
Chapter 2

Studies with Censored Data

Herein, we present three studies dealing with censored data. Two of them are on the HIV/AIDS

epidemic, an area where survival analysis is a habitual tool for data evaluation, whereas the third

one is on the shelf lives of food products. This is an area, where the methodology of survival

analysis has recently been introduced.

In Section 2.1, the analysis of a data set on the survival of Tuberculosis (TB) patients co-

infected with HIV is summarized. The time of interest has been the elapsed time from TB

diagnosis until death. Since at the end of the study many individuals have still been alive,

right-censoring has been present in many cases. Hence, standard statistical procedures for right-

censored data have been applied.

In the subsequent section, the data of the study on injecting drugs users (IDU) in Badalona are

presented. This includes a descriptive analysis, as well as a summary of all the censoring patterns

observed in the data. These censoring patterns in the variables of interest have motivated the

development of a parametric survival model with an interval-censored covariate to determine the

predictive factors of the survival time. This model shall be presented and discussed in detail in

Chapter 3, its application to the data set is the content of Chapter 6.

Finally, Section 2.3 deals with a completely different area where interval-censored data arise:

the shelf lives of food products. The shelf life of a food product is defined as the storage time

at which the product is rejected by the consumers. Hence, the survival function at time t is

the probability that a consumer accepts the product beyond that time. In order to estimate the

distribution function of a food product’s shelf life, sensorial studies are carried out: consumers

are given samples of the product stored during different times and have to judge whether or

not they would normally eat this sample. The observed data consist of intervals into which the

unobserved exact shelf lives fall. The use of methods for interval-censored data in this field,

introduced by Hough, Langohr, Gómez, and Curia (2003), is a novel approach to evaluate data

on the acceptance of food products. The study of Hough et al., presented in Section 2.3, deals

specifically with the shelf life of a commercial whole fat, strawberry-flavored yogurt.
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2.1 Survival of HIV-infected Tuberculosis patients

This study is on the survival of HIV-infected Tuberculosis patients in Barcelona, carried out by

the local Municipal Health Institute, the Institut Municipal de la Salut de Barcelona. At the

beginning of the nineties, among these patients, a high degree of lethality during the first few

weeks of the TB treatment has been observed. It has therefore been the study objective to

examine the survival of these patients and study the possible predictive factors of an early death

after the start of an anti-Tuberculosis treatment.

Tuberculosis has nearly been eradicated in Europe during the second half of the past century.

However, in the course of the HIV/AIDS epidemic, this infectious disease has spread again among

the HIV infected patients due to their debilitated immune systems (Hoffmann and Kamps 2003).

For this reason and according to the definition of AIDS by the Centers for Disease Control

(CDC) in the USA, extrapulmonary and pulmonary TB are considered AIDS-indicating diseases

since 1986 (Centers for Disease Control 1987) and since 1993 (Centers for Disease Control 1992),

respectively. Sepkowitz and Raffalli (1994) point out that HIV and TB have a mutual negative

influence on each other: HIV infection is the main risk factor for the outbreak of TB, which itself

accelerates the course of AIDS.

In the first of the following sections, the sources of the given data set are presented. This is

followed by a descriptive analysis in Section 2.1.2. Furthermore, patients are divided into short-

term and long-term survivors in order to find possible predictors of the relatively high lethality

after the start of the anti-Tuberculosis treatment (Section 2.1.3). Finally, a multivariate Cox

model is applied to find out, which factors are predictive of the survival of HIV-infected TB

patients in general.

The description of the data analysis follows the work of Falqués, Langohr, Gómez, Olalla,

Jansà, and Caylà (1999). The only difference remains in the use of the statistical software S-Plus

(instead of SPSS) for the adjustment and validation of the Cox model in Section 2.1.4.

2.1.1 Data sources

The basis of the evaluated data set is the Tuberculosis register of the Institut Municipal de la Salut

de Barcelona (IMSB), which includes the data corresponding to all TB cases in Barcelona. This

register is a result of the Program for the prevention and control of Tuberculosis, the Programa

de prevenció i control de la tuberculosi, which exists since 1986. Its aim is to obtain a survey,

as complete as possible, on the spread of this disease in Barcelona. Doctors and hospitals are

involved in the program passing all the relevant information on TB cases to the IMSB. These

data are mainly recorded by interviewing the patients about sociodemographic data and medical

history and by analyzing blood samples.

The mentioned program forms part of the System of active epidemiologic vigilance, the Sis-

tema de vigilància epidemiològica activa, that has also created a register on all cases of HIV and
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AIDS in Barcelona. For the present study, both registers have been looked through in order to

record all persons who have been infected with HIV and have been under an anti-Tuberculosis

treatment. In case of multiple entries in the TB register due to several episodes of Tuberculosis,

only the first record has been considered for the study. The resulting data set comprises all cases

of HIV-infected TB patients older than 15 years who have started anti-Tuberculosis treatment

between January 1st 1988 and December 31st 1993 and have followed it until the prescribed end

(if they did not die before). The end of the follow-up time is September 30th 1995. The total

number of cases in the study is 1135.

