
Memory Systems for
High-Performance Computing:
The Capacity and Reliability

Implications

Author:
Darko Živanović

Thesis director:
Petar Radojković

Tutor:
Eduard Ayguadé

This dissertation is submitted for the degree of
Doctor of Philosophy

Departament of Computer Architecture
Universitat Politècnica de Catalunya

Barcelona, 2018

Acknowledgements

First of all, I would like to thank my advisor Petar Radojković for his guid-
ance and help. It has been an honor to be his PhD student. Special gratitude
for believing in me from the beginning, for his patience and time, and for
teaching me to look at the problems from different perspectives. I would also
like to thank professor Eduard Ayguadé for his help and constructive com-
ments on each topic covered in this thesis. Special thanks to Paul Carpenter,
for his help, especially with mathematics and statistics, and for helping and
teaching me to present results in a structural and concise manner. I believe
that, over the years, I learned so much from Petar, Edu and Paul, and it was
a great pleasure to be part of their team.

I would like to thank all my colleagues from Memory Systems group at
Barcelona Supercomputing Center and all guys from my office for sharing
both good and bad moments together. I would also like to thank Hyunsung
Shin from Samsung in Korea, for his technical help and for all the good times
during his stays in Barcelona.

Thanks to pre-lectura committee and their constructive comments; the
quality of my PhD thesis manuscript was significantly improved.

Also, I would like to thank my roommates and friends: Zoki, Rajo, LošMi,
Coa, Marković, Boki, Brane, Mrdži, Ratko, Tanasije, Ugi, DjoMla, Pile,
Milan, Pavle, Ana, Radule and Milica for sharing all the great times in
Barcelona. Special thanks to Klimek family, for making Barcelona feel like
my second home.

Thanks to my mother and father, my brother and his wife for their un-
conditional support.

Most of all, I would like thank my Jovana, for her patience, understanding
and endless support. Also, I thank my super dog Tofi, for making me smile
even in the hardest of times. And thank you Jan, my son, for inspiring me
while writing the last paragraphs of this thesis.

Author

iii

This work was supported by the Collaboration Agreement between Samsung
Electronics Co., Ltd. and Barcelona Supercomputing Center, Spanish Gov-
ernment through Severo Ochoa programme (SEV-2015-0493), by the Span-
ish Ministry of Science and Technology through TIN2015-65316-P project
and by the Generalitat de Catalunya (contracts 2014-SGR-1051 and 2014-
SGR-1272). This work has also received funding from the European Union’s
Horizon 2020 research and innovation programme under ExaNoDe project
(grant agreement No 671578). Author was supported by the Severo Ochoa
grant (SVP-2014-068501) of the Ministry of Economy and Competitiveness
of Spain.

iv

Abstract

Memory systems are significant contributors to the overall power require-
ments, energy consumption, and the operational cost of large high-performance
computing systems (HPC). Limitations of main memory systems in terms of
latency, bandwidth and capacity, can significantly affect the performance of
HPC applications, and can have strong negative impact on system scalabil-
ity. In addition, errors in the main memory system can have a strong impact
on the reliability, accessibility and serviceability of large-scale clusters. This
thesis studies capacity and reliability issues in modern memory systems for
high-performance computing.

The choice of main memory capacity is an important aspect of high-
performance computing memory system design. This choice becomes in-
creasingly important now that 3D-stacked memories are entering the mar-
ket. Compared with conventional DIMMs, 3D memory chiplets provide bet-
ter performance and energy efficiency but lower memory capacities. There-
fore the adoption of 3D-stacked memories in the HPC domain depends on
whether we can find use cases that require much less memory than is available
now. We analyze memory capacity requirements of important HPC bench-
marks and applications. The study identifies the HPC applications and use
cases with memory footprints that could be provided by 3D-stacked memory
chiplets, making a first step towards the adoption of this novel technology
in the HPC domain. For HPC domains where large memory capacities are
required, we demonstrate that scaling-in of HPC applications reduces energy
consumption and the running time of a batch of jobs. We also show that
upgrading the per-node memory capacity enables greater degree of scaling-in
and additional energy savings.

Memory system is one of the main causes of hardware failures. In each
generation, the DRAM chip density and the amount of the memory in sys-
tems increase, while the DRAM technology process is constantly shrinking.
Therefore, we could expect that the DRAM failures could have a serious
impact on the future-systems reliability. This thesis studies DRAM errors
observed on a production HPC system during a period of two years. We
clearly distinguish between two different approaches for the DRAM error

v

analysis: categorical analysis and the analysis of error rates. The first ap-
proach compares the errors at the DIMM level and partitions the DIMMs
into various categories, e.g. based on whether they did or did not experience
an error. The second approach is to analyze the error rates, i.e., to present
the total number of errors relative to other statistics, typically the number
of MB-hours or the duration of the observation period. We show that al-
though DRAM error analysis may be performed with both approaches, they
are not interchangeable and can lead to completely different conclusions. We
further demonstrate the importance of providing statistical significance and
presenting results that have practical value and real-life use. We show that
various widely-accepted approaches for DRAM error analysis may provide
data that appear to support an interesting conclusion, but are not statisti-
cally significant, meaning that they could merely be the result of chance. We
hope the study of methods for DRAM error analysis presented in this thesis
will become a standard for any future analysis of DRAM errors in the field.

vi

Contents

Front matter i

Acknowledgements . iii

Abstract . v

Contents . x

List of figures . xiv

List of tables . xv

1 Introduction 1

1.1 Challenges in current memory systems 2

1.1.1 Memory performance 2

1.1.2 Architectural exploration 4

1.1.3 Memory capacity . 4

1.1.4 Memory reliability . 5

1.2 Thesis contributions . 7

1.2.1 Memory capacity requirements
of HPC applications 7

1.2.2 Large-memory nodes for energy-efficient HPC 7

1.2.3 DRAM errors in the field 8

1.3 Thesis structure . 9

2 Background 11

2.1 DRAM memory system overview 11

2.1.1 DRAM organization 12

2.1.2 Error-Correcting Codes 14

2.2 Emerging memory technologies 17

2.2.1 3D-stacked DRAM . 17

2.2.2 Non-volatile memories 20

2.2.3 Implications on memory system capacity
and reliability . 21

vii

CONTENTS

3 Experimental methodology 23
3.1 Hardware platform . 23
3.2 Applications . 24

3.2.1 HPC benchmarks . 25
3.2.2 Production HPC applications 25

3.3 Tools . 28
3.3.1 Extrae . 28
3.3.2 Paraver . 29
3.3.3 Limpio . 30
3.3.4 Error logging daemons 30

4 Memory capacity requirements of HPC applications 31
4.1 Introduction . 32
4.2 Experimental setup . 34

4.2.1 Hardware platform . 35
4.2.2 Applications . 35
4.2.3 Methodology . 35

4.3 High-Performance Linpack . 36
4.3.1 Measured memory requirements 36
4.3.2 Analysis . 37
4.3.3 Mathematical analysis 39

4.4 High-Performance Conjugate Gradients 42
4.4.1 Measured memory requirements 42
4.4.2 Analysis . 44

4.5 Production HPC applications 45
4.5.1 Memory footprint vs. Number of processes 45
4.5.2 Selecting the number of processes 48
4.5.3 Memory requirements of production

HPC applications . 52
4.5.4 Towards weak scaling analysis 55

4.6 Implications . 57
4.6.1 3D-stacked DRAM in HPC memory systems:

Opportunities and challenges 57
4.7 Related work . 60
4.8 Summary . 62

5 Large-memory nodes
for energy efficient HPC 63
5.1 Introduction . 65
5.2 Methodology . 66

5.2.1 Hardware platform . 66

viii

CONTENTS

5.2.2 Applications . 66

5.2.3 Power and energy measurements 67

5.3 Scaling-in on standard nodes 68

5.3.1 Execution time vs. node-hours vs. energy 68

5.3.2 Understanding energy vs. node-hours 71

5.3.3 Implications and impact 71

5.4 Large-memory nodes for energy efficiency 72

5.4.1 Large-memory nodes for capacity computing 74

5.4.2 Large-memory node cost-benefit analysis 75

5.5 Related work . 76

5.6 Second thoughts on scalability 78

5.7 Summary . 78

6 DRAM errors in the field 81

6.1 Introduction . 81

6.2 Background . 84

6.2.1 Taxonomy: Are correctable DRAM errors failures? . . 84

6.2.2 Statistical significance 85

6.3 Environment description . 86

6.3.1 MareNostrum 3 . 86

6.3.2 Data collection . 87

6.4 Categorical analysis . 88

6.4.1 Uncorrected errors . 88

6.4.2 Corrected errors . 90

6.4.3 Corrected vs. uncorrected errors 91

6.4.4 Errors vs. Faults . 92

6.4.5 Summary . 92

6.5 Error rate analysis . 93

6.5.1 Uncorrected error characterization 93

6.5.2 Corrected error characterization 97

6.5.3 Statistical significance 100

6.5.4 Corrected vs. uncorrected errors 101

6.5.5 Error rates vs. Categorical analysis 102

6.5.6 Summary . 104

6.6 Related Work . 105

6.6.1 Uncorrectable DRAM errors and whole system resiliency105

6.6.2 Correctable DRAM errors 106

6.7 Summary . 108

ix

CONTENTS

7 Conclusions 111
7.1 Thesis contributions . 111

7.1.1 Memory capacity requirements
of HPC applications 111

7.1.2 Large-memory nodes
for high-performance computing 112

7.1.3 DRAM errors in the field 112
7.2 Future work . 113

7.2.1 Memory capacity study 113
7.2.2 Memory reliability study 114

7.3 Publications . 115
7.3.1 Conferences . 115
7.3.2 Journals . 115
7.3.3 Posters . 116
7.3.4 Under submission . 116
7.3.5 Other publications . 116

Back matter 117
Bibliography . 117
Glossary . 128

x

List of Figures

1.1 Memory system research directions. This thesis focuses on
memory capacity and memory resiliency. 3

2.1 Main memory system comprises of memory controller, mem-
ory bus and a number of DRAM chips organized into DIMMs. 12

2.2 DRAM cell consists of one access-transistor and one capacitor.
The cell is accessed through the corresponding wordline and
bitline. 12

2.3 Large number of DRAM cells is grouped together to form
DIMM array structure. 13

2.4 One rank of DRAM comprises of several banks, each spreading
over several DRAM chips that are accessed in parallel. 14

2.5 Parity bit generation. Parity bit is generated from a recursive
application of the exclusive-or function to the bits in the data
bit vector. 15

2.6 Humming distance illustration. 16
2.7 Chipkill illustration. 17
2.8 HMC internal structure. 19
2.9 HBM internal structure. 19

3.1 MareNostrum 3 compute node comprises of two eight-core
Sandy Bridge processors. Each processor connects to main
memory through four memory channels. 24

4.1 Per-core memory capacity of HPC systems leading the TOP500
list (June 2015). Systems with exactly 2, 3, and 4 GB of
memory per core are included in bars [2,3) GB, [3,4) GB, and
[4,5) GB, respectively. Today’s HPC systems are dominated
by x86 architectures coupled with 2–3 GB of main memory
per core. The next most prevalent systems are Blue Gene
platforms based on PowerPC cores with 1 GB of memory per
core, included in the [1,2) GB bar. 32

xi

LIST OF FIGURES

4.2 HPL performance also depends on the available memory ca-
pacity. When increasing per-core memory, HPL performance
first increases and then reaches the saturation point — the sus-
tained floating-point rate (GFLOP/s) of the system. As we
increase the number of processes, the saturation point moves
towards larger per-core memory capacities. 37

4.3 Per-core memory needed to get 90%, 95% and 99% of the ideal
HPL performance, for different sizes of HPC systems. Three
systems, with 250 MB/core (year 2003), 2 GB/core (year 2016)
and 16.1 GB/core (future potential system) are compared with
our estimation curves. Moving from 95% to 99% of ideal HPL
performance requires a huge step in the amount of per-core
memory (axes are plotted on logarithmic scales). 38

4.4 HPCG performance also depends on the available memory ca-
pacity. Performance increases until it reaches the saturation
point, where it is constrained by the sustained memory band-
width. The saturation point remains constant across a wide
range of HPCG processes, at around 512 MB of main memory
per process. 43

4.5 Per-process memory footprints shrink as the number of pro-
cesses increases. 47

4.6 Trade-offs between normalized execution time and experiment
cost (CPU-hours) for applications with good and limited scal-
ability. 50

4.7 The representative number of application processes is deter-
mined by application scalability and the targeted HPC category. 51

4.8 Memory footprints of production HPC applications depend on
application scalability and the targeted HPC category. Only
the applications with limited scalability that target capacity
computing require gigabytes of main memory per process. . . 53

4.9 As the number of processes increase, memory footprints of
worker processes decrease as expected, but memory footprint
of the master process increases: ALYA, Test Case A. 54

4.10 Increasing the input dataset changes memory footprint and
scalability of NAMD application. We detect the same trend
for all UEABS applications. 56

5.1 Evolution of per-core memory capacity of HPC systems lead-
ing the TOP500 list during the period from 2014 until 2016.
Each year, number of HPC systems that comprise more than
4GB of main memory per core is increasing. 64

xii

LIST OF FIGURES

5.2 ALYA, 1–64 nodes: Increasing the number of nodes increases
both energy and node-hours, with strong correlation. 69

5.4 ALYA, 1–64 nodes: Scaling-out decreases power per node,
since nodes spend more time in communication. 70

5.5 Scaling-in increases memory requirements and energy efficiency
of HPC applications. Node-hours and energy are shown rela-
tive to the experiment on the minimum number of standard
nodes. 73

5.6 Summary of energy savings enabled by using large-memory
nodes. [a → b] refers to a shift from a standard to b large-
memory nodes. 74

5.7 System scaling can be horizontal (scale-in or -out) and vertical
(scale-up or -down). Traditionally, HPC community is focused
mainly on scale-out, referring to it simply as scaling. Our
study analyzes scale-in on standard nodes, and a combined
scale-up and scale-in approach on large-memory nodes. 77

6.1 Percentage of DIMMs with uncorrected errors: Manufacturer
and technology comparison. 89

6.2 Percentage of DIMMs with corrected errors: Manufacturer
and technology comparison. 91

6.3 Uncorrected errors per day. The bars show the sum of the
UEs for all the DIMMs of a given manufacturer. 95

6.4 Average uncorrected errors per MB-hour: each point is the
running average number of uncorrected errors per MB-hour
observed up to that point. The running average is an impulse
and down-ramp function. Depending on the moment of ob-
servation, we reach different conclusions about the ranking of
the different DIMM manufacturers. During the observation
period, Manufacturer A and C switched order twice. 96

6.5 Corrected errors per day. On most days we detect zero or
close to zero correctable errors; but on a few days there are
very large numbers of correctable errors, up to about 110,000
errors. 98

6.6 Average corrected errors per MB-hour: each point is the run-
ning average observed up to that point. The running average
is an impulse and down-ramp function. Depending on the mo-
ment of observation, we reach different conclusions about the
ranking of the DIMM manufacturers. During the observation
period, Manufacturer A and B switched order eight times. . . 99

xiii

LIST OF FIGURES

6.7 Corrected errors, faults and uncorrected errors per billion MB
hours. The corrected error and fault rates have the same trend,
but the uncorrected error rates exhibit a different trend. . . 102

6.8 Mean time between corrected errors, faults and uncorrected
errors. The corrected error and fault rates have the same
trend, but the uncorrected error rates exhibit a different trend.103

6.9 Technology comparison ambiguity, uncorrected errors: Errors
per MB-hour vs. Percentage of DIMMs with errors. 104

6.10 Technology comparison ambiguity, corrected errors: Errors
per MB-hour vs. Percentage of DIMMs with errors. 104

xiv

List of Tables

3.1 Production HPC applications analyzed in the thesis 29

4.1 Scientific HPC applications used in the study 46

5.1 UEABS applications used in the study. 67
5.2 ALYA, 1 vs. 64 jobs: The scale-in approach is 27× slower

for a single job, but 2.37× faster for 64 jobs. In both ex-
periments scaling-in reduces node-hours by 2.37× and energy
consumption by 2.07×. 70

5.3 CP2K, 1 vs. 8 jobs: Execution on large-memory nodes is 6.5×
slower for one job, but 1.23× faster for eight jobs. For both job
sizes, node-hours and energy reduce when using large-memory
nodes. 75

5.4 Payback from large-memory nodes over five-year system life-
time [%]. 76

6.1 Contingency table: Dependency between the number of DIMMs
that experienced uncorrectable error (UE) and the DIMM
manufacturer. The statistical test indicates no dependency,
p-value = 0.24, so we cannot claim any statistically significant
difference in the probability that DIMMs from Manufacturers
A, B and C will experience uncorrectable errors. 89

6.2 Contingency table: Dependency between correctable (CE) and
uncorrectable (UE) errors (All manufacturers). The statistical
test indicates strong dependency, p-value < 2.2 × 10−16; i.e.
we can claim that DIMMs that experienced CEs have higher
probability of also experiencing UEs. 92

xv

CHAPTER1
Introduction

High-performance computing (HPC) is indispensable for a diverse range of
scientific, engineering, and business domains. Over the years, it has become
a crucial pillar of science and a forefront of scientific discovery and commer-
cial innovation. HPC refers to the use of supercomputers to solve complex
computational problems through computer modeling, simulation, and data
analysis. A supercomputer or an HPC system is essentially a network of com-
pute nodes, each containing multiple processing cores as well as its own local
memory to execute a wide range of software algorithms. Current generation
supercomputing systems are comprised of tens or hundreds of thousands of
compute nodes based on modern multi-core architectures and petabytes of
memory to satisfy the demands of the HPC applications. However, to reach
the next-generation HPC computing system able to perform 1018 floating
point operations per second, i.e. the exascale system, HPC is undergoing a
major change in terms of energy and power, memory and storage, concur-
rency, and resilience [49].

Memory systems are significant contributors to the overall power require-
ments, energy consumption, and the operational cost of large HPC clus-
ters [49, 102, 109]. The limitations of main memory system in terms of
latency, bandwidth and capacity, can significantly affect the performance of
HPC applications, and could have strong negative impact on system scal-
ability [31, 71]. Dynamic Random Access Memory (DRAM) has been the
dominant main memory technology of most computing systems for decades.
Its relatively low cost per bit of stored data and high access speed have sat-
isfied the most typical requirements of computing systems. However, the
rate of improvement in microprocessor speed exceeded the rate of improve-
ment in DRAM memory speed, so for most of the applications in current
computer systems, memory system limits the performance [67, 101]. In the

1

1.1. CHALLENGES IN CURRENT MEMORY SYSTEMS

future, we can expect even higher pressure on HPC memory systems. Future
HPC processors will be based on many-core architectures which will result
in significant reduction in per-core memory capacity and bandwidth relative
to current architectures [26].

Consequently, it is questionable whether conventionally-used memory ar-
chitectures based on mature DRAM technology and DIMM organization will
meet the needs of next-generation HPC systems. Thus, significant effort
is invested in research and development of novel memory systems. On the
one hand, memory manufacturers propose hybrid memory cube (HMC) [37]
and high-bandwidth memory (HBM) [44]. These solutions use 2.5D and 3D
stacking to bring DRAM main memory closer to the processing units, which
significantly improves bandwidth over conventional DIMM-based architec-
tures. On the other hand, expected end of scaling of DRAM technology mo-
tivates development of non-volatile memories (NVMs) and research on het-
erogeneous memory systems that combine DRAM and NVMs [84, 110, 120].
Recent trends in the research, development, and manufacturing of NVM
technologies provide optimism that these technologies can be used to pro-
vide adequate amounts of main memory capacities for future systems.

1.1 Challenges in current memory systems

Research on memory systems for HPC can take several directions. Some
of the most important research directions are summarized in Figure 1.1.
However, in practice, these research directions are not completely orthogonal
and independent, as Figure 1.1 might suggest. In this section we briefly
comment on each of the four directions: memory performance, architectural
exploration, memory capacity and memory reliability. This thesis focuses
on the capacity and reliability issues in memory systems for HPC. In the
first part of the thesis we analyze the memory capacity requirements of HPC
applications, and in the second part, we present a field study of DRAM errors
on the MareNostrum 3 supercomputer.

1.1.1 Memory performance

Since the first vector supercomputers, large scale applications have tradition-
ally been floating point oriented codes, and HPC architectures have evolved
to meet the needs of those applications. However, in today’s supercomputers,
the application performance is dominated by the memory system. Analyzing
memory system performance implies studying the bottlenecks in the execu-
tion of HPC applications such as memory bandwidth and memory latency.

2

1.1. CHALLENGES IN CURRENT MEMORY SYSTEMS

Memory performanceMemory capacity

Architectural explorationMemory reliability

(bandwidth, latency)

(future HPC memory systems)(field study)

Figure 1.1: Memory system research directions. This thesis focuses on mem-
ory capacity and memory resiliency.

Dynamic Random Access Memory (DRAM) technology has been the
dominant main memory in most computing systems since 1970s until to-
day, primarily due to its low cost-per-bit [43]. As DRAM process technol-
ogy scaled, memory manufacturers were able to integrate more DRAM cells
into the die area. As a result, each successive DRAM generation had more
memory capacity at relatively low cost. However, expected end of DRAM
technology scaling prevents further improvements in memory capacity and
cost-per-bit.

Contrary to capacity, bandwidth and cost improvements, DRAM latency
remained almost constant. This, together with constant improvements in
processor speed, created a performance gap between processor and main
memory, known as the memory wall [119]. Memory wall refers to a phe-
nomenon of processors being able to execute code faster than memory can
feed them with instructions and data. From the perspective of the processor,
an access to DRAM takes hundreds of cycles. This is the time during which a
modern processor is likely to be stalled, waiting for data from DRAM mem-
ory. DRAM chips that provide lower latency exist, such as Reduced Latency
DRAM (RLDRAM), but their higher cost of production means that they are
mostly used in specialized applications.

The introduction of chip multiprocessors (CMP) managed to hide DRAM

3

1.1. CHALLENGES IN CURRENT MEMORY SYSTEMS

latency up to a point. But, increasing the number of processing cores that
compete for memory requests over limited number of memory channels cre-
ated a new problem — memory bandwidth bottleneck [65]. Lately, novel
memory solutions emerged that bring main memory closer to processor and
increase memory bandwidth significantly [16, 30, 114]. However, solutions
such as processing-in-memory (PIM), high-bandwidth memory, hybrid mem-
ory cube, will first need to be tested on many platforms and domains before
being adopted as mainstream memory solutions in HPC.

1.1.2 Architectural exploration

Due to the limitations of mature DRAM technology significant effort is in-
vested in research and development of novel memory systems. Architectural
exploration refers to the analysis of the suitability of various memory solu-
tions for high-performance computing domain, such as 3D stacking DRAM
and non-volatile memory solutions. It also includes the DRAM architectural
proposals that can improve the performance of HPC workloads.

High-Bandwidth Memory (HBM) and Hybrid Memory Cube (HMC) use
2.5D and 3D stacking to bring DRAM main memory closer to the processing
units, which significantly improves access latency and bandwidth over con-
ventional DIMM-based architectures. On the down side, 3D-stacked DRAMs
will likely reduce the main memory capacity, at least in early generations,
due to significantly higher cost per bit than conventional DIMMs. Many
studies analyze their suitability to replace DIMM based DRAM memory,
and propose different architectural solutions that can potentially improve
the performance [54, 59, 69].

The expected end of scaling of DRAM technology motivates development
of non-volatile memories (NVMs) and research on heterogeneous systems
that combine DRAM and NVMs. NVM solutions that attracted a lot of
interest in the academy and industry include Phase Change Memory (PCM),
Resistive RAM (RRAM), and Spin-Transfer Torque Magnetoresistive (STT-
MRAM) [6, 51, 53, 117].

1.1.3 Memory capacity

In modern HPC systems, DRAM main memory accounts for a significant
portion of node’s overall power consumption [31]. This consumption is de-
termined by several factors including memory capacity and configuration.
Several DARPA and DOE reports state that the future Exascale machine
will have very limited power budget, and that memory energy-efficiency is
of utmost importance [49, 109]. Therefore, any attempt to limit the power

4

1.1. CHALLENGES IN CURRENT MEMORY SYSTEMS

consumption of a future system will necessarily constrain DRAM capacity.
On the other hand, projections expect that future computing workloads will
often process unstructured datasets with sizes that are orders of magnitude
larger than the current ones [26, 93]. As a consequence, the projected limi-
tations of main memory capacity of future HPC systems could have several
important design implications. Limited main memory capacity would leave
the system architecture out of balance, and would impact the system scal-
ability and parallel efficiency. Namely, a smaller memory per node reduces
the amount of computation a node can execute without the communication
with other nodes, increases the frequency of communication, and reduces the
sizes communicated messages. Therefore, smaller memory capacities would
be efficient for only the most computationally intense workloads.

In state-of-the-art HPC clusters, provisioning of memory system is one of
the most important design issues. From the perspective of a scientist execut-
ing applications on HPC cluster, the ratio of memory capacity to processor
computing capability is critical in determining the size of the problem that
can be solved. The processor dictates how much computing can be done, and
the memory dictates the size of the problem that can be handled. There-
fore, sizing of memory systems is one of the most important decisions in the
HPC system design — over-provisioning of main memory capacity leads to
a significant increase in the total cost, while under-provisioning limits the
problem size that can be simulated, and hinders the overall usability of the
system.

Proper provisioning of memory systems for HPC clusters and research
on next-generation memory systems require profound understanding of the
memory behavior of HPC applications. Although HPC system memory pro-
visioning is a very important task, insufficient effort has been dedicated to
understand HPC application memory capacity requirements. This thesis
bridges this gap and focuses on the analysis of memory capacity require-
ments of important HPC benchmarks and applications.

1.1.4 Memory reliability

Modern supercomputers, because of their scale and complexity, run for only
a few days before rebooting one of the nodes. Exascale systems will be even
more complex and comprise more processors and memory modules. Growing
number of components, smaller transistor sizes and the need for more energy-
efficient machines will likely increase the fault rate. So, the major challenge
in the resilience of Exascale machines is that faults will be regular rather
than an exceptional event. In current HPC systems, every failure kills the
application running on the affected nodes, and the application has to be

5

1.1. CHALLENGES IN CURRENT MEMORY SYSTEMS

restarted from the beginning or from their last checkpoint [97]. However,
the checkpoint approach will not work indefinitely, because as computers get
larger, the checkpointing overhead increases. Eventually, this interval will
become longer than the typical period before the next failure. In order to
cope with the increased fault rates, we first have to understand the source
and nature of faults and failures.

In current large-scale compute clusters, main memory is one of the main
causes of the hardware failures [36]. From a programmer’s perspective, main
memory (DRAM) is a computer component where programs write a byte of
data, overwrite this data if needed, and correctly read it repeatedly until the
machine is turned off. However, DRAM does not always comply to this rule.
External events such as alpha particles, cosmic rays, or hardware corrup-
tions caused by DRAM manufacturing process can change the data stored in
DRAM cells and damage DRAM cells permanently or temporarily. Memory
failures can also be the result of corruption along the data path between the
memory and the processor. In each generation, the DRAM chip density and
the amount of the main memory in the servers increases, while the technology
process is constantly shrinking. Therefore, we expect that memory failures
will have a serious impact on the future-systems reliability [19, 22]. The re-
liability is especially important in the high-performance computing (HPC)
domain where tightly-coupled jobs comprising thousands of processes may
execute for days [35]. In these systems, the failure of a single process leads
to failure of the whole job, so reliability of each system component becomes
an important limitation of the overall scalability.

The field studies of the DRAM errors are essential for the understanding
of the nature of memory failures; failure patterns, rates and distributions.
Additionally, they are the main requirement for quantifying the effectiveness
of any error mitigation strategy. Therefore, researchers strive to get access
to field data to analyze the errors that could and could not be corrected
by Error-Correcting Code (ECC) mechanism, and investigate the impact
and occurrence of memory errors even on systems without ECC [13]. This
thesis describes a study of the DRAM errors observed on the MareNostrum 3
supercomputer [12] over period of more than two years.

6

1.2. THESIS CONTRIBUTIONS

1.2 Thesis contributions

1.2.1 Memory capacity requirements
of HPC applications

The first problem that we address in the thesis is characterizing the memory
capacity requirements of important HPC benchmarks and applications [121].
This analysis becomes increasingly important as 3D-stacked memories are en-
tering the market. Compared with conventional DIMMs, 3D memory chiplets
provide better performance and energy efficiency but lower memory capac-
ities. Therefore the adoption of 3D-stacked memories in the HPC domain
depends on whether we can find use cases that require much less memory
than is available now. With good out-of-the-box performance, these use cases
would be the first success stories for these memory systems, and could be an
important driving force for their further adoption.

We theoretically analyze and confirm with experimental measurements
the memory capacity requirements of High-Performance Linpack (HPL) and
High-Performance Conjugate Gradients (HPCG), the former being the bench-
mark used to rank the supercomputers on the TOP500 list. We detect that
HPCG could be an important success story for 3D-stacked memories in HPC.
With low memory footprints and performance directly proportional to the
available memory bandwidth, this benchmark is a perfect fit for memory
systems based on 3D chiplets. HPL, however, could be one of the main
show-stoppers because reaching a good performance requires memory capac-
ities that are unlikely to be provided by 3D chiplets.

We also study the memory footprints of the Unified European Application
Benchmark Suite (UEABS), large-scale scientific workloads carefully selected
to provide good coverage of production HPC applications running on Tier-0
and Tier-1 HPC systems in Europe [89]. Most of the UEABS applications
have per-core memory footprints in the range of hundreds of megabytes — an
order of magnitude less than the main memory available in state-of-the-art
HPC systems; but we also detect applications and use cases that still require
gigabytes of main memory. We further demonstrate that even within the
same application, different processes can have memory footprints that vary
by an order of magnitude.

1.2.2 Large-memory nodes for energy-efficient HPC

The second problem that is investigated is the potential for saving energy
through scaling-in on large-memory nodes [122]. Energy consumption is by

7

1.2. THESIS CONTRIBUTIONS

far the most important contributor to HPC cluster operational costs, and
it accounts for a significant share of the total cost of ownership. Advanced
energy-saving techniques in HPC components have received significant re-
search and development effort, but a simple measure that can dramatically
reduce energy consumption is often overlooked. We show that, in capacity
computing, where many small to medium-sized jobs have to be solved at the
lowest cost, a practical energy-saving approach is to scale-in the application
on large-memory nodes. Scaling-in refers to executing a fixed problem on a
fixed machine, but using a reduced number of application processes and com-
pute nodes. Scale-in increases single job execution time, but, as we quantify
in our study, it substantially decreases energy consumption and reduces the
running time of a batch of jobs. We investigate the sources of this energy
savings, and show that its main source is a reduction in node-hours.

Scaling-in is limited by the per-node memory capacity, since, for a fixed
size problem, reducing the number of nodes increases the memory required at
each node. We therefore investigate the benefits of upgrading the per-node
memory capacity in terms of energy savings and reducing the node-hours, and
follow this with a financial cost-benefit analysis. We show that the additional
energy savings mean that an investment in upgrading the memory would be
typically recovered in less than five years.

1.2.3 DRAM errors in the field

Finally, we study the reliability of modern memory systems for HPC. We
present a study of DRAM errors on the MareNostrum 3 supercomputer dur-
ing a period of more than two years. Our study covers data logged on 3056
compute nodes, with more than 25,000 memory DIMMs and more than 2000
billion MB-hours of DRAM in the field. The field studies of DRAM errors
are essential for the understanding of the nature, rates and distributions of
errors in memory systems and are the main requirement for quantifying the
effectiveness of any error mitigation strategy.

Our study clearly distinguishes between two different approaches for the
DRAM error analysis, categorical and via error rates. The first approach
compares the errors at the DIMM level and partitions the DIMMs into various
categories, e.g. based on whether they did or did not experience an error. The
second approach is to analyze the error rates, i.e., to present the total number
of errors relative to other statistics, typically the number of MB-hours or
the duration of the observation period. Although DRAM error analysis is
typically performed with both approaches, we show that the approaches are
not interchangeable, and can lead to completely different conclusions.

We find that the percentage of DIMMs that experience uncorrectable

8

1.3. THESIS STRUCTURE

errors is very small. In contrary to the common belief that scaling down
the technology reduces the DRAM reliability, our measurements show that
percent of DIMMs that experience uncorrected errors is reduced in each
DRAM generation. We further show that the findings based on the average
errors rates, errors per MB-hour and mean time between failures, can be
completely different depending on the moment in which the measurements
are taken. We also show that using the correctable errors and faults rates
as a DRAM reliability indicator is misleading because the uncorrected error
trends can be completely different.

