introduction Identification 2 noODI<OIDassigned
 Community &

applicability
Certificate Authority 2 CAhasRArole<independentRA

 Local Registration Authorities
(LRAs)

3 noRA<onlineRA<physicalRA

 End Entities 1 CPspecified
 Policy applicability 4 AuthRelationship<AuthBusinessTransaction<

AuthBusinessFinancialTransaction<AuthLegalBusFinTransaction
 Notification of certificate issuance

and revocation
4 CAavailable< CA-CRLavailableOncontract < Revocation Notified <

CA-CRL available
 Contact details Specification Administration

Organization
1 CPspecified

 Contact persons 1 CPspecified
 Person determining CPS

suitability for the Policy
2 LocalPMA<PMA

 General provisions Obligations CA
obligations

 Time between certificate request
and issuance

4 5 days < 2 days < 1 day < 4 hours

 Certificate revocation and renewal 1 CAObligedToRespectPolicy
 Notification upon private key

compromise
1 SubscriberObligedTo

 Revocation check responsibility 1 ObligedTOcheck
 Limitations of liability 4 noLiability<5000<50000<1000000$
 RA obligations 2 AuthenticateRequestor<ProofSubjectPubKeyPossesion
 Subscriber obligations 2 SecureCreationPrivateKey<ProtectPrivateKey
 Relying party obligations 2 CheckCertPurpose<CheckCertValidity
 Repository Obligations 2 BestEffortRepository<HighAvailabilityRepository
 Liability CA liability 3 noLiability<minimumCAPrivateKeyProtection<CAfailureToComplyCP
 RA liability 2 noLiability<verifyIdentityOfEveryRequestor
 Financial

Responsability
Indemnification by relying parties 1 definedByCP

 Fiduciary relationships 1 definedByCP
 Administrative Processes 1 definedByCP
 Interpretation and Governing Law 1 definedByCP

 111

Enforcement
 Severability,survival,merger,notice 3 notifyCACeaseOfOperation<notifyCrossCertifiedCA<

revokeIssuedCertificatesAtTermination
 Dispute resolution procedures 2 definedByCP<PMADefined
 Fees Certificate issuance or renewal fee 1 definedByCP
 Certificate access fees 1 definedByCP
 Revocation or status information

access fees
1 definedByCP

 Fees for other services 1 definedByCP
 Refund Policy 1 definedByCP
 Publication and

Repository
Publication of CA information 2 offLineRepository<secureOnlineRepository

 Frequency of publication 2 CertsPublishedAsIssued<CPSpublishedAsApproved
 Access Control 2 noAccessControl<AccessControlToIssuedCerts
 Repositories 2 noRepositories<onlineRepositories
 Compliance audit Frequency of Entity Compliance

Audit
2 beforeInitialAproval<OncePerYear

 Identity and qualifications of
auditor

2 relatedWithAuditedCA<NoRelatedWithAuditedCA

 Auditors relationship with audited
party

1 definedInCP

 Topic covered by audit 1 ComplianceCP/CPS
 Deficiency 2 relyingPartyRefusesCA<CAcannotBePartOfHierarchy
 Communication of results 3 definedInCP<resultPublicilyAvailable<publishedPMA
 Confidentiality Confidential Information 1 EnsurePrivacyProtection(Law)
 Information considered

confidential
2 NotIncludedInCertificate<ExplicitlyDeclaredConfidential

 Certificate Revocation or
suspension information

2 notConsideredConfidential<EnsureConfidentiality

 Release to Law Enforcement
Officials

1 DiscloseNationalLaws

 Release as Part of Civil Discovery 1 DisclosetoCivilDiscovery
 Disclosure upon Owner’s Request 1 DiscloseAfterOwnerAuthorization
 Other Information Release

Circumstances
1 SpecialEventsForDisclose

 Intellectual Property Rights 1 NoCLaimOnIssuedCertificates
 Identification and
authentication

