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CHAPTER 3 

 

ANALYSIS OF THE INTERFACE BEHAVIOR IN PURE 
SHEAR SPECIMENS BY MEANS OF NON-LINEAR 

FRACTURE MECHANICS (NLFM) 
 
 

3.1. Introduction to Non-Linear Fracture Mechanics 
 
The transfer of stresses from concrete to FRP is a crucial fact on the correct 
performance of externally reinforced concrete structures. Failures in this transfer region 
may result in brittle ruptures that must be taken into account in the design of the 
reinforcement. The application of Fracture Mechanics theory in this area is a useful tool 
to model the behavior of the interface and its premature failure. 
 
Fracture mechanics is concerned with the description of the mechanics phenomena 
involving the propagation of a crack in a continuous medium. Its origins go back to the 
work of Griffith which was published in 1920 (Anderson, 1991). Griffith applied the 
stress analysis of an elliptical hole to the unstable propagation of a crack. The 
mechanics of fracture progressed from being a scientific curiosity to an engineering 
discipline during World War II because of the brittle fracture of the Liberty ships, which 
were the first to have an all-welded hull. In 1956, Irwin developed the energy release 
rate concept, which was related to the Griffith theory, but in a more useful form for 
solving engineering problems. Crack plasticity turned out to be an important concern 
around 1960. Fracture mechanics today is a well-established theory as documented for 
example in Anderson (1991). 
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Before starting with the implementation of Fracture Mechanics in the bond transfer 
between concrete and the external reinforcement, some fracture mechanics concepts 
will be introduced. 
 
Linear Elastic Fracture Mechanics (LEFM) can be defined as the mechanical process 
that develops during the formation of a crack without activating plastic mechanisms. 
Within this process the material behaves in a linear elastic manner. LEFM applies to 
elastic brittle materials (i.e. glass). Two approaches can be used to describe the 
propagation of a crack. In the stress approach, assuming an existing crack, the theory of 
elasticity gives the stress distribution at the vicinity of the crack tip as equation (3.1). 
Fracture will occur when k reaches a characteristic value kC, known as fracture 
toughness. 
 

( )
x

kx =σ  (3.1) 

 
where: 

 
k: stress intensity factor 

 
Alternatively, in the energy approach, if an existing crack with length a increases its 
length in a differential da, the amount of internal strain energy will vary as shown by 
equation (3.2). 
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The energy required to grow an existing crack a total of da is given as (3.3). 
 

daGda
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W
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∂
∂  (3.3) 

 
The propagation of a crack is possible if the energy in the system decreases during the 
fictive extension, in other words, if equation (3.4) is accomplished: 
 

CGG ≥  (3.4) 
 
In 1957, Irwin (Oller, S., 2001) introduced an identification of the different crack 
propagation movements which were categorized in three groups, as shown in Figure 
3.1: 
 
Opening mode I: The crack surfaces split up almost parallel to each other and the 
displacements of these points are perpendicular to the crack plane. It is assumed that 
only tensile stresses develop in this mode of fracture. 
 
Shearing mode II: The crack surfaces slide between each other in the crack plane. It is 
assumed that only shear stresses are generated under mode II. 
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Tearing mode III: The crack surfaces slide laterally between each other. In this case, 
only shear stresses can be developed. 
 

 
Figure 3.1. Fracture modes (adapted from Irwin, 1957). 

 
The joints of interest here are loaded primarily in shear providing the necessary shear 
connection between the concrete and the FRP. The interfacial shear stresses generate a 
relative displacement between both adherents that may derive in the formation of a 
horizontal crack along the interface. Hence, the crack propagation mode will resemble 
Shearing mode II. 
 
 

3.1.1. Application to bonded plates. Non-Linear Fracture Mechanics. 
 
The fracture is non-linear, when plasticity or another inelastic mechanism that implies 
big deformations before failure, occurs on the crack tip. Therefore, Linear Elastic 
Fracture Mechanics (LEFM) cannot be used in ductile materials (with a pronounced 
yield zone) or in deformation softening materials (that have a pronounced descending 
branch on the load deflection curve). The last group of materials (i.e. concrete) is of 
interest in this work. In this case, a special Non-Linear Fracture Mechanics (NLFM) 
must be developed based on a stress-displacement relationship. 
 
One aim of this research (see Figure 3.2) is the analysis of a bonded joint between a 
linear elastic laminate and a linear elastic support through an intermediate adhesive. 
 

 
Figure 3.2. Bonded joint between a linear elastic laminate and a linear elastic support. 
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The debonding process of a laminate can be analyzed as the formation and propagation 
of an interfacial crack. The bond line is assumed as a pure shear medium. The shear 
stresses which are locally transferred between the concrete and the external 
reinforcement are related to the relative displacement between both materials through 
the constitutive behavior of the interface using a bond-slip function. 
 
In Figure 3.3, some shear-slip relations for different types of reinforcement are shown. 
The bond of FRP is stiffer than that of embedded steel rebars, but the total load capacity 
of the FRP bond, which is proportional to the area under the curve, is much lower. 
 

 
Figure 3.3. Shear stress-slip relations for different types of reinforcement (FIB Task Group 9.3 
FRP, 2001). 

 
Figure 3.4 shows a typical bond-slip relationship for a bonded joint. In this bond-slip 
curve, two zones are distinguished: 
 

1) While the slip is lower than the value sLM, the shear stress is a growing function 
representing the adhesive deformation. The joint is in Zone I. The maximum 
shear stress at a slip value of sLM is τLM. 

2) For slip values higher than sLM, the shear stress is a decreasing function that 
reproduces the post-peak behavior. The joint is in Zone II. While in Zone I, the 
material is assumed to be undamaged, in Zone II, microcracks develop in the 
joint. Shear stress transfer is still possible by aggregate interlock. The function is 
valid up to a slip value of sL0. At this point, the joint is assumed to be locally 
broken with the opening of an interfacial macrocrack. 

 

 
Figure 3.4. Bond-slip relationship. 
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The area enclosed by the bond-slip relationship up to a particular slip value, sL, is the 
strain energy stored in a joint (per unit bonded area), (see Figure 3.5). When a crack 
opens, the store energy is released. At this point, the energy release, which is the area 
under the curve of Figure 3.6, is called fracture energy GF (per unit bonded area). The 
fracture energy is defined as the energy required to bring to a complete fracture a 
connection with a certain area. 
 

 
Figure 3.5. Stored energy in a joint. 

 

 
Figure 3.6. Fracture energy GF. 

 
Looking back to Figure 3.2, the external work done by a particular force value P will be 
stored as strain energy in the laminate, in the support and in the joint. Fracture growth is 
caused by a critical value of the applied force Pmax that generates a strain energy release 
(fracture energy) compatible with an equal energy increase in the laminate. 
 
For the particular case of a very long laminate, this maximum force Pmax is easily 
obtained as follows.  
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Figure 3.7. Fracture growth. 

 
If the crack grows a differential length da, the stored energy in the laminate will vary by 
a certain amount given by equation (3.5) since it can be assumed that the laminate is 
substantially long and the strain stored in the bonded part of the laminate does not 
depend on its length. 
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The energy release, when the fracture increases a differential da, is written as (3.6). 
 

dabGdW LF=  (3.6) 
 
Thus, fracture growth is possible when the energy release equals the stored energy, as 
shown in equation (3.7). From this equation, the maximum applied force is obtained 
(see equation (3.8)). 
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=  (3.7) 

 

LLFL tEGbP 2max =  (3.8) 
 
This analysis has been based mainly on the work of Täljsten (1994). It has the 
advantage of being very simple, intuitive, and theoretically more accurate in describing 
the physics of the FRP debonding. In addition, it does not depend on the shape of the 
bond-slip relationship. However, it does not give a clear idea of which is the process 
involved in the formation and propagation of a crack. Furthermore, it is difficult to 
extend it to finite length laminates. 
 
Therefore, in order to describe the crack propagation process, a strength approach 
(rather than an energy approach) will be presented for a bilinear bond-slip relationship 
in this chapter. 
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3.2. Governing equations 
 
 

3.2.1. The Volkersen equation 
 
In order to describe the stress and strain distribution on the interface between the 
support and the laminate on a beam under transverse load, it is necessary to deal with a 
simplified case. To avoid the presence of interface normal stresses, a pure shear case is 
first studied (see Figure 3.8). 
 

 
Figure 3.8. Single shear test model. 

 
The governing equation describing the stress situation in a bonded connection can be 
derived using the following assumptions: 
 

1) The adhesive is only exposed to shear forces. 
2) The thickness and width of the adherents and adhesive are constant along the 

bonded length. 
3) The bending effects in both adherents are not considered. 
4) Since the concrete axial stiffness is much higher than the laminate axial 

stiffness, the concrete axial strain is neglected. 
5) The normal stresses are uniformly distributed along the laminate cross-section. 

 
Figure 3.9 shows a differential element, dx, of a bonded joint. Applying equilibrium to 
this element, the laminate tensile stress, σL, can be obtained through the shear stresses 
as shown in equation (3.9). 
 

( ) ( )x
dx

dtx L
L

στ =  (3.9) 

 
The relative displacement of the laminate with respect to the support will be called here 
laminate slip, s. As the concrete axial strain is neglected, the first derivative of the slip 
becomes equal to the laminate strain, which can be expressed as a function of the tensile 
stress. 
 

( ) ( ) ( )
L

L
L E

xx
dx

xds σε ==  (3.10) 
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Figure 3.9. Bonded joint loaded in pure shear. 

 
By incorporating equation (3.9) in the derivative of equation (3.10), the governing 
equation (3.11) can be written. This equation is expressed in terms of the relative 
displacement (or slip) between support and external reinforcement as represented by s 
and the shear stress which is a function of the slip, τ = f(s). 
 

( ) ( ) 01
2

2

=− x
tEdx

xsd
LL

τ  (3.11) 

 
The second order differential equation (3.11) describing the behavior of a bonded joint 
was first derived by Volkersen in 1938 (referenced by Brosens, 2001). Later on, this 
differential equation was used by many other researchers including Bresson (1971), 
Kaisser (1989) (referenced by Meier, 1995), Täljsten (1994) and Brosens (2001). 
Equation (3.11) can be solved by assuming a constitutive relationship between the shear 
stress and the slip, τ = f(s). This equation, which was originally proposed for a linear 
elastic stress-deformation relationship, can also be extended to any other non-linear 
relationship through Non-Linear Fracture Mechanics theory (NLFM). 
 
 

3.2.2. Bond-slip relationship 
 
From all the different shapes of the bond-slip curves, it has been justified (Brosens, 
2001) that a bilinear function (see Figure 3.10) corresponds better with experimental 
data than a linear or an elasto-plastic function (see Figure 3.3). The linear approach only 
agrees with reality when describing the pre-peak behavior before the maximum stress is 
reached. The elasto-plastic function is less appropriate for brittle materials. 
 
