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Abstract

The theories of gravity are one of the most important topics in theoretical physics and mathematical
physics nowadays. The classical formulation of gravity uses the Hilbert-Einstein Lagrangian, which is
a singular second-order Lagrangian; hence it requires a geometric theory for second-order field theories
which leads to several difficulties. Another standard formulation is the Einstein-Palatini or Metric-Affine,
which uses a singular first order Lagrangian.

Much work has been done with the aim of establishing the suitable geometrical structures for de-
scribing classical field theories. In particular, the multisymplectic formulation is the most general of all
of them and, in recent years, some works have considered a multisymplectic approach to gravity. This
formulation allows us to study and better understand several inherent characteristics of the models of
gravity.

The aim of this thesis is to use the multisymplectic formulation for first and second-order field the-
ories in order to obtain a complete covariant description of the Lagrangian and Hamiltonian formalisms
for the Einstein-Hilbert and the Metric-Affine models, and explain their characteristics; in particular:
order reduction, constraints, symmetries and gauge freedom.
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equations, Hilbert-Einstein action, Einstein-Palatini action and Metric-Affine models, Constraints, Gauge
symmetries.
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2.2.2 Application to higher-order mechanics . . . . . . . . . . . . . . . . . . . . . . . 29

3 Einstein-Hilbert 32

3.1 The Einstein-Hilbert model without energy-matter sources . . . . . . . . . . . . . . . . 33

3.1.1 The Einstein-Hilbert Lagrangian . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.1.2 Langrangian-Hamiltonian Unified Formalism . . . . . . . . . . . . . . . . . . . 34

3.1.3 Recovering the Lagrangian and Hamiltonian formalisms . . . . . . . . . . . . . 39

3.1.4 An equivalent first-order Lagrangian to Einstein-Hilbert . . . . . . . . . . . . . 45

3.2 The Einstein-Hilbert model with energy-matter sources . . . . . . . . . . . . . . . . . . 47

3.2.1 The Einstein-Hilbert Langrangian . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2.2 Langrangian-Hamiltonian Unified formalism . . . . . . . . . . . . . . . . . . . 48

3.2.3 Recovering the Lagrangian and Hamiltonian formalisms . . . . . . . . . . . . . 49

3.2.4 Example: Electromagnetic source . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.3 Symmetries for the Einstein-Hilbert model . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.A Solutions to the Hamiltonian equations for the Einstein-Hilbert model . . . . . . . . . . 53

3.A.1 Particular solution (without energy-matter sources) . . . . . . . . . . . . . . . . 54

3.A.2 General solution (without energy-matter sources) . . . . . . . . . . . . . . . . . 55

3.A.3 General solution (with energy-matter sources) . . . . . . . . . . . . . . . . . . . 58

4 Metric-Affine 60

4.1 The Einstein-Palatini Lagrangian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2 The Metric-Affine model: Lagrangian formalism . . . . . . . . . . . . . . . . . . . . . 61
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Introduction

Multisymplectic Formalism for Field Theories

In recent decades, a strong development in the intrinsic study of a wide variety of topics in theoretical
physics, control theory and applied mathematics has been done, using methods of differential geome-
try. Thus, the intrinsic formulation of Lagrangian and Hamiltonian formalisms has been developed for
autonomous and non-autonomous mechanics, as well as for field theories.

In particular, much work has been done in order to establish the geometrical structures for describing
classical field theories, both in the Lagrangian and the Hamiltonian formalisms. This study has been
carried out for first and higher-order field theories, and there are different kinds of geometrical models
for making a covariant description of them. In particular, there is the multisymplectic formulation [15,
51, 53, 74, 76, 77, 85], which is the most general way to study geometrically these kinds of theories,
and was introduced by Tulczyjew and other authors [42, 50, 68, 69]. They arise from the study of
multisymplectic manifolds and their properties (see [9, 10, 28] for general references).

In this formulation, the usual way of working consists in stating their Lagrangian formalism and jet
bundles are the appropriate domain for doing so [3, 7, 14, 30, 31, 42, 49, 50, 90]. Then, the Hamiltonian
formalism is constructed using bundles of forms; but the choice of the suitable multimomentum bundle
is not unique [33, 34], and different kinds of Hamiltonian formalisms can be developed, depending on
this choice and on the way of introducing the “Hamiltonian” [27, 59, 60, 81]. In this thesis we have taken
one of the most standard ways of defining Hamiltonian systems, which consists in using Hamiltonian
sections [13] (it can also be done taking Hamiltonian densities [13, 49, 89]). The relation between the
Lagrangian and the Hamiltonian formalisms is carried out by using the Legendre map associated with
the Lagrangian system, and it has been studied in the (hyper) regular case [13, 90], and in the singular or,
specifically, in the almost-regular case [23, 49, 89]. There is also a unified formulation of Lagrangian and
Hamiltonian formalisms: it is the so-called the Lagrangian-Hamiltonian unified formalism or Skinner-
Rusk formalism due to the authors’ names of the original paper [94], It is a generalization of the La-
grangian and Hamiltonian formalisms that compresses them into a single formalism. It was stated first
for autonomous mechanics [94], and later it was generalized for classical field theories [24, 29, 83]. One
of the major advantages of this formalism is the natural way in which the Legendre transformation and
the Hamiltonian formalism arise. In particular, this is very promising for describing the Einstein-Hilbert
model of gravity.

As a particular case, for second-order theories, the phase space of the system is described using third-
order jet bundles as the main tool [1, 39, 43, 83, 84, 90]. Nevertheless, in higher-order field theories
there are some ambiguities in the definition of the Poincaré-Cartan form; that is, given a Lagrangian
density, there are non-equivalent Poincaré-Cartan forms from which we obtain the same Euler-Lagrange
equations. Therefore, due to its definition, these ambiguities in the Poincaré-Cartan form are transferred
to the Legendre map, thus obtaining different Legendre maps for the same field theory[70, 84, 91].
First order field theories have no ambiguities. For second-order field theories, there is an unambiguous
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procedure to define these structures (see [90] or also [8, 83] using the unified formalism).

We ought to point out that there are also geometric frameworks for describing the non-covariant
or space-time formalism of field theories, where the use of Cauchy surfaces is the fundamental tool
[26, 52, 54]. Nevertheless we do not consider these topics in this disertation.

In the multisymplectic models, in the Lagrangian, Hamiltonian and unified formalisms, the field
equations are written using the multisymplectic form in order to characterize the critical sections which
are solutions of the problem. These critical sections can be thought of as being the integral manifolds of
distributions which, on its turn, can be characterized by means of certain kinds of integrable multivector
fields defined in the bundles where the formalism is developed, and satisfying a suitable geometric equa-
tion which is the intrinsic formulation of the systems of partial differential equations locally describing
the field [23, 30, 31, 32, 90]. These equations can be derived from a variational principle: the Hamilton
principle in the Lagrangian formalism, the Hamilton–Jacobi principle in the Hamiltonian formulation
[3, 27, 30, 34, 42, 50] and a generalization of them in the unified formalism [29, 85].

In all these cases, we have what is generally called a multisymplectic system; although in this work,
the theories arise from singular Lagrangians, leading to a pre-multisymplectic system. The problem of
finding a submanifold where this equations have consistent solutions (if it exists) is solved by apply-
ing a constraint algorithm adapted to this premultisymplectic scenario (see, for instance, [22, 23] for a
geometric description of these kinds of algorithms).

Another important topic is the study of symmetries and conservation laws. In fact, symmetries,
conserved quantities and gauge freedom have always played an essential role in the analysis of phys-
ical systems because they help us to solve and understand the field equations. In particular, modern
approaches to General Relativity and Quantum Field Theory have in their core the idea of symme-
try. They are also very powerful when study the integrability of a system. The geometric treatment
of these concepts is lightening and several results have been obtained for the Lagrangian and Hamilto-
nian formalisms of first and higher-order non-autonomous mechanics [4, 25, 75, 82, 92]. Most of these
concepts and results have been generalize for classical Lagrangian field theories of first and higher-order
[1, 26, 30, 39, 42, 43, 49, 50, 70, 72, 73, 84, 90], and for their Hamiltonian formalisms [2, 26, 27, 32, 60].

This work is based on results and contributions from several previous papers, such as [13, 23, 24, 29,
30, 31, 32, 34, 59, 81], among others.

Multisymplectic Gravity

General Relativity, the Einstein theory of Gravity, has had important contributions since its origins. In
1915 Hilbert [61] found the so-called Hilbert-Einstein Lagrangian, thus obtaining a variational formula-
tion of General Relativity. Although the Einstein equations have order two, the Lagrangian he obtained
is a second order one. For a Lagrangian of order n, the expected Euler-Lagrange equations have order
2n. The reason for the equations to have a lower order than anticipated is what we refer as the pro-
jectability of the theory. In 1925, Einstein propose a new variational approach, the Metric-Affine (or
Einstein-Palatini), consisting on taking the components of the connection as additional coordinates [36].
This new Lagrangian is first-order and also lead to the Einstein equations. The first complete solution
was given by Schwarschild in 1916 [93]. Nevertheless, the studies were essentially theoretical until the
60s, when exotic objects like quasars and pulsar where observed. Later observations like the background
radiation, the accelerating expansion of the universe or gravitational waves, emphasises the importance
of the study of General Relativity and its relation with other branches of physics. Several variations and
generalizations of Einstein’s theory are being proposed to explain these and another phenomena. The
interplay between General Relativity, astrophysics and quantum theories is a field of intense study in
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modern physics. (See [99] as a general reference for all these topics).

The geometric analysis of General Relativity contains particular difficulties because it is a second-
order field theory with high degeneracy. In recent years, there is an increasing effort in understanding
the covariant description of gravitational theories (General Relativity and other derived from it) using
different kinds of geometric frameworks such as the multisymplectic or polysymplectic manifolds.

An intrinsic approach to General Relativity can be found, for instance, in [72, 73], where the authors
study the degeneracy of the Einstein-Hilbert Lagrangian and other aspects of the theory using Lepage
forms. The same topic is analysed in [16, 86, 87] where, in addition, the reduction of the order of the
theory and the projectability of the Poincaré-Cartan form associated with the Einstein-Hilbert action is
explained (intrinsically it is defined as a theory where the Poincarè-Cartan form can be pulled-back to
a lower order jet bundle). This arise from the fact that the theory is degenerate in a very specific way.
In particular, they also show the existence of a first order Lagrangian (different from the metric-affine
Lagrangian) which give rise to the Einstein equations, and they also study the existence of natural sym-
metries. In [53] the multisymplectic description of the Einstein-Palatini or metric-affine model model is
presented as a example and in [12] an exhaustive study of this model is done using a unified formalism.
Different geometric formulations of General Relativity and its variational principles are given in [11].
In addition, in [96, 97] a complete study of the vielbein formulation of General Relativity is done using
multisymplectic geometry for describing the vielbein (or Cartan) formalism in the Palatini approximation
(the Lagrangian and Hamiltonian formalism) and considering different classes of matter sources. Finally,
some general features of the gravitational theory following the polysymplectic version of the multi-
symplectic formalism are described in [49, 89], including the problem of its precanonical quantization
[63, 64, 65, 66, 67]. More general aspects of the theory are studied in [6, 11, 17, 18, 19, 37, 47, 95, 88].

General Relativity is a covariant theory; that is, it is invariant under diffeomorphism acting on the
base manifold. This property has been partially studied in a geometrical way in [87]. Moreover, the
Metric-Affine model contains a gauge symmetry [20, 45]. The conserved quantities for gravitational
theories has been studied, for instance, in [95]. Nevertheless, there is open question regarding the sym-
metries and conserved quantities of General Relativity and its consequences. Thus, in this dissertation
we recover some results and expand them, especially the topic of the gauge freedom.

Objectives

In this dissertation we develop essentially two models of Gravity, the Einstein-Hilbert and the Einstein-
Palatini or Metric-Affine. We develop a covariant description of both theories using the multisymplectic
framework, but we emphasize different aspects in each one.

Order Reduction:

There are some models in classical field theories where, as a consequence of the singularity of the
Lagrangian, the order of the Euler-Lagrange equations is lower than expected. A geometrical way of
understanding this problem is considering the projectability of the higher-order Poincaré-Cartan form
onto lower-order jet bundles [16, 44, 73, 86, 87].

We review the conditions for this projectability and study their consequences using the constraint
algorithm for the field equations of second order (singular) field theories. Moreover, this analysis is done
for the case of higher-order mechanics.

Einstein-Hilbert:

The Einstein-Hilbert model of General Relativity is described by a second-order singular Lagrangian,
thus it is a gauge field theory with constraints. Apart of developing the multisymplectic formalism, in this
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model we are mainly interested in the consequences of the projectability of the Poincaré-Cartan form, the
existence of a first-order equivalent Lagrangian and the analysis of the gauge freedom and symmetries.

The use of the unified Lagrangian-Hamiltonian formalism is particularly interesting when it is applied
to these kinds of theories, since it simplifies the treatment of them; in particular, the implementation of
the constraint algorithm, the retrieval of the Lagrangian description, and the construction of the covariant
Hamiltonian formalism. We apply this framework to the Einstein-Hilbert model without and with energy-
matter sources.

The framework shows how, as a consequence of the gauge freedom and the constraint algorithm, the
Einstein-Hilbert model is equivalent to a first-order regular theory, without gauge freedom. Moreover,
we obtain and explain the geometrical and physical meaning of this equivalence, the gauge freedom and
the Lagrangian constraints.

In the case of presence of energy-matter sources, we show how some relevant geometrical and phys-
ical characteristics of the theory depend on the type of source. In all the cases, we obtain explicitly
multivector fields which are solutions to the gravitational field equations. Finally, a brief study of sym-
metries and conservation laws is done in this context.

Metric-Affine:

The Metric-Affine or Einstein-Palatini model for General Relativity is described by a first-order
affine Lagrangian (in the derivatives of the fields), it is singular and, hence, this is a gauge field theory
with constraints. The Einstein-Palatini model has more freedom than the Einstein-Hilbert one, as it was
already noticed in the original article by Einstein [36]. In [20], the authors identify this freedom as
gauge-like. We aim to use the multisymplectic formalism to characterize this gauge freedom, analyze
the constraints of the theory and establish a covariant Hamiltonian formalism.

We develop the Lagrangian and Hamiltonian multisymplectic formulation for the Einstein-Palatini
model (without energy-matter sources) in chapter 4. A detailed analysis of the unified formalism can
be found in [12]. The constraints are obtained after applying a constraint algorithm to the field equa-
tions, both in the Lagrangian and the Hamiltonian formalisms. We obtain and explain the geometrical
and physical meaning of the Lagrangian constraints and we construct the multimomentum (covariant)
Hamiltonian formalism. The gauge freedom of the model is discussed in both formalisms and, from
them, the equivalence with the Einstein-Hilbert model is established.

Structure of the dissertation

The dissertation is structured in 5 chapters. In chapter 1 the multisymplectic formalism and the needed
geometrical tools are presented. We use a variational approach in the line of [45], and the constraint
algorithm used in later chapters is briefly exposed.

Chapter 2 has two parts. Section 2.1 contains a review of symmetries and conserved quantities in
field theories. We also present there the concept of gauge vector field and gauge symmetry. This section
is based in [45]. In Section 2.2 we explore the consequences of a projectable Poincaré-Cartan form.
Following [46], we expand previous results in [16, 44, 73, 86, 87] by analyzing the constraints of such
theories. We also prove the results for Higher-order mechanical theories.

In chapter 3 the multisymplectic formalism is applied to the Einstein-Hilbert model, as it is exposed
in [47]. First the Lagrangian-Hamiltonian unified formalism for the vacuum case is studied, and using
the constraint algorithm we find the final manifold where the field equations have solutions. Then, the
Lagrangian and Hamiltonian formalisms are recovered. Two different sets of coordinates are used in the
Hamiltonian formalism, and its equivalence with the first-order Lagrangian [16] is shown. Then, we add
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a matter-source and analyze which results can be recovered, depending on the source. As an example,
the Electromagnetic source is considered. The natural symmetries of the theory [87] are revisited in the
light of section 2.1. Finally, we compute explicitly all the semi-holonomic multivector fields solution of
the field equations.

In chapter 4 the multisymplectic formalism is applied to the Metric-Affine model, as it is exposed in
[48]. First the Lagrangian formalism is considered. We find the constraints defining the final submanifold
and the natural symmetries. The gauge symmetries are computed and the results are in agreement with
[20]. Consequently, we find the general expression for the semi-holonomic multivector fields solution
of the field equations. Next, we construct the covariant Hamiltonian formalism and repeat the process,
using two different systems of coordinates. For one of them, containing only the connection, a geometric
interpretation is provided. Finally, the relation between the Einstein-Hilbert model and the Metric-Affine
model is established geometrically.

Finally, the conclusions are presented in chapter 5, together with the list of articles consequence of
this work and a list of topics for further research.
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Chapter 1

Geometrical setting

This chapter is devoted to present the main structures and mathematical tools needed in the dissertation.
We also set here the common notation used along different chapters. Since this is a review chapter, only a
handful of proofs are provided. The Einstein-Hilbert model developed in chapter 3 is a second-order field
theory, but this dissertation also contains first-order field theories like the Metric-Affine model of chapter
4. Nevertheless, we only present here the second-order formalism. The multisymplectic formalism for
first-order first theories can be found, for instance, in [13, 85].

This chapter is structured in three sections. First, in section 1.1 we present the jet bundles and several
related concepts. Then, in 1.2 we present the multisymplectic formalism in a general way, based on
[45, 58]. Finally, section 1.3 is devoted to particularize this formalism to the Lagrangian, the Hamiltonian
and the unified formalism for second-order field theories.

1.1 Geometry of jet bundles

1.1.1 Jet bundles and holonomy

Consider a smooth fiber manifold π : E → M , where the base manifold M has dimension m and the
total space E has dimension m+ n. A section of π is an aplication φ : M → E such that π ◦ φ = IdM .
The set of sections of π is denoted Γ(π). All the manifolds are real, second countable and C∞. The
maps and the structures are C∞.

In order to write compressed coordinate expressions we will use the following notation. A multi-
index I is an element of Zm where every component is positive, the ith position of the multi-index is

denoted I(i), and |I| =
m∑
i=1

I(i) is the length of the multi-index. Furthermore, the element 1i ∈ Zm is

defined as 1i(j) = δji and n(ij) is a combinatorial factor which n(ij) = 1 for i = j, and n(ij) = 2 for
i 6= j. An expression as |I| = k means that the expression is taken for every multi-index of fixed length
k. Equivalently, we will write α1 ≤ · · · ≤ αk. Sum over repeated indices is understood.

Let (xµ), with 1 ≤ µ ≤ m, be a system of coordinates inM , and (xµ, uα), with 1 ≤ α ≤ n, a system
of coordinates of E adapted to the bundle structure. For a section φ ∈ Γ(π) we denote φα = uα ◦ φ, so
that φ(xµ) = (xµ, φα(xµ)). For every point x ∈M , Γx(π) denotes the set of sections of π defined on a
neighbourhood of x. For every integer k ≥ 1:

Definition 1.1. Two local sections φ, ψ ∈ Γx(π) are k-equivalent in x if:
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• ψ(x) = φ(x)

• All derivatives up to order k coincide in x:

∂|I|ψα
∂xI

∣∣∣∣∣
x

=
∂|I|φα
∂xI

∣∣∣∣∣
x

;

for every 1 ≤ |I| ≤ k and 1 ≤ α ≤ n.

Lemma 1.1. At every point x ∈ M , the k-equivalence relation in Γx(π) is independent of the choice of
coordinate system.

As a consequence, the k-equivalence relation in x is a well-defined equivalence relation in Γx(π).
The equivalence class containing φ is called the k-jet of φ at x, and it is denoted jkxφ.

Definition 1.2. The k-jet manifold is the set:

Jkπ = {jkxφ |x ∈M , φ ∈ Γx(π)}.

The k-jet has a natural structure of smooth manifold and we have the following natural projections:
if r 6 k,

πkr : Jkπ −→ Jrπ
jkxφ 7−→ jrxφ

πk : Jkπ −→ E
jkxφ 7−→ φ(x)

π̄k : Jkπ −→ M
jkxφ 7−→ x

.

Observe that πsr ◦ πks = πkr , πk0 = πk, πkk = IdJkπ, and π̄k = π ◦ πk.

The local coordinates in Jkπ associated to (xµ, uα) inE are (xµ, uα, uα,I) and are defined as follows.
Consider a section φ ∈ Γ(π) with coordinate expression φ(xµ) = (xµ, φα(xµ)). Then:

xµ(jkxφ) = xµ, uα(jkxφ) = φα(x), uα,I(j
k
xφ) =

∂|I|φα
∂xI

(x).

Using this coordinates, the local expressions of the projections are:

πkr (xµ, uα, uα,I) = (xµ, uα, uα,J); πk(xµ, uα, uα,I) = (xµ, uα); π̄k(xµ, uα, uα,I) = (xµ),

with 1 ≤ |I| ≤ k and 1 ≤ |J | ≤ r.

Definition 1.3. For a section φ ∈ Γ(π), the kth prolongation (or prolongation to Jkπ) of a section
φ ∈ Γ(π) is the section jkφ ∈ Γ(π̄k) defined by :

jkφ(x) = jkxφ,

for every x ∈M .

Definition 1.4. A section ψ ∈ Γ(π̄k) is holonomic if any of these equivalent conditions hold:

• jk(πk ◦ φ) = φ.

• φ∗ω = 0, for every ω ∈ Ck, the Cartan codistribution of Jkπ.
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In coordinates, the kth prolongation is given by:

jkφ(x) =

(
xµ, φα(x),

∂|I|φα
∂xI

(x)

)
,

for 1 ≤ |I| ≤ k. The condition for a section φ ∈ Γ(π̄k) with coordinate expression φ(x) = (xµ, φα(x), φα,I(x))
to be holonomic is that the following system of partial differential equations holds:

φα,I =
∂|I|φα
∂xI

, 1 ≤ |I| ≤ k, 1 ≤ α ≤ n.

or, equivalently,

φα,I+1µ =
∂φα,I
∂xµ

, 1 ≤ |I| ≤ k − 1, 1 ≤ µ ≤ m, 1 ≤ α ≤ n.

Finally, the coordinate total derivatives are the vector fields of the form:

Di =
∂

∂xi
+

k∑
|I|=0

uα,I+1i

∂

∂uα,I
.

For a function f ∈ C∞(Jkπ), we write Dif ≡ LDi f ∈ C∞(Jk+1π). Although in general the total
derivatives change the order of the jet where the functions are defined, sometimes we ignore this fact,
and write them as an abuse of notation in order to writing compact expressions in coordinates.

1.1.2 Dual and symmetric jet bundles

Definition 1.5. The kth-order extended dual jet bundle is the bundle ofm-form over Jk−1π which vanish
under the contraction with two π̄k−1-vertical vector fields, that is:

Λm2 (T ∗Jk−1π) := {α ∈ Λm(T ∗Jk−1π) | i(V1) i(V2)α = 0, ∀V1V2 ∈ XV (π̄k−1)(Jk−1π)}

It has the canonical projections

πJk−1π : Λm2 (T ∗Jk−1π)→ Jk−1π ; π̄M = π̄1 ◦ πJk−1π : Λm2 (T ∗Jk−1π)→M .

Definition 1.6. • The Liouville m-form, or tautological or canonical m-form, on Λm2 (T ∗Jk−1π) is
the form Θ1 ∈ Ωm(Λm2 (T ∗Jk−1π)) defined as

Θ1(ω)(X1, . . . , Xm) := ω(TπJk−1π(X1), . . . , TπJk−1π(X1)TπJk−1π(Xm))

where ω ∈ Λm2 (T ∗Jk−1π) and X1, . . . , Xm ∈ TωΛm2 (T ∗Jk−1π).

• The Liouville (m + 1)-form, or canonical multisymplectic (m + 1)-form, is the form Ω1 ∈
Ωm+1(Λm2 (T ∗Jk−1π)) given by

Ω1 = −dΘ1.

Ω1 is a multisymplectic form; that is, it is closed and 1-nondegenerate (see section 1.2.1).

Definition 1.7. The canonical pairing between elements of Jkπ and elements of Λm2 (T ∗Jk−1π) is the
fibered map over Jk−1π defined as

C : Jkπ ×Jk−1π Λm2 (T ∗Jk−1π) → Λm1 (T ∗Jk−1π)

(jkxψ, ω) 7→ (jk−1ψ)∗jkxψ
ω
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Λm2 (T ∗Jk−1π) has too many multimomentum coordinates in order to establish a correspondence
between “velocities” and multimomenta in terms of derivatives of the Lagrangian function. This problem
to define the Hamiltonian formalism for higher-order field theories can be solved for first and second-
order. For the later case:

Induced local coordinates in Λm2 (T ∗J1π) are (xi, yα, uα,i, p, p
α,i, pα,ij). With these coordinates, the

local expressions of the Liouville forms are (where dm−1xj = i

(
∂

∂xj

)
dmx)

Θ1 = p dmx+ pα,i duα ∧ dm−1xi + pα,ij duα,i ∧ dm−1xj ,

Ω1 = −dp ∧ dmx− dpα,i ∧ duα ∧ dm−1xi − dpα,ij ∧ duα,i ∧ dm−1xj .

Now, consider the πJ1π-transverse submanifold s : J2π† ↪→ Λm2 (T ∗J1π) defined locally by the con-
straints pijα = pjiα , which is called the extended 2-symmetric multimomentum bundle (although it is
defined using coordinates, this construction is canonical [91]). Let

π†
J1π

: J2π† → J1π , π̄†M = π̄1 ◦ π†
J1π

: J2π† →M

be the canonical projections. Natural coordinates in J2π† are (xi, uα, uα,i, p, p
α,i, pα,I), where |I| = 2.

Denote Θs
1 = ∗sΘ1 ∈ Ωm(J2π†) and the multisymplectic form Ωs

1 = ∗sΩ1 = −dΘs
1 ∈ Ωm+1(J2π†),

which are called symmetrized Liouville m and (m+ 1)-forms, and their coordinate expressions are

Θs
1 = p dmx+ pα,i duα ∧ dm−1xi +

1

n(ij)
pα,1i+1jduα,i ∧ dm−1xj ,

Ωs
1 = −dp ∧ dmx− dpα,i ∧ duα ∧ dm−1xi −

1

n(ij)
dpα,1i+1j ∧ duα,i ∧ dm−1xj .

Finally, consider the quotient bundle J2π‡ = J2π†/Λm1 (T ∗J1π), which is called the restricted 2-
symmetric multimomentum bundle, and it is endowed with the natural projections

µ : J2π† → J2π‡ ; π‡
J1π

: J2π‡ → J1π , π̄‡M : J2π‡ →M.

Observe that J2π‡ is also the submanifold of Λm2 (T ∗J1π)/Λm1 (T ∗J1π) defined by the local constraints
pijα −pjiα = 0. Hence, natural coordinates in J2π‡ are (xi, uα, uα,i, p

α,i, pα,I). Observe that dim J2π‡ =
dim J2π† − 1.

1.1.3 Multivector fields

(See [31] for details).

Definition 1.8.

Let κ : M→M be a fiber bundle.

• An m-multivector field inM is a skew-symmetric contravariant tensor of order m inM. The set
of m-multivector fields inM is denoted Xm(M).

• A multivector field X ∈ Xm(M) is said to be locally decomposable if, for every p ∈ M, there is
an open neighbourhood Up ⊂M and X1, . . . , Xm ∈ X(Up) such that X|Up = X1 ∧ . . . ∧Xm.

• Locally decomposablem-multivector fields X ∈ Xm(M) are locally associated withm-dimensional
distributions D ⊂ TM, and multivector fields associated with the same distribution make an
equivalence class {X} in the set Xm(M). Then, X is integrable if its associated distribution is
integrable.
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For every X ∈ Xm(M), there exist X1, . . . , Xr ∈ X(U) such that

X|U =
∑

1≤i1<...<im≤r
f i1...imXi1 ∧ . . . ∧Xim ,

with f i1...im ∈ C∞(U), m 6 r 6 dim Jkπ. If two multivector fields X,X′ belong to the same
equivalence class {X} then, for every U ⊂ M, there exists a non-vanishing function f ∈ C∞(U) such
that X′ = fX on U .

Definition 1.9. If Ω ∈ Ωk(M) and X ∈ Xm(M), the contraction between X and Ω is defined as the
natural contraction between tensor fields; in particular,

i(X)Ω |U :=
∑

1≤i1<...<im≤r
f i1...im i(Xi1 ∧ . . . ∧Xim)Ω =

∑
1≤i1<...<im≤r

f i1...im i(Xi1) . . . i(Xim)Ω ,

if k ≥ m, and equal to zero if k < m. The Lie derivative of Ω with respect to X is defined as the graded
bracket ( it is an operation of degree m− 1)

L(X)Ω := [d, i(X)]Ω = (d i(X)− (−1)m i(X)d)Ω .

Definition 1.10. A multivector field X ∈ Xm(M) is κ-transverse if, for every β ∈ Ωm(M) with
β(π̄k(p)) 6= 0, at every point p ∈ M, we have that (i(X)(κ∗β))p 6= 0. If X ∈ Xm(M) is inte-
grable, then it is κ-transverse if, and only if, its integral manifolds are local sections of κ. In this
case, if ψ : U ⊂ M → M is a local section and ψ(U) is the integral manifold of X at p, then
Tp(Imψ) = Dp(X) and ψ is an integral section of X.

Definition 1.11. In the case that M = Jkπ, a multivector field X ∈ Xm(Jkπ) is said to be holo-
nomic if it is integrable and its integral sections are holonomic sections of π̄k (and hence it is locally
decomposable and π̄k-transverse).

For a fiber manifold κ : M→ M with coordinates (xµ, uα), a τ -transverse and locally decompos-
able multivector field X ∈ Xm(E) is

X =
m∧
µ=1

(
∂

∂xµ
+Xα,µ

∂

∂uα

)
.

A section of τ , ψ(xµ) = (xµ, ψα(xµ)), is an integral section of X if its component functions satisfy the
following system of partial differential equations

∂ψα
∂xµ

= Xα,µ ◦ ψ . (1.1)

1.2 Multisymplectic Formalism

1.2.1 Multisymplectic Systems

Different bundles are used in the multisymplectic formalism. Nevertheless, all share the same basic
structure, which can be thought as sort of “multisymplectic dynamics”. In this section we will present its
general formulation. A lot of properties can be analysed in this framework, in particular the constraint
algorithm.

Over a base manifold M with dimension m ≥ 1, consider the bundle π̄ : J → M . Inspired by the
exterior differential system used in [12, 58], consider a set of forms I ⊂ Ω•(J), which we will call the
condition set.
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Definition 1.12. • A section ψ ∈ Γ(π̄) is admissible if ψ∗α = 0 for all α ∈ I. The set of admissible
sections will be denoted Ψ(I).

• A multivector field X ∈ Xm(J) is transverse if it is π̄-transverse.

• A multivector field X ∈ Xm(J) is admisible if it is transverse, integrable and its integrable sections
are admissible.

Definition 1.13. • A form Ω ∈ Ωm+1(J) is a multisymplectic form if it is closed and 1-nondegenerate,
that is, if the map [Ω : TJ −→ ΛmT∗J , defined by [Ω(x, v) = (x, i(v)Ωx), for every x ∈ J and
v ∈ TxJ , is injective. Otherwise, the form is said to be a premultisymplectic form.

• A (pre)multisymplectic form is exact if there exist Θ ∈ Ωm(M) such that Ω = −dΘ.

We will assume all the forms have constant rank.

Virtually all of the systems that will appear in this dissertation contains constraints which define
submanifolds. Consider the submanifold j : Jf ↪→ J , and define π̄f ≡ π̄ ◦ j : Jf → M . Frequently Jf
is a subset of J , thus we will assimilate it with j(Jf ). Some regularity and structure to the submanifolds
is imposed:

Assumption. The constrained spaces are closed smooth manifolds. Thus, the constraints are given
locally by a set of functions. The constraints are π̄-vertical.

We will not allow to constraint M , because its dimension define the order of Ω. The condition set
I in the constrained system is defined by If ≡ {j∗α |α ∈ I} ⊂ Ω•(Jf ). This definition is justified
because the properties of being admissible derived from both sets are compatible in the following sense:

Lemma 1.2. j ◦Ψ(If ) = (j ◦ Γ(π̄f )) ∩Ψ(I).

Proof. It follows from the fact that, for every ψ ∈ Γ(π̄f ) and for every form α ∈ Ω•(J),

ψ∗j∗α = (j ◦ ψ)∗α = 0

Finally, the variations of the action are represented by an integrable distribution V =
⋃
p∈Jf

Vp, with

TpJf ⊂ Vp ⊂ TpJ . The sections of V will be denoted as Γ(V ).

Definition 1.14. A multisymplectic system is the 4-tuple (J,Ω, V, I). If Ω is pre-multisymplectic, then
it is a pre-multisymplectic system.

The systems often have a complex bundle structure, with several projections and intermediate man-
ifolds. For the sake of simplicity, this structure is implicit in the 4-tuple, although it will be clearly
established in every case. For the case of the system (Jf ,Ω, V, If ) which develops in the submanifold
j : Jf ↪→ J , the form Ω have support on Jf , but it is an element of Ωm+1(J). Likewise, the set of
variations V is a subdistribution of TJf ≡

⋃
p∈Jj

TpJ . There are two relevant set of variations which arise

while performing the constraint algorithm. First there are the pull-backed variations V = j∗TJf ⊂ TJ ,
which we sometimes denote TJf . Secondly, there are the constrained variations V = TJf .

Definition 1.15. • The pull-backed system is (Jf ,Ω, TJf , If )

11



• The constrained system is (Jf ,Ω, TJf , If )

Any solution of the second problem is a solution of the first problem, because TJf ⊂ TJf , but not
the other way around.

