
Chapter 7

Simulation Study

7.1 Introduction

In this chapter we present a simulation study in order to illustrate, for the case of

finite samples, the most significative results for the estimator proposed in Chapter

6. This study allows us to compare the proposed new methodology with the naive

complete case analysis. Basic ideas about simulation techniques in statistics come

from Bratley, Fox and Schrage (1987).

The structure of the chapter is as follows: In Section 7.2 we introduce all the

elements needed for the simulation (e.g., the reference distributions, the different

proportion of censoring considered, the non-response patterns considered, ...) in

order to obtain the configuration of all possible scenarios. In Section 7.3 we present

the implementation and the algorithm for the simulation. The results are analyzed

in detail in Section 7.4 and discussed in Section 7.5.

7.2 Design of the simulation

Reference distributions: We consider two populations, say, X = 0, with a de-

creasing hazard function (σ > 1) and Weibull(6.7, 1.4) distributed, and X = 1, with

an increasing hazard function (σ < 1) and Weibull(7.7, 0.8) distributed. The choice

of these laws and their parameters has been based on our HIV+PTB cohort.
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Reference distributions

X = 0 W(6.7, 1.4)
X = 1 W(7.7, 0.6)

Figure 7.1: Reference survival functions for the simulation

Table 7.1 summarizes the survival function measured at different times and Fig-

ure 7.1 illustrates the difference between groups across time.

P (T > t|X) (t in years)

Group t = 1 t = 2 t = 3 t = 5 t = 8 t = 10 t = 15

X = 0 0.569 0.396 0.290 0.168 0.083 0.054 0.020

X = 1 0.900 0.778 0.660 0.455 0.242 0.154 0.045

Table 7.1: True survival at different times (in years) for the reference distributions

in each category of the covariate X

Proportion of censoring: In order to simulate two different levels of censoring,

we will consider that we observe the individuals in a window time (0, Tmax], where

Tmax = 3·365 = 1095 days (i.e., three years) or Tmax = 10·365 = 3650 days (i.e., ten

years). We will take the censoring mechanism as an uniform random variable in

(0, Tmax] (i.e., we will suppose that individuals can enter in -or equivalently leave-

the study in any moment before Tmax). This choice corresponds also to the idea

that the accrual is uniform across time.
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The proportion of censoring depends on the proportion of individuals in everyone

of the categories in the covariate X (i.e., depends on P (X = 1)). This probability

is also unknown in a real analysis of a dataset with missing values in X. So, it is

necessary to take into account this parameter in order to show the properties of the

proposed estimator in the resulting scenarios.

Since the censoring time and the survival time are independent, the proportion

of censoring can be computed by the expression

P (T > C) = P (T > Tmax) +

∫ Tmax

0

P (C < x)fT (x)dx

for each of the categories in the covariate X.

Due to the symmetry it is enough, for example, to setup P (X = 1) to 0.3 or 0.5.

Table 7.2 summarizes the proportion of censoring in each scenario.

Censoring Pooled censoring

Tmax (in years) X = 0 X = 1 P (X = 1) = 0.3 P (X = 1) = 0.5

3 0.5137 0.8375 0.6109 0.6756

10 0.2478 0.5027 0.3242 0.3752

30 0.0918 0.1878 0.1206 0.1398

Table 7.2: Proportion of censoring for different values of P (X = 1) and different

observation windows (0, Tmax]

τk partition: The EGKM estimator depends, by definition, on the partition 0 <

τ1 < τ2 < . . . < τK < Tmax in (0, Tmax). Since our times will be measured in

days, we will perform the simulation considering the following three partitions: in

years, in months and in weeks (the coarsest one, the medium and the thinest one,

respectively).

In each interval we will have to estimate the number of deaths and the number

of censored individuals for each category of the covariate X. This means that the

estimation will be less precise in those intervals with a lower number of individuals.

If we consider a small sample size (e.g., n = 50 o lower) the expected number of

individuals in one category in each interval will be really low. For example, if we
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use the partition in weeks when Tmax = 3 years then we define more than 150

intervals. So, in order not to waste too much information, we will consider three

differents sample sizes for each of the censoring levels: if Tmax = 3 years, then we

take n = 100, 500 or 1000 and, if Tmax = 10 years, then we take n = 200, 1000 or

2000.

Non-response pattern: We will generate the data according to the following

non-response pattern

logit P (R = 1|Y, δ, X) = α0 + α1 · Y + α2 · δ + τ · X, (7.1)

and we will setup parameters α0, α1, α2 and τ as in Table 7.3 is shown. It allows us

to simulate the missing completely at random (MCAR), missing at random (MAR)

and non-ignorable with non-ignorability parameter τ (NI(τ)) patterns.

