
Chapter 6

Semiparametric Approach

6.1 Introduction and notation

The problem we study arises in the epidemiological context. Our goal is to make

inferences about the time to an event ε according to the values of some covariates of

interest. All the variables have been measured at the beginning of the survival time,

but in some individuals some part of the covariates of interest are missing. For all

the subjects we have the censored or uncensored survival time and other variables

possibly correlated with the covariates of interest.

Let T be the survival (or time to ε) time and C the censoring time, with cu-

mulative distribution functions F and G, respectively. Denote by Y = T ∧ C the

observed survival time and by δ = I(T ≤ C) = I(Y = T ) the censoring indicator.

For each individual we have one vector X = (X1, . . . , Xp)
′ of p discrete covariates of

interest and confounding variables, and another vector V = (V1, . . . , Vs)
′ of s other

variables, possibly surrogates of X, and variables in the causal pathway from X to

Y . As usual in this kind of studies, we suppose that C is independent of T , given

X and V .

We are interested in making inferences about some functional of the distribution

of T given X, when part of the covariates X have not been observed (for example,

we may want to estimate E(T |X) for each category in X, the median of T |X, some

percentiles of T |X, the Kaplan–Meier estimator of T |X, the differences between

T |X = a and T |X = b,...).
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We define the vector of potential data as Li = (Yi, δi, X
′
i, V

′
i)
′ for i = 1, . . . , n.

Li is a vector of 2 + p + s components. For the j-th component of X, we define

Rj as the binary variable which takes value 1 if this component of X has been

observed, and 0 otherwise. R = (R1, . . . , Rp)
′ is the indicator vector of response in

the covariates X. Denote by ΩR = {0, 1}p the sample space of the random vector

R.

For the i-th individual, i = 1, . . . , n, we consider the realization Ri of the variable

R, and we denote by L(Ri)i
the subvector of Li formed by the observed components

and by L�
Ri

�
i

the subvector of Li formed by the non-observed ones. So, the

observed data are
{

Ri, L(Ri)i

}
i=1,... ,n

.

As we already mentioned our goal is to derive an estimator for the survival

function in each category of X when some of the values in the covariate X have

not been observed. In order to do that we develop first, in Section 6.2, a grouped

Kaplan–Meier estimator and its stratified version assuming that the values of X have

been observed. We use this grouped estimator as a platform to build in Section 6.3

a Kaplan–Meier semiparametric estimator when missing data is present. At the end

of the chapter we apply the proposed methodology to the HIV+PTB cohort.

6.2 Grouped Kaplan–Meier (GKM) estimator

6.2.1 Definition

In many situations the inferences are only needed at a finite number of calendar times

(e.g., years, months, weeks ...). If data were complete, the Kaplan–Meier estimator

estimates the survival function at each uncensored time and, from this, the survival

curve could be estimated at each time of interest. However, the corresponding

survival function would be estimated at a number of times that increases with the

sample size. In this section we develop a methodology to estimate the survival

function at each time of interest when our sample has missing data. The advantage

of the proposed methodology is that it will avoid the above mentioned dimensionality

issue.

Suppose that the data are collected in a observation window (0, Tmax]. Therefore,
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in order to deal with and to estimate a finite dimensional vector, in what follows

we assume that we are interested in the inference of the survival function at a finite

number of points τ0 = 0 < τ1 < τ2 < . . . < τK < Tmax = τK+1. We define the

K +1 intervals Ik = (τk−1, τk], k = 1, . . . , K +1 that form a partition of the window

(0, Tmax].

For each time of interest τk, k = 1, . . . , K, we define the survival at time τk,

Sk = S(τk) = P (T > τk). We can rewrite the survival function in the usual product

limit form

Sk = P (T > τk) = P (T > τ1)P (T > τ2|T > τ1) · . . . · P (T > τk|T > τk−1)

=
k∏

`=1

P (T > τ`|T > τ`−1), (6.1)

and each of these conditional probabilities as

P (T > τ`|T > τ`−1) =
P (T > τ`)

P (T > τ`−1)
=

1 − F (τ`−1) + F (τ`−1) − F (τ`)

1 − F (τ`−1)

= 1 − F (τ`) − F (τ`−1)

1 − F (τ`−1)
= 1 − q` (6.2)

where q` is the probability that the event ε happens in the `-th interval, I`, given

that it has not happened before τ`−1.

For k = 1, . . . , K, we denote by rk the number of individuals at risk at the

beginning of Ik, by ek the number of events in Ik, by ck the number of censored

individuals in Ik and by rK+1 = n −
K∑

k=1

(ek + ck) the number of individuals in the

sample with observed survival time strictly greater than τK . Following the Kaplan–

Meier’s idea, we propose to estimate the conditional probabilities qk by the naive

estimator

q̂k =
ek

rk
=

ek

K∑

`=k

(e` + c`) + rK+1

. (6.3)

We define the Grouped Kaplan–Meier (GKM) estimator as the vector of estima-

tors Ŝ =
(
Ŝ1, . . . , ŜK

)′
, where for every k = 1, . . . , K

Ŝk =

k∏

`=1

(1 − q̂`). (6.4)
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In what follows, we introduce some vectorial notation that will enable us to

characterize the Grouped Kaplan–Meier estimator as a (2K +1)-dimensional vector.

For each k = 1, . . . , K we define β̂k1 = ek and β̂k0 = ck, β̂K+1 = rK+1 and

β̂ =
(
β̂11, β̂10, β̂21, β̂20, . . . , β̂K1, β̂K0, β̂K+1

)′

and it follows that the GKM estimator Ŝ can be uniquely determined through

β̂. Let J be the ordered set of 2K + 1 indexes, that is, J = {11, 10, 21, 20, . . . ,

K1, K0, K + 1}, and rewrite the vector β̂ as
(
β̂j

)′
j∈J

. If for each k = 1, . . . , K

denote by Jk the subset of indexes {k1, k0, . . . , K1, K0, K + 1}, thus, expression

(6.4) can be written as

Ŝk =

k∏

`=1


1 − β̂`1∑

j∈J`

β̂j


 . (6.5)

6.2.2 Asymptotic behavior

Breslow and Crowley (1974) described the large sample properties of the life table

and product limit estimators (Kaplan and Meier, 1958) under random censorship.

For the estimation of the life table they considered that the withdrawal mechanism

takes place just in the middle of the intervals Ik, in order to adjust for the fact

that the rk individuals are not at risk for the entire interval. This estimator is in

general inconsistent and therefore they use the Kaplan–Meier estimator to derive

the asymptotic properties.

Before to proceed to derive the asymptotic properties of the GKM estimator we

make the following consideration.

Remark 6.2.1 .

a) The KM estimator is the limit of the GKM estimator of nested sequences when

the norm of the partition, defined by ρ = maxk=1,... ,K+1(τk − τk−1), converges

to 0.

b) In practice, with discrete time data, the GKM estimator and the KM estimator

yield the same estimates if we take the partition {τk}1,... ,K equal to the grid for



6.2. GROUPED KAPLAN–MEIER (GKM) ESTIMATOR 93

the discrete values of Y . In fact, we are considering all the information in the

same way that it was only observable in the right endpoint of each interval Ik.

We define the events Ωj, j ∈ J :

Ωj =





Y ∈ Ik, δ = 1 if j = k1 k = 1, . . . , K

Y ∈ Ik, δ = 0 if j = k0 k = 1, . . . , K

Y > τK if j = K + 1

(6.6)

According to these definitions the probabilities of the events Ωj, j ∈ J , are respec-

tively:

P (Ωj) =





P (T ∈ Ik, C ≥ T ) =

∫ τk

τk−1

(1 − G)dF j = k1 k = 1, . . . , K

P (C ∈ Ik, T ≥ C) =

∫ τk

τk−1

(1 − F )dG j = k0 k = 1, . . . , K

P (T > τK , C > τK) = (1 − F (τK))(1 − G(τK)) j = K + 1

The vector β̂ is integrated by the counts of the events Ωj, j ∈ J , that is, β̂k1 =

ek =
∑n

i=1 I(Ωk1i), β̂k0 = ck =
∑n

i=1 I(Ωk0i) and β̂K+1 = rK+1 =
∑n

i=1 I(Ω(K+1)i),

and follows a multinomial distribution with vector of probabilities p = (P (Ωj))
′
j∈J .

Denote by p� the true vector of probabilities and by β� =
(
β∗

j

)′
j∈J

= n ·p� the true

vector of expected counts when the sample size is n. So, by computing the moment

generating functions we can derive the following lemmas and theorems.

Lemma 6.2.1 The standardized random vector
β̂ − np�√

n
converges in distribution

to a multivariate normal N (0,Σ) with Σ = diag(p�)− p� · p�′, or, in other words,

√
n

(
β̂

n
− p�

)
D−→ N (0,Σ) .

Proof: See, for instance, page 470 in Bishop et al. (1975). 2

In order to derive the asymptotic distribution of the GKM estimator we will use

twice the multivariate version of the δ-method.
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Theorem 6.2.1 Multivariate δ-method (Bishop et al., 1975) Let f be a R-

valued function defined in the T-dimensional parameter space Θ. Let θ, θ� and θ̂

be vectors of Θ. If

a) f is differentiable in one open subset of Θ containing θ� and

b) θ̂ has an asymptotic normal distribution in the sense that

√
n(θ̂ − θ�)

D−→ N (0,∆),

then the asymptotic distribution of f
(
θ̂
)

is given by

√
n
(
f
(
θ̂
)
− f (θ�)

)
D−→ N

(
0,

(
∂f

∂θ

) ∣∣∣∣
θ=θ�

∆

(
∂f

∂θ

)′ ∣∣∣∣
θ=θ�

)
.

In other words, for large n, if θ̂ has an approximate N (θ�, n−1∆) distribution,

then f
(
θ̂
)

has an approximate N
(

f(θ�), n−1
(

∂f
∂θ

) ∣∣∣∣
θ=θ�

∆
(

∂f
∂θ

)′ ∣∣∣∣
θ=θ�

)
distri-

bution.

