6 Q DE CODA: Q_c

6.1 Introducción

En este capítulo se inicia una serie de tres que se dedican al análisis de los datos. En este, el primero, se aborda la determinación de Q de coda mediante una técnica sencilla y expedita que permite obtener estimaciones de Q_c para cada camino epicentro-estación. Los métodos de Aki y Chouet (1975) y de Sato (1977a), descritos en el capítulo 3, han sido y siguen siendo ampliamente utilizados por su sencillez y capacidad para resolver el factor de calidad Q (ver por ejemplo Gupta et al., 1998 y Tselentis, 1998).

El capítulo 7, aprovecha la ocurrencia de dos crisis sísmicas de intensidad VII en la Península para analizar la variación temporal de Q de coda antes y después de un sismo. Finalmente, en el capítulo 8 se aplica el modelo de dispersión múltiple para analizar la separación de Q_T en sus componentes de atenuación intrínseca y dispersiva.

Los análisis de Q_c y la separación de la atenuación intrínseca y dispersiva se realizan para todas las estaciones. El análisis de la variación temporal se efectúa para las crisis sísmicas de Mula (Febrero de 1999) y la ocurrida en el triangulo de Sarria-Becerreá y Triacastella de Lugo (Mayo de 1997).

6.2 Q_c

Para estimar la Q_c se ha utilizado el método de Aki y Chouet (1975) bajo hipótesis de retrodispersión simple (*Backscattering*), las amplitudes cuadráticas medias A(f,t) en un sismograma para una frecuencia central f sobre una banda frecuencial estrecha y un instante de tiempo t, medido a partir del origen del sismo puede ser expresado como,

$$A(f,t) = C(f) \cdot t^{-\alpha} \cdot \exp(-\pi f t/Q_C)$$
(6.1)

siendo C(f) el factor de la fuente, α es el factor de expansión geométrica (α =1 para ondas internas) y Q_c es el factor de calidad de las ondas de coda que representa en promedio las propiedades atenuativas de una región dada.

Tomando logaritmos naturales sobre la ecuación (6.1) se obtiene la siguiente expresión,

$$\ln(A(f,t)\cdot t) = c - b\cdot t \tag{6.2}$$

donde $b = \pi \cdot f/Q_c$ y $c = \ln C(f)$.

La ecuación (6.2) representa una línea recta cuya pendiente permite estimar Q_c para la frecuencia f central de la banda. Ambas ecuaciones, aunque ya han sido explicadas en el capítulo 3, se han reproducido aquí para mayor comodidad de lector.

La figura 6.1 ilustra las técnicas de ajuste. Incluye el sismograma original filtrado para las diferentes bandas frecuenciales y los correspondientes ajustes obtenidos. El ejemplo corresponde a un sismo de la zona noroeste registrado por la estación EMON (Mondoñedo).

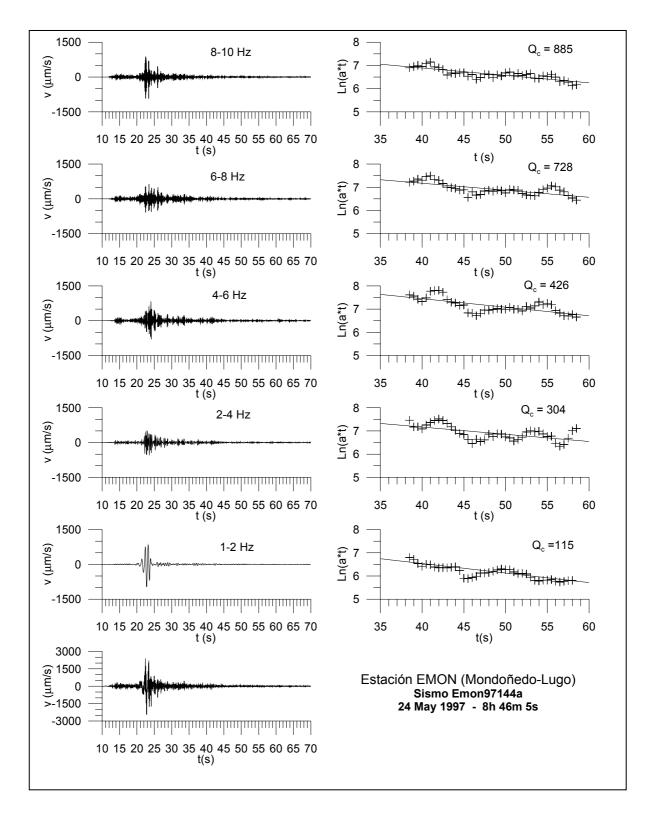


Figura 6.1 Sismograma original y sismograma original filtrado para las diferentes bandas frecuenciales y los correspondientes ajustes obtenidos. El ejemplo corresponde a un sismo ocurrido el día 24 de mayo de 1997 a las 8h:46m:5s en la zona noroeste y registrado por la estación EMON (Mondoñedo-Lugo).

