
Chapter 5

Alternative Estimation Procedures

In this chapter, we present alternative procedures to estimate the unknown parameters of a

regression model with an interval-censored covariate. These methods have previously been applied

to other models and/or data settings and are now adapted to the particular case of the accelerated

failure time model (3.5) of Chapter 3:

ln(Y ) = µ+ βZ + σW,

where the discrete covariate Z is interval-censored in [Zl, Zr] and the response variable Y may be

either right- and left-censored or doubly censored. The unknown parameter vector is denoted by

θ = (µ, β, σ)′.

Section 5.1 deals with methods based on imputation techniques. The basic idea of these

methods consists in replacing the observed interval [Zl, Zr] by an imputed value and the posterior

use of standard regression methods. For the implementation of these estimation procedures, we

have used the statistical software S-Plus taking advantage of its implemented functions for the

evaluation of censored data. Further procedures which could be adapted to the given estimation

problem are sketched in Section 5.2.

5.1 Procedures based on data imputation

Imputation techniques have been widely used as methods to overcome the problem of missing

data; for an extensive treatise see, for example, Rubin (1987). Applications of these to interval-

censored data in survival analysis are reviewed in the following subsection, after which we propose

how these methods could be applied to the given estimation problem.
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5.1.1 Review of imputation techniques for interval-censored data

In a recent study, Geskus (2001) compares various techniques for the nonparametric estimation

of the distribution function of doubly-censored AIDS incubation periods. In his data setting,

equal to the one presented in Section 2.2, the moment of infection with HIV is interval-censored,

whereas AIDS onset is partially right-censored. Three of the techniques employed use imputation

methods for the interval-censored HIV infection times: midpoint, conditional mean and multiple

imputation. Once the HIV infection times are imputed, the Kaplan-Meier estimate for right-

censored data is used to estimate the distribution function of the AIDS incubation period. In the

case of midpoint imputation, the midpoint of the observed interval of HIV infection is imputed,

whereas in case of the conditional mean imputation, the expected date of HIV infection based on

the nonparametric maximum likelihood estimator of the HIV infection times and conditionally

to the observational interval is used. In case of multiple imputation, HIV infection times are

imputed multiply, also based on random draws from the NPMLE of HIV infection times, and the

subsequent Kaplan-Meier estimates are averaged out.

Concerning semi-parametric models with an interval-censored response variable, Pan (2000a)

proposes a multiple imputation approach. His method comprises the iteration of two steps until

convergence of the model parameters’ estimates is achieved. The first step consists of multiple

imputations of the finite interval-censored times, that is, intervals with a finite right-endpoint,

and the second of the application of standard statistical procedures for right-censored data. The

average of the obtained estimates for every imputed data set in step 2 furnishes the final parameter

estimate and is used, together with the Breslow estimate of the baseline survival function, for the

data imputation in the step 1.

A similar setting is considered by Pan (2000b) and Goggins, Finkelstein, and Zalavsky (1999).

They deal with the proportional hazards model for a doubly-censored response variable: the time

origin is interval-censored, the endpoint is possibly right-censored. Pan tackles the problem with

a noniterative multiple imputation approach imputing the time origin based on random draws

from the NPMLE. Thus, this imputation procedure does not take advantage of the knowledge

of the survival time’s endpoint. For each imputed data set, the model parameters are estimated

and the final estimate is obtained by averaging out these values.

For the same setting, Goggins et al. propose the use of a Monte Carlo EM algorithm. The

E-step of this algorithm consists of generating data sets of time origins, for which they use multiple

imputation based on random draws from the joint likelihood function of time origin and endpoint.

