
Chapter 3

Parametric Survival Model with an

Interval-Censored Covariate

This chapter is about the accelerated failure time model with an interval-censored covariate. Two

cases concerning the response variable Y are distinguished: On one hand, Y is possibly right- or

left-censored, on the other hand, Y is a doubly-censored variable.

In Section 3.1, we recall some of the properties of this parametric survival model, before

presenting the particular model with an interval-censored covariate together with the observable

data in Section 3.2. The two subsequent sections deal with the resulting likelihood functions

(Section 3.3) and two particular parametric choices concerning the response variable’s distribu-

tion (Section 3.4). Our proposal for the maximization of the likelihood functions by means of

optimization methods is presented in Section 3.5. Finally, in Section 3.6, further aspects such as

the inclusion of other covariates in the model and the consideration of data with missing values

are addressed.

3.1 General aspects of the accelerated failure time model

Many models have been developed to detect possible predictors of a survival time. The probably

most well-known one is Cox’s semi-parametric proportional hazards model (1.5), which does not

specify the survival time’s distribution. In contrast with that model, the accelerated failure time

model requires a specific distribution of the survival time, but does not assume proportional

hazards. This model can be expressed in the following way modeling the survival function of

time Y of a subject with covariate vector Z:

S(y|Z) = S0

(
y exp(ϑ′Z)

)
, (3.1)

where S0 is the baseline survival function and ϑ is the unknown parameter vector quantifying

the influence of the covariates on Y . The term AF = exp(−ϑ′Z) is called the acceleration factor,
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which relates the percentiles of an individual with covariate vector Z, yp(Z), and the baseline

percentiles yp(0) as follows:

yp(Z) = yp(0) exp(−ϑ′Z). (3.2)

This is deduced from the following equation:

p = 1− S
(
yp(Z)|Z

)
= 1− S0

(
yp(Z) exp(ϑ′Z)

)
= 1− S0

(
yp(0)

)
.

Note that the above definition of the acceleration factor differs from the one in Klein and

Moeschberger (1997, Chap. 12), in that they use the term exp(ϑ′Z) and not exp(−ϑ′Z).

According to equation (3.2), if a parameter ϑ is positive, the corresponding percentile yp(Z) is

smaller than the baseline percentile. Consequently, on average, increasing Z implies deterioration

of the survival time. On the other hand, if ϑ < 0, Z is a protecting factor of the survival time. As

an example, consider a dichotomic variable Z with parameter value ϑ = 0.7. Then, the median

survival time in group 1 is exp(−0.7) ≈ 0.5 times the median in group 0. On the other hand, if

ϑ = −0.7, the median of group 1 is twice the median of group 0.

As shown in Klein and Moeschberger, and in Gómez (2004, Tema 5), the accelerated failure

time model can also be expressed in terms of a log linear model:

ln(Y ) = µ+ β′Z + σW, (3.3)

where β is the unknown parameter vector, σ the scale parameter, and W is the error term

distribution. For example, if Y follows a Weibull distribution, W is the extreme value or Gumbel

distribution; if Y follows a log logistic distribution, W is the standard logistic distribution.

Contrary to model (3.1), with the log linear expression, a positive parameter implies that the

corresponding covariate is a protecting factor of the survival time. Both models, (3.1) and (3.3),

are equivalent if S0 is the survival function of the random variable exp(µ + σW ) and β = −ϑ.
Hence, the term AF = exp(β′Z) is the acceleration factor comparing an individual with covariate

vector Z with a “baseline” individual.

The interpretation of the expression exp(−β′Z/σ) depends on the distribution of Y . In case

of a Weibull distribution, this term is the relative risk (RR) of dying (being death the event

of interest) of an individual with covariate vector Z compared to an individual with Z = 0.

The Weibull distribution is the only parametric choice for which the accelerated failure time

model and the proportional hazards model are equivalent. If Y follows a log logistic distribution,

OR = exp(−β′Z/σ) is the relative odds or odds ratio of dying comparing an individual with

covariate vector Z and one with the baseline characteristics. The log logistic model is the only

case, for which model (3.1) and the proportional odds model are equivalent. The latter model
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has the following expression:

S(y|Z)

1− S(y|Z)
= exp(−β′Z/σ) S0(y)

1− S0(y)
. (3.4)

Several authors have discussed the properties of the accelerated failure time model and the pro-

portional hazards model. Lindsey (1998) points out that the eventual disadvantage of the former

model —the need to specify the distribution— is compensated by the availability of the haz-

ard function. This function reflects the instantaneous risk of Y whereas S(y) is a cumulative

measure. Besides, according to the author, this model is robust under different distributions for

heavy censoring. Nardi and Schemper (2003) mention advantages of the parametric model over

the Cox model under certain circumstances such as time trends in covariates or parameter values

far from zero. In another instance, Hougaard (1999) shows that the Cox model is more adequate

to incorporate time-varying covariates, whereas the log linear model is less sensitive when sig-

nificant covariates are neglected by the model. Similar conclusions are discussed in Hutton and

Monaghan (2002) and Frankel and Longmate (2002). Finally, the accelerated failure time model

might also be treated as a semi-parametric model if the distribution W in model (3.3) remains

unspecified. Studies of Ying, Wei, and Lin (1992) and Park and Wei (2003) deal with this model.

In the remainder of that chapter, we will use the log linear expression in (3.3) when referring

to the accelerated failure time model.

3.2 Model, censoring patterns, and observable data

The model we deal with in the sequel is a simple log linear model, that is, for simplicity reasons,

we only consider one covariate Z:

ln(Y ) = µ+ βZ + σW. (3.5)

The particularity, which we consider, refers to the censoring of both the response variable Y and

the covariate Z. In case of Z, we observe intervals IZ = [Zl, Zr] with P(Z ∈ IZ) = 1, which include

left-censored data (Zl = 0) and right-censoring (Zr =∞) as particular cases. The intervals IZ are

assumed closed, but the methodology ahead is easily adapted to the case of semi-open intervals.

