
Chapter 4

Parametric Approach

4.1 Introduction

The missing data problem is already a classical problem that has not been yet solved

satisfactorily. This problem includes those situations where the dependent variable

is completely observed but the information on the covariates could be partially

observed. Furthermore, in survival analysis the outcome is a survival time which

itself could be censored.

Most of the existing methodologies are based on the assumption that non ob-

served data are missing completely at random (MCAR) or at most missing at ran-

dom (MAR) (Little and Rubin, 1987). A brief review of the different approaches

and their advantages and inconvenients follows.

First, we could base the analysis on those individuals with all the observed co-

variates. The inference based on the so-called complete cases is biased and not

consistent because the observed individuals are not necessarily a good representa-

tion of the overall sample. Furthermore, estimators based on the complete sample

would be less accurate due to reduction in the sample size. Therefore, although this

approach is appealing because can be handled with the existing software, its use has

to be avoided.

A second approach consists in the imputation of the non-observed values (Glynn

et al., 1993; Efron, 1994; Serrat and Gómez, 1995). The main problem here re-
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lies in that the observed values are used to model the non-observed ones and this

assumption might not be true. The resulting estimators could then be seriously

biased.

A parametric modelization and the solution via maximum likelihood is another

possible approach. As it is known this methodology is asymptotically efficient.

This approach started in the 70’s with the work done by Little and Rubin and

until now this is a widely used method (Little and Rubin, 1987; Glynn et al., 1986);

however, its implementation is not straightforward and the corresponding estimators

rely heavily in a large number of assumptions that cannot be validated. Recently,

some authors (Baker, 1994b) propose an hierarchical methodology, based also on the

maximum likelihood method, that allows to combine several non-response models

and to study the sensitivity of the resulting estimators under those assumptions.

The semiparametric approach is a fourth way of handling the missing data prob-

lem that allows to model only what is strictly necessary; in our situation we will have

to model the relationship between survival, the covariates and the non-response pat-

tern. Semiparametric estimators are unbiased, consistent and asymptotically normal

(Newey, 1990; Rotnitzky and Wypij, 1994; Robins et al., 1994).

In this chapter, and previously to an analysis based on a semiparametric ap-

proach, we use a completely parametric point of view. This parametric analysis has

two main goals: on one hand to show the drawbacks, practical and philosophical, in

the specification of the likelihood function and in its optimization, and on the other

to design a methodology that would allow to determine how the resulting estimators

depend on the non-response pattern.

Our methodology is motivated by clinical and epidemiological studies. In this

type of situations we have a cohort of patients and we are interested in studying their

survival and to find the best set of predicting covariates for it. Specifically, since

1994 we are collaborating with the epidemiological unit of the Institut Municipal de

la Salut, in Barcelona. This collaboration has motivated the necessity of finding a

methodology that allows to deal with the non-observed values in the covariates of

interest.

The chapter is organized as follows. In the next section we introduce the notation

as well as some needed terminology. In Section 4.3, we present the problem and we
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solve it parametrically. In Section 4.4 we show, as an illustration, the analysis of

the data that motivated this approach. Last Section is devoted to the discussion.

4.2 Notation and definitions

The M -dimensional potential data vector L = (L1, L2, . . . , LM)′ for an arbitrary

individual is defined as the vector that contains his or her observed and non-observed

data. The response vector R = (R1, R2, . . . , RM)′ for this individual has m-th

(m = 1, . . . , M) component equal to 1 if the m-th variable has been observed and

0 otherwise.

We can split L into the subvectors L
(R)

and L
(

¯R)
corresponding to the observed

and unobserved data, respectively. The subvector L
(R)

, is integrated by those

components l of the vector L for whom Rl = 1, meanwhile the subvector of the

non-observed variables, L
(

¯R)
, consists of those components l of L with Rl = 0. For

example, if M = 5 and R = (1, 0, 1, 1, 0)′ then L
(R)

= (L1, L3, L4)
′ and L

(
¯R)

=

(L2, L5)
′.

We will denote by r = (r1, r2, . . . , rM)′, rm ∈ {0, 1}, m = 1, . . . , M , a realization

of the response vector for an arbitrary individual. The conditional probability of r

given the potential data vector L will be denoted by πL(r) = P (R = r|L), and the

different non-response patterns will depend on the modelization of πL(r).

The non-response pattern is Missing Completely at Random (MCAR), if and

only if, the conditional probability of a realization r is constant, that is πL(r)

is independent of L. The pattern is Missing at Random (MAR), if and only if,

πL(r) depends at most of the observed data L(r). The non-response pattern is

non-ignorable (NI), if and only if, πL(r) depends on the subvector of non-observed

data L(r̄).

If we assume that the components of the vector L follow a pre-established order,

the non-response pattern is called to be monotone if the no observation of a variable

implies the no observation of those that follow; that is, if Rl = 0 implies Rm = 0

for all m > l.

In a survival study the main variable T , is usually the elapsed time between

an origin (randomization date in a clinical trial, treatment initiation, etc) and the
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realization of an event (death, diagnosis of AIDS, etc). Data in these studies is often

right censored and the observed data are Y = min{T, C} and δ = 1{T ≤ C} =

1{Y = T} where C is the censoring time. For each individual we also have the

values of certain covariates. Let X be the covariate vector. If X ∗ is a subvector of

X and V ∗ is another set of covariates, we will say that V ∗ is a surrogate of X∗

if X∗ and V ∗ are strongly correlated. We will denote by V the vector of surrogate

covariates (not included in X) for the covariates of interest. The goal in a survival

study, with missing data in the covariates, is to model T in terms of the covariates

vector X, using the information provided by X and by the surrogate vector V ∗.

