
Chapter 4

Numerical Model of Multi-Story
Buildings Equipped with Friction
Dissipators

4.1 Introduction

As a generalization of the previous chapter, a numerical model of the dynamic structural

behavior of symmetric multi-story buildings equipped with friction dissipators (MSBFD) is

proposed in this chapter. As the buildings are symmetric, their behavior is described by two

lumped-mass models (the main frame and the bracing-dissipators combination) with a single

degree-of-freedom per floor, which is the horizontal displacement in the considered direction

(X or Y ). In the following, only such 2D discrete MDOF models are considered.

First of all, the equations of motion of the models are formulated emphasizing that the

number of ’active’ degrees of freedom varies continuously between N and 2N (N is the

number of floors) depending on the sticking-sliding conditions in the dissipators. Next, the

proposed algorithm to solve these equations is described and its implementation in a software

code (ALMA) is presented. Some numerical results obtained with ALMA are displayed

and compared to those obtained with the commercial package ADINA. The agreement is

satisfactory. Finally, some preliminary conclusions about the efficiency of friction dissipators

to reduce the seismic response of buildings are derived.

4.2 Numerical Model of MSBFD

4.2.1 Frame with dissipators

Fig. 4.1 shows a typical 2D structure subjected to lateral forces and a seismic motion.

This structure is known as multi-story building (MSB). If the building incorporates friction
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70 4. Numerical Model of Multi-Story Buildings Equipped with Friction Dissipators

Figure 4.1 2D Multi-story building equipped with friction dissipators modelled as a shear builiding

dissipators at each floor, as in Fig. 4.1, this type of structure will be called multi-story

building with friction dissipators (MSBFD).

4.2.2 Mechanical model

The mechanical model of the structure of Fig. 4.1 is shown in Fig. 4.2 for N = 3. The

free-body diagram of the model of Fig. 4.2 is depicted in Fig. 4.3.

Despite the free-body diagram of Fig.4.3 belongs to a 3-degree-of-freedom system, the

equations of motion will be developed for a generic N -story symmetric building.

4.2.3 Equations of motion

With the forces acting on the free-body diagrams of Fig. 4.3 it is possible to formulate

the equations of motion of a MSBFD modelled as a 2D shear-building with N floors. For

building structures that can not be considered as shear-buildings, a similar combination can

be derived.

The total number of degrees of freedom will range betweenN (no sliding at any dissipator)

and 2N (all dissipators slide simultaneously). Assuming that all Pi(t) = 0, the equations of

motion of the 2N degrees of freedom for the system shown in Fig. 4.3 are:
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Figure 4.2 Mechanical model of a MSBFD (shear-building)

Figure 4.3 Free-body diagram of a MSBFD (shear-building)
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¢
+ c01 ẋ
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−ki+1 (xi+1 − xi)− c0i+1

¡
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...

mN (ẍN + ẍg) + cN (ẋN − ẋN−1) + kN (xN − xN−1) = −FN
m0
N

¡
ẍ0N + ẍg

¢
+ c0N

¡
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¢
+ k0N

¡
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¢
= FN

where ẍg is the ground acceleration; mi, ci and ki are, respectively, the mass, viscous damping

and stiffness coefficients of the i-th floor and m
0
i, c

0
i and k

0
i are the corresponding values for

the bracing-dissipator connection. Fi is the friction force between the dissipator and the

structure (see Eqs. (A.9) and (A.10)). Values of Fi are limited by the corresponding friction

coefficients µi and the prestressing forces Ni (see Chapter 2 and Appendix A):

|Fi| = µiNi (4.1)

The block of 2N equations above can be grouped as:
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
m1 0 0 0

0 m2 0 0

0 0
. . . 0

0 0 0 mN



ẍ1

ẍ2
...

ẍN
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0
3
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ẋ02
...
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
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...
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
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. . . 0
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
The first block deals with the motion of the main structure while the second one deals

with the motion of dissipators. These two sets of equations can be written in matrix form

as

Mss ẍs + (Css +Cdb) ẋs +Cdc ẋd + (Kss +Kdb)xs +Kdc xd

= −Mss r ẍg − F (4.2a)

Mdd ẍd +
³
Cdc

´T
ẋs +Cda ẋd +

³
Kdc

´T
xs +Kda xd

= −Mdd r ẍg +F (4.2b)
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or

"
Mss 0

0 Mdd

#"
ẍs

ẍd

#
+

"
Css +Cdb Cdc¡
Cdc

¢T
Cda

#"
ẋs

ẋd

#

+
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#
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"
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#"
r
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#
ẍg +
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#
(4.3)

where

Mss =


m1 0 0 0

0 m2 0 0

0 0
. . . 0

0 0 0 mN

 = mass matrix of the main structure

Css =


c1 + c2 −c2 0 0

−c2 c2 + c3
. . . 0

0 0
. . . −cN

0 0 −cN cN

 = damping matrix of the main structure

Kss =


k1 + k2 −k2 0 0

−k2 k2 + k3 0 0

0 0
. . . −kN

0 0 −kN kN

 = stiffness matrix of the main structure

xs =


x1

x2
...

xN

 = displacement vector of the main structure

Mdd =


m01 0 0 0

0 m0
2 0 0

0 0
. . . 0

0 0 0 m0
N

 = mass matrix of the braces + dissipators

Cda =


c01 0 · · · 0

0 c02 0
...

