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Abstract

The theories of gravity are one of the most important topics in theoretical physics and mathematical
physics nowadays. The classical formulation of gravity uses the Hilbert-Einstein Lagrangian, which is
a singular second-order Lagrangian; hence it requires a geometric theory for second-order field theories
which leads to several difficulties. Another standard formulation is the Einstein-Palatini or Metric-Affine,
which uses a singular first order Lagrangian.

Much work has been done with the aim of establishing the suitable geometrical structures for de-
scribing classical field theories. In particular, the multisymplectic formulation is the most general of all
of them and, in recent years, some works have considered a multisymplectic approach to gravity. This
formulation allows us to study and better understand several inherent characteristics of the models of
gravity.

The aim of this thesis is to use the multisymplectic formulation for first and second-order field the-
ories in order to obtain a complete covariant description of the Lagrangian and Hamiltonian formalisms
for the Einstein-Hilbert and the Metric-Affine models, and explain their characteristics; in particular:
order reduction, constraints, symmetries and gauge freedom.

Key words: 1st and 2nd-order Classical field theories, Jet bundles, Multisymplectic forms, Einstein
equations, Hilbert-Einstein action, Einstein-Palatini action and Metric-Affine models, Constraints, Gauge
symmetries.
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Introduction

Multisymplectic Formalism for Field Theories

In recent decades, a strong development in the intrinsic study of a wide variety of topics in theoretical
physics, control theory and applied mathematics has been done, using methods of differential geome-
try. Thus, the intrinsic formulation of Lagrangian and Hamiltonian formalisms has been developed for
autonomous and non-autonomous mechanics, as well as for field theories.

In particular, much work has been done in order to establish the geometrical structures for describing
classical field theories, both in the Lagrangian and the Hamiltonian formalisms. This study has been
carried out for first and higher-order field theories, and there are different kinds of geometrical models
for making a covariant description of them. In particular, there is the multisymplectic formulation [15}
51,153, [74) 176, [77), 185]], which is the most general way to study geometrically these kinds of theories,
and was introduced by Tulczyjew and other authors [42, |50} |68) 69]. They arise from the study of
multisymplectic manifolds and their properties (see [9} 10, 28] for general references).

In this formulation, the usual way of working consists in stating their Lagrangian formalism and jet
bundles are the appropriate domain for doing so [3} 7} 114, 30, 31} 42,149,150, 90]. Then, the Hamiltonian
formalism is constructed using bundles of forms; but the choice of the suitable multimomentum bundle
is not unique [33} 134]], and different kinds of Hamiltonian formalisms can be developed, depending on
this choice and on the way of introducing the “Hamiltonian” [27},59, 160, 81]]. In this thesis we have taken
one of the most standard ways of defining Hamiltonian systems, which consists in using Hamiltonian
sections [13]] (it can also be done taking Hamiltonian densities [13} 149, [89]). The relation between the
Lagrangian and the Hamiltonian formalisms is carried out by using the Legendre map associated with
the Lagrangian system, and it has been studied in the (hyper) regular case [13}/90], and in the singular or,
specifically, in the almost-regular case [23),149,189]]. There is also a unified formulation of Lagrangian and
Hamiltonian formalisms: it is the so-called the Lagrangian-Hamiltonian unified formalism or Skinner-
Rusk formalism due to the authors’ names of the original paper [94]], It is a generalization of the La-
grangian and Hamiltonian formalisms that compresses them into a single formalism. It was stated first
for autonomous mechanics [94], and later it was generalized for classical field theories [[24, 29, |83]]. One
of the major advantages of this formalism is the natural way in which the Legendre transformation and
the Hamiltonian formalism arise. In particular, this is very promising for describing the Einstein-Hilbert
model of gravity.

As a particular case, for second-order theories, the phase space of the system is described using third-
order jet bundles as the main tool [1, 39, |43} I83| [84, 90]. Nevertheless, in higher-order field theories
there are some ambiguities in the definition of the Poincaré-Cartan form; that is, given a Lagrangian
density, there are non-equivalent Poincaré-Cartan forms from which we obtain the same Euler-Lagrange
equations. Therefore, due to its definition, these ambiguities in the Poincaré-Cartan form are transferred
to the Legendre map, thus obtaining different Legendre maps for the same field theory[70, 84} 91]].
First order field theories have no ambiguities. For second-order field theories, there is an unambiguous



procedure to define these structures (see [[90]] or also [8 83] using the unified formalism).

We ought to point out that there are also geometric frameworks for describing the non-covariant
or space-time formalism of field theories, where the use of Cauchy surfaces is the fundamental tool
[26] 52, 54]. Nevertheless we do not consider these topics in this disertation.

In the multisymplectic models, in the Lagrangian, Hamiltonian and unified formalisms, the field
equations are written using the multisymplectic form in order to characterize the critical sections which
are solutions of the problem. These critical sections can be thought of as being the integral manifolds of
distributions which, on its turn, can be characterized by means of certain kinds of integrable multivector
fields defined in the bundles where the formalism is developed, and satisfying a suitable geometric equa-
tion which is the intrinsic formulation of the systems of partial differential equations locally describing
the field [23} 30} 31}, (32} 90]. These equations can be derived from a variational principle: the Hamilton
principle in the Lagrangian formalism, the Hamilton—-Jacobi principle in the Hamiltonian formulation
[3, 127, 1301 13411421 150] and a generalization of them in the unified formalism [29, |85].

In all these cases, we have what is generally called a multisymplectic system; although in this work,
the theories arise from singular Lagrangians, leading to a pre-multisymplectic system. The problem of
finding a submanifold where this equations have consistent solutions (if it exists) is solved by apply-
ing a constraint algorithm adapted to this premultisymplectic scenario (see, for instance, [22, 23] for a
geometric description of these kinds of algorithms).

Another important topic is the study of symmetries and conservation laws. In fact, symmetries,
conserved quantities and gauge freedom have always played an essential role in the analysis of phys-
ical systems because they help us to solve and understand the field equations. In particular, modern
approaches to General Relativity and Quantum Field Theory have in their core the idea of symme-
try. They are also very powerful when study the integrability of a system. The geometric treatment
of these concepts is lightening and several results have been obtained for the Lagrangian and Hamilto-
nian formalisms of first and higher-order non-autonomous mechanics [4, 25, 75, 182, 92]. Most of these
concepts and results have been generalize for classical Lagrangian field theories of first and higher-order
[0} 126,130,139, 142,143,149, 150, 70,172, 73,184, 90], and for their Hamiltonian formalisms [2, 26} 27,132, 60].

This work is based on results and contributions from several previous papers, such as 13}, 123 24} 29,
30, 31,132 134,159, [81]], among others.

Multisymplectic Gravity

General Relativity, the Einstein theory of Gravity, has had important contributions since its origins. In
1915 Hilbert [61] found the so-called Hilbert-Einstein Lagrangian, thus obtaining a variational formula-
tion of General Relativity. Although the Einstein equations have order two, the Lagrangian he obtained
is a second order one. For a Lagrangian of order n, the expected Euler-Lagrange equations have order
2n. The reason for the equations to have a lower order than anticipated is what we refer as the pro-
jectability of the theory. In 1925, Einstein propose a new variational approach, the Metric-Affine (or
Einstein-Palatini), consisting on taking the components of the connection as additional coordinates [36].
This new Lagrangian is first-order and also lead to the Einstein equations. The first complete solution
was given by Schwarschild in 1916 [93]]. Nevertheless, the studies were essentially theoretical until the
60s, when exotic objects like quasars and pulsar where observed. Later observations like the background
radiation, the accelerating expansion of the universe or gravitational waves, emphasises the importance
of the study of General Relativity and its relation with other branches of physics. Several variations and
generalizations of Einstein’s theory are being proposed to explain these and another phenomena. The
interplay between General Relativity, astrophysics and quantum theories is a field of intense study in



modern physics. (See [99] as a general reference for all these topics).

The geometric analysis of General Relativity contains particular difficulties because it is a second-
order field theory with high degeneracy. In recent years, there is an increasing effort in understanding
the covariant description of gravitational theories (General Relativity and other derived from it) using
different kinds of geometric frameworks such as the multisymplectic or polysymplectic manifolds.

An intrinsic approach to General Relativity can be found, for instance, in [72, 73], where the authors
study the degeneracy of the Einstein-Hilbert Lagrangian and other aspects of the theory using Lepage
forms. The same topic is analysed in [[16, [86l |87] where, in addition, the reduction of the order of the
theory and the projectability of the Poincaré-Cartan form associated with the Einstein-Hilbert action is
explained (intrinsically it is defined as a theory where the Poincare-Cartan form can be pulled-back to
a lower order jet bundle). This arise from the fact that the theory is degenerate in a very specific way.
In particular, they also show the existence of a first order Lagrangian (different from the metric-affine
Lagrangian) which give rise to the Einstein equations, and they also study the existence of natural sym-
metries. In [53]] the multisymplectic description of the Einstein-Palatini or metric-affine model model is
presented as a example and in [12] an exhaustive study of this model is done using a unified formalism.
Different geometric formulations of General Relativity and its variational principles are given in [11]].
In addition, in [96} 97] a complete study of the vielbein formulation of General Relativity is done using
multisymplectic geometry for describing the vielbein (or Cartan) formalism in the Palatini approximation
(the Lagrangian and Hamiltonian formalism) and considering different classes of matter sources. Finally,
some general features of the gravitational theory following the polysymplectic version of the multi-
symplectic formalism are described in [49, [89], including the problem of its precanonical quantization
[63] 164,165,166l 67]. More general aspects of the theory are studied in [6} [11} (17} [18} 19, (37,47, 95, |88]].

General Relativity is a covariant theory; that is, it is invariant under diffeomorphism acting on the
base manifold. This property has been partially studied in a geometrical way in [87]. Moreover, the
Metric-Affine model contains a gauge symmetry [20, 45]. The conserved quantities for gravitational
theories has been studied, for instance, in [95]]. Nevertheless, there is open question regarding the sym-
metries and conserved quantities of General Relativity and its consequences. Thus, in this dissertation
we recover some results and expand them, especially the topic of the gauge freedom.

Objectives

In this dissertation we develop essentially two models of Gravity, the Einstein-Hilbert and the Einstein-
Palatini or Metric-Affine. We develop a covariant description of both theories using the multisymplectic
framework, but we emphasize different aspects in each one.

Order Reduction:

There are some models in classical field theories where, as a consequence of the singularity of the
Lagrangian, the order of the Euler-Lagrange equations is lower than expected. A geometrical way of
understanding this problem is considering the projectability of the higher-order Poincaré-Cartan form
onto lower-order jet bundles [[16} 44, 73] 86, [87].

We review the conditions for this projectability and study their consequences using the constraint
algorithm for the field equations of second order (singular) field theories. Moreover, this analysis is done
for the case of higher-order mechanics.

Einstein-Hilbert:

The Einstein-Hilbert model of General Relativity is described by a second-order singular Lagrangian,
thus it is a gauge field theory with constraints. Apart of developing the multisymplectic formalism, in this



model we are mainly interested in the consequences of the projectability of the Poincaré-Cartan form, the
existence of a first-order equivalent Lagrangian and the analysis of the gauge freedom and symmetries.

The use of the unified Lagrangian-Hamiltonian formalism is particularly interesting when it is applied
to these kinds of theories, since it simplifies the treatment of them; in particular, the implementation of
the constraint algorithm, the retrieval of the Lagrangian description, and the construction of the covariant
Hamiltonian formalism. We apply this framework to the Einstein-Hilbert model without and with energy-
matter sources.

The framework shows how, as a consequence of the gauge freedom and the constraint algorithm, the
Einstein-Hilbert model is equivalent to a first-order regular theory, without gauge freedom. Moreover,
we obtain and explain the geometrical and physical meaning of this equivalence, the gauge freedom and
the Lagrangian constraints.

In the case of presence of energy-matter sources, we show how some relevant geometrical and phys-
ical characteristics of the theory depend on the type of source. In all the cases, we obtain explicitly
multivector fields which are solutions to the gravitational field equations. Finally, a brief study of sym-
metries and conservation laws is done in this context.

Metric-Affine:

The Metric-Affine or Einstein-Palatini model for General Relativity is described by a first-order
affine Lagrangian (in the derivatives of the fields), it is singular and, hence, this is a gauge field theory
with constraints. The Einstein-Palatini model has more freedom than the Einstein-Hilbert one, as it was
already noticed in the original article by Einstein [36]. In [20], the authors identify this freedom as
gauge-like. We aim to use the multisymplectic formalism to characterize this gauge freedom, analyze
the constraints of the theory and establish a covariant Hamiltonian formalism.

We develop the Lagrangian and Hamiltonian multisymplectic formulation for the Einstein-Palatini
model (without energy-matter sources) in chapter |4l A detailed analysis of the unified formalism can
be found in [12]]. The constraints are obtained after applying a constraint algorithm to the field equa-
tions, both in the Lagrangian and the Hamiltonian formalisms. We obtain and explain the geometrical
and physical meaning of the Lagrangian constraints and we construct the multimomentum (covariant)
Hamiltonian formalism. The gauge freedom of the model is discussed in both formalisms and, from
them, the equivalence with the Einstein-Hilbert model is established.

Structure of the dissertation

The dissertation is structured in 5 chapters. In chapter [I] the multisymplectic formalism and the needed
geometrical tools are presented. We use a variational approach in the line of [45], and the constraint
algorithm used in later chapters is briefly exposed.

Chapter 2| has two parts. Section [2.1| contains a review of symmetries and conserved quantities in
field theories. We also present there the concept of gauge vector field and gauge symmetry. This section
is based in [45]. In Section we explore the consequences of a projectable Poincaré-Cartan form.
Following [46], we expand previous results in [[16} |44} [73| [86| [87]] by analyzing the constraints of such
theories. We also prove the results for Higher-order mechanical theories.

In chapter 3| the multisymplectic formalism is applied to the Einstein-Hilbert model, as it is exposed
in [47]. First the Lagrangian-Hamiltonian unified formalism for the vacuum case is studied, and using
the constraint algorithm we find the final manifold where the field equations have solutions. Then, the
Lagrangian and Hamiltonian formalisms are recovered. Two different sets of coordinates are used in the
Hamiltonian formalism, and its equivalence with the first-order Lagrangian [[L6]] is shown. Then, we add



a matter-source and analyze which results can be recovered, depending on the source. As an example,
the Electromagnetic source is considered. The natural symmetries of the theory [[87] are revisited in the
light of section Finally, we compute explicitly all the semi-holonomic multivector fields solution of
the field equations.

In chapter 4] the multisymplectic formalism is applied to the Metric-Affine model, as it is exposed in
[48]). First the Lagrangian formalism is considered. We find the constraints defining the final submanifold
and the natural symmetries. The gauge symmetries are computed and the results are in agreement with
[20]. Consequently, we find the general expression for the semi-holonomic multivector fields solution
of the field equations. Next, we construct the covariant Hamiltonian formalism and repeat the process,
using two different systems of coordinates. For one of them, containing only the connection, a geometric
interpretation is provided. Finally, the relation between the Einstein-Hilbert model and the Metric-Affine
model is established geometrically.

Finally, the conclusions are presented in chapter [5] together with the list of articles consequence of
this work and a list of topics for further research.



Chapter 1

Geometrical setting

This chapter is devoted to present the main structures and mathematical tools needed in the dissertation.
We also set here the common notation used along different chapters. Since this is a review chapter, only a
handful of proofs are provided. The Einstein-Hilbert model developed in chapter [3]is a second-order field
theory, but this dissertation also contains first-order field theories like the Metric-Affine model of chapter
Nevertheless, we only present here the second-order formalism. The multisymplectic formalism for
first-order first theories can be found, for instance, in [[13, [85]].

This chapter is structured in three sections. First, in section[I.T|we present the jet bundles and several
related concepts. Then, in [I.2] we present the multisymplectic formalism in a general way, based on
[45,158]. Finally, section|1.3|is devoted to particularize this formalism to the Lagrangian, the Hamiltonian
and the unified formalism for second-order field theories.

1.1 Geometry of jet bundles

1.1.1 Jet bundles and holonomy

Consider a smooth fiber manifold = : E — M, where the base manifold M has dimension m and the
total space E has dimension m + n. A section of 7 is an aplication ¢ : M — FE such that m o ¢ = Idyy.
The set of sections of 7 is denoted I'(7). All the manifolds are real, second countable and C*°. The
maps and the structures are C*.

In order to write compressed coordinate expressions we will use the following notation. A multi-
index I is an element of Z™ where every component is positive, the ith position of the multi-index is

m
denoted I(i), and |I| = Z I(1) is the length of the multi-index. Furthermore, the element 1; € Z™ is
i=1

defined as 1;(j) = 5? and n(ij) is a combinatorial factor which n(ij) = 1 for i = j, and n(ij) = 2 for
i # j. An expression as |I| = k means that the expression is taken for every multi-index of fixed length
k. Equivalently, we will write a;; < --- < . Sum over repeated indices is understood.

Let (x#), with 1 < 1 < m, be a system of coordinates in M, and (z*, u, ), with 1 < o < n, a system
of coordinates of F adapted to the bundle structure. For a section ¢ € I'(7) we denote ¢, = uq © @, SO
that ¢(z#) = (z#, po(x*)). For every point x € M, I';(7) denotes the set of sections of 7 defined on a
neighbourhood of x. For every integer £ > 1:

Definition 1.1. Two local sections ¢, € I'y(7) are k-equivalent in x if:



* p(z) = o(x)

» All derivatives up to order k coincide in x:

o1y,
ozl

0715,
9!

)

T x

foreveryl <|I|<kandl1 < a<n.
Lemma 1.1. At every point x € M, the k-equivalence relation in I, () is independent of the choice of
coordinate system.
As a consequence, the k-equivalence relation in x is a well-defined equivalence relation in I'; (7).

The equivalence class containing ¢ is called the k-jet of ¢ at x, and it is denoted ;% .

Definition 1.2. The k-jet manifold is the set:

Jir = (k¢ |z e M, ¢ € To(m)}.

The k-jet has a natural structure of smooth manifold and we have the following natural projections:
ifr <k,

k. Jkr — J'r k. Jkr — E ke gk — M
S Jid — ¢(z) L

k k _k k k

Observe that mj oy =775, mg =7 ,71']]: = Id jx,, and 7% = 7 o ¥,

The local coordinates in J*7 associated to (x#, u ) in E are (2, uq, uq,1) and are defined as follows.
Consider a section ¢ € I'(7) with coordinate expression ¢(z#) = (z#, ¢po(2#)). Then:

96,
9 ().

2 (jE) = 2, ua(jEd) = da(2), uar(jhe) =

Using this coordinates, the local expressions of the projections are:
ﬂf(x“7ua’ua7l> == (x“,ua,umj); Trk(xuaua7uoé,f) == (x'u7ua); ﬁ-k(xuaua7uoé,f) == (!,L.,U,)7
withl < |I| <kand1 < |J]| <.

Definition 1.3. For a section ¢ € T'(r), the kth prolongation (or prolongation to J*m) of a section
¢ € T'(n) is the section j*¢ € T\(7*) defined by :

o) = jre,
for every x € M.

Definition 1.4. A section ) € T'(7*) is holonomic if any of these equivalent conditions hold:

« jH (7t o) =¢.

o ¢*w =0, for every w € €*, the Cartan codistribution of J*r.



In coordinates, the kth prolongation is given by:

1]
]k¢(x> = <x“,¢a(x), aaj]sa (1‘)) )

for 1 < |I| < k. The condition for a section ¢ € I'(7*) with coordinate expression ¢(z) = (7, ¢ (2), ¢a.1(T))
to be holonomic is that the following system of partial differential equations holds:

oMl
alzﬂa 1§‘I’§k,1§a§n
’ ox!

or, equivalently,

a¢a,[

Oxt’

¢a,1+1#: 1§|I‘§k_171§)u§m71§agn

Finally, the coordinate total derivatives are the vector fields of the form:

k
) )
Di=—— | .
Rz |;0 O G

For a function f € C°°(J*r), we write D;f = Lp, f € C°°(J**!x). Although in general the total
derivatives change the order of the jet where the functions are defined, sometimes we ignore this fact,
and write them as an abuse of notation in order to writing compact expressions in coordinates.

1.1.2 Dual and symmetric jet bundles

Definition 1.5. The kth-order extended dual jet bundle is the bundle of m-form over J*~1m which vanish
under the contraction with two 7%~ -vertical vector fields, that is:

AP(T* T 17) = {a € A(T*T*'7) | i(W) i(Va)a = 0, Vi Vy € VD (7 1)y

It has the canonical projections
Ty AB(T* T Ay — T o Fy =7l oo, s AT T 1n) — M.

Definition 1.6. s The Liouville m-form, or tautological or canonical m-form, on A3 (T* J*~1x) is
the form ©1 € Q™ (A(T*J*~'1)) defined as

O1(w)( X1, ..., Xm) = w(Tm 1 (X1), .., T g1 (X)) T -1 (X))

where w € AT (T*J*1n) and X1, ..., X € TLAQ(T*JF 7).

* The Liouville (m + 1)-form, or canonical multisymplectic (m + 1)-form, is the form Q; €
QMY AR(T* JF—11)) given by
Q1 = —dO;.

2y is a multisymplectic form; that is, it is closed and 1-nondegenerate (see section[I.2.1).

Definition 1.7. The canonical pairing between elements of J*1 and elements of AJ*(T*J*~'x) is the
fibered map over J*~ ' defined as

C: Jom X jror, AT T 1)
(i, w)

AP(T* 5 )

_>
= (jkilw);lgww



AT (T*J*'7) has too many multimomentum coordinates in order to establish a correspondence
between “velocities” and multimomenta in terms of derivatives of the Lagrangian function. This problem
to define the Hamiltonian formalism for higher-order field theories can be solved for first and second-
order. For the later case:

Induced local coordinates in A (T* J'7) are (x%, Y, a4, p, P>, p“¥). With these coordinates, the

0
local expressions of the Liouville forms are (where dmflxj =3 > d™z)

oxJ
01 = pd™x + p*t dug Ad™ La; + p*U dug; A dmflxj ,
O = —dp A d™z — dp®* A dug A d™ o — dp™i A dug; A dmflxj .

Now, consider the 7 j1,-transverse submanifold js: J 2rt < AD(T*J'm) defined locally by the con-
straints pg = phk, which is called the extended 2-symmetric multimomentum bundle (although it is
defined using coordinates, this construction is canonical [91])). Let

I
o
3

7TT]17T:J27rT—>J17r , 7?;[\/[ 7l EIWZJQWT—)M

be the canonical projections. Natural coordinates in J27 ! are (27, U, Ua i, p, P, p*T), where |I| = 2.
Denote O = 7501 € 2™ (J%7T) and the multisymplectic form Q5 = 5*Q; = —dO5 € Q™1 (J%xT),
which are called symmetrized Liouville m and (m + 1)-forms, and their coordinate expressions are

. 1 L
0% = pd™z + p*' dug Ad™ 1 a; + 7)190"11+1J dug,; A dmflxj ,

n(ij

Qf = —-dpnd™x — dp® A dug Ad™ L — —— dp®titli A dua,i A dm_lxj .

n(ij)
Finally, consider the quotient bundle J27¢ = J2zT/AT(T*J'7), which is called the restricted 2-
symmetric multimomentum bundle, and it is endowed with the natural projections

MZJQ’/TT—>J27TI ; 7T§E]17r2J2’/Ti—>J17T , 7?]*\4:J27ri—>M.

Observe that .J?7t is also the submanifold of AJ*(T*J'w) /AT (T*.J'x) defined by the local constraints
pd —pl = 0. Hence, natural coordinates in J27* are (2%, uq, um,pa’i,pa’f). Observe that dim J27t =
dim J?xt — 1.

1.1.3 Multivector fields

(See [31] for details).
Definition 1.8.

Let k: M — M be a fiber bundle.

e An m-multivector field in M is a skew-symmetric contravariant tensor of order m in M. The set
of m-multivector fields in M is denoted X" (M).

* A multivector field X € X™ (M) is said to be locally decomposable if, for every p € M, there is
an open neighbourhood U, C M and X, ..., Xy, € X(Up) such that X|y, = X1 A ... A X,

o Locally decomposable m-multivector fields X € X™ (M) are locally associated with m-dimensional
distributions D C TM, and multivector fields associated with the same distribution make an
equivalence class {X} in the set X" (M). Then, X is integrable if its associated distribution is
integrable.



For every X € X" (M), there exist X1, ..., X, € X(U) such that

X|y = DD LD I ¢

1<ii <. <im <r

m ?

with firim ¢ C®(U), m < r < dimJ*7. If two multivector fields X, X’ belong to the same
equivalence class {X} then, for every U C M, there exists a non-vanishing function f € C*°(U) such
that X’ = fX on U.

Definition 1.9. If Q € 2F(M) and X € X™(M), the contraction between X and §) is defined as the
natural contraction between tensor fields; in particular,

iX)Q = > X A AX )= Y (X)X,

1<i1 < .. <im <r 1<i1 <. <in <r

if k > m, and equal to zero if k < m. The Lie derivative of Q2 with respect to X is defined as the graded
bracket ( it is an operation of degree m — 1)

L(X)Q :=[d,i(X)]Q = (di(X) — (—=1)™4(X)d)$2 .

Definition 1.10. A multivector field X € X" (M) is k-transverse if, for every § € 2™(M) with
B(7k(p)) # 0, at every point p € M, we have that (i(X)(k*B)), # 0. If X € X™(M) is inte-
grable, then it is k-transverse if, and only if, its integral manifolds are local sections of k. In this
case, if v: U C M — M is a local section and {(U) is the integral manifold of X at p, then
T,(Im1)) = D, (X) and 1) is an integral section of X.

Definition 1.11. In the case that M = J*r, a multivector field X € X™(J*r) is said to be holo-
nomic if it is integrable and its integral sections are holonomic sections of T (and hence it is locally
decomposable and T*-transverse).

For a fiber manifold x : M — M with coordinates (z*,u, ), a T-transverse and locally decompos-
able multivector field X € X™(E) is

N 0
X = — +Xapum7) -
u/z\l <8$u " ’”8ua>

A section of 7, ¥(z#) = (z#, ¥ (z")), is an integral section of X if its component functions satisfy the
following system of partial differential equations

Mo

oxH

= Xopuot. (1.1)

1.2 Multisymplectic Formalism

1.2.1 Multisymplectic Systems

Different bundles are used in the multisymplectic formalism. Nevertheless, all share the same basic
structure, which can be thought as sort of “multisymplectic dynamics”. In this section we will present its
general formulation. A lot of properties can be analysed in this framework, in particular the constraint
algorithm.

Over a base manifold M with dimension m > 1, consider the bundle 7 : J — M. Inspired by the
exterior differential system used in [12} 58], consider a set of forms Z C §2°(.J), which we will call the
condition set.

10



Definition 1.12. * A section € T'(7) is admissible if *a = 0 for all « € . The set of admissible
sections will be denoted V(T).

* A multivector field X € X (J) is transverse if it is T-transverse.

o A multivector field X € X"™(.J) is admisible if it is transverse, integrable and its integrable sections
are admissible.

Definition 1.13. s Aform§ € Q™F1(J) is a multisymplectic form if it is closed and 1-nondegenerate,
that is, if the map bg: TJ — A™T*J, defined by bq(z,v) = (x,i(v)), for every x € J and
v € Ty J, is injective. Otherwise, the form is said to be a premultisymplectic form.

* A (pre)multisymplectic form is exact if there exist © € 2™ (M) such that ) = —d©.

We will assume all the forms have constant rank.