En general, se ha calculado Q_c para frecuencias entre 1 y 10 Hz. Para ello se han seleccionado las bandas frecuenciales 1-2, 2-4, 4-6, 6-8, 8-10 Hz. Sin embargo, debido a la respuesta de los instrumentos utilizados, que son de período corto y banda estrecha, no ha sido posible hallar Q_c para todas las bandas y todas las estaciones, habiéndose variado en algunos casos las ventanas de filtrado, sobre todo en los extremos inferior y superior del ancho de banda de los instrumentos empleados, es decir, cerca de 1 Hz y de 10 Hz. En algunos casos no se han obtenido resultados aceptables cerca de estas frecuencias.

Se presentan a continuación, los principales resultados obtenidos.

6.2.1 Región Noroeste

La figura 6.2 presenta la distribución de estaciones y eventos de la región noroeste. La tabla 6.1 presenta los resultados obtenidos para la estación EMON (Mondoñedo-Lugo) en la banda frecuencial 6-8 Hz. En la tabla 6.2 se han seleccionado los resultados en cuyos ajustes se han obtenido correlaciones superiores a 0.6.

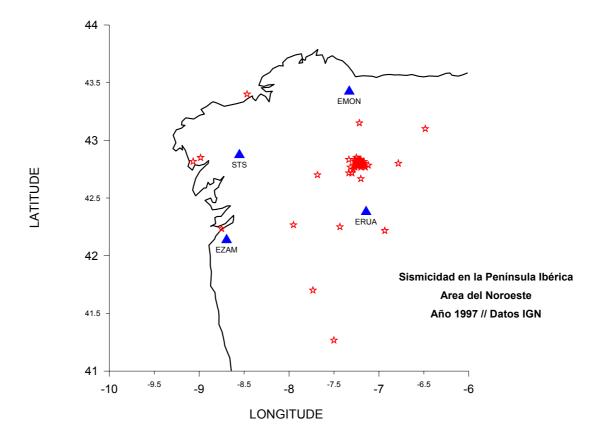


Figura 6.2 Distribución de eventos y estaciones en la región noroeste de la Península Ibérica.

Fecha	Hora Origen	Latitud	Longitud	Qc	Qc-1	Correlación	Código
29/01 1997	1H:58M:48.7S	42.817	-7.250	857	1.17E-03	0.5846907	emon97029a
11/03 1997	21H:24M:25.5S	43.400	-8.467	1187	8.42E-04	0.5104806	emon97070a
15/03 1997	6H:59M:1.5S	42.783	-7.267	929	1.08E-03	0.6830552	emon97074a
19/03 1997	4H:13M:14.9S	42.833	-7.217	862	1.16E-03	0.6116486	emon97078a
10/04 1997	20H:46M:9.8S	42.700	-7.683	841	1.19E-03	0.4571667	emon97100a
11/05 1997	13H:13M:29.3S	42.817	-7.250	1555	6.43E-04	0.4882757	emon97131a
23/05 1997	5H:22M:21.8S	42.783	-7.233	734	1.36E-03	0.6488245	emon97143c
23/05 1997	5H:24M:16.8S	42.800	-7.217	3351	2.98E-04	0.2110927	emon97143d
23/05 1997	13H:30M:43.9S	42.800	-7.233	789	1.27E-03	0.6675903	emon97143e
24/05 1997	8H:46M:5S	42.817	-7.200	728	1.37E-03	0.7026917	emon97144a
24/05 1997	18H:33M:32.3S	42.817	-7.233	1144	8.74E-04	0.6139398	emon97144b
24/05 1997	18H:42M:28.7S	42.833	-7.233	880	1.14E-03	0.5892432	emon97144c
25/05 1997	0H:36M:56.7S	42.800	-7.200	33711	2.97E-05	2.07E-02	emon97145a
25/05 1997	8H:11M:41.7S	42.800	-7.233	670	1.49E-03	0.7869747	emon97145b
27/05 1997	23H:15M:22.6S	42.800	-7.233	1709	5.85E-04	0.4142105	emon97147a
28/05 1997	2H:44M:57.7S	42.783	-7.250	2121	4.72E-04	0.3217567	emon97148a
28/05 1997	12H:0M:38.9S	42.800	-7.183	1138	8.79E-04	0.4475934	emon97148b
28/05 1997	20H:3M:48.5S	42.783	-7.183	670	1.49E-03	0.6145204	emon97148c
29/05 1997	3H:18M:24.5S	42.800	-7.250	883	1.13E-03	0.7573489	emon97149a
29/05 1997	22H:22M:57.1S	42.767	-7.267	884	1.13E-03	0.6647803	emon97149b
30/05 1997	1H:49M:24S	42.800	-7.217	580	1.73E-03	0.8049317	emon97150a
04/06 1997	20H:28M:10.4S	42.817	-7.167	741	1.35E-03	0.7192806	emon97155a
05/06 1997	9H:7M:53S	42.800	-7.233	1328	7.53E-04	0.5313274	emon97156a
05/06 1997	9H:59M:17.3S	42.783	-7.217	1841	5.43E-04	0.3852707	emon97156b
05/06 1997	22H:22M:23.3S	42.783	-7.233	1470	6.80E-04	0.3542852	emon97156c
08/06 1997	1H:20M:40.8S	42.800	-7.233	942	1.06E-03	0.6334444	emon97159a
11/06 1997	12H:49M:39.2S	42.783	-7.117	2165	4.62E-04	0.283751	emon97162b
13/06 1997	14H:23M:12.2S	42.817	-7.217	1486	6.73E-04	0.3134118	emon97164b
15/06 1997	7H:4M:41.4S	42.800	-7.200	3325	3.01E-04	0.1873667	emon97166a
21/06 1997	6H:30M:34.3S	42.783	-7.217	725	1.38E-03	0.7183963	emon97172a
26/06 1997	0H:24M:11.8S	42.800	-7.217	1142	8.76E-04	0.5422334	emon97177a
28/06 1997	10H:59M:10.2S	42.767	-7.317	811	1.23E-03	0.771742	emon97179c
28/06 1997	15H:20M:17.1S	42.783	-7.200	671	1.49E-03	0.8271376	emon97179d
02/071997	23H:43M:53.2S	42.767	-7.150	1392	7.18E-04	0.4857907	emon97183a
12/07 1997	9H:53M:26.2S	43.150	-7.217	944	1.06E-03	0.5724258	emon97193a
27/07 1997	2H:35M:40.2S	42.833	-7.200	522	1.92E-03	0.8782616	emon97208a
05/08 1997	22H:30M:43S	42.817	-7.217	964	1.04E-03	0.6629489	emon97217a
10/09 1997	7H:6M:35.7S	43.100	-6.483	573	1.75E-03	0.7988849	emon97253a
30/09 1997	15H:12M:55.7S	42.767	-7.200	901	1.11E-03	0.3008447	emon97273a
21/10 1997	16H:21M:40.4S	42.783	-7.267	742	1.35E-03	0.8920258	emon97294a

