
Chapter 4

Simultaneous Maximization of the

Likelihood of Further Regression

Models with an Interval-Censored

Covariate

The accelerated failure time model of the previous chapter has been motivated by the data set

on injecting drug users in Badalona, whose complex censoring patterns in both the response and

the covariate has made it necessary to develop alternative estimation procedures. Such particular

data patterns are not restricted to survival analysis only, but might arise in any other area.

Besides censoring, think of longitudinal data, for example.

Generally, when applying a regression model to such data, the resulting likelihood function

does not only depend on the model parameters, but also on nuisance parameters. As shown in

Chapter 3, in case of an interval-censored covariate, these parameters account for the unknown

distribution function of that covariate. To the best of our knowledge, various types of EM

algorithms or imputation techniques have been implemented to carry out parameter estimation

in the presence of such nuisance parameters.

In this chapter, we show that the mathematical programming language AMPL in combination

with the NEOS solvers can be a very valuable tool for the evaluation of regression models,

whose evaluation requires the implementation of estimation procedures not covered by statistical

software. AMPL permits the maximization of likelihood functions without the need to programme

iterative estimation procedures. In Section 4.1, we describe the general steps of the estimation

procedure. After this, we illustrate the utility of AMPL for three other models with an interval-

censored covariate: linear regression, logistic regression, and the semi-parametric Cox model.

For each of these, we derive the corresponding likelihood function. In Section C.1, parts of the

corresponding AMPL programmes to compute the parameter estimates are provided.
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62 Chapter 4 Further Regression Models with an Interval-Censored Covariate

4.1 Description of the general estimation procedure

The estimation procedure described herein consists of the following five steps and is valid for any

regression model, for which one is able to derive the likelihood function. Obviously, whenever

statistical software is available for the evaluation of a given model, its use is preferable to the

estimation procedure with AMPL.

1. Derivation of the likelihood function

The main theoretical work consists in deriving the correct likelihood taking into account

possible dependencies or censoring patterns of the data. In Chapter 3 and in the following

examples, noninformative censoring is assumed. The estimation procedure does not require

that assumption, but otherwise the censoring mechanism has to be modeled, which implies

further assumptions on the data generation process and hence more nuisance parameters.

2. Implementation of the maximization of the likelihood by means of AMPL

The programming code of AMPL is quite intuitive which helps to programme the maxi-

mization of the likelihood function with respect to all parameters and subject to possible

restrictions. Generally, it is easier to carry out the maximization of the log likelihood. The

AMPL code is presented in detail in Fourer, Gay, and Kernighan (2003) and illustrated in

Section C.1 for each of the following examples.

If the number of nuisance parameters is infinite because of the presence of a parametrically

undefined continuous function, assumptions have to be made concerning its form, for ex-

ample, piecewise linear or constant, or the function must be assumed discrete on a defined

grid of points.

3. Execution of the AMPL programme invoking an adequate NEOS solver

Often, the available solvers of the local version of AMPL are not able to solve the max-

imization problem. For this reason, the NEOS server offers the use of several solvers for

plenty of optimization problems written with the AMPL code; the use of these solvers is

free of charge (Dolan, Fourer, Moré, and Munson 2002).

Dealing with maximum likelihood estimation, the objective function is mostly nonlinear

and maximization is subject to several restrictions. Possible solvers for these nonlinearly

constrained optimization problems are MINOS (Murtagh and Saunders 1978), LANCELOT

(Conn, Gould, and Toint 1992), or SNOPT (Gill, Murray, and Saunders 1999). The latter

has been proved to be an adequate solver for the maximization problem presented in this

and the previous chapter. Some details on NEOS and SNOPT are described on page 14.

4. Collection of estimation results

If one of the NEOS solvers is used during the execution of the AMPL programmes, the

results can either be received by email or can be written directly into a file on the local
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disc. In both cases, the results have to be edited in such a way, that the software used in

the final step can read the data.

5. Computation of confidence intervals using Maple

Any mathematical software can be used for this final step, Maple being one of these. The

reduced log likelihood —see Section 3.5.3— must be derived twice, the observed Fisher

matrix is computed, and finally inverted. The resulting matrix is the covariance matrix,

whose diagonal elements are used for the computation of the confidence intervals.

4.2 Linear regression model

A linear regression model with a discrete interval-censored covariate is presented by Gómez,

Espinal, and Lagakos (2003). The data, that have motivated the use of such a model, come from

the study 359 of the AIDS Clinical Trial Group on HIV patients who have previously failed a

treatment with an antiviral therapy. The interest of the authors has focused on the possible

relation between the waiting time from treatment failure until study enrolment, the (interval-

censored) covariate, and the viral load level at the time of enrolment, the response variable.