2.1.2 Description of the data set

List of variables

The original data set has comprised more than hundred variables, including many medical mark-

ers. For the present study, this number has been reduced to about ten variables of interest as

possible predictors of the survival time. Besides the age and gender of the patients and the

information on former imprisonment, the variables used for the data analysis are the following:

• Risk group for HIV transmission

Either injecting drug users, homosexual men, both, heterosexuals or hemophiliacs.

• Percentage of T CD4+ lymphocytes

Up to 14% of T CD4+ lymphocytes in the blood or more.

• Tuberculin test

Result of the tuberculin test for presence of TB.

• AIDS diagnosis

Presence of AIDS-indicating disease at start of anti-TB treatment according to the CDC’s

AIDS definition of 1986.

• X-ray pattern

Condition of the lungs: normal, cavitary abnormal, or non-cavitary abnormal.

• Bacteriology

Result of microbiological examination for presence of the TB bacterium, the Mycobacterium

tuberculosis: positive microbiology, only culture-positive, or negative.

• Location of the Tuberculosis

Pulmonary, extrapulmonary, or mixed form of TB.
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Survival times

The main interest of the study has been to detect possible predictive variables of the survival time

of the patients. This time has been measured (in days) from the date of the anti-Tuberculosis

treatment’s start until the date of the patient’s death. Survival times of the patients have been

right-censored if they either have been alive on September 30th 1995, the final day of the study,

or if they have moved to another town and follow-up has been lost thereby.

Descriptive characteristics

The mean age of the 1135 patients has been 32.4 years (standard deviation: 8.8) at the beginning

of the anti-TB treatment being men (32.6; 8.3) older then women (30.3; 8.3). The distribution

of each of the above mentioned categorial variables is shown in Table 2.3 on page 25. The co-

hort consist mainly of men (82.6%), injecting drugs is the most frequent risk behavior for HIV

transmission, and more than two thirds of the patients have already developed AIDS by the

beginning of the anti-Tuberculosis treatment. These patients have either developed an extrapul-

monary Tuberculosis or another AIDS indicating disease according to the 1986 definition of the

CDC. Somewhat striking is the high proportion of missing values for the variables ‘Tuberculin

test’ (49.8%) and ‘Percentage of CD4 lymphocytes’ (53.6%). Possible reasons for that and its

implications for the data analysis will be discussed in Section 2.1.4 below. An extensive treatise

of these aspects can also be found in Gómez and Serrat (1999).

Some significant changes have been within the study cohort throughout the six years of study

period. While the age mean in 1988 is 30.4 (3.0), it amounts to 34.7 (4.0) in 1993. In the

same period, the proportion of injecting drug users decreases from 81.2% to 64.6%, whereas the

proportions of homosexuals and heterosexuals increase from 11.0% to 18.7% and from 0% to

11.0%, respectively. For the former variable, we have applied the t-test, for the latter the χ2-test

for homogeneity using a 95% significance level.

2.1.3 Short-term survivors

The mentioned high lethality observed among HIV-infected TB patients has motivated the com-

parison of the group of short-term survivors with the remaining patients. The break point chosen

has been nine months given the fact that this is the period standard TB therapies last. For that

analysis, a total of 102 patients has been disregarded because of a right-censored survival time of

less than nine months. These are patients, that have left Barcelona during the first nine months

of the study period. In total, there are 247 (23.9% of 1033) short-term survivors and 786 (76.1%)

long-term survivors.

In order to compare both groups with respect to the other variables, the t-test has been

applied for the continuous variable ‘Age’, whereas the χ2-test for homogeneity has been chosen

for the categorical variables. A significant difference (at a 95% significance level) is observed
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regarding the age of the patients: among the short-term survivors, the mean age has been 36.0

years (standard deviation: 10.8), among the long-term survivors, this values amounts to only

31.5 (7.6). In Table 2.4 on page 26, the comparison of both groups is summarized. According

to this univariate analysis, the following subgroups have shown better survival: former prisoners,

injecting drug users, patients with higher percentage of T CD4+ lymphocytes, patients with a

positive tuberculin test result, and AIDS-free patients.

The better survival of former prisoners and injecting drug users might be surprising at first

sight, but can mainly be explained by the better medical care patients received in the prisons.

This is particularly important for the anti-TB treatment which requires a disciplined follow-up

for several months. Whereas more than 30% of the intravenous drug users have been imprisoned

formerly, not even three percent of homosexual men and heterosexuals have been in jail.

2.1.4 Application of the Cox model

The previous analysis can give an idea on possible predictors of the survival time of HIV-infected

TB patients, however, it is an univariate approach. For a multivariate analysis of the survival

time, we have applied the proportional hazards model of Cox (Cox 1972):

λ(t; z) = λ0(t) exp(β
′z), (2.1)

where λ0 is the underlying baseline hazard function and z is the multivariate covariate vector. The

procedure to select an appropriate model has been a mixture of forward and backward selection:

variables are successively included in the model as long as the model fit improves significantly at

a 95% level. With each new variable in the model, the variables already included in the model

are checked to still be significant choosing an exclusion criterium of 10%. That is, if any of the

p -values in the new model exceeds 0.1, the corresponding variables are excluded. This procedure

is continued uill the model fit cannot be significantly improved anymore.

