UNIVERSITAT POLITÈCNICA DE CATALUNYA

Departament d'Enginyeria Electrònica

"MODELOS NO LINEALES Y CONTROL EN MODO DESLIZAMIENTO DE CONVERTIDORES DE ESTRUCTURA RESONANTE"

Autor: Miguel Castilla Fernández Director: Jose Luis García de Vicuña

Mayo de 1998

AGRADECIMIENTOS

Quisiera agradecer a los profesores:

- Joan Peracaula i Roura, Catedrático de Universidad, *Universitat Politècnica de Catalunya*,
- Joan Majó i Roca, Catedrático de Escuela Universitaria, *Universitat Politècnica de Catalunya*,
- Javier Uceda Antolín, Catedrático de Universidad, Universidad Politécnica de Madrid,
- Francisco Javier Sebastián Zuñiga, Catedrático de Universidad, Universidad de Oviedo,
- Leopoldo García Franquelo, Catedrático de Universidad, Universidad de Sevilla,

por haber aceptado formar parte del tribunal de esta tesis, y en especial, a Javier Uceda y Javier Sebastián por las sugerencias y observaciones que me han hecho llegar como revisores del trabajo.

También deseo expresar mi más sincero agradecimiento a todas las personas que han colaborado directa o indirectamente en la realización de este trabajo.

Especialmente a Luis García de Vicuña, por la brillante dirección de la tesis y de los trabajos de investigación realizados durante estos últimos años.

A Jaume Ordinas, por su participación en los primeros trabajos teóricos con convertidores resonantes y control en modo de deslizamiento.

A Mariano López, por recoger con tanto acierto el testigo dejado por Jaume, por su constante y correcta dedicación al estudio de diversas aplicaciones de los convertidores de alta frecuencia, y además, por su apoyo y amistad.

De nuevo a Mariano, y también a Genís Chapinal, Tolo Torres y David Peña por la realización de los montajes y los ensayos de laboratorio.

A Toni Sánchez, Pere Gaya, Pepe Matas y Oscar López, por el soporte y actuaciones puntuales en relación a algunos temas tratados, y además, por formar parte, junto a Luis y Mariano, del grupo de potencia de Vilanova.

También a Carmen Rueda, por sus expertas recomendaciones sobre los aspectos relacionados con la redacción del lenguaje técnico.

Por último, mi especial agradecimiento a Ana Ruth y a mis padres, sin los que este trabajo hubiese sido irrealizable.

Gracias a todos.

ÍNDICE

1.	1111	ODUCCION	
	1.1.	GENERALIDADES	1
	1.2.	CLASIFICACIÓN DE CONVERTIDORES RESONANTES	2
	1.3.	MODELADO Y CONTROL DE CONVERTIDORES RESONANTES	3
	1.4.	OBJETIVOS DE LA TESIS	7
2.	CON	VERTIDORES DE ESTRUCTURA RESONANTE OPERANDO	
	A FR	ECUENCIA DE RESONANCIA	
	2.1.	INTRODUCCIÓN	9
	2.2.	CONVERTIDOR RESONANTE SERIE	10
	2.3.	CONVERTIDOR RESONANTE SERIE CON DOS ACCIONES DE	٠
		CONTROL	14
	2.4.	CONVERTIDOR RESONANTE PARALELO	19
	2.5.	CONVERTIDOR RESONANTE SERIE-PARALELO	23
	2.6.	CONCLUSIONES	25
3.	MOD	ELOS NO LINEALES DE CONVERTIDORES DE ESTRUCTURA	
	RESC	DNANTE	
	3.1.	INTRODUCCIÓN	26
	3.2.	FORMULACIÓN DE UN MODELO PROMEDIADO NO LINEAL	
		3.2.1. Clasificación de las variables de estado	27
		3.2.2. Promediado de la ecuación de estado	27
		3.2.3. Límites de validez del modelo	29
	3.3.	APLICACIÓN DEL MODELO NO LINEAL A UN CONVERTIDOR	
		RESONANTE SERIE CONTROLADO EN FRECUENCIA	
		3.3.1. Clasificación de las variables de estado	30
		3.3.2. Modelo promediado no lineal	31
		3.3.3. Análisis en régimen estacionario	32
		3.3.4. Verificación del modelo mediante simulación	33