1.3 Thesis structure

The rest of the thesis is organized as follows:

• In Chapter 2, we describe basic architecture and mechanisms in modern
DRAM based memory systems. We also briefly introduce emerging
memory technologies: 3D-stacked DRAM and non-volatile memories.

• Chapter 3 presents the experimental environment used in our experi-
ments. In this chapter, we describe the hardware platform, the appli-
cations and benchmarks, and software tools used in the study.

• Chapter 4 summarizes our analysis of memory capacity requirements
of production HPC applications and two important HPC benchmarks:
High-Performance Linpack (HPL) and High-Performance Conjugate
Gradients (HPCG).

• In Chapter 5, we demonstrate that scaling-in of HPC applications can
substantially decrease energy consumption and reduce the running time
of a batch of jobs. We also show that upgrading the per-node mem-
ory capacity enables greater degree of scaling-in and additional energy
savings.

• Chapter 6 presents our study of DRAM errors in the field that covers
data logged over a period of more than two years on our supercomputer.
In this chapter we propose a methodology for more formal analysis of
memory system reliability.

• Chapter 7 summarizes the conclusions of the thesis, briefly describes
future work, and lists the relevant publications.

9

CHAPTER2
Background

In this chapter, we describe basic architecture of modern DRAM based mem-
ory systems and DRAM devices. The goal in this chapter is to give a broad
overview of the main memory system, its common blocks and mechanisms,
sufficient to provide a good understanding of modern DRAM memory sys-
tems. We also explain the organization of Dual In-line Memory Modules
(DIMMs) and Error-Correcting Code (ECC) mechanisms needed to better
understand our study of DRAM errors in the field (see Chapter 6). Finally,
we present promising memory technologies that might replace or comple-
ment DRAM memory in the future and their implications on the capacity
and reliability of memory systems.

2.1 DRAM memory system overview

The main memory system is comprised of a memory controller, memory bus
and a number of DRAM chips organized into memory modules (DIMMs),
as illustrated in Figure 2.1. The memory controller can be located on-chip
or off-chip, and in current computer systems memory controller is usually
found integrated on the chip with the CPU. Contrary, DRAM memory chips
are always separate from the CPU to facilitate memory upgrades. Individual
DRAM chips have small capacity and narrow data-bus, and therefore, are
commonly grouped together and form memory modules, which provide larger
capacity and wide data-bus. In current systems, the data-bus is usually 64-bit
wide, or 72-bit wide when eight additional bits are added for error-correcting
codes (ECC). Memory bus consists of several memory channels that connect
memory controller with several memory modules.

11

2.1. DRAM MEMORY SYSTEM OVERVIEW

D
R

A
M

M
em

or
y

C
on

tr
ol

le
r

Memory bus

Memory DIMMs

D
R

A
M

D
R

A
M

D
R

A
M

D
R

A
M

D
R

A
M

D
R

A
M

D
R

A
MCPU

Figure 2.1: Main memory system comprises of memory controller, memory
bus and a number of DRAM chips organized into DIMMs.

2.1.1 DRAM organization

DRAM cell is the main building block of DRAM memory. It comprises
of one access-transistor and one capacitor where the data information is
stored, see Figure 2.2. Depending on whether the capacitor is fully charged or
discharged, the cell is in the binary state “1” or “0”, respectively. When the
storage capacitor is charged, it can hold the stored charge after the access-
transistor is switched off. However, due to the capacitor leakage, stored
charge can be retained only for a limited time. For this reason, all DRAM
cells must periodically be refreshed in a process known as DRAM refresh.

DRAM cells are grouped together to form DRAM array structures. Every
DRAM cell lies at the intersection of two perpendicular wires: a horizontal
wordline and a vertical bitline. DRAM array is basically a two-dimensional
matrix, where each row of cells shares a common wordline, and cells on the
same column are connected to the same bitline, as illustrated in Figure 2.3.
When a row wordline is raised to high-voltage, access-transistors are enabled,

storage
capacitor

wordline

access-transistor

bitline

Figure 2.2: DRAM cell consists of one access-transistor and one capacitor.
The cell is accessed through the corresponding wordline and bitline.

12

2.1. DRAM MEMORY SYSTEM OVERVIEW

DRAM
Array

ro
w

 s
el

ec
t

bitline

wordline

sense amplifiers
row buffer

Figure 2.3: Large number of DRAM cells is grouped together to form DIMM
array structure.

which connects all capacitors to the respective bitlines. Then the complete
row of data is transfered to the row-buffer. In practice, each memory array is
divided in memory sub-arrays, each providing one bit of data on a memory
access. Each DRAM chip usually provides four or eight data bits (DQs), and
these chips are called x4 and x8 DRAMs, respectively. All sub-arrays (four
or eight) in a memory array are accessed in parallel, and each DQ provides
a bit of data from a corresponding memory sub-array.

A group of rows is called a bank, and each bank has its own dedicated
row-buffer. Therefore, multiple banks increase the parallelism, as multiple
banks can be served concurrently. One bank spreads over several chips that
are accessed in parallel, as shown in Figure 2.4. Finally, multiple banks
come together and form a rank. So, a rank of memory comprises of several
banks, and each bank spreads over several DRAM chips that are accessed in
parallel. All chips in a rank respond to the same DRAM command. Each
memory DIMM can contain one or more memory ranks. Figure 2.4 shows
a 2GB rank, where 256K rows are vertically partitioned into eight banks of
32K rows, where each row is 64Kb = 8 KB (64K columns). Each DRAM
chip has a capacity of 2Gb or 256MB.

13

2.1. DRAM MEMORY SYSTEM OVERVIEW

D
R

A
M

 0

. . .

D
R

A
M

 7

Bank 0

Bank 7

Rank

64K columns
(8K columns per DRAM chip)

(1K columns per chip and bank)

256K rows
(32K rows per bank)

Figure 2.4: One rank of DRAM comprises of several banks, each spreading
over several DRAM chips that are accessed in parallel.

To summarize, for each memory access, the memory address specifies
the memory channel, memory module, rank, bank, row and column. This
specifies a unique memory location inside every DRAM chip in the addressed
rank. Then, in parallel, all DRAM chips provide data on their DQ pins, and
data is read from the memory. For example, in case of 72-bit wide data bus
and x8 DRAM chips, one rank of memory comprises of nine DRAM chips
(eight chips for data and one for ECC data). Because these are x8 chips,
every chip provides eight bits of data — each chip provides eight DQs (9
chips × 8 DQs = 72 bits). So, all DRAM chips provide eight data bits from
eight memory sub-arrays, from the intersection of addressed row and column
inside the addresses bank. This way, 72 bits of data are provided. One
memory access implies providing data from several consecutive locations in
memory (consecutive columns). This is know as a memory burst. The size
of memory burst, i.e., the number of consecutive locations that provide data,
is specific to DDR technology, and for DDR3 DRAM it is a burst of eight.

2.1.2 Error-Correcting Codes

In this section, we examine Error-Correcting Codes (ECC) techniques to
detect and correct single-bit and multi-bit memory errors. We start from a
simple one, and move towards more complex techniques present in modern
DRAM memory systems.

14

2.1. DRAM MEMORY SYSTEM OVERVIEW

n-bit wide
data bit vector

Figure 2.5: Parity bit generation. Parity bit is generated from a recursive
application of the exclusive-or function to the bits in the data bit vector.

Parity is one way to provide minimal data protection — it provides
single-bit error detection. It indicates whether even or odd number of “1”
bits is in the data bit vector. Figure 2.5 illustrates the generation of a parity
bit. It is generated from a recursive application of the exclusive-or function
to the bits in the input data. The parity bit is stored in the DRAM memory
system together with the original data. When the data vector along with
the previously computed parity bit is read from the memory, the parity bit
is recomputed from the vector and compared to the retrieved parity bit. If
the recomputed parity bit differs from the retrieved parity bit, an error is
generated and reported by the memory controller. Therefore, parity mecha-
nism does not have data correction capability, it can simply detect if an odd
number of bits has changed its state.

Single-bit Error Correction (SEC ECC) is the basic ECC algorithm
that consists of adding redundant bits to a data word, mapping the original
data vector into a longer word, and using Hamming distance between valid
code words to correct the corrupted bit. The number of storage bits needed
for error detection is proportional to log2n, where n is the number of bits in
the data vector. Hamming distance is the number of bits that differ between
two binary vectors. For example, Hamming distance between 10101010 and
10101001 is two, because only last two bits are different. In SEC ECC, all
valid code words differ from each other by at least three bits, and between
each two valid code words are two invalid code words, see Figure 2.6. This
ensures that any valid SEC ECC code word can sustain a one-bit error. If
any bit in a valid code word is corrupted, the code word is moved a Ham-
ming distance of one away from its original place. It becomes an invalid code
word, but, more importantly, it becomes an invalid code word at a Hamming
distance of one from one and only one valid code word, which is the origi-
nal valid code word that was corrupted. Thus, any single-bit error can be
corrected by transforming the invalid code word into the nearest valid code
word. However, note that a double-bit error creates an invalid code word
that lies at a distance of two from the original valid code word, but a dis-

15

2.1. DRAM MEMORY SYSTEM OVERVIEW

Valid SEC ECC code words

Hamming
Distance

Invalid SEC ECC code words

Hamming
Distance "3""3"

Figure 2.6: Humming distance illustration.

tance of one away from a different, totally unrelated valid code word. Thus,
a two-bit error will be corrected to the wrong value.

Single-Error Correction Double-Error Detection (SECDED) ECC
algorithm upgrades SEC ECC by being able to distinguish single-bit errors
from double-bit errors. Compared to SEC ECC, an additional parity bit is
added to create the SECDED ECC. A parity checking bit (on the whole data
vector) is added and it provides a quick sanity check to ensure that, in case
the ECC syndrome is a non-zero vector and indicates an error, the error is
not a double-bit error. SECDED ECC is able to correct single-bit errors and
detect double-bit errors with minimal overhead in storage capacity. For a
data bus width of 64 bits (n = 64), the SECDED ECC algorithm requires 8
check bits. This is the usual data with in modern memory systems, where
72 bits on the memory bus comprise of 64 data bits and 8 ECC bits.

Advanced ECC mechanisms can correct a multi-bit error within one
DRAM chip; these ECC techniques can correct a complete DRAM chip fail-
ure, i.e., the Chipkill capability [21, 36, 58]. One way to provide such a
capability is illustrated in Figure 2.7. This solution ensures that a single
chip, independently of its data width, does not affect more than one bit in
any given ECC word. For example, in case of x4 DRAMs, each of four DQ
pins affects a different ECC word. Therefore, in case of a whole DRAM
chip failure, none of the ECC words would experience more than one bit
of corrupted data. This can be easily corrected with standard SEC ECC.
This way, Chipkill can provide correction even in case of failure of an en-
tire DRAM chip. Other methods provide more ECC bits (e.g. 144-bit ECC
word that consists of 128 data bits and 16 ECC bits) so that each ECC word
can correct more than a single-bit failure. In industry, some combination or
variation of these two methods is usually used in order to provide Chipkill
capability.

16

2.2. EMERGING MEMORY TECHNOLOGIES
D

R
A

M
 0

D
R

A
M

 1
7

. . .

DIMM 1

18b

72-bit
ECC word

72-bit
ECC word

72-bit
ECC word

72-bit
ECC word

18b 18b 18b

D
R

A
M

 0

D
R

A
M

 1
7

. . .

DIMM 2

D
R

A
M

 0

D
R

A
M

 1
7

. . .

DIMM 3

D
R

A
M

 0

D
R

A
M

 1
7

. . .

DIMM 4

72 bits 72 bits 72 bits 72 bits

18b 18b 18b 18b 18b 18b 18b 18b 18b 18b 18b 18b

Figure 2.7: Chipkill illustration.

2.2 Emerging memory technologies

Existing DRAM based memory systems face inherent limitations that im-
pede scaling of both memory bandwidth and capacity. Moreover, analyses
of the modern HPC systems show that the main memory is one of the ma-
jor contributors to the total energy consumption and the operational cost.
With these issues in mind, we have enough reasons to be concerned whether
conventionally-used memory architectures based on mature DRAM technol-
ogy and DIMM organization will meet the needs of future HPC systems and
applications. In this section, we briefly describe some of the promising mem-
ory technologies that have recently attracted attention in the community.

2.2.1 3D-stacked DRAM

A potentially promising solution for memory bandwidth and energy-efficiency
problems of conventional DIMM based DRAM memory is the use of 3D-
stacked DRAMs. 3D stacking increases package density, with memory chiplets
placed on a silicon interposer instead of a printed circuit board. Stacked
DRAM dies are connected using through-silicon vias (TSVs), which shorten
the interconnection paths and reduce connectivity impedance and channel
latency. Hence, data can be moved at a higher rate with a lower energy per

17

2.2. EMERGING MEMORY TECHNOLOGIES

bit.

In this section, we briefly overview the currently-available products based
on this technology: Hybrid Memory Cube (HMC) and High-Bandwidth
Memory (HBM). We also describe Intel Knights Landing, the first processor
that brings in 3D-stacked DRAM in addition to the traditional DDR DIMMs.

Hybrid Memory Cube

The Hybrid Memory Cube (HMC) [37] is connected to the CPU with a high-
speed serial interface that provides up to 480 GB/s per device. Announced
production runs of HMC components are limited to 2 GB and 4 GB devices,
while the standards specify capacities of up to 8 GB. Memory capacity can
be increased by integrating multiple HMC devices into the package, but
doing so is non-trivial. Each HMC device can be directly connected to up
to four other devices (CPUs or HMCs) via four independent serial links.
Figure 2.8 illustrates the HMC internal structure. HMC is composed of
stacked DRAM dies (dies 0 to n) connected with TSVs and microbumps.
Each die is divided into partitions vertically grouped into vaults. Each vault
operates independently through a dedicated vault controller resembling the
memory controller in DIMM-based systems. Finally, each vault is divided
into banks much as in traditional DIMMs. The HMC includes a logic layer
that redirects requests between off-chip serial interfaces and vault controllers.
This logic layer also enables in-memory operations.

High-Bandwidth Memory

High-Bandwidth Memory (HBM) [44] is connected to the host CPU or GPU
with a wide 1024-bit parallel interface that delivers up to 256 GB/s. Sim-
ilarly to HMC, the standard specifies up to 8 GB devices and integrating
multiple devices in the package is challenging. Only a single HBM device
can be connected to each interface (channel), so using multiple HBM devices
requires a large silicon interposer with multiple 1024-bit wide interfaces, in-
creasing cost. Figure 2.9 shows its internal structure. Like HMC, HBM
consists of several 3D-stacked DRAM dies connected with TSVs. The HBM
memory specification allows an optional logic base layer that can redistribute
signals and implement logic functions. Each die is divided into banks that
are grouped and attached to channels. The channels are independent: each
accesses an independent set of banks with independent clocks and memory
arrays.

18

2.2. EMERGING MEMORY TECHNOLOGIES

Figure 2.8: HMC internal structure.

Figure 2.9: HBM internal structure.

Heterogeneous memory system: Intel Knights Landing

Intel Knights Landing (KNL) processors [103] are the first CPUs that bring
in 3D-stacked DRAM in addition to the traditional DDR DIMMs. KNLs
comprise up to 72 cores supported by two levels of main memory. At the

19

2.2. EMERGING MEMORY TECHNOLOGIES

first level, 3D multi-channel DRAM (MCDRAM) is connected to the
CPU through an on-package interposer and it offers a capacity of up to
16 GB (0.2 GB per core) with 400 GB/s of peak theoretical bandwidth. In
addition to MCDRAM, KNL can be connected to up to 384 GB (5.4 GB per
core) of standard DDR4 memory. MCDRAM and DDR can be organized
in three modes: cache, flat and hybrid. In the cache mode, MCDRAM
behaves as an additional (L3) level of the cache hierarchy. In the flat mode,
MCDRAM and DDR are two distinct memory nodes with different capacity,
latency and bandwidth that can be addressed by different APIs. In case
that the input dataset does not fit into the MCDRAM, it is responsibility of
the programmer to perform data partitioning, allocation and migration that
would use efficiently the advanced memory organization. Finally, the hybrid
mode combines the cache and the flat mode. In this mode, the MCDRAM
is partitioned into two segments — one is used as the L3 cache for the DDR,
while the other is addressable and used as MCDRAM memory node in the
flat mode.

2.2.2 Non-volatile memories

In recent years, research and development of non-volatile memory (NVM)
technologies has escalated. Some of the technologies have been known for
decades, but, with raised concerns about the DRAM technology scaling,
NVM development, improvement and its suitability to serve as a main mem-
ory has increased. These include Phase Change Memory (PCM) [117], Spin-
Transfer Torque Magnetoresistive (STT-MRAM) [6], Resistive RAM (RRAM),
etc. These emerging technologies usually involve a trade-off and seem un-
likely to completely replace DRAM. For example, PCM is advantageous over
DRAM because of higher density, non-volatility (no refreshing), and low idle
power consumption. On the other hand, PCM has shortcomings compared
to DRAM, which include higher latency, higher read and write energy, and
limited endurance.

However, it seems that any of the non-volatile solutions may be added as a
complement to DRAM memory DIMMs, as no solution is strictly superior to
DRAM. Even recently advertised non-volatile solution from Intel and Micron,
3D XPoint, seems likely to be considered as an another level of hierarchy
between DRAM and storage, instead of completely replacing DRAM. In that
cotext, recently available Intel Knights Landing processors bring 3D-stacked
DRAM in addition to the traditional DDR DIMMs [103]. Then, users can
configure whether these memories will be accessed separately, or 3D-stacked
DRAM will serve as an another level of cache to the DIMM based DRAM.
All these technologies, however, will have to be tested in many domains and

20

2.2. EMERGING MEMORY TECHNOLOGIES

platforms before being adopted as mainstream memory solutions in HPC.

2.2.3 Implications on memory system capacity
and reliability

3D stacked memory solutions offer significantly higher memory bandwidth
and energy efficiency, but higher production cost compared to DIMM based
DRAM means that the capacities will be limited at least in their first gener-
ations. Because of limited capacities, 3D stacking memory technologies seem
likely to be implemented alongside DIMM based DRAM in a heterogeneous
memory system. Such a memory solution is already present on the market in
Intel Knights Landing processor [46]. On the other hand, non-volatile mem-
ories offer higher capacities and more density, but none of NVM solutions
is strictly superior to DRAM. Because of higher latency, these solution are
mostly considered as an another level of memory hierarchy, between DRAM
main memory and storage.

Several layers of stacked DRAM lead to increased power dissipation and to
the lack of sufficient thermal dissipation. Therefore, higher temperatures in
3D stacked DRAM memories raise reliability concerns. For this reason, HMC
has implemented in-memory ECC for command, address and data signals.
NVM solutions have reliability concerns depending on the technology; e.g.
MRAM devices are immune to the effects of incident alpha particles or cosmic
ray neutrons because their cells operate on the principle of magnetics and not
on the storage of electrical charges. In conclusion, every different memory
solution has its own sources of reliability concerns, and none of the solutions
will be completely immune to errors.

21

CHAPTER3
Experimental methodology

This chapter presents the high-level experimental environment used in our
research. Later, each chapter covers the specifics of the experimental method-
ology used for the separate part of the study. The experimental methodology
used for the analysis of memory capacity requirements of HPC applications
is presented in Chapter 4. Chapter 5 includes the description of the environ-
ment used for the experiments related to the study of scaling-in of applica-
tions to reduce the energy consumption. Chapter 6 covers the experimental
environment used for the field study of DRAM errors.

3.1 Hardware platform

We execute all our experiments on the MareNostrum 3 supercomputer [10],
which is one of the six Tier-0 (largest) HPC systems in the Partnership for
Advanced Computing in Europe (PRACE) [90]. Researchers in Spain and
across Europe use it for simulations and experiments in various scientific ar-
eas, such as climate analysis and weather forecast, geophysics, bioinformatics,
etc.

MareNostrum 3 is a Petaflop machine and has a peak performance of
1.1 Petaflops. MareNostrum 3 contains 3,056 compute nodes connected via
InfiniBand FDR 10. Figure 3.1 illustrates one compute node. Each compute
node comprises of two eight-core Sandy Bridge-EP E5-2670 processors at
2.6 GHz. Each core in a processor has local L1 and L2 caches, and eight
cores share one 20 MB L3 cache.

The processors connect to main memory (DDR3-1600 DIMMs) through
four channels. Regular MareNostrum compute nodes include 32 GB of DRAM
memory (8 DIMMs × 4 GB), i.e., 2 GB per core. Large-memory nodes con-

23

3.2. APPLICATIONS

tain 128 GB of DRAM (8 DIMMs× 16 GB), i.e., 8 GB per core. Later, in each
chapter, we specify whether experiments were executed on regular or large-
memory nodes on MareNostrum. One MareNostrum node provides memory
bandwidth of 77.86 GB/s. We measured the sustained memory bandwidth
using STREAM triad benchmark [66]. Main memory latency on our system
is 102.93 ns; a result obtained using LMbench benchmark suite [68].1

D
R

A
M

D
D

R
3

M
em

or
y

C
on

tr
ol

le
r

Memory bus

Memory DIMMs

4 channels

D
R

A
M

D
R

A
M

D
R

A
M

D
R

A
M

D
R

A
M

D
R

A
M

D
R

A
M

Core 5 Core 6 Core 7 Core 8

Core 1 Core 2 Core 3 Core 4

Shared L3 Cache

L1 L2 L1 L2 L1 L2 L1 L2

L1 L2 L1 L2 L1 L2 L1 L2

P
C

I-
e

B
us

Q
P

I

ECC

Sandy Bridge E5-2670

D
R

A
M

D
D

R
3

M
em

or
y

C
on

tr
ol

le
r

Memory bus

Memory DIMMs

4 channels
D

R
A

M

D
R

A
M

D
R

A
M

D
R

A
M

D
R

A
M

D
R

A
M

D
R

A
M

Core 5 Core 6 Core 7 Core 8

Core 1 Core 2 Core 3 Core 4

Shared L3 Cache

L1 L2 L1 L2 L1 L2 L1 L2

L1 L2 L1 L2 L1 L2 L1 L2

P
C

I-
e

B
us

Q
P

I

ECC

Sandy Bridge E5-2670

Figure 3.1: MareNostrum 3 compute node comprises of two eight-core Sandy
Bridge processors. Each processor connects to main memory through four
memory channels.

3.2 Applications

In our experiments, we execute important HPC benchmarks, as well as pro-
duction HPC applications. All workloads are parallelized using Message

1LMbench suite contains several benchmarks which measure performance of different
hardware and software components in a system. We used memory read latency benchmark
in order to measure access latencies of different levels in memory hierarchy. The benchmark
reads the input dataset in a random order to mitigate the impact of the data prefetching.
By varying input load size, we measure access latency to all memory hierarchy levels.

24

3.2. APPLICATIONS

Passing Interface (MPI), and we always execute one MPI process per core.

3.2.1 HPC benchmarks

We analyze two widely used HPC benchmarks, High-Performance Linpack
(HPL) and High-Performance Conjugate Gradients (HPCG). Both bench-
marks are used to rank supercomputers worldwide.

High-Performance Linpack

For more than 20 years, the High-Performance Linpack (HPL) benchmark is
the most widely recognized and discussed metric for ranking of HPC systems
on TOP500 list [113]. TOP500 list shows the 500 most powerful commercially
available supercomputing systems in the world. HPC systems are ranked
based on the HPL performance, and the list is regularly updated every six
months.

HPL measures the sustained floating-point rate (GFLOP/s) for solving a
dense system of linear equations using double-precision floating-point arith-
metic on distributed-memory computers. Since the problem is very regular,
the achieved performance is quite high, and the performance numbers give a
good correction of theoretical peak performance. The linear system is ran-
domly generated, with a user-specified size, so that the user can scale the
problem size to achieve the best performance on a given system. In our
experiments, we execute the 2.1 version of the HPL benchmark.

High-Performance Conjugate Gradients

The High-Performance Conjugate Gradients (HPCG) benchmark [111] has
been introduced as a complement to HPL and the TOP500 rankings, since
the community questions whether HPL is a good proxy for production ap-
plications. HPCG is based on an iterative sparse-matrix conjugate gradient
kernel with double-precision floating-point values, and is representative of
HPC applications governed by differential equations. Such applications tend
to have much greater demands on the memory system, in terms of band-
width and latency, and they access data using irregular patterns [27]. In our
experiments, we execute the 2.4 version of the HPCG benchmark.

3.2.2 Production HPC applications

We also study the Unified European Application Benchmark Suite (UE-
ABS) [89], the set of production applications and datasets designed for

25

3.2. APPLICATIONS

benchmarking the European Partnership for Advanced Computing in Eu-
rope (PRACE) HPC systems for procurement and comparison purposes [90].
This application suite comprises codes from several scientific domains, and
provides a set of scalable, currently relevant and publicly available codes and
datasets of a size which can realistically be run on large HPC systems.

We study 10 of the 12 UEABS applications:2

• ALYA is a computational mechanics code for solving different physics
problems: convection-diffusion reactions, incompressible flows, com-
pressible flows, turbulence, bi-phasic flows and free surface, excitable
media, acoustics, thermal flow, quantum mechanics and solid mechan-
ics.

• BQCD is a hybrid Monte-Carlo code that simulates Quantum Chro-
modynamics with dynamical standard Wilson fermions. The computa-
tions take place on a four-dimensional regular grid with periodic bound-
ary conditions. The kernel is a standard conjugate gradient solver with
even/odd pre-conditioning.

• CP2K performs atomistic and molecular simulations of solid state, liq-
uid, molecular and biological systems. It provides a general framework
for different methods such as density functional theory using mixed
Gaussian and plane waves approach, and classical pair and many-body
potentials.

• GADGET is a code for cosmological N-body/SPH simulations on mas-
sively parallel computers with distributed memory. GADGET com-
putes gravitational forces with a hierarchical tree algorithm and repre-
sents fluids by means of smoothed particle hydrodynamics. The code
can be used for studies of isolated systems, or for simulations that in-
clude the cosmological expansion of space, either with, or without, peri-
odic boundary conditions. In all these types of simulations, GADGET
follows the evolution of a self-gravitating collisionless N-body system,
and allows gas dynamics to be optionally included. Both the force com-
putation and the time stepping of GADGET are fully adaptive, with a
dynamic range that is, in principle, unlimited. GADGET can therefore
be used to address a wide array of astrophysics interesting problems,
ranging from colliding and merging galaxies, to the formation of large-
scale structure in the Universe. With the inclusion of additional physi-
cal processes such as radiative cooling and heating, GADGET can also

2We could not finalize the Code Saturne and GPAW installations. These errors have
been reported to the application developers.

26

3.2. APPLICATIONS

be used to study the dynamics of the gaseous intergalactic medium, or
to address star formation and its regulation by feedback processes.

• GENE is a gyro kinetic plasma turbulence code. Originally used for
flux-tube simulations, today GENE also operates as a global code, ei-
ther gradient- or flux-driven. An arbitrary number of gyro kinetic parti-
cle species can be taken into account, including electromagnetic effects
and collisions. GENE is, in principle, able to cover the widest possible
range of scales, all the way from the system size (where nonlocal ef-
fects or avalanches can play a role) down to sub-ion-gyroradius scales
(where ETG or micro tearing modes may contribute to the transport),
depending on the available computer resources.

• GROMACS performs molecular dynamics, i.e. simulate the Newtonian
equations of motion for systems with hundreds to millions of particles.
It is primarily designed for biochemical molecules like proteins, lipids
and nucleic acids that have a lot of complicated bonded interactions,
but since GROMACS is extremely fast at calculating the nonbonded
interactions (that usually dominate simulations) many groups also use
GROMACS for research on non-biological systems, e.g. polymers.

• NAMD is a widely used molecular dynamics application designed to
simulate bio-molecular systems on a wide variety of compute plat-
forms. In the design of NAMD particular emphasis has been placed
on scalability when utilizing a large number of processors. The appli-
cation can read a wide variety of different file formats, for example force
fields, protein structure, which are commonly used in bio-molecular sci-
ence. Deployment areas of NAMD include pharmaceutical research by
academic and industrial users. NAMD is particularly suitable when
the interaction between a number of proteins or between proteins and
other chemical substances is of interest. Typical examples are vaccine
research and transport processes through cell membrane proteins.

• NEMO is a state-of-the-art modeling framework for oceanographic re-
search, operational oceanography seasonal forecast and climate studies.
Prognostic variables are the three-dimensional velocity field, a linear or
non-linear sea surface height, the temperature and the salinity. In the
horizontal direction, the model uses a curvilinear orthogonal grid and in
the vertical direction, a full or partial step z-coordinate, or s-coordinate,
or a mixture of the two.

• Quantum Espresso is an integrated suite of codes for electronic-structure
calculations and materials modeling, based on density-functional the-

27

3.3. TOOLS

ory, plane waves, and pseudopotentials (norm-conserving, ultrasoft,
and projector-augmented wave). Quantum Espresso builds upon newly
restructured electronic-structure codes that have been developed and
tested by some of the original authors of novel electronic-structure al-
gorithms and applied in the last twenty years by some of the leading
materials modeling groups worldwide.

• SPECFEM3D simulates three-dimensional global and regional seismic
wave propagation based upon the spectral-element method. Spectral-
element method was originally developed in computational fluid dy-
namics and has been successfully adapted to address problems in seis-
mic wave propagation. It is a continuous Galerkin technique, which can
easily be made discontinuous; it is then close to a particular case of the
discontinuous Galerkin technique, with optimized efficiency because of
its tensorized basis functions.

In this thesis, we run all UEABS applications parallelized using the Mes-
sage Passing Interface (MPI). UEABS applications are regularly executed
on hundreds to thousands of cores, and most of them come with two input
datasets. Smaller datasets (Test Case A) are deemed suitable for Tier-1 sys-
tems up to about 1000 cores, and larger datasets (Test Case B) target Tier-0
systems up to about 10,000 cores. For BQCD, GADGET and NEMO, a sin-
gle dataset (Test Case A) is provided that is suitable for both system sizes.
Table 3.1 summarizes the applications and input datasets. For each appli-
cation, we show the area of science that it targets and briefly describe the
input dataset.

3.3 Tools

In this section, we present software tools used to conduct our experiments;
tools used for the instrumentation of MPI applications and software daemons
used for logging the memory errors on our supercomputer.

3.3.1 Extrae

Extrae [11] is a dynamic instrumentation package used to trace programs
compiled with the shared memory model (OpenMP and pthreads), the Mes-
sage Passing Interface (MPI) programming model, or both programming
models (different MPI processes using OpenMP or pthreads within each MPI
process). Extrae generates trace files for a post-mortem analysis of parallel
applications. It uses different interposition mechanisms to inject probes into

28

3.3. TOOLS

Table 3.1: Production HPC applications analyzed in the thesis

Application Area of science Test Case A: Smaller input
dataset

Test Case B: Larger in-
put dataset

ALYA Computational
mechanics

27 million element mesh 552.9 million element
mesh

BQCDa Particle physics 322× 642 lattice N/A

CP2K Computational
chemistry

Energy calculation of 1024
waters

216 LiH system with
Hartree-Fock exchangeb

GADGET Astronomy and
cosmology

135 million particles N/A

GENE Plasma physics Ion-scale turbulence in
Asdex-Upgrade

Ion-scale turbulence in
Jet

GROMACS Computational
chemistry

150,000 atoms 3.3 million atoms

NAMD Computational
chemistry

2×2×2 replication of the
STM Virus

4×4×4 replication of the
STM Virus

NEMO Ocean modeling 12° global configuration;
4322×3059 grid

N/A

QE Computational
chemistry

112 atoms; 21 iterations 1532 atoms; two itera-
tions

SPECFEM3D Computational
geophysics

6×12×768 mesh of the
earth

6×24×1760 mesh of the
earth

a Quantum Chromo-Dynamics (QCD) is a set of five kernels. We study Kernel A, also
called Berlin Quantum Chromo-Dynamics (BQCD), which is commonly used in QCD
simulations.
b CP2K cannot run Test Case B on our platform. The errors have been reported to the
application developers.

the target application so as to gather information regarding the application
performance. Extrae captures time-stamped events, e.g. entry/leave of a
MPI function call, and provides support for gathering additional statistics
such as performance counters values at each sampling point.

We get a complete picture about applications performance running on
our target platform by combining time-stamps and performance counters.
We also use modified version of Extrae, which is able to capture the memory
usage of applications, both on each entry/leave of MPI function calls and by
periodic sampling of application (more details can be found in Section 4.2).