We will assume that the distribution of the censoring time, C, is independent of T ,

given the vector of covariates (V ′,X ′)′.

Suppose that we have a sample available of survival data with sample size n;

according to the previous notation, for each individual i (i = 1, . . . , n) we denote

by Li = (Yi, δi,V
′
i,X

′
i)
′ the vector of potential data, by Ri the response vector

and by L
(Ri)

and L
(

¯Ri)
the subvectors of observed data and non-observed data,

respectively. In our study, by construction of the vector Li, we have Li1 = Yi and

Li2 = δi, and as a consequence Ri1 = Ri2 = 1 for all i = 1, . . . , n.

4.3 Testing the non-response model

4.3.1 Introduction

The goal of this section is the study and validation of the non-response pattern.

We start testing whether the non-response process is MCAR. Then, under a totally

parametric philosophy, we introduce a hierarchical scheme to check the sensitivity

of the model parameters under different non-response patterns. In particular, this

methodology allows us to elucidate about the non-ignorability of the non-response

pattern.

4.3.2 MCAR validation

Given the observed data, (Ri,L(Ri)
)i=1,2,... ,n, the test to check whether or not

the non-response process is MCAR is based on the comparison of the probabilities
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P (Rim = 1), i = 1, . . . , n and P (Rim = 1|Li), i = 1, . . . , n for every m = 1, . . . , M .

The hypothesis test is formulated as

H0 : MCAR non-response pattern

HA : MAR or NI non-response pattern,

and two different procedures are developed depending on whether or not the non-

response pattern is monotone.

If the non-response pattern is monotone the previous comparison becomes re-

duced to the comparison between probabilities P (Rim = 1|Ri(m−1) = 1), i = 1, . . . , n

and P (Rim = 1|Ri(m−1) = 1, Li1, . . . , Li(m−1)), i = 1, . . . , n for each m = 1, . . . , M ,

as it is shown in the next proposition.

Proposition 4.3.1 If the non-response pattern is monotone, the MAR condition

P (Ri = r|Li) = P (Ri = r|L(r)i), i = 1, . . . , n [A]

where r ∈ {0, 1}M , is equivalent to the condition

P (Rim = 1|Ri(m−1) = 1,Li) = P (Rim = 1|Ri(m−1) = 1, Li1, . . . , Li(m−1)), i = 1, . . . , n

[B]

for each m = 1, . . . , M .

In particular, the non-response pattern is MCAR if and only if for each m =

1, . . . , M the probability of observing the m-th variable, given the observation of the

(m − 1)-th variable and the potential data, is constant, that is

P (Rim = 1|Ri(m−1) = 1,Li) = P (Rim = 1|Ri(m−1) = 1), i = 1, . . . , n

for each m = 1, . . . , M .

Proof: When the non-response pattern is monotone, the sample space of the M -

dimensional response vector, Ri, is reduced to the set

ΩRi
= {r0 = (0, . . . , 0)′, r1 = (1, 0, . . . , 0)′, r2 = (1, 1, 0, . . . , 0)′, . . . , rM = (1, . . . , 1)′}
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and the condition [A] can be rewritten as

P (Ri = rm|Li) = P (Ri = rm|Li1, . . . , Lim), i = 1, . . . , n [A′]

for each m = 0, . . . , M .

• To prove that [A] ⇒ [B], we will prove by induction on the m index that,

under the hypothesis [A′], the probabilities

P (Rim = 1|Li) and P (Rim = 1|Ri(m−1) = 1,Li)

only depend on the data Li1, . . . , Li(m−1).

Indeed, if m = 1, we get

P (Ri1 = 1|Li) = 1 − P (Ri1 = 0|Li) = 1 − P (Ri = r0|Li)

that, by the condition [A′], does not depend on the data.

Assume that the proposition has been proved until the j-th index, (1 < j <

M). To prove the result for the (j + 1)-th index, it is enough to verify the

relationships

P (Ri(j+1) = 1|Li) = P (Rij = 1|Li) − P (Ri = rj|Li) (4.1)

P (Ri(j+1) = 1|Rij = 1,Li) = 1 −
P (Ri = rj|Li)

P (Rij = 1|Li)
. (4.2)

Since the right-hand part of the previous equalities depend at most, by con-

dition [A′] and the induction hypothesis, on the data Li1, . . . , Lij, it is proved

that the condition [A] implies the condition [B].

The expression (4.1) is straightforwardly derived because, due to the monotonic-

ity of the non-response pattern, {Rij} is disjoint union of {Ri(j+1)} and {Ri =

rj}.

In a similar way, the equality (4.2) holds from

P (Ri(j+1) = 1|Rij = 1,Li) = P (Rij = 1|Rij = 1,Li) − P (Ri = rj|Rij = 1,Li) =

= 1 − P (Ri = rj|Rij = 1,Li) =

= 1 −
P (Ri = rj, Rij = 1|Li)

P (Rij = 1|Li)
=

= 1 −
P (Ri = rj|Li)

P (Rij = 1|Li)
.
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• To prove that the condition [B] is sufficient to have a MAR non-response

pattern, it is enough to verify that condition [A′] holds.

If m = 0, condition [A′] is true because P (Ri = r0|Li) = P (Ri1 = 0|Li) =

1 − P (Ri1 = 1|Li) does not depend on the data, under hypothesis [B].

