
Chapter 5

Preliminaries on Semiparametric

Theory and Missing Data

Problem

5.1 Introduction

The goal of this chapter is to introduce some vocabulary as well as technical results

on semiparametric theory and their application to the problem of estimating the

conditional expectation model in presence of missing data. Specifically, we will refer

to the case that the missingness is in the covariates vector and the non-response

is non-ignorable (Little and Rubin, 1987). This chapter is mainly devoted to the

exposition of tools and concepts that will be necessary in the development of the

semiparametric approach in Chapter 6.

Most of the ideas that we develop correspond to the recent work done by Professor

James Robins and Professor Andrea Rotnitzky, from the Harvard School of Public

Health. In particular, the main references are Rotnitzky (1996), Rotnitzky and

Robins (1997) and Rotnitzky, Robins and Scharfstein (1998).

The chapter is organized as follows. In Section 5.2 we present a review of the lit-

erature about semiparametric modeling where we go from the complete case analysis

to the non-ignorable non-response pattern model. Section 5.3 is devoted to basic

definitions and properties. In Section 5.4 we introduce the generalized method of
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moments (henceforth GMM) as a general framework for the GEE estimators. In

Section 5.5 we define the inverse probability of being observed weighted generalized

estimating equations (henceforth IPWGEE) and we discuss their efficiency proper-

ties in Section 5.6. Finally, in Section 5.7, we introduce how to perform a sensitivity

analysis of the inferences that we get for different values of parameters measuring

the non-ignorability of the non-response probabilities.

5.2 State of the art

For the complete case analysis Liang and Zeger (1986) introduced an extension of

the generalized linear models (McCullagh and Nelder, 1983) to the analysis of longi-

tudinal data. They proposed a class of generalized estimating equations (henceforth

GEE) whose solutions are consistent estimates of the regression parameters. For

the variance of the estimates they proposed what is known as sandwich estimator.

Both estimators are
√

n-consistent only if the mean regression model is correctly

specified, no matter what is the choice of the “working” correlation matrix. These

estimating equations are an extension of quasi-likelihood methods to the multivariate

regression setting and they reduce to the score equations for multivariate Gaussian

outcomes. Their approach results in iteratively reweighted least squares estimators

of the regression coefficients. In presence of missing data, Liang and Zeger remarked

that inferences using GEE are valid only under the stronger assumption that the

missingness is completely at random (Rubin, 1976).

When the non-response pattern is missing at random (MAR) and only the out-

come, Y , can be not observed, Robins, Rotnitzky and Zhao (1995) and Rotnitzky

and Robins (1995a,b) proposed a semiparametric estimation procedure for estimat-

ing the regression of the outcome, measured at the end of a fixed follow-up period,

on baseline covariates, X, measured before the beginning of the follow-up. This con-

ditional mean model is a semiparametric model in the sense that the distribution of

the regressors and the conditional distribution of the residuals are left completely

unspecified. The methodology is based on the IPWGEE. It is important to note

that when they refer to censored individuals they are referring to subjects that drop

out of the study prior to the end of follow-up (i.e., Y is missing), in a different

sense from the corresponding to survival analysis. If other completely observed co-
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variates, V , are available, then, they can be used as a surrogate variables in order

to gain efficiency. The methodology is also developed for longitudinal data and is

presented under a monotone missing data pattern. However, some extensions to

arbitrary missing data patterns are also studied. In particular, for a longitudinal

study Robins and Rotnitzky (1995) show that, when some dropouts do not later

return to the study, there is no more information in the observed data about the

regression coefficients than the existing in the monotone part of the data. Soft-

ware tools developing these procedures, in terms of marginal regression, have been

implemented by Kastner, Fieger and Heumann (1997).

More research has been done under the MAR assumption but with possibly miss-

ing covariates. Robins, Rotnitzky and Zhao (1994) proposed the IPWGEE method-

ology for estimating the parameter in a conditional mean model when the data are

MAR and the missingness probabilities are either known or can be parametrically

modeled. They showed that this estimation problem is a special case of the general

problem of parameter estimation in an arbitrary semiparametric model. Because the

optimal estimator depends on the unknown probability law generating the data, they

proposed locally and globally adaptive semiparametric efficient estimators (Bickel

et al., 1993). Nielsen (1997) showed that a strengthened version of the MAR as-

sumption is sufficient to yield ordinary large sample results and (Nielsen, 1998) he

extended the semiparametric theory to the coarsening at random case (Heitjan and

Rubin, 1991; Heitjan, 1993). Recently, Lipsitz, Ibrahim and Zhao (1999) proposed

weighted estimating equations (Robins et al., 1994; Zhao et al., 1996) and an EM-

type algorithm (Dempster et al., 1977) to solve them with properties similar to a

maximum likelihood approach.