The likelihood function makes use of the parameter estimates obtained in the M-step. In this

step, the average log likelihood is used.
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5.1.2 Imputation methods

The idea behind these methods is to substitute the observed censored values by an imputed

value, and to posteriorly use standard regression methods to estimate the model parameters. We

distinguish between response variables that are left- and right-censored (case 1) and responses

that are doubly censored (case 2). In both cases, the observed interval [Zl, Zr] is replaced by

an imputed value, Z ′ say, and the estimation of the parameter vector θ is carried out applying

standard procedures for the log linear model based on the data vectors: either (U,Z ′, δ1, δ2) for

case 1 or (U, Y0l, Y0r, Z
′, δ1, δ2) for case 2, where U, δ1, and δ2 are defined as in (3.6) and (3.7),

and [Y0l, Y0r] denote the interval of the response’s time origin.

We consider the following imputation methods for the intervals [Zl, Zr]:

Midpoint imputation For each observation, impute the midpoint of the observed interval:

Z ′ = 1
2(Zl + Zr).

Conditional mean imputation The imputation is based on the NPMLE of FZ , obtained by

either the Turnbull estimator (see page 2) or, in case of current status data, the greatest

convex minorant algorithm (page 6), and conditioned on the observed interval:

Z ′ = EF̂Z
(Z|Zl, Zr).

Multiple imputation For d = 1, . . . , D, impute values Z
′(d)
1 , . . . , Z

′(d)
n of Z, randomly drawn

from the NPMLE F̂Z and conditionally to [Zli , Zri ], i = 1, . . . , n. That is, in case of a

discrete covariate Z with support S = {s1, . . . , sm} where s1 < · · · < sm, imputation is

carried out using the following probabilities:

P(Z
′(d)
i = sj |Zli , Zri) =

αijω̂j∑m
l=1 αilω̂l

, i = 1, . . . , n, j = 1, . . . ,m, (5.1)

where ωj = P(Z = sj). The indicator variables αij are equal to one if sj is an admissible

value for Zi and zero otherwise. The final estimate is the average of the values θ̂d obtained

for each of the D data sets:

θ̂ =
1

D

D∑

d=1

θ̂d.
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In case Y is doubly censored, the estimation procedures has to account for the censoring

of response variable’s time origin, too. However, so far, accelerated failure time models with

a doubly censored response variable have not been addressed in the literature and statistical

software does not cover that case. To tackle that estimation problem, the imputation techniques

above can also be applied to replace the intervals [Y0l , Y0r ] by an imputed value Y ′0

Comments

In contrast with the simultaneous maximization procedure of Chapter 3, the previously described

procedures can be applied to both discrete and continuous covariates. If Z is assumed discrete

and contains any right-censored data, a maximum value sm has to be determined. In case of

a continuous Z, the values sj in formula (5.1) are the values, on which the NPMLE F̂Z puts

positive mass, and the indicator functions αij correspond to these values.

As long as the majority of the observed intervals of Z is relatively narrow, midpoint imputation

might be the preferred method since it is easily accomplished and all three methods would yield

similar results. However, for broader intervals, for example in case of current status data, this

method might cause biased estimation results when the distribution of Z is not uniform over

these intervals.

Some advantages of multiple imputation over single imputation are (Rubin 1987): increase of

efficiency, the additional variability as the unknown interval-censored values is taken into account,

and it allows for sensitivity analysis. On the other hand, one important disadvantage is the higher

computational cost compared with single imputation. If imputation is applied to both intervals,

[Zl, Zr] and [Y0l , Y0r ], both advantages and disadvantages of multiple imputation are reinforced.

The imputation techniques using midpoint and conditional mean imputation have been im-

plemented by the author with the programming code of the statistical software package S-Plus;

see Section C.3 on page 139. It is one of advantages of this software that it offers two func-

tions to obtain the parameter estimation of the log linear survival model for completely observed

covariates, namely the functions survReg and censorReg, as well as a big variety of different

distributions for the response variable.

5.2 Summary of other possible estimation procedures

The methods sketched in this section could also be applied to the given estimation problem,

but, in contrast of the procedures above, have not been implemented by the author. The first of

these methods is the adaptation of the procedure proposed by Goggins, Finkelstein, and Zalavsky

(1999), the following one an approach if the distribution of Z is assumed known, and the remaining

two use profile and local likelihood methods, respectively.
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5.2.1 The Monte Carlo EM algorithm of Goggins et al.