For m = 1, . . . , M , and by using that the non-response pattern is monotone,

we get

P (Ri = rm|Li) = P (Ri1 = 1|Li) · P (Ri2 = 1|Ri1 = 1,Li) . . .

. . . P (Rim = 1|Ri(m−1) = 1,Li) · P (Ri(m+1) = 0|Rim = 1,Li)

and, if [B] holds, all the factors in the right-hand term of the previous equality

depend on, at most, the data Li1, . . . , Lim.

In particular, the condition to have a MCAR non-response pattern is that the

probabilities P (Rim = 1|Ri(m−1) = 1,Li), m = 1, . . . , M , are constant. If we denote

by πm the conditional probability P (Rim = 1|Ri(m−1) = 1,Li) then the probabilities

of the sample space ΩRi
are

P (Ri = rm|Li) =



















1 − π1 if m = 0

π1π2 · · ·πm(1 − πm+1) if m = 1, . . . , M − 1,
∏M

m=1 πm if m = M

that they do not depend on the data Li. 2

If the conditional probabilities P (Rim = 1|Ri(m−1) = 1, Li1, . . . , Li(m−1)) are

modeled through a logit link, that is

logit (P (Rim = 1|Ri(m−1) = 1, Li1, . . . , Li(m−1))) = αm1 + α′
m2hm(Li1, . . . , Li(m−1)),

where hm(Li1, . . . , Li(m−1)) is a vectorial arbitrary function of the data Li1, . . . , Li(m−1),

the test H0 versus HA can be seen as the following M simultaneous tests:

H0m : logit (P (Rim = 1|Ri(m−1) = 1, Li1, . . . , Li(m−1))) = αm1

HAm : logit (P (Rim = 1|Ri(m−1) = 1, Li1, . . . , Li(m−1))) =

= αm1 + α′
m2hm(Li1, . . . , Li(m−1)) m = 1, . . . , M.
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For each m, m = 1, . . . , M , the statistic based on the likelihood ratio of H0m

versus HAm give us a p-valor, pm. Next proposition proves that if the data are

MCAR, i.e., all hypotheses H0m, m = 1, . . . , M , are true, then resulting p-values

are independent and uniformly distributed in (0,1).

Proposition 4.3.2 If the non-response pattern is monotone and the missing data

mechanism is MCAR, p-values, p1, p2, . . . , pM , resulting of the statistic based on the

likelihood ratio test of H0m versus HAm in the M tests

H0m : logit (P (Rim = 1|Ri(m−1) = 1, Li1, . . . , Li(m−1))) = αm1

HAm : logit (P (Rim = 1|Ri(m−1) = 1, Li1, . . . , Li(m−1))) =

= αm1 + α′
m2hm(Li1, . . . , Li(m−1)) m = 1, . . . , M,

are independent and uniformly distributed in (0,1).

Proof: For a value of m, m = 1, . . . , M , since the non-response pattern is MCAR

the hypothesis H0m is true and logit (P (Rim = 1|Ri(m−1) = 1)) = αm1, and therefore

P (Rim = 1|Ri(m−1) = 1) =
exp (α1m)

1 + exp (α1m)
= πm.

As a consequence, the random variable resulting from computing the relative

frequencies of the event “observation of the m-th variable given the observation of the

(m−1)-th variable”, {Rim = 1|Ri(m−1) = 1}, denoted by fim, follows, asymptotically,

a random variable N

(

πm,
√

πm(1−πm)
nm

)

, where nm is the total number of individuals

for whom the variable Li(m−1) has been observed (by construction, n1 is the sample

size).

If pm denotes the p-value resulting of the likelihood ratio statistic of the test H0m

versus HAm, we derive that pm = P (|fim − πm| > |fim,data − πm|).

To prove that pm ∼ U(0, 1) it is enough to prove that ∀p ∈ [0, 1], P (pm ≤ p) = p.

In fact, for a value p, 0 ≤ p ≤ 1, if we denote by I1−p the interval with probability

1− p centered in πm for the distribution N

(

πm,
√

πm(1−πm)
nm

)

, we get P (pm ≤ p) =

P (fim /∈ I1−p) = p, as we wanted to prove.
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The M p-values, p1, p2, . . . , pM , are independent because the conditional proba-

bilities πm do not depend on the data Li. 2

For the overall interpretation of the M resulting p-values, p1, . . . , pM , we use the

combined statistic S = −2
∑M

m=1 log pm, that follows, under H0, a χ2 distribution

with 2M degrees of freedom.

If the non-response pattern is not monotone, the comparison H0 versus HA has to

be solved from comparing, for each i = 1, . . . , n and for each m, m = 1, . . . , M , the

probabilities P (Rim = 1) and P (Rim = 1| the observed data for m′ 6= m). In this

case the p-values that we obtain are not independent and we have to use simultaneous

inference techniques to design the respective tests (Miller, 1980), for example the

Bonferroni’s t statistic. In general, these techniques are more conservative and,

therefore, the power of the resulting tests will be lower. In Section 4.4.2 we show in

detail the application of this methodology.

4.3.3 Parametric approach of the problem

We solve the problem of estimating a model for the survival T from a totally para-

metric perspective and starting with a potential data vector Li = (Yi, δi,V
′
i,X

′
i)
′,

i = 1, 2, . . . , n, where X is a vector of partially observed covariates and V is a vec-

tor of completely observed covariates. This approach will allow us to introduce the

non-response probabilities modeling and, as a consequence, to study the goodness

of fit of these models. The estimation is based on the standard maximum likeli-

hood methodology. In order to specify a likelihood function, L, for the sample, let

fc(l; θ) be the density function for the complete data and P (Ri = r|Li;ψ) be the

probability of observing certain Li components. These functions depend on θ and

ψ parameters, and we will suppose that both parameters are distinct.