Concerning the application of the above ideas to survival data, to the best of

our knowledge, only the MAR assumption on missing covariates and the Cox pro-

portional hazards model (Cox, 1972) have been considered (it is important to note

that neither the non-response pattern nor the Cox model can be validated). As an

example of semiparametric model Robins and Rotnitzky (1992), Robins (1993) and

Robins, Rotnitzky and Zhao (1994) used the IPWGEE methodology to estimate

the survival function under the Cox model, they described the influence functions of

the resulting estimators and its efficiency in the sense that its asymptotic variance

attains the semiparametric variance bound of the model.
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In this same situation (MAR covariates and Cox modeling), other techniques can

be applied. Paik and Tsai (1997) suggested to impute the conditional expectation

of any statistic in the partial likelihood equations involving missing covariates given

the available information. They proved that the proposed estimator is more efficient

than the based on the modified Cox partial likelihood score equations proposed

by Lin and Ying (1993) for the MCAR case. When the missing data pattern is

monotone, Cox score estimating equations such, as those proposed by Pugh (1993)

and Reilly and Pepe (1995), are useful. Lipsitz and Ibrahim (1998) extend this

methodology to the non-monotone case but only for categorical covariates.

When the missing mechanism is non-ignorable, and in the context of estimating

the conditional mean, Rotnitzky and Robins (1997) extended the IPWGEE class of

estimators to allow the non-response to depend on partially non-observed variables.

The methodology provides consistent and asymptotically normal estimates and it

works for missing outcome as well as for missing covariates. The proposed estimators

do not require full specification of a parametric likelihood but the non-response

probabilities have to be parametrically modeled. They showed that the asymptotic

variance of the optimal estimator in the class attains the semiparametric variance

bound for the model. Rotnitzky, Robins and Scharfstein (1998) generalized these

results to the repeated outcomes subject to non-ignorable non-response case. A

general presentation of the semiparametric modeling under semiparametric non-

ignorable dropouts with interesting comments by Freedman, Fan and Zhang, van

der Laan, Diggle, Little and Rubin, and Laird and Pauler can be found in Scharfstein,

Rotnitzky and Robins (1999). However, a semiparametric approach to survival data

with non-ignorable missing covariates has not yet been considered in the literature.

5.3 From a parametric to a semiparametric point

of view

As we illustrated in Chapter 4, an important inconvenience of the likelihood-based

methods is that they are not robust to wrong specifications of the distribution func-

tions (neither of the scientific interest part of the data nor of the non-interest part

one). As discussed in Laird (1988) inferences about the regression coefficients can
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be very sensitive to misspecification of the parametric model for the join law for

residuals and covariates. An interesting example pointing out the dependence of

the inferences on the departure assumptions can be found in Rotnitzky and Robins

(1997).

The main idea in the semiparametric estimators is that they will be consistent if

the scientific interest part of the model is correctly specified but it will not depend

on the correct specification of other parts of the distribution generating the data.

Some of the main references about semiparametric modeling theory are Begun, Hall,

Huang and Wellner (1983), Bickel, Klaasen, Ritov and Wellner (1993), Newey (1990)

and Newey and McFadden (1994).

Definition 5.3.1 .

a) A semiparametric model is a class of density functions (with respect to the

same measure)

P = {f(L; β, η); β ∈ Rp; η infinite dimensional}

containing the true density function, f(L; β�, η�), generating the data.

b) A parametric submodel Pφ in P is a class

Pφ = {f(L; β, φ); β ∈ Rp; φ ∈ Rq} ⊂ P

containing the true density f(L; β�, η�).

Indeed, the density function f(L; β, η) has a parametric part β (finite dimensional)

and a non-parametric one η (infinite dimensional). For example, the conditional

expectation model (GEE) is a semiparametric model in the sense that if the data are

(Y i, X i), i = 1, . . . , n, we only specify the relation E(Y i|Xi) = g(X i; β
�). There

are no assumptions neither on the distribution f(εi|X i; η1) of the residuals εi =

E(Y i|X i)− g(X i; β
�) nor on the marginal distribution of the covariates f(X i; η2).