3.3.2 Paraver

For the visualization and analysis of Extrae traces we use Paraver [9]. Par-
aver is powerful and flexible graphical user interface (GUI) data browser.

29

3.3. TOOLS

The tool has been demonstrated to be very useful for performance analysis
studies, giving much more details about the applications behavior than most
performance tools. It supports trace visualization in terms of timelines and
histograms, and allows for detecting OS and hardware issues and different
imbalances found in parallel applications.

3.3.3 Limpio

Limpio [85] is a framework for profiling of MPI applications. Limpio over-
rides standard MPI functions and executes instrumentation routines on en-
try/leave of the selected MPI calls. Users themselves can write and customize
the instrumentation routines to fit the requirements of the analysis. Limpio
can invoke external application profiling tools, and can switch between var-
ious tools in a single execution. It can also generate application traces of
timestamped events that can be visualized by general-purpose visualization
tools or libraries. Limpio is regularly used in Barcelona Supercomputing
Center for the instrumentation of large-scale HPC applications.

In this thesis, we use Limpio for application profiling and analysis, i.e. cal-
culating the percentage of execution time spent in communication and com-
putation and measuring the application memory usage (see Section 5.3.2).

3.3.4 Error logging daemons

In our study of DRAM errors in the field, we analyze errors that are corrected
by Error-Correcting Code (ECC) mechanism inside the memory controller, as
well as errors that could not be corrected by ECC. These two types of errors,
corrected and uncorrected errors, are collected from two sources. Corrected
error events are logged by daemon running on each node, a modified mcelog

Linux kernel module [47]. Uncorrected errors are recorded in a separate
log by IBM firmware after the node reboots as a result of the uncorrected
error [39]. More detailed explanation about the memory error logging can be
found in Chapter 6.

30

CHAPTER4
Memory capacity requirements

of HPC applications

This chapter analyzes the memory capacity requirements of important HPC
benchmarks and applications. This analysis becomes increasingly important
as 3D-stacked memories are entering the market. Compared with conven-
tional DIMMs, 3D memory chiplets provide better performance and energy
efficiency but lower memory capacities. Therefore the adoption of 3D-stacked
memories in the HPC domain depends on whether we can find use cases that
require much less memory than is available now. With good out-of-the-
box performance, these use cases would be the first success stories for these
memory systems, and could be an important driving force for their further
adoption.

We find that the High Performance Conjugate Gradients benchmark
could be an important success story for 3D-stacked memories in HPC, but
High-performance Linpack is likely to be constrained by 3D memory capacity.
The study also emphasizes that the analysis of memory footprints of produc-
tion HPC applications is complex and that it requires an understanding of
application scalability and target category, i.e., whether the users target ca-
pability or capacity computing. The results show that most of the HPC
applications under study have per-core memory footprints in the range of
hundreds of megabytes, but we also detect applications and use cases that
require gigabytes per core. Overall, the study identifies the HPC applications
and use cases with memory footprints that could be provided by 3D-stacked
memory chiplets, making a first step towards adoption of this novel technol-
ogy in the HPC domain.

31

4.1. INTRODUCTION

4.1 Introduction

Memory systems are important contributors to the deployment and oper-
ational costs of large-scale HPC clusters [49], [109], [102], making memory
provisioning one of the most important aspects of HPC system design.1 In
spite of this, most available analysis guiding memory provisioning is surpris-
ingly ad hoc. Usually large HPC systems follow a rule of thumb that couples
2–3GB of main memory per x86 core or 1 GB per Blue Gene PowerPC core
(see Figure 4.1). It seems that this rule of thumb is based on experience
with previous HPC clusters and on undocumented knowledge of the princi-
pal system integrators, and it is uncertain whether it matches the memory
requirements of production HPC applications.

Even though there are various reports and projections that roughly esti-
mate the memory requirements of existing HPC applications [7], [74], [75],
[76], [77], [78], [79], there are no or very few studies that thoroughly ana-
lyze and quantify the memory footprints of HPC workloads across multiple
domains. In this study we try to bridge this gap and to examine whether cur-
rent memory design strategies meet the memory requirements of important

1In our system, the MareNostrum supercomputer [10], main memory accounts to more
than 10% of server cost and 10–15% of server energy consumption.

[1,2) [2,3) [3,4) [4,5) ≥5

Per-core memory capacity [GB]

0

5

10

15

20

25

30

N
um

be
ro

fH
PC

sy
st

em
s CPU architecture:

x86
PowerPC
SPARC

Figure 4.1: Per-core memory capacity of HPC systems leading the TOP500
list (June 2015). Systems with exactly 2, 3, and 4 GB of memory per core
are included in bars [2,3) GB, [3,4) GB, and [4,5) GB, respectively. Today’s
HPC systems are dominated by x86 architectures coupled with 2–3 GB of
main memory per core. The next most prevalent systems are Blue Gene
platforms based on PowerPC cores with 1 GB of memory per core, included
in the [1,2) GB bar.

32

4.1. INTRODUCTION

HPC benchmarks and applications.
In this study, we theoretically analyze and confirm with experimental

measurements the memory capacity requirements of High-Performance Lin-
pack (HPL) and High Performance Conjugate Gradients (HPCG), the former
being the benchmark used to rank the supercomputers on the TOP500 list.
Our measurements show that in current systems achieving good HPL scores
requires at least 2 GB of main memory per core, which matches the main
memory sizing trends of the large HPC clusters that dominate the TOP500
list. The analysis also shows that, as the total number of cores is increased,
more memory per core will be needed to achieve good performance, between
7.6 GB and 16.1 GB in a million-core cluster. In contrast, HPCG memory
requirements are fundamentally different. To converge to the optimal per-
formance, the benchmark requires roughly 0.5 GB of memory per core, and
this will not change as the cluster size increases.

We also study the memory footprints of the Unified European Appli-
cation Benchmark Suite (UEABS), large-scale scientific workloads carefully
selected to provide good coverage of production HPC applications running
on Tier-0 and Tier-1 HPC systems in Europe [89]. We observe a bimodal
distribution in memory requirements, finding that memory requirements de-
pend on application scalability and the targeted HPC category, i.e., whether
the workloads represent capability or capacity computing. In HPC, capabil-
ity computing refers to using large-scale HPC installations to solve a single,
highly complex problem in the shortest possible time, while capacity com-
puting refers to optimizing system efficiency to solve as many mid-size or
smaller problems as possible at the same time at the lowest possible cost.
Based on our findings, we recommend guidelines for selecting an appropriate
level of parallelism when designing experiments to quantify memory capacity
requirements of production HPC applications. Most of the UEABS applica-
tions have per-core memory footprints in the range of hundreds of megabytes
— an order of magnitude less than the main memory available in state-of-
the-art HPC systems; but we also detect applications and use cases that still
require gigabytes of main memory. We also demonstrate that even within
the same application, different processes can have memory footprints that
vary by an order of magnitude.

To the best of our knowledge, this is the first study that detected and
analyzed the dependency between available memory capacity and HPL and
HPCG performance. Also, for the first time, we explored the complexity
of memory footprint analysis for production HPC applications, and showed
how memory footprint depends on application scalability and target HPC
category. We hope that this study will motivate the community to question
the current trends for memory system sizing in HPC clusters, and will lead

33

4.2. EXPERIMENTAL SETUP

to further analysis of memory capacity requirements of HPC systems.

This analysis becomes increasingly important as 3D-stacked memories are
hitting the market. Replacing conventional DIMMs with new 3D memory
chiplets located on the silicon interposer could be the next breakthrough
in memory system design. It would provide significantly higher memory
bandwidth and lower latency, leading to higher performance and energy-
efficiency. On the down side, however, it is unlikely that (expensive) 3D
memory chiplets alone would provide the same memory capacities as DIMM-
based memory systems [103]. Therefore the adoption of 3D-stacked memories
in the HPC domain depends on whether we can find use cases that require
much less memory than is available now.

Academia and industry are also exploring hybrid memory systems that
combine 3D-stacked DRAM with standard DIMMs [25], [20], [100], [69], [103].
The general idea behind these hybrid systems is to bring the best of two
worlds — the bandwidth, latency and energy-efficiency of 3D-stacked DRAM
together with the capacity of DIMMs. In these systems, however, good per-
formance requires efficient data allocation and migration between different
memory segments. Data management requires profound application profil-
ing, and up to now, no automatic algorithms — whether in the hardware,
compiler or runtime environment — can provide out-of-the-box performance
for legacy codes. Instead, efficient use of the advanced memory organization
is still the responsibility of the programmer, which has significant impact on
code development cost [80], [18], [45].

Therefore, in the context of hybrid memory systems, it is still important
to find use cases with (small) memory footprints that fit into the 3D-stacked
memory. With good out-of-the-box performance, these use cases would be
the first success stories for 3D memory systems. Our study indeed identified
the HPC applications and use cases with memory footprints that could be
provided by 3D-stacked memory chiplets, making a first step towards adop-
tion of this novel technology in the HPC domain.

4.2 Experimental setup

We analyze the memory footprints of HPC applications running on a large-
scale cluster. We first describe our hardware platform and applications, and
then we explain how we gather our data.

34

4.2. EXPERIMENTAL SETUP

4.2.1 Hardware platform

We execute all experiments on the MareNostrum supercomputer [10] (see
Chapter 3). The interconnect is InfiniBand FDR-10 (40 Gb/s), with a non-
blocking two-level fat-tree topology offering full bisection bandwidth, built
from 36-port leaf switches and 648-port core switches.

Regular MareNostrum compute nodes include 32 GB of DRAM mem-
ory (8 DIMMs × 4 GB), i.e., 2 GB per core. To study application memory
footprints in systems with higher capacity, we execute some experiments on
large-memory nodes containing 128 GB of DRAM (8 DIMMs × 16 GB), i.e.,
8 GB per core.

4.2.2 Applications

We study memory capacity requirements for two widely used HPC bench-
marks, High-Performance Linpack (HPL) and High-Performance Conjugate
Gradients (HPCG) (see Chapter 3). We also study the Unified European
Application Benchmark Suite (UEABS) [89], the set of production applica-
tions and datasets designed for benchmarking the European PRACE HPC
systems for procurement and comparison purposes [90]. For more details,
please see Chapter 3. All UEABS applications are parallelized using MPI,
and are regularly run on hundreds or thousands of cores. For all applications,
we run MPI-only versions, and always execute one MPI process per core. So,
in the rest of the chapter per-process and per-core memory footprint have
equivalent meanings.

4.2.3 Methodology

In this study, we measure the memory footprints of HPC applications running
with various numbers of processes. We obtain footprint information from the
/proc/[pid]/status system files, which together log the memory usage of all
running processes. The memory footprint of a process corresponds to the
amount of physical memory it uses, i.e., the resident set size, or VmRSS. We
use the Extrae and Limpio instrumentation tools [11], [85] to read and log
VmRSS values at equidistant time intervals chosen to provide at least 1000
samples per process. We track, in each experiment, the maximums, means,
and standard deviations of all memory footprint measurements. For produc-
tion HPC applications, unless specifically stated that we analyze the master
process, we report footprints of worker processes. For HPL and HPCG, we
report memory footprints for all the processes.

35

4.3. HIGH-PERFORMANCE LINPACK

4.3 High-Performance Linpack

For more than 20 years, the High-Performance Linpack (HPL) benchmark
is the most widely recognized and discussed metric for ranking of HPC sys-
tems [113]. HPL measures the sustained floating-point rate (GFLOP/s) for
solving a dense system of linear equations using double-precision floating-
point arithmetic. The linear system is randomly generated, with a user-
specified size, so that the user can scale the problem size to achieve the best
performance on a given system. The documentation recommends setting a
problem size that uses approximately 80% of the available memory [87]. We
determine how reducing the memory capacity would affect performance by
appropriately decreasing the problem size. Specifically, we set the problem
size in order to use 80% of the target main memory capacity and verify at
runtime that the memory footprint fits inside the target memory capacity.

4.3.1 Measured memory requirements

Figure 4.2 shows relative HPL performance in FLOP/s (Y -axis) for various
amounts of available memory per core (X-axis) and different numbers of
processes (different lines on the chart). We plot performance relative to the
results with 32 MB of main memory, the smallest amount of memory used
in any of these experiments. The experiments are performed for a range of
16–16,384 processes, and in each experiment the number of processes equals
the number of cores.

As we increase the available main memory, HPL performance first in-
creases, then reaches the saturation point and remains approximately con-
stant. We observe this trend for any number of HPL processes. Also, we
detect that stable HPL performance (after the saturation point) is directly
proportional to the number of processes used in the experiment. For instance,
increasing the number of processes from 16 to 64, 256, and 1024 increases
the steady-state performance by roughly 4×, 16×, and 64× respectively.2

We also detect that, as we increase the number of processes, the saturation
point moves towards larger per-core memory capacities; for instance, 16,
256, and 4096 processes reach their saturation points at 256 MB, 768 MB,
and 1280 MB, respectively. This means that for larger HPC clusters, more
memory per core is required to achieve maximum HPL performance. When
HPL comprises 16,384 processes (executed on one third of the MareNostrum
supercomputer), the saturation point reaches 1.5 GB of memory per core.

2This trend is not visible in Figure 4.2 because for each number of processes the relative
performance is normalized to the 32 MB results.

36

4.3. HIGH-PERFORMANCE LINPACK

32 256 512 768 1024 1280 1536 1792 2048

Per-core memory capacity [MB]

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

H
PL

re
la

tiv
e

pe
rf

or
m

an
ce

Number of processes:
16k
4k
1k
256
64
16

Figure 4.2: HPL performance also depends on the available memory capacity.
When increasing per-core memory, HPL performance first increases and then
reaches the saturation point — the sustained floating-point rate (GFLOP/s)
of the system. As we increase the number of processes, the saturation point
moves towards larger per-core memory capacities.

These results indicate that on large HPC systems with tens or hundreds of
thousands of high-end x86 cores, reaching the HPL performance saturation
point, or at least the point of diminishing returns, requires approximately
2 GB of memory per core. This matches the main memory sizing trends of
the large HPC systems that dominate the TOP500 list.

4.3.2 Analysis

In order to confirm and better understand our measurements, we analyze
how HPL performance depends on single-core floating-point rate, available
memory capacity, interconnect bandwidth and latency, and how this depen-
dency changes as we vary the number of processes used in the HPL runs. In
this section, we summarize the analysis focusing on the conclusions that have
an impact on the memory system sizing; detailed step-by-step explanation
and mathematical formulas are presented in Section 4.3.3.

Our analysis confirms the HPL performance trends presented in Fig-
ure 4.2. For small input datasets, HPL has relatively poor overall perfor-
mances because of high interprocess communication overheads. As the input
dataset increases, the computation factor becomes dominant, the communi-
cation overhead mitigates and the HPL performance converges to the satu-
ration point. For large per-process memory capacities (large input datasets),
the HPL execution time is dominated by the dense matrix-vector multi-

37

4.3. HIGH-PERFORMANCE LINPACK

100 101 102 103 104 105 106 107

Number of cores in HPC system

101

102

103

104

105
Pe

r-
co

re
m

em
or

y
ca

pa
ci

ty
[M

B
]

99% of the ideal HPL performance
95% of the ideal HPL performance
90% of the ideal HPL performance

Million-core system
16.1 GB/core

Dongarra et al. [2003]
16 cores, 250 MB/core

MareNostrum [2016]
16k cores, 2 GB/core

Figure 4.3: Per-core memory needed to get 90%, 95% and 99% of the ideal
HPL performance, for different sizes of HPC systems. Three systems, with
250 MB/core (year 2003), 2 GB/core (year 2016) and 16.1 GB/core (future
potential system) are compared with our estimation curves. Moving from
95% to 99% of ideal HPL performance requires a huge step in the amount of
per-core memory (axes are plotted on logarithmic scales).

plication computational routines that require significant processing power.
In current HPC systems with gigabytes of main memory, HPL is clearly
a CPU bound application typically able to achieve close to the theoretical
peak floating-point rate. Our theoretical analysis indeed shows that as the
memory capacity is increased, the HPL performance analytically converges
to a steady value proportional to the number of processes used in the HPL
run, but the performance optimum is theoretically reached for infinite main
memory.

We also analytically quantify the HPL performance loss due to a finite
main memory capacity and determine the capacity required to reach close-to-
optimal HPL performance, e.g., within 10%, 5% and 1% of the optimal. We
fit the HPC system parameter constants in the formulas to our experimental
data (see Fig. 4.2) and estimate main memory capacity that will lead to
good HPL scores in larger systems. Since we fit the constants to our hardware
platform, this analysis shows the trend of the main memory needed to achieve
good HPL performance for different system sizes, and not the firm values.
The outcome of this analysis is presented in Figure 4.3.

Figure 4.3 plots the amount of memory per core (Y -axis) needed to
achieve 90%, 95% and 99% of the ideal (infinite memory) HPL performance.
We present the results for a wide range of system sizes, from 16 up to over
1,000,000 cores (X-axis). Both axes plot the values in a logarithmic scale.
In scaling the interconnect, we assume that latency remains constant and

38

4.3. HIGH-PERFORMANCE LINPACK

bisection bandwidth scales with the number of cores.3 This is a conserva-
tive assumption because interconnect latency may increase with the num-
ber of cores, which would further increase the per-core memory requirement
for large systems. From Figure 4.3, we see that increasing the system size
causes more memory per core to be needed to achieve good HPL perfor-
mance (recall that both axes of Figure 4.3 have a logarithmic scale). For
systems with 100,000 cores, 2.6 GB and 5.5 GB of per-core memory would
be needed to reach 90% and 95% of the ideal performance, respectively. This
approximately matches the memory sizing of the HPC systems dominating
the current TOP500 list. For an HPC system with 1,000,000 cores, however,
7.6 GB and 16.1 GB of per-core memory would be needed to reach 90% and
95% of ideal performance, respectively. To increase efficiency to 99% of the
ideal performance, a system with 100,000 cores would require 31.4 GB and a
system with 1,000,000 cores would require 88.6 GB per core, a huge amount.

To put our estimation into perspective on Figure 4.3 we plot three sys-
tems: the 16-core system used in the first study that analyzed HPL mem-
ory capacity requirements [29], our largest experiment with 16,384 cores on
MareNostrum supercomputer (year 2016), and a future potential 1,000,000-
core system.4 These points validate the model over more than a decade of
system scaling and illustrate that larger systems will need more memory per
core to achieve good HPL performance.

4.3.3 Mathematical analysis

The section complements the HPL analysis in Section 4.3.2; it presents step-
by-step mathematical formulas that analyze HPL performance as a function
of per-core memory capacity and the number of processes. The analysis
indeed shows that the HPL performance analytically converges to a steady
value proportional to the floating-point rate (GFLOP/s) of the system, but
the performance optimum is theoretically reached for infinite main memory.
We also calculate the per-core memory capacity needed to achieve steady
values of HPL performance, and how this amount of memory changes when
increasing the size of HPC systems (number of cores).

Number of FLOPs. HPL solves a dense linear system of N unknowns
using LU factorization [87]. For a given problem size N the benchmark
performs the following number of double-precision floating-point operations

3In the model developed in Section 4.3.3, α and β are constants independent of the
number of cores.

4In this study, we consider only high-end x86 processing cores. Few HPC systems on
the newest TOP500 list comprise more than a million cores [113], but instead of high-end
x86 cores, these systems have either embedded or accelerating cores.

39

4.3. HIGH-PERFORMANCE LINPACK

(#FLOPs) [29]:

#FLOPs =
2

3
N3 + 2N2 +O(N) (4.1)

Since N � 1, and for number of processes n:

#FLOPsper process '
2N3

3n
(4.2)

Execution time. HPL execution time on a specific system depends on
various system parameters:

• γ3: The time that a single processing unit (e.g. CPU core) requires to
perform one floating-point operation when performing matrix-matrix
operations.

• α: The time to prepare a message for transmission between processes.

• β: The time L × β indicates the time taken by the message of length
L to traverse the network to the destination.

The execution time also depends on the way the data (matrices) are parti-
tioned and distributed among the processes. The coefficient matrix is first
logically partitioned into blocks, each of dimension NB×NB, and these blocks
are cyclically distributed onto the process grid. In all our experiments, factor
NB is kept constant. Finally, the data is distributed onto a two-dimensional
grid of processes, P ×Q, where the total number of processes is n = P ×Q.
When possible it is suggested to keep the same values for P and Q, i.e.,
P = Q =

√
n [87].

An approximation of the HPL execution time T that illustrates the cost
of the dominant factors is [87]:

T =
2γ3N

3

3PQ
+
βN2(3P +Q)

2PQ
+
αN((NB + 1) logP + P)

NB
(4.3)

HPL performance. HPL performance is the number of FLOPs divided
by the execution time, and is expressed in FLOP/s. In order to simplify our
mathematical formulas, we observe execution time per FLOP, which is the
reciprocal for HPL performance.

If we assume P = Q =
√
n and analyze HPL execution time per FLOP

by dividing (4.3) by (4.2), we have:

Tper FLOP = γ3 +
3β
√
n

N
+

3αn
(
1
2 (NB + 1) log n+

√
n
)

2NBN2
(4.4)

Equation 4.4 describes the HPL execution time per FLOP as a function
of the problem size N . Per-core memory capacity m depends on the problem

40

4.3. HIGH-PERFORMANCE LINPACK

size N and the number of processes n: m = 10N2

n
.5 Therefore, the problem

size that generates per-process memory capacity m when the HPL is exe-
cuted on n processes can be computed as: N =

√
mn
10

. If we put this into
Equation 4.4, we determine the dependency between the time per FLOP
(Tper FLOP) and the per-core memory capacity (m):

Tper FLOP = γ3 +
3β
√

10√
m

+
15α

(
1
2 (NB + 1) log n+

√
n
)

NBm
(4.5)

We observe time per FLOP as a function of 1√
m

. For smaller values of
per-process memory, the second and third terms in Equation 4.5 increase the
execution time per FLOP, which means that communication overheads lower
the HPL performance. For infinite memory, Tper FLOP = γ3. This means that
when increasing per-core memory, HPL execution time per FLOP, and there-
fore the HPL performance, indeed analytically converge to a steady value.
This steady value is proportional to the number of processes because the
number of FLOPs is also proportional to the number of cores (processes)
used in the HPL run.

Reaching the steady execution time per FLOP. Next, we calcu-
late per-core memory needed to achieve steady values of execution time per
FLOP. Also, we analyze how this amount of memory changes when increasing
the size of HPC systems (number of cores). Dividing (4.5) by γ3 to normalize
relative to the lowest execution time with infinite memory gives the relative
execution time per FLOP:

Trel per FLOP = 1 + k1
1√
m

+
(
k2
√
n+ k3 log n

) 1

m
(4.6)

Constants k1, k2, k3 and γ3 depend on the hardware platform, and for our
platform we fit the constants according to the results from Figure 4.2. First
we fit the constants k2 and k3, and then k1 and γ3 using linear regression.
We get maximum error against experiments of 13%. Then, we analyze how
much memory per core is needed to get close to ideal result with infinite
memory, i.e., to reach a relative execution time per FLOP of ε. This we get
by solving a quadratic equation:

(
k2
√
n+ k3 log n

)(1√
m

)2

+ k1

(
1√
m

)
+ (1− ε) = 0 (4.7)

The results for ε values that contribute to 90%, 95% and 99% of ideal
(infinite memory) HPL performance are explained in detail in Section 4.3.2.
By taking the derivative of the solution to Equation 4.7, we find that, for

5Problem size should be set to 80% of available memory [87]. The N × N coefficient

matrix requires 8N2 bytes, so the per-core memory capacity is 100
80 ×

8N2

n = 10N2

n .

41

4.4. HIGH-PERFORMANCE CONJUGATE GRADIENTS

any fixed target overhead ε > 0, increasing the number of cores n, always
increases the memory per core, m. This shows that, as the total number of
cores is increased, more memory per core is needed to achieve good execution
time per FLOP, and therefore good HPL performance. This trend is con-
firmed by the experimental results in Section 4.3.1 and historical systems in
Figure 4.3. Writing k1, k2 and k3 in terms of α and β then taking the deriva-
tives with respect to α and β shows that increasing interconnect latency or
reducing interconnect bisection bandwidth also increase the memory per core
for any fixed overhead ε > 0.

4.4 High-Performance Conjugate Gradients

The High-Performance Conjugate Gradients (HPCG) benchmark [111] has
been introduced as a complement to HPL and the TOP500 rankings, since
the community questions whether HPL is a good proxy for production ap-
plications. HPCG is based on an iterative sparse-matrix conjugate gradient
kernel with double-precision floating-point values, and is representative of
HPC applications governed by differential equations. Such applications tend
to have much greater demands on the memory system, in terms of bandwidth
and latency, and they access data using irregular patterns [27]. Similarly to
HPL, the user can scale the problem size to achieve the best performance
on a given system. Therefore, to determine the capacity requirements, we
analyze HPCG performance for a range of 16–8192 processes as a function
of the problem size, i.e., main memory used in the experiment. Then, we
analyze whether the trends detected in the real-system measurements match
the expected tendencies based on algorithm complexity and data pattern
accesses.

4.4.1 Measured memory requirements

In Figure 4.4, we show the relation between relative HPCG performance
(Y -axis) and memory footprint (X-axis). We executed HPCG for various
memory footprints, by changing the problem sizes from 24-24-24 up to 120-
120-120 with an additive step of 8, always keeping the three dimensions
identical, and reported average per-process memory footprints. For each
number of processes, the performance was plotted relative to the results with
the smallest problem size used in the experiments. We analyzed this trend
for different numbers of processes that are plotted with different lines of the
chart. Recall that, for each experiment, the number of processes equals the
number of cores.

42

4.4. HIGH-PERFORMANCE CONJUGATE GRADIENTS

256 512 768 1024 1280

Per-process memory footprint [MB]

1.0

1.5

2.0

H
PC

G
re

la
tiv

e
pe

rf
or

m
an

ce Number of processes:
8192
4096
2048
1024
512
256
128
64

Figure 4.4: HPCG performance also depends on the available memory ca-
pacity. Performance increases until it reaches the saturation point, where it
is constrained by the sustained memory bandwidth. The saturation point
remains constant across a wide range of HPCG processes, at around 512 MB
of main memory per process.

For a small number of processes and small input datasets, the HPCG
workload may (partially) fit into on-CPU caches which leads to performance
that significantly exceeds stable ones (on larger input datasets). In our ex-
periments, we detected this trend for 16 and 32 processes. This trend is
detected and analyzed by previous studies [63], and it is considered to be a
non-representative use of HPCG [28], [111]. Therefore, we neither plot nor
analyze these results.

As we increase the HPCG problem size, i.e., per-process memory foot-
print, HPCG performance rapidly increases and then reaches a stable value
directly proportional to the number of processes used in the experiment.6

Unlike HPL, we detect that the saturation point remains constant, roughly
512 MB of main memory per-process, for a large range of HPCG processes.
In the following section, we analyze this in detail. Finally, we also detect that
for memory footprints of around 1.5 GB, HPCG performance decreases. The
performance drop is caused by swapping, and we did not detect it when the
experiments were repeated on large-memory nodes comprising 8 GB of main
memory per core. The HPCG performance drop because of memory swap-
ping was not reported in past, and we would suggest that HPCG developers
take this into account when providing suggestions about dataset sizing.

6As for HPL, this trend is not visible in Figure 4.4 because for each number of processes,
the performance is normalized to the result with the smallest input dataset.

43

4.4. HIGH-PERFORMANCE CONJUGATE GRADIENTS

4.4.2 Analysis

Although the HPCG benchmark was released only a couple of years ago,
several studies analyze its behavior and performance bottlenecks, and even
estimate its performance on future exascale HPC systems [63], [82]. When
running HPCG, the user sets the per-process problem size N . For a given
problem size N , the number of floating-point operations and memory accesses
are both proportional to N .

#FLOPsper process ≈ O(N) (4.8)

The execution time of HPCG depends on the problem size N and number of
processes n:

T ≈ O(N) +O(N
2
3) +O(log n) (4.9)

The first factor O(N) refers to the computational complexity, while factors

O(N
2
3) and O(log n) refer to point-to-point and collective communication,

respectively.
For small memory capacities, below 256 MB per process in Figure 4.4,

the HPCG performance is affected by the interprocess communication, fac-
tors O(N

2
3) and O(log n) in Equation 4.9. However, as the input dataset

increases, the factor O(N) becomes dominant and the communication over-
head mitigates; the HPCG performance rapidly converges to the saturation
point determined by the memory bandwidth.

For large per-process memory capacities (large values of N), the HPCG
execution time is dominated by the computational routines, which mainly
perform sparse matrix-vector multiplication [27] and require modest CPU
power but significant memory bandwidth. For each floating-point opera-
tion (FLOP), HPCG requires a transfer of at least 4 bytes from main memory,
i.e., HPCG byte-per-FLOP ratio is higher than 4. In state-of-the-art HPC
systems, the byte-per-FLOP ratio is below 1,7 meaning that in current sys-
tems memory bandwidth is the main performance bottleneck. As we increase
the system size, the total available memory bandwidth and therefore HPCG
performance increase proportionally. Because of this, HPCG performance is
proportional to the number of processes, as detected in Section 4.4.1.

Finally, we analyze whether the HPCG performance saturation point
moves as we increase the number of processes. As the number of processes
increases, the factor O(log n) might cause the HPCG saturation point to
move towards the larger per-process memory capacity, i.e., towards the right

7Our node comprises two 8-core Sandy Bridge sockets and each core can execute up to
8 double-precision FLOPs per cycle. Each socket has four 64-bit wide, 1.6 GHz memory

channels. Therefore byte/FLOP = 8×(8 bytes)×(1.6 GHz)
16×(8 FLOP)×(3 GHz) = 0.27.

44

4.5. PRODUCTION HPC APPLICATIONS

in Figure 4.4. Marjanović et al. [63] analyze in detail the impact of collective
communication on HPCG performance, and conclude that for any plausible
input dataset sizes and numbers of processes this impact is negligible. The
authors also analyze the communication overheads in future systems, and es-
timate that even in a million-core HPC system, the communication overhead
stays below 1.2%.

4.5 Production HPC applications

In this section, we analyze how the number of application processes affects
the memory footprints of production HPC applications, taking into account
application scalability, the targeted HPC category, and the size of the input
dataset.

We study 10 of the 12 applications from the Unified European Application
Benchmark Suite (UEABS) [89], which has been designed to represent pro-
duction applications running on large-scale Tier-1 and Tier-0 HPC systems
in Europe. Each application is detailed explained in Section 3.2.2. Table 4.1
summarizes the applications and input datasets. For each application, we
briefly describe the input dataset, and indicate the number of processes used
in the experiments. As for HPL and HPCG, in all experiments we execute
one application process per CPU core. The number of processes starts from
16 (a single MareNostrum node) and it increases by powers-of-two. Some of
the applications have memory capacity requirements that exceed the avail-
able memory on a single node, which limits the lowest number of processes
we use in the experiments, e.g., BQCD in Test Case A cannot be executed
with less than 64 processes (four nodes). The largest number of processes we
use is 8192, except for Quantum Espresso (QE), which reports errors when
executing on 4096 or 8192 cores. Note that SPECFEM3D always runs with
the specified numbers of cores: 864 in Test Case A and 11,616 in Test Case B.

4.5.1 Memory footprint vs. Number of processes

The memory footprints of an HPC application executed with a given input
dataset can vary significantly for different numbers of application processes.
In general, the more processes used for the computation, the smaller the
portion of the input data handled by each process. On the other hand,
distributing the computation over a larger number of processes also means
more replication of data on the boundaries of adjacent data segments, or
in per-process private data segments, external libraries, and communica-
tion buffers [50]. Although it may seem obvious that memory footprints

45

4.5. PRODUCTION HPC APPLICATIONS

Table 4.1: Scientific HPC applications used in the study

Application
Test Case A: Smaller input dataset Test Case B: Larger input dataset

Problem size Process
range

Problem size Process
range

ALYA 27 million element
mesh

16–1k 552.9 million element
mesh

256–8k

BQCDa 322× 642 lattice 64–8k N/A N/A

CP2K Energy calculation of
1024 waters

128–1k 216 LiH system with
Hartree-Fock exchange

∅b

GADGET 135 million particles 512–8k N/A N/A

GENE Ion-scale turbulence
in Asdex-Upgrade

64–1k Ion-scale turbulence in
Jet

2k–8k

GROMACS 150,000 atoms 16–1k 3.3 million atoms 16–8k

NAMD 2×2×2 replication of
the STM Virus

16–1k 4×4×4 replication of
the STM Virus

64–8k

NEMO 12° global configura-
tion; 4322×3059 grid

512–8k N/A N/A

QE 112 atoms; 21 itera-
tions

16–1k 1532 atoms; two itera-
tions

1k–2k

SPECFEM3D 6×12×768 mesh of
the earth

864 6×24×1760 mesh of
the earth

11,616

a Quantum Chromo-Dynamics (QCD) is a set of five kernels. We study Kernel A, also
called Berlin Quantum Chromo-Dynamics (BQCD), which is commonly used in QCD
simulations.
b CP2K cannot run Test Case B on our platform. The errors have been reported to the
application developers.

of HPC applications are tightly-coupled with the number of application pro-
cesses, previous studies of memory footprints ignore this relationship (see
Section 4.7).