Define the Kaplan–Meier map, KM, as the function KM : [0,∞)2K+1 → [0, 1]K

that assigns the GKM estimator Ŝ where each component is defined by (6.5) to

each realization of the vector β̂ (i.e., Ŝ = KM(β̂)). Note that the KM map is

homogeneous, that is KM(β̂/n) = KM(β̂). Define as well the log-Kaplan–Meier

map, `KM, by

β̂ =
(
β̂j

)
j∈J

`KM−→ log Ŝ =

(∑

`≤k

log

(
1 − β̂`1∑

j∈J`
β̂j

))

{k=1,... ,K}

. (6.7)

Note that 1 − β̂`1/
∑

j∈J`

β̂j =
∑

j∈J`\{`1}

β̂j/
∑

j∈J`

β̂j.

In order to prove that the Kaplan–Meier map satisfies the conditions of 6.2.1, it

is sufficient to verify it for the log-function `KM.

Lemma 6.2.2 The function `KM : [0,∞)2K+1 → (−∞, 0]K defined by (6.7) is dif-

ferentiable in all the points β̂ =
(
β̂11, β̂10, β̂21, β̂20, . . . , β̂K1, β̂K0, β̂K+1

)′
∈ [0,∞)2K+1

such as β̂K+1 > 0
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Proof: Indeed, due to β̂K+1 > 0 all the quantities
∑

j∈J`
β̂j are positive and the

ratios
cβ`1P

j∈J`
cβj

are strictly less than 1. So, each one of the k-th components of log Ŝ

is differentiable with continuous partial derivatives in a neighbourhood of β̂. 2

Note that the condition β̂K+1 > 0 means that S(τK) > 0 (i.e., there are alive

individuals in the last estimation point), or, analogously, that the distribution of F

is not concentrated in the interval (0, τK ]. In practice, if rK+1 = 0 we can shift K

to K − 1.

Let us calculate the differential matrix ∂`KM/∂β̂:

∂`KMk

∂β̂j

=
∑

`≤k

∂ log


1 − β̂`1∑

j∈J`

β̂j




∂β̂j

=
∑

`≤k

∂

∂β̂j



log


 ∑

j∈J`\{`1}

β̂j


− log

(∑

j∈J`

β̂j

)


and, after straightforward calculations, we obtain

∂`KMk

∂β̂j

=
∑

`≤k





1∑

j∈J`\{`1}

β̂j

− 1∑

j∈J`

β̂j

j ∈ J` \ {`1}

−1∑

j∈J`

β̂j

j = `1

0 j 6∈ J`

(6.8)

If we retake the notation ek and rk for the number of events and individuals

at risk in the interval Ik, and we define gk =
ek

rk(rk − ek)
, expression (6.8) can be

rewritten in matricial form as

∂`KM
∂β̂

=




1 0 0 · · · 0

1 1 0 · · · 0

1 1 1 · · · 0

. . . . . . . . . . . . . . .

1 1 1 · · · 1







−1

r1

g1 g1 g1 g1 g1 · · · g1 g1 g1

0 0
−1

r2
g2 g2 g2 · · · g2 g2 g2

0 0 0 0
−1

r3
g3 · · · g3 g3 g3

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 0 0 0 0 0 · · · −1

rK

gK gK




.

(6.9)



96 CHAPTER 6. SEMIPARAMETRIC APPROACH

Let us denote by T and G the respective K ×K and K× (2K +1) matrices in (6.9).

So, after composing with the exponential function we have the following theorem

that summarizes the asymptotic properties of the Grouped Kaplan–Meier estimator.

Theorem 6.2.2 The Grouped Kaplan–Meier estimator defined in (6.5) asymptoti-

cally follows a N (KM(p�), n−1(ST G)Σ(ST G)′) distribution being S the K × K

diagonal matrix diag(KM(p�)), T and G as in (6.9) and evaluated in p� and

Σ = diag(p�) − p� · p�′ as in Lemma 6.2.1.

Proof: Due to the homogeneity of the KM map, if we apply the δ-method to the

function

(x1, . . . , xK)′ → (exp (x1), . . . , exp (xK))′

acting on the estimator `KM(β̂), we obtain

√
n
(
KM

(
β̂
)
− KM(p�)

)
D−→ N (0, (ST G)Σ(ST G)′)

that yields the proposed result. 2

6.2.3 Asymptotic bias

It is important to note that the Grouped Kaplan–Meier estimator defined in (6.4),

Ŝk, has a positive bias with respect to the true survival S(τk). In fact, due to the

“shift to the right”, the conditional probabilities q̂k in (6.3) underestimate the true

values qk in (6.2). Consequently, Ŝk overestimates Sk, for k = 1, . . . , K. However,

the upper bound for the asymptotic relative bias at τk decreases when we add cut

points previous to τk to the former partition. The following two lemmas summarize

these facts.

Lemma 6.2.3 Let F and G be the cumulative distribution functions of T and C,

respectively. Then, asymptotically, we have that

a) the inequality

1 − G(τk)

1 − G(τk−1)
qk ≤ q̂k ≤ qk (6.10)

holds a.s., for every k = 1, . . . , K,
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b) the ratio
G(τk) − G(τk−1)

1 − G(τk−1)
is an upper bound for the relative bias in the ap-

proximation of qk by q̂k, and

c) for every k = 1, . . . , K,

Ŝk − S(τk)

S(τk)
≤

k∑

`=1

∆F
` ∇G

` +

k∑

η=2

∑

`1<`2<...<`η≤k

η∏

i=1

∆F
`i
∇G

`i
,

(6.11)

where ∆F
` =

F (τ`) − F (τ`−1)

1 − F (τ`)
and ∇G

` =
G(τ`) − G(τ`−1)

1 − G(τ`−1)
for ` = 1, . . . , K.

Proof: According to the definitions

a)

q̂k =
β̂k1∑

j∈Jk

β̂j

=
β̂k1/n∑

j∈Jk

β̂j/n
converges, almost surely, when n → ∞ to

∫ τk

τk−1

(1 − G)dF

K∑

`=k

{∫ τ`

τ`−1

(1 − G)dF +

∫ τ`

τ`−1

(1 − F )dG

}
+ (1 − F (τK))(1 − G(τK))

=

∫ τk

τk−1

(1 − G)dF

∫ τK

τk−1

{(1 − G)dF + (1 − F )dG} + (1 − F (τK))(1 − G(τK))

=

∫ τk

τk−1

(1 − G)dF

−((1 − F )(1 − G))|τK
τk−1

+ (1 − F (τK))(1 − G(τK))

=

∫ τk

τk−1

(1 − G)dF

(1 − F (τk−1))(1 − G(τk−1))
=

∫ τk

τk−1

1 − G(t)

1 − G(τk−1)
dF (t)

1 − F (τk−1)
. (6.12)

Since G is increasing, 1−G(t) < 1−G(τk−1), ∀t ∈ Ik = (τk−1, τk] and therefore

asymptotically

q̂k ≤

∫ τk

τk−1

dF (t)

1 − F (τk−1)
=

F (τk) − F (τk−1)

1 − F (τk−1)
= qk.
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On the other hand, 1−G(τk) < 1−G(t), ∀t ∈ (τk−1, τk) and, consequently the

left inequality in (6.10) holds.

b) From part a)

|q̂k − qk|
qk

≤
qk −

1 − G(τk)

1 − G(τk−1)
qk

qk
= 1 − 1 − G(τk)

1 − G(τk−1)
=

G(τk) − G(τk−1)

1 − G(τk−1)
.

c) If we denote by q = (q1, . . . , qK)′ and q̂ = (q̂1, . . . , q̂K)′ the vector of proba-

bilities and its estimators, and fk the function fk(x1, . . . , xK) =
∏

`≤k(1− x`)

we can write

Ŝk − S(τk) = fk(q̂) − fk(q).

After observing that

∂fk

∂xm

=





−fk

1 − xm

=
∏

`≤k, 6̀=m

(1 − x`) if m ≤ k

0 if m > k

and

∂2fk

∂x2
m

= 0 ∀m,

we expand fk by Taylor in a neighbourhood of q and we obtain

fk(q̂) = fk(q) +
k∑

`=1

−fk

1 − x`

∣∣∣∣
q
(q̂` − q`) +

+
∑

`1<`2≤k

fk

(1 − x`1)(1 − x`2)

∣∣∣∣
q
(q̂`1 − q`1)(q̂`2 − q`2) +

+
∑

`1<`2<`3≤k

−fk

(1 − x`1)(1 − x`2)(1 − x`3)

∣∣∣∣
q
(q̂`1 − q`1)(q̂`2 − q`2)(q̂`3 − q`3) +

+ . . . +
(−1)kfk∏
`≤k(1 − x`)

∣∣∣∣
q

∏

`≤k

(q̂` − q`)

and hence

fk(q̂) − fk(q)

fk(q)
=

k∑

`=1

q` − q̂`

1 − q`
+

∑

`1<`2≤k

q`1 − q̂`1

1 − q`1

q`2 − q̂`2

1 − q`2

+ . . . +
∏

`≤k

q` − q̂`

1 − q`
.

(6.13)
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But using expression (6.12) for q̂` we derive that, asymptotically,

q` − q̂`

1 − q`

=

F (τ`) − F (τ`−1)

1 − F (τ`−1)
−
∫ τ`

τ`−1

1−G(t)
1−G(τ`−1)

dF (t)

1 − F (τ`−1)

1 − F (τ`) − F (τ`−1)

1 − F (τ`−1)

=
{F (τ`) − F (τ`−1)} −

∫ τ`

τ`−1

1−G(t)
1−G(τ`−1)

dF (t)

1 − F (τ`)
,

and since G is increasing with t we have

q` − q̂`

1 − q`
≤

{F (τ`) − F (τ`−1)} − 1−G(τ`)
1−G(τ`−1)

{F (τ`) − F (τ`−1)}
1 − F (τ`)

=

(
F (τ`) − F (τ`−1)

1 − F (τ`)

)(
G(τ`) − G(τ`−1)

1 − G(τ`−1)

)

= ∆F
` ∇G

` .

From (6.13) and the previous inequality we derive (6.11). 2

Note that the upper bound for the relative bias in the estimation of the con-

ditional probabilities qk only depends on the censoring distribution. For absolute

continuous distributions, a) the bound increases if we move the endpoint τk to the

right and, b) the bound converges to zero if τk−1 approaches τk.

On the other hand, the cumulative sum of the expression (6.11) could increase if

we add points before a fixed cut point τk. The next lemma studies this aspect and

proves that the asymptotic relative bias in the estimation of S(τk) decreases when

the partition gets thinner.

Lemma 6.2.4 Let F and G be the cumulative distribution functions of T and C,

respectively, and H(x, y) (0 ≤ x ≤ y) defined by

H(x, y) =

(
F (y)− F (x)

1 − F (y)

)(
G(y) − G(x)

1 − G(x)

)
.