Selection of variables

Three of the possible covariates for model (2.1) —the variables of Table 2.3 plus ‘Age’— have

been disregarded for different reasons. First, when proving the condition of proportional haz-

ards for each variable univariately, the variable ‘X-ray pattern’ shows non-proportional hazards

and is therefore not considered. Any transformation of this variable might achieve the required

proportionality of risks, however, the previous analysis summarized in Table 2.4 has not shown

any influence of this variable on short- and long-time survival. Secondly, the variable ‘Loca-

tion of TB’ is disregarded for the same reason and also due to its correlation with the variable

‘AIDS’. Following the 1986 CDC’s AIDS definition, any case of HIV infection in combination

with extrapulmonary TB is considered an AIDS case. Finally, comparing the survival of patients

with known and unknown tuberculin test result, the log-rank test shows significant differences
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(p < 0.001) being the survival of patients with missing test result nearly the same as the one

of patients with a negative test result (p = 0.52). That is, patients with given tuberculin test

result are most probably not representative for the whole cohort. An explanation for this obser-

vation is that the tuberculin test, in many cases, has not been applied to patients in a bad health

shape, who normally show a negative test result. Hence, the inclusion of this variable into the

model would introduce a non-ignorable bias since only individuals without any missing value are

considered for the model construction.

In contrast with the tuberculin test, for missing observations of the variable ‘T CD4+ Lym-

phocytes’ we can assume missing at random since the survival curves of patients with and without

observations show a very similar behavior (p = 0.96). However, considering the high percentage

of missing values (53.6%; see Table 2.3), two models are adjusted one disregarding this variable

and a second one including it.

Model adjustment

Two proportional hazards models are adjusted, for the first of which the percentage of the T

CD4+ lymphocytes in the blood is excluded in order to increase the sample size. Disregarding all

patients with at least one missing observation in the remaining variables, in case of model 1, 791

patients are considered, whereas for model 2, the sample size amounts to 384. The values of the

estimated parameters and their standard errors for both model 1 and model 2 are summarized in

Table 2.1. This table includes also the relative risk, estimated by exp(β̂), corresponding to the

significant variables and their 95% confidence interval.

Table 2.1: Parameter estimates of Cox models

Model 1 (n = 791)

Variables β̂ s.e.(β̂) p -Value Rel. Risk CI95%(RR)

AIDS 1.192 0.121 < 0.001 3.29 [2.60, 4.17]

Age 0.03 0.006 < 0.001 1.03 [1.02, 1.04]

Model 2 (n = 384)

Variables β̂ s.e.(β̂) p -Value Rel. Risk CI95%(RR) Referencea

AIDS 1.881 0.284 < 0.001 6.56 [3.76, 11.45] CD4 high

1.36 [0.92, 2.01] CD4 low

CD4 2.024 0.322 < 0.001 7.57 [4.03, 14.21] No AIDS

1.56 [1.16, 2.11] AIDS

AIDS∗CD4 −1.576 0.348 < 0.001

a Reference category for relative risk
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Two variables are included in model 1: AIDS and the age of the patients. For the former variable,

the estimated relative risk amounts to 3.3, that is, the risk of dying of a patient with AIDS at the

beginning of the anti-TB treatment is 3.3 times higher than the risk of an AIDS-free patient of

the same age. Regarding age, the relative risk of 1.03 indicates that the risk of dying augments

with increasing the age. Given the same diagnosis of AIDS, a patient of age a (years) has 1.03

times the risk of dying of a patient with age a − 1 and exp(10 · 0.03) ≈ 1.35 times the risk of a

patient of age a− 10.

When including the variable ‘T CD4+ lymphocytes’, the effect of the age is superseded by

this variable. Besides, the interaction of CD4+ cells and AIDS diagnosis results significant. This

interaction implies that the relative risk for each of the two variables depends on the levels of the

other. For example, comparing two individuals with a high CD4 cell count, the one with AIDS

has 6.56 times more risk of dying than the AIDS-free individual. On the other hand, if both

individuals have a low CD4 cell count, the relative risk for AIDS diagnosis amounts to only 1.36.

The validity of both models has been examined by means of the S-Plus function cox.zph,

which applies a Kolmogorov-based test on the score residuals proposed by Schoenfeld (Mathsoft

1999). The null hypothesis is that proportional hazards hold; then, these residuals are randomly

distributed (Collett 1994). According to the test results for both models, summarized in Table 2.2

below, there is no clear evidence against the assumption of proportional hazards since none of

the p -values is smaller than 0.2.

Table 2.2: Verification of proportional hazards

Model 1 Model 2

Variables p -Valuea Variables p -Valuea

AIDS 0.238 AIDS 0.123

Age 0.242 CD4 0.828

AIDS∗CD4 0.23

Global 0.257 Overall 0.217

a test based on score residuals proposed by Schoenfeld

2.1.5 Conclusions

According to the analysis of the cohort of HIV-infected Tuberculosis patients in Barcelona, AIDS

diagnosis and the level of T CD4+ lymphocytes in the blood are the main predictors of the

survival time. Following the results of model 2, a patient with AIDS diagnosis and a low CD4

cell count has exp(1.881 + 2.024− 1.576) ≈ 10.3 times the risk of dying of an AIDS-free patient

with a high CD4 cell level. If the CD4 cell count is not considered for the Cox model, the age
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of the patients is one of the significant predictors implying that the risk of dying augments with

increasing age. For both models, we can assume that the assumption of proportional hazards is

justified.