Initial registration Types of names 1 RFC2459Conformant

 Need for names to be meaningful 2 AssociatedUnicID<Associated

 112

 Interpretation of name forms 1 Subject-IssuerObliged
 Uniqueness of Names 1 uniqueDNs
 Name claim dispute 1 definedByCP
 Trademarks 1 definedByCP
 Proof of possession of Private Key 2 CAgeneratesPrivKey<secureProofMethod
 Authentication of organization

identity
4 OnLineAuth < InternalMechanisms < IDCard-delegation <

Face-to-Face
 Authentication of individual

identity
4 OnLineAuth < InternalMechanisms < IDCard-delegation <

Face-to-Face
 Routine Rekey 4 identityEstablishedwithCurrentKey<

identityReestablishedOnceEvery15y<
identityReestablishedOnceEvery10y<i
dentityReestablishedInPerson

 Rekey after revocation 4 notAllowed<UseDigSigRequest<RekeyAuthn<
UseInitialRegistrationMechanisms

 Revocation Request 2 UseDigSigRequest<UseInitialRegistrationMechanisms
Operation
Requirements

 Certificate application 2 CAGeneratesKeyPair<EntityGeneratesKeyPair

 Certificate Issuance 1 CAnotifyRequester
 Certificate Acceptance 1 CPspecified
 Certificate suspension

and revocation
 Circumstances for revocation 5 noRequested<InformationChanges<

SuspectCompromisePrivKey<SuspectCompromiseKeyStorage
<CPChanges

 Who can request revocation 4 Anyone<theCA<theSubject<LRAtrustedRole
 Procedure for revocation request 4 byFAX<byPHONEorE-maill<byAuthenticatedProcedure<

Face-to-FaceRequest
 Revocation request grace period 4 24hours<12hours<4hours<immediately
 Circunstances for Suspension 2 notSupported<SupportedByCA
 Request for Suspension 1 AcceptsRequests
 Procedure for Suspension

Request
2 DigSigRequest<Face2Face

 Limits on Suspension Period 1 CPspecified
 CRL issuance frequency 4 24hours<12hours<4hours<immediately
 CRL checking requirements 1 RelyingPartiesAreObligedToCheck
 Online Revocation and Status

Checking
3 notSupported<onlineCRL<OCSP

 Online Revocation Checking
Requirements

1 alwaysCheck

 Other forms of Revocation 1 CPspecified

 113

Advertisements
 Checking Requirements for Other

Forms…
1 CPspecified

 Security Audit
Procedures

Types of Event Recorded 1 AllEvents-OperationsRecorded

 Frequency of processing log 4 1 month<2weeks<1week<daily
 Retention Period for Audit Log 1 3 years
 Protection of Audit Log 1 BestEffort
 Audit Log Backup Procedures 1 CPspecified
 Audit Collection System 2 internal<external
 Notification to Event-Causing

Subject
1 CPspecified

 Vulnerability Assessments 1 CPspecified
 Records Archival Types of events Recorded 2 IssuedCertRecord<IssuedCert-CRL
 Retention Period for Archive 1 3 years
 Protection of Archive 1 internalAccessOnly
 Archive backup procedures 1 CPspecified
 Time Stamping of Records 1 CPspecified
 Archive Collection System 2 internal<external
 Procedure to obtain/verify archive

info
1 CPspecified

 Key changeover 2 AutomaticChangeOver<ProcedureToRe-issueCert
 Compromise & Disaster

Recovery
CA private key compromised 4 documented<RequestCACertRevocatiion<InformSubscribers<

TerminateServices
 Computing resources, software

and/or data corrupted
1 CPspecified

 Entity Public Key is Revoked 1 CPspecified
 Entity Key Compromised 1 CPspecified
 Secure facility after disaster 1 documented
 CA termination 4 InformSubscribers<TerminateServices<

PublishInfoAfterTermination<DestroyPrivKeys+AllCopies
Physical, procedural
and personnel
security

Physical controls Site location, construction and
physical access

4 MonitorAuthorizedPersonel<ControlAccesstoCAservers<
ControlAccesstoCA-RA-servers<CA-HighSecZone

 Physical Access 1 OnlyAuthzPersons
 Power and Air Conditioning 1 CPspecified
 Water Exposure 1 CPspecified
 Fire prevention and Protection 1 CPspecified