4.2.1 Model and likelihood function

The model considered here is similar to the one of Gómez et al. presented before in Section 1.1.4

on page 9. Here, we consider the same model including also the fully observed covariate vector X:

Y = α+ βZ + κ′X + ε, (4.1)

where ε ∼ N (0, σ2) and independent of X and Z, the discrete interval-censored covariate. The

support of Z is given by S = {s1, . . . , sm} with probabilities P(Z = sj) = ωj , j = 1, . . . ,m, and

the observed intervals are denoted by [Zl, Zr]. The objective consists in estimating the unknown

parameter vector θ = (α, β,κ, σ)′ given the independent observations (yi, zli , zri ,xi), i = 1, . . . , n,

where P(zi ∈ [zli , zri ]) = 1.

Under the assumption that censoring is noninformative and defining the indicator variables

γij =
�
{sj∈[zli ,zri ]}

, the likelihood function of model (4.1) is proportional to

L(θ,ω) =

n∏

i=1

m∑

j=1

γijf(yi|sj ,xi;θ)ωj

=
n∏

i=1

m∑

j=1

γij
1√
2πσ

exp
(
− (yi − α− βsj − κ′xi)2

2σ2

)
ωj ,
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where ω = (ω1, . . . , ωm)
′. The noninformativity conditions concerning censoring in Z hold, if the

following equalities are valid for any values y, z, zl, and zr:

P(Z = z|Zl = zl, Zr = zr) = P(Z = z)/P(zl ≤ Z ≤ zr)
�
{z∈[zl,zr]},

f(y|Z = z, Zl = zl, Zr = zr) = f(y|Z = z).
(4.2)

4.2.2 Algorithms to maximize the likelihood

The estimation procedure proposed by Gómez et al. for the computation of the joint maximum

likelihood estimator (θ̂n, ω̂n) is described in Section 1.1.4. Their algorithm, programmed in

C, alternates two steps —estimation of ω holding θ fixed and viceversa— until simultaneous

convergence is achieved.

The same algorithm could be programmed with the AMPL code alternating both estimation

steps by means of the problem statement (Fourer et al., Chap. 14.4). However, disposing of the

NEOS solvers in AMPL, it is easier and computationally more efficient to carry out simultaneous

maximization of the likelihood function with respect to θ and ω. For computational reasons it is

preferable to use the log likelihood as objective function:

l(θ,ω) =
n∑

i=1

ln
( m∑

j=1

γij exp
(
− (yi − α− βsj − κ′xi)2

2σ2

)
ωj

)
− n ln(

√
2πσ). (4.3)

The maximization of (4.3) is subject to the constraints on ω:

m∑

j=1

ωj = 1,

ωj ≥ 0, j = 1, . . . ,m.

Once the estimators θ̂n and ω̂n are computed, their variances can be estimated in the same

way as described in Section 3.5.3 for the accelerated failure time model, using the mathematical

software Maple.

4.2.3 Model extensions

So far, the response variable has been assumed to be completely observed. Nonetheless, Y might

also be censored. Consider the case of right- and left-censoring at time yi. In these cases, the

likelihood contributions of an individual i are equal to

Ci(θ,ω) =
m∑

j=1

γijS(yi|sj ,xi)ωj =
m∑

j=1

γij
(
1− Φ(yi|sj ,xi)

)
ωj
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and

Ci(θ,ω) =
m∑

j=1

γij
(
1− S(yi|sj ,xi)

)
ωj =

m∑

j=1

γijΦ(yi|sj ,xi)ωj ,

respectively, being Φ the Gaussian distribution function. Analogously to the likelihood function

of the accelerated failure time model in Section 3.3, indicator functions δ1 and δ2 must be defined

to distinguish the different censoring patterns:

δ1 =




1 Y observed exactly

0 otherwise
,

δ2 =




1 Y right-censored

0 otherwise
.

Then, given the independent observations (yi, zli , zri ,xi, δ1i , δ2i), i = 1, . . . , n, the resulting like-

lihood function is the following:

L(θ,ω) =
n∏

i=1

m∑

j=1

γij

( 1√
2πσ

exp
(
−(yi − α− βsj − κ′xi)2

2σ2

))δ1i(
1−Φ(yi|sj ,xi)

)δ2iΦ(yi|sj ,xi)(1−δ1i )(1−δ2i )ωj .