In this example η = (η′
1, η

′
2)

′ will be the indices of the functions f(εi|Xi) and f(X i),

and the semiparametric model will be

PGEE =

{
f(y|x; β, η) :

∫
yf(y|x; β, η)dy = g(x; β)

}
.
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Definition 5.3.2 A estimator β̂ of β� is semiparametric in P, if for all distribu-

tion in P,
√

n
(
β̂ − β�

)
converges in distribution (

D−→) to a multivariate random

variable distributed as N (0,Σ), that is,

√
n

(
β̂ − β�

)
D−→ N (0,Σ).

In other words, if β̂ is
√

n-consistent and asymptotically normal no matter the

distribution in P generating the data.

Definition 5.3.3 .

a) A parametric model Pφ is regular if the information matrix is well defined.

b) A semiparametric model P is regular if every parametric submodel in P is

regular.

Definition 5.3.4 A parametric estimator β̂n of β is regular if β̂n locally uniformly

converges to β. That is, for every sequence (βn, φn) in a closed neighbourhood of

(β�, φ�), P(βn
,φ

n)

{√
n

(
β̂ − β�

)
≤ z

}
converges to P(β�,φ�)

{√
n

(
β̂ − β�

)
≤ z

}
,

for each z ∈ Rp.

In fact, regular estimators are those that allow us to build asymptotic confidence

intervals. In order to define the regularity of a semiparametric estimator, we discuss

first the concept of efficiency in the parametric modeling framework.

As it is well known, in a parametric model the maximum likelihood estimator

(β̂MLE) is efficient in the sense that its asymptotic variance is the minimum of

the asymptotic variances of any regular estimator. In particular, the asymptotic

variance-covariance matrix of the MLE is the inverse of the information matrix.

That is, if the parametric model has parameters β and φ, then the information

matrix is

I = E


 SβS ′

β
SβS ′

φ

SφS ′

β
SφS ′

φ




where

Sβ = Sβ(L; β�, φ�) = {∂ log f(L; β, φ)/∂β} |(β�,φ�)
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and

Sφ = Sφ(L; β�, φ�) = {∂ log f(L; β, φ)/∂φ} |(β�,φ�),

and the asymptotic variance of the MLE for β, VarA

φ
(β̂MLE), is the upper-left

squared matrix of V = I−1

I−1 = V =


 Vββ Vβφ

Vφβ Vφφ




i.e., Vββ =
(
E(SβS ′

β
) − E(SβS ′

φ
)(E(SφS ′

φ
))−1E(SφS ′

β
)
)−1

. It is important to

observe that Vββ is the inverse of the residual variance of regressing Sβ on Sφ;

that is, Vββ is the inverse of the variance of

Sβ,eff(φ)
= Sβ − E(SβS ′

φ)(E(SφS ′

φ))−1Sφ. (5.1)

Definition 5.3.5 Sβ,eff(φ)
defined as in (5.1) is called the efficient score for β in

the model Pφ.

Returning to the semiparametric modeling, we define

Definition 5.3.6 A semiparametric estimator β̂ is regular in P if the estimator is

regular in any parametric submodel Pφ.

It means that the set of regular semiparametric estimators for a semiparamet-

ric model P is a subset of the regular parametric estimators for every parametric

submodel Pφ ⊂ P. Then, for every parametric submodel Pφ ⊂ P,

VarA(β̂) ≥ VarA

φ(β̂MLE)

i.e.,

VarA(β̂) ≥ C = sup
P
φ

{[
Var

(
Sβ,eff(φ)

)]−1
}

. (5.2)

Definition 5.3.7 The constant C in (5.2) is defined as the semiparametric variance

bound for β and C−1 as the semiparametric information matrix of β.



78 CHAPTER 5. PRELIMINARIES ON SEMIPARAMETRIC THEORY AND MISSING DATA PROBLEM

We provide now a geometric description of the parametric and semiparametric

information matrices. In a parametric model Pφ, the amount of information about

β in Pφ is measured by Var(Sβ,eff(φ)
).