This bilinear bond-slip relationship can be mathematically expressed as equation (3.12): 
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Figure 3.10. Bilinear bond – slip relationship. 

 
When assuming a bilinear shear stress vs. relative displacement relationship, the total 
fracture energy, GF, can be divided into two terms: GF

I which is the area under the 
upward branch of the bond-slip relationship, and GF

II which is the area enclosed by the 
downward branch of the τ - s curve. 
 

II
F

I
FF GGG +=  (3.13) 

 
As will be explained later, the slip associated to the maximum shear stress sLM is always 
much lower than the maximum slip sL0. Therefore the GF

I component is much lower 
than the GF

II. For instance, the total fracture energy for the laminates of the beams tested 
in the Experimental Program described in Chapter 2 is 0.955 Nmm/mm2, which is the 
sum of GF

I being 0.011 Nmm/mm2, and GF
II, 0.944 Nmm/mm2. In this example, the 98.9 

per cent of the total fracture energy is produced by the descending branch of the bond-
slip relationship. Analyzing the different tests compiled on the experimental database, 
the fracture energy of the bond-slip descending branch, GF

II, represents an average of 
98.1 per cent of the total fracture energy, GF. In terms of energy, this value confirms the 
importance of performing a non-linear analysis taking into account the descending 
branch of the bond-slip curve. 
 
 

3.2.3. Volkersen equation for a single shear loaded joint 
 
Particularizing the Volkersen equation (3.11) for a bilinear bond-slip relationship (as 
given by equation (3.12)), we can distinguish different stages depending on the force 
applied at the plate end. The bilinear bond-slip relationship may be divided into three 
areas depending on the value of the relative displacement between the support and the 
reinforcement: Zone I (upward branch), Zone II (downward branch), Zone III 
(horizontal branch) (see Figure 3.10). 
 
By incorporating equation (3.12) into equation (3.11), the governing equation can be 
solved for both Zones I and II. To facilitate the application of the boundary conditions, 
the resulting equation is expressed in terms of laminate tensile stress (by using equation 
(3.9)). 
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The resulting differential equation related to the upward branch of the bond-slip 
relationship (Zone I) is given as (3.14).  
 

( ) ( ) 02
12

2

=Ω− xx
dx

d I
L

I
L σσ  (3.14) 

 
where: 
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Note that for Zone I, the equations are obviously the same as those presented for the 
elastic range in Chapter 2, provided that: 
 

LM

LM

a
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st
G τ

≈  (3.16) 

 
Once in the downward branch of the bond-slip relationship (Zone II), the general 
expression for the tensile stresses in the laminate can be obtained solving the 
homogeneous differential equation (3.17). 
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where: 
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As mentioned before, in general, the slip value associated to the maximum shear stress 
sLM is always much lower than the maximum slip value sL0, therefore, in comparing 
equation (3.15) and (3.18), it can be seen that Ω2 is much lower than Ω1. The quotient 
between Ω2 and Ω1, written as equation (3.19), tends to a zero value. 
 

( ) II
F

I
F

LML

LM

G
G

ss
s

=
−

=
Ω
Ω

01

2  (3.19) 

 
By solving equations (3.14) and (3.17) with the appropriate boundary conditions, the 
laminate tensile stress can be obtained. By differentiating its expression and multiplying 
it by the thickness of the external reinforcement, the shear stress distribution acting on 
the interface is easily derived, as shown in equation (3.9). Finally, the slip between the 
support and the external reinforcement is given by the bilinear bond-slip relationship as 
a function of the shear stresses, as shown in equation (3.12). 
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3.3. Behavior of a bonded joint prior to the initiation of the 
debonding process 

 
In the following discussion, the crack propagation process is described through the 
equations of the stresses that develop during this process. A more detailed description of 
the deduction of these formulae is shown in Appendix D. 
 
Equations (3.14) and (3.17) can be solved for the particular case of Figure 3.8 either as a 
function of the applied load at x = 0 or alternatively, as a function of a prescribed 
displacement or a shear stress at the loaded end of the laminate (s(x = 0) or τ(x = 0)). 
The latter approach is preferred here. 
 
By increasing the value of the prescribed displacement, several load stages can be 
considered. 
 
 

3.3.1. Stage 1 
 
Initially (Stage 1, Figure 3.11), the complete interface will be under an elastic state, that 
is, the interface will be in the upward branch of the relation τ - s (Zone I). Therefore, in 
Stage 1, cracks will not have appeared in the specimen. 
 

Figure 3.11. Shear and laminate tensile stress distribution in Stage 1. 

 
Equations (3.20) and (3.21) give us the tensile stress distribution in the laminate and the 
shear stresses on the interface as a function of the shear stress at the loaded end, τA. 
 

Zone I: for Lx ≤≤0  
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( )L
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I

1

1

cosh
cosh

Ω
−Ω

= ττ  (3.21) 

 
Equation (3.21) gives the profile of the shear stress distribution along the laminate. The 
shear stress diminishes towards the free laminate end. At this location, the shear stress 
value, given by equation (3.22), approaches zero as the bonded length is long. 
 

( ) ( )L
Lx AI

1cosh Ω
==

ττ  (3.22) 

 
By particularizing equation (3.20) for x = 0, the applied force at the laminate end can be 
related to the shear stress at the same location. While the shear stress at the loaded end 
increases to its maximum value, the transferred force increases as well. 
 

( )LbP L
A

A 1
1

tanh Ω
Ω

=
τ  (3.23) 

 
By using equation (3.23), the shear and tensile stresses (equations (3.20) and (3.21) 
respectively) can be expressed as a function of the applied load at the laminate end. 
 
The applied force can also be expressed as a function of the fracture energy developed 
up to this moment (equation (3.24)). 
 

( )LtEGbP LL
IA
FLA 1tanh2 Ω=  (3.24) 

 
These equations are valid as long as τA is lower than τLM. At this moment, the 
transferred force, which is given by equation (3.25), reaches the maximum value for 
Stage 1. 
 

( ) ( )LtEGbLbP LL
I
FLL

LM
A 11

1

tanh2tanh Ω=Ω
Ω

=
τ  (3.25) 

 
 

3.3.2. Stage 2 
 
When the maximum shear stress τLM is reached at the loaded end of the laminate, it is 
said that the interface is under Stage 2. In the bonded connection, two regions can be 
distinguished. In the first region (Zone I), as the shear stresses increase with the relative 
displacement, the concrete remains uncracked. In the second region (Zone II) (see 
Figure 3.12), some microcracks appear in the interface, which is still able to transfer 
forces. In this case, as long as the load increases, Zone II will increase in length as well, 
and the maximum shear stress τLM will move towards the free laminate end. The point 
where this maximum shear stress is produced is given by the coordinate xLM. 
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Figure 3.12. Distribution of stresses under Stage 2. 

 
The shear and tensile stress distributions depend on the position of the section under 
study (Zone I or II) and are given by equations (3.26) to (3.29). 
 

Zone I: for LxxLM ≤≤  
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Zone II: for LMxx ≤≤0  
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where xLM is obtained by solving the following equation: 
 

( )( ) ( ) ( )LMLMLM
LM

B xxxL 221
1

2 cossintanh Ω−Ω−Ω
Ω
Ω

=−
τ
τ  (3.30) 

 
The profile of the shear stress distribution given by equations (3.27) and (3.29) is 
qualitatively shown in Figure 3.12. Along Zone II, the shear stress increases from the 
load application point to the maximum shear stress location which is the limit between 
both Zones I and II. As in Stage 1, the shear stress diminishes along Zone I from its 
maximum value to the free laminate end (equation (3.31)). 
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Note that the shear stress at the free laminate end (x = L) approaches zero for long 
bonded lengths (since xLM has an upper bound as will be shown later on). 
 
Particularizing equation (3.28) for x = 0 or integrating the shear stresses along the 
interface, the force transferred between the concrete and FRP can be obtained as a 
function of the shear stress τB. 
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The applied force can be expressed as a function of the fracture energy that developed 
up to this moment, as shown in equation (3.33). 
 

( )( ) ( ) ( )( )LMLL
IIB
FLMLMLL

I
FLB xtEGxxLtEGbP 221 sin2costanh2 Ω+Ω−Ω=  (3.33) 

 
Stage 2 will be valid as long as the shear stress at the loaded end is higher than the zero 
value (τB > 0) and the length of Zone II, xLM, is lower than the length of the laminate. 
These limits are analyzed in the next section. 
 
 

3.3.3. Short and long bonded lengths 
 
During the development of Stage 2, when increasing the slip (or reducing the shear 
stress) at the loaded laminate end (x = 0), the maximum shear stress location given by 
xLM moves towards the free laminate end. This is obtained by solving equation (3.30). 
As an example, for a general case of a single shear test with a laminate of 600 mm 
length, Figure 3.13 plots the maximum shear stress location xLM against the decreasing 
shear stress values at the loaded end. 
 
In a pure shear specimen, two possible situations may arise. In the first one, which will 
be called a long bonded length, the shear stress at the loaded end reaches a zero value, 
(τB = 0), which is also the end of Stage 2, while xLM is lower than the laminate length. 
For example in Figure 3.13, at τB = 0, xLM is equal to 410 mm which is lower than the 
laminate length of 600 mm. Opposite to this situation is the short bonded length, where 
the length of Zone II, xLM, almost reaches the free laminate end, while the shear stress at 
the loaded end (τB) is greater than zero (so the slip at B is lower than the maximum 
value sL0). Both situations are better shown in Figure 3.14: a) shows a typical situation 
for a long bonded length and b) for a short bonded length. For a long bonded length, at 
the end of Stage 2, the laminate length is long enough to develop the complete profile of 
shear stresses with both Zones I and II. On the contrary, for a short bonded length, Zone 
I has almost disappeared before the shear stresses in Zone II have been fully developed. 
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Figure 3.13. Maximum shear stress location along Stage 2 as a function of the shear stress at the 

loaded end. 

 

a) Long bonded length b) Short bonded length 

Figure 3.14. Long and short bonded length. 

 
In the limit between short and long bonded lengths, the maximum shear stress reaches 
the free laminate end (xLM = L), while the shear stress at the loaded end has already 
decreased to a zero value (τB = 0). By introducing both conditions into equation (3.30), 
the laminate length that gives the transition between a short and long bonded length is 
expressed by (3.34). 
 

( ) →Ω= lim2cos0 L
2

lim 2Ω
=

πL  (3.34) 

 
From now on, the long bonded length (or long laminate) denomination will comprise 
those laminates whose lengths are longer than the limit Llim. On the contrary, short 
bonded lengths (or short laminates) are laminates whose bonded lengths are lower than 
the limit Llim. 
 

22Ω
≤

πL      Short bonded length (or short laminate) (3.35) 
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22Ω
≥

πL      Long bonded length (or long laminate) (3.36) 

 
For the specific case of a laminate whose length is exactly the limit between a short and 
long bonded length, the transferred force is simplified as equation (3.37). 
 