Virtually all of the systems that will appear in this dissertation contains constraints which define
submanifolds. Consider the submanifold j : Jy < J, and define 7y = 7o j : J; — M. Frequently J
is a subset of J, thus we will assimilate it with j(.J7). Some regularity and structure to the submanifolds
is imposed:

Assumption. The constrained spaces are closed smooth manifolds. Thus, the constraints are given
locally by a set of functions. The constraints are T-vertical.

We will not allow to constraint M, because its dimension define the order of 2. The condition set
7 in the constrained system is defined by Zy = {j*a|a € Z} C 2°(Jf). This definition is justified
because the properties of being admissible derived from both sets are compatible in the following sense:

Lemma 1.2. jo ¥(Z;) = (jo I'(7y)) N ().

Proof. 1t follows from the fact that, for every ¢ € I'(7¢) and for every form o € £2°(J),
Pita = (jo)a=0

O]

Finally, the variations of the action are represented by an integrable distribution V' = U Vp, with

pE.]f
T,Js C V, C TpJ. The sections of V' will be denoted as I'(V).

Definition 1.14. A multisymplectic system is the 4-tuple (J, 2, V. T). If Q is pre-multisymplectic, then
it is a pre-multisymplectic system.

The systems often have a complex bundle structure, with several projections and intermediate man-
ifolds. For the sake of simplicity, this structure is implicit in the 4-tuple, although it will be clearly
established in every case. For the case of the system (.Jf, 2, V,Zy) which develops in the submanifold
J + Jy = J, the form ) have support on Jy, but it is an element of Q’”H(J ). Likewise, the set of

variations V' is a subdistribution of T'J; = U T, J. There are two relevant set of variations which arise
pEJj

while performing the constraint algorithm. First there are the pull-backed variations V' = j,T'J; C T'J,

which we sometimes denote T'J;. Secondly, there are the constrained variations V' = T'Jy.

Definition 1.15. * The pull-backed system is (J¢,Q,TJ¢,Ty)

11



* The constrained system is (J¢,Q,TJ¢,Iy)
Any solution of the second problem is a solution of the first problem, because T7'J; C T'J, but not
the other way around.

In this dissertation we will consider a particular case of systems, closely related to a certain jet bundle
Jkr.
Definition 1.16. A system (.J,(2,V,T) is almost-holonomic if there exists a projection p : J — J* for

some k > 0, (in particular, p = Id i if J = J kw), and T = p*@k, the Cartan codistribution of J ko,

The systems we consider in chapters [3| and |4 are almost-holonomic, therefore, we usually use the
term holonomic instead of admissible. This property is not necessary for the definitions, but it is used to
characterize symmetries in section[2.1.3

1.2.2 Multisymplectic Equations

In this setcion we present the variational problem based on [45} 58]].

Let (J,9Q,V,Z) be an exact (pre)multisymplectic system. Let I'(7) be the set of sections of 7.
Consider the following functional (where the convergence of the integral is assumed)

F:T'(m) — R
v [ e
M
Definition 1.17. The generalized variational problem for (J,Q,V,Z) is the search for the admissible

critical (local) sections of the functional F with respect to the variations of 1 given by g = o5 0 ),
where {0} is a local one-parameter group of any compact-supported w-vertical vector field in T'(V');

that is,
/ $O = 0
s=0JM

which are an integral section of I, namely, such that ¢*co = 0 for every o € T .

d
ds
Theorem 1.1. The following assertions on a section ¢ € I'(T) are equivalent:

1. Y is a solution to the generalized variational problem.

2. 1 is an admissible section solution to the equation
P i(Y)Q=0, foreveryY €T'(V). (1.2)

3. o is an adimissible section solution to the equation
i(Y)i(A") (o)) =0, foreveryY € (V). (1.3)
4. 1 is an integral section of an admissible m-multivector field contained in a class of T-transverse

and integrable (and hence locally decomposable) m-multivector fields, {X} C X™(J), satisfying

the equation
i(Y)i(X)Q=0, foreveryY eT'(V). (1.4)

12



We will mainly use the problem for multivetor fields (I.4), as it is more operative and, in lesser
extend, the problem for sections (1.2). Unfortunately, to check in general that a multivetor field is
integrable is tricky, and it is only done in especial cases. On the other hand, the conditions of locally
decomposable, admisible and transverse have a definite expression in local coordinates. A multivetor
field with a local expression that satisfy these local conditions, but not necessary integrable, is called
semi-admisible. However, if such a multivector field admits integral sections, then its integral sections
are admisible.

Finally, we introduce the following notation: as it is usual,
ker Q = {X € X™(J) | i(X)Q2 =0} .

We denote by kerZ' (2 the set of locally decomposable and 7-transverse multivector fields belonging
to ker™ (2. Then, kergy; © and ker; 2 denote the sets of semi-admissible (semi-holonomic) and the
admissible (holonomic) multivector fields belonging to ker™ 2, respectively. Obviously we have

kery; Q C ker'dy Q C kerl' 2 C ker™ Q. (1.5)

1.2.3 The constraint algorithm

In general, admisible multivector fields X € X" (J) which are solutions to (I.4) could not exist. In
the best of cases they exist only in some submanifold of J [22]. The aim in this section is to find
the constraints that define this submanifold, using an adapted local version of the geometric constraint
algorithms [23) 22]]. When there is no solution for the problem for multivector fields of the system
(J,9,V,T), we consider a weaken version of the problem:

Find submanifolds j : Jy < J such that the system (J¢, 2, TJ; NV, Zy) has a solution.

The algorithm proceeds inductively, by setting So = J and
Si = {p € S;i—1|13X € X"™(S;_1), semi-admissible and (V") i(X)Q|, = 0,VY € T,,S;_1 NV, }.

We assume the successive subsets are closed submanifolds. Notice that the multivector fields found
for the submanifold S; are tangent to S;_; but not necessarily to .5;, thus the algorithm continues until
Sy = Sy_1 or S; = 0. In the first case, we say that Sy is the final constraint submanifold.

The actual computation in coordinates of these sets starts by considering the local expression of a
locally decomposable multivector field X. Locally, equations (1.4) and the semi-admissible conditions
are equations on the coefficients of X. In the cases we will study, all these equations form a lineal
system of equations, at every point of J. S; consists on the points where the system is compatible. In the
next step, apart of these equations we have the tangency (or consistency) conditions, which arise from
imposing that the solutions have to be tangent to S7. Then we continue the process until the algorithm
stops.

Proving the existence of an integrable multivector field is more complicate for field theories. We will
present a particular proof for every case.

1.3 Lagrangian, Hamiltonian and unified multisymplectic formalism

1.3.1 Lagrangian-Hamiltonian unified formalism

(See [83], [84] 90] for details). Let E — M be a fiber bundle, with dim E = m + n, over an ori-
entable m-dimensional manifold M, whose volume form is denoted n € (2™ (M). The 2-symmetric
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jet-multimomentum bundles are W = J37 x j1,. J*nt and W, = J371 x j1, J?nt. The coordinates in
W and W are (&', ta, Ua,i, Ua, 1, Ua, s, P, P, p™ ) and (27, ua, Ua,is Ua, 1, Ua,s, P, p™), Tespectively,
with |I| = 2 and |J| = 3. These bundles are endowed with the canonical projections

oW = B ph We = Pt o W s M
W= I ppe W TPl oW M.
The second-order coupling m-form in WV is the pjs-semibasic m-form Ce 2" (W) defined by
C(ii,w) = C*(n3(j30),w) , (lpw)eW.

Since C is a py;-semibasic m-form, there exists a function C' € C°°(W) such that C = Cp%,n, and we
have the coordinate expression

~

C = (p+ ™ uai + ™ ug,r) ™ .

Let £ € £2™(J%7) be a second-order Lagrangian density for this field theory, which is a 72-semibasic m-

form and then £ = L (72)*n € 2™ (J?r), where L € C>(J?7) is the Lagrangian function. Denoting
by L = (73 0 p1)*L € 2™(W), we can write L = L p%,n, where L = (73 o p1)*L € C*°(W). Then,
we introduce the Hamiltonian submanifold

W, = {w eW: L(w) :é(w)} Ew,
which is defined by the constraint
C’—ﬁEp—i—pa’iumi—l—pa’lua,[—ﬁ:O . |1 =2.

and it is pyy-transverse and diffeomorphic to W, by ® : Wy — W,. Furthermore, the quotient map
p: J2nt — J2xt induces a natural submersion gy : W — W,. Then, the submanifold W, induces a
Hamiltonian section i € I'(puyy) defined as b = 5,0 ®~1: W, — W, which is specified giving the local
Hamiltonian function

H = p™'ugi +p™uas — L (1.6)
that is, h(2, Ua, Ya i, Yo T> Uer.g> D POT) = (27, Uers Uiy Y I, U, —H, p®7, p*). Hence, we have
the diagram:

W
SN
W,
p1
/
J37T P

X

J
ﬁl

Now we define the forms O, = (p3 0 h)*© € 2™(W,) and Q, = —dO, € 2™ (W),), with local
expressions,

N ) 1
0, = —Hd™z + p®'dug Ad™ ta; + jpa’liﬂjdua,i A dm_lmj ,

n(ij

Q, = dH Ad™z — dp™* A dug Ad™ e — dp® it A dug; Ad™ Ly

n(if)
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The condition set Z for the multisymplectic unified system is Z = p}*€3 = {p]*w|w € €3}, where
¢3 is the Cartan codistribution associated to J37. Therefore, a section ¢ € T'(p},) is admissible (or
holonomic) if p} o ¢ € T'(J2) is holonomic. An integrable and ps-transverse multivector field X €
X™(W,) is holonomic if its integral sections are holonomic. The local expression of a semiholonomic
multivector field X € X™ (W, ) is, in this case,

o 5 9 G wi 0 ax O
= A B T et > o141, 7y — + Fasyg— + G + G :
j=1 7

= @, J apaz apoc,K
(1.7)
with |[K| = 2 and |J| = 3. The second-order Lagrangian-Hamiltonian multisymplectic system is
W,, Q. , TW,., p71"*€3). The form (2, is 1-degenerate because
, 0
ker Q. ={Z € X(W:)|i(Z2)Q, =0} = <8u0‘> #{0} , for|l|=2,3; (1.8)
I

then (W,, Q., TW,, p’{*€3) is a premultisymplectic system and solutions to (I.2]) or (1.4 do not exist
everywhere in W,:

Proposition 1.1. A section ) € I'(p';) solution to the equation (1.2)) takes values in a n(m + m(m +
1)/2)-codimensional submanifold jc: Wy — W, which is identified with the graph of a bundle map
FL: J3n — J*nt, over J'n, defined locally by

9L X1 d oL oL
[:* ot _ == . ﬁ* a,l -
FLw Oy Z (ij) dx? (aua,lﬁ-lj ) e a1

What is equivalent, the submanifold Wy is the graph of a bundle morphism FL: J31 — J27t over Jin
defined locally by

L & d oL * oL
7L - . FL pT = 7
P aua i g (aua,li—i—lj) P 8ya,1
.. L & d oL oL
FL P = L— Uq i J; T'L d(l?] <8u1i+1j7a> — Uq,I 8u071 .

The maps FL and F E are the restricted and the extended Legendre m: maps associated with £, and
they satisfy that F£ = y10 F L. For every j2¢ € J3m, we have that rank(FL(j 30)) = rank(FL(j3¢)).
Then, according to [91]], we say that a second-order Lagrangian density £ € 2™(.J?r) is regular if

rank(FL(j3¢)) = rank(FL(j%¢)) = dim J?1 + dim J'7 — dim E = dim J?z?

otherwise, the Lagrangian density is singular. Regularity is equivalent to demand that F£: J37 — J27?
is a submersion onto .J27¥ and this implies that there exist local sections of F£. If £ admits a global
section Y: J27t — J37, then the Lagrangian density is said to be hyperregular. In a natural chart of
J37 the regularity condition for the Lagrangian density £ is equivalent to

0*L
det <> (j29) #0, forevery jip € JPm ;|| =|K|=2.
Oug 10Uq K

Recall that the regularity of £ determines if the section ¢) € I'(p',) solution to the equation (T.2))
lies in W, or in a submanifold Wy < W, where the section v takes values. In order to obtain this final

constraint submanifold, the best way is to work with the equation (1.4) instead of (I.2). Then, we have:
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Proposition 1.2. A solution X € X" (W, ) to equation (1.4) exists only on the points of the compatibility
submanifold W, — W, defined by

We = {w eW,: (i(Z2)dH)(w) = 0, forevery Z € ker(Qr)}
= {w eEW,: (i(Y)Q)(w) =0, foreveryY € %V(pg)(Wr)} )

0 .
Bearing in mind (L.8)) and that 5 < 5 > dH = 0, for |J| = 3, the functions locally defining this

Uq, J
submanifold have the following coordinate expressions
0 - oL
i dH = p>! — , for|I|=2. (1.9)
8ua71 6uo¢,]

Then, the tangency condition for the multivector fields X which are solutions to (I.4) on W, gives rise

to mn new constraints
m

P uas 2 (i) ded Guan,

=0.

which define a submanifold of W, that coincides with the submanifold ¥W,. Now the study of the
tangency of X along W, could introduce new constraints depending on the regularity of £, and the
algorithm continues until we reach the submanifold Wy.

1.3.2 Lagrangian formalism

(See [83, 84] for details). Let ©5 € 2™ (J?x") and Qf € 2™+ (J?x1) be the symmetrized Liouville
forms in J27 . The Poincaré-Cartan forms in J>7 are the forms defined as

Op = FL'O € 0(Fr) |, Qg = FL'Of = —d6, € Q" (Jr).

These forms coincide with the usual Poincaré-Cartan forms for second-order classical field theories that
can be found in the literature [1, 43} 70, [79], and they can also be recovered directly from the unified
formalism as follows: if © = p5©7 and ©, = h*© are the canonical m-forms defined in W and W,
respectively, then, the Poincaré-Cartan m-form are © = p;O, and ©, = (p])* O, and the same result
holds for the Poincaré-Cartan form €. Using natural coordinates in .J37, we have the local expression

m

oL 1 d oL
O, = — — dug Ad™ 1 a; — ug ;d™
c e ;n(z’j) 027 Dugirn (du T — U ")
1 oL

—— ——— (dta,; Ad™ ) — ug1,41,d™) + Ld™z 1.10
n(Z]) 6Uo¢,1¢+1j ( o T = Yo litly ‘/L‘) + x ( )
The second-order Lagrangian multisymplectic system is (J37, Q, T'.J37, €3). Thus, a section is admis-
ible if it is holonomic in J37.

In order to recover the Lagrangian field equations, we have that the map pf =pioge: We — J3mis
a diffeomorphism, the Poincaré-Cartan forms defined in .J37 satisfy (pf)*©, = 750, and (pf)*Q =
772y, and all of this allows us to prove that:

Proposition 1.3. If ) € I'(p),) be a holonomic section solution to the equation (1.2) for the unified
formalism, then the section 1 = p} o1 € T'\(7) is holonomic, and it is a solution to the equation (1.2)
for the Lagrangian formalism.

Conversely, if 1y € T(73) is a holonomic section solution to the field equation (1.2)) for the La-
grangian formalism, then the section {) = jp o (pf)_l o € I'(p},) is holonomic and it is a solution
to the equation (1.2)) for the unified formalism.
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In local coordinates in .J37, the equation for the holonomic section 1), = j3¢ are the Euler-Lagrange
equations for a second-order field theory

oL
Oug

_ 4 oL
dzt Qug,;

e PP 1=2 o

Theorem 1.2. Let X € X™ (W) be a holonomic multivector field solution to the equation for the
unified formalism, at least on the points of a submanifold jr: Wy C W, — W,, and tangent to Wy.
Then there exists a unique holonomic multivector field X o € X™(.J3n) solution to the equation for
the Lagrangian formalism, at least on the points of Sy = pf (W), and tangent to Sy,

Conversely, if X € X™(J37) is a holonomic multivector field solution to the equation for the
Lagrangian formalism, at least on the points of a submanifold Sy — J 37, and tangent to S 5 then there
exists a unique holonomic multivector field X € X™(W,) which is a solution to the equation for
the unified formalism, at least on the points of Wy = (p5)~Y(S t) = W, and tangent to Wy.

The relation between these multivector fields is X o p} oy = A™TpoXo ;.

(1.11)

1.3.3 Hamiltonian formalism

For the Hamiltonian formalism, denote P = FL(J37) <& J%x and P = FL(J37) <& J2xt (we
assume they are submanifolds and, if £ is hyperregular, then P = J?7%), and let 7p: P — M be the
natural projection. and F L, the map defined by 7L = j o FL,. In order to assure the existence of the
Hamiltonian formalism we assume that the Lagrangian density £ € £2™(J 27r) is, at least, almost-regular,
that is, P is a closed submanifold of J27+, F£ is a submersion onto its image and, for every quﬁ e J3m,
the fibers FL 1 (FL(j2¢)) are connected submanifolds of J37. Then, there exists a diffeomorphism
L= poj: P — P and we can define a Hamiltonian p-sectionas h = jofi~!, which is specified by a local
Hamiltonian function H € C°(P), that is, h(2!, g, Ua.i, P4, pT) = (2%, e, Ui, —H, p™, p® ).

P ! J2rt P2 w

Il |

J2rt

Now, we can define the Hamiltonian forms ©;, := h*0f € 2™ (P) and the condition set is Z = <7T§17r o
7)*€! . Then, the second-order Hamiltonian multisymplectic system is (P, 2y, TP, (77517T 07)*€!). Then

the Hamiltonian formalism is recovered as follows:
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Proposition 1.4. Let ) € I'(py,) be a solution to the equation (1.2) for the unified formalism. Then, the
section Yy, = FLoo pl o) = FL,0v, € I'(7p) is a solution to the equation (1.2) for the Hamiltonian
formalism.

/
=3
/g‘
N
=

NP

TP
Yp=FLooYr
M

Theorem 1.3. Let X € X" (W, ) be a holonomic multivector field which is a solution to the equation
for the unified formalism, at least on the points of a submanifold jr: Wy C Wy — W,, and
tangent to Wy. Then there exists a holonomic multivector field X, € X™(P) which is a solution of the
equation for the Hamiltonian formalism, at least on the points of Py = FL(S}), and tangent to
P;.

Conversely, if X, € X™(P) is a holonomic multivector field which is a solution to the equation
(I.4) for the Hamiltonian formalism, at least on a submanifold Py — P, and tangent to Py; then there
exist locally decomposable, p',,-transverse and integrable multivector fields X € X™(W,.) which are
solutions to the equation (TA) for the unified formalism, at least on the points of Wy = (p&)~1(Py) <
Wr < W,, and tangent to Wy.

If X is plp-projectable (o1, what is equivalent, if the multivector field X ¢ in Theorem [I.2]is FL,-
projectable), then the relation between these multivector fields is Xy, o plr 0 37 = A™Tpl 0 X 0 gy
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Chapter 2

Properties of Multisymplectic Systems

The most challenging step in the formalism presented before are equations (I.2), which are a system of
PDE in field theories. Accordingly, there has been a lot of effort in finding properties which help solve
and understand them. Common examples are symmetries, gauge freedom, conserved quantities or the
study of equivalent Lagrangians.

In this chapter we review and extend some properties for multisymplectic systems that we need
to study the models of Gravity. In section |2.1]| we recover some results for symmetries and conserved
quantities, and we present a new analysis of the gauge freedom of field theories. In section [2.2| we review
the concept of projectable theories and explore the constraints of this kind of theories.

2.1 Symmetries, Conserved Quantities and Gauge freedom

2.1.1 The challenge in field theories

The concepts of symmetries, gauge freedom and conserved quantities have been developed mainly for
mechanical systems and there has been partial success in field theories. During the research we real-
ize that some of the elements, especially gauge symmetries, do not have a clear generalization to field
theories. The fundamental problem is that the solution in mechanics are one dimensional distributions
(associated to a vector field), while in field theories they are m-dimensional distributions (associated to
multivector fields). This simplifies mechanical theories, but also leads to confusion about what is a gen-
eral property of a physical system and what is a particularity of mechanical systems. This introduction
aims to discuss this difficulties.

Roughly speaking, the symmetries of a system are diffeomorphisms which leave the space of solu-
tions invariant. This definition and other related concepts, like the interpretation of infinitesimal symme-
tries as vector fields, are maintained in field theories. Remarkably, conserved quantities are modelled as
(m — 1)-forms. For mechanical systems m = 1, thus conserved quantities are functions, which leads to
physical magnitudes like energy. The interpretation of a conserved quantity in field theories is the con-
servation of a flux, the relevance of which was already identified in several physical theories. Noether’s
theorem, which relates infinitesimal symmetries and conserved quantities, also holds for field theories.
Through these chapter we will see some of the reasons of its broad validity.

The generalization of the so-called gauge symmetries has been more complicated. One can find
disparate uses of the term “gauge” in the physics literature. Moreover, some ideas and structures used in
the geometrization of gauge symmetries in mechanical theories cannot be generalized to field theories.
Commonly, the term “gauge” is used to indicate the presence of different mathematical solutions which

19



correspond to the same physical state. In mechanical systems, the solutions are obtained from an ODE,
which, under certain regularity conditions, have a unique solution provided an initial condition. On the
other hand, field theories lead to PDE which, in general, also need a boundary condition to have a unique
solution. As we discuss in section [2.1.4] a field theory has a kind of multiplicity which is not present
in mechanical systems. Motivated by this idea, we have the procedure of gauge fixing. This idea has
been geometrized for mechanical systems [56l], where the key idea is to consider the quotient of the
configuration bundle, a process called gauge reduction. This mechanism is interesting, but it cannot be
generalized to field theories straightforwardly. For instance, in [5}156] it is shown that the Lie parenthesis
of a gauge vector field with the vector field solution of the system is also a gauge vector field. In field
theories, the solutions are represented as multivector fields, thus the Lie parenthesis previously mentioned
leads to incongruencies. The process of gauge reduction is also associated to the non-regularity of the
form €.

In order to generalize the concept of “gauge” to field theories, we choose to interpret it as the non-
regularity of the form 2. First, it is easy to apply to field theories. Moreover it appears in a natural way
in the description of the space of solution. Finally, it is compatible with the variational principle, as we
argue in the following section. Furthermore, this approximation requires an additional analysis of the
interaction with the condition set Z. It is enlightening to make a separate study of the effects of {2 and 7.

2.1.2 Variational Interpretation

We present a general formulation of variational problems at a conceptual level. We aim to show which rol
have the different concepts presented before in the variational formalism. The association of the concept
of gauge to the non-regularity of the form () is justified in the light of this variational interpretation.
The precise definition of the elements will be given in the following sections in the framework of the
multisymplectic formalism.

Consider the sets ¥ and V', which are called the set of (admissible) sections and the set of variations
respectively. Next, consider the action, a map S : V x ¥ — R. The triad (S, ¥, V) represents the
variational problem. Then, a section ¢ € W is a solution for the action S'if

S(v,y) =0, YveV. 2.1

The set of solutions is denoted Sol(.S). In this simply general framework we can define several interest-
ing objects:

* A symmetry, which is an application o : ¥ — W, such that o(Sol(S)) C Sol(S5).

* A critical quantity, which is an application ¢ : ¥ — R such that for all ) € Sol(S), q(¢p) = 0.
We define ker(q) := {¢ € ¥|q(yp) = 0}.

* A gauge variation (or geometric gauge), which is an element of g € V' such that S(g, ) = 0, for
every ¢ € U.

These elements help us to find solutions in different ways. In equation (2.1I)), every element of V'
imposes a new condition on the sections. But the gauge variations only lead to identities, thus they do
not impose any condition. Therefore, we can substract the gauge variations to the total set of variations
without changing the solutions. Critical quantities, which are related to conserved quantities, although
they are slightly different (see Section [2.1.5), help us to narrow the space of sections. Indeed, since
Sol(S) C ker(q) for every critical quantity, we can replace ¥ by ker(q) without changing the solutions.
Symmetries allows us to construct new solutions from previously found ones.

There are some relations between these elements which also appear in the multisymplectic formal-
ism. Let o, p be two symmetries, ¢ a critical quantity, g a gauge variation and v € V. Then:
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1. o o pis a symmetry.
2. q o o is a critical quantity.
3. S(v,-) is a critical quantity.

4. ker(S(g,-)) = V.

The third result is central in Noether’s theorem, and it is one of the origins of the broad validity of
the theorem. The fourth item shows that the critical quantities associated to gauge variations are trivial.

2.1.3 Symmetries
Here we consider multisymplectic systems as presented in chapter [I] The proofs of the results presented
here can be found in [45]).

Definition 2.1. * A symmetry of the system (J,Q,V,T) is a diffeomorphism ® : J — J such that

O, (ker’; Q) C kerl

A pre-symmetry of the system (J, 2, V,T) is a diffeomorphism ® : J — J such that
D, (ker™ Q) C ker™ Q.

* An infinitesimal symmetry (pre-symmetry) of the system (J, 2, V,T) is a vector field Y € X(J)
whose local flows are local symmetries (pre-symmetries).

The field equations are EDP’s and symmetries are characterized because they transform solutions
into solutions. In fact, the following assertion holds:

Theorem 2.1. Let © be a symmetry of a Lagrangian system (J,), V,T). Then, for every X € ker'y; Qr,
the map ® transforms integral submanifolds of X into integral submanifolds of ®.X € ker’; Q.

As a straighforward consequence of this result, we obtain that:

Theorem 2.2. Let Y € X(J) be an infinitesimal symmetry of a Lagrangian system (J,Q,V,T), and F}
a local flow of Y. Then, for every X € ker'’y; Qr, the map F; transforms integral submanifolds of X into
integral submanifolds of F;. X € ker'f; Q.

This definition of symmetry is not operational, as we need to know the set of solutions a priori. We
are interested in sufficient conditions for a pre-symmetry to be a symmetry, at least for the models we
study. Consider that the systems (.J, €, V,Z) is almost-holonomic, with projection p : J — J*r for
some k > 0, (in particular, p = Id i, if J = J*7).

Definition 2.2. * Consider a diffeomorphism ¢ : E — E, which is w-related to a diffeomorphism
@ : M — M. Then, the canonical lift to J*r is

iFo TP = Jkx
jrs = §Po(iks) = il (dosop™).
* A diffeomorphism ® : J*w — JF7 is natural if it is the the canonical lift of a diffeormorphism

¢: E — E, that is, ® = j*¢. A diffeomorphism ® : J — J is natural if it is p-related to a natural
diffeomorphism.
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* A vector field is natural if its local flows are natural.

The following diagram summarizes the diffeomorphisms of the definitions:

J L O E u M

qyl q>l % «»l
k

J > Jbr . E _ M

For a diffeomorphism ¢ : E — E, which is 7-related to ¢, and whose local expression is ¢(z#, uy) =
(" (2H), o (xH, uq), its canonical lift has the following local expression

jk¢<mu7 Uqy, uoc,[) - (SOU(Z-N), (ba('xM? ua)v ’UOCJ(.T'U’, Ueyy ua,]>)7

where

) —1J o —1J
””‘”:D”S“(?xi OW)’ =D<§ o). 1=l<k-1.