In this dissertation we will consider a particular case of systems, closely related to a certain jet bundle
Jkπ.

Definition 1.16. A system (J,Ω, V, I) is almost-holonomic if there exists a projection ρ : J → Jkπ for
some k ≥ 0, (in particular, ρ = IdJkπ if J = Jkπ), and I = ρ∗Ck, the Cartan codistribution of Jkπ.

The systems we consider in chapters 3 and 4 are almost-holonomic, therefore, we usually use the
term holonomic instead of admissible. This property is not necessary for the definitions, but it is used to
characterize symmetries in section 2.1.3.

1.2.2 Multisymplectic Equations

In this setcion we present the variational problem based on [45, 58].

Let (J,Ω, V, I) be an exact (pre)multisymplectic system. Let Γ(π̄) be the set of sections of π̄.
Consider the following functional (where the convergence of the integral is assumed)

F : Γ(π̄) −→ R

ψ 7−→
∫
M
ψ∗Θ

.

Definition 1.17. The generalized variational problem for (J,Ω, V, I) is the search for the admissible
critical (local) sections of the functional F with respect to the variations of ψ given by ψs = σs ◦ ψ,
where {σs} is a local one-parameter group of any compact-supported π̄-vertical vector field in Γ(V );
that is,

d

ds

∣∣∣∣
s=0

∫
M
ψ∗sΘ = 0

which are an integral section of I, namely, such that φ∗α = 0 for every α ∈ I .

Theorem 1.1. The following assertions on a section ψ ∈ Γ(π̄) are equivalent:

1. ψ is a solution to the generalized variational problem.

2. ψ is an admissible section solution to the equation

ψ∗ i(Y )Ω = 0 , for every Y ∈ Γ(V ) . (1.2)

3. ψ is an adimissible section solution to the equation

i(Y ) i(Λmψ)(Ω ◦ ψ) = 0 , for every Y ∈ Γ(V ) . (1.3)

4. ψ is an integral section of an admissible m-multivector field contained in a class of π̄-transverse
and integrable (and hence locally decomposable) m-multivector fields, {X} ⊂ Xm(J), satisfying
the equation

i(Y ) i(X)Ω = 0 , for every Y ∈ Γ(V ) . (1.4)
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We will mainly use the problem for multivetor fields (1.4), as it is more operative and, in lesser
extend, the problem for sections (1.2). Unfortunately, to check in general that a multivetor field is
integrable is tricky, and it is only done in especial cases. On the other hand, the conditions of locally
decomposable, admisible and transverse have a definite expression in local coordinates. A multivetor
field with a local expression that satisfy these local conditions, but not necessary integrable, is called
semi-admisible. However, if such a multivector field admits integral sections, then its integral sections
are admisible.

Finally, we introduce the following notation: as it is usual,

kerm Ω ≡ {X ∈ Xm(J) | i(X)Ω = 0} .

We denote by kermπ̄ Ω the set of locally decomposable and π̄-transverse multivector fields belonging
to kerm Ω. Then, kermSH Ω and kermH Ω denote the sets of semi-admissible (semi-holonomic) and the
admissible (holonomic) multivector fields belonging to kerm Ω, respectively. Obviously we have

kermH Ω ⊂ kermSH Ω ⊂ kermπ̄ Ω ⊂ kerm Ω . (1.5)

1.2.3 The constraint algorithm

In general, admisible multivector fields X ∈ Xm(J) which are solutions to (1.4) could not exist. In
the best of cases they exist only in some submanifold of J [22]. The aim in this section is to find
the constraints that define this submanifold, using an adapted local version of the geometric constraint
algorithms [23, 22]. When there is no solution for the problem for multivector fields of the system
(J,Ω, V, I), we consider a weaken version of the problem:

Find submanifolds j : Jf ↪→ J such that the system (Jf ,Ω, TJf ∩ V, If ) has a solution.

The algorithm proceeds inductively, by setting S0 = J and

Si := {p ∈ Si−1|∃X ∈ Xm(Si−1), semi-admissible and i(Y ) i(X)Ω|p = 0, ∀Y ∈ TpSi−1 ∩ Vp}.

We assume the successive subsets are closed submanifolds. Notice that the multivector fields found
for the submanifold Si are tangent to Si−1 but not necessarily to Si, thus the algorithm continues until
Sf = Sf−1 or Si = ∅. In the first case, we say that Sf is the final constraint submanifold.

The actual computation in coordinates of these sets starts by considering the local expression of a
locally decomposable multivector field X. Locally, equations (1.4) and the semi-admissible conditions
are equations on the coefficients of X. In the cases we will study, all these equations form a lineal
system of equations, at every point of J . S1 consists on the points where the system is compatible. In the
next step, apart of these equations we have the tangency (or consistency) conditions, which arise from
imposing that the solutions have to be tangent to S1. Then we continue the process until the algorithm
stops.

Proving the existence of an integrable multivector field is more complicate for field theories. We will
present a particular proof for every case.

1.3 Lagrangian, Hamiltonian and unified multisymplectic formalism

1.3.1 Lagrangian-Hamiltonian unified formalism

(See [83, 84, 90] for details). Let E π−→ M be a fiber bundle, with dimE = m + n, over an ori-
entable m-dimensional manifold M , whose volume form is denoted η ∈ Ωm(M). The 2-symmetric

13



jet-multimomentum bundles areW = J3π ×J1π J
2π† andWr = J3π ×J1π J

2π‡. The coordinates in
W andWr are (xi, uα, uα,i, uα,I , uα,J , p, p

α,i, pαI) and (xi, uα, uα,i, uα,I , uα,J , p
α,i, pαI), respectively,

with |I| = 2 and |J | = 3. These bundles are endowed with the canonical projections

ρr1 : Wr → J3π , ρr2 : Wr → J2π‡ , ρrM : Wr →M

ρ1 : W → J3π , ρ2 : W → J2π† , ρM : W →M .

The second-order coupling m-form inW is the ρM -semibasic m-form Ĉ ∈ Ωm(W) defined by

Ĉ(j3
xφ, ω) = Cs(π3

2(j3
xφ), ω) , (j3

xφ, ω) ∈ W .

Since Ĉ is a ρM -semibasic m-form, there exists a function Ĉ ∈ C∞(W) such that Ĉ = Ĉρ∗Mη, and we
have the coordinate expression

Ĉ =
(
p+ pα,iuα,i + pα,Iuα,I

)
dmx .

Let L ∈ Ωm(J2π) be a second-order Lagrangian density for this field theory, which is a π̄2-semibasic m-
form and then L = L (π̄2)∗η ∈ Ωm(J2π), where L ∈ C∞(J2π) is the Lagrangian function. Denoting
by L̂ = (π3

2 ◦ ρ1)∗L ∈ Ωm(W), we can write L̂ = L̂ ρ∗Mη, where L̂ = (π3
2 ◦ ρ1)∗L ∈ C∞(W). Then,

we introduce the Hamiltonian submanifold

Wo =
{
w ∈ W : L̂(w) = Ĉ(w)

}
o
↪→W ,

which is defined by the constraint

Ĉ − L̂ ≡ p+ pα,iuα,i + pα,Iuα,I − L̂ = 0 , |I| = 2 .

and it is µW -transverse and diffeomorphic to Wr by Φ : W0 → Wr. Furthermore, the quotient map
µ : J2π† → J2π‡ induces a natural submersion µW : W → Wr. Then, the submanifoldWo induces a
Hamiltonian section ĥ ∈ Γ(µW) defined as ĥ = o ◦Φ−1 : Wr →W , which is specified giving the local
Hamiltonian function

Ĥ = pα,iuα,i + pα,Iuα,I − L̂ ; (1.6)

that is, ĥ(xi, uα, uα,i, uα,I , uα,J , p
α,i, pαI) = (xi, uα, uα,i, uα,I , uα,J ,−Ĥ, pα,i, pαI). Hence, we have

the diagram:
W

ρ1

��

µW
��

ρ2

��

Wr

ĥ

\\

ρr1

��

ρr2

  

ρr
J1π

��

ρrM

��

J2π†

µ

��π†
J1π

~~

J3π

π3
1 ''

J2π‡

π‡
J1πww

J1π

π̄1

��
M

Now we define the forms Θr = (ρ2 ◦ ĥ)∗Θ ∈ Ωm(Wr) and Ωr = −dΘr ∈ Ωm+1(Wr), with local
expressions,

Θr = −Ĥdmx+ pα,iduα ∧ dm−1xi +
1

n(ij)
pα,1i+1jduα,i ∧ dm−1xj ,

Ωr = dĤ ∧ dmx− dpα,i ∧ duα ∧ dm−1xi −
1

n(ij)
dpα,1i+1j ∧ duα,i ∧ dm−1xj .
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The condition set I for the multisymplectic unified system is I = ρr1
∗C3 ≡ {ρr1∗ω|ω ∈ C3}, where

C3 is the Cartan codistribution associated to J3π. Therefore, a section ψ ∈ Γ(ρrM ) is admissible (or
holonomic) if ρr1 ◦ ψ ∈ Γ(J3

π) is holonomic. An integrable and ρrM -transverse multivector field X ∈
Xm(Wr) is holonomic if its integral sections are holonomic. The local expression of a semiholonomic
multivector field X ∈ Xm(Wr) is, in this case,

X =
m∧
j=1

 ∂

∂xj
+ uα,j

∂

∂uα
+

2∑
|I|=1

uα,I+1j

∂

∂uα,I
+ Fα,J,j

∂

∂uα,J
+Gα,ij

∂

∂pα,i
+Gα,Kj

∂

∂pα,K

 ,

(1.7)
with |K| = 2 and |J | = 3. The second-order Lagrangian-Hamiltonian multisymplectic system is
(Wr,Ωr, TWr, ρ

r
1
∗C3). The form Ωr is 1-degenerate because

ker Ωr = {Z ∈ X(Wr) | i(Z)Ωr = 0} =

〈
∂

∂uαI

〉
6= {0} , for |I| = 2, 3 ; (1.8)

then (Wr,Ωr, TWr, ρ
r
1
∗C3) is a premultisymplectic system and solutions to (1.2) or (1.4) do not exist

everywhere inWr:

Proposition 1.1. A section ψ ∈ Γ(ρrM ) solution to the equation (1.2) takes values in a n(m + m(m +
1)/2)-codimensional submanifold L : WL ↪→ Wr which is identified with the graph of a bundle map
FL : J3π → J2π‡, over J1π, defined locally by

FL∗pα,i =
∂L̂

∂uα,i
−

m∑
j=1

1

n(ij)

d

dxj

(
∂L̂

∂uα,1i+1j

)
; FL∗pα,I =

∂L̂

∂uα,I
.

What is equivalent, the submanifoldWL is the graph of a bundle morphism F̃L : J3π → J2π† over J1π
defined locally by

F̃L
∗
pα,i =

∂L̂

∂uα,i
−

m∑
j=1

1

n(ij)

d

dxj

(
∂L̂

∂uα,1i+1j

)
; F̃L

∗
pα,I =

∂L̂

∂yα,I
,

F̃L
∗
p = L̂− uα,i

 ∂L̂

∂uα,i
−

m∑
j=1

1

n(ij)

d

dxj

(
∂L̂

∂u1i+1j ,α

)− uα,I ∂L̂

∂uα,I
.

The maps FL and F̃L are the restricted and the extended Legendre maps associated with L, and
they satisfy that FL = µ◦ F̃L. For every j3

xφ ∈ J3π, we have that rank(F̃L(j3
xφ)) = rank(FL(j3

xφ)).
Then, according to [91], we say that a second-order Lagrangian density L ∈ Ωm(J2π) is regular if

rank(F̃L(j3
xφ)) = rank(FL(j3φ)) = dim J2π + dim J1π − dimE = dim J2π‡ ,

otherwise, the Lagrangian density is singular. Regularity is equivalent to demand thatFL : J3π → J2π‡

is a submersion onto J2π‡ and this implies that there exist local sections of FL. If FL admits a global
section Υ: J2π‡ → J3π, then the Lagrangian density is said to be hyperregular. In a natural chart of
J3π the regularity condition for the Lagrangian density L is equivalent to

det

(
∂2L

∂uβ,I∂uα,K

)
(j3
xφ) 6= 0 , for every j3

xφ ∈ J3π ; |I| = |K| = 2 .

Recall that the regularity of L determines if the section ψ ∈ Γ(ρrM ) solution to the equation (1.2)
lies inWL or in a submanifoldWf ↪→WL where the section ψ takes values. In order to obtain this final
constraint submanifold, the best way is to work with the equation (1.4) instead of (1.2). Then, we have:

15



Proposition 1.2. A solution X ∈ Xm(Wr) to equation (1.4) exists only on the points of the compatibility
submanifoldWc ↪→Wr defined by

Wc =
{
w ∈ Wr : (i(Z)dĤ)(w) = 0 , for every Z ∈ ker(Ωr)

}
=
{
w ∈ Wr : (i(Y )Ωr)(w) = 0 , for every Y ∈ XV (ρr2)(Wr)

}
.

Bearing in mind (1.8) and that i
(

∂

∂uα,J

)
dĤ = 0, for |J | = 3, the functions locally defining this

submanifold have the following coordinate expressions

i

(
∂

∂uα,I

)
dĤ = pα,I − ∂L̂

∂uα,I
, for |I| = 2 . (1.9)

Then, the tangency condition for the multivector fields X which are solutions to (1.4) onWc gives rise
to mn new constraints

pα,i − ∂L̂

∂uα,i
+

m∑
j=1

1

n(ij)

d

dxj
∂L̂

∂uα,1i+1j

= 0 .

which define a submanifold of Wc that coincides with the submanifold WL. Now the study of the
tangency of X along WL could introduce new constraints depending on the regularity of L, and the
algorithm continues until we reach the submanifoldWf .

1.3.2 Lagrangian formalism

(See [83, 84] for details). Let Θs
1 ∈ Ωm(J2π†) and Ωs

1 ∈ Ωm+1(J2π†) be the symmetrized Liouville
forms in J2π†. The Poincaré-Cartan forms in J3π are the forms defined as

ΘL = F̃L
∗
Θs

1 ∈ Ωm(J3π) , ΩL = F̃L
∗
Ωs

1 = −dΘL ∈ Ωm+1(J3π) .

These forms coincide with the usual Poincaré-Cartan forms for second-order classical field theories that
can be found in the literature [1, 43, 70, 79], and they can also be recovered directly from the unified
formalism as follows: if Θ = ρ∗2Θs

1 and Θr = ĥ∗Θ are the canonical m-forms defined in W and Wr,
respectively, then, the Poincaré-Cartan m-form are Θ = ρ∗1ΘL and Θr = (ρr1)∗ΘL, and the same result
holds for the Poincaré-Cartan form ΩL. Using natural coordinates in J3π, we have the local expression

ΘL =

 ∂L

∂uα,i
−

m∑
j=1

1

n(ij)

d

dxj
∂L

∂uα,1i+1j

 (duα ∧ dm−1xi − uα,idmx)

+
1

n(ij)

∂L

∂uα,1i+1j

(duα,i ∧ dm−1xj − uα,1i+1jd
mx) + Ldmx . (1.10)

The second-order Lagrangian multisymplectic system is (J3π,ΩL, TJ
3π,C3). Thus, a section is admis-

ible if it is holonomic in J3π.

In order to recover the Lagrangian field equations, we have that the map ρL1 = ρr1◦L : WL → J3π is
a diffeomorphism, the Poincaré-Cartan forms defined in J3π satisfy (ρL1 )∗ΘL = ∗LΘr and (ρL1 )∗ΩL =
∗LΩr, and all of this allows us to prove that:

Proposition 1.3. If ψ ∈ Γ(ρrM ) be a holonomic section solution to the equation (1.2) for the unified
formalism, then the section ψL = ρr1 ◦ ψ ∈ Γ(π̄3) is holonomic, and it is a solution to the equation (1.2)
for the Lagrangian formalism.

Conversely, if ψL ∈ Γ(π̄3) is a holonomic section solution to the field equation (1.2) for the La-
grangian formalism, then the section ψ = L ◦ (ρL1 )−1 ◦ ψL ∈ Γ(ρrM ) is holonomic and it is a solution
to the equation (1.2) for the unified formalism.
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In local coordinates in J3π, the equation for the holonomic section ψL = j3φ are the Euler-Lagrange
equations for a second-order field theory

∂L

∂uα

∣∣∣∣
j3φ

− d

dxi
∂L

∂uα,i

∣∣∣∣
j3φ

+
∑
|I|=2

d|I|

dxI
∂L

∂uα,I

∣∣∣∣∣∣
j3φ

= 0 , 1 6 α 6 n .

Theorem 1.2. Let X ∈ Xm(Wr) be a holonomic multivector field solution to the equation (1.4) for the
unified formalism, at least on the points of a submanifold f : Wf ⊆ WL ↪→ Wr, and tangent to Wf .
Then there exists a unique holonomic multivector field XL ∈ Xm(J3π) solution to the equation (1.4) for
the Lagrangian formalism, at least on the points of Sf = ρL1 (Wf ), and tangent to Sf ,

Conversely, if XL ∈ Xm(J3π) is a holonomic multivector field solution to the equation (1.4) for the
Lagrangian formalism, at least on the points of a submanifold Sf ↪→ J3π, and tangent to Sf ; then there
exists a unique holonomic multivector field X ∈ Xm(Wr) which is a solution to the equation (1.4) for
the unified formalism, at least on the points ofWf = (ρL1 )−1(Sf ) ↪→WL, and tangent toWf .

The relation between these multivector fields is XL ◦ ρr1 ◦ f = ΛmTρr1 ◦X ◦ f .

Wr

ρr1

		

ρrP

		

ρr2

��

WL
ρL1

ww

ρLP

  

ρL2

''

?�

jL

OO

J3π
FL //

FLo
++

J2π‡

Wf
?�

OO

ww ''

P
?�



OO

Sf
?�

OO

Pf
?�

OO

(1.11)

1.3.3 Hamiltonian formalism

For the Hamiltonian formalism, denote P̃ = F̃L(J3π)
̃
↪→ J2π† and P = FL(J3π)


↪→ J2π‡ (we

assume they are submanifolds and, if L is hyperregular, then P = J2π‡), and let π̄P : P → M be the
natural projection. and FLo the map defined by FL =  ◦ FLo. In order to assure the existence of the
Hamiltonian formalism we assume that the Lagrangian densityL ∈ Ωm(J2π) is, at least, almost-regular;
that is, P is a closed submanifold of J2π‡, FL is a submersion onto its image and, for every j3

xφ ∈ J3π,
the fibers FL−1(FL(j3

xφ)) are connected submanifolds of J3π. Then, there exists a diffeomorphism
µ̃ = µ◦̃ : P̃ → P and we can define a Hamiltonian µ-section as h = ̃◦µ̃−1, which is specified by a local
Hamiltonian function H ∈ C∞(P), that is, h(xi, uα, uα,i, p

α,i, pα,I) = (xi, uα, uα,i,−H, pα,i, pα,I).

P̃ ̃ //

µ̃

��

J2π†

µ

��

W
µW

��

ρ2oo

P  //

h

77

J2π‡ Wr

ĥ

XX

ρr2oo

Now, we can define the Hamiltonian forms Θh := h∗Θs
1 ∈ Ωm(P) and the condition set is I ≡ (π‡

J1π
◦

)∗C1 . Then, the second-order Hamiltonian multisymplectic system is (P,Ωh, TP, (π‡J1π
◦)∗C1). Then

the Hamiltonian formalism is recovered as follows:

17



Proposition 1.4. Let ψ ∈ Γ(ρrM ) be a solution to the equation (1.2) for the unified formalism. Then, the
section ψh = FLo ◦ ρr1 ◦ψ = FLo ◦ψL ∈ Γ(π̄P) is a solution to the equation (1.2) for the Hamiltonian
formalism.

Wr
ρr1

ww

ρr2

''

ρrM

��

ρrP

  

ρrM

��

J3π

π̄3

  

FL //

FLo ++

J2π‡

P
?�



OO

π̄P

vv
M

ψL

VV

ψh=FLo◦ψL

AA
ψ

II

Theorem 1.3. Let X ∈ Xm(Wr) be a holonomic multivector field which is a solution to the equation
(1.4) for the unified formalism, at least on the points of a submanifold f : Wf ⊆ WL ↪→ Wr, and
tangent toWf . Then there exists a holonomic multivector field Xh ∈ Xm(P) which is a solution of the
equation (1.4) for the Hamiltonian formalism, at least on the points of Pf = FL(Sf ), and tangent to
Pf .

Conversely, if Xh ∈ Xm(P) is a holonomic multivector field which is a solution to the equation
(1.4) for the Hamiltonian formalism, at least on a submanifold Pf ↪→ P , and tangent to Pf ; then there
exist locally decomposable, ρrM -transverse and integrable multivector fields X ∈ Xm(Wr) which are
solutions to the equation (1.4) for the unified formalism, at least on the points ofWf = (ρL2 )−1(Pf ) ↪→
WL ↪→Wr, and tangent toWf .

If X is ρrP -projectable (or, what is equivalent, if the multivector field XL in Theorem 1.2 is FLo-
projectable), then the relation between these multivector fields is Xh ◦ ρrP ◦ f = ΛmTρrP ◦X ◦ f .
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Chapter 2

Properties of Multisymplectic Systems

The most challenging step in the formalism presented before are equations (1.2), which are a system of
PDE in field theories. Accordingly, there has been a lot of effort in finding properties which help solve
and understand them. Common examples are symmetries, gauge freedom, conserved quantities or the
study of equivalent Lagrangians.

In this chapter we review and extend some properties for multisymplectic systems that we need
to study the models of Gravity. In section 2.1 we recover some results for symmetries and conserved
quantities, and we present a new analysis of the gauge freedom of field theories. In section 2.2 we review
the concept of projectable theories and explore the constraints of this kind of theories.

2.1 Symmetries, Conserved Quantities and Gauge freedom

2.1.1 The challenge in field theories

The concepts of symmetries, gauge freedom and conserved quantities have been developed mainly for
mechanical systems and there has been partial success in field theories. During the research we real-
ize that some of the elements, especially gauge symmetries, do not have a clear generalization to field
theories. The fundamental problem is that the solution in mechanics are one dimensional distributions
(associated to a vector field), while in field theories they are m-dimensional distributions (associated to
multivector fields). This simplifies mechanical theories, but also leads to confusion about what is a gen-
eral property of a physical system and what is a particularity of mechanical systems. This introduction
aims to discuss this difficulties.

Roughly speaking, the symmetries of a system are diffeomorphisms which leave the space of solu-
tions invariant. This definition and other related concepts, like the interpretation of infinitesimal symme-
tries as vector fields, are maintained in field theories. Remarkably, conserved quantities are modelled as
(m− 1)-forms. For mechanical systems m = 1, thus conserved quantities are functions, which leads to
physical magnitudes like energy. The interpretation of a conserved quantity in field theories is the con-
servation of a flux, the relevance of which was already identified in several physical theories. Noether’s
theorem, which relates infinitesimal symmetries and conserved quantities, also holds for field theories.
Through these chapter we will see some of the reasons of its broad validity.

The generalization of the so-called gauge symmetries has been more complicated. One can find
disparate uses of the term “gauge” in the physics literature. Moreover, some ideas and structures used in
the geometrization of gauge symmetries in mechanical theories cannot be generalized to field theories.
Commonly, the term “gauge” is used to indicate the presence of different mathematical solutions which
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correspond to the same physical state. In mechanical systems, the solutions are obtained from an ODE,
which, under certain regularity conditions, have a unique solution provided an initial condition. On the
other hand, field theories lead to PDE which, in general, also need a boundary condition to have a unique
solution. As we discuss in section 2.1.4, a field theory has a kind of multiplicity which is not present
in mechanical systems. Motivated by this idea, we have the procedure of gauge fixing. This idea has
been geometrized for mechanical systems [56], where the key idea is to consider the quotient of the
configuration bundle, a process called gauge reduction. This mechanism is interesting, but it cannot be
generalized to field theories straightforwardly. For instance, in [5, 56] it is shown that the Lie parenthesis
of a gauge vector field with the vector field solution of the system is also a gauge vector field. In field
theories, the solutions are represented as multivector fields, thus the Lie parenthesis previously mentioned
leads to incongruencies. The process of gauge reduction is also associated to the non-regularity of the
form Ω.

In order to generalize the concept of “gauge” to field theories, we choose to interpret it as the non-
regularity of the form Ω. First, it is easy to apply to field theories. Moreover it appears in a natural way
in the description of the space of solution. Finally, it is compatible with the variational principle, as we
argue in the following section. Furthermore, this approximation requires an additional analysis of the
interaction with the condition set I. It is enlightening to make a separate study of the effects of Ω and I.

2.1.2 Variational Interpretation

We present a general formulation of variational problems at a conceptual level. We aim to show which rol
have the different concepts presented before in the variational formalism. The association of the concept
of gauge to the non-regularity of the form Ω is justified in the light of this variational interpretation.
The precise definition of the elements will be given in the following sections in the framework of the
multisymplectic formalism.

Consider the sets Ψ and V , which are called the set of (admissible) sections and the set of variations
respectively. Next, consider the action, a map S : V × Ψ → R. The triad (S,Ψ, V ) represents the
variational problem. Then, a section ψ ∈ Ψ is a solution for the action S if

S(v, ψ) = 0, ∀v ∈ V . (2.1)

The set of solutions is denoted Sol(S). In this simply general framework we can define several interest-
ing objects:

• A symmetry, which is an application σ : Ψ→ Ψ, such that σ(Sol(S)) ⊂ Sol(S).

• A critical quantity, which is an application q : Ψ → R such that for all ψ ∈ Sol(S), q(ψ) = 0.
We define ker(q) := {ψ ∈ Ψ|q(ψ) = 0}.

• A gauge variation (or geometric gauge), which is an element of g ∈ V such that S(g, ψ) = 0, for
every ψ ∈ Ψ.

These elements help us to find solutions in different ways. In equation (2.1), every element of V
imposes a new condition on the sections. But the gauge variations only lead to identities, thus they do
not impose any condition. Therefore, we can substract the gauge variations to the total set of variations
without changing the solutions. Critical quantities, which are related to conserved quantities, although
they are slightly different (see Section 2.1.5), help us to narrow the space of sections. Indeed, since
Sol(S) ⊂ ker(q) for every critical quantity, we can replace Ψ by ker(q) without changing the solutions.
Symmetries allows us to construct new solutions from previously found ones.

There are some relations between these elements which also appear in the multisymplectic formal-
ism. Let σ, ρ be two symmetries, q a critical quantity, g a gauge variation and v ∈ V . Then:
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1. σ ◦ ρ is a symmetry.

2. q ◦ σ is a critical quantity.

3. S(v, ·) is a critical quantity.

4. ker(S(g, ·)) = Ψ.

The third result is central in Noether’s theorem, and it is one of the origins of the broad validity of
the theorem. The fourth item shows that the critical quantities associated to gauge variations are trivial.

2.1.3 Symmetries

Here we consider multisymplectic systems as presented in chapter 1. The proofs of the results presented
here can be found in [45].

Definition 2.1. • A symmetry of the system (J,Ω, V, I) is a diffeomorphism Φ : J → J such that

Φ∗(kermH Ω) ⊂ kermH Ω .

A pre-symmetry of the system (J,Ω, V, I) is a diffeomorphism Φ : J → J such that

Φ∗(kerm Ω) ⊂ kerm Ω .

• An infinitesimal symmetry (pre-symmetry) of the system (J,Ω, V, I) is a vector field Y ∈ X(J)
whose local flows are local symmetries (pre-symmetries).

The field equations are EDP’s and symmetries are characterized because they transform solutions
into solutions. In fact, the following assertion holds:

Theorem 2.1. Let Φ be a symmetry of a Lagrangian system (J,Ω, V, I). Then, for every X ∈ kermH ΩL,
the map Φ transforms integral submanifolds of X into integral submanifolds of Φ∗X ∈ kermH ΩL.

As a straighforward consequence of this result, we obtain that:

Theorem 2.2. Let Y ∈ X(J) be an infinitesimal symmetry of a Lagrangian system (J,Ω, V, I), and Ft
a local flow of Y . Then, for every X ∈ kermH ΩL, the map Ft transforms integral submanifolds of X into
integral submanifolds of Ft∗X ∈ kermH ΩL.

This definition of symmetry is not operational, as we need to know the set of solutions a priori. We
are interested in sufficient conditions for a pre-symmetry to be a symmetry, at least for the models we
study. Consider that the systems (J,Ω, V, I) is almost-holonomic, with projection ρ : J → Jkπ for
some k > 0, (in particular, ρ = IdJkπ if J = Jkπ).

Definition 2.2. • Consider a diffeomorphism φ : E → E, which is π-related to a diffeomorphism
ϕ : M →M . Then, the canonical lift to Jkπ is

jkφ : Jkπ → Jkπ

jkxs 7→ jkφ(jkxs) ≡ jkϕ(x)(φ ◦ s ◦ ϕ
−1) .

• A diffeomorphism Φ : Jkπ → Jkπ is natural if it is the the canonical lift of a diffeormorphism
φ : E → E, that is, Φ = jkφ. A diffeomorphism Φ′ : J → J is natural if it is ρ-related to a natural
diffeomorphism.
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• A vector field is natural if its local flows are natural.

The following diagram summarizes the diffeomorphisms of the definitions:

J
ρ //

Φ′

��

Jkπ
πk //

Φ

��

E
π //

φ

��

M

ϕ

��
J ρ

// Jkπ
πk

// E π
//M

For a diffeomorphism φ : E → E, which is π-related toϕ, and whose local expression is φ(xµ, uα) =
(ϕµ(xµ), φα(xµ, uα), its canonical lift has the following local expression

jkφ(xµ, uα, uα,I) = (ϕµ(xµ), φα(xµ, uα), vα,I(x
µ, uα, uα,I)),

where

vα,i = Djφα ·

(
∂ϕ−1j

∂xi
◦ ϕ

)
, vα,I+1i = Djvα,I ·

(
∂ϕ−1j

∂xi
◦ ϕ

)
, 1 ≤ |I| ≤ k − 1 .

Proposition 2.1. If Φ : Jkπ → Jkπ is natural, then Φ∗Ck ⊂ Ck.

Proof. Ck is locally generated by the coordinate contact forms θα,I = duα,I −uα,I+1idx
i, for 0 ≤ |I| ≤

k − 1. Then:

Φ∗(duα,I − uα,I+1idx
i) = dvα,I − vα,I+1i

∂ϕi

∂xj
dxj = dvα,I −Divα,Idx

i

=
∂vα,I
∂xi

dxi +
k−1∑
|J |=0

∂vα,I
∂uβ,J

duβ,J −

∂vα,I
∂xi

+
k−1∑
|J |=0

∂vα,I
∂uβ,J

uβ,J+1i

 dxi

=

k−1∑
|J |=0

(
∂vα,I
∂uβ,J

duβ,J −
∂vα,I
∂uβ,J

uβ,J+1idx
i

)
=

k−1∑
|J |=0

∂vα,I
∂uβ,J

θβ,J .

Proposition 2.2. In almost-holonomic systems, if a pre-symmetry is natural, then it is a symmetry.

Proof. Given a pre-symmetry Φ′, which is ρ-related to a natural diffeomorphism Φ, we only need to
check that (Φ′ ◦ ψ)∗(ρ∗Ck) = {0} for every section ψ solution to (1.2). Indeed:

(Φ′ ◦ ψ)∗(ρ∗Ck) = ψ∗((ρ ◦ Φ′)∗Ck) = ψ∗((Φ ◦ ρ)∗Ck) ⊂ ψ∗(ρ∗Ck) = {0} ,

because Φ is natural and ψ is a solution, thus it is holonomic.

Therefore, to be natural is a sufficient condition for a pre-symmetry to be a symmetry, but it is not
necessary. A relevant kind of symmetries are the following:

Definition 2.3. 1. A Cartan or Noether pre-symmetry of a system (J,Ω, V, I) is a diffeomorphism
Φ: J → J such that, Φ∗Ω = Ω. If, in addition, Φ∗Θ = Θ, then Φ is said to be an exact Cartan
pre-symmetry.

2. An infinitesimal Cartan or Noether pre-symmetry of a system (J,Ω, V, I) is a vector field Y ∈
X(J) satisfying that L(Y )Ω = 0. If, in addition, L(Y )Θ = 0, then Φ is said to be an infinitesimal
exact Cartan pre-symmetry.
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Proposition 2.3. Every Cartan pre-symmetry is a pre-symmetry and, as a consequence, every infinitesi-
mal Cartan pre-symmetry is an infinitesimal pre-symmetry.

It is well known that canonical liftings of diffeomorphisms and vector fields preserve the canonical
structures of Jkπ. Nevertheless, the (pre)multisymplectic form ΩL of the Lagrangian formalism is not
canonical, since it depends on the choice of the Lagrangian density L, and then it is not invariant by
these canonical liftings. Thus, given a diffeomorphism Φ: Jkπ → Jkπ or a vector field Y ∈ X(Jkπ),
a sufficient condition to assure this invariance would be to demand that Φ or Y leave the canonical
structures of the jet bundle Jkπ (for instance, Φ and Y being the canonical lifting of a diffeomorphism
and a vector field in E), and that the Lagrangian density L be also invariant. In this way, ΩL and hence
the Euler-Lagrange equations are invariant by Φ or Y . Therefore, a particular kind of symmetries are
those which are symmetries of the Lagrangian density. Although those are symmetries particular to
Lagrangian systems, it is possible to define them for the unified formalism (see [47] for more details).

Definition 2.4. Let (J,Ω, V, I) be a Lagrangian or a unified system, and denote the projection ρ : J →
Jkπ, with ρ = idjkπ in the Lagrangian case.

1. A Lagrangian symmetry of the Lagrangian or unified system is a diffeomorphism Φ: J → J such
that

(a) Φ leaves the canonical geometric structures of Jkπ invariant.
(b) Φ∗(ρ∗L) = ρ∗L (Φ leaves L invariant).