The contribution of the i-th individual to the likelihood function L(θ,ψ) is:

fc(Li; θ)·P (Ri = 1|Li;ψ) if the individual has been completely observed (i.e., Ri =

1), and
∫

fc(Li; θ) · P (Ri = r|Li;ψ)dL(r̄)i if the individual has been partially

observed and his or her response vector isRi = r with r 6= 1. This second expression

corresponds to the marginalization of the first one with respect to then non-observed
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data. Therefore, the likelihood function L(θ,ψ) from the observed data is given by

L(θ,ψ) =
n

∏

i=1

{

[fc(Li; θ) · P (Ri = 1|Li;ψ)]I(Ri=1)

∏

r 6=1

[
∫

fc(Li; θ) · P (Ri = r|Li;ψ)dL(r̄)i

]I(Ri=r)
}

.

Next proposition shows that, when the non-response pattern is MCAR or MAR

(i.e., probabilities P (Ri = r|Li) do not depend on L(r̄)i) the likelihood function,

L(θ,ψ), can be decomposed in such way that the maximum likelihood estimate for

the parameter θ is independent of the non-response pattern considered in the model.

Proposition 4.3.3 If the non-response pattern is MCAR or MAR, the maximiza-

tion of the likelihood function does not depend on the non-response probabilities.

Proof: According to the introduced notation, it is enough to prove that the function

L(θ,ψ) can be decomposed as a product of two functions L1(θ) and L2(ψ).

Indeed, if the non-response probabilities P (Ri = r|Li;ψ) do not depend on the

non-observed data L(r̄)i then

∫

fc(Li; θ) · P (Ri = r|Li;ψ)dL(r̄)i = P (Ri = r|Li;ψ) ·

∫

fc(Li; θ)dL(r̄)i

and the likelihood function

L(θ,ψ) =
n

∏

i=1

{

[fc(Li; θ) · P (Ri = 1|Li;ψ)]I(Ri=1)

∏

r 6=1

[
∫

fc(Li; θ) · P (Ri = r|Li;ψ)dL(r̄)i

]I(Ri=r)
}

admits the factorization L(θ,ψ) = L1(θ) · L2(ψ) where

L1(θ) =

n
∏

i=1

{

fc(Li; θ)
I(Ri=1) ·

∏

r 6=1

[
∫

fc(Li; θ)dL(r̄)i

]I(Ri=r)
}

L2(ψ) =

n
∏

i=1

{

∏

r

P (Ri = r|Li;ψ)I(Ri=r)

}

.
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2

In our study the density function, fc(Li; θ), can be written as

fc(Li; θ) = fc((Yi, δi,V
′
i,X

′
i)
′; θ) = fc(X i; θ) · fc(Yi, δi|X i; θ) · fc(V i|Yi, δi,X i; θ).

and therefore the parametric approach imposes the correct specification of a) the

distribution of the covariates of interest, X, b) the conditional distribution of the

observed times, Y , given the covariatesX, c) the conditional distribution of the sur-

rogate covariates, V , given Y and X, and d) the conditional non-response probabil-

ities given the potential data. It is very important to know that these specifications

can become totally arbitrary, due to the fact that none of them can be validated

from the observed data (Gill et al., 1997; Gill and Robins, 1997).

In what follows we suppose that the covariate vector for the i-th individual,

X i, is formed by p discrete random variables, Xi1, Xi2, . . . , Xip and the vector of

surrogate covariates V i has q discrete random variables, Vi1, Vi2, . . . , Viq.

The specification of the densities fc(X i; θ) and fc(V i|Yi, δi,X i; θ), as well as of

the probabilities P (Ri = r|Li;ψ), can be done in terms of the logarithms of the

conditional odds ratio of each category with respect to the baseline category (or

conditional logistic regressions if the covariates are binary), that is, by modeling

each one of these expressions

log
P (Xij = k|Xi1, . . . , Xi(j−1))

P (Xij = 0|Xi1, . . . , Xi(j−1))
j = 1, . . . , p k 6= 0,

log
P (Vij = k|Vi1, . . . , Vi(j−1))

P (Vij = 0|Vi1, . . . , Vi(j−1))
j = 1, . . . , q k 6= 0 and

logit (P (Rij = 1|Ri1, . . . , Ri(j−1))) j = 1, . . . , p.

As we will see in the illustration of the next section, the use of different models for

the probabilities P (Rij = 1|Ri1, . . . , Ri(j−1)), j = 1, . . . , p, as a function of the data

Li, allows us to perform a sensitivity analysis of the estimates to the non-response

pattern considered.

To model the survival times and their relationship with the covariates, X, it is

enough to specify a density function fc(Yi, δi|X i; θ). Previous analysis based on the
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completely observed subsample can be useful to achieve this goal; however, once

more, these assumptions can not be validated from the observed data.

An extra drawback, to add to the mentioned misspecifications, is the curse of

dimensionality of the parameters θ and ψ. This fact reduces, in an important way,

on one hand the speed of convergence of the corresponding implementations and,

on the other hand, the relative sample size. For example, it is straightforward to

compute that in a simple scenario where all the covariates would be binary and we

would use only linear models without interactions, we would get

dim(θ) = (2p − 1) + (p + 1) + (2q − 1)(p + 3),

dim(ψ) = (2p − 1)(p + q + 3),

and for a small setting with p = q = 3, dim(θ) = 53, dim(ψ) = 63 and therefore we

would have to estimate a 116-dimensional parameter in the likelihood function.