In the Hilbert’s space integrated by all p-dimensional random vectors with mean

0 and finite variance with the usual covariance inner product (i.e., with the variance

norm) we consider the following definition.

Definition 5.3.8 In a parametric model Pφ, denote by Λφ the nuisance tangent

space for φ defined as

Λφ = {KSφ : K is a p × q constant matrix},

i.e., the vector subspace of linear combinations of Sφ.

If, for a closed subspace Φ, we denote by
∏

(.|Φ) the orthogonal projection onto

Φ operator and by Φ⊥ the orthogonal subspace of Φ, then we can derive the following

geometric representation.

Lemma 5.3.1 In a parametric model Pφ,

Sβ,eff(φ)
= Sβ −

∏
(Sβ|Λφ) =

∏
(Sβ|Λ⊥

φ). (5.3)

Proof: By construction
∏

(Sβ|Λφ) is the unique vector in Λφ that verifies that

Sβ −∏
(Sβ|Λφ) is orthogonal with all random vectors in Λφ. That is,

∏
(Sβ|Λφ)

corresponds to the choice of the K matrix that minimizes the norm of Sβ − KSφ,

i.e.,

E

{(
Sβ − KSφ

)′ (
Sβ − KSφ

)}
. (5.4)

But, by the Gauss-Markov’s Theorem (Luenberger, 1969), (5.4) is minimized by

K = E(SβS ′

φ
)(E(SφS ′

φ
))−1 then, according to the expression (5.1), (5.3) holds. 2

This representation can be extended to semiparametric models.
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Definition 5.3.9 In a semiparametric model P, we define the nuisance tangent

space, denoted by Λ, as the closure of the set of all the Λφ spaces for every Pφ

parametric submodel in P, that is,

Λ =
⋃

P
φ

⊂P

Λφ.

Robins, Rotnitzky and Zhao (1994) proved that the semiparametric information

about β in P is the variance of the projection of Sβ onto the space Λ⊥.

Theorem 5.3.1 With the previous definitions

C−1 = Var
(∏

(Sβ|Λ⊥)
)

. (5.5)

This result allows to define the efficient semiparametric score as well.

Definition 5.3.10 According to the definitions, we call efficient semiparametric

score, Sβ,eff
, to the projection in (5.5), i.e.,

Sβ,eff
= Sβ −

∏
(Sβ|Λ) =

∏
(Sβ|Λ⊥).

Consequently, the semiparametric variance bound is the inverse of the variance

of the efficient semiparametric score.

Definition 5.3.11 Let β̂ be a regular semiparametric estimator for β in a semi-

parametric model P.

a) β̂ is efficient if VarA(β̂) = C.

b) If P ′ denotes the semiparametric model P with an additional restriction, and

CP ′ and CP , (CP ′ ≤ CP), the respective semiparametric variance bounds, β̂ is

locally efficient semiparametric estimator if VarA(β̂) = CP ′.

In practice, locally efficient semiparametric estimators are efficient if the assumed

restriction is true. However, they still provide consistent and asymptotically normal

estimates if the additional restriction is false.
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In the missing data problem, since neither the distribution of interest nor the

non-response probabilities can be validated, in order to derive locally efficient semi-

parametric estimators we will suppose a parametric model for the missing data pat-

tern. The resulting estimators will be efficient if the parametric assumption is true.

Otherwise, they will be consistent and asymptotically normal distributed. Sharf-

stein, Rotnitzky and Robins (1999) also study the missing data problem allowing a

semiparametric model for the non-response mechanism.

5.4 GMM class of estimators

In this section we introduce the GMM class of estimators as a more general frame-

work to deal with the GEE estimators. Many of the results introduced in this section

can be found in Newey and McFadden (1994). Basically, we summarize properties

concerning the identification, consistency and asymptotic normality of the resulting

estimators.