As a particular case, a natural Lagrangian symmetry of the Lagrangian or unified system is a
diffeomorphism Φ: J → J such that:

(a) Φ is natural.
(b) Φ leaves L invariant.

2. An infinitesimal Lagrangian symmetry of the Lagrangian or unified system is a vector field Y ∈
X(J) such that:

(a) The canonical geometric structures of Jkπ are invariant under the action of Y .
(b) L(Y )ρ∗L = 0 (Y leaves L invariant).

As a particular case, an infinitesimal natural Lagrangian symmetry of the Lagrangian or unified
system is a vector field Y ∈ X(J) such that:

(a) Y is natural.
(b) Y leaves L invariant.

As the canonical lifting of diffeomorphisms and vector fields from E to Jkπ leave the canonical
structures of Jkπ invariant, it is evident that every (infinitesimal) natural Lagrangian symmetry is also a
(infinitesimal) Lagrangian symmetry. In any case, as a direct consequence of these definitions we have:

Proposition 2.4. Let (J,Ω, V, I) be a Lagrangian system.

1. If Φ: Jkπ → Jkπ is a Lagrangian symmetry of the Lagrangian system, then Φ∗ΘL = ΘL, and
hence it is an exact Cartan symmetry.

2. If Y ∈ X(Jkπ) is an infinitesimal Lagrangian symmetry of the Lagrangian system, then L(Y )ΘL =
0, and hence it is an infinitesimal exact Cartan symmetry.

However, to demand the invariance of L is a strong condition, since there are Lagrangian densities
or, what is equivalent, Lagrangian functions that, being different and even of different order, give rise to
the same Euler-Lagrange equations. In mechanics these are the so-called gauge equivalent Lagrangians.

23



2.1.4 Gauge vector fields

The standard use of the term gauge in Physics is for describing certain kinds of symmetries which arise as
a consequence of the non-regularity of the system and lead to the existence of states that are physically
equivalent. This characteristic is known as gauge freedom. As we discussed before, there are more
interesting properties associated to the gauge symmetries. We will start defining the gauge vector fields,
inspired by the variational reasoning, and then we will present what are the extra conditions necessary
to recover these properties in field theories. Consider a system (Jf ,Ω, V, I) defined on the submanifold
j : Jf ↪→ J with projection π̄f : Jf →M and denote

TJ⊥f :=
⋃
p∈Jf

{v ∈ Vp | i(v) i(X)Ω|p = 0 , ∀X ∈ ∧m(TpJf )} .

Definition 2.5. • The weak gauge distribution of the system (Jf ,Ω, V, I) is

Gw ≡
⋃
p∈Jf

{v ∈ Vp|ψ∗ i(v)Ω|ψ−1(p) = 0 , for all admisible ψ ∈ Γ(π̄f ) such that p ∈ Im(ψ) }.

A weak gauge vector field of the system (Jf ,Ω, V, I) is a vector field Y ∈ Γ(V ) such that

ψ∗(i(Y )Ω) = 0 , for all admisible ψ ∈ Γ(π̄f ) .

• The strong gauge distribution of the system (Jf ,Ω, V, I) is Gs ≡ Ker(T π̄f ) ∩ TJ⊥f . A strong
gauge vector field of the system (Jf ,Ω, V, I) is a π̄f -vertical vector field Y ∈ Γ(TJ⊥f ).

• A gauge symmetry of the system (Jf ,Ω, V, I) is a strong gauge vector field tangent to Jf which is
also a symmetry. In particular, if it is natural it is called a natural gauge symmetry.

Lemma 2.1. If Ω is closed, then Gw and Gs are involutive distributions on Jf .

Proof. It is a consequence of V being involutive and the properties of the Lie derivative.

The gauge reduction procedure is centered on quoting the system using gauge distributions. The
stronger the conditions, the better behaved the final system is, and narrower is its application.

Consider an involutive subdistribution of the weak gauge distribution G′w ⊂ Gw and assume that the
quotient manifold ξ : Jf → Jf/G

′
w is well defined. Given a section (gauge fixing) of ξ, we can define

Ωβ ≡ β∗Ω, but it depends on the section because, in general, Ω is not constant in ξ−1(p) for some p ∈
Jf/G

′
w. Nevertheless, they are relevant when analyzing the condition set and the conserved quantities.

For instance, the difficulties on defining the Hamilton-Cartan form for the Hamiltonian formalism for
higher-order field theories is a consequence that the symetrization of the momenta leads only to weak
gauge vector fields.

Consider an involutive subdistribution of the strong gauge distribution G′s ⊂ Gs and assume that
the quotient manifold ξ : Jf → Jf/G

′
s is well defined. Now, the form can be defined univocally

on the quotient space, and we will denote it by Ωs. Since the strong gauge variations are π̄f -vertical,
we assure that the base manifold M does not contain gauge equivalent points and then all the gauge
degrees of freedom are in the fibres. Therefore, after doing the reduction procedure in order to remove
the gauge multiplicity, the base manifold M remains unchanged. Moreover, there exists a projection
π̄ξ : Jf/G

′
s →M such that π̄ξ ◦ ξ = π̄f . Unfortunately, following the same reasoning, the condition set

cannot be defined univocally in Jf/G′s, in general. Regardless, consider the system (Jf/G
′
s,Ωs, Vs ≡

ξ∗V, {0}). Notice that Ωs is an m-form and the dimension of M is also m. Then
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Proposition 2.5. If the section ψ is a solution of the system (Jf ,Ω, V, I), then ξ ◦ ψ is a solution of the
system (Jf/G

′
s,Ωs, Vs, {0})

Proof. Consider the section β : Jf/G
′
s → Jf such that β ◦ ξ ◦ ψ = ψ, (it exists at least locally because

G′s ⊂ Ker(T π̄f )). For every Y ∈ Γ(Vs), we have that β∗Y ∈ Γ(V ); then:

(ξ ◦ ψ)∗ i(Y )Ωs = (ξ ◦ ψ)∗ i(Y )β∗Ω = (β ◦ ξ ◦ ψ)∗ i(β∗Y )Ω = ψ∗ i(β∗Y )Ω = 0 .

The converse is not true in general. That is, for a solution ψ′ of the quotient system and for an
arbitrary section β, β ◦ ψ′ is a solution only if it is admissible. Nevertheless, the strong gauge vector
fields are interesting as they encode the non-regularity of Ω and are easy to compute. We use them to
study the projectability of the systems.

As it is well-known, a regular mechanical system has a unique solution (as a vector field). Conversely,
if there are multiply solutions, they are gauge related. Thus, the multiplicity of solutions in mechanical
systems is related to the non-regularity of the theory. This close relation between multiplicity of solu-
tions, gauge vector fields and non-regularity is not present in field theories. For instance, consider the
regular Lagrangian L = u2

x + u2
y in the bundle π : E → M , where the coordinates in M are (x, y)

and (x, y, u) in E. The corresponding field equation is the Laplace’s equation, which has not a unique
solution given an initial condition. Clearly, in field theories there are sources of multiplicity of solutions
which are not related to the non-regularity of the theory. In the approach that we have presented here,
the gauge vector fields are related to the multiplicity of solutions caused by the non-regularity of Ω.

2.1.5 Conserved Quantities

(See [45] and [32] for the proofs of all the results in this section).

Definition 2.6. • A critical quantity of the system (J,Ω, V, I) is an m-form β ∈ Ωm(J) such that
i(X)β = 0 for every solution X ∈ kermH(Ω).

• If a critical quantity is exact, there exists an (m − 1)-form ξ ∈ Ωm−1 such that β = dξ and ξ
is called a conserved quantity. Equivalently, ξ ∈ Ωm−1(J) is a conserved quantity if L(X)ξ :=
(−1)m+1 i(X)dξ = 0 for every solution X ∈ kermH(Ω).

Proposition 2.6. • If β ∈ Ω(J) is a conserved quantity of the system (J,Ω, V, I) and X ∈ kermH Ω,
then β vanishes on the integral submanifolds of X; that is, if jM : M ↪→ J is an integral subman-
ifold, then j∗Mβ = 0.

• If ξ ∈ Ωm−1(M) is a conserved quantity of the system (J,Ω, V, I) and X ∈ kermH Ω, then ξ is
closed on the integral submanifolds of X; that is,if jM : M ↪→ J is an integral submanifold, then
dj∗Mξ = 0.

As it was pointed out in 2.1.2, the variations generate critical quantities.

Proposition 2.7. For every X ∈ Γ(V ), i(X)Ω is a critical quantity.

Proof. It is straightforward from the definitions of critical quantity and solution to field equations (1.4).
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We call any critical quantity obtained in this way a Noether critical quantity. If i(X)Ω is exact X
is a Hamiltonian vector field, and if i(X)Ω is closed X is a locally Hamiltonian vector field. We can
establish a one-to-one relation between Noether conserved quantities and vector fields modulo strong
gauge vector fields.

Lemma 2.2. • X is a Cartan pre-symmetry if, and only if, i(X)Ω is closed. Therefore, X is a
locally Hamiltonian vector field .

• X is an exact Cartan pre-symmetry if, and only if, i(X)Ω = d(− i(x)Θ). Therefore, X is a
Hamiltonian vector field .

• X is a gauge strong vector field if, and only if, i(X)Ω = 0 . Therefore, X is a Hamiltonian vector
field.

The critical sections associated with strong gauge vector fields are trivial. These relations, particu-
larized to symmetries and conserved quantities, is the Noether theorem [45]:

Theorem 2.3. (Noether): Let Y ∈ X(J) be an infinitesimal Cartan symmetry of a Lagrangian system
(J,Ω, V, I), with i(Y )Ω = dξY . Then, for every X ∈ kermH Ω (and hence for every X ∈ kermH Ω), we
have that

L(X)ξY = 0 ;

that is, any Hamiltonian (m − 1)-form ξY associated with Y is a conserved quantity (and, for every
integral submanifold ψ of X, the form ψ∗ξY , is usually called a Noether current, in this context).

And, as a particular case, we have:

Proposition 2.8. Let Y ∈ X(J) be an infinitesimal Cartan symmetry of a Lagrangian system (J,Ω, V, I).
Then:

1. L(Y )ΘL is a closed form, hence, in an open set U ⊂ J , there exist ζY ∈ Ωm−1(U) such that
L(Y )ΘL = dζY .

2. If i(Y )ΩL = dξY , in an open set U ⊂ J , then

L(Y )ΘL = d(i(Y )ΘL − ξY ) = dζY (in U ) ,

and hence ξY = i(Y )ΘL − ζY (up to a closed (m− 1)-form).

As a particular case, if Y is an exact infinitesimal Cartan symmetry, we can take ξY = i(Y )ΘL.

A conserved quantity can be interpreted as the conservation of a flux. Given ξ ∈ Ωm−1(J) and
X ∈ Xm(J), for every integral submanifoldψ : M → J of X, we can construct the so-called form of flux
associated with the vector field Xψ∗ξ wich is ψ∗ξ ∈ Ωm−1(M). Thus we have a unique Xψ∗ξ ∈ X(M)
such that i(Xψ∗ξ)η = ψ∗ξ and, if divXψ∗ξ denotes the divergence ofXψ∗ξ, we have that (divXψ∗ξ) η =
dψ∗ξ. Then, as a consequence of Proposition 2.6, ξ is a conserved quantity if, and only if, divXψ∗ξ = 0,
and hence, by Stokes theorem, in every bounded domain U ⊂M ,∫

∂U
ψ∗ξ =

∫
U

(divXψ∗ξ) η =

∫
U

dψ∗ξ = 0 .

The form ψ∗ξ is called the current associated with the conserved quantity ξ, and this result allows to
associate a conservation law in M to every conserved quantity in J .
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2.2 Order reduction

2.2.1 Order reduction and projectability of the Poincaré-Cartan form

There are some models in classical field theories where, as a consequence of the singularity of the
Lagrangian, the order of the Euler-Lagrange equations is lower than expected. A geometrical way of
understanding this problem is considering the projectability of the higher-order Poincaré-Cartan form
onto lower-order jet bundles [16, 86, 87]. We review the conditions for this projectability and study
their consequences using the constraint algorithm for the field equations of second order (singular) field
theories, thus enlarging the results stated in previous papers [16, 44, 73, 86, 87].

We analyse the Lagrangian formalism, thus consider the jet Jkπ of the fiber bundle π : E →M over
an m-dimensional manifold M and with dimE = m+ n. See chapter 1 for more details.

Remember that a form ω ∈ Ωs(E) is said to be π-semibasic if i(X)ω = 0, and π-basic or π-
projectable if i(X)ω = 0 and L(X)ω = 0, for every π-vertical vector field X ∈ XV (π). As a conse-
quence of Cartan’s formula, L(X)ω = i(X)dω+ d i(X)ω, a form ω ∈ Ωn(E) is π-basic if, and only if,
ω and dω are π-semibasic.

Recall the coordinate total derivatives [83, 90] (or Section 1.1):

Dµ =
∂

∂xµ
+

k∑
|I|=0

uαI+1µ

∂

∂uα,I
. (2.2)

For every function f , we have Dµf := L(Dµ)f . In addition, we have:

• If X ∈ XV (πks ), then [Dµ, X] ∈ XV (πks−1).

• For f ∈ C∞(Jkπ), if f is πks -basic then Dµf is πks+1-basic.

We show some consequences of the projectability of the Poincaré-Cartan form for second order
Lagrangian classical field theories. The Lagrangian form that describes the theory is a π̄2-semibasic
m-form L = L (π̄2)∗ω ∈ Ωm(J2π), where L ∈ C∞(J2π) is the Lagrangian function, ω is the
volume form in M , and π̄2 : J2π → M . Natural coordinates of J3π adapted to the fibration are
(xµ, uα, uα,µ, uα,I , uα,J), such that ω = dx1 ∧ . . . ∧ dxm ≡ dmx; 1 ≤ µ ≤ m, 1 ≤ α ≤ n, and
I , J are multiindices with |I| = 2, |J | = 3, [90].

The Poincaré-Cartan m-form ΘL ∈ Ωm(J3π) is locally given by

ΘL = Lα,µduα ∧ dm−1xµ + Lα,µνduα,µ ∧ dm−1xν +
(
L− Lα,µuα,µ − Lα,µνuα,1µ+1ν

)
dmx ,

where dm−1xν = i

(
∂

∂xν

)
dmx and the functions Lα,µ, Lα,µν ∈ C∞(J3π) are

Lα,µ =
∂L

∂uα,µ
−DνL

α,µν ; Lα,µν =
1

n(µν)

∂L

∂uα,1µ+1ν

.

Lemma 2.3. For s = 1, 2, the following conditions are equivalent:

1. ΘL projects onto Jsπ.

2. dΘL is π3
s -semibasic.

3. L(X)Lα,µ = 0 and L(X)Lα,µν = 0; for every X ∈ XV (π3
s).
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(Proof ): (1⇔ 2) is a consequence of Cartan’s formula.

For (2 ⇔ 3), in the case s = 2, we compute the condition 2 in coordinates. It turns to be equivalent
to

∂Lα,µ

∂uβ,J
= 0 ,

∂Lα,µν

∂uβ,J
= 0 ,

∂

∂uβ,J
(L− Lα,µuα,µ − Lα,µνuα,1µ+1ν ) = 0 ;

(for |J | = 3, and for every β, α, µ and ν). The last equation is a consequence of the other two (because

L does not depend on uβ,J ); which are locally equivalent to 3, since
{

∂

∂uβ,J

}
generates XV (π3

s). The

case s = 1 can be proved in a similar way.

Other important results concerning to this topic (that we present here for completeness) are the fol-
lowing [86]:

Proposition 2.9. If ΘL projects onto Jsπ, then the order of the Euler-Lagrange equations is at most
s+ 1.

Proposition 2.10. If there exist L′ ∈ Ωm(J1π) such that ΘL = (π3
1)∗ΘL′ , then L = (π3

1)∗L′.

Concerning to the last proposition, the study of the existence of an equivalent lower order Lagrangian
L′ ∈ Ωm(J1π) has been analysed in [16, 87].

If the Poincaré-Cartan form ΘL projects onto a lower-order jet bundle, it is associated to a highly
degenerate Lagrangian (this is just a consequence of the third item in Lemma 2.3). As a consequence
of this fact, the field equations could not have admissible solutions everywhere in J3π, but in some
submanifold of it which can be obtained after applying a suitable constraint algorithm (see, for instance,
[22]).

Theorem 2.4. If ΘL projects onto Jsπ, then solutions to the corresponding Euler-Lagrange equations
(1.4) only exist in the points of a submanifold S ↪→ J3π, where S is locally defined by the constraint
functions given by

• Lα = 0; if s = 1.

• Lα = 0 and DµLα = 0; if s = 2.

Where Lα =
∂L

∂uα
−DµL

α,µ =
∂L

∂uα
−Dµ

∂L

∂uα,µ
+DI

∂L

∂uα,I
.

(Proof ): X can be written in coordinates as

X = f
m∧
µ=1

(
Dµ + (Fα,J,µ − uα,J+1µ)

∂

∂uα,J

)
= f

m∧
µ=1

Xµ ;

for f, Fα,J,i ∈ C∞(J3π), (|J | = 3). Using this expression, equation (1.4) reduces to

Lα + (Fβ,J,µ − uβ,J+1µ)
∂Lα,µ

∂uβ,J
= 0 , (2.3)

which are the Euler-Lagrange equations for multivector fields. If ΘL projects either onto J1π or J2π, by

Lemma 2.3 we have
∂Lα,µ

∂uβ,J
= 0, and then from (2.3) we get Lα = 0. Observe that, as a consequence,

we cannot compute any of the functions Fα,J,µ. Actually Lα = 0 are restrictions for the points of the
manifold J3π, which we assume that define a submanifold S1 ⊂ J3π, where the equation (1.4) have
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solutions. In order to find Fα,J,µ we use the constraint algorithm (as it is outlined, for instance, in [83]).
So we look for the points of S1 where the multivector fields which are solutions to (1.4) (on S1) are
tangent to S1. Thus, imposing this consistency or tangency condition we get

0 = L(Xµ)Lα = DµL
α +

(
Fβ,J,µ − uβ,J+1µ

) ∂Lα

∂uβ,J
(on S1) .

If ΘL projects onto J1π, then the associated Euler-Lagrange equations are of order at most 2 (by propo-
sition 2.9). This implies that Lα, which are the Euler-Lagrange equations before being evaluatedon

sections, are π3
2-projectable. Thus,

∂Lα

∂uβ,J
= 0, and we find new restrictions, DµL

α = 0 which are

assumed to define a new submanifold S2 ⊂ S1 ⊂ J3π where the solutions to (1.4) are tangent to S1.

Notice that, depending on the Lagrangian, we may need to continue the constraint algorithm, so
obtaining that

DνDµL
α + (Fβ,J,ν − uβ,J+1ν )

∂DµL
α

∂uβ,J
= 0 (on S2) .

This process continues until the new conditions hold identically and we find a final constraint submani-
fold Sf of J3π where solutions to (1.4) are tangent to Sf .

2.2.2 Application to higher-order mechanics

Now, consider the particular case where π : E → R, with dimE = n + 1, is the configuration bundle
of a higher-order non-autonomous theory. For a theory of order k, we need to use jet bundle up to J2kπ.
The (only) total time derivative is

Dt =
∂

∂t
+

k∑
i=0

qαi+1

∂

∂qαi
,

which verifies the properties stated in Section 2.2.1. The dynamics is given by a Lagrangian form L ∈
Ω1(Jkπ), which is a π̄k-semibasic 1-form and it has associated the Lagrangian function L ∈ C∞(Jkπ),
such that L = L (π̄k)∗dt, where dt is the canonical volume form in R [21]. The Poincaré-Cartan 1-form
ΘL ∈ Ω1(J2k−1π) is given locally by:

ΘL =

k∑
r=1

Lrαdqαr−1 +

(
L−

k∑
r=1

Lrαq
α
r

)
dt ,

where the functions Lrα ∈ C∞(J2k−1π) are

Lrα =
k−r∑
i=0

(−1)iDi
t

(
∂L

∂qαr+i

)
,

and they can be obtained inductively by setting Lrα = 0, for r > k, and

Lrα =
∂L

∂qαr
−DtL

r+1
α . (2.4)

Notice that L0
α, when evaluated on a section, are the Euler-Lagrange equations. The properties stated

in Lemma 2.3 and Propositions 2.9 and 2.10 read:

Lemma 2.4. For s ≥ k − 1, the following conditions are equivalent:

1. ΘL projects onto Jsπ.
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2. dΘL is π2k−1
s -semibasic.

3. L(X)Lrα = 0; for every X ∈ XV (π2k−1
s ), and for r = 1, . . . , k, α = 1, . . . , n.

(Proof ): (1 ⇔ 2) is a consequence of Cartan’s formula. For the equivalence between 2 and 3 we
consider two cases:

- If s ≥ k: The relevant terms of dΘL are of the form:

∂Liα

∂qβr
dqβr ∧ dqαi−1 ,

∂

∂qβr

(
L−

k∑
i=1

Liαq
α
i

)
dqβr ∧ dt ; s < r ≤ 2k − 1 .

Then, dΘL is π2k−1
s -semibasic if, and only if,

∂Liα

∂qβr
= 0, and this is equivalent to L(X)Lrα = 0, for

every X ∈ XV (π2k−1
s ), since

{
∂

∂qβr

}
generates XV (π2k−1

s ).

- If s = k − 1: In this case dΘL is π2k−1
s -semibasic if, and only if,

∂Liα

∂qβr
= 0 ,

∂L

∂qβk
− Lkβ = 0 ;

but this last condition is fulfilled by the definition of Lkβ , and the same reasoning above allows us to prove
the statement.

If ΘL projects onto Jsπ, with s < k − 1, then L does not depend on qαj , for j > s + 1, then there
exists a function L′ ∈ C∞(Js+1π) such that L = (πks+1)∗L′ and the theory is not strictly of order k.
Furthermore, in the case s ≥ k − 1, a Lagrangian such that ΘL projects onto Jsπ depends on all the
variables and thus we have a theory of order k, although the associated Euler-Lagrange equations are of
lower order as a system of differential equations.

Proposition 2.11. ΘL projects onto Jsπ, with s ≥ k − 1 if, and only if, L0
α is πks+1-basic.

Proof. Note that L0
α ∈ C∞(J2kπ). For X ∈ XV (πks+1),

L(X)L0
α = L(X)

∂L

∂qα0
− L(X)(DtL

1
α) = L(X)

∂L

∂qα0
−Dt(L(X)L1

α)− L([X,Dt])L
1
α .

Since [Dt, X] ∈ XV (πks ) and L1
α and L are πks -basic, then L(X)(L0

α) = 0. Therefore, L0
α is πks+1-basic.

The converse holds because DtL
j
α is πkj -basic if, and only if, Ljα is πkj−1-basic, for j > 1. Indeed,

from (2.4), for every r ≥ 1, if Lr−1
α is πkj -basic, then Lrα is πki -basic, with i ≤ max(k, j) − 1. By

induction, if L0
α is πks+1-basic, then Lrα is πks -basic for all r, thus ΘL projects onto Jsπ.

Equating the local expressions of ΘL and ΘL′ the following result holds immediately:

Proposition 2.12. If there exist L′ ∈ Ω1(Jk
′
π) such that ΘL = (π2k−1

s )∗ΘL′ , then L = (π2k−1
s )∗L′.

In particular L is not strictly of order k. Finally, a similar result to theorem 2.4 is the following:

Theorem 2.5. If ΘL projects onto Jsπ, then solutions to the corresponding Euler-Lagrange equations
exist only in points of a submanifold S ↪→ J2k−1π, where S is locally defined by the constraint functions
given by

Dj
tL

0
α = 0 ; (j = 0, . . . , 2k − s− 2) .
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(Proof ): To find a solution to the Euler-Lagrange equations is equivalent to find a holonomic vector
field X ∈ X(J2k−1π) such that

i(X)dΘL = 0 . (2.5)

The holonomic vector fields have the local expression:

X = Dt + (Fα − qα2k)
∂

∂qα2k−1

,

and then equation (2.5) reduces to

L0
α − (F β − qβ2k)

∂L1
α

∂qβ2k−1

= 0 .

If ΘL projects onto Jsπ for s < 2k − 1, the second term vanishes and L0
α = 0. Notice that we cannot

compute any function Fα. Actually L0
α ∈ C∞(J2k−1π), thus L0

α = 0 is just a restriction for the points
of the manifold J2k−1π. Next, following the constraint algorithm, we impose the tangency condition
and we get

0 = L(X)L0
α = DtL

0
α + (Fα − qα2k)

∂L0
α

∂qα2k−1

.

If ΘL projects onto Jsπ, then the second term vanishes (Proposition 2.11) and we find another constraint,
DtL

0
α = 0. The algorithm continues until we reach the condition D2k−s−2

t L0
α = 0.

As above, depending on the Lagrangian, we may need to continue the constraint algorithm, obtaining
that

0 = Dt

(
D2k−s−2
t L0

α

)
+ (Fα − qα2k)

∂

∂qα2k−1

(
D2k−s−2
t (L0

α)
)
.
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Chapter 3

Einstein-Hilbert

This chapter is a contribution to the study of the most classical variational model for General Relativity
that is, the Einstein-Hilbert theory (with and without energy-matter sources), using the multisymplectic
framework for giving a covariant description of it. As it is well-known, this model is described by
a second-order singular Lagrangian, and thus this study presents General Relativity as a second-order
premultisymplectic field theory with constraints. Our study is done from a different perspective since we
use the unified Lagrangian-Hamiltonian formalism developed for first and second-order multisymplectic
field theories [29, 83] (which was stated first by R. Skinner and R. Rusk for autonomous mechanical
systems [94]), and is specially interesting for analyzing non-regular constraint theories. Then we derive
from it the Lagrangian and multimomentum Hamiltonian formalism.

As a consequence of the singularity of the Lagrangian, the Einstein-Hilbert model exhibits gauge
freedom and it can be reduced to a first-order field theory [16, 72, 73, 86, 87]. Then, related to this
topic, we analyse also a first-order theory equivalent to Einstein-Hilbert (without matter-energy sources),
which is described by a first-order regular Lagrangian, showing, in this way, that General Relativity
can be realised as a regular multisymplectic field theory (without constraints). This first-order model is
different from the Metric-Affine or Einstein-Palatini approach which is also a first-order but non-regular
(gauge) theory. The gauge freedom of the Einstein-Hilbert theory is also discussed, in order to show
clearly the relation with the first-order case. In the case of the Einstein-Hilbert model with energy-matter
sources, we show how the behaviour of the theory (the constraints arising in the constraint algorithm
and the achievement of the multimomentum Hamiltonian formalism) depends on the characteristics of
the Lagrangian representing the sources. This study is done in detail for the most standard types of
energy-matter sources: those coupled to the metric.

The organization of the chapters is the following: In Section 3.1 the Lagrangian-Hamiltonian formal-
ism for the theory is developed. Then, we recover both the Lagrangian and Hamiltonian formalisms, in
the last case we show how this second-order theory can be equivalent to a first-order one. Section 3.2 is
devoted to analyse the Einstein-Hilbert Lagrangian with energy-matter sources, following the same pro-
cedure as in the previous section. In Section 3.3 we briefly discuss the symmetries for Einstein-Hilbert
model. Finally, in the appendices, the calculation of multivector fields which are solutions to the field
equations for all these models is explicitly done.
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3.1 The Einstein-Hilbert model without energy-matter sources

3.1.1 The Einstein-Hilbert Lagrangian

Fist we consider the Einstein-Hilbert Lagrangian for the Einstein equations of gravity without sources
(no matter-energy is present).

The configuration bundle for this system is a fiber bundle π : E → M , where M is a connected
orientable 4-dimensional manifold representing space-time, whose volume form is denoted η ∈ Ω4(M).
E is the manifold of Lorentz metrics on M ; that is, for every x ∈ M , the fiber π−1(x) is the set of
metrics with signature (−+ ++) acting on TxM .

The adapted fiber coordinates in E are (xµ, gαβ), (µ, 0 ≤ α ≤ β ≤ 3), such that η = dx0 ∧ . . . ∧
dx3 ≡ d4x and where gαβ are the component functions of the metric. It is usefull to consider also the
components gβα with β > α, but we should remember they are not independent because the metric is
symmetric, gαβ = gβα. Actually there are 10 independent variables, resulting that the dimension of the
fibers is 10 and dimE = 14. When we sum over the indices on the fiber and not all the components, we
order the indices as 0 ≤ α ≤ β ≤ 3.

In order to state the formalism we need to consider the kth-order jet bundles of the projection π, Jkπ,
(k = 1, 2, 3). The induced coordinates in J3π are (xµ, gαβ, gαβ,µ, gαβ,µν , gαβ,µνλ), (0 ≤ µ ≤ ν ≤
λ ≤ 3). Again, we will use all the permutations, although only the ordered ones are proper coordinates.

The coordinate total derivatives [83, 90], are locally given as

Dτ =
∂

∂xτ
+
∑
α≤β
µ≤ν≤λ

(
gαβ,τ

∂

∂gαβ
+ gαβ,µτ

∂

∂gαβ,µ
+ gαβ,µντ

∂

∂gαβ,µν
+ gαβ,µνλτ

∂

∂gαβ,µνλ

)
. (3.1)

Observe that, if f ∈ C∞(Jkπ), then Dτf ∈ C∞(Jk+1π).

The Einstein-Hilbert Lagrangian density is a π̄2-semibasic m-form LEH ∈ Ω4(J2π), then LEH =
LEH (π̄2)∗η, where LEH ∈ C∞(J2π) is the Einstein-Hilbert Lagrangian function given by

LEH = %R = %gαβRαβ ;

here % =
√
|det(gαβ)|, R is the scalar curvature, Rαβ = DγΓγαβ − DαΓγγβ + ΓγαβΓδδγ − ΓγδβΓδαγ are

the components of the Ricci tensor, Γλµν =
1

2
gλρ (gνρ,µ + gρµ,ν − gµν,ρ) are the Christoffel symbols of

the Levi-Civita connection of g, and gαβ denotes the inverse matrix of g, namely: gαβgβγ = δαγ . As the
Christoffel symbols depend on first-order derivatives of gµν and taking into account the expression (3.1)
we have that the Lagrangian contains second-order derivatives of the components of the metric and thus
this is a second-order field theory.

It is useful to consider the following decomposition [16, 86]:

L̂ =
∑
α≤β

L̂αβ,µνgαβ,µν + L̂0 ,

where

L̂αβ,µν =
1

n(µν)

∂L̂

∂gαβ,µν
=
n(αβ)

2
%(gαµgβν + gανgβµ − 2gαβgµν) , (3.2)

L̂0 = %gαβ{gγδ(gδµ,βΓµαγ − gδµ,γΓµαβ) + ΓδαβΓγγδ − ΓδαγΓγβδ} . (3.3)
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The point on this decomposition is to isolate the acceleration term, because L̂αβ,µν and L̂0 project onto
functions Lαβ,µν ∈ C∞(E) and L0 ∈ C∞(J1π), respectively. Another useful function is

L̂αβ,µ =
∂L̂

∂gαβ,µ
−

3∑
ν=0

1

n(µν)
Dν

(
∂L̂

∂gαβ,µν

)
=

∂L̂0

∂gαβ,µ
−DνL̂

αβ,µν . (3.4)

3.1.2 Langrangian-Hamiltonian Unified Formalism

Langrangian-Hamiltonian Unified System

For the Lagrangian-Hamiltonian unified formalism, we have the symmetric higher-order jet multimo-
mentum bundle Wr = J3π×J1π J

2π‡ (see [83, 84] for details), which have as natural local coordinates

(xµ, gαβ, gαβ,µ, gαβ,µν , gαβ,µνλ, p
αβ,µ, pαβ,µν), (0 ≤ α ≤ β ≤ 3; 0 ≤ µ ≤ ν ≤ 3) .

Remember these bundles are endowed with the canonical projections

ρr1 : Wr → J3π , ρr2 : Wr → J2π‡ , ρrM : Wr →M .

Hence, we have the diagram:

Wr

ρr1

}}

ρr2

""
ρr
J1π

��

ρrM

��

J3π

π3
1 ''

J2π‡

π‡
J1πww

J1π

π̄1

��
M

Denoting by L̂ = (π3
2 ◦ρ1)∗LEH ∈ Ω4(W), we can write L̂ = L̂ ρ∗Mη, where L̂ = (π3

2 ◦ρ1)∗LEH ∈
C∞(W). Then, we introduce the Hamiltonian function

Ĥ =
∑
α≤β

pαβ,µgαβ,µ +
∑
α≤β
µ≤ν

pαβ,µνgαβ,µν − L̂ .

Now we define the Liouville forms inWr, Θr and Ωr = −dΘr, with local expressions

Θr = −Ĥd4x+
∑
α≤β

pαβ,µdgαβ ∧ d3xµ +
∑
α≤β

1

n(µν)
pαβ,µνdgαβ,µ ∧ d3xν ,

Ωr = dĤ ∧ d4x−
∑
α≤β

dpαβ,µ ∧ dgαβ ∧ d3xµ −
∑
α≤β

1

n(µν)
dpαβ,µν ∧ dgαβ,µ ∧ d3xν .
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In the following, we commit an abuse of notation denoting also L̂ = (π3
2 ◦ ρr1)∗LEH ∈ C∞(Wr). These

forms are degenerate; namely,

ker Θr = ker Ωr =

〈
∂

∂gαβ,µν
,

∂

∂gαβ,µνλ

〉
0≤α≤β≤3; 0≤µ≤ν≤λ≤3

. (3.5)

In this way, the coordinate vector fields in (3.5) are local strong gauge vector fields. Furthermore, Θr is
(π3

1 ◦ ρr1)-projectable.

