
Appendix B

Theoretical aspects

B.1 Equivalence of logistic regression and the logistic survival

model for current status data

B.1.1 Current status shelf life data

Each consumer is given one sample of a certain product stored during different times under con-

ditions of interest. Consumers have to judge whether they would consume this sample regularly

or not. The obtained data are as illustrated in Table B.1.

Table B.1: Current status shelf life data

Consumer Storage time Rejectiona

1 4 1

2 24 1

3 8 0

4 12 0
...

...
...

n 36 1

a 1: rejection; 0: acceptance
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B.1.2 Logistic Regression

Let Y be the random variable for the rejection of the product of interest:

Y =




1 Rejection

0 Acceptance
.

The logistic regression models the probability that the product is rejected in dependence of one

or more covariates. Our covariate of interest is the storage time T , that is, we have the following

model, allowing for further covariates resumed in the vector Z:

p(t, z) = P(Y = 1|t, z) = exp(α+ βt+ γ ′z)

1 + exp(α+ βt+ γ ′z)
, (B.1)

which is equivalent to

ln
( p(t, z)

1− p(t, z)

)
= α+ βt+ γ ′z.

Given independent observations (yi, ti, zi), i = 1, . . . , n, the likelihood function for the unknown

model parameters is the following:

L(α, β,γ) =
n∏

i=1

p(ti, zi)
yi
(
1− p(ti, zi)

)1−yi

=

n∏

i=1

( exp(α+ βti + γ ′zi)

1 + exp(α+ βti + γ ′zi)

)yi( 1

1 + exp(α+ βti + γ ′zi)

)1−yi

=
n∏

i=1

exp(α+ βti + γ ′zi)
yi

1 + exp(α+ βti + γ ′zi)
. (B.2)

Maximizing L(α, β,γ) furnishes the maximum likelihood estimators for the model parameters

α, β and γ.

B.1.3 The logistic survival model

The logistic survival model for the shelf life T has the following expression:

T = µ+ κ′z + σW, (B.3)

where z is the vector of covariates to be considered as in model (B.1). The error term distribution

W is the standard logistic distribution with distribution function

FW (w) =
ew

1 + ew
.
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The (independent) observations are summarized by (ui, δi, zi), i = 1, . . . , n, being δi = 1{ti≤ui}

the indicator whether the observed time ui has exceeded or not the shelf life ti. That is, ui

corresponds to ti in Section B.1.2, and δi to yi. From model (B.3), we obtain

w = 1
σ (t− µ− κ′z),

and this leads to the following expression of the likelihood function:

L(µ,κ, σ) =
n∏

i=1

FW (wi)
δi
(
1− FW (wi)

)1−δi

=
n∏

i=1

( exp
(

1
σ (ui − µ− κ′zi)

)

1 + exp
(

1
σ (ui − µ− κ′zi)

)
)δi( 1

1 + exp
(

1
σ (ui − µ− κ′zi)

)
)1−δi

=

n∏

i=1

(
exp
(

1
σ (ui − µ− κ′zi)

))δi

1 + exp
(

1
σ (ui − µ− κ′zi)

) . (B.4)

We see that the likelihood functions (B.2) and (B.4) are equivalent for yi = δi, ti = ui, α = −µ/σ,
β = 1

σ , and γ = −κ/σ. Therefore, the estimates for the probabilities p(t, z) of model (B.1) and

FT (t) = FW ( 1
σ (t− µ− κ′z)) of model (B.3) will amount to the same values.

B.2 Variance estimation of the relative risk

We apply the delta method to obtain a variance estimate of the estimator of the relative risk:

R̂R = g(β̂, σ̂) = exp
(
− β̂/σ̂

)
. With

∂g

∂β
g(β, σ) = −e

−β/σ

σ
,

∂g

∂σ
g(β, σ) =

β

σ2
e−β/σ,

and denoting the variances of β̂ and σ̂ by σ2
β̂
and σ2

σ̂, as well as, the covariance of β̂ and σ̂ by

σβ̂σ̂, the formula for the variance of R̂R is the following:

Var(R̂R) =
(
− e−β/σ

σ

)2
σ2
β̂
+
( β
σ2
e−β/σ

)2
σ2
σ̂ + 2

(
− e−β/σ

σ

) β
σ2
e−β/σσβ̂σ̂

=
RR2

σ2

(
σ2
β̂
− 2

β

σ
σβ̂σ̂ +

β2

σ2
σ2
σ̂

)
.
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Thus, the variance of the estimated relative risk can be estimated by:

V̂ar(R̂R) =
R̂R

2

σ̂2

(
σ̂2
β̂
− 2

β̂

σ̂
σ̂β̂σ̂ +

β̂2

σ̂2
σ̂2
σ̂

)
. (B.5)

B.3 Maxima of the likelihood and our proposed reduced version

Consider the likelihood (3.15) on page 46 and our proposed reduced version:

L(θ,ω) =
n∏

i=1

m∑

j=1

αijf(ui(sj)|sj)δ1iS(ui(sj)|sj)δ2i
(
1− S(ui(sj)|sj)

)(1−δ1i )(1−δ2i )ωj ,

L∗(θ,ω∗) =
n∏

i=1

m∗∑

j=1

α∗ijf(ui(s
∗
j )|s∗j )δ1iS(ui(s∗j )|s∗j )δ2i

(
1− S(ui(s

∗
j )|s∗j )

)(1−δ1i )(1−δ2i )ω∗j ,

where ω∗ contains all ωj corresponding to the nonzero elements of the maximum likelihood

estimator ω̂n, obtained by maximizing the likelihood (3.15) simultaneously with respect to θ and

ω. As in Section 3.5.3, we denote by m∗ the dimension of ω∗, by s∗j the values sj of the support

of Z with ω̂j > 0, and define α∗ij =
�
{s∗j∈[Zli ,Zri ]}

, i = 1, . . . , n, j = 1, . . . ,m∗. Also, let ω0 be

the subvector of ω which contains the ωj corresponding to the zero elements of ω̂n, and define

m0, s0j , and α
0
ij analogously to m∗, s∗j , and α

∗
ij .

Obviously, the following equality holds:

m∑

j=1

αijC(ui(sj)|sj ;θ)ωj =
m∗∑

j=1

α∗ijC(ui(s
∗
j )|s∗j ;θ)ω∗j +

m0∑

j=1

α0
ijC(ui(s

0
j )|s0j ;θ)ω0

j , (B.6)

where C(·;θ) can be replaced by f(·;θ), S(·;θ) or 1−S(·;θ). Consequently, the have the equality
L(θ̂n, ω̂n) = L∗(θ̂n, ω̂

∗
n), because ω̂

0
nj = 0, j = 1, . . . ,m0.
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Now suppose, there exist (θ′,ω∗′) such that L∗(θ′,ω∗′) > L∗(θ̂n, ω̂
∗
n). This would imply:

L∗(θ′,ω∗′) =
n∏

i=1

( m∗∑

j=1

α∗ijCi(ui(s
∗
j )|s∗j ;θ′)ω∗j ′

)

(B.6)
=

n∏

i=1

[( m∗∑

j=1

α∗ijCi(ui(s
∗
j )|s∗j ;θ′)ω∗j ′

)
+
(

=0︷ ︸︸ ︷
m0∑

j=1

α0
ijCi(ui(s

0
j )|s0j ;θ′)ω̂0

nj

)]

︸ ︷︷ ︸
=L
(
θ′,(ω∗′,ω̂0

n)
)

>
n∏

i=1

[( m∗∑

j=1

α∗ijCi(ui(s
∗
j )|s∗j ; θ̂n)ω̂∗nj

)
+
( m0∑

j=1

α0
ijCi(ui(s

0
j )|s0j ; θ̂n)ω̂0

nj

)]

= L(θ̂n, ω̂n)

=⇒ L
(
θ′, (ω∗′, ω̂0

n)
)
> L(θ̂n, ω̂n) µ

This contradiction proves, that maximizing the reduced version of the likelihood yields the nonzero

elements of the joint maximum likelihood estimator (θ̂n, ω̂n).