Figure 4.5a illustrates the relationship between the per-process (per-core)
memory footprint and the number of application processes for NAMD run-
ning Test Case A. This is a strong scaling case, i.e, we keep the same input
dataset (Test Case A) and change the number of processes. This corre-
sponds to a real-life use of production applications in which users have to
choose the number of processes that will be used to solve an already defined
problem with a fixed input size. For each process we track the maximum
and mean memory footprints, and we plot the average values and the stan-
dard deviations among all processes. When NAMD runs as 16 processes, the
mean per-process memory footprint is 1656 MB. As we increase the number

46

4.5. PRODUCTION HPC APPLICATIONS

16 32 64 128 256 512 1024

Number of application processes

0

400

800

1200

1600

2000

6.4×

Per-process memory footprint [MB]:
Maximum
Mean

(a) NAMD, Test Case A. Mean and maximum memory footprints exhibit the same
trend.

ALY
A

[16
–1

02
4]

GROM
ACS

[16
–1

02
4]

NAM
D

[16
–1

02
4]

BQCD

[64
–8

19
2]

CP2K

[12
8–

10
24

]

GADGET

[51
2–

81
92

]

GENE

[64
–1

02
4]

NEM
O

[51
2–

81
92

] QE

[16
–2

56
]

0

5

10

15

20
17.0×

1.2×

6.4× 7.9×

3.3×

7.7× 7.6× 6.6× 5.8×

Reduction factor of
mean per-process footprint

(b) UEABS applications, Test Case A. The range of processes is indicated below
each benchmark.

Figure 4.5: Per-process memory footprints shrink as the number of processes
increases.

of processes, the footprint drops significantly. When the application runs
using 1024 processes, the per-process memory footprint is only 258 MB, a
difference of 6.4×. Maximum memory footprints exhibit the same trends
(see Figure 4.5a), and thus in the rest of the chapter we discuss only mean
footprint values.

Figure 4.5b summarizes memory footprint results for all UEABS work-

47

4.5. PRODUCTION HPC APPLICATIONS

loads. Except GROMACS, which has a small overall memory footprint,8 the
general trend is the same for the remaining applications. We detect memory
footprint changes from 3.3× for CP2K up to 17× for ALYA.

Discussion

Our analysis emphasizes that the memory footprints of HPC applications
are tightly-coupled with the number of application processes. State-of-the-
art parallel benchmark suites, however, do not strictly define the number of
processes to use in experiments. UEABS recommends experiments with up to
10,000 processes, but the minimum number of processes is not specified. Sim-
ilarly, other parallel benchmark suites either provide loose recommendations
about the number of processes (SPEC OMP2012 [2], SPEC MPI2007 [1],
SPLASH-2 [118]) or do not discuss this issue at all (NAS [116], PARSEC [14],
HPC Challenge [60], Berkeley dwarfs [4]). Therefore, when analyzing mem-
ory capacity requirements, it is essential that the users themselves determine
a number of processes that is representative of real production use. This,
in turn, requires knowledge of the HPC category that the user is targeting
together an understanding of the scalability of the applications under study,
as we discuss in the following sections.

4.5.2 Selecting the number of processes

HPC categories

High-performance computing is broadly divided into two categories [32]. Ca-
pability computing refers to using a large-scale HPC installation to solve a
single problem in the shortest possible time, for example simulating a human
brain on a Tier-0 HPC system. Capacity computing refers to optimizing sys-
tem efficiency to solve as many mid-size or smaller problems as possible at
the same time at the lowest possible cost, for example when small or medium
enterprises use rented (on-demand) HPC resources to simulate numerous de-
sign choices for their products. Analyzing pricing policies for renting HPC
resources is beyond the scope of this study; in the rest of this chapter, we
therefore approximate the cost of a given experiment as proportional to the
CPU-hours, i.e., the number of cores used in the experiment (#cores) mul-
tiplied by the execution time: cost ∝ CPU hours = #cores× exe time.

8The GROMACS developers explain that the application requires only around 100 MB
in total for Test Case A (divided among all processes). The dominant part of the per-
process GROMACS memory footprints comes from the MPI library and other external
libraries, and it remains constant as the number of application processes increases.

48

4.5. PRODUCTION HPC APPLICATIONS

Although capability computing targets application runs with the lowest
execution time, excessive application scaling may deliver diminishing returns
in performance improvement while linearly increasing CPU-hours. This is an
unacceptable scenario that leads to inefficient resource utilization. Similarly,
although capacity computing targets low-cost HPC computation, excessive
slowdown of application runs may have unacceptable impact, e.g., on the
productivity of engineers waiting for simulation results.

Application scalability

It is important to understand that CPU-hours and execution time are depen-
dent metrics, and that in the production runs, users must analyze the trade-
offs between them. In Figure 4.6, we analyze this relationship for NAMD and
CP2K, respectively. The upper graphs of Figures 4.6a and 4.6b show nor-
malized speed-up and CPU-hours for each experiment, and the lower graphs
show application parallel efficiency. All statistics are computed relative to
the experiments with the fewest processes, 16 for NAMD and 128 for CP2K.9

Parallel efficiency (a number between 0 and 1) quantifies how effectively the
resources are utilized, and it is the main metric for analyzing application
scalability. A parallel efficiency of 1 means that the application speed-up
is directly proportional to the number of processes. Low parallel efficiency
means that significantly increasing processing resources only delivers low or
moderate speed-ups.

NAMD is an example of an application with good scalability (Figure 4.6a).
Increasing the number of processes causes significant speed-ups with negli-
gible increments in CPU-hours. When we change the number of processes
from 16 to 256, 512, and 1024, we measure speed-ups of 14.60×, 27.79×, and
39.14× at cost increments of 10%, 15%, and 64%, respectively. When used
in capability computing, NAMD should be executed with a large number of
processes (we use 1024 processes in the experiments presented in Figure 4.6a).
Although CPU-hours is the primary metric in capacity computing, it is rea-
sonable to expect that a user would accept small increases in CPU-hours
if they lead to high improvements in execution time. Therefore, in capac-
ity computing as well, experiments with a large number of processes are
most representative of real-life production use of NAMD. We observe similar
trends for ALYA, BQCD, GENE, and Quantum Espresso. All of them show
good scalability and significant speed-ups with negligible CPU-hours incre-
ments. In both capability and capacity computing, these applications should
be executed with many processes.

9Recall that CP2K cannot be executed with 16, 32 and 64 processes because its memory
requirements exceed the available memory.

49

4.5. PRODUCTION HPC APPLICATIONS

16 32 64 128 256 512 1024
0

10

20

30

40

50

1.0 2.03 3.97
7.59

14.6

27.79

39.14

1.0 0.99 1.01 1.05 1.1 1.15 1.64

Speed-up
CPU-hours

16 32 64 128 256 512 1024

Number of application processes

0
0.2
0.4
0.6
0.8

1
1.0 1.01 0.99 0.95 0.91 0.87

0.61
Parallel
Efficiency

(a) NAMD (Test Case A), good scalability

16 32 64 128 256 512 1024
0

1

2

3

4

5

1.0

1.77

2.71

3.98

1.0 1.13
1.48

2.01

Speed-up
CPU-hours

16 32 64 128 256 512 1024

Number of application processes

0
0.2
0.4
0.6
0.8

1
1.0

0.89

0.68
0.5Parallel

Efficiency

(b) CP2K (Test Case A), limited scalability

Figure 4.6: Trade-offs between normalized execution time and experiment
cost (CPU-hours) for applications with good and limited scalability.

50

4.5. PRODUCTION HPC APPLICATIONS

Large
number of
processes

Large
number of
processes

Large
number of
processes

Small
number of
processes

HPC
category

Application
scalabilityGood Limited

Capability
computing

Capacity
computing

Figure 4.7: The representative number of application processes is determined
by application scalability and the targeted HPC category.

CP2K is an example of an application with limited scalability (Figure 4.6b).
When we change the number of processes from 128 to 256, 512, and 1024, we
observe speed-ups of 1.77×, 2.71×, and 3.98×, while the CPU-hours increase
1.13×, 1.48×, and 2.01×, respectively. Results for CP2K show clear trade-
offs between cost and speed-up. When used in capability computing, CP2K
should be executed with a large number of processes, 512 and 1024 in the
experiments presented in Figure 4.6b. When targeting capacity computing,
users should try to reduce CPU-hours. Thus, CP2K should be partitioned
into smaller numbers of processes. We observe similar behavior for GAD-
GET, GROMACS, and NEMO.

Summary

In this section, we showed how memory footprints of HPC applications de-
pend on the number of application processes, and we provided guidelines for
selecting the number of processes to be representative of production appli-
cation use. Figure 4.7 summarizes this analysis. The figure shows how the
representative number of application processes depends on application scal-
ability and how this may change for different HPC categories. Applications
with good scalability should be executed with large numbers of processes,

51

4.5. PRODUCTION HPC APPLICATIONS

regardless of the targeted HPC category. This leads to significant speed-ups
with only a small increase in experimentation cost. For applications with lim-
ited scalability, increasing the number of processes reveals a clear trade-off
between execution time and CPU-hours. For experiments that target capa-
bility computing, these applications should be executed with a large number
of processes providing low execution time at the expense of the CPU-hours.
On the other hand, when targeting capacity computing, applications should
be partitioned into a small number of processes, sacrificing execution time to
improve experimentation cost and overall system throughput [122].

4.5.3 Memory requirements of production
HPC applications

In this section, we analyze per-process memory capacity requirements of
the production applications. In all experiments, the applications were run
with Test Case A inputs and up to 8192 processes. Test Case A can be
run for all UEABS applications, and it supports a wider range of processes
compared to Test Case B (which could only run six out of ten applications,
see Section 4.2.2). We analyze Test Case B in more detail in Section 4.5.4.
Recall that our applications roughly scale up to 1000–10,000 processes when
running these input datasets.

The results are summarized in Figure 4.8. The left side of Figure 4.8
shows results for the applications with good scalability — ALYA, BQCD,
GENE, NAMD, and Quantum Espresso (QE). These applications should be
executed with a large number of processes regardless of the targeted HPC
category. The average per-process memory footprints for these applications
ranges from 57 MB for ALYA to 258 MB for NAMD. The footprints for
BQCD, GENE, and QE are 116 MB, 137 MB, and 197 MB, respectively.10

The right side of Figure 4.8 shows the per-process memory footprints of
the applications with limited scalability. In the capability computing exper-
iments, we execute these applications on a large number of cores: 1024 for
CP2K, and 8192 for GADGET and NEMO. The per-process memory foot-
prints are again fairly small — 336 MB, 154 MB, and 203 MB, for CP2K,
GADGET, and NEMO, respectively. Since the processor under study has
eight cores, and we allocate one process per core, the per-socket memory
footprint in these experiments ranges between 0.4 GB (ALYA, 8×57 MB)

10Although Quantum Espresso processing Test Case A should scale up to 1024 pro-
cesses [89], we observed very good scalability up to 256 processes but poor scalability
(slowdowns) for 512 and 1024 processes. We therefore report results for 256 processes for
this application.

52

4.5. PRODUCTION HPC APPLICATIONS

ALYA
[1024]

BQCD
[8192]

GENE
[1024]

NAMD
[1024]

QE
[256]

CP2K
[1024]

GADGET
[8192]

NEMO
[8192]

CP2K
[16]

GADGET
[256]

NEMO
[128]

0

1

2

3

4

5

6

7

8

Pe
r-

pr
oc

es
s

m
em

or
y

fo
ot

pr
in

t[
G

B
]

Applications with good scalability Applications with limited scalability
Capability computing Capacity computingCapability and capacity computing

Figure 4.8: Memory footprints of production HPC applications depend on
application scalability and the targeted HPC category. Only the applications
with limited scalability that target capacity computing require gigabytes of
main memory per process.

and 2.6 GB (CP2K, 8×336 MB). The first-generation 3D memory devices
already provide such memory capacities, see Chapter 2.

In capacity computing, we execute the applications with limited scalabil-
ity on a small number of cores, and this number is dictated by the memory
capacity of the compute nodes — scaling the parallelism down further would
cause the per-process memory footprints to exceed the available memory. To
understand how the memory footprints increase in systems with higher mem-
ory capacities, we run experiments on large-memory nodes containing 128 GB
of main memory, i.e., 8 GB per core. When we partition CP2K, GADGET,
and NEMO to 16, 256, and 128 processes, their per-process footprints are
5.8 GB, 2.2 GB, and 4.8 GB, respectively (rightmost part of Figure 4.8).
On standard nodes with 2 GB of memory per core, we could partition these
applications to 128 processes for CP2K, and 512 processes for GADGET and
NEMO. In this scenario, we measured the per-process memory footprints of
1.1 GB, 1.2 GB, and 1.3 GB, for CP2K, GADGET, and NEMO, respectively.

Figure 4.8 omits results for GROMACS and SPECFEM3D. The per-
process footprint of GROMACS is very low, between 60 MB and 70 MB,
and it decreases only slightly from 16 to 1024 processes (see Section 4.5.1).
SPECFEM3D requires exactly 864 processes, and thus we cannot analyze
how its memory footprint changes with the number of processes. When
executed with 864 processes, the average memory footprint is 2.53 GB.

These results show that different production HPC applications — or even

53

4.5. PRODUCTION HPC APPLICATIONS

16 32 64 128 256 512 1024

Number of application processes

0

400

800

1200

Per-process memory footprint [MB]:
Worker processes
Master process

Figure 4.9: As the number of processes increase, memory footprints of worker
processes decrease as expected, but memory footprint of the master process
increases: ALYA, Test Case A.

a single application used in different HPC categories — can have significantly
different memory capacity requirements. Applications that scale well and
those that target capability computing have low per-process memory foot-
prints. These applications require from 57 MB to 258 MB of memory, which
means that they heavily under-utilize the memory capacity of our HPC plat-
form: their average memory usage is below 10% of the full capacity. Only the
applications with limited scalability that target capacity computing require
gigabytes of main memory per process.

Master process memory requirements

Many HPC applications are written using a master–worker process model.
In these applications, the problem is decomposed into data segments that
can be processed independently by different worker processes. The master
process (usually the first process) assigns work to each worker process, and
collects the intermediate and final results of the computation.

Figure 4.9 plots the memory footprints of the ALYA master and worker
processes as the number of processes increases from 16 to 1024. Memory
footprints of worker processes drop as we increase the number of processes,
following the trend described in Section 4.5.1. The master process, how-
ever, exhibits the opposite trend, and its memory footprint increases with
the number of processes. This is a general trend in master–worker applica-
tions. For the UEABS applications, we detect that master process may have
significantly higher memory footprints than workers, up to 36.6× for NEMO
(master 7.2 GB, worker 0.2 GB) and 62.5× for BQCD (master 7.1 GB, worker
0.1 GB). Both application developers and computer architects should pay at-

54

4.5. PRODUCTION HPC APPLICATIONS

tention to this phenomenon, still not well highlighted and quantified by the
community.

4.5.4 Towards weak scaling analysis

The presented analysis keeps constant the input dataset size and varies the
number of application processes. This refers to the strong scaling case of pro-
duction HPC applications. In addition to this, it is also important to perform
a weak scaling analysis, i.e., to analyze memory capacity requirements when
both the number of processes and input dataset size are increased — similar
to the study performed for HPL and HPCG benchmarks. Since the problem
inputs are specified by the benchmark suite, such analysis requires either
that the benchmark suite support a user-defined problem size (as for HPL
and HPCG) or that it provides a set of inputs specifically intended for weak
scaling analysis. We are not aware of such a real application benchmark
suite. UEABS for instance has just two problem sizes, Test Case A and Test
Case B, and in many cases the problems being solved are fundamentally dif-
ferent, making them unsuitable for weak scaling analysis. For example, in
case of ALYA, Test Case A is a model of the respiratory system whereas
Test Case B is a mesh of generic elements [17]. As an intermediate step, we
analyze the two input datasets for the NAMD benchmark distributed with
the UEABS suite, which is one of few benchmarks where the two datasets
are comparable [17], and observe the changes in the application memory
footprint and scalability when increasing the input dataset size.

In order to analyze how the per-process memory footprint changes with
dataset size, in Figure 4.10 we plot the NAMD memory footprint results for
both the smaller and larger input datasets. The Test Case A curve starts at
16 processes, a single MareNostrum node. Test Case B exceeds the memory
capacity of one or two MareNostrum nodes (16 and 32 processes), so the curve
starts from 64 processes. We show the Test Case A results on up to 1024
processes, and for Test Case B on up to 8192 processes, as recommended by
UEABS documentation [89]. For both input datasets, the NAMD footprint
is around 1600 MB on a small number of processes, and it drops rapidly as
we increase the process count. Both memory footprint curves follow the same
tendency, with the Test Case B results being shifted towards larger numbers
of processes. We detect the same trend for all UEABS applications.

Next, we analyze the impact of dataset size on application scalability.
Figure 4.10b plots parallel efficiency of NAMD with both input datasets.
Parallel efficiency of NAMD with Test Case A reduces to 0.61 when the
process count increases from 16 to 1024 (64×). With Test Case B, when
increasing from 64 to 2048 processes (32×), the parallel efficiency drops to

55

4.5. PRODUCTION HPC APPLICATIONS

16 32 64 128 256 512 1024 2048 4096 8192

Number of application processes

0

400

800

1200

1600

2000
Per-process memory
footprint [MB]:

NAMD Test Case A
NAMD Test Case B

(a) When input dataset increases memory footprint curve shifts towards larger
number of processes.

16 32 64 128 256 512 1024 2048

Number of application processes

0

0.2

0.4

0.6

0.8

1.0

1.2
1.0 1.01 0.99 0.95 0.91 0.87

0.61

1.0

0.82 0.79

0.66

0.45
0.39

Parallel efficiency:
NAMD Test Case A
NAMD Test Case B

(b) Increasing the input dataset lowers the scalability of NAMD application.

Figure 4.10: Increasing the input dataset changes memory footprint and
scalability of NAMD application. We detect the same trend for all UEABS
applications.

0.39.11 For all the applications under study, we find that it is harder to
achieve good scalability for larger numbers of processes, even if the input
dataset size increases. This is not surprising, because increasing the number
of processes causes more communication and synchronization overheads, and
increases the penalty of sequential code segments. The simple increase in

11NAMD running Test Case B should scale up to 10,000 processes, but we detect very
low or no speed-up after 2048 processes. Therefore we plot parallel efficiency results up to
2048 processes for Test Case B.

56

4.6. IMPLICATIONS

dataset size does not address all of these problems.
To summarize, our results show that when input datasets increase, the

memory footprint as a function of the number of processes keeps the same
trend, but the curve is shifted toward larger number of processes (Fig-
ure 4.10). Application scalability, however, reduces, in some cases signifi-
cantly. Therefore, increasing the input dataset requires repeating the analy-
sis of the trade-offs between execution time and CPU-hours (Section 4.5.2) in
order to determine the representative number of processes for a production
run of the application.

4.6 Implications

The current trend in HPC system design is to increase the number of mem-
ory channels per CPU and the number of I/Os in each DDR generation.
This approach is limited by the package size, plus it is expensive, and it
increases memory system power consumption. A potentially promising solu-
tion for these problems is the use of 3D-stacked DRAMs. Detailed overview
of the currently-available products based on this technology: Hybrid Memory
Cube (HMC), High-Bandwidth Memory (HBM), and multi-channel DRAM
(MCDRAM) incorporated into the Knights Landing processors is given in
Chapter 2. In this section, we summarize the pros and the cons of 3D-
stacked DRAM. We also discuss the opportunities and challenges of these
solutions in the context of high-performance computing, and outline our ex-
pectations on how these devices may change the design of next-generation
memory systems.

4.6.1 3D-stacked DRAM in HPC memory systems:
Opportunities and challenges

Understanding application memory capacity requirements is essential for the
design of HPC memory systems based on 3D-stacked DRAM. The main
question to be answered is whether 3D memory chiplets can on their own
provide the capacity required by HPC applications.

HPCG vs. HPL

An important driving force for 3D-stacked DRAM could be the HPCG bench-
mark. With performance directly proportional to main memory bandwidth,
and memory footprints below 1 GB per process even when targeting million-
core systems, HPCG could be the first success story for 3D-stacked DRAM

57

4.6. IMPLICATIONS

in HPC. Regarding KNL, hundreds of MBs per core of MCDRAM may be
sufficient for an outstanding HPCG performance [48], especially on small
clusters (see Figure 4.4). Therefore, HPCG could be a good example of an
important benchmark that works out-of-the-box and performs well on KNL.

On the other hand, one of the main show-stoppers for 3D-stacked memory
could be HPL. In contrast to HPCG, high memory bandwidth provides no
benefits for HPL, while the limited capacity of 3D-stacked memory can lead
to significant performance loss, especially in large-scale systems. As shown
in Section 4.3.2, a million-core system would require 16.1 GB per core to
achieve 95% of the potential performance (Figure 4.3). Although the HPC
community is questioning whether HPL is representative of modern pro-
duction HPC applications [72], [73], and is actively looking for alternative
benchmarks (HPCG being one of them), high HPL scores are still important
objectives in the design of large HPC clusters. Looking forward, it will be in-
teresting to see whether KNL-based TOP500 systems will use the 3D-stacked
MCDRAM in the HPL runs, i.e. whether the developers of optimized HPL
and corresponding linear algebra libraries will find a way to benefit from
hybrid MCDRAM + DDR memory systems.

Production HPC applications

In Section 4.5.3 and Figure 4.8 we saw that the memory capacity require-
ments of production HPC applications had a bimodal distribution. Most
of our HPC applications and use cases require only hundreds of megabytes
of main memory. This capacity can be provided by 3D memory chiplets
located on the silicon interposer (e.g. KNL MCDRAM), with no need for
conventional DIMMs on the printed circuit board (PCB). Such a memory will
provide significantly higher memory bandwidth and lower latency, which, in
turn, will lead to higher system performance and energy-efficiency. Since 3D-
stacked memory chiplets could directly replace DIMMs, the main memory
would still comprise a single level with uniform latency.

For HPC applications that require gigabytes of main memory, sufficient
memory capacity can be provided using hybrid 3D memories plus on-PCB
DIMMs, similar to KNL systems. The main memory would therefore consist
of two levels of hierarchy with different latencies, bandwidths, and capacities.
For computer architects, this opens design options to optimize the capaci-
ties, organizations, and interconnections of the 3D memory chiplets and the
DIMMs.

Although hybrid memory systems support functional portability, i.e. ex-
ecution of legacy codes, there is a clear tradeoff between the achieved per-
formance and the effort invested in code profiling and development. For

58

4.6. IMPLICATIONS

example, in the KNL cache mode, large-footprint applications can be exe-
cuted with no changes in the source code, but this approach could lead to
significant performance loss. Although having large caches may intuitively
suggest higher performance, in KNL it may not be the case. Since MC-
DRAM and DDR4 have separate data paths (as they use separate memory
controllers), MCDRAM misses require two consecutive accesses — first to the
MCDRAM and second to the DDR — leading to a high cache miss penalty
and potentially low overall performance.

Good performance of hybrid memory systems is conditioned by the need
for advanced data allocation, migration, and prefetching policies [20], [69].
Optimal data management in these systems, such as the KNL flat memory
mode, requires profound application profiling and a significant increase in the
code development cost. In order to reduce this effort and increase adoption
of the KNL architecture, Intel released various profiling tools [41] and data
management libraries and APIs [42] that simplify efficient programing of the
systems with hybrid main memory. It will be interesting to see whether the
KNL — as the first system that combines the 3D-stacked and the DDR main
memory — will be adopted by the users, and whether the increased cost in
software development and maintenance will be justified by the performance
gains.

Message from application developers

New HPC systems should be designed taking into consideration the require-
ments from future users and application developers. With regard to memory
capacity, certain applications, in domains such as theoretical physics and
inorganic chemistry, have a constant need for more memory. Based on Fig-
ure 4.8, however, we see that there are many applications that have low
memory requirements. Users of such applications that could in fact live with
less DRAM usually remain quiet, since for them the additional DRAM under
discussion will not degrade performance. Moreover, these users generally do
not have to pay the costs associated with extra memory per core, in terms
of capital cost and power consumption. This leads to general-purpose HPC
clusters with 2 GB per high-end x86 core, with some large-memory nodes
having 4 GB to 8 GB per core, i.e., more than 100 GB per node.

With the introduction of 3D-stacked memory, this dynamic changes.
Users may wish to “trade” DIMM capacity, which they do not need, for
3D-stacked DRAM, which provides higher bandwidth and lower latency. For
applications with relatively low memory capacity requirements, 3D-stacked
DRAM is likely to lead to significantly better overall performance [91]. It is
therefore essential that application developers understand the performance–

59

4.7. RELATED WORK

capacity–cost tradeoffs between DIMM-based, 3D-stacked and hybrid DRAM
solutions, in order to clearly express their preferences to the HPC hosting
centres. Whereas user demand has already led to large-memory nodes, mes-
sages from the users and developers of small-memory application may lead
to specialization in the other direction; i.e., small-memory nodes with high-
bandwidth low-latency 3D-stacked memory.

4.7 Related work

Dongarra et al. [29] present the Linpack benchmarks suite, the TOP500 list,
and the HPL code. The authors execute HPL on a small 4×4 cluster of Pen-
tium III 500 MHz CPUs and analyze the benchmark performance for various
interconnects and input dataset sizes of up to around 250 MB per core. The
results show that increasing the HPL input dataset size can lead to signif-
icant performance improvements. Our work extends this study in various
directions. We detect the point of diminishing returns when increasing the
input dataset size, and analyze how this changes with the number of pro-
cesses used in the HPL run, i.e., with the size of the HPC system. We also
estimate the amounts of physical memory required for the close-to-optimal
HPL performance on future large-scale HPC clusters.

The HPL benchmark has been extensively used in the past. In general,
HPL studies analyze how to tune arithmetic libraries, OS kernel and network
parameters to improve HPL performance on a given system. The studies use
the maximum input dataset that fits into the physical memory while prevent-
ing swapping, as suggested by the HPL developers, and do not analyze the
impact of changes in the physical memory capacity on the HPL performance.

Marjanović et al. [63] analyze the HPCG benchmark and predict the
HPCG performance on a given architecture based on the memory bandwidth
and the highest network latency between compute units. They conclude that
for modern systems with a decent network, highly accurate prediction can
be done based only on the memory bandwidth. On the node level, they
show that small problem sizes that fit in the CPU caches can have HPCG
performance that exceeds the stable values and are therefore non represen-
tative. However, they do not analyze how HPCG performance depends on
the problem size for larger numbers of processes, as we did in this study.

Although memory provisioning for large-scale HPC clusters is an impor-
tant task, to the best of our knowledge only three prior studies analyze
memory footprints of HPC applications [15], [86], [83]. However, these stud-
ies do not analyze the relationship to the number of processes, which is very
important as we show in this study. Biswas et al. [15] and Perks et al. [86]

60

4.7. RELATED WORK

investigate different techniques to reduce memory footprints in order to im-
prove the performance of HPC workloads. Biswas et al. [15] leverage the
data similarity often exhibited in MPI applications. They identify identical
memory blocks across MPI tasks on a single node and use a novel memory
allocation library to merge them. The authors evaluate their proposal on a
range of MPI applications (SPEC MPI2007, NAS, ASC Sequoia benchmarks,
and two production applications), and show memory footprint reduction of
32% on average. Perks et al. [86] investigate the impact of compiler choice on
the memory usage of distributed MPI codes. The authors compare memory
usage of four versions of simple MPI benchmarks compiled with GNU, Intel,
PGI, and Sun compilers. Their results show that compiler choice can make
a difference of up to 32% in memory usage. Pavlovic et al. [83] character-
ize memory behavior for four scientific applications to estimate the memory
system requirements of future HPC systems with hundreds or thousands of
cores per node. The authors estimate memory footprints of HPC applications
comprising thousands of processes by using linear regression based on results
of a few experiments with a small number of processes. Even though the au-
thors target systems running applications with thousands of processes, the
study does not analyze application scalability, nor does it evaluate whether
the input sets used in the study are large enough to take advantage of such
parallelism.

As the first 3D-stacked DRAM devices are hitting the market, various
studies analyze how to incorporate these devices into the memory hierarchy.
It is generally accepted that 3D-stacked DRAM is unlikely to fulfill the mem-
ory capacity requirements of server and HPC applications, so the community
is exploring hybrid systems in which 3D-stacked DRAM is complemented by
standard DIMMs [25], [20], [100], [69]. The essence of these studies is the
development of techniques for advanced data migration between 3D-stacked
DRAM and DIMMs. An important requirement of this work is to avoid ex-
cessive code development costs and improve performance of legacy codes. So,
all the studies keep the unified view of the main memory at the application
level; the data management policies are performed in hardware by complex
data path enhancements [20], [100] or by an interaction between hardware
and the operating system [25], [69]. Overall, all studies agree that manag-
ing hybrid memory systems with 3D and DIMMs is a difficult task and that
simple approaches, such as using 3D-memory as an additional level of cache,
may lead to significant performance loss.

61

4.8. SUMMARY

4.8 Summary

This study analyzed memory capacity requirements of important HPC bench-
marks and applications. This analysis becomes increasingly important as
3D-stacked memories are hitting the market. These novel memories provide
significantly higher memory bandwidth and lower latency, leading to higher
performance and better energy-efficiency. However, the adoption of 3D mem-
ories in the HPC domain requires use cases needing much less memory ca-
pacity than currently provisioned. With good out-of-the-box performance,
these use cases would be the first success stories for these memory systems,
and could be an important driving force for their further adoption.

We detected that HPCG could be an important success story for 3D-
stacked memories in HPC. With low memory footprints and performance
directly proportional to the available memory bandwidth this benchmark is a
perfect fit for memory systems based on 3D chiplets. HPL, however, could be
one of the main show-stoppers because reaching a good performance requires
memory capacities that are unlikely to be provided by 3D chiplets.

The study also emphasizes that the analysis of memory footprints of pro-
duction HPC applications requires an understanding of their scalability and
target category, i.e., whether the workloads represent capability or capacity
computing. The results show that most of the HPC applications under study
have per-core memory footprints in the range of hundreds of megabytes —
an order of magnitude less than the main memory available in the state-of-
the-art HPC systems; but we also detect applications and use cases that still
require gigabytes of main memory.

Overall, the study indeed identified the HPC applications and use cases
with memory footprints that could be provided by 3D-stacked memory chiplets,
making the first step towards adoption of this novel technology in the HPC
domain. Also, it showed that the simple question “How much memory do
we need in HPC?” may not have a simple answer. We hope that this will
motivate the community to question the trends for memory system sizing
in current HPC clusters, and will lead to further analysis targeting future
ones.

62

CHAPTER5
Large-memory nodes

for energy efficient HPC

In recent years, we witness the trend of increasing number of HPC systems
that comprise more than 4 GB of memory per core. Figure 5.1 shows per-core
memory capacities of the top 50 HPC systems from the TOP500 list from
years 2014 (Figure 5.1a), 2015 (Figure 5.1b) and 2016 (Figure 5.1c). We can
see that each year, the number of HPC systems comprising more that 4 GB
of memory per-core is increasing. Moreover, even the systems that comprise
less than 4 GB of memory per core still include some percentage of compute
nodes with increased memory capacity to satisfy the needs of some users.

In Chapter 4, we saw that applications that require gigabytes of main
memory, have limited scalability and target capacity computing in HPC,
i.e. they target solving as many mid-size or smaller problems as possible at
the lowest possible cost. In this chapter we go a step further, and for this
type of applications we investigate whether we can benefit in terms of energy
efficiency from having large memory capacity on the node.

In this chapter, we investigate the potential for saving energy in high-
performance computing (HPC) through scaling-in on large-memory nodes.
Energy consumption is by far the most important contributor to HPC cluster
operational costs, and it accounts for a significant share of the total cost of
ownership. Advanced energy-saving techniques in HPC components have
received significant research and development effort, but a simple measure
that can dramatically reduce energy consumption is often overlooked. We
show that, in capacity computing, where many small to medium-sized jobs
have to be solved at the lowest cost, a practical energy-saving approach is
to scale-in the application on large-memory nodes. We evaluate scaling-

63

[1,2) [2,3) [3,4) [4,5) ≥5

Per-core memory capacity [GB]

0

5

10

15

20

25

30

N
um

be
ro

fH
PC

sy
st

em
s CPU architecture:

x86
PowerPC
SPARC

(a) Top 500 list - November 2014.