2Ω
= LM

LB bP τ  (3.37) 

 
 

3.3.4. Stage 2 for long bonded lengths 
 
This section presents some observations for pure shear specimens with long bonded 
lengths during the progress of Stage 2: 
 
 
Length of Zone II 
 

1) The end of Stage 2 is attained when the shear stress at the laminate loaded end is 
zero, τB = 0. At this point, the length of Zone II is given by incorporating the 
zero shear stress condition into equation (3.30), as shown in equation (3.38). 

 

( )( ) ( ) ( ) 0cossintanh 221
1

2 =Ω−Ω−Ω
Ω
Ω

LMLMLM xxxL  (3.38) 

 
From this condition, it is possible to establish an upper limit for the length of 
Zone II, that corresponds to the limit length between short and long laminates. 
 

( ) Lx BLM ≤
Ω

≤=
22

0 πτ  (3.39) 

 
2) If the quotient between Ω2 and Ω1 approaches zero (see equation (3.19)), using 

equation (3.38), the length of Zone II with τB = 0 will tend to this upper limit 
regardless of the laminate length. 

 

( )
22

0
Ω

→=
πτ BLMx  (3.40) 

 
3) As mentioned in the previous section, the length of Zone II increases as Stage 2 

evolves, that is, with decreasing values of the shear stress (or increasing values 
of the slip) at the loaded end (see Figure 3.13). This can be justified because the 
derivative of equation (3.30) with respect to xLM, written as equation (3.41), is 
negative for any laminate length. 
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4) Since the length of Zone II xLM

 
 is a growing function with decreasing values of 

τB, and it has an upper limit, which is given by equation (3.39), the maximum 
length of Zone II, xLM,max, will be attained at the end of Stage 2. The maximum 
value xLM,max is obtained by solving equation (3.38). 

 
5) From equation (3.38), the maximum length of Zone II should be greater than or 

equal to equation (3.42), since the hyperbolic tangent of Zone I’s length, L - xLM, 
when multiplied by Ω1 is always lower than or equal to 1.0.  
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6) In case the laminate length is much longer than the limit between a short and 

long bonded length (L >> π/2), the laminate will be known as a “substantially 
long laminate”. Under these circumstances, the length of Zone I will be long 
enough to approach the hyperbolic tangent of Ω1(L - xLM) by a value of 1.0, 
tanh(Ω1(L - xLM)) ≈ 1.0. By incorporating this assumption into equation (3.38) 
for τB = 0, the inequality (3.42) turns into (3.43). 
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7) A critical issue is to determine the limit length between a long laminate and a 

substantially long laminate. This limit is the sum of the length of Zone II, given 
by equation (3.43), plus the length of Zone I. The minimum length of Zone I 
depends on the value of Ω1(L - xLM) from which the hyperbolic tangent is 
considered equal to 1.0. Assuming that tanh(Ω1(L - xLM)) ≈ 1.0 is accomplished 
when Ω1(L - xLM) is equal to a value greater than n, the laminate will be 
substantially long when its length is longer than (3.44). 
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8) By assuming a reasonable value of n, such as n = 2, which gives           

tanh(Ω1(L - xLM)) = 0.96, equation (3.44) can be approached by equation (3.45). 
From equation (3.45), it can be inferred that the difference between a 
substantially long laminate and the limit between a short and long bonded length 
is 1/Ω1. 
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9) In a general example, with typical values of Ω1 = 0.0325 and Ω2 = 0.0036, and 
assuming n = 2, the limit length between a short and long laminate is 441 mm, 
and the limit for a substantially long laminate is 471 mm. For the last limit, the 
component representing the length of Zone II, which is 410 mm (equation 
(3.43)), is longer than the length of Zone I, which is 61 mm. 

10) The maximum length of Zone II ranges from the value given by equation (3.43), 
which is associated to a substantially long laminate, to π/2Ω2, which 
corresponds to the limit between a short and long bonded length. Note that the 
maximum length of Zone II decreases as the total laminate length increases. 
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Transferred force 
 

1) For the particular case of a pure shear specimen with a laminate of 600 mm 
length (which was previously commented in Figure 3.13), Figure 3.15 and 
Figure 3.16 show, respectively, the general increasing trend of the transferred 
force PB (given by equation (3.32)) as τB decreases, and as the length of Zone II 
increases. To clarify this trend, equation (3.45) shows the derivative of PB with 
respect to xLM. In addition, both Figure 3.15 and Figure 3.16 show that the 
maximum transferred force is obtained near the end of Stage 2. 
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Figure 3.15. Transferred force against the shear stress at the loaded end. 
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Figure 3.16. Transferred force against the length of Zone II. 

 
2) The maximum transferred force Pmax is found by assuming equation (3.47) is 

equal to zero. If so, equation (3.48) can be obtained. This equation is verified for 
a particular length of Zone II called xLM,P. 
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Equation (3.48) is equivalent to accomplishing one of the following conditions: 

 
a)  ( )( ) 0tanh ,1 =−Ω PLMxL  (3.49) 
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where xLM,P

 
 gives the length of Zone II at the maximum transferred force. 

 
3) Equation (3.49) will only be fulfilled if the maximum shear stress point is 

located at the end of the laminate, that is L = xLM,P. This situation will only be 
possible in the limit between a short and long bonded length, when the laminate 
length is equal to π/2Ω2. If so, the transferred force is expressed as (3.51). 
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4) For a general long bonded length, the value of xLM,P that gives the maximum 

transferred force (Pmax) will be the one satisfying equation (3.50). By 
incorporating xLM,P into equation (3.32), the maximum force that can be applied 
to a laminate is expressed by equation (3.52). 
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5) Since the hyperbolic tangent is lower than or equal to 1.0, from the comparison 

between equation (3.38) and equation (3.50), rewritten as (3.53) and (3.54) 
respectively, the length of Zone II associated to a maximum transferred force, 
xLM,P, will always be lower than or equal to the maximum length of Zone II, 
xLM,max. 
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6) Equation (3.56) shows the shear stress at the loaded end of the laminate (x = 0) 

when the transferred force is at maximum. Since τB is not zero, it shows that, in 
general, the maximum transferred force is not reached at the end of Stage 2. As 
shown in Figure 3.17, for a 450 mm laminate length, the maximum transferred 
force is achieved when the shear stress at the laminate end is slightly higher than 
a zero value. However, equation (3.56) clearly shows that the shear stress at the 
loaded end of the laminate tends to zero as the length of the external 
reinforcement increases. 
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Figure 3.17. Detail of transferred force vs. shear stress at the loaded end for a 450 mm laminate. 
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7) For substantially long laminates (L >> π/2Ω2), both lengths xLM,P and xLM,max are 
almost equal since tanh(Ω1(L - xLM)) ≈ 1.0. Thus, in this case, the maximum 
transferred force is reached when the length of Zone II is almost at maximum, in 
other words, almost at the end of Stage 2 (τB = 0). This is observed in Figure 
3.15, where the transferred force for a substantially long laminate of 600 mm 
length is almost at maximum for τB = 0. By incorporating the maximum length 
of Zone II given by equation (3.43) into equation (3.52), the maximum 
transferred force for a substantially long laminate can be expressed as equation 
(3.57). As observed, it does not depend on the laminate length. 
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8) By applying trigonometry and knowing that the total fracture energy GF is the 

sum of the fracture energies of Zone I and Zone II (see equation (3.13)), 
equation (3.57) can be rewritten as shown in (3.58). 
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9) From now on, as a direct consequence of the previous comment, the maximum 

transference force for a substantially long laminate will be written as equation 
(3.59). As observed, the maximum transferred force given by (3.59) coincides 
with the expression derived by using the energy concept of Fracture Mechanics 
(see equation (3.8)). 

 

LLFL tEGbP 2max =  (3.59) 
 

10) As a consequence of the previous comments, a substantially long laminate can 
also be defined as the laminate length whereby an increase in the bonded length 
does not imply an increase in the transferred force. 

11) The maximum transferred force increases with the laminate length from a value 
associated to the short/long limit length (given by equation (3.51)) to its 
maximum value that corresponds to a substantially long laminate given by 
equation (3.59). 

 

LLFLLL
II
FL tEGbPtEGb 22 max ≤≤  (3.60) 

 
12) Frequently, the sliding associated to the maximum shear stress (sLM) is very 

small compared to the maximum sliding (sL0). As a consequence, the fracture 
energy of Zone II is similar to the total fracture energy (GF

II ≈ GF), and the 
inequality of (3.60) can be approached by equation (3.59). 
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3.3.5. Stage 2 for short bonded lengths 
 
For short bonded lengths, Stage 2 can be divided into two stages: 2a and 2b, depending 
on the sliding at the free laminate end. 
 
Stage 2a: s(x = L) ≤ sLM 
 
Stage 2a has already been described in §3.3.2 as Stage 2. Its formulae are the same for 
short and long bonded lengths. Stage 2a is initiated when the shear stress reaches its 
maximum value τLM at the loaded laminate end (x = 0). In addition, it finishes when τLM 
reaches the opposite laminate end (x = L). Some observations related to this stage, but 
particularizing for short bonded lengths, are listed below: 
 

1) Similar to long bonded lengths, the length of Zone II, xLM, increases while the 
shear stress at the loaded end τB decreases (or the slip increases). 

2) The maximum value of xLM is reached at the end of Stage 2a, when the 
maximum shear stress reaches the free laminate end. At this point, xLM,max = L. 

3) As for long bonded lengths, the transferred force increases as Stage 2a develops. 
4) The maximum transferred force will be obtained for a length of Zone II xLM,P 

that solves equation (3.48), which is valid for both short and long bonded 
lengths. By solving either condition (3.49) or (3.50), the length of Zone II 
related to a maximum transferred force is obtained. 

5) In particular, equation (3.49) will be fulfilled if the maximum shear stress point 
is located at the end of the laminate, that is xLM,P = L. By incorporating this 
condition into both equations (3.30) and (3.32), the maximum transferred force 
is therefore expressed as (3.61). This maximum force will be transferred at the 
end of Stage 2a, when the maximum shear stress reaches the free laminate end. 

 

( )LbP LM
L 2

2
max sin Ω

Ω
=

τ  (3.61) 

 
6) In this case, the maximum length of Zone II is equal to the length of Zone II that 

is associated to the maximum transferred force along this stage. 
7) For short bonded lengths (L ≤ π/2Ω2), equation (3.61) is a growing function of 

the laminate length since the derivative with respect to L is positive for this 
range of L values. 
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8) In addition, the maximum transferred force is at maximum for L solving 

equation (3.62) equals to zero. This laminate length is the one associated to the 
transition between short and long bonded lengths, (L = π/2Ω2). For this laminate 
length, the transferred force is given by equation (3.63). 