Concerning the response variable Y , we distinguish two cases according to the censoring

pattern. On one hand, Y may be left- or right-censored, on the other hand, Y is doubly-censored.

We shall denote these censoring patterns by case 1 and case 2.

Case 1: Left- and right-censored response variable In this case, Y may be either exactly

observed or left- or right-censored. For the sake of simplicity, we do not consider the case of

interval-censoring, but generalizations to include this type of censoring are straightforward.

However, interval-censoring arises often when the probability for exact observations is equal
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to zero, whereas left- and right-censored data are observed when also exact observations

are possible. An example for interval-censoring is the HIV infection and for left- and right-

censoring the moment of AIDS onset as illustrated in Section 2.2.

The three observational patterns are illustrated in the following Figure 3.1, where Y0 stands

for the time origin of Y and U,Cr, and Cl denote the random variables of the observation

times, the right-censoring, and the left-censoring times, respectively. The variable U is

defined as

U = max
(
Cl,min(Y,Cr)

)
= min

(
max(Cl, Y ), Cr

)
. (3.6)

U

YY0 Cl Cr
(a) Exactly observed response variable

U

Y0 Cl Cr Y
(b) Right-censored response variable

U

YY0 Cl Cr
(c) Left-censored response variable

Figure 3.1: Distinction of case 1 censoring patterns

To distinguish the different types of censoring, indicator functions have to be defined:

δ1 =




1 Y is observed exactly

0 otherwise
,

δ2 =




1 Y is right-censored

0 otherwise
.

(3.7)

That is, δ1 = 1 and δ2 = 0 indicate an exact observation, δ1 = 0 and δ2 = 1 a right-censored
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one, and δ1 = δ2 = 0 defines left-censoring. Note that δ1 = δ2 = 1 is not possible.

Hence, for case 1, the observation data vector for each subject can be summarized by:

(U,Zl, Zr, δ1, δ2). (3.8)

Case 2: Doubly-censored response variable The survival time Y is doubly-censored as il-

lustrated in Figures 3.2(a)–3.2(c), where [Y0l, Y0r] denotes the interval containing the un-

observed time origin Y0. We define the indicator functions δ1 and δ2 in the same way as

in (3.7), but the variable U cannot be measured from Y0. Instead, it is measured from

time Y0r.

r

U

YCl CrY0l Y0Y0

(a) Exactly observed endpoint

U

YCl CrY0Y0l Y0 r
(b) Right-censored endpoint

U

Cl CrY0Y0l Y0r Y

(c) Left-censored endpoint

Figure 3.2: Distinction of case 2 censoring patterns

For case 2, the observation data vector for each individual, including Z, is the following:

(U, Y0l, Y0r, Zl, Zr, δ1, δ2). (3.9)
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Denoting by ∆Y0 the width of the interval [Y0l, Y0r], that is, ∆Y0 = Y0r − Y0l, we have

Y ∈





[U,U +∆Y0 ] if δ1 = 1, δ2 = 0

[U,∞) if δ1 = 0, δ2 = 1

(0, U +∆Y0 ] if δ1 = 0, δ2 = 0

. (3.10)

Given case 2, a right-censored time origin of Y , that is Y0r =∞, implies missing endpoint of Y and

therefore a missing value of the response variable. This case shall be discussed in Section 3.6.2,

beforehand such data will not be considered for the construction of the likelihood function.

The data from the Hospital Can Ruti, described in Section 2.2, present a particular case

of case 2, because the doubly-censored AIDS incubation period is the subsequent time of the

time until HIV infection. Hence, the censoring interval [Zl, Zr] of the covariate and the interval

[Y0l, Y0r] coincide and the observed data vector in (3.9) reduces to (U,Zl, Zr, δ1, δ2) as for case 1.

3.3 Likelihood functions

In all cases, our objective is to determine the maximum likelihood estimate of the unknown

parameter vector θ = (µ, β, σ)′. For this purpose, we first derive the noninformativity conditions

and construct then the likelihood functions. This has to be done explicitly, because, so far,

statistical software does not cover regression models with an interval-censored covariate.

3.3.1 Noninformativity conditions

For the construction of the likelihood functions for case 1 and case 2, it shall be assumed that

censoring of both the response variable and the covariate is noninformative following the defini-

tions in Section 1.2. Under these conditions, the censoring generating process needs not to be

considered in the likelihood functions.

Concerning interval-censoring of the covariate Z, we can summarize the conditions of nonin-

formative censoring for any z, zl, zr, and y as follows:

f(z|Zl = zl, Zr = zr) =
f(z)

P(zl ≤ Z ≤ zr)

�
{z∈[zl,zr]}, (3.11a)

f(y|Z = z, Zl = zl, Zr = zr) = f(y|Z = z). (3.11b)

Condition (3.11a) implies that the interval IZ = [Zl, Zr] carries no further information about the

real unobserved value of Z; rather, Z lies in IZ . On the other hand, according to condition (3.11b),

the response variable does only depend on Z but not on IZ .

In case of the response variable’s censoring, it is assumed that both censoring of the time

origin Y0 and the endpoint does not inform on the unobserved real values. Formally, this can be
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summarized by the following two expressions for any values y0l, y0r, y, and u. Condition (3.11c)

refers to case 1, the following to case 2:

f(y|U = u, Z = z) =





f(y|z)
P(Y >u|z)

�
{y>u} if δ1 = 0, δ2 = 1

f(y|z)
P(Y <u|z)

�
{y<u} if δ1 = 0, δ2 = 0

, (3.11c)

f(y|Y0l = y0l, Y0r = y0r, U = u, Z = z) =





f(y|z)
P(u≤Y≤u+δY0

|z)

�
{y∈[u,u+δY0

]} if δ1 = 1, δ2 = 0

f(y|z)
P(Y >u|z)

�
{y>u} if δ1 = 0, δ2 = 1

f(y|z)
P(Y <u+δY0

|z)

�
{y<u+δY0

} if δ1 = 0, δ2 = 0

, (3.11d)

where δY0 = y0r− y0l. Note that the case δ1 = 1, δ2 = 0 does not need to be considered in (3.11c)

since it describes the exactly observed endpoint of Y . Note that the conditions(3.11c) and (3.11d)

use the conditional distribution of Y given Z, as we will need this conditional distribution for the

construction of the following likelihood functions.