	3.4.	APLICACION DEL MODELO NO LINEAL A CONVERTIDORES	
		RESONANTES QUANTUM SERIE	
		3.4.1. Modelo promediado no lineal	34
		3.4.2. Análisis en régimen estacionario	36
		3.4.3. Modo de conducción discontinua	38
		3.4.4. Resultados de simulación	42
	3.5.	APLICACIÓN DEL MODELO NO LINEAL A CONVERTIDORES	
		RESONANTES QUANTUM PARALELO	
		3.5.1 Modelo promediado no lineal	47
		3.5.2. Análisis en régimen estacionario	48
		3.5.3. Modo de conducción discontinua	50
		3.5.4. Resultados de simulación	51
	3.6.	APLICACIÓN DEL MODELO NO LINEAL A UN CONVERTIDOR	
		RESONANTE QUANTUM SERIE-PARALELO	
		3.6.1 Modelo promediado no lineal	51
		3.6.2. Análisis en régimen estacionario	56
		3.6.3. Resultados de simulación	57
	3.7.	CONCLUSIONES	57
4.	CON	TROL EN MODO DE DESLIZAMIENTO DE REGULADORES	
τ.		MUTADOS BASADOS EN CONVERTIDORES RESONANTES	
	CON	MUTADOS BASADOS EN CONVERTIDORES RESUNANTES	
	4.1.	CONTROL DE CONVERTIDORES RESONANTES QUANTUM	62
	4.2.	DISEÑO DE CONTROLADORES EN MODO DE DESLIZAMIENTO	
		BASADO EN EL MÉTODO DEL CONTROL EQUIVALENTE	
			63
		BASADO EN EL MÉTODO DEL CONTROL EQUIVALENTE	63 64
		BASADO EN EL MÉTODO DEL CONTROL EQUIVALENTE 4.2.1. Introducción	
		BASADO EN EL MÉTODO DEL CONTROL EQUIVALENTE 4.2.1. Introducción 4.2.2. Modelado del sistema y estructura del controlador	64
		BASADO EN EL MÉTODO DEL CONTROL EQUIVALENTE 4.2.1. Introducción 4.2.2. Modelado del sistema y estructura del controlador 4.2.3. Condiciones para la existencia de un régimen deslizante	64 64
		BASADO EN EL MÉTODO DEL CONTROL EQUIVALENTE 4.2.1. Introducción 4.2.2. Modelado del sistema y estructura del controlador 4.2.3. Condiciones para la existencia de un régimen deslizante 4.2.4. Control equivalente	64 64 66
		BASADO EN EL MÉTODO DEL CONTROL EQUIVALENTE 4.2.1. Introducción 4.2.2. Modelado del sistema y estructura del controlador 4.2.3. Condiciones para la existencia de un régimen deslizante 4.2.4. Control equivalente 4.2.5. Dominio de atracción	64 64 66 68
	4.3.	BASADO EN EL MÉTODO DEL CONTROL EQUIVALENTE 4.2.1. Introducción 4.2.2. Modelado del sistema y estructura del controlador 4.2.3. Condiciones para la existencia de un régimen deslizante 4.2.4. Control equivalente 4.2.5. Dominio de atracción 4.2.6. Diseño de las leyes de control	64 64 66 68
	4.3.	BASADO EN EL MÉTODO DEL CONTROL EQUIVALENTE 4.2.1. Introducción 4.2.2. Modelado del sistema y estructura del controlador 4.2.3. Condiciones para la existencia de un régimen deslizante 4.2.4. Control equivalente 4.2.5. Dominio de atracción 4.2.6. Diseño de las leyes de control 4.2.7. Conclusiones	64 64 66 68
	4.3.	BASADO EN EL MÉTODO DEL CONTROL EQUIVALENTE 4.2.1. Introducción 4.2.2. Modelado del sistema y estructura del controlador 4.2.3. Condiciones para la existencia de un régimen deslizante 4.2.4. Control equivalente 4.2.5. Dominio de atracción 4.2.6. Diseño de las leyes de control 4.2.7. Conclusiones DISEÑO DE CONTROLADORES EN MODO DE DESLIZAMIENTO	64 64 66 68
	4.3.	BASADO EN EL MÉTODO DEL CONTROL EQUIVALENTE 4.2.1. Introducción 4.2.2. Modelado del sistema y estructura del controlador 4.2.3. Condiciones para la existencia de un régimen deslizante 4.2.4. Control equivalente 4.2.5. Dominio de atracción 4.2.6. Diseño de las leyes de control 4.2.7. Conclusiones DISEÑO DE CONTROLADORES EN MODO DE DESLIZAMIENTO BASADO EN EL SEGUNDO MÉTODO DE LYAPUNOV	64 64 66 68 68