 

2
max Ω

= LM
LbP τ  (3.63) 

9) By incorporating xLM,max = L into equation (3.30), the shear stress at the loaded 
laminate end is given by equation (3.64). As previously mentioned, in a short 
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bonded length, this shear stress value at the loaded end corresponds to the end of 
Stage 2a and the beginning of Stage 2b. At this point, the maximum shear stress 
reaches the free laminate end. The value of τB decreases as long as the laminate 
length increases. In the limit between a short and long bonded length, τB is equal 
to zero. 

 
( )LLMB 2cos Ω= ττ  (3.64) 

 
 
Stage 2b: s(x = L) > sLM 
 
Once the maximum shear stress, τLM, reaches the free laminate end in a short bonded 
connection, equations developed for Stage 2a are no longer valid. The complete 
interface is in Zone II of the bond-slip relationship and microcracks may have already 
appeared along the whole bonded length. From this point on, the interface behavior will 
be called Stage 2b. Equations (3.65) and (3.66) give the laminate tensile stresses and the 
shear stresses along the bonded length. Both equations are only valid up to the point 
when the zero shear stress is reached at the loaded laminate end τB = 0. 
 

Zone II: for Lx ≤≤0  
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Some comments related to Stage 2b are listed below: 
 

1) As shown in Figure 3.18, during Stage 2b, the shear stresses decrease from the 
free laminate end to the load application point because the complete interface is 
in Zone II of the bond-slip relationship. 

 

 
Figure 3.18. Shear stress distribution during Stage 2b. 

 
2) Since the shear stress at the free laminate end during Stage 2b should be lower 

than or equal to the maximum value, τLM, the shear stress at the loaded end 
should accomplish the condition given by equation (3.67). 

 
( )LLMB 2cos Ω≤ ττ  (3.67) 
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3) Particularizing equation (3.65) for x = 0, the force transferred between the 
concrete and FRP can be obtained as a function of the shear stress at the loaded 
end. 

 

( )LbP B
LB 2

2

tan Ω
Ω

=
τ  (3.68) 

 
4) During the evolution of Stage 2b, since the complete bonded length is in Zone 

II, the shear stresses decrease (or, alternatively, the relative sliding increases) at 
any location. Since τB decreases with the progress of Stage 2b, the transferred 
force, given by equation (3.68), decreases as well. At the end of Stage 2b         
(τB = 0), the transferred force reaches a zero value. Therefore, the maximum 
transferred force is developed as Stage 2b starts. 
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5) Accordingly, the evolution of Stage 2b is only possible in circumstances when 

the slip at the loaded end instead of the applied force is controlled. An attempt to 
increase the applied force will lead to laminate debonding without the 
development of Stage 2b. 

6) Therefore, when a pure shear test is performed under load control, the laminate 
debonding is immediately initiated at the end of Stage 2a, since no increase in 
the transferred force is possible. 

7) Figure 3.19 shows the transferred force during both Stages 2a and 2b for a pure 
shear specimen of 200 mm length. As previously mentioned, the maximum force 
is transferred during the transition between both stages. 
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Figure 3.19. Transferred force during Stage 2a and 2b. 
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8) The maximum transferred force given by equation (3.69) is a growing function 
of the laminate length, as shown by the derivative of equation (3.69) with 
respect to the laminate length, which is a positive value (equation (3.70)). The 
maximum transferred force, given by equation (3.71), corresponds to a laminate 
length of π/2Ω2, which corresponds to the limit of short and long bonded 
lengths. 
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9) This growing trend in the transferred force is shown in Figure 3.20, where the 

maximum force associated to τB = τLM cos(Ω2L) is plotted for different values of 
short bonded lengths in a general case of a pure shear specimen. 

10) Stage 2b finishes when the maximum sliding sL0 is reached at the loaded 
laminate end and τB has decreased to a zero value. From this point on, the stress 
transfer between laminate and support will no longer be possible (τ(x) = 0). This 
is shown by incorporating τB = 0 into equation (3.65) and (3.66). 

11) At the same instant, the maximum sliding is reached not only at the loaded 
laminate end but also along the complete bonded length. A macrocrack opens, 
and the laminate suddenly debonds from the concrete surface. At this point, the 
debonding process of a short bonded length has come to its end. 
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Figure 3.20. Maximum transferred force for short bonded lengths. 
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3.3.6. Maximum transferred force. Summary 
 
As a summary, the maximum force transferred between the support and the external 
reinforcement is reached just before the end of Stage 2 for long bonded lengths and at 
the end of Stage 2a for short bonded lengths. This maximum transferred force can be 
calculated as: 
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where: 

 
xLM,P: maximum shear stress location solving equation (3.41) 
Ω1 and Ω2: constants defined by equations (3.15) and (3.18), which are 

repeated here for the sake of completeness 
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As the constants Ω1 and Ω2 depend on both the maximum shear stress and the fracture 
energy of Zones I and II, the maximum transferred force given by equation (3.72) can 
be alternatively rewritten in terms of fracture energy, as shown in equation (3.75). In 
addition, substantially long laminates have been distinguished from long laminates in 
general because of their maximum force which is constant. 
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It is interesting to note that for short bonded lengths, equation (3.52) gives similar 
results as equation (3.61), with a small error that increases with the laminate length. As 
an example, in a typical case of a single shear specimen where different lengths of short 
laminates have been bonded to the surface, the maximum percentage of error when the 
transferred force is estimated by using (3.52) is 0.30%. Therefore, equation (3.52) can 
be used without any distinction regarding the laminate length. 
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Looking at equations (3.72) and (3.75), it can be observed that the maximum transferred 
force depends on τLM, sLM, and sL0 or alternatively, τLM, GF

I and GF
II. These parameters 

will be obtained in §3.7. 
 
In the vast majority of cases, the fracture energy of Zone II, GF

II, is almost equal to the 
total fracture energy, GF, because the slip associated to the maximum shear stress sLM is 
very small compared to the maximum value sL0. Therefore, the fracture energy of Zone I 
is almost zero. As the difference between a long and a substantially long laminate is 
only an amount of 1/Ω1 that tends towards zero for small values of sLM, equation (3.59) 
can therefore be used for long bonded lengths (even though they are not substantially 
long). In conclusion, equation (3.75) can be simplified to equation (3.76) thereby 
avoiding the resolution of equation (3.48) to find xLM,P. 
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In Figure 3.21, an example of the maximum force related to the laminate length is 
shown. 
 
For small short bonded lengths, the maximum force can be approximated using Taylor 
Series as shown in equation (3.77). 
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Figure 3.21. Maximum Force Pmax (kN) vs. Bonded Length L (mm). 

 
At the same time, the theoretical value of the applied load on the laminate establishes an 
upper limit for the maximum strain on the laminate which depends on the bonded 
length. 
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3.4. Debonding process 
 
Once the slip at the loaded end of the laminate (x = 0) reaches the maximum sliding sL0, 
the shear stress at this location becomes zero. At this moment, the microcracks turn into 
a macrocrack, and the debonding process is initiated. 
 
In the following section, the evolution of the interfacial behavior will be described for 
long bonded lengths. As explained in §3.3.5, for short bonded lengths, the laminate 
debonds at the end of Stage 2b. 
 
 

3.4.1. Long bonded lengths 
 
 
Stage 3a 
 
Stage 3a is initiated with the opening of an interfacial macrocrack, when the slip at the 
loaded end of the laminate (x = 0) reaches the maximum sliding sL0. The laminate can 
be divided in three regions related to their state: Zone I, II or III (Figure 3.22). The 
interfacial behavior of Zones I and II is similar to the previous stages. In Zone III, the 
shear stress is zero and the tensile stress in the laminate is constant. Therefore, no more 
force can be transferred from the laminate to the support through the length of the real 
crack xL0. The stress state on the different areas of the bonded laminate can be described 
by the following equations (from 3.79 to 3.85). 
 

Zone I: for LxxLM ≤≤  
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Zone II: for LML xxx ≤≤0  
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Figure 3.22. Distribution of stresses in Stage 3a. 

 
Zone III: for 00 Lxx ≤≤  

( ) ( )( )022 sin
1

LLML

LMIII
L xxt

x
−ΩΩ

−=
τσ  (3.83) 

( ) 0=xIIIτ  (3.84) 
 

where the length of Zone II, xLM - xL0, is obtained by solving equation (3.85): 
 

( )( ) ( )( ) ( )( )

( )( )] 0tanh

sincoscos

1

02
1

2
0202

=−Ω





−Ω

Ω
Ω

+−Ω−−Ω

LM

LLMLLMLLM

xL

xxxxxx
 (3.85) 

 
This equation is verified if one of the following conditions is accomplished: 
 

a)  ( )( ) 0cos 02 =−Ω LLM xx  (3.86) 

b)  ( )( ) ( )( ) ( )( ) 0costanhsin 02102
1

2 =−Ω−−Ω−Ω
Ω
Ω

LLMLMLLM xxxLxx  (3.87) 

 
Equation (3.86) is fulfilled if (xLM - xL0) = π/2Ω2. This situation is only possible when 
the remaining bonded length (L - xL0) is within the limit between short and long bonded 
lengths, in other words, when the maximum shear stress is reached at the free laminate 
end. 
 
For a substantially long bonded length (L - xL0), the hyperbolic tangent of Ω1(L - xLM) 
can be approximated as 1.0, tanh(Ω1(L - xLM)) ≈ 1.0. Thus, by incorporating this 
approximation into equation (3.87), the length of Zone II can be calculated by    
equation (3.88). 
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In Stage 3a, the length of Zone II will range between the value given by equation (3.88) 
and a maximum value of π/2Ω2. 
 

2
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2 2
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Ω
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
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
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Ω
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Ω
π

LLM xx  (3.89) 

 
For a substantially long laminate, the length of Zone II increases as the macrocrack 
grows. This increasing trend is negligible only until the remaining bonded length equals 
the minimum length of a substantially long laminate, because the hyperbolic tangent of 
Ω1(L - xLM) is still approximated by 1.0. Once the remaining bonded length becomes 
less than a substantially long length, the macrocrack continues to grow, meanwhile the 
length of Zone II increases from the value given by (3.88) to a value of π/2Ω2, which 
corresponds to the end of Stage 3a. Note that Stage 3a finishes when the maximum 
shear stress reaches the free laminate end. 
 
Since the laminate tensile stress is constant along the macrocrack, equation (3.83) 
multiplied by the laminate area gives the transferred force along the interface in      
Stage 3a. 
 

( )( )022 sin LLM

LM
LC xx

bP
−ΩΩ

=
τ  (3.90) 

 
Again in this case, the applied force at the loaded end can be written as a function of 
fracture energy. 
 

( )( ) ( )( )(
( )( ))02
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2costanh2
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II
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The transferred force depends on the length of Zone II, which is obtained from equation 
(3.87). The derivative of equation (3.90) with respect to xLM is given by equation (3.92). 
Since the length of Zone II for a long bonded length should be lower than the limit 
between a short and long laminate, π/2Ω2, the derivative equation (3.92) should be 
negative. Therefore, the transferred force is a decreasing function with an increasing 
length of Zone II. 
 