3.3.2 Construction of the likelihood functions

Herein, the likelihood functions corresponding to model (3.5) are derived for both cases assuming

the noninformativity conditions (3.11) hold. The resulting functions do not only depend on

the parameter vector θ = (µ, β, σ)′, but also on the (unknown) distribution functions FZ of the

interval-censored covariate and —given case 2— FY0 of the response variable’s time origin Y0. The

derivation of the likelihood is done heuristically, in part, resembling the procedure of Commenges

(2003) in the case of multi-state models with interval-censored observations.

Case 1: Left- and right-censored response variable

Given the observation vector (3.8), the likelihood contribution of a single individual is defined by

the values of the indicator variables δ1 and δ2, that describe the censoring of Y . It is the value

of either the conditional density function of Y given Z, the conditional survival function, or one

minus the survival function. Since Z is not observed exactly, the whole interval [Zl, Zr] must

be taken into account, which is accomplished by integrating over all values of the interval. The

likelihood contribution can then be summarized by the following expression:

Lcont(θ, FZ) =

∫ zr

zl

f(u|z)δ1S(u|z)δ2
(
1− S(u|z)

)(1−δ1)(1−δ2)
dFZ(z). (3.12)
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Given the independent observations (ui, zli , zri , δ1i , δ2i), i = 1, . . . , n, the resulting likelihood

function L(θ, FZ) is the product over all likelihood contributions Ci(θ, FZ):

L(θ, FZ) =

n∏

i=1

∫ zri

zli

f(ui|z)δ1iS(ui|z)δ2i
(
1− S(ui|z)

)(1−δ1i )(1−δ2i ) dFZ(z). (3.13)

So far, survival models with interval-censored covariates are not considered by statistical software.

For this reason, the maximization of L(θ, FZ) would be very cumbersome in case of a continuous

covariate, at least as long as its distribution is not specified parametrically.

In contrast with that, if the covariate is assumed discrete, the integrals in (3.13) disappear

and maximization becomes feasible. For this purpose, let Z be a discrete random variable with

support S = {s1, . . . , sm}, where s1 < s2 < · · · < sm, and the corresponding probabilities

ωj = P(Z = sj), j = 1, . . . ,m. Besides, the following indicator variables are defined:

αij =
�
{sj∈[zli ,zri ]}

, i = 1, . . . , n, j = 1, . . . ,m. (3.14)

That is, the variable αij is equal to 1, if sj is an admissible value for Zi, and zero otherwise. The

likelihood function (3.13) has then the following expression, where ω = (ω1, . . . , ωm)
′:

L(θ,ω) =
n∏

i=1

m∑

j=1

αijf(ui|sj)δ1iS(ui|sj)δ2i
(
1− S(ui|sj)

)(1−δ1i )(1−δ2i )ωj , (3.15)

This function resembles the likelihood function (1.7) on page 9 derived by Gómez, Espinal, and

Lagakos (2003), who deal with the case of a linear regression model with an interval-censored

covariate. The log likelihood function, l(θ,ω) = lnL(θ,ω), is equal to

l(θ,ω) =
n∑

i=1

ln
( m∑

j=1

αijf(ui|sj)δ1iS(ui|sj)δ2i
(
1− S(ui|sj)

)(1−δ1i )(1−δ2i )ωj
)
. (3.16)

Our main statistical goal is the maximum likelihood estimation of θ in the presence of the nuisance

parameter vector ω. Hence, we are left with the computational burden of maximizing (3.16)

subject to the following constraints:

m∑

j=1

ωj = 1, (3.17a)

ωj ≥ 0, j = 1, . . . ,m. (3.17b)

Following the notation in Section 1.3.1 on page 12, a nonlinear constrained optimization prob-

lem is to be solved with objective function l(θ,ω), equality constraint (3.17a), and inequality

constraints (3.17b).
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Case 2: Doubly-censored response variable

Looking at the intervals in (3.10), one might tend to use these as observed intervals for Y and

proceed as for case 1 including the case of interval censoring in the likelihood contributions (3.12).

However, as mentioned before in Section 1.1.3 on page 8, this procedure would not be valid since

the independence between the observation times and event time distribution would be lost by

this transformation. An exception is the case of a uniform distribution for Y0 (De Gruttola and

Lagakos 1989).

Therefore, to address the general case, the likelihood function must account for the distribution

of the chronological times of the time origin Y0. Denoting by FY0 the distribution function of

Y0 and supposing Z was observed exactly, the likelihood contribution of an individual would be

equal to the following expression:

Lcont(θ, FY0) =

∫ y0r

y0l

f
(
u(d)
)δ1S
(
u(d)
)δ2(1− S

(
u(d)
))(1−δ1)(1−δ2)

dFY0(d),

where u(d) is equal to u+ y0r− d as illustrated in Figure 3.3 on the following page. That is, with

every possible value d ∈ [Y0l, Y0r], the value of U changes.

dY0l Y0r

Y0r −d U

Figure 3.3: Calculation scheme for a doubly-censored response variable

However, being Z actually interval-censored, the likelihood contribution for case 2 is given by

Lcont(θ, FY0 , FZ) =

y0r∫

y0l

zr∫

zl

f
(
u(d)|z

)δ1S
(
u(d)|z

)δ2(1− S
(
u(d)|z

))(1−δ1)(1−δ2)
dFZ(z)dFY0(d).