Then, for every 0 ≤ a < c < b we have the following inequality

H(a, b) > H(a, c) + H(c, b).
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Proof: We start proving that this “split” property holds for the F -term of the

function H. Indeed, since F (b) > F (c)

F (b) − F (a)

1 − F (b)
=

F (c) − F (a)

1 − F (b)
+

F (b) − F (c)

1 − F (b)
>

F (c) − F (a)

1 − F (c)
+

F (b) − F (c)

1 − F (b)
.

On the other hand, G(b) > G(c) and the function
G(b) − G(x)

1 − G(x)
= 1 − 1 − G(b)

1 − G(x)
is

strictly decreasing with x, therefore

H(a, b) >

(
F (c) − F (a)

1 − F (c)
+

F (b) − F (c)

1 − F (b)

)
G(b) − G(a)

1 − G(a)

=

(
F (c) − F (a)

1 − F (c)

)(
G(b) − G(a)

1 − G(a)

)
+

(
F (b) − F (c)

1 − F (b)

)(
G(b) − G(a)

1 − G(a)

)

>

(
F (c) − F (a)

1 − F (c)

)(
G(c) − G(a)

1 − G(a)

)
+

(
F (b) − F (c)

1 − F (b)

)(
G(b) − G(c)

1 − G(c)

)

= H(a, c) + H(c, b)

2

6.2.4 Stratified Grouped Kaplan–Meier estimator Ŝx

For each category x = (x1, . . . , xp)
′ of the covariates vector X if the above sub-

sections are rewritten conditioning on X = x, we obtain the stratified version of

the Grouped Kaplan–Meier estimator for the category X = x. Without loss of

generality we will assume that 0 < P (X = x) < 1. Our vector of interest will

be Sx = (Sx1, . . . , SxK)′ where Sxk = P (T > τk|X = x) for each time τk,

k = 1, . . . , K.

In a similar way, we can derive equivalent expressions to (6.1) and (6.2), with

P (T > τ`|T > τ`−1, X = x) =
P (T > τ`|X = x)

P (T > τ`−1|X = x)

=
1 − Fx(τ`−1) + Fx(τ`−1) − Fx(τ`)

1 − Fx(τ`−1)

= 1 − Fx(τ`) − Fx(τ`−1)

1 − Fx(τ`−1)
= 1 − qx` (6.14)

where Fx is the conditional distribution function of T given X = x.

Analogously, if in the category X = x we denote by rxk the number of in-

dividuals at risk at the beginning of Ik, by exk the number of events in Ik, by
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cxk the number of censored individuals in Ik for k = 1, . . . , K and by rxK+1 the

number of individuals with observed survival time strictly greater than τK, we can

estimate the conditional probabilities qxk by the ratio q̂xk = exk/rxk and com-

pute the Stratified Grouped Kaplan–Meier estimator as the vector of estimators

Ŝx =
(
Ŝx1, . . . , ŜxK

)′
, where for every k = 1, . . . , K

Ŝxk =

k∏

`=1

(1 − q̂x`). (6.15)

Also the conditional version of the equation (6.5) can be obtained after defining,

for each k = 1, . . . , K, β̂x,k1 = exk, β̂x,k0 = cxk, β̂x,K+1 = rxK+1, β̂x =
(
β̂x,j

)′
j∈J

as

β̂x = (β̂x,11, β̂x,10, β̂x,21, β̂x,20, . . . , β̂x,K1, β̂x,K0, β̂x,K+1)
′

and, consequently,

Ŝxk =
k∏

`=1


1 − β̂x,`1∑

j∈J`

β̂x,j


 . (6.16)

In order to derive the asymptotic behavior of the stratified Grouped Kaplan–

Meier estimator, we denote by px = (P (Ωj|X = x))′j∈J the vector of conditional

probabilities for the events Ωj defined in (6.6), by p�x the true values vector for px

and by nx = n · P (X = x) the expected number of individuals with X = x when

the sample size is n. Then, we can obtain the stratified version of Lemma 6.2.1 and

Theorem 6.2.2.

Lemma 6.2.5 The standardized random vector
β̂x − nxp�x√

nx
converges in distribu-

tion to a multivariate normal N (0,Σx) with Σx = diag(p�x)−p�x ·p�x′, or, in other

words,

√
nx

(
β̂x
nx

− p�x

)
D−→ N (0,Σx) .

Proof: It is enough to restrict us to the conditional probability space given X = x

and to apply Lemma 6.2.1 after replacing β̂ by β̂x, n by nx and p� by p�x. 2
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Theorem 6.2.3 The stratified Grouped Kaplan–Meier estimator defined in (6.16)

asymptotically follows a N
(
KM(p�x), n

−1
x (SxT Gx)Σx(SxT Gx)′

)
distribution be-

ing Sx the K × K diagonal matrix diag(KM(p�x)), T and Gx as in (6.9) and

evaluated in p�x and Σx = diag(p�x) − p�x · p�x′ as in Lemma 6.2.5.

Proof: Analogously to the proof of Theorem 6.2.2, the result follows from the

application of the δ-method to the KM map acting on the distributions of the

above Lemma 6.2.5. 2

Concerning the asymptotic bias of the stratified Grouped Kaplan–Meier estima-

tor, previous Subsection 6.2.3 holds by replacing cumulative distributions F and G

by their respective conditional on X = x cumulative distributions, Fx and Gx.

6.3 Estimated (stratified) Grouped Kaplan–Meier

(EGKM) estimator S̃x

When the vector X is not totally observed, we cannot obtain the quantities β̂x,j,

j ∈ J , directly from the sample. We propose to estimate p�x, using all the available

data in the sample and the non-response mechanism, by means of the semiparametric

estimates ˜̃pj, j ∈ J , to be defined below. From these, we define the Estimated

Grouped Kaplan–Meier (EGKM) estimator as

S̃xk =
k∏

`=1


1 −

˜̃px,`1∑

j∈J`

˜̃px,j


 . (6.17)

Although these values could be estimated independently, we choose to estimate

them jointly so that we can derive an estimate for the variance of the new estimator

S̃x =
(
S̃x1, . . . , S̃xK

)′
. Taking into account that the category X = x is fixed

through all the section, we will omit, unless it would be necessary, the subindex x

in all the estimators and parameters.
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6.3.1 An introductory example

To motivate the methodology that we will develop in this section we start with an

illustrative example based on the fictitious data in Table 6.1. The data correspond to

the observed survival time (Y, δ) for n = 10 individuals for whom a binary covariate

X could be also recorded. Table 6.1 presents the data for these 10 individuals

ordered by the observed value of Y . We can observe that for 6 individuals the

covariate X is available, while is missing for the other 4. Let the variable R be the

binary response indicator to the covariate X. Let τ1 and τ2 be two times of interest

such that t7 ≤ τ1 < t8 and t10 ≤ τ2. Suppose that the partition {τk}k=1,... ,K is

{τ1, τ2}.

Y δ X R

t1 1 0 1

t2 1 1 1

t3 1 1 1

t4 0 0 1

t5 0 1 1

t6 1 NA 0

t7 0 NA 0

t8 1 0 1

t9 1 NA 0

t10 0 NA 0

Table 6.1: Data example to illustrate the Estimated Grouped Kaplan–Meier esti-

mator. n = 10, {τ1, τ2} such that ti ≤ τ1 for i = 1, . . . , 7 and τ1 < ti ≤ τ2 for

i = 8, 9, 10

Complete data from Table 6.1 can be equivalently summarized as in Table 6.2.

Note that to build the life table for the stratified Grouped Kaplan–Meier estimator

at times τ1 and τ2 we only use 6 individuals (3 belonging to X = 0 and 3 to X = 1).

On the other hand if, for only pedagogical reasons, we assume that the non-
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X = 0 X = 1

Y r e c Scc r e c Scc

τ1 3 1 1 0.667 3 2 1 0.333

τ2 1 1 0 0 0 0 0 0.333

Total 2 1 2 1

n0 = 3 n1 = 3

nef = 6

Table 6.2: Complete case life table and stratified Grouped Kaplan–Meier estimator

for categories X = 0 and X = 1 for the data in Table 6.1. nx, x = 0, 1, number of

individuals belonging to the category X = x. nef , effective sample size

response mechanism is MCAR or MAR, we can apply the following strategy. If

missing data are MAR, i.e., P (R = 1|Y, δ, X) = P (R = 1|Y, δ), then

P (X, R|Y, δ) = P (X|Y, δ) · P (R|Y, δ, X) = P (X|Y, δ) · P (R|Y, δ).

So, X and R are conditional independent given (Y, δ) or, in other words,

P (X = x|Y, δ, R = 1) = P (X = x|Y, δ) = P (X = x|Y, δ, R = 0),

that is, the fully observed subsample is a good representation of the partially ob-

served subsample.

Using this idea we can reproduce the empirical distribution of the fully observed

data on the partially observed subsample. This allows us to estimate, for each j ∈ J ,

the values of the expected counts of events or censored individuals in X = x given

I(Ωj). For example, when X = 0 if we are interested in the number of events in

I1 = (0, τ1], i.e., j = 11, looking at Table 6.1 we observe only the first individual

with X = 0, δ = 1 and Y ≤ τ1. But, we also observe that the empirical distribution

of X = 0 given I(Ω11) is 1/3. So, 1/3 of the individuals for those I(Ω11) = 1 and

X is missing (in our data example, the sixth individual) can be distributed to the

category X = 0. Then, the estimated number of events in I1 with X = 0 will be

1 + 1/3 as it is shown in Table 6.3. Analogously, the estimated number of events in

I1 with X = 1 will be 2 + 2/3.
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X = 0 X = 1

Y r e c S̃ r e c S̃

τ1
29
6

1 + 1
3

1 + 1
2

0.724 25
6

2 + 2
3

1 + 1
2

0.360

τ2 2 1 + 1 0 + 0 0 0 0 + 0 0 + 0 0.360

Total 10
3

3
2

8
3

3
2

n0 = 29
6

n1 = 25
6

nef = 9

Table 6.3: Estimated life table and stratified Grouped Kaplan–Meier estimator for

categories X = 0 and X = 1 for the data in Table 6.1, under the MCAR and MAR

hypotheses. nx, x = 0, 1, estimated number of individuals belonging to the category

X = x. nef , effective sample size

We can observe that the effective sample size has increased to 9 and that the

estimated number of individuals in X = 0 is slightly higher than in X = 1. This is

a consequence of the small size of the sample. As illustration note that there is no

individuals in the sample with Y ∈ I2, δ = 1 and X = 1. So, the ninth individual is

entirely assigned to X = 0. It is also important to observe that the last individual

cannot be distributed in the categories in X because we do not have information

about the covariate in I2 for censored individuals. These two problems disappear

when the sample size is large enough.