The condition set for the unified system is I = ρr1
∗C3 ≡ {ρr1∗ω|ω ∈ C3}, where C3 is the Cartan

codistribution associated to J3π. Therefore, a section ψ ∈ Γ(ρrM ) is holonomic inWr if ρr1 ◦ψ ∈ Γ(π̄3)
is holonomic in J3π, and an integrable and ρrM -transverse multivector field X ∈ X4(Wr) is holonomic
if its integral sections are holonomic.

The local expression of a semi-holonomic multivector field X ∈ X4(Wr) is

X =

4∧
λ=1

∑
α≤β
µ≤ν≤τ

(
∂

∂xλ
+ gαβ,λ

∂

∂gαβ
+ gαβ,µλ

∂

∂gαβ,µ
+ gαβ,µνλ

∂

∂gαβ,µν
+

Fαβ,µντλ
∂

∂gαβ,µντ
+Gαβ,µλ

∂

∂pαβ,µ
+Gαβ,µνλ

∂

∂pαβ,µν

)
. (3.6)

The Lagrangian-Hamiltonian system for the Einstein-Hilbert model without matter sources is (Wr,
Ωr, TWr, ρ

r
1
∗C3). As the form Ωr is 1-degenerate we have that actually it is a premultisymplectic system,

and solutions to (1.2) or (1.4) do not exist everywhere inWr. Then [83]:

Proposition 3.1. A sectionψ ∈ Γ(ρrM ) solution to the equation (1.2) takes values in a 140-codimensional
submanifold L : WL ↪→Wr which is identified with the graph of a bundle map FL : J3π → J2π‡, over
J1π, defined locally by

FL∗pαβ,µ =
∂L̂

∂gαβ,µ
−

3∑
ν=0

1

n(µν)
Dν

(
∂L̂

∂gαβ,µν

)
= L̂αβ,µ , FL∗pαβ,µν =

∂L̂

∂gαβ,µν
. (3.7)

What is equivalent, the submanifoldWL is the graph of a bundle morphism F̃L : J3π → J2π† over J1π
defined locally by

F̃L
∗
pαβ,µ =

∂L̂

∂gαβ,µ
−

3∑
ν=0

1

n(µν)
Dν

(
∂L̂

∂gαβ,µν

)
= L̂αβ,µ ,

F̃L
∗
pαβ,µν =

∂L̂

∂gαβ,µν
,

F̃L
∗
p = L̂−

∑
α≤β

gαβ,µ

(
∂L̂

∂gαβ,µ
−

3∑
ν=0

1

n(µν)
Dν

(
∂L̂

∂gαβ,µν

))
−
∑
α≤β
µ≤ν

gαβ,µν
∂L̂

∂gαβ,µν
.

The maps FL and F̃L are the restricted and the extended Legendre maps (associated with a La-
grangian density L), and they satisfy that FL = µ ◦ F̃L. For every j3

xφ ∈ J3π, we have that
rank(F̃L(j3

xφ)) = rank(FL(j3
xφ)). Remember that, according to [91], we say that a second-order

Lagrangian density L ∈ Ω4(J2π) is regular if

rank(F̃L(j3
xφ)) = rank(FL(j3φ)) = dim J2π + dim J1π − dimE = dim J2π‡ ,
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otherwise, the Lagrangian density is singular. Regularity is equivalent to demand thatFL : J3π → J2π‡

is a submersion onto J2π‡ and this implies that there exist local sections of FL. If FL admits a global
section Υ: J2π‡ → J3π, then the Lagrangian density is said to be hyperregular. Recall that the regularity
of L determines if the section ψ ∈ Γ(ρrM ) solution to the equation (1.2) lies inWL or in a submanifold
Wf ↪→ WL where the section ψ takes values. In order to obtain this final constraint submanifold, the
best way is to work with the equation for multivector fields (1.4) instead of (1.2).

Field equations for multivector fields

First, the premultisymplectic constraint algorithm [22] states that:

Proposition 3.2. A solution X ∈ X4(Wr) to equation (1.4) exists only on the points of the compatibility
submanifoldWc ↪→Wr defined by

Wc =
{
w ∈ Wr : (i(Z)dĤ)(w) = 0 , for every Z ∈ ker(Ωr)

}
=
{
w ∈ Wr : (i(Y )Ωr)(w) = 0 , for every Y ∈ XV (ρr2)(Wr)

}
.

Bearing in mind (3.5) and that i
(

∂

∂gαβ,µντ

)
dĤ = 0, the functions locally defining this submani-

fold have the following coordinate expressions

i

(
∂

∂gαβ,µντ

)
dĤ = pαβ,µν − ∂L̂

∂gαβ,µν
. (3.8)

Then, the tangency condition for the multivector fields X which are solutions to (1.4) onWc gives rise
to 24 new constraints

pαβ,µ − ∂L̂

∂gαβ,µ
+

3∑
ν=0

1

n(µν)
Dν

(
∂L̂

∂gαβ,µν

)
= 0 .

which define a submanifold of Wc that coincides with the submanifold WL. Now the study of the
tangency of X along WL could introduce new constraints depending on the regularity of L, and the
algorithm continues until we reach the submanifoldWf . The final result is given in the next theorem:

Theorem 3.1. LetWf ↪→Wr be the submanifold defined locally by the constraints

pαβ,µν − ∂L̂

∂gαβ,µν
= 0 , pαβ,µ − L̂αβ,µ = 0 , L̂αβ = 0 , Dτ L̂

αβ = 0 ;

for 0 ≤ α ≤ β ≤ 3, 0 ≤ µ ≤ ν ≤ 3 and 0 ≤ τ ≤ 3. Then, there exist classes of holonomic multivector
fields {X} ⊂ X4(Wr) which are tangent toWf and such that

i (X)Ωr|Wf
= 0 , ∀X ∈ {X} ⊂ X4(Wr) . (3.9)

Proof. In order to find the final submanifold Wf we use he constraint algorithm presented in section
1.2.3. Bearing in mind (3.6), the local expression of a representative of a class of a semiholonomic
multivector fields, not necessarily integrable, is, in this case,

X =
3∧

τ=0

Xτ =
3∧

τ=0

∑
α≤β
µ≤ν≤λ

(
∂

∂xτ
+ gαβ,τ

∂

∂gαβ
+ gαβ,µτ

∂

∂gαβ,µ
+ gαβ,µντ

∂

∂gαβ,µν

Fαβ;µνλ,τ
∂

∂gαβ,µνλ
+Gαβ,µτ

∂

∂pαβ,µ
+Gαβ,µντ

∂

∂pαβ,µν

)
,
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then, equation (1.4) leads to

Gαβ,νν − ∂L̂

∂gαβ
= 0 , (3.10)

3∑
ν=0

1

n(µν)
Gαβ,µνν − ∂L̂

∂gαβ,µ
+ pαβ,µ = 0 , (3.11)

pαβ,µν − L̂αβ,µν = 0 . (3.12)

Equations (3.12) are what we obtain in Proposition 3.2 (see (3.8)), and they are the constraints defining
the compatibility submanifoldWc ↪→Wr. The tangency conditions on them,

L(Xτ )(pαβ,µν − ∂L̂

∂gαβ,µν
)|Wc = 0 ,

allows us to determine some coefficients

Gαβ,µντ = Dτ
∂L̂

∂gαβ,µν
; (onWc) . (3.13)

These new identities are not compatible with (1.4). Indeed, combining them with (3.11) we have:

0 =
3∑

ν=0

1

n(µν)
Dν

∂L̂

∂gαβ,µν
− ∂L̂

∂gαβ,µ
+ pαβ,µ = pαβ,µ − L̂αβ,µ ; (onWc) . (3.14)

These restrictions define the submanifoldWL ↪→Wc. The tangency conditions on these new constraints,

L(Xτ )(pαβ,µ − L̂αβ,µ)|WL = 0 ,

lead to

Gαβ,µτ = Dτ
∂L̂

∂gαβ,µ
−DτDσL̂

αβ,µσ ; (onWL) . (3.15)

Contracting the indices µ and τ in these restrictions and combining them with (3.10), we obtain the new
functions

L̂αβ :=
∂L̂

∂gαβ
−DνL̂

αβ,ν =
∂L̂

∂gαβ
−Dν

∂L̂

∂gαβ,ν
+

3∑
ν≤µ

DνDµ
∂L̂

∂gαβ,νµ
= 0 ; (onWL) ,

which are explicitly

L̂αβ = −%n(αβ)

(
Rαβ − 1

2
gαβR

)
= 0 ; (onWL) . (3.16)

These are the Euler-Lagrange equations, and when they are evaluated on sections inWL we recover the
Einstein equations (Rαβ − 1/2gαβR)|ψ = 0. From its definition we can see that L̂αβ do not depend
neither on the momenta, nor on higher order velocities than the accelerations of the components of
the metric, therefore L̂αβ project onto J2π. The equations (3.16) are algebraic combinations of the
coordinates of WL and a solution can only exists on the points where they vanish. Thus, L̂αβ are new
constraints which define locally the submanifold W1 ↪→ WL ↪→ Wr. (Note that, as a consequence of
the Bianchi identities, these constraints are not independent all of them). Continuing with the constraint
algorithm, we consider the tangency conditions on these constraints,

L(Xτ )L̂αβ|W1 = 0 ,
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which lead to

Dτ L̂
αβ = Dτ

(
−%n(αβ)

(
Rαβ − 1

2
gαβR

))
= 0 ; (onW1) . (3.17)

These are new constraints again (observe that these functions Dτ L̂
αβ project onto J3π, since they do

not depend on the higher-order derivatives and the momenta). They define locally the submanifold
Wf ↪→W1 ↪→WL ↪→Wr. Finally, the new tangency conditions,

L(Xσ)Dτ L̂
αβ|Wf

= 0 ,

lead to∑
γ≤λ

µ≤ν≤κ

(
∂

∂xσ
+ gγλ,σ

∂

∂gγλ
+ gγλ,µσ

∂

∂gγλ,µ
+ gγλ,µνσ

∂

∂gγλ,µν
+ Fγλ;µνκ,σ

∂

∂gγλ,µνκ

)
Dτ L̂

αβ = 0

(onWf ) .(3.18)

and these equations allows us to determine some functions Fγλ;µνκ,σ. The manifold Wf is actually
the final constraint submanifold because there exist integrable holonomic multivector fields solutions to
equations (3.9) onWf , tangent toWf , which are (partially) determined by the conditions (3.13), (3.15),
and (3.18); that is,

X =

3∧
τ=0

∑
α≤β
µ≤ν≤λ

(
∂

∂xτ
+ gαβ,τ

∂

∂gαβ
+ gαβ,µτ

∂

∂gαβ,µ
+ gαβ,µντ

∂

∂gαβ,µν
+

DτDλ(gλσ(ΓλναΓσµβ + ΓλνβΓσµα))
∂

∂gαβ,µνλ
+Dτ L̂

αβ,µ ∂

∂pαβ,µ
+Dτ

∂L̂

∂gαβ,µν

∂

∂pαβ,µν

)
.(3.19)

One can prove (after a long computation) that this is actually an integrable solution (see section 3.A for
more details). Finally, we have that the complete set of constraint functions defining the final constraint
submanifoldWf ↪→Wr are given by (3.12), (3.14), (3.16) and (3.17); that is,

pαβ,µν − ∂L̂

∂gαβ,µν
= 0 , pαβ,µ − L̂αβ,µ = 0 , L̂αβ = 0 , Dτ L̂

αβ = 0 .

Field equations for sections

Once the holonomic multivector fields which are solutions to equation (1.4) (onWf ) have been obtained,
in order to obtain the field equations for sections we can use, either the equations (1.1), or the equivalent
equations (1.2) which the integral sections of these multivector fields satisfy. Thus, if these sections are
locally given by

ψ(xλ) = (xλ, ψαβ(xλ), ψαβ,µ(xλ), ψαβ,µν(xλ), ψαβ,µντ (xλ), ψαβ,µ(xλ), ψαβ,µν(xλ)) ,
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the equation (1.4) leads to

∂ψαβ,µ

∂xµ
− ∂L̂

∂gαβ
= 0 , (3.20)

∂ψαβ,µν

∂xν
+ ψαβ,µ − ∂L̂

∂gαβ,µ
= 0 , (3.21)

ψαβ,µν − L̂αβ,µν = 0 , (3.22)

ψαβ,µ −
∂ψαβ
∂xµ

= 0 , (3.23)

ψαβ,µν −
1

n(µν)

(
∂ψαβ,µ
∂xν

+
∂ψαβ,ν
∂xµ

)
= 0 . (3.24)

Equations (3.23) and (3.24) are part of the holonomy conditions. Equations (3.21) and (3.22), as they
do not involve the derivatives of the fields higher than 3, are just relations among the coordinates of
the points inWr, which are equivalent to equations (3.12) and (3.11), respectively, and they define the
Legendre map introduced in (3.7). They show that, as discussed above, the section ψ take values in the
submanifold

WL =

{
w ∈ Wr | pαβ,µν =

∂L̂

∂gαβ,µν
(w) , pαβ,µ = L̂αβ,µ(w)

}
= graphFL .

Finally, combining the equations (3.20) with the local expression of the Legendre map given by the
equations (3.21) and (3.22) we obtain

L̂αβ|ψ :=

 ∂L̂

∂gαβ
−Dµ

∂L̂

∂gαβ,µ
+
∑
µ≤ν

DµDν
∂L̂

∂gαβ,µν

∣∣∣∣∣∣
ψ

= −%n(αβ)

(
Rαβ − 1

2
gαβR

)∣∣∣∣
ψ

= 0 .

(3.25)
These are the Euler-Lagrange equations for a section ψ ∈ Γ(ρrM ), which are equivalent to the Einstein
equations (

Rαβ −
1

2
gαβR

) ∣∣∣
ψ

= 0 ; (3.26)

and, as it is well known, they are of order two.

If ψ is a holonomic section solution to (1.2), the tangency conditions on the Einstein’s equations are
automatically satisfied. Indeed, the last constraints (3.17) read(

Dτ L̂
αβ
)∣∣∣
ψ

=
∂(L̂αβ ◦ ψ)

∂xτ
= 0 ,

which is automatically satisfied because ψ, in particular, is a solution to the Einstein equations (3.26)
and then (3.25) holds. Using the same reasoning, we can check that (3.18) is also automatically satis-
fied. These last equations fix the gauge freedom, therefore the gauge symmetry does not show when
considering the Einstein’s equations for sections.

3.1.3 Recovering the Lagrangian and Hamiltonian formalisms

Lagrangian formalism

The manifold is J3π. The Poincaré-Cartan forms in J3π are the forms defined as

ΘL = F̃L
∗
Θs

1 ∈ Ω4(J3π) , ΩL = F̃L
∗
Ωs

1 = −dΘL ∈ Ω5(J3π) .

39



Using natural coordinates in J3π, we have the local expression

ΘL = −

∑
α≤β

Lαβ,µgαβ,µ +
∑
α≤β

Lαβ,µνgαβ,µν − L

d4x

+
∑
α≤β

Lαβ,µdgαβ ∧ d3xµ +
∑
α≤β

Lαβ,µνdgαβ,µ ∧ d3xν (3.27)

Notice that, if

H ≡ (L ◦ (ρL1 )−1)∗Ĥ =
∑
α≤β

Lαβ,µνgαβ,µν +
∑
α≤β

Lαβ,µgαβ,µ − L = % gαβ,µgkl,νH
αβklµν , (3.28)

where
Hαβklµν =

1

4
gαβgklgµν − 1

4
gαkgβlgµν +

1

2
gαkglµgβν − 1

2
gαβglνgkµ , (3.29)

then

ΩL = −dΘL = dH ∧d4x−
∑
α≤β

dLαβ,µdgαβ ∧dm−1xµ−
∑
α≤β

dLαβ,µνdgαβ,µ ∧dm−1xν ∈ Ω5(J3π) ;

where we have denoted Lαβ,µν = (L ◦ (ρL1 )−1)∗L̂αβ,µν , Lαβ,µ = (L ◦ (ρL1 )−1)∗L̂αβ,µ, and L0 =
(L ◦ (ρL1 )−1)∗L̂0, which have the same coordinate expressions than L̂αβ,µν , L̂αβ,µ, and L̂0 given in
(3.2), (3.4), and (3.3), respectively. Observe that this is a pre-multisymplectic form since, locally,

ker ΩL =

〈
∂

∂gαβ,µν
,

∂

∂gαβ,µνλ

〉
0≤α≤β≤3; 0≤µ≤ν≤λ≤3

.

Thus we have the Lagrangian system (J3π,ΩL, TJ
3π,C3).

In order to recover the Lagrangian field equations, we have that the map ρL1 = ρr1◦L : WL → J3π is
a diffeomorphism, the Poincaré-Cartan forms defined in J3π satisfy (ρL1 )∗ΘL = ∗LΘr and (ρL1 )∗ΩL =
∗LΩr. Then, the solution to the Lagrangian problem associated with the singular Lagrangian system
(J3π,ΩL, TJ

3π,C3), which is stated in the equations (1.2) and (1.4), is given by the proposition 1.3 and
Theorem 1.2:

In local coordinates in J3π, the equation for the holonomic section ψL = j3φ are the Euler-Lagrange
equations  ∂L

∂gµν
−Dµ

∂L

∂gαβ,µ
+
∑
µ≤ν

DµDν
∂L

∂gαβ,µν

∣∣∣∣∣∣
j3φ

= 0 . (3.30)

As we have pointed out before, the equalities (3.12) and (3.14) define the submanifoldWL which is
diffeomorphic with J3π, and the constraint functions defining the Lagrangian final constraint submani-
fold Sf ↪→ J3π are

Lαβ =
∂L

∂gαβ
−Dµ

∂L

∂gαβ,µ
+
∑
µ≤ν

DµDν
∂L

∂gαβ,µν
= −%n(αβ)

(
Rαβ − 1

2
gαβR

)
= 0 , (3.31)

DτL
αβ = 0 . (3.32)

The local expression of a representative of a class of holonomic multivector fields in J3π is

X =

3∧
τ=0

∑
α≤β
µ≤ν≤λ

(
∂

∂xτ
+ gαβ,τ

∂

∂gαβ
+ gαβ,µτ

∂

∂gαβ,µ
+ gαβ,µντ

∂

∂gαβ,µν
+ Fαβ;µνλ,τ

∂

∂gαβ,µνλ

)
;

(3.33)
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then, there are holonomic multivector fields which are solutions to the equation (1.4) on Sf , and tangent
to Sf . They are obtained from (3.19) using Theorem 1.2:

XL =
3∧

τ=0

∑
α≤β
µ≤ν≤λ

(
∂

∂xτ
+ gαβ,τ

∂

∂gαβ
+ gαβ,µτ

∂

∂gαβ,µ
+ gαβ,µντ

∂

∂gαβ,µν
+

(gλσ(ΓλναΓσµβ + ΓλνβΓσµα))
∂

∂gαβ,µνλ

)
.

Finally, for the equations of the integral sections of these multivector fields (equation (1.2)), from
(3.26), we obtain that (3.31), evaluated on the points in the image of holonomic sections ψL = j3φ in
J3π (see Prop 1.3 and (3.30)), are equivalent to the Einstein equations

Lαβ|j3φ =

 ∂L

∂gαβ
−Dµ

∂L

∂gαβ,µ
+
∑
µ≤ν

DµDν
∂L

∂gαβ,µν

∣∣∣∣∣∣
j3φ

= −%n(αβ)

(
Rαβ − 1

2
gαβR

)∣∣∣∣
j3φ

= 0 . (3.34)

All these results can be also obtained applying the constraint algorithm straightforwardly for the
equation (1.2), in the same way as we have done for the unified formalism; then doing a purely La-
grangian analysis. Thus, the Euler-Lagrange equations for an holonomic multivector field like (3.33)
(which are obtained from (1.2)) read as∑

ρ≤σ,µ≤ν,λ≤τ

(
∂2L

∂gαβ,µν∂gρσ,λτ

)
(Fρσ;λτµ,ν −Dνgρσ;λτµ) + Lαβ = 0 ,

and, as for the Einstein-Hilbert Lagrangian the Hessian matrix
(

∂2L

∂gαβ,ρσ∂gµν,λτ

)
vanishes identically,

we obtain that Lαβ = 0, which are the compatibility conditions for the Euler-Lagrange equations; that
is, the primary Lagrangian constraints (3.31). From here, the constraint algorithm continues by requiring
the tangency condition, as it is usual (see [46]).

Hamiltonian formalism

Consider the Legendre maps introduced in Proposition 3.1. We have that

Tj3xφ
FL =



1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

0
∂L̂αβ,µ

∂gγδ

∂L̂αβ,µ

∂gγδ,τ
0 0

0
∂L̂

∂gγδ∂gαβ,µν
0 0 0


,

and we have that rank(Tj3xφ
FL) = 54. Furthermore, locally we have that

ker FL∗ = ker ΩL =

〈
∂

∂gαβ,µν
,

∂

∂gαβ,µνλ

〉
0≤α≤β≤3; 0≤µ≤ν≤λ≤3

, (3.35)
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and thus FL is highly degerated.

Denote P̃ = F̃L(J3π)
̃
↪→ J2π† and P = FL(J3π)


↪→ J2π‡, and let FLo be the map defined

by FL =  ◦ FLo and π̄P : P → M the natural projection. In order to assure the existence of the
Hamiltonian formalism we have to assure that the Lagrangian density L ∈ Ω4(J2π) is, at least, almost-
regular; that is, P is a closed submanifold of J2π‡, FL is a submersion onto its image and, for every
j3
xφ ∈ J3π, the fibers FL−1(FL(j3

xφ)) are connected submanifolds of J3π. Then, the following result
allows us to consider the Hamiltonian formalism:

Proposition 3.3. L is an almost-regular Lagrangian and P is diffeomorphic to J1π.

Proof. P is a closed submanifold of J2π‡ since it is defined by the constraints

pαβ,µν − ∂L̂

∂gαβ,µν
= 0; pαβ,µ − L̂αβ,µ = 0 .

The dimension of P is 4 + 10 + 40 = 54 and, as rank(TFL) = 54 in every point, TFL is surjective
and FL is a submersion. Finally, bearing in mind (3.35), we conclude that the fibers of the Legendre
map, FL−1(FL(j3

xφ)) (for every j3
xφ ∈ J3π), are just the fibers of the projection π̄3

1 , which are con-
nected submanifolds of J3π. Recall that J3π is connected because we are considering metrics with fixed
signature. Thus, L is an almost-regular Lagrangian.

Furthermore, taking any local section φ of the projection π3
1 , the map Φ = FL ◦ φ : J1π → P is a

local diffeomorphism (which does not depend on the section chosen). Then, using these local sections,
from a differentiable structure of J1π we can construct a differentiable structure for P; hence P and J1π
are diffeomorphic.

J3π
FLo //

π3
1

��

P ⊂ J2π‡

J1π

φ

RR

Φ

@@

Then, there exists a diffeomorphism µ̃ = µ ◦ ̃ : P̃ → P and we can define a Hamiltonian µ-
section as h = ̃ ◦ µ̃−1, which is specified by a local Hamiltonian function H ∈ C∞(P), that is,
h(xµ, gαβ, gαβ,µ, p

αβ,µ, pαβ,µν) = (xµ, gαβ, gαβ,µ,−H, pαβ,µ, pαβ,µν).

P̃ ̃ //

µ̃

��

J2π†

µ

��

W
µW

��

ρ2oo

P  //

h

77

J2π‡ Wr

ĥ

XX

ρr2oo

Now, we can define the Hamiltonian forms

Θh := h∗Θs
1 ∈ Ω4(P) , Ωh := −dΘh = h∗Ωs

1 ∈ Ω5(P) .

The condition set is I = (π‡
J1π
◦ )∗C1. And thus we have the Hamiltonian system (P,Ωh, TP, (π‡J1π

◦
)∗C1).

Formulation using non multimomentum coordinates.
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From the unified formalism, the easiest way to describe locally the Hamiltonian formalism consists
in taking (xµ, gαβ, gαβ,µ) as local coordinates adapted to P . As the function H defined in (3.28) is
FLo-projectable, the Hamiltonian function defined on P is just

HP =
∑
α≤β

Lαβ,µνgαβ,µν +
∑
α≤β

Lαβ,µgαβ,µ − L = % gαβ,µgkl,νH
αβklµν , (3.36)

where Hαβklµν is given by (3.29). As L is almost regular, the Hamiltonian section h : P → J2π† exists
and its local expression is

h(xµ, gαβ, gαβ,µ) = (xµ, gαβ, gαβ,µ,−HP , Lαβ,µ, Lαβ,µν) .

Now we define the Hamilton-Cartan forms Θh = h∗Θs
1 ∈ Ω4(P) and Ωh = −dΘh ∈ Ω5(P), whose

coordinate expressions are

Θh = −HP d4x+
∑
α≤β

Lαβ,µdgαβ ∧ d3xµ +
∑
α≤β

Lαβ,µνdgαβ,µ ∧ d3xν ,

Ωh = −dΘh = dHP ∧ d4x−
∑
α≤β

dLαβ,µ ∧ dgαβ ∧ d3xµ −
∑
α≤β

dLαβ,µν ∧ dgαβ,µ ∧ d3xν .(3.37)

(Observe that, with this choice of coordinates, Θh and Ωh looks locally like ΘL and ΩL). Then, Proposi-
tion 1.4 and Theorem 1.3 establish the relation between the solutions to the Hamiltonian and the unified
problem.

In this case, first observe that, locally,

ker (πrP)∗ =

〈
∂

∂pαβ,µ
,

∂

∂pαβ,µν
;

∂

∂gαβ,µν
,

∂

∂gαβ,µνλ

〉
0≤α≤β≤3; 0≤µ≤ν≤λ≤3

,

and as

L

(
∂

∂gαβ,µν

)
L̂λσ 6= 0 , L

(
∂

∂gαβ,µν

)
(Dτ L̂

λσ) 6= 0 , L

(
∂

∂gαβ,µν

)
(Dτ L̂

λσ) 6= 0 ,

we have that the constraints (3.16) and (3.17) (which define the final constraint submanifoldWf as a sub-
manifold ofWL = graphFL in the unified formalism) are not ρrP -projectable (see diagram (1.11)), and
this means that there are no Hamiltonian constraints and the Hamilton equations have solutions every-
where in P . (What is equivalent, the Lagrangian constraints (3.31) and (3.32) are not FLo-projectable).
This is a consequence of the fact that, in the Lagrangian formalism, these constraints really arise as a
consequence of demanding the holonomy condition and hence, as it was studied in [21], they are not
projectable by the Legendre map. Then:

Proposition 3.4. An integrable (holonomic) multivector field solution to the equations (1.4) is

Xh =

3∧
ν=0

 ∂

∂xν
+
∑
α≤β

(
gαβ,ν

∂

∂gαβ
+ gλσ(ΓλναΓσµβ + ΓλνβΓσµα)

∂

∂gαβ;µ

) ∈ X4(P) .

Proof. The proof is given in the appendix 3.A.

For the integral sections of Xh, which are solutions to (1.2), if ψ(xα) = (xα, ψαβ(xα), ψαβ,µ(xα)),
then the equation (1.2) reads(

DµL
αβ,µ − ∂L

∂gαβ

)∣∣∣∣
ψ

= 0 ,(
∂Lαβ,µν

∂gλσ
− ∂Lλσ,ν

∂gαβ,µ

)
gλσ,ν

∣∣∣∣
ψ

=

(
∂Lαβ,µν

∂gλσ
− ∂Lλσ,ν

∂gαβ,µ

)
∂ψλσ
∂xν

.
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The last equation is equivalent to the holonomy condition,
∂ψλσ
∂xν

= ψλσ,ν (see the appendix 3.A). Writing
the first one in terms of the Hamiltonian we obtain(

∂Lαβ,ν

∂gab,µ
− ∂Lab,µν

∂gαβ

)∣∣∣∣
ψ

∂ψab,µ
∂xν

= −∂HP
∂gαβ

∣∣∣∣
ψ

− ψab,µ

(
∂Lαβ,µ

∂gab
− ∂Lab,µ

∂gαβ

)∣∣∣∣
ψ

.

And rearranging the terms, these equations are equivalent to the Einstein equations (3.34).

Formulation using multimomentum coordinates.

As we have said, the coordinates (xµ, gαβ, gαβ,µ) arise naturally from the unified formalism. Never-
theless, the standard way to describe locally the Hamiltonian formalism of classical field theory consists
in using the natural coordinates in the multimomentum phase spaces; that is, multimomentum coordi-
nates. Then, the first relevant result is:

Proposition 3.5. The coordinates pαβ,µ and gαβ,µ are in one-to-one correspondence.

Proof. The starting point is to consider the constraints pαβ,µ = Lαβ,µ(xµ, gαβ, gαβ,µ) which define
partially the constraint submanifoldWL, and from these relations we can isolate the coordinates gαβ,µ.
Indeed, the functions

Vαβ,µ(gαβ, p
αβ,µ) =

pλσ,ν

3%n(αβ)
(−2gαλgβµgσν − 2gαµgβλgσν + 6gαλgβσgµν +

gανgβµgλσ + gαµgβνgλσ)

satisfy that
gαβ,µ = Vαβ,µ(gαβ, L

λσ,ν(gαβ, gαβ,µ)) ,

and these relations give the coordinates gαβ,µ as functions of pλσ,ν and the other coordinates.

Thus we can use (xµ, gαβ, p
αβ,µ) as coordinates of P and then rewrite the Hamiltonian function

HP(xµ, gαβ, p
αβ,µ) = HP(xµ, gαβ, Vαβ,µ(pαβ,µ, gαβ)) .

The field equations are derived again from (1.4) expressed using the new coordinates. Now, the Hamilton-
Cartan form Ωh has the local expression:

Ωh = dHP ∧ d4x−
∑
α≤β

dpαβ,µ ∧ dgαβ ∧ d3xµ −
∑
α≤β

dLαβ,µν ∧ dVαβ,µ ∧ d3xν ,

and the local expression of a representative of a class {Xh} of semi-holonomic multivector fields in P is

Xh =

4∧
i=ν

(
∂

∂xν
+ Fαβ,ν

∂

∂gαβ
+Gαβ,µν

∂

∂pαβ,µ

)
; .

with Fαβ,ν(xµ, gαβ, p
αβ,µ), Gαβ,µν (xµ, gαβ, p

αβ,µ) ∈ C∞(P). From (1.4) we obtain

∂HP
∂gαβ

= −Gαβ,µµ +Grs,kν

∂Vab,c
∂prs,k

∂Lab,cν

∂gαβ
+ Frs,ν

(
∂Vab,c
∂grs

∂Lab,cν

∂gαβ
−
∂Vab,c
∂gαβ

∂Lab,cν

∂grs

)
∂HP
∂pαβ,µ

= Fαβ,µ − Frs,ν
∂Vab,c
∂pαβ,µ

∂Lab,cν

∂grs
,
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which would be the classical Hamilton-De Donder-Weil equations for a first order field theory except
by the fact that they contain extra-terms because the Einstein-Hilbert Lagrangian is of second order and

Lαβ,µν =
1

n(µν)

∂L

∂gαβ,µν
does not vanish. A solution to these equations is

Xh =
4∧
i=ν

(
∂

∂xν
+ Vαβ,µ

∂

∂gαβ
+ grs(Γ

r
νλΓsµσ + ΓrνσΓsµλ)

∂Vαβµ
∂gλσ,γ

∂

∂pαβ,µ

)
,

where the velocities in the connection are expressed using the momenta, which is a holonomic (i.e.,
integrable) multivector field in P .

Finally, we consider the equations of the integral sections of Xh. These equations can be obtained
from equation (1.2) which, for a section ψ(xα) = (xα, ψαβ(xα), ψαβ,µ(xα)), leads to

∂HP
∂gαβ

∣∣∣∣
ψ

=
∂ψαβ,µ

∂xµ
+
∂ψrs,k

∂xν

(
∂Vab,c
∂prs,k

∂Lab,cν

∂gαβ

)∣∣∣∣
ψ

+
∂ψrs
∂xν

(
∂Vab,c
∂grs

∂Lab,cν

∂gαβ
−
∂Vab,c
∂gαβ

∂Lab,cν

∂grs

)∣∣∣∣
ψ

∂HP
∂pαβ,µ

∣∣∣∣
ψ

=
∂ψαβ
∂xµ

− ∂ψrs
∂xν

(
∂Vab,c
∂pαβ,µ

∂Lab,cν

∂grs

)∣∣∣∣
ψ

.

3.1.4 An equivalent first-order Lagrangian to Einstein-Hilbert

There exists a first-order Lagrangian equivalent to the Einstein-Hilbert Lagrangian, which is different to
the Einstein-Palatini one [16, 86]. Now we study the Lagrangian and the Hamiltonian formalism of this
model, comparing them with the Hamiltonian formulations for the Einstein-Hilbert Lagrangian presented
in the above section. As it is a first order Lagrangian, we need to use the multisymplectic formalisms
developed for these kind of theories; in particular, those reviewed in [85].

The configuration manifold π : E →M , is the same described in Section 3.1.1, and the Lagrangian
formalisms takes place in the first jet bundle J1π, with coordinates (xµ, gαβ, gαβ,µ). The first-order
Lagrangian density proposed in [86] is L = Ld4x, where the Lagrangian function is

L = L0 −
∑
α≤β
λ≤σ

gαβ,µgλσ,ν
∂Lαβ,µν

∂gλσ
∈ C∞(J1π) . (3.38)

The Poincaré-Cartan form for this Lagrangian is

ΩL = dL ∧ d4x−
∑
α≤β

d
∂L

∂gαβ,µ
∧ dgαβ ∧ d3xµ . (3.39)

The Lagrangian L is regular and hence ΩL is a multisymplectic form. For the Lagrangian system
(J1π,ΩL, TJ

1π,C1) we look for solutions to the equations (1.2) or (1.4) and, as the system is regu-
lar, solutions exist everywhere in J1π (there are no Lagrangian constraints). Although it is a first order
system, in [86] it is shown how these equations coincide with the Einstein equations.