The resulting likelihood function is the product over the likelihood contributions Ci(θ, FY0 , FZ)

given the independent observations (ui, y0li , y0ri , zli , zri , δ1i , δ2i), i = 1, . . . , n:

L(θ, FY0 , FZ) =

n∏

i=1

y0ri∫

y0li

zri∫

zli

f
(
ui(d)|z

)δ1iS
(
ui(d)|z

)δ2i(1− S
(
ui(d)|z

))(1−δ1i )(1−δ2i ) dFZ(z)dFY0(d). (3.18)

A mathematically more tractable expression than (3.18) is obtained if both the distribution of Z

and of Y0 are assumed discrete. Let Z be defined as in case 1 and let Y0 be a discrete random
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variable with support D = {d1, . . . , dk}, where d1 < d2 < · · · < dk, and the corresponding

probabilities νl = P(Y0 = dl), l = 1, . . . , k. Analogously to the variables αij in (3.14), the

following indicator variables are defined:

γil =
�
{dl∈[y0li ,y0ri ]}

, i = 1, . . . , n, l = 1, . . . , k.

That is, γil is equal to 1, if dl is an admissible value for Y0i , and zero otherwise. For this discrete

case, the likelihood function has the following expression:

L(θ,ν,ω) =

n∏

i=1

k∑

l=1

m∑

j=1

γilαijf
(
ui(dl)|sj

)δ1iS
(
ui(dl)|sj

)δ2i(1− S
(
ui(dl)|sj

))(1−δ1i )(1−δ2i )ωjνl, (3.19)

where ν = (ν1, . . . , νk)
′ and ui(dl) = ui + y0ri − dl. The maximization of this function or

its respective log likelihood function is subject to both the restrictions (3.17) on ω and the

restrictions (3.20) on ν:

k∑

l=1

νl = 1,

νl ≥ 0, l = 1, . . . , k.

(3.20)

Likelihood function for data from Can Ruti

As mentioned before, for this particular case, the observed data can be summarized by vec-

tor (3.8) of case 1. However, the construction of the likelihood function, has to account for the

fact that the interval-censored endpoint of the covariate Z, that is, HIV infection, coincides with

the time origin of the response variable Y . For this reason and given the independent obser-

vations (ui, zli , zri , δ1i , δ2i), i = 1, . . . , n, the likelihood function (3.18) reduces to the following

expression (3.21). Only one integral is needed since any possible value of Z ∈ [Zl, Zr] determines

the value of the variable U :

L(θ, FZ) =
n∏

i=1

∫ zri

zli

f
(
ui(z)|z

)δ1iS
(
ui(z)|z

)δ2i(1− S
(
ui(z)|z

))(1−δ1i )(1−δ2i ) dFZ(z), (3.21)

where ui(z) = ui + zri − z. The corresponding discrete version is similar to (3.15) with indicator

variables αij are defined as in (3.14). The difference lies in that the values ui change with each

considered value of Z, that is, ui(sj) = ui + zri − sj :

L(θ,ω) =
n∏

i=1

m∑

j=1

αijf
(
ui(sj)|sj

)δ1iS
(
ui(sj)|sj

)δ2i(1− S
(
ui(sj)|sj

))(1−δ1i )(1−δ2i )ωj . (3.22)
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Hence, to obtain the maximum likelihood estimates θ̂ and ω̂, we have to solve the nonlinear

constrained optimization problem with objective function (3.22) and constraints (3.17).

In the sequel, we consider two different parametric choices for the error distributionW . Given

the difficulties to maximize the (log) likelihood functions when Z is continuous, parametrically

specified or not, only the case of a discrete covariate is considered. That is, we focus the work on

maximizing the respective log likelihood functions subject to the present constraints.

3.4 Parametric choices

Herein, the specific forms of the above likelihood functions are addressed for two common para-

metric choices of model (3.5): the Weibull and the log logistic regression model. As mentioned in

Section 3.1, the Weibull model is the only parametric choice which is equivalent to the propor-

tional hazards model (1.5), whereas the log logistic model is equivalent to the proportional odds

model (3.4).

For both models, the different log likelihood functions according to the different censoring

patterns are presented. In the next section, we will treat the maximization of these functions.

3.4.1 The Weibull regression model

The Weibull distribution

The density and survival functions of a Weibull distributed random variable Y with scale or

location parameter λ (> 0) and shape parameter α (> 0), Y ∼ W(λ, α), are given by

f(y) = αλyα−1 exp(−λyα),

S(y) = exp(−λyα).

The Weibull distribution is a flexible distribution since it allows for a decreasing hazard function

(α < 1), an increasing hazard function (α > 1) and constant hazards. The latter case is true for

α = 1; then, Y follows an exponential distribution with parameter λ.

Relation with the log linear model

A Weibull distribution Y ∼ W(λ, α) can also be described by means of a log linear model with

parameters µ and σ, where the error distribution W is the standard Gumbel distribution:

ln(Y ) = µ+ σW.
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The relation between the parameters is: α = 1/σ and λ = exp(−µ/σ). The density and survival

functions of the standard Gumbel or extreme value distribution are given by

f(w) = exp(w − ew),

S(w) = exp(−ew).
(3.23)

The expression as a log linear model has the advantage that covariates can be incorporated such

as in model (3.5). The parameters of the Weibull distribution depend then on the value of the

covariate Z. Whereas the shape parameter α (= 1/σ) is the same for all conditional survival

times Y given Z, the location parameter changes with Z: λ(z) = exp
(
− (µ+βz)/σ

)
. Due to the

invariance property, given the maximum likelihood estimates (µ̂, β̂, σ̂), the maximum likelihood

estimates α̂ and λ̂(z) are easily obtained applying the corresponding transformations.

Using the Weibull regression model, the term exp (−β/σ) corresponds to the relative risk and

exp(β) to the acceleration factor when comparing two individuals, whose covariate values differ

by one unit. The interpretation of these terms implies that augmenting the covariate by one, the

risk of dying increases/decreases (β < 0/β > 0) by the factor exp (−β/σ), whereas the median

time until the event of interest is decreased/increased (β < 0/β > 0) by the factor exp(β).