In neither of the two models the variable ‘Former imprisonment’ has shown significance. That

is, the observed better survival of former prisoners within the first nine months (Section 2.1.3), is

most probably due to the fact that these are significantly younger (mean age: 29.9, standard de-

viation: 5.6) than patients who have not been in jail (33.0, 9.0). The p -value of the corresponding

t-test amounts to less than 0.001.

Nowadays, the survival of the HIV-infected patients has improved very much both in length

and quality because of the highly active anti-retroviral therapies. Therefore, the obtained results

might now be of less importance in the highly industrialized countries. However, in many parts of

the world, these new treatments are not available for the big majority of the affected population,

and it is therefore very important to know which HIV-infected TB patients are at high risk of

dying.
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Table 2.3: Characteristics of TB patients co-infected with HIV

Variable Categories Number Percentage

Gender Male 938 82.6

Female 197 17.4

Former imprisonment Yes 273 24.1

No 862 75.9

Risk group Injecting drug users 833 73.4

Homosexuals 156 13.7

Hemophiliacs 10 0.9

Heterosexuals 41 3.6

IDU & Homosexuals 29 2.6

Unknown 66 5.8

Percentage of T CD4+ ≤ 14% 288 25.4

Lymphocytes > 14% 239 21.0

Unknown 608 53.6

Tuberculin test Positive 245 21.6

Negative 325 28.6

Unknown 565 49.8

AIDSa Yes 780 68.7

No 355 31.3

X-ray pattern Normal 181 15.9

Cavitary abnormal 160 14.1

Non-cavitary abnormal 740 65.2

Unknown 54 4.8

Bacteriology Positive microscopy 427 37.6

Only culture-positive 361 31.8

Negative 209 18.4

Not determined 100 8.8

Othersb 38 3.4

Location of TB Pulmonary 529 46.6

Extrapulmonary 393 34.6

Mixed 201 17.7

Unknown 12 1.1

Total 1135 100.0

a according to the 1986 AIDS definition of the CDC
b mainly diagnosed by clinical-radiological criteria or the ADA test
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Table 2.4: Comparison of short- and long-term survivors

Survivors

Short-term Long-term

Variable Categories n %a n %a p -Valueb

Gender Male 204 82.6 650 82.7 0.963

Female 43 17.4 136 17.3

Former imprisonment Yes 27 10.9 213 27.1 < 0.001

No 220 89.1 573 72.9

Risk group Injecting drug users 154 73.3 615 84.2 0.001

Homosexuals 43 20.5 91 12.5

Heterosexuals 13 6.2 24 3.3

Unknown 37 56

Percentage of T CD4+ ≤ 14% 82 69.5 182 49.5 < 0.001

Lymphocytes > 14% 36 30.5 186 50.5

Unknown 129 418

Tuberculin test Positive 21 22.6 198 46.5 < 0.001

Negative 72 77.4 228 53.5

Unknown 154 360

AIDSc Yes 215 87.0 498 63.4 < 0.001

No 32 13.0 288 36.6

X-ray pattern Normal 37 15.5 128 17.2 0.190

Cavitary abnormal 27 11.4 116 15.5

Non-cavitary abnormal 174 73.1 503 67.3

Unknown 9 39

Bacteriology Positive microscopy 44 20.8 125 17.9 0.645

Only culture-positive 127 59.9 432 61.9

Negative 41 19.3 141 20.2

Unknown 35 88

Location of TB Pulmonary 122 50.4 367 46.9 0.602

Extrapulmonary 81 33.5 273 34.9

Mixed 39 16.1 142 18.2

Unknown 5 4

Total 247 100.0 786 100.0

a of non-missing data
b the χ2-tests for homogeneity have not included the category ‘Unknown’
c according to the 1986 AIDS definition of the CDC
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2.2 The data set on injecting drug users in Badalona

The data which have mainly motivated the present PhD thesis come from the detoxication unit

of the Hospital Trias i Pujol, also known as Hospital Can Ruti, in Badalona (Spain). The study

population consists of intravenous drug users from Badalona and surroundings, many of whom

became infected with HIV mainly because of sharing their syringes with others.

In this section, we first illustrate the study objective (Section 2.2.1) and then present the data

set with more detail (Section 2.2.2). One important aspect of the data is the censoring in the

variables of interest which will be looked at in the closing Section 2.2.3.

2.2.1 Objective of the study

The motivating epidemiological question regarding the data set has been:

Does the length of the elapsed time from first potential HIV exposure by injecting

drugs until HIV infection have any influence on the subsequent AIDS incubation

period?

In the remainder of this thesis, both times will be denoted by Z and Y , respectively, as illustrated

in Figure 2.1, where 0 corresponds to the moment of first intravenous drug use. In case of

individuals, who started injecting drug use before 1978, Z is measured from January 1st 1978,

because it is assumed that HIV was not spread before that year in Spain.