4.4 Illustration with the HIV+PTB cohort

4.4.1 Introduction

To illustrate the methodology introduced in the previous section, we present here an

application to the study of survival time in a cohort of pulmonary tuberculosis HIV-

infected patients. The project is part of the collaboration with the epidemiological

unit of the Institut Municipal de la Salut, in Barcelona, since 1994. Data come from

several medical records of patients belonging to the Prevention and Control of the

Tuberculosis Program. Some of the epidemiological goals of this Program are: a) the

study of the AIDS progression in TB patients and b) finding predictors of survival

in TB HIV-infected patients.

4.4.2 Dataset and methods

We have a sample integrated by 418 HIV+ patients with pulmonary tuberculosis. All

of them, resident in Barcelona city and diagnosed of tuberculosis in the 1992–1994

period. Data were collected in September 30th 1995. The survival time of interest

is the elapsed time between the diagnosis of tuberculosis (and, as a consequence,
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the starting of treatment against TB) and death. For each individual of the sample

we have, potentially, the following sociological and clinical variables, all of them

collected at the beginning of the study: gender, age, district of residence, prison

history, treatment against tuberculosis history, belonging to an HIV transmission

group, tuberculosis site, radiological pattern, microbiological results, percentage of

lymphocyte subsets (T-CD4+ and T-CD8+), tuberculin skin test result, among

others. The sample is a subsample of the cohort introduced in Chapter 2 and it is

integrated by all the patients for whom the treatment against tuberculosis history,

the radiological pattern and the microbiological result covariates are available.

Previous analysis (Caylà et al., 1993a; Serrat and Gómez, 1995) done with com-

plete observed data show that the T-CD4+ percentage (in particular, its catego-

rization in high an low level of immunosuppression) and the result to the tuberculin

skin test are the covariates of interest for the estimation of the mentioned survival.

We will refer to this variables by CD4 and PPD and they will be the components

of the vector X introduced in Section 4.2. Patients will be classified as whether

or not the CD4 covariate is larger than 14%. PPD variable takes value 1 if the

result of the tuberculin skin test is positive and 0 otherwise. The methodological

problem is motivated by the fact that both variables have a 37.5% and a 50.5% of

missing values, respectively. Specifically, both of them are only available in a 31.3%

of the sample and there is a 19.1% of the sample for whom none of both variables

is available.

The goal of the study is to evaluate the predictive character of the CD4 and

PPD indicators, using all the information available in the sample; in particular, to

study the result to the tuberculin test as a complementary quality measure of the

immunosuppression level given by the T-CD4+ counts. To this goal we will use the

methodology described in the previous section.

After studying, together with the epidemiological team, which variables could

provide qualitative information about the non-response pattern or about CD4 and

PPD covariates, we chose as a surrogate covariates, V , of the covariates of interest,

X, a) to have been previously treated against tuberculosis (TR: 1 = Yes, 2 = No),

b) the radiological pattern (RA: 0 = Normal, 1 = Abnormal with cavitary pattern

and 2 = Abnormal without cavitary pattern) and c) the bacteriological result (BA:

0 = Negative, 1 = Positive and 2 = Positive with bacteriological culture). So,
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according to the notation introduced in Section 4.2, our vector of potential data is:

Li = (Yi, δi, TRi, RAi, BAi, 1{CD4i > 14}, PPDi)
′.

In order to simplify the notation we will omit the subindex i, except if it is necessary

for the comprehension of the text.

Note that, due to the fact that the surrogate covariates are completely observed,

i.e., R3 = R4 = R5 = 1, the response vector, r ∈ {0, 1}7, will only take the following

values (1,1,1,1,1,1,1), (1,1,1,1,1,1,0), (1,1,1,1,1,0,1) and (1,1,1,1,1,0,0).

4.4.3 Validation of the MCAR assumption

For the MCAR validation we apply the methodology introduced in Section 4.3.1.

Since data are non monotone, we have to compare the probability P (RCD4 = 1)

with P (RCD4 = 1|Y, δ, TR, RA, BA, PPD), and P (RPPD = 1) with P (RPPD =

1|Y, δ, TR, RA, BA, 1{CD4 > 14}).

In the first case, if we model the non-response probability to the CD4 covariate

as a function of the other variables according to the logistic model

logit (P (RCD4 = 1|Y, δ, TR, RA, BA, PPD)) =

= α0 + α1Y + α2δ + α3TR + α4RA + α5BA + α6PPD,

the comparison between probabilities P (RCD4 = 1) and P (RCD4 = 1|Y, δ, TR, RA, BA, PPD)

is equivalent to the hypothesis test

H0 : αi = 0 ∀i ∈ {1, . . . , 6}

HA : ∃i ∈ {1, . . . , 6} | αi 6= 0.

If the null hypothesis is true, the probability of responding to the CD4 variable

will not depend on other observed variables, and its contribution to the MCAR

hypothesis test will be in the sense of not refusing this assumption. Otherwise, if

the null hypothesis is false, we will have statistical evidence to reject the MCAR

non-response hypothesis.

Analogously, we also apply this methodology to the non-response probability to

the PPD covariate, by means of the model

logit (P (RPPD = 1|Y, δ, TR, RA, BA, 1{CD4 > 14})) =
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= β0 + β1Y + β2δ + β3TR + β4RA + β5BA + β61{CD4 > 14}.