Model α0 α1 α2 τ

MCAR 1 0 0 0

MAR -0.75 0.005 1 0

NI(-2) -0.75 0.005 1 -2

NI(2) -0.75 0.005 1 2

Table 7.3: Setup of parameters α0, α1, α2 and τ for each non-response pattern model

The expected proportion of missing data can be computed by the expression

P (R = 0) =
∑

x=0,1

P (X = x)P (R = 0|X = x)

=
∑

x=0,1

P (X = x)

∫ Tmax

0

P (R = 0|X = x, Y, δ)dFY,δ|X=x

where dFY,δ|X=x =

{
I(δ = 0)

1

Tmax

SX=x(y) + I(δ = 1)fX=x(y)

(
1 −

y

Tmax

)}
dy and

fX=x and SX=x are, respectively, the density and the survival function for the group

X = x.

In Table 7.4 we present the expected proportion of missing data in each of the

categories for every scenario.
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P (R = 0|X = x) P (R = 0)

Tmax NR Model X = 0 X = 1 P (X = 1) = 0.3 P (X = 1) = 0.5

3 MCAR 0.2689 0.2689 0.2689 0.2689

MAR 0.2636 0.2156 0.2492 0.2396

NI(-2) 0.2636 0.5265 0.3425 0.3951

NI(2) 0.2636 0.0474 0.1988 0.1555

10 MCAR 0.2689 0.2689 0.2689 0.2689

MAR 0.1766 0.0868 0.1497 0.1317

NI(-2) 0.1766 0.2372 0.1948 0.2069

NI(2) 0.1766 0.0180 0.1290 0.0973

Table 7.4: Proportion of missing data for different values of P (X = 1) and different

observation windows (0, Tmax], for each non-response pattern

Each set of data will be analyzed using the complete case methodology (CC)

and also taking into account up to six different non-response patterns. In the CC

analysis we will only consider those individuals with observed covariate value and

we will apply the Kaplan-Meier estimator. For the other methodologies, we will

semiparametrically estimate the survival function by using the EGKM estimator

proposed in the previous section. Table 7.5 shows all the methods used in the

analysis and the parameters in the non-response model (7.1) that they have to be

estimated.

In fact, in order to prevent unlikelihood scenarios, we will analyze the data using

models not too far from the real one that generated the data. In others words,

we will assume that the analyst has a correct “common sense” about the non-

response mechanism. Table 7.6 illustrates the 18 combined generating/analyzing

non-response patterns.

Possible scenarios: Table 7.7 summarizes all the possible scenarios we will analyze.

Since the CC analysis is independent on the grid option, we can configure 2 · 3 · 2 ·

4 + 2 · 3 · 3 · 2 · 14 = 48 + 504 = 552 different scenarios to simulate. First, we will

simulate the 276 cases corresponding to the less suitable scenarios (i.e., when the
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NR Pattern Presetup parameters Parameters to estimate

CC Complete Case analysis none

MCAR α1 = α2 = 0 and τ = 0 α0

MAR τ = 0 α0, α1 and α2

NI(-2), NI(-1) τ = −2,−1 α0, α1 and α2

NI(1), NI(2) τ = 1, 2 α0, α1 and α2

Table 7.5: Non-response patterns used in the analysis of the simulated data

Generating Analyzing pattern

pattern CC MCAR MAR NI(-2) NI(-1) NI(1) NI(2)

MCAR • • • ◦ ◦ ◦ ◦

MAR • • • ◦ • • ◦

NI(-2) • • • • • ◦ ◦

NI(2) • • • ◦ ◦ • •

Table 7.6: Generating vs analyzing non-response pattern used in the simulation study

proportion of censoring is big, that is, when Tmax = 3 years). Later, we will simulate

those scenarios in the case Tmax = 10 years that they can help us to illustrate the

properties of the proposed EGKM estimator.

Monte Carlo study: We will conduct every simulation experiment based on 250

realizations. However, when the goal is to estimate the coverage probabilities, for

a subset of the scenarios, we will extend the number of realizations to 1000. So,

the estimated coverage probability of a true 95% confidence interval will have a

simulation accuracy of approximately 1.35% (1.96
√

0.05 · 0.95/1000 = 0.0135).

At each realization, we will estimate the survival function, and its standard error,

at 1 and 2 years when Tmax = 3 years (or at 1, 2, 5 and 8 years when Tmax = 10 years)

for each category in X. Then, we will evaluate the absolute and the relative bias,

and whether the true survivorship belongs to the respective nominal 95% confidence
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Configuration Number

parameter Values of options

Observation window (Tmax) 3 or 10 years 2

Grid (τk − τk−1) year / month / week 3

Sample size (n) 100/500/1000 or 200/1000/2000 3

X = 1 proportion (P (X = 1)) 0.3 or 0.5 2

Generating vs Analizing

non-response pattern see Table 7.6 18

Table 7.7: Configuration of the scenarios for the simulation study

interval (coverage indicator).

