Índice de tablas

1.1. Estadísticas sobre la cantidad de aparatos biomédicos consumidos en los Estad
Unidos en el año 1997 según el National Institutes of Health (NIH) [2]
1.2. Estadísticas sobre el mercado de los biomateriales y de la salud en general en l
Estados Unidos [2]
1.3. Tipos de respuestas del tejido al implante [15]
1.4. Tipos de adhesión biocerámico-tejido y su clasificación [15]
1.5. Biocompatibilidad de algunos materiales según su patrón de osteogénesis [16]1
1.6. Aplicaciones y propiedades de los materiales bioinertes más comunes [3]1
1.7. Propiedades mecánicas a tracción de la aleación Ti6Al4V [24]1
1.8. Propiedades mecánicas típicas de los metales para prótesis e implantes [24]1
1.9. Secuencia de reacciones en el tejido receptor después de la implantación [26]1
1.10. Propiedades que caracterizan la superficie de un implante [33]2
1.11. Comparación de la composición, cristalografía y propiedades mecánicas de
hueso y de la hidroxiapatita [40]2
1.12. Composiciones de los vidrios (% en peso) y sus propiedades térmica
incluyendo el Bioglass [®] y el vidrio común (soda-cal)
2.1. Composiciones de los vidrios fabricados (% en peso) y sus propiedad
térmicas

2.2.	Parámetros utilizados en la determinación de las tensiones residuales de la fase
	cristalina por difracción de rayos $X (sen^2 y)$
2.3.	Concentración iónica (mM) de la solución de fluido fisiológico simulado (SBF)
	utilizado [136] y del plasma sanguíneo humano
3.1.	Condiciones críticas de los daños producidos durante el contacto Hertziano
	monotónico de los recubrimientos con diferentes tiempos de calcinación148
3.2.	Valores de las funciones geométricas para el factor de intensidad de tensiones
	debido a una distribución de tensiones polinomial evaluado en los puntos
	superficiales de una fisura semi-elíptica [157]197
3.3.	Valores del coeficiente de expansión térmica del recubrimiento 6P64C estimados
	tanto a partir de algunos modelos teóricos como mediante la técnica de dilatometría
	[69]