Herein, we adapt the method of Goggins et al. (1999) to the log linear model when the response

is partially left- and right-censored and the covariate is discrete with possible values s1, . . . , sm.

This Monte Carlo EM algorithm consists of the following steps:

1. Initialization

Choose initial values (θ̂
(0)
, ω̂(0)). For example, for (µ̂(0), β̂(0), σ̂(0))′ choose the maximum

likelihood estimates when adjusting model (3.5) to the data using midpoint imputation for

the intervals [Zl, Zr]. For ω̂
(0), choose ω̂

(0)
j = 1

m , j = 1, . . . ,m.

2. The E-step (lth iteration)

Generate D data sets, each consisting of the observations (Ui, δ1i , δ2i) and the imputed

values Z
′(d)
i , i = 1, . . . , n, d = 1, . . . , D. The variable U , defined in Section 3.2, is the

random variable of the observed responses and δ1 and δ2 are the indicator variables for

exact and right-censored observations, respectively. The imputed data are random draws

from the joint likelihood function (3.15), each value drawn according to the probabilities

P(Z
′(d)
i = sj |Zli , Zri) =

αijf(ui|sj)δ1iS(ui|sj)δ2i
(
1− S(ui|sj)

)(1−δ1i )(1−δ2i )ω̂(l−1)
j

∑m
k=1 αikf(ui|sk)δ1iS(ui|sk)δ2i

(
1− S(ui|sk)

)(1−δ1i )(1−δ2i )ω̂(l−1)
k

,

for i = 1, . . . , n, j = 1, . . . ,m, and αij as in (3.14). Note that the values of the density and

the survival functions, f and S, are calculated using the estimates of the previous iteration:

(µ̂(l−1), β̂(l−1), σ̂(l−1))′. Their expression is determined by the choice of the distribution of Y .

3. The M-step (lth iteration)

For each of the D data sets consisting of
(
Ui, δ1i , δ2i , Z

′(d)
i

)
, i = 1, . . . , n, the joint likelihood

functions are given by

Ld(θ,ω) =
n∏

i=1

f(ui|z′(d)i )δ1iS(ui|z′(d)i )δ2i
(
1− S(ui|z′(d)i )

)(1−δ1i )(1−δ2i )P(Z = z
′(d)
i ).

These likelihood functions can be separated into two factors depending on either θ or ω.

Hence, the updated estimates, θ̂
(l)

and ω̂(l), can be obtained separately:

(a) Obtain the new estimate ω̂(l) from the empirical distribution function F̂Z of all imputed

values Z
′(d)
i , i = 1, . . . , n, d = 1, . . . , D.

(b) Maximizing the average log likelihood function, 1
D

∑D
d=1 ld(θ), furnishes θ̂

(l)
. The log

likelihood functions ld(θ) = lnLd(θ), d = 1, . . . , D, have the following expressions:

ld(θ) =
n∑

i=1

ln
(
f(ui|z′(d)i )δ1iS(ui|z′(d)i )δ2i

(
1− S(ui|z′(d)i )

)(1−δ1i )(1−δ2i )
)
.
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4. Return to step 2 until convergence is achieved.

Alternatively, in step 3b, instead of maximizing the average log likelihood function, the log linear

model could be adjusted for each of the D data sets. In this case, the estimate θ̂
(l)

would be

calculated as the average of the estimates θ̂
(l)
d , d = 1, . . . , D. As Goggins et al. remark, the choice

of D has to take into account the grid of values of Z, because mass points may disappear during

an iteration. The variance of the parameter estimates can be estimated by means of the expected

value of the score statistics, which accounts for the additional variability due to the imputation

of interval-censored data.