Log likelihood functions

In case of the Weibull regression model, the density and survival functions of Y given Z in the

above likelihood functions (3.15), (3.19), and (3.22) have to be substituted by the respective func-

tions (3.23) of the standard Gumbel distribution. Using the index Y for the Weibull distributed

survival time Y and W for the Gumbel distributed error of the model (3.5), we have the following

relations (Klein and Moeschberger 1997, Chap. 12)

fY (y) =
1
σfW ( ln(y)−µ−βz

σ ) = 1
σ exp

( ln(y)−µ−βz
σ − e

1
σ

(ln(y)−µ−βz)
)
,

SY (y) = SW ( ln(y)−µ−βz
σ ) = exp

(
− e

1
σ

(ln(y)−µ−βz)
)
.

(3.24)

Using the density and survival functions of the extreme value distribution in (3.24), the log

likelihood functions for case 1, case 2, and the data from Can Ruti can be written as follows:
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Case 1: Left- and right-censored response variable

l(θ,ω) =

n∑

i=1

[
δ1i ln

( m∑

j=1

αij
σ

exp
( ln(ui)−µ−βsj

σ − e
1
σ

(ln(ui)−µ−βsj)
)
ωj

)

+δ2i ln
( m∑

j=1

αij exp
(
− e

1
σ

(ln(ui)−µ−βsj)
)
ωj

)

+(1− δ1i)(1− δ2i) ln
( m∑

j=1

αij

(
1− exp

(
− e

1
σ

(ln(ui)−µ−βsj)
))
ωj

)]
.

(3.25)

Note that the transformation from (3.16) to (3.25) is only valid, because both δ1 and δ2,

as well as their sum are equal to either zero or one. This holds also for the following

expressions.

Case 2: Doubly-censored response variable

l(θ,ν,ω) =
n∑

i=1

[
δ1i ln

( k∑

l=1

m∑

j=1

γilαij
σ

exp
( ln(ui(dl))−µ−βsj

σ − e
1
σ

(ln(ui(dl))−µ−βsj)
)
ωjνl

)

+δ2i ln
( k∑

l=1

m∑

j=1

γilαij exp
(
− e

1
σ

(ln(ui(dl))−µ−βsj)
)
ωjνl

)
(3.26)

+(1− δ1i)(1− δ2i) ln
( k∑

l=1

m∑

j=1

γilαij

(
1− exp

(
− e

1
σ

(ln(ui(dl))−µ−βsj)
))
ωjνl

)]
.

Log likelihood function for data from Can Ruti

l(θ,ω) =
n∑

i=1

[
δ1i ln

( m∑

j=1

αij
σ

exp
( ln(ui(sj))−µ−βsj

σ − e
1
σ

(ln(ui(sj))−µ−βsj)
)
ωj

)

+δ2i ln
( m∑

j=1

αij exp
(
− e

1
σ

(ln(ui(sj))−µ−βsj)
)
ωj

)

+(1− δ1i)(1− δ2i) ln
( m∑

j=1

αij

(
1− exp

(
− e

1
σ

(ln(ui(sj))−µ−βsj)
))
ωj

)]
.

(3.27)

Thus, to obtain the maximum likelihood estimates for θ, ω, and ν, the previous log likelihood

functions (3.25)–(3.27) must be maximized subject to the restrictions (3.17) on ω and, for case 2,

the restrictions (3.20) on ν. Besides, the model parameter σ must be forced to be positive since

it is equivalent to the inverse of the Weibull distribution parameter α.



52 Chapter 3 Parametric Survival Model with an Interval-Censored Covariate

3.4.2 The log logistic regression model

The log logistic distribution

A random variable Y follows a log logistic distribution if the distribution of its natural logarithm

is a logistic distribution. The shape of this distribution is similar to the one of the log normal

distribution, but preferable in terms of mathematical tractability since its distribution function

has a closed expression. As the one of the log normal distribution, its hazard function is hump-

shaped, that is, it increases initially and then decreases. Its density and survival functions with

parameters α and λ, both strictly positive, are given by

f(y) =
λαyα−1

(1 + λyα)2
,

S(y) =
1

1 + λyα
.

Relation with the log linear model

A log logistic distribution Y ∼ logL(λ, α) can also be described by means of a log linear model

with parameters µ and σ, where the error distribution W is the standard logistic distribution:

ln(Y ) = µ+ σW.

As for the Weibull model, the relation between the parameters is: α = 1/σ and λ = exp(−µ/σ).
The density and survival function of the standard logistic distribution are given by

f(w) =
ew

(1 + ew)2
,

S(w) =
1

1 + ew
.

(3.28)

Covariates can be incorporated in the log linear model such as in model (3.5). Then, whereas

the parameter α (= 1/σ) is the same for all conditional survival times Y given Z, the parameter

λ depends on Z: λ(z) = exp(−(µ+ βz)/σ). Due to the invariance property, given the maximum

likelihood estimates (µ̂, β̂, σ̂), the maximum likelihood estimates α̂ and λ̂(z) are obtained using

the corresponding transformations.