[1,2) [2,3) [3,4) [4,5) ≥5

Per-core memory capacity [GB]

0

5

10

15

20

25

30

N
um

be
ro

fH
PC

sy
st

em
s CPU architecture:

x86
PowerPC
SPARC

(b) Top 500 list - June 2015.

[1,2) [2,3) [3,4) [4,5) ≥5

Per-core memory capacity [GB]

0

5

10

15

20

25

30

N
um

be
ro

fH
PC

sy
st

em
s CPU architecture:

x86
PowerPC
SPARC

(c) Top 500 list - June 2016.

Figure 5.1: Evolution of per-core memory capacity of HPC systems leading
the TOP500 list during the period from 2014 until 2016. Each year, number
of HPC systems that comprise more than 4GB of main memory per core is
increasing.

64

5.1. INTRODUCTION

in; i.e. decreasing the number of application processes and compute nodes
(servers) to solve a fixed-sized problem, using a set of HPC applications
running in a production system. Using standard-memory nodes, we obtain
average energy savings of 36%, already a huge figure. We show that the main
source of these energy savings is a decrease in the node-hours (node hours =
#nodes × exe time), which is a consequence of the more efficient use of
hardware resources.

Scaling-in is limited by the per-node memory capacity. We therefore
consider using large-memory nodes to enable a greater degree of scaling-in.
We show that the additional energy savings, of up to 52%, mean that in
many cases the investment in upgrading the hardware would be recovered in
a typical system lifetime of less than five years.

5.1 Introduction

Energy consumption is by far the most important contributor to HPC clus-
ter operational costs, and it accounts for a large share of the total cost of
ownership [5, 108]. For this reason, advanced energy-saving techniques in
CPUs, cooling systems, next-generation memories and interconnects have
been the subjects of significant industrial and academic research and devel-
opment effort. Despite this investment, as shown in this chapter, researchers
and users continue to overlook a simple measure that can dramatically re-
duce energy consumption, that of simply optimizing the number of compute
nodes (servers) used to execute each job.

High-performance computing is broadly divided into capability and ca-
pacity computing. Capability computing refers to the use of a large-scale
HPC installation to solve a single problem in the shortest possible time; e.g.
simulating the human brain on a Tier-0 HPC system. In contrast, capacity
computing refers to optimizing system efficiency to solve many mid-size or
smaller problems at the lowest possible cost [32]. Typical examples of capac-
ity computing would be small and medium enterprises using on-demand HPC
resources to explore future product designs. In the context of capacity com-
puting, the user is concerned not with the running time of a single job, but
with the total running time of a batch of jobs and total system throughput.

This study investigates the potential for saving energy through scaling-
in on large-memory nodes. Scaling-in refers to executing a fixed problem
on a fixed machine, but using a reduced number of application processes
and compute nodes. Scale-in increases single job execution time, but, as
we quantify in this chapter, it substantially decreases energy consumption
and reduces the running time of a batch of jobs. It is therefore of partic-

65

5.2. METHODOLOGY

ular interest in the context of capacity computing. We study the trade-
off between job/batch execution time, energy consumption and node-hours
(node hours = #nodes × exe time) using a set of large-scale HPC appli-
cations running on a production HPC system. In summary, we find that
scaling-in on standard memory nodes improves energy consumption by 36%
on average, a huge figure. We investigate the sources of this energy savings,
and show that its main source is a reduction in node-hours.

Scaling-in is limited by the per-node memory capacity, since, for a fixed
size problem, reducing the number of nodes increases the memory required
at each node. We therefore investigate the benefits of upgrading the per-
node memory capacity in terms of energy savings and reducing the node-
hours, and follow this with a financial cost-benefit analysis. We show that
the additional energy savings, of up to 52%, mean that an investment in
upgrading the memory would be typically recovered in less than five years.

5.2 Methodology

5.2.1 Hardware platform

We execute experiments on the MareNostrum 3 supercomputer [10] (see
Chapter 3). Regular MareNostrum compute nodes comprise 32 GB of DDR3-
1600 main memory (i.e. 2 GB per core). To evaluate the impact of main
memory capacity upgrade on energy-efficiency, we execute some experiments
on large-memory nodes. Large-memory nodes are identical to standard nodes
except that their memory capacity has been upgraded to 128 GB (i.e. 8 GB
per core).

5.2.2 Applications

We study HPC scaling behaviour using the Unified European Application
Benchmark Suite (UEABS) [89], the set of production applications and datasets
designed for benchmarking the European PRACE HPC systems for procure-
ment and comparison purposes [90]. For more details about each application,
please see Chapter 3. All applications are parallelized using MPI, and we
executed them with the Test Case A dataset, which is scalable up to 1,024
processes. We ran the benchmarks with one MPI process per core, i.e. sixteen
processes per node. Table 5.1 shows the six benchmarks that we analyzed.
The table also shows the range of nodes on which we ran the benchmarks. In
all cases, the maximum was 64 nodes (1,024 cores). The minimum was either
a single node or the least number of nodes necessary to meet the memory re-

66

5.2. METHODOLOGY

Table 5.1: UEABS applications used in the study.

Application Science area Memory [GB] a Number of nodes

ALYA Computational mechanics 15.1 1–64
NAMD Computational chemistry 25.9 1–64
QEb Computational chemistry 17.7 1–64
BQCD Particle physics 14.4 4–64
GENE Plasma physics 16.2 4–64
CP2K Computational chemistry 17.0 8–64

a Per-node memory usage when application runs on the minimum number of nodes.
b QE stands for Quantum Espresso application.

quirements. We also list per-node memory requirements for the benchmarks
running on the minimum number of nodes.

5.2.3 Power and energy measurements

The node power consumption was measured using IBM Active Energy Man-
ager power modules, which monitor the voltage and current at the node
power supply [40]. Active Energy Manager is part of the Integrated Manage-
ment Module II in the firmware of the System x iDataPlex dx360 M4 [55].
The modules measure the node’s total power consumption, including power
supply, motherboard with all its components, CPUs, and memory. The
MareNostrum node firmware samples the power consumption every second,
and it computes the energy consumption by multiplying the measured power
sample by the interval length of one second. Finally, the LSF batch job man-
ager [38] sums the energy measurements during the whole execution of a job,
and it reports the total in the job execution log file.

We estimate the energy consumption of the interconnect. Measurements
from the node power modules already include the network interfaces in the
node, so we focus on the energy consumption of the switches. Current net-
work components are observed to have close-to-constant power demand, in-
dependent of load, with a deviation of less than 5% [81, 104]. This means
that the total switch power consumption can be determined by adding up the
vendor’s figures for typical use, and, since power consumption is independent
of activity, the total can be attributed to the nodes equally. We calculate a
constant 7.0 W/node for the top-of-rack switches, 15.3 W/node for the core
switches, and 4.8 W/node for the Ethernet storage and management net-
works, giving a total of 27.1 W per node. For a given job, the interconnect
energy consumption can therefore be calculated assuming a constant power
of 27.1 W per node.

67

5.3. SCALING-IN ON STANDARD NODES

5.3 Scaling-in on standard nodes

5.3.1 Execution time vs. node-hours vs. energy

Before running any experiment on an HPC machine, the user must choose to
run the application on a particular number of nodes. This scenario, of a fixed
problem to solve on a variable number of nodes, is known as strong scaling.
The largest number of nodes is limited by the machine size and application’s
scalability: beyond a certain point, adding further nodes delivers diminishing
returns. The smallest number of nodes is constrained by the amount of
memory needed by the application: scaling-in the application too far would
require more memory per node than is available.

Until now, the number of nodes has been chosen as a trade-off between
execution time and node-hours, where the latter is the main “cost” exposed
to the user, and is given by the number of nodes multiplied by the job’s
execution time. Figure 5.2 shows this trade-off for the ALYA application. As
the number of nodes, on the x-axis, is increased from 1 to 64, the execution
time drops by a factor of 27 (1/0.04),1 while the node-hours increase by a
factor of 2.37. At the same time, the energy consumption increases by a
factor of 2.07. The energy consumption is about 90% compute nodes and
10% switches, and this ratio was roughly the same in all our experiments.

Figure 5.3 summarizes the energy results for all the applications under
study.2 Increasing the number of nodes above the minimum always leads to
significant energy overheads, between 1.25× and 2.07×, with an average of
1.6×.

To understand these results in the context of capacity computing, we
analyze how execution time, node-hours and energy are affected by scale-in
and scale-out, for a single job and for many jobs. The upper half of Table 5.2
refers to the single-job experiments, discussed in the previous paragraph. In
this case, scale-in greatly increases the execution time, since it reduces the use
of concurrent hardware resources (to 1 node instead of 64). When we move
to 64 jobs, however, as illustrated in the bottom half of the table the analysis
changes. The number of 64 jobs is selected to simplify the illustration of
the phenomena; the conclusions are applicable for any large number of jobs.
Scale-in executes the set of jobs across all 64 nodes, with an independent job

1We report only the execution time of the HPC job. Time waiting in the job queue
and/or moving the results to an interactive server for post-processing can significantly
reduce the effective speed-up.

2Although QE processing Test Case A should scale up to 64 nodes [89], we observed
good scalability up to 16 nodes but slowdowns for 32 and 64 nodes. We therefore report
results for the range 1–16 nodes for QE.

68

5.3. SCALING-IN ON STANDARD NODES

1 2 4 8 16 32 64

Number of compute nodes

0

0.5

1.0

1.5

2.0

2.5

R
el

at
iv

e
to

a
si

ng
le

no
de

1.0 1.06 1.18 1.22 1.35
1.52

2.07

1.0 1.09
1.23 1.27 1.39

1.63

2.37

1.0

0.54
0.31

0.16 0.09 0.05 0.04

Node hours
Execution time
Energy

Figure 5.2: ALYA, 1–64 nodes: Increasing the number of nodes increases
both energy and node-hours, with strong correlation.

ALYA
[1–64]

BQCD
[4–64]

CP2K
[8–64]

GENE
[4–64]

NAMD
[1–64]

QE
[1–16]

1.0

1.2

1.4

1.6

1.8

2.0

2.2

R
el

at
iv

e
to

th
e

lo
w

es
t

nu
m

be
ro

fn
od

es

2.07

1.63

1.86

1.36
1.25

1.43

Energy consumption

Figure 5.3: UEABS applications: Increasing the number of nodes causes
significant energy overheads.

on each node. Although the total experiment size increases by a factor of 64,
the execution time remains the same. In the scale-out approach, however,
since each job already executes across all 64 nodes, the jobs execute one
after another, and the execution time increases by a factor of 64. The scale-
in approach is 27× slower for a single job, but 2.37× faster for 64 jobs. In
both cases, scale-in approach reduces energy consumption by 2.07×.

Therefore, in capacity computing, where there are many smaller jobs,
scaling-in improves all three metrics: execution time, node-hours, and energy
consumption. Although important, this fact is overlooked by most of HPC
research. To the best of our knowledge, this is the first study that quantifies
improvements of scaling-in of large-scale HPC applications. We believe that
the presented results will motivate further research in this direction and

69

5.3. SCALING-IN ON STANDARD NODES

Table 5.2: ALYA, 1 vs. 64 jobs: The scale-in approach is 27× slower for
a single job, but 2.37× faster for 64 jobs. In both experiments scaling-in
reduces node-hours by 2.37× and energy consumption by 2.07×.

Nodes per job Nodes
Exe time
[min]

Node-
hours

Energy
[kWh]

1 job

Scale-out 64 64 1.14 1.21 0.30
Scale-in 1 1 30.62 0.51 0.14
Ratio 0.04 2.37 2.07

Better approach Scale-out Scale-in Scale-in

64 jobs

Scale-out 64 64 72.71 77.56 19.10
Scale-in 1 64 30.62 32.66 9.25
Ratio 2.37 2.37 2.07

Better approach Scale-in Scale-in Scale-in

1 2 4 8 16 32 64

Number of compute nodes

0

20

40

60

80

100

C
om

m
un

ic
at

io
n

an
d

co
m

pu
ta

tio
n

tim
e

[%
]

Communication time [%]
Computation time [%]

Node power [W]

200

220

240

260
N

od
e

po
w

er
[W

]256
250 246 244 248

236

219

Figure 5.4: ALYA, 1–64 nodes: Scaling-out decreases power per node, since
nodes spend more time in communication.

impact the policies for operational use of large HPC clusters.

70

5.3. SCALING-IN ON STANDARD NODES

5.3.2 Understanding energy vs. node-hours

For all the applications, as for ALYA shown in Figure 5.2, there is a clear
correlation between the increments in node-hours and energy; however the
two curves do not grow at the same pace. In fact, the node-hours curve always
exceeds the energy curve. Since interconnect switch energy is proportional to
node-hours (constant 27.1 W/node), the gap between the curves must come
from a reduction in per-node power consumption. Figure 5.4 explores the
node power consumption for the ALYA application, with each data point
being the average of ten experiments. As the number of nodes, on the x-
axis, is increased from 1 to 64, the per-node power reduces from 256 W to
219 W, a drop of 15%. The trend is not followed precisely, but the results
are repeatable, as sample standard deviation was negligible.

The per-node power reduction comes due to changes in the behavior of
HPC applications when scaling-out, mainly because of the increase in the
communication-to-computation ratio. We trace the applications and mea-
sure the time spent in communication and computation with the Limpio
instrumentation tool [85]. As shown in Figure 5.4, in the case of ALYA, in-
creasing the number of nodes from one (16 processes) to 64 (1,024 processes)
increases the proportion of time spent in communication from 20% to 69%.
Since the power consumption of the communication (MPI functions) ranges
between 200 W and 220 W, compared with about 280 W for computation, in-
creasing the time spent in communication would pull down the average power
consumption. In summary, for all applications under study, the higher the
number of nodes, the higher the proportion of time that is spent in commu-
nication, and the lower the average per-node power consumption.

5.3.3 Implications and impact

The number of compute nodes to use in a given experiment impacts the
application’s execution time, node-hours and energy consumption, and, in
aggregate, the throughput of the whole HPC system. This topic has not
yet been thoroughly explored in the context of capacity computing. This
is perhaps because HPC was traditionally biased to large public research
centers and academia, which are heavily focused on capability computing.

In recent years, however, HPC has entered industry, including small and
medium enterprises, and many users now pay for their time on rented HPC
resources. With this change, the cost of HPC experiments has become highly
visible, and therefore of prime importance, and scaling-out of HPC applica-
tions is now a serious trade-off between execution time and cost. In addition
to this, energy efficiency has become an important consideration in state-of-

71

5.4. LARGE-MEMORY NODES FOR ENERGY EFFICIENCY

the-art HPC systems, and it is one of the main limitations in the design of
future ones [5].

Considering these recent changes in HPC, and future requirements and
limitations, it is important to rethink the scaling-out of HPC applications.
The results in the previous section show that application scaling-out increases
energy consumption on average by a factor of 1.6. Equivalently, from the
point-of-view of current practice, scaling-in reduces the energy consumption
by 36%, on average. To the best of our knowledge, this study is the first
to emphasize how the number of nodes impacts energy consumption and to
quantify the potential energy savings.

5.4 Large-memory nodes for energy efficiency

As described in previous section, reducing the number of nodes improves en-
ergy efficiency but it increases the memory demand per node, with the result
that scaling-in is limited by the nodes’ memory capacity. In Table 4.1 it was
shown that CP2K, for example, requires at least eight MareNostrum nodes to
fit the problem size. This is explained further in Figure 5.5. CP2K results are
presented in Figure 5.5a, and they show how reducing the number of nodes,
shown on the x-axis, to four or fewer causes the per-node memory footprint to
exceed the standard node memory capacity of 32 GB. Figures 5.5b and 5.5c
show the same trend for ALYA and QE applications processing Test Case B,
the larger input dataset intended for Tier-0 HPC systems. ALYA application
exceeds the 32 GB per node memory footprint on eight or fewer nodes, while
QE requires at least 64 standard nodes to fit into the available main memory.

In addition to the memory footprint, Figure 5.5 also plots the node-hour
and energy consumption curves. For CP2K in Figure 5.5a, the experiments
with eight or more nodes use standard nodes, whereas the experiments with
four or fewer nodes by necessity use large-memory nodes. Results are nor-
malized to the eight-node experiment, which is the best result on standard
nodes. It is clearly seen that, for the CP2K application, scale-in to large-
memory nodes further improves the energy efficiency. Moving from eight
standard nodes to a single large-memory node leads to 19% savings in both
node-hours and energy consumption. In Figures 5.5b and 5.5c node-hours
and energy curves follow the same trend as for CP2K, and the savings are
even higher. For ALYA, scale-in from 16 standard to 4 large-memory nodes
led to 28% energy and 34% node-hours savings, while QE saved 47% of energy
and 52% of node-hours when moving from 64 to 16 nodes. We also analyze
GENE running larger Test Case B. For GENE, shift from 128 standard to

72

5.4. LARGE-MEMORY NODES FOR ENERGY EFFICIENCY

1 2 4 8 16 32 64

Number of compute nodes

0

20

40

60

80

100

Pe
r-

no
de

m
em

or
y

fo
ot

pr
in

t[
G

B
]

0

0.4

0.8

1.2

1.6

2.0

N
od

e
ho

ur
s

an
d

to
ta

le
ne

rg
y

re
la

tiv
e

in
cr

ea
se

0.81 0.92 0.93 1.0 1.1

1.46

1.86

0.81 0.89 0.9 1.0 1.13

1.48

2.01Memory footprint [GB]
Total energy
Node hours

128 GB nodes 32 GB nodes

(a) CP2K (Test Case A)

4 8 16 32 64

Number of compute nodes

0

20

40

60

80

100

Pe
r-

no
de

m
em

or
y

fo
ot

pr
in

t[
G

B
]

0

0.4

0.8

1.2

1.6

2.0

2.4

N
od

e
ho

ur
s

an
d

to
ta

le
ne

rg
y

re
la

tiv
e

in
cr

ea
se

0.72 0.84
1.0

1.29

2.02

0.66 0.78
1.0

1.34

2.15Memory footprint [GB]
Total energy
Node hours

128 GB nodes 32 GB nodes

(b) ALYA (Test Case B)

16 32 64 128

Number of compute nodes

0

20

40

60

80

100

Pe
r-

no
de

m
em

or
y

fo
ot

pr
in

t[
G

B
]

0

0.4

0.8

1.2

1.6

2.0

N
od

e
ho

ur
s

an
d

to
ta

le
ne

rg
y

re
la

tiv
e

in
cr

ea
se

0.53 0.6

1.0

1.57

0.48 0.56

1.0

1.58Memory footprint [GB]
Total energy
Node hours

128 GB nodes 32 GB nodes

(c) QE (Test Case B)

Figure 5.5: Scaling-in increases memory requirements and energy efficiency
of HPC applications. Node-hours and energy are shown relative to the ex-
periment on the minimum number of standard nodes.

73

5.4. LARGE-MEMORY NODES FOR ENERGY EFFICIENCY

CP2K
[8→1]

ALYA
Test Case B

[16→4]

QE
Test Case B

[64→16]

GENE
Test Case B
[128→64]

0
10
20
30
40
50
60

E
ne

rg
y

sa
vi

ng
s

of
la

rg
e-

m
em

or
y

no
de

s

19%
28%

47%
52%

Figure 5.6: Summary of energy savings enabled by using large-memory nodes.
[a→ b] refers to a shift from a standard to b large-memory nodes.

64 large-memory nodes saved 52% of energy and 55% of node-hours.3

Figure 5.6 summarizes energy savings enabled by running the experiments
on large-memory nodes. We detect energy savings from 19% for CP2K, up to
52% for GENE running Test Case B, with an average of 36%, a huge figure.

5.4.1 Large-memory nodes for capacity computing

To understand benefits of using large-memory nodes in the context of capac-
ity computing, we analyze how execution time, node-hours and energy are
affected on standard and large-memory nodes, for a single job and for many
jobs. The upper half of Table 5.3 refers to the single-job experiments. In this
case, using large-memory nodes increases the execution time by 6.5×, since
it reduces the use of concurrent hardware resources (to one node instead of
eight). When we move to eight jobs, however, as illustrated in the bottom
half of the table, the analysis changes. Scale-in approach on large-memory
nodes executes the set of jobs across all eight nodes, with an independent
job on each node. Although the total experiment size increases by a factor of
eight, the execution time remains the same. In the scale-in approach on stan-
dard nodes, however, since each job already executes across all eight nodes,
the jobs execute one after another, and the execution time increases by a
factor of eight. The scale-in on large-memory nodes approach is 6.5× slower
for a single job, but 1.23× faster for eight jobs. In both cases, the scale-in
on large-memory nodes reduces energy consumption by 1.24×. Therefore, in
capacity computing, where there are many smaller jobs, using large-memory

3GENE is excluded from Figure 5.5 as it has only two data points, for 128 standard
and 64 large-memory nodes.

74

5.4. LARGE-MEMORY NODES FOR ENERGY EFFICIENCY

Table 5.3: CP2K, 1 vs. 8 jobs: Execution on large-memory nodes is 6.5×
slower for one job, but 1.23× faster for eight jobs. For both job sizes, node-
hours and energy reduce when using large-memory nodes.

Nodes per jobNodes
Exe time

[min] Node-hours
Energy
[kWh]

1 job

Standard 8 8 25.9 3.45 1.07
Large-mem 1 1 168 2.8 0.86
Ratio 0.15 1.23 1.24

Better approach Standard Large-mem Large-mem

8 jobs

Standard 8 8 207.2 27.6 8.56
Large-mem 1 8 168 22.4 6.88
Ratio 1.23 1.23 1.24

Better approach Large-mem Large-mem Large-mem

nodes improves all three metrics: execution time, node-hours, and energy
consumption.

5.4.2 Large-memory node cost-benefit analysis

Finally, this section explores whether large-memory nodes are worthwhile
from a financial point-of-view; i.e. whether the decrease in electricity costs
would be sufficient to recover the cost of the extra memory. This analysis
concentrates only on the financial return. Large memory nodes also increase
system throughput, providing an extra benefit beyond that evaluated in this
section.

In Table 5.4, each entry indicates the percentage payback, over a five-year
system lifetime, from the reduced electrical costs delivered by large-memory
nodes. Entries that exceed the break-even point of 100% are indicated in
bold. The electricity cost for the U.S. is the average industrial price from
August 2015 [115], whereas for the U.K, Germany and France industrial
prices are from 2014 [33]. The memory upgrade from 32 GB to 128 GB was
estimated to cost around $600 per node [88]. The benefit clearly depends on
the mix of applications ran on the large-memory nodes, as different applica-
tions obtain greater or lesser energy savings. For CP2K, the 20% reduction
in energy is not sufficient to recover the costs. For ALYA, a 30% energy

75

5.5. RELATED WORK

Table 5.4: Payback from large-memory nodes over five-year system life-
time [%].

Country $/kWh
Reduction in energy consumption

10% 20% 30% 40% 50% 60%
(CP2K)(ALYA) (QE/GENE)

U.S. 0.07 16 32 48 64 80 97
U.K. 0.15 33 66 99 132 165 198
Germany 0.17 38 75 112 150 188 225
France 0.10 22 44 66 88 110 132

saving means that the costs would be recovered in Germany. For QE and
GENE, which both obtained roughly 50% reduction, the investment would
be recovered in France, Germany and the U.K.

5.5 Related work

Significant industrial and academic research has been invested into energy-
saving mechanisms for HPC components, such as CPUs, interconnects and
memories. Several studies investigate how to employ CPU low-power modes
in HPC. Current practice is to run the CPUs at the maximum voltage and
frequency even while busy-waiting for an MPI message. Freeh et al. [34]
investigate the tradeoff between energy and performance in MPI programs
using DVFS. Using the NAS Benchmark Suite, they show that on one node
it is possible to use 10% less energy while increasing time by only 1%. Lim et
al. [57] propose an MPI runtime system that dynamically reduces the CPU
performance during communication phases in order to minimize the energy-
delay product (EDP). They show an average reduction in EDP of 10% across
the NAS benchmarks suite.

Laros et al. [52] study how to combine CPU frequency scaling (for com-
putation) and network bandwidth scaling (for communication) to reduce the
energy consumption. On a set of Department of Energy (DOE) production
applications running at large scale, they measure energy savings of up to
39%, with little or no impact on runtime performance. Their results also
indicate that each application has a sweet spot based on its computation
and communication requirements.

Regarding HPC interconnect energy consumption, Dickov et al. [23] re-
duce InfiniBand link energy by 21% by powering down the network links

76

5.6. SECOND THOUGHTS ON SCALABILITY

Scale-up:
More powerful servers

Scale-out: More serversScale-in: Fewer servers

Scale-down:
Less powerful servers

Traditional HPC:
Scaling = Scale-out

Our study:
Scale-in on standard nodes

Our study:
Scale-up and scale-in

 on large-memory nodes

Figure 5.7: System scaling can be horizontal (scale-in or -out) and vertical
(scale-up or -down). Traditionally, HPC community is focused mainly on
scale-out, referring to it simply as scaling. Our study analyzes scale-in on
standard nodes, and a combined scale-up and scale-in approach on large-
memory nodes.

during the computation phases and using prediction to ensure that they are
powered up in time for the next communication phase. Karthikeyan et al. [95]
use prediction and an adaptive stall timer to reduce Ethernet link energy by
68%, while respecting a 1% bound on the increase in execution time.

Several previous studies deal with the energy efficiency of DRAM memory,
through different memory management policies, intelligent data placement,
and by creating opportunities to transition between power states [24, 62, 112].
Malladi et al. [61] use mobile DRAM devices in order to trade bandwidth for
energy efficiency. These studies are validated for datacenter workloads, and
it would be interesting to see to what extent their results are applicable to
HPC.

In this chapter, we show that upgrading the memory capacity in HPC sys-
tems for capacity computing is a simple approach to save energy and reduce
node-hours. In contrast to most of the prior research, our approach can be
applied immediately, and it requires no changes to the system architecture,
Operating System, system software or applications.

77

5.6. SECOND THOUGHTS ON SCALABILITY

5.6 Second thoughts on scalability

The big data community distinguishes between two dimensions of system
scaling — horizontal, which refers to the number of compute units, and
vertical, referring to the hardware capabilities of each compute unit (see
Figure 5.7). There are main two corresponding approaches for the analysis
of huge data volumes: scale-out and scale-up. Scale-out means using more
servers in parallel to spread out the workload, while scaling-up means us-
ing larger and faster servers to each handle a greater workload. The big
data community is very active in analyzing the trade-offs between these two
approaches, and whether both of them should co-exist within the same clus-
ter [3].

In HPC, the dominant approach for addressing ever increasing HPC prob-
lems is scale-out. Actually, the community uses a general term scalability or
scaling to refer to scale-out; while the more precise terms scale-up/out, hor-
izontal and vertical scaling are rarely used or not used at all.

In modern HPC, the cost and energy consumption of the experiments
has become highly visible and of prime importance. Our study demonstrates
that simple but unconventional approaches of scale-in (standard node) or
scale-up and scale-in (large memory nodes) can lead to significant savings in
cost and energy, and improvements in throughput. Therefore, we hope that
the study will motivate the community to consider the trade-offs between
horizontal and vertical scaling when provisioning and using HPC clusters.
Maybe we could start this journey with some second thoughts about the way
that we use the word scalability.

5.7 Summary

The importance of energy consumption of current and future HPC machines
means that significant research effort has been spent on advanced energy-
saving techniques in HPC components. Despite this investment, the simple
measure of scaling-in applications to reduce energy consumption has received
little attention.

Scaling-in is most appropriate in the context of capacity computing, where
a large number of mid-size or smaller problems have to be solved at the lowest
cost, and the users are less interested in the execution time of a single job.
We therefore advocate upgrading the memory capacity that allows further
scaling-in in capacity computing. We validate this approach on a set of large-
scale HPC applications running on a production system, and obtain average
energy savings of 36%, a huge figure. Finally, we investigate the economical

78

5.7. SUMMARY

benefits of this approach, and show that the investment in upgrading the
hardware would be typically recovered in less than five years.

Overall, we believe that this study will motivate further analysis of the
trade-offs between horizontal and vertical scaling in HPC, especially in appli-
cation domains that are on the border between HPC and big data analytics.

79

CHAPTER6
DRAM errors in the field

Field studies of DRAM errors are essential for steering academic research
and industrial practice in the most productive directions. This chapter sum-
marizes our study of corrected and uncorrected errors on the MareNostrum 3
supercomputer, covering 2000 billion MB-hours of DRAM in the field.

The study clearly distinguishes between two different approaches for the
DRAM error analysis. The first approach is to compare the errors at the
DIMM level, and to partition the DIMMs into various categories, e.g. based
on whether they did or did not experience an error. The second approach is
to analyze the error rates, i.e., to present the total number of errors relative
to other statistics, typically the number of MB-hours or the duration of the
observation period. We show that although DRAM error analysis may be
performed with both approaches, they are not interchangeable and can lead
to completely different conclusions.

In addition to providing exploratory analysis, we perform statistical sig-
nificance tests for each finding that we present. We show that various widely-
accepted approaches for DRAM analysis may provide data that appear to
support an interesting conclusion, but are not statistically significant, mean-
ing that they could merely be the result of chance.

Overall, we believe that our study of methods for DRAM error analysis
and reporting statistical significance of the results will become a standard
for any future analysis of DRAM errors in the field.

6.1 Introduction

In large-scale compute clusters, main memory is one of the principal causes
of hardware failures [36]. As memory capacities increase and DRAM pro-

81

6.1. INTRODUCTION

cesses shrink, it is thought that larger numbers of smaller transistors will
have higher DRAM failure rates, impacting future system reliability [19]. It
is especially important to understand reliability in high-performance com-
puting (HPC), where a single tightly-coupled job may execute for days on
thousands of nodes. If one of these nodes fails, the whole job is terminated.
Component reliability therefore becomes an important limit on the ability to
scale to larger systems.

This chapter summarizes our study of correctable and uncorrectable er-
rors on the MareNostrum 3 supercomputer [12], covering 2000 billion MB-
hours of DRAM in the field. MareNostrum 3 is one of six Tier-0 HPC
systems in Europe; it comprises 3056 servers and more than 25,000 memory
DIMMs. The study covers a period of more than two years, from October
2014 to November 2016, during which we detected 4.5 million corrected and
71 uncorrected DRAM errors. The results include all three major memory
manufacturers and three different DRAM technologies.

In MareNostrum 3, and in the server domain in general, main memory
is protected with error correcting codes (ECC). In modern HPC systems,
sophisticated ECCs are able to correct multiple corrupted bits in a data
word, and even handle cases where an entire DRAM chip is corrupted [21].
Data correction is performed in parallel with data read, so corrected errors
effectively have no impact on system performance and reliability. But, if
the ECC cannot correct a given DRAM error, the job typically has to be
terminated and the server is shut down. The server is not operational until
the DIMM is replaced and the node has been tested. The overall impact is
lower reliability, lower system throughput and worse system availability.

Due to the requirement for high system reliability, original equipment
manufacturers (OEMs) thoroughly test DIMMs from various manufacturers
to certify that they can be used in production. It is usual practice, however,
to quantify DIMM reliability using correctable errors, rather than the more
important uncorrectable errors. Likewise, most of the DRAM error field
studies focus their analysis on correctable errors, although only uncorrectable
errors have an impact on system reliability.

Quantitative analysis of DRAM errors in the field can be performed with
two approaches, which are often used interchangeably, although they differ
greatly in stability and often lead to different conclusions. The first approach
is to compare the errors at the DIMM level, and to partition the DIMMs
into various categories, e.g. based on whether they did or did not experience
an error. This first approach does not consider the number of errors that
occurred on a given DIMM; the DIMM is categorized as soon as the first error
is detected and any further errors do not change the DIMM’s category. It is
typically used to show the proportion of the DIMMs that experienced errors,

82

6.1. INTRODUCTION

or that were retired from the system. The second approach is to analyze the
error rates. In this approach, the total number of errors is presented relative
to other statistics, typically the amount of the MB-hours or the duration of
the observation period. To the best of our knowledge, our study is the first to
employ both approaches for DRAM error analysis and to clearly distinguish
between them.