As L is regular, we can state the standard Hamiltonian formalism for first-order regular field the-
ories. Being J1π∗ the (“first-order”) reduced multimomentum bundle, whose natural coordinates are
(xµ, gαβ, p

αβ,µ), the corresponding Legendre map FL : J1π → J1π∗ is given by

FL∗xµ = xµ , FL∗gαβ = gαβ , FL∗pαβ,µ =
∂L

∂gαβ,µ
= Lαβ,µ −

∑
λ≤σ

gλσ,ν
∂Lλσ,νµ

∂gαβ
.
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Then we have the Hamilton-Cartan form Ωh := (FL−1
)∗ΩL ∈ Ω4(J1π∗). This multisymplectic

form can also be obtained introducing the Hamiltonian section h : J1π∗ → Λ4
2(E) whose local expres-

sion is
h(xµ, gαβ, p

αβ,µ) = (xµ, gαβ,−H, pαβ,µ) .

where H is the Hamiltonian function associated with L, whose local expression is

H =
∑
α≤β

pαβ,µ(gαβ,µ ◦ FL
−1

)− L ◦ FL−1
= L ◦ FL−1

.

In this way, we have constructed the Hamiltonian system (J1π∗,Ωh, TJ
1π∗, {0}) and the corresponding

Hamilton field equations have solutions everywhere in J1π∗ (there are no Hamiltonian constraints). Fur-
thermore, asFL is a diffeomorphism, every solution to the Lagrangian problem stated for the Lagrangian
system (J1π,ΩL, TJ

1π,C1) induces a solution to the Hamiltonian problem stated for the Hamiltonian
system (J1π∗,Ωh, TJ

1π∗, {0}) via this Legendre map, and conversely.

The following result relates this approach to the one we have presented in the above section.

Proposition 3.6. Φ∗HP = L and, as a consequence, Φ∗Ωh = ΩL.

Proof. In order to prove these equalities, it suffices to prove that, HP and Ωh have the same local coor-
dinate expressions than L and ΩL, respectively.

First, from (3.36), using (3.38) and taking into account the coordinate expressions stated in (3.2),
(3.3), and (3.4), we obtain that

HP =
∑
α≤β
µ≤ν

Lαβ,µνgαβ,µν +
∑
α≤β

Lαβ,µgαβ,µ − L =
∑
α≤β

(
∂L0

∂gαβ,µ
−DvL

αβ,µν

)
gαβ,µ − L0

= 2L0 −
∑
α≤β
λ≤σ

gαβ,µgλσ,ν
∂Lαβ,µν

∂gλσ
− L0 = L .

We have used that ∂L0
∂gαβ,µ

gαβ,µ = 2L0, which is a consequence of L0 being homogeneous of grade 2 on
the velocities. Now we compute

∂L

∂gαβ,µ
=

∂L0

∂gαβ,µ
−
∑
λ≤σ

gλσ,ν

(
∂Lαβ,µν

∂gλσ
+
∂Lλσ,νµ

∂gαβ

)
= Lαβ,µ − gλσ,ν

∂Lλσ,νµ

∂gαβ
;

then, using these last results and bearing in mind (3.39) and (3.37), we have that

ΩL = dL ∧ d4x−
∑
α≤β

d
∂L

∂gαβ,µ
∧ dgαβ ∧ d3xµ

= dHP ∧ d4x−
∑
α≤β

dLαβ,µ ∧ dgαβ ∧ d3xµ +
∑
α≤β
λ≤σ

d

(
gλσ,ν

∂Lλσ,νµ

∂gαβ

)
∧ dgαβ ∧ d3xµ

= dHP ∧ d4x−
∑
α≤β

dLαβ,µ ∧ dgαβ ∧ d3xµ +
∑
α≤β
λ≤σ

∂Lλσ,νµ

∂gαβ
dgλσ,ν ∧ dgαβ ∧ d3xµ

+
∑
α≤β

gλσ,ν
∂2Lλσ,νµ

∂gγη∂gαβ
dgγη ∧ dgαβ ∧ d3xµ .
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The last term vanishes because the coefficient is symmetric under the change of the indices γ, λ by α, β,
but the exterior product is skewsymmetric. Finally, notice that Lλσ,νµ do not contain derivatives of the
metric, thus we can write∑

α≤β
λ≤σ

∂Lλσ,νµ

∂gαβ
dgλσ,ν ∧ dgαβ ∧ d3xµ = −

∑
σ≤λ

dLλσ,νµ ∧ dgλσ,ν ∧ d3xµ ,

and, therefore, we can conclude that ΩL and Ωh have the same local expression.

As a consequence of this result, the solutions to the Hamiltonian problem stated for the Hamiltonian
system (P,ΩP) and to the Lagrangian problem stated for the Lagrangian system (J1π,ΩL) are in one-
to-one correspondence by the map Φ.

Observe that we have also the diffeomorphism Ψ = Φ−1 ◦FL : P → J1π∗. Therefore, the solutions
to the Hamiltonian problems stated for the Hamiltonian systems (P,ΩP) and (J1π∗,Ωh) are also one-
to-one related by this map.

Summarizing, we have proved that the following formulations are equivalent:

(J1π∗,Ωh, TJ
1π∗, {0}) FL // (J1π,ΩL, TJ

1π,C1)oo Φ // (P,Ωh, TP, {0})oo

(where, in the last case, we can use the local description using multimomentum coordinates or not). Lo-
cally, this equivalence means that all the formulations lead to the same equations (Einstein’s equations),
up to a change of variables and, hence, every solution in each formalism induces a solution in the others
via the appropriate diffeomorphism. The following diagram summarizes all the picture:

J2π†

µ
��

J3π

π3
1

��

FL //

FLo

++

J2π‡

Sf
P0

aa

// P
?�



OO h

ZZ

Ψ
��

J1π

Φ

33

FL
// J1π∗

h
��

Mπ ≡ Λ4
2(E)

µ̄

OO

3.2 The Einstein-Hilbert model with energy-matter sources

3.2.1 The Einstein-Hilbert Langrangian

The Einstein-Hilbert model with energy-matter sources is described by a Lagrangian density LS =
LEH + Lm, where Lm = Lm (π̄2)∗η ∈ Ω4(J2π), and Lm ∈ C∞(J2π) represents the energy-matter
source and depends only on the metric and the first and second derivatives of its components. It is related
to the stress-energy-momentum tensor Tµν by

Tµν =
c4

%n(µν)8πG
gαµgβνL

αβ
m .
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(For a geometric study on the stress-energy-momentum tensors see, for instance, [38, 41, 55, 71, 98]).
Then, we can write LS = LS (π̄2)∗η ∈ Ω4(J2π), with LS = LEH + Lm ∈ C∞(J2π).

The behaviour of the theory depends on the source. Nevertheless, some qualitative properties can be
studied in general, as long as we know the degeneracy of the source.

Definition 3.1. For a function f ∈ C∞(J2π), consider

fαβ,µν :=
1

n(µν)

∂f

∂gαβ,µν
, fαβ,µ :=

∂f

∂gαβ,µ
−Dνf

αβ,µν , fαβ =
∂f

∂gαβ
−Dµf

αβ,µ.

(Notice that fαβ,µ ∈ C∞(J3π) and fαβ ∈ C∞(J4π)). Then, the degree of f is the smallest natural
number deg(f) = s such that:

L(X)fαβ,µ = L(X)fαβ,µν = 0 ; for every X ∈ XV (π4
s−1) ; (0 ≤ α ≤ β ≤ 3, 0 ≤ µ ≤ ν ≤ 3) .

If fαβ,µ = fαβ,µν = 0, we define deg(f) = 0.

Now, applying the proposition 2.9, we obtain that:

Proposition 3.7. If deg(f) = s, then L(X)fαβ = 0; for every X ∈ XV (π4
s) (α ≤ β), and hence fαβ

are π4
s -projectable functions.

The degree of LS characterizes partially the behaviour of the theory, as we are going to see in the
next paragraphs. For instance, if a Lagrangian is regular it has degree 4, but there are also singular
Lagrangians with degree 4. The Einstein-Hilbert Lagrangian in vacuum, LEH , has degree 2. For a
source such that deg(Lm) > 2, we have that deg(LS) = deg(Lm). The so-called f(R) theories of
gravity have deg(LS) > 2. For these kinds of systems it is possible to obtain some constraints in the
unified and the Lagrangian formalisms but the Hamiltonian formalism depends strongly on the particular
energy-matter source. For a source such that deg(Lm) ≤ 2, we have that deg(LS) ≤ 2), and these
theories have a well defined Hamiltonian formalism; in particular, for the case that deg(Lm) ≤ 1 we
obtain the general semiholonomic solution. These cases include the energy-matter sources coupled only
to the metric; that is, deg(Lm) = 0, like the electromagnetic source or the perfect fluid. We will present
the former as an example.

3.2.2 Langrangian-Hamiltonian Unified formalism

As LS ∈ C∞(J2π), we can work with the same manifolds introduced in Section 3.1; that is, the
symmetric higher-order jet multimomentum bundlesW = J3π ×J1π J

2π‡ andWr = J3π ×J1π J
2π‡.

The pull-back of the Lagrangian to these manifolds is denoted in the same way as above: L̂S = (π3
2 ◦

ρr1)∗LS ∈ C∞(Wr) (or in C∞(W)). Then,

ĤS =
∑
α≤β

pαβ,µgαβ,µ +
∑
α≤β
µ≤ν

pαβ,µνgαβ,µν − L̂S ;

The Liouville forms inWr, ΘSr and ΩSr, are defined likewise and have the local expressions

ΘSr = −ĤSd4x+
∑
α≤β

pαβ,µdgαβ ∧ d3xµ +
∑
α≤β

1

n(µν)
pαβ,µνdgαβ,µ ∧ d3xν ,

ΩSr = dĤS ∧ d4x−
∑
α≤β

dpαβ,µ ∧ dgαβ ∧ d3xµ −
∑
α≤β

1

n(µν)
dpαβ,µν ∧ dgαβ,µ ∧ d3xν .

he Lagrangian-Hamiltonian system is (Wr,ΩSr, TWr, ρ
r
1
∗C3).

Proposition 3.1, which defines the Legendre transformation, also holds for L̂S:
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Proposition 3.8. A sectionψ ∈ Γ(ρrM ) solution to the equation (1.2) takes values in a 140-codimensional
submanifold LS : WLS ↪→Wr which is identified with the graph of a bundle map FLS : J3π → J2π‡,
over J1π, defined locally by

FL∗Spαβ,µ =
∂L̂S

∂gαβ,µ
−

3∑
ν=0

1

n(µν)
Dν

(
∂L̂S

∂gαβ,µν

)
= L̂αβ,µS , FL∗Spαβ,µν =

∂L̂S

∂gαβ,µν
.

What is equivalent, the submanifoldWLS is the graph of a bundle morphism F̃LS : J3π → J2π† over
J1π defined locally by

F̃LS
∗
pαβ,µ =

∂L̂S

∂gαβ,µ
−

3∑
ν=0

1

n(µν)
Dν

(
∂L̂S

∂gαβ,µν

)
= L̂αβ,µS ,

F̃LS
∗
pαβ,µν =

∂L̂S

∂gαβ,µν
,

F̃LS
∗
p = L̂S − gαβ,µ

(
∂L̂S

∂gαβ,µ
−

3∑
ν=0

1

n(µν)
Dν

(
∂L̂S

∂gαβ,µν

))
− gαβ,µν

∂L̂S

∂gαβ,µν

= L̂S −
∑
α≤β

pαβ,µgαβ,µ −
∑

α≤β,µ≤ν
pαβ,µνgαβ,µν .

As an application of theorem 2.4,

Theorem 3.2. A solution to the equation (1.2) exists only in a submanifoldWS ↪→Wr wich, depending
on the degree of Lm, is locally defined by the following constraints (for 0 ≤ α ≤ β ≤ 3, 0 ≤ µ ≤ ν ≤ 3,
0 ≤ τ ≤ 3):

• If deg(Lm) = 4: pαβ,µν − ∂L̂S
∂gαβ,µν

= 0, pαβ,µ − L̂αβ,µS = 0.

• If deg(Lm) = 3: pαβ,µν − ∂L̂S
∂gαβ,µν

= 0, pαβ,µ − L̂αβ,µS = 0, L̂αβS = 0.

• If deg(Lm) ≤ 2: pαβ,µν − ∂L̂S
∂gαβ,µν

= 0, pαβ,µ − L̂αβ,µS = 0, L̂αβS = 0, Dτ L̂
αβ
S = 0.

Proof. For the case deg(Lm) = 4, the first two restrictions, which involve the momenta, hold for every
second order field theory (Proposition 3.8 and [83]).

If deg(Lm) ≤ 2, then deg(LS) = c ≤ 2. Therefore ΘLS
is π4

c -semibasic (in particular π4
2-

semibasic), which implies the other two restrictions. They can also be obtained by a similar procedure
as in Section 3.1.2.

Likewise, if deg(Lm) = 3, then deg(LS) = 3, and ΘLS
is π4

3-semibasic, which implies L̂αβS = 0.

Depending on the energy-matter term, maybe there are not any holonomic solution onWS . In this
situations, a smaller submanifold has to be considered in order to find a holonomic solution.

3.2.3 Recovering the Lagrangian and Hamiltonian formalisms

In section chapter 1 we have stated how to recover the Lagrangian formalism from the unified formalism
for the Einstein-Hilbert Lagrangian with no energy-matter souces. As in that case, now the Lagrangian
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formalism takes place in J3π, and the Poincaré-Cartan forms (3.27) associated with the Einstein-Hilbert
Lagrangian with energy-matter sources are

ΘLS ≡ F̃LS
∗
Θs

1 ∈ Ω4(J3π) , ΩLS ≡ F̃LS
∗
Ωs

1 = −dΘLS ∈ Ω
5(J3π) ,

which have the local expressions

ΘLS = HSd4x+
∑
α≤β

Lαβ,µS dgαβ ∧ d3xµ +
∑
α≤β

Lαβ,µνS dgαβ,µ ∧ d3xν ,

ΩLS = dHS ∧ d4x−
∑
α≤β

dLαβ,µS dgαβ ∧ dm−1xµ −
∑
α≤β

dLαβ,µνS dgαβ,µ ∧ dm−1xν ;

where

HS ≡ (L ◦ (ρL1 )−1)∗ĤS =
∑
α≤β

Lαβ,µνS gαβ,µν +
∑
α≤β

Lαβ,µS gαβ,µ − LS ,

and Lαβ,µνS , Lαβ,µS have the same coordinate expressions than L̂αβ,µν , L̂αβ,µ, and L̂0.

The Lagrangian problem associated with the Lagrangian system (J3π,ΩLS , TJ
3π,C3) is stated like

in the equations (1.2) and (1.4), but for ΩLS instead of ΩL. The solutions are related to the solutions of
the unified formalism by Proposition 1.3 and Theorem 1.2.

The Lagrangian counterpart of theorem 3.2 is:

Corollary 3.1. A solution to the equation (1.2) exists only in a submanifold SS ↪→ J3π wich, depending
on the degree of Lm, is locally defined by the following constraints (for 0 ≤ α ≤ β ≤ 3):

• If deg(Lm) = 3: LαβS = 0.

• If deg(Lm) ≤ 2: LαβS = 0, DτL
αβ
S = 0.

The existence of holonomic solutions depends on the energy-mass term. In some cases we must
continue the constraint algorithm, together with an integrability algorithm.

Finally, the equations of the integral sections (1.2) can be analyzed in a similar fashion as in Section
3.1.2, and using Proposition 1.3. This leads to the Euler-Lagrange equations

LαβS |j3φ = LαβEH |j3φ + Lαβm |j3φ = −%n(αβ)

(
Rαβ − 1

2
gαβR− 1

%n(αβ)
Lαβm

)∣∣∣∣
j3φ

= 0 , (3.40)

Introducing the stress-energy-momentum tensor as

Tµν =
c4

8πG%n(αβ)
gαµgβνL

αβ
m .

where G as the Newton’s gravitational constant and c the speed of light, then

Rµν −
1

2
gµνR =

8πG

c4
Tµν ,

and equations (3.40) are equivalent to the Einstein equations with stress-energy-momentum tensor.

All these results can be also obtained applying the constraint algorithm straightforwardly to the equa-
tion (1.2), in the same way as we have done for the unified formalism; then doing a purely Lagrangian
analysis.
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For establishing the multimomentum Hamiltonian formalism we use the Legendre maps FLS and

F̃LS defined in Proposition 3.8. Now, we denote P̃S = F̃LS(J3π)
̃
↪→ J2π† and PS = FLS(J3π)


↪→

J2π‡, with the natural projection π̄PS
: PS → M . In order to assure the existence of the Hamilto-

nian formalism we demand that the Lagrangian density LS ∈ Ω4(J2π) is, at least, almost-regular.
Then we can define the Hamiltonian forms ΘhS and ΩhS , and then we have the Hamiltonian system
(PS,ΩhS , TPS, (π

‡
J1π
◦ )∗C1)). This Hamiltonian formalism is recovered from the unified formalism

following Proposition 1.4 and Theorem 1.3.

In general, the formalism depends strongly on the singularity of the theory. Nevertheless, if deg(Lm) ≤
2 (or equivalently deg(LS) ≤ 2), we have a similar situation as in the vacuum case. In particular:

Proposition 3.9. If deg(LS) ≤ 2, then LS is an almost-regular Lagrangian and PS is diffeomorphic to
J1π.

Proof. If deg(LS) ≤ 2, we have that

Tj3xφ
FLS =



Id4 0 0 0 0
0 Id10 0 0 0
0 0 Id40 0 0

∂L̂αβ,µS

∂xτ
∂L̂αβ,µS

∂gγδ

∂L̂αβ,µS

∂gγδ,τ
0 0

∂L̂S

∂xτ∂gαβ,µν

∂L̂S

∂gγδ∂gαβ,µν

∂L̂S

∂gγδ,τ∂gαβ,µν
0 0


Then we have that rank(Tj3xφ

FL) = 54 at every point j3
xφ ∈ J3π. Therefore TFLS is surjective and

FLS is a submersion. From here the proof is the same as in Proposition 3.3.

In general the functions L̂αβ,µS are not invertible, thus we use the non momenta coordinates (xµ, gαβ, gαβ,µ)
as local coordinates adapted to PS. The function HPS

is defined by

HPS
=
∑
α≤β

Lαβ,µνS gαβ,µν +
∑
α≤β

Lαβ,µS gαβ,µ − LS ,

and the Hamilton-Cartan form have the coordinate expressions

ΩhS = −dΘhS = dHPS
∧ d4x−

∑
α≤β

dLαβ,µS ∧ dgαβ ∧ d3xµ −
∑
α≤β

dLαβ,µνS ∧ dgαβ,µ ∧ d3xν .

The resulting Hamiltonian equations for sections (1.2) are(
∂Lαβ,νS

∂gab,µ
−
∂Lab,µνS

∂gαβ

)∣∣∣∣∣
ψ

∂ψab,µ
∂xν

= −∂HPS

∂gαβ

∣∣∣∣
ψ

− ψab,µ

(
∂Lαβ,µS

∂gab
−
∂Lab,µS

∂gαβ

)∣∣∣∣∣
ψ

,

and rearranging the terms, these equations are locally equivalent to the Einstein equations (3.40).

If deg(LS) > 2, then FLS may not be a submersion and, hence, LS is not almost-regular. In these
cases the construction of the Hamiltonian formalism is more complicated.

3.2.4 Example: Electromagnetic source

Consider the case of a free electromagnetic source with electromagnetic tensor Fµν . The corresponding
Lagrangian function is

Lm =
√
|det(gαβ)|FµνFµν ,
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where the components of the tensor Fµν are functions on the base manifold M . In this case, deg(Lm) =
1, and the stress-energy-momentum tensor is

Tµν =
c4

%n(µν)8πG
gαµgβνL

αβ
m =

c4

%n(µν)8πG
gαµgβν

∂Lm

∂gαβ
=

c4

4πG

(
1

4
gµνF

αβFαβ − gαβFµαFνβ
)
.

The corresponding form ΘSr is π4
2-projectable, which implies that XV (π4

2) are gauge vector fields.
By Theorem 3.2, solutions to the field equations exist on the points of the submanifold defined by

pαβ,µν − L̂S

∂gαβ,µν
= 0 , pαβ,µ − L̂αβ,µS = 0 , L̂αβS = 0 , Dτ L̂

αβ
S = 0 .

The first two restrictions define the Legendre transformation, and the last two fix the gauge freedom of
the higher derivatives. The local expression of any semiholonomic multivetor field solution of (1.4) can
be obtained by combining these restrictions, the holonomy conditions, and the solution obtained in the
Appendix 3.A.3,

XLH =

3∧
τ=0

∑
α≤β
µ≤ν≤λ

(
∂

∂xτ
+ gαβ,τ

∂

∂gαβ
+ gαβ,µτ

∂

∂gαβ,µ
+ gαβ,µντ

∂

∂gαβ,µν
+

DτDλF̂αβ;µ,ν
∂

∂gαβ,µνλ
+Dτ L̂

αβ,µ
S

∂

∂pαβ,µ
+Dτ

L̂S

∂gαβ,µν

∂

∂pαβ,µν

)
,

where F̂αβ;µ,ν = (π3
1 ◦ ρr1)∗Fαβ;µ,ν ∈ C∞(Wr), and

Fαβ;µ,ν = gλσ(ΓλναΓσµβ+ΓλνβΓσµα)+
c4

4πG
gαβ

(
gλσFµλFνσ −

5

4
gµνFλσF

λσ

)
+F hλσ;µ,ν ∈ C∞(J1π) .

The Lagrangian formalism takes place in J3π, but the Corollary 3.1 states that a solution exists in
the submanifold defined by

LαβS = 0 , DτL
αβ
S = 0 .

The Euler-Lagrange equations (3.40) are equivalent to the Einstein equations(
Rµν −

1

2
gµνR

)∣∣∣∣
j3φ

=
c4

4πG

(
1

4
gµνF

αβFαβ − gαβFµαFνβ
)∣∣∣∣

j3φ

,

A section ψ : M → E is a solution to the Einstein equations if, on the points of its image, it is a section
of a multivector field with local expression

XL =

3∧
τ=0

∑
α≤β
µ≤ν≤λ

(
∂

∂xτ
+ gαβ,τ

∂

∂gαβ
+ gαβ,µτ

∂

∂gαβ,µ
+ gαβ,µντ

∂

∂gαβ,µν
+DτDλF

′
αβ;µ,τ

∂

∂gαβ,µνλ

)
,

where F ′αβ;µ,ν = π3
1
∗
Fαβ;µ,ν ∈ C∞(J3π).

For the Hamiltonian formalism, we have the Hamiltonian system (PS,ΩhS , TPS,Φ∗C1), where PS
is diffeomorphic to J1π by the action of Φ, as a consequence of Proposition 3.9, and the Hamiltonian
function giving the Hamiltonian section h is

HPS
= HP − Lm ,

where HP is the Hamiltonian for the vacuum case (3.36). A semiholonomic multivector field solution to
(1.4) has the local expression

XH =
3∧

τ=0

∑
α≤β

(
∂

∂xτ
+ gαβ,τ

∂

∂gαβ
+ Fαβ;µ,τ

∂

∂gαβ,µ

)
.
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3.3 Symmetries for the Einstein-Hilbert model

Now, consider the Einstein-Hilbert Lagrangian (withouth energy-matter sources).

Definition 3.2. Let F : M → M be a diffeomorphism. The canonical lift of φ to the bundle of metrics
E is the diffeomorphism F : E → E defined as follows: for every (x, gx) ∈ E, then F(x, gx) :=
(F (x), (F−1)∗(gx)). (Thus π ◦ F = F ◦ π).

Let Z ∈ X(M). The canonical lift of Z to the bundle of metrics E is the vector field Y ∈ X(E)
whose associated local one-parameter groups of diffeomorphisms Ft are the canonical lifts to the bundle
of metrics E of the local one-parameter groups of diffeomorphisms Ft of Z.

In coordinates, if Z = fµ(x)
∂

∂xµ
∈ X(M), the canonical lift of Z to the bundle of metrics is

Y = fµ
∂

∂xµ
−
∑
α≤β

(
∂fµ

∂xα
gµβ +

∂fµ

∂xβ
gµα

)
∂

∂gαβ
,

and then

j1Y = fµ
∂

∂xµ
−
∑
α≤β

(
∂fµ

∂xα
gµβ +

∂fµ

∂xβ
gµα

)
∂

∂gαβ

−
∑
α≤β

(
∂2fν

∂xα∂xµ
gνβ +

∂2fν

∂xβ∂xµ
gαν +

∂fν

∂xα
gνβ,µ +

∂fν

∂xβ
gαν,µ +

∂fν

∂xµ
gαβ,ν

)
∂

∂gαβ,µ

≡ fµ
∂

∂xµ
+
∑
α≤β

Yαβ
∂

∂gαβ
+
∑
α≤β

Yαβµ
∂

∂gαβ,µ
.

For every Z ∈ X(M), as LV is invariant under diffeomorphisms, we have that

L(j2Y )LV = L(j3Y )((π3
2)∗LV) = 0 ,

and j3Y it is an exact infinitesimal Cartan symmetry. Its associated conserved quantity is ξY = i(Y 3)ΘLV
and, as ΘLV is π3

1-basic, there exists Θ1
LV ∈ Ω

4(J1π) (which has the same coordinate expression) such
that ΘLV = (π3

1)∗Θ1
LV ; then

ξY = i(j3Y )ΘLV = i(j1Y )Θ1
LV =

∑
α≤β

YαβL
αβ,µ +

∑
α≤β

YαβνL
αβ,νµ − fµH

 d3xµ

+
∑
α≤β

(
fνLαβ,µ − fµLαβ,ν

)
dgαβ ∧ d2xνµ +

∑
α≤β

(
fνLαβ,λµ − fµLαβ,λν

)
dgαβ,λ ∧ d2xνµ ,

where d2xµν = i

(
∂

∂xν

)
i

(
∂

∂xµ

)
d4x.

These vector fields are the only natural infinitesimal Lagrangian symmetries [72, 86] for this model.

3.A Solutions to the Hamiltonian equations for the Einstein-Hilbert model

We have seen that the Einstein equations can be stated from different geometrical points of view. In order
to solve them, we can use whichever we find more appropriate. Indeed, as it is explained in chapter 1,
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the solutions can be transported canonically from one formalism to another. In this section we solve the
equations for multivector fields in the Hamiltonian formalism.

A solution to the Einstein equations is a metric over the manifold; that is, a section ψ : M → E. The
multivector fields we find provide system of partial differential equations whose solutions are the sections
(1.1). In this sense, finding the multivector fields is only the first step on solving Einstein equations.
Nevertheless, this approach leads to new equations, which may be more appealing. For instance, they
have a unique solution provided an initial condition: there is no need of boundary conditions.

The relation between sections and multivector fields is explained in chapter 1. Only holonomic mul-
tivector fields have associated holonomic integrable sections. Nevertheless, we look first for semiholo-
nomic multivector fields, except in the case of the vacuum case, where we find a particular solution which
is a proper holonomic multivector field. It is used in Theorem 3.1 to determine the final submanifold.

Since the equations for multivector fields are lineal, we proceed to find a particular solution and then
the homogeneous solutions for the vacuum case. Later, we will consider energy-matter sources.

3.A.1 Particular solution (without energy-matter sources)

The Hamiltonian premultisymplectic system is (P,Ωh, TP, (π‡J1π
◦ )∗C1)). The local expression of a

representative of a class {Xh} of semiholonomic multivector fields in P is

Xh =

3∧
ν=0

 ∂

∂xν
+
∑
α≤β

(
Fαβ,ν

∂

∂gαβ
+ Fαβ;µ,ν

∂

∂gαβ;µ

) .

Where the holonomy condition is not explicitly imposed, as it will be recover by the field equations.
Equation (1.4) takes the local expression:

∂HP
∂gαβ,µ

+
∑
λ≤σ

Fλσ,ν

(
∂Lαβ,µν

∂gλσ
− ∂Lλσ,ν

∂gαβ,µ

)
= 0 , (3.41)

∂HP
∂gαβ

+
∑
λ≤σ

Fλσ,µ

(
∂Lαβ,µ

∂gλσ
− ∂Lλσ,µ

∂gαβ

)
+
∑
λ≤σ

Fλσ;ν,µ

(
∂Lαβ,µ

∂gλσ,ν
− ∂Lλσ,νµ

∂gαβ

)
= 0 . (3.42)

We denote Uαβ,µν,λσ =
∂Lαβ,µν

∂gλσ
− ∂Lλσ,ν

∂gαβ,µ
, whose explicit expressions are

Uαβµνλσ =
%n(αβ)n(λσ)

4

(
−2gαβgλσgµν + gαλgβσgµν + gβλgασgµν

+ gαβgλµgσν + gαβgσµgλν + gλσgανgβµ + gλσgβνgαµ

− gανgλµgβσ − gβνgλµgασ − gανgσµgβλ − gβνgσµgαλ
)
, (3.43)

and they fulfil the following relations:

Uαβ,µν,λσ = Uλσ,µν,αβ = −Uαµ,βν,λσ .

The equations are algebraic, in the sense that no derivatives of Fαβ,µ, nor Fαβ,µν appear. (The indices
are symmetrized as usual).

We start by solving equation (3.41). First, we rewrite it as∑
λ≤σ

(Fλσ,ν − gλσ,ν)Uαβ,µν,λσ = 0 .

54



Indeed, since HP =
∑

λ≤σ L
λσ,νgλσ,ν − L0,

∂HP
∂gαβ,µ

=
∑
λ≤σ

∂Lλσ,ν

∂gαβ,µ
gλσ,ν + Lαβ,µ − ∂L0

∂gαβ,µ

=
∑
λ≤σ

∂Lλσ,ν

∂gαβ,µ
gλσ,ν +

∂L0

∂gαβ,µ
−
∑
λ≤σ

∂Lαβ,µν

∂gλσ
gλσ,ν −

∂L0

∂gαβ,µ
= −

∑
λ≤σ

Uαβ,µν,λσgλσ,ν .

Now we multiply it by

Vαβµ,abc =
1

%n(αβ)
(gαµgβbgac + 2gαµgβcgab + gαβgbµgac − gαβgµcgab

−3gαagβcgbµ − 3gαbgβcgaµ + gαµgβagbc + gαβgcµgab) ,

which works as a sort of inverse; then we obtain∑
λ≤σ

(Fλσ,ν − gλσ,ν)Uαβ,µν,λσVαβµ,abc =
3

2
(Fλσ,ν − gλσ,ν)(δλaδ

σ
b δ

ν
c + δλb δ

σ
a δ

ν
c )

= 3(Fab,c − gab,c) = 0 .

Therefore, Fλσ,ν = gλσ,ν and the holonomy condition is recovered. Using this condition, equation (1.4)
becomes:

∂H

∂gαβ
+
∑
λ≤σ

gλσ,µ

(
∂Lαβ,µ

∂gλσ
− ∂Lλσ,µ

∂gαβ

)
−
∑
λ≤σ

Fλσ;µ,νU
λσ,µν,αβ = 0 . (3.44)

These equations have as particular solution FPλσ;µ,ν = 1
2gαβ(ΓανλΓβµσ + ΓανσΓβµλ), which can be checked

after some computation. The multivector field

XP
h =

3∧
ν=0

XP
ν =

3∧
ν=0

 ∂

∂xν
+
∑
α≤β

(
gαβ,ν

∂

∂gαβ
+

1

2
gλσ(ΓλναΓσµβ + ΓλνβΓσµα)

∂

∂gαβ;µ

) ,

is semi-holonomic and π̄P -transverse, and verifies that i(XP
h )Ωh = 0. The last thing to check is that it

is integrable. The Lie bracket for two arbitrary components XP
γ and XP

ρ is

[XP
γ , X

P
ρ ] =

∑
α≤β

(
FPαβ;ρ,γ − FPαβ;γ,ρ

) ∂

∂gαβ
+

∑
α≤β
λ≤σ

(
gλσ,γ

∂FPαβ;µ,ρ

∂gλσ
+ FPλσ;ν,γ

∂FPαβ;µ,ρ

∂gλσ,ν
− gλσ,ρ

∂FPαβ;µ,γ

∂gλσ
− FPλσ;ν,ρ

∂FPαβ;µ,γ

∂gλσ,ν

)
∂

∂gαβ,µ
.

The vector field [XP
γ , X

P
ρ ] is π̄1-vertical. Therefore, the integrability condition can only be achieved if

[XP
γ , X

P
ρ ] = 0. Imposing the condition on the coefficient of

∂

∂gαβ
, we obtain that FPαβ;ρ,γ−FPαβ;γ,ρ = 0.

These conditions are expected since, for a section, they represent the equality between second order
crossed partial derivatives. Clearly the solution proposed fulfils this condition. After a rather long but

straightforward computation, we can check that the coefficients of
∂

∂gαβ,µ
also vanish.

3.A.2 General solution (without energy-matter sources)

The existence of a particular solution XP
h to (1.4) is relevant, because it implies that no extra restrictions

are needed, as showed in Theorem 3.1. Now, we explore the general behaviour of the solutions of (1.4).
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As we have shown before, (1.4) boils down to (3.44), which are linear equations. Therefore, we can
split any solution into a particular and a homogeneous part:

Fλσ;µ,ν =
1

2
gαβ(ΓανλΓβµσ + ΓανσΓβµλ) + F h

λσ;µ,ν .