To combine both tests we use the Bonferroni’s correction. This correction means

to use as a signification level in each partial hypothesis test the global signification

level divided by the total number of tests we wish to combine. Then, the decision

criteria is the next: we reject the null hypothesis when some of the partial hypothesis

tests rejects its respective null hypothesis. We can observe that, initially, it seems

to be easier to reject the null hypothesis by the fact of being using more than one

test; however, in each of the partial test we are using a fraction of the signification

level and therefore we need more evidence against the corresponding partial null

hypothesis. The combined effect is a test that, in general, it is more conservative.

In our dataset, the above hypothesis tests for the variables RCD4 and RPPD have

p-value 0.03766 and 0.1733, respectively. If we use a global signification level of 5%,

both results are not significant (they are larger than 0.025) and, therefore, in both

variables we do not detect evidence against the null hypothesis. As a consequence,

the MCAR non-response hypothesis can not be rejected.

4.4.4 Parametric approach of the problem

Following steps in Section 4.3.2, the contribution of an individual to the likelihood

function L(θ,ψ) can be computed after these four modelizations.

a) For the distributions of the covariates of interest, CD4 and PPD, we use

logistic models for the probability of 1{CD4 > 14} and for the conditional

probabilities of PPD = 1 given the 1{CD4 > 14} values, that is

logit (P (1{CD4 > 14} = 1)) = α1,

logit (P (PPD = 1|1{CD4 > 14} = 1)) = α2 and

logit (P (PPD = 1|1{CD4 > 14} = 0)) = α3.

b) In a preliminary study carried out on the same cohort of patients (Serrat

et al., 1998) we observed that the survival time could be satisfactorily mod-

eled through a Weibull distribution depending on CD4 and PPD covariates.

This model is also used in this application and therefore the density function
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fc(Y, δ|X; θ) can be written as

fc(Y, δ|CD4, PPD; θ) =

(

1

σY
(e−βY )

1

σ

)δ

· e−(e−βY )
1
σ

,

where β = β0 + β11{CD4 > 14} + β2PPD and σ = σ0 + σ11{CD4 > 14} +

σ2PPD.

c) The conditional distributions of TR, RA and BA given Y, δ, CD4, PPD are

modeled via the log-odds ratios with respect to the reference group, given the

previous variables. If we denote by λ., in a generic way, one of the following

odds ratio

λ1 =
P (TR = 1)

P (TR = 0)
,

λ2ij =
P (RA = j|TR = i)

P (RA = 0|TR = i)
i = 0, 1 j = 1, 2,

λ3ijk =
P (BA = k|TR = i, RA = j)

P (BA = 0|TR = i, RA = j)
i = 0, 1 j = 0, 1, 2 k = 1, 2,

then its logarithm, log (λ.), is specified by

log (λ.) = γ.0 + γ.1 log (Y ) + γ.2δ + γ.3 log (Y )δ + γ.41{CD4 > 14} + γ.5PPD,

and it is a function of Y, δ and X variables, of some possible interactions

between them, and on the (γ.0, . . . , γ.5) parameter. Note that, in order to

reduce the effect of the extreme values in the observed survival times, we

rescale the time to logarithmic scale.

d) We configure the different non-response patterns by modelling the probabilities

P (Rij = 1|Ri1, . . . , Ri(j−1)) in terms of the covariates V and X. We define

logistic models for the probability of observing the CD4 covariate and for

the conditional probabilities of observing the PPD covariate, given the CD4
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values, according to the following scheme:

logit (P (RCD4 = 1)) = α10 + α11TR +

+ α12RA1 + α13RA2 + α14BA1 + α15BA2

+ α161{CD4 > 14} + α17PPD,

logit (P (RPPD = 1|RCD4 = 1)) = α20 + α21TR +

+ α22RA1 + α23RA2 + α24BA1 + α25BA2

+ α261{CD4 > 14} + α27PPD and

logit (P (RPPD = 1|RCD4 = 0)) = α30 + α31TR +

+ α32RA1 + α33RA2 + α34BA1 + α35BA2

+ α361{CD4 > 14} + α37PPD.

where RAi = 1{RA = i}, i = 1, 2 and BAi = 1{BA = i}, i = 1, 2 denote

binary dummy variables for the effects of the categories in radiology and bac-

teriology, respectively.

The parameter θ of the density function fc(Li; θ) in the likelihood L(θ,ψ) is

given by

θ = (α1, α2, α3, β0, β1, β2, σ0, σ1, σ2, γ.0, . . . , γ.5)

and it has dimension equal to 111. The nuisance parameter resulting from the

non-response probabilities modelling is

ψ = (α10, . . . , α37)

and is 24-dimensional. Note that the parameter of interest to be estimated is only

made by the components (β0, β1, β2, σ0, σ1, σ2) of the vector θ and it has dimension

6.

The hierarchical scheme proposed in the previous step d) allows us to simulate,

in a nested way, the different non-response patterns defined in Section 4.2. More



64 CHAPTER 4. PARAMETRIC APPROACH

precisely, we optimize the likelihood function for the following five scenarios:

αij = 0 i = 1, 2, 3 j = 1, . . . , 7 ⇒ MCAR

αij = 0 i = 1, 2, 3 j = 6, 7 ⇒ MAR

αij = 0 i = 1, 2, 3 j = 7 ⇒ Non-ignorable (first case) NI1

αij = 0 i = 1, 2, 3 j = 6 ⇒ Non-ignorable (second case) NI2

No constrictions on αij values ⇒ Non-ignorable (third case) NI3

Table 4.1 shows the estimated relative quartiles for the positive tuberculin group

(PPD = 1) with respect to the negative tuberculin (PPD = 0), under different

assumed sets of surrogate covariates and, for each of them, by using the above

mentioned non-response patterns.