Among all the Monte Carlo iterations, we report the Monte Carlo mean, the

shortest half location parameter for the standard error estimates, the coverage prob-

ability of the nominal 95% large sample confidence intervals, the Monte Carlo bias

(absolute and relative), the Monte Carlo standard error of the simulation and the

mean squared error at each of the mentioned times for each category. For sum-

marizing the standard error estimates we use the shortest half location parameter

(Rousseeuw and Leroy, 1987), instead of the mean, because it is more robust in

front of outliers samples and non-simetric distributions. All the results are given in

Appendix V.

According to (6.11), for each of the reference distributions in the simulation, we

can compute the upper bound for the relative bias of the Grouped Kaplan-Meier

estimator in each of the mentioned times of estimation and for each scenario given in

Table 7.7. This upper bound depends only on the observation window (i.e., on Tmax)

and on the grid size (i.e., on the partition 0 < τ1 < . . . < τK < Tmax). Since higher

order terms in (6.11) are, in general, lower than 10−4, Table 7.8 only illustrates the

linear term in the Taylor’s expansion in the computation of these upper bounds.

We can see that the relative bias depends on the true percentile we are estimating

(in others words, the relative bias is lower if the true survival is higher). On the

other hand, we can also observe that the relative bias is quite small if we consider
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a reasonable partition. For example, if we work in weeks, the relative bias for the

distribution W(6.7, 1.4) is lower than 1% for the estimation of the 90% quantile (see

Table 7.1 and Figure 7.1).

Upper bound at t years (in %)

Distr. Tmax Grid in t = 1 t = 2 t = 5 t = 8

W(6.7,1.4) 3 years 25.30 47.09 − −

months 1.82 3.78 − −

weeks 0.43 0.90 − −

10 years 7.59 12.43 26.66 47.44

months 0.49 0.84 1.92 3.61

weeks 0.11 0.20 0.45 0.86

W(7.7,0.8) 3 years 3.70 11.52 − −

months 0.35 1.14 − −

weeks 0.08 0.28 − −

10 years 1.11 2.85 11.44 29.88

months 0.09 0.23 0.91 2.42

weeks 0.02 0.05 0.22 0.58

Table 7.8: Approximate upper bound (in percentage) for the relative bias for the

Grouped Kaplan-Meier estimator for the two reference distributions in the Monte

Carlo simulations as a function of the observation window (0, Tmax] and the grid

size
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Comparison between methodologies: In order to compare the EGKM method-

ology and the complete case methodology we estimate the asymptotic relative effi-

ciency, ARE1, as

ARE1 =
1/MSEalternative meth.

1/MSECC analysis
=

MSECC

MSEa.m.

.

To compare a different non-response pattern used in the analysis with the correct

one, we will use the asymptotic relative efficiency between both, ARE2, as:

ARE2 =
1/MSEalternative non-resp. pat.

1/MSEcorrect non-resp. pat.
=

MSEc.p.

MSEa.p.

.

7.3 Implementation of the simulation

All the processes have been implemented in S-PLUS and the respective functions

are listed and commented in Appendix IV.

To obtain each realization of the simulation we do as follows:

Step 1. Setup the scenario: Tmax, grid, n, p = P (X = 1), NR pattern for the genera-

tion, NR pattern for the analysis

Step 2. Generate the true data: X ∼ B(p), T ∼ W (6.7 + X, 1.4 − 0.6 · X) and

C ∼ U([0, Tmax])

Step 3. Generate the observed survival times: Y = min{T, C}

Step 4. Generate the observed covariates: R ∼ B(expit(α0 + α1 · Y + α2 · δ + τ · X))

and redefine X as X · R + “NA” · (1 − R)

Step 5. Describe the sample: proportion of X = 1 in the initial sample, proportion of

censoring, proportion of missing

If we are doing the Complete Case methodology:

Step 6a. Obtain the subsample of individuals with observed covariate

Step 7a. Compute the stratified Kaplan-Meier estimator, their standard errors and the

coverage indicators: S̃X=0 and S̃X=1
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otherwise

Step 6b. Estimate semiparametrically, using the methodology proposed in Section 6.3

with φ
(2)
r=0(Y, δ) = (1, Y, Y 2)′, the non-response parameter: α̂ = (α̂0, α̂1, α̂2)

′

Step 7b. Estimate semiparametrically, using our methodology proposed in Section 6.3,

the vector β of number of deaths or censored individuals in each of the cat-

egories, and derive the Estimated Grouped Kaplan-Meier estimator, its stan-

dard error and the coverage indicator, in each category: β̃, S̃X=0 and S̃X=1

and, in all the situations

Step 8. Compute the effective size of the sample and the effective proportion of indi-

viduals with X = 1

After doing all the 250 realizations in each scenario, we summarize the scenario,

evaluating the following Monte Carlo parameters:

A) proportion of real data with X = 1, proportion of censoring, proportion of

missing, effective size and effective proportion of X = 1

B) survival, median of the estimations of the standard error, coverage probability,

absolute and relative bias, standard error of the simulation and mean square

error, at each of the times of interest and for each category.