In both categories, survival estimates are also different from those in the complete

analysis due to the gain in the sample size (e.g., at time τ1, 0.724 vs 0.667 in X = 0

and 0.360 vs 0.333 in X = 1).

6.3.2 Semiparametric estimation of p∗

x

In this subsection we first define an estimator p̃ for p� when both P (Ωj), j ∈ J and

P (X = x) are known, and based on this we derive a second estimator ˜̃p when none

of those probabilities are known. We remark that this second estimator ˜̃p is what

we were looking for in order to estimate S̃.
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Case I: P (Ωj), j ∈ J and P (X = x) known

Assume that we have fixed a category X = x and a value j ∈ J . If the data

are complete and P (Ωj) and P (X = x) are known, by Theorem 5.4.1 a consistent

estimator for p∗j can be found solving the estimating equation

n∑

i=1

(I (Ωji) (P (Ωj)I(X i = x) − P (X = x)pj)) = 0. (6.18)

The crucial requirement in Theorem 5.4.1 is that the equation (6.18) has to be

unbiased only for the true value p∗
j . Next lemma proves that this hypothesis is

fulfilled.

Lemma 6.3.1 E {I (Ωji) (P (Ωj)I(X i = x) − P (X = x)pj)} = 0 if and only if pj =

p∗j .

Proof:

E {I (Ωji) (P (Ωj)I(X i = x) − P (X = x)pj)} =

= E {I (Ωji) P (Ωj)I(X i = x)} − E {I (Ωji) P (X = x)pj)

= P (Ωj)E {I (Ωji, X i = x)} − pjP (X = x)E {I (Ωji)}
= P (Ωj)P (Ωj, X = x) − pjP (X = x)P (Ωj)

that is equal to 0 if and only if pj =
P (Ωj, X = x)

P (X = x)
= P (Ωj|X = x) = p∗j . 2

It is important to note that terms in (6.18) can be weighted by a real number

dj, depending only on j, and the equation remains unbiased.

When missing data is present, we already noted in Chapter 5 that equation (6.18)

can only be used when the non-response mechanism is MCAR, because otherwise

provides biased estimates.

However, if the probabilities of non-response, π(r; α�) = P (R = r | L; α�), are

known and the non-response mechanism is MAR, p∗
j can be consistently estimated by
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the solution of the inverse probability of being observed weighted equations (Liang

and Zeger, 1986; Newey and McFadden, 1994; Robins et al., 1994)
n∑

i=1

(
I(Ri = 1)

πi (1; α�)
I (Ωji) (P (Ωj)I(X i = x) − P (X = x)pj)

)
= 0,

(6.19)

and the resulting estimator is asymptotically normal. The key for this result is again

that (6.19) is unbiased.

Lemma 6.3.2 E

{
I(Ri = 1)

πi (1; α�)
I (Ωji) (P (Ωj)I(X i = x) − P (X = x)pj)

}
= 0 if and

only if pj = p∗j .

Proof: Conditioning on the data L we obtain

E

{
I(Ri = 1)

πi (1; α�)
I (Ωji) (P (Ωj)I(X i = x) − P (X = x)pj)

}
=

= E

{
E

{
I(Ri = 1)

πi (1; α�)
I (Ωji) (P (Ωj)I(X i = x) − P (X = x)pj) | L

}}

= E

{
P (Ri = 1 | L)

πi(1; α�)
I (Ωji) (P (Ωj)I(X i = x) − P (X = x)pj)

}

= E {I (Ωji) (P (Ωj)I(X i = x) − P (X = x)pj)} .

The result follows after applying Lemma 6.3.1. 2

If we do not know the true value of the parameter α, but a
√

n-consistent

estimator α̂ of α� can be found, then we can replace α� by α̂ in (6.19) and, under

regularity conditions, a consistent and asymptotically normal estimator of the true

value of the parameter p�x can be derived by solving the resulting equations.

Next lemma provides a general estimating equation to obtain
√

n-consistent es-

timators for α�.

Lemma 6.3.3 If α� is the true value for the q-dimensional vector of the non-

response probabilities πi(r; α), then for each set {φr}r∈{0,1}p of q-valued functions

the solution α̂ to
n∑

i=1

Ai(φ) =

n∑

i=1

∑

r 6=1

({
I(Ri = r) − I(Ri = 1)

πi(1; α)
πi(r; α)

}
φr(L(r)i)

)
= 0

(6.20)
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is a
√

n-consistent estimator for α�.

Proof: By Theorem 5.4.2 it is enough to prove that E {Ai(φ)} = 0 for α = α�.

This result straightforwardly follows after conditioning on the data L, and applying

the definition of πi(r; α�) as the conditional probabilities P (R = r|L). 2

Now, in a similar way than in Theorem 5.5.1, if we define γ = (p′, α′)′ and

γ� = (p�′, α�′)′ as the parameter of interest and its true value, respectively, then we

can build a class of
√

n-consistent estimators for γ� (in particular for p� and α�).

For ease of notation, for each j ∈ J and i = 1, . . . , n we will denote by εji the

potential contribution of the i-th individual in the j-th equation in (6.18), that is,

εji = I (Ωji) (P (Ωj)I(X i = x) − P (X = x)pj) . (6.21)

Theorem 6.3.1 Assuming that a model π(r; α) is correctly specified and π(1; α)

is bounded away from 0 with probability 1, then the solution γ̂ =
(
p̃
′, α̂′

)′
to the

equations

U(p, α; D, φ(1), φ(2)) =
n∑

i=1

U i(p, α; D, φ(1), φ(2)) = 02K+1+q

(6.22)

defined by

n∑

i=1





I(Ri = 1)

πi (1; α)
D




ε11i

ε10i

...

ε(K+1)i




+ Ai(φ
(1))





= 02K+1

n∑

i=1

Ai(φ
(2)) = 0q





(6.23)

where D is a (2K + 1)-squared nonsingular constant matrix,
{

φ
(1)
r

}
r∈{0,1}p

a set

of (2K + 1)-valued functions and
{
φ

(2)
r

}
r∈{0,1}p

a set of q-valued functions, is a

consistent estimator of the parameter γ� = (p�′, α�′)′.

Proof: We will verify the hypotheses in Theorem 5.4.1 about consistency of GMM

estimators.
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1. The matrix W that we are considering is Ω−1 = (Var(U i(γ
�)))−1 that is

definite positive.

2. Since W is definite positive, it is only necessary to proof that E(U i(γ)) = 0

only if γ = γ�. Let γ0 = (p′
0, α

′
0)

′ be a potential vector for which E(U i(γ0)) =

0. By Lemma 6.3.3 the last q equations in (6.23), that is
∑n

i=1 Ai(φ
(2)) = 0q,

provide consistent estimators for α�, and therefore α0 = α�.

On the other hand, in the first 2K + 1 equations, E
{
Ai(φ

(1))
}
|�

p′
0
,α�′

�′ =

02K+1 and we obtain

E





I(Ri = 1)

πi (1; α�)
D




ε11i

ε10i

...

ε(K+1)i








= DE





I(Ri = 1)

πi (1; α�)




ε11i

ε10i

...

ε(K+1)i








= 02K+1

and, as D is nonsingular, then E

{
I(Ri = 1)

πi (1; α�)
εji

}
= 0 for each j ∈ J . This

implies by Lemma 6.3.2 that p0j = p∗j for each j ∈ J , thus γ0 = γ�.

3. We can warranty that the joint parameter γ� is in the interior of a compact

set of parameters. Indeed, the first 2K + 1 components correspond to the

parameter p� that obviously lies in the interior of a bounded set in R2K+1, (note

that 0 < p∗j < 1, for j ∈ J ). On the other hand, if the conditional probability

πi(R = 1|L) is bounded away from 0, it admits some parameterization (e.g., as

logit model) such that the corresponding space parameter for α would also be

bounded in Rq.

4. U i(γ) is continuous for each γ because π(1; α) is bounded away from 0.

5. For each γ, U i(γ) is uniformly bounded because π(1; α) is bounded away

from 0, the matrix D is constant and all the other quantities are uniformly

bounded, hence E(supγ ‖U i(γ)‖) < ∞. 2

Next two lemmas consider the particular case of the estimating equations in

(6.23) when φ
(1)
r (.) = 0, ∀r 6= 1 and therefore Ai(φ

(1)) = 0. The resulting estimating

equations are very useful, on one hand, in what follows in this section and, on the
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other, from an applied point of view, in the illustration with the HIV+PTB cohort

in Section 6.4.

Lemma 6.3.4 If in the expression (6.23) we setup φ
(1)
r (.) = 0, ∀r 6= 1, then each

one of the first 2K + 1 equations is equivalent to

n∑

i=1

I(Ri = 1)

πi (1; α)
εji = 0, j ∈ J (6.24)

and then

p̃j =
P (Ωj)

P (X = x)

n∑

i=1

I(Ri = 1)

πi (1; α̂)
I(Ωji)I(X i = x)

n∑

i=1

I(Ri = 1)

πi (1; α̂)
I(Ωji)

, j ∈ J . (6.25)

Proof: After substituting φ
(1)
r (.) = 0, ∀r 6= 1, in (6.23), the equivalency follows as

a direct consequence of the nonsingularity of the matrix D. The explicit expression

for p̃j is derived by basic algebraic computations. 2

Note that with the setup φ
(1)
r (.) = 0, ∀r 6= 1 the nonsingular matrix D becomes

irrelevant. Observe that in (6.24) D is equal to the identity.

Lemma 6.3.5 If φ
(1)
r (.) = 0 ∀r 6= 1, then for every value j = ku ∈ J we have the

following two facts:

a) if there are no individuals in Ik with δ = u that belong to category x in the

subsample with fully observed covariate vector, then p̃j = 0, and

b) if all the individuals in Ik with δ = u and fully observed covariate vector X

belong to the category x, then p̃j = P (Ωj)/P (X = x).