Proposition 2.1. If ® : J*7 — J*r is natural, then ®*¢* c ¢k,

Proof. ek is locally generated by the coordinate contact forms 0, 1 = dua, 1 — U, 1+1idxi, for0 < |I] <
k — 1. Then:

%

& (dug, — Uasi1,da’) = dva,[—va,prlia—jjdxj = dvas — Dive da’
k—1 k—1
81}047[ i o%aJ 8va,] 8%,] i
T ox da’ + Z ou Jduﬁ"]_ P Z ou JUB’JHi de
1Jj=0 =P 1Jj=0 "
= % (8%’[ dug,y — 2Ly, dxl) - % ol g
- W WJ+1; - o
710 aUgJ 8u/37J 710 8u5,J

Proposition 2.2. In almost-holonomic systems, if a pre-symmetry is natural, then it is a symmetry.
Proof. Given a pre-symmetry ®’, which is p-related to a natural diffeomorphism ®, we only need to
check that (®’ o 1))*(p*€*) = {0} for every section 1) solution to (T.2). Indeed:
("0 9)*(p"€*) = ¢*((po @')"€*) = ¥*(( 0 p)*€*) C ¥*(p*€*) = {0},
because @ is natural and ¢ is a solution, thus it is holonomic. ]
Therefore, to be natural is a sufficient condition for a pre-symmetry to be a symmetry, but it is not
necessary. A relevant kind of symmetries are the following:

Definition 2.3. /. A Cartan or Noether pre-symmetry of a system (J,$2, V,T) is a diffeomorphism
®: J — J such that, ©*Q) = Q. If, in addition, ®*© = O, then P is said to be an exact Cartan
pre-symmetry.

2. An infinitesimal Cartan or Noether pre-symmetry of a system (J,Q,V,T) is a vector field Y €

X(J) satisfying that L(Y )2 = 0. If, in addition, L(Y )© = 0, then ® is said to be an infinitesimal
exact Cartan pre-symmetry.
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Proposition 2.3. Every Cartan pre-symmetry is a pre-symmetry and, as a consequence, every infinitesi-
mal Cartan pre-symmetry is an infinitesimal pre-symmetry.

It is well known that canonical liftings of diffeomorphisms and vector fields preserve the canonical
structures of J*7. Nevertheless, the (pre)multisymplectic form Q, of the Lagrangian formalism is not
canonical, since it depends on the choice of the Lagrangian density £, and then it is not invariant by
these canonical liftings. Thus, given a diffeomorphism ®: J*7 — J* or a vector field Y € X(J*7),
a sufficient condition to assure this invariance would be to demand that ® or Y leave the canonical
structures of the jet bundle .J* (for instance, ® and Y being the canonical lifting of a diffeomorphism
and a vector field in F), and that the Lagrangian density £ be also invariant. In this way, €1, and hence
the Euler-Lagrange equations are invariant by ® or Y. Therefore, a particular kind of symmetries are
those which are symmetries of the Lagrangian density. Although those are symmetries particular to
Lagrangian systems, it is possible to define them for the unified formalism (see [47] for more details).

Definition 2.4. Let (J,2,V,T) be a Lagrangian or a unified system, and denote the projection p : J —
Jkw, with p = id;k, in the Lagrangian case.

1. A Lagrangian symmetry of the Lagrangian or unified system is a diffeomorphism ®: J — J such
that

(a) ® leaves the canonical geometric structures of J*m invariant.
(b) ©*(p*L) = p*L (P leaves L invariant).

As a particular case, a natural Lagrangian symmetry of the Lagrangian or unified system is a
diffeomorphism ®: J — J such that:

(a) ® is natural.

(b) ® leaves L invariant.

2. An infinitesimal Lagrangian symmetry of the Lagrangian or unified system is a vector field Y €
X(J) such that:

(a) The canonical geometric structures of J*m are invariant under the action of Y.
(b) L(Y)p*L =0 (Y leaves L invariant).

As a particular case, an infinitesimal natural Lagrangian symmetry of the Lagrangian or unified
system is a vector field Y € X(J) such that:

(a) Y is natural.

(b) Y leaves L invariant.

As the canonical lifting of diffeomorphisms and vector fields from E to J*7 leave the canonical
structures of J*7 invariant, it is evident that every (infinitesimal) natural Lagrangian symmetry is also a
(infinitesimal) Lagrangian symmetry. In any case, as a direct consequence of these definitions we have:

Proposition 2.4. Ler (J,Q),V, 1) be a Lagrangian system.

1. If®: J*r — J*n is a Lagrangian symmetry of the Lagrangian system, then ®*©, = O, and
hence it is an exact Cartan symmetry.

2. If Y € X(J*n) is an infinitesimal Lagrangian symmetry of the Lagrangian system, then 1,(Y)© =

0, and hence it is an infinitesimal exact Cartan symmetry.

However, to demand the invariance of £ is a strong condition, since there are Lagrangian densities
or, what is equivalent, Lagrangian functions that, being different and even of different order, give rise to
the same Euler-Lagrange equations. In mechanics these are the so-called gauge equivalent Lagrangians.
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2.1.4 Gauge vector fields

The standard use of the term gauge in Physics is for describing certain kinds of symmetries which arise as
a consequence of the non-regularity of the system and lead to the existence of states that are physically
equivalent. This characteristic is known as gauge freedom. As we discussed before, there are more
interesting properties associated to the gauge symmetries. We will start defining the gauge vector fields,
inspired by the variational reasoning, and then we will present what are the extra conditions necessary
to recover these properties in field theories. Consider a system (J¢, 2, V, T) defined on the submanifold
J + Jy = J with projection 7y : Jy — M and denote

TJf = |J {v eV, | i()iX)Q, =0 , VX eA"(T,Jp)} .
pGJf

Definition 2.5. * The weak gauge distribution of the system (J¢,Q,V,T) is

Gy = U {v e Vp| ¥ i(v)Qy-1(p) = 0, for all admisible 1) € T'(7y) such that p € Im(y) }.
pEJf

A weak gauge vector field of the system (J¢,Q, V,T) is a vector field Y € T'(V') such that

P*(i(Y)Q) =0, forall admisible ) € I'(7y) .

* The strong gauge distribution of the system (J;,Q,V,I) is Gy = Ker(T7s) N TJfL. A strong
gauge vector field of the system (J¢,Q,V,I) is a T ¢-vertical vector field Y € F(TJfl).

* A gauge symmetry of the system (J¢,$,V,I) is a strong gauge vector field tangent to Jy which is
also a symmetry. In particular, if it is natural it is called a natural gauge symmetry.

Lemma 2.1. If Q) is closed, then G, and G s are involutive distributions on J .
Proof. 1t is a consequence of V' being involutive and the properties of the Lie derivative. O

The gauge reduction procedure is centered on quoting the system using gauge distributions. The
stronger the conditions, the better behaved the final system is, and narrower is its application.

Consider an involutive subdistribution of the weak gauge distribution G, C G, and assume that the
quotient manifold & : Jy — J;/G,, is well defined. Given a section (gauge fixing) of &, we can define
(13 = (*(), but it depends on the section because, in general, ) is not constant in § ~1(p) for some p €
J¢/G,. Nevertheless, they are relevant when analyzing the condition set and the conserved quantities.
For instance, the difficulties on defining the Hamilton-Cartan form for the Hamiltonian formalism for
higher-order field theories is a consequence that the symetrization of the momenta leads only to weak
gauge vector fields.

Consider an involutive subdistribution of the strong gauge distribution G/, C G and assume that
the quotient manifold § : Jf — Jy/G’ is well defined. Now, the form can be defined univocally
on the quotient space, and we will denote it by (2. Since the strong gauge variations are 7 ¢-vertical,
we assure that the base manifold M does not contain gauge equivalent points and then all the gauge
degrees of freedom are in the fibres. Therefore, after doing the reduction procedure in order to remove
the gauge multiplicity, the base manifold M remains unchanged. Moreover, there exists a projection
7e + J§ /G’y — M such that ¢ o & = 7y. Unfortunately, following the same reasoning, the condition set
cannot be defined univocally in J¢/GY, in general. Regardless, consider the system (J; /G, Qs, Vs =
&V, {0}). Notice that € is an m-form and the dimension of M is also m. Then
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Proposition 2.5. If the section 1) is a solution of the system (J;,Q, V,T), then £ o 1 is a solution of the
system (J¢ /G, Q, Vs, {0})

Proof. Consider the section 3 : J¢/G', — Jy such that 5 o { 0 9) = 1), (it exists at least locally because
G, C Ker(T7y)). Forevery Y € I'(V;), we have that 5,Y € I'(V); then:

(o) i(Y)Qs = (§0 ) i(Y)B™ Q2 = (Bo&oy)"i(BY )2 =9 i(B.Y)2=0.
O

The converse is not true in general. That is, for a solution v’ of the quotient system and for an
arbitrary section 3, 3 o ¢’ is a solution only if it is admissible. Nevertheless, the strong gauge vector
fields are interesting as they encode the non-regularity of {2 and are easy to compute. We use them to
study the projectability of the systems.

As it is well-known, a regular mechanical system has a unique solution (as a vector field). Conversely,
if there are multiply solutions, they are gauge related. Thus, the multiplicity of solutions in mechanical
systems is related to the non-regularity of the theory. This close relation between multiplicity of solu-
tions, gauge vector fields and non-regularity is not present in field theories. For instance, consider the
regular Lagrangian L = u2 4 u in the bundle 7 : E — M, where the coordinates in M are (x,y)
and (z,y,u) in E. The corresponding field equation is the Laplace’s equation, which has not a unique
solution given an initial condition. Clearly, in field theories there are sources of multiplicity of solutions
which are not related to the non-regularity of the theory. In the approach that we have presented here,
the gauge vector fields are related to the multiplicity of solutions caused by the non-regularity of (2.

2.1.5 Conserved Quantities

(See [43]] and [32]] for the proofs of all the results in this section).

Definition 2.6. * A critical quantity of the system (J, 2, V,T) is an m-form 3 € 2™ (J) such that
i(X)B = 0 for every solution X € ker;(2).

s If a critical quantity is exact, there exists an (m — 1)-form & € 2™~ such that f = d¢ and &
is called a conserved quantity. Equivalently, ¢ € £2"~1(J) is a conserved quantity if [,(X)¢ :=
(—=1)m*1(X)dE = 0 for every solution X € ker}j(€2).

Proposition 2.6. « If B € Q(J) is a conserved quantity of the system (J,Q2,V,T) and X € ker'; Q,
then 3 vanishes on the integral submanifolds of X; that is, if jar: M — J is an integral subman-
ifold, then 55,3 = 0.

o If ¢ € 2™ Y(M) is a conserved quantity of the system (J,2,V,T) and X € ker'ly Q, then ¢ is
closed on the integral submanifolds of X; that is,if jpr: M — J is an integral submanifold, then
dji3,€ = 0.

As it was pointed out in[2.1.2] the variations generate critical quantities.

Proposition 2.7. For every X € T'(V), i(X)Q is a critical quantity.

Proof. 1t is straightforward from the definitions of critical quantity and solution to field equations (1.4).
O
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We call any critical quantity obtained in this way a Noether critical quantity. If (X )< is exact X
is a Hamiltonian vector field, and if 4(X){2 is closed X is a locally Hamiltonian vector field. We can
establish a one-to-one relation between Noether conserved quantities and vector fields modulo strong
gauge vector fields.

Lemma 2.2. * X is a Cartan pre-symmetry if, and only if, i(X)Q is closed. Therefore, X is a
locally Hamiltonian vector field .

* X is an exact Cartan pre-symmetry if, and only if, {(X)Q = d(—i(x)O). Therefore, X is a
Hamiltonian vector field .

» X is a gauge strong vector field if, and only if, i( X )Q2 = 0 . Therefore, X is a Hamiltonian vector
field.

The critical sections associated with strong gauge vector fields are trivial. These relations, particu-
larized to symmetries and conserved quantities, is the Noether theorem [45]]:

Theorem 2.3. (Noether): Let Y € X(J) be an infinitesimal Cartan symmetry of a Lagrangian system
(J,Q,V,I), with i(Y)2 = d&y. Then, for every X € ker; Q) (and hence for every X € ker7; (), we
have that

LX)y =0;
that is, any Hamiltonian (m — 1)-form &y associated with Y is a conserved quantity (and, for every

integral submanifold 1) of X, the form 1 *&y, is usually called a Noether current, in this context).

And, as a particular case, we have:

Proposition 2.8. Let Y € X(J) be an infinitesimal Cartan symmetry of a Lagrangian system (J,Q, V,T).
Then:

1. 1L.(Y)O¢ is a closed form, hence, in an open set U C J, there exist (y € 2™ 1(U) such that
L(Y)O, = déy.

2. If i(Y)Qr = déy, in an open set U C J, then
L(Y)O, = d(i(Y)Or — &) =d¢y  (n ),

and hence &y = i(Y)O — Cy (up to a closed (m — 1)-form).

As a particular case, if Y is an exact infinitesimal Cartan symmetry, we can take £y = i(Y)O .

A conserved quantity can be interpreted as the conservation of a flux. Given ¢ € 2™ 1(J) and
X € X™(J), for every integral submanifold ¢: M — J of X, we can construct the so-called form of flux
associated with the vector field X «¢ wich is *¢ € 2™~ 1(M). Thus we have a unique X,«¢ € X(M)
such that 5 (Xy«¢)n = ¥*§ and, if div.Xy«¢ denotes the divergence of X«¢, we have that (divXy«¢) n =
dy*¢. Then, as a consequence of Proposition[2.6] £ is a conserved quantity if, and only if, div.Xy«¢ = 0,
and hence, by Stokes theorem, in every bounded domain U C M,

/aUUJ*&:/U(diva*g)n:/wa*g:O‘

The form ¢ *¢ is called the current associated with the conserved quantity &, and this result allows to
associate a conservation law in M to every conserved quantity in J.
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2.2 Order reduction

2.2.1 Order reduction and projectability of the Poincaré-Cartan form

There are some models in classical field theories where, as a consequence of the singularity of the
Lagrangian, the order of the Euler-Lagrange equations is lower than expected. A geometrical way of
understanding this problem is considering the projectability of the higher-order Poincaré-Cartan form
onto lower-order jet bundles [[16] [86, [87]. We review the conditions for this projectability and study
their consequences using the constraint algorithm for the field equations of second order (singular) field
theories, thus enlarging the results stated in previous papers [16, 144 73\ 86, [87]].

We analyse the Lagrangian formalism, thus consider the jet .J*7 of the fiber bundle 7: E — M over
an m-dimensional manifold M and with dim E' = m + n. See chapter [I| for more details.

Remember that a form w € 2°(F) is said to be m-semibasic if i(X)w = 0, and 7-basic or 7-
projectable if (X)w = 0 and L(X)w = 0, for every 7-vertical vector field X € X" (7). As a conse-
quence of Cartan’s formula, L(X ))w = (X )dw + di(X)w, a form w € 2"(E) is w-basic if, and only if,
w and dw are m-semibasic.

Recall the coordinate total derivatives [83][90] (or Section [L.T):
0 0
Dy=o—+), Ui, 5 (2.2)

For every function f, we have D, f := L(D,) f. In addition, we have:

« If X € XV(7%), then [D,,, X] € XV (7F_)).

e For f € C*°(J"r),if f is w¥-basic then D, f is 7%, ,-basic.

We show some consequences of the projectability of the Poincaré-Cartan form for second order
Lagrangian classical field theories. The Lagrangian form that describes the theory is a 72-semibasic
m-form £ = L (7?)*w € 2™(J?m), where L € C°(J%r) is the Lagrangian function, w is the
volume form in M, and 72: J?r — M. Natural coordinates of J3m adapted to the fibration are
(2", e, Ua,p, Ua, T, Ua,s ), such that w = dzt A oAdzm =d™a; 1 < p<m, 1 < a < n,and
I, J are multiindices with |I| = 2, |J| = 3, [90].

The Poincaré-Cartan m-form O, € 2 (J3r) is locally given by

O = L'dug Ad™ oy, 4+ LY dua,y, Ad™ 4+ (L — L% ug 0 — L ug1,41,) A"z

0
where d™ 1z, = (6) d™x and the functions L%#, L% € C°°(.J3r) are
xV

OL ) jaw . gew_ L 0L
v ) -

Lanu‘ — .
auanu n(,LU/) 8u0{71u+1u

Lemma 2.3. For s = 1,2, the following conditions are equivalent:

1. O projects onto J°.
2. dOy is 7w3-semibasic.

3. L(X)L** = 0 and L(X)LY" = 0; for every X € XV (7).
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(Proof): (1 < 2) is a consequence of Cartan’s formula.

For (2 & 3), in the case s = 2, we compute the condition 2 in coordinates. It turns to be equivalent

to
OL™H oL 0
:0 :0 L—LOC’M —LO“/'“/ :0 N
dug.g T Ougy ’ 6u,8,J( o oLyt 1) ’

(for |J| = 3, and for every (3, a, u and v). The last equation is a consequence of the other two (because

0
L does not depend on ug_;); which are locally equivalent to 3, since {8} generates X" (73). The
ug,J

)

case s = 1 can be proved in a similar way.

Other important results concerning to this topic (that we present here for completeness) are the fol-
lowing [|86]:

Proposition 2.9. If O, projects onto J°7, then the order of the Euler-Lagrange equations is at most
s+ 1.

Proposition 2.10. [f there exist L' € 2™ (J'7) such that O = (73)*O s, then L = (73)* L.

Concerning to the last proposition, the study of the existence of an equivalent lower order Lagrangian
L' € 2™ (J'7) has been analysed in [16], 87].

If the Poincaré-Cartan form ©, projects onto a lower-order jet bundle, it is associated to a highly
degenerate Lagrangian (this is just a consequence of the third item in Lemma [2.3). As a consequence
of this fact, the field equations could not have admissible solutions everywhere in .J37, but in some
submanifold of it which can be obtained after applying a suitable constraint algorithm (see, for instance,
[22]).

Theorem 2.4. If O projects onto J°T, then solutions to the corresponding Euler-Lagrange equations
(T-4) only exist in the points of a submanifold S — J3m, where S is locally defined by the constraint
functions given by

e L*=0,ifs=1
e L“=0and D,L, =0, if s = 2.

oL oL oL oL
Where L* = — — D, L*" = — — D,—— + D
ere B M Bun " Dt + Dy

Qa1

(Proof): X can be written in coordinates as

Ouq,y

m 8 m
X=f /\ <Du + (Fa,gpu — ua,JJrlu)) =f /\ X
,u:l M:l

for f, Fy.j; € C*(J3n), (|.J] = 3). Using this expression, equation (1.4) reduces to

oL

LY+ (Fg 5, — ) 23
+ (Fp,u UB,JH#)auﬁJ ; (2.3)

which are the Euler-Lagrange equations for multivector fields. If © ; projects either onto J'7 or J?7, by

(e2y7]
Lemma we have

3 = 0, and then from (2.3)) we get L® = 0. Observe that, as a consequence,
ug,J

we cannot compute any of the functions £y, j,. Actually L® = 0 are restrictions for the points of the
manifold J37, which we assume that define a submanifold S; C J3, where the equation (T.4) have
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solutions. In order to find F,, j, we use the constraint algorithm (as it is outlined, for instance, in [83]).
So we look for the points of S; where the multivector fields which are solutions to (I.4) (on S;) are
tangent to 1. Thus, imposing this consistency or tangency condition we get

oL~

0=L(X,)LY=D,L* + (FB,J# - “57J+1u) Dug, s

(on &y) .

If © projects onto J 7, then the associated Euler-Lagrange equations are of order at most 2 (by propo-
sition [2.9). This implies that L®, which are the Euler-Lagrange equations before being evaluatedon

«

sections, are 75-projectable. Thus, = 0, and we find new restrictions, D, L% = 0 which are

8u5 J
assumed to define a new submanifold Sy C S; C J37 where the solutions to (T.4)) are tangent to S;. [

Notice that, depending on the Lagrangian, we may need to continue the constraint algorithm, so
obtaining that
oD,L*
8’&57 J N

DZ,DMLCY + (Fﬁ,(],l/ — U/B7J+1V) 0 (on &y)

This process continues until the new conditions hold identically and we find a final constraint submani-
fold Sy of J 37 where solutions to (T.4)) are tangent to Sy.

2.2.2 Application to higher-order mechanics

Now, consider the particular case where 7: £ — R, with dim £ = n + 1, is the configuration bundle
of a higher-order non-autonomous theory. For a theory of order k, we need to use jet bundle up to J2*7.
The (only) total time derivative is

k
0 0
t ot + ZE:O di+1 aqza ;

which verifies the properties stated in Section The dynamics is given by a Lagrangian form L €
QY (J*m), which is a 7*-semibasic 1-form and it has associated the Lagrangian function L € C>(.J*7),
such that £ = L (7*)*dt, where dt is the canonical volume form in R [21]]. The Poincaré-Cartan 1-form
O, € Y (J*~17) is given locally by:

k k

Or=> Lpdgl, + (L - ZLZQ?) dt ,
r=1 r=1

where the functions L7, € C*°(J?*~1r) are

k—r
r 2 aY] oL
L= Y 0D ()

i=0 rvi

and they can be obtained inductively by setting L, = 0, for r > k, and

L = qua — DL (2.4)

Notice that L2, when evaluated on a section, are the Euler-Lagrange equations. The properties stated
in Lemma [2.3]and Propositions [2.9) and [2.10] read:

Lemma 2.4. For s > k — 1, the following conditions are equivalent:
1. O projects onto J°.
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2. dOy is 2k~ 1.semibasic.

3. L(X)L!, = 0; forevery X € XV (2=, and forr =1,... . k,a=1,...,n.

(Proof): (1 < 2) is a consequence of Cartan’s formula. For the equivalence between 2 and 3 we
consider two cases:

- If s > k: The relevant terms of dO, are of the form:

oL ) i
gdqf/\dqf‘_l 'y Th L—ZL’qua dg? ndt ; s<r<2k-—1.
dqr dqr i=1

i
Then, dO is w2~ !-semibasic if, and only if, —% = 0, and this is equivalent to I,(X)L’, = 0, for

) 0g?
every X € XV (w2+~1), since {86} generates XV (72+F~1).
qr

-If s = k — 1: In this case dO is 72¥~!-semibasic if, and only if,

OL:, oL 4
5=0 . —5-
oqr 8qk

but this last condition is fulfilled by the definition of L%, and the same reasoning above allows us to prove
the statement. O

If © projects onto J*m, with s < k — 1, then L does not depend on ¢, for j > s + 1, then there
exists a function L' € C*(J*7) such that L = (¥, ,)*L’ and the theory is not strictly of order k.
Furthermore, in the case s > k — 1, a Lagrangian such that © projects onto J®m depends on all the
variables and thus we have a theory of order &, although the associated Euler-Lagrange equations are of
lower order as a system of differential equations.

Proposition 2.11. O projects onto J*n, with s > k — 1 if, and only if, LY is 7r§ ' 1-basic.

Proof. Note that LY € C*(J%*r). For X € XV (r*,,),

L)LY = L<X>§qL8, CLX)(DLL) = L(X)

oL
Ho ~ Du(L(X)La) = L(IX, Di]) Ly -
g5

Since [Dy, X] € XV () and L, and L are m¥-basic, then L(X)(L%) = 0. Therefore, LY, is 7%, ; -basic.

The converse holds because D;L?, is ﬂf—basic if, and only if, Ll is ﬂfﬁl—basic, for 5 > 1. Indeed,
from [2.4), for every r > 1, if L1 is ﬂf—basic, then L”, is wF-basic, with i < max(k,j) — 1. By
induction, if LY is ¥ ', 1-basic, then Ly, is m%_basic for all 7, thus O projects onto J*. O

Equating the local expressions of O, and O,/ the following result holds immediately:

Proposition 2.12. If there exist £ € 2'(J¥ 1) such that © = (72F=1)*O 1, then L = (x2F—1)* L/,

In particular L is not strictly of order k. Finally, a similar result to theorem [2.4]is the following:

Theorem 2.5. If O projects onto J°T, then solutions to the corresponding Euler-Lagrange equations
exist only in points of a submanifold S — J**~L7t, where S is locally defined by the constraint functions
given by '

DIL =0 ; (j=0,...,2k—s5—2).
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(Proof): To find a solution to the Euler-Lagrange equations is equivalent to find a holonomic vector
field X € X(J%*~17) such that
i(X)de, =0. (2.5)

The holonomic vector fields have the local expression:

0
X =D+ (F* — o) 55— >
993
and then equation (2.3)) reduces to
OL!
Lo = (F7 = q) 5= = 0.
921

If O projects onto J*7 for s < 2k — 1, the second term vanishes and L? = 0. Notice that we cannot
compute any function F'®. Actually L € C*°(J?~1r), thus LO = 0 is just a restriction for the points
of the manifold J?*~!7. Next, following the constraint algorithm, we impose the tangency condition
and we get

0 0 e’ a 8L8¢
0= LOV)LS = DeLS + (F* — ) 50 ™
92k—1
If © £ projects onto J*, then the second term vanishes (Proposition[2.T1)) and we find another constraint,
Dy L% = 0. The algorithm continues until we reach the condition kafs 219 =o0. t

As above, depending on the Lagrangian, we may need to continue the constraint algorithm, obtaining

that
O (o)

0=D, (DEMS*QLSC) + (F* — q3;.) e
421
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Chapter 3

Einstein-Hilbert

This chapter is a contribution to the study of the most classical variational model for General Relativity
that is, the Einstein-Hilbert theory (with and without energy-matter sources), using the multisymplectic
framework for giving a covariant description of it. As it is well-known, this model is described by
a second-order singular Lagrangian, and thus this study presents General Relativity as a second-order
premultisymplectic field theory with constraints. Our study is done from a different perspective since we
use the unified Lagrangian-Hamiltonian formalism developed for first and second-order multisymplectic
field theories [29, [83]] (which was stated first by R. Skinner and R. Rusk for autonomous mechanical
systems [94]), and is specially interesting for analyzing non-regular constraint theories. Then we derive
from it the Lagrangian and multimomentum Hamiltonian formalism.

As a consequence of the singularity of the Lagrangian, the Einstein-Hilbert model exhibits gauge
freedom and it can be reduced to a first-order field theory [16} (72| (73| |86, |87]. Then, related to this
topic, we analyse also a first-order theory equivalent to Einstein-Hilbert (without matter-energy sources),
which is described by a first-order regular Lagrangian, showing, in this way, that General Relativity
can be realised as a regular multisymplectic field theory (without constraints). This first-order model is
different from the Metric-Affine or Einstein-Palatini approach which is also a first-order but non-regular
(gauge) theory. The gauge freedom of the Einstein-Hilbert theory is also discussed, in order to show
clearly the relation with the first-order case. In the case of the Einstein-Hilbert model with energy-matter
sources, we show how the behaviour of the theory (the constraints arising in the constraint algorithm
and the achievement of the multimomentum Hamiltonian formalism) depends on the characteristics of
the Lagrangian representing the sources. This study is done in detail for the most standard types of
energy-matter sources: those coupled to the metric.

The organization of the chapters is the following: In Section [3.1|the Lagrangian-Hamiltonian formal-
ism for the theory is developed. Then, we recover both the Lagrangian and Hamiltonian formalisms, in
the last case we show how this second-order theory can be equivalent to a first-order one. Section [3.2]is
devoted to analyse the Einstein-Hilbert Lagrangian with energy-matter sources, following the same pro-
cedure as in the previous section. In Section we briefly discuss the symmetries for Einstein-Hilbert
model. Finally, in the appendices, the calculation of multivector fields which are solutions to the field
equations for all these models is explicitly done.
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3.1 The Einstein-Hilbert model without energy-matter sources

3.1.1 The Einstein-Hilbert Lagrangian

Fist we consider the Einstein-Hilbert Lagrangian for the Einstein equations of gravity without sources
(no matter-energy is present).

The configuration bundle for this system is a fiber bundle 7: £ — M, where M is a connected
orientable 4-dimensional manifold representing space-time, whose volume form is denoted n € £24(M).
E is the manifold of Lorentz metrics on M that is, for every z € M, the fiber 7r_1(x) is the set of
metrics with signature (— + ++) acting on T, M.