Using the log logistic regression model, the term exp (−β/σ) corresponds to the relative odds

and exp(β) to the acceleration factor when comparing two individuals, whose covariate values

differ by one. The interpretation of these terms implies that augmenting the covariate one unit,

the odds of dying increases/decreases (β < 0/β > 0) by the factor exp (−β/σ), whereas the

median time until the event of interest is decreased/increased (β < 0/β > 0) by the factor

exp(β).
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Log likelihood functions

In case of the log logistic regression model, the density and survival functions of Y given Z in the

above likelihood functions (3.15), (3.19), and (3.22) have to be replaced by the respective func-

tions (3.28) of the standard logistic distribution. Using the index Y for the log logistic distributed

survival time Y and W for the logistic distributed error of the model (3.5), we have (Klein and

Moeschberger 1997, Chap. 12):

fY (y) =
1
σfW ( ln(y)−µ−βz

σ ) =
exp( 1

σ (ln(y)− µ− βz))

σ
(
1 + exp( 1

σ (ln(y)− µ− βz))
)2 ,

SY (y) = SW ( ln(y)−µ−βz
σ ) =

1

1 + exp
(

1
σ (ln(y)− µ− βz)

) .
(3.29)

Using the density and survival function of the standard logistic distribution in (3.29), the log

likelihood functions for case 1, case 2, and the data from Can Ruti can be written as follows:

Case 1: Left- and right-censored response variable

l(θ,ω) =
n∑

i=1

[
δ1i ln

( m∑

j=1

αij
σ

exp( 1
σ (ln(ui)− µ− βsj))(

1 + exp( 1
σ (ln(ui)− µ− βsj))

)2ωj
)

+δ2i ln
( m∑

j=1

αij

1 + exp
(

1
σ (ln(ui)− µ− βsj)

)ωj
)

+(1− δ1i)(1− δ2i) ln
( m∑

j=1

αij

(
1− 1

1 + exp
(

1
σ (ln(ui)− µ− βsj)

)
)
ωj

)]
.

(3.30)

Case 2: Doubly-censored response variable

l(θ,ν,ω) =
n∑

i=1

[
δ1i ln

( k∑

l=1

m∑

j=1

γilαij
σ

exp( 1
σ (ln(ui(dl))− µ− βsj))(

1 + exp( 1
σ (ln(ui(dl))− µ− βsj))

)2ωjνl
)

+δ2i ln
( k∑

l=1

m∑

j=1

γilαij

1 + exp
(

1
σ (ln(ui(dl))− µ− βsj)

)ωjνl
)

(3.31)

+(1− δ1i)(1− δ2i) ln
( k∑

l=1

m∑

j=1

γilαij

(
1− 1

1 + exp
(

1
σ (ln(ui(dl))− µ− βsj)

)
)
ωjνl

)]
.
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Log likelihood function for data from Can Ruti

l(θ,ω) =

n∑

i=1

[
δ1i ln

( m∑

j=1

αij
σ

exp( 1
σ (ln(ui(sj))− µ− βsj))(

1 + exp( 1
σ (ln(ui(sj))− µ− βsj))

)2ωj
)

+δ2i ln
( m∑

j=1

αij

1 + exp
(

1
σ (ln(ui(sj))− µ− βsj)

)ωj
)

+(1− δ1i)(1− δ2i) ln
( m∑

j=1

αij

(
1− 1

1 + exp
(

1
σ (ln(ui(sj))− µ− βsj)

)
)
ωj

)]
.

(3.32)

As in case of the Weibull regression model, the maximization of each of the log likelihood func-

tions (3.30)–(3.32) is subject to the restrictions (3.17) on ω, and the maximization of (3.31) is

also restricted to the constraints (3.20) on ν. As well, the parameter σ must be positive given its

relation with the parameter α of the underlying log logistic distributions.

3.5 Simultaneous maximum likelihood estimation

Once derived the expression of the corresponding (log) likelihood function, the objective consists

in estimating both the model parameters θ = (µ, β, σ)′ and the unknown distribution function

of the discrete interval-censored covariate Z characterized by ω. Looking at the log likelihood

functions (3.25)–(3.27) of the Weibull regression model and (3.30)–(3.32) of the log logistic model,

it is obvious that the maximum likelihood estimators cannot be obtained analytically, but that

maximization has to be carried out numerically.

For ease of notation, in the sequel, we denote by (θ̂n, ω̂n) the joint maximum likelihood

estimators, whether they correspond to case 1 or case 2, which also includes ν̂n.

3.5.1 General inference procedure

To make inference on the possible effect of the covariate Z on the response Y , we need not only

to estimate the model parameters, but also to calculate the corresponding confidence intervals.

The maximum likelihood estimates (θ̂n, ω̂n) are obtained by the use of AMPL in combination

with the NEOS solvers as described in detail in the following Section 3.5.2.

For the computation of the confidence intervals, another software package has to be used,

because AMPL does not provide an estimation of the parameters’ variances. For instance, the

mathematical software Maple is an appropriate tool for this. The computation takes advantage of

the asymptotic properties of maximum likelihood estimators: on one hand, the variances can be

estimated by inverting the observed Fisher information matrix, on the other hand, the estimators

are asymptotically normal distributed (Cox and Hinkley 1974; Lindsey 1996).
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Applying the invariance property, the estimation of the relative risk (odds ratio in case of

the log logistic regression models) and the acceleration factor, both introduced in Section 3.1, is

straightforward:

R̂Rn = ÔRn = exp(−β̂nZ/σ̂n), (3.33a)

ÂFn = exp(β̂nZ). (3.33b)

Note that if Z is a dichotomic variable or when comparing two individuals with covariate values

z + 1 and z, both terms are estimated by exp(−β̂n/σ̂n) and exp(β̂n), respectively.

Given the variance of θ̂, we can also calculate the confidence intervals of the relative risk

(or odds ratio), and the acceleration factor. Whereas the latter is a mere transformation of the

confidence interval of β following (3.33b), for the former, we need to apply the delta method

(Schervish 1995, Sec. 7.1) to obtain the estimated variances; see Section B.2 for its derivation in

case of a dichotomic covariate Z.

3.5.2 Maximization of the log likelihood

A possible approach to the maximization problems would be to adapt the algorithm of Gómez

et al. (2003), described in Section 1.1.4 on page 9, to the given log likelihood functions. However,

instead of alternating the two iterative steps of this algorithm and supported by the computing

facilities nowadays, we propose the simultaneous maximization of the respective log likelihood

functions with respect to (θ,ω). For the solution of this nonlinear constrained maximization

problems, advantage is taken of the methods from the area of operations research.