7.4 Results

The simulation has been developed in S-PLUS and performed in a Pentium II, 400

MHz, 64 MB RAM under Windows 98 operating system. In order to provide an

idea about how much time is necessary to obtain the estimated survival funtions and

confidence bands for a real univariate data set, we show in Table 7.9 the time needed

for each iteration. Big part of the time is devoted to the computations involved

in the estimation of the standard error from the sample; so, in the simulation, for

computational time reasons, we only estimate the standard error (and the respective

coverage indicator) for some of the most significative scenarios. Otherwise, this value

is estimated by the Monte Carlo standard error of the simulation in each scenario.
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Tmax = 3 years Tmax = 10 years

Grid in n = 100 n = 500 n = 1000 n = 200 n = 1000 n = 2000

years 9 36 70 18 82 167

months 11 41 78 43 174 343

weeks 29 94 180 1071 2244 4810

Table 7.9: Time in seconds for computing one iteration in each scenario for the

analysis of a simulated data set with a non-ignorable generating and analyzing non-

response pattern

All the numerical results are listed in Appendix V. In this section we present the

most significative results for the new methodology and those that allow us to assess

some properties about the proposed estimator (for finite samples). In particular,

we show all the results for the less informative situation, i.e., when the censoring

proportion is higher (in our case when Tmax = 3 years), as well as some of the most

conclusive ones for Tmax = 10 years. For ease of exposition we will illustrate some

of our results referring to specific pages in Appendix V (e.g., [V, pp. 218–222]).

About the parameters under control by design, we obtain:

a) the Monte Carlo proportion of cases with real covariate X equals 1 is the ex-

pected: the simulated proportion is 0.300 or 0.301, depending on the scenario,

when P (X = 1) = 0.3 and 0.499 when P (X = 1) = 0.5, for all the scenarios,

b) something similar happens referring to the simulated proportion of censor-

ing: The Monte Carlo proportion of censoring for Tmax = 3 years stays in

[0.611, 0.612] if P (X = 1) = 0.3 and [0.674, 0.676] if P (X = 1) = 0.5, which

agree with the expected values by design shown in Table 7.2,

c) the simulated proportion of missing is also the designed in Table 7.4. Next

table summarizes the Monte Carlo proportion of missing data for Tmax = 3

years, different values of P (X = 1), sample sizes and non-response patterns.
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P (X = 1) NR Model Theoretical n = 100 n = 500 n = 1000

0.3 MCAR 0.2689 0.275 0.268 0.268

MAR 0.2492 0.250 0.248 0.249

NI(-2) 0.3425 0.342 0.343 0.342

NI(2) 0.1988 0.201 0.197 0.199

0.5 MCAR 0.2689 0.275 0.268 0.268

MAR 0.2396 0.240 0.238 0.240

NI(-2) 0.3951 0.393 0.395 0.395

NI(2) 0.1555 0.157 0.155 0.156

Table 7.10: Monte Carlo proportion of missing data for Tmax = 3 years, different

values of P (X = 1) and different sample size n, for each non-response pattern

Similar comments can be derived for Tmax = 10 years scenarios.

About the effective size of the sample, the proposed methodology allows

us to use the information of some of the individuals with missing covariate. More

precisely, we can use the information of those individuals whose observed survival

time, Y , shares the interval (τk−1, τk] with other individuals with observed covariate.

It means that the effective sample size will be larger if the grid size is also larger.

Although, as we have shown in Table 7.8, for a coarse grid we can obtain a larger

bias.

Table 7.11 shows the relative effective sample size of our methodology with re-

spect to the complete case analysis, for Tmax = 3 years and 10 years and P (X =

1) = 0.3. We can see that, if the grid is not too much coarse (in which situation we

can use up to all the subjects in the sample, no matter which the sample size is), the

improvement is increasing with the sample size. Analogously, for a fixed sample size

and non-response model, it goes down if the grid gets thinner. It is interesting to

note that for a sample size of n = 1000 the reduction is quite insignificant. We can

also observe that the gain is higher when the proportion of missing is higher, and

lower in the reverse sense. As an illustration, we can compare the values for the non-
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Tmax = 3 years Tmax = 10 years