Categorical analysis: Similar to previous studies we detect that the
percentage of DIMMs that experience uncorrectable errors is very small, and
we notice some differences among manufacturers and DRAM technologies.
However, to the best of our knowledge, we are the first to use statistical tests
to validate these findings, and the first to show a lack of their statistical sig-
nificance. We repeat the analysis for the corrected errors, and show a strong
statistically significant difference between DRAM manufacturers and tech-
nologies. Contrary to the common belief that scaling down the technology
reduces the DRAM reliability, our measurements show that the proportion
of DIMMs that experience errors is reduced significantly in each DRAM
generation. Finally, we show a strong dependency between DIMMs that ex-
perienced corrected and uncorrected DRAM errors. This validates the use of
corrected errors as an indirect indicator of the memory systems reliability.

Error rates: First, we show that the findings based on the average
errors rates, errors per MB-hour and MTBF, may be volatile and unreliable.
Our results show that these findings may be completely different depending
on the moment in which the measurements are taken, even after monitoring of
more than 2000 billion MB-hours of DRAM in the field. Second, we show that
using the correctable errors and faults rates as a DRAM reliability indicator is
misleading because the uncorrected error trends can be completely different.
Finally, after carefully considering the options, we conclude that there is no
statistical test that can be used to reliably conclude statistical significance of
the error rates results. Our study opens various doubts about the stability
and usefulness of the DRAM error rate analysis especially if the results are
based on the correctable errors and faults. Clarification of these doubts is
very important because correctable errors and faults rates are the current
standard for measuring DRAM reliability in both academia and industry.

Overall, we believe that our study will help the community to define
standards for any future analysis of the DRAM errors in the field: focus on
measurements with a practical value, and select a proper analysis method
that provides stable results, ideally supported with statistical significance.

83

6.2. BACKGROUND

6.2 Background

In the last decade several studies have analyzed field DRAM errors. These
studies have quantified the variations in error rates among DRAM manufac-
turers and technologies and analysed the nature of DRAM errors, including
their temporal and spatial distributions. It is not easy, however, to compare
the findings of different studies or to combine their findings into a clear over-
all understanding of memory system reliability, for two main reasons. First,
the studies use non-unified terminology, especially when classifying the er-
ror types. Second, the studies give quantitative results without reporting
whether or to what degree the reported results are statistically significant.

6.2.1 Taxonomy: Are correctable DRAM errors fail-
ures?

Most of the previous studies use the definitions of errors, faults and failures
from Avizienis et al. [8]:

• Failure is an event that occurs when the delivered service deviates
from correct service. For example, it is expected that a data read from
memory delivers correct data stored on a given address. Deviation from
this service is a failure.

• Error is the deviation of the system state (seen externally) from its
correct service state. For example, the fact that a DIMM delivers to the
memory controller data that do not match the ECC is the DRAM error.

• Fault is the adjudged or hypothesized root cause of the error. The
cause of a DRAM error could be a particle impact, or a defect in the
memory cell or circuit.

The problem is that the definitions of failures and errors are tightly cou-
pled with the scope of the target system and its boundaries. For example,
the memory system comprises the memory controller, DRAM devices and
all the circuitry between them [43]. DRAM errors that are corrected by
ECC in the memory controller are not errors or failures of the memory sys-
tem, because the memory system still delivers correct data. Such correctable
DRAM errors therefore have no impact on the service provided by the server
and the overall HPC system. DRAM errors that cannot be ECC-corrected,
however, propagate over the boundaries of the memory system, so they are
also memory system errors and failures. In current HPC systems, such errors
propagate even further, causing failures of the whole server and the affected

84

6.2. BACKGROUND

HPC job(s). The essence of the error classification problem is whether or not
to categorize corrected DRAM errors as failures.

Although most previous studies categorize them as such, we believe that
reporting corrected DRAM errors as failures, and using them to compute
statistics such as the failure rates or the mean time between failures (MTBF)
could be highly misleading as it exaggerates the problem of HPC system
reliability. For example, a statement that the MTBF in MareNostrum 3 dur-
ing the observation period was 14 seconds, based on the correctable error
count in this study, could suggest that the system suffered frequent service
interruptions. However, the provided number only states that at an average
rate of once every 14 seconds, one out of eight memory controllers in one out
of 3056 servers performs an ECC correction. The service is not interrupted
and performance is not affected. So, it is very difficult to understand the
practical value of this number. On the other hand, the mean time between
uncorrected DRAM errors in MareNostrum 3 was 10 days (approximately
1 million seconds), meaning that on average every 10 days a single job is
terminated, a single node is shut down and single DIMM is replaced.

Overall, it is important that DRAM error studies and the research mo-
tivated by them are clear as to whether the presented failure rates and
MTBF values are based on correctable or uncorrectable errors, or both. On
MareNostrum 3, the difference between MTBF values calculated using cor-
rectable vs. uncorrectable failures was five orders of magnitude; i.e. 14 sec-
onds vs. 10 days. And we would strongly suggest to present numbers that
have a practical value.

6.2.2 Statistical significance

Statistical significance means that a result from testing or experimenting has
a low probability of occurring randomly or by chance, allowing us to con-
clude with confidence that it is likely to have a specific cause. Previous field
studies of DRAM errors often claim that their findings are statistically signif-
icant because the analysis covers years of data on machines with thousands
of servers, totalling thousands of billions of MB-hours.

Unfortunately, these claims are misleading. Statistical significance has
to be confirmed or rejected using a carefully designed statistical test that
considers the type and distribution of the data under study. As we show in
this chapter, a large-scale experiment with a large number of observations,
e.g. millions of corrected DRAM errors, does not per se guarantee statistical
significance.

In addition to providing exploratory analysis, e.g. plotting the error rates
for different memory manufacturers, we perform statistical significance tests

85

6.3. ENVIRONMENT DESCRIPTION

for each finding that we present. Our analysis shows that various widely-
accepted approaches for comparing DIMMs from different categories, e.g.
different manufacturers, provide data that appear to support an interesting
conclusion, but are not statistically significant, meaning that there is insuf-
ficient evidence to conclude that it is not merely the result of chance. We
hope that these conclusions will encourage future work to analyse their data
using formal statistical methods.

6.3 Environment description

6.3.1 MareNostrum 3

Our analysis is based on measurements of the memory errors on the MareNos-
trum 3 supercomputer [12] over a period of more than two years, from Oc-
tober 2014 to November 2016. Detailed explanation of MareNostrum 3 can
be found in Chapter 3. MareNostrum 3 includes more than 25,000 DDR3-
1600 DIMMs, and during the observation period we collected measurements
on more than 2000 billion MB-hours. The main workloads executed on
MareNostrum 3 are large-scale scientific HPC applications and the typical
system utilization exceeds 95%.

We analyze DIMMs from all three major memory manufacturers, built in
three different DRAM technologies. All the DIMM manufacturers presented
in this study have been anonymized to protect the interested parties. In this
chapter, we will refer to the different memory manufacturers as Manufac-
turer A, B and C.1 Similarly, technologies in the DIMMs under study are
also anonymized, and we show only the first of two digits of the nanome-
ter technology. 3x nm, 2y nm and 2z nm represent three different DRAM
technologies in descending order, i.e., 3x nm > 2y nm > 2z nm.

Each MareNostrum 3 DIMM contains two ranks. Most of the DIMMs,
more than 90% of the DIMMs in our system, have nine DRAM chips in
each rank, and each chip provides eight data (DQ) signals. These chips
are usually referred to as x8 DRAM chips. The remaining DIMMs have
18 DRAM chips in each rank with four DQ signals (x4 DRAM chips). In
both types of DIMMs, 72 bits in total comprise 64 data bits and 8 Error-
Correcting Code (ECC) bits. MareNostrum 3 uses Single Device Data Cor-
rection (SDDC) ECC scheme for x4 devices, which provides single x4 error
correction and double x4 error detection. This means that for x4 devices
it provides Chipkill error correction, i.e. ECC can correct all errors coming

1There are 6717, 13,419 and 5247 DIMMs from anonymized Manufacturers A, B and
C respectively.

86

6.3. ENVIRONMENT DESCRIPTION

from a single x4 device. For x8 devices it can correct consecutive 4-bit errors
coming from the same DRAM chip.

6.3.2 Data collection

In Intel server architectures, the memory errors that are corrected by the
ECC are recorded in the machine-check architecture (MCA) registers [47].
To log the corrected DRAM errors, we designed a daemon, based on the
mcelog Linux kernel module [47], that periodically (each 100 ms) accesses
the MCA registers, extracts the information of interest and logs them into
a file. The log file contains the information about the error time stamp,
server and DIMM id, and the exact physical location of the error in the
DIMM including rank, bank, row, column and DQ pin. Also, the daemon
can distinguish whether the correction was done on application memory read
or patrol scrubbing.2 If more than one error occurred in the 100 ms time
interval, the MCA registers record the number of errors, but provide detailed
information only for one error in the interval. Therefore, our logs contain
the exact number of corrected errors that occurred in our system, while the
detailed error information is available for a statistical sample (sampled in
time) of all the errors.

If various DRAM errors occurred in the exactly the same physical loca-
tion, they are counted as a single fault. The faults can be extracted only
from the errors with known exact physical location. Increasing the frequency
of daemon access to the MCA registers would increase the sample of errors
with detailed information and the sample of observed faults. However, this
would also increase the performance penalty of the error logging daemon.
The 100 ms time interval was selected as the shortest time interval that
causes less then 1% overhead to the production applications. Previous stud-
ies perform similar readings of the memory error registers with a period of a
few seconds [105, 106, 107] or once per hour [56].

On a node restart, the daemon logs the DIMM locations, manufacturer
information, and a serial number unique for each DIMM. This information
enables us to keep the DIMM error and fault history, even if the servers or
the DIMMs are moved.

Uncorrected errors are logged by the IBM firmware [39], which is part

2Patrol scrubbing is a technique for increasing memory system reliability. It periodically
traverses the whole physical memory, performing an ECC check on each location. If the
scrubber detects any errors that are correctable by the ECC, it fixes the errors and writes
the correct data back to the same memory location. The main objective of patrol scrubbing
is to deal with DRAM errors while they can still be corrected by ECC, and before they
evolve to uncorrectable DRAM errors that would lead to system failures [94].

87

6.4. CATEGORICAL ANALYSIS

of the MareNostrum 3 monitoring software. For each uncorrected error, the
log specifies the DIMM that failed and the cause of the error, i.e. whether
the error happened during an application memory read or patrol scrubbing.

After an uncorrected error is reported, the corresponding DIMM is re-
moved from production and exposed to a stress test.3 If additional errors are
detected during testing, the DIMM is retired or replaced. If no errors are
detected, the DIMM is returned to production. In our study, we detected 71
uncorrected errors from 51 DIMMs.4

6.4 Categorical analysis

This section analyzes the percentage of DIMMs that experience errors, and
evaluates whether there is a significant difference among the manufacturers
and DRAM technologies. The presented analysis is formally referred to as
a categorical analysis because the population of all DIMMs is divided into
different categories based on, e.g., whether they did or did not experience an
error.

6.4.1 Uncorrected errors

The results for the uncorrected errors are summarized in Figure 6.1. Fig-
ure 6.1(a) compares different DRAM manufacturers. Only 0.15% of Man-
ufacturers A and C DIMMs experience uncorrected errors. For Manufac-
turers B, this percentage is somewhat higher, 0.25%. Figure 6.1(b) shows
the technology comparison. The 3x nm technology shows the best reliability
with 0.14% of DIMMs experiencing uncorrected errors. For 2y nm and 2z nm
technology the percentage of DIMMs with errors increases to 0.19%.

Overall we could conclude that the percentage of DIMMs that experience
uncorrected errors is low, with some differences among the manufacturers
and DRAM technologies. However, based solely on the results presented in
Figure 6.1, we have no evidence as to whether these differences are statisti-
cally significant. In other words, we cannot know whether we should conclude
that there really is a difference; e.g. the DIMMs from Manufacturer B have
a higher probability of an uncorrectable error, or whether these results show

3The DIMMs is moved to stress-test server that executes the High-Performance Linpack
for one week.

4A small number of DIMMs were exposed to a stress test only after experiencing more
than one uncorrected error, and some returned to production and then experienced addi-
tional uncorrected errors.

88

6.4. CATEGORICAL ANALYSIS

A B C

Manufacturer

0

0.1

0.2

0.3

D
IM

M
s

w
ith

un
co

rr
ec

te
d

er
ro

rs
[%

]
(a) Manufacturer comparison

3x nm 2y nm 2z nm
Technology

0

0.1

0.2

0.3
(b) Technology comparison

Figure 6.1: Percentage of DIMMs with uncorrected errors: Manufacturer and
technology comparison.

DIMMs w/ UEs DIMMs wo/ UEs

Manufacturer A 10 6,707
Manufacturer B 33 13,386
Manufacturer C 8 5,239

Table 6.1: Contingency table: Dependency between the number of DIMMs
that experienced uncorrectable error (UE) and the DIMM manufacturer. The
statistical test indicates no dependency, p-value = 0.24, so we cannot claim
any statistically significant difference in the probability that DIMMs from
Manufacturers A, B and C will experience uncorrectable errors.

the typical variations due to chance that would be expected even without
differences among the manufacturers and DRAM technologies.

The statistical significance of our results can be verified using indepen-
dence tests that analyze the relation between two categorical variables. For
example, we verify whether there is a statistically significant dependency
between the number of DIMMs that experienced the errors (first categor-
ical variable), and the DIMM manufacturer (second variable). Once that
the categorical variables are defined, each DIMM is classified into one of the
categories. In our example, the DIMMs can be classified into six categories
based on the DRAM manufacturer (Manufacturer A, B or C) and the error
occurrence (the DIMM did or did not experience an uncorrectable error), as
illustrated in Table 6.1. Table 6.1 is referred to as a contingency table, and
it shows the number of DIMMs that belong to each category. The contin-

89

6.4. CATEGORICAL ANALYSIS

gency table is the input to a statistical test of independence that determines
whether there is a significant relationship among the categorical variables.
The test assumes the null hypothesis that the categorical variables are inde-
pendent. The test output is the p-value, which is the probability of obtaining
a result equal to or more extreme than what was actually observed, assuming
the null hypothesis is true. If p-value is small, then we can conclude that
the null hypothesis can be rejected, i.e., there is enough evidence to claim
dependency between the variables. We use an α = 0.05 cutoff for accepting
or rejecting the null hypothesis, which is a standard value used in academia.
In our study, we use Pearson’s chi-square test, the most widely used test
for the independence between two categorical variables.5

The test applied to our data shows no statistically significant dependence
between the number of DIMMs that experienced uncorrectable error and the
memory manufacturer, p-value = 0.24, meaning that although the results
may seem to provide convincing evidence of a difference, we would expect
similar or more extreme results to appear 24% of the time by chance, even
if there were no differences at all. Also, in contrary to the common belief in
the community is that as the technology scales down, the DRAM reliability
decreases, measurements show no statistically significant decrease in the re-
liability for the three generations of DIMM technology used in our system,
p-value = 0.93.

6.4.2 Corrected errors

The results for the corrected errors are summarized in Figure 6.2. Fig-
ure 6.2(a) compares different DRAM manufacturers. Manufacturers B and C
have 3.3% and 5.1% percent of DIMMs with corrected errors, while for Man-
ufacturers A it reaches 16%. Figure 6.2(b) shows the technology comparison.
Contrary to the common belief in the community is that as the technology
scales down the DRAM reliability decreases, our measurements show the
opposite trend: 3x nm technology has the highest percent of DIMMs with
errors, followed by 2y nm and 2z nm technology, respectively.

As for the uncorrected errors, we use the statistical test of indepen-

5If cell values in the contingency table are small, it is recommended to use Fisher’s
exact test. Fisher’s exact test is similar to Pearson’s chi-square test, and a rule of thumb
is to use it instead of a chi-squared test if more than 20% of the values in contingency
table are lower than five. In all our results, we employ both Pearson’s chi-square test and
Fisher’s exact test, using the chisq.test() and fisher.test() functions from the R programming
language, respectively. Even for small cell values both tests have the same conclusions
about accepting or rejecting the null hypothesis. Therefore, in the rest of the chapter, we
report p-values from Pearson’s chi-square test.

90

6.4. CATEGORICAL ANALYSIS

A B C

Manufacturer

0

5

10

15

20

D
IM

M
s

w
ith

co
rr

ec
te

d
er

ro
rs

/f
au

lts
[%

] (a) Manufacturer comparison

3x nm 2y nm 2z nm
Technology

0

5

10

15

20
(b) Technology comparison

Figure 6.2: Percentage of DIMMs with corrected errors: Manufacturer and
technology comparison.

dence to validate whether the detected differences between the manufactur-
ers and technology are statistically significant. The test applied to our data
confirms a statistically significant difference among DRAM manufacturers
(p-value < 2.2× 10−16) and technologies (p-value = 1.51× 10−15).

6.4.3 Corrected vs. uncorrected errors

System reliability is affected only by uncorrectable memory errors. However,
current practice in academia and industry is to analyze corrected errors and
faults as DIMM reliability indicator [98, 56, 106, 107, 105, 99, 70], This prac-
tice is accepted because it might be intuitive that the DIMMs that experience
corrected errors are more likely to also have uncorrected errors. However, a
thorough study on this dependency has not yet been performed. In this
section, we perform statistical tests to analyze the dependency between the
DIMMs that experienced corrected and uncorrected errors. Validating this
dependency would practically mean validating the use of corrected DRAM
errors as a system reliability indicator.

The contingency table for this statistical test of independence is shown in
Table 6.2. In different rows of the table, we show the number of DIMMs with
and without an uncorrectable error (UE). Similarly, the table columns show
the number of DIMMs with and without at least one correctable error (CE).
The independence test indicates a strong dependency between correctable
and uncorrectable errors, p-value < 2.2× 10−16. We repeated the test for
each manufacturer separately and observed the same conclusion. For Manu-
facturers A, B and C, the p-values are 0.013, less than 2.2×10−16 and 0.006,
respectively.

91

6.4. CATEGORICAL ANALYSIS

DIMMs w/ CEs DIMMs wo/ CEs

DIMMs w/ UEs 23 28
DIMMs wo/ UEs 1,764 23,722

Table 6.2: Contingency table: Dependency between correctable (CE) and
uncorrectable (UE) errors (All manufacturers). The statistical test indicates
strong dependency, p-value < 2.2 × 10−16; i.e. we can claim that DIMMs
that experienced CEs have higher probability of also experiencing UEs.

6.4.4 Errors vs. Faults

A couple of studies [105, 106, 107] argue that the DIMMs should be com-
pared in terms of DRAM faults rather than errors. The categorical analysis
presented in this section would directly apply to the faults as well. This is
due to the inherent dependency between the errors and faults—a DIMM that
experienced an error at the same time experienced a fault; while a DIMM
with no errors, has no faults neither. Actually, all the contingency tables,
p-values and conclusions for the DRAM faults would remain precisely the
same as the ones that we presented for the errors.

6.4.5 Summary

In this section, we analyzed the percentage of DIMMs that experience un-
corrected or corrected errors, and evaluated whether there is a significant
difference among the manufacturers and DRAM technologies.

Similar to previous studies (see Section 6.6) we detect that the percentage
of DIMMs that experience uncorrectable errors is very small, and we notice
some differences among manufacturers and DRAM technologies. However, to
the best of our knowledge, we are the first to use statistical tests to validate
these findings, and the first to show a lack of their statistical significance.

We repeat the analysis for the corrected errors. The results indicate some
differences among manufacturers and DRAM technologies, and, unlike for the
uncorrected errors, the independence tests confirm with high confidence that
these differences are statistically significant. Contrary to the common belief
that scaling down the technology reduces the DRAM reliability, our measure-
ments show that the fraction of DIMMs that experience errors has reduced
significantly in each DRAM generation.

Finally, we show a statistically significant dependence between corrected
and uncorrected DRAM errors, in this case we find that the probability of

92

6.5. ERROR RATE ANALYSIS

an uncorrected error is higher if the DIMM previously experienced corrected
errors. This validates the use of corrected errors as an indirect indicator of
the memory system’s reliability. We hope that by showing that it may be
possible to predict upcoming uncorrected DRAM errors based on preceding
corrected errors, we will motivate future work on pre-failure detection.

6.5 Error rate analysis

In addition to the categorical analysis, DIMM reliability can be quantified
and compared using the error rates: errors per MB-hour or mean time be-
tween failures (MTBF). The errors per MB-hour metric considers the total
number of errors, and the capacity and production time of each DIMM:

Errors per MB-hour =
Total number of errors∑

DIMM capacity [MB]× Production time [hours]

The mean time between failures (MTBF) is computed as the ratio of the
time in production divided by the total number of detected failures. The
word failure can be used to refer to a fault, corrected or uncorrected error:

MTBF [hours] =

∑
Production time [hours]

Total number of failures

Although errors per MB-hour and MTBF are both standard metrics for quan-
tifying the DIMM reliability, to the best of our knowledge, no study has con-
firmed that they provide stable and meaningful results. Also, no study has
supported their findings based on these metrics with a statistical significance.

In this section, we analyze the distributions of errors per MB-hour and
MTBF, over the course of the 25-month observation period. This analysis is
necessary in order to choose a test to determine the statistical significance
of any finding based on these metrics. As in Section 6.4, we analyze both
corrected and uncorrected errors, and the link between them.

6.5.1 Uncorrected error characterization

Distribution

Figure 6.3 shows the incidence of uncorrected errors over time. The x-axis
shows time, in months from the beginning of the study (October 2014) and
the y-axis shows the number of uncorrected errors per day, across all DIMMs
of a single given manufacturer. First, we notice that the number of observed
uncorrected errors is very low; we detect only 71 errors during the observation

93

6.5. ERROR RATE ANALYSIS

period of 25 months.6 On most days we detect no errors, on a few days we
detect a single error, and very occasionally we detect two or more (up to
three) errors on the same day. Given the low incidence of errors, it requires
a long observation period to converge to a stable mean error rate, which can
change significantly each time that we detect a new error.

Figure 6.4 illustrates the volatility of the empirical mean error rates for
the three manufacturers over time. The x-axis is again the time, in months
from the beginning of the study. The y-axis is now the average number of
uncorrected errors per billion MB-hour, based on the measurements done
until that point.

Figure 6.4 shows that the errors per MB-hour evolve in time as an impulse
and down-ramp function. The impulses in the average errors per MB-hour are
caused each time a new error is detected. For example, if we observe Manu-
facturer A, the impulses in months 1, 8, 9, 12, etc., are perfectly aligned with
the errors detected in Figure 6.3. This happens because the total number of
errors is very small. For example, Manufacturer A experiences the first error
in the first month of the observation. At the eight month, the second error is
detected, which causes both the total error count and the errors per MB-hour
to double. In the ninth month, when the number of observed errors changes
from two to five, the total number of errors and the errors per MB-hour are
both multiplied by 2.5.

The down-ramp segments observed in the plot of errors per MB-hour
correspond to periods in which we detect no errors. In these periods the
cumulative number of errors remains constant while the observation time
increases. Therefore, the shape of the errors per MB-hour function is pro-
portional to 1/t, where t is the observation time. This is well illustrated
for Manufacturer A between the first and eighth months of the observation
period and for Manufacturer B between the second and eleventh months.

Figure 6.4 clearly shows the volatility when calculating the mean errors
per MB-hour. The error rates can vary significantly, by tens of percents
each time a new error is detected. As a consequence of the high variability
in the error rates, the ranking of manufacturers switches several times. For
example, 12 months into the study Manufacturer A had 90% higher error rate
than Manufacturer C. At the end of the study, at month 25, Manufacturer C
now had 60% higher error rate than Manufacturer A.

Overall, our results show that comparing different DRAM manufacturers
based on the errors per MB-hour may support different conclusions depending
on the moment in which the measurements are finalized. It is intuitive to
conclude that we have little confidence in how the results would have looked

6These 71 errors were experienced by 51 faulty DIMMs.

94

6.5. ERROR RATE ANALYSIS

0
1

2
3

4
5

Months of error logging

U
n
co

rr
ec

te
d
 e

rr
o
rs

 p
er

 d
ay Manufacturer A

0 3 6 9 12 15 18 21 24

0
1

2
3

4
5

Months of error logging

U
n
co

rr
ec

te
d
 e

rr
o
rs

 p
er

 d
ay Manufacturer B

0 3 6 9 12 15 18 21 24

0
1

2
3

4
5

Months of error logging

U
n
co

rr
ec

te
d
 e

rr
o
rs

 p
er

 d
ay Manufacturer C

0 3 6 9 12 15 18 21 24

Figure 6.3: Uncorrected errors per day. The bars show the sum of the UEs
for all the DIMMs of a given manufacturer.

if we were able to continue the study for another year.

95

6.5. ERROR RATE ANALYSIS

Months of error logging

U
n
o
rr

ec
te

d
 e

rr
o
rs

 p
er

 b
il

li
o
n
 M

B
−

h
o
u
rs

Manufacturer A

Manufacturer B

Manufacturer C

0 3 6 9 12 15 18 21 24

0
0
.0

5
0
.1

Figure 6.4: Average uncorrected errors per MB-hour: each point is the run-
ning average number of uncorrected errors per MB-hour observed up to that
point. The running average is an impulse and down-ramp function. De-
pending on the moment of observation, we reach different conclusions about
the ranking of the different DIMM manufacturers. During the observation
period, Manufacturer A and C switched order twice.

Further discussion

Figure 6.4 illustrates the volatility of the conclusions when the error rates
are used for comparison of different DRAM manufacturers. We repeat the
whole analysis by looking into other DRAM categories, MTBF metric and
the DRAM faults.

DRAM categories: We repeated the analysis for the three different
DRAM technologies (rather than manufacturers) and reach the same con-
clusions. Since the total number of DRAM errors is the same as before, the
number of non-zero observations contributing to the calculation of the mean
is still small. We strongly argue that the same problem is present when the
error rates are compared for various DIMMs categories, such as DIMMs lo-
cated in different datacenters, different racks or servers, or DIMMs running
different workloads.

MTBF: We used the same approach to test the MTBF metric, and
the conclusions are the same—we detect huge variability in the MTBF, even
after long periods of error logging. Since the essence of the problem is the
small number of uncorrected errors, all statistics based on the error counts

96

6.5. ERROR RATE ANALYSIS

and means have high variability.

6.5.2 Corrected error characterization

We repeat the above analysis for the corrected errors. Although corrected
and uncorrected DRAM errors have fundamentally different distributions,
we obtain precisely the same conclusions: the average corrected errors per
MB-hour has a large variance even after more than two years of error logging.

Distribution

Figure 6.5 shows the number of corrected errors over time. As before, the
x-axis shows time, in months from the beginning of the study, and the y-axis
shows the total number of correctable errors per day, for a single manufac-
turer. This figure clearly illustrates the error distribution: on most days there
are zero, or close to zero, corrected errors, but on a few days there are very
large numbers of correctable errors, up to about 110,000 (Manufacturer B,
Month 7). When repeated at a finer granularity, by measuring not per day,
but per hour, minute or second, we detected the same trend: >99% of the
observations had no errors, and again a very small proportion of observa-
tions had very high values. In statistics, such distributions are referred to as
long-tailed distributions. A classic problem with long-tailed distributions is
that it can be difficult to determine the mean, which may be far from typical
values and dominated by very infrequent observations.

Similarly to the uncorrected error case, to illustrate the difficulty in mea-
suring the mean, Figure 6.6 plots the empirical mean error rates, per MB-
hour, for the three manufacturers over time. This figure shows that corrected
errors per MB-hour also evolve in time as an impulse and down-ramp func-
tion. An intensive error burst, as seen in Figure 6.5, significantly increases
the number of detected errors in a short time interval, causing an impulse in
the average errors per MB-hour function. For example, if we observe Manu-
facturer C, the impulses in Figure 6.6, e.g. in the observation months 2, 8,
11, 15, etc., are perfectly aligned with the intensive error burst in Figure 6.5.
The down-ramp segments of the errors per MB-hour function, correspond to
the periods in which we detect few errors, similarly to Figure 6.4.

Figure 6.6 clearly shows the volatility when calculating the mean errors
per MB-hour. The error rates can vary significantly, by tens of percents
in just a few days. We detect this behavior for all three manufacturers.
Also, we detect this behavior not only at the beginning of the study, where
it might be expected due to the small observation period, but also after
long periods e.g. well after one year of the study. As a consequence of the

97

6.5. ERROR RATE ANALYSIS

0
4
0
0
0
0

8
0
0
0
0

Months of error logging

C
o
rr

ec
te

d
 e

rr
o
rs

 p
er

 d
ay Manufacturer A

3 6 9 12 15 18 21 24

Months of error logging

C
o
rr

ec
te

d
 e

rr
o
rs

 p
er

 d
ay Manufacturer B

3 6 9 12 15 18 21 24

0
4
0
0
0
0

8
0
0
0
0

1
2
0
0
0
0

0
4
0
0
0
0

8
0
0
0
0

Months of error logging

C
o
rr

ec
te

d
 e

rr
o
rs

 p
er

 d
ay Manufacturer C

3 6 9 12 15 18 21 24

Figure 6.5: Corrected errors per day. On most days we detect zero or close
to zero correctable errors; but on a few days there are very large numbers of
correctable errors, up to about 110,000 errors.

high variability in the error rates, the ranking of manufacturers switches
several times. Actually, during the observation period, Manufacturer A and
B switched order eight times. At month 4, Manufacturer B had 40% higher

98

6.5. ERROR RATE ANALYSIS

Months of error logging

C
o
rr

ec
te

d
 e

rr
o
rs

 p
er

 b
il

li
o
n
 M

B
−

h
o
u
rs

Manufacturer A

Manufacturer B

Manufacturer C

3 6 9 12 15 18 21 24

0
2
5
0
0

5
0
0
0

Figure 6.6: Average corrected errors per MB-hour: each point is the running
average observed up to that point. The running average is an impulse and
down-ramp function. Depending on the moment of observation, we reach
different conclusions about the ranking of the DIMM manufacturers. During
the observation period, Manufacturer A and B switched order eight times.

error rate than Manufacturer A, but at month 17, Manufacturer A had 25%
higher error rate than Manufacturer B.

Overall, our results show that comparing different DRAM manufactur-
ers based on the errors per MB-hour may support a different conclusions
depending on the moment in which the measurements are finalized.

Further discussion

As for the uncorrected errors, we repeat the analysis for DRAM technolo-
gies, MTBF metric and the DRAM faults and the conclusions are the
same—the error rates can vary significantly, by tens of percents in just a
few days, not only at the beginning of the study, but also after long periods.
Whereas uncorrected error rates (Section 6.5.1) had high volatility due to the
small number of uncorrected errors, corrected error rates have high volatility
due to a long-tailed distribution.

99

6.5. ERROR RATE ANALYSIS

6.5.3 Statistical significance

With an understanding of the distributions of the uncorrected (Section 6.5.1)
and corrected (Section 6.5.2) error rates per MB-hour, we consider the choice
of statistical test to determine statistical significance. Whereas the categor-
ical analysis using Pearson’s chi-square test in Section 6.4 only needed to
assume that the observations are random, independent and identically dis-
tributed, analysis of numerical data usually requires assumptions about the
underlying distribution.

The most common tests for statistical significance in numerical data are
the t-test (for two sets of data) and ANOVA (its generalization to three or
more sets of data). Both tests assume that the sample means have a nor-
mal distribution. In many circumstances, this assumption is justified, either
because the population itself is close to normal or because the average of
a large sample is close to normal by the Central Limit Theorem. Unfortu-
nately, however, if the data has a long-tailed distribution, convergence of the
sample mean to normal is very slow, requiring an extreme sample size. Our
experiments indicate that even with 2000 billion MB-hours and two years,
the sample mean of the corrected errors is not normal, meaning that nei-
ther the t-test nor ANOVA should be applied. Due to the small number of
non-zero samples for the uncorrected errors, it is not possible to determine
whether or not this is also the case for uncorrected errors.

There are, however, additional statistical tests that do not assume a nor-
mal distribution, or any parametrized distribution (such as normal, whose
parameters are the mean and variance). Such non-parametric tests include
the Mann–Whitney U test (for two sets of data) and Kruskal–Wallis (its gen-
eralization to three or more sets of data). These tests are commonly thought
to compare population medians, rather than means, but this is not strictly
true. In our case comparing population medians would be useless since,
for all DRAM manufacturers and technologies, >99% of MB-hours had zero
(un)correctable errors, so the median number of (un)correctable errors per
MB-hour is zero.

We applied the Kruskal–Wallis test and could not conclude that there
is any statistically significant difference among the distributions (p-value <
2.2×10−16). It is important to realise that even if we had found a statistically
significant difference, the strongest conclusion that we could have made would
have been that the DRAM manufacturers have different distributions, not
that one has a higher mean or median than another. To conclude the latter
would have required an assumption of statistical dominance; i.e. that the
cumulative distribution functions do not cross, but our experiments (not
presented) show that it is quite likely that they do.