5.2.2 Parametric choice for the covariate’s distribution

An alternative to the nonparametric estimation of FZ is a parametric choice for the distribution

of Z. In this case, the particular expression of the density function, fZ , can be plugged into the

likelihood function. For example, the likelihood function (3.13) for a model with a possibly right-

and left-censored response variable is then equal to

L(θ,η) =
n∏

i=1

∫ zri

zli

f(ui|z)δ1iS(ui|z)δ2i
(
1− S(ui|z)

)(1−δ1i )(1−δ2i )fZ(z) dz, (5.2)

where η denotes the parameters of Z’s distribution. Maximizing expression (5.2) yields the

estimated parameters of both the model and the distribution of Z.
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Figure 5.1: Trapezoidal method

For the maximization of (5.2), the integrals can be ap-

proximated by sums applying the trapezoidal method, which

is illustrated in Figure 5.1 for a continuous function f(x).

A grid of points has to be chosen, say x1, . . . , xn. Then,

the area under the function between x1 and xn is approxi-

mated by the sum over the areas of the trapezoids defined

by xj , xj+1, f(xj), and f(xj+1), j = 1, . . . , n− 1:

∫ xn

x1

f(x) dx ≈
n−1∑

j=1

1
2(xj+1 − xj)

(
f(xj) + f(xj+1)

)
. (5.3)

The finer the grid of points, the more accurate the approximation, but the higher the compu-

tational cost. For the application of the trapezoidal method, to make programming easier, it is

recommendable that the interval endpoints are a subset of the chosen grid of points and that

these are equidistant. For the implementation of this procedure, AMPL is an appropriate tool

and Maple can be used to estimate the variances of θ̂ and η̂.
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As an example, consider the choice of the exponential distribution with the density function

f(z) = η exp(−ηz). Hence, the likelihood function to be maximized has the following expression:

Ln(θ, η) =

n∏

i=1

∫ zri

zli

f(ui|z)δ1iS(ui|z)δ2i
(
1− S(ui|z)

)(1−δ1i )(1−δ2i )η exp(−ηz) dz.

Each of the n intergrals could be approximated by formula (5.3), where f(xj) would be given by

f(ui|xj)δ1iS(ui|xj)δ2i
(
1− S(ui|xj)

)(1−δ1i )(1−δ2i )η exp(−ηxj).

5.2.3 Profile likelihood function

To determine the profile likelihood function and maximize it, is an approach to obtain a maxi-

mum likelihood estimator θ̂, when the likelihood function also depends on a infinite-dimensional

nuisance parameter such as in semi-parametric models (Murphy and van der Vaart 2000). For

example, as long as fZ remains unspecified in likelihood function (5.2), this function depends on

such a nuisance parameter.

The idea of this approach is to “profile out” the nuisance parameter, say η, to obtain the

profile likelihood function Lprof (θ), which is defined as follows:

Lprof (θ) = sup
η
L(θ,η).

The maximization of Lprof (θ) furnishes the maximum likelihood estimator θ̂, since the profile

likelihood function behaves like the ordinary likelihood function in that it has a quadratic expan-

sion (Murphy and van der Vaart).

Staniswalis and Thall (2001) show how the profile likelihood function can be obtained and

recommend its use in case the maximization of lnL(θ, η) is computationally difficult due to the

infinite-dimensional parameter η.

5.2.4 Local likelihood approach

Another approach to tackle the maximization of the above likelihood functions with a continuous

covariate is the local likelihood approach as proposed by Betensky, Lindsey, Ryan, and Wand

(2002) and Bebchuk and Betensky (2002). They use it for the Cox model with interval-censored

survival times and the estimation of the distribution function of a doubly-censored incubation

time, respectively.
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Applied to model (3.5), this method consists of the use of a local approximation of the

covariate’s density function fZ by means of a kernel estimate at a grid of points to be chosen.

This estimate is plugged into the (log) likelihood function, which has to be maximized with

respect to θ and the parameters of the kernel function. According to Bebchuk and Betensky, one

of the advantages of the local likelihood method is that it avoids the possible biasof a parametric

choice of FZ . However, asymptotic properties are unknown because the local likelihood function

it is not derived from the true likelihood.