( )( ) ( )( )02022 tansin LLMLLM

LM
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∂
∂ τ  (3.92) 

 
As a consequence, the transferred force along Stage 3a will be lower than or equal to the 
transferred force at the end of Stage 2 (given by equation (3.52)). 
 
Figure 3.23 shows the evolution of the transferred force as Stage 3a develops. While the 
macrocrack grows, the remaining bonded length L - xL0 decreases. If the laminate is 
substantially long, and the remaining bonded length continues to be substantially long, 
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the length of Zone II will be a constant value given by equation (3.88), and the 
transferred force will almost remain constant (its slightly decreasing shape can be 
neglected). However, once the remaining bonded length falls below the value given by 
equation (3.93), or if the bonded length at the beginning of Stage 3a is not substantially 
long, the length of Zone II will increase, and the transferred force, which has been 
almost constant, will start to decrease. Note that the maximum force is transferred at the 
end of Stage 2 and not along Stage 3a.  
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Figure 3.23. Transferred force along Stage 3a. 

 
Finally, when the remaining bonded length is equal to the limit between a short and 
long laminate (L - xL0 = π/2Ω2), that is, when the maximum shear stress reaches the free 
laminate end, the transferred force can be written as (3.94). From this point on, Stage 3b 
initiates. 
 

2Ω
= LM

LC bP τ  (3.94) 

 
In a similar manner as Stage 2b for short bonded lengths, in this case, since the 
transferred force is a decreasing function with respect to xLM, the evolution of Stage 3a 
will only be possible when the slip and not the applied force is controlled at the loaded 
laminate end. If the applied force is attempted to be increased at the end of Stage 2, the 
debonding of the long laminate will immediately occur and Stage 3a will not happen. 
 
The sliding along the macrocrack length (Zone III) can be calculated as the sum of the 
maximum sliding acting on the macrocrack tip, sL0, plus the elastic elongation of the 
laminate (equation (3.95)). 
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Zone III: for 00 Lxx ≤≤  
 

( ) ( )( )00 LLL xxxsxs −+= ε  (3.95) 
 
Stage 3a is valid until the maximum shear stress is reached at the free laminate end,     
τ(x = L) = τLM. Therefore, Zone I is always present during Stage 3a. 
 
 
Stage 3b 
 
When the maximum shear stress reaches the free laminate end, Stage 3b will initiate. 
The complete bonded length will be in Zone II of the bond-slip relationship (see Figure 
3.24). Therefore, microcracks will have appeared along the length which still remains 
bonded. At the beginning of this stage, the remaining bonded length is in the limit 
between a short and long bonded length. From this point on, the formulae that governs 
this stage is a function of the tensile force at the loaded laminate end, PD, as described 
below: 
 

Figure 3.24. Distribution of shear stress at the beginning of Stage 3b. 
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Zone III: for 00 Lxx ≤≤  
 

( )
LL

DIII
L tb

Px −=σ  (3.98) 

( ) 0=xIIIτ  (3.99) 
 
At the macrocrack tip, x = xL0, the sliding is sL0, so the shear stress is zero. Therefore, 
equation (3.100) should be accomplished. 
 

( ) ( )( ) 0
tan 2

02
0 =Ω

−Ω
==

LL

D
L

II

xLb
Pxxτ  (3.100) 

 
Equation (3.100) is only possible if either (3.101) or (3.102) is verified, in other words, 
if the applied force at the loaded end PD is zero or alternatively, if the remaining bonded 
length is equal to π/2Ω2: 
 

a)  0=DP  (3.101) 
b)  ( )( ) 2002 2tan Ω=−→∞=−Ω πLL xLxL  (3.102) 

 
Since the shear stress transfer is only possible when the transferred force is different 
from zero, the macrocrack should not grow anymore as Stage 3b evolves, that is, the 
remaining bonded length should remain constant and equal to the limit between a short 
and long bonded length. 
 
For the remaining bonded length (which is in Zone II of the bond-slip curve), the shear 
stress distribution decreases as Stage 3b develops (Figure 3.25). In addition, the 
transferred force, which is the sum of shear stresses, diminishes as well. With regard to 
the slip, it decreases along the macrocrack because the laminate elastic elongation 
shows the same decreasing trend as that of the transferred force. Along the remaining 
bonded length, the slip increases up to the maximum sliding value, sL0. The maximum 
sliding is reached at the same instant at any location of the remaining bonded length. At 
this point, the macrocrack, which has remained constant along Stage 3b, grows 
instantaneously from xL0 to L. In other words, the laminate completely debonds in a 
brittle and sudden manner, and the debonding process comes to an end. 
 

 
Figure 3.25. Shear stress evolution during Stage 3b. 
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Stage 3b is only possible when the sliding at the laminate end and not the transferred 
force is controlled. An increase in the transferred force implies a sudden debonding of 
the laminate. Note that once the maximum shear stress is reached at the free laminate 
end in a long bonded length, the sliding at the load application point should decrease to 
allow the evolution of Stage 3b. This is opposite to the behavior observed in short 
bonded lengths, where Stage 2b evolves while the sliding at the loaded laminate end 
increases. 
 
 

3.4.2. Summary 
 
A brief summary of the sequence of possible stages that can arise during the debonding 
process is presented in Table 3.1. A distinction between long and short laminates has 
been made. 
 

Table 3.1. Stages that arise in a pure shear specimen for long and short laminates. 

Pure shear specimen 
LONG LAMINATES Stage 1 Stage 2a Stage 3a (*) Stage 3b (*) 

SHORT LAMINATES Stage 1 Stage 2a Stage 2b (*)  
(*) This stage will arise only if displacement control is performed 
 
 

3.5. Simplified linear approach 
 
Some authors (Täljsten, 1994; Brosens and Van Gemert, 1998; Neubauer, 2000) gave 
the maximum load transferred between concrete and laminate by the expression (3.103). 
For long laminates, equation (3.103) gives the same result as equation (3.59) of §3.3.4 
or as the energy approach presented in §3.1.1. 
 

LLFL tEGbP 2max =  (3.103) 
 
The above expression is derived by using the following transformation based on the 
fracture energy as described by Neubauer (2000). The total fracture energy was 
previously defined as the area enclosed by the bond-slip relationship. The fracture 
energy of a bilinear law is the same as the fracture energy of the linear relationship 
shown in Figure 3.26, with the same maximum shear stress value τLM and with sLM equal 
to the maximum sliding sL0. By adopting the linear bond-slip law, and solving the 
differential equation in Stage 1, the maximum transferred force is given by equation 
(3.25) by substituting on one hand the fracture energy of Zone I, GF

I, by the total 
fracture energy, GF, and on the other hand sLM by the maximum sliding before 
debonding occurs, sL0. 
 

( )LtEGbP LLFL
*

1max tanh2 Ω=  (3.104) 
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where: 
 

0

2*
1

1
L

LM

LL stE
τ=Ω  (3.105) 

For long bonded lengths, it is observed that tanh(Ω1
*L) ≈ 1, and equation (3.105) may 

be simplified to equation (3.103). However, for short bonded lengths, the value given by 
(3.103) is only an upper limit and not a good approximation for the maximum applied 
load. 
 
Finally, the hyperbolic tangent of equation (3.103) can be approached by a parabolic 
function depending on the limit length between short and long bonded lengths as shown 
in equation (3.106). 
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When adopting the linear and fracture energy equivalent bond-slip relationship, the 
interface shear stress distribution and the laminate tensile stress distribution derived 
using Stage 1 will not be correct. This approach is only valid for finding the maximum 
transferred load. 
 

 
Figure 3.26. Simplified linear bond-slip relationship. 

 
 

3.6. Existing theoretical models 
 
This section summarizes several of the shear anchorage models that have been 
developed in the last few years to predict the maximum transferred force between 
laminate and concrete. These models may be classified into two categories: empirical 
models based on the regression of test data and models based on Fracture Mechanics 
theory. Table 3.2 summarizes the maximum transferred force for the various existing 
models. Note that the same notation was used for all of them to make the comparison 
easier, even though the notations may be different from their original references in some 
cases. 
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The predicted maximum force of Hiroyuki’s (1997), Tanaka’s (1996) (referenced by 
Chen and Teng, 2001) and Maeda’s (1997) models come from an empirical relationship 
based on a set of shear experiments. The remaining models are based on Non-Linear 
Fracture Mechanics. All of the predicted maximum force are very similar except for 
Van Gemert’s (1980) (referenced by Brosens and Van Gemert, 1997) which 
approximated the shear stress distribution in the full complete length by a triangular 
function, where the maximum value is located at the loaded end of the laminate and is 
equal to the concrete tensile strength. Holzenkämpfer’s (1994) (referenced by Neubauer, 
2000), Täljsten’s (1994), Neubauer’s (1997, 2000), and Niedermeier’s (2000) 
(referenced by FIB Task Group 9.3 FRP, 2001) models were derived by using the 
simplified linear approach as described in §3.5. The maximum transferred force 
according to them is given either by equation (3.104) (Täljsten, 1994; Neubauer, 2000) 
or by the simplification of (3.106) (Holzenkämpfer, 1994 (referenced by Neubauer, 
2000); Neubauer, 1997; Niedermeier, 2000 (referenced by FIB Task Group 9.3 FRP, 
2001)). The difference between them relies on the definition of fracture energy and the 
constants which come from the regression analysis of experimental data. Yuan and Wu 
(1999)’s (referenced by Chen and Teng, 2001), Chen and Teng’s (2001) and Brosens’ 
(2001) models were derived based on Non-Linear Fracture Mechanics by assuming a 
bilinear bond-slip relationship. Since their procedures are similar to the model 
developed in §3.3, their predictions on the maximum transferred force are almost 
identical. 
 
As shown in Table 3.2, Hiroyuki’s, Tanaka’s and Van Gemert’s formulations imply that 
any given load can be carried by a sufficiently long bonded length. However, this fact is 
in contradiction with the observed results, which show that any additional bonded 
length beyond the effective bonded length cannot increase the anchorage strength. 
 
After applying the predictions of these models to the pure shear experimental database 
presented in Chapter 2, the following conclusions are drawn. 
 

1) Tanaka’s and Hiroyuki’s models clearly do not fit with the experimental data 
statistically. They hugely underestimate the bond strength and lead to a very 
large scatter. The main reason is their dependence on a complete bonded length 
without considering the existence of an effective length beyond which any 
increase in the bond length does not increase the transferred force.  

2) The model of Maeda was the most robust of the experimental models due to the 
consideration of this effective bond length. 

3) The simplification of Van Gemert’s model overestimates the maximum 
transferred force. The mean average of the ratio test-to-predicted force is 1.75 
with the highest coefficient of variation (64%) of the Fracture Mechanics 
models. 