... 0
. . . 0

0 · · · 0 c0N


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Cdb =


c02 0 · · · 0

0 c03 0
...

... 0
. . . 0

0 · · · 0 0



Cdc =


0 −c02 0 0

0 0
. . . 0

... 0
. . . −c0N

0 · · · 0 0



Cda +Cdb +Cdc +
³
Cdc

´T
= Cdd =


c01 + c02 −c02 0 0

−c02 c02 + c03
. . . 0

0 0
. . . −c0N

0 0 −c0N c0N


= damping matrix of the bracing system + dissipators

Kda =


k01 0 · · · 0

0 k02 0
...

... 0
. . . 0

0 · · · 0 k0N



Kdb =


k02 0 · · · 0

0 k03 0
...

... 0
. . . 0

0 · · · 0 0



Kdc =


0 −k02 0 0

0 0
. . . 0

... 0
. . . −k0N

0 · · · 0 0



Kda +Kdb +Kdc +
³
Kdc

´T
= Kdd =


k01 + k02 −k02 0 0

−k02 k02 + k03
. . . 0

0 0
. . . −k0N

0 0 −k0N k0N


= stiffness matrix of the bracing system + dissipators
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xd =


x01
x02
...

x0N

 = displacement vector of the bracing system + dissipators

r =


1

1
...

1

 = unit vector

F =


F1

F2
...

FN

 = friction force vector

Superindices s and d account for the structure and for the dissipators, respectively:

xs = [x1, ..., xN ]
T and xd = [x01, ..., x0N ]

T . Dots above vectors xs and xd indicate time

derivatives.

Eqs. (4.2a) and (4.2b) (or its alternative form (4.3)) above derived are also applicable to

any time-varying load P(t). In this case, it is necessary to substitute the right terms of Eqs.

(4.2a) and (4.2b), i.e., −Mss r ẍg − F and −Mdd r ẍg + F, by vectors P(t) − F and 0+F,
respectively.

4.3 Proposed Solution of the Equations of Motion

4.3.1 Previous considerations

It is important to note that Eqs. (4.2a) and (4.2b) are coupled through interaction friction

forces F and crossed matrices Cdb (and (Cdb)T ) and Kdb (and (Kdb)T ). This situation

makes the solution process more difficult. However, the approach presented in this section

is intended to make easy the numerical solution of Eqs. (4.2a) and (4.2b). Through the

entire solution process, these equations will be split in two subsets termed with subindexes

st (sticking condition) and sl (sliding condition). If the total number of sticking floors are

called nst and the total number of sliding floors nsl, thus at any instant N = nst+nsl. Eqs.

(4.2a) and (4.2b) can be written as

Mss (st+slẍ
s) + (Css +Cdb) (st+slẋ

s) +Cdc (st+slẋ
d)

+(Kss +Kdb) (st+slx
s) +Kdc (st+slx

d) = −Mss r ẍg − (st+slF) (4.4)



4.3. Proposed Solution of the Equations of Motion 77

Mdd (st+slẍ
d) +

³
Cdc

´T
(st+slẋ

s) +Cda (st+slẋ
d)

+
³
Kdc

´T
(st+slx

s) +Kda(st+slx
d) = −Mdd r ẍg + (st+slF) (4.5)

where st+slxs is the displacement vector of the main frame:

st+slx
s = [stx1,st x2, . . . ,st xi, . . . ,st xnst,sl x1,sl x2, . . . ,sl xi, . . . ,sl xnsl]

T

and st+slx
d is the displacement vector of the dissipators:

st+slx
d =

£
stx

0
1,st x

0
2, . . . ,st x

0
i, . . . ,st x

0
nst,sl x

0
1,sl x

0
2, . . . ,sl x

0
i, . . . ,sl x

0
nsl

¤T
Displacements st+slxs and st+slx

d can be split to yield the following vectors:

stx
s = [stx1,st x2, . . . ,st xi, . . . ,st xnst]

T

stx
d =

£
stx

0
1,st x

0
2, . . . ,st x

0
i, . . . ,st x

0
nst

¤T (sticking conditions)

and

slx
s = [slx1,sl x2, . . . ,sl xi, . . . ,sl xnsl]

T

slx
d =

£
slx

0
1,sl x

0
2, . . . ,sl x

0
i, . . . ,sl x

0
nsl

¤T (sliding conditions)

Velocities st+slẋs, st+slẋd and accelerations st+slẍs, st+slẍd are split in the same way.