Grid in NR Model n = 100 / 500 / 1000 n = 200 / 1000 / 2000

years MCAR 1.38 / 1.37 / 1.37 1.36 / 1.37 / 1.37

MAR 1.33 / 1.33 / 1.33 1.18 / 1.18 / 1.18

NI(-2) 1.52 / 1.52 / 1.52 1.24 / 1.24 / 1.24

NI(2) 1.25 / 1.25 / 1.25 1.15 / 1.15 / 1.15

months MCAR 1.30 / 1.36 / 1.37 1.25 / 1.35 / 1.36

MAR 1.25 / 1.33 / 1.33 1.15 / 1.17 / 1.18

NI(-2) 1.35 / 1.51 / 1.52 1.18 / 1.23 / 1.24

NI(2) 1.20 / 1.25 / 1.25 1.13 / 1.15 / 1.15

weeks † MCAR 1.16 / 1.30 / 1.35 —

MAR 1.10 / 1.26 / 1.31 —

NI(-2) 1.14 / 1.38 / 1.47 —

NI(2) 1.09 / 1.21 / 1.24 —

Table 7.11: Monte Carlo relative effective sample size of the proposed methodology

versus the complete case analysis, for Tmax = 3 years and 10 years and P (X = 1) =

0.3, as a function of the grid, the non-response pattern and the sample size (n).
† Results for Tmax = 10 years and grid in weeks are not available

ignorable scenarios with respect to the missing at random ones. For computational

time reasons, results for Tmax = 10 years and grid in weeks are not available. On the

other hand, the corresponding table for P (X = 1) = 0.5, due to the proportion of

missing, gives the same values for the MCAR scenario, quite the same for the MAR

scenario, slightly higher for the NI(-2) scenario and slightly lower for the NI(2).

With respect to the effective proportion of individuals with X = 1, Table

7.12 shows the Monte Carlo estimates, for the scenarios with Tmax = 3 years and 10

years, grid in months and sample size n = 500 or n = 1000, respectively; the table

is organized as a function of the generating and analyzing non-response pattern and
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the true value of P (X = 1) in the simulation. We observe that our settings for the

MCAR and MAR analysis (see Table 7.3) provide quite the same estimators (the

difference is lower than 10−3). This is due to the fact that when the τk partition is

very thin (e.g., grid in months or weeks) then the respective non-response models

in (7.1) become very similar [V, pp. 218–222].

When the non-response pattern that generates de data is non-ignorable, we can

see that the complete case methodology always presents a bias with the same sign

of the non-ignorability parameter τ . In fact, it underestimates the true proportion

of X = 1 when τ < 0, and it overestimates it when τ > 0. This is because these

individuals, in proportion, are underrepresented (if τ < 0) in the complete case

subsample versus those individuals with X = 0. In these scenarios, the proposed

new methodology equilibrates these deficiencies and it provides a more adjusted es-

timated effective proportion (higher if τ < 0, or lower, when τ > 0). When Tmax =3

years and the proportion of missing is not too high (e.g., around 15% or 20%, when

τ = 2), the proposed estimator works pretty well. If the proportion of missing is

higher (e.g., 35% or 40%, when τ = −2) there is still a sensible underestimation of

the true proportion. We can see that when the proportion of censoring is smaller,

these biases get smaller.

We provide in Table 7.13 and for each scenario the Monte Carlo mean of the

estimated survivals at 1 year and 2 years for each category as well as the standard

error of the simulation (in parentheses). The table corresponds to the scenarios with

Tmax = 3 years, grid in months, sample size n = 500 and P (X = 1) = 0.3.

Looking at Table 7.13, we can see that the CC analysis always provides biased

estimates for the survival in group X = 0, except for the MCAR generating pattern

(the estimates are the same in all these scenarios because the observed subsample

with X = 0 is independent on τ in the non-response mechanism). On the other

hand, for the group X = 1, the CC analysis also provides good estimates if and only

if the category X = 1 is well represented in the observed sample (in other words,

when τ � 0) [V, pp. 246, 263 and 279]. In a similar way that in Table 7.12, MCAR

and MAR analysis provide quite similar estimators. The second one has a slightly

higher standard error because we have to estimate two more parameters, α1 and α2,

in the non-response mechanism (7.1) [V, pp. 282–284].
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Estimated effective prop. of X = 1