Suppose that there is a “moment function” vector for the i-th observation and

parameters, U i(θ), such that the population moments satisfy E(U i(θ
�)) = 0. A

generalized method of moments estimator is one that minimizes a squared Euclidean

distance of sample moments from their population counterpart of zero, in the sense

that we specify here below. Let Ŵ be a positive semi-definite matrix, so that

(m′Ŵm)1/2 is a measure of the distance of a vector m from 0. A GMM estimator,

θ̂, is such that

θ̂ maximizes Q̂n(θ) subject to θ ∈ Θ (5.6)

with

Q̂n(θ) = −
[
n−1

n∑

i=1

U i(θ)

]′

Ŵ

[
n−1

n∑

i=1

U i(θ)

]
. (5.7)

The GMM class of estimators is large enough to include MLE and nonlinear

least squares estimators as particular cases of extremum estimators; for instance by

defining U i(θ) as the derivatives of the log-density or the derivatives of the minus

least squared values. The GMM class itself is included in the class of minimum

distance estimators, that is, the class of estimators that satisfy (5.6) for Q̂n(θ) =
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−Ûn(θ)′Ŵ Ûn(θ) where Ûn(θ) is a vector of the data and parameters such that

Ûn(θ�) converges in probability (
P−→) to 0 and Ŵ is positive semi-definite. More

precisely, GMM corresponds to the case Ûn(θ) = n−1
∑n

i=1 U i(θ).

By the law of large numbers, n−1
∑n

i=1 U i(θ)
P−→ E(U i(θ)), so that if Ŵ

P−→ W

for some positive semi-definite matrix W , then by the continuity of the product,

Q̂n(θ)
P−→ −E(U i(θ))′WE(U i(θ)). This function has a maximum equals to zero

at θ = θ�, so θ� will be identified if −E(U i(θ))′WE(U i(θ)) < 0 for θ 6= θ�.

Lemma 5.4.1 (Lemma 2.3, GMM identification, in Newey and McFadden (1994))

If W is positive semi-definite and, E(U i(θ
�)) = 0 and WE(U i(θ)) 6= 0 for θ 6= θ�

then −E(U i(θ))′WE(U i(θ)) has a unique maximum at θ�.

That is, θ� is identified if θ 6= θ� implies that E(U i(θ)) is not in the null space of

W . In particular, if W is nonsingular, this condition is equivalent to E(U i(θ)) 6= 0

if θ 6= θ�. A necessary order condition for GMM identification is that the dimension

of moment functions would be at least the dimension of parameters.

A consistency result for GMM can be formulated as follows:

Theorem 5.4.1 (Theorem 2.6, consistency of GMM, in Newey and McFadden

(1994)) Suppose that data are i.i.d., Ŵ
P−→ W , and

1. W is positive semi-definite,

2. WE(U i(θ)) = 0 only if θ = θ�,

3. θ� ∈ Θ, which is compact,

4. U i(θ) is continuous at each θ ∈ Θ with probability one,

5. E(supθ∈Θ ‖U i(θ)‖) < ∞.

Then the GMM solution in (5.6) consistently estimates θ�, that is, θ̂
P−→ θ�.

The asymptotically normal behavior of the GMM estimators is established in

the next theorem.
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Theorem 5.4.2 (Theorem 3.4, asymptotic normality for GMM, in Newey and Mc-

Fadden (1994)) Suppose that the hypotheses in Theorem 5.4.1 are fulfilled and

1. θ� ∈ interior(Θ),

2. U i(θ) is continuously differentiable in a neighborhood N of θ�, with probability

approaching one,

3. E(U i(θ
�)) = 0 and E(‖U i(θ

�)‖2) is finite,

4. E(supθ∈Θ ‖∂U i(θ)/∂θ‖) < ∞

5. G′WG is nonsingular for G = E(∂U i(θ
�)/∂θ).

Then for Ω = E(U i(θ
�)U i(θ

�)′),

√
n(θ̂ − θ�)

D−→ N (0, (G′WG)−1G′WΩWG(G′WG)−1).

An important issue about the proof of this theorem is that the fulfillment of the

hypotheses in Theorem 5.4.1 is only required in order to ensure the consistency of the

resulting estimators. Other issue is to note that the expression for the asymptotic

variance simplifies to G−1ΩG−1′

when we use W = Ω−1 as a metrics or weighting

matrix.

The asymptotic variance of a GMM estimator can be consistently estimated by

substituting estimators for each of G, W and Ω. Next theorem summarizes this

result.

Theorem 5.4.3 (Theorem 4.5, asymptotic variance estimation for GMM, in Newey

and McFadden (1994)) Suppose that the hypotheses in Theorem 5.4.2 are satisfied

and E(supθ∈N
‖U i(θ)‖2), in a neighborhood N of θ�, then

(Ĝ
′
Ŵ Ĝ)−1Ĝ

′
Ŵ Ω̂Ŵ Ĝ(Ĝ

′
Ŵ Ĝ)−1 P−→ (G′WG)−1G′WΩWG(G′WG)−1.