It is important to point out that the degrees of freedom nst and nsl belonging to the

sticking and sliding conditions at each floor, vary continuously through the entire time inte-

gration process.

4.3.2 Proposed algorithm

Eqs. (4.4) and (4.5) are solved numerically, step-by-step, using a modified version of the

linear acceleration method (see Appendix B). This version is a generalization of the direct-

time integration procedure presented in Chapter 3 for SSBFD.

Three nested iteration loops involving the coupling quantities (ẋd, xd, ẋs, xs and F) and

the estimated accelerations (ẍs∗ and ẍd∗) at the step k+1 are performed. The procedure is
described next:
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INITIAL INSTANT t1 = 0

At the first instant, t1 = 0 displacements st+slxs0, st+slx
d
0 and velocities st+slx

s
0, st+slx

d
0

are known. For each floor i there are two possibilities:

1. If ẋi(0) = ẋ0i(0), there is sticking at floor i. The total number of floors under the
sticking condition is nst. Hence, there will be nst equations out of Eq. (4.4) and nst

equations out of (4.5).

2. If ẋi(0) 6= ẋ0i(0), there is sliding at floor i. The total number of floors under the sliding
condition is nsl. Hence, there will be nsl = N − nst equations out of Eq. (4.4) and
nsl equations out of (4.5).

The unknown quantities of the nst equations in Eq. (4.4) are accelerations stẍs0 and

friction forces stF0, while in the remaining nsl equations the unknown quantities are only

the accelerations slẍs0. Friction forces slF0 can be computed using the following expression:

slFi(0) = sgn
£
slẋi(0)− slẋ

0
i(0)

¤
µiNi (i = 1, 2, . . . , nsl) (4.6)

Accelerations slẍs0 can be calculated using the nsl equations of Eq. (4.5) at instant t1:

slẍ
s
0 = sl (M

ss)−1 [− sl(C
ss +Cdb) (st+slẋ

s
0)

− slC
dc (st+slẋ

d
0)− sl(K

ss +Kdb) (st+slx
s
0)

− slK
dc (st+slx

d
0)− slM

ss r ẍg(0)− slF0 ] (4.7)

where left subindices sl refer to the 1, 2, . . . , nsl rows belonging to the nsl equations of the

sliding condition. Hence, matrices sl (Mss)−1, sl(Css+Cdb), slCdc, sl(Kss+Kdb), slKdc and

slM
ss are now of order nsl ×N .
On the other hand, the unknown variables of the nst equations in Eq. (4.5) are again

friction forces stF0 (accelerations stẍd0 are equal to stẍ
s
0) and in the remaining nsl equations,

the unknown quantities are accelerations slẍd0 (friction forces slF0 are obtained using Eq.

(4.6)).

First loop. In order to determine accelerations stẍs0 from Eq. (4.4) it is necessary

to assume initial values of stF0. In further visits to this loop, these values are no longer

assumed, but rather updated. These assumed (or updated) values will be called stF∗0. Thus,
accelerations stẍs0 can be calculated using the nst equations of Eq. (4.4) at instant t1:

stẍ
s
0 = st (M

ss)−1 [− st(C
ss +Cdb) (st+slẋ

s
0)

− stC
dc (st+slẋ

d
0)− st(K

ss +Kdb) (st+slx
s
0)

− stK
dc (st+slx

d
0)− stM

ss r ẍg(0)− stF
∗
0 ] (4.8)
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Go to the second loop.

Second iteration loop. After the values of accelerations stẍs0 and slẍ
s
0 have been calcu-

lated with Eqs. (4.8) and (4.7), friction forces stF0 can be obtained using the corresponding

nst equations of (4.5). Initial values of accelerations slẍd0, termed slẍ
d∗
0 , are assumed (or

updated).

stF0 = stM
dd (st+slẍ

d∗
0 ) + st(C

dc)T (st+slẋ
s
0)

+ stC
da (st+slẋ

d
0) + st(K

dc)T (st+slx
s
0)

+ stK
da(st+slx

d
0) + stM

dd r ẍg(0) (4.9)

where st+slẍ
d∗
0 =

£
stẍ

d
0,sl ẍ

d∗
0

¤T
. The left subindices st refer to the 1, 2, . . . , nst rows

belonging to the nst equations of the sticking condition. Hence, matrices stMdd, st(Cdc)T ,

stC
da, st(Kdc)T , and stK

da are now of order nst×N .