The adapted fiber coordinates in E are (2*, gag), (14,0 < o < B < 3), such that = dz® AL A
da? = d*z and where Jap are the component functions of the metric. It is usefull to consider also the
components gg, with 3 > «, but we should remember they are not independent because the metric is
symmetric, go3 = ggao. Actually there are 10 independent variables, resulting that the dimension of the
fibers is 10 and dim £ = 14. When we sum over the indices on the fiber and not all the components, we
order the indices as 0 < o < 8 < 3.

In order to state the formalism we need to consider the kth-order jet bundles of the projection 7, J*,
(k = 1,2,3). The induced coordinates in J37 are (2, gag, Jasu> Japuws Gasuwr), (0 < p < v <
A < 3). Again, we will use all the permutations, although only the ordered ones are proper coordinates.

The coordinate total derivatives 83} 190]], are locally given as

D 0 n < 0 n 0 n 0
T = g ﬂ? g ﬁ7 g ﬁ?
OxT = aB,T 8901,8 af,ut ag 5 af,uvt ag

0
+ Gap ) G.1)
ap,p aﬁa/“/ aﬁu Tagaﬁnufy)‘

p<v<X

Observe that, if f € C*(J*r), then D, f € C°(JF+1n).

The Einstein-Hilbert Lagrangian density is a 72-semibasic m-form Lpy € 2%(J?m), then Lpy =

Ly (72)*n, where Ly € C*°(J?7) is the Einstein-Hilbert Lagrangian function given by
Lgm = 0R = 09" Rag ;
here o = +/|det(gap)|, R is the scalar curvature, Rog = D' 5 — Dol 5 + I‘Ztﬂf‘gW — Fgﬁl“‘gmY are

1
the components of the Ricci tensor, F/’ly =3 g (Gvp, + Gpu,w — Yuv,p) are the Christoffel symbols of

the Levi-Civita connection of g, and ¢g®? denotes the inverse matrix of g, namely: g*? 98y = 5?;. As the
Christoffel symbols depend on first-order derivatives of g,,,, and taking into account the expression (3.1))
we have that the Lagrangian contains second-order derivatives of the components of the metric and thus
this is a second-order field theory.

It is useful to consider the following decomposition [[16} [86]:

R e

a<lp
where
. 1 oL
jeBaw  _ _ nlab) o(g™"g™ + g™ g’ — 2g*F gy , (3.2)
TL(/,LV) agaﬁ,uy 2
Lo = 09197 (95,80 hy — 96unThg) + Taplls — Ton s} - (3.3)
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The point on this decomposition is to isolate the acceleration term, because LoBrv and L project onto
functions L*#* € C>®(E) and Ly € C°°(J'7), respectively. Another useful function is

A~ 3 A A~
i‘/aﬁ»ﬂ _ oL _ Z 1 DV oL _ 8L0 . Dyi—/aﬁ,/ﬂ/ ) (3‘4)
9o, n(uv) 09ap v 9o,

3.1.2 Langrangian-Hamiltonian Unified Formalism
Langrangian-Hamiltonian Unified System

For the Lagrangian-Hamiltonian unified formalism, we have the symmetric higher-order jet multimo-
mentum bundle W, = J37 x Jix J 27t (see [83, 84 for details), which have as natural local coordinates

(x,u7 9apr 9aB,us Jap,uv gaﬂ,ul/)npaﬁ’#apaﬁ’uy)v (0 <a< B < 3; 0< p<v< 3) .
Remember these bundles are endowed with the canonical projections

P We = T, ph W — T2t phy W — M

Hence, we have the diagram:

W,
o1
” P3
leTr
J3r r J2rt
Pnm
3 i
7'('1 Jl 7TJ17r
m
ﬁ-l
M

Denoting by £ = (73 0p1)*Lrg € 24W), we can write £ = L p%,n, where L = (n30p1)* Lpy €
C>°(W). Then, we introduce the Hamiltonian function

-E[ = Z paﬁﬂugaﬁ,p + Z paﬁﬂul/gaﬁ,wj - L.
asp asp

u<v
Now we define the Liouville forms in W,, ©, and 2, = —d©,., with local expressions
. 1
4 , 3 ; 3
@T =—Hd*z + Zpafg /“dga[—j Ad Ty + Z n(l“/)p(lﬁ uudgaﬁ,p Ad T,
a<pf a<p
. 1
O, =dH Ad'z = dp™P* Adgap AP, — ) Ap®PH A dgap A, .
a<p a<p n(u)
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In the following, we commit an abuse of notation denoting also L = (73 o p})* Ly € C™°(W,). These
forms are degenerate; namely,

0 0

O9apuw’ O9asuwr >0<a<5<3 0<pu<r<A<3

ker ©, = ker Q, = < 3.5

AP USHSV A S

In this way, the coordinate vector fields in (3.5]) are local strong gauge vector fields. Furthermore, O, is
(73 o p)-projectable.

The condition set for the unified system is Z = p}*€3 = {pi*w|w € €3}, where €3 is the Cartan
codistribution associated to .JJ37. Therefore, a section ¢ € I'(p},) is holonomic in W, if pf o ¢ € T'(73)
is holonomic in J37, and an integrable and p', ,-transverse multivector field X € X*(W),) is holonomic
if its integral sections are holonomic.

The local expression of a semi-holonomic multivector field X € X*(W),.) is

0 0 0
E t9opry— T 9aBury—— T Japury——F
/\1 a<p <a$>\ o agaﬁ o agaﬁ,lt s 8gaﬁalw
pu<v<t
0 0 0
Fogyrne——— Gobm_=__ L g __— ) 3.6
0657/1/ TA agaﬁanT + by apaﬂnu + A apaﬁ,,ul/ ( )

The Lagrangian-Hamiltonian system for the Einstein-Hilbert model without matter sources is (W,
Qp, TW,, pi*€3). As the form €2, is 1-degenerate we have that actually it is a premultisymplectic system,
and solutions to (1.2) or (1.4) do not exist everywhere in W,.. Then [83]:

Proposition 3.1. A section ) € I'(p};) solution to the equation (1.2)) takes values in a 140-codimensional
submanifold . : Wy < W, which is identified with the graph of a bundle map FL: J*w — J?xt, over
J'7, defined locally by

L 1 L . L
FLpPH = oL _ Z D, 9 = [OBr | FLrpefm — 9 : (3.7)
99ap . ) 0o, 09 v

What is equivalent, the submanifold W is the graph of a bundle morphism FL: J37 — J2rt over Jin
defined locally by

~ 3 A
Fripeon — 9b = Lop, (9L ) Z jasu
OGapu =g () "\ Oap

oL
8904,8 Nz ’

FL i =

3

. oL 1
Few = he Zgam( _Z br (39(16#”)) Zgaﬁw

a<p Oapu =5 m(iv) ah
n<v

agaﬁ wv .

The maps FL and FL are the restricted and the extended Legendre maps (associated with a La-
grangian density £), and they satisfy that F£L = p o FL. For every j3¢ € J3m, we have that
rank(FL(j3¢)) = rank(FL(j3¢)). Remember that, according to [91], we say that a second-order
Lagrangian density £ € 024(.J?r) is regular if

rank(FL(j3¢)) = rank(FL(j3¢)) = dim J?7 + dim J'7 — dim E = dim J?zt
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otherwise, the Lagrangian density is singular. Regularity is equivalent to demand that F£: J37 — J2?7?
is a submersion onto .J27r¥ and this implies that there exist local sections of F£. If £ admits a global
section Y': J27t — J37, then the Lagrangian density is said to be hyperregular. Recall that the regularity
of £ determines if the section ¢ € I'(p},) solution to the equation (I.2) lies in )V or in a submanifold
Wy — W, where the section ¢ takes values. In order to obtain this final constraint submanifold, the
best way is to work with the equation for multivector fields (I.4) instead of (I.2).

Field equations for multivector fields

First, the premultisymplectic constraint algorithm [22]] states that:
Proposition 3.2. A solution X € X*(W,.) to equation (T.4) exists only on the points of the compatibility
submanifold W, — W, defined by

W, = {w eW,: (i(Z)dH)(w) =0, forevery Z € ker(Qr)}

= {w eEW,: (((Y)Q)(w) =0, foreveryY € f{v(pg)(Wr)} .

0 .
Bearing in mind (3.5)) and that ; <8 dH = 0, the functions locally defining this submani-

gOé,B,MVT >
fold have the following coordinate expressions

) > . oL
il ——— ) dH = p™Bm — . (3.8)
<690457MVT agaﬁnul/

Then, the tangency condition for the multivector fields X which are solutions to (I1.4)) on W, gives rise

to 24 new constraints
A 3 A
L 1 L
poz/BnU« _ 9 + Z D]/ 15) —0.
89015,/1 =0 n(:uy) 89a6,py

which define a submanifold of W, that coincides with the submanifold ¥W,. Now the study of the
tangency of X along W, could introduce new constraints depending on the regularity of £, and the
algorithm continues until we reach the submanifold Vy. The final result is given in the next theorem:

Theorem 3.1. Let Wy — W, be the submanifold defined locally by the constraints
pedwr _ _OL g asujebu_  jef g

) DTjJaB =0;
0GB,

for0<a<p<30< u<r<3and0 <7 < 3. Then, there exist classes of holonomic multivector
fields {X} C X*(W,) which are tangent to Wy and such that

i (X)Qlw, =0 , VX e{X}cx'W,). (3.9)
Proof. In order to find the final submanifold 1V we use he constraint algorithm presented in section

[[.2.3] Bearing in mind (3.6), the local expression of a representative of a class of a semiholonomic
multivector fields, not necessarily integrable, is, in this case,

N 3 N /3\ ( 0 Ly d y o) L 9
- T = E : B, B, — Buvt 3
=0 =0 a<p Oz” : Tagaﬁ R agaﬁ,u R TagaﬁvﬂV

p<v<A

0 B, 0 af,uv 9
FOC/B%MVAJm + GT apaﬂ,u + GT apaﬁ,/i’/ ’
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then, equation (I.4)) leads to

oL
Gsﬁ,u _ @ =0, (3.10)
(07
3 oL
Z 046 uyo 3 _|_p0t/37/i =0 , (311)
Ll Gap,u
paﬁ,uv — LB — (3.12)

Equations (3.12)) are what we obtain in Proposition [3.2] (see (3.8)), and they are the constraints defining
the compatibility submanifold W, < W,.. The tangency conditions on them,

oL
L XT paﬁal“’ _ Wc 0 ,
(X7)( 5 gaﬁw)l
allows us to determine some coefficients
oL
G = D, : (onW,). (3.13)
09ap v

These new identities are not compatible with (I.4). Indeed, combining them with (3.11)) we have:

D - 4 pBitt = poBr _ [oB o (on W) . (3.14)

0: v
n(u) " 09apuv  OYapu

LA | ol oL
>

These restrictions define the submanifold YW, < W,. The tangency conditions on these new constraints,
L(X‘r)(pa/&“ - IA/OCB’M”WL =0,

lead to .

oL

GaB,u

Contracting the indices p and 7 in these restrictions and combining them with (3.10), we obtain the new
functions

GoP# =D, — DDy L*%# ; (on Wy). (3.15)

. oL . oL
LY .= — _ D, [V = +>'D,D =0 ; (onWy),
89a6 agaﬁ 89043 v Z . 89a6,yu
which are explicitly
R 1
LY = —pn(apf) (RO‘5 - 2gaﬁR> =0 ; (onWy). (3.16)

These are the Euler-Lagrange equations, and when they are evaluated on sections in VW, we recover the
Einstein equations (Rag — 1/2gagR)|, = 0. From its definition we can see that L*# do not depend
neither on the momenta, nor on higher order velocities than the accelerations of the components of
the metric, therefore L®® project onto J2r. The equations are algebraic combinations of the
coordinates of W, and a solution can only exists on the points where they vanish. Thus, LB are new
constraints which define locally the submanifold W; — W, — W,. (Note that, as a consequence of
the Bianchi identities, these constraints are not independent all of them). Continuing with the constraint
algorithm, we consider the tangency conditions on these constraints,

L(XT)]A;ale =0,
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which lead to

DL = r (~guted) (R = L "R) ) =0 5 nwy. G.17)

These are new constraints again (observe that these functions D, LB project onto .J3m, since they do
not depend on the higher-order derivatives and the momenta). They define locally the submanifold
Wyp — Wi < W, < W,. Finally, the new tangency conditions,

L(XU)DTi/aﬁ‘Wf =0,

lead to
0 0 0 0 0 -
==t 9norn— T 92npor—— T Gy o7 + F ,C,)DLaﬁ:o
%\ <8[E0 7 89"1)\ Tk 8g'yA,u Ty 897)\,;w TRREE 8g'y>\,m/n T
u<v<k

(on Wr)(3.18)

and these equations allows us to determine some functions F. )., . The manifold Wy is actually
the final constraint submanifold because there exist integrable holonomic multivector fields solutions to
equations (3.9) on Wy, tangent to Wy, which are (partially) determined by the conditions (3.13)), (3.15),

and (3.18)); that s,

3
) ) ) )
X = 9 9
T/—\o O;B <5$T T Dgas T g T g
p<v<X

d . d oL d
A 0o A 1o aB,u
DT‘D)\(g)\O'(Fl/Oé up + FV/BFNOZ)) 8gaﬁ,py)\ + DTL 8paf)”“ + ‘DT 690657#” apaﬂ“u,l/ )319)

One can prove (after a long computation) that this is actually an integrable solution (see section [3.A] for
more details). Finally, we have that the complete set of constraint functions defining the final constraint

submanifold Wy < W, are given by (3.12), (3.14), (3.16) and (3.17); that is,

paﬂvl“’ _ oL =0 paﬁ’”‘ — [A/aﬁ,,u, =0 , ﬁa,@ =0 , DTIA/O‘B =0.
09ap,uv

Field equations for sections

Once the holonomic multivector fields which are solutions to equation (on W) have been obtained,
in order to obtain the field equations for sections we can use, either the equations (I.1)), or the equivalent
equations which the integral sections of these multivector fields satisfy. Thus, if these sections are
locally given by

¢($A) = (an waﬁ(xA% waﬁ,u(w)\)7 waﬂ,w/(x/\), waﬁ,uur(w/\)a 1#0"8’“(3?A)7 wa,@,,uu(x/\)) ’
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the equation (1.4) leads to

Bk QL
— = 3.20
Ozt 09ap 0, 20
af,pv L
O e 9L (3.21)
ox? agaﬁ,u
waﬁ,uu - I:aﬁ,,ul/ = 0, (3.22)
Map
Yap,u — dxr 0, G-23)
1 6’(/}a18 o 61/}015 v
L — ) 2 — . .24
@Z’aﬁ,u n(/w) ( oxV + oxrkt 0 (024

Equations (3.23) and (3.24) are part of the holonomy conditions. Equations (3.21)) and (3.22)), as they
do not involve the derlvatlves of the fields higher than 3 are ]ust relatlons among the coordlnates of

the points in W,., which are equivalent to equations (3.12)) and (3.TT)), respectively, and they define the
Legendre map introduced in (3.7). They show that, as dlscussed above, the section ¢ take values in the
submanifold

oL .

———(w), p*P = L“ﬁ’“(w)} = graph FL .

We=<SweW, \paﬁ”‘” =
O p v

Finally, combining the equations (3.20) with the local expression of the Legendre map given by the

equations (3.21)) and (3.22)) we obtain

. oL
L), = +
v 8gaﬁ H 69(15 n ; N

= —on(ap) (RO‘B — ;gaﬁR>‘ =0.
¥

(3.25)
These are the Euler-Lagrange equations for a section ¢ € I'(p},), which are equivalent to the Einstein
equations

aga,@ nz

1
<Ra/3 - 29a53> ‘w =0; (3.26)
and, as it is well known, they are of order two.

If ¢ is a holonomic section solution to (1.2)), the tangency conditions on the Einstein’s equations are
automatically satisfied. Indeed, the last constraints (3.17) read

(Drﬁaﬁ)Lp _ 8([2;;0 ) —0,

which is automatically satisfied because v/, in particular, is a solution to the Einstein equations
and then ((3.23) holds. Using the same reasoning, we can check that (3.18)) is also automatically satis-
fied. These last equations fix the gauge freedom, therefore the gauge symmetry does not show when
considering the Einstein’s equations for sections.

3.1.3 Recovering the Lagrangian and Hamiltonian formalisms
Lagrangian formalism

The manifold is J37. The Poincaré-Cartan forms in J>7 are the forms defined as

Or=FL O] 2(JPr) | Qp=TFL O =-dO, € 2°(J°m).
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Using natural coordinates in .J37, we have the local expression

®l: — _ Z Laﬂﬂugaﬁ,u + Z Laﬂ,uyga,@,uu . d4l'
a<f a<p
+) g A dPzy, + Y LY dgag, A da, (3.27)
a<f a<lp
Notice that, if
H=(jeo( = L gagu+ Y L gap = L = 0Gap ugrr HPFH (3.28)
a<p a<lp
where 1 ! 1 !
Hoz,Bkl;u/ _ 1goc,é’gklg,ulz o 4gakg,8lguu + ankglug/ﬁl/ _ 2ga,3glugk,u (3.29)
then
Op =—dO, =dHAd'z =Y dLPdgag Ad™ o, — > AL dgeg, Ad™ € 2°(JPT) 5
a<p a<p

where we have denoted L5+ = (0 o (p£)~1)*Lobmv LoBt = (j0 o (p£)~1)*LOP# and Ly =
(92 o (pP5)~1)* LO, which have the same coordinate expressions than L34 LBk and Ly given in
(3-2), (3.4), and (3.3), respectively. Observe that this is a pre-multisymplectic form since, locally,

0 0

, i
99ap v 89057/—“’)\>O<o¢<ﬁ<3;0<u<u<)\<3

ker Q£:<

Thus we have the Lagrangian system (J37, Qz, T.J37w, €3).

In order to recover the Lagrangian field equations, we have that the map pf = pioge: Wr — J3ris
a diffeomorphism, the Poincaré-Cartan forms defined in .J37 satisfy (p¥)*©, = 750, and (pf)*Q =
7782 Then, the solution to the Lagrangian problem associated With the singular Lagrangian system
(J37,Qc, TJ3m, €3), which is stated in the equations (T.2) and (T4), is given by the proposition[1.3|and
Theorem [1.2}

In local coordinates in .J37, the equation for the holonomic section 1), = j3¢ are the Euler-Lagrange
equations

oL
+ D,D, =0. (3.30)
agw/ 8904,3 m Z<: agaﬁ v
Hu=v 3¢
As we have pointed out before, the equalities (3.12)) and (3.14)) define the submanifold VW, which is
diffeomorphic with J37, and the constraint functions defining the Lagrangian final constraint submani-

fold Sy — J37 are

OL 1
L= ~— D, + WDy —— = —on(ap (RO‘B— aﬁR)
99ap 89«16# Z 09ap v () 27

0, (3.31)

n<v

D.L* = 0. (3.32)

The local expression of a representative of a class of holonomic multivector fields in J>7 is

0 0 0 0
X = +4 +4g +9 A+ Fagiuwn > ;
T/\ 0 agﬂ (8957 T 89 aﬁ’wag Bt aﬁ#wagaﬂ,uv APIAT B, urA

p<vr<A
(3.33)
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then, there are holonomic multivector fields which are solutions to the equation (I.4) on S, and tangent
to Sy. They are obtained from (3.19) using Theorem|I.2}

3
0 0 0 0
X, = /\ Z <8$7_ + Gags, Tag 5 + GagB, uT ag 5 + gag,uwiag 5

ap,p ap,pv

0
(9r0 (FuaFuﬂ - F’i\ﬁrza»agaﬁuv}\> '

Finally, for the equations of the integral sections of these multivector fields (equation (I.2)), from
(3:26)), we obtain that (3.31), evaluated on the points in the image of holonomic sections ¢y = 53¢ in
J37 (see Prop|1.3|and (3:30)), are equivalent to the Einstein equations

oL
LY 5, = + E D,D,
|J ¢ 8904,8 N 89046 m = aga,@,uu
H=V 3
1
= —on(af) [ R*® — Zg**R =0. (3.34)
2 76

All these results can be also obtained applying the constraint algorithm straightforwardly for the
equation (I.2), in the same way as we have done for the unified formalism; then doing a purely La-
grangian analysis. Thus, the Euler-Lagrange equations for an holonomic multivector field like (3.33)
(which are obtained from (I.2))) read as

0%L y
Z a9, 9, . (FpU;AT}J/ﬂ/ - DVng';ATp) + L =0 ,
p<o,u<v, AT agaﬁ,uvagpa,)\f

0’L
99a8,p009pv 2
we obtain that L*# = (, which are the compatibility conditions for the Euler-Lagrange equations; that
is, the primary Lagrangian constraints (3.31)). From here, the constraint algorithm continues by requiring
the tangency condition, as it is usual (see [46]).

and, as for the Einstein-Hilbert Lagrangian the Hessian matrix < > vanishes identically,

Hamiltonian formalism

Consider the Legendre maps introduced in Proposition [3.1] We have that

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
: — LB LBt
T 0 oo |
6915 8976,7
oL
— 0 0 0
ag'yﬁagaﬁ,/u/

and we have that rank(T;34F L) = 54. Furthermore, locally we have that

0 0

)
0o OYap, v >0§a§6§3; 0<p<v<A<3

ker FL, =ker Qp = < , (3.35)
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and thus F L is highly degerated.

Denote P = FL(J37) Jy J27t and P = FL(J3T) <y J27t, and let FL, be the map defined
by FL = j0 FL, and wp: P — M the natural projection. In order to assure the existence of the
Hamiltonian formalism we have to assure that the Lagrangian density £ € 2*(J?7) is, at least, almost-
regular; that is, P is a closed submanifold of J?7¥, FL is a submersion onto its image and, for every
j2¢ € J3m, the fibers FL 1 (FL(j34)) are connected submanifolds of J37. Then, the following result
allows us to consider the Hamiltonian formalism:

Proposition 3.3. L is an almost-regular Lagrangian and P is diffeomorphic to J'.

Proof. P is a closed submanifold of J?7 since it is defined by the constraints

L T WY N

O,

The dimension of P is 4 + 10 + 40 = 54 and, as rank(TFL) = 54 in every point, TF L is surjective
and FL is a submersion. Finally, bearing in mind (3.33), we conclude that the fibers of the Legendre
map, FL Y (FL(j24)) (for every j2¢ € J3r), are just the fibers of the projection 7}, which are con-
nected submanifolds of .J37. Recall that .J37 is connected because we are considering metrics with fixed
signature. Thus, £ is an almost-regular Lagrangian.

Furthermore, taking any local section ¢ of the projection 75, the map ® = FLo ¢: Jir — Pisa
local diffeomorphism (which does not depend on the section chosen). Then, using these local sections,
from a differentiable structure of J'7 we can construct a differentiable structure for P; hence P and J'7
are diffeomorphic.

FLo

J3r P c J2gt

O]

Then, there exists a diffeomorphism g = p o j: P — P and we can define a Hamiltonian -
section as h = jo ﬁ_l, which is specified by a local Hamiltonian function H € C°°(P), that is,

h(m“, Jap, ga/&M’pa,ﬁ,u’ paﬁ,;u/) = (33#7 9aBr apB,u> _H> paﬂ7u7 paﬁ,uu)'

! J2mt r~ W

:ng;/ lu ) waa

J2rt

Now, we can define the Hamiltonian forms
Op:=h*05 € QXP) , Qp:=-dO, =h*Q} € 2°(P).

The condition set is Z = (wﬁlw 0 7)*¢!. And thus we have the Hamiltonian system (P, Q, TP, (7r?[]17r o
7)*et).

Formulation using non multimomentum coordinates.
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From the unified formalism, the easiest way to describe locally the Hamiltonian formalism consists
in taking (2", gag, gas,u) as local coordinates adapted to P. As the function H defined in (3.28) is
F L,-projectable, the Hamiltonian function defined on P is just

HP = Z Laﬁﬂuygaﬂ,’uy + Z La'B”uga,B,;L _ L — anﬁﬂugkl,yHaﬁkllW , (336)
a<p a<p

where HPkHv s given by (3.29). As L is almost regular, the Hamiltonian section h: P — J27T exists
and its local expression is

W, Gap, Japp) = (2", Gaps Gapur —Hp, L LOPH)

Now we define the Hamilton-Cartan forms ©;, = h*©5 € 24(P) and ), = —dO;, € 2°(P), whose
coordinate expressions are

On = —Hpd'z+ Y Ldgos APz, + > L dgas , N dPx,
a<p a<p
O =—dO, = dHpAd'z— Y dL** Adgag AdPz, — > AL Adgag, A de,(3.37)
a<ph a<p

(Observe that, with this choice of coordinates, ©p, and {2, looks locally like O, and €2). Then, Proposi-
tion [[.4] and Theorem [I.3] establish the relation between the solutions to the Hamiltonian and the unified
problem.

In this case, first observe that, locally,

0 0 _ 0 0 >
8paﬁ,w 8paﬁ,uy7 89(1&#”7 aga/g,w,)\ 0<a<B<3; 0<u<v<A<3

9

ker (), = <

and as

) 0 (g ) e 2oL (g ) ok
L M40, L D, IM) 40, L D.I2) 40,
<8ga5,,u1/> # 8gaﬁ,yy ( ) 7& agaﬁ,/,w ( ) ?é

we have that the constraints (3.16) and (which define the final constraint submanifold Wy as a sub-
manifold of W, = graph FL in the unified formalism) are not p-projectable (see diagram (I.11)), and
this means that there are no Hamiltonian constraints and the Hamilton equations have solutions every-
where in P. (What is equivalent, the Lagrangian constraints and are not F L,-projectable).
This is a consequence of the fact that, in the Lagrangian formalism, these constraints really arise as a
consequence of demanding the holonomy condition and hence, as it was studied in [21], they are not
projectable by the Legendre map. Then:

Proposition 3.4. An integrable (holonomic) multivector field solution to the equations (1.4)) is

3

0 0
X = + <g s + Po(Toals + Tl )) e X'(P).
V/:\o Ox¥ a<p " 0gap vesup Vot 99ap:p
Proof. The proof is given in the appendix [3.A] O

For the integral sections of X,, which are solutions to (I.2), if ¢ (z%) = (2, Yag(2*), Yas,u(z)),
then the equation (1.2) reads

<DML°‘5’“—8L )’ = 0,
v

8904,3
<8La6,/a/ aL)\U,V ) 81/])\0

(aLaB,uV aL)\U,V>
_ N _ .
O9ro 09ap.u Praw 09ro 09apy) Ox¥

¥
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ox

OLBw  HLabu
“ome (),
b Gab Jap P

The last equation is equivalent to the holonomy condition, @Z}/y = Yo, (see the appendix . Writing
the first one in terms of the Hamiltonian we obtain

(amﬁ»v aLava>‘ vy OHp
v

8gab,u agaﬂ

ox? 09as

And rearranging the terms, these equations are equivalent to the Einstein equations (3.34).
Formulation using multimomentum coordinates.

As we have said, the coordinates (2", go3, gn,.) arise naturally from the unified formalism. Never-
theless, the standard way to describe locally the Hamiltonian formalism of classical field theory consists
in using the natural coordinates in the multimomentum phase spaces; that is, multimomentum coordi-
nates. Then, the first relevant result is:

Proposition 3.5. The coordinates p®®*" and g, 3, are in one-to-one correspondence.