 114

 Media Storage 1 CPspecified
 Waste Disposal 1 CPspecified
 Off-Site Backup 2 NotUsed<cAccessToAuthzPersons
 Procedural controls CA trusted roles 3 Everyone<SeparationDuties2Persons<

SeparationDuties3Persons
 Number of persons req per task 2 1Person<MoreThanOnePerson
 Identification and Authn for each

role
1 CPspecified

 Personnel Controls Background,qualifications,exp
and clearance

2 TrainedPerson<TrainedSeparationDuties

 Background check procedures 1 CPspecified
 Training reqs 1 CPspecified
 Retrain frequency and

requirements
1 CPspecified

 Job rotation freq and sequence 1 CPspecified
 Sanctions for unauthz actions 1 CPspecified
 Contracting personnel reqs 1 CPspecified
 Docs supplied to personnel 1 CPspecified
 Technical security
controls

 Key pair generation and
installation

2 generatedByCA<generatedByEntity

 Private key delivery to Entity 3 EnclosedEnvelope<EnclodeEnvelopeSplittedBtPIN<
OwnedByEEC

 Public key delivery to cert issuer 1 SecureProcedure
 CA public key delivery to users 1 OnLine
 Asymmetric key sizes 3 512<1024<2048
 Generation of Public Key Params 1 PMA-approvedAlghorithm
 Parameter Quality Checking 1 CPspecified
 Hardware/software key generation 2 SoftHardModule<HwCryptoModule
 Key usage purposes (as per

X.509v3 field)
3 Authentication<DigitalSignature<DigSignLegalValidity

 Private key multiperson Control 1 SeparationDuties
 Private key escrow 1 noEscrow
 Private key backup 2 storedSecureMedium<NotAllowed
 Usage periods for the public and

private keys
3 6years<2years<1year

 Private key protection System development controls 3 VerifiableDevelopmentProcess<
VerifiableQualifiedDevelopmentProcess<
VerifiableQualifiedDevelopmentProcess+RiskAssessment

 115

 Security management controls 2 DocumentedUpgrades<FormalMangementMethodology
 Cryptographic module

engineering Controls
3 ValidatedCryptographicModule(FIPS-140-L1)<

HardwareCryptographicModule(FIPS-140-L2)<
CryptographicModule(FIPS-140-L3)

 Other aspects of key
pair management

 Network security Controls 1 NetworkProtectionAgainstAttack

CA Certificates Private key protection Standards for cryptographic
modules

4 SWModule<ValidatedCryptographicModule(FIPS-140-L1)<
HardwareCryptographicModule(FIPS-140-L2)<CryptographicModule(FIPS-140-L3)

 Private key multiperson Control 1 SeparationDuties
 Private Key Escrow 1 noEscrow
 Private Key Backup 2 storedSecureMedium<NotAllowed
 Private Key Archive 2 onlyEncr&DecPrivKey<SigningKey
 Private Key Entry into a Crypto

Module
2 SWModule<HWModule

 Activating a Private Key 4 PIN<Passprahse<HWToken<Biometric
 Deactivating a Private Key 4 PIN<Passprahse<HWToken<Biometric
 Destroying a Private Key 2 EraseFromRAM<DestroyAllCopies
 Other aspects of CA key

pair management
Public Key Archival 2 RepositoryIntegrityControls<RepositoryDigSigned

 Usage periods for the public and
private keys

3 20years<6years<2years

 CA Key Access Control 3 PassPhrase<HardwareToken<BiometricSensors
 Activation Data Activation data generation and

installation
4 PIN<Passprahse<HWToken<Biometric

 Activation data protection 2 Confidentiallity<Integrity
 Other aspects of activation data 1 CPspecified
 Computer security

controls
Computer security technical
requirements

2 dedicated<offline

 Computer security rating 1 CPspecified
 Life-cycle technical

controls
 System development controls 3 VerifiableDevelopmentProcess<

VerifiableQualifiedDevelopmentProcess<
VerifiableQualifiedDevelopmentProcess+RiskAssessment