NR Pattern P (X = 1) = 0.3 P (X = 1) = 0.5

Generating Analyzing 3 years / 10 years 3 years / 10 years

MCAR CC 0.300 / 0.300 0.499 / 0.499

MCAR 0.301 / 0.297 0.500 / 0.496

MAR 0.301 / 0.297 0.500 / 0.496

MAR CC 0.314 / 0.323 0.516 / 0.525

MCAR 0.301 / 0.300 0.500 / 0.499

MAR 0.301 / 0.300 0.500 / 0.499

NI(-1) 0.337 / 0.317 0.538 / 0.519

NI(1) 0.278 / 0.291 0.467 / 0.484

NI(-2) CC 0.216 / 0.285 0.391 / 0.481

MCAR 0.189 / 0.250 0.347 / 0.429

MAR 0.189 / 0.250 0.347 / 0.429

NI(-2) 0.257 / 0.285 0.442 / 0.479

NI(-1) 0.220 / 0.264 0.396 / 0.453

NI(2) CC 0.358 / 0.339 0.564 / 0.543

MCAR 0.350 / 0.321 0.552 / 0.523

MAR 0.350 / 0.321 0.552 / 0.523

NI(1) 0.328 / 0.311 0.529 / 0.511

NI(2) 0.316 / 0.306 0.514 / 0.505

Table 7.12: Monte Carlo estimated effective proportion of individuals with X = 1,

for Tmax =3 / 10 years, grid in months and sample size n = 500 / 1000, as a

function of the non-response patterns we use and the true values of P (X = 1)
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S̃(t|X = 0) (t in years) S̃(t|X = 1) (t in years)

t = 1 t = 2 t = 1 t = 2

True values: 0.569 0.396 0.900 0.778

NR Pattern

Gen. Anal.

MCAR CC 0.571 (0.035) 0.395 (0.042) 0.899 (0.031) 0.775 (0.054)

MCAR 0.578 (0.031) 0.409 (0.038) 0.902 (0.031) 0.789 (0.051)

MAR 0.577 (0.031) 0.409 (0.038) 0.903 (0.031) 0.789 (0.050)

MAR CC 0.616 (0.033) 0.428 (0.039) 0.910 (0.029) 0.785 (0.049)

MCAR 0.578 (0.030) 0.407 (0.036) 0.902 (0.032) 0.784 (0.048)

MAR 0.578 (0.030) 0.407 (0.036) 0.902 (0.032) 0.784 (0.048)

NI(-1) 0.575 (0.031) 0.405 (0.037) 0.881 (0.037) 0.761 (0.051)

NI(1) 0.581 (0.030) 0.410 (0.035) 0.917 (0.028) 0.799 (0.047)

NI(-2) CC 0.616 (0.033) 0.428 (0.039) 0.944 (0.029) 0.820 (0.050)

MCAR 0.607 (0.027) 0.434 (0.034) 0.941 (0.032) 0.827 (0.049)

MAR 0.607 (0.027) 0.434 (0.034) 0.941 (0.032) 0.827 (0.049)

NI(-2) 0.029 (0.021) 0.423 (0.035) 0.899 (0.051) 0.774 (0.058)

NI(-1) 0.600 (0.028) 0.428 (0.035) 0.922 (0.040) 0.803 (0.053)

NI(2) CC 0.616 (0.033) 0.428 (0.039) 0.901 (0.028) 0.776 (0.046)

MCAR 0.567 (0.030) 0.398 (0.035) 0.891 (0.031) 0.772 (0.046)

MAR 0.567 (0.030) 0.398 (0.035) 0.891 (0.031) 0.772 (0.046)

NI(1) 0.569 (0.030) 0.400 (0.035) 0.904 (0.028) 0.786 (0.045)

NI(2) 0.571 (0.029) 0.401 (0.035) 0.911 (0.026) 0.793 (0.044)

Table 7.13: Monte Carlo mean of the estimated survivals in the simulation at 1 year

and 2 years (in parentheses the standard error of the estimates) for each category and

for the Tmax = 3 years, grid in months, sample size n = 500 and P (X = 1) = 0.3

scenarios.

Boldface: the least mean squared error estimate, Italic: the least biased estimate (if

different from the least mean squared error estimate)
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No matter the level of censoring and P (X = 1) value, about the proposed

methodology we can see that it provides the best estimates (in the sense of minimiz-

ing the mean squared error) for category X = 0 [V, pp. 225, 241, 257 and 273]. For

category X = 1 the new methodology provides the best estimates when the true τ

in the non-response generating pattern is negative [V, pp. 230, 246, 263 and 279].

Comparing the upper bounds for the relative bias for the Grouped Kaplan-

Meier estimator for the category X = 0 in Table 7.8 with those resulting from Table

7.13 both are of the same magnitude in MCAR and MAR generating patterns;

when the missingness is non-ignorable and τ = −2, the estimated relative biases are

slightly larger, and they are shorter when τ = 2 [V, pp. 224–225]. These conclusions

are also true for the corresponding scenarios with P (X = 1) = 0.5 [V, pp. 240–241],

and when Tmax = 10 years [V, pp. 256–257 and 272–273]. Differences are bigger for

category X = 1, in all scenarios [V, pp. 229–230, 245–246, 262–263 and 278–279].