100

6.5. ERROR RATE ANALYSIS

6.5.4 Corrected vs. uncorrected errors

Next, we compare the errors per MB-hour and MTBF metrics based on
DRAM faults, correctable errors and uncorrectable errors. In case that these
trends were similar, we could conclude that MTBF based on the correctable
errors and faults might be used as an indirect indicator of the DRAM reliabil-
ity. Our results clearly show that the measurements based on the corrected
errors and faults indeed show similar trends, that are however completely
different from the uncorrected errors.

Errors per MB-hour

In Figure 6.7(a), we compare the errors per MB-hour for various manufac-
turers. Corrected errors, faults and uncorrected errors results are presented
in separate charts, while different bars refer to the different DRAM man-
ufacturers. Note that because of the big difference in error rates, charts in
Figure 6.7(a) have different scales on the y-axis. When counting the corrected
errors, the highest error rate, 2665 errors per billion MB-hours, is measured
for Manufacturer A, followed by Manufacturers B and C with 15% and 44%
lower error rates, respectively. Fault rates follow a similar trend, Manufac-
turer A has the highest fault rate followed by Manufacturers B and C. The
uncorrected error rates, however, follow a different trend: Manufacturer A
shows the lowest rate, followed by Manufacturer C (1.6× increment) and
Manufacturer B (2.7× increment).

We get the same conclusion when comparing DIMMs with different tech-
nologies, see Figure 6.7(b). The corrected error and fault rates increase as the
technology scales down from 3x nm to 2y nm and 2z nm. The uncorrectable
error rates, again, follow a different trend: the smallest technology, 2z nm
shows the lowest error rates followed by the 3x nm (2.3× increment) and
2y nm technology (6.3× increment).

Mean time between failures (MTBF)

Similarly to the analysis of errors per MB-hour, we compare the MTBF
metric based on DRAM faults, correctable and uncorrectable errors. We
perform the analysis for different DRAM manufacturers and DIMM technol-
ogy, presented in Figures 6.8(a) and 6.8(b), respectively. As in the errors
per MB-hour analysis, MTBF based on the correctable error and fault show
similar trends, that are completely different from the uncorrectable errors.

101

6.5. ERROR RATE ANALYSIS

A B C
0

1000

2000

3000

Corrected errors
per billion MB-hours

A B C
0

100

200

300

400

Faults
per billion MB-hours

A B C
0

0.02

0.04

0.06

Uncorrected errors
per billion MB-hours

(a) DRAM manufacturer comparison

3x 2y 2z
0

2000

4000

6000

Corrected errors
per billion MB-hours

3x 2y 2z
0

400

800

1200

Faults
per billion MB-hours

3x 2y 2z
0

0.02

0.04

0.06

0.08

Uncorrected errors
per billion MB-hours

(b) DRAM technology comparison

Figure 6.7: Corrected errors, faults and uncorrected errors per billion MB
hours. The corrected error and fault rates have the same trend, but the
uncorrected error rates exhibit a different trend.

6.5.5 Error rates vs. Categorical analysis

As the final step of our study, we perform the analysis of the same DRAM
error data with different approaches, categorical and the error rates, and we
compare the findings that are the outcome of each of them. Our results
clearly show that although quantitative DRAM error analysis may be per-
formed with both approaches, they are not interchangeable. Actually,
the conclusions of the analysis could be completely different from one
approach to the other.

We illustrate this with two examples. Figure 6.9 compares the uncor-
rectable DRAM errors for three technologies under study, 3x nm, 2y nm and
2z nm. Figure 6.9(a) shows the categorical analysis, the percent of DIMMs

102

6.5. ERROR RATE ANALYSIS

A B C
0

45

90

135

180

Mean time between
corrected errors [hours]

A B C
0

1000

2000

3000

4000

5000

Mean time between
faults [hours]

A B C
0

2M

4M

6M

8M

10M

Mean time between
uncorrected errors [hours]

(a) DRAM manufacturer comparison

3x 2y 2z
0

45

90

135

180

Mean time between
corrected errors [hours]

3x 2y 2z
0

500

1000

1500

2000

Mean time between
faults [hours]

3x 2y 2z
0

4M

8M

12M

Mean time between
uncorrected errors [hours]

(b) DRAM technology comparison

Figure 6.8: Mean time between corrected errors, faults and uncorrected er-
rors. The corrected error and fault rates have the same trend, but the un-
corrected error rates exhibit a different trend.

that experienced an uncorrectable error, while Figure 6.9(b) shows the un-
correctable error rates per MB-hour. It is clear that the trends on the figures
are completely different, e.g. 2z nm technology has the highest percent of
the DIMMs with uncorrectable errors, while it has the lowest rate of the
errors per MB-hour.

Figure 6.10 illustrates the same for the corrected errors. The trends on
the Figures 6.10(a) and (b) are completely different depending on whether
we compare the DRAM technologies based on the error rates per MB-hour
or the percent of DIMMs that experienced an error.

103

6.5. ERROR RATE ANALYSIS

3x nm 2y nm 2z nm
Technology

0

0.1

0.2

0.3

(a) Uncorrected errors
per billion MB-hours

3x nm 2y nm 2z nm
Technology

0

0.02

0.04

0.06

0.08

(b) Percentage of DIMMs
with uncorrected errors

Figure 6.9: Technology comparison ambiguity, uncorrected errors: Errors per
MB-hour vs. Percentage of DIMMs with errors.

3x nm 2y nm 2z nm
0

2000

4000

6000

Corrected errors
per billion MB-hours

3x nm 2y nm 2z nm
0

5

10

15

20

Percentage of DIMMs
with corrected errors

Figure 6.10: Technology comparison ambiguity, corrected errors: Errors per
MB-hour vs. Percentage of DIMMs with errors.

6.5.6 Summary

In this section, we analyzed the DRAM error distributions and the vari-
ability of errors per MB-hour and MTBF over the course of the 25-month
observation period.

First, we show that average errors rates, errors per MB-hour and MTBF,
have a large variance even after more than two years of the error log-
ging. The findings are the same for corrected and uncorrected errors and for
both, DRAM manufacturer and technology comparison. We also show that
errors per MB-hour and MTBF show different conclusions depending on the
moment in which the measurements are taken. It is intuitive to conclude
that we have little confidence in how the results would have looked if we

104

6.6. RELATED WORK

were able to continue the study for another year.

Second, we show that using the correctable errors and faults rates, errors
per MB-hour or MTBF, as an indicator of DRAM reliability is misleading
because the uncorrected error trends can be completely different. This is
one more example that shows how important it is to understand the relation
between DRAM faults, correctable and uncorrectable errors. Any metrics
based on correctable errors or faults should be used as a DRAM reliability
indicator only if there is a clearly understood relationship with the uncor-
rected errors.

Finally, after carefully considering the options, we conclude that there is
no statistical test that can be used to reliably conclude statistical signifi-
cance of the error rates results for corrected, uncorrected errors and faults.

These findings are very important because precisely the correctable errors
and faults rates are the current standard for measuring the DRAM relia-
bility in both, academia and industry. Therefore, it is essential to question
the current practice in quantifying DRAM reliability and to select a proper
analysis approach. Our strong suggestion would be to use the method that
provides stable and (ideally) statistically significant results. Another impor-
tant requirement is that the selected method provides the numbers with a
practical value that could be easily related to the physical properties of the
system and its reliability.

6.6 Related Work

In recent years, various studies have analyzed correctable and uncorrectable
DRAM errors and faults in the field.

6.6.1 Uncorrectable DRAM errors and whole system
resiliency

Schroeder et al. [96] and Martino et al. [64] analyze the impact of DRAM
errors on the resiliency of large-scale compute clusters. The authors consider
numerous causes of the system failures including hardware components, soft-
ware and environment. The analysis of the DRAM errors is only a small part
of their studies.

Schroeder et al. [96] analyze failures of the Los Alamos National Labora-
tory HPC systems between 1996 and 2005. The authors report that uncor-
rected memory errors account for 20% of all hardware failures, and were the
root cause of 30% of the server failures. Martino et al. [64] analyze failures

105

6.6. RELATED WORK

of the Blue Waters supercomputer during 261 days. The supercomputer in-
cludes general purpose computing nodes with chipkill protected DDR3 and
GPU accelerators with SEC-DED protected DDR5. The authors detect 1.5
million corrected and 28 uncorrected DRAM errors, and report that DRAM
is the cause of 44% of all server failures.

These two studies are very important for two reasons. First, the studies
show that DRAM is one of the main causes of hardware failures, and they
quantify the impact of these failures on system reliability. This positions
DRAM failures in the overall picture of large-scale compute cluster reliability.
Second, when quantifying system reliability, the studies focus on uncorrected
DRAM errors. Although the message is not as explicit as it could be, it is
very clear: system reliability is driven by uncorrected errors not corrected
errors. In our study, we emphasize this message and we question the practical
value of any analysis focused on corrected DRAM errors. We also show that
a quantitative analysis of corrected DRAM errors could be misleading, as it
could give a wrong impression about the memory system reliability.

6.6.2 Correctable DRAM errors

Most DRAM error studies focus their analysis on corrected errors. These
studies cover various large-scale compute systems, with DDR1, DDR2, DDR3
and FBDIMM DIMMs.

Schroeder et al. [98] present the first large-scale study of DRAM mem-
ory errors in the field. The study covers 2.5 years (Jan 2006–June 2008) of
DRAM error logging of the Google fleet with six different platforms using
DDR1, DDR2 and FBDIMM memory with SEC-DED and chipkill ECC. The
study analyzes corrected and uncorrected error probabilities and rates, and
correlates them with different factors, such as chip capacity, temperature,
utilization, aging and DIMM generation.

Li et al. [56] report on nine months of DRAM error collection from various
platforms with a total of 800 GB of DDR2 memory. The authors pay special
attention to a comparison of transient and non-transient errors, and the study
discovers a significant number of non-transient errors, with multiple errors
often occuring in the same row or column.

Sridharan and Liberty [106] analyze 11 months (Nov 2009–Oct 2010) of
DRAM error logs from the Jaguar supercomputer located at the Oak Ridge
National Laboratory. The study covers DDR2 DIMMs with chipkill ECC
and presents detailed analysis of the corrected errors and fault types: per-
manent, transient, single-bit, multi-bit, row, column, bank, multi-bank and
multi-rank. Sridharan et al. [107] extend this study with the analysis of
the error logs from the Cielo supercomputer located at the Los Alamos Na-

106

6.6. RELATED WORK

tional Laboratory. These logs observe 15 months (mid-2011–early-2013) of
chipkill-protected DDR3 DIMMs. This study focuses on DRAM faults (cor-
rected errors faults) and presents a detailed analysis of fault types, similarly
to Sridharan and Liberty [106]. The study also analyzes fault rates as a
function of the DRAM vendor, physical location of the fault in the DRAM
device, location of the DRAM device in the data-center, and the data-center
altitude. Sridharan et al. [105] extend these studies with the 18 months
(April 2011–January 2013) of the error logs from the Hopper supercomputer
located at the Lawrence Berkley Labs. The study covers DDR3 DIMMs
with a chipkill ECC scheme. These three studies [106, 107, 105] strongly
argue that “system health” should be measured in terms of DRAM faults
rather than errors. The term “system health” is not explicitly defined, but
if it is a synonym for system reliability, then we argue instead that it should
be quantified by uncorrected DRAM errors, rather than corrected errors or
faults.

Siddiqua et al. [99] analyze DRAM errors logs collected from 30,000
servers over a period of three years. This is the first study that uses the
pattern of the error addresses to distinguish between errors caused by the
memory module, memory controller, memory channel and bus. The authors
conclude that memory module faults are by far the most dominant fault type.
Meza et al. [70] extend this work, and distinguish between errors caused by
the DIMM bank, row, column and cell. They analyze 14 months of DRAM
error logs from the Facebook fleet comprising DDR3 DIMMs, and conclude
that 85% of memory errors are not caused by the DIMM, but by the socket
and memory channel, which is opposite to the conclusions of Siddiqua et
al. [99]. Meza et al. [70] also analyze corrected error rates as a function of
DIMM manufacturer, DIMM architecture, technology, workload characteris-
tics, CPU and memory utilization. The study also shows that the number
of corrected errors among servers that had at least one error follows a power
law (Pareto) distribution, and that a small number of servers (e.g. 1%) ac-
count for most of the errors. The authors, therefore, question the practical
value of reporting mean per-server error rates. This confirms our results and
discussion in Section 6.5.2.

Corrected vs. Uncorrected DRAM errors: Only two studies men-
tion the dependency between correctable and uncorrectable DRAM errors.
The results of Schroeder et al. [98] indicate that two months after a cor-
rected error the DIMM has higher probability to experience an uncorrected
one. The authors also present the idea of an early replacement policy, where a
DIMM is replaced after experiencing a significant number of corrected errors,
rather than waiting for the first uncorrected one. Up to now, this idea has
not been validated. Sridharan and Liberty [106] confirm that the probability

107

6.7. SUMMARY

of an uncorrected error may increase if the DIMM had preceding corrected
errors, especially if the corrected errors affected various ranks and banks of
the DIMM.

All the studies that report on the uncorrected DRAM errors agree that
the probability that a given DIMM experiences an error is very low, in the
order of 0.x% or 0.0x%. Therefore, it is essential that any analysis of the
uncorrected error probabilities is supported by statistical tests that distin-
guish between findings that are statistically significant and those that show
a typical variation due to chance. Our work, to the best of our knowledge,
is the first study that uses a solid statistical approach to this analysis, and
formally shows a strong dependency between correctable and uncorrectable
DRAM errors. Even more important, we believe that the methodology, sta-
tistical tests and examples presented in our study make a solid base for any
future analysis of the dependencies between different DIMM categories.

6.7 Summary

This study summarizes our two-year study of corrected and uncorrected er-
rors on the MareNostrum 3 supercomputer, covering 2000 billion MB-hours
of DRAM in the field.

To the best of our knowledge, this is the first study that clearly dis-
tinguishes between two different approaches for the DRAM error analysis,
categorical and via error rates. Although DRAM error analysis is typically
performed with both approaches, we show that the approaches are not inter-
changeable, and can lead to completely different conclusions.

Categorical analysis: Similar to previous studies we detect that the
percentage of DIMMs that experience uncorrectable errors is very small, and
we notice some differences among manufacturers and DRAM technologies.
However, to the best of our knowledge, we are the first to use statistical tests
to validate these findings, and the first to show a lack of their statistical sig-
nificance. We repeat the analysis for the corrected errors, and show a strong
statistically significant differences between different DRAM manufacturers
and technologies. In contrary to the common belief that scaling down the
technology reduces the DRAM reliability, our measurements show that per-
cent of DIMMs that experience errors is reduced significantly in each DRAM
generation. Finally, we show a strong dependency between DIMMs that ex-
perienced corrected and uncorrected DRAM errors. This validates the use of
corrected errors as an indirect indicator of the memory system’s reliability.

Error rates: First, we show that the findings based on the average
errors rates, errors per MB-hour and MTBF, can be completely different

108

6.7. SUMMARY

depending on the moment in which the measurements are taken. The error
rates have a large variance even after monitoring of more than 2000 billion
MB-hours of DRAM in the field. It is intuitive to conclude that we have little
confidence in how the results would have looked if we were able to continue
the study, e.g. for another year. Second, we show that using the correctable
errors and faults rates as a DRAM reliability indicator is misleading because
the uncorrected error trends can be completely different. This shows, once
more, how important it is to understand the relationships between DRAM
faults, correctable errors and uncorrectable errors. Finally, after carefully
considering the options, we conclude that there is no statistical test that can
be used to reliably conclude statistical significance of the error rates results.
Our findings open various doubts about the stability of the DRAM error
rate analysis especially if the results are based on the correctable errors and
faults. Clarification of these doubts is very important because precisely the
correctable errors and faults rates are the current standard for measuring the
DRAM reliability in both, academia and industry.

Overall, we believe that our study will help the community to define stan-
dards for any future analysis of the DRAM errors in the field. We hope that
our analysis will help the future studies to: First, focus on the measurements
with a practical value that can be easily related to the system reliability.
And second, select proper analysis approach that provides reliable results,
ideally supported with statistical significance. If we ignore these guidelines,
we are in a great danger that the value of the large-scale DRAM error studies
diminishes. And the larger the systems, longer the observation periods, and
more detailed the error logs, the higher the probability that our conclusions
will be no more than a misleading noise, merely the result of chance and
randomness of the in-field studies.

109

CHAPTER7
Conclusions

DRAM has been the dominant main memory technology in most computing
systems for decades. But, the expected end of DRAM technology scaling
prevents further improvements in memory capacity and in the cost of DRAM
production.

This thesis studied capacity and reliability issues in current memory sys-
tems for high-performance computing. The contributions of the thesis can
be classified in three groups. First, we presented the study of memory capac-
ity requirements of important high-performance computing benchmarks and
applications. Second, we analyzed the scaling-in of high-performance com-
puting applications on large-memory nodes to reduce energy consumption.
Finally, we presented a field study of DRAM errors. The following sections
briefly summarize each of the contributions.

7.1 Thesis contributions

7.1.1 Memory capacity requirements
of HPC applications

This thesis analyzed memory capacity requirements of important HPC bench-
marks and applications. This analysis becomes increasingly important as
3D-stacked memories are hitting the market. These novel memories pro-
vide significantly higher memory bandwidth and lower latency, leading to
higher performance and better energy-efficiency. However, the adoption of
3D memories in the HPC domain requires use cases that need much less
memory capacity than currently provisioned. With good out-of-the-box per-
formance, these use cases would be the first success stories for these memory

111

7.1. THESIS CONTRIBUTIONS

systems, and could be an important driving force for their further adoption.

We detected that HPCG could be an important success story for 3D-
stacked memories in HPC. With low memory footprints and performance
directly proportional to the available memory bandwidth, this benchmark
is a perfect fit for memory systems based on 3D chiplets. HPL, however,
could be one of the main show-stoppers because reaching a good performance
requires memory capacities that are unlikely to be provided by 3D chiplets.

In addition to this, we demonstrated that the analysis of memory foot-
prints of production HPC applications requires an understanding of their
scalability and target category, i.e., whether the workloads represent capa-
bility or capacity computing. The results show that most of the HPC applica-
tions under study have per-core memory footprints in the range of hundreds
of megabytes — an order of magnitude less than the main memory available
in the state-of-the-art HPC systems; but we also detect applications and use
cases that still require gigabytes of main memory per core.

7.1.2 Large-memory nodes
for high-performance computing

We analyzed scaling-in of HPC applications, i.e., decreasing the number of
application processes and compute nodes to solve a fixed-sized problem, as a
practical approach to reduce energy consumption. We showed that scaling-in
is most appropriate in the context of capacity computing, where a large num-
ber of mid-size or smaller problems have to be solved at the lowest cost, and
the users are less interested in the execution time of a single job. We there-
fore advocated upgrading the memory capacity that allows further scaling-in
in capacity computing. We validated this approach on a set of large-scale
HPC applications running on a production system, and obtained significant
energy savings.

Furthermore, we investigated the economical benefits of this approach,
and showed that the investment in upgrading the hardware would be typically
recovered in less than five years.

7.1.3 DRAM errors in the field

Finally, we studied DRAM errors on the MareNostrum 3 supercomputer
during a period of more than two years. The field studies of DRAM errors
are essential for the understanding of the nature, rates and distributions of
errors in memory systems and are the main requirement for quantifying the
effectiveness of any error mitigation strategy.

112

7.2. FUTURE WORK

Our study clearly distinguished between two different approaches for the
DRAM error analysis: categorical analysis and the analysis of error rates.
We showed that although DRAM error analysis may be performed with both
approaches, they are not interchangeable and can lead to completely different
conclusions.

In addition to providing exploratory analysis, we performed statistical
significance tests for each finding that we present. We also demonstrated
the importance of providing statistical significance and presenting results
that have practical value and real-life use. We showed that various widely-
accepted approaches for DRAM analysis may provide data that appear to
support an interesting conclusion, but are not statistically significant, mean-
ing that they could merely be the result of chance.

7.2 Future work

7.2.1 Memory capacity study

In this thesis, we analyzed memory capacity requirements of important HPC
benchmarks and applications. A simple but important question “How much
memory do we need in HPC?” has not been discussed thoroughly by the
academic and computer architecture community, and we hope that our study
will trigger further research and discussion on this topic.

We focused our analysis on systems built with high-end x86 cores, the
architecture that dominates the HPC market. HPC applications executed on
other CPU architectures, such as the Blue Gene systems based on PowerPC
embedded cores, systems based on embedded ARM [92] or systems with GPU
accelerating cores, may have significantly different behavior and memory-
related requirements. Therefore, we believe that interesting avenue of future
work would be to repeat the presented analysis on non-x86 HPC systems and
compare the obtained results with the findings of our study.

As a part of the future work, we plan to analyze weak scaling of pro-
duction HPC applications and its impact on HPC memory footprints. Weak
scaling analysis is especially important to anticipate future HPC problems
with significantly larger input datasets. This analysis, however, would re-
quire HPC production application benchmark suites that allow the problem
size to be tuned in a similar way to HPL and HPCG, or at least provide a
collection of comparable input sets with varying problem size.

The study presented in this thesis included the experiments performed
on a particular machine (MareNostrum supercomputer) and on a set of ap-
plications that represent the workloads running on current HPC systems.

113

7.2. FUTURE WORK

Therefore, our analysis represents a set of isolated experiments that should
be repeated on many different platforms and applications in order to confirm
the conclusions. Another approach would be to analyze memory usage on
existing HPC systems and correlate memory usage with the workloads. This
analysis would require a software daemon which would log the memory usage
and the type of workload being executed. Therefore, we would like to study
the histograms of memory system usage of existing HPC clusters and under-
stand whether, in every day usage of HPC systems, users take advantage of
most of the installed memory.

We analyzed scaling-in of HPC applications as a practical approach to
reduce energy consumption, and showed that scaling-in is most appropriate
in capacity computing. In recent years, HPC has entered industry, includ-
ing small and medium enterprises, and many users now pay for their time
on rented HPC resources. It would be interesting to extend our study and
to analyze industrial applications targeting capacity computing. We believe
that applications from the industrial sector could fit well the analysis pre-
sented in Chapter 5. Users from industry run their applications on rented
HPC systems and are usually interested in the performance of batch of jobs.
If proven to HPC providers that scaling-in improves the energy efficiency,
maybe it would lead to the scheduling policies in HPC systems that reward
users that scale-in their applications.

7.2.2 Memory reliability study

We presented a study of DRAM errors, covering the data logged on a produc-
tion HPC system during a period of more than two years. We showed that
uncorrected errors are very rare. For this reason, we would need more field
data logged during longer periods of time to have more statistical significance
in our results. As a part of the future work, we would like to extend our anal-
ysis to include more production systems and clusters. Ideally, we would like
to have logs from the whole lifetime of a production system. This way, we
would have significantly more MB-hours for the analysis, and we could even
observe the effect of aging, i.e., how reliability changes in the early and later
phases of system production lifetime.

In our study, all memory DIMMs were DDR3 memory DIMMs, built from
different memory manufacturers and in different nanometer technology. We
would like to extend our study to include DDR4 DIMMs and even GDDR5
DIMMs used in graphics cards. This way, we could compare the rates and
distributions of memory errors over several generations of the DDR standard.

We showed strong dependency between DIMMs that experienced cor-
rected and uncorrected DRAM errors. This validates the use of corrected

114

7.3. PUBLICATIONS

errors as an indirect indicator of the memory system’s reliability. We believe
that corrected errors and faults should be further analyzed in regards to pre-
dicting potential uncorrected errors on the DIMM. As a part of the future
work, we would like to analyze patterns of the occurrence of corrected errors
and faults on the DIMM, and try to recognize patterns that occur right be-
fore an uncorrected error. However, in order to use any of the patterns as
a part of a pre-failure alert mechanism, the probability of uncorrected error
should be significantly high. Only this way, we could compensate for the
overhead induced by such pre-failure mechanism.

Finally, in our logs we had limited amount of information. We would like
to extend our study and analyze how other parameters impact and correlate
with the occurrence of uncorrected errors on the DIMM, such as temperature,
application domain, memory bandwidth, memory usage, etc. This would
enable much broader analysis, and possibly the detection of use-cases and
domains that are more susceptible to memory errors.

7.3 Publications

In this section, we present a list of our research articles that are accepted
for publication at conferences and journals. We also list the posters used to
present our work at summits and forums, and publications on other topics
that are not considered to be the contributions of the thesis.

7.3.1 Conferences

• Darko Zivanovic, Milan Radulovic, Germán Llort, David Zaragoza,
Janko Strassburg, Paul M. Carpenter, Petar Radojković, Eduard Ayguadé.
Large-Memory Nodes for Energy Efficient High-Performance Comput-
ing. In Proceedings of the Second International Symposium on Memory
Systems (MEMSYS), Washington DC, US. October 2016.

Best Paper Award.

7.3.2 Journals

• Darko Zivanovic, Milan Pavlovic, Milan Radulovic, Hyunsung Shin,
Jongpil Son, Sally A. Mckee, Paul M. Carpenter, Petar Radojković,
Eduard Ayguadé. Main Memory in HPC: Do We Need More or Could
We Live with Less? In ACM Transactions on Architecture and Code
Optimization (TACO), Volume 14 Issue 1, Article No. 3, April 2017.

115

7.3. PUBLICATIONS

— Invited for the presentation at the HiPEAC Conference, Manchester,
UK. January 2018.

7.3.3 Posters

• Darko Zivanovic, Petar Radojković, Eduard Ayguadé. Main Memory
in HPC: Do We Need More or Could We Live with Less? Fourth In-
ternational BSC Severo Ochoa Doctoral Symposium. Barcelona 2017.

• Darko Zivanovic, Petar Radojković, Eduard Ayguadé. Main Memory
Provisioning for High-Performance Computing. PRACEdays17, Euro-
pean HPC Summit Week 2017. Barcelona 2017.

7.3.4 Under submission

• Darko Zivanovic, Sergi Moré, Javier Bartolome, Paul M. Carpenter,
Petar Radojković, Eduard Ayguadé. DRAM Errors in the Field: The
Signal and the Noise. Under submission.

7.3.5 Other publications

• Milan Radulovic, Darko Zivanovic, Daniel Ruiz, Bronis R. de Supinski,
Sally A. McKee, Petar Radojković, Eduard Ayguadé. Another Trip to
the Wall: How Much Will Stacked DRAM Benefit HPC? In Proceed-
ings of the International Symposium on Memory Systems (MEMSYS),
Washington DC, US. October 2015.

116

Bibliography

[1] SPEC MPI 2007. http://www.spec.org/mpi2007/. [page 48]

[2] SPEC OMP 2012. https://www.spec.org/omp2012/. [page 48]

[3] Appuswamy, R., Gkantsidis, C., Narayanan, D., Hodson, O., and Row-
stron, A. Scale-up vs Scale-out for Hadoop: Time to Rethink? In Proc. of the
Symp. on Cloud Computing (SOCC) (Oct. 2013), pp. 20:1–20:13. [page 78]

[4] Asanovic, K., Bodik, R., Catanzaro, B. C., Gebis, J. J., Husbands, P.,
Keutzer, K., Patterson, D. A., Plishker, W. L., Shalf, J., Williams,
S. W., and Yelick, K. A. The Landscape of Parallel Computing Research: A View
from Berkeley. Tech. Rep. UCB/EECS-2006-183, EECS Department, University of
California, Berkeley, Dec. 2006. [page 48]

[5] Ashby, S., Beckman, P., Chen, J., Colella, P., Collins, B., Crawford,
D., Dongarra, J., Kothe, D., Lusk, R., Messina, P., Mezzacappa, T.,
Moin, P., Norman, M., Rosner, R., Sarkar, V., Siegel, A., Streitz, F.,
White, A., and Wright, M. The Opportunities and Challenges of Exascale
Computing. Tech. rep., 2010. [pages 65 and 72]

[6] Asifuzzaman, K., Pavlovic, M., Radulovic, M., Zaragoza, D., Kwon,
O., Ryoo, K.-C., and Radojković, P. Performance Impact of a Slower Main
Memory: A Case Study of STT-MRAM in HPC. In Proc. of the International
Symposium on Memory Systems (MEMSYS) (oct 2016), pp. 40–49. [pages 4 and 20]

[7] Atkins, D. E., Droegemeier, K. K., Feldman, S. I., Feldman, S. I., Klein,
M. L., Messerschmitt, D. G., Messina, P., Ostriker, J. P., and Wright,
M. H. Revolutionizing Science and Engineering Through Cyberinfrastructure. Re-
port of the National Science Foundation Blue-Ribbon Advisory Panel on Cyberin-
frastructure, National Science Foundation, Jan. 2003. [page 32]

[8] Avizienis, A., Laprie, J.-C., Randell, B., and Landwehr, C. Basic Con-
cepts and Taxonomy of Dependable and Secure Computing. IEEE Transactions on
Dependable and Secure Computing 1, 1 (jan 2004), 11–33. [page 84]

[9] Barcelona Supercomputing Center. Paraver: Parallel Program Visualization
and Analysis tool, oct 2001. [page 29]

[10] Barcelona Supercomputing Center. MareNostrum 3 System Architecture.
http://www.bsc.es/marenostrum-support-services/mn3, 2013. [pages 23, 32,
35, and 66]

[11] Barcelona Supercomputing Center. Extrae User guide manual for version
2.5.1, Apr. 2014. [pages 28 and 35]

117

http://www.spec.org/mpi2007/
https://www.spec.org/omp2012/
http://www.bsc.es/marenostrum-support-services/mn3

BIBLIOGRAPHY

[12] Barcelona Supercomputing Center. MareNostrum 3 User’s Guide, Apr. 2016.
[pages 6, 82, and 86]

[13] Bautista-Gomez, L., Zyulkyarov, F., Unsal, O., and McIntosh-Smith,
S. Unprotected Computing: A Large-scale Study of DRAM Raw Error Rate on
a Supercomputer. In Proc. of the International Conference for High Performance
Computing, Networking, Storage and Analysis (SC) (nov 2016), pp. 55:1–55:11.
[page 6]

[14] Bienia, C., Kumar, S., Singh, J. P., and Li, K. The PARSEC Benchmark
Suite: Characterization and Architectural Implications. In Proc. of the International
Conference on Parallel Architectures and Compilation Techniques (PACT) (Oct.
2008), pp. 72–81. [page 48]

[15] Biswas, S., de Supinski, B. R., Schulz, M., Franklin, D., Sherwood, T.,
and Chong, F. T. Exploiting Data Similarity to Reduce Memory Footprints.
In Proc. of the IEEE International Parallel & Distributed Processing Symposium
(IPDPS) (May 2011), pp. 152–163. [pages 60 and 61]

[16] Black, B., Annavaram, M., Brekelbaum, N., DeVale, J., Jiang, L., Loh,
G. H., McCaule, D., Morrow, P., Nelson, D. W., Pantuso, D., Reed,
P., Rupley, J., Shankar, S., Shen, J., and Webb, C. Die Stacking (3D)
Microarchitecture. In Proc. of the IEEE/ACM International Symposium on Mi-
croarchitecture (MICRO) (2006), pp. 469–479. [page 4]

[17] Bull, M. PRACE-2IP: D7.4 Unified European Applications Benchmark Suite -
Final. Tech. rep., PRACE Seventh Framework Programme Research Infrastructures,
2013. [page 55]

[18] Cantalupo, C., Raman, K., and Sasanka, R. MCDRAM on 2nd Genera-
tion Intel Xeon Phi Processor (code-named Knights Landing): Analysis Methods
and Tools. International Conference for High Performance Computing, Networking,
Storage and Analysis (SC), Nov. 2015. Tutorial. [page 34]

[19] Cappello, F., Al, G., Gropp, W., Kale, S., Kramer, B., and Snir, M. To-
ward Exascale Resilience: 2014 Update. Supercomputing Frontiers and Innovations:
an International Journal 1, 1 (Apr. 2014), 5–28. [pages 6 and 82]

[20] Chou, C., Jaleel, A., and Qureshi, M. K. CAMEO: A Two-Level Memory
Organization with Capacity of Main Memory and Flexibility of Hardware-Managed
Cache. In Proc. of the International Symposium on Microarchitecture (MICRO)
(Dec. 2014), pp. 1–12. [pages 34, 59, and 61]

[21] Dell, T. J. A White Paper on the Benefits of Chipkill-Correct ECC for PC Server
Main Memory. Technical white paper 4AA4-3490ENW, IBM, Nov. 1997. [pages 16
and 82]