The use of other models based on the same set of covariates would allow to

perform a more exhaustive sensitivity analysis of the resulting estimates and it

would provide a global response to the problem as a function of the underlying

non-response pattern.

This methodology has been implemented in S-PLUS and run in a PC-Pentium

Pro, 200 Mhz, 32 Mb RAM computer, in a Windows 95 environment.

4.4.5 Results

Concerning the MCAR validation, we have seen that, although there exist efficient

tests for its validation under a monotone non-response pattern, the existing tools

for the non monotone case are not powerful enough. In other words, if we use these

techniques we need more statistical evidence in the data to reject the MCAR non-

response hypothesis. In this illustration it would be necessary to use a maximum

confidence level of 92.4% to reject the MCAR assumption.

The sensitivity of the estimation of the parameters to the non-response model

assumption, as it is shown on Table 4.1, proves that the non-response pattern is not

MCAR and it illustrates the low power of that methodology.
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Surrogate Non-response First Third Number of

covariates pattern quartile Median quartile Deviance parameters

V Mi DMi
ni

None MCAR=MAR 2.983 1.630 1.012 4102.055 12

NI1 2.293 1.384 0.929 4092.145 15

NI2 2.675 1.479 0.927 4092.993 15

NI3 1.784 1.125 0.782 4085.622 18

TR MCAR/MAR 2.674 1.489 0.939 4522.524/4513.648 18/21

NI1 1.973 1.270 0.897 4504.61 24

NI2 2.640 1.474 0.931 4504.236 24

NI3 1.780 1.121 0.779 4496.693 27

RA MCAR/MAR 2.963 1.592 0.976 4688.37/4683.306 24/30

NI1 2.251 1.341 0.892 4672.024 33

NI2 2.652 1.483 0.938 4674.658 33

NI3 1.178 1.122 0.781 4664.661 36

BA MCAR/MAR 2.912 1.644 1.048 4962.181/4957.538 24/30

NI1 2.262 1.391 0.948 4947.412 33

NI2 2.657 1.484 0.937 4947.574 33

NI3 1.776 1.124 0.783 4939.764 36

TR, RA MCAR/MAR 2.751 1.496 0.926 5102.458/5087.667 42/51

NI1 2.013 1.265 0.877 5077.458 54

NI2 2.623 1.479 0.942 5077.824 54

NI3 2.039 1.284 0.892 5070.985 57

TR, BA MCAR/MAR 2.102 1.264 0.847 5356.891/5343.023 42/51

NI1 2.164 1.229 0.787 5334.777 54

NI2 2.182 1.286 0.848 5340.131 54

NI3 1.245 1.423 1.580 5326.711 57

RA, BA MCAR/MAR 2.890 1.641 1.050 5513.294/5504.302 60/72

NI1 2.316 1.426 0.974 5492.744 75

NI2 2.740 1.524 0.960 5494.363 75

NI3 2.273 1.415 0.973 5487.814 78

TR, RA, BA MCAR/MAR 2.739 1.451 0.880 5888.679/5863.155 114/129

NI1 2.691 1.442 0.881 5853.455 132

NI2 2.773 1.456 0.877 5854.811 132

NI3 1.898 1.177 0.807 5838.814 135

Table 4.1: Estimated relative quartiles for the positive tuberculin group versus the
negative tuberculin group, under different assumed set of surrogate covariates (V )
and non-response patterns(Mi)
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Concerning the parametric estimation and under a fixed set of surrogate co-

variates, in order to compare results coming from different non-response pattern

assumptions, we will use the statistic resulting of the difference between the respec-

tive deviances (−2 log L).

If we denote by DMi
the deviance obtained under the model Mi, i = 1, . . . , 5,

the statistic ∆MiMj
= DMi

− DMj
follows a χ2

nj−ni
distribution, where ni and nj

(ni < nj) are the number of parameters to be estimated under each one of the

nested models Mi and Mj. Table 4.2 shows the p-values of the comparisons between

the parametric models, under different surrogate covariates (V ) and non-response

pattern models (Mi).

Analyzing Tables 4.1 and 4.2 we can conclude:

1. In our illustration, the MAR model is not significative with respect to the

MCAR one. Therefore, the observation of the CD4 and PPD covariates does

not depend heavily on the observed values of the surrogate covariates.

Specifically, we only obtain significative differences when we use the indicator

of having been previously treated against tuberculosis as a surrogate. In this

case the estimates for the coefficients of the variable TR are positive; this

means, and it seems to be logical, that patients which have treatment against

tuberculosis history have a larger probability of being observed the CD4 and

PPD variables.