The inclusion of interval-censored data [yli , yri ] is straightforward with likelihood contributions

equal to
∑m

j=1 γij
(
Φ(yri |sj ,xi)− Φ(yli |sj ,xi)

)
ωj , but requires one more indicator variable.

Apart from the normal distribution, Y might follow any other distribution. This would affect

the expressions of the density and survival functions, but not the general form of the likelihood

functions.

4.3 Logistic regression with an interval-censored covariate

4.3.1 The logistic regression model

Logistic regression models the probability of the occurrence of an event of interest in dependence

of one or more covariates. For example, in biostatistics, this event of interest is often the presence

of a disease or death. We denote this dichotomized random variable by Y :

Y =




1 Event occurred

0 Otherwise
.



66 Chapter 4 Further Regression Models with an Interval-Censored Covariate

Consider the case that one covariate, Z say, is censored in an interval: Z ∈ [Zl, Zr]. Summarizing

the other covariates of the model in the vector X, the logistic regression model can be expressed

as follows:

p = P(Y = 1|Z,X) =
exp(α+ βZ + κ′X)

1 + exp(α+ βZ + κ′X)
,

which is equivalent to

ln
( p

1− p

)
= α+ βZ + κ′X.

As before, we assume that Z is discrete with possible values s1 < s2 < · · · < sm and corresponding

probabilities ωj = P(Z = sj), j = 1, . . . ,m. The objective consists in estimating the unknown

parameter vector θ = (α, β,κ)′ by means of maximum likelihood estimation.

4.3.2 Likelihood functions

As with the models before, we assume that censoring in the covariate Z is noninformative, that

is, the observed interval [Zl, Zr] does not inform on the real value of Z apart from including it,

and it has no influence on the response variable Y :

P(Z = z|Zl = zl, Zr = zr) = P(Z = z)/P(zl ≤ Z ≤ zr)
�
{z∈[zl,zr]},

P(Y = 1|Z = z, Zl = zl, Zr = zr) = P(Y = 1|Z = z).

If Z was observed exactly, the likelihood contribution of an individual with observed values

(y, z,x) would be equal to:

C(θ) = py(1− p)1−y =
( exp(α+ βz + κ′x)

1 + exp(α+ βz + κ′x)

)y( 1

1 + exp(α+ βz + κ′x)

)1−y

=
exp(α+ βz + κ′x)y

1 + exp(α+ βz + κ′x)
.

However, since Z lies in the interval [Zl, Zr], the likelihood contribution has to account for all

admissible values of Z given that interval. That is, the likelihood contribution of an individual i

depends also on the distribution function of Z characterized by the vector ω = (ω1, . . . , ωm)
′:

Ci(θ,ω) =
m∑

j=1

γij
exp(α+ βsj + κ′xi)

y

1 + exp(α+ βsj + κ′xi)
ωj ,

where the binary variables γij =
�
{sj∈[zli ,zri ]}

indicate whether sj is an admissible value for

zi or not. Consequently and supposing that the observations (yi, zli , zri ,xi), i = 1, . . . , n, are
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independent, the likelihood function for the unknown model parameters is proportional to

L(θ,ω) =

n∏

i=1

Ci(θ,ω)

=
n∏

i=1

m∑

j=1

γij
exp(α+ βsj + κ′xi)

yi

1 + exp(α+ βsj + κ′xi)
ωj

=
n∏

i=1

exp
(
yi(α+ κ′xi)

) m∑

j=1

γij
exp(yiβsj)

1 + exp(α+ βsj + κ′xi)
ωj .

Maximizing L(θ,ω) furnishes the maximum likelihood estimators of the model parameters α, β,

and κ, as well as ω̂n. Instead of maximizing the likelihood function, the estimation is accomplished

more easily by maximizing the log likelihood function:

l(θ,ω) =
n∑

i=1

(
yi(α+ κ′xi) + ln

( m∑

j=1

γij
exp(yiβsj)

1 + exp(α+ βsj + κ′xi)
ωj

))
. (4.4)

Hence, the optimization problem for the estimation of θ and ω consists of the objective func-

tion (4.4) and the restrictions on ω:

m∑

j=1

ωj = 1,

ωj ≥ 0, j = 1, . . . ,m.