Proof: By the previous lemma, we can substitute in equation (6.25) I(X i = x) by

0 or by 1, respectively, and the result follows straightforwardly. 2

As a consequence of Lemma 6.3.5 we have that if φ
(1)
r (.) = 0, ∀r 6= 1, then
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Remark 6.3.1 .

1. if we are in case a) of the previous lemma, we do not have information for the

category x and the estimating equations do not allow to make inferences about

the p∗j corresponding to category x, and

2. on the other hand, if the empirical distribution of X in the subsample with fully

observed covariate vector is concentrated in one category x, all the subjects with

missing data in X will be estimated to belong to this category x.

It is important to note, as we illustrated in the introductory example, that if we are in

the unidimensional case (i.e., p = 1), the equations (6.23) distribute the individuals

with missing covariate between the observed values of the covariate X. However,

in the multivariate case, if we would setup φ
(1)
r (.) = 0, ∀r 6= 1 and, if jointly

with individuals belonging to category x we would observe partially individuals

not belonging to x, then the resulting estimates from the estimating equations

would not be supported by the data. In these situations it will be necessary to use

other configurations for φ
(1)
r (.) to take the available information into account in the

subjects with partially observed covariates. Obviously, this issue disappears when

the sample size is large enough.

We illustrate this drawback through the following example. Assume that X is

a bivariate binary covariate vector, and that for a fixed j = ku ∈ J we have four

individuals with covariates (1,1), (NA,1), (0,NA) and (NA,NA). Note that based on

this data the number of individuals belonging to categories (0, 0) or (0, 1) is at least

1, and the number of individuals that could be assigned to the category (1, 1) is at

most 3.

If we would try to estimate Sk for categories (0,0) and (0,1), using φ
(1)
r (.) = 0,

∀r 6= 1, then the respective p∗
j would be wrongly estimated as p̃j = 0, and for the

category (1,1) we would estimate p̃j = P (Ωj)/P (X = x).

The concerning issue is that the resulting estimated number of individuals in the

category (1,1) does not have to be, necessarily, lower than or equal to 3 (take, for

instance, P (Ωj) = 1/4 and P (X = x) = 1/4, thus p̃j = 1 and we would obtain that

4 individuals would be in category (1,1)).
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Case II: P (Ωj), j ∈ J and P (X = x) unknown

In many practical situations we do not know the values of P (Ωj), for j ∈ J and

P (X = x). So, we cannot neither evaluate the residuals εji in (6.21) nor compute

the explicit expression for p̃j in (6.25). However, last q equations in (6.23), that is∑n
i=1 Ai(φ

(2)) = 0q, still provide a
√

n-consistent estimator α̂ for α�.

Henceforth, in this section we consider that the estimating equations in (6.22)

and (6.23) use φ
(1)
r (.) = 0, ∀r 6= 1. Therefore, if we were in the case I, for each

estimate α̂ we could derive p̃j as the solution to

n∑

i=1

I(Ri = 1)

πi (1; α̂)
I(Ωji) (P (Ωj)I(X i = x) − P (X = x)pj) = 0. (6.26)

However note that this equation is equivalent to

n∑

i=1

I(Ri = 1)

πi (1; α̂)
I(Ωji) (n · P (Ωj)I(X i = x) − n · P (X = x)pj) = 0.

(6.27)

We can observe that n · P (Ωj) corresponds to the expected number of individuals

in the sample for which I(Ωji) = 1. Denote by mj =
∑n

i=1 I(Ωji) the number of

individuals in the sample with I(Ωji) = 1, and by m = (mj)j∈J the corresponding

vector of observed counts.

Analogously let nx = n ·P (X = x) be the expected number of individuals in the

sample with X i = x. Since pj = P (Ωj|X = x), then n ·P (X = x)pj = nx ·pj is the

expected number of individuals in X = x such that I(Ωji) = 1. Define βj = nx · pj

the above expectation (note that βj, as well as pj, depends on x).

If we use this notation in (6.27) we obtain

n∑

i=1

I(Ri = 1)

πi (1; α̂)
I(Ωji)(mjI(X i = x) − βj) = 0 (6.28)

and we can derive the solution for βj

β̃j = mj

n∑

i=1

I(Ri = 1)

πi (1; α̂)
I(Ωji)I(X i = x)

n∑

i=1

I(Ri = 1)

πi (1; α̂)
I(Ωji)

, j ∈ J . (6.29)
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From these values we can estimate nx by ñx =
∑

k∈J β̃k and we can define a new

estimator ˜̃p = ( ˜̃pj)j∈J for p where

˜̃pj =
β̃j

ñx
=

β̃j∑

k∈J

β̃k

=

mj

n∑

i=1

I(Ri = 1)

πi (1; α̂)
I(Ωji)I(X i = x)

n∑

i=1

I(Ri = 1)

πi (1; α̂)
I(Ωji)

∑

k∈J

mk

n∑

i=1

I(Ri = 1)

πi (1; α̂)
I(Ωki)I(X i = x)

n∑

i=1

I(Ri = 1)

πi (1; α̂)
I(Ωki)

.

(6.30)

For ease of notation in expressions (6.29) and (6.30) we denote by ωj the weights
n∑

i=1

I(Ri = 1)

πi (1; α̂)
I(Ωji)I(X i = x)/

n∑

i=1

I(Ri = 1)

πi (1; α̂)
I(Ωji) and thus β̃j = mjωj and

˜̃pj = mjωj/
∑

k∈J mkωk. Next lemma shows that ˜̃pj is a consistent estimator for the

true value p∗j .

Lemma 6.3.6 According to the definitions in (6.29) and (6.30), for each j ∈ J ,

when n → ∞

a) ωj
a.s.−→ P (X = x|Ωj) and

b) ˜̃pj
a.s.−→ P (Ωj|X = x) = p∗j .

Proof:

a) Rewrite ωj as follows

ωj =

n∑

i=1

I(Ri = 1)

πi (1; α̂)
I(Ωji)I(X i = x)

n∑

i=1

I(Ri = 1)

πi (1; α̂)
I(Ωji)

=

n∑

i=1

I(Ri = 1)

πi (1; α̂)

I(Ωji, X i = x)

n
n∑

i=1

I(Ri = 1)

πi (1; α̂)

I(Ωji)

n

.

By the strong law of large numbers (see, for instance, Schervish (1995)) it

converges almost surely to P (Ωj, X = x)/P (Ωj) = P (X = x|Ωj), when

n → ∞.
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b) If we note that

˜̃pj =
mjωj∑

k∈J

mkωk

=

n∑

i=1

I(Ωji)

n
ωj

∑

k∈J

n∑

i=1

I(Ωki)

n
ωk

therefore, by the strong law of large numbers and the previous part a), ˜̃pj

converges almost surely to

P (Ωj)P (X = x|Ωj)∑

k∈J

P (Ωk)P (X = x|Ωk)
=

P (Ωj, X = x)∑

k∈J

P (Ωk, X = x)
=

=
P (Ωj, X = x)

P (X = x)
= P (Ωj|X = x) = p∗j

when n → ∞. 2

In the next section we will prove the asymptotic properties of p̃ and ˜̃p. In

particular, we will prove that ˜̃p is also a
√

n-consistent estimator of p�.

6.3.3 Asymptotic properties of p̃x and ˜̃px

The asymptotic behavior of the vector γ̂ = (p̃′, α̂′)′ follows straightforwardly from

Theorem 5.4.2. We need to derive the expression of the expected score matrix for

the estimating equations (6.23) in order to verify the hypothesis 5 in Theorem 5.4.2.

After that, the asymptotic properties of p̃ are obtained.

Lemma 6.3.7 The estimating equations (6.22) and (6.23) have a score matrix

∂U i

∂(p′, α′)′
=


 Di Bi

0 Ci



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where

Di = −I(Ri = 1)

πi (1; α)
P (X = x)D diag (I(Ωji)j∈J ) ,

Bi = I(Ri = 1)D




ε11i

ε10i

...

ε(K+1)i




∂π−1
i (1; α)

∂α
+

∂Ai(φ
(1))

∂α
, and

Ci =
∂Ai(φ

(2))

∂α

are matrices of dimension equal to (2K + 1) × (2K + 1), (2K + 1) × q and q × q,

respectively.

Proof: The result follows straightforwardly, after taking the derivative of each term

in the sum of the left-hand part of equations (6.23) and using the notation introduced

in (6.21). 2

Lemma 6.3.8 For large n and for all those choices of functions φ
(2)
r such that

E{Ci} is nonsingular then Γ = E
{

(∂U i/∂γ) |γ=γ�
}

is nonsingular.

Proof: By the previous lemma it is only necessary to prove that the expectation of

the matrix Di is nonsingular for the true value γ�. But

E {Di} = −P (X = x)D diag

(
E

{
I(Ri = 1)

πi (1; α�)
I(Ωji)

}

j∈J

)

and therefore to derive the nonsingularity it is enough to prove that each one of the

expectations in the diagonal matrix is different from 0.

Without loss of generality in the family of the usual distributions for Y and

δ, we will assume that the joint density function of (Y, δ) assigns positive mass to

all neighbourhoods of every observed point in the sample. We have to take into

account the fact that X is discrete and that for each value Y ∈ Ik and δ = u the

probabilities πi(1; α�) depend only on X. We shall distinguish two cases: j = ku

(with k = 1, . . . , K and u = 1, 0) and j = K + 1.
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If j = ku, we can rewrite

E

{
I(Ri = 1)

πi (1; α�)
I(Ωji)

}
=

=
∑

all x

1

πi(1; α�)
P (Ri = 1, Yi ∈ Ik, δi = u, X i = x)

=
∑

all x

P (Yi ∈ Ik, δi = u, X i = x)
P (Ri = 1|Yi ∈ Ik, δi = u, Xi = x)

πi(1; α�)

=
∑

all x

P (Yi ∈ Ik, δi = u, X i = x) = P (Yi ∈ Ik, δi = u) = P (Ωj) > 0,

and if j = K + 1 then

E

{
I(Ri = 1)

πi (1; α�)
I(Ωji)

}
=

=
∑

all x

1

πi(1; α�)
P (Ri = 1, Yi > τK , X i = x)

=
∑

all x

P (Yi > τK , X i = x)
P (Ri = 1|Yi > τK , X i = x)

πi(1; α�)

=
∑

all x

P (Yi > τK , X i = x) = P (Yi > τK) = P (ΩK+1) > 0.