AIDS0

Z Y

HIV

Figure 2.1: Pattern of disease stages

Actually, routine HIV tests, available since 1985, cannot detect the HIV infection during the first

days and weeks after its occurrence, because HIV antibodies are not produced immediately after

the infection with HIV. The moment the antibodies are produced and can be detected the first

time in the blood is called seroconversion. It is estimated that the median time from HIV infection

until seroconversion lasts about two months (Brookmeyer and Gail 1994; Brookmeyer and Quinn

1995). Since this period is relatively short compared with the subsequent AIDS incubation period,

we assume that the results and conclusions of the present study are hardly altered by the use of

seroconversion instead of HIV infection.
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2.2.2 Descriptive analysis of the data set

The original data set contains the data of a total of 370 injecting drug users from Badalona and

nearby municipalities like Santa Coloma or Sant Adrià. No information concerning the moment

of HIV infection has been given in case of nine individuals, for which reason they have been

removed from the data set. Hence, the study population consists of 361 injecting drug users.

Variables of interest

Besides the individuals’ age and gender, we have had the following information at our disposal:

• Date of first injecting drug use,

• Dates of last seronegative and first seropositive HIV test result, respectively,

• Indicator of AIDS onset with date and, in case of AIDS, the indicating disease,

• Indicator of death with corresponding date, and in case of death, the death cause.

Whereas the date of first injecting drug use has been available for all individuals, data regarding

HIV test results, AIDS onset, and death have been partly missing (see Section 2.2.3). Given

the mentioned dates, we have calculated the following times: time from first injecting drug use

until the last seronegative and first seropositive test result, respectively, as well as the subsequent

times until date of AIDS onset. The chosen time unit are months a value of i being equal to the

ith month since the corresponding starting point.

Sociodemographic data

Table 2.5: Age at first iv drug use

Age group n %

≤ 15 57 15.8

16− 20 185 51.2

21− 25 81 22.4

26− 30 24 6.7

≥ 31 14 3.9

Total 361 100.0

Among the 361 intravenous drug users from

Badalona and surroundings, 307 (85.0%) are men.

As shown in Table 2.5, 67% of the individuals have

been 20 years or younger, with median equal to 19

years, when consuming intravenous drugs the first

time. The youngest individual has not even been

ten years old when starting injecting drugs, whereas

only 14 of them (3.9%) have been older than 30

years. No correlation (p > 0.9; χ2-test) is observed

between gender and age at first intravenous drug

use.

We observe a broad range of years during which individuals have started intravenous drug

consumption: it spans from 1974 to 1997 with peaks in the mid-eighties; see Figure 2.2 on the

following page. As mentioned before, we consider the January 1st 1978 as the earliest time of
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HIV exposure by injecting drugs, and measure Z from that date in case of the 15 individuals who

have started injecting drugs in the years before 1978.

Year
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1988
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Figure 2.2: Year of first injecting drug use

2.2.3 Presence of censored data

The motivating question concerning our data might have been easily answered if the corresponding

times could have been observed exactly. However, that has not been the case: both the time from

first injecting drug use until HIV infection and the AIDS incubation period are mainly censored.

Interval-censored times until HIV infection

Injecting drug users coming to the detoxication unit of the Hospital Can Ruti have been tested

for HIV routinely since 1985. Since neither the moment of HIV infection nor the seroconversion

can be observed exactly, we deal with censored times until HIV infection. We distinguish the

following three cases of interval-censored observations:

Seropositive cases A seropositive time HIV+ is observed but no seronegative observation is

available. Hence, the time until HIV infection is known to lie in (0,HIV+]. In our data set,

we have 225 (62.3%) seropositive individuals.

HIV+0 HIV
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Seronegative cases A seronegative observation HIV– time is given but no seropositive test

result; thus, Z ∈ [HIV–,∞). 98 individuals (27.2%) show that observational pattern.

HIV−0 HIV

Seroconverters Both a last seronegative and a first seropositive test result are available, that

is Z ∈ [HIV–,HIV+]. There are 38 (10.5%) seroconverters in the data set.

HIV−0 HIV HIV+

Consequently, times until HIV infection are mainly current status data, whereas interval-censoring

case 2 is present in about 10% of all cases.

It is important to note, that in the remainder we do not consider the case of long-time survivors

with respect to time until HIV infection. That means, we assume that all injecting drug users will

become infected with HIV. This might not be true for all the 98 seronegative cases, nonetheless

we believe that the possible bias caused by that assumption can be neglected.

Doubly-censored AIDS incubation period

Table 2.6: AIDS diagnosis

Diagnosis n %

AIDS 82 22.7

No AIDS 182 50.4

Missing 97 26.9

Total 361 100.0

Table 2.7: Death causes of individuals

with missing AIDS onset

Cause of Death n %

AIDS 14 31.8

Overdose 20 45.5

Accident/Violence 3 6.8

Others 1 2.3

Unknown 6 13.6

Total 44 100.0

The AIDS incubation periods in the data set are

doubly-censored due to the fact that, on one hand, the

time origin, that is HIV infection, is interval-censored

and, on the other hand, the moment of AIDS onset

is partly left- and right-censored. The reason for this

and the corresponding number of cases can be seen in

the Tables 2.6 and 2.7.