As an illustration, consider the log likelihood function (3.25) corresponding to the Weibull

regression model with a left- and right-censored response variable. Its maximization is subject

to the equality constraint
∑m

j=1 ωj = 1 and the inequality constraints ωj ≥ 0, j = 1, . . . ,m

and σ ≥ 0. Actually, the Weibull distribution requires σ > 0, but algorithms for optimization

problems cannot handle strict inequality constraints because of limited exactness to distinguish

reals. However, if that is a problem in practice, the inequality constraint can slightly be modified

to σ ≥ ε > 0.

In Section 1.3.2, important tools for the solution of optimization problems have been pre-

sented, whose use is recommended to determine (θ̂n, ω̂n). The mathematical programming lan-

guage AMPL is an appropriate tool, since optimization problems written in the AMPL code can

be solved by a broad range of specific solvers available at the NEOS server. Hence, apart from

programming the corresponding files in AMPL, it is also essential to choose an adequate solver

to maximize the log likelihood functions.

For the given maximization problems, we recommend the solver SNOPT. As pointed out on

page 14, this solver is suitable for large nonlinearly constrained optimization problems with a

modest number of degrees of freedom, especially if the objective function and their gradients are
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costly to evaluate. The log likelihood functions above have these characteristics: they consist of

n summands, each of which being the logarithm of sums itself. Hence, the gradients of l(θ,ω)

are sums of fractions whose denominators consist of sums, too. Our practical experience has

confirmed that SNOPT is an adequate choice to handle these maximization problems.

Specification of Z

If the covariate Z is discrete, the maximization procedure requires a specification of the range

and values of the covariate’s support to be considered. For example, should S = {s1, . . . , sm}
be a very fine grid or just the opposite? In their work on the nonparametric estimation of a

doubly-censored variable’s distribution function, De Gruttola and Lagakos (1989) address this

aspect, too. If the grid of possible values is chosen too fine, the maximization procedure could be

slowed down and the estimation of ω could furnish nonunique results. On the other hand, if the

values are grouped too coarsely, the estimation might not be able to describe well the underlying

shape of FZ . One possibility is to choose the observed times {Zli} ∪ {Zri}, i = 1, . . . , n, to avoid

a too fine grid of values sj ∈ S and, hence, a too big number of unknown parameters ωj . This is

justified by the fact that any ωj will be estimated equal to zero, if the corresponding value sj is

neither a left- nor a right-endpoint of any of the observed intervals. Concerning this aspect, the

use of a penalized likelihood function could be an interesting aspect of future research, see, for

example, Joly and Commenges (1999).

In case right-censored values of the covariate are present, a maximum value sm has to be

determined. If the largest right-censored value z∗l = max{Zli |Zri = ∞, i = 1, . . . , n} does not

exceed the largest finite right-endpoint z∗r = max{Zri |Zri < ∞, i = 1, . . . , n}, then choose the

value sm = z∗r . A smaller value cannot be chosen and even if sm > z∗r is set, the maximization will

yield F̂Z(z
∗
r ) = 1. That is, no positive probability mass will be put on any value beyond z∗r . On

the other hand, if z∗l > z∗r , we have F̂Z(z
∗
r ) < 1 and ω̂n will not be uniquely defined beyond z∗l .

The remaining probability 1− F̂ (z∗r ) will be distributed equally on the interval [z∗l , sm], whichever

sm is chosen. Hence, it is important to check whether z∗l > z∗r to correctly interpret P̂([z∗l , sm]).

This is similar to the Kaplan-Meier estimator for right-censored data: it is not defined after the

largest right-censored observation if that exceeds the largest uncensored observation.

Multiple maxima of the objective function

Even though the solver SNOPT is an adequate tool to maximize the given log likelihood functions,

it cannot be ruled out that the obtained joint maximum likelihood estimator is rather a local

than the desired global maximum of l(θ,ω). This is a characteristic of any solver of nonlinear

constrained optimization problems, since no efficient algorithm exists by now which could perform

this task.1

1NEOS guide. URL: http://www-fp.mcs.anl.gov/otc/Guide [June 2004]
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The problem of multiple roots of the likelihood has been addressed by several authors, see

for example, Barnett (1966) and Pewsey (2000). Lindsey (1996, Chap. 3) states that this is

not a problem, because there might be several nearly equally likely solutions to the maximiza-

tion problem. However, this refers to the point estimation of (θ,ω), whereas the calculation of

the corresponding confidence intervals is based on the asymptotic properties of the maximum

likelihood estimators. These are valid for the global maximizer of the likelihood function.

One approach to overcome this possible problem shall be mentioned in Section 8.2. However,

this is not a particular characteristic of simultaneous maximization. The same problem cannot

be ruled neither with other algorithms, such as the EM algorithm.

3.5.3 Estimation of the variance of the model parameters’ estimators

As mentioned before, the variance estimation cannot be carried out with AMPL and, conse-

quently, the use of another software package is necessary. One possible tool is the mathematical

software package Maple; see, for example, Heck (2003).

In order to estimate the variances of θ by means of the Fisher information, regularity condi-

tions concerning the estimation procedure must hold. These guarantee the differentiability of the

log likelihood function with respect to the parameters θ and ω within the corresponding parame-

ters spaces. In particular, one condition is that the true parameters must lie in the interior of the

parameter space. However, in case of ω and ν, these are equal to [0, 1]m and [0, 1]k, respectively,

and hence are closed. As a matter of fact, the simultaneous maximization of the log likelihood

functions with respect to (θ,ω), usually yields a considerable number of zero components in ω̂n.

These values lie on the boundary of the parameter space, where the corresponding gradients of

the log likelihood function are not equal to zero.

Fay (1996) describes a similar problem in the context of interval-censored data under the

grouped continuous model when applying a score test to the model parameters. In order to

avoid that the nuisance parameters’ estimates approach the boundaries of the parameter space,

he reduces the number of nuisance parameters in a first step. This is done in such a way that

none of the corresponding estimates approach these boundaries when the score test is applied in

the second step.