Tabla 6.1 Valores de Q_c para la banda frecuencial 6-8 Hz (Todas las correlaciones). Estación EMON (Mondoñedo-Lugo).

Fecha	Hora Origen	Latitud	Longitud	Qc	Qc-1	Correlación	Código
15/03 1997	6H:59M:1.5S	42.783	-7.267	929	1.08E-03	0.6830552	emon97074a
19/03 1997	4H:13M:14.9S	42.833	-7.217	862	1.16E-03	0.6116486	emon97078a
23/05 1997	5H:22M:21.8S	42.783	-7.233	734	1.36E-03	0.6488245	emon97143c
23/05 1997	13H:30M:43.9S	42.800	-7.233	789	1.27E-03	0.6675903	emon97143e
24/05 1997	8H:46M:5S	42.817	-7.200	728	1.37E-03	0.7026917	emon97144a
24/05 1997	18H:33M:32.3S	42.817	-7.233	1144	8.74E-04	0.6139398	emon97144b
25/05 1997	8H:11M:41.7S	42.800	-7.233	670	1.49E-03	0.7869747	emon97145b
28/05 1997	20H:3M:48.5S	42.783	-7.183	670	1.49E-03	0.6145204	emon97148c
29/05 1997	3H:18M:24.5S	42.800	-7.250	883	1.13E-03	0.7573489	emon97149a
29/05 1997	22H:22M:57.1S	42.767	-7.267	884	1.13E-03	0.6647803	emon97149b
30/05 1997	1H:49M:24S	42.800	-7.217	580	1.73E-03	0.8049317	emon97150a
04/06 1997	20H:28M:10.4S	42.817	-7.167	741	1.35E-03	0.7192806	emon97155a
08/06 1997	1H:20M:40.8S	42.800	-7.233	942	1.06E-03	0.6334444	emon97159a
21/06 1997	6H:30M:34.3S	42.783	-7.217	725	1.38E-03	0.7183963	emon97172a
28/06 1997	10H:59M:10.2S	42.767	-7.317	811	1.23E-03	0.771742	emon97179c
28/06 1997	15H:20M:17.1S	42.783	-7.200	671	1.49E-03	0.8271376	emon97179d
27/07 1997	2H:35M:40.2S	42.833	-7.200	522	1.92E-03	0.8782616	emon97208a
05/08 1997	22H:30M:43S	42.817	-7.217	964	1.04E-03	0.6629489	emon97217a
10/09 1997	7H:6M:35.7S	43.100	-6.483	573	1.75E-03	0.7988849	emon97253a
21/10 1997	16H:21M:40.4S	42.783	-7.267	742	1.35E-03	0.8920258	emon97294a

Tabla 6.2 Valores de Q_c para la banda frecuencial 6-8 Hz (Correlaciones superiores a 0.6). Estación EMON (Mondoñedo-Lugo).

La mayoría de los valores de Q_c se hallan entre 700 y 900 con algunos valores singulares por encima y por debajo de este intervalo. El valor máximo es de 1144 y el mínimo 522. En el Anexo 3 se incluyen tablas análogas para todas las estaciones analizadas.

Para la estación ERUA se obtienen correlaciones mejores y valores de Q_c similares. El valor mínimo es de 455 y el máximo 1169. Para la estación ESTS el valor máximo es de 1243 y el mínimo de 533. La estación EZAM es la que dispone de menos datos obteniéndose valores entre 731 y 971. La figura 6.3 sintetiza los resultados obtenidos. En la figura 6.3 a se presenta un diagrama de frecuencias de los valores de Q obtenidos para la estación EMON. Las figuras 6.3 b y 6.3 c corresponden a las estaciones ERUA y ESTS respectivamente. La figura 6.3 d incluye las cuatro estaciones de la zona: EMON, ERUA, ESTS y EZAM.