5.5 IPWGEE class of estimators

Liang and Zeger (1986) proposed the GEE to obtain consistent and asymptotically

normal estimates of the regression coefficient, β�, in the conditional expectation
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model

E(Y |X) = g(X; β�), (5.8)

solving

U(β) =

n∑

i=1

U i(β) =

n∑

i=1

d(X i; β) (Yi − g(X i; β)) = 0 (5.9)

where

d(X i; β) = (∂g(X i; β)/∂β) (Var(Yi|X i))
−1 .

Indeed, (5.9) is not a estimating equation because Var(Yi|Xi) depends on the

unknown distribution generating the data. So, Liang and Zeger solved recursively

these equations by modeling Var(Yi|X i) and replacing it by a current estimate based

on the current estimate β̂. This procedure is referred to as adaptive method. Cham-

berlain (1987) proved that in the absence of missing data the asymptotic variance

of the solution of (5.9) achieves the semiparametric variance bound in the semi-

parametric model (5.8). So, the adaptive procedure proposed by Liang and Zeger

provides locally efficient semiparametric estimators for β�.

In this section these GEE estimators are extended to a more general class, still

inside the GMM class of estimators. In what follows, we will assume that Ω =

Var(U i(β
�)) is finite and positive definite, and, as a consequence, we will setup

W = Ω−1.

In a missing data context, denote the vector of potential data by Li = (Yi, X
′
i, V

′
i)

′

for i = 1, . . . , n. Consider that the vector X i is p-dimensional and possibly has miss-

ing components, and Yi and V i are always observed. For the j-th component of X,

we define Rj as the binary variable that takes value 1 if this component of X has

been observed, and 0 otherwise. R = (R1, . . . , Rp)
′ is the indicator vector of re-

sponse in the random vector X. For the i-th individual, i = 1, . . . , n, we consider

the realization Ri of the variable R, and we denote by L(Ri)i
the subvector of Li

formed by the observed components and by L�
Ri

�
i
the subvector of Li formed by

the non-observed ones. So, the observed data are
{
Ri, L(Ri)i

}
i=1,... ,n

.

We will consider now that the non-response pattern is non-ignorable, in the sense

that the probabilities of response might depend on the non-observed variables. It
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means that for each realization r of the variable R, the conditional probability

P (R = r|L) depends on partially non-observed components of Y . We will denote

this probability by π(r).

In this situation, Rotnitzky and Robins (1997) proposed the inverse probability

of being observed weighted generalized estimating equations (IPWGEE) as an ex-

tension of the previously proposed class of estimators for MAR non-response pattern

in covariates (Robins et al., 1994). Later, Rotnitzky, Robins and Scharfstein (1998)

derived similar properties for the repeated outcomes subject to non-ignorable non-

response case. In their methodology, they considered that probabilities π(r) can

be parametrically specified depending on a unknown q-dimensional parameter α

(i.e., they assumed π(r) = π(r; α)).

The IPWGEE class of estimators are the solutions to the estimating equations

U(β, α; d, φ) =
n∑

i=1

U i(β, α; d, φ) = 0 (5.10)

where

U i(β, α; d, φ) =
I(Ri = 1)

πi (1; α)
d(Xi; β) (Yi − g(X i; β)) + Ai(φ)

(5.11)

and

Ai(φ) =
∑

r 6=1

({
I(Ri = r) − I(Ri = 1)

πi(1; α)
πi(r; α)

}
φr(L(r)i)

)

(5.12)

with d(.; .) and φr(.) arbitrary vectorial functions of dimension equal to those of the

joint parameter γ = (β′, α′)′.

In (5.11) we can see that π−1
i (1; α){d(X i; β)εi−

∑
r 6=1 πi(r; α)φr

(
L(r)i

)
} is the

contribution of a fully observed i-th individual, and each individual with partially

observed covariates contributes φRi

(L
(Ri)

) in (5.10). On the other hand, if β�, α�

and γ� denote the true values of the parameters β, α and γ, it is straightforward

to prove, after taking conditional expectations on Li, that E(U i(β
�, α�; d, φ)) =

0. Therefore IPWGEE is a class of unbiased estimating equations and they will

provide consistent and asymptotically normal estimates for γ� (Newey, 1990). It is

important to observe that the augmented term Ai(φ) in (5.11) it is not necessary
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to derive unbiased estimating equations, but it is convenient to use the information

of partially observed individuals in order to gain efficiency. In a similar way that in

Lemma 5.4.1 and Theorems 5.4.1, 5.4.2 and 5.4.3, the next theorem describes the

asymptotic properties of the solutions
(
β̂

′
, α̂′

)′

to (5.10).