Proof. The starting point is to consider the constraints p®# = LYB#(gh, 9aBs Yas,u) Which define
partially the constraint submanifold V., and from these relations we can isolate the coordinates g, -
Indeed, the functions

Ao,V
p b
pPr) = Son(aB) (—29079819ov — 2001952Gor + 69arse G +

V()éﬁ,,u(gaﬁﬁ 3@”(0{/8

Jow9Budre + gaugﬁug)\a)

satisfy that
gaﬂ,,u = Vaﬁ,#(gaﬂa LAU’V(gaﬁagaﬁ,/J)) )

and these relations give the coordinates g, s, as functions of p " and the other coordinates. ]

Thus we can use (z*, gag, p® 1) as coordinates of P and then rewrite the Hamiltonian function

H’p(l’u, gaﬂvpa/&u) = H’p(l’u, Jap, Vaﬁ,u(paﬁ”ua gaﬁ)) .

The field equations are derived again from (1.4) expressed using the new coordinates. Now, the Hamilton-
Cartan form €2}, has the local expression:

O =dHp Ad'z =Y dp*PH Adgag AP, = D ALY A AV, A dPa,
a<p a<p
and the local expression of a representative of a class { X}, } of semi-holonomic multivector fields in P is
4

0 0 0
_ af, .
Xy, = /\ <ax” + Faﬁﬂ/agaﬁ + G, H@}ﬁﬁv“) ;.

1=V
with Fiug., (2, gag, p*PH), Ggﬁ’”(x“,ga[;,pw’“) € C*°(P). From (L.4) we obtain

OHp _ opy , ronWVare OL (avab’c OLb OV, aLabvw>
8904,3 a Y 8pr8’k 89(16 Y OGrs agaﬂ agaﬁ 09rs
OHp OWVoap,e OLW
= Faﬁ uw Frspa—a— y
Opihn ’ " OpePr Ogys
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which would be the classical Hamilton-De Donder-Weil equations for a first order field theory except

by the fact that they contain extra-terms because the Einstein-Hilbert Lagrangian is of second order and
1 oL

(1) Oga. v

Laﬁ,,uu —

does not vanish. A solution to these equations is

4
0 0 OVopuy O
Xp = <+V wa— T s (Tl e + T0e0) : ;
Z‘/:\V Oz’ aB,u agozﬂ rs\Lt vAt po vo' p 89/\0,'y apa/g,u
where the velocities in the connection are expressed using the momenta, which is a holonomic (i.e.,
integrable) multivector field in P.

Finally, we consider the equations of the integral sections of Xj. These equations can be obtained
from equation (I.2) which, for a section 1(z%) = (2, Yap(x%), P+ (2%)), leads to

OHp| _ ueor  OUTE (OVap DL\ Oy (Ve L™ Vi DL
d9ap " Ok dxv \Op™s* Dgap " ox¥ \ Ogrs 0Gap 990 Ogrs "
OHp o 8waﬁ . 8wrs a‘/ab,c oLy
Opan " - Ozk Ox? \ Op*Pr Og,. » '

3.1.4 An equivalent first-order Lagrangian to Einstein-Hilbert

There exists a first-order Lagrangian equivalent to the Einstein-Hilbert Lagrangian, which is different to
the Einstein-Palatini one [[16}86]. Now we study the Lagrangian and the Hamiltonian formalism of this
model, comparing them with the Hamiltonian formulations for the Einstein-Hilbert Lagrangian presented
in the above section. As it is a first order Lagrangian, we need to use the multisymplectic formalisms
developed for these kind of theories; in particular, those reviewed in [85]].

The configuration manifold 7 : 2 — M, is the same described in Section [3.1.1] and the Lagrangian
formalisms takes place in the first jet bundle .J L7, with coordinates (z#, gop, 9aB,u)- The first-order
Lagrangian density proposed in [86] is £ = L d*z, where the Lagrangian function is

O LoBmv

L="Lo= ) Gapudror—p— € C¥(J 7). (3.38)
a<p 9ro
<o
The Poincaré-Cartan form for this Lagrangian is
— oL
Qp=dLAd'z-) d A dgas A dz,, . (3.39)

asp

The Lagrangian L is regular and hence (27 is a multisymplectic form. For the Lagrangian system
(Jlm, Q7 TJ 7w, €') we look for solutions to the equations (I.2) or (T4) and, as the system is regu-
lar, solutions exist everywhere in J!7 (there are no Lagrangian constraints). Although it is a first order
system, in [86] it is shown how these equations coincide with the Einstein equations.

As L is regular, we can state the standard Hamiltonian formalism for first-order regular field the-
ories. Being J'7* the (“first-order”) reduced multimomentum bundle, whose natural coordinates are
(", gup, % 1), the corresponding Legendre map FL: J'r — Jlz* is given by

—% —% —x 8z 8L>\le’ﬂ
FLat =at | FL gop=Gap » FL PP = =L =N " grow—r——
09ap,p = 99ap
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Then we have the Hamilton-Cartan form €2 := (]:Zfl)*QZ € 24(J'7*). This multisymplectic
form can also be obtained introducing the Hamiltonian section h: J'7* — A3(E) whose local expres-
sion is

h(2", gap, P*) = (2", gag, —H,p*"") .

where H is the Hamiltonian function associated with L, whose local expression is

Zp M(Gappuo FL ) LoFL '=ToFC !
a<lp

In this way, we have constructed the Hamiltonian system (J'7*, Q;, T'J'7*, {0}) and the corresponding
Hamilton field equations have solutions everywhere in .J!7* (there are no Hamiltonian constraints). Fur-
thermore, as FL is a diffeomorphism, every solution to the Lagrangian problem stated for the Lagrangian
system (J!7, QFTJ L7, &1) induces a solution to the Hamiltonian problem stated for the Hamiltonian
system (J'7*, Q- TJ'7*,{0}) via this Legendre map, and conversely.

The following result relates this approach to the one we have presented in the above section.

Proposition 3.6. ®*Hp = L and, as a consequence, ®*Qj, = Oz

Proof. In order to prove these equalities, it suffices to prove that, Hp and {2;, have the same local coor-
dinate expressions than L and {27, respectively.

First, from (3.36), using (3.38)) and taking into account the coordinate expressions stated in (3.2)),

(3.3), and (3.4), we obtain that

Lo
Hp = > L gagu+ ) L gag—L =) ( G DUL‘“*W) Gaps — Lo

a<p a<h azp Il
[158%
HLeBmv _
= 2Lo= ) Gapudrov—,— —Lo=1L.
a<p 9ro
<o
We have used that a ga[g, = 2L, which is a consequence of Ly being homogeneous of grade 2 on

the velocities. Now we compute

oL Zg)\au <

9YGap,u agaﬂ ©

Laﬁ,uu aLAU,V,u, 8L>\U,V,u

89a5

= Laﬁ?u — 9xo
09ro 09as > v

then, using these last results and bearing in mind (3.39) and (3.37), we have that

Qy = dLAd%—Zd A dgap A &Pz,

a<p gaﬁ 1
4 3 L vm 3
= dHpAd'z =) dLF Adgag AdPz, + > d Dov—g—— ) Ndgag A &z,
a<h a<p Jol
A<o
aL)\U,V,u
= dHp Ad'z = dL*P" Adgas AdPz, + ) 5490w A dgas 1 A3z,
a<B a<p 9P
<o

82L)\0Vud q d3
+ Zg/\oua 'yna gyn Ndgapg N ATy,
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The last term vanishes because the coefficient is symmetric under the change of the indices ~, A by «, 53,
but the exterior product is skewsymmetric. Finally, notice that L*?** do not contain derivatives of the
metric, thus we can write

L v 3 A 3
59300 A dgas N AP, = = ALV A dgag, A AP,
a<p 9B <A
A<o
and, therefore, we can conclude that QZ and {25, have the same local expression. OJ

As a consequence of this result, the solutions to the Hamiltonian problem stated for the Hamiltonian
system (P, p) and to the Lagrangian problem stated for the Lagrangian system (J!7, €)7) are in one-
to-one correspondence by the map P.

Observe that we have also the diffeomorphism ¥ = & 1loFL: P — Jln*. Therefore, the solutions
to the Hamiltonian problems stated for the Hamiltonian systems (P, Qp) and (J'7*, €;) are also one-
to-one related by this map.

Summarizing, we have proved that the following formulations are equivalent:

FL

(Jio*, Qo T {0}) <25~ (J'r, Qp TJ'x, € e

(7)7 Qha TP, {0})

(where, in the last case, we can use the local description using multimomentum coordinates or not). Lo-
cally, this equivalence means that all the formulations lead to the same equations (Einstein’s equations),
up to a change of variables and, hence, every solution in each formalism induces a solution in the others
via the appropriate diffeomorphism. The following diagram summarizes all the picture:

J2qt
1%
T3 FL J2rt |
\ FLo
J
w Sy P
[
'
Jin — Jir*
FL
)i
M = A(E)

3.2 The Einstein-Hilbert model with energy-matter sources

3.2.1 The Einstein-Hilbert Langrangian

The Einstein-Hilbert model with energy-matter sources is described by a Lagrangian density Ls =
Lpy + Ly, where Ly = Ly (72)*n € 2%(J%7), and Ly, € C*(J?r) represents the energy-matter
source and depends only on the metric and the first and second derivatives of its components. It is related
to the stress-energy-momentum tensor T, by

C4

Ty =——=——= LB
Iz Qn(uy)Sﬂ_Ggocugﬂu m
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(For a geometric study on the stress-energy-momentum tensors see, for instance, [38, 141} 55 71, [98]]).
Then, we can write Lg = Lg (72)*n € 24(J%r), with Lg = Lgy + Lyn € C°(J%7).

The behaviour of the theory depends on the source. Nevertheless, some qualitative properties can be

studied in general, as long as we know the degeneracy of the source.

Definition 3.1. For a function f € C*(J?), consider

1 of Bou of 5 s_ Of 8
7 B . — D, foBuv af _ _ D, foBi
n(/“/) agaﬁ,,uu 89a6,u f f 89a6 Mf

(Notice that f*P+ ¢ C>®(J3r) and f*° € C(J*7)). Then, the degree of f is the smallest natural
number deg(f) = s such that:

L(X)fPH = L(X)fePm =0 5 forevery X € XV (72 ); 0<a<f<3,0<u<rv<3).
If foBn = foBav — 0, we define deg(f) = 0.

faﬁ,w/ —

)

Now, applying the proposition we obtain that:

Proposition 3.7. If deg(f) = s, then L(X) f*? = 0; for every X € XV (n?) (o < j3), and hence f*°
are T-projectable functions.

The degree of Lg characterizes partially the behaviour of the theory, as we are going to see in the
next paragraphs. For instance, if a Lagrangian is regular it has degree 4, but there are also singular
Lagrangians with degree 4. The Einstein-Hilbert Lagrangian in vacuum, Lg, has degree 2. For a
source such that deg(Ly) > 2, we have that deg(Lg) = deg(Lwm). The so-called f(R) theories of
gravity have deg(Lg) > 2. For these kinds of systems it is possible to obtain some constraints in the
unified and the Lagrangian formalisms but the Hamiltonian formalism depends strongly on the particular
energy-matter source. For a source such that deg(Ly,) < 2, we have that deg(Lg) < 2), and these
theories have a well defined Hamiltonian formalism; in particular, for the case that deg(Ly) < 1 we
obtain the general semiholonomic solution. These cases include the energy-matter sources coupled only
to the metric; that is, deg(Ly) = 0, like the electromagnetic source or the perfect fluid. We will present
the former as an example.

3.2.2 Langrangian-Hamiltonian Unified formalism

As Lg € C>®(J?r), we can work with the same manifolds introduced in Section that is, the

symmetric higher-order jet multimomentum bundles W = J37 x j1. J?mt and W, = J37 x j1,. J?7h.

The pull-back of the Lagrangian to these manifolds is denoted in the same way as above: ﬁe = (7‘(‘% o

p1)*Le € C°(W,) (orin C*°(W)). Then,

N

ﬁ@i = Z paﬁnugoaﬁ,u + Z pa@wjgaﬁ,w/ —Lg;

a<p a<p
u<v

The Liouville forms in W,., Og, and {2s,;, are defined likewise and have the local expressions

N 1 .
4 , 3 ; 3
Og, = —Hgd*z + C;Bpaﬁ “dgag ANd7z, + agﬁ n(ﬂy)paﬁ ’“’dgaﬁ,u ANd°z, ,
Qs, = dHg A d*z — Z dp®B# A dgag A d31‘# — Z deaﬁ’“” N dgag,u N Bz, .
a<h a<p WM

he Lagrangian-Hamiltonian system is (W,., Qg,, TW,., p}*&3).
Proposition which defines the Legendre transformation, also holds for Le:
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Proposition 3.8. A section ) € I'(p'y,) solution to the equation (1.2)) takes values in a 140-codimensional
submanifold jr o : W < W, which is identified with the graph of a bundle map F L : T3 — J2rh,
over J'7, defined locally by

3

OLg 1 OLg < B
FLEpPH = —= — D = L, Frepm =
© agoa,é’,u 1/220 n(/“/) Y <agaﬁ,uu) S ©

OLe
0o p v '

What is equivalent, the submanifold W, is the graph of a bundle morphism -7/:2/6 2 I3r — J?at over
J defined locally by

A 3 A
= L 1 L .
fﬁg*pa5’“ _ Ols _ D, ILs |\ _ L%ﬁ’“,
890{5# =0 n(:“'”) agaﬁ,,uzx
%*paﬁ7uy _ aLG ’
09ap v
A 3 A A
T T aLG 1 aLG 8LG
FLep = Le—gas, - D = Jopyrs ——
el agaﬁ,u Vz:;)n(/u/) v 89@,8,#1/ o uyaga,@,m/
= ﬁG - Zpaﬁnugaﬂ,,u - Z paﬁ#l/gaﬁ,uu .
asp a<f,ulv

As an application of theorem [2.4]

Theorem 3.2. A solution to the equation (1.2)) exists only in a submanifold Ws — W, wich, depending
on the degree of Ly, is locally defined by the following constraints (for 0 < a < <3, 0< u<v <3,
0<7<3):

ai/; = R
o Ifdeg(Ly) = 4: poBhr — m =0, p*Br_— L%ﬁu —0.

o Ifdeg(Ly) = 3: pPm — ag%fw =0, pPn— ﬁ%ﬁ’“ =0, f,%ﬁ =0.

hd Ifdeg(Lm) S 2: paﬂ,py — % = O, paﬁ"u — ﬁ%ﬁ’u = 0, ﬁ%ﬂ = O7 DT_f/%/B =0.

Proof. For the case deg(Ly) = 4, the first two restrictions, which involve the momenta, hold for every
second order field theory (Proposition[3.8|and [83])).

If deg(Lm) < 2, then deg(Ls) = ¢ < 2. Therefore O is 72-semibasic (in particular 73-

semibasic), which implies the other two restrictions. They can also be obtained by a similar procedure
as in Section

Likewise, if deg(Ly) = 3, then deg(Ls) = 3, and O is 7i-semibasic, which implies i}%ﬁ = 0.
O

Depending on the energy-matter term, maybe there are not any holonomic solution on Weg . In this
situations, a smaller submanifold has to be considered in order to find a holonomic solution.

3.2.3 Recovering the Lagrangian and Hamiltonian formalisms

In section chapter [I| we have stated how to recover the Lagrangian formalism from the unified formalism
for the Einstein-Hilbert Lagrangian with no energy-matter souces. As in that case, now the Lagrangian
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formalism takes place in J37, and the Poincaré-Cartan forms (3.27) associated with the Einstein-Hilbert
Lagrangian with energy-matter sources are

Ore = FLs ©5 € DY JPr) |, Qo =FLe O = —dO,, € 2°(J37),

S

which have the local expressions

Ors = Hed*z + Z L%ﬁ’“dgafg A d3xu + Z L%’B’dea@# A3z, |
a<f a<p
Ope = dHgAd'w =Y AL dgas Ad™ o, = > ALY dgag,, Ad™ ey,
a<lp a<p
where
HG = (]E o (plﬁ)_l)*ﬁG = Z Lgﬁﬂuygaﬁ,uu + Z L%ﬁ’ugaﬁ,u - LG )
a<p a<p

and L%ﬁ K L%ﬁ * have the same coordinate expressions than L5+ L8+ and L.

The Lagrangian problem associated with the Lagrangian system (J37, Q) Le> LT 37, @3) is stated like
in the equations (I.2) and (T.4), but for Q. instead of 2. The solutions are related to the solutions of
the unified formalism by Proposition [I.3]and Theorem

The Lagrangian counterpart of theorem [3.2]is:

Corollary 3.1. A solution to the equation (I.2) exists only in a submanifold Sg — J3m wich, depending
on the degree of Ly, is locally defined by the following constraints (for 0 < a < g < 3):

o [fdeg(Ln) =3: LY =o0.
o [fdeg(Ln) <2: LY =0, D.LY¥ =0.

The existence of holonomic solutions depends on the energy-mass term. In some cases we must
continue the constraint algorithm, together with an integrability algorithm.

Finally, the equations of the integral sections (I.2)) can be analyzed in a similar fashion as in Section
3.1.2] and using Proposition This leads to the Euler-Lagrange equations

=0, (3.40)

1 1
L& sy = Linlipo + Ll jsg = —on(ap) (Raﬁ — 59" R~ Laﬁ)
76

2 on(af) ™

Introducing the stress-energy-momentum tensor as

4

C
)gaugﬁuL%ﬁ .

Tw=c—F—F"—=
l 8rGon(ap

where G as the Newton’s gravitational constant and c the speed of light, then

1 87G
R;w - Qg/J,I/R = 7Tw/ )

and equations (3.40) are equivalent to the Einstein equations with stress-energy-momentum tensor.

All these results can be also obtained applying the constraint algorithm straightforwardly to the equa-
tion (1.2)), in the same way as we have done for the unified formalism; then doing a purely Lagrangian
analysis.
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For establishing the multimomentum Hamiltonian formalism we use the Legendre maps FLg and

fZ@ defined in Propositionﬁ Now, we denote 7523 = ﬁg(JSﬂ') <y 727t and Ps = FLs(J>T) =N
J?rt, with the natural projection Tps: Ps — M. In order to assure the existence of the Hamilto-
nian formalism we demand that the Lagrangian density Lg € 24(J?) is, at least, almost-regular.
Then we can define the Hamiltonian forms ©,, and ), and then we have the Hamiltonian system
(Ps, e, TPs, (Trft,17r o 7)*€1)). This Hamiltonian formalism is recovered from the unified formalism
following Proposition|1.4|and Theorem|1.3

In general, the formalism depends strongly on the singularity of the theory. Nevertheless, if deg(Ly) <
2 (or equivalently deg(Lg) < 2), we have a similar situation as in the vacuum case. In particular:

Proposition 3.9. [fdeg(Lg) < 2, then Lg is an almost-regular Lagrangian and Pg is diffeomorphic to
Jhr.

Proof. 1f deg(Lg) < 2, we have that

Idy 0 0 0 0

0 Idyg 0 0 0

0 0 Tdyg 00
TjssFLs = LY AL AL -

8:}'7— 3%5 8915,7

dle Il dLe 00

0x70gap . 094609 09v6,-09ap v

Then we have that rank(T;34F L) = 54 at every point j2¢ € J3r. Therefore TFLg is surjective and
FLg is a submersion. From here the proof is the same as in Proposition O

In general the functions ﬁ%ﬁ * are not invertible, thus we use the non momenta coordinates (xH, 9aBs 9as, u)
as local coordinates adapted to Pg. The function Hp is defined by

Hpg = > L™ gappw + D L& " Gapu — L »
a<h a<h

and the Hamilton-Cartan form have the coordinate expressions

Ope = —dOpg = dHpg Adle =" AL Ndgap A dPz, — Y AL A dgag, A dPa, .
a<lp a<p

The resulting Hamiltonian equations for sections (I.2)) are

LYY ALLM™\| O, — OHpe AL QLI
- = - - wab,u -
¥

9

P

and rearranging the terms, these equations are locally equivalent to the Einstein equations (3.40).

agab,u agaﬂ Oxv B 89a5 8gab aga,ﬁ

If deg(Lg) > 2, then F Lg may not be a submersion and, hence, Lg is not almost-regular. In these
cases the construction of the Hamiltonian formalism is more complicated.

3.2.4 Example: Electromagnetic source

Consider the case of a free electromagnetic source with electromagnetic tensor F'*. The corresponding

Lagrangian function is
Ly = /|det(gap)| Fu F*,
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where the components of the tensor F},,, are functions on the base manifold M. In this case, deg(Lm) =
1, and the stress-energy-momentum tensor is

A A 0Ly A ( 1

T = —_ L(Xﬁ:i —m - (= VFQ’BF _ aﬁF F .
Qn(lu,y)gﬂ.Ggaugﬂu m Qn(uv)&rGga”gB”&gaﬁ Gy 4gu ap — 9 palvp

uv

The corresponding form Og,. is 73-projectable, which implies that X" (75) are gauge vector fields.

By Theorem [3.2] solutions to the field equations exist on the points of the submanifold defined by
L . . .
PO - =S =0 pe L =0 LY =0, DLY =0,
89&6 N71%
The first two restrictions define the Legendre transformation, and the last two fix the gauge freedom of
the higher derivatives. The local expression of any semiholonomic multivetor field solution of (I.4)) can

be obtained by combining these restrictions, the holonomy conditions, and the solution obtained in the

Appendix[3.A.3]

3
0 0 0 0
X - 9 _9 _9
o /\o ;5 <‘9xT T D T g T D g
p<r<

. ) . ) Ls )
D,D\F,5.,,—— + D, 125" D ,
e N Rt B T TRt PP ”)
where Fop.,,, = (75 0 p})*Fappn € C° (W), and
4

C
Fagiw = 920 (T0al%s +Fz)/\,BFZa)+RgOé5

5
(gAUFMAFVO' - 4gﬂl/F)\UF)\o—> +FhAg'7M,y 6 COO(Jlﬂ-) .

The Lagrangian formalism takes place in .J37, but the Corollary states that a solution exists in
the submanifold defined by
t¥=0 , DLY=0.

The Euler-Lagrange equations (3.40) are equivalent to the Einstein equations

1 4
<R,LLI/ - 2g,uZ/R>
VAL VAL

c 1
= 1o (o Fas = BB

A section ¢: M — F is a solution to the Einstein equations if, on the points of its image, it is a section

of a multivector field with local expression

I

2 /3\2<8+g O = g DI DAF g )
L = b 9. b 14 A ; K ’

dxT aﬁTagaﬁ o 99apu s Tagaﬁ,uv ’ aﬁuTagaB,WA
where F' 5., = 73 Fappw € C(J3T).

For the Hamiltonian formalism, we have the Hamiltonian system (Pg, Q¢ , TPs, d*¢l), where Pg
is diffeomorphic to J!7 by the action of ®, as a consequence of Proposition and the Hamiltonian
function giving the Hamiltonian section h is

HPGZHP_LWL?

where Hp is the Hamiltonian for the vacuum case (3.36). A semiholonomic multivector field solution to
(T.4) has the local expression

S Y A
H = 57 /877 °
=0 a<p Oz7 o agaﬂ T 89&5#
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3.3 Symmetries for the Einstein-Hilbert model

Now, consider the Einstein-Hilbert Lagrangian (withouth energy-matter sources).

Definition 3.2. Let F': M — M be a diffeomorphism. The canonical lift of ¢ to the bundle of metrics
E is the diffeomorphism F: E — E defined as follows: for every (z,g,) € E, then F(x,g;) =
(F(z), (F~Y*(g9z)). (Thus w o F = F o).

Let Z € X(M). The canonical lift of Z to the bundle of metrics E is the vector field Y € X(E)
whose associated local one-parameter groups of diffeomorphisms JF; are the canonical lifts to the bundle
of metrics E of the local one-parameter groups of diffeomorphisms F; of Z.

0
In coordinates, if Z = f“(x)—u € X(M), the canonical lift of Z to the bundle of metrics is

0 afr af+ 0
— fH_— E
Y f 8513'“’ = <a aguﬁ + 81:[3911&) 8ga5 )

and then
. 0 aft oft 0
1 - M=
J Y = f Ok Z (a aguﬁ+ 8$5gua> 3ga5
a2fu 62fu afu afu afy o
B Z drodzn I’ 8:65(91:“ Gow + o Tvom + DB Jovk + dan P 09ap.p
= ot Z S Z -

For every Z € X(M), as Ly is invariant under diffeomorphisms, we have that
L(?Y)Ly = L(G*Y)((73)* L) = 0,

and j3Y itis an exact infinitesimal Cartan symmetry. Its associated conserved quantity is &y = §(Y3)© Lo
and, as O, is Tri)’—basic, there exists @1&] € !24(J 17r) (which has the same coordinate expression) such

that ©¢,, = (7)*Op, ; then

& = iYLy =i(1'Y)OL, = | D YapLl®PH + > Vop, L7 — frH | dPx),

a<p a<lp
+ 30 (Lo = L) dgag A APy + 3 (fULOBN < PPLPA) dgagp A a2y,
asp asfp

o\ [ 0 4
where d2 Tyy =i (83:”) 7 (835“) d*z.

These vector fields are the only natural infinitesimal Lagrangian symmetries [[/2, 186] for this model.

3.A Solutions to the Hamiltonian equations for the Einstein-Hilbert model

We have seen that the Einstein equations can be stated from different geometrical points of view. In order
to solve them, we can use whichever we find more appropriate. Indeed, as it is explained in chapter [T}
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the solutions can be transported canonically from one formalism to another. In this section we solve the
equations for multivector fields in the Hamiltonian formalism.

A solution to the Einstein equations is a metric over the manifold; that is, a section ¢: M — FE. The
multivector fields we find provide system of partial differential equations whose solutions are the sections
(I.I). In this sense, finding the multivector fields is only the first step on solving Einstein equations.
Nevertheless, this approach leads to new equations, which may be more appealing. For instance, they
have a unique solution provided an initial condition: there is no need of boundary conditions.

The relation between sections and multivector fields is explained in chapter[I] Only holonomic mul-
tivector fields have associated holonomic integrable sections. Nevertheless, we look first for semiholo-
nomic multivector fields, except in the case of the vacuum case, where we find a particular solution which
is a proper holonomic multivector field. It is used in Theorem [3.1|to determine the final submanifold.

Since the equations for multivector fields are lineal, we proceed to find a particular solution and then
the homogeneous solutions for the vacuum case. Later, we will consider energy-matter sources.

3.A.1 Particular solution (without energy-matter sources)

The Hamiltonian premultisymplectic system is (P, Qp, TP, (ngﬂ 0 7)*€1)). The local expression of a
representative of a class { Xy, } of semiholonomic multivector fields in P is

) 0 )
Xp = + (Fﬁ7+F6;7>
Ao B\ o,

Where the holonomy condition is not explicitly imposed, as it will be recover by the field equations.
Equation (T.4) takes the local expression:

OH LB §Lrov
z +ZFAU,V< ) = 0, (34D

8gaﬁ,u <o 89)\0 agaﬁ,u
OHp DL aLw> OLoPH  QLAowm
+ F ( — + Fy,. — = 0. 342
090 A;; PR\ Ogre 09as A;U TR\ Ogrow 09ap
aLaﬁ,/u/ aL)\O'7l/
We denote U*P+1:A7 — - , whose explicit expressions are
89/\0 agocﬂ,u
Ua,@mz)\cr _ Qn(aﬁin()‘a) (_anﬁg)\crg;w + go&\gﬁaguu + gﬁ)\gaag,uu
+ gaﬁg)\,ugo'zx + gaﬂgaug)\u + g)\o'gowg/o’,u + g/\a'g,b’uga,u
goa/g/\ugﬁa o g,BVg)\ugoaJ _ goa/gaug,@)\ o gﬁugaugou\) ’ (343)

and they fulfil the following relations:

Ua,B,,ul/,)\U — U/\cr,,ul/,aﬁ — _Uoz,u,ﬁu,/\o

The equations are algebraic, in the sense that no derivatives of Fig ,, nor Fyg ,, appear. (The indices
are symmetrized as usual).