2

Theorem 6.3.2 In the estimating equations (6.22) and (6.23), assuming that the

model π(r; α) is correctly specified, under the regularity conditions

1. γ lies in the interior of a compact set,

2. (Li, Ri), i = 1, . . . , n are independently and identically distributed,

3. for some c, π(1; α) > c > 0 for all α,

4. E(U i(γ; D, φ(1), φ(2))) 6= 0 if γ 6= γ�,

5. Ω = Var(U i(γ
�; D, φ(1), φ(2))) is finite and positive definite,

6. Γ = E
(
∂U i(γ

�; D, φ(1), φ(2))/∂γ
)

exists and is invertible,
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7. there exist a neighborhood N of γ� such that E(supγ∈N ‖U i(γ; D, φ(1), φ(2))‖),
E(supγ∈N ‖∂U i(γ; D, φ(1), φ(2))/∂γ‖), and E(supγ∈N ‖U i(γ; D, φ(1), φ(2))·
U ′

i(γ; D, φ(1), φ(2))‖) are all finite, where ‖A‖ = (
∑

ij a2
ij)

1/2 for any matrix

A = (aij),

8. for all γ̄ in a neighborhood N of γ�, Eγ̄(U i(γ; D, φ(1), φ(2))) and

Eγ̄(supγ∈N ‖U i(γ; D, φ(1), φ(2))U ′
i(γ; D, φ(1), φ(2))‖) are bounded, where Eγ̄

refers to expectation with respect to the density f(L, R; γ̄),

then

a) with probability approaching 1, there is a unique solution γ̂ to (6.23) and

γ̂
P−→ γ�,

b) the random vector
√

n (γ̂ − γ�)
D−→ N (0,Υ), with Υ = Γ−1ΩΓ−1′,

c) the asymptotic variance-covariance matrix Υ can be consistently

estimated by Υ̂ = Γ̂
−1

Ω̂Γ̂
−1′

where Γ̂ = n−1
∑

∂U i(γ; D, φ(1), φ(2))/∂γ and

Ω̂ = n−1
∑

U i(γ; D, φ(1), φ(2))U ′
i(γ; D, φ(1), φ(2)) are evaluated in γ = γ̂.

Proof: Observe that we are considering W = Ω−1 and Ω is definite positive. Reg-

ularity conditions 5, 4, 1 and 7 correspond to the hypothesis in Theorem 5.4.1. Part

a) is then straightforwardly derived. Regularity conditions 1, 4, 6 and 7 imply, re-

spectively, hypothesis 1, 3, 5, 2 and 4 in Theorem 5.4.2 (hypothesis 5 in Theorem

5.4.2 is replaced by the nonsigularity of Γ, which is proved in Lemma 6.3.8). There-

fore, we conclude the asymptotic normality and the asymptotic variance-covariance

matrix (part b)). Conditions 7 and 8 allow to apply Theorem 5.4.3 in order to re-

place the true value γ� by its estimator γ̂ and get the consistent variance-covariance

estimator (part c)). 2

Next corollary establishes the asymptotic distribution of p̃ and a consistent es-

timator for its asymptotic variance-covariance matrix.



118 CHAPTER 6. SEMIPARAMETRIC APPROACH

Corollary 6.3.1 If p̃ denotes the estimator of p� in (6.23), under the same hy-

potheses of Theorem 6.3.2 we have

a)
√

n (p̃ − p�)
D−→ N (0,Λ1), where Λ1 is the (2K + 1) × (2K + 1) upper-left

squared matrix of Υ in part b) of Theorem 6.3.2.

b) the asymptotic variance-covariance matrix Λ1 can be consistently estimated by

the (2K + 1) × (2K + 1) upper-left squared matrix of Υ̂ = Γ̂
−1

Ω̂Γ̂
−1′

where

Γ̂ =
1

n

n∑

i=1


 Di Bi

0 Ci


 and Ω̂ =

1

n

n∑

i=1

U i(γ; D, φ(1), φ(2))U ′
i(γ; D, φ(1), φ(2))

are evaluated in γ = γ̂.

Next lemmas and Theorem 6.3.3 establish the asymptotic behavior of the semi-

parametric estimator ˜̃p introduced in (6.30) in relation to the estimator p̃.

Lemma 6.3.9 Let {Xn}n≥1 and {Yn}n≥1 two sequences of random variables such

that Xn and Yn are independent for all n. If

1. Xn
P−→ a, Yn

P−→ b and

2.
√

n(Xn − a)
D−→ X ∼ N (0, σ2

X) and
√

n(Yn − b)
D−→ Y ∼ N (0, σ2

Y ),

then
√

n(XnYn − ab)
D−→ N (0, b2σ2

X + a2σ2
Y ).

Proof: By Theorem 7.20 at page 400 in Shervish (1995),

(
√

n(Xn − a),
√

n(Yn − b))
D−→ (X, Y )

and X and Y are independent.

On the other hand, we can write
√

n(XnYn − ab) as follows

√
n(XnYn − ab) =

√
n(XnYn − aYn + aYn − ab) =

√
n Yn(Xn − a) +

√
n a(Yn − b).

Since
√

n(Xn − a)
D−→ X and

√
n(Yn − b)

D−→ Y , after applying the Slutzky’s

Theorem
√

n Yn(Xn − a)
D−→ bX and

√
n a(Yn − b)

D−→ aY and, by the normality

and the independence of the random variables X and Y , the lemma is derived. 2
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Lemma 6.3.10 According to the definitions in (6.29) and (6.30), for each j ∈ J ,

when n → ∞

a)
mj

n

a.s.−→ P (Ωj) and
√

n
(mj

n
− P (Ωj)

) D−→ N (0, P (Ωj)(1 − P (Ωj)))

b)
√

n(ωj − P (X = x|Ωj))
D−→ N (0, σ2

j ) where σ2
j can be consistently estimated

by

σ̂2
j =

(
−1

n

n∑

i=1

I(Ri = 1)

πi (1; α̂)
I(Ωji)

)−2(
1

n

n∑

i=1

I(Ri = 1)

πi(1; α̂)2
I(Ωji)(I(X i = x) − ωj)

2

)
.

Proof:

a) For each j ∈ J , mj/n =
∑n

i=1 I(Ωji)/n and it converges almost surely to

P (Ωj) by the strong law of large nunmbers, and, by the central limit theorem
√

n(
∑n

i=1 I(Ωji)/n − P (Ωj))
D−→ N (0, P (Ωj)(1 − P (Ωj))).

b) By Lemma 6.3.6, ωj
a.s.−→ P (X = x|Ωj). On the other hand, ω = (ωk)k∈J by

construction is the solution to the diagonal estimating equations

n∑

i=1

V i =

n∑

i=1

I(Ri = 1)

πi (1; α̂)
diag(I(Ωki)k∈J )(I(X i = x) − ω) = 02K+1.

(6.31)

Therefore, after following similar steps to those in the Theorem 6.3.2 for the

vector (ω′, α′)′ instead of the vector (p′, α′)′, we obtain a similar result to the

Corollary 6.3.1 for the vector ω,

√
n(ωj − P (X = x|Ωj))

D−→ N (0, σ2
j ),

where σ2
j can be consistently estimated by

σ̂2
j =



(

∂̂V i

∂ω

)−1

V̂ar(V i)

(
∂̂V i

∂ω

)−1



jj

=

(
−1

n

n∑

i=1

I(Ri = 1)

πi (1; α̂)
I(Ωji)

)−2(
1

n

n∑

i=1

I(Ri = 1)

πi(1; α̂)2
I(Ωji)(I(X i = x) − ωk)

2

)
.

2
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Remark 6.3.2 In order to derive the asymptotic normality of the resulting estima-

tors we have to conjecture the following independence conditions:

C1. For each k ∈ J , mk and ωk are independent.

C2. For each k1, k2 ∈ J , k1 6= k2, β̃k1
= mk1

ωk1
and β̃k2

= mk2
ωk2

are independent.

C3. For each j ∈ J , mj and ñx =
∑

k∈J mkωk are independent.

C4. The random vector (p̃ − p�) and
(
˜̃p − p̃

)
are independent.

Conjecture C1 is based on the fact that mk counts the event Ωk while ωk is

a weight from the complete observed subsample that depends on the non-response

pattern and the distribution of X. The main idea about conjecture C2 is that the

vector of counts β̃k1
and β̃k2

refer to two different pairs of time-delta indexes in J .

In a similar way than in conjecture C1, in conjecture C3, ñx refers to the estimated

number of individuals belonging to category X = x. Finally, conjecture C4 will

be supported by the asymptotically uncorrelation between both residuals (see Lemma

6.3.12).

Lemma 6.3.11 If Xn denotes the random variable
P (X = x)∑

k∈J

mk

n
ωk

then

a) Xn
a.s.−→ 1 and

b)
√

n(1 − Xn)
D−→ N (0, ν2) with

ν2 =

∑
k∈J (P (X = x|Ωk)

2P (Ωk)(1 − P (Ωk)) + P (Ωk)
2σ2

k)

P (X = x)2

where σ2
k is the same as the previous lemma.