In Table 2.6, we show the number and proportion

of AIDS cases among the study cohort. In a total

of 82 (22.7%) cases, AIDS has been diagnosed, that

is, AIDS incubation periods are uncensored. In con-

trast with that, 182 cases (50.4%) are right-censored

as these individuals have been AIDS-free at their last

visit in the hospital. We do not have any information

on possible deaths after these diagnoses. Moreover,

there are 97 injecting drug users for whom informa-

tion about development from HIV infection till AIDS
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is missing. However, 44 (45.4%) of these individuals have died by the end of the study period

with causes of death given in Table 2.7. We see that 14 of the 44 individuals died because of

AIDS, which implies that AIDS must have been developed before the corresponding date of death.

Hence, these are left-censored observations for time until AIDS onset. In case of the remaining

30 individuals it is unclear, whether or not they have developed AIDS before their death.

In Table 2.8 on page 32, all observed censoring patterns of the times until HIV infection

and the subsequent AIDS incubation period are summarized. Note that the 20 individuals with

a seropositive observation but no information about AIDS onset are considered right-censored

observations concerning the AIDS incubation time. This is because HIV infection has occurred

before the date of the seropositive observation, but AIDS has not yet been diagnosed.

Following the illustration in De Gruttola and Lagakos (1989), in Figure 2.3, we show the pos-

sible combinations of HIV infection times and AIDS incubation period according to the censoring

in the latter variable. Assume HIV infection falls into the interval [2, 4] and the observation

for AIDS onset is equal to 7. Then, for any value z ∈ [2, 4] of HIV infection, if AIDS onset is

observed exactly, the AIDS incubation period is equal to 7− z. If AIDS onset is right-censored,

the incubation periods are larger or equal to 7 − z, and if left-censoring is given, the possible

incubation times fall into the interval [4 − z, 7 − z]. Hence, the possible combinations of times

until HIV infection and AIDS incubation periods either lie on a straight line or fall into an infinite

or finite parallelogram.
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Figure 2.3: Possible combinations of time until HIV infection and AIDS incubation period
given an exact, a right-censored, and a left-censored date of AIDS diagnosis

A way to evaluate the data of this study by means of a parametric survival model shall be

presented in detail in the Chapters 3 and 6. Its particularity lies in the fact that the covariate

is interval-censored. Whereas the following chapter deals with the theoretical background, in

Chapter 6, the application of this method to the given data set is presented, including the

estimation results under different model assumptions.
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Table 2.8: Frequencies of observed censoring patterns

Observational patterna Frequency %

AIDS0 HIV(HIV−) HIV+

80 22.2

AIDS0 HIVHIV−

2 0.5

Subtotal: exact observations of AIDS onset 82 22.7

No AIDS
observed

0 HIV(HIV−) HIV+

136 37.7

Death
(not of AIDS)

0 HIV(HIV−) HIV+

14 3.9

0 HIV(HIV−) HIV+

20b 5.5

Subtotal: right-censored observations of AIDS onset 170 47.1

Death
(of AIDS)

0 HIV(HIV−) HIV+ AIDS

13 3.6

Death
(of AIDS)

0 HIV AIDSHIV−

1 0.3

Subtotal: left-censored observations of AIDS onset 14 3.9

No AIDS
observed

0 HIVHIV−

46 12.7

Death
(not of AIDS)

0 HIVHIV−

10 2.8

0 HIVHIV−

39 10.8

Subtotal: missing observations of AIDS onset 95 26.3

Total 361 100.0

a ‘HIV’ and ‘AIDS’ denote the exact moments of HIV infection and AIDS onset,
‘HIV-’ and ‘HIV+’ denote the seronegative and seropositive observations,
‘(HIV-)’ stands for a possible seronegative observation.

b the seropositive observation coincides with right-censoring of AIDS onset at HIV+
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2.3 Study on shelf life of yogurt

As mentioned at the beginning of the present chapter, the use of survival analysis is a new

approach for the evaluation of data on the shelf lives of food products. In this area, the time of

interest is the storage time of a food product under given circumstances until it is rejected by

the consumers. Hence, the survival function, S(t), is defined as the probability of the consumers

accepting the product beyond storage time t, and F (t) = 1 − S(t) is the probability that the

consumers reject it before t.

As Hough, Langohr, Gómez, and Curia (2003), who have introduced the application of survival

analysis to the evaluation of shelf lives of foods, point out,

“. . . food products do not have shelf lives on their own, rather they will depend on the

interaction of the food with the consumer.”

That is, a product can be microbiologically safe to eat, but might be rejected due to its sensorial

properties such as wrinkled apples or soft bananas. Thus, the hazard is not focused on the

deterioration of the product but on the rejection by the consumers.

In order to estimate the distribution function of the shelf lives of food products, sensorial

studies are carried out. In these studies, consumers have to try several samples of the product,

each stored under the same conditions but for different time periods unknown to the panel of

consumers. They have to answer with either yes or no to whether they would normally consume

this product. Since the exact shelf life of the food product cannot be observed exactly, interval-

censored data arise.