We start by solving equation (3.41)). First, we rewrite it as

Z(F/\a,l/ - g/\a,V)UaB7MV7)\U =0.

A<o
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Indeed, since Hp = Z)\SU L)“””gxmy — Lo,

OHp DL oL,
a = Z a gAO’,I/ + La67u - 8
Gap,p Ao GoB,p Gap,p
ALV QLB Lo Y
= Z 679/\0-1/ a Z a g>\0',l/ - 67 = — Z Uaﬁuul/,)\ g>\a'7l/ )
Ao JapB,u goc,@ rNe 9o JapB,u Ao

Now we multiply it by

1
Vaﬁu,abc = m(gaugﬁbgac + 29augﬁcgab + 9apGbuYac — 9aBYGucYab

_Sgaagﬂcgb,u - Sgabgﬁcgau + Gap9Bagbe + gaﬁgcugab) )

which works as a sort of inverse; then we obtain

3
S (Frow = 930U Ve = 5 (Frra = 930 (26767 + 62557
A<o

= 3(Fab,c - gab,c) =0.

Therefore, F)\., = g)s,, and the holonomy condition is recovered. Using this condition, equation (1.4)

becomes: 5 \
OLOPH QLA%H N
+ A ( — ) — P, U8 = (3.44)
2 eu| g " gy ) T 2 P

890{5

These equations have as particular solution F/{Z oy = % Jap (Fg‘)\f‘ﬁa + Ff}ofﬁ +)> Which can be checked
after some computation. The multivector field

3 3
1 a
XP = /\ XZ,P = /\ <ga6 va + gka(ryaFuﬁ + Fiﬁrua)a >
v=0 v=0 Jobin

is semi-holonomic and 7p-transverse, and verifies that z(Xﬁ )2, = 0. The last thing to check is that it
is integrable. The Lie bracket for two arbitrary components Xf and X f is

0
P Py _ P
[XV’XP] - Z(Faﬁpv Focﬁ;%p)ﬁ*’
a<lp af
P P
Z o OF, aﬂ,up + F)j\D aFaﬂ;um N aFaB;Wy Ff OF, aﬁu“/ 9
g, N2 a, V. .
a<p K a 7 ag)\a,u P ag)\a e 8g>\a,u aga,&u
A\<o

The vector field [Xf; , X f | is 71 -vertical. Therefore, the integrability condition can only be achieved if

. . : 0
[Xff , X ,f | = 0. Imposing the condition on the coefficient of —— Dges’ we obtain that Ffﬁ oy F£B ~p =0

These conditions are expected since, for a section, they represent the equality between second order
crossed partial derivatives. Clearly the solution proposed fulfils this condition. After a rather long but

straightforward computation, we can check that the coefficients of also vanish.

GoB,p

3.A.2 General solution (without energy-matter sources)

The existence of a particular solution Xﬁ to (1.4)) is relevant, because it implies that no extra restrictions
are needed, as showed in Theorem [3.1] Now, we explore the general behaviour of the solutions of (I.4).
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As we have shown before, (1.4) boils down to (3.44), which are linear equations. Therefore, we can
split any solution into a particular and a homogeneous part:

1
Froypw = igaﬁ(FgArﬁa + F,‘i‘gfﬁ)\) + F)f\)

oY

The homogeneous part Ff\’ is a set of functions which cancel out when contracted with (3.43), namely

O3,V
D Fly U717 = 0. (3.45)
<o
The correspondent multivector field:
. 1 ]
- o b
Xn=/\ 8V+Z<ocﬂ, +(29Ao(rmr 5+ g, )JFF,B,,,)%)

v=0 a<p

is a semiholonomic solution to (I.4). Nevertheless, it may not be integrable. Thus, the integrability of
X, leads to new constraints on the valid set of functions Ty, ,,. Condition (3.43)) can be reformulated
as follows:

Lemma 3.1. A set of functions F o symmetric under the changes o <> [ and p < v, satisfies the

af;p,v’
condition
Z F)[\)U;HyuUAU#V,aﬁ =0 (346)
A<o
if, and only if,
>\0<Fh T ):0 (3.47)
nTi\,o Aoin,T An;T,0 ATm,0 . .

Proof. (3.46) can be rewritten as

1
Z F)?J;u,uU)\U’uU’aﬁ = 0 n(aﬂ)gaﬁg)\dgl“’ ( F)?a Y QFQM;Vﬁ)
A<o

1 1 1 1
A b b b b
+ on(ap)g*g*tg”’ <2 B e+ 5B = 3 F o = 5F 0w 0();.48)

Contracting (3.46) with g,3, we obtain

1
2@“(055)9)\0 ( 2F)I\ja S,V + 2F>I\ju;l/,a> =0. (349)

Therefore the first term in (3.48)) vanishes. Contracting the remaining term with g,,g3. we obtain (3.47).

To prove the converse, contract with ¢". The resulting expression is equivalent to (3.49)
because it is symmetric under the change (a3) <> (n7). Then, (3.46)) follows straighforwardly. O

The following theorem summarizes the above results:

Theorem 3.3. For a class of multivectorfield {X} C X*(P), the following conditions are equivalent:

« {X} isa solution to the Hamiltonian problem for multivector fields (TA) for the system (P, Q,, TP, (n* T O
"€t

56



* Using the coordinates (x*, gog, gas,u). the local expression of a represesentative of {X} is

b = ap, agaﬁ aBiu,y aB;u,v 8gaﬁ;u

where FT 0By = %gAU(FWI‘Uﬁ + F ) and F"

satisfy that:

af;u,v
b _ b _ b
L Foppow = Foauw = Fagpe
B b h h h _
2. g¢ (F aﬁ+Fa5n, Fan‘rﬁ FaT,ﬁﬁ)_O'

3. It is a solution to the following differential equations (integrability condition):

OFY . B B B orr .
0 = Fh ] Aoiv,j FP ) Fh ) Fh ) Aoiv,j
aZ<B ( afsui DG p + afipig “dg G + gaﬁlaga ori Ao;v,j + afsu,i OGap i

OFY 9 0 P OFF
_ b Ao + (P, 2 4 9 . N EY eph Aov,i
Z ( afBip,g 89a6,u aBu,j 890{57# JapB,j 89&5 ori Ao;v,0 aB;u,j 89a6,u

as<p

The equivalent theorem for sections is:

Theorem 3.4. For a holonomic section v : M — ‘P, the following conditions are equivalent:

1. % is a solution to the Hamiltonian equations for sections (1.2) for the system (P, Q, TP, (7r(i]17r o
N))

2. 1 is holonomic and a solution to the vacuum Einstein’s equations
1
(R"‘B— gO‘BR>‘ =0, a,8=0,...,3.
2 v

3. 9 is holonomic and a solution to the differential equations

82%5—#’ Lo e )0
oxhdry aBipy T 590 (La pws T1us o) w’

2

for some set of functions F 2 B such that

b b —
nT;a afm,t Fam B FaT;nﬂ) =0,
0
with initial conditions ap(x’ )_gaﬁ’ albczﬂ( " = 9;5,#.

cxﬁ (Fh 5+Fb

Proof. The equivalence 1 <=> 2 is clear. The implication 1 = 3 comes from Theorem [3.3] To show
3 = 2, we first compute R,g|q:

Runly = gy/\R/\uwnW
A 82¢AV _ 82%1/ _ 321%; 827;Z),u17
Ozxrox"  Ox"Ox>  OxrOxv  OxvOzr?

29

Lo b b b
= 39 (FW,V,\+FVA17H FunuA Fvu;n,/\)w

+ 9”070 (T~ 0L |
Y

=0.

Then

=0

1 1
<Raﬁ _ 2go‘ﬁR> ‘ — <gaugﬁn _ 2906,39;”7) R,
P ]
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These theorems characterize the solutions to Einstein’s equations without sources. The multivector
fields solution to (3.3) are described by the set of functions Fos " 3:,» Which have some combinatoric
properties. The integral sections of an integrable multivector ﬁeld are given by (I.1I). Every multivector
field has one section at every point, therefore, only an initial condition is required to solve these equations.
The condition 3 in Theorem [3.3]is the integrability condition. If a multivector field is not integrable, we
can still consider (I.)), but we will find out that such equations have no solution everywhere. Thus, the
integrability condition is also the condition of existence of solutions to (I.1I)). Given an initial condition,
there is several section solution to the equations: one for every multivector field. Nevertheless, two
different multivector fields may lead to the same sections at a given point. These multiple solution are

not gauge related, because the multisymplectic form is regular.

3.A.3 General solution (with energy-matter sources)

Theorem 3.5. Consider an energy-matter term Ly, with degree < 1, and the system (Pg, Qe , TPs, (7’[‘31
9)*€Y). For a class of multivector field {X} C X*(Pg), the following conditions are equivalent:

» {X} is a class of semiholonomic multivector fields solution to the equation

i(X)Qpe =0 , forevery X € {X}.

* The local expression of a representative X € {X} is

0 0
X = /\ Z <61L'V 9ap, Va G +Faﬂ;u7yago¢ﬁ,u>

v=0a<p

with

1 1 L8
F/\a,u, 29}\0’(1—‘ya]‘—‘uﬁ + Fz)/\ﬁrua) + gro <ga69uu - 3ga,ugﬁu> m + Fh/\a;u,u-

and where F hag; v satisfies:
1. Fhaﬂ;u,v = Fhﬁa;uw = Fhaﬁ;wu-
2. gaﬁ (thf;aﬁ + Fbaﬁmﬁ - Fhanmﬁ - Fhaﬂnﬁ) = 0.

Proof. The local expression of the equations is

OH LY ALY \
+ Y G, — — P Uromel — b
agaﬁ )Z; 7 ( ag)\o' aga,ﬁ );I T m

Then we split the unknown functions in three parts:
R
F)\UWW =r Aospw t Fm)\o';/uw + FhAG;M,V

This first term is a solution to the equations at vacuum:

OHp s G)
Z 9xo,u < -

09ap 89/\ 09as

— Z FR)\U;M’VU)\O',MV,aﬁ )
<o

As we have seen before, we can choose F'2 Aoy = 3 ga[g(Fw\Fﬁa +TI¢, FB ) The second term is a

solution to
Z Fm)\a;%yU)\U,;u/,oaﬁ _ LmaB
A<o
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We can choose F™..0 = 505900 (97u99v — 3977 9uv) L™, which belongs to C°(J') because

deg(Ly) < 1. Indeed,

1 1
Z Iro <gTﬂg’YV - 3gT’yguu> LmT’YUAUWVaO‘ﬁ —

= on(m)
n(ap) 1 1 1
n(af) L e Y D ((Lgengtr o Lgev s s
n(ry) (gTug’y 39T79u ) m (29 g+ 29 g 99
n(af)

1
B B — B Bory — B
2y 07Oy 070 L = S (L™ 4 L) = L™

Finally, the third term is solution to the homogeneous equation

Z FbAU;#,vUM’W’aﬁ =0
<o

For (3.47), this equation is equivalent to the statement. Notice that any other I’ or F™ can be obtained

from these ones by adding a suitable function of the type F". O

It is important to remark that the solution given by this theorem may not be integrable. But any
integrable solution follows this structure. The corresponding result for sections is:

Theorem 3.6. For a holonomic section v : M — Pg, the following conditions are equivalent:

1. ) is a solution to the Hamiltonian problem for sections (1.2)) for the system (Ps, Qpg, TPs, (Wilwo
7)*€h).

2. 1 is holonomic and solution to the Einstein equations.

1 1
R — gaﬁR>' = — LeA), .
( 2 b on(ap) ™ b
3. ¢ is holonomic and solution to the differential equations

= | F —grg (I T'¢ I.1re - = ,
Oxtdr? < aB;p,y + 29>\ (Ia ws T 1o ua) + Yop <97M9W 39779W> Qn(77)> .

for some set of functions Fg B such that

b b b b —
g (FnT;a,B t Fopnr — Fonrp ~ FaT;Wﬁ) =0,

8¢a,3 (JU/M) — 4

TN )
) =905 ou B

and with initial conditions \o5(x
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Chapter 4

Metric-Affine

The multisymplectic and polysymplectic techniques have been applied to treat the Einstein-Palatini or
Metric-Affine model for General Relativity [[11}112}162,[78,180]. In particular, in [[12] an exhaustive study
of the multisymplectic description of the model has been done, using a unified formalism which joins
both the Lagrangian and Hamiltonian formalisms into a single one.

This chapter is another contribution in order to complete the multisymplectic description of the
Einstein-Palatini theory (without energy-matter sources). In particular, we are especially interested in the
following problem: as a consequence of the degeneracy of the Lagrangian, this is a premultisymplectic
field theory and the Lagrangian field equations are incompatible in the jet bundle where the Lagrangian
formalism takes place. The problem of finding a submanifold where this equations have consistent so-
lutions (if it exists) is solved by applying a constraint algorithm. Another objective is to construct the
Hamiltonian formalism of the theory and, then, apply the corresponding constraint algorithm to solve the
incompatibility of the Hamiltonian field equations. In the Hamiltonian formalism, the choice of differ-
ent kinds of coordinates (which have a clear geometric interpretation) allows us to better understanding
several geometrical characteristics of the formalism.

In [20] the authors point-out the existence of gauge symmetry particular for this model. Another
objective is to make a geometrical analysis of this gauge freedom and to recover the Einstein-Hilbert
model for General Relativity by means of a gauge fixing. A brief discussion on the classical Lagrangian
symmetries of the theory and their associated currents is also done.

As a side note, in the literature this model is either denoted Metric-Affine or Palatini. As it is ex-
plained in [40], the model does not appear in Palatini’s work, although he performed the first steps
towards it. The model as is currently understood first appears in the 1925 paper [36] by Einstein. We use
both terms indistinguishably.

The chapter is organized as follows: Section is devoted to present the Einstein-Palatini La-
grangian and the manifold where it is defined. Next, in Section .2} the Lagrangian formalism of this
theory is studied in detail and the Lagrangian constraint algorithm is applied by steps. The geometric
interpretation of the different kinds of constraints and the gauge and natural Lagrangian symmetries are
also discussed here. Second, in Section the Hamiltonian formalisms is stated and analysed in an
analogous way. Finally, the relation with the Einstein-Hilbert model is established discussed in Section
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4.1 The Einstein-Palatini Lagrangian

We introduce here the Metric-Affine (or Einstein-Palatini) action for the Einstein equations of gravity
without sources (no matter-energy is present).

The configuration bundle for this system is the bundle 7: E — M, where M is a connected orientable
4-dimensional manifold representing space-time, whose volume form is denoted € £2*(M), and E =
Y xp C(LM), where ¥ is the manifold of Lorentzian metrics on M and C(LM) is the bundle of
connections on M ; that is, linear connections in T M.

Consider a natural system of coordinates (z*,v®) in the tangent space 7: TM — M, such that
n = da® A ... Ad2z® = d*x. We use adapted fiber coordinates in E, denoted (x*, Japs FKW), (with
0 <a< B <3 and p,v,v, A = 0,1,2,3). The functions g3 are the components of the metric
associated to the charts in the base (z*), and I, are the Christoffel symbols of the connection (and then
the component functions Fz of the linear connection are Fi’y = T*(—Fivv)‘) [33]). Since g is symmetric,
9o = 9pa and actually there are 10 independent components. We do not assume torsionless connections
and hence I'} | #* 'Y\ in general. Thus dim E = 78. When we sum over symmetric indices and not over
all the components, we order the indicesas 0 < a < § < 3.

In order to state the formalism we consider the first-order jet bundle .J' 7, with the natural projections
by Jln — E ) by Jln — M
e S CO N Jap @
Induced coordinates in J!7 are denoted (z*, Jas; FKW 9af, s FK%M), and dim J'7 = 374.

A special kind of vector fields are the coordinate total derivatives [83,90], which are locally given as

0

0 ( 0 0 0
D = 7—’_ g 5}774_9 187 T> +Fl/ 7]/—'—111/ T’
T oxrT OZ:ﬂ e agaﬁ af,pw agaﬁ,u af,T araﬁ af,ut araﬁ#

Observe that, if f € C®(J17), then D, f € C>®(J%7).

The Einstein-Palatini (or Metric-Affine) Lagrangian density is a 7' -semibasic 4-form Lgp € 24(J'7);
then Lgp = Lgp (7')*n, where Lgp € C*(J'7) is the Einstein-Palatini Lagrangian function which, in
the above coordinates, is given by

Lep = v/|det(9)] 9"’ Rup = 09°’ Rag = 0 R,

where o = \/|det(gap)], R = g“° Rag is the scalar curvature, R,5 = Fgow —anﬁ +Fgafg7 —Fgafga
are the components of the Ricci tensor, which depend only on the connection, and ¢®” denotes the inverse
matrix of g, namely: g®? 9gp = 05. The order of the indexes in the expression of the curvature is crucial.

The expression is based in [35]. It is useful to consider the following auxiliary functions:

OLgp

arg%ﬂ

Lok = = o(3tg™" — 684", (4.1)

4.2 The Metric-Affine model: Lagrangian formalism

4.2.1 Poincaré-Cartan forms and field equations

The Lagrangian formalism of field theories is presented in chapter 1]

H = LE"MTY | — Lip = 0g°° (rgarga _ Fgarg,y> . (4.2)
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The Poincaré-Cartan 5-form €22, associated with the Einstein-Palatini Lagrangian density is constructed
using the canonical structures of the bundle J 7 and its expression is

Qrpe = dH Ad'z — AL A dTG, A dPay, . (4.3)

Observe that it is a 7!-projectable form. The Lagrangian multisympelctic system for the Einstein-
Palatine gravity is (J'7, Qgp, TJ'm, €1), where ¢! is the Cartan codistribution of J!7.

Then, for a generic locally decomposable and 7!-transverse multivector field in J'7 we have the

following local expression X = f /\ X,, with

v=0
oo 000 P O po : 4.4
axu + p;a (fp ‘|’ fp w,v 6gpo,u> + fﬁfy,y GFO‘ + fﬁ’Yu,V arg%u ( )

where the coefficients are arbitrary functions of C°°(.J!r). If the multivector field is semi-holonomic
and we set f = 1, then

: 9 9 9 9
X = /\ ” + Z ng,V@ + fpau,uw + Fﬁv ”81““ + fﬁ’YM»V ara . 4.5)
v=0 4

p<o PO B,

Taking (@.4) and (.3), the equation (I.4) becomes locally

0 = i(X)dH + f§,,i(X,)dLE — fg (X, )dLI™ (4.6)
oH ., OLJ
ﬁggp B, 8g ’

aLBvu i GLQV’“ . OLLTH
0 = ara 2 Forngy— Bgpe | T Trom ary, e arg
T v

0 = “4.7)

p<o
o L?{W
— . 4.8
ara ;Uf,m,u Bo (4.8)
oL
since . = 0. Equations (4.6) arise from the variations of the coordinates z* and they hold as
po

a consequence of and (4.8). The equations arise from the variations on the components of
the metric, and contains the functions fg‘% L related to the connection, thus we call them connection
equations. Finally, the equations (4.8) arise from the variations on the components of the connection,
and contain the functions f;, ,, thus they are called metric equations.

4.2.2 Compatibility and consistency constraints

In general, 7!-transverse and integrable multivector fields X € X*(J'7) which are solutions to (T.4)
could not exist. In the best of cases they exist only in some submanifold of J'7 [22]]. The aim in this
section is to find the constraints that define this submanifold, using a local version of the geometric
constraint algorithms [23] 22].

First, we introduce the following notation: as it is usual,

ker? Qe = {Xe %4(J17T) | i(X)QﬁEP =0} .
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We denote by ker;frl Qr.p the set of locally decomposable and 7! -transverse multivector fields satisfying
equations (T.4) but not being (semi)holonomic necessarily. Then, kery Q... and ker}; Q ., denote
the sets of semi-holonomic and the holonomic multivector fields which are solutions to the equations
(T.4)), respectively. Obviously we have

kerj%{ Qrpp C ker%vH Qe C ker;frl Qrpp C ker? Qrpp - 4.9

We make the study in several steps, following the next procedure: first we consider the problem
of finding locally decomposable and 7!-transverse multivector fields which are solution to (T.4) (that
is, the elements of kerf_rl Qr.p), then we look for the semi-holonomic multivector fields belonging
to ker‘é 7 2z and finally, in the next Section, we analyze their integrability (finding the elements of
kerf; Qrpp)-

Non-semiholonomic multivector fields (elements of ker?, Q.,..): compatibility constraints

The set ker;frl Q. consists of multivector fields of the form (4.4) whose coefficients satisfy the connec-
tion and metric equations and respectivelly. But the equations are not compatible. In
fact:

Proposition 4.1. The necessary condition for the existence of solutions to the metric equations [{.8) is
that the following equalities hold:

Aapy = 980T, = 9o Thy + 398y Tim — 3907Th5 =0, (4.10)

where 5‘7 are the components of the torsion tensor which are defined as usual, gv = Fg,y - gﬁ'

Proof. We introduce the following functions

1 1 1 1
e = 2 <—295ng¢53 + 597905 — 390905 + g@gmcﬁ‘) ; (4.11)
which satisfy that
oLl n(po)
5 Ty = g (LATO + 00500)

where n(po) is a combinatorial factor such that n(po) = 1 for p = o, and n(po) = 2 for p # o. Then,
using them in the metric equations (4.8]), we obtain

OH oL+ . O0H
+ ) foo

1
O::a by ara W = by 7+7(f)\c,u+f<)\, )
By, ACv 8F%»y H 89,)0 Bs CV@FgW 9 v

p<o

These are equations for the functions f¢, which, as a consequence of the symmetry of the metric,
9aB = 9Ba, are also symmetric: fr¢, = fer,. Nevertheless, the equations are incompatible because
they are not symmetric under the change A\ <+ (. In fact; we obtain that

oH oH X 1
g%ACVTFg - :gmﬁ“”iarg = 9nTe, = 9euTh, + 590 T = 390150 =0,
Y Y

and the result follows from here. O

Conditions (#.10) are called torsion constraints and they define the submanifold Sy < J!E. These
torsion constraints are essential in the following discussion, since they impose strong restrictions on the
torsion. In fact:
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Proposition 4.2. The torsion constraints (.10) are equivalent to
15, = %5;‘ vy 57 R (4.12)
Proof. 1f (@.10) holds, then
0 = %gau (Aguy + Apyu + Auyp)
N %ga“ (900 Ty = 960 Tty + 599 Tvs = 596 T00 + 9T = 90 T3,
+ %g#’YTll//ﬁ - %guBT + nguB guvT:yjﬂ + 39,6’7Tuu 39ﬁuTV )

1
= T5, - 50T, + 5v v
Conversely, if T, = 3041y, — §05T%, then
Aocﬁ’y = gﬁuT57 - gauTg»y + %gﬁ'yTyVa - %ga'yTIZB
= g5 (30TY, — 30T0) — g (A05TYE, — 385T05 ) + b T — $0n TV

1 v v
= 3 (95@7157 - gﬁ’YT/lja - gaﬂT + gavT ws T 9y Toe — gawTuﬂ> =0.

As a consequence of this result, on St the torsion is determined by its “trace”, tr(T )=T%,.

Proposition 4.3. On the submanifold St, the general solutions to the equations [@.7) and @.8) are,
respectively,

fovu = Fl/>7 ox+ Chy + Koyt (4.13)
2
Jopn = 90+ 9p\T o + 5005 T3 (4.14)

for some functions ngﬁ Kﬁa%u € C®°(J'r) satisfying that

Cgyp=Cpuoy , Kj, =0 , Kz, +Ki =0 ; (onSr).
Proof. The metric and connection equations are independent and lineal. Thus we look for particular and
homogeneous-general solutions for each one.

It is straightforward to check that (4.14)) is a particular solution to the metric equations on Sr. Given

two solutions, f! and f?, their difference he,, ,, = f3,,,— f3,,, is a solution to the homogeneous equation

o Lg'“‘
Z hpa,uiagm =0 ; (onSp).

p<o

Consider the functions 33, , ., which satisfy @.IT),
Lﬁ’? ©
0= 3 oy Tiraco = oo 5 OL0500 + DL0705) = gy
p<o
Therefore, hyp uls, = 0 = f1(p) = f*(p) on St, and the solution is unique. In a similar way,

Sy = F,’)VF%)\ ; (onS7)
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is a particular solution to the connection equations. The difference between two solutions is a solution to
the homogeneous equation:
o aLg’\ﬂu

B D =0 ; (onSy). (4.15)

This equation is equivalent to:

h)\r st h)\s T hrs AT hsr A=0 ; (on Sr) .

Indeed,
oL \
Qn(pO’) (297"/)980 - ng'g'/‘S)hf)"y,y 8 h)\r s T h>\s K4 hrs AT hsr,/\ ) (on 'ST) :
B,
on(po 0Ly
(Zl)(Qgrpgsa _ gpo TS) (h)\r s T hAs - hm AT hST A) hﬁﬂf w 3g ) (on ST) .

Some solutions of this equation are the functions of the form
Gy = Cpudy 5 (onSr),
which are called trace solutions. for every solution h, consider K5 u = h3., P Cpudy with Cgy, =

hﬁﬁu It follows that K39

o = 0. Since the equation is lineal, these functions must also be solutions.
Therefore:

K2

79 W

Krs AT Ks)\r,)\ ) (on ST) .

A A
0= K)\r,s +K}\sr Krs)\
These solutions are called torsion solutions. From their definition it is clear that any homogeneous
. . . e o e >
solutlon is a sum of a trace and a torsion solution. Furthermore, if K Gy = C,ny, u = Cgﬂéw then
0 =

«
hﬁw H

= Cy,; on Sy. Thus, the only homogeneous solution which is both trace and torsion is
O

Mu

This proposition shows also that:

Corollary 4.1. The torsion constraints @.10)) (or their equivalent expressions (4.12))) are sufficient con-
ditions for the existence of solutions to @D

These constraints could be also obtained in an intrinsic way using the procedure described in [22].

Now we must check the tangency (or consistency) conditions. First, observe that, taking into ac-
count (.4), @.13), and [@.14), the general solution to the equation (1.4) (before imposing the holonomy
condition) are multivector fields of the form

3 3
2 0 0
X = /\ Xy, = /\ <(gO')\F1>/\p + gp)\F,i\g + ggcrpT){\V)ai + fgp,u,ua>
v=0 v=0 o<p Yop Gop,u
A o « « 0 0 .
+(T0, T\ +Chy 0 + K§ ) 5 OI‘O‘ + fﬁww 8Fg ; (onSr). (4.16)
Vb
Bearing in mind the conditions on the functions Cg,y u’ 6v L stated in Proposition @, the tangency
condition on the torsion constraints (4.12)
1
L(XV) <Tlél,y — gdg 5,)/ I/ﬁ) =0 ) (On ST) s
hold on St as long as
1 1
o o 1oV A a o A v a A TV .
(87 — [ e ~ L an + gé[ﬁruﬂ vA 55[ LTy 5 (on S1) -
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Nevertheless, solutions to equation (I.4) must be holonomic multivector fields. Thus, first we look
for semiholonomic solutions, then we analyze their tangency and, finally, we study the existence of
holonomic solutions.

Semi-holonomic multivector fields (elements of ker$; z,...): semiholonomic constraints

If a multivector field is semiholonomic then its local expression is (@.3); that is,

Joow =9pou + Sy =Thyu-

In this case, there are more constraints which arise from the equations (4.7)) and (4.8) and are the Euler-
Lagrange equations themselves:

OH oL

_ =0, 4.17
ag;w agm/ .o ( )

OH LI

T %g,w =0. (4.18)
By n<v Guv

(Geometrically, they are a consequence of the fact that Q¢ is nl-projectable . In this way, the
connection and metric equations become semiholonomic constraints, which are called connection and
metric constrains, respectively.