4) The remaining Fracture Mechanics models performed in a similar manner than 
the model described in this Chapter 3. The statistical performance of this model 
will be checked in §3.9. 
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3.7. Model parameters 
 
By assuming a bilinear relationship between shear stress and concrete-FRP slip, the 
application of the model as set out in §3.3 and §3.4 requires the definition of some 
parameters. All the stress formulae of §3.3 and §3.4 are a function of the maximum 
shear stress, τLM, and the constants Ω1 and Ω2. Both constants are a function of the 
maximum shear stress, τLM, the sliding associated to the maximum shear stress, sLM, and 
the maximum sliding, sL0. As shown in equations (3.15) and (3.18), as an alternative to 
the slip values, the fracture energy of Zones I, GF

I, and II, GF
II, can be used. All of them 

are a function of both concrete and adhesive properties. 
 
As the sliding associated to the maximum shear stress sLM is much lower than the 
maximum sliding sL0, the fracture energy of Zone I, GF

I, is almost zero. Therefore, the 
total fracture energy is very similar to the fracture energy of Zone II. In this case, if the 
maximum transferred force is required but there is no interest in obtaining the interfacial 
stress distribution, the maximum transferred force can be calculated as shown in 
equation (3.76) which is a function of only two model parameters (instead of three): the 
maximum shear stress, τLM, and the total fracture energy, GF.  
 
 

3.7.1. Determination of τLM 
 
The maximum shear stress in the bond-slip relationship, τLM, is the maximum stress 
value that can be transferred in a pure shear case. From the tests results compiled on the 
single/double shear database, in most cases failure was observed to be due to concrete 
fracture. This means that from all the material components of the interface the weakest 
link is the concrete. It seems obvious that the maximum shear stress depends on the 
properties of concrete. 
 
A concrete failure criterion should be applied to determine the value of τLM. 
 
Applying the Kupfer and Gerstle’s criterion (Kupfer and Gerstle, 1973) in a pure shear 
load case, the maximum shear stress is given by equation (3.107). 
 

ctmLM f=τ  (3.107) 
 
However, some authors (Holzenkämpfer, 1994; Brosens, 2001) chose the linear Mohr-
Coulomb failure to find more accurate expressions. The Mohr-Coulomb line is tangent 
to both Mohr’s circle for pure tension and for pure compression (see Figure 3.27). The 
equation of the Mohr-Coulomb line can be written as a function of the concrete’s 
compressive and tensile strengths. 
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All Mohr’s circles tangent to the Mohr-Coulomb line are critical circles and represent a 
failure situation. Holzenkämpfer (1994) (referenced by Brosens, 2001) determined the 
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maximum shear stress by using the Mohr-Coulomb line as given by (3.108) and by 
assuming that in a pure shear state the normal interfacial stresses are zero, as shown by 
equation (3.109). 
 

ctmcmLM ff
2
1

=τ  (3.109) 

 
The expression for the maximum shear stress given by the FIB Task Group 9.3 FRP 
(2001) is very similar to that of Holzenkämpfer. The constant c1, equal to 0.285, was 
obtained by calibrating the bond model by using simplified experimental tests. It is the 
same expression as equation (3.109) affected by a factor of 0.57. 
 

ctmcmLM ffc1=τ  (3.110) 
 
As shown in Figure 3.27, if τLM is defined as equations (3.108) or (3.109), the concrete 
stress on the longitudinal direction σc will be a fixed value given by the circle tangent to 
the Mohr-Coulomb line in τLM. Since the concrete axial stiffness is assumed to be much 
higher than the plate axial stiffness, the concrete stress on the longitudinal direction is 
zero, σc = 0. In addition, in a pure shear load case, the center of the circle tangent to the 
Mohr-Coulomb line should be at (σ = 0, τ = 0), because the principal stresses are σI = τ 
and σII = τ. In that case, as shown in Figure 3.27, the Mohr-Coulomb tangent circle 
related to the τLM value given by equation (3.109) is not a pure shear circle. As a 
consequence, equation (3.109) is not the maximum shear stress in the above case (see 
Brosens, 2001). 
 
In a pure shear case, the correct value of the maximum shear stress is slightly lower than 
the value given by (3.109) and it is given by the radius of the pure shear circle tangent 
to the Mohr-Coulomb line (Figure 3.27). 
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When compared to the inverse of the tensile strength, the inverse of the compressive 
concrete strength can be neglected; so equation (3.111) will be derived into equation 
(3.107). This is a good simplification especially in practical cases because the tensile 
concrete strength can be easily measured on site by pull-off tests which is a less 
destructive method than drilling concrete cores to find the concrete compressive 
strength. 
 
Some authors (Neubauer, 2000; Brosens, 2001) modify the maximum shear stress given 
by equation (3.111) by multiplying it by two factors: kc which is the concrete surface 
influence factor and kb which represents the width influence. Factor kc, given by Table 
3.3, depends on the surface preparation degree. Factor kb, given by equation (3.113), 
represents a combination of the size-effect law of brittle materials and the spreading out 
of forces in concrete. For a detailed description of both coefficients see Brosens (2001). 
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where: 
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In equation (3.113) ke is an empirical constant which can be calibrated by using 
experimental results. The value of ke, which has the smallest standard deviation when 
predicting the maximum transferred force between concrete and laminate, is given by 
Brosens as 1.47. The distance in the concrete defined as tc,ref, where stresses are 
influenced by the external reinforcement, is taken as 2.5 to 3.0 times the maximum 
aggregate size. After analyzing the experimental database of pure shear tests, the value 
of kb is found to be between 0.55 and 1.71 for single or double shear tests. Using the 
same data, the product kbkc will be between 0.36 and 1.71 depending on the working 
conditions. 
 

 
Figure 3.27. Mohr’s pure circle. 
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Table 3.3. Concrete surface influence factor (Brosens, 2001). 

kc
 Condition Example 

1.00 Very good Laboratory environment 
0.85-0.95 Good Indoor applications, good workmanship 
0.75-0.85 Normal Outdoor applications, good workmanship 
0.65-0.75 Bad Dusty and humid environment, poor workmanship 

 
Finally, Neubauer (2000) gives a similar expression for the maximum shear stress based 
on equation (3.109) but affected by an influenced width factor kb which is between 1.00 
and 1.29 for the shear test database. The constant value of 1.8 comes from the relation 
between concrete compressive strength and concrete tensile strength. 
 

ctmbLM fk8.1=τ  (3.114) 
 

where: 
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From all the described formulae, equation (3.112) will be used in the following sections 
of the present study. This equation comes from the correct interpretation of the Mohr-
Coulomb criteria in a pure shear case and was defined by Brosens. Equation (3.112) 
depends on two factors, the concrete surface influence kc and the width influence kb. 
The factor kc is given in Table 3.3 and kb is given by equation (3.113). 
 
 

3.7.2. Determination of fracture energy GF 
 
The fracture energy GF is derived from the area under the curve τ - s. As mentioned in 
§3.1.1, the fracture energy GF is defined as the energy by unit area necessary to separate 
the laminate from the support. Since the concrete forms the weakest link in the bonded 
connection, the fracture energy should be related to concrete’s properties. There are 
some discrepancies in the definition of this parameter, because in most formulations, 
this definition comes from an experimental adjustment using single or double shear 
tests. Barros et al. (2000) summarizes some of the fracture energy expressions given by 
different authors. The most common formula is that from Holzenkämpfer (1994) 
(referenced by Chen and Teng, 2001) which has been modified in different occasions 
afterwards. The fracture energy depends on the concrete tensile strength fctm and a 
constant, CF. The constant CF is found as the optimal value with the smallest standard 
deviation when the predicted maximum force is equal to the experimental maximum 
force applied on the laminate in a single or double shear test. For, CF the value of 0.092 
mm was found, but it must be handled with care because it was derived from 
experiments performed with bonded steel plates (Brosens and Van Gemert, 1998). 
 

ctmFF fCG =  (3.116) 
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Some authors (Holzenkämpfer, 1994; Neubauer, 2000; Brosens, 2001) have introduced 
the influence of the width kb and the influence of concrete preparation kc quadratically 
in the fracture energy expression (3.116) as shown in equation (3.117). Analyzing the 
experimental database of pure shear tests, the square of kbkc is found to be between 0.13 
and 2.94. 
 

ctmFcbF fCkkG 22=  (3.117) 
 
Some other authors (Chen and Teng, 2001) have applied both factors kb and kc directly 
to the maximum transferred force expression rather than to the fracture energy 
expression. 
 
According to Brosens (2001), the value of CF with a smallest standard deviation for 
bonded CFRP laminates is between 0.25 mm and 0.50 mm but the value with the 
minimum standard deviation is 0.40 mm. Neubauer and Róstasy (1997), after analyzing 
51 specimens tested in pure shear reported that the value of CF varied from 0.10 mm to 
0.30 mm, with a mean value of 0.204 mm having a standard deviation of 0.053. When 
making the theoretical maximum transferred force obtained from equation (3.76) equal 
to the experimental ultimate force in all shear tests of the database described in §2.2.5, 
CF shows a mean value of 0.33 mm with a standard deviation of 0.15. By comparing 
these values to that given by Holzenkämpfer (1994), it is observed that the value of CF 
is much lower for bonded steel plates than for CFRP laminates. Due to the disparity of 
values, a further review of this parameter seems necessary. Therefore single or double 
shear tests reinforced by different material plates should be performed.  
 
In a similar way, the fracture energy was defined by the FIB Task Group 9.3 FRP 
(2001) as the area under the curve τ - s. In the following expression the constant c2 is 
0.230. 
 

cmctmcmctmF ffffcG 0264.0
2
1 2

2 ==  (3.118) 

 
From all the formulae detailed in this section, equation (3.117) will be used in this work 
in order to be coherent with the expression of the maximum shear stress chosen. 
 
Once the total fracture energy is known, the fracture energy associated to both Zone I 
and Zone II can be calculated. For this purpose, the slip associated to the maximum 
shear stress should be obtained. 
 
 

3.7.3. Determination of sLM 
 
The slip value sLM at the maximum shear stress τLM can be found by using the theory of 
elastic isotropic materials. It can be assumed that the maximum slip on the elastic state 
(Zone I) is the sum of the slips of each layer which can be expressed as a relationship 
between the τLM stress, the thickness and transverse modulus of the different elements 
that make up the interface which are: a certain influenced thickness in the concrete (tc,ref, 
Gc), the adhesive (ta, Ga) and the resin between the n layers of the composite laminate 
(tr, Gr), when it is not prefabricated. The problem in this equation is to determine the 
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exact thickness of the adhesive (ta) and the resin of the composite laminate (tr), 
(Brosens, 2001). Typical values of the adhesive transverse modulus Ga are normally 
between 468 MPa and 3692 MPa. In general, the value of the resin transverse modulus, 
Gr, is very similar to the adhesive transverse modulus, Ga. 
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A similar formula is given by Neubauer (2000) which neglects the influence of adhesive 
and resin. 
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In the following sections, the slip associated to the maximum shear stress will be 
calculated by using (3.119). 
 