1. If stFi(0) = stF
∗
i (0)± εf (where εf is the prescribed tolerance) it is necessary to check

the following:

(a) If |stFi(0)| < µiNi go to the third loop.
(b) If |stFi(0)| ≥ µiNi then stFi(0) is set equal either to µiNi if stFi(0) ≥ µiNi, or

to −µiNi if stFi(0) < −µiNi. A sliding condition at floor i will be considered for
next instant t2. Go to the third loop

2. If stFi(0) 6= stF
∗
i (0)± εf , the new (updated) value of stF ∗i (0) is set equal to the stFi(0)

just calculated with Eq. (4.9). Go to the first loop.

Third iteration loop. After the values of accelerations stẍs0, slẍ
s
0 and friction forces

stF0 have been calculated, accelerations slẍd0 can be determined using the nsl equations of

(4.5) at instant t1:

slẍ
d
0 = sl(M

dd)−1 [− sl(C
dc)T (st+slẋ

s
0)

− slC
da (st+slẋ

d
0) + sl(K

dc)T (st+slx
s
0)

− slK
da(st+slx

d
0)− slM

dd r ẍg(0) + slF0] (4.10)

where left subindices sl refer to the 1, 2, . . . , nsl rows belonging to the nsl equations of the

sliding condition. Hence, matrices sl(Mdd)−1, sl(Cdc)T , slCda, sl(Kdc)T , slKda and slM
dd

are now of order nsl ×N .

1. If slẍ0i(0) = slẍ
0∗
i (0)± εa (where εa is the prescribed tolerance) go to next instant t2.
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2. If slẍ0i(0) 6= slẍ
0∗
i (0)± εa, the new (updated) value of slẍ0∗i (0) is set equal to the slẍ

0
i(0)

calculated with Eq. (4.10). Go to the second loop.

ANY INSTANT tk+1

At each generic instant k + 1 Eqs. (4.4) and (4.5) become, respectively

Mss
¡
st+slẍ

s
k+1

¢
+ (Css +Cdb)

¡
st+slẋ

s
k+1

¢
+Cdc (st+slẋ

d
k+1) + (K

ss +Kdb)
¡
st+slx

s
k+1

¢
+Kdc (st+slx

d
k+1) = −Mss r ẍg(tk+1)− (st+slFk+1 ) (4.11)

Mdd (st+slẍ
d
k+1) +

³
Cdc

´T
(st+slẋ

s
k+1)

+Cda (st+slẋ
d
k+1) +

³
Kdc

´T
(st+slx

s
k+1)

+Kda(st+slx
d
k+1) = −Mdd r ẍg(tk+1) + (st+slFk+1) (4.12)

The response is computed from the one at previous instant k. It is initially assumed that

the sticking-sliding conditions in the dissipators at instant k are the same at k + 1. There

are two possibilities:

1. If there was sticking at instant k at floor i, it is assumed that there is sticking at instant

k + 1 at floor i. The total number of floors under the sticking condition is nst. There

will be nst equations out of Eq. (4.11) and nst equations out of (4.12).

2. If there was sliding at instant k at floor i, it is assumed that there is sliding at instant

k + 1 at floor i. The total number of floors under the sliding condition is nsl. There

will be nsl = N − nst equations out of Eq. (4.11) and nsl equations out of (4.12).
Initial conditions. Conversely to initial instant t1, at each instant k+1 displacements

st+slx
s
k+1, st+stx

d
k+1 and velocities st+slẋ

s
k+1, st+slẋ

d
k+1 are unknown. Hence it is necessary

to set some values for these quantities. Initial values of displacements and velocities are

calculated using the interpolation criterion considered in the linear acceleration method

[1, 61]:

stx
s
k+1 = stx

s
k +∆t stẋ

s
k +

(∆t)2

6

¡
2 stẍ

s
k + stẍ

s∗
k+1

¢
(4.13a)

slx
s
k+1 = slx

s
k +∆t slẋ

s
k +

(∆t)2

6

¡
2 slẍ

s
k + slẍ

s∗
k+1

¢
(4.13b)

stẋ
s
k+1 = stẋ

s
k +
∆t

2

¡
stẍ

s
k + stẍ

s∗
k+1

¢
(4.13c)

slẋ
s
k+1 = slẋ

s
k +
∆t

2

¡
slẍ

s
k + slẍ

s∗
k+1

¢
(4.13d)
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stx
d
k+1 = stx

d
k +

¡
stx

s
k+1 − stx

s
k

¢
(4.14a)

slx
d
k+1 = slx

d
k +∆t slẋ

d
k +

(∆t)2

6

³
2 slẍ

d
k + slẍ

d∗
k+1

´
(4.14b)

stẋ
d
k+1 = stẋ

s
k+1 (4.14c)

slẋ
d
k+1 = slẋ

d
k +
∆t

2

³
slẍ

d
k + slẍ

d∗
k+1

´
(4.14d)

where stẍ
s∗, slẍs∗ are the accelerations on each floor of the main structure, stẍs∗, slẍs∗ are

the accelerations of each dissipator (subindexes k and k + 1 refer to instants k and k + 1,

respectively) and ∆t is the time increment.