Here, we are mainly concerned with the inference about θ. For this reason, we base the

estimation of the parameters’ variances on a reduced version of the likelihood. Assume that

the parameter space is reduced to those components with estimates ω̂j > 0 and we denote by

ω∗ the corresponding subvector of ω. Following this notation, we denote by m∗ the dimension

of ω∗, by s∗j the values of the support of Z with ω̂j > 0, and define the indicator variables

α∗ij =
�
{s∗j∈[Zli ,Zri ]}

, i = 1, . . . , n, j = 1, . . . ,m∗. Then, the proposed reduced version of the

likelihood function L∗(θ,ω∗) has the same expression as the original one, but m, sj and αij are

replaced by m∗, s∗j and α∗ij , respectively. For example, consider the likelihood function (3.15) on

page 46 in case of a left- and right-censored response variable. The corresponding reduced version
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of the likelihood function is the following:

L∗(θ,ω∗) =
n∏

i=1

m∗∑

j=1

α∗ijf(ui|s∗j )δ1iS(ui|s∗j )δ2i
(
1− S(ui|s∗j )

)(1−δ1i )(1−δ2i )ω∗j ,

It is straightforward to prove that, due to the nature of both likelihood functions and the role,

the ωj and ω
∗
j play in them, the nonzero components of the log likelihood’s maximum are, as well,

the solutions of maximizing the corresponding reduced version of the log likelihood function.

Due to this equality, whose proof is shown in Section B.3, we assume that the proposed

reduced version of the likelihood will act as the usual likelihood, in the sense that (θ̂
∗
n, ω̂

∗
n)

is asymptotically normal and we can use the associated Fisher information to determine the

confidence intervals of µ, β, and σ. We carry out the computation of the first and second derivative

of l∗(θ,ω∗) = ln
(
L∗(θ,ω∗)

)
with the use of the mathematical software package Maple. Then, the

inverse of the observed information matrix serves as an estimation of the asymptotic covariance

matrix (Collett 1994, Appendix A).

3.6 Further aspects

The estimation procedure described above can also be applied in the following two cases: further

covariates are included in the model and observations with missing values in the response are

considered.

3.6.1 Model extensions

The accelerated failure time model (3.5) can easily be extended to include other covariates sum-

marized in the vector X:

ln(Y ) = µ+ βZ + κ′X + σW.

This affects the density and survival functions of Y in (3.24) and (3.29) as follows:

SY (y) = SW ( ln(y)−µ−βz−κ′x
σ ),

fY (y) =
1
σfW ( ln(y)−µ−βz−κ′x

σ ).
(3.34)

If the covariates summarized in X are observed completely, SW and fW in (3.34) are plugged

into the (log) likelihood functions above using the corresponding expressions for the Weibull and

the log logistic regression models.

If one of the covariates, V say, is interval-censored with observed intervals [VL, VR], such

that P(V ∈ [VL, VR]) = 1, the likelihood contributions have to consider all possible values of
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V given [VL, VR]. We illustrate this for the case of a left- and right-censored response variable

assuming noninformative censoring following the conditions on page 44. Application to the case

of a doubly-censored response variable is straightforward.

Given the observation vector (u, zl, zr, vl, vr, δ1, δ2) for a single individual, its likelihood contri-

bution is an extension of expression (3.12) on page 45:

Lcont(θ, FZ , FV ) =

∫ zr

zl

∫ vr

vl

f(u|z, v)δ1S(u|z, v)δ2
(
1− S(u|z, v)

)(1−δ1)(1−δ2)
dFV (v) dFZ(z),

where FV denotes the distribution function of V . The resulting likelihood function given inde-

pendent observation vectors is the product over all likelihood contributions. A discrete version of

the likelihood function is obtained by proceeding as for case 1 in Section 3.3.2 for both Z and V .

3.6.2 Inclusion of missing values of the response variable

Missing values of the response variable Y might be present. For example, if Y is a subsequent time

of the covariate Z, a right-censored value of the latter implies a missing value of the former. Given

the structure of the likelihood functions above, these observations can still be included. They

contribute to the estimation of FZ , equivalent to ω in the discrete case, and, for this reason, they

might improve the estimation of the unknown model parameters. The likelihood contribution of

an individual with missing value in the response variable is
∫ zr
zl
dFZ(z). To incorporate this term

in the (log) likelihood functions, another indicator function must be defined:

ε =




1 Y is exactly observed or censored

0 Y is missing
.

When ε = 1, the value of the response variable might be either exactly observed or left- or right-

censored, whereas if Y is missing, ε = δ1 = δ2 = 0. Including this indicator variable, the obser-

vation vectors (3.8) and (3.9) are extended to (U,Zl, Zr, ε, δ1, δ2) and (U, Y0l, Y0r, Zl, Zr, ε, δ1, δ2),

respectively.

For example, consider the likelihood functions for the case of a left- and right-censored response

variable, when the covariate is either continuous or discrete. Allowing for missing values in Y ,

their expressions are the following:

L(θ, FZ) =
n∏

i=1

∫ zri

zli

f(ui|z)εiδ1iS(ui|z)εiδ2i
(
1− S(ui|z)

)εi(1−δ1i )(1−δ2i ) dFZ(z),

L(θ,ω) =
n∏

i=1

m∑

j=1

αijf(ui|sj)εiδ1iS(ui|sj)εiδ2i
(
1− S(ui|sj)

)εi(1−δ1i )(1−δ2i )ωj . (3.35)
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Note that in the discrete case (3.35), the likelihood contribution of an individual with εi = 0 is

equal to
∑m

j=1 αijωj .

Hence, the proposed methodology for the case an accelerated failure time model with an

interval-censored covariate allows for the inclusion of observations with missing response in the

likelihood. However, the interpretation of the estimation results of the reduced data evaluation

needs to consider the randomness of the missing data generation process.