 Security management controls 2 DocumentedUpgrades<FormalMangementMethodology
 Life-cycle security rating 1 CPspecified
 Network security Controls 1 NetworkProtectionAgainstAttack
 Cryptographic module

engineering Controls
3 ValidatedCryptographicModule(FIPS-140-L1)<

HardwareCryptographicModule(FIPS-140-L2)<
CryptographicModule(FIPS-140-L3)

 Certificate and CRL Certificate Profile 1 X.509v3

 116

profiles
 CRL Profile Version numbers 1 FixedTo1
 CRL and CRL Entry extensions 1 CPspecified
Administration of Specifications Specification Changes 1 NotifyCA-Users
 Publication and Notification

Policies
2 PMA<IGTF

 CPS Approval Procedures 1 PMA
Others CA-RA Communication 2 Unsecure<Secure
 Disaster Recovery Procedure 2 Documented<DiscussedPMA

117

Appendix B: Published Material

• Journals:

o “Using OGRO and CertiVeR to improve OCSP validation for Grids”. Luna
J., Manso O., Manel M. 1st Grid and Pervasive Conference. 2007. Springer
Netherlands: Journal of Supercomputing: special issue Technology
Deployments in Grid Computing. ISSN 0920-8542 and 1573-0484 on line.

• Workshops and Conferences:

o “Towards a Unified Authentication and Authorization Infrastructure for Grid
Services: Implementing an enhanced OCSP Service Provider into GT4”.
Luna J., Manso O., Manel M. 2nd EuroPKI 2005 Workshop. 2005. Springer-
Verlag LNCS Vol. 3545. ISBN 978-3-540-28062-0. pp. 36-54. Editors:
David Chadwick, Gansen Zhao. http://sec.cs.kent.ac.uk/europki2005/

o “Using OGRO and CertiVeR to improve OCSP validation for Grids”. Luna
J., Manso O., Manel M. 1st Grid and Pervasive Conference. 2006. Springer-
Verlag LNCS Vol. 3947. ISBN 3-540-33809-8. pp. 12-21. Editors: Yeh-
Ching Chung, José E. Moreira. http://hpc.csie.thu.edu.tw/gpc2006/ - Best
Paper Award.

o “OCSP for Grids: Comparing Prevalidation versus Caching”. Luna J.,
Manso O., Manel M. In 7th IEEE/ACM International Conference on Grid
Computing, Barcelona. 2006. ISBN: 1-4244-0344-8. pp. 202-209.
http://www.grid2006.org/

o “Static evaluation of Certificate Policies for GRID PKIs interoperability”.
Luna J., Casola V., et. al. Accepted for 2nd International Conference on
Availability, Reliability and Security. 2007. http://www.ares-conference.eu/

o “Interoperable Grid PKIs among Untrusted Domains: An Architectural
Proposal”. Luna J., Casola V., et. al. Submitted for 2nd Grid and Pervasive
Conference. 2007. http://www-lipn.univ-paris13.fr/GPC2007/

o “An analysis of security services in grid storage systems”. Luna J., et. al. In
CoreGRID Workshop on Grid Middleware 2007, June 2007.
http://www.coregrid.net

o “Providing security to the Desktop Data Grid”. Luna J., et. al. Accepted for
the 2nd Workshop on Desktop Grids and Volunteer Computing Systems
(PCGrid2008). December, 2007.

o “A data-centric security analysis of ICGrid”. Luna J., et. al. Accepted for the
CoreGRID Integration Workshop 2008. January, 2008.

• Extended abstracts:

o “Using OGRO to implement OCSP certificate validation in the Globus
Toolkit 4”. Luna, Jesús. Manso, Oscar. Manel, Medina. 22nd APAN Grid
Meeting. Singapore. July 2006.
http://www.apan.net/meetings/singapore2006/

 118

• Recommendations and Open Source:
o “OCSP Requirements for Grids”. Global Grid Forum, CA Operations Work

Group. Work in Progress. February 2007.
https://forge.gridforum.org/projects/caops-wg

o “OGRO - The Open GRid Ocsp client API”. February 2007.
http://dev.globus.org