Theorem 5.5.1 (Rotnitzky et al., 1998) Under the mild regularity conditions

1. γ lies in the interior of a compact set,

2. (Li, Ri), i = 1, . . . , n are independently and identically distributed,

3. for some c, π(1; α) > c > 0 for all α,

4. E(U i(γ; d, φ)) 6= 0 if γ 6= γ�,

5. Var(U i(γ
�; d, φ)) is finite and positive definite,

6. Γ = E (∂U i(γ
�; d, φ)/∂γ) exists and is invertible,

7. there exist a neighborhood N of γ� such that E(supγ∈N ‖U i(γ; d, φ)‖),
E(supγ∈N ‖∂U i(γ; d, φ)/∂γ‖), and E(supγ∈N ‖U i(γ; d, φ)U ′

i(γ; d, φ)‖) are all

finite, where ‖A‖ = (
∑

ij a2
ij)

1/2 for any matrix A = (aij),

8. f(L, R; γ) is a regular parametric model where f(L, R; γ) is a density that

differs from the true density f(L, R) = f(L, R; γ�) only in that γ replaces

γ�,

9. for all γ̄ in a neighborhood N of γ�, Eγ̄(U i(γ; d, φ)) and

Eγ̄(supγ∈N ‖U i(γ; d, φ)U ′
i(γ; d, φ)‖) are bounded, where Eγ̄ refers to expec-

tation with respect to the density f(L, R; γ̄),

if the function g and the model for π(r) are correctly specified then

a) with probability approaching 1, there is a unique solution γ̂ to (5.10),

b)
√

n (γ̂ − γ�) asymptotically follows a N (0,Υ) distribution, with Υ = Γ−1ΩΓ−1′

with Ω = Var(U i(γ
�; d, φ))
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c) the asymptotic variance-covariance matrix Υ can be consistently estimated by

Υ̂ = Γ̂
−1

Ω̂Γ̂
−1′

where Γ̂ = n−1
∑

∂U i(γ; d, φ)/∂γ and

Ω̂ = n−1
∑

U i(γ; d, φ)U ′
i(γ; d, φ) are evaluated in γ = γ̂.

Part a) holds by applying Theorem 5.4.2. Due to the nonsingularity of Γ, part

b) follows by Slutzky’s theorem and the central limit theorem. The consistency of

the variance estimators in c) follows from the law of large numbers.

One of the advantages of the IPWGEE class is that the solutions to (5.10)

essentially comprise all regular and asymptotically linear estimators of β� as is

stated in the next theorem (Lemma 1 in Rotnitzky et al. (1998)).

Theorem 5.5.2 If β̄ is any regular and asymptotically linear estimator of β� in

the semiparametric model of the conditional expectation, with πi(1) bounded away

from 0 with probability 1, and the model for πi(r; α) is correctly specified, then there

exist functions d(X i; β) and φr(L(r)i), r 6= 1, such that for β̂ solving (5.10) using

these functions, then
√

n(β̄− β̂) converges to 0 in probability, and thus
√

n(β̄−β�)

and
√

n(β̂ − β�) have the same asymptotic distribution.

5.6 Efficiency

The most interesting point of the IPWGEE class of estimators is that it includes

the efficient semiparametric estimator for the specified conditional expectation semi-

parametric model. This result was established in Theorem 2 in Rotnitzky et al. (1998).

Theorem 5.6.1 Under the same hypothesis in Theorem 5.5.1, there exist func-

tions dopt(X i; β
�) and φropt(L(r)i) such that the asymptotic variance of the solution(

β̂
′
, α̂′

)′

of (5.10) equals Ω−1
opt = (Var(U i(β

�, α�; dopt, φopt)))
−1. Furthermore it at-

tains the semiparametric variance bound for regular estimators of (β�′, α�′)′. In

particular, the upper left p × p submatrix of Ω−1
opt is the semiparametric variance

bound for β�.