In the following, these kind of data and the corresponding methods for their evaluation are

presented with more detail following the work of Hough et al., whose study deals with the shelf

lives of a commercial whole fat, strawberry-flavored yogurt. Besides, the advantages of the applied

methods over the logistic regression approach are discussed.

2.3.1 Type of data

For an illustration of the obtained data, see the following Table 2.9. Therein, t1 < t2 < · · · < t6

denote six different storage times of a study and +/− stand for the consumers’ judgements

(yes/no). The last column contains the resulting intervals for each of the five subjects. According

to Hough et al., these intervals are semi-open, but depending on the study and the chosen time

units, the observed intervals can be interpreted as closed intervals. However, the methodology

presented in Section 2.3.2 applies equally to both types of intervals.

Subject 1 shows the expected observational pattern: the samples are accepted up to a certain

storage time, after which all samples are rejected. In the given example, these times are equal to

t3 and t4, that is, the exact moment of rejection lies in the interval (t3, t4]. Subject 2 presents a

right-censored observation since all samples have been accepted; hence, rejection lies beyond t6.
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Table 2.9: Illustration of shelf life data

Storage times

Consumer t1 t2 t3 t4 t5 t6 Interval

1 + + + − − − (t3, t4]

2 + + + + + + (t6,∞)

3 − − − − − − (0, t1]

4 + + + − + − (t3, t6]

5 − + − − − − (0, t3]

In case of Subject 3 it is the other way round: all samples are rejected. Consequently, the exact

moment of rejection occurs before t1. If t1 was equal to 0, a subject with rejection at t1 might be

removed from the sample, because he or she might not like fresh products and would therefore

not be suited for the study.

Subjects 4 and 5 show a somewhat inconsistent pattern: the first rejection is followed by an

acceptance and the second time of rejection. Hough et al. propose to deal with these inconsis-

tencies by choosing broader intervals, (t3, t6] and (0, t3], in order to account for the uncertainty of

what actually happens between these times. Another possibility would be to ignore the observa-

tions after the first rejection and to consider the intervals (t3, t4] (Subject 4) and (0, t1] (Subject 5).

This choice would reduce the variance of Ŝ(t), however it would probably overestimate F (t).

2.3.2 Application of survival analysis to shelf life data

In order to make inference on the distribution function of the shelf lives, F (t), known methods

for interval-censored data can be applied. Inference is based on the likelihood function (1.1) on

page 3, which can be written in the following way:

L(F ) =
∏

i∈R

(
1− F (ti)

)∏

i∈L

F (ti)
∏

i∈I

(
F (tri)− F (tli)

)
, (2.2)

where R denotes the set of the right-censored observations, L the one of the left-censored obser-

vations, and I the set of interval-censored times.

To obtain a nonparametric estimate of F (t), the Turnbull estimator of Section 1.1.1 is the

adequate tool. This estimation is easily accomplished, for example, by the use of the function

kaplanMeier of the statistical software package S-Plus.

An alternative to the Turnbull estimator is the use of a parametric model of the form:

ln(T ) = µ+ σW, (2.3)



2.3 Study on shelf life of yogurt 35

where µ is a constant, σ the scale parameter andW the error term distribution. For example, if T

follows a Weibull distribution, W is the extreme value or Gumbel distribution; if T follows a log

normal distribution, W is the standard normal distribution. The expression for F (t) determined

by the chosen distribution is plugged into (2.2) and numerical methods are applied to obtain

the unknown distribution parameters. For details on that model, see, for example, Klein and

Moeschberger (1997, Chap. 12). Model (2.3) does not include any possible covariates, but these

can easily be incorporated; in Section 3.1 ahead, some general aspects on such a log linear

regression model will be summarized.

The fit of this model to the interval-censored shelf life data permits estimating, for example,

the mean or median storage time until rejection under different parametric assumptions. Other

values of interest are the quantiles of the distribution, that is in this case, the moments at which

certain percentages of consumers reject the product. Estimates based on model (2.3) are more

precise than the ones based on the Turnbull estimator as long as the parametric choice is adequate.

For the fit of model (2.3) to the observed data, S-Plus offers the functions censorReg and

probplot6.censorReg. The former fits the model to the data given a specified distribution for

T , whose choice can be based on the probability plots for different parametric choices drawn by

the latter function. An illustration of these methods and their implementation in S-Plus can be

found in Garitta, Gómez, Hough, Langohr, and Serrat (2003).

2.3.3 Results of study on shelf life of strawberry-flavored yogurt

Herein, the evaluation of the data of 46 consumers on commercial whole fat, stirred, strawberry-

flavored yogurt is presented. The main interest has been to estimate the median shelf life of that

type of yogurt as well as several quantiles both based on the use of model (2.3). The whole data

set of this sensorial study is shown in Table A.1 on page 121.

Both the Weibull and the log normal distribution have shown a reasonably good fit to the

nonparametric estimate and are therefore chosen to estimate the mentioned quantiles. These are

shown in Table 2.10 below, in which the (interpolated) estimates of the Turnbull estimator are

added in the last column.