 

3.7.4. Determination of sL0 
 
 
Finally, the relative displacement associated to a zero shear stress value, sL0, is derived 
from the area under the curve τ - s as shown in equation (3.121).  
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By defining the fracture energy as equation (3.117), the maximum slip sL0 is given by 
equation (3.122). 
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The slip when debonding occurs, sL0, was defined by the FIB Task Group 9.3 FRP 
(2001) as a constant obtained by calibrating the bond model using experimental bond 
tests. In the following expression the constant c1 is 0.285 and c2 is 0.230. 
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c
csL 186.0
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0 ==  (3.123) 

 
As a simplification, if the slip when debonding occurs is calculated by using the Kupfer 
and Gerstle criterion for the maximum shear stress and the original formula by 
Holzenkämpfer for the fracture energy, then the value of sL0 becomes a constant as well, 
shown in equation (3.124). 
 

FL Cs 20 =  (3.124) 
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3.7.5. Summary 
 
In the following sections, the model parameters applied are those given by equations 
(3.112), (3.117), (3.119) and (3.122). 
 
By using the shear test database presented in Chapter 2, it is possible to obtain a range 
of typical values for the parameters mentioned above, which are shown in Table 3.4.  
 

Table 3.4. Typical values of the model parameters. 
1
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from 1.01 to 4.60 MPa 

sLM (mm) (equation (3.119)) from 0.004 to 0.057 mm 
sL0 (mm) (equation(3.122)) from 0.241 to 1.746 mm 
GF (MPa·mm) (equation (3.117)) from 0.132 to 3.368 MPa·mm 
 
 

3.8. Application of the proposed formulae to a single shear 
test example 

 
To better understand the formulation described in the previous section, two examples of 
a generic single shear test with CFRP laminates are presented. 
 
The studied examples consist of a concrete specimen with a compressive strength of    
35 MPa strengthened with a pultruded CFRP laminate of 100 mm x 1.40 mm with a 
longitudinal elastic modulus of 150 GPa. Assuming a bilinear bond-slip relationship, 
the model parameters obtained applying the formulae of §3.7 are the following:         
τLM = 2.46 MPa, sLM = 0.012 mm, and sL0 = 0.972 mm. 
 
By using these values, the limit between short and long bonded lengths is found to be 
441 mm. The limit between long and substantially long laminates is 471 mm. Two 
different laminate lengths are studied: 200 mm which corresponds to a short laminate 
and 600 mm which is a substantially long bonded length. 
 

 

Figure 3.28. Long bonded length of 600 mm. Short bonded length of 200 mm. 
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3.8.1. Long bonded length example (L = 600 mm) 
 
In Figure 3.29, the shear stress distribution during both Stages 1 and 2a is shown along 
the external reinforcement as a function of the applied load and the relative sliding at 
the loaded end of the laminate, s(x = 0). For low load levels (during Stage 1) the shear 
stresses are concentrated near the load application point. Once the maximum shear 
stress τLM is reached at this location, under 7.8 kN, Stage 2a is initiated. From this 
moment on, as the load level increases, the maximum shear stresses location xLM moves 
towards the free laminate end. As observed in Figure 3.29, in this example there is 
enough bonded length for the complete development of Zone II before the maximum 
shear stress τLM reaches the free laminate end. 
 
Figure 3.30 shows the evolution of shear stress along Stage 3a that appears once the 
relative sliding at the loaded end of the laminate has reached its maximum value sL0. At 
this point in time, the debonding process is initiated and a real macrocrack starts its 
propagation so long as the relative displacement between the support and the external 
reinforcement increases above sL0 at the load application point. As shown in the bilinear 
bond-slip relationship of Figure 3.10, the shear stresses along the macrocrack (Zone III) 
are zero. 
 
For long bonded lengths, the distance xLM - xL0 slightly increases with the macrocrack 
growing from the beginning of Stage 3a (as observed in Figure 3.31). However once the 
remaining bonded length decreases to the minimum length for a substantially long 
laminate, the length of Zone II increases significantly. In this case, the length of Zone II 
is 410 mm at the beginning of Stage 3a. At the end of this stage, this length has 
increased to 441 mm. At this point, the remaining bonded length is equal to the limit 
between short and long bonded lengths. 
 
Stage 3a finishes when the maximum shear stress reaches the free laminate end. Then, 
Stage 3b initiates. From this point on, the macrocrack length does not continue growing. 
The shear stresses start to decrease to a zero value along the remaining bonded length as 
Stage 3b evolves (Figure 3.32). When the shear stress reaches a zero value at any 
location, a brittle debonding of the laminate occurs. At this point, the macrocrack length 
increases from the value at the beginning of Stage 3b, which is the limit between short 
and long bonded lengths, to the complete laminate length. 
 
As shown in Figure 3.29, during Stage 1 and 2, the shear stresses are almost zero at the 
free laminate end. However during Stage 3a, the more the macrocrack length xL0 
increases, the greater the shear stress at the free laminate end. During Stage 3b, the 
shear stress distribution is at maximum at the free laminate end. At this location, the 
shear stress decreases to zero with the evolution of Stage 3b. 
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Figure 3.29. Shear stress distribution during Stages 1 and 2 depending on the slip value at x = 0. 
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Figure 3.30. Shear stress distribution during Stage 3a depending on the slip value at x = 0. 
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Figure 3.31. Evolution of Zone II’s length along Stage 3. 
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Figure 3.32. Shear stress distribution during Stage 3b depending on the slip value at x = 0. 

 
Figure 3.33 shows the tensile stress distribution during Stages 1 and 2. The maximum 
tensile stress is always located at the loaded end of the laminate. Its maximum value is 
516.2 MPa. This value is associated to a maximum strain of 3440 µε (0.34%) which is 
much lower than the value of 0.6 - 0.8% given by some recommendations (see    
Chapter 2, §2.2.3) to avoid peeling failure. 
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The tensile stress in the transition point between Zone I and II, designed as xLM, is 
almost constant for the different load stages. In this example, this value is 56.3 MPa 
which represents 10.9% of the maximum tensile stress. 
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Figure 3.33. Laminate tensile stress distribution during Stages 1 and 2 depending on the slip value 

at x = 0. 

 
In Figure 3.34 the tensile stress distribution during Stage 3a is given. While the relative 
sliding is increasing at the loaded laminate end, the tensile stress distribution along the 
debonded length xL0 remains constant (the shear stresses are zero). Although it cannot 
be clearly appreciate in Figure 3.34, the tensile stress at the laminate loaded end slightly 
decreases with the evolution of Stage 3a. 
 
Figure 3.35 shows the laminate tensile stress distribution along the remaining bonded 
length during Stage 3b. The laminate tensile stress diminishes at any location as Stage 
3b develops. When fixing a plotted line associated to a slip value, the laminate tensile 
stress is constant along the macrocrack length obtained at the end of Stage 3a, xL0. At 
the end of Stage 3b, the laminate completely debonds since the laminate tensile stress 
has decreased to a zero value at any location. 
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Figure 3.34. Laminate tensile stress distribution during Stage 3a depending on the slip at x = 0. 
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Figure 3.35. Laminate tensile stress distribution during Stage 3b depending on the slip at x = 0. 

 
The transferred force between concrete and laminate is obtained in Figure 3.36 for 
different values of sliding at the loaded end of the laminate. This is done either by 
evaluating the tensile stress at the loaded laminate end or by finding the integral of the 
shear stress distribution along the reinforcement. The maximum transferred force    
(72.2 kN) is obtained near the transition between Stage 2 and Stage 3a, just before the 
sliding at the loaded end of the laminate reaches the maximum relative displacement, 
sL0. As mentioned before, when sL0 is reached at the laminate loaded end, Stage 3a starts 
and a macrocrack appears. As observed in Figure 3.36, during Stage 3a, at increasing 
sliding values at the loaded laminate end, the transferred load will remain almost 
constant until the remaining bonded length falls below the length associated to a 
substantially long laminate. From this point on, the transferred force slightly decreases 
until the maximum shear stress reaches the free end of the laminate. Thereafter, a 
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macrocrack opens in part of the interface and the remaining bonded length displays 
microcracks. When Stage 3b initiates, the transferred force decreases with decreasing 
values of the sliding at the laminate loaded end. Therefore, Stage 3b is only possible 
when the slip is controlled at the loaded end. An increase in the transferred force will 
lead to the sudden laminate debonding. 
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Figure 3.36. Transferred force vs. relative sliding at the loaded end of the laminate. 

 
In Figure 3.37, the relative displacement between the concrete and the laminate during 
Stages 1 and 2 is shown. A decrease of the sliding from the load application point        
(x = 0 mm) to the free laminate end (x = 600 mm) is observed. The decreasing slope is 
more pronounced along Zone II. In general, this can be explained by the fact that the 
maximum shear stress is associated to a small relative sliding given by sLM. Therefore, 
between the maximum shear stress location and the free laminate end (Zone I), the 
relative displacement is almost zero. It should be mentioned that the sliding at the free 
laminate end is very small but different from zero because it is not restricted. 
 
Stage 3a starts when the loaded laminate end reaches the maximum sliding sL0. At this 
moment, a macrocrack appears near the load application point. The sliding along the 
debonded length is calculated as the maximum sliding sL0 plus the elastic elongation of 
the laminate. Figure 3.38 shows the relative displacement between concrete and 
laminate during Stage 3a. The macrocrack length is clearly defined by those locations 
where the sliding is higher than the maximum value of Zone II, sL0. 
 
When the maximum shear stress reaches the free laminate end, Stage 3b will initiate. 
Figure 3.39 shows the relative sliding during Stage 3b. As the transferred force 
decreases with the development of this stage, so does the elastic elongation of the 
laminate. Therefore, the relative sliding along the macrocrack, which is the sum of the 
maximum sliding plus the elastic elongation, will decrease with the evolution of Stage 
3b. However, the slip along the bonded length increases up to point where the 
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maximum sliding is reached at any location. Figure 3.39 shows that the slip at the 
macrocrack tip, xL0, remains constant regardless of the slip at the loaded laminate end. 
In addition, it can be observed that once Zone I disappears from the complete interface, 
the relative displacement at the free laminate end is more significant.  
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Figure 3.37. Relative sliding during Stages 1 and 2 depending on the slip value at x = 0. 
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Figure 3.38. Relative sliding during Stage 3a depending on the slip value at x = 0. 
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Figure 3.39. Relative sliding during Stage 3b depending on the slip value at x = 0. 

 
 

3.8.2. Short bonded length example (L = 200 mm) 
 
In the following, a single shear test with a 200 mm bonded laminate is analyzed. The 
same parameters as the previous example are used in this case. 
 
Figure 3.40 shows the shear stress distribution during Stages 1 and 2a of the debonding 
process. First, the interface behaves in a linear elastic way up to an applied load of     
7.8 kN, which corresponds to the end of Stage 1. Then, Stage 2a is initiated with the 
development of microcracks along part of the bonded connection (Zone II). Looking at 
the shear stress distribution of Figure 3.40, the main difference with the long bonded 
length example is that there is not enough length for the complete development of the 
shear stresses of Zone II.  
 