First iteration loop. With the calculated (or updated) values of st+slxsk+1, st+stx
d
k+1

and st+slẋ
s
k+1, st+slẋ

d
k+1, accelerations stẍ

s
k+1 can be calculated from Eq. (4.11):

st+slẍ
s
k+1 = (Mss)−1 [− (Css +Cdb) ¡st+slẋsk+1¢− Cdc (st+slẋdk+1)

−(Kss +Kdb)
¡
st+slx

s
k+1

¢−Kdc (st+slx
d
k+1)

−Mss r ẍg(tk+1)− (st+slF∗k+1 )] (4.15)

where st+slF
∗
k+1 =

£
stF

∗
k+1,slFk+1

¤T . The friction force vector of the sticking condition,
stF

∗
k+1, is initially set equal to stFk and it is eventually updated (see second loop). slFk+1

is the friction force vector of the sliding condition. This vector is initially set equal to slFk.

1. If st+sl (ẍi)k+1 = st+sl (ẍ
∗
i )k+1 ± εa (where εa is the prescribed tolerance) go to the

second loop.

2. If st+sl (ẍi)k+1 6= st+sl (ẍ
∗
i )k+1 ± εa, the new (updated) value of st+sl (ẍ∗i )k+1 is set

equal to st+sl (ẍi)k+1. Go to initial conditions.

Second iteration loop. With the calculated (or updated) values of displacements

st+slx
s
k+1, st+stx

d
k+1 and velocities st+slẋ

s
k+1, st+slẋ

d
k+1, friction forces stF

∗
k+1 can be calcu-

lated using the nst equations of Eq. (4.12):

stFk+1 = stM
dd(st+slẍ

d
k+1) + st(C

dc)T
¡
st+slẋ

s
k+1

¢
− stC

da (st+slẋ
d
k+1) + st(K

dc)T
¡
st+slx

s
k+1

¢
+ stK

da (st+slx
d
k+1) + stM

dd r ẍg(tk+1) (4.16)

1. If st (Fi)k+1 = st (F
∗
i )k+1 ± εf (where εf is the prescribed tolerance) it is necessary to

check the following:
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(a) If
¯̄
st (Fi)k+1

¯̄
< µiNi go to the third loop.

(b) If
¯̄
st (Fi)k+1

¯̄ ≥ µiNi then st (Fi)k+1 is set equal either to µiNi if st (Fi)k+1 ≥ µiNi,
or to −µiNi if st (Fi)k+1 < −µiNi. Go to the third loop.

2. If st (Fi)k+1 6= st (F
∗
i )k+1 ± εf , the new (updated) value of st (F ∗i )k+1 is set equal to

the st (Fi)k+1 just calculated with Eq. (4.16). Go to the first loop.

Third iteration loop. With the calculated (or updated) values of displacements

st+slx
s
k+1, st+stx

d
k+1 and velocities st+slẋ

s
k+1, st+slẋ

d
k+1, accelerations slẍ

d
k+1 can be deter-

mined using the nsl equations of Eq. (4.12):

slẍ
d
k+1 = sl(M

dd)−1[− sl(Cdc)T
¡
st+slẋ

s
k+1

¢
− slCda (st+slẋdk+1)− sl(K

dc)T
¡
st+slx

s
k+1

¢
− slKda (st+slx

d
k+1)− slM

dd r ẍg(tk+1) + slFk+1] (4.17)

1. If sl (ẍ0i)k+1 = sl (ẍ
0∗
i )k+1± εa (where εa is the prescribed tolerance) go to final consid-

erations.

2. If sl (ẍ0i)k+1 6= sl (ẍ
0∗
i )k+1± εa, the new (updated) value of sl (ẍ0∗i )k+1 is set equal to the

sl (ẍ
0
i)k+1 calculated with Eq. (4.17). Go to initial conditions.

Final considerations. As said before, at each sampling instant k + 1 it is initially
assumed that the condition of the previous instant k keeps for each i floor. However, during

instant k + 2 such a condition can change. Thus, after the fulfillment of the established

conditions for the above iteration loops, the sliding-sticking condition at the i-th dissipator

must be checked before going to next instant k+2. At each i-th floor, two possibilities must

be considered:

1. If there was sticking, each computed value of the friction force, st (Fi)k+1, is compared

to µiNi:

(a) If
¯̄
st (Fi)k+1

¯̄
< µiNi the sticking condition at the i-th floor keeps at instant k+2.