The homogeneous part F h
λσ;µ,ν is a set of functions which cancel out when contracted with (3.43), namely∑

λ≤σ
F h
λσ;µ,νU

λσ,µν,αβ = 0 . (3.45)

The correspondent multivector field:

Xh =
3∧

ν=0

 ∂

∂xν
+
∑
α≤β

(
Fαβ,ν

∂

∂gαβ
+

(
1

2
gλσ(ΓλναΓσµβ + ΓλνβΓσµα) + F h

αβ;µ,ν

)
∂

∂gαβ;µ

)
is a semiholonomic solution to (1.4). Nevertheless, it may not be integrable. Thus, the integrability of
Xh leads to new constraints on the valid set of functions Tαβ;µ,ν . Condition (3.45) can be reformulated
as follows:

Lemma 3.1. A set of functions F h
αβ;µ,ν , symmetric under the changes α ↔ β and µ ↔ ν, satisfies the

condition ∑
λ≤σ

F h
λσ;µ,νU

λσ,µν,αβ = 0 (3.46)

if, and only if,
gλσ

(
F h
ητ ;λ,σ + F h

λσ;η,τ − F
h
λη;τ,σ − F

h
λτ ;η,σ

)
= 0 . (3.47)

Proof. (3.46) can be rewritten as∑
λ≤σ

F h
λσ;µ,νU

λσ,µν,αβ = %n(αβ)gαβgλσgµν
(
−1

2
F h
λσ;µ,ν +

1

2
F h
λµ;ν,σ

)

+ %n(αβ)gλσgαµgνβ
(

1

2
F h
µν;λ,σ +

1

2
F h
λσ;µ,ν −

1

2
F h
λµ;ν,σ −

1

2
F h
λν;µ,σ

)
(3.48)

Contracting (3.46) with gαβ , we obtain

2%n(αβ)gλσgµν
(
−1

2
F h
λσ;µ,ν +

1

2
F h
λµ;ν,σ

)
= 0 . (3.49)

Therefore the first term in (3.48) vanishes. Contracting the remaining term with gαηgβτ we obtain (3.47).

To prove the converse, contract (3.47) with gητ . The resulting expression is equivalent to (3.49)
because it is symmetric under the change (αβ)↔ (ητ). Then, (3.46) follows straighforwardly.

The following theorem summarizes the above results:

Theorem 3.3. For a class of multivectorfield {X} ⊂ X4(P), the following conditions are equivalent:

• {X} is a solution to the Hamiltonian problem for multivector fields (1.4) for the system (P,Ωh, TP, (π‡J1π
◦

)∗C1).
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• Using the coordinates (xµ, gαβ, gαβ,µ), the local expression of a represesentative of {X} is

X =

3∧
ν=0

 ∂

∂xν
+
∑
α≤β

(
gαβ,ν

∂

∂gαβ
+
(
FPαβ;µ,ν + F h

αβ;µ,ν

) ∂

∂gαβ;µ

) ,

where FPαβ;µ,ν = 1
2gλσ(ΓλναΓσµβ + ΓλνβΓσµα) and F h

αβ;µ,ν satisfy that:

1. F h
αβ;µ,ν = F h

βα;µ,ν = F h
αβ;ν,µ.

2. gαβ
(
F h
ητ ;α,β + F h

αβ;η,τ − F
h
αη;τ,β − F

h
ατ ;η,β

)
= 0.

3. It is a solution to the following differential equations (integrability condition):

0 =
∑
α≤β

(
F h
αβ;µ,i

∂F h
λσ;ν,j

∂gαβ,µ
+

(
FPαβ;µ,i

∂

∂gαβ,µ
+ gαβ,i

∂

∂gαβ
+

∂

∂xi

)
F h
λσ;ν,j + F h

αβ;µ,i

∂FPλσ;ν,j

∂gαβ,µ

)

−
∑
α≤β

(
F h
αβ;µ,j

∂F h
λσ;ν,i

∂gαβ,µ
+

(
FPαβ;µ,j

∂

∂gαβ,µ
+ gαβ,j

∂

∂gαβ
+

∂

∂xj

)
F h
λσ;ν,i + F h

αβ;µ,j

∂FPλσ;ν,i

∂gαβ,µ

)

The equivalent theorem for sections is:

Theorem 3.4. For a holonomic section ψ : M → P , the following conditions are equivalent:

1. ψ is a solution to the Hamiltonian equations for sections (1.2) for the system (P,Ωh, TP, (π‡J1π
◦

)∗C1))

2. ψ is holonomic and a solution to the vacuum Einstein’s equations(
Rαβ − 1

2
gαβR

)∣∣∣∣
ψ

= 0, α, β = 0, . . . , 3.

3. ψ is holonomic and a solution to the differential equations

∂2ψαβ
∂xµ∂xν

=

(
F h
αβ;µ,ν +

1

2
gλσ(ΓλναΓσµβ + ΓλνβΓσµα)

)∣∣∣∣
ψ

,

for some set of functions F h
αβ;µ,ν such that

gαβ
(
F h
ητ ;α,β + F h

αβ;η,τ − F
h
αη;τ,β − F

h
ατ ;η,β

)
= 0 ,

with initial conditions ψαβ(x′µ) = g′αβ ,
∂ψαβ
∂xµ

(x′
µ
) = g′αβ,µ.

Proof. The equivalence 1 ⇐⇒ 2 is clear. The implication 1 ⇒ 3 comes from Theorem 3.3. To show
3⇒ 2, we first compute Rαβ|ψ:

Rµη|ψ = gνλRλµ,νη|ψ

= −1

2
gνλ

[
∂2ψλν
∂xµ∂xη

− ∂2ψµν
∂xη∂xλ

−
∂2ψλη
∂xµ∂xν

+
∂2ψµη
∂xν∂xλ

]∣∣∣∣
ψ

+ gνλgτσ(ΓτηλΓσµν − ΓτνλΓσµη)
∣∣∣
ψ

= −1

2
gνλ

(
F h
ηµ;ν,λ + F h

νλ;η,µ − F
h
νη;µ,λ − F

h
νµ;η,λ

)∣∣∣∣
ψ

= 0 .

Then (
Rαβ − 1

2
gαβR

)∣∣∣∣
ψ

=

(
gαµgβη − 1

2
gαβgµη

)
Rµη

∣∣∣∣
ψ

= 0
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These theorems characterize the solutions to Einstein’s equations without sources. The multivector
fields solution to (3.3) are described by the set of functions F h

αβ;µ,ν which have some combinatoric
properties. The integral sections of an integrable multivector field are given by (1.1). Every multivector
field has one section at every point, therefore, only an initial condition is required to solve these equations.
The condition 3 in Theorem 3.3 is the integrability condition. If a multivector field is not integrable, we
can still consider (1.1), but we will find out that such equations have no solution everywhere. Thus, the
integrability condition is also the condition of existence of solutions to (1.1). Given an initial condition,
there is several section solution to the equations: one for every multivector field. Nevertheless, two
different multivector fields may lead to the same sections at a given point. These multiple solution are
not gauge related, because the multisymplectic form is regular.

3.A.3 General solution (with energy-matter sources)

Theorem 3.5. Consider an energy-matter termLm with degree≤ 1, and the system (PS,ΩhS , TPS, (π
‡
J1π
◦

)∗C1). For a class of multivector field {X} ⊂ X4(PS), the following conditions are equivalent:

• {X} is a class of semiholonomic multivector fields solution to the equation

i(X)ΩhS = 0 , for every X ∈ {X} .

• The local expression of a representative X ∈ {X} is

X =
3∧

ν=0

∑
α≤β

(
∂

∂xν
+ gαβ,ν

∂

∂gαβ
+ Fαβ;µ,ν

∂

∂gαβ,µ

)
with

Fλσ;µ,ν =
1

2
gλσ(ΓλναΓσµβ + ΓλνβΓσµα) + gλσ

(
gαβgµν −

1

3
gαµgβν

)
Lm

αβ

%n(αβ)
+ F h

λσ;µ,ν .

and where F hαβ;µ,ν satisfies:

1. F h
αβ;µ,ν = F h

βα;µ,ν = F h
αβ;ν,µ.

2. gαβ
(
F h

ητ ;α,β + F h
αβ;η,τ − F h

αη;τ,β − F h
ατ ;η,β

)
= 0.

Proof. The local expression of the equations is

∂HEH

∂gαβ
+
∑
λ≤σ

gλσ,µ

(
∂Lαβ,µEH

∂gλσ
−
∂Lλσ,µEH

∂gαβ

)
−
∑
λ≤σ

Fλσ;µ,νU
λσ,µν,αβ = −Lαβm .

Then we split the unknown functions in three parts:

Fλσ;µ,ν = FRλσ;µ,ν + Fm
λσ;µ,ν + F h

λσ;µ,ν

This first term is a solution to the equations at vacuum:

∂HEH

∂gαβ
+
∑
λ≤σ

gλσ,µ

(
∂Lαβ,µEH

∂gλσ
−
∂Lλσ,µEH

∂gαβ

)
=
∑
λ≤σ

FRλσ;µ,νU
λσ,µν,αβ .

As we have seen before, we can choose FRλσ;µ,ν = 1
2gαβ(ΓανλΓβµσ + ΓανσΓβµλ). The second term is a

solution to ∑
λ≤σ

Fm
λσ;µ,νU

λσ,µν,αβ = Lm
αβ
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We can choose Fm
λσ;µ,ν = 1

%n(τγ)gλσ
(
gτµgγν − 1

3gτγgµν
)
Lm

τγ , which belongs to C∞(J1π) because
deg(Lm) ≤ 1 . Indeed, ∑

λ≤σ

1

%n(τγ)
gλσ

(
gτµgγν −

1

3
gτγgµν

)
Lm

τγUλσ,µν,αβ =

n(αβ)

n(τγ)

(
gτµgγν −

1

3
gτγgµν

)
Lm

τγ

(
1

2
gαµgβν +

1

2
gανgβµ − gαβgµν

)
=

n(αβ)

2n(τγ)
(δατ δ

β
γ + δβτ δ

α
γ )Lm

τγ =
1

2
(Lm

αβ + Lm
βα) = Lm

αβ .

Finally, the third term is solution to the homogeneous equation∑
λ≤σ

F h
λσ;µ,νU

λσ,µν,αβ = 0

For (3.47), this equation is equivalent to the statement. Notice that any other FR or Fm can be obtained
from these ones by adding a suitable function of the type F h.

It is important to remark that the solution given by this theorem may not be integrable. But any
integrable solution follows this structure. The corresponding result for sections is:

Theorem 3.6. For a holonomic section ψ : M → PS, the following conditions are equivalent:

1. ψ is a solution to the Hamiltonian problem for sections (1.2) for the system (PS,ΩhS , TPS, (π
‡
J1π
◦

)∗C1).

2. ψ is holonomic and solution to the Einstein equations.(
Rαβ − 1

2
gαβR

)∣∣∣∣
ψ

= − 1

%n(αβ)
Lαβm |ψ .

3. ψ is holonomic and solution to the differential equations

∂2ψαβ
∂xµ∂xν

=

(
F h
αβ;µ,ν +

1

2
gλσ(ΓλναΓσµβ + ΓλνβΓσµα) + gαβ

(
gτµgγν −

1

3
gτγgµν

)
Lm

τγ

%n(τγ)

)∣∣∣∣
ψ

,

for some set of functions F h
αβ;µ,ν such that

gαβ
(
F h
ητ ;α,β + F h

αβ;η,τ − F
h
αη;τ,β − F

h
ατ ;η,β

)
= 0 ,

and with initial conditions ψαβ(x′µ) = g′αβ ,
∂ψαβ
∂xµ

(x′
µ
) = g′αβ,µ.
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Chapter 4

Metric-Affine

The multisymplectic and polysymplectic techniques have been applied to treat the Einstein-Palatini or
Metric-Affine model for General Relativity [11, 12, 62, 78, 80]. In particular, in [12] an exhaustive study
of the multisymplectic description of the model has been done, using a unified formalism which joins
both the Lagrangian and Hamiltonian formalisms into a single one.

This chapter is another contribution in order to complete the multisymplectic description of the
Einstein-Palatini theory (without energy-matter sources). In particular, we are especially interested in the
following problem: as a consequence of the degeneracy of the Lagrangian, this is a premultisymplectic
field theory and the Lagrangian field equations are incompatible in the jet bundle where the Lagrangian
formalism takes place. The problem of finding a submanifold where this equations have consistent so-
lutions (if it exists) is solved by applying a constraint algorithm. Another objective is to construct the
Hamiltonian formalism of the theory and, then, apply the corresponding constraint algorithm to solve the
incompatibility of the Hamiltonian field equations. In the Hamiltonian formalism, the choice of differ-
ent kinds of coordinates (which have a clear geometric interpretation) allows us to better understanding
several geometrical characteristics of the formalism.

In [20] the authors point-out the existence of gauge symmetry particular for this model. Another
objective is to make a geometrical analysis of this gauge freedom and to recover the Einstein-Hilbert
model for General Relativity by means of a gauge fixing. A brief discussion on the classical Lagrangian
symmetries of the theory and their associated currents is also done.

As a side note, in the literature this model is either denoted Metric-Affine or Palatini. As it is ex-
plained in [40], the model does not appear in Palatini’s work, although he performed the first steps
towards it. The model as is currently understood first appears in the 1925 paper [36] by Einstein. We use
both terms indistinguishably.

The chapter is organized as follows: Section 4.1 is devoted to present the Einstein-Palatini La-
grangian and the manifold where it is defined. Next, in Section 4.2, the Lagrangian formalism of this
theory is studied in detail and the Lagrangian constraint algorithm is applied by steps. The geometric
interpretation of the different kinds of constraints and the gauge and natural Lagrangian symmetries are
also discussed here. Second, in Section 4.3 the Hamiltonian formalisms is stated and analysed in an
analogous way. Finally, the relation with the Einstein-Hilbert model is established discussed in Section
4.4.
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4.1 The Einstein-Palatini Lagrangian

We introduce here the Metric-Affine (or Einstein-Palatini) action for the Einstein equations of gravity
without sources (no matter-energy is present).

The configuration bundle for this system is the bundle π : E→M , whereM is a connected orientable
4-dimensional manifold representing space-time, whose volume form is denoted η ∈ Ω4(M), and E =
Σ ×M C(LM), where Σ is the manifold of Lorentzian metrics on M and C(LM) is the bundle of
connections on M ; that is, linear connections in TM .

Consider a natural system of coordinates (xµ, vα) in the tangent space τ : TM → M , such that
η = dx0 ∧ . . . ∧ dx3 ≡ d4x. We use adapted fiber coordinates in E, denoted (xµ, gαβ,Γ

ν
λγ), (with

0 ≤ α ≤ β ≤ 3, and µ, ν, γ, λ = 0, 1, 2, 3). The functions gαβ are the components of the metric
associated to the charts in the base (xµ), and Γνλγ are the Christoffel symbols of the connection (and then
the component functions Γνγ of the linear connection are Γνγ = τ∗(−Γνλγv

λ) [35]). Since g is symmetric,
gαβ = gβα and actually there are 10 independent components. We do not assume torsionless connections
and hence Γνλγ 6= Γνγλ, in general. Thus dim E = 78. When we sum over symmetric indices and not over
all the components, we order the indices as 0 ≤ α ≤ β ≤ 3.

In order to state the formalism we consider the first-order jet bundle J1π, with the natural projections

π1 : J1π −→ E
j1
xφ 7−→ φ(x)

;
π̄1 : J1π −→ M

j1
xφ 7−→ x

.

Induced coordinates in J1π are denoted (xµ, gαβ, Γνλγ , gαβ,µ, Γνλγ,µ), and dim J1π = 374.

A special kind of vector fields are the coordinate total derivatives [83, 90], which are locally given as

Dτ =
∂

∂xτ
+
∑
α≤β

(
gαβ,τ

∂

∂gαβ
+ gαβ,µτ

∂

∂gαβ,µ

)
+ Γναβ,τ

∂

∂Γναβ
+ Γναβ,µτ

∂

∂Γναβ,µ
.

Observe that, if f ∈ C∞(J1π), then Dτf ∈ C∞(J2π).

The Einstein-Palatini (or Metric-Affine) Lagrangian density is a π̄1-semibasic 4-formLEP ∈ Ω4(J1π);
then LEP = LEP (π̄1)∗η, where LEP ∈ C∞(J1π) is the Einstein-Palatini Lagrangian function which, in
the above coordinates, is given by

LEP =
√
|det(g)| gαβRαβ ≡ %gαβRαβ = %R ,

where % =
√
|det(gαβ)|,R = gαβRαβ is the scalar curvature,Rαβ = Γγβα,γ−Γγγα,β+ΓγβαΓσσγ−ΓγβσΓσγα

are the components of the Ricci tensor, which depend only on the connection, and gαβ denotes the inverse
matrix of g, namely: gαβgβγ = δαγ . The order of the indexes in the expression of the curvature is crucial.
The expression is based in [35]. It is useful to consider the following auxiliary functions:

Lβγ,µα :=
∂LEP

∂Γαβγ,µ
= %(δµαg

βγ − δβαgµγ) , (4.1)

4.2 The Metric-Affine model: Lagrangian formalism

4.2.1 Poincaré-Cartan forms and field equations

The Lagrangian formalism of field theories is presented in chapter 1.

H := Lβγ,µα Γαβγ,µ − LEP = %gαβ
(

ΓγβσΓσγα − ΓγβαΓσσγ

)
. (4.2)
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The Poincaré-Cartan 5-form ΩLEP
associated with the Einstein-Palatini Lagrangian density is constructed

using the canonical structures of the bundle J1π and its expression is

ΩLEP
= dH ∧ d4x− dLβγ,µα ∧ dΓαβγ ∧ d3xµ . (4.3)

Observe that it is a π1-projectable form. The Lagrangian multisympelctic system for the Einstein-
Palatine gravity is (J1π,ΩEP , TJ

1π,C1), where C1 is the Cartan codistribution of J1π.

Then, for a generic locally decomposable and π̄1-transverse multivector field in J1π we have the

following local expression X = f

3∧
ν=0

Xν , with

Xν =
∂

∂xν
+
∑
ρ≤σ

(
fρσ,ν

∂

∂gρσ
+ fρσµ,ν

∂

∂gρσ,µ

)
+ fαβγ,ν

∂

∂Γαβγ
+ fαβγµ,ν

∂

∂Γαβγ,µ
, (4.4)

where the coefficients are arbitrary functions of C∞(J1π). If the multivector field is semi-holonomic
and we set f = 1, then

X =
3∧

ν=0

 ∂

∂xν
+
∑
ρ≤σ

(
gρσ,ν

∂

∂gρσ
+ fρσµ,ν

∂

∂gρσ,µ

)
+ Γαβγ,ν

∂

∂Γαβγ
+ fαβγµ,ν

∂

∂Γαβγ,µ

 . (4.5)

Taking (4.4) and (4.3), the equation (1.4) becomes locally

0 = i(Xµ)dH + fαβγ,µ i(Xν)dLβγ,να − fαβγ,ν i(Xµ)dLβγ,να , (4.6)

0 =
∂H

∂gσρ
− fαβγ,µ

∂Lβγ,µα

∂gσρ
, (4.7)

0 =
∂H

∂Γαβγ
+
∑
ρ≤σ

(
fρσ,µ

∂Lβγ,µα

∂gρσ

)
+ f τρσ,µ

∂Lβγ,µα

∂Γτρσ
− f τρσ,µ

∂Lρσ,µτ

∂Γαβγ

=
∂H

∂Γαβγ
+
∑
ρ≤σ

fρσ,µ
∂Lβγ,µα

∂gρσ
; (4.8)

since
∂Lβγ,µα

∂Γτρσ
= 0. Equations (4.6) arise from the variations of the coordinates xµ and they hold as

a consequence of (4.7) and (4.8). The equations (4.7) arise from the variations on the components of
the metric, and contains the functions fαβγ,µ related to the connection, thus we call them connection
equations. Finally, the equations (4.8) arise from the variations on the components of the connection,
and contain the functions fσρ,µ, thus they are called metric equations.

4.2.2 Compatibility and consistency constraints

In general, π̄1-transverse and integrable multivector fields X ∈ X4(J1π) which are solutions to (1.4)
could not exist. In the best of cases they exist only in some submanifold of J1π [22]. The aim in this
section is to find the constraints that define this submanifold, using a local version of the geometric
constraint algorithms [23, 22].

First, we introduce the following notation: as it is usual,

ker4 ΩLEP
:= {X ∈ X4(J1π) | i(X)ΩLEP

= 0} .
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We denote by ker4
π̄1 ΩLEP

the set of locally decomposable and π̄1-transverse multivector fields satisfying
equations (1.4) but not being (semi)holonomic necessarily. Then, ker4

SH ΩLEP
and ker4

H ΩLEP
denote

the sets of semi-holonomic and the holonomic multivector fields which are solutions to the equations
(1.4), respectively. Obviously we have

ker4
H ΩLEP

⊂ ker4
SH ΩLEP

⊂ ker4
π̄1 ΩLEP

⊂ ker4 ΩLEP
. (4.9)

We make the study in several steps, following the next procedure: first we consider the problem
of finding locally decomposable and π̄1-transverse multivector fields which are solution to (1.4) (that
is, the elements of ker4

π̄1 ΩLEP
), then we look for the semi-holonomic multivector fields belonging

to ker4
SH ΩLEP

and finally, in the next Section, we analyze their integrability (finding the elements of
ker4

H ΩLEP
).

Non-semiholonomic multivector fields (elements of ker4
π̄1 ΩLEP

): compatibility constraints

The set ker4
π̄1 ΩLEP

consists of multivector fields of the form (4.4) whose coefficients satisfy the connec-
tion and metric equations (4.7) and (4.8) respectivelly. But the equations (4.8) are not compatible. In
fact:

Proposition 4.1. The necessary condition for the existence of solutions to the metric equations (4.8) is
that the following equalities hold:

Aαβγ ≡ gβνT ναγ − gανT νβγ + 1
3gβγT

ν
να − 1

3gαγT
ν
νβ = 0 , (4.10)

where Tαβγ are the components of the torsion tensor which are defined as usual, Tαβγ = Γαβγ − Γαγβ .

Proof. We introduce the following functions

iαβγ,λζν =
1

%

(
−1

2
gβγgλζδ

α
ν +

1

6
gλζgνγδ

α
β −

1

3
gλνgζγδ

α
β + gζγgλβδ

α
ν

)
, (4.11)

which satisfy that
∂Lβγ,µα

∂gρσ
iαβγ,λζν =

n(ρσ)

2
(δµν δ

σ
ζ δ

ρ
λ + δµν δ

σ
λδ

ρ
ζ ) ;

where n(ρσ) is a combinatorial factor such that n(ρσ) = 1 for ρ = σ, and n(ρσ) = 2 for ρ 6= σ. Then,
using them in the metric equations (4.8), we obtain

0 = iαβγ,λζν

 ∂H

∂Γαβγ
+
∑
ρ≤σ

fρσ,µ
∂Lβγ,µα

∂gρσ

 = iαβγ,λζν
∂H

∂Γαβγ
+

1

2
(fλζ,ν + fζλ,ν) .

These are equations for the functions fλζ,ν which, as a consequence of the symmetry of the metric,
gαβ = gβα, are also symmetric: fλζ,ν = fζλ,ν . Nevertheless, the equations are incompatible because
they are not symmetric under the change λ↔ ζ. In fact; we obtain that

iαβγ,λζν
∂H

∂Γαβγ
− iαβγ,ζλν

∂H

∂Γαβγ
= gλµT

µ
ζν − gζµT

µ
λν + 1

3gλνT
µ
µζ −

1
3gζνT

µ
µλ = 0 ,

and the result follows from here.

Conditions (4.10) are called torsion constraints and they define the submanifold ST ↪→ J1E. These
torsion constraints are essential in the following discussion, since they impose strong restrictions on the
torsion. In fact:
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Proposition 4.2. The torsion constraints (4.10) are equivalent to

Tαβγ =
1

3
δαβT

ν
νγ −

1

3
δαγ T

ν
νβ . (4.12)

Proof. If (4.10) holds, then

0 =
1

2
gαµ (Aβµγ +Aβγµ +Aµγβ)

=
1

2
gαµ

(
gµνT

ν
βγ − gβνT νµγ + 1

3gγµT
ν
νβ − 1

3gγβT
ν
νµ + gγνT

ν
βµ − gβνT νγµ

+ 1
3gµγT

ν
νβ − 1

3gµβT
ν
νγ + gγνT

ν
µβ − gµνT νγβ + 1

3gβγT
ν
νµ − 1

3gβµT
ν
νγ

)
= Tαβγ −

1

3
δαβT

ν
νγ +

1

3
δαγ T

ν
νβ .

Conversely, if Tαβγ = 1
3δ
α
βT

ν
νγ − 1

3δ
α
γ T

ν
νβ , then

Aαβγ = gβνT
ν
αγ − gανT νβγ + 1

3gβγT
ν
να − 1

3gαγT
ν
νβ

= gβν
(

1
3δ
ν
αT

µ
µγ − 1

3δ
ν
γT

µ
µα

)
− gαν

(
1
3δ
ν
βT

µ
µγ − 1

3δ
ν
γT

µ
µβ

)
+ 1

3gβγT
ν
να − 1

3gαγT
ν
νβ

=
1

3

(
gβαT

µ
µγ − gβγTµµα − gαβTµµγ + gαγT

µ
µβ + gβγT

ν
να − gαγT ννβ

)
= 0 .

As a consequence of this result, on ST the torsion is determined by its “trace”, tr(T ) = T ναν .

Proposition 4.3. On the submanifold ST , the general solutions to the equations (4.7) and (4.8) are,
respectively,

fαβγ,µ = ΓλµγΓαβλ + Cαβγ,µ +Kα
βγ,µ , (4.13)

fσρ,µ = gσλΓλµρ + gρλΓλµσ +
2

3
gσρT

λ
λµ ; (4.14)

for some functions Cαβγ,µ,K
α
βγ,µ ∈ C∞(J1π) satisfying that

Cαβγ,µ = Cβµδ
α
γ , Kν

νγµ = 0 , Kν
βγν +Kν

γβν = 0 ; (on ST ) .

Proof. The metric and connection equations are independent and lineal. Thus we look for particular and
homogeneous-general solutions for each one.

It is straightforward to check that (4.14) is a particular solution to the metric equations on ST . Given
two solutions, f1 and f2, their difference hσρ,µ = f1

σρ,µ−f2
σρ,µ is a solution to the homogeneous equation

∑
ρ≤σ

hρσ,µ
∂Lβγ,µα

∂gρσ
= 0 ; (on ST ) .

Consider the functions iαβγ,λζν which satisfy (4.11),

0 =
∑
ρ≤σ

hρσ,µ
∂Lβγ,µα

∂gρσ
iαβγ,λζν = hρσ,µ

1

2
(δµν δ

σ
λδ

ρ
ζ + δµν δ

σ
ζ δ

ρ
λ) = hλζν .

Therefore, hσρ,µ|ST = 0⇒ f1(p) = f2(p) on ST , and the solution is unique. In a similar way,

fαβγ,µ = ΓλµγΓαβλ ; (on ST )
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is a particular solution to the connection equations. The difference between two solutions is a solution to
the homogeneous equation:

hαβγ,µ
∂Lβγ,µα

∂gρσ
= 0 ; (on ST ) . (4.15)

This equation is equivalent to:

hλλr,s + hλλs,r − hλrs,λ − hλsr,λ = 0 ; (on ST ) .

Indeed,

1

%n(ρσ)
(2grρgsσ − gρσgrs)hαβγ,µ

∂Lβγ,µα

∂gρσ
= hλλr,s + hλλs,r − hλrs,λ − hλsr,λ ; (on ST ) .

%n(ρσ)

4
(2grρgsσ − gρσgrs)

(
hλλr,s + hλλs,r − hλrs,λ − hλsr,λ

)
= hαβγ,µ

∂Lβγ,µα

∂gρσ
; (on ST ) .

Some solutions of this equation are the functions of the form

hαβγ,µ = Cβµδ
α
γ ; (on ST ) ,

which are called trace solutions. for every solution h, consider Kα
βγ,µ = hαβγ,µ − Cβµδαγ with Cβµ =

hλλβµ. It follows that Kλ
λγµ = 0. Since the equation is lineal, these functions must also be solutions.

Therefore:
0 = Kλ

λr,s +Kλ
λs,r −Kλ

rs,λ −Kλ
sr,λ = −Kλ

rs,λ −Kλ
sr,λ ; (on ST ) .

These solutions are called torsion solutions. From their definition it is clear that any homogeneous
solution is a sum of a trace and a torsion solution. Furthermore, if Kα

βγ,µ = Cαβγ,µ = Cβµδ
α
γ , then

0 = Kλ
λγ,µ = Cγµ; on ST . Thus, the only homogeneous solution which is both trace and torsion is

hαβγ,µ = 0.

This proposition shows also that:

Corollary 4.1. The torsion constraints (4.10) (or their equivalent expressions (4.12)) are sufficient con-
ditions for the existence of solutions to (4.8).

These constraints could be also obtained in an intrinsic way using the procedure described in [22].

Now we must check the tangency (or consistency) conditions. First, observe that, taking into ac-
count (4.4), (4.13), and (4.14), the general solution to the equation (1.4) (before imposing the holonomy
condition) are multivector fields of the form

X =

3∧
ν=0

Xν =

3∧
ν=0

 ∂

∂xν
+
∑
σ≤ρ

(
(gσλΓλνρ + gρλΓλνσ +

2

3
gσρT

λ
λν)

∂

∂gσρ
+ fσρµ,ν

∂

∂gσρ,µ

)

+(ΓλνγΓαβλ + Cαβγ,ν +Kα
βγ,ν)

∂

∂Γαβγ
+ fαβγµ,ν

∂

∂Γαβγ,µ

]
; (on ST ) . (4.16)

Bearing in mind the conditions on the functions Cαβγ,µ,K
α
βγ,µ stated in Proposition 4.3, the tangency

condition on the torsion constraints (4.12)

L(Xν)

(
Tαβγ −

1

3
δαβT

ν
νγ +

1

3
δαγ T

ν
νβ

)
= 0 ; (on ST ) ,

hold on ST as long as

Kα
[βγ],µ = −1

3
δα[βK

ν
γ]ν,µ − Γλµ[γΓαβ]λ +

1

3
δα[βΓλµγ]Γ

ν
νλ −

1

3
δα[βΓλµνΓνγ]λ ; (on ST ) .
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Nevertheless, solutions to equation (1.4) must be holonomic multivector fields. Thus, first we look
for semiholonomic solutions, then we analyze their tangency and, finally, we study the existence of
holonomic solutions.

Semi-holonomic multivector fields (elements of ker4
SH ΩLEP

): semiholonomic constraints

If a multivector field is semiholonomic then its local expression is (4.5); that is,

fρσ,µ = gρσ,µ , fαβγ,µ = Γαβγ,µ .

In this case, there are more constraints which arise from the equations (4.7) and (4.8) and are the Euler-
Lagrange equations themselves:

∂H

∂gµν
− ∂Lβγ,σα

∂gµν
Γαβγ,σ = 0 , (4.17)

∂H

∂Γαβγ
+
∑
µ≤ν

∂Lβγ,σα

∂gµν
gµν,σ = 0 . (4.18)

(Geometrically, they are a consequence of the fact that ΩLEp is π1-projectable 2.2). In this way, the
connection and metric equations become semiholonomic constraints, which are called connection and
metric constrains, respectively.

In particular, notice that the metric constraints (4.18) arise from the equations (4.8), which lead to
the torsion constraints (4.12). Therefore, the metric constraints split into two kinds of conditions: the
torsion constraints (4.12) themselves and, according to equation (4.14) (or, equivalently, to (4.16)),

gρσ,µ = gσλΓλµρ + gρλΓλµσ +
2

3
gρσT

λ
λµ , (4.19)

which are called pre-metricity constraints. They are closely related to the metricity conditions and the
trace of the torsion, as it is proved in the following:

Proposition 4.4. In the points of the submanifold Sm ↪→ J1π defined by the metric constraints (4.18),
we have that:

∇Γ(p)g(p) = 0 ⇐⇒ tr(TΓ(p)) = 0 ; p ∈ Sm .

(Here, the notation∇Γ(p) means the covariant derivative with respect to the connection Γ in the point p,
and TΓ(p) denotes the torsion tensor associated to this connection).

Proof. In the coordinates of J1π the metricity condition∇Γ(p)g(p) = 0 is(
∇Γ(p)g(p)

)
ρσ,µ

= gρσ,µ − gσλΓλµρ − gρλΓλµσ .

Therefore, the statement follows immediately since the metric constraints (4.19) can be written as(
∇Γ(p)g(p)

)
ρσ,µ

=
2

3
gρσT

λ
λµ .
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Tangency condition: consistency constraints

Now we check the tangency (or consistency) condition for all the above sets of constraints. A semi-

holonomic multivector field X =

3∧
ν=0

Xν has the local expression (4.5). The tangency condition on the

connection constraints (4.17) reads

L(Xν)

(
∂H

∂gρσ
− ∂Lβγ,µα

∂gρσ
Γαβγ,µ

)
= Dν

∂H

∂gρσ
−Dν

∂Lβγ,µα

∂gρσ
Γαβγ,µ −

∂Lβγ,µα

∂gρσ
fαβγµ,ν = 0 (on ST ) ,

(4.20)
and it does not lead to new constraints because they allow to determine the functions fαβγ,σν (on ST ) .
The tangency condition on the pre-metricity constraints (4.19) gives

fσρ,µν = Dλ

(
gσλΓλµρ + gρλΓλµσ +

2

3
gσρT

λ
λµ

)
; (on ST ) , (4.21)

and it does not lead either to new constraints. But the tangency condition on the torsion constraints (4.12)
does lead to new constraints

L(Xν)

(
Tαβγ −

1

3
δαβT

µ
µγ +

1

3
δαγ T

µ
µβ

)
= Tαβγ,ν −

1

3
δαβT

µ
µγ,ν +

1

3
δαγ T

µ
µβ,ν = 0 ; (on ST ) .