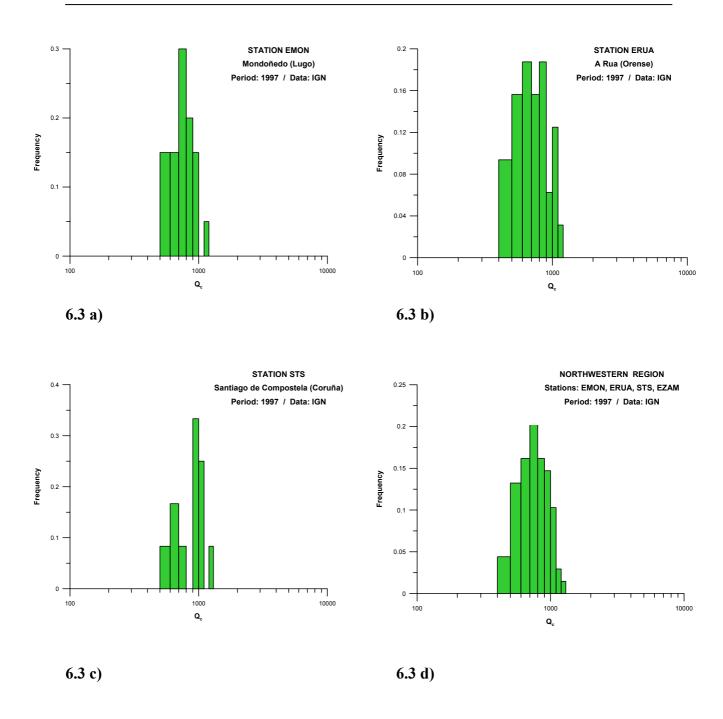
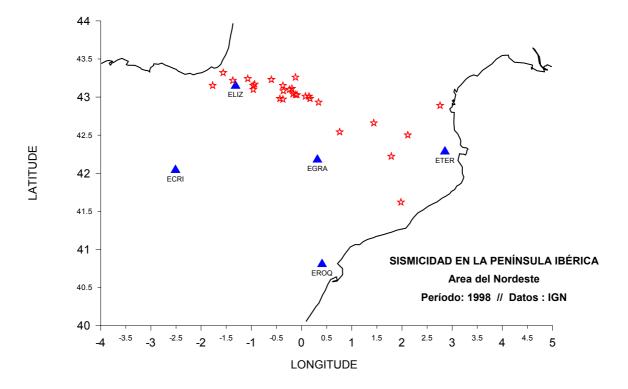



Figura 6.3 Diagrama de frecuencias de valores de Q_c para la región noroeste. a) Estación EMON (Mondoñedo), b) Estación ERUA (A Rua), c) Estación STS (Santiago de Compostela), d) Todas las estaciones. En todos los diagramas se han considerado correlaciones superiores a 0.6

6.2.2 Región Nordeste

Para el estudio de la región Nordeste se ha seguido un análisis análogo al empleado en la Noroeste. La figura 6.4 presenta la distribución de estaciones y epicentros. Se observa un cubrimiento pobre de la región. Sólo se ha podido efectuar determinaciones para las estaciones de EGRA, ELIZ, ECRI y ETER. Las dos últimas con correlaciones muy bajas en la banda 6-8 Hz.

Los valores de Q_c hallados oscilan entre 363 y 1477. La figura 6.5 muestra el diagrama de frecuencias de los diferentes valores de Q_c hallados. En el Anexo 3 se listan todos los valores obtenidos.

Figura 6.4 Distribución de eventos y estaciones en la región nordeste de la Península Ibérica. La estación EROQ (Roquetes) no generó resultados.

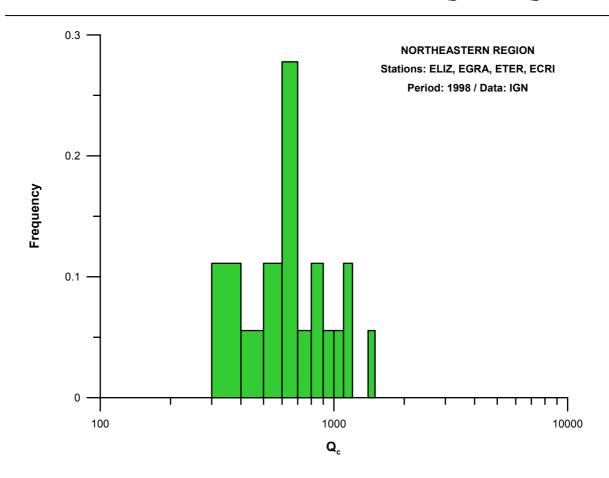
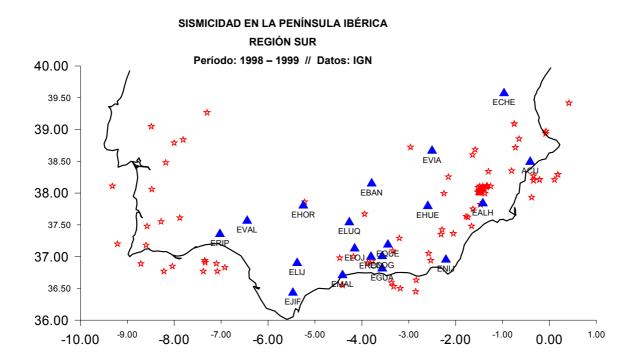