In particular, notice that the metric constraints (4.18)) arise from the equations (4.8)), which lead to
the torsion constraints (4.12). Therefore, the metric constraints split into two kinds of conditions: the
torsion constraints (4.12)) themselves and, according to equation (4.14)) (or, equivalently, to (4.16)),

2
9po,u = go)\r;)lp + gpz\rﬁg + ggpaT)éu ) (4-19)

which are called pre-metricity constraints. They are closely related to the metricity conditions and the
trace of the torsion, as it is proved in the following:

Proposition 4.4. In the points of the submanifold S,, — J'7 defined by the metric constraints ({#.13),
we have that:
VIPgp) =0 <= tr(T"P)=0 ; peSn,.

(Here, the notation VI®) means the covariant derivative with respect to the connection I in the point p,
and TTP) denotes the torsion tensor associated to this connection ).

Proof. In the coordinates of J' the metricity condition VI ®) g(p) = 0 is
r A A
(V (p)g(p)) = Ypou — 9orl'p — 9oals -
PO
Therefore, the statement follows immediately since the metric constraints (4.19) can be written as

2

I'(p) _ 2z A
(V g(p))pw Ve
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Tangency condition: consistency constraints

Now we check the tangency (or consistency) condition for all the above sets of constraints. A semi-
3
holonomic multivector field X = /\ X, has the local expression (.5)). The tangency condition on the

v
connection constraints (4.17) reads

H Lﬁ%# )2l LB%M LB%M
L(X,) <a OLo Fgw> _p,2 DVa . OLa

[y =0 (onSr),

(4.20)
and it does not lead to new constraints because they allow to determine the functions fﬁo‘v oy (0N S7) .
The tangency condition on the pre-metricity constraints (4.19) gives

89/)0 B agpo Vagpo B 9950 Prw 99po

2
Fopquw = D (goxrﬁp + goal), + 3gapT§M> ; (onSr), (4.21)

and it does not lead either to new constraints. But the tangency condition on the torsion constraints (4.12))
does lead to new constraints

1 1 1 1
1% o .
L(X)) <T/§iY - 735‘57’57 + 35$‘TMB> = Tg‘%y — 73525 [L‘W, + 35$TMB7V =0 ; (onS7).

The tangency condition on these new constraints leads to

1 1 1 1
L(X)\) <T506'y,1/ - gfng;/f%u + 35$T5[3,y> = fgw,r - gégfﬁ'yuj + gd'? 5[31,,7 =0; (onSyp) ,

which are not new constraints, but equations for the functions fgv v Therefore, in the submanifold
Ssn, — St defined by these constraints there are semiholonomic multivector fields solutions to the field
equations, which are tangent to Sgy,.

Summarizing, we have proved that:

Theorem 4.1. There exists a submanifold i : Ss, — J'm where there are semi-holonomic multivector
fields which are solutions to the field equations (1.4) and are tangent to Sgy,. This submanifold is locally
defined in J'm by the constraints

AV = aiH_aLigmopg =0,
0w O 777
Mpop = Yooy — Jorlny — oAl pe — ggpanu =0,
B, = T8 - 305Th + 00T =0,
M = T~ 308l + 0TI, =0

These constraints are not independent all of them. For instance, the pre-metricity constraints 12,4, ;,
are symmetric in the indices o, p and the constraints tg‘7 and Tgv ,, are skewsymmetric in the indices 3, .

Proposition 4.5. The general expression of the semi-holonomic multivector fields which are solutions to

the field equations (1.4) on Sy, are

3

0 0 0 0 P
Xe= N\ g0 T 2 <9W + fpw) +T5 0 5ma + [ pa— |+ (422
v=0 O p<o 090 O9po.1 (91“57 : 8F,3%u
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where, on the points of Ssp,

2
prT,LL,l/ = D (go’AFMp + gp)\FMO' + 3ng'TAM> )

fgww = Fﬁv v /\ + F//\wrg/\ﬂ/ + ngw + ngw )
for every Cg,,, € C°°(J') and Kg, € C>®(Jn) satisfying that, on Sy,

A A
ngw = Cﬁ/“’(sa v K =0 Kyt K3 3w =0,

1 A A A
Kigyw = —30BK3 }W—F L = Tapy Fa}

a P
+ 5[F >\+ 5[ M’Y]F

A A
mlv p pA Y 5f¥F I 5[0[F s

BT o v AN P ],

Proof. The functions f,,,, are given by Now, from we obtain that
( 02 H o2 L

— rs =0 ; (onSy),
agpaag;w agpaaguu B%>\> sh

and therefore (4.20) becomes

. 2H oL
v 811%789/,0 89/}0

fg'yu,y> =0 ; (On Ssh) .

A particular solution to these equations is

Fe i =Th Do+ 0 T8, 5 (onSg).

Now, we need to find a general solution g, to the homogeneous equation, which is just @.15), but
on Sgp,. Thus, proceeding as in the proof of Proposition 4.3 we obtain that

hg%ﬂl/ = Cg’y,ul/ + Kg'y,uy ) (on Ssh) )
for Cppp € C°(J'm) and K, € C*°(J'n) satisfying that
Chmw =Couwds , Kiw=0 ., Kz, +EK5,, =0 ; (onSgy).

By construction, the solutions obtained in this way satisfy all the tangent conditions on the constraints
given in Theorem .1} except
L(Xy)rGy, =0 ; (onSgp);

and these equations lead to the last conditions. O

Comments:

* Itis important to point out that, up to the torsion constraints tgv’ all the other constraints appear as
a consequence of demanding the semiholonomy condition on the multivector fields solution to the

field equations (1.4).

* From the constraints m,,, = 0 and ¢t3_ = 0in Theorem@ and Proposition @ we obtain that
TG, =0 < T =0 < Vig=0.

Thus, any of these conditions is necessary and sufficient to assure that the connection becomes
the Levi-Civita connection. This result completes the already known fact that the vanishing of the
trace torsion is sufficient for the connection to be the Levi-Civita connection (see, for instance,
(12} 20]).
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Holonomic multivector fields (elements of ker}; Q.. .): Integrability constraints

The last step is to look for holonomic (i.e., integrable and semiholonomic) multivector fields. Locally, a
multivector field is integrable if [X,,, X,,] = 0 for every i, v = 0,1, 2, 3. In any open of U C Sy where
this condition holds, there exist integrable sections for the multivector field defined on 7w(U). In general,
integrable multivector fields could only exist in a submanifold Sy of S,j,. In any case, computing where
the different multivector fields we have found are integrable is, in general, a complicate task. In this
section we outline some guidelines in order to solve this problem.

Consider the following general expression

0 0 0 0 0
X, X, ]|=F¢ Fog— 4+ F3e—— Fg ——+FY — =0; San) -
[ B v] D€ + o;ﬁ < afB Oap t Fape 8ga,3,e> + L'gy 8{*%7 T FBye al—‘g’y,e ; (on Sgp)

Next, we have to take into account (#.22). First, the coefficients F'“|s,, = 0, necessarily (and this is
the reason for imposing the vector field to vanish, which is a stronger condition than being inside the
distribution). From the conditions F,zls,, = 0, we derive that

fpau,l/ - fpau,u =0 ; (onSy).

which are new restrictions on the functions I'g, e specifically
2
: A A A A A
Lpouv = gP’YF?u)\F,u}U + gG”YF?V)\F,u}p + gﬂkr[/uf,y} + gU}\F[Mp,V} + ggPUT)\[u,V]
= 9oAKfop + 902K + 2000 Tn, T, =0 5 (on Sap), (4.23)

where the functions K E‘W " arise from proposition@ (Observe that these constraints are symmetric in the
indices p, o and skewsymmetric in the indices p, /). In a similar way, from the conditions F’ gv ls., =0,
we obtain that

fg'yu,y - fg'yu,u =0 ; (onSs),

which impose some restrictions on the possible solutions, namely:
A A
Cop) = Tipulon T Tslon,; 3 (nSa),
A A )
KE’Y»[HV} =T FgA - ng,u] - Cﬁ[ul/]égj ) (01'1 Ssh) .

[y,V] [y

The coefficients F,g - vanish automatically on Sy, as long as ( Savuw = oy u)’gsh = 0. Finally, the
conditions Fig. = = 0 lead to a system of PDE on the functions Couws K gw v which may originate new
constraints. The tangency conditions on the constraints 7,4, give

A A A A A
9arKipu e T 90 Koy e = —29086T0uox = 2908T1,eUon = 29a8Tm on e
—9orne K gy — 987K, 5 (0N Sen) .

In what follows, we will denote j;: Sy — J L7 the constraint submanifold defined by all the con-
straints c"¥, Mg 4, t%‘v, fr’g%V and ,4,,,,. This is the submanifold where there exist holonomic multi-
vector fields solution to the field equations which are tangent to Sy, as it is shown in Proposition
Notice that Sy is a subbundle of J L over E and M and, thus, we have the natural submersions

7TJ1c:7T10jf:Sf—>E , fr]lc:ﬁlojf:Sf—}M.
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4.2.3 Symmetries and gauge symmetries
Gauge symmetries of the Einstein-Palatini model

Proposition 4.6. The natural gauge symmetries for the Einstein-Palatini model are the vector fields
X € X(J'7) whose local expressions are

« a « 8 oo
X = C50% 7o o + D,Jcﬁ(s,yW , CgeC>®(J'r) ; (onSy).
VK

Proof. Consider a vector field

0 0 0 0
X:f”@ Z <fpg —I—fpgua ) —|—f/3,yara +fﬂ,yuarg :{(Jlﬂ') .
p<o Vo1

As Sy is a bundle over M, clearly X is ﬁ]lc—vertical if, and only if, it is 7l-vertical. Therefore 7’r}<X =0
if, and only if, f# = 0. Furthermore

OH oH ., QLM
i(X)QﬁEp = Tfpg + Wfﬁ,y diz — Z 9 fpodrﬁy A d3xu
p<o 79Po By p<o ZIpo
aLB’Y»
_Z 9 — 15,4900 NP3, =0.
p<o 9po

After doing the pullback j i(X)Qzp,, we obtain the terms j5dl', = 3dI'0, | + §o5dTy, — §85dT.

As every coefficient must vanish, taking in particular the corresponding to the factor dF‘(lﬁv), we obtain

that f,s|s, = 0. Indeed:

0_5B(3guug’y>\ 69;wgu)\ praT_Z qu+fAu):>fpa—O ; (OnSf)~

p<o pa

Using these results, the problem is reduced to find fg,y € C°°(J1r) such that

fiy 8(;;% ! = 0 ; (onSy), (4.24)
I8y 8611];{ = 0 ; (onSy). (4.25)
Multiplying @.24) by g,.,9. We obtain:
foy + 155 = Frg05 + [rg05 + (frsg"™ — f159%% )98y 5 (onSy).

This system has two kinds of solutions. First, there are the trace solutions, given by f E‘,Y = Cg,y = Cpdy,
for every arbitrary function Cz € C°°(J'm) [20]. Second, for other solutions fgv’ we have that K =
fg, —C%., \yith Cy = f7,. Contracting indices «, 3 we obtain K., = 0. Since ({.24) are lineal, K§
are also solutions, therefore

1
2(KO‘ —i—K“)g 98y =

BW(K§‘7+ 95) = 2(Kp, + Kg,)g” = —g” V(KG, +K55) =0 ; (on Sy) ,

RS, + K3y = iy g5, = K + Kl =
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which implies K977 = 0, thus K3, + K73 = 0. These are called the torsion solutions. Both kinds of
solutions fulfil (.23); in fact,

OH

05(53 ara = oCg (guﬁl_‘:u + gHTFﬁT _ gTBF//jT _ guurﬁy> =0 ; (on&p);
GH

Kivgrg = @ (K50 0+ 9" ) — K50V T = K0T )

1
= oK§,9" TS, = oKG, " (300, — 5 7Tha) =0 5 (onSp).
Now we impose the tangency condition on the torsion constraints
1
0= L(X)t5y = figy ~ 3% i + 0 firp =2Kg, =0 5 (on&p).

The trace solutions are tangent, but the torsion are not. Before checking the other constraints, let us
impose the condition of being natural. The local conditions for a 77! -vertical vector field to be natural are
that f,s, fg7 are 7 '-projectable, that foou = Dy fpo, and that fﬁw =D, fg“,y. In our case, these condi-
tions imply that Cg € C°°(J'm) are 7'-projectable, that f§ |5, = 6D,Cp, and that fyo |5, = 0.
The tangency condition on the pre-metricity constraints is

2
0 = L(X)mpou = L(X) <gp0,u - gaAF;))p - gp,\F;)J - 39pch/<\u>

2
= Joon = 9030,Cu = 9205Cu = 3050(Cr0; = Cud3) =0 3 (on Sp).

8LB’Y7U
As fg‘,y\sf = Cpdg, then #fg%a = 0 (see , and hence
v

dog®”?

Guv

aLﬁ%

X)eh” =
L(X)e Do

(CoTga + T30y = Calga = ThCy ) = 05— f3, . =0 5 (onS)).

The tangency condition on 73, , involves only the functions f Gy

1 1
0= L(X)T?;%V - f[%’v],u o §5§fﬁﬂ,y + gésf[ig],y ;  (on&y).
The trace solutions fulfil this condition automatically. Finally, the tangency condition for the integrability
constraints (4.23) holds:
: A A A A
L(X)Zpa,,uz/ = gP'YC[VFu]O' + gp,yr[wcm + ggVC[VFM]p + gU,YF[VpCM]
+ gPUC[HV} + gPUC[NV] - 29/000[#1/} =0 ; (on Sf) .

Lagrangian symmetries of the Einstein-Palatini model

Let F be a diffeomorphism in M. For every # € M, if g, is a metric in T, M, then F.g, = (F~1)*(g.)
is also a metric with the same signature as g,. In the same way, as a connection I, is a (1, 1)-tensor in
T, M [35], denoting also by F} the induced action of F' on the tensor algebra, we define:

Definition 4.1. Let [': M — M be a diffeomorphism. The canonical lift of F' to the bundle E is
the diffeomorphism F: E — E defined as follows: for every (x,g.,1'z) € E, then F(x,g;, ) =
(F(x), Fygz, FixT'z) (Thus mo F = F o).

Let Z € X(M). The canonical lift of Z to the bundle E is the vector field Y; € X(E) whose
associated local one-parameter groups of diffeomorphisms F; are the canonical lifts to the bundle E of
the local one-parameter groups of diffeomorphisms F; of Z.
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0
In coordinates, if Z = f#(z)=— € X(M), the canonical lift of Z to the bundle £ — M is

Oz
0 oA of 0
p !Li -_
Yz o a§< < Fpa it 5o 59,\a> D0

(L O b 0P 1 82]““) 9 xm),

o T B T 9 U T org,
Furthermore, every diffeomorphism in E induces a diffeomorphism in .J' 7. The vector fields generating

these transformations are canonical liftings X = j'Y, for Y € X(E). Hence, for the above ones we
have

. ) o> DA P
ly, — m_—_ _
7Yy " ; 590+ et | 5o

82fl/ 62f1/ afu afu 8]”’ 9
— Z ( xaaxuguﬁ + axﬁax“gau + axagl/ﬁ,u + Wgay”u + 6$#ga6 V> -

99ap,u
ofc . afr .. o . f N\ 0
* <a X~ 5~ 5t~ aabom

ors,
of* .\ of O L Af
+ (a 5D = 508w~ B Lo ~ g Lo
N ana N 62]0)\ Fa B 82f)\ Fa B 83fa 8
ox ok P axﬂaxu M 919k P 9aBaT Hat arg.
d d
= fﬂi"i_ a,B a,B +Ylg a +Yﬁ a %(Jlﬂ)

We have that Lgp is invariant under diffeomorphisms (using the constraints ¢*”). Then, for every
Z € X(M), we have that L(jlYZ)EEp\gf = 0. In addition, j'Y7 are tangent to Sy. In fact, as they
are natural vector fields that leave the Einstein-Palatini Lagrangian invariant, then the corresponding
Euler-Lagrange equations are also invariant, and hence for the constraints c¢*¥ we have that

i v By,A
oft s, of 5u> <6H oLy

L(j'Yz)e" = — (

927 T 905% ) \ 89,0 ~ 0gpm FB~M>:0 i (onSy);

while for the other constraints, after a long calculation, we obtain

LG Y2 g = (~ 2028~ S5y~ 0302 ) mas = 05 on 8.

L(j'Yz)th, = <‘;fiagag gf 3N ‘;fw 5”) , =0; (onSyp),

LG'Y2)rG,, = <gfa525%’55 - giéi“é"f% gfoéA(;,,éT ng 5i“5p5") "o = 0; (0n Sp)
L' Y2 )i pop = ( gf = 05008) — gi 50606, — gf S 0,058) — gf ~ 535553) iapry = 0; (on Sp) .

Thus, these vector fields are natural infinitesimal Lagrangian symmetries and, hence, natural infinites-
imal Noether symmetries. Then an associated conserved quantity to each j'Y is &y, =i(J y,)e Lup
(see section[2.1.5), which has the local expression:

&y, =i(j'Y )0y = (LOVHYE, — H )Pz, + fALEVdATG, A day, -
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Finally, given a section v~ solution the field equations, the Noether current associated with j'Y7 is
Vi, = V(LG (VS =T af") — " Lep)d’a,

Comment: The term “gauge” is also used in physics to refer the invariance of the equations with respect
to changes of variables in the base manifold M. Nevertheless, in our geometric formalism, these are
actually the natural symmetries that we have studied in this Section, and they are mathematically different
from the geometric gauge symmetries that we have analysed in the previous Section.

4.3 The Metric-Affine model: Hamiltonian formalism

4.3.1 Canonical Hamiltonian formalism

The multisymplectic Hamiltonian formalism for second-order field theories is presented in chapter [I]
(See, for instance, [23} 132, 85]] for the general setting of the multisymplectic Hamiltonian formalism for
first-order field theories).

Consider the quotient bundle J'7* = M= /A$(T*E) (where AT(T*E) is the bundle of 7-semibasic
4-forms in E), which is called the restricted multimomentum bundle of E, and is endowed with the
natural projections

m: Jir* - E , T=mor: Ji\n* = M .o Mm— Jiat
Induced local coordinates in J'7* are (z*, 9o, I's PABE ), (0 < o < B < 3).

The Legendre transformation FLgp: J Lr — J'n* (see [33] for the definition) is given, for the
Einstein-Palatini Lagrangian, by

FLlpp at =" FLpp gap =9gap  FLpp I's, =T3,

oL oL
0, Flgy Pt = e

— — [P — Q((gugﬂv _ 5Bglw> ’
Ogap,p gy ° : "

FLgp" paﬁ’“ =

and p®## and pg%“ are called the momentum coordinates of the metric and the connection, respectively.

We have that, for every jlo € J'r,

1 0 0 0 0
0 1 0 00
0 0 1 00
TieFLer = | 0 00 0
2
L
0 ot 000
GuAOL By
Locally we have that
0 0
Jebu T [ o<azp<s

Proposition 4.7. P = FLgp(J'7) is a closed submanifold of J'7*, which is diffeomorphic to E.

Proof. From (4.26) we have that P is locally defined by the constraints
P =0 p = 0(8he™ 839" (4.27)

which remove the degrees of freedom in the fibers of the projection 7. O
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If : P—J'7* is the natural embedding, we denote by
Tp=T70):P—FE , Tp=TopP—->M

the restrictions to P of the natural projections 7 and 7. Then, this Proposition states that 7p is a diffeo-
morphism.

Proposition 4.8. Lgp is an almost-regular Lagrangian density.

Proof. We prove the three conditions that define this concept: First, as we have seen, P is a closed
submanifold of J'7*. Second, as dim P = rank(T;14F Lgp) = 78, for every jle € Jim, then
F Lgp is a submersion onto its image. Finally, taking into account Proposition 4.7, we conclude that the
fibers of the Legendre map, (FLgp) 1 (FL(jL4)), are just the fibers of the projection 7', and they are
connected submanifolds of .J'7 (recall that J'7 is connected because we are considering metrics with
fixed signature). O

As a consequence of this Proposition, the existence of the Hamiltonian formalism for this system
is assured (see, for instance, [85]] for the details on this construction). In particular, let FLgp the map
defined by FLgp = j o FLp. Then, tthe Poincaré-Cartan form Q. is FLyp-projectable and then
there exists Qg € 24(P) such that Qi = FLEp" Qrpp, which is called the Hamilton-Cartan form.

In this way we have constructed the Hamiltonian system (P, Qg, TP, {0}). In order to do a local
analysis of the Hamiltonian formalism for this system, we can use two kinds of coordinates on P: the
so-called non-momenta and pure connection coordinates.

4.3.2 Non-momenta coordinates

Bearing in mind Proposition we can take (27, g0, I'3. ) as local coordinates in P, with 0 < p <
o < 3. These are the non-momenta coordinates of P. Using them, the local expression of {2z is the
same as that of Q. (see (#.3)). As a consequence, the Hamiltonian analysis of the system is similar to
that in the Lagrangian formalism (up to the analysis of the holonomy).

Note that the functions L2"** and H introduced in @) and @2) are also FLEp-projectable and,
hence, we commit an abuse of notation denoting the corresponding functions of C*°(P) with the same
simbols. Then, for a 7p-transverse multivector field X € X*(P), whose local expression in these

coordinates is
3

3
0 0 0
X= A= A (g + S g+ s |
v=0 v=0 Oz¥ p<o 8gp0 arg’Y
the local expression of equation for multivector fields (T.4) for the Hamiltonian formalism is
OH aLIB%M
— f8 . 2 = 0, (4.28)
89/}0 agpa
OH oL
+ " foop—mo— = 0, (4.29)
E)Fg7 pot 09p0

together with other equalities which are consequence of these two sets of equations. This system of
equations is the same as and {4.8] and, therefore, the analysis made in Section[4.2.2]is valid here.

Proposition 4.9 (Constraints). A necessary condition for the existence of solutions to the system of
equations (4.28) and (.29) (and, in particular, (4.28))) is that the following equalities hold
1 1
Ty = 30510, — 30515 -
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These constraints define the submanifold j;: Py — P.

Proof. The proof is the same than for Propositions (4.10) and (4.2). They are also the projections of the
torsion constraints by the Legendre map. O

Finally, the tangency conditions of X for these constraints on P; are

o 1 v a pv .
L(XV)<TB7_§5BT 357 1/,8) (fﬁ’yl/_ 356 v,V 357 1/5,1/) =0 ) (On Pf)v

which does not lead to new constraints. Notice that these results about the Hamiltonian constraints are
coherent with the comment in Section m about the fact that, up to the torsion constraints to‘v, all the
other Lagrangian constraints appear as a consequence of demanding the semiholonomy condition for the
solutions to the Lagrangian field equations and, hence, they cannot be projectable functions under the
Legendre map [21]. In fact, a simple computation shows that

L(X)c" #0, L(X)mepu # 0, L(X)rG,, #0 ; forsome X € ker(FLgp)s = ker(FLEp)«

which are the necessary and sufficient conditions for these functions not to be FL,p-projectable. In the
same way, the integrability Lagrangian constraints are not F L{p-projectable either.

Proposition 4.10 (Solutions). The solutions to the Hamiltonian field equations {@.28)) and {.29)) are

3 3
0
Xy = /\ X, /\ (8 =+ (T, T%\ + Cp0% + KEW)W
v=0 = By
2 .9
+ > (goal', + 9oalhy + 3 ngT)\#)ﬁ . (onPp);  (4.30)
p<o pa

with Cg,, Kg. , € C (Py) such that, on the points of Py, they satisfy

— H " _

K, =0, Kg +K;, =0, 4.31)
1., ., v

(B _§6% Vv FM[VFBP\ + 5[BF 2L 5[BFW A (4.32)

Proof. From Proposition[4.3|and (.10), we obtain (4.30) and (4.31), and the tangency conditions on the
torsion constraints lead to we obtain (4.32)). O

do

Finally, the integrability condition is [X,, X, ||p, = 0. The vanishing of the coefficients of 5
Jop
not lead to new constraints, but they do impose new restrictions for the possible solutions:

go"\K[)l\'Bu] + gﬂ/\K[)z\/ozu] + QQaBTWFUA 0 ; (onPy).

The vanishing of the coefficients of lead to a system of first order PDE on the functions ng ., and

KO[

By This system of PDE has solutions everywhere on Py, as it is shown in Proposition
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The following diagram summarizes this situation:

(4.33)

The study of the gauge vector fields in the Hamiltonian formalism is simpler than in the Lagrangian
one. In fact:

Proposition 4.11 (Gauge symmetries). The gauge symmetries of the system are

0
X = 0560‘ o ,
! arﬁfv

Cge C*(P) ; (onPy).

Proof. A T-vertical vector field has the local expression:

0

d
X=) fooz—+ 15700 -
poest 09po "/GFBV

The analysis of the equation (X )2 = 0 is analogous as in Proposition We find that f,, = 0 and
[y, = Cd5 + K., on the points of P; that is, they are a combination of a trace and a torsion solution;
but the torsion solutions are not tangent to Py. O

The multiple solutions of the system are given by the functions Cgv ,and K§  (see (4.30)). The

B,y
functions g‘,y ,, are related to the gauge freedom, but the former ones K ‘517 ,, are not.

4.3.3 Pure-connection coordinates

The non-momenta coordinates arise in a natural way from the structure of the manifolds, but their use
turn out to be very similar to the analysis made in the Lagrangian formalism, thus providing little extra
understanding about the theory. A more interesting coordinates can be obtained from the second set of
constraints in (4.27)

Pt =0 (55957 - 529’”) : (4.34)
that is, the momenta of the connection can be obtained from the metric. The converse is also true; in fact:
Lemma 4.1. Denoting T := 1/ | det(p/i®")|, we have that

gaﬁ - _ 1 pﬂa,ﬂ — épua,ﬂ
3 0 H T w
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Proof. Contracting the indices v and 3 on (4.34) we obtain
PUH = —3pgH |

which is the first equality. Now, computing the determinant, as ¢ = /| det(g,)
second equality holds:

, we obtain that the

| det(py*)| = 310" det(g,)| " <= T =90,

O]

It is interesting to point out that all the results can be extended to an arbitrary dimension m > 2; but
T is proportional to o only for m = 4.

Since the degrees of freedom of g,5 and P are not equal, equation (4.34) has several implicit

restrictions. In fact, using Lemma [4.1] to substitute the metric for momenta in (4.34) we obtain the
constraints 1 )
By — g(ggpzuﬁ — g(ggpzﬁ,v ’

«

which are very similar to the torsion constraints. Moreover, as g, = gga, from Lemma @ we have

that pﬁo‘”g = pﬁﬂ *“. Therefore, the only degrees of freedom for the momenta of the connection are the
symmetric part of pﬁﬁ " which equals the degrees of freedom of the metric.

Denoting p®? := pr®”, we can consider the set of coordinates (z*, I'g . pP?)in P, with 0 < p <
o < 3, which are called pure-connection coordinates. The relation between these coordinates and the
non-momenta ones is given by the following map

\IJ(.%')\, gp0'7 Fgfy) = (aj‘“’ Fg"y?ppa = Q((sggﬁ’y - 55.9“7)) )
which is invertible, and hence a local diffeomorphism, by Lemma4.1]

In pure-connection coordinates the Hamiltonian function has the local expression

1 g
H = —2p (1,19, - T3,15,)

and the Hamilton-Cartan form Qp is
1
Qp = dHAd'z+ éagjdpﬂ7 AT, A Py,
1 1
=5 0adp" AdDG, A dPay — So0dp"Y AdDG, A dPay

A general transverse locally decomposable multivector field in P has the local expression in pure-
connection coordinates:

3 A [0 9 9
Xa= A% = A (o g+ Sl
bt bt oxv 8F%’Y i<s Op*P
Then the field equations (L.4)) are locally

1 0H 1

1
() apop T 6lesn T gluas =0 435)
H 1 1
aara — 367+ 3067 =0, (4.36)
By
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Next the results previously described in the above Section 4.3.2]are recovered and extended:

The constraints and gauge vector fields are related to the connection, where both the non-momenta
and pure-connection coordinates have the same expression. Therefore:

Proposition 4.12 (Constraints). A necessary condition for the existence of solutions to the system of
equations [@.35) and @.30) (and, in particular, (4.36))) is that the following equalities hold
T = g(ngVVv 357 VB

These constraints define the submanifold j;: Py — P.