4.4 The proportional hazards model

The proportional hazards model (Cox 1972) is well known and popular for its semi-parametric

structure, which allows to separate the estimation of the covariates’ effect from the estimation

of the baseline hazard function. Its general form for a survival time T and covariate vector Z,

which models the hazard function λ, is given by

λ(t; z) = λ0(t) exp(β
′z), (4.5)

where λ0(t) is the baseline hazard function and β the unknown parameter vector of interest. The

particularity we are dealing with, is the case of an interval-censored covariate Z. For the sake of

simplicity, we consider the case of model (4.5) with only one covariate and our aim is to estimate

the unknown parameter β.
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4.4.1 Derivation of the partial likelihood function

Due to its semi-parametric structure leaving the baseline hazard function unspecified, the like-

lihood function of the Cox model does not only depend on β, but also on λ0. However, for the

parameter estimation, it is possible to use the partial likelihood function, in which λ0 does not

appear. We, therefore, first recall the equality of Cox’s partial likelihood function with the profile

likelihood for the case of a fully observed covariate Z. After this, we attempt to apply the same

procedure to the case of an interval-censored covariate.

The likelihood functions are derived given independent observations (ti, zi, δi), i = 1, . . . , n,

where δi = 1 indicates an exactly observed survival time ti, and δi = 0 a right-censored one. For

the present, we do not consider other censoring patterns rather than right-censoring and assume

noninformative censoring in T .

Cox proposes the use of the partial likelihood function for the estimation of the parameter β

in model (4.5). Assuming there are no ties among the uncensored survival times, this function

has the following expression:

L(β) =
n∏

i=1

( exp(βzi)∑
j∈R(ti)

exp(βzj)

)δi
, (4.6)

where R(ti) is the group of subjects at risk just before ti. This function does not depend on

the unknown baseline hazard function and is equivalent to the profile likelihood function for β,

Lprof (β) (Murphy and van der Vaart 2000).

To show this equivalence, consider the full likelihood function under noninformative censoring

including both β and the baseline hazard function λ0:

L
(
β, λ0(·)

)
=

n∏

i=1

f(ti)
δiS(ti)

1−δi =
n∏

i=1

(
λ(ti)S(ti)

)δiS(ti)1−δi =
n∏

i=1

λ(ti)
δiS(ti)

=

n∏

i=1

(
λ0(ti) exp(βzi)

)δi exp
(
− Λ0(ti) exp(βzi)

)
. (4.7)

Hence, the log likelihood has the following expression:

l
(
β, λ0(·)

)
=

n∑

i=1

(
δi
(
ln(λ0(ti)) + βzi

)
− Λ0(ti) exp(βzi)

)
. (4.8)

where Λ0(ti) is the baseline cumulative hazard function. The profile likelihood function for β is

defined by:

Lprof (β) = sup
λ0

L(β, λ0).

Hence, to determine the profile likelihood function, the likelihood function (4.7) has to be max-

imized with respect to λ0(t) holding β fixed. Without any smoothing constraints, Λ̂0 will be a
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step function with jumps at ti, i = 1, . . . , n, whenever δi = 1. The jumps are equal to λ̂0(ti).

Deriving the log likelihood (4.8) with respect to λ0(ti), we obtain

∂

∂λ0(ti)
l
(
β, λ0(·)

)
=

δi
λ0(ti)

−
∑

j:tj≥ti

exp(βzj).

Thus, the likelihood is maximized for

λ̂0(ti) =
δi∑

j:tj≥ti
exp(βzj)

, i = 1, . . . , n. (4.9)

Note, that λ̂0(t) = 0 if δ = 0 as well as for any t /∈ {t1, . . . , tn}. Plugging (4.9) into (4.7), we

obtain the partial likelihood function (4.6):

L(β) =
n∏

i=1

(
λ̂0(ti) exp(βzi)

)δi exp
(
− Λ̂0(ti) exp(βzi)

)

=
n∏

i=1

( exp(βzi)∑
j:tj≥ti

exp(βzj)

)δi
exp
(
− exp(βzi)

∑

j:tj≤ti

λ̂0(tj)
)

=

n∏

i=1

( exp(βzi)∑
j∈R(ti)

exp(βzj)

)δi
exp
(
− exp(βzi)

∑

j:tj≤ti

δj∑
l:tl≥tj

exp(βzl)

)

= exp
(
−

n∑

i=1

exp(βzi)
∑

j:tj≤ti

δj∑
l:tl≥tj

exp(βzl)

) n∏

i=1

( exp(βzi)∑
j∈R(ti)

exp(βzj)