Figura 6.5 Diagrama de frecuencias de valores de Q_c para la región nordeste (Todas las estaciones y correlaciones superiores a 0.6)

6.2.3 Región Sur

Para la región Sur existe un mejor cubrimiento instrumental y de terremotos. La figura 6.6 muestra la distribución de estaciones y de sismos. Esta mayor densidad de datos se debe a la sismicidad natural y facilita el estudio de la zona.

Figura 6.6 Distribución de eventos y estaciones en la región sur de la Península Ibérica.

La tabla 6.3 presenta los resultados obtenidos para la estación EALH (Alhama de Murcia). En todos los casos se obtienen coeficientes de correlación excelentes. Los valores de Q para la ventana frecuencial 6-8 Hz se hallan entre 200 y 300, siendo la mayoría de ellos inferiores a 260. El valor mínimo es de 204 y existe un único valor superior a 300 ($Q_c = 481$) con una correlación de 0.73.

Fecha	Hora Origen	Latitud	Longitud	Qc	Qc-1	Correlación	Código
24-sep-98	7H:45:49.5	37.8200	-1.4700	218	4.59E-03	0.9198998	ealh98267a
14-nov-98	3H:09:46.7	38.2100	-0.2100	481	2.08E-03	0.7296652	ealh98318a
27-oct-98	06H35'	37.6200	-1.7400	211	4.73E-03	0.9503499	ealh98300b
02-feb-99	13:22:00	38.0838	-1.4449	233	4.29E-03	0.9391659	ealh99033a
02-feb-99	14:24:00	38.0397	-1.4821	204	4.90E-03	0.9285468	ealh99033d
02-feb-99	17:13:00	38.1100	-1.4216	266	3.75E-03	0.9115706	ealh99033f
02-feb-99	19:22:00	38.0468	-1.4737	240	4.17E-03	0.8965494	ealh99033g
02-feb-99	20:50:00	38.0851	-1.4415	241	4.15E-03	0.958145	ealh99033j
03-feb-99	2:02:00	38.0882	-1.5189	259	3.85E-03	0.9376848	ealh99034b
03-feb-99	6:02:00	38.0186	-1.5280	223	4.48E-03	0.9500027	ealh99034f
07-feb-99	11:52:00	38.0394	-1.4984	221	4.52E-03	0.9779531	ealh99038b
08-feb-99	17:16:00	37.9942	-1.3754	265	3.77E-03	0.9563272	ealh99039a
15-feb-99	11:48:00	38.0494	-1.4747	253	3.96E-03	0.9652398	ealh99046a
16-feb-99	1:31:00	38.0525	-1.4528	224	4.46E-03	0.9547294	ealh99047a

Tabla 6.3 Valores de Q_c para la banda frecuencial 6-8Hz (Todas las correlaciones). Estación EALH (Alhama-Murcia).

Fecha	Hora Origen	Latitud	Longitud	Qc	Qc-1	Correlación	Código
24-oct-98	13H00'	37.0900	-3.3400	308	3.25E-03	0.9784648	egua98297a
26-oct-98	03H17'	36.9800	-4.4700	710	1.41E-03	0.584452	egua98299a
27-oct-98	20H05'	36.5300	-3.3200	353	2.84E-03	0.9170339	egua98300c
01-nov-98	02H42'	36.6300	-2.8400	348	2.88E-03	0.9162455	egua98305a
02-nov-98	20H27'	37.0000	-4.1800	570	1.75E-03	0.6449708	egua98306b
13-nov-98	16H22'	36.5900	-3.3700	302	3.31E-03	0.9634627	egua98317a
14-nov-98	16H47'	36.5000	-3.1800	319	3.13E-03	0.9182418	egua98318b
15-nov-98	18H58'	37.2900	-3.2000	369	2.71E-03	0.908217	egua98319a
21-nov-98	04H25'	35.8300	-4.5900	595	1.68E-03	0.6613152	egua98325a
27-nov-98	20H27'	37.6700	-3.9400	588	1.70E-03	0.8760768	egua98331a
30-dic-98	01H27'	36.9000	-3.8800	405	2.47E-03	0.8969253	egua98364a

La tabla 6.4 presenta los resultados obtenidos para la estación EGUA (Guajares-Granada). Los valores de Q_c son mayores que los obtenidos para EALH siendo el menor de 302 y el mayor de 595. Los valores mayores de 400 presentan las correlaciones más bajas.

La figura 6.7 presenta los diagramas frecuenciales de los valores de Q_c obtenidos. En el Anexo 3 se exponen los resultados obtenidos para todas las estaciones analizadas. Como se ha comentado anteriormente, sólo se consideran valores obtenidos en ajustes con una correlación superior a 0.6.