Go to instant k + 2.

(b) If
¯̄
st (Fi)k+1

¯̄ ≥ µiNi there is sliding and therefore st (Fi)k+1 is either set equal to
µiNi if st (Fi)k+1 ≥ µiNi or to −µiNi if st (Fi)k+1 < −µiNi. A sliding condition
at the i-th floor must be considered at instant k + 2. Go to instant k + 2.

2. If there was sliding, each value of the relative velocity (slẋi − slẋ
0
i)k+1 is computed;

(a) if (slẋi − slẋ
0
i)k (slẋi − slẋ

0
i)k+1 > 0, the sliding condition keeps at k + 2 (i.e.,

there is no change in the direction of relative motion). Go to instant k + 2.
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(b) if (slẋi − slẋ
0
i)k (slẋi − slẋ

0
i)k+1 ≤ 0 there is sticking. Moreover, the fulfillment of

inequality (slẋi − slẋ
0
i)k (slẋi − slẋ

0
i)k+1 ≤ 0 could mean that, instead of sticking,

there has been a change in the direction of the relative motion and the sliding

condition continues in the opposite direction. Despite this last possibility, at next

instant k + 2 a sticking condition will be considered. Go to instant k + 2.

The above algorithm is displayed, in a simpler manner, in the flowchart shown in Fig.

4.4.

4.3.3 Stability and accuracy

The following values of time increment ∆t and acceleration and force tolerances, εa and εf ,

were proved to be good to yield enough stability and acccuracy:

∆t = TF /200

εa = PGA/100000

εf = µN/100000

where TF is the fundamental period of the bare frame. The maximum absolute value of the

ground acceleration, |ẍg|max, could be used instead of the PGA (peak ground acceleration),
if necessary.

4.3.4 ALMA program

The ALMA (Automatic nonLinearMatrixAnalysis) program holds the algorithm described
above [62]. It is a FORTRAN 77 source code and is intended to solve the equations of motion

of MSBFD. The input data have to be defined by the user in plain text files. In one file,

for example, for a sinusoidal driving force, the values of P0, ω̄, µN have to be defined for

each level. In other file, the time increment ∆t and the tolerances for accelerations εa and

for sliding thresholds εf are set. In a third file, the property matrices of the main structure

Mss, Css, Kss and those of the bracing and dissipators Mdd, Cdd, Kdd must be defined.

ALMA reads the input data files and determines the dynamic response for each floor.

The output data are saved as text files which can be visualized later with a graphics package

(i.e., EXCEL R°). In fact, the time-history responses shown in this work were obtained in
such a way. This procedure is illustrated in the block diagram of Fig. 4.5.
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Figure 4.4 Flowchart of the proposed algorithm (ALMA program)
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Figure 4.5 Procedure of data processing
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Parameter Main frame Bracing + dissipators
1st floor 2nd floor 3rd floor 1st floor 2nd floor 3rd floor

Mass, lb·s/in2 259.0 259.0 129.5 1.0 1.0 0.5
Ib, in4 ∞ ∞ ∞
Ic, in4 354.102 236.068 118.034
A, in2 0.5490 1.0979 1.6469
H, in 118.0 118.0 118.0
L, in 196.8 196.8 196.8

Table 4.1 Properties of the frame of Fig. 4.6

4.4 Practical Applications

4.4.1 Pulse loading on a 3-story building

As a first example of solution using ALMA, the dynamic response of the 3-story building of

Fig. 4.6 affected for a pulse loading acting on the second floor, will be studied.

4.4.1.1 Description of the structure

The structure consists of three stories, each one holds a friction dissipator between the girder

and the top of the braces, as shown in Fig. 4.6. The values registered in Table 4.1 were

considered to determine the dynamic properties of the structure. The data belonging to the

main frame were obtained from an example studied in [1]. The stiffness matrix of the main

frame was determined assuming infinitely rigid beams (E = 29 × 106 psi) and the matrix
stiffness of the bracing system was calculated neglecting its compression resistance. The

damping matrix of the main frame was calculated using the classical modal approach [1, 61]:

ξ1 = 0.0275, ξ2 = 0.0877 and ξ3 = 0.1003.