The tangency condition on these new constraints leads to

L(Xλ)

(
Tαβγ,ν −

1

3
δαβT

µ
µγ,ν +

1

3
δαγ T

µ
µβ,ν

)
= fαβγν,τ −

1

3
δαβf

µ
µγν,τ +

1

3
δαγ f

µ
µβν,τ = 0 ; (on Ssh) ,

which are not new constraints, but equations for the functions fαβγµ,ν . Therefore, in the submanifold
Ssh ↪→ ST defined by these constraints there are semiholonomic multivector fields solutions to the field
equations, which are tangent to Ssh.

Summarizing, we have proved that:

Theorem 4.1. There exists a submanifold jsh : Ssh ↪→ J1π where there are semi-holonomic multivector
fields which are solutions to the field equations (1.4) and are tangent to Ssh. This submanifold is locally
defined in J1π by the constraints

cµν ≡ ∂H

∂gµν
− ∂Lβγ,σα

∂gµν
Γαβγ,σ = 0 ,

mρσ,µ ≡ gρσ,µ − gσλΓλµρ − gρλΓλµσ −
2

3
gρσT

λ
λµ = 0 ,

tαβγ ≡ Tαβγ −
1

3
δαβT

µ
µγ +

1

3
δαγ T

µ
µβ = 0 ,

rαβγ,ν ≡ Tαβγ,ν −
1

3
δαβT

µ
µγ,ν +

1

3
δαγ T

µ
µβ,ν = 0 .

These constraints are not independent all of them. For instance, the pre-metricity constraints mρσ,µ

are symmetric in the indices σ, ρ and the constraints tαβγ and rαβγ,ν are skewsymmetric in the indices β, γ.

Proposition 4.5. The general expression of the semi-holonomic multivector fields which are solutions to
the field equations (1.4) on Ssh are

XL =

3∧
ν=0

 ∂

∂xν
+
∑
ρ≤σ

(
gρσ,ν

∂

∂gρσ
+ fρσµ,ν

∂

∂gρσ,µ

)
+ Γαβγ,ν

∂

∂Γαβγ
+ fαβγµ,ν

∂

∂Γαβγ,µ

 , (4.22)
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where, on the points of Ssh,

fρσµ,ν = Dν

(
gσλΓλµρ + gρλΓλµσ +

2

3
gρσT

λ
λµ

)
,

fαβγµ,ν = Γλµγ,νΓαβλ + ΓλµγΓαβλ,ν + Cαβγ,µν +Kα
βγ,µν ,

for every Cβµν ∈ C∞(J1π) and Kα
βγ,µν ∈ C∞(J1π) satisfying that, on Ssh,

Cαβγ,µν = Cβµνδ
α
γ , Kλ

λγ,µν = 0 , Kλ
βγ,λν +Kλ

γβ,λν = 0 ,

Kα
[βγ],µν = −1

3
δα[βK

λ
γ]λ,µν − Γλµ[γ,νΓαβ]λ − Γλµ[γΓαβ]λ,ν

+
1

3
δα[βΓλµγ],νΓρρλ +

1

3
δα[βΓλµγ]Γ

ρ
ρλ,ν −

1

3
δα[βΓλµρ,νΓργ]λ −

1

3
δα[βΓλµρΓ

ρ
γ]λ,ν .

Proof. The functions fσρµ,ν are given by 4.21. Now, from (4.17) we obtain that(
∂2H

∂gρσ∂gµν
− ∂2Lβγ,λα

∂gρσ∂gµν
Γαβγ,λ

)
= 0 ; (on Ssh) ,

and therefore (4.20) becomes(
Γαβγ,ν

∂2H

∂Γαβγ∂gρσ
− ∂Lβγ,µα

∂gρσ
fαβγµ,ν

)
= 0 ; (on Ssh) .

A particular solution to these equations is

fαβγµ,ν = Γλµγ,νΓαβλ + ΓλµγΓαβλ,ν ; (on Ssh) .

Now, we need to find a general solution hαβγµ,ν to the homogeneous equation, which is just (4.15), but
on Ssh. Thus, proceeding as in the proof of Proposition 4.3, we obtain that

hαβγ,µν = Cαβγ,µν +Kα
βγ,µν ; (on Ssh) ,

for Cβµν ∈ C∞(J1π) and Kα
βγ,µν ∈ C∞(J1π) satisfying that

Cαβγ,µν = Cβµνδ
α
γ , Kλ

λγ,µν = 0 , Kλ
βγ,λν +Kλ

γβ,λν = 0 ; (on Ssh) .

By construction, the solutions obtained in this way satisfy all the tangent conditions on the constraints
given in Theorem 4.1, except

L(Xν)rαβγ,µ = 0 ; (on Ssh) ;

and these equations lead to the last conditions.

Comments:

• It is important to point out that, up to the torsion constraints tαβγ , all the other constraints appear as
a consequence of demanding the semiholonomy condition on the multivector fields solution to the
field equations (1.4).

• From the constraints mρσ µ = 0 and tαβγ = 0 in Theorem 4.1, and Proposition 4.4 we obtain that

Tαβα = 0 ⇐⇒ Tαβγ = 0 ⇐⇒ ∇Γg = 0 .

Thus, any of these conditions is necessary and sufficient to assure that the connection becomes
the Levi-Civita connection. This result completes the already known fact that the vanishing of the
trace torsion is sufficient for the connection to be the Levi-Civita connection (see, for instance,
[12, 20]).
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Holonomic multivector fields (elements of ker4
H ΩLEP

): Integrability constraints

The last step is to look for holonomic (i.e., integrable and semiholonomic) multivector fields. Locally, a
multivector field is integrable if [Xµ, Xν ] = 0 for every µ, ν = 0, 1, 2, 3. In any open of U ⊂ Sf where
this condition holds, there exist integrable sections for the multivector field defined on π(U). In general,
integrable multivector fields could only exist in a submanifold Sf of Ssh. In any case, computing where
the different multivector fields we have found are integrable is, in general, a complicate task. In this
section we outline some guidelines in order to solve this problem.

Consider the following general expression

[Xµ, Xν ] = F ε
∂

∂xε
+
∑
α≤β

(
Fαβ

∂

∂gαβ
+ Fαβ,ε

∂

∂gαβ,ε

)
+ Fαβγ

∂

∂Γαβγ
+ Fαβγ,ε

∂

∂Γαβγ,ε
= 0 ; (on Ssh) .

Next, we have to take into account (4.22). First, the coefficients F ε|Ssh = 0, necessarily (and this is
the reason for imposing the vector field to vanish, which is a stronger condition than being inside the
distribution). From the conditions Fαβ|Ssh = 0, we derive that

fρσµ,ν − fρσν,µ = 0 ; (on Ssh) .

which are new restrictions on the functions Γαβγ,µ, specifically

iρσ,µν = gργΓγ[νλΓλµ]σ + gσγΓγ[νλΓλµ]ρ + gρλΓλ[µσ,ν] + gσλΓλ[µρ,ν] +
2

3
gρσT

λ
λ[µ,ν]

= gρλK
λ
[νσµ] + gσλK

λ
[νρµ] + 2gρσT

λ
µνΓγγλ = 0 ; (on Ssh), (4.23)

where the functionsKα
βγµ arise from proposition 4.3. (Observe that these constraints are symmetric in the

indices ρ, σ and skewsymmetric in the indices µ, ν). In a similar way, from the conditions Fαβγ |Ssh = 0,
we obtain that

fαβγµ,ν − fαβγν,µ = 0 ; (on Ssh) ,

which impose some restrictions on the possible solutions, namely:

Cβ[µν] = Γλ[µβ,ν]Γ
σ
σλ + Γλ[µβΓσσλ,ν] ; (on Ssh) ,

Kα
βγ,[µν] = −Γλ[µγ,ν]Γ

α
βλ − Γλ[µγΓαβλ,ν] − Cβ[µν]δ

α
γ ; (on Ssh) .

The coefficients Fαβ,γ vanish automatically on Ssh as long as (fαβγµ,ν − fαβγν,µ)|Ssh = 0. Finally, the
conditions Fαβγ,ε = 0 lead to a system of PDE on the functions Cβµν ,Kα

βγ,µν which may originate new
constraints. The tangency conditions on the constraints iρσ,µν give

gαλK
λ
[νβµ],ξ + gβλK

λ
[ναµ],ξ = −2gαβ,ξT

λ
µνΓσσλ − 2gαβT

λ
µν,ξΓ

σ
σλ − 2gαβT

λ
µνΓσσλ,ξ

−gαλ,ξKλ
[νβµ] − gβλ,ξK

λ
[ναµ] ; (on Ssh) .

In what follows, we will denote jf : Sf ↪→ J1π the constraint submanifold defined by all the con-
straints cµν , mσρ,µ, tαβγ , rαβγ,ν and iρσ,µν . This is the submanifold where there exist holonomic multi-
vector fields solution to the field equations which are tangent to Sf , as it is shown in Proposition 4.18.
Notice that Sf is a subbundle of J1π over E and M and, thus, we have the natural submersions

π1
f = π1 ◦ jf : Sf → E , π̄1

f = π̄1 ◦ jf : Sf →M .
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4.2.3 Symmetries and gauge symmetries

Gauge symmetries of the Einstein-Palatini model

Proposition 4.6. The natural gauge symmetries for the Einstein-Palatini model are the vector fields
X ∈ X(J1π) whose local expressions are

X = Cβδ
α
γ

∂

∂Γαβγ
+DµCβδ

α
γ

∂

∂Γαβγ,µ
, Cβ ∈ C∞(J1π) ; (on Sf ) .

Proof. Consider a vector field

X = fµ
∂

∂xµ
+
∑
ρ≤σ

(
fρσ

∂

∂gρσ
+ fρσ,µ

∂

∂gρσ,µ

)
+ fαβγ

∂

∂Γαβγ
+ fαβγ,µ

∂

∂Γαβγ,µ
∈ X(J1π) .

As Sf is a bundle over M , clearly X is π̄1
f -vertical if, and only if, it is π̄1-vertical. Therefore π̄1

∗X = 0
if, and only if, fµ = 0. Furthermore

i(X)ΩLEP
=

∑
ρ≤σ

∂H

∂gρσ
fρσ +

∂H

∂Γαβγ
fαβγ

d4x−
∑
ρ≤σ

∂Lβγ,µα

∂gρσ
fρσdΓαβγ ∧ d3xµ

−
∑
ρ≤σ

∂Lβγ,µα

∂gρσ
fαβγdgρσ ∧ d3xµ = 0 .

After doing the pullback j∗f i(X)ΩLEP
, we obtain the terms j∗fdΓαβγ = 1

2dΓα(βγ) + 1
6δ
α
βdT rrγ − 1

6δ
α
γ dT rrβ .

As every coefficient must vanish, taking in particular the corresponding to the factor dΓα(βγ), we obtain
that fρσ|Sf = 0. Indeed:

0 = δαβ (
1

3
gµνgγλ −

1

6
gµγgνλ)

∑
ρ≤σ

fρσ
∂L

(βγ),µ
α

∂gρσ
=
∑
ν≤λ

(fνλ + fλν)⇒ fρσ = 0 ; (on Sf ) .

Using these results, the problem is reduced to find fαβγ ∈ C∞(J1π) such that

fαβγ
∂Lβγ,µα

∂gρσ
= 0 ; (on Sf ) , (4.24)

fαβγ
∂H

∂Γαβγ
= 0 ; (on Sf ) . (4.25)

Multiplying (4.24) by gµρgνσ we obtain:

fαβγ + fαγβ = f rrβδ
α
γ + f rrβδ

α
γ + (fαrsg

rs − f rrsgαs)gβγ ; (on Sf ) .

This system has two kinds of solutions. First, there are the trace solutions, given by fαβγ = Cαβγ = Cβδ
α
γ ,

for every arbitrary function Cβ ∈ C∞(J1π) [20]. Second, for other solutions fαβγ , we have that Kα
βγ =

fαβγ − Cαβγ , with Cγ = fννγ . Contracting indices α, β we obtain Kα
αγ = 0. Since (4.24) are lineal, Kα

βγ

are also solutions, therefore

Kα
βγ +Kα

γβ = Kα
ρσg

ρσgβγ ⇒ Kα
βγ +Kα

γβ =
1

2
(Kα

ρσ +Kα
σρ)g

ρσgβγ ⇒

gβγ(Kα
βγ +Kα

γβ) = 2(Kα
ρσ +Kα

σρ)g
ρσ ⇒ −gβγ(Kα

βγ +Kα
γβ) = 0 ; (on Sf ) ,
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which implies Kα
ρσg

ρσ = 0, thus Kα
βγ +Kα

γβ = 0. These are called the torsion solutions. Both kinds of
solutions fulfil (4.25); in fact,

Cβδ
α
γ

∂H

∂Γαβγ
= %Cβ

(
gµβΓrrµ + gµrΓβµr − grβΓµµr − gµνΓβµν

)
= 0 ; (on Sf ) ;

Kα
βγ

∂H

∂Γαβγ
= %

(
Kα
βγ(gµγΓβαµ + gµβΓγµα)−Kα

βγg
γβΓµµα −Kλ

λγg
µνΓγµν

)
= %Kα

βγg
µγT βαµ = %Kα

βγg
µγ(

1

3
δβαT

r
[rµ] −

1

3
δβµT

r
[rα]) = 0 ; (on Sf ) .

Now we impose the tangency condition on the torsion constraints

0 = L(X)tαβγ = fα[βγ] −
1

3
δαβf

r
[rγ] +

1

3
δαγ f

r
[rβ] = 2Kα

βγ = 0 ; (on Sf ) .

The trace solutions are tangent, but the torsion are not. Before checking the other constraints, let us
impose the condition of being natural. The local conditions for a π̄1-vertical vector field to be natural are
that fρσ, fαβγ are π̄1-projectable, that fρσ,µ = Dµfρσ, and that fαβγ,σ = Dσf

α
βγ . In our case, these condi-

tions imply that Cβ ∈ C∞(J1π) are π̄1-projectable, that fαβγ,µ|Sf = δαγDµCβ , and that fρσ,µ|Sf = 0.
The tangency condition on the pre-metricity constraints is

0 = L(X)mρσ,µ = L(X)

(
gρσ,µ − gσλΓλµρ − gρλΓλµσ −

2

3
gρσT

λ
λµ

)
= fρσ,µ − gσλδλρCµ − gρλδλσCµ −

2

3
gρσ(Cλδ

λ
µ − Cµδλλ) = 0 ; (on Sf ) .

As fαβγ |Sf = Cβδ
α
γ , then

∂Lβγ,σα

∂gµν
fαβγ,σ = 0 (see 4.3), and hence

L(X)cµν =
∂%gαβ

∂gµν

(
CβΓσσα + ΓγβαCγ − CβΓσσα − ΓγβαCγ

)
− ∂Lβγ,σα

∂gµν
fαβγ,σ = 0 ; (on Sf ) .

The tangency condition on rαβγ,ν involves only the functions fαβγ,ν :

0 = L(X)rαβγ,ν = fα[βγ],ν −
1

3
δαβf

r
[rγ],ν +

1

3
δαγ f

r
[rβ],ν ; (on Sf ) .

The trace solutions fulfil this condition automatically. Finally, the tangency condition for the integrability
constraints (4.23) holds:

L(X)iρσ,µν = gργC[νΓλµ]σ + gργΓλ[νσCµ] + gσγC[νΓλµ]ρ + gσγΓλ[νρCµ]

+ gρσC[µν] + gρσC[µν] − 2gρσC[µν] = 0 ; (on Sf ) .

Lagrangian symmetries of the Einstein-Palatini model

Let F be a diffeomorphism in M . For every x ∈M , if gx is a metric in TxM , then F∗gx = (F−1)∗(gx)
is also a metric with the same signature as gx. In the same way, as a connection Γx is a (1, 1)-tensor in
TxM [35], denoting also by F∗ the induced action of F on the tensor algebra, we define:

Definition 4.1. Let F : M → M be a diffeomorphism. The canonical lift of F to the bundle E is
the diffeomorphism F : E → E defined as follows: for every (x, gx,Γx) ∈ E, then F(x, gx,Γx) :=
(F (x), F∗gx, F∗Γx) (Thus π ◦ F = F ◦ π).

Let Z ∈ X(M). The canonical lift of Z to the bundle E is the vector field YZ ∈ X(E) whose
associated local one-parameter groups of diffeomorphisms Ft are the canonical lifts to the bundle E of
the local one-parameter groups of diffeomorphisms Ft of Z.
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In coordinates, if Z = fµ(x)
∂

∂xµ
∈ X(M), the canonical lift of Z to the bundle E →M is

YZ = fµ
∂

∂xµ
−
∑
α≤β

(
∂fλ

∂xα
gλβ +

∂fλ

∂xβ
gλα

)
∂

∂gαβ

+

(
∂fα

∂xλ
Γλβγ −

∂fλ

∂xβ
Γαλγ −

∂fλ

∂xγ
Γαβλ −

∂2fα

∂xβ∂xγ

)
∂

∂Γαβγ
∈ X(E) .

Furthermore, every diffeomorphism in E induces a diffeomorphism in J1π. The vector fields generating
these transformations are canonical liftings X = j1Y , for Y ∈ X(E). Hence, for the above ones we
have

j1YZ = fµ
∂

∂xµ
−
∑
α≤β

(
∂fλ

∂xα
gλβ +

∂fλ

∂xβ
gλα

)
∂

∂gαβ

−
∑
α≤β

(
∂2fν

∂xα∂xµ
gνβ +

∂2fν

∂xβ∂xµ
gαν +

∂fν

∂xα
gνβ,µ +

∂fν

∂xβ
gαν,µ +

∂fν

∂xµ
gαβ,ν

)
∂

∂gαβ,µ

+

(
∂fα

∂xλ
Γλβγ −

∂fλ

∂xβ
Γαλγ −

∂fλ

∂xγ
Γαβλ −

∂2fα

∂xβ∂xγ

)
∂

∂Γαβγ

+

(
∂fα

∂xλ
Γλβγ,µ −

∂fλ

∂xβ
Γαλγ,µ −

∂fλ

∂xγ
Γαβλ,µ −

∂fλ

∂xµ
Γαβγ,λ

+
∂2fα

∂xλ∂xµ
Γλβγ −

∂2fλ

∂xβ∂xµ
Γαλγ −

∂2fλ

∂xγ∂xµ
Γαβλ −

∂3fα

∂xβ∂xγ∂xµ

)
∂

∂Γαβγ,µ

≡ fµ
∂

∂xµ
+
∑
α≤β

Yαβ
∂

∂gαβ
+
∑
α≤β

Yαβµ
∂

∂gαβ,µ
+ Y α

βγ

∂

∂Γαβγ
+ Y α

βγµ

∂

∂Γαβγ,µ
∈ X(J1π) .

We have that LEP is invariant under diffeomorphisms (using the constraints cµν). Then, for every
Z ∈ X(M), we have that L(j1YZ)LEP|Sf = 0. In addition, j1YZ are tangent to Sf . In fact, as they
are natural vector fields that leave the Einstein-Palatini Lagrangian invariant, then the corresponding
Euler-Lagrange equations are also invariant, and hence for the constraints cµν we have that

L(j1YZ)cµν = −
(
∂fµ

∂xρ
δνσ +

∂fν

∂xσ
δµρ

)(
∂H

∂gρσ
− ∂Lβγ,λα

∂gρσ
Γαβγ,λ

)
= 0 ; (on Sf ) ;

while for the other constraints, after a long calculation, we obtain

L(j1YZ)mρσ,µ =

(
−∂f

α

∂xρ
δβσδ

ν
µ −

∂fβ

∂xσ
δαρ δ

ν
µ −

∂fν

∂xµ
δαρ δ

β
σ

)
mαβ,ν = 0; (on Sf ) ,

L(j1YZ)tαβγ =

(
∂fα

∂xλ
δρβδ

σ
γ −

∂fρ

∂xβ
δαλδ

σ
γ −

∂fσ

∂xγ
δαλδ

ρ
β

)
tλρσ = 0; (on Sf ) ,

L(j1YZ)rαβγ,ν =

(
∂fα

∂xλ
δρβδ

σ
γ δ

τ
ν −

∂fρ

∂xβ
δαλδ

σ
γ δ

τ
ν −

∂fσ

∂xγ
δαλδ

ρ
βδ
τ
ν −

∂f τ

∂xν
δαλδ

ρ
βδ
σ
γ

)
rλρσ,τ = 0; (on Sf ) ,

L(j1YZ)iρσ,µν =

(
−∂f

α

∂xρ
δβσδ

λ
µδ

γ
ν −

∂fβ

∂xσ
δαρ δ

λ
µδ

γ
ν −

∂fλ

∂xµ
δαρ δ

β
σδ

γ
ν −

∂fγ

∂xν
δαρ δ

β
σδ

λ
µ

)
iαβ,λγ = 0; (on Sf ) .

Thus, these vector fields are natural infinitesimal Lagrangian symmetries and, hence, natural infinites-
imal Noether symmetries. Then an associated conserved quantity to each j1YZ is ξYZ = i(j1YZ)ΘLEP

(see section 2.1.5), which has the local expression:

ξYZ = i(j1Y )ΘLEP
= (Lβγ,µα Y α

βγ −Hfµ)d3xµ + fµLβγ,να dΓαβγ ∧ d2xµν .
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Finally, given a section ψL solution the field equations, the Noether current associated with j1YZ is

ψ∗LξYZ = ψ∗L(Lβγ,µα (Y α
βγ − Γαβγ,λf

λ)− fµLEP)d3xµ .

Comment: The term “gauge” is also used in physics to refer the invariance of the equations with respect
to changes of variables in the base manifold M . Nevertheless, in our geometric formalism, these are
actually the natural symmetries that we have studied in this Section, and they are mathematically different
from the geometric gauge symmetries that we have analysed in the previous Section.

4.3 The Metric-Affine model: Hamiltonian formalism

4.3.1 Canonical Hamiltonian formalism

The multisymplectic Hamiltonian formalism for second-order field theories is presented in chapter 1
(See, for instance, [23, 32, 85] for the general setting of the multisymplectic Hamiltonian formalism for
first-order field theories).

Consider the quotient bundle J1π∗ =Mπ/Λ4
1(T∗E) (where Λ4

1(T∗E) is the bundle of π-semibasic
4-forms in E), which is called the restricted multimomentum bundle of E, and is endowed with the
natural projections

τ : J1π∗ → E , τ = π ◦ τ : J1π∗ →M , µ : Mπ → J1π∗.

Induced local coordinates in J1π∗ are (xµ, gαβ,Γ
ν
λγ , p

αβ,µ, pλγ,µν ), (0 ≤ α ≤ β ≤ 3).

The Legendre transformation FLEP : J1π −→ J1π∗ (see [33] for the definition) is given, for the
Einstein-Palatini Lagrangian, by

FL ∗
EP xµ = xµ , FL ∗

EP gαβ = gαβ , FL ∗
EP Γαβγ = Γαβγ

FL ∗
EP pαβ,µ =

∂LEP

∂gαβ,µ
= 0 , FL ∗

EP pβγ,µα =
∂LEP

∂Γαβγ,µ
= Lβγ,µα = %(δµαg

βγ − δβαgµγ) ,

and pαβ,µ and pβγ,µα are called the momentum coordinates of the metric and the connection, respectively.
We have that, for every j1

xφ ∈ J1π,

Tj1xφ
FLEP =



1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 0

0
∂2LEP

∂gνλ∂Γαβγ,µ
0 0 0

 .

Locally we have that

ker (FLEP)∗ =

〈
∂

∂gαβ,µ
,

∂

∂Γνλγ,µ

〉
0≤α≤β≤3

. (4.26)

Proposition 4.7. P ≡ FLEP(J1π) is a closed submanifold of J1π∗, which is diffeomorphic to E.

Proof. From (4.26) we have that P is locally defined by the constraints

pαβ,µ = 0 , pβγ,µα = %(δµαg
βγ − δβαgµγ) , (4.27)

which remove the degrees of freedom in the fibers of the projection τ .
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If  : P↪→J1π∗ is the natural embedding, we denote by

τP = τ ◦  : P → E , τP = τ ◦  : P →M

the restrictions to P of the natural projections τ and τ . Then, this Proposition states that τP is a diffeo-
morphism.

Proposition 4.8. LEP is an almost-regular Lagrangian density.

Proof. We prove the three conditions that define this concept: First, as we have seen, P is a closed
submanifold of J1π∗. Second, as dim P = rank(Tj1xφ

FLEP) = 78, for every j1
xφ ∈ J1π, then

FLEP is a submersion onto its image. Finally, taking into account Proposition 4.7, we conclude that the
fibers of the Legendre map, (FLEP)−1(FL(j1

xφ)), are just the fibers of the projection π1, and they are
connected submanifolds of J1π (recall that J1π is connected because we are considering metrics with
fixed signature).

As a consequence of this Proposition, the existence of the Hamiltonian formalism for this system
is assured (see, for instance, [85] for the details on this construction). In particular, let FLoEP the map
defined by FLEP =  ◦ FLoEP. Then, tthe Poincaré-Cartan form ΩLEP

is FLoEP-projectable and then
there exists ΩH ∈ Ω4(P) such that ΩH = FLoEP

∗ΩLEP
, which is called the Hamilton-Cartan form.

In this way we have constructed the Hamiltonian system (P,ΩH , TP, {0}). In order to do a local
analysis of the Hamiltonian formalism for this system, we can use two kinds of coordinates on P: the
so-called non-momenta and pure connection coordinates.

4.3.2 Non-momenta coordinates

Bearing in mind Proposition 4.7, we can take (xλ, gρσ,Γ
α
βγ) as local coordinates in P , with 0 ≤ ρ ≤

σ ≤ 3. These are the non-momenta coordinates of P . Using them, the local expression of ΩH is the
same as that of ΩLEP

(see (4.3)). As a consequence, the Hamiltonian analysis of the system is similar to
that in the Lagrangian formalism (up to the analysis of the holonomy).

Note that the functions Lβγ,µα and H introduced in (4.1) and (4.2) are also FLoEP-projectable and,
hence, we commit an abuse of notation denoting the corresponding functions of C∞(P) with the same
simbols. Then, for a τP -transverse multivector field X ∈ X4(P), whose local expression in these
coordinates is

X =

3∧
ν=0

Xν =

3∧
ν=0

 ∂

∂xν
+
∑
ρ≤σ

fρσ,ν
∂

∂gρσ
+ fαβγ,ν

∂

∂Γαβγ

 ,

the local expression of equation for multivector fields (1.4) for the Hamiltonian formalism is

∂H

∂gρσ
− fαβγ,µ

∂Lβγ,µα

∂gρσ
= 0, (4.28)

∂H

∂Γαβγ
+
∑
ρ≤σ

fρσ,µ
∂Lβγ,µα

∂gρσ
= 0, (4.29)

together with other equalities which are consequence of these two sets of equations. This system of
equations is the same as (4.7) and 4.8 and, therefore, the analysis made in Section 4.2.2 is valid here.

Proposition 4.9 (Constraints). A necessary condition for the existence of solutions to the system of
equations (4.28) and (4.29) (and, in particular, (4.28)) is that the following equalities hold

Tαβγ =
1

3
δαβT

ν
νγ −

1

3
δαγ T

ν
νβ .
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These constraints define the submanifold f : Pf ↪→ P .

Proof. The proof is the same than for Propositions (4.10) and (4.2). They are also the projections of the
torsion constraints by the Legendre map.

Finally, the tangency conditions of X for these constraints on Pf are

L(Xν)(Tαβγ −
1

3
δαβT

ν
νγ +

1

3
δαγ T

ν
νβ) = (fαβγ,ν −

1

3
δαβf

ν
νγ,ν +

1

3
δαγ f

ν
νβ,ν) = 0 ; (on Pf ) ,

which does not lead to new constraints. Notice that these results about the Hamiltonian constraints are
coherent with the comment in Section 4.2.2 about the fact that, up to the torsion constraints tαβγ , all the
other Lagrangian constraints appear as a consequence of demanding the semiholonomy condition for the
solutions to the Lagrangian field equations and, hence, they cannot be projectable functions under the
Legendre map [21]. In fact, a simple computation shows that

L(X)cµν 6= 0 , L(X)mσρ,µ 6= 0 , L(X)rαβγ,ν 6= 0 ; for some X ∈ ker(FLoEP)∗ = ker(FLEP)∗ ,

which are the necessary and sufficient conditions for these functions not to be FLoEP-projectable. In the
same way, the integrability Lagrangian constraints are not FLoEP-projectable either.

Proposition 4.10 (Solutions). The solutions to the Hamiltonian field equations (4.28) and (4.29) are

XH =
3∧

ν=0

Xν =
3∧

ν=0

(
∂

∂xν
+ (ΓλνγΓαβλ + Cβ,νδ

α
γ +Kα

βγ,ν)
∂

∂Γαβγ

+
∑
ρ≤σ

(gσλΓλµρ + gρλΓλµσ +
2

3
gρσT

λ
λµ)

∂

∂gρσ

 ; (on Pf ) ; (4.30)

with Cβ,ν , Kα
βγ,ν ∈ C∞(Pf ) such that, on the points of Pf , they satisfy

Kµ
µγ,ν = 0 , Kµ

βγ,µ +Kµ
γβ,µ = 0 , (4.31)

Kα
[βγ],µ = −1

3
δα[βK

ν
γ]ν,µ − Γλµ[γΓαβ]λ +

1

3
δα[βΓλµγ]Γ

ν
νλ −

1

3
δα[βΓλµνΓνγ]λ . (4.32)

Proof. From Proposition 4.3 and (4.10), we obtain (4.30) and (4.31), and the tangency conditions on the
torsion constraints lead to we obtain (4.32).

Finally, the integrability condition is [Xµ, Xν ]|Pf = 0. The vanishing of the coefficients of
∂

∂gσρ
do

not lead to new constraints, but they do impose new restrictions for the possible solutions:

gαλK
λ
[νβµ] + gβλK

λ
[ναµ] + 2gαβT

λ
µνΓσσλ = 0 ; (on Pf ) .

The vanishing of the coefficients of
∂

∂Γαβγ
lead to a system of first order PDE on the functions Cαβγµ and

Kα
βγµ. This system of PDE has solutions everywhere on Pf , as it is shown in Proposition 4.19.
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The following diagram summarizes this situation:

J1π∗

J1π

FLEP

33

FLoEP //

π1

''

π̄1

11

P
τP

ww

?�



OO

τP

mm

E

π

��

Sf
?�

jf

OO

π1
f

77

π̄1
f

''

Pf
?�

f

OO

τf

gg

τf

ww
M

(4.33)

The study of the gauge vector fields in the Hamiltonian formalism is simpler than in the Lagrangian
one. In fact:

Proposition 4.11 (Gauge symmetries). The gauge symmetries of the system are

X = Cβδ
α
γ

∂

∂Γαβγ
, Cβ ∈ C∞(P) ; (on Pf ) .

Proof. A τ -vertical vector field has the local expression:

X =
∑
ρ≤σ

fρσ
∂

∂gρσ
+ fαβγ

∂

∂Γαβγ
.

The analysis of the equation i(X)ΩH = 0 is analogous as in Proposition 4.6. We find that fρσ = 0 and
fαβγ = Cβδ

α
γ +Kα

βγ , on the points of Pf ; that is, they are a combination of a trace and a torsion solution;
but the torsion solutions are not tangent to Pf .

The multiple solutions of the system are given by the functions Cαβγ,ν and Kα
βγ,ν (see (4.30)). The

functions Cαβγ,ν are related to the gauge freedom, but the former ones Kα
βγ,ν are not.

4.3.3 Pure-connection coordinates

The non-momenta coordinates arise in a natural way from the structure of the manifolds, but their use
turn out to be very similar to the analysis made in the Lagrangian formalism, thus providing little extra
understanding about the theory. A more interesting coordinates can be obtained from the second set of
constraints in (4.27)

pβγ,µα = %
(
δµαg

βγ − δβαgµγ
)

; (4.34)

that is, the momenta of the connection can be obtained from the metric. The converse is also true; in fact:

Lemma 4.1. Denoting T :=

√
|det(pµα,βµ )|, we have that

gαβ = − 1

3%
pµα,βµ = − 3

T
pµα,βµ .
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Proof. Contracting the indices α and β on (4.34) we obtain

pνγ,µν = −3%gγµ ,

which is the first equality. Now, computing the determinant, as % =
√
|det(gγµ)|, we obtain that the

second equality holds:

|det(pνγ,µν )| = 34%4| det(gγµ)|−1 ⇐⇒ T = 9% ,

It is interesting to point out that all the results can be extended to an arbitrary dimension m > 2; but
T is proportional to % only for m = 4.

Since the degrees of freedom of gαβ and pβγ,µα are not equal, equation (4.34) has several implicit
restrictions. In fact, using Lemma 4.1 to substitute the metric for momenta in (4.34) we obtain the
constraints

pβγ,µα =
1

3
δβαp

νµ,γ
ν − 1

3
δµαp

νβ,γ
ν ,

which are very similar to the torsion constraints. Moreover, as gαβ = gβα, from Lemma 4.1 we have
that pµα,βµ = pµβ,αµ . Therefore, the only degrees of freedom for the momenta of the connection are the
symmetric part of pµβ,αµ , which equals the degrees of freedom of the metric.

Denoting pαβ := prα,βr , we can consider the set of coordinates (xµ,Γαβγ , p
ρσ) in P , with 0 ≤ ρ ≤

σ ≤ 3, which are called pure-connection coordinates. The relation between these coordinates and the
non-momenta ones is given by the following map

Ψ(xλ, gρσ,Γ
α
βγ) = (xµ,Γαβγ , p

ρσ = %(δµαg
βγ − δβαgµγ)) ,

which is invertible, and hence a local diffeomorphism, by Lemma 4.1.