If we look at the standard error estimates and the coverage probabilities

in Table 7.14 we will find that, in general, the analyzing patterns closer to the gener-

ating pattern give the best coverage probabilities; in particular when the generating

non-ignorability parameter τ is −2. This fact is specially relevant at the beginning

of the distribution if the observation window and the sample size are large enough

(e.g., when Tmax = 10 years, grid in month, sample size is 1000 and the generating

missing pattern is NI(-2), for the survival at 1 or 2 years for X = 0 we obtain a

coverage probability of 6% and 27%, respectively, for the CC methodology, mean-

while the resulting coverage probabilities for the semiparametric approach are all

around 95% [V, p. 283]). When P (X = 1) = 0.5 coverage probabilities for the

group X = 0 slightly increase and those corresponding to the group X = 1 slightly

decrease [V, pp. 282–284]. The CC methodology only works correctly when the

non-response pattern is MCAR or we are trying to estimate the survival at the tail

of the distribution [V, pp. 282–284]. On the other hand, standard errors increase

with the non-ignorability level in the non-response analyzing model (i.e., with |τ |).

When P (X = 1) = 0.3 we can see that the estimates for the standard errors in the

category X = 0 are sensibly smaller than the corresponding to X = 1 [V, pp. 282,

283]. When P (X = 1) = 0.5 these estimates become more similar [V, pp. 282,284].
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NR Pattern X = 0 X = 1

Gen. Anal. lse cp sse lse cp sse

MCAR CC 0.034 0.954 0.033 0.032 0.937 0.033

MCAR 0.030 0.938 0.030 0.030 0.917 0.032

MAR 0.030 0.940 0.030 0.030 0.918 0.032

MAR CC 0.032 0.694 0.032 0.028 0.885 0.029

MCAR 0.030 0.934 0.029 0.029 0.917 0.031

MAR 0.029 0.935 0.029 0.029 0.916 0.031

NI(-1) 0.032 0.963 0.030 0.037 0.968 0.036

NI(1) 0.030 0.939 0.029 0.029 0.889 0.028

NI(-2) CC 0.032 0.694 0.032 0.029 0.593 0.028

MCAR 0.027 0.699 0.028 0.029 0.631 0.030

MAR 0.027 0.706 0.028 0.029 0.636 0.030

NI(-2) 0.032 0.925 0.031 0.045 0.897 0.049

NI(-1) 0.029 0.861 0.029 0.037 0.834 0.039

NI(2) CC 0.032 0.694 0.032 0.028 0.942 0.028

MCAR 0.030 0.949 0.030 0.030 0.936 0.030

MAR 0.030 0.949 0.030 0.030 0.937 0.030

NI(1) 0.031 0.965 0.029 0.031 0.954 0.027

NI(2) 0.033 0.973 0.029 0.033 0.956 0.026

Table 7.14: Shortest half location parameter for the estimated standard errors (lse),

coverage probability of the nominal 95% confidence intervals (cp) and simulated stan-

dard error (sse) for each category at 1 year for the Tmax = 3 years, grid in months,

sample size n = 500 and P (X = 1) = 0.3 scenarios
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ARE1 ARE2

NR Pattern X = 0 X = 1 X = 0 X = 1

Gen. Anal. t = 1 t = 2 t = 1 t = 2 t = 1 t = 2 t = 1 t = 2

MCAR CC 1.00 1.00 1.00 1.00 0.84 0.93 0.97 0.91

MCAR 1.19 1.07 1.03 1.09 1.00 1.00 1.00 1.00

MAR 1.21 1.07 1.03 1.10 1.02 1.00 1.00 1.00

MAR CC 1.00 1.00 1.00 1.00 0.29 0.55 1.08 0.98

MCAR 3.45 1.82 0.93 1.02 1.00 1.00 1.00 1.00

MAR 3.45 1.82 0.93 1.02 1.00 1.00 1.00 1.00

NI(-1) 3.40 1.80 0.55 0.85 0.99 0.99 0.59 0.83

NI(1) 3.32 1.77 0.86 0.93 0.96 0.97 0.93 0.91

NI(-2) CC 1.00 1.00 1.00 1.00 0.45 0.77 0.93 0.80

MCAR 1.52 0.99 1.05 0.91 0.68 0.76 0.98 0.72

MAR 1.52 0.99 1.05 0.90 0.68 0.76 0.98 0.72

NI(-2) 2.23 1.30 1.07 1.25 1.00 1.00 1.00 1.00

NI(-1) 1.90 1.16 1.33 1.25 0.86 0.89 1.24 1.00

NI(2) CC 1.00 1.00 1.00 1.00 0.26 0.48 1.07 1.01

MCAR 3.73 2.06 0.75 1.01 0.96 0.99 0.80 1.02

MAR 3.73 2.06 0.75 1.01 0.96 0.99 0.80 1.02

NI(1) 3.84 2.07 0.97 1.05 0.99 1.00 1.03 1.05

NI(2) 3.87 2.08 0.94 0.99 1.00 1.00 1.00 1.00

Table 7.15: Asymptotic Relative Efficiency of the different methodologies used in

the simulation at 1 year and 2 years and for each category. ARE1 takes the CC

methodology as the reference and ARE2 uses the generating non-response pattern as

analyzing pattern and reference. The scenarios correspond to Tmax = 3 years, grid

in months, sample size n = 500 and P (X = 1) = 0.3.