The data obtained with the values of Table 4.1 in matrix and vector forms are given next:
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Figure 4.6 3-story building equipped with friction dissipators in each floor

Mss =

 259.0 0 0

0 259.0 0

0 0 129.5

 lb·in/s2

Css =

 1375.260 −375.067 −125.070
−375.067 875.120 −375.140
−125.070 −375.140 375.060

 lb·in/s

Kss =

 250.0 −100.0 0

−100.0 150.0 −50.0
0 −50.0 50.0

× 103 lb/in

Tss =

 0.57080.2611

0.1791

 s
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Mdd =

 1.0 0 0

0 1.0 0

0 0 0.5

 lb·in/s2

Cda = Cdb = Cdc = Cdd =

 0 0 0

0 0 0

0 0 0



Kda =

 127.5 0 0

0 85.0 0

0 0 42.5

× 103 lb/in

Kdb =

 85.0 0 0

0 42.5 0

0 0 0

× 103 lb/in

Kdc =

 0 −85.0 0

0 0 −42.5
0 0 0

× 103 lb/in
In this case, the ground acceleration ẍg(t) = 0 and P(t) = [0, P2(t), 0]

T . P2(t) is depicted

in Fig. 4.7.

The sliding thresholds µ1N1, µ2N2 and µ3N3 are set equal respectively, to 20 kips, 25

kips and 10 kips. A time increment of 0.0005 s is used and the total time of analysis is 0.8

s. The prescribed tolerances are set equal to εa = 0.01 in/s2 and εf = 0.1 lb.

4.4.1.2 Results

The third floor interstory drift response of the MSBFD for the main frame is shown in Fig.

4.8. In this figure the dissipator displacement is also plotted. The thresholds for each sliding

force are defined by the two horizontal lines drawn in each case.

The hysteresis loops of the third floor are depicted in Fig. 4.9. As in the case of SSBFD

considered in Chapter 3, these hysteresis loops are rectangular.

The energy time-histories of the entire structure are plotted in Fig. 4.10.

4.4.2 Ground acceleration on a benchmark building

4.4.2.1 Description of the structure

The next structure is classified as a benchmark problem. The dimensions and the properties

are shown in Fig. 4.11 [63]. The cross sections of the braces are all equal to 118.71 cm2. All

braces work both in tension and compression.
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Figure 4.9 Third floor hysteresis loops of the MSBFD for the pulse loading
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Figure 4.11 3-story building classified as a bench mark problem

The modal damping ratios of the bare frame are, respectively, ξ1 = 0.02, ξ2 = 0.01451

and ξ3 = 0.02. For the bracing system and FDs, the damping ratios were considered zero.

The values ofMss, Css, Kss, Mdd, Cda, Cdb, Cdc, Kda, Kdb, and Kdc are:

Mss =

 4.78 0 0

0 4.78 0

0 0 5.18

 × 105 kg

Css =

 509.253 −221.488 38.679

−221.488 394.427 120.313

38.679 120.313 197.705

 kN·s/m

Kss =

 436.575 −237.345 41.445

−237.345 313.526 −128.930
41.445 −128.930 93.585

 MN/m

Tss =

 1.01010.3268

0.1715

 s
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Mdd =

 350.11 0 0

0 350.11 0

0 0 350.11

 kg

Cda = Cdb = Cdc = Cdd =

 0 0 0

0 0 0

0 0 0



Kda =

 45.664 0 0

0 45.664 0

0 0 45.664

 MN/m

Kdb =

 45.664 0 0

0 45.664 0

0 0 0

 MN/m

Kdc =

 0 −45.664 0

0 0 −45.664
0 0 0

 MN/m

In this case, all Pi(t) = 0 and the values of ẍg(t) correspond to the accelerogram of the

Northridge earthquake (Santa Monica station, Calif., 90◦ component, January 17, 1994),
shown in Fig. 3.13. Since no amplification factor was considered, PGA = 1.742g. In this

case a time increment of 0.00125 s was used and the total time of analysis was 10 s. The

prescribed tolerances were εa = 0.01 cm/s2 and εf = 1.0 N.

The sliding thresholds for the three dissipators are, respectively, µ1N1 = 834.095 kN,

µ2N2 = 740.831 kN and µ3N3 = 43.510 kN.

4.4.2.2 Results

The hysteresis loops of the third floor is shown in Fig. 4.12. As expected, such loops are

rectangular.

The energy time-histories of the entire structure are shown in Fig. 4.13.

4.4.3 Ground acceleration on a 10-story building

4.4.3.1 Description of the structure

This last analyzed structure consists of a 10-story building equipped with FDs in each floor.

The values of matrices Mss, and Kss can be found in [46]. Matrix Css was calculated

considering all ξi = 0.02. MatricesM
dd, Cda, Cdb, Cdc were considered null; Kda, Kdb, and

Kdc were determined using the coefficients given in [46]. The values of the sliding thresholds,
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Figure 4.12 Third floor hysteresis loops of the benchmark building for a seismic input
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Figure 4.13 Energy response of the benchmark building for a seismic input
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Figure 4.14 Displacement response of a 10-story building equipped with FDs and subjected to El
Centro earthquake

µiNi, are also given in [46]. The tolerances used were, again, εa = 0.01 cm/s
2 and εf = 1.0

N.