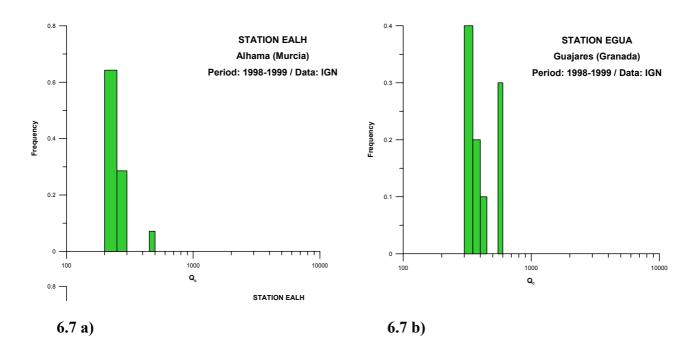


Figura 6.7 Diagrama de frecuencias de valores de Q_c para la región sur. a) Estación EALH (Alhama - Murcia), b) Estación EGUA (Guajares - Granada). En ambos diagramas sólo se han considerado correlaciones superiores a 0.6.

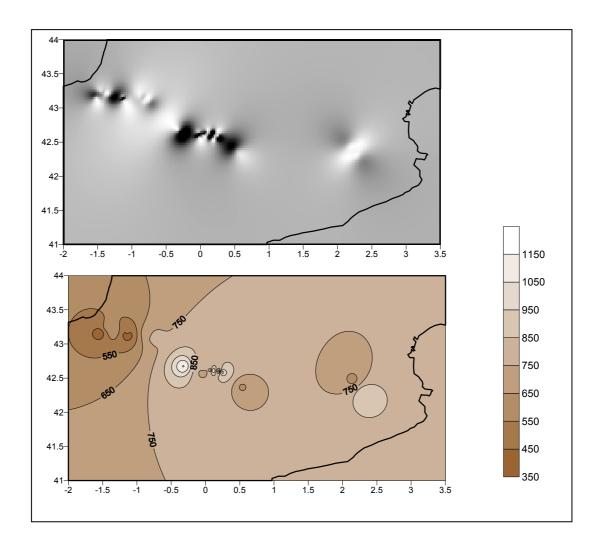
En general, en los ajustes con correlaciones inferiores a este valor se obtienen resultados de Q_c inconsistentes. Se observan variaciones laterales de Q_c debidas a las diferentes características geotectónicas de la región. En la tabla 6.5 se resumen los valores de Q_c dominantes en cada estación de la región sur.

ESTACIÓN	INTERVALO Q _c
ACU / Canalobre / ALICANTE	Mayoría de valores en el intervalo 200-300. Valores singulares de 415, 525, 691 y 890.
EBAN / Baños de la encina / JAEN	Valores dispersos entre 454 y 1009.
EALH / Alhama / MURCIA	Valores entre 200 y 300.
EGUA / Guájar / GRANADA	Valores entre 300 y 400. Valores singulares de 588 y 595.
ECHE / Chera / VALENCIA	Valores de 537 y 819.
ECOG / Cogollos / GRANADA	242, 390, 430, 489 y 1059.
EHUE / Huescar / GRANADA	Valores agrupados en dos intervalos 400-600 y 700-900.
EJIF / Jimena de la Frontera / CADIZ	382, 689 y 1254.
ELIJ / Sierra de Lijar / CADIZ	437, 454 y 666.
ELOJ / Loja / GRANADA	Valores entre 200 y 400.
ELUQ / Luque / CORDOBA	487.
ECOG / Cogollos / GRANADA	Valores entre 600 y 800.
EMAL / MALAGA	Valores entre 400 y 500. Valor singular de 756.
ENIJ / Nijar / ALMERIA	Valores entre 300 y 500.
EQUE / Quentar / GRANADA	Valores entre 200 y 400.
ERIP / Rio Piedras / HUELVA	Valores entre 300 y 500.
ERON / Agrón / GRANADA	Valores entre 400 y 500. Valores singulares de 192, 699 y 881.
EVAL / Valverde del Camino / HUELVA	Valores entre 600 y 800. Valores singulares de 317, 1095 y 1133.
EVIA / Vianos / ALBACETE	Valores entre 600 y 800. Valores singulares de 958, 1117 y 1339.

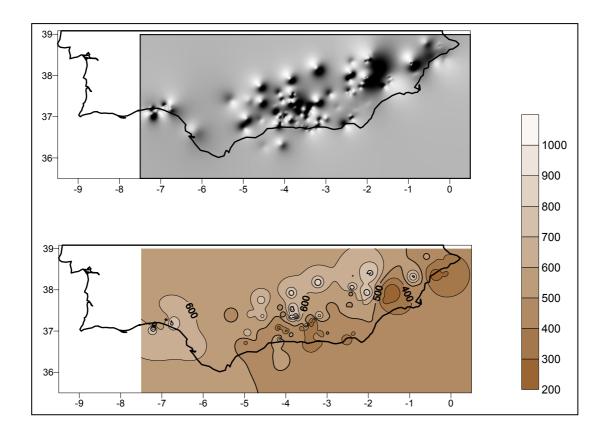
Tabla 6.5 Valores dominantes de Q_c, en la banda frecuencial 6-8Hz, para las estaciones de la región sur (Todas las correlaciones).