)δi

= exp
(
−

n∑

j=1

∑

i:ti≥tj

δj exp(βzi)∑
l:tl≥tj

exp(βzl)

) n∏

i=1

( exp(βzi)∑
j∈R(ti)

exp(βzj)

)δi

= exp
(
−

n∑

j=1

δj

∑
i:ti≥tj

exp(βzi)∑
l:tl≥tj

exp(βzl)

) n∏

i=1

( exp(βzi)∑
j∈R(ti)

exp(βzj)

)δi

=
n∏

i=1

( exp(βzi)∑
j∈R(ti)

exp(βzj)

)δi
exp(−δi)

∝
n∏

i=1

( exp(βzi)∑
j∈R(ti)

exp(βzj)

)δi
.

4.4.2 Likelihood in presence of an interval-censored covariate

Now, the question is, how to handle the case of an interval-censored covariate? That is, instead of

Z, we observe the interval [ZL, ZR] containing Z. Concerning the censoring generation process,

we assume the noninformativity conditions (4.2) of the previous sections hold.
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Departing from likelihood function (4.7), we derive the following likelihood, which takes into

account the intervals [ZLi , ZRi ], i = 1, . . . , n. The distribution function of Z is denoted by FZ ,

its density function by fZ .

Ln
(
β, λ0(·), FZ(·)

)
=

n∏

i=1

∫ zri

zli

(
λ0(ti) exp(βz)

)δi exp
(
− Λ0(ti) exp(βz)

)
dFZ(z)

=

n∏

i=1

∫ zri

zli

(
λ0(ti) exp(βz)

)δi exp
(
− Λ0(ti) exp(βz)

)
fZ(z) dz.

In case of a discrete covariate Z with support S = {s1, . . . , sm}, where s1 < s2 < · · · < sm, and

corresponding probabilities P (Z = sj) = ωj , j = 1, . . . ,m, the preceding likelihood function can

be written as

Ln
(
β, λ0(·),ω

)
=

n∏

i=1

m∑

j=1

αij
(
λ0(ti) exp(βsj)

)δi exp
(
− Λ0(ti) exp(βsj)

)
ωj , (4.10)

in which ω = (ω1, . . . , ωm)
′ and αij =

�
{sj∈(zli ,zri ]}

.

4.4.3 Maximization procedures

Attempt by means of the profile likelihood

Following the procedure in Section 4.4.1, an attempt is made to obtain the maximum likelihood

estimators by means of the profile likelihood in order to simplify the expression of the likelihood

function (4.10) to be maximized. This is done for the case of a discrete covariate. Consider the

log likelihood:

l
(
β, λ0(·),ω

)
=

n∑

i=1

(
δi ln
(
λ0(ti)

)
+ ln
( m∑

j=1

αij exp(δiβsj) exp
(
− Λ0(ti) exp(βsj)

)
ωj

))
. (4.11)

Denoting λ0(ti) by λi, the differentiation of (4.11) furnishes

∂

∂λk
ln
(
β, λ0(·),ω

)
=

δk
λk

+
n∑

i:ti≥tk

λk
∑m

j=1 αij exp
(
(1 + δi)βsj

)
exp
(
−∑r:tr≤ti

λr exp(βsj)
)
ωj∑m

j=1 αij exp(δiβsj) exp
(
−∑r:tr≤ti

λr exp(βsj)
)
ωj

. (4.12)

Since λk cannot be factorized in the second summand of expression (4.12), there is no closed

form of λ̂k. Consequently, the estimates λ̂k, k = 1, . . . , n, would have to be computed by means

of numerical methods whenever δk = 1. The obtained values would then be plugged into (4.11)
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and maximization procedures would have to be applied in order to calculate β̂ and ω̂. In case of

a continuous covariate, the whole procedure would be even more cumbersome, since the integrals

would have to be approximated.

However, since the motivation of the profile likelihood approach is to facilitate the maxi-

mization procedure, there is no evident advantage of this method here. As commented below,

simultaneous maximization of the log likelihood function (4.11) is preferable.

If ω was estimated in a first step, for example applying the Turnbull estimator of page 2, the

profile likelihood approach would have to tackle the same problem. Also, profiling out ω in the

log likelihood (4.11) does not furnish a closed form for ω̂, neither. The reason can be seen in the

following differentiation of (4.11) with respect to any ωk:

∂

∂ωk
ln
(
β, λ0(·),ω

)
=

n∑

i=1

αik exp(δiβsk) exp
(
− Λ0(ti) exp(βsj)

)
∑m

j=1 αij exp(δiβsj) exp
(
− Λ0(ti) exp(βsj)

)
ωj
.