		4.5.5. Diseño de las superficies de deslizamiento y las leyes de control	/1
		4.3.4. Aplicación a convertidores resonantes Quantum	73
		4.3.5. Realización de los controladores	77
		4.3.6. Resultados de simulación	7 9
		4.3.7. Conclusiones	84
	4.4.	CONTROLADORES BASADOS EN SUPERFICIES DE DESLIZA-	
		MIENTO CON TÉRMINOS INTEGRALES	
		4.4.1 Introducción	86
		4.4.2. Existencia de error en régimen estacionario	86
		4.4.3. Superficies de deslizamiento con términos integrales	88
		4.4.4. Diseño de los controladores	90
		4.4.5. Realización de los controladores	96
		4.4.6. Resultados de simulación	100
		4.4.7. Conclusiones	110
	4.5.	CONCLUSIONES	111
5.	CONT	FROL EN MODO DE DESLIZAMIENTO DE SISTEMAS DE POTENC	CIA
٥,			CIA
	KESC	NANTES CON REFERENCIA EXTERNA VARIABLE	
	5 .1.	INTRODUCCIÓN	113
	5.2.	DISEÑO DE CONTROLADORES EN MODO DE DESLIZAMIENTO	
		CON SUPERFICIES DEPENDIENTES DEL TIEMPO	113
	5.3.	ONDULADOR RESONANTE BASADO EN EL CONVERTIDOR	
		QSRC CON DOS ACCIONES DE CONTROL	
		5.3.1. Introducción	116
		5.3.2. Estructura del ondulador	117
		5.3.3. Diseño del control	118
		5.3.4. Resultados de simulación	119
		5.3.5. Conclusiones	123
	5.4	RECTIFICADOR RESONANTE BASADO EN EL CONVERTIDOR	
	J	OPRC CON DOS ACCIONES DE CONTROL	
		5.4.1. Introducción	123
		5.4.2. Configuración del rectificador	124
		5.4.3. Diseño del control	125
		5.4.4. Resultados de simulación	127
		5.4.5 Conclusiones	130

	5.5.	TRANSFORMADOR ELECTRÓNICO BASADO EN UNA NUEVA	
		TOPOLOGÍA RESONANTE	
		5.5.1. Introducción	130
	•	5.5.2. Configuración del transformador	131
		5.5.3. Modelo promediado de la etapa de potencia	134
		5.5.4. Estructura y diseño del controlador	135
		5.5.5. Resultados de simulación	138
		5.5.6. Conclusiones	143
	5.6.	CONCLUSIONES	144
5.	RESU	ULTADOS EXPERIMENTALES	
	6.1.	INTRODUCCIÓN	145
	6.2.	REGULADOR QSRC CON DOS ACCIONES DE CONTROL	
		6.2.1. Introducción	145
		6.2.2. Esquema del regulador	145
		6.2.3. Formas de onda del regulador	147
		6.2.4. Prestaciones del prototipo	153
	6.3.	REGULADOR BOOST QPRC	
		6.3.1. Introducción	154
		6.3.2. Esquema del regulador	154
		6.3.3 Formas de onda del regulador	155
		6.3.4 Prestaciones del prototipo	160
	6.4	ONDULADOR QSRC CON DOS ACCIONES DE CONTROL	
		6.4.1. Introducción	160
		6.4.2. Esquema del ondulador	160
		6.4.3. Formas de onda del ondulador	162
		6.4.4. Prestaciones del prototipo	170
	6.5	TRANSFORMADOR BUCK QSRC	
		6.5.1. Introducción	170
		6.5.2. Esquema del transformador	171
		6.5.3. Formas de onda del transformador	172
		6.5.4. Prestaciones del prototipo	181
	6.6	CONCLUSIONES	182

,, CO1	CECSIONES	
7.1.	INTRODUCCIÓN	184
7.2.	ANTECEDENTES	184
7.3.	CONCLUSIONES GENERALES	185
7.4.	FUTURAS LÍNEAS DE TRABAJO	
	7.4.1. Síntesis de nuevas topologías de conversión	188
	7.4.2. Circuitos integrados de control específicos	188
	7.4.3. Técnicas avanzadas de control	189
	7.4.4. Aplicaciones de los convertidores resonantes Quantum	189
BIBLIO		B-I
ANEXOS		
A .1	ESQUEMA DEL REGULADOR QSRC CON DOS ACCIONES	
	DE CONTROL	A-I
A.2	ESQUEMA DEL REGULADOR BOOST QPRC	A-IV
A .3	ESQUEMA DEL ONDULADOR QSRC CON DOS ACCIONES	
·	DE CONTROL	A-VI
A 1	ESOURMA DEL TRANSFORMADOR RUCK OSRC	Δ_ Y