The table shows that the quantiles for both distributions coincide quite well, also with the Turn-

bull estimates, until the 75%-quantile, whereas the differences are much bigger at the 90%-

quantile. This is due to the facts that both distributions can fit the data well up to the maximum

storage time, which has been 48 hours in the present study, and that right-censored data beyond

that time are present. Here, rejection occurs in about 17% of all cases beyond 48 hours and

therefore the Turnbull estimator cannot estimate the 90%-quantile. For this quantile, the log

normal distribution furnishes a higher value than the Weibull distribution since the former is a

heavy tailed distribution. Generally, the higher the percentage of rejection beyond the maximum

storage time, the bigger the possible differences between parametric fits beyond that value.
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Table 2.10: Quantiles of shelf life of strawberry-flavored yogurt

Distributions

Quantiles Log normala Weibulla Turnbull

0.1 6.0 [3.9, 9.4] 5.0 [2.5, 10.0] 5.8

0.25 10.6 [7.5, 14.9] 11.1 [7.0, 17.5] 9.7

0.5 19.8 [14.8, 26.6] 22.2 [16.5, 29.8] 20.1

0.75 37.1 [26.5, 52.0] 38.4 [29.6, 49.9] 39.6

0.9 65.3 [42.2, 101.0] 57.3 [42.0, 78.4] —

a Estimated quantiles and 95% confidence intervals

2.3.4 Choice of storage times

Since the Turnbull estimator may put positive probability mass only on the interval endpoints,

it is obvious that a finer grid of storage times can improve the nonparametric and parametric fit

and hence the inference based on these. However, if the values of the rejection curve between

the chosen storage times were not of interest, the data could be treated as grouped data and the

estimator for the survival curve for life tables could be applied; see, for example, Collett (1994,

Sec. 2.1.1).

The choice of the maximum storage time depends on the quantiles of interest. These should

be covered by the nonparametric fit. For example, if one wants to estimate only the 10%- or

20%-quantiles, he or she will choose the storage times such that these will definitely be estimated

nonparametrically. Parametric fits can most probably be find to coincide well with the Turnbull

estimator within this range and possible differences beyond it will not be of interest.

2.3.5 Survival analysis vs. logistic regression

Vaisey-Genser, Malcomson, Przybylski, Eskin, and Armstrong in 1994 present a study on con-

sumers’ acceptance of canola oils. Their approach to estimate the shelf lives is the use of logistic

regression. For this purpose, they fit a logistic curve to the probabilities of rejection at each of

the storage times. To illustrate this, in case of the example in Table 2.9, these probabilities would

amount to: P(T ≤ t1) = 0.4,P(T ≤ t2) = 0.2, . . . ,P(T ≤ t6) = 0.8.

This procedure is asymptotically equivalent to the maximum likelihood estimation of the

parameters of the following logistic regression model as long as the probabilities are neither equal

to 0 nor equal to 1 (Hosmer and Lemeshow 1989):

p = P(Y = 1) =
exp(α+ βt)

1 + exp(α+ βt)
, (2.4)
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where T is the storage time until rejection of the product and the response variable Y is defined

as follows:

Y =




1 Rejection

0 Acceptance
.

That is, in model (2.4), the rejection of the food product is the response variable and the storage

time is a covariant, whereas in the survival analysis approach by means of model (2.3) the shelf

life is the response variable.

For the following reasons, we believe that the use of the survival analysis methodology is a

more powerful tool to evaluate the shelf lives of food products and, hence, the adequate approach

to estimate the shelf lives of food products:

1. If a consumer is given several samples, model (2.4) would have to account for the depen-

dencies of the observations, which would increase the variance of the parameter estimates.

In contrast with that, using survival analysis, all the observations of a consumer reduce to

a single interval.

This problem of dependent observations could be overcome with current status shelf life

data, that is, when each consumer is given only a single sample instead of one sample of

each storage time. However, the number of consumers would have to be multiplied, in order

to obtain the same number of observations for each storage time.

2. The fit of model (2.3) allows for several distributions, such as Weibull, log normal or log

logistic, whereas the rejection curve under model (2.4) is always a logistic curve. In Sec-

tion B.1 on page 123, we show that the logistic regression fit is equivalent to the use of a

logistic survival model for current status data.

3. The logistic regression model implies a probability for the rejection at time zero equal to

P(Y = 1|T = 0) = α
1+α ≥ 0, whereas for logarithmic distributions such as the Weibull,

log normal or log logistic distribution, we have p(0) = 0. The latter corresponds with the

assumption that the fresh sample is not to be rejected.

This last property concerning the rejection curves is illustrated in Figure 2.4 on the following page.

Given the data on the shelf life of strawberry-flavored yogurt, the figure shows the estimation of

the rejection curves for three different parametric assumptions: the Weibull, the log normal and

the logistic distribution. In case of the latter distribution, the proportion of rejection of the fresh

sample is about 10%.

So far, the survival analysis approach for shelf life data has not considered any other covariates.

However, model (2.3) can easily accommodate such variables:

ln(T ) = µ+ β′X + σW,
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where X represents the vector of the model covariates and β quantifies their effect on the shelf

life T . Typical covariates applied to trials on the shelf lives on yogurt are, for example, flavor or

the fat degree.
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Figure 2.4: Probability of rejection of strawberry-flavored yogurt