Simultaneous parameter estimation: full likelihood approach

Taking advantage of the mathematical programming language AMPL and its facility to invoke

the NEOS solvers, we propose the simultaneous maximization of the log likelihood (4.11) with

respect to β, λ0, and ω. This can be done under the assumption that the response variable T is

discrete with support equal to the uncensored times ti. This nonlinear maximization problem is

subject to the equality constraint

m∑

j=1

ωj = 1,

and the inequality constraints

ωj ≥ 0, j = 1, . . . ,m,

λ0(t) ≥ 0, t > 0. (4.13)

To accomplish the maximization procedure, in the objective function (4.11) we either

• substitute Λ0(ti) by
∑

j:tj≤ti
λ0(tj) and estimate λ0(ti), i = 1, . . . , n, or

• substitute λ0(ti) by Λ0(ti)− Λ0(ti−1) and estimate Λ0(ti), i = 1, . . . , n.

Note that the latter requires ordering the survival times: t1 ≤ t2 ≤ · · · ≤ tn and that the

inequality constraint (4.13) implies 0 ≤ Λ0(t1) ≤ Λ0(t2) ≤ · · · ≤ Λ0(tn). Simulations will have to

show, whether this procedure is feasible or not.
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4.4.4 A pseudo likelihood approach

Another approach for the estimation of β in model (4.5), is the use of pseudo likelihood func-

tions (Gouriéroux and Monfort 1993), which are not derived from the full likelihood (4.7). For

example, one could think of departing from the partial likelihood (4.6) taking into account all

values of the intervals [Zli , Zri ], i = 1, . . . , n:

L(β) =
n∏

i=1

m∑

j=1

αij

( exp(βsj)∑
j∈R(ti)

exp(βzj)

)δi
ωj .

However, this function neglects that in the denominator all combinations of values of the subjects

of the risk set would have to be considered. That is, for a given i, all combinations of values

z ∈ [zlk , zrk ] with k ≥ i would have to be considered. This is infeasible, even for small sample

sizes.

In contrast with that, the unobserved values zi in the log likelihood function of model (4.5),

l
(
β,Λ0(·)

)
=

n∑

i=1

(
δi
(
ln(λ0(ti)) + βzi

)
− Λ0(ti) exp(βzi)

)
,

could be replaced by its expected value conditioned on the observed interval:

EFZ (Z|ZL, ZR) =
∫ ZR

ZL

Z dFZ =

∫ zr

zl

zfZ(z) dz.

In case of a discrete Z, this expected value is equal to
∑m

j=1 αijsjωj . Plugging that expression

into the log likelihood, we obtain the pseudo log likelihood function

lps
(
β, λ0(·),ω

)
=

n∑

i=1

(
δi
(
ln(λ0(ti)) + β

m∑

j=1

αijsjωj
)
− Λ0(ti) exp

(
β

m∑

j=1

αijsjωj
))
.

For this function, the same procedure as in Section 4.4.1 can be applied: profiling out λ0, furnishes

the following function, the so-called partial pseudo likelihood function:

Lps(β) =
n∏

i=1

( exp(β
∑m

j=1 αijsjωj)∑
l∈R(ti)

exp(β
∑m

j=1 αljsjωj)

)δi
. (4.14)

The corresponding partial pseudo log likelihood function is given by

lps(β) =
n∑

i=1

δi

(
β

m∑

j=1

αijsjωj − ln
( ∑

l∈R(ti)

exp(β
m∑

j=1

αljsjωj)
))
.

This function can be maximized simultaneously with respect to β and ω using AMPL in combi-

nation with the NEOS solvers. Simulations will have to show, whether this approach is justified
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and, therefore, an admissible alternative to the computationally more intensive maximization of

the log likelihood (4.11).

4.4.5 Further comments

Whereas the likelihood function is derived given the observations (Yi, Zli , Zli , δi), i = 1, . . . , n,

there is no such equivalent for the proposed pseudo likelihood function (4.14). More theoretical

reinforcement is needed to find out, whether there is any theoretical derivation of this function

and not only the heuristic approach.

Only right-censored survival times have been considered, nonetheless, left- or interval-censoring

can also be considered. However, the resulting log likelihood functions to be maximized become

more cumbersome. If further covariates are included in the model, summarized in the vector X,

in all the likelihood functions above, the term exp(βz) has to be expanded to exp(βz + κ′x).