Proof:

a) By the strong law of large numbers,

Xn =
P (X = x)∑

k∈J

mk

n
ωk

a.s.−→ P (X = x)∑

k∈J

P (Ωk)P (X = x|Ωk)
=

P (X = x)∑

k∈J

P (Ωk, X = x)
= 1.
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b) Rewrite
√

n(1 − Xn) as follows

√
n(1 − Xn) =

√
n


1 − P (X = x)∑

k∈J

mk

n
ωk


 =

√
n

∑

k∈J

mk

n
ωk − P (X = x)

∑

k∈J

mk

n
ωk

=
√

n

∑

k∈J

(mk

n
ωk − P (Ωk, X = x)

)

∑

k∈J

mk

n
ωk

=
1∑

k∈J

mk

n
ωk

·
∑

k∈J

√
n
(mk

n
ωk − P (Ωk)P (X = x|Ωk)

)

(6.32)

On one hand, the factor 1∑

k∈J

mk

n
ωk

in (6.32), as we have previously seen,

converges almost surely to P (X = x)−1. On the other, for each k ∈ J , using

conjecture C1, Lemma 6.3.10 and Lemma 6.3.9, we derive the asymptotic

distribution of
√

n
(

mk

n
ωk − P (Ωk)P (X = x|Ωk)

)
. So, since the terms in the

sum are independent (conjecture C2), the result is derived after summing

independent normal distributed random variables and applying the Slutzky’s

Theorem. 2

Theorem 6.3.3 If ˜̃p denotes the estimator of p� in (6.30), under the same hy-

potheses of Theorem 6.3.2, then

a)
√

n
(
˜̃p − p̃

)
D−→ N (0,Λ2), where Λ2 is the (2K+1)×(2K+1) squared matrix

defined as

diag((p∗j/Pj)j∈J ) (diag(P ) − P · P ′) diag((p∗j/Pj)j∈J ) + diag((p∗2j )j∈J )ν2

with P = (Pj)j∈J = (P (Ωj))j∈J and ν2 the same as in Lemma 6.3.11 and

b) the asymptotic variance-covariance matrix Λ2 can be consistently estimated by

replacing P (Ωj) by mj/n, p� by ˜̃p and P (X = x) by ñx/n.
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Proof:

a) For each j ∈ J , from the expressions (6.30) and (6.25) we have

√
n( ˜̃pj − p̃j) =

√
n




mjωj∑

k∈J

mkωk

− P (Ωj)

P (X = x)
ωj




=
√

n
ωj

P (X = x)




P (X = x)∑

k∈J

mkωk

mj − P (Ωj)




=
ωj

P (X = x)
· √n




P (X = x)∑

k∈J

mk

n
ωk

mj

n
− P (Ωj)


 (6.33)

Note that, by Lemma 6.3.6, ωj
a.s.−→ P (X = x|Ωj) and therefore the first term

in the product in (6.33) ωj/P (X = x)
a.s.−→ P (X = x|Ωj)/P (X = x) =

P (Ωj|X = x)/P (Ωj) = p∗j/Pj.

On the other hand, by using the expression of Xn introduced in Lemma 6.3.11,

second term in (6.33) can be decomposed as follows:
√

n
(
Xn

mj

n
− P (Ωj)

)
= Xn

√
n
(mj

n
− P (Ωj)

)
−√

n(1 − Xn)P (Ωj).

(6.34)

We study now the asymptotic distribution of each term in the right-hand part

of (6.34). Firstly, since Xn
a.s.−→ 1 and the quantities (mj)j∈J follow a multino-

mial distribution with vector of probabilities P , therefore, by the Slutzky’s

Theorem, first term follows the asymptotic distribution N (0, Pj(1 − Pj)).

Secondly, since P (Ωj) is a constant, by Lemma 6.3.11, part b), and the

Slutzky’s Theorem, second term converges in distribution to a

N (0, P (Ωj)
2 · ν2) distribution. Since terms in (6.34) are independent (con-

jecture C3),
√

n
(
Xn

mj

n
− P (Ωj)

)
D−→ N (0, Pj(1 − Pj) + P 2

j ν2).

Finally, to derive the asymptotic distribution of (6.33), since
ωj

P (X = x)

P−→ p∗j
Pj

for each j ∈ J , we apply again the Slutzky’s Theorem

and
√

n(˜̃p − p̃)
D−→ N (0,Λ2) as we wanted to prove.
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b) The result follows by replacing all the unknown values in Λ2 by their respective

consistent estimators. 2

Next lemma proves that the random vectors
√

n (p̃ − p�) and
√

n
(
˜̃p − p̃

)
are

asymptotically uncorrelated. This result is useful in order to support the conjecture

C4 and combine both estimators to derive the asymptotic behavior of
√

n
(
˜̃p − p�

)

in Theorem 6.3.4.

Lemma 6.3.12 The random vectors
√

n (p̃ − p�) and
√

n
(
˜̃p − p̃

)
are asymptoti-

cally uncorrelated.

Proof:

We will prove that Cov
(√

n
(
p̃j − p∗j

)
,
√

n
(
˜̃pj − p̃j

))
→ 0 when n → ∞, for

each j ∈ J .

According to the definitions

Cov
(√

n
(
p̃j − p∗j

)
,
√

n
(
˜̃pj − p̃j

))
=

= E

{√
n

(
P (Ωj)

P (X = x)
ωj − p∗j

)√
n

(
˜̃pj −

P (Ωj)

P (X = x)
ωj

)}
−

− E

{√
n

(
P (Ωj)

P (X = x)
ωj − p∗j

)}
E

{√
n

(
˜̃pj −

P (Ωj)

P (X = x)
ωj

)}
=

= nE

{
P (Ωj)

P (X = x)
˜̃pjωj −

P (Ωj)
2

P (X = x)2
ω2

j − ˜̃pjp
∗
j +

P (Ωj)

P (X = x)
p∗jωj

}
−

− n

(
P (Ωj)

P (X = x)
E(ωj) − p∗j

)(
E( ˜̃pj) −

P (Ωj)

P (X = x)
E(ωj)

)
=

= n

(
P (Ωj)

P (X = x)
E( ˜̃pjωj) −

P (Ωj)
2

P (X = x)2
E(ω2

j ) − p∗jE( ˜̃pj) +
P (Ωj)

P (X = x)
p∗jE(ωj)

)
−

− n

(
P (Ωj)

P (X = x)
E(ωj)E( ˜̃pj) −

(
P (Ωj)

P (X = x)
E(ωj)

)2

− p∗jE( ˜̃pj) +
P (Ωj)

P (X = x)
p∗jE(ωj)

)
=

= n

(
P (Ωj)

P (X = x)
Cov( ˜̃pj, ωj) −

P (Ωj)
2

P (X = x)2
V ar(ωj)

)

=
P (Ωj)

P (X = x)

(
nCov( ˜̃pj, ωj) −

P (Ωj)

P (X = x)
nV ar(ωj)

)
.
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By Lemma 6.3.6, the proportion ωj converges almost surely to the probability

P (X = x|Ωj) and then, by the central limit theorem, nV ar(ωj) converges to the

finite quantity P (X = x|Ωj)(1 − P (X = x|Ωj)).

On the other hand, by the strong law of large numbers, mjP
k∈J

mkωk
converges

almost surely to
P (Ωj)

P (X=x)
and therefore nCov( mjP

k∈J
mkωk

ωj, ωj) has the same asymp-

totic behavior as
P (Ωj)

P (X=x)
nCov(ωj, ωj), that is

P (Ωj)

P (X=x)
nV ar(ωj), and the result

holds. 2

Theorem 6.3.4 If ˜̃p denotes the estimator of p� in (6.30), under the same hy-

potheses of Theorem 6.3.2,

a)
√

n
(
˜̃p − p�

)
D−→ N (0,Λ), where Λ = Λ1 + Λ2 is a (2K + 1) × (2K + 1)

squared matrix with Λ1 the same as in Corollary 6.3.1 and Λ2 the same as in

Theorem 6.3.3.

b) the asymptotic variance-covariance matrix Λ = Λ1 + Λ2 can be consistently

estimated by replacing P (Ωj) by mj/n, P (X = x) by ñx/n, p� by ˜̃p, α� by α̂,

D by the identity matrix, φ(1) by 0 in the evaluations of Λ1 and Λ2 according

to parts b) in Corollary 6.3.1 and Theorem 6.3.3.

Proof:

a) First of all, note that
√

n
(
˜̃p − p�

)
can be written as

√
n
(
˜̃p − p�

)
=

√
n (p̃ − p�) +

√
n
(
˜̃p − p̃

)
.

By Corollary 6.3.1, first term in the sum converges in distribution to a random

vector, let denote X1, N (0,Λ1) distributed and, by Theorem 6.3.3, the last

term converges in distribution to a random vector, let denote X2, N (0,Λ2)

distributed.

Since
√

n (p̃ − p�) and
√

n
(
˜̃p − p̃

)
are supposed to be independent (conjec-

ture C4), the vector
(√

n (p̃ − p�) ,
√

n
(
˜̃p − p̃

))
, by Theorem 7.20 at page

400 in Shervish (1995), converges in distribution to (X1, X2) and X1 and X2

are independent. So, by the continuity theorem applied to the sum operator,

√
n (p̃ − p�) +

√
n
(
˜̃p − p̃

)
D−→ X1 + X2.
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And, since X1 ∼ N (0,Λ1) and X2 ∼ N (0,Λ2) and they are independent,

the limit random variable X1 + X2 follows a N (0,Λ1 + Λ2) distribution.

b) It straightforwardly follows from parts b) in Corollary 6.3.1 and Theorem 6.3.3.

2

6.3.4 Asymptotic properties of S̃x

From the asymptotic properties of ˜̃p described just above, we can obtain the as-

ymptotic behavior of the estimator S̃ defined in (6.17) from the ˜̃p estimator. In the

next theorem we derive the asymptotic distribution of S̃ respect to the true vector

KM(p�).

Theorem 6.3.5 If ˜̃p is the estimator proposed in (6.30) for the parameter p, and

the true value is p�, under the same hypotheses of Theorem 6.3.4 then

a)
√

n
(
S̃ −KM(p�)

)
D−→ N (0, (ST G)Λ(ST G)′) , (6.35)

being S the K ×K diagonal matrix diag(KM(p�)), T and G as in (6.9), G is

evaluated in p = p� and Λ is the same as in Theorem 6.3.3.

b) the asymptotic variance-covariance matrix (ST G)Λ(ST G)′ can be consistently

estimated by replacing P (Ωj) by mj/n, P (X = x) by ñx/n, p� by ˜̃p, α� by

α̂, D by the identity matrix, φ(1) by 0 in the evaluation of the matrices S, G
and Λ.

Proof:

a) Without loss of generality we can assume that p∗
K+1 > 0. In Theorem 6.3.4

we proved that ˜̃p is a
√

n-consistent and asymptotically normal estimator

of p� with asymptotic variance-covariance matrix Λ. So, since by definition

S̃ = KM(˜̃p), if we apply the δ-method to the KM map, analogously to

Theorem 6.2.2, we conclude the proposed result.

b) The result follows by replacing all the parameters in (6.35) by their respective

consistent estimators. 2
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6.4 Returning to the HIV+PTB cohort example

In this section we apply the semiparametric approach to the estimation of the uni-

variate stratified survival for the HIV+PTB cohort introduced in Chapter 2, ac-

cording to our covariates of interest CD4 and PPD. In particular, we consider that

our data are (Y, δ, CD4, PPD) where Y is the survival time between the beginning

of TB treatment and death, δ is the censoring indicator, CD4 is the immunosup-

pression level (0 = high, 1 = low) and PPD is the result to the tuberculin skin

test (0 = negative, 1 = positive). Suppose we are interested in comparing, between

categories, the survivorship after 1 year from the beginning of the TB treatment .