Once the maximum shear stress τLM reaches the free laminate end, Stage 2b is initiated. 
The complete laminate is in Zone II of the bond-slip curve, and microcracks could 
appear along the complete length of the interface. During Stage 2b, as shown in Figure 
3.41, the shear stress profiles decrease with increasing values of the sliding at the loaded 
laminate end, s(x = 0). Therefore, the maximum stress is always lower than the 
maximum value τLM. This phenomenon can be explained by the fact that in the 
downward branch of the bilinear bond-slip relationship (Zone II), as long as the sliding 
increases, the shear stresses decrease to a zero value associated to the maximum relative 
displacement, sL0. In addition, the slope of the plotted lines decrease with the 
development of Stage 2b (from s(x = 0) = 0.246 mm until sL0). 
 
As Stage 2b evolves, microcracks rise in length and number until they turn into a 
macrocrack at the end of Stage 2b. Thereafter, the shear stresses decrease to a zero 
value at any location. Since the macrocrack extension is equal to the laminate length, 
the laminate debonds along its full length. 
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Figure 3.40. Shear stress distribution during Stages 1 and 2a depending on the slip value at x = 0. 
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Figure 3.41. Shear stress distribution during Stages 2b depending on the slip value at x = 0. 
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The laminate tensile stress distribution is given in Figure 3.42 for Stages 1 and 2a. The 
same trends observed for long laminates can be seen in this case. The maximum tensile 
stress, 336.0 MPa is reached at the loaded laminate end when Stage 2b starts. 
 
Figure 3.43 shows the laminate tensile stress during Stage 2b. The tensile stress at the 
loaded end decreases, as well as the transferred force. As previously mentioned, Stage 
2b is only possible when controlling the slip and not the laminate tensile force at the 
loaded end. At the end of Stage 2b, the laminate completely debonds and there is no 
tensile stress at any location. 
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Figure 3.42. Laminate tensile stress distribution during Stage 1 and 2a depending on the slip value 

at x = 0. 
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Figure 3.43. Laminate tensile stress distribution during Stage 2b depending on the slip at x = 0. 
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Figure 3.44. Comparison of the transferred force vs. relative sliding at the loaded end of the 

laminate between L = 600 mm and L = 200 mm. 

 
Figure 3.44 compares the transferred force between concrete and laminate for the long 
(600 mm) and short (200 mm) laminate. Both profiles are very similar up to the point 
when, in the short laminate, the maximum shear stress reaches the free laminate end. In 
this case, the transferred force starts to decrease from this point in an almost linear way. 
The maximum force transferred is much higher in the long bonded length example,  
72.2 kN, than in the short laminate case, 46.9 kN. The maximum force related to 
equation (3.76) gives the same values as those found by direct integration of the shear 
stresses along the laminate. For the short laminate, once the maximum force is reached, 
that is when the maximum shear stress reaches the free laminate end, a load relaxation 
starts as long as the relative sliding continues to increase. For a long laminate, when τLM 
reaches the free laminate end, the transferred force decreases with decreasing values of 
the relative sliding at x = 0. 
 
In Figure 3.45 the relative displacement between the concrete and the external 
reinforcement during Stage 1, 2a and 2b is shown. It can be appreciated that the sliding 
decreases from the load application point up to the free laminate end. Once the applied 
load is 46.9 kN or the sliding at the loaded end is equal to 0.246 mm, Stage 2b initiates, 
the complete interface acts in Zone II, and the relative sliding near both laminate ends 
increases significantly. The relative displacement at the free end of the laminate is 
different from zero because there is no restriction on its movement. If a bonded or 
mechanical anchorage was placed at the end of the laminate, the contour conditions 
would have changed and the sliding at this location would have almost been zero. 
 
Similar to the shear stress distribution, the slope of the plotted lines diminishes as Stage 
2b develops. The maximum sliding sL0 is reached at the same instant along the complete 
bonded length. 
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Figure 3.45. Relative displacement between concrete and laminate during Stages 1, 2a, and 2b. 

 
 

3.9. Verification of the proposed equations using the 
experimental single/double shear test database 

 
The formulae derived in §3.3 and §3.4 have been verified in terms of maximum 
transferred force by using the experimental database of single and double shear tests 
presented in Chapter 2 and detailed in Appendix B. The database consists of 185 shear 
tests from which a total of 33 tests were excluded: 17 tests because no information 
about the experimental failure load was available and 16 tests because their mode of 
failure was by FRP rupture. Therefore, a total of 152 specimens from the database have 
been studied. 
 
The experimental maximum force obtained during the test has been compared to the 
theoretical maximum force given by equation (3.76). The ratio between both values 
indicates the approximation of the theoretical formulae to the experimental results. 
Ratios (Pexp/Pmax) higher than 1.0 show that the theoretical formulation is conservative 
and underestimates the response of the strengthened element. This is the case for 73 out 
of the 152 tests studied. 
 
By using the formulae of §3.3.6, the arithmetic mean of the ratio between experimental 
and theoretical maximum force is 1.04 with a standard deviation of 0.36. The median is 
0.99, similar to the mean, which gives an idea of the homogeneity of the sample. The 
coefficient of variation, known as the ratio between the mean and the standard 
deviation, is 34%.  
 
The same statistical analysis was undertaken in distinguishing the material employed in 
the strengthening of the different samples: Steel, AFRP, CFRP, GFRP. Table 3.5 
summarizes the minimum (column 4), mean (column 5), maximum (column 6), median 
(column 7), standard deviation (column 8) and coefficient of variation (column 9) of the 
experimental-to-theoretical maximum force ratio. The best results in terms of mean ratio 
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are for CFRP laminates. However, the standard deviation of 0.37 is probably the highest 
because of the largest number of samples. As the median value is less than the mean, 
safety will be evaluated by using the procedure described by Collins (2001), (see the 
statistical analysis of Chapter 2). Therefore, safety will be characterized by the median 
value and the coefficient of variation of a fictitious low data set. After evaluating the 
coefficient of variation of the fictitious low data set, the value for which 99% of the 
ratios Pexp/Pmax are expected to be exceeded is calculated as shown in column 10 of 
Table 3.5. The same procedure will be done with a fictitious high data set to calculate 
the theoretical value for which 99% of the ratios are expected to be lower (column 11). 
 

Table 3.5. Test-to-predicted debonding strength ratios for all plate materials. 

Material Ratio # Min Mean Max Med Std 
dev 

COV (Pexp/ 
Pmax)1% 

(Pexp/ 
Pmax)99% 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) 
Total 152 0.47 1.04 2.89 0.98 0.36 0.34 0.41 2.02 
Steel 23 0.59 1.10 1.64 1.04 0.30 0.28 0.46 1.83 

AFRP 6 0.72 0.78 0.82 0.78 0.03 0.04 0.70 0.85 
CFRP 107 0.47 1.01 2.89 0.93 0.37 0.37 0.43 2.06 
GFRP 

Pexp/Pmax 
 

16 0.73 1.28 2.01 1.24 0.30 0.23 0.72 2.05 
 
To clarify the results presented in Table 3.5, the ratios between the experimental and the 
theoretical maximum forces as distinguished by FRP or steel reinforcements are 
presented in Figure 3.46. The calculated percentiles (1, 5 25, 50, 75, 95 and 99) 
according to Collins are shown in Figure 3.47. 
 
If FRP laminates are examined alone (Table 3.6), the formulae of the previous sections 
will seem more conservative for wet lay-up FRP laminates than for pultruded laminates. 
The standard deviation is very similar in both cases. 
 
Table 3.6. Test-to-predicted debonding strength ratios for FRP reinforcements when distinguishing 

the manufacturing procedure. 

Material Ratio # Min Mean Max Med Std 
dev 

COV (Pexp/ 
Pmax)1% 

(Pexp/ 
Pmax)99%

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) 
Total FRP 129 0.47 1.03 2.89 0.95 0.37 0.35 0.44 2.07 

Wet lay-up laminates 105 0.47 1.05 2.89 1.00 0.38 0.36 0.43 2.12 
Pultruded laminates 

Pexp/Pmax 
 24 0.51 0.93 1.53 0.87 0.30 0.32 0.41 1.73 

 
The “Demerit Points Classification” of Collins (2001) is applied to this model by 
assigning a mark called “Demerit Point” to various ranges of the ratio Pexp/Pmax. As 
observed in Table 3.7, the highest percentage of ratios falls in the range of 0.85 and 1.30 
which corresponds to appropriate safety (Figure 3.47). In addition, the model presented 
in §3.3 scores 123 demerit points. This value is similar to the rest of fracture mechanics 
models summarized in §3.6, with the exception of Van Gemert’s which has a score of 
222. As a range of magnitude, the empirical models of Tanaka (1996) (referenced by 
Chen and Teng, 2001) and Hiroyuki and Wu (1997) score 211 and 200, respectively, 
representing almost twice the score of the fracture mechanics models. Surprisingly, 
although Maeda’s model (1997) comes from a regression of empirical data, it scores 
121 due to a lower coefficient of variation. 
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Figure 3.46. Experimental-to-theoretical ratio of maximum transferred force for FRP laminates 

and steel plates. 

 
When removing those tests without reported adhesive properties (a total of 32 tests of 
the 152 studied), the demerit point score of the model presented in this chapter 
decreases to 84 points. In addition, as shown in Figure 3.48, the percentage of ratios 
with low safety decreases as the percentage of appropriate safety increases.  
 

Table 3.7. Demerit point classification for pure shear specimens failing by laminate peeling-off. 

Theoretical model % <0.50 0.50- 
0.65 

0.65- 
0.85 

0.85- 
1.30 

1.30- 
2.00 

>2.00 Total  
Demerit
Points 

Classification (*)  E.D. D. L.S. A.S. C. E.C.  
Demerit Point  10 5 2 0 1 2  

(1) (2) (3) (4) (5) (6) (7) (8) (9) 
Total 0.66 7.89 28.95 45.39 14.47 2.63 123 
Steel 0.00 4.35 21.74 43.48 30.43 0.00 96 

AFRP 0.00 0.00 100.00 0.00 0.00 0.00 200 
CFRP 0.93 10.28 29.91 46.73 9.35 2.80 136 
GFRP 

Pexp/Pmax 

0.00 0.00 6.25 56.25 31.25 6.25 56 
(*) E.D.: Extremely dangerous; D.: Dangerous; L.S.: Low safety; A.S.: Appropiate safety;                       
C.: Conservative; E.C.: Extremely conservative 
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Figure 3.47. Percentages of ratios according to the Demerit Point Classification. Percentiles for the 
experimental-to-theoretical ratios according to Collins. 
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Figure 3.48. Percentages of ratios according to the Demerit Point Classification when removing the 

tests where adhesive properties were not reported. 
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