Proof. They are the prOJeCtlons of the torsion constraints by the Legendre map. Alternatively, they can
be deduced from ([@.36) imposing that G47 — G2 = 0. O

Taking into account the results presented in the above Section 4.3.2] we have:

Proposition 4.13 (Solutions). The solutions to the Hamiltonian field equation (1.4)) in the pure-connection
coordinates are:

3 3
0
Xy = /\ X, /\ (8 ” F Do+ Cp oS + Kg‘%,/)iara
v=0 v=0 By
0
+ Z<_paupfu _pﬁﬂr‘ju - %paﬂTﬁy +paﬁrﬁy)8paﬁ ; (onPy);
as<p
with Cg ., K., € C% (Py) such that, on the points of Py, they satisfy
_ i moo_
Kﬁw, =0, Kﬁ% Kwﬁu =0,
1 14 14
fin = 30— Tap T+ 5[5T 7T 5[5% e

The integrability condition is

0 0 0

0=1[X,,X,] = P + P o + > Fop s 3 (onPp).
By a<p P

We have that F*“|p ; = 0, and imposing Foslp ; = 0, we derive the following condition on the possible

solutions

chﬁ

1
Bo )
o] TP K[WV] p K, [pov] — Tw ox 3 (onPp).

The conditions Fg |p; = 0lead to a system of PDE on the functions C,, g and K 3, Which has solutions
everywhere on Py, as it is shown in Proposition 4.19}

Proposition 4.14 (Gauge symmetries). The gauge symmetries of the system are:

0
X = 0653(91—‘0‘ , Cﬁ S COO(Pf) ; (on Pf) .
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Proof. For a generic vertical vector field

0 0
— fa af
X = fg, oy + ;B SR

we have that

OH OH 1 1
. _ of3 a 4 I3 B fo 3
Z(X)QH - apaﬁG + Wfﬁ’y d*x — <355G 7 — 36aGu7> d]'_‘ﬁ’y Ad Ly
a<p By
1 1 1 1
14 1Y " ey v 3 _
+ <6 Oéﬂ—’_gfﬁa_ géﬁfya— 6(55 Vﬂ) dgpo'/\d xu—O.

Doing the pullback to Py, we have that j*dT'%. = 2dI'?, | + L62dT7, — 169dT7,. As every coefficient
£hep / By — 25 (By) T 6985 ry T 605 B ry
must vanish, taking in particular the corresponding to the factor dF?Bv) and contracting with 69, we
obtain that G#7 = 0. Therefore we have
OH
a8y = 0 ; (onPp),
T,

1 1 1 1
—6f55+6fga+65’g 5a+655 vs = 0 ;3 (onPy).
Following the same argument as in 4.6 these equations have two kinds of solutions on P;: trace solu-
tions, f& = C3d6%, and torsion solutions, f& = k% ; with k2. + k%, = 0 and k/,, = 0. Likewise, onl
By B By By By T MyB my y
the trace solutions are tangent to P;. ]

4.3.4 Intrinsic interpretation of the pure-connection coordinates

Now we present a fibered manifold and a Hamiltonian function which involve only the connection and
we prove that this system is equivalent to the Hamiltonian formalism for the Metric-Affine action.

The configuration bundle for this pure-connection system is the bundle 7r: Ep — M, where
M is the connected orientable 4-dimensional manifold representing space-time, as above, and Fr =
C(LM), the bundle of connections on M; that is, linear connections in TM. Then, consider the bun-
dles Mnr = A3(T*Er) and Ji7f = Mmp/A$(T*Er), with local coordinates (z#, ng,p,pgw’“) and
(z#, TG, paVH) respectively.

Consider a Hamiltonian section h: J'7* — M of the projection ur: Mz — Jimf. In a local
chart of natural coordinates, U C Jln}., this Hamiltonian section is specified by a local Hamiltonian

function Hp € C*°(U) such that hp(z#, Fg,y,pg%“) = (aH, I'g.p= —Hrp(z", Ff)(,,pg"’”),pgw) (see
[[13} 185]]). This Hamiltonian function is

1
Hy = —p™ (T3, 15, — 117, ) -

The bundle M7 is canonically endowed with the corresponding multisymplectic Liouville 5-form Qp €
£2°(Mrr). Then, the Hamilton-Cartan form is

Q. = hpQr = dH A d*z — dp# A dTG, A dPay, € 2°(T 7).
Furthermore, we introduce the following constraints on J 1771’2:

«

1 1
By, — g(;gplljun _ 5552955’7 7 pﬁo"ﬂ — pﬁﬁ’o‘.
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Letjgr: Pr — J 17r1’5 be the submanifold locally defined by these constraints. Then we can construct the
premultisymplectic form

* ]' vV, (63
O =i, = dH AdYz+ gagdp,ﬁﬁ AT A dPay,
U, (0% ]' 14 (0%
&@mmAﬂmA&%—?@mwAﬂ%A&%.

Proposition 4.15. There exists a diffeomorphism (: Pr — P such that Qg = (*Qp and hence the
Hamiltonian systems (Pr, Qpp., TPr,{0}) and (P, g, TP,{0}) are equivalents.

Proof. Using the pure-connection coordinates in P, the diffeomorphism is locally given by
Cat=at (TR =T§ , =g

Its inverse acting on the momenta is given by

1% * * 1
et (T, =T, U = ¢ (O - ) = o — Lot
and is an exhaustive map because Im({ ') = Pr, as a consequence of the reasoning done before in this
paragraph. The equality Qf,, = (*Qp is obtained straightforwardly from the local expressions of these
forms. =

4.4 Relation with the Einstein-Hilbert model

The Einstein-Hilbert model can be recovered from the Einstein-Palatini (metric-affine) model by de-
manding the connection to be the Levi-Civita connection associated with the metric [20]]. In this section
we will show this equivalence geometrically.

In order to avoid confusing within the notation of this chapter and the elements of the Eisntein-Hilbert
model presented in chapter |3, we denote the bundle of metric as: ns: 2 — M. The fibres are spaces
of Lorentz metrics on M; that is, for every x € M, the fiber 7y, L(x) is the set of metrics with signature
(— + ++) acting on T, M. The adapted fiber coordinates in E are (z*, go3).

It is proved [[16] [87]] that there are first-order (regular) Lagrangians in J'7s; which are equivalent to
the the Einstein-Hilbert Lagrangian. As it is shown in that allows a description of the Einstein-
Hilbert model in .J! 5, (with coordinates (z*, g, 3, 9a,u) Which is geometrically equivalent to the Hamil-
tonian description of the Einstein-Hilbert model. The first-order Lagrangian density proposed in [86] (see
for more details) is £ = L d*x, where the Lagrangian function is

DLBHY

L = Lo — Z gaﬁ,ug)\a,VT S COO(JlﬁE) 5
a<p 9o
A<o
LB — "(35 Lolgireg? + g g — 2g°7gm)
Lo = 09°"{9" (9T h = 9ounThp) + Toplls — T2, 0051

where ', are the Christoffel symbols of the Levi-Civita connection associated with the metric g, 3. The
corresponding Poincaré-Cartan form is

Adgas APz, € 2°5(T'ny) .

Oy =dL Ad'z - Zd
a<p gaﬁu
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So we have the Lagrangian system (J'ms;, Oz, T'J 7y, €!) and, as the Lagrangian L is regular, then Q.+
is a multisymplectic form and the Lagrangian field equations have solutions everywhere in J 7.

In addition, the corresponding Legendre map FL: J'wy — Jlny" is a diffeomorphism [47]]. Then
we have the Hamilton-Cartan form Qj := ((F£)71)*Qz € £25(J'rs"). So we have the Hamiltonian
system (Jims", Q7 TJ'7s", {0}) and the corresponding Hamiltonian field equations have solutions
everywhere in J'7s". In addition, the solutions to the Lagrangian problem are in one-to-one correspon-
dence with thes solution to the Hamiltonian problem through the Legendre map.

4.4.1 Relation between the Einstein-Hilbert and the Metric-Affine models

The pre-metricity constraints determine the derivatives of the metric in function of the metric and the
connection. The converse, which is a similar result to the existence of the Levi-Civita connection, can be
formulated as follows:

Proposition 4.16. Let (M, g) be a (semi)-Riemmanian manifold of dimension m > 1 and C,, € C*(U),
1 < a < m, fixed functions defined on a open set U C M. Then there exists a unique linear connection
T" defined on U such that:

. 2
1. Pre-metricity: (V¥ g)po, = mgPUTf‘M.

o 1 A 1 A
2. Torsion: Tg,y = m 5% 1—1)\7 — m (53 T)\ﬁ
3. Gauge fixing: ng = Cq.

Proof. From the pre-metricity conditions we have

9T + 9" 90Ty, — To)

1 1
5.9“&(9,0#,0 + Gou,p — gpo,u) = Fﬁa + §(gua

1
+H(Ti\a5§ + Ti\p53 - gaﬂgpoTi\u) :
Using the torsion conditions and the gauge fixing we get

1 1 1
5 9" Gopo + oup = Gpou) = Tpo + mrﬁp o Cplg

2 m—1
and contracting the indices « and p and rearranging the terms:
ﬁ Pﬁo’ = %gwjg/w,a + Tn(’mll)ca .
Finally, incorporating this result to the previous equation, we conclude that
1 1 1
Fzéa = 59“1(9/)“,0 + Gopp = Gpou) — %guvgw’p(ggé + Ecpég )
which determines uniquely the connection in U. O

In order to establish the relation between both models, our standpoint is the Hamiltonian formalism
of the Einstein-Palatini model developed in Section #.3.2] So, let Py < P be the final constraint
submanifold for this last model. Then, consider the following local map:

&: Py — Jlny
(x“,gaﬁ,l“gv) H(ajﬂagaﬁagaﬂ,’y)

where g5, = gMI‘ﬁﬁ + g,gAFf;a + %ga,gT/{‘u. Notice that 7p 0 j = w5y 0 &.
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Lemma 4.2. Denoting by G the set of gauge symmetries obtained in Proposition we have that
ker & = G.

Proof. Consider a generic vector field X € X(P), tangent to Py,
0
X = f” —I—Zfaﬁa +f§~,ﬂ
gl
If X € ker &, then f# = 0 and f,g = 0. For the last coefficients we have:

2
0= 6X = ganfs + 9nFou + 5905 (55— 1) -

For the coefficients of the form fg = Cjsd5 for Cz € C>°(P), the condition holds. Now, for every

solution fgi/ to these equations, consider hj, = fﬁ7 f/\ﬁd which are also solutions because the
equation is lineal. Thus

2
garhds + gaahle — ggaﬂth =0. (4.37)

Notice that iy, = 0. Now, contracting with g“®, we obtain that h$ y = 0. Furthermore, as we are on the
points of Py, where the torsion constraints hold, this implies that h ho‘ﬁ = 0, and therefore they are
symmetric functions (for the indices 3). Now, if Sy 5 := ga ,\hi‘ 85 takmg into account the symmetry of
h%.,, we have that Sayg = Sag,, and from we obtain S,,3 = —S3,q. These two conditions hold

d
simultaneously only if Soy5 = 0. Therefore, h§ = 0, and hence ker &, = <C’/35§‘ or's > =G. ]

Let 73} be the manifold obtained making the quotient of P, (which is defined by the torsion con-
straints) by the gauge vector fields, and let the natural projection T],c : Pr— 77}. Then:

Theorem 4.2. 73} is locally diffeomorphic to J s, and hence to J'ws,".

Proof. Consider a smooth section ¢ of 7, and let {’ := {oc: P} — .J L7, From 1emma ker & D G;
therefore & does not depend on the section chosen. Moreover, ker &, C G and it is injective. Finally, it
is exhaustive because for every point of .J1 7y, its preimage contains the connection given by proposition
4.16| In conclusion, &' is a local diffeomorphism and then 7?} is (locally) diffeomorphic to J!7y. O

Then, a simple calculation in coordinates leads to the following result:

Proposition 4.17. Qp = Q7 = (FL o £)*Qy.

Comment: The comparison between the multiplicity of solutions of the Einstein-Hilbert and the metric-
affine models can help us to interpret some of the conditions. The multiplicity of the semi-holonomic
solutions of the Einstein-Hilbert model appears in the second derivative of the components of the metric
(in the Hamiltonian formalism using the non-momentum coordmates) As it is shown in chapter 3] they

are of the form (see [47]) Fupy = 3900 (T0al0s + Tsl00) + F" o8 Where
b b b g8 (P b b b _
Faﬁ sV Fﬁa LY Faﬁ;l«u ’ (FWT a8 T F afmn,t ch, B FaT,n B) =0.

The map £ transforms any section ¢ solution of the Einstein-Palatini model into a solution £*¢ of the
Einstein-Hilbert model. The functions C§. , in (#.30), corresponding to the gauge variation, get annihi-

lated by the action of £. Therefore, we can say that the functions ng u (corresponding to ) and F" 0By
(corresponding to £*¢) are related, as they are in one to one correspondence. Thelr conditions can be
related using this equivalence as it is shown in the following table: supposing that F" and K7

afiu,v By &
related, we have:
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Metric-Affine Einstein-Hilbert

A _ b b b b
K(W')/\ =0 < gaﬂ(FnT;a,B - Faﬂ;zﬁ —Fonrs = Farns
A A Ao _ _
JorKipg,) + 983 K0y + 2908T 0155 = < Fop ) =0
K3, =0 for every Fgﬁ o
1 v A 1 A Tw ’
Kot 300580+ T Uan = 390500 T
+%6%FQVFZ]A =0 for every Fahﬁ v
b _
for every Kg% u F[a Bl = 0

4.4.2 Integrability

In the (first-order) Einstein-Hilbert model, every point p € J!7y; is in the image of a section solution to
the field equations, Im(¢;,). Then J L7y, is the final manifold for this model. As a consequence of the
equivalence between both models, Py is also the final constraint submanifold for the Einstein-Palatini
model; that is:

Proposition 4.18. For every q € Py, there exists a section 1y solution to the Hamiltonian field equations
of the Metric-Affine model such that q € Tm(y)p).

Proof. Consider the solution () in the Einstein-Hilbert Hamiltonian formalism. Moreover, consider
¢: Jims — Py C P asection of ¢ such that ((£(q)) = ¢ which exists because ¢ is exhaustive. Therefore
q € Im(C o ¢¢(4)) and, in order to check that ¢ o ¢¢(q) is a solution, consider an arbitrary Y € X(P):

(Cope(g) (((Y)m) = (Copgq) (((Y)E Qey)
= (£0C0¢g(g) (1(EY)ey) = i (i(EY)y) = 0.

We have used that (£ o {)(p) = p because it is a section, and that ¢ (q) is a solution. Finally,
TpoJyo(ope =Ts0&0(0Pq) = Ts 0 Pe(q) = ldus ;

thus i = (0 pg(q) is a section of Tp o j¢ = Ty, and hence it is a solution. O

The Lagrangian counterpart of this result also holds, although it is not straightforward because we
are working with a singular field theory.

Proposition 4.19. For every p € Sy, there exists a holonomic section vz solution to the Lagrangian
field equations of the Metric-Affine model such that p € Im ().

Proof. Consider the diffeomorphism 7p: P — E stated in Proposition (in particular, it relates the
Lagrangian coordinates with the non-momenta coordinates). Then we have that 7 ! (W} (p)) € Py. Fur-
thermore there exists a solution to the Hamiltonian field equations ¢ such that 7 ! (7rJ1c (p)) € Im(Ym),
as it is shown in the above Proposition. Then, we are going to prove that the holonomic section v,
solution in the Lagrangian formalism is 1/, = j!(7p o ¥).

In fact, first observe that, for the Metric-Affine model, the fibers of the Legendre map FLpp are
the vertical fibers of 7l: Jim — E (since P = Im FLp is diffeomorphic to E), and then, as 9 is
a canonical lifting to J'7 of a section in E, we have that FL%p o ¢ = 9. Furthermore, 1 is a
solution to the Lagrangian field equations. Indeed, as F Lgp is a submersion, we can take a local basis of
X(J'7) made by vector fields {Ya, Z,}, where Y4 are FL$p-projectable and Z,, € ker (FLEp)«; and
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then the vector fields X4 = (FL%p)«Ya are a local basis for X(P). Therefore, taking into account that
FLEp o1 =1y and that ¢ is a solution to the Hamiltonian field equations,

VYri(Ya)Qepp = Yri(Ya)(FLEp Qm) = Y FLgp i(Xa)Qm
= (FLEp oY) i(Xa)Qu =¥y i(X)Qn =0;

and ¢} i(Z,)2z,p = O trivially. This allows us to conclude that 97 i(Y )z, , = 0, for every Y €
X(J'7), and hence 1) is is a solution to the Lagrangian field equations.

Finally, Im 1, C S¢. Indeed, equations and for ¢ imply that all the points in Im )
verify the constraints ¢** and m,s, . The constraints rg‘%y and i, are also satisfied because they arise
from the tangency condition on the semiholonomic constraints (see Section [4.2.2)) and the integrability
condition respectively; and then they are satisfied for holonomic sections which are solutions to the
Lagrangian field equations.

The following diagram summarizes the situation (see also the diagram (@.33))).

FL
Jir O Sy = PrCP
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Chapter 5

Conclusions and outlook

Summary of results

The study of the models of gravity has required the development of several general properties of multi-
symplectic systems.

* Following the work of [86, 87, we establish the constraints generated by the projectability of the
Poincaré-Cartan form. These constraints are related to the fact that the higher order velocities are
strong gauge vector fields. Therefore, in adequate circumstances, the theory is equivalent to a
lower order one [16, |87]].

* We proposed a new local characterization of the projectability of the Poincaré-Cartan form. Thanks
to it, the results have been transported to higher-order mechanical systems. Moreover, this charac-
terization is adequate for the local analysis of the different models of gravity studied.

* The concept of gauge freedom has been analyzed. We propose to use the term “gauge” to refer to
the non-regularity of the Poincaré-Cartan form. Therefore, the multiple solutions are characterized
by two sources: the gauge related, arising from gauge symmetries and related to the non-regularity;
and the non-gauge related, which arise from sources exclusive of field theories.

* The non-regularity of the Poincaré-Cartan form has other consequences, which are related to the
weak and strong gauge vector fields. We use this analysis to interpret the covariant Hamiltonian
formalism.

We studied in detail two models of Gravity: the Einstein-Hilbert model and the Metric-Affine (or
Einstein-Palatini) model. The first one is a singular second order field theory which, as a consequence
of its non-regularity, it is equivalent to a regular first order theory. The Metric-Affine model is a singular
first order field theory which has a gauge symmetry. When these symmetry is quoted out, both models
are equivalent. In both cases, a covariant Hamiltonian multisymplectic formalism has been presented. In
every situation, we explicitly write all semi-holonomic multivector fields solutions of the field equations.
A more exhaustive presentation of the results follows.

For the Einstein-Hilbert model:

* We have presented a multisymplectic covariant description of the Einstein-Hilbert model of Gen-
eral Relativity using a unified formulation joining both the Lagrangian and Hamiltonian for-
malisms.
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* Qur procedure consists in using the constraint algorithm to determine a submanifold of the higher-
order jet-multimomentum bundle W, where the field equations are compatible. The constraints
and (3.14), which define )V, are a natural consequence of the unified formalism and define
the Legendre map which allows to state the Hamiltonian formulation and the Hamilton-de Donder-
Weyl version of the Einstein equations.

* In the case of no energy-matter sources, among the new constraints, the physical relevant equations
are the primary constraints (3.16)) which, evaluated on the points of the holonomic sections, are just
the Einstein equations. They appear as constraints of the theory as a consequence of the singularity
of the Einstein-Hilbert model. The secondary constraints contain no physical information:
they are of geometrical nature and arise because we are using a manifold prepared for a second-
order theory of a Lagrangian which is physically equivalent to a first-order Lagrangian.

* O, is (m}op})-projectable and, as a consequence of this, in the Lagrangian formalism,the Poincaré-
Cartan form O, projects onto a form in .J 'z, which is not the Poincaré-Cartan form of any first-
order Lagrangian. Nevertheless, there is are first-order regular Lagrangians which are equivalent
to the Einstein-Hilbert Lagrangian[[16} 162} [72| 73], 186, [87]].The Lagrangian and Hamiltonian for-
malism of one of these Lagrangians have been analyzed in detail. .

* When we recover the Lagrangian formalism from the unified one, as a consequence of the sin-
gularity of the Einstein-Hilbert Lagrangian, solutions to the Euler-Lagrange field equations only
exist in a constraint submanifold Sy J37m. Furthermore, in the Lagrangian formalism, the
Lagrangian constraints arise as a consequence of demanding the holonomy condition for the solu-
tions to the field equations and the fact that the Hessian matrix of the Einstein-Hilbert Lagrangian
with respects to the highest-order coordinates in .J37 vanishes identically. Hence these kinds of
constraints are not projectable by the Legendre map.

* We construct a covariant multimomentum Hamiltonian formalism for the Einstein Hilbert model.
It has not gauge freedom, since the Hamilton-Cartan form is regular and P is diffeomorphic to
Jlmand Ji7*.

* The Hamiltonian formalism for the Einstein Hilbert is the same than the multimomentum Hamilto-
nian formalism for the regular 1st-order equivalent Lagrangian £ analysed in Section [3.1.4] thus,
proving again the equivalence between this equivalent Lagrangian and the Einstein-Hilbert model.

* When the energy-matter sources are present, some of the geometrical and physical characteristics
of the theory depend on the properties of the Lagrangian L, representing the source. In partic-
ular, the number of constraints arising from the constraint algorithm, the obtention of holonomic
multivector fields solution to the Lagrangian field equations, and the construction of the covariant
multimomentum formalism. This study has been done in detail for some cases of energy-matter
sources (those which we are called “of degree < 2”), which include as a particular case the energy-
matter sources coupled to the metric (for instance, the electromagnetic source or the perfect fluid).

* In all the cases, we have obtained explicitly all semiholonomic multivector fields representing
integrable distributions whose integral sections are solutions to the field equations.

And the results on the Metric-Affine model:

* We have presented a multisymplectic covariant description of the Lagrangian and Hamiltonian
formalisms of the Einstein-Palatini model of General Relativity (without energy-matter sources).
It is described by a first-order “metric-affine” Lagrangian which is (highly) degenerate and hence
it originates a theory with constraints and gauge content.
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* The Lagrangian field equations are expressed in terms of holonomic multivector fields which are
associated with distributions whose integral sections are the solutions to the theory. Then, we use
a constraint algorithm to determine a submanifold of the jet bundle J'7 where, first, there exist
semi-holonomic multivector fields which are solution to these equations and are tangent to this
submanifold, and second, these multivector field are integrable (i.e., holonomic). The constraints
arising from the algorithm determine where the image of the sections may lay.

* In coordinates, the Lagrangian field equations split into two kinds: the metric and the connection
equations (equations (4.6), @.7), (4.8)). In the same way, the Lagrangian constraints can be classi-
fied into three different types. First there are the torsion constraints, which impose strict limitations
on the torsion of the connection. Then we have the constraints which appear as a consequence of
demanding the semi-holonomy condition for the multivector field solutions (Theorem @4.1). In par-
ticular, the Euler-Lagrange equations themselves (which appear as constraints of the theory as a
consequence of the fact that the Poincaré-Cartan form is 7! -projectable and the equations are first-
order PDE’s), and specially the so-called pre-metricity constraints, which are closely related to
the metricity condition for the Levi-Civita connection. Only the tangency condition on the torsion
constraint lead also to new constraints. Finally, a family of additional integrability constraints ap-
pear as a consequence of demanding the integrability of the multivector fields which are solutions.
Only the initial the torsion constraints are projectable under the Legendre map F Lgp (because the
other ones appear as a consequence of demanding the (semi)holonomy of the solutions), and thus
they are the only ones that also appear in the Hamiltonian formalism (see [S7] for an analysis of
this subject for higher-order dynamical theories). We have obtained explicitly all semiholonomic
multivector fields solutions to the field equations (Proposition 4.22).

* We have done also a brief discussion about symmetries and conserved quantities, giving the ex-
pression of the natural Lagrangian symmetries, their conserved quantities and the corresponding
flows.

¢ The (covariant) multimomentum Hamiltonian formalism for the Einstein-Palatini model has been
also developed. The final constraint submanifold is also obtained in this formalism, and it is de-
fined by the F Lgp-projection of the torsion constraints (Proposition[4.9). The explicit expression
of the multivector field solutions is obtained (Proposition [4.13) and their integrability is briefly
analysed. The local description is given using two different kinds of coordinates: the non-momenta
coordinates which, as a consequence of the Legendre map, are the same as in the Lagrangian case,
and the pure-connection coordinates, where the momenta associated to the connection replace the
metric, resulting in metric-free coordinates. An intrinsic interpretation of these last coordinates is
also given.

* Analyzing the gauge content of the model, we have obtained the local expression of the natural
gauge vector fields, both in the Lagrangian and the Hamiltonian formalisms (Propositions and
@]). We recover the gauge symmetries discussed in [20], showing that there are no more.

* We have used the analysis of gauge freedom and constraints to establish the geometric relation
between the Einstein-Palatini and the Einstein-Hilbert models, including the relation between the
holonomic solutions in both formalisms. As it is known [[12] [20], it is possible to recover the
second by a gauge fixing in the first-one, which consists in imposing the trace of the torsion to
vanish. This equivalence has been studied in detail (Theorem[4.2]and Propositions and{4.17).

* Finally, using this equivalence, we have been able to prove that the constraint submanifolds Sy and
P obtained from the Lagrangian and Hamiltonian constraint algorithms, respectively (where there
exist multivector fields tangent to them, satisfying the geometric Lagrangian and Hamiltonian field
equations on them) are the (maximal) final constraint submanifolds where these multivector fields
are integrable; i.e., there are sections solutions to the field equations passing through every point

on them (Propositions .18 and 4.19).
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Further Research
Some lines of research or interesting problems derived from this work are the following:

* The reduction by symmetries is the procedure by which the field equations are reduced or simpli-
fied using symmetries and conserved quantities. It generalization to higher-order field theories has
several inherent obstacles.

* The concept of gauge vector field for field theories present here can be develop further. It can be
compared to other approaches, like Yang-Mills theories. It will be interesting to develop the elec-
tromagnetism, as it is the canonical example of gauge theory. Moreover, a geometric formulation
of non-vertical gauge vector fields could be investigated.

* The Einstein-Palatini model is only considered in this work without energy-matter sources. An
interesting problem is to analyse how the type of source influences the constraints, the gauge
freedom and the symmetries of the theory. We have the intention to present this study in a future

paper.

* The multisymplectic formalism has shown to be a powerful tool to analyse singular systems, with
the presence of constraints, symmetries and gauge freedom. Therefore the formalism could help to
understand other complicate models. Thus we want to study other generalized models of Gravity
(Lovelock, f(R)-theories, etc.), as well as classical versions of other models like string theory,
following the same procedures as in this dissertation.
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