In pure-connection coordinates the Hamiltonian function has the local expression

H = −1

3
pαβ

(
ΓγβσΓσγα − ΓγβαΓσσγ

)
,

and the Hamilton-Cartan form ΩH is

ΩH = dH ∧ d4x+
1

6
δµαdpβγ ∧ dΓα(βγ) ∧ d3xµ

−1

6
δβαdpµγ ∧ dΓαβµ ∧ d3xγ −

1

6
δβαdpµγ ∧ dΓαβγ ∧ d3xµ .

A general transverse locally decomposable multivector field in P has the local expression in pure-
connection coordinates:

XH =

3∧
ν=0

Xν =

3∧
ν=0

 ∂

∂xν
+ fαβγ,ν

∂

∂Γαβγ
+
∑
α≤β

Gαβν
∂

∂pαβ

 .

Then the field equations (1.4) are locally

1

n(αβ)

∂H

∂pαβ
+

1

6
fµ(αβ),µ −

1

6
fµµ(α,β) = 0 , (4.35)

∂H

∂Γαβγ
− 1

3
Gβγα +

1

3
δβαG

µγ
µ = 0 . (4.36)
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Next the results previously described in the above Section 4.3.2 are recovered and extended:

The constraints and gauge vector fields are related to the connection, where both the non-momenta
and pure-connection coordinates have the same expression. Therefore:

Proposition 4.12 (Constraints). A necessary condition for the existence of solutions to the system of
equations (4.35) and (4.36) (and, in particular, (4.36)) is that the following equalities hold

Tαβγ =
1

3
δαβT

ν
νγ −

1

3
δαγ T

ν
νβ .

These constraints define the submanifold f : Pf ↪→ P .

Proof. They are the projections of the torsion constraints by the Legendre map. Alternatively, they can
be deduced from (4.36) imposing that Gβγα −Gγβα = 0.

Taking into account the results presented in the above Section 4.3.2, we have:

Proposition 4.13 (Solutions). The solutions to the Hamiltonian field equation (1.4) in the pure-connection
coordinates are:

XH =

3∧
ν=0

Xν =

3∧
ν=0

(
∂

∂xν
+ (ΓλνγΓαβλ + Cβ,νδ

α
γ +Kα

βγ,ν)
∂

∂Γαβγ

+
∑
α≤β

(−pαµΓβνµ − pβµΓανµ − 1
3p
αβTµµν + pαβΓµµν)

∂

∂pαβ

 ; (on Pf ) ;

with Cβ,ν , Kα
βγ,ν ∈ C∞(Pf ) such that, on the points of Pf , they satisfy

Kµ
µγ,ν = 0 , Kµ

βγ,µ +Kµ
γβ,µ = 0 ,

Kα
[βγ],µ = −1

3
δα[βK

ν
γ]ν,µ − Γλµ[γΓαβ]λ +

1

3
δα[βΓλµγ]Γ

ν
νλ −

1

3
δα[βΓλµνΓνγ]λ .

The integrability condition is

0 = [Xν , Xµ] = F ε
∂

∂xε
+ Fαβγ

∂

∂Γαβγ
+
∑
α≤β

Fαβ
∂

∂pαβ
; (on Pf ) .

We have that F ε|Pf = 0, and imposing Fαβ|Pf = 0, we derive the following condition on the possible
solutions

pασKβ
[µσν] + pβσKα

[µσν] −
1

3
pαβKσ

[µσν] =
2

3
pαβT λνµΓσσλ ; (on Pf ) .

The conditions Fαβγ |Pf = 0 lead to a system of PDE on the functionsCα,β andKα
βγ,µ which has solutions

everywhere on Pf , as it is shown in Proposition 4.19.

Proposition 4.14 (Gauge symmetries). The gauge symmetries of the system are:

X = Cβδ
α
γ

∂

∂Γαβγ
, Cβ ∈ C∞(Pf ) ; (on Pf ) .

78



Proof. For a generic vertical vector field

X = fαβγ
∂

∂Γαβγ
+
∑
α≤β

Gαβ
∂

∂pαβ
,

we have that

i(X)ΩH =

∑
α≤β

∂H

∂pαβ
Gαβ +

∂H

∂Γαβγ
fαβγ

d4x−
(

1

3
δµαG

βγ − 1

3
δβαG

µγ

)
dΓαβγ ∧ d3xµ

+

(
1

6
fµαβ +

1

6
fµβα −

1

6
δµβf

ν
να −

1

6
δµαf

ν
νβ

)
dgρσ ∧ d3xµ = 0 .

Doing the pullback to Pf , we have that j∗dΓαβγ = 1
2dΓα(βγ) + 1

6δ
α
βdT rrγ − 1

6δ
α
γ dT rrβ . As every coefficient

must vanish, taking in particular the corresponding to the factor dΓα(βγ) and contracting with δαµ , we
obtain that Gβγ = 0. Therefore we have

∂H

∂Γαβγ
fαβγ = 0 ; (on Pf ) ,

−1

6
fµαβ +

1

6
fµβα +

1

6
δµβf

ν
να +

1

6
δµαf

ν
νβ = 0 ; (on Pf ) .

Following the same argument as in 4.6, these equations have two kinds of solutions on Pf : trace solu-
tions, fαβγ = Cβδ

α
γ , and torsion solutions, fαβγ = kαβγ ; with kαβγ + kαγβ = 0 and kµµγ = 0. Likewise, only

the trace solutions are tangent to Pf .

4.3.4 Intrinsic interpretation of the pure-connection coordinates

Now we present a fibered manifold and a Hamiltonian function which involve only the connection and
we prove that this system is equivalent to the Hamiltonian formalism for the Metric-Affine action.

The configuration bundle for this pure-connection system is the bundle πΓ : EΓ → M , where
M is the connected orientable 4-dimensional manifold representing space-time, as above, and EΓ =
C(LM), the bundle of connections on M ; that is, linear connections in TM . Then, consider the bun-
dlesMπΓ ≡ Λ4

2(T∗EΓ) and J1π∗Γ ≡ MπΓ/Λ
4
1(T∗EΓ), with local coordinates (xµ,Γαβγ , p, p

βγ,µ
α ) and

(xµ,Γαβγ , p
βγ,µ
α ) respectively.

Consider a Hamiltonian section h : J1π∗ → Mπ of the projection µΓ : MπΓ → J1π∗Γ. In a local
chart of natural coordinates, U ⊂ J1π∗Γ, this Hamiltonian section is specified by a local Hamiltonian
function HΓ ∈ C∞(U) such that hΓ(xµ,Γαβγ , p

βγ,µ
α ) = (xµ,Γαβγ , p = −HΓ(xν ,Γδρσ, p

ρσ,ν
δ ), pβγ,µα ) (see

[13, 85]). This Hamiltonian function is

HΓ = −1

3
pαβ

(
ΓγβσΓσγα − ΓγβαΓσσγ

)
.

The bundleMπΓ is canonically endowed with the corresponding multisymplectic Liouville 5-form ΩΓ ∈
Ω5(MπΓ). Then, the Hamilton-Cartan form is

ΩHΓ
≡ h∗ΓΩΓ = dH ∧ d4x− dpβγ,µα ∧ dΓαβγ ∧ d3xµ ∈ Ω5(J1π∗Γ).

Furthermore, we introduce the following constraints on J1π∗Γ:

pβγ,µα =
1

3
δβαp

νµ,γ
ν − 1

3
δµαp

νβ,γ
ν , pµα,βµ = pµβ,αµ .
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Let Γ : PΓ ↪→ J1π∗Γ be the submanifold locally defined by these constraints. Then we can construct the
premultisymplectic form

Ω0
HΓ

= ∗ΓΩHΓ
= dH ∧ d4x+

1

6
δµαdpνβ,γν ∧ dΓα(βγ) ∧ d3xµ

−1

6
δβαdpνµ,γν ∧ dΓαβµ ∧ d3xγ −

1

6
δβαdpνµ,γν ∧ dΓαβγ ∧ d3xµ .

Proposition 4.15. There exists a diffeomorphism ζ : PΓ → P such that ΩHΓ
= ζ∗ΩH and hence the

Hamiltonian systems (PΓ,ΩHΓ
, TPΓ, {0}) and (P,ΩH , TP, {0}) are equivalents.

Proof. Using the pure-connection coordinates in P , the diffeomorphism is locally given by

ζ∗xµ = xµ , ζ∗Γαβγ = Γαβγ , ζ∗pγµ = pνγ,µν .

Its inverse acting on the momenta is given by

ζ−1∗xµ = xµ , ζ−1∗Γαβγ = Γαβγ , ζ
−1∗pβγ,µα = ζ−1∗

(
1

3
δβαp

νµ,γ
ν − 1

3
δµαp

νβ,γ
ν

)
=

1

3
δβαp

µγ − 1

3
δµαp

βγ ,

and is an exhaustive map because Im(ζ−1) = PΓ, as a consequence of the reasoning done before in this
paragraph. The equality ΩHΓ

= ζ∗ΩH is obtained straightforwardly from the local expressions of these
forms.

4.4 Relation with the Einstein-Hilbert model

The Einstein-Hilbert model can be recovered from the Einstein-Palatini (metric-affine) model by de-
manding the connection to be the Levi-Civita connection associated with the metric [20]. In this section
we will show this equivalence geometrically.

In order to avoid confusing within the notation of this chapter and the elements of the Eisntein-Hilbert
model presented in chapter 3, we denote the bundle of metric as: πΣ : Σ → M . The fibres are spaces
of Lorentz metrics on M ; that is, for every x ∈ M , the fiber π−1

Σ (x) is the set of metrics with signature
(−+ ++) acting on TxM . The adapted fiber coordinates in E are (xµ, gαβ).

It is proved [16, 87] that there are first-order (regular) Lagrangians in J1πΣ which are equivalent to
the the Einstein-Hilbert Lagrangian. As it is shown in 3.1.4, that allows a description of the Einstein-
Hilbert model in J1πΣ (with coordinates (xµ, gαβ, gαβ,µ) which is geometrically equivalent to the Hamil-
tonian description of the Einstein-Hilbert model. The first-order Lagrangian density proposed in [86] (see
3.1.4 for more details) is L = Ld4x, where the Lagrangian function is

L = L0 −
∑
α≤β
λ≤σ

gαβ,µgλσ,ν
∂Lαβ,µν

∂gλσ
∈ C∞(J1πΣ) ;

Lαβ,µν =
n(αβ)

2
%(gαµgβν + gανgβµ − 2gαβgµν) ,

L0 = %gαβ{gγδ(gδµ,βΓ̃µαγ − gδµ,γΓ̃µαβ) + Γ̃δαβΓ̃γγδ − Γ̃δαγΓ̃γβδ} ,

where Γ̃µαγ are the Christoffel symbols of the Levi-Civita connection associated with the metric gαβ . The
corresponding Poincaré-Cartan form is

ΩL = dL ∧ d4x−
∑
α≤β

d
∂L

∂gαβ,µ
∧ dgαβ ∧ d3xµ ∈ Ω5(J1πΣ) .
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So we have the Lagrangian system (J1πΣ,ΩL, TJ
1πΣ,C

1) and, as the Lagrangian L is regular, then ΩL
is a multisymplectic form and the Lagrangian field equations have solutions everywhere in J1πΣ.

In addition, the corresponding Legendre map FL : J1πΣ → J1πΣ
∗ is a diffeomorphism [47]. Then

we have the Hamilton-Cartan form Ωh := ((FL)−1)∗ΩL ∈ Ω5(J1πΣ
∗
). So we have the Hamiltonian

system (J1πΣ
∗
,Ωh, TJ

1πΣ
∗
, {0}) and the corresponding Hamiltonian field equations have solutions

everywhere in J1πΣ
∗. In addition, the solutions to the Lagrangian problem are in one-to-one correspon-

dence with thes solution to the Hamiltonian problem through the Legendre map.

4.4.1 Relation between the Einstein-Hilbert and the Metric-Affine models

The pre-metricity constraints determine the derivatives of the metric in function of the metric and the
connection. The converse, which is a similar result to the existence of the Levi-Civita connection, can be
formulated as follows:

Proposition 4.16. Let (M, g) be a (semi)-Riemmanian manifold of dimensionm > 1 andCα ∈ C∞(U),
1 ≤ α ≤ m, fixed functions defined on a open set U ⊂M . Then there exists a unique linear connection
Γ defined on U such that:

1. Pre-metricity: (∇Γg)ρσ,µ =
2

m− 1
gρσT

λ
λµ.

2. Torsion: Tαβγ =
1

m− 1
δαβ T

λ
λγ −

1

m− 1
δαγ T

λ
λβ

3. Gauge fixing: Γλαλ = Cα.

Proof. From the pre-metricity conditions we have

1

2
gµα(gρµ,σ + gσµ,ρ − gρσ,µ) = Γαρσ +

1

2
(gµαgρλT

λ
σµ + gµαgσλT

λ
ρµ − Tαρσ)

+
1

m− 1
(T λλσδ

α
ρ + T λλρδ

α
σ − gαµgρσT λλµ) .

Using the torsion conditions and the gauge fixing we get

1

2
gµα(gρµ,σ + gσµ,ρ − gρσ,µ) = Γαρσ +

1

m− 1
Γλλρδ

α
σ −

1

m− 1
Cρδ

α
σ ,

and contracting the indices α and ρ and rearranging the terms:

1

m− 1
Γλλσ =

1

2m
gµνgµν,σ +

1

m(m− 1)
Cσ .

Finally, incorporating this result to the previous equation, we conclude that

Γαρσ =
1

2
gµα(gρµ,σ + gσµ,ρ − gρσ,µ)− 1

2m
gµνgµν,ρδ

α
σ +

1

m
Cρδ

α
σ ,

which determines uniquely the connection in U .

In order to establish the relation between both models, our standpoint is the Hamiltonian formalism
of the Einstein-Palatini model developed in Section 4.3.2. So, let Pf ↪→ P be the final constraint
submanifold for this last model. Then, consider the following local map:

ξ : Pf → J1πΣ

(xµ, gαβ,Γ
α
βγ) 7→ (xµ, gαβ, gαβ,γ)

where gαβ,γ = gαλΓλµβ + gβλΓλµα + 2
3gαβT

λ
λµ. Notice that τP ◦ j = πΣ ◦ ξ.
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Lemma 4.2. Denoting by G the set of gauge symmetries obtained in Proposition 4.11, we have that
ker ξ∗ = G.

Proof. Consider a generic vector field X ∈ X(P), tangent to Pf ,

X = fµ
∂

∂xµ
+
∑
α≤β

fαβ
∂

∂gαβ
+ fαβγ

∂

∂Γαβγ
.

If X ∈ ker ξ∗, then fµ = 0 and fαβ = 0. For the last coefficients we have:

0 = ξ∗X = gαλf
λ
γβ + gβλf

λ
γα +

2

3
gαβ

(
fλλγ − fλγλ

)
.

For the coefficients of the form fαβγ = Cβδ
α
γ for Cβ ∈ C∞(P), the condition holds. Now, for every

solution fαβγ to these equations, consider hαβγ = fαβγ − fλλβδ
α
γ , which are also solutions because the

equation is lineal. Thus

gαλh
λ
γβ + gβλh

λ
γα −

2

3
gαβh

λ
γλ = 0 . (4.37)

Notice that hννγ = 0. Now, contracting with gαβ , we obtain that hλγλ = 0. Furthermore, as we are on the
points of Pf , where the torsion constraints hold, this implies that hαβγ − hαγβ = 0, and therefore they are
symmetric functions (for the indices βγ). Now, if Sαγβ := gαλh

λ
γβ; taking into account the symmetry of

hαβγ , we have that Sαγβ = Sαβγ , and from (4.37) we obtain Sαγβ = −Sβγα. These two conditions hold

simultaneously only if Sαγβ = 0. Therefore, hαβγ = 0, and hence ker ξ∗ =

〈
Cβδ

α
γ

∂

∂Γαβγ

〉
= G.

Let P ′f be the manifold obtained making the quotient of Pf (which is defined by the torsion con-
straints) by the gauge vector fields, and let the natural projection τ ′f : Pf → P ′f . Then:

Theorem 4.2. P ′f is locally diffeomorphic to J1πΣ and hence to J1πΣ
∗.

Proof. Consider a smooth section ς of τ ′f , and let ξ′ := ξ◦ς : P ′f → J1πΣ. From lemma 4.2, ker ξ∗ ⊃ G;
therefore ξ′ does not depend on the section chosen. Moreover, ker ξ∗ ⊂ G and it is injective. Finally, it
is exhaustive because for every point of J1πΣ, its preimage contains the connection given by proposition
4.16. In conclusion, ξ′ is a local diffeomorphism and then P ′f is (locally) diffeomorphic to J1πΣ.

Then, a simple calculation in coordinates leads to the following result:

Proposition 4.17. ΩH = ξ∗ΩL = (FL ◦ ξ)∗Ωh.

Comment: The comparison between the multiplicity of solutions of the Einstein-Hilbert and the metric-
affine models can help us to interpret some of the conditions. The multiplicity of the semi-holonomic
solutions of the Einstein-Hilbert model appears in the second derivative of the components of the metric
(in the Hamiltonian formalism using the non-momentum coordinates). As it is shown in chapter 3, they
are of the form (see [47]) Fαβ;µ,ν = 1

2gλσ(ΓλναΓσµβ + ΓλνβΓσµα) + F h
αβ;µ,ν , where

F h
αβ;µ,ν = F h

βα;µ,ν = F h
αβ;ν,µ , gαβ

(
F h
ητ ;α,β + F h

αβ;η,τ − F
h
αη;τ,β − F

h
ατ ;η,β

)
= 0 .

The map ξ transforms any section ψ solution of the Einstein-Palatini model into a solution ξ∗ψ of the
Einstein-Hilbert model. The functions Cαβγ,µ in (4.30), corresponding to the gauge variation, get annihi-

lated by the action of ξ. Therefore, we can say that the functionsKα
βγ,µ (corresponding to ψ) and F h

αβ;µ,ν

(corresponding to ξ∗ψ) are related, as they are in one to one correspondence. Their conditions can be
related using this equivalence as it is shown in the following table: supposing that F h

αβ;µ,ν and Kα
βγ,µ are

related, we have:
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Metric-Affine Einstein-Hilbert
Kλ

(ητ)λ = 0 ⇔ gαβ(F h
ητ ;α,β + F h

αβ;η,τ − F
h
αη;τ,β − F

h
ατ ;η,β) = 0

gαλK
λ
[νβµ] + gβλK

λ
[ναµ] + 2gαβT

λ
µνΓσσλ = 0 ⇔ F h

αβ,[µν] = 0

Kλ
λγ,µ = 0 for every F h

αβ,µν

Kα
[βγ],µ + 1

3δ
α
[βK

ν
γ]ν,µ + Γλµ[γΓαβ]λ −

1
3δ
α
[βΓλµγ]Γ

ν
νλ

+1
3δ
α
[βΓλµνΓνγ]λ = 0 for every F h

αβ,µν

for every Kα
βγ,µ F h

[αβ],µν = 0

4.4.2 Integrability

In the (first-order) Einstein-Hilbert model, every point p ∈ J1πΣ is in the image of a section solution to
the field equations, Im(ϕp). Then J1πΣ is the final manifold for this model. As a consequence of the
equivalence between both models, Pf is also the final constraint submanifold for the Einstein-Palatini
model; that is:

Proposition 4.18. For every q ∈ Pf , there exists a section ψH solution to the Hamiltonian field equations
of the Metric-Affine model such that q ∈ Im(ψH).

Proof. Consider the solution ϕξ(q) in the Einstein-Hilbert Hamiltonian formalism. Moreover, consider
ζ : J1πΣ → Pf ⊂ P a section of ξ such that ζ(ξ(q)) = q which exists because ξ is exhaustive. Therefore
q ∈ Im(ζ ◦ ϕξ(q)) and, in order to check that ζ ◦ φξ(q) is a solution, consider an arbitrary Y ∈ X(P):

(ζ ◦ ϕξ(q))∗(i(Y )ΩH) = (ζ ◦ ϕξ(q))∗(i(Y )ξ∗ΩLV)

= (ξ ◦ ζ ◦ ϕξ(q))∗(i(ξ∗Y )ΩLV) = ϕ∗ξ(q)(i(ξ∗Y )ΩLV) = 0 .

We have used that (ξ ◦ ζ)(p) = p because it is a section, and that ϕξ(q) is a solution. Finally,

τP ◦ f ◦ ζ ◦ ϕξq = πΣ ◦ ξ ◦ ζ ◦ ϕξ(q) = πΣ ◦ ϕξ(q) = IdM ;

thus ψH = ζ ◦ ϕξ(q) is a section of τP ◦ f = τ f , and hence it is a solution.

The Lagrangian counterpart of this result also holds, although it is not straightforward because we
are working with a singular field theory.

Proposition 4.19. For every p ∈ Sf , there exists a holonomic section ψL solution to the Lagrangian
field equations of the Metric-Affine model such that p ∈ Im(ψL).

Proof. Consider the diffeomorphism τP : P → E stated in Proposition 4.7 (in particular, it relates the
Lagrangian coordinates with the non-momenta coordinates). Then we have that τ−1

P (π1
f (p)) ∈ Pf . Fur-

thermore there exists a solution to the Hamiltonian field equations ψH such that τ−1
P (π1

f (p)) ∈ Im(ψH),
as it is shown in the above Proposition. Then, we are going to prove that the holonomic section ψL
solution in the Lagrangian formalism is ψL = j1(τP ◦ ψH).

In fact, first observe that, for the Metric-Affine model, the fibers of the Legendre map FLoEP are
the vertical fibers of π1 : J1π → E (since P = ImFLoEP is diffeomorphic to E), and then, as ψL is
a canonical lifting to J1π of a section in E, we have that FLoEP ◦ ψL = ψH . Furthermore, ψL is a
solution to the Lagrangian field equations. Indeed, as FLoEP is a submersion, we can take a local basis of
X(J1π) made by vector fields {YA, Za}, where YA are FLoEP-projectable and Za ∈ ker (FLoEP)∗; and
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then the vector fields XA = (FLoEP)∗YA are a local basis for X(P). Therefore, taking into account that
FLoEP ◦ ψL = ψH and that ψH is a solution to the Hamiltonian field equations,

ψ∗L i(YA)ΩLEP = ψ∗L i(YA)(FLo ∗EP ΩH) = ψ∗LFLo ∗EP i(XA)ΩH

= (FLoEP ◦ ψL)∗ i(XA)ΩH = ψ∗H i(X)ΩH = 0 ;

and ψ∗L i(Za)ΩLEP = 0 trivially. This allows us to conclude that ψ∗L i(Y )ΩLEP = 0, for every Y ∈
X(J1π), and hence ψL is is a solution to the Lagrangian field equations.

Finally, ImψL ⊂ Sf . Indeed, equations (4.28) and (4.29) for ψH imply that all the points in ImψL
verify the constraints cµν andmρσ,µ. The constraints rαβγ,ν and iρσ,µν are also satisfied because they arise
from the tangency condition on the semiholonomic constraints (see Section 4.2.2) and the integrability
condition respectively; and then they are satisfied for holonomic sections which are solutions to the
Lagrangian field equations.

The following diagram summarizes the situation (see also the diagram (4.33)).

J1π ⊃ Sf
FLoEP //

π1

((

Pf ⊂ P
τP

vv
E

M

ψL=j1φ

aa

ψH

==

φ

OO
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Chapter 5

Conclusions and outlook

Summary of results

The study of the models of gravity has required the development of several general properties of multi-
symplectic systems.

• Following the work of [86, 87], we establish the constraints generated by the projectability of the
Poincaré-Cartan form. These constraints are related to the fact that the higher order velocities are
strong gauge vector fields. Therefore, in adequate circumstances, the theory is equivalent to a
lower order one [16, 87].

• We proposed a new local characterization of the projectability of the Poincaré-Cartan form. Thanks
to it, the results have been transported to higher-order mechanical systems. Moreover, this charac-
terization is adequate for the local analysis of the different models of gravity studied.

• The concept of gauge freedom has been analyzed. We propose to use the term “gauge” to refer to
the non-regularity of the Poincaré-Cartan form. Therefore, the multiple solutions are characterized
by two sources: the gauge related, arising from gauge symmetries and related to the non-regularity;
and the non-gauge related, which arise from sources exclusive of field theories.

• The non-regularity of the Poincaré-Cartan form has other consequences, which are related to the
weak and strong gauge vector fields. We use this analysis to interpret the covariant Hamiltonian
formalism.

We studied in detail two models of Gravity: the Einstein-Hilbert model and the Metric-Affine (or
Einstein-Palatini) model. The first one is a singular second order field theory which, as a consequence
of its non-regularity, it is equivalent to a regular first order theory. The Metric-Affine model is a singular
first order field theory which has a gauge symmetry. When these symmetry is quoted out, both models
are equivalent. In both cases, a covariant Hamiltonian multisymplectic formalism has been presented. In
every situation, we explicitly write all semi-holonomic multivector fields solutions of the field equations.
A more exhaustive presentation of the results follows.

For the Einstein-Hilbert model:

• We have presented a multisymplectic covariant description of the Einstein-Hilbert model of Gen-
eral Relativity using a unified formulation joining both the Lagrangian and Hamiltonian for-
malisms.
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• Our procedure consists in using the constraint algorithm to determine a submanifold of the higher-
order jet-multimomentum bundle Wr where the field equations are compatible. The constraints
(3.12) and (3.14), which defineWL, are a natural consequence of the unified formalism and define
the Legendre map which allows to state the Hamiltonian formulation and the Hamilton-de Donder-
Weyl version of the Einstein equations.

• In the case of no energy-matter sources, among the new constraints, the physical relevant equations
are the primary constraints (3.16) which, evaluated on the points of the holonomic sections, are just
the Einstein equations. They appear as constraints of the theory as a consequence of the singularity
of the Einstein-Hilbert model. The secondary constraints (3.17) contain no physical information:
they are of geometrical nature and arise because we are using a manifold prepared for a second-
order theory of a Lagrangian which is physically equivalent to a first-order Lagrangian.

• Θr is (π3
1◦ρr1)-projectable and, as a consequence of this, in the Lagrangian formalism,the Poincaré-

Cartan form ΘL projects onto a form in J1π, which is not the Poincaré-Cartan form of any first-
order Lagrangian. Nevertheless, there is are first-order regular Lagrangians which are equivalent
to the Einstein-Hilbert Lagrangian[16, 62, 72, 73, 86, 87].The Lagrangian and Hamiltonian for-
malism of one of these Lagrangians have been analyzed in detail. .

• When we recover the Lagrangian formalism from the unified one, as a consequence of the sin-
gularity of the Einstein-Hilbert Lagrangian, solutions to the Euler-Lagrange field equations only
exist in a constraint submanifold Sf ↪→ J3π. Furthermore, in the Lagrangian formalism, the
Lagrangian constraints arise as a consequence of demanding the holonomy condition for the solu-
tions to the field equations and the fact that the Hessian matrix of the Einstein-Hilbert Lagrangian
with respects to the highest-order coordinates in J3π vanishes identically. Hence these kinds of
constraints are not projectable by the Legendre map.

• We construct a covariant multimomentum Hamiltonian formalism for the Einstein Hilbert model.
It has not gauge freedom, since the Hamilton-Cartan form is regular and P is diffeomorphic to
J1π and J1π∗.

• The Hamiltonian formalism for the Einstein Hilbert is the same than the multimomentum Hamilto-
nian formalism for the regular 1st-order equivalent Lagrangian L analysed in Section 3.1.4, thus,
proving again the equivalence between this equivalent Lagrangian and the Einstein-Hilbert model.

• When the energy-matter sources are present, some of the geometrical and physical characteristics
of the theory depend on the properties of the Lagrangian Lm representing the source. In partic-
ular, the number of constraints arising from the constraint algorithm, the obtention of holonomic
multivector fields solution to the Lagrangian field equations, and the construction of the covariant
multimomentum formalism. This study has been done in detail for some cases of energy-matter
sources (those which we are called “of degree≤ 2”), which include as a particular case the energy-
matter sources coupled to the metric (for instance, the electromagnetic source or the perfect fluid).

• In all the cases, we have obtained explicitly all semiholonomic multivector fields representing
integrable distributions whose integral sections are solutions to the field equations.

And the results on the Metric-Affine model:

• We have presented a multisymplectic covariant description of the Lagrangian and Hamiltonian
formalisms of the Einstein-Palatini model of General Relativity (without energy-matter sources).
It is described by a first-order “metric-affine” Lagrangian which is (highly) degenerate and hence
it originates a theory with constraints and gauge content.
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• The Lagrangian field equations are expressed in terms of holonomic multivector fields which are
associated with distributions whose integral sections are the solutions to the theory. Then, we use
a constraint algorithm to determine a submanifold of the jet bundle J1π where, first, there exist
semi-holonomic multivector fields which are solution to these equations and are tangent to this
submanifold, and second, these multivector field are integrable (i.e., holonomic). The constraints
arising from the algorithm determine where the image of the sections may lay.

• In coordinates, the Lagrangian field equations split into two kinds: the metric and the connection
equations (equations (4.6), (4.7), (4.8)). In the same way, the Lagrangian constraints can be classi-
fied into three different types. First there are the torsion constraints, which impose strict limitations
on the torsion of the connection. Then we have the constraints which appear as a consequence of
demanding the semi-holonomy condition for the multivector field solutions (Theorem 4.1). In par-
ticular, the Euler-Lagrange equations themselves (which appear as constraints of the theory as a
consequence of the fact that the Poincaré-Cartan form is π1-projectable and the equations are first-
order PDE’s), and specially the so-called pre-metricity constraints, which are closely related to
the metricity condition for the Levi-Civita connection. Only the tangency condition on the torsion
constraint lead also to new constraints. Finally, a family of additional integrability constraints ap-
pear as a consequence of demanding the integrability of the multivector fields which are solutions.
Only the initial the torsion constraints are projectable under the Legendre map FLEP (because the
other ones appear as a consequence of demanding the (semi)holonomy of the solutions), and thus
they are the only ones that also appear in the Hamiltonian formalism (see [57] for an analysis of
this subject for higher-order dynamical theories). We have obtained explicitly all semiholonomic
multivector fields solutions to the field equations (Proposition 4.22).

• We have done also a brief discussion about symmetries and conserved quantities, giving the ex-
pression of the natural Lagrangian symmetries, their conserved quantities and the corresponding
flows.

• The (covariant) multimomentum Hamiltonian formalism for the Einstein-Palatini model has been
also developed. The final constraint submanifold is also obtained in this formalism, and it is de-
fined by the FLEP-projection of the torsion constraints (Proposition 4.9). The explicit expression
of the multivector field solutions is obtained (Proposition 4.13) and their integrability is briefly
analysed. The local description is given using two different kinds of coordinates: the non-momenta
coordinates which, as a consequence of the Legendre map, are the same as in the Lagrangian case,
and the pure-connection coordinates, where the momenta associated to the connection replace the
metric, resulting in metric-free coordinates. An intrinsic interpretation of these last coordinates is
also given.

• Analyzing the gauge content of the model, we have obtained the local expression of the natural
gauge vector fields, both in the Lagrangian and the Hamiltonian formalisms (Propositions 4.6 and
4.14). We recover the gauge symmetries discussed in [20], showing that there are no more.

• We have used the analysis of gauge freedom and constraints to establish the geometric relation
between the Einstein-Palatini and the Einstein-Hilbert models, including the relation between the
holonomic solutions in both formalisms. As it is known [12, 20], it is possible to recover the
second by a gauge fixing in the first-one, which consists in imposing the trace of the torsion to
vanish. This equivalence has been studied in detail (Theorem 4.2 and Propositions 4.16 and 4.17).

• Finally, using this equivalence, we have been able to prove that the constraint submanifolds Sf and
Pf obtained from the Lagrangian and Hamiltonian constraint algorithms, respectively (where there
exist multivector fields tangent to them, satisfying the geometric Lagrangian and Hamiltonian field
equations on them) are the (maximal) final constraint submanifolds where these multivector fields
are integrable; i.e., there are sections solutions to the field equations passing through every point
on them (Propositions 4.18 and 4.19).
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Further Research

Some lines of research or interesting problems derived from this work are the following:

• The reduction by symmetries is the procedure by which the field equations are reduced or simpli-
fied using symmetries and conserved quantities. It generalization to higher-order field theories has
several inherent obstacles.

• The concept of gauge vector field for field theories present here can be develop further. It can be
compared to other approaches, like Yang-Mills theories. It will be interesting to develop the elec-
tromagnetism, as it is the canonical example of gauge theory. Moreover, a geometric formulation
of non-vertical gauge vector fields could be investigated.

• The Einstein-Palatini model is only considered in this work without energy-matter sources. An
interesting problem is to analyse how the type of source influences the constraints, the gauge
freedom and the symmetries of the theory. We have the intention to present this study in a future
paper.

• The multisymplectic formalism has shown to be a powerful tool to analyse singular systems, with
the presence of constraints, symmetries and gauge freedom. Therefore the formalism could help to
understand other complicate models. Thus we want to study other generalized models of Gravity
(Lovelock, f(R)-theories, etc.), as well as classical versions of other models like string theory,
following the same procedures as in this dissertation.
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nian systems in multisymplectic field theories”, J. Math. Phys. 48(11) (2007), 112901, 30 pages.
(doi.org/10.1063/1.2801875).
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[34] A. Echeverrı́a-Enrı́quez, M.C. Muñoz-Lecanda, N. Román-Roy, “Geometry of multisymplectic Hamiltonian
first-order field theories”, J. Math. Phys. 41 (2000), 7402–7444. (oi.org/10.1063/1.1308075).
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[42] P.L. Garcı́a, “The Poincaré–Cartan invariant in the calculus of variations”, Symposia Mathematica, Vol. 14
(Convegno di Geometria Simplettica e Fisica Matematica, INDAM, Rome, 1973), Academic Press, London,
1974, 219–246.
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