The seismic input used in this case was the El Centro earthquake, N-S component,

PGA = 0.40g. The time increment was 0.00125 s and the total time of analysis was 15 s.

4.4.3.2 Results

Fig. 4.14 shows a comparison between the top floor response obtained using ALMA and

the one displayed in [46]. The difference between both plots might be due to the different

models employed, since in [46] a elastic-perfectly plastic law was used. Nevertheless, some

similarities can be observed.

4.5 Comparison between ALMA and ADINA

4.5.1 Agreement of results

As in the case of the SSBFD, in this section a comparison of results between the proposed

algorithm (ALMA program) and ADINA is presented. This comparison is made with respect

to the displacements of each floor relative to the ground.
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Figure 4.15 Comparison of first floor displacements between ALMA and ADINA for the pulse
loading

In Figs. 4.15, 4.16 and 4.17 the interstory drift response for the pulse loading are pre-

sented, while and in Figs. 4.18, 4.19 and 4.20 the interstory drift response for the ground

acceleration are shown. In each figure, the black line corresponds to the results obtained

using ALMA, while the grey line shows the results obtained with ADINA. The agreement

between both programs is good.

4.5.2 Computational efficiency

A comparison between the performances of ALMA and ADINA has been carried out. In

virtually all of the cases significant differences have been found showing that ALMA is faster

and requires less memory allocation. A description of an illustrative example is described

next. The structure considered for the simulation is the benchmark building of Fig. 4.11.

The building is subjected to a seismic input of 15 s of duration. The main features of the

computer machine used in this test are: Pentium II processor at 233 MHz and 96 MB RAM.

In order to get comparable results no additional software has been running at the same time.

For both programs, the lengths of the discretization periods have been chosen as long as

possible to obtain enough stability and accuracy. For ADINA the CPU time was 15 minutes

and 500 MB HD memory was required, while for ALMA the CPU time was 3 minutes 20

seconds and no significant memory allocation was necessary. For further details, the system
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Figure 4.16 Comparison of second floor displacements between ALMA and ADINA for the pulse
loading
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Figure 4.17 Comparison of third floor displacements between ALMA and ADINA for the pulse
loading
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Figure 4.18 Comparison of first floor displacements between ALMA and ADINA for the Northridge
earthquake
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Figure 4.19 Comparison of second floor displacements between ALMA and ADINA for the
Northridge earthquake
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Figure 4.20 Comparison of third floor displacements between ALMA and ADINA for the Northridge
earthquake

monitors for both programs are displayed in Fig. 4.21.

4.6 Efficiency of Friction Dissipators

As seen in Chapter 3, FDs are able to reduce the dynamic response of building structures

subjected to lateral loads. For example, for the case of the pulse loading above studied,

Figs. 4.22, 4.23 and 4.24 show comparisons between the displacements of the MSBFD and

those of the bare frame (MSB with all µiNi = 0). The black lines correspond to the MSBFD

(protected frame) inter-story drifts and the grey ones show the bare frame responses.

For the case of the seismic input, Figs. 4.25, 4.26 and 4.27 show comparisons between

the displacements of the MSBFD and those of the bare frame. Again, the black lines belong

to MSBFD (protected frame) interstory drifts and the grey ones belong to the bare frame

responses.

As illustrated in the comparisons of Figs. 4.22, 4.23, 4.24, 4.25, 4.26 and 4.27, a significant

reduction of the dynamic response of building structures subjected to lateral vibrations can

be reached. More numerical analyses have been carried out, yielding similar conclusions.

Chapter 6 presents a methodology to investigate more deeply the capacity of friction

dissipators to reduce the seismic response of buildings.
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Figure 4.21 Comparison between the system monitors for ALMA and ADINA
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Figure 4.22 Comparison of x1 displacements between the MSBFD and a bare frame for the pulse
loading
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Figure 4.23 Comparison of relative displacements x2 − x1 between the MSBFD and a bare frame
for the pulse loading
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Figure 4.24 Comparison of relative displacements x3 − x2 between the MSBFD and a bare frame
for the pulse loading
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Figure 4.25 Comparison of displacements x1 between the MSBFD and a bare frame for the
Northridge earthquake
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Figure 4.26 Comparison of relative displacements x2 − x1 between the MSBFD and a bare frame
for the Northridge earthquake

-10 .0

-8 .0

-6 .0

-4 .0

-2 .0

0 .0

2 .0

4.0

6.0

8.0

10.0

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

T im e t  (s)

R
el

at
iv

e 
di

sp
la

ce
m

en
t x

3 
- x

2 
(c

m
)

M SB FD
Bare fram e

Figure 4.27 Comparison of relative displacements x3 − x2 between the MSBFD and a bare frame
for the Northridge earthquake