6.3 Regionalización

En el apartado 6.2 se han observado variaciones en los factores de calidad. En general estas variaciones están relacionadas con las características geológicas y tectónicas de la región estudiada.


Para visualizar la distribución espacial de Q_c se han dibujado mapas de iso-Q. Para ello se han asignado las determinaciones al punto medio de las correspondientes trayectorias epicentroestación. Este método permite una primera estimación de mapas iso-Q y es un procedimiento
frecuente en la literatura (En China: Jin y Aki, 1987; En Canarias: Canas et al., 1995; En
Almería: Pujades et al., 1997).

La figura 6.8 es el mapa correspondiente a la región noroeste. Se observan valores entre 450 y 1150, hallándose la mayoría de valores entre 700 y 800. Las anomalías observadas, aunque muy condicionadas por la distribución epicentros-estaciones, no se correlacionan con las características geotectónicas del lugar.


Figura 6.8 Mapa de contornos de valores de Q_{7Hz} para la región noroeste de la Península Ibérica.

La figura 6.9 presenta el mapa correspondiente a la región nordeste. Se observan valores más bajos que en la región noroeste. La realidad de los datos disponibles no permite arriesgar comparaciones con la geología y la tectónica si bien, se puede afirmar que no existen contradicciones con estas.

Figura 6.9 Mapa de contornos de valores de Q_{7Hz} para la región nordeste de la Península Ibérica.

Finalmente, la figura 6.10 muestra el mapa obtenido para el sur peninsular. En general se observan valores inferiores a los obtenidos en las regiones situadas en la mitad septentrional de la península. En este caso los picos y valles de la distribución hallada muestran una buena correlación con las características geotectónicas de la región. Parece, con todo, que se produce un ligero desajuste espacial debido, sin duda, a la forma de asignar los valores de Q_c a un punto espacial (el punto medio).

Figura 6.10 Mapa de contornos de valores de Q_{7Hz} para la región sur de la Península Ibérica.

Se observa, en la región sur peninsular, la tendencia de Q a crecer hacia el norte y hacia el oeste. Se detectan anomalías positivas que pueden estar relacionadas con el macizo de los Filabres. También existen valles de Q_c que pueden asociarse a las depresiones de Almería y de Granada. Los desajustes espaciales entre las anomalías de Q_c y estas características geológicas de la zona pueden deberse al modo en que se asignaron los valores de Q_c (Punto medio).

6.4 Dependencia frecuencial

El procedimiento desarrollado en el apartado 6.3 ha sido aplicado de forma sistemática a frecuencias de 1.5, 3, 5, 7 y 9 Hz, obteniéndose resultados similares. Disponer de determinaciones de Q_c a diferentes frecuencias permite analizar la dependencia frecuencial de la atenuación inelástica.

Las tablas 6.6, 6.7 y 6.8 presentan los resultados obtenidos para las regiones noroeste, nordeste y sur respectivamente.

ESTACIÓN	Q_0	ν
ERUA	74	1.10
EMON	105	0.97
ESTS	107	0.92
EZAM	98	1.11

Tabla 6.6 Valores de Q_0 y ν para la región noroeste de la Península Ibérica.

ESTACIÓN	Q_0	ν
EGRA	125	0.90
ELIZ	53	1.12
ETER	78	1.14
ECRI	-	-

Tabla 6.7 Valores de Q_0 y ν para la región nordeste de la Península Ibérica. La estación EROQ no generó resultados.

ESTACIÓN	Q_0	ν
EALH	126	0.35
EACU	62	0.94
EGUA	121	0.55
ECOG	99	0.66
EQUE	90	0.55
ELOJ	86	0.66
ENIJ	95	0.75
EMAL	79	0.94
EHUE	118	0.75
ELUQ	66	1.17

ERON	54	1.08
EVIA	84	1.10
EJIF	93	0.79
EHOR	164	0.73
ELIJ	143	0.64
ЕСНЕ	90	0.92
ERIP	78	0.95
EVAL	108	0.83
EBAN	47	1.38

Tabla 6.8 Valores de Q_0 y ν para la región sur de la Península Ibérica. La estación EPLA no generó resultados.

Para determinar los valores de Q_0 y v en cada estación se han hallado los valores medios de Q para las distintas frecuencias y con estos se ha realizado un ajuste a la ley de dependencia frecuencial de tipo potencial $Q = Q_0 \cdot f^v$. También se ha determinado la misma ley empleando ajustes de todas las determinaciones de Q_c obtenidas a partir de cada evento. Los resultados obtenidos mediante este segundo procedimiento no muestran una buena consistencia. Por tanto se ha optado por el ajuste empleando valores medios dado que los errores son menores y las correlaciones más altas. La misma decisión tomaron Gupta et al. (1998).

La figura 6.11 es un ejemplo en el que se indican las parejas de valores (Q_c, f) para la estación EALH (Alhama-Murcia) y el correspondiente ajuste obtenido. En este caso se obtiene una buena consistencia. No ocurre así en general debido a la heterogeneidad de las áreas tratadas y de las trayectorias de los sismos que se registran en cada estación.