2. In all the scenarios, non-ignorable models are significative with respect to

the respective MCAR and MAR. This fact allows us to establish that, the

probability of observing the CD4 and PPD variables depends on the potential

values of these variables. Note that this result would not have been possible

from hypothesis tests based on the observed data (Section 4.3.1)

3. The positivity in the tuberculin skin test is a better prognosis factor for short-

term survival; however, the long-term survival is worse. To illustrate this

fact we present in Figure 4.1 the estimation of the survival function strati-

fied by the immunosuppression level and the positive or negative tuberculin

skin test. The estimates correspond to the scenario in which the surrogates

variables are TR and RA, and the assumed non-response pattern is NI2.
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Surrogate Non-response Non-response Degrees of
covariates pattern pattern freedom p–value

V Mi Mj ∆MiMj
nj − ni

None MCAR=MAR NI1 9.91 3 0.019*
MCAR=MAR NI2 9.062 3 0.029*

NI1 NI3 6.523 3 0.089*
NI2 NI3 7.371 3 0.061*

TR MCAR MAR 8.876 3 0.031*
MAR NI1 9.038 3 0.029*
MAR NI2 9.412 3 0.024*
NI1 NI3 7.917 3 0.048*
NI2 NI3 7.543 3 0.057

RA MCAR MAR 5.064 6 0.536
MAR NI1 11.282 3 0.010*
MAR NI2 8.648 3 0.034*
NI1 NI3 7.363 3 0.061
NI2 NI3 9.997 3 0.019*

BA MCAR MAR 4.643 6 0.590
MAR NI1 10.126 3 0.018*
MAR NI2 9.964 3 0.019*
NI1 NI3 7.648 3 0.054
NI2 NI3 7.81 3 0.050

TR, RA MCAR MAR 14.791 9 0.097
MAR NI1 10.209 3 0.017*
MAR NI2 9.843 3 0.020*
NI1 NI3 6.473 3 0.091
NI2 NI3 6.839 3 0.077

TR, BA MCAR MAR 13.868 9 0.127
MAR NI1 8.246 3 0.041*
MAR NI2 2.892 3 0.409
NI1 NI3 8.066 3 0.045*
NI2 NI3 13.42 3 0.004**

RA, BA MCAR MAR 8.992 12 0.704
MAR NI1 11.558 3 0.009**
MAR NI2 9.939 3 0.019*
NI1 NI3 4.93 3 0.177
NI2 NI3 6.549 3 0.088

TR, RA, BA MCAR MAR 25.524 15 0.043*
MAR NI1 9.7 3 0.021*
MAR NI2 8.344 3 0.039*
NI1 NI3 14.641 3 0.002**
NI2 NI3 15.997 3 0.001**

Table 4.2: Comparative analysis after fitting a parametric model, under several as-
sumed surrogate covariates (V ) and nested parametric models for the non-response
pattern (Mi). ∆MiMj

= (−2 log LMi
) − (−2 log LMj

) = DMi
− DMj

.
* 95% significative result, ** 99% significative result
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The resulting estimates for β and σ parameters of the Weibull distribution

are β = 6.878 + 1.362 · 1{CD4 > 14} + 0.153 · PPD and σ = 1.426+

0.244·1{CD4 > 14}−0.651·PPD. By using these distributions, we derive the

distribution for the quartiles in each category. For the most immunosuppres-

sion level: 164, 576 and 1547 days if the tuberculin skin test is negative, and

431, 851 and 1457 days if the tuberculin skin test is positive. Analogously, for

the less immunosuppression level, 473, 2055 and 6539 days or 1241, 3040 and

6160 days, according to the negative or positive tuberculin skin test. Indeed,

short-term and middle-term survivorship (until the 72th-percentile, approxi-

matively) of the positive tuberculin test is better than the corresponding to

the negative tuberculin group, independently of the immunosuppression level.
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Estimated survival functions stratified by 
 CD4 level and PPD result

CD4% <= 14, Negative PPD
CD4% <= 14, Positive PPD
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CD4% > 14, Positive PPD

Figure 4.1: Estimated survival functions for the HIV+PTB cohort according to the

immunosuppression level (high ≡ CD4% ≤ 14, low ≡ CD4 > 14%) and the result

to the tuberculin skin test (negative ≡ PPD = 0, positive ≡ PPD = 1), when

we use covariates TR and RA as surrogates and we assume the NI2 non-ignorable

non-response pattern
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4.5 Discussion

The parametric methodology studied in this chapter have some drawbacks that it

is necessary to know and that they restrict its applicability. First, the methodol-

ogy depends on a large number of assumptions on the specification of the models

that can be quite arbitrary and cannot be validated from the observed data. As a

consequence, the estimators might be biased and strongly assumption-dependent.

Secondly, the choice of the surrogate covariates is crucial in the sense that they

have to be based on clinical and epidemiological considerations and the collecting

data process itself, in order to capture information about the non-response pattern

and/or about the partially observed covariates. For these reasons, it is also necessary

to perform a complementary sensitivity analysis that it allows to make reasonable

interpretations of the estimates under different assumptions on the non-response

pattern.

Thirdly, the geometrical growth of the parameter dimension is another limitation

of this approach. As a unique alternative to solve this difficulty we propose to

restrict the number of covariates of interest and the number of surrogate covariates.

A reduction in the modelization (e.g., introducing functional relationships between

the covariates) could also reduce the dimension of the parameters in the optimization

algorithm. Once more, these functional relationships will not be able to be validated

from the observed data.

Finally, the execution of a complete analysis is extremely computationally costly.

Time needed to estimate a model may vary, depending on the complexity of the

model, from minutes in the simplest to days in the most complex.

These considerations strongly conditioned the use of the parametric approach

and it makes necessary the use of less restrictive methodologies. Summarizing,

all the points considered in this chapter evidence the underlying difficulties in the

design, implementation and interpretation of the parametric methodology to analyze

survival data with missing covariates and they illustrate that alternative ways have

to be developed. In this sense, next chapters will deal with the semiparametric

approach in order to solve these drawbacks as much as possible.