6.4.1 Design of the estimation

As we saw in Chapter 2, the observation window is 3 years, the sample size is

n = 494, the proportion of censoring is 63.8% and the proportion of missing in the

covariates CD4 and PPD is 38.9% and 50.4%, respectively.

In order to choose an appropriated τk partition, we show in Figure 6.1 the cor-

responding histograms for the survival times of individuals with observed covariate

and unobserved covariate for the natural partitions in months and in weeks. The

figure is for the CD4 covariate, but similar graphics can be obtained for the covariate

PPD. As we can see, when the grid is in months the effective sample size is quite all

the sample size while, when the grid is in weeks, there is a small reduction because

there are few weeks where we only observe survival times with unobserved covariate.

Indeed, the effective sample size is 490 and 434, respectively, for the covariate CD4,

and 479 and 420 for the covariate PPD. On the other hand, in Chapter 3 we have

shown that the CD4 covariate (in its continuous form as well as categorized) is the

best prognosis factor for survival. In other words, there is dependence between the

CD4 changes and survival time. So, in order to get less biased and more precise

estimates, we decide to perform the analysis using a grid in weeks.

We specify a model for the non-response probabilities depending on the survival

time, Y , the censoring indicator, δ, and the covariate of interest, X, as

logit (P (R = 1|Y, δ, X)) = α0 + α1 · Y + α2 · δ + τ · X (6.36)

where the covariate X is CD4 or PPD.
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Figure 6.1: Histograms of the survival times whether the CD4 covariate has been

observed or not, and the interval class is in months or weeks

The model (6.36) allows us to setup the non-response probabilities as MCAR (if

α1 = α2 = τ = 0), as MAR (if τ = 0) and, otherwise, as NI. The non-ignorability

parameter τ is the log odds-ratio of being observed in category X = 1 versus being

observed in category X = 0, i.e.,

τ = log
P (R = 1|X = 1)/P (R = 0|X = 1)

P (R = 1|X = 0)/P (R = 0|X = 0)
.

If we denote by pi the probability of being observed in category i (i = 0, 1),

pi = P (R = 1|X = i), we derive

p1 =
exp (τ) · p0

1 − (1 − exp (τ)) · p0
. (6.37)

Figure 6.2 shows the contour lines for p1 as a function of p0 and τ . Each curve

corresponds to a fixed value for the probability p1 and illustrates all the pairs (p0, τ)

that verify (6.37). This graph helps us to determine a range of plausible values for
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τ , based on the information on the pi’s probabilities. For example, as it is illustrated

in the figure, if 0.4 ≤ p0 ≤ 0.6 and 0.7 ≤ p1 ≤ 0.9 then an interval for τ values is

[0.44, 2.60]. In our analysis, in order to cover a big range of possibilities we consider

τ ∈ [−6, 6] (in other words, we are allowing an odds-ratio between 0.002 and 403).

Figure 6.2: Contour lines for p1 = 0.1, . . . , 0.9 as a function of p0 and τ

To estimate semiparametrically the non-response parameter α�, using the esti-

mating equations (6.23), we setup φ
(2)
r=0(Y, δ) = (1, Y, Y 2)′.

6.4.2 Sensitivity analysis

Following the semiparametric methodology introduced in Section 6.3, and the con-

siderations in Section 5.6 about the convenience of performing a sensitivity analysis,

for each τ ∈ [−6, 6] we can estimate the vector (p�′, α�′)′ and the corresponding

estimates for the survival at 1 year and its standard error. Table 6.4 displays these

estimates for the integer values of τ in [−6, 6], and for the two covariates of interest.

Results corresponding to the complete case analysis are also displayed. A similar

table can be obtained for grid in months.

In the scope of the sensitivity analysis we plot in Figures 6.3 and 6.4 the estimates

and the corresponding confidence bands for the survival at 1 year for each category
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X = CD4 X = PPD

Analysis S̃X=0 S̃X=1 S̃X=0 S̃X=1

CC 0.610 (0.037) 0.810 (0.040) 0.657 (0.042) 0.877 (0.037)

MCAR 0.615 (0.030) 0.838 (0.032) 0.602 (0.031) 0.873 (0.034)

τ = −6 0.606 (0.043) 0.807 (0.052) 0.591 (0.531) 0.845 (0.995)

τ = −5 0.609 (0.041) 0.803 (0.048) 0.593 (0.424) 0.842 (0.779)

τ = −4 0.612 (0.039) 0.799 (0.044) 0.595 (0.273) 0.839 (0.493)

τ = −3 0.614 (0.037) 0.799 (0.040) 0.597 (0.133) 0.839 (0.233)

τ = −2 0.615 (0.034) 0.804 (0.035) 0.599 (0.055) 0.842 (0.086)

τ = −1 0.614 (0.032) 0.818 (0.033) 0.601 (0.034) 0.853 (0.039)

MAR τ = 0 0.615 (0.030) 0.838 (0.032) 0.602 (0.031) 0.873 (0.034)

τ = 1 0.617 (0.030) 0.854 (0.033) 0.604 (0.030) 0.891 (0.034)

τ = 2 0.619 (0.034) 0.862 (0.041) 0.606 (0.031) 0.903 (0.035)

τ = 3 0.620 (0.038) 0.866 (0.050) 0.607 (0.031) 0.908 (0.036)

τ = 4 0.620 (0.041) 0.867 (0.055) 0.607 (0.031) 0.910 (0.037)

τ = 5 0.620 (0.042) 0.867 (0.057) 0.607 (0.031) 0.911 (0.037)

τ = 6 0.620 (0.043) 0.868 (0.058) 0.607 (0.031) 0.912 (0.037)

Table 6.4: Estimates for the survival at 1 year for categories in CD4 and PPD

covariates (standard error, in parentheses) resulting from the complete case analysis

and the semiparametric methodology for different values of τ and grid in weeks

in the covariates CD4 and PPD. In Figure 6.3 we use a τk partition in weeks, and

in Figure 6.4 the grid is in months.

Looking at the top figure in Figure 6.3 we can see that, no matter which type of

assumptions we make about τ in the non-response mechanism specification in (6.36)

for the CD4 covariate,

a) the resulting estimates in everyone of the categories are essentially the same

(mainly in group CD4% ≤ 14) and we can see that the semiparametric analysis
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Figure 6.3: Estimates and 95% confidence bands for the stratified survival at 1 year,

for the covariates CD4 and PPD, as a function of the non-ignorability parameter τ

and when the grid is in weeks
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do not differ too much from the CC analysis. This fact suggests that the

missingness in the CD4 covariate could be ignorable,

b) the survival for the less immunosuppression group (i.e., CD4 > 14) is better,

in general. However, if the less immunosuppression group would be heavily

underrepresented in the subsample with observed CD4 covariate (e.g., τ �
−6), we could not infer differences between both survivals.

About the PPD covariate (Figure 6.3, bottom) we observe

a) for individuals with negative PPD, the complete case methodology provides

a positive biased estimate. Looking at Table 6.4, all the semiparametric esti-

mates are closed to 60%, while the CC analysis provides a 65.7% estimate,

b) when τ is lower than -2 the estimates for the estandard error quickly increase

and the confidence bands become [0, 1].

c) with this dataset, we can only infer that the positivity in the tuberculin skin

test implies a better survival if and only if we can suppose that individuals

with positive PPD are represented enough in the subsample with observed

PPD covariate (e.g., τ > −1).

As we said at the beginning of this section, the choice of the τk partition is

actually decisive. In Figure 6.4 where the grid is setup in months we can observe

that all the estimates have a bigger positive bias and a bigger standard error. In

essence, in such situation the differences between groups are no so evident.

On the other hand, if we compare Figure 6.3 and Figure 6.4 for the CD4 covari-

ate, we can see another side effect of taking the grid in months: the increase of the

standard error estimates when τ is far away from 0. This is due to the fact that

when the grid is in months we are mixing in the same estimating equation (6.23)

individuals potentially belonging to different categories, because the CD4 percent-

age could be actually different from the beginning to the end of the month. In some

sense, we are not using the information coming from the relationship between CD4

and (Y, δ) and, consequently, the standard error will be bigger. In particular because

the weights πi(1; α)−1 are bigger (for the category CD4 = 1 when τ � 0 and for the

category CD4 = 0 when τ � 0) and then Λ in Theorem 6.3.4 is also bigger. This
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Figure 6.4: Estimates and 95% confidence bands for the stratified survival at 1 year,

for the covariates CD4 and PPD, as a function of the non-ignorability parameter τ

and when the grid is in months
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remark is specially important to be taken into consideration when the covariate of

interest, even being measured at the beginning of the study, is time dependent.

Another strategy for conducting a global sensitivity analysis, in a graphical way,

is to plot in the same graph different estimated survival functions for different values

of the non-ignorability parameter. Figure 6.5 shows this type of sensitivity analysis

for different strategies of analyzing the data, when the grid considered is in weeks.

The complete case analysis is also shown in the picture for the purpose of comparison.

As in Figure 6.3 and Figure 6.4, the upper part of the figure corresponds to the CD4

covariate and the bottom part to the PPD covariate. The proposed semiparametric

estimator is illustrated when we consider the MAR non-response pattern and the

NI non-response pattern with τ = −2 or τ = 2.

Aside from the mentioned conclusions in the previous part of this section, cor-

responding to the survival at 1 year, for the global survival function we can add:

a) for the most immunosuppression group, there is no differences between the

estimates provided by the CC analysis and those resulting from the proposed

methodology,

b) for the PPD negative group, the CC methodology is overestimating the sur-

vival function (in average approximatively 8%) with respect to the proposed

methodology,

c) for other categories (CD4% > 14 or PPD positive) the estimated survival

depends on the assumptions on the non-response pattern.

For other values of τ we obtain similar results and the same conclusions. It

is also interesting to observe that when the grid is in months many of the above

conclusions cannot be derived due to the larger bias and the less accuracy of the

resulting estimators. However, in all the situations it is obvious the interest of

considering the role that the individuals with missing data play in order to avoid

wrong inferences.
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Figure 6.5: Estimated survival functions for the covariates CD4 and PPD for four

different analyzing strategies: complete case, MAR and non-ignorable with τ = −2

and τ = 2. The grid for the semiparametric approach is setup in weeks. Vertical

line corresponds to 365 days. In parentheses, the estimated number of individuals in

each category and the effective sample size