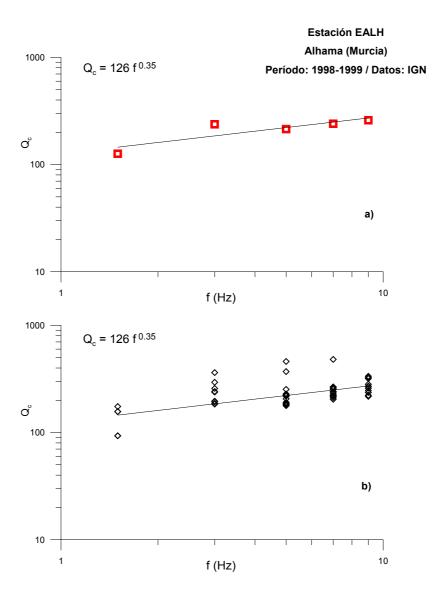


Figura 6.11 Ajuste de la ley de dependencia frecuencial para la estación EALH (Alhama-Murcia). a) Valores de f y Q_c . Donde Q_c son los valores medios de Q_c . b) Valores de f y Q_c para cada sismo.

Los valores de Q_0 obtenidos se hallan en el rango de valores comprendido entre 54 para la estación ERON en el sur y 164 para EHOR también en el sur. Los valores de v se hallan entre 0.35 para EALH y 1.38 para EBAN, ambas en el sur.

Los valores típicos en la región noroeste son 100 para Q_0 y 0.97 para v. En la región nordeste Q_0 disminuye ligeramente siendo v comparable al valor obtenido en la región noroeste. En la región sur se obtienen los valores más bajos tanto para Q_0 como para v, siendo valores típicos inferiores a 100 para Q_0 e inferiores a 1.0 para v.

6.5 Conclusión

Posiblemente, las zonas muestreadas presentan características de atenuación similares, y la realidad de los datos y métodos de análisis disponibles no permiten separar de forma nítida las diferencias entre las tres regiones analizadas.

Por lo que respecta a Q_0 , en líneas generales se obtienen valores más bajos que los resultados globales de Pujades et al. (1990) con valores más cercanos para Q_0 en el sur y en el Pirineo. Las mayores diferencias se observan en la zona noroeste. En el estudio de Pujades no se disponía de ninguna estación en el noroeste, determinándose valores de 400 para Q_0 en esta zona. Estos valores fueron obtenidos por inversión de datos con distancias epicentrales mayores que 500 km y tiempos de coda muy largos y, por lo tanto, correspondientes a zonas litosféricas profundas. Sin embargo en el estudio se apuntaba un decaimiento rápido de Q_0 en la zona que aquí se ha muestreado.

Por otra parte, el estudio de Pujades et al. (1990) utilizaba datos en el rango 0.5-1.5 Hz de forma que los valores de Q_0 eran poco sensibles al exponente v. Además, en aquel estudio, las distancias involucradas eran mayores. En este estudio, se trabaja en un rango amplio de frecuencias y los ajustes de la ley frecuencial en este ancho de banda, generan valores sistemáticamente inferiores a los obtenidos para la frecuencia de 1.5 Hz que, en el sur sí son comparables con los obtenidos por Pujades, et al. (1990) (Ver tablas del anexo A4.3).

Por lo que respecta a *v*, Pujades et al. (1990) daban valores altos en el sur y Pirineos y bajos en el centro peninsular. En este trabajo, en general se obtienen valores altos para v, superiores a 0.77. Los valores del trabajo citado se obtuvieron con datos en la banda frecuencial situada entre 0.5 y 1.5 Hz, mientras que aquí se han empleado datos en la banda situada entre 1.5 y 9Hz con mayor abundancia y calidad de datos en frecuencias centradas en 7Hz (utilizadas para elaborar los mapas de líneas iso-Q).

Nuestra impresión, fundamentada en la observación de las gráficas que representan a Q_c en función de la frecuencia f en un amplio rango frecuencial, es la siguiente,

1. La ley potencial $Q = Q_0 \cdot f^{\vee}$ no es adecuada para representar la dependencia frecuencial en un amplio rango de frecuencias.

- 2. En consecuencia, cuando se utiliza esta ley cabe esperar que el exponente v sea diferente a frecuencias distintas.
- 3. Parece que existe una frecuencia, típica para cada región, en la que se da un cambio rápido de Q_c y de su variación frecuencial. Esta frecuencia típica se situaría entre 3 y 6Hz. Para bajas frecuencias la variación frecuencial sería más fuerte y para altas frecuencias se mostraría más suave.
- 4. Una primera aproximación al problema consistiría, p.e. en hallar la función v = v (f) de forma similar a como se ha efectuado en otros trabajos (Canas, comunicación personal) para las fases PcP y PcS. Probablemente, la explicación física del problema esté en la interacción entre las ondas y los dispersores, fuertemente condicionada por la longitud de onda y la dimensión de los dispersores.
- 5. El ajuste de la ley simplificada en un rango de frecuencias amplio que incluya la mencionada variación brusca de Qc, puede llevar a valores del exponente mayores que los esperados a bajas y altas frecuencias y a valores de Q_0 anormalmente bajos.