Boldface: the most efficient estimate



154 CHAPTER 7. SIMULATION STUDY

To compare the different methodologies, Table 7.15 shows the Asymptotic

Relative Efficiency (ARE) for the scenarios with Tmax = 3 years, grid in months,

sample size n = 500 and P (X = 1) = 0.3. The ARE’s are computed at 1 year and 2

years and for each category. As we introduced in subsection 6.4.1, ARE1 takes the

CC methodology as the reference and ARE2 uses, as the reference, the analyzing

non-response pattern that it is equal to the generating one. For group X = 0

we can see that the proposed methodology is more efficient than the CC analysis.

In particular, more than two/three times at the beginning of the distribution if

the non-response pattern is non-ignorable. For group X = 1, while the proposed

methodology seems to be appropriated when τ is negative, it is not so clear for the

other scenarios. When Tmax = 10 years, we obtain smaller mean squared errors

than those resulting from the more censored case, and a similar table to Table

7.15, but with more extreme values, can be derived [V, pp. 257 and 263]. When

P (X = 1) = 0.5 corresponding ARE’s values for X = 0 decrease, and those for

X = 1 increase [V, pp. 273 and 279].

7.5 Discussion

As we have seen in the previous section, a first crucial point is the choice of the τk

partition. On one hand, in order to obtain less biased estimates, better coverage

probabilities and less mean squared errors it would be interesting to choose a thin

partition; but, on the other hand, a thinner partition implies more computation time

(mainly for estimating standard errors) and a reduction in the effective sample size.

So, if we have observed sample size enough, a recommendation would be to select

the grid size according to the expected bias, instead of the effective sample size gain.

A first approximation to the expected bias can be derived from the distributions of

the observed sample and the expression (6.11). If the proportion of missing data

is large (for example more than 65%) the price to pay is that we will have to use

medium grids with potentially more biased estimates and less coverage probabilities.

We conclude that, in general, the new methodology works better than the CC

methodology; in particular, when the analyst has some idea about the type of the
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non-response mechanism (because it helps him/her to specify a non-response model

and to control the non-ignorability parameters). We have seen that the best analysis

is the one in which we are using an analyzing non-response pattern closest to the

true non-response pattern that generated the data. It is interesting to see that

the proposed estimator also provides good estimates in the less informative case

(i.e., Tmax = 3 years, P (X = 1) = 0.3 and τ = −2) in which the group X = 1 has

an odds ratio of being observed, versus the group X = 0, lower than 1 (exp(−2) =

0.135), with a 83.75% of censoring (see Table 7.2) and a 52.65% of missing (see Table

7.5). However, while the semiparametric approach always provides more efficient

estimates for group X = 0 than the CC analysis, when τ � 0 (i.e., the group

X = 1 is well represented in the observed subsample) the CC methodology is more

efficient than the proposed one (mainly if we use coarsened grids).

In practice, we never know which is the closest non-response model to the true

missing data mechanism. So, in order to make correct inferences it is always neces-

sary to perform a sensitivity analysis over the non-ignorability parameters and the

non-response model. One strategy to apply could be:

1. Specify a plausible non-response model that incorporates all the non-response

patterns (MCAR, MAR and NI).

2. Understand the role of the non-ignorability parameters.

3. Based on the information a priori, decide a region of plausible non-ignorability

parameters (for the assumed non-response model).

4. Estimate the model and the survival values for each set of parameters in the

region.

5. Analyze the sensitivity of the inferences as a function of the different parame-

ters.

6. Repeat previous steps 1 to 5 for others reasonable non-response models, if it

is necessary.

About the efficiency of the proposed methodology by itself, it is important to

comment that in the simulation we are setting φ
(1)
r = 0 and a specific φ

(2)
r that they
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are not necessarily the efficient choice. It explains that in some wrong specified non-

response model we can obtain a more efficient estimator. For instance, in Table 7.15

it happens when the generating mechanism is NI(-2) and the analyzing mechanism

is NI(-1) and we are estimating the survival for the X = 1 group at the beginning of

the distribution. If we take a thinner grid (e.g., in weeks) this effect is reduced and

it does not exist if the sample size increases (see Appendix V, for more details).