The optimal functions dopt(X i; β
�) and φropt(L(r)i) are not available for data

analysis since they depend on the unknown true distribution generating the data.
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For the missing covariates case there is no closed-form for dopt(X i; β
�) and φropt(L(r)i),

but they are solutions of functional integral equations without analytic solution. As

a consequence, the adaptive procedure has to add an extra iterative step to solve

these functional equations. This means that, in practice, the methodology to obtain

efficient semiparametric estimators will be computationally intensive. Rotnitzky

and Robins (1997) gave these equations in detail for the case in which the subvector

of X with possibly non-observed components is fully observed or not (e.g., if p = 1),

and in Appendix IV they described how to obtain locally efficient semiparametric

estimators β̂(d̂opt, φ̂opt) of β�.

5.7 Sensitivity analysis

In a non-ignorable non-response pattern setting and in order to have a better inter-

pretation of the probabilities π(r), for each realization r of the random variable R we

will model the log-ratio between individuals who have only observed the covariates

indicated by r and those with X completely observed, in the form

log
P (R = r|Y, X, V )

P (R = 1|Y, X, V )
= mr(Y, V ; α) + qr(Y, X, V ; τ ). (5.13)

This characterization allows us to separate the non-response pattern in two parts:

mr(Y, V ; α) the ignorable part, depending on the parameter α, and

qr(Y, X, V ; τ ) the non-ignorable part, depending on τ . We will consider that qr(.)

only contains the contributions of Y and V that are inseparably related with X

and they can not be reduced to a separate form (e.g., qr(.) includes interactions

between Y or V and some components of X). In the following, we will refer to τ as

the non-ignorability parameter or selection bias parameter. This model allows us to

include the MCAR and MAR mechanisms as particular cases for a pre-determined

setup of parameters α and τ (e.g., when τ = 0 we could derive the MAR case).

When we have all the data, or the distributions are known, the probabilities on

the left-hand side of (5.13) are well defined, but quantities mr(.) and qr(.) on the

right-hand side are identified, up to translation (i.e., if mr(.) and qr(.) verify (5.13),

then m′
r(.) = mr(.) − k and q′r(.) = qr(.) + k so do, for each value of k). Then,

in order to unequivocally identify mr(.) and qr(.) we have to fix the value of the
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function qr(.) on some pre-determined value of the variables that appear in qr(.) and

not in mr(.) (i.e., of X). Without loss of generality, we can choose X = 0 and fix

qr(Y, 0, V ) = 0. Then, if we denote by `r(Y, X, V ; α, τ ) the log-ratio probabilities

in the equation (5.13), mr(.) and qr(.) are univocally identified as

mr(Y, V ; α) = `r(Y, 0, V ; α, τ )

qr(Y, X, V ; τ ) = `r(Y, X, V ; α, τ ) − `r(Y, 0, V ; α, τ ).

We can see that in the univariate case (i.e., p = 1), (5.13) is equivalent to model

P (R = r|L) according to a logistic model in the form

logit (P (R = 1|L)) = m(Y, V ; α) + q(Y, X, V ; τ ). (5.14)

Assume that the non-response model in (5.13) or (5.14) is correctly specified

and denote by α� and τ � the true non-response parameters. When we have missing

data in the covariates vector X, we can not estimate parameter τ � directly from

the sample because for those individuals with partially observed covariates we can

not derive their contribution to the likelihood (without making extra parametric

assumptions on the distribution of X, and the conditional on X distributions of Y

and V ). That is τ � is not identified. So, in order to conduct a sensitivity analysis,

for each value of a plausible range of values for the non-ignorability parameter, τ , we

will estimate consistently α̂(τ ) and our parameters of interest. Finally, a graphical

description of the estimates for the parameter of interest can be done in order to

illustrate the robustness of the inferences and their sensitivity to the non-validable

assumptions. In the context of conducting this type of sensitivity analysis, Rotnitzky

et al. (1998) gave in Section 7.4 some practical recommendations to choose d and φ

in a computable “easy” way. In particular, they suggested how to setup d and φ in

order to derive quite efficient estimators of β� under moderate departures from the

MAR hypothesis. These suggestions will be taken into account in Chapter 6.

If we are analyzing survival data, the outcome random variable Y will be replaced

by the observed survival time and the censoring indicator, Y and δ.