[22] Dell, T. J. System RAS Implications of DRAM Soft Errors. IBM Journal of
Research and Development 52, 3 (May 2008), 307–314. [page 6]

[23] Dickov, B., Pericàs, M., Carpenter, P., Navarro, N., and Ayguadé, E.
Software-Managed Power Reduction in Infiniband Links. In Proc. of the Int. Con-
ference on Parallel Processing (ICPP) (Sept. 2014), pp. 311–320. [page 76]

118

BIBLIOGRAPHY

[24] Diniz, B., Guedes, D., Meira, Jr., W., and Bianchini, R. Limiting the Power
Consumption of Main Memory. In Proc. of the Int. Symp. on Computer Architecture
(ISCA) (June 2007), pp. 290–301. [page 77]

[25] Dong, X., Xie, Y., Muralimanohar, N., and Jouppi, N. P. Simple but Ef-
fective Heterogeneous Main Memory with On-Chip Memory Controller Support. In
Proc. of the International Conference for High Performance Computing, Network-
ing, Storage and Analysis (SC) (Nov. 2010), pp. 1–11. [pages 34 and 61]

[26] Dongarra, J., Beckman, P., Moore, T., Aerts, P., Aloisio, G., Andre,
J.-C., Barkai, D., Berthou, J.-Y., Boku, T., Braunschweig, B., Cap-
pello, F., Chapman, B., Chi, X., Choudhary, A., Dosanjh, S., Dunning,
T., Fiore, S., Geist, A., Gropp, B., Harrison, R., Hereld, M., Heroux,
M., Hoisie, A., Hotta, K., Jin, Z., Ishikawa, Y., Johnson, F., Kale, S.,
Kenway, R., Keyes, D., Kramer, B., Labarta, J., Lichnewsky, A., Lip-
pert, T., Lucas, B., Maccabe, B., Matsuoka, S., Messina, P., Michielse,
P., Mohr, B., Mueller, M. S., Nagel, W. E., Nakashima, H., Papka, M. E.,
Reed, D., Sato, M., Seidel, E., Shalf, J., Skinner, D., Snir, M., Sterling,
T., Stevens, R., Streitz, F., Sugar, B., Sumimoto, S., Tang, W., Taylor,
J., Thakur, R., Trefethen, A., Valero, M., van der Steen, A., Vetter,
J., Williams, P., Wisniewski, R., and Yelick, K. The International Exascale
Software Project Roadmap. International Journal of High Performance Computing
Applications 25, 1 (Feb. 2011), 3–60. [pages 2 and 5]

[27] Dongarra, J. J., and Heroux, M. A. Toward a New Metric for Ranking High
Performance Computing Systems. Sandia Report SAND2013-4744, Sandia National
Laboratories, June 2013. [pages 25, 42, and 44]

[28] Dongarra, J. J., Luszczek, P., and Heroux, M. A. HPCG: One Year Later.
In International Supercomputing Conference (ISC) (June 2014). [page 43]

[29] Dongarra, J. J., Luszczek, P., and Petitet, A. The LINPACK Benchmark:
Past, Present and Future. Concurrency and Computation: Practice and Experience
15, 9 (2003), 803–820. [pages 39, 40, and 60]

[30] Draper, J., Chame, J., Hall, M., Steele, C., Barrett, T., LaCoss, J.,
Granacki, J., Shin, J., Chen, C., Kang, C. W., Kim, I., and Daglikoca,
G. The Architecture of the DIVA Processing-in-memory Chip. In Proc. of the
International Conference on Supercomputing (ISC) (June 2002), pp. 14–25. [page 4]

[31] Dubey, P. Recognition, Mining and Synthesis Moves Computers to the Era of
Tera. Intel Technology Journal 9, 2 (Feb. 2005). [pages 1 and 4]

[32] ETP4HPC. ETP4HPC Strategic Research Agenda Achieving HPC leadership in
Europe, June 2013. [pages 48 and 65]

[33] EU Commission. European Commission Eurostat. http://ec.europa.eu/

eurostat/, 2015. [page 75]

[34] Freeh, V. W., Pan, F., Kappiah, N., Lowenthal, D. K., and Springer, R.
Exploring the Energy-Time Tradeoff in MPI Programs on a Power-Scalable Cluster.
In Proc. of the Int. Parallel and Distributed Processing Symp. (IPDPS) (Apr. 2005),
p. 4.a. [page 76]

119

http://ec.europa.eu/eurostat/
http://ec.europa.eu/eurostat/

BIBLIOGRAPHY

[35] Geist, A. Supercomputing’s Monster in the Closet. IEEE Spectrum 53, 3 (Mar.
2016), 30–35. [page 6]

[36] HP. How memory RAS technologies can enhance the uptime of HPE ProLiant
servers. Technical white paper 4AA4-3490ENW, Hewlett Packard Enterprise, Feb.
2016. [pages 6, 16, and 81]

[37] Hybrid Memory Cube Consortium. Hybrid Memory Cube Specifica-
tion 2.0. www.hybridmemorycube.org/specification-v2-download-form/, Nov.
2014. [pages 2 and 18]

[38] IBM. Administering Platform LSF, 2014. Version 9 Release 1.2. [page 67]

[39] IBM. System x iDataPlex dx360 M4 Types 7912 and 7913: Problem Determination
and Service Guide, Apr 2014. [pages 30 and 87]

[40] IBM. IBM Integrated Management Module II Firmware 3.70. https://www.

kernel.org/doc/Documentation/hwmon/ibmaem, 2015. [page 67]

[41] Intel. Intel VTune Amplifier 2016. https://software.intel.com/en-us/intel-vtune-
amplifier-xe/, 2016. [page 59]

[42] Intel. The memkind library. http://memkind.github.io/memkind/, 2016. [page 59]

[43] Jacob, B., NG, S. W., and Wang, D. T. Memory Systems: Cache, DRAM,
Disk. Morgan Kaufmann, 2008. [pages 3 and 84]

[44] JEDEC Solid State Technology Association. High Bandwidth Memory
(HBM) DRAM. www.jedec.org/standards-documents/docs/jesd235, Oct. 2013.
[pages 2 and 18]

[45] Jeffers, J., Reinders, J., and Sodani, A. Intel Xeon Phi Processor High
Performance Programming: Knights Landing Edition, 2nd ed. Morgan Kaufmann,
June 2016. [page 34]

[46] Kanter, D. Knights Landing Reshapes HPC. Microprocessor Report (Sept. 2015).
[page 21]

[47] Kleen, A. MCELOG: Memory Error Handling in User Space. In International
Linux System Technology Conference (Linux Kongress) (Sep 2010). [pages 30 and 87]

[48] Kleymenov, A., and Park, J. HPCG on Intel Xeon Phi 2nd Generation, Knights
Landing. In International Conference for High Performance Computing, Network-
ing, Storage and Analysis (SC) (Nov 2016). HPCG BoF. [page 58]

[49] Kogge, P., Bergman, K., Borkar, S., Campbell, D., Carlson, W., Dally,
W., Denneau, M., Franzon, P., Harrod, W., Hill, K., Hiller, J., Karp,
S., Keckler, S., Klein, D., Lucas, R., Richards, M., Scarpelli, A., Scott,
S., Snavely, A., Sterling, T., Williams, R. S., and Yelick, K. ExaScale
Computing Study: Technology Challenges in Achieving Exascale Systems, Sept.
2008. [pages 1, 4, and 32]

[50] Koop, M. J., Jones, T., and Panda, D. K. Reducing Connection Memory
Requirements of MPI for InfiniBand Clusters: A Message Coalescing Approach. In
Proc. of the IEEE International Symposium on Cluster Computing and the Grid
(CCGRID) (May 2007), pp. 495–504. [page 45]

120

www.hybridmemorycube.org/specification-v2-download-form/
https://www.kernel.org/doc/Documentation/hwmon/ibmaem
https://www.kernel.org/doc/Documentation/hwmon/ibmaem
www.jedec.org/standards-documents/docs/jesd235

BIBLIOGRAPHY

[51] Kultursay, E., Kandemir, M., Sivasubramaniam, A., and Mutlu, O. Eval-
uating STT-RAM as an Energy-Efficient Main Memory Alternative. In IEEE Inter-
national Symposium on Performance Analysis of Systems and Software (ISPASS)
(Apr 2013). [page 4]

[52] Laros, J. H., Pedretti, K. T., Kelly, S. M., Shu, W., and Vaughan, C. T.
Energy Based Performance Tuning for Large Scale High Performance Computing
Systems. In Proc. of the Symp. on High Performance Computing (HPC) (Mar.
2012), pp. 6:1–6:10. [page 76]

[53] Lee, B. C., Ipek, E., Mutlu, O., and Burger, D. Architecting Phase Change
Memory As a Scalable Dram Alternative. In Proc. of the International Symposium
on Computer Architecture (ISCA) (June 2009), pp. 2–13. [page 4]

[54] Lee, D., Ghose, S., Pekhimenko, G., Khan, S., and Mutlu, O. Simultaneous
Multi-Layer Access: Improving 3D-Stacked Memory Bandwidth at Low Cost. ACM
Transactions on Architecture and Code Optimization (TACO) 12, 4 (Jan. 2016),
63:1–63:29. [page 4]

[55] Lenovo. System x iDataPlex dx360 M4 Product Guide. https://lenovopress.

com/tips0878, Jan. 2015. [page 67]

[56] Li, X., Huang, M. C., Shen, K., and Chu, L. A Realistic Evaluation of Mem-
ory Hardware Errors and Software System Susceptibility. In Proc. of the USENIX
Conference on USENIX Annual Technical Conference (USENIXATC) (Jun 2010),
pp. 6–6. [pages 87, 91, and 106]

[57] Lim, M. Y., Freeh, V. W., and Lowenthal, D. K. Adaptive, Transparent
Frequency and Voltage Scaling of Communication Phases in MPI Programs. In
Proc. of the Conference on Supercomputing (SC) (Nov. 2006). [page 76]

[58] Locklear, D. Chipkil Correct Memory Architecture. DELL Technology Brief
(Aug. 2000). [page 16]

[59] Loh, G. H. 3D-Stacked Memory Architectures for Multi-core Processors. In Proc.
of the International Symposium on Computer Architecture (ISCA) (2008), pp. 453–
464. [page 4]

[60] Luszczek, P., and Dongarra, J. J. Introduction to the HPC Challenge Bench-
mark Suite. ICL Technical Report ICL-UT-05-01, University of Tennessee, 2005.
[page 48]

[61] Malladi, K. T., Lee, B. C., Nothaft, F. A., Kozyrakis, C., Periyathambi,
K., and Horowitz, M. Towards Energy-proportional Datacenter Memory with
Mobile DRAM. In Proc. of the Int. Symp. on Computer Architecture (ISCA) (June
2012), pp. 37–48. [page 77]

[62] Malladi, K. T., Shaeffer, I., Gopalakrishnan, L., Lo, D., Lee, B. C., and
Horowitz, M. Rethinking DRAM Power Modes for Energy Proportionality. In
Proc. of the Int. Symp. on Microarchitecture (MICRO) (Dec. 2012), pp. 131–142.
[page 77]

[63] Marjanović, V., Garcia, J., and Glass, C. W. Performance Modeling of the
HPCG Benchmark. In High Performance Computing Systems. Performance Model-
ing, Benchmarking, and Simulation (Nov. 2014), Springer International Publishing,
pp. 172–192. [pages 43, 44, 45, and 60]

121

https://lenovopress.com/tips0878
https://lenovopress.com/tips0878

BIBLIOGRAPHY

[64] Martino, C. D., Kalbarczyk, Z., Iyer, R. K., Baccanico, F., Fullop,
J., and Kramer, W. Lessons Learned from the Analysis of System Failures at
Petascale: The Case of Blue Waters. In Proc. of the IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN) (Jun 2014), pp. 610–621.
[page 105]

[65] McCalpin, J. D. Memory Bandwidth and Machine Balance in Current High Per-
formance Computers. IEEE Computer Society Technical Committee on Computer
Architecture (TCCA) Newsletter (Sept. 1995). [page 4]

[66] McCalpin, J. D. STREAM: Sustainable Memory Bandwidth in High Performance
Computers. https://www.cs.virginia.edu/stream/ref.html, 1997. [page 24]

[67] McKee, S. A. Reflections on the Memory Wall. In Proc. of the 1st Conference on
Computing Frontiers (Apr. 2004), pp. 162–. [page 1]

[68] McVoy, L., and Staelin, C. LMbench: Portable Tools for Performance Analysis.
In Proc. of the Annual Conference on USENIX Annual Technical Conference (1996).
[page 24]

[69] Meswani, M. R., Blagodurov, S., Roberts, D., Slice, J., Ignatowski, M.,
and Loh, G. H. Heterogeneous Memory Architectures: A HW/SW Approach for
Mixing Die-stacked and Off-package Memories. In IEEE International Symposium
on High Performance Computer Architecture (HPCA) (Feb. 2015), pp. 126–136.
[pages 4, 34, 59, and 61]

[70] Meza, J., Wu, Q., Kumar, S., and Mutlu, O. Revisiting Memory Errors
in Large-Scale Production Data Centers: Analysis and Modeling of New Trends
from the Field. In Proc. of the IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN) (Jun 2015), pp. 415–426. [pages 91 and 107]

[71] Murphy, R. On the Effects of Memory Latency and Bandwidth on Supercom-
puter Application Performance. In Proc. of the IEEE International Symposium on
Workload Characterization (IISWC) (Nov. 2007), pp. 35–43. [page 1]

[72] Murphy, R., Berry, J., McLendon, W., Hendrickson, B., Gregor, D.,
and Lumsdaine, A. DFS: A Simple to Write Yet Difficult to Execute Benchmark.
In IEEE International Symposium on Workload Characterization (IISWC) (Oct.
2006), pp. 175–177. [page 58]

[73] Murphy, R., Wheeler, K., Barrett, B., and Ang, J. Introducing the Graph
500. Cray User’s Group (CUG), May 2010. [page 58]

[74] NERSC. Large Scale Computing and Storage Requirements for High Energy
Physics: Target 2017. Report of the NERSC Requirements Review, Lawrence Berke-
ley National Laboratory, Nov. 2012. [page 32]

[75] NERSC. Large Scale Computing and Storage Requirements for Biological and
Environmental Science: Target 2017. Report of the NERSC Requirements Review
LBNL-6256E, Lawrence Berkeley National Laboratory, June 2013. [page 32]

[76] NERSC. High Performance Computing and Storage Requirements for Basic Energy
Sciences: Target 2017. Report of the HPC Requirements Review LBNL-6978E,
Lawrence Berkeley National Laboratory, Oct. 2014. [page 32]

122

https://www.cs.virginia.edu/stream/ref.html

BIBLIOGRAPHY

[77] NERSC. Large Scale Computing and Storage Requirements for Fusion Energy
Sciences: Target 2017. Report of the NERSC Requirements Review LBNL-6631E,
Lawrence Berkeley National Laboratory, May 2014. [page 32]

[78] NERSC. High Performance Computing and Storage Requirements for Nuclear
Physics: Target 2017. Report of the NERSC Requirements Review LBNL-6926E,
Lawrence Berkeley National Laboratory, Jan. 2015. [page 32]

[79] NERSC. Large Scale Computing and Storage Requirements for Advanced Scientific
Computing Research: Target 2017. Report of the NERSC Requirements Review
LBNL-6978E, Lawrence Berkeley National Laboratory, Apr. 2015. [page 32]

[80] Newburn, C. J. Code for the future: Knights Landing and beyond. International
Supercomputing Conference (ISC), July 2015. IXPUG Workshop. [page 34]

[81] P. Reviriego et al. An Initial Evaluation of Energy Efficient Ethernet. IEEE
Communications Letters 15, 5 (May 2011), 578–580. [page 67]

[82] Park, J., Smelyanskiy, M., Vaidyanathan, K., Heinecke, A., Kalamkar,
D. D., Liu, X., Patwary, M. M. A., Lu, Y., and Dubey, P. Efficient Shared-
memory Implementation of High-performance Conjugate Gradient Benchmark and
Its Application to Unstructured Matrices. In Proc. of the International Conference
for High Performance Computing, Networking, Storage and Analysis (SC) (Nov.
2014), pp. 945–955. [page 44]

[83] Pavlovic, M., Etsion, Y., and Ramirez, A. On the Memory System Re-
quirements of Future Scientific Applications: Four Case-studies. In Proc. of
the IEEE International Symposium on Workload Characterization (IISWC) (Nov.
2011), pp. 159–170. [pages 60 and 61]

[84] Pavlovic, M., Puzovic, N., and Ramirez, A. Data Placement in HPC Archi-
tectures with Heterogeneous Off-chip Memory. In IEEE International Conference
on Computer Design (ICCD) (Oct. 2013), pp. 193–200. [page 2]

[85] Pavlovic, M., Radulovic, M., Ramirez, A., and Radojkovic, P. Limpio -
LIghtweight MPI instrumentatiOn. In Proc. of the Int. Conference on Program Com-
prehension (ICPC) (May 2015), https://www.bsc.es/computer-sciences/computer-
architecture/memory-systems/limpio, pp. 303–306. [pages 30, 35, and 71]

[86] Perks, O., Hammond, S., Pennycook, S. J., and Jarvis, S. A. Should We
Worry About Memory Loss? SIGMETRICS Performance Evaluation Review 38, 4
(Mar. 2011), 69–74. [pages 60 and 61]

[87] Petitet, A., Whaley, R. C., Dongarra, J., and Cleary, A. HPL
- A Portable Implementation of the High-Performance Linpack Benchmark for
Distributed-Memory Computers. http://www.netlib.org/benchmark/hpl/, Sept.
2008. [pages 36, 39, 40, and 41]

[88] PinnacleMicro. http://www.pinnaclemicro.com/, nov 2015. [page 75]

[89] PRACE. Unified European Applications Benchmark Suite. www.prace-
ri.eu/ueabs/, 2013. [pages 7, 25, 33, 35, 45, 52, 55, 66, and 68]

[90] PRACE Research Infrastructure. http://www.prace-ri.eu, 2015. [pages
23, 26, 35, and 66]

123

http://www.netlib.org/benchmark/hpl/
http://www.pinnaclemicro.com/
http://www.prace-ri.eu

BIBLIOGRAPHY

[91] Radulovic, M., Zivanovic, D., Ruiz, D., de Supinski, B. R., McKee, S. A.,
Radojković, P., and Ayguadé, E. Another Trip to the Wall: How Much Will
Stacked DRAM Benefit HPC? In Proc. of the International Symposium on Memory
Systems (MEMSYS) (2015), pp. 31–36. [page 59]

[92] Rajovic, N., Carpenter, P. M., Gelado, I., Puzovic, N., Ramirez, A., and
Valero, M. Supercomputing with Commodity CPUs: Are Mobile SoCs Ready for
HPC? In Proc. of the International Conference on High Performance Computing,
Networking, Storage and Analysis (SC) (2013), pp. 40:1–40:12. [page 113]

[93] Ranganathan, P. From Microprocessors to Nanostores: Rethinking Data-Centric
Systems. Computer 44, 1 (Jan. 2011), 39–48. [page 5]

[94] Saleh, A. M., Serrano, J. J., and Patel, J. H. Reliability of Scrubbing
Recovery-Techniques for Memory Systems. IEEE transactions on reliability 39, 1
(1990), 114–122. [page 87]

[95] Saravanan, K. P., Carpenter, P. M., and Ramirez, A. A Performance
Perspective on Energy Efficient HPC Links. In Proc. of the Int. Conference on
Supercomputing (ICS) (June 2014), pp. 313–322. [page 77]

[96] Schroeder, B., and Gibson, G. A Large-Scale Study of Failures in High-
Performance Computing Systems. IEEE Transactions on Dependable and Secure
Computing 7, 4 (Oct 2010), 337–350. [page 105]

[97] Schroeder, B., and Gibson, G. A. Understanding Failures in Petascale Com-
puters. Journal of Physics: Conference Series 78 (2007). [page 6]

[98] Schroeder, B., Pinheiro, E., and Weber, W.-D. DRAM Errors in the Wild: A
Large-scale Field Study. In Proc. of the International Joint Conference on Measure-
ment and Modeling of Computer Systems (SIGMETRICS) (Jun 2009), pp. 193–204.
[pages 91, 106, and 107]

[99] Siddiqua, T., Papathanasiou, A., Biswas, A., and Gurumurthi, S. Analysis
and Modelling of Memory Errors from Large-Scale Field Data Collection. In IEEE
Workshop on Silicon Errors in Logic - System Effects (SELSE) (Mar 2013). [pages
91 and 107]

[100] Sim, J., Alameldeen, A. R., Chishti, Z., Wilkerson, C., and Kim, H. Trans-
parent Hardware Management of Stacked DRAM As Part of Memory. In Proc. of
the International Symposium on Microarchitecture (MICRO) (Dec. 2014), pp. 13–24.
[pages 34 and 61]

[101] Sites, R. It’s the Memory, Stupid! Microprocessor Report 10, 10 (Aug. 1996), 2–3.
[page 1]

[102] Sodani, A. Race to Exascale: Opportunities and Challenges. International Sym-
posium on Microarchitecture (MICRO), Dec. 2011. Keynote. [pages 1 and 32]

[103] Sodani, A., Gramunt, R., Corbal, J., Kim, H.-S., Vinod, K., Chinthamani,
S., Hutsell, S., Agarwal, R., and Liu, Y.-C. Knights Landing: Second-
Generation Intel Xeon Phi Product. IEEE Micro 36, 2 (Mar. 2016), 34–46. [pages
19, 20, and 34]

[104] Song, S. L., Barker, K., and Kerbyson, D. Unified Performance and Power
Modeling of Scientific Workloads. In Proc. of the Int. Workshop on Energy Efficient
Supercomputing (E2SC) (Nov. 2013), pp. 4:1–4:8. [page 67]

124

BIBLIOGRAPHY

[105] Sridharan, V., DeBardeleben, N., Blanchard, S., Ferreira, K. B.,
Stearley, J., Shalf, J., and Gurumurthi, S. Memory Errors in Modern Sys-
tems: The Good, The Bad, and The Ugly. In Proc. of the International Conference
on Architectural Support for Programming Languages and Operating Systems (AS-
PLOS) (Mar 2015), pp. 297–310. [pages 87, 91, 92, and 107]

[106] Sridharan, V., and Liberty, D. A Study of DRAM Failures in the Field. In
Proc. of the International Conference on High Performance Computing, Networking,
Storage and Analysis (SC) (Nov 2012), pp. 76:1–76:11. [pages 87, 91, 92, 106,
and 107]

[107] Sridharan, V., Stearley, J., DeBardeleben, N., Blanchard, S., and Gu-
rumurthi, S. Feng Shui of Supercomputer Memory: Positional Effects in DRAM
and SRAM Faults. In Proc. of the International Conference on High Performance
Computing, Networking, Storage and Analysis (SC) (Nov 2013), pp. 22:1–22:11.
[pages 87, 91, 92, 106, and 107]

[108] Stevens, R., and White, A. Architectures and Technology for Extreme Scale
Computing. Tech. rep., DOE, dec 2009. [page 65]

[109] Stevens, R., White, A., Beckman, P., Bair-ANL, R., Hack, J., Nichols,
J., GeistORNL, A., Simon, H., Yelick, K., Shalf-LBNL, J., Ashby, S.,
Khaleel-PNNL, M., McCoy, M., Seager, M., Gorda-LLNL, B., Morri-
son, J., Wampler-LANL, C., Peery, J., Dosanjh, S., Ang-SNL, J., Dav-
enport, J., Schlagel, T., BNL, Johnson, F., and Messina, P. A Decadal
DOE Plan for Providing Exascale Applications and Technologies for DOE Mission
Needs. Presentation at Advanced Simulation and Computing Principal Investigators
Meeting, Mar. 2010. [pages 1, 4, and 32]

[110] Suresh, A., Cicotti, P., and Carrington, L. Evaluation of Emerging Memory
Technologies for HPC, Data Intensive Applications. In International Conference on
Cluster Computing (CLUSTER) (Sep 2014). [page 2]

[111] The HPCG Benchmark. http://www.hpcg-benchmark.org/, 2016. [pages 25,
42, and 43]

[112] Tolentino, M. E., Turner, J., and Cameron, K. W. Memory MISER: Im-
proving Main Memory Energy Efficiency in Servers. IEEE Transactions on Com-
puters 58, 03 (Sept. 2008), 336–350. [page 77]

[113] TOP500 List. http://www.top500.org/, Nov. 2017. [pages 25, 36, and 39]

[114] Torrellas, J. FlexRAM: Toward an Advanced Intelligent Memory System: A
Retrospective Paper. In Proc. of the International Conference on Computer Design
(ICCD) (Sept. 2012), pp. 3–4. [page 4]

[115] U.S. Energy Information Administration. Electric Power Monthly with Data
for August 2015. Tech. rep., DOE, Oct. 2015. [page 75]

[116] Wong, F. C., Martin, R. P., Arpaci-Dusseau, R. H., and Culler, D. E.
Architectural Requirements and Scalability of the NAS Parallel Benchmarks. In
Proc. of the ACM/IEEE Conference on Supercomputing (SC) (Jan. 1999). [page 48]

[117] Wong, H.-S. P., Raoux, S., Kim, S., Liang, J., Reifenberg, J. P., Rajen-
dran, B., Asheghi, M., and Goodson, K. E. Phase Change Memory. Proceed-
ings of the IEEE 98, 12 (Dec 2010), 2201–2227. [pages 4 and 20]

125

http://www.hpcg-benchmark.org/
http://www.top500.org/

BIBLIOGRAPHY

[118] Woo, S. C., Ohara, M., and Torrie, E. The SPLASH-2 Programs: Characteri-
zation and Methodological Considerations. In Proc. of the International Symposium
on Computer Architecture (ISCA) (July 1995), pp. 24–36. [page 48]

[119] Wulf, W., and McKee, S. Hitting the Memory Wall: Implications of the Ob-
vious. ACM SIGARCH Computer Architecture News 23, 1 (Mar. 1995), 20–24.
[page 3]

[120] Xie, Yuan. Modeling, Architecture, and Applications for Emerging Memory Tech-
nologies. IEEE Design & Test 28, 1 (Jan. 2011), 44–51. [page 2]

[121] Zivanovic, D., Pavlovic, M., Radulovic, M., Shin, H., Son, J., Mckee,
S. A., Carpenter, P. M., Radojković, P., and Ayguadé, E. Main Memory
in HPC: Do We Need More or Could We Live with Less? ACM Transactions on
Architecture and Code Optimization 14, 1 (Apr. 2017), 3:1–3:26. [page 7]

[122] Zivanovic, D., Radulovic, M., Llort, G., Zaragoza, D., Strassburg, J.,
Carpenter, P. M., Radojković, P., and Ayguadé, E. Large-Memory Nodes
for Energy Efficient High-Performance Computing. In International Symposium on
Memory Systems (MEMSYS) (Oct. 2016). [pages 7 and 52]

126

Glossary

BQCD Berlin Quantum Chromo-Dynamics.

CE Corrected Error.
CMP Chip Multiprocessors.
CPU Central Processing Unit.

DARPA The Defense Advanced Research Projects Agency.
DDR Double Data Rate Dynamic Random-Access Memory.
DIMM Dual In-line Memory Modules.
DOE US Department of Energy.
DRAM Dynamic Random-Access Memory.
DVFS Dynamic Voltage and Frequency Scaling.

ECC Error-Correcting Code.
EDP Energy-Delay Product.

FLOP Floating-Point Operation.
FLOP/s Floating-Point Operations per second.

GADGET GAlaxies with Dark matter and GasintEracT.
GPU Graphics Processing Unit.
GROMACS GROningen MAchine for Chemical Simulations.
GUI Graphical User Interface.

HBC Hybrid Memory Cube.
HBM High-Bandwidth Memory.
HPC High-Performance Computing.
HPCG High-Performance Conjugate Gradients.
HPL High-Performance Linpack.

KNL Knights Landing.

127

Glossary

LSF Load Sharing Facility.

MCA Machine-Check Architecture.
MCDRAM Multi-Channel Dynamic Random-Access Memory.
MPI Message Passing Interface.
MTBF Mean Time Between Failures.

NAMD Nanoscale Molecular Dynamics.
NEMO Nucleus for European Modelling of the Ocean.
NVM Non-Volatile Memory.

PCM Phase Change Memory.
PRACE Partnership for Advanced Computing in Europe.

QE Quantum Espresso.

RAM Random-Access Memory.
RLDRAM Reduced Latency Dynamic Random-Access Memory.
RRAM Resistive Random-Access Memory.

SEC Single-Error Correction.
SECDED Single-Error Correction Double-Error Detection.
STT-MRAM Spin-Transfer Torque Magnetoresistive Random-Access

Memory.

TSV Through-Silicon Via.

UE Uncorrected Error.
UEABS Unified European Application Benchmark Suite.

128

	Front matter
	Acknowledgements
	Abstract
	Contents
	List of figures
	List of tables

	1 Introduction
	1.1 Challenges in current memory systems
	1.1.1 Memory performance
	1.1.2 Architectural exploration
	1.1.3 Memory capacity
	1.1.4 Memory reliability

	1.2 Thesis contributions
	1.2.1 Memory capacity requirements of HPC applications
	1.2.2 Large-memory nodes for energy-efficient HPC
	1.2.3 DRAM errors in the field

	1.3 Thesis structure

	2 Background
	2.1 DRAM memory system overview
	2.1.1 DRAM organization
	2.1.2 Error-Correcting Codes

	2.2 Emerging memory technologies
	2.2.1 3D-stacked DRAM
	2.2.2 Non-volatile memories
	2.2.3 Implications on memory system capacityand reliability

	3 Experimental methodology
	3.1 Hardware platform
	3.2 Applications
	3.2.1 HPC benchmarks
	3.2.2 Production HPC applications

	3.3 Tools
	3.3.1 Extrae
	3.3.2 Paraver
	3.3.3 Limpio
	3.3.4 Error logging daemons

	4 Memory capacity requirements of HPC applications
	4.1 Introduction
	4.2 Experimental setup
	4.2.1 Hardware platform
	4.2.2 Applications
	4.2.3 Methodology

	4.3 High-Performance Linpack
	4.3.1 Measured memory requirements
	4.3.2 Analysis
	4.3.3 Mathematical analysis

	4.4 High-Performance Conjugate Gradients
	4.4.1 Measured memory requirements
	4.4.2 Analysis

	4.5 Production HPC applications
	4.5.1 Memory footprint vs. Number of processes
	4.5.2 Selecting the number of processes
	4.5.3 Memory requirements of production HPC applications
	4.5.4 Towards weak scaling analysis

	4.6 Implications
	4.6.1 3D-stacked DRAM in HPC memory systems: Opportunities and challenges

	4.7 Related work
	4.8 Summary

	5 Large-memory nodes for energy efficient HPC
	5.1 Introduction
	5.2 Methodology
	5.2.1 Hardware platform
	5.2.2 Applications
	5.2.3 Power and energy measurements

	5.3 Scaling-in on standard nodes
	5.3.1 Execution time vs. node-hours vs. energy
	5.3.2 Understanding energy vs. node-hours
	5.3.3 Implications and impact

	5.4 Large-memory nodes for energy efficiency
	5.4.1 Large-memory nodes for capacity computing
	5.4.2 Large-memory node cost-benefit analysis

	5.5 Related work
	5.6 Second thoughts on scalability
	5.7 Summary

	6 DRAM errors in the field
	6.1 Introduction
	6.2 Background
	6.2.1 Taxonomy: Are correctable DRAM errors failures?
	6.2.2 Statistical significance

	6.3 Environment description
	6.3.1 MareNostrum 3
	6.3.2 Data collection

	6.4 Categorical analysis
	6.4.1 Uncorrected errors
	6.4.2 Corrected errors
	6.4.3 Corrected vs. uncorrected errors
	6.4.4 Errors vs. Faults
	6.4.5 Summary

	6.5 Error rate analysis
	6.5.1 Uncorrected error characterization
	6.5.2 Corrected error characterization
	6.5.3 Statistical significance
	6.5.4 Corrected vs. uncorrected errors
	6.5.5 Error rates vs. Categorical analysis
	6.5.6 Summary

	6.6 Related Work
	6.6.1 Uncorrectable DRAM errors and whole system resiliency
	6.6.2 Correctable DRAM errors

	6.7 Summary

	7 Conclusions
	7.1 Thesis contributions
	7.1.1 Memory capacity requirements of HPC applications
	7.1.2 Large-memory nodes for high-performance computing
	7.1.3 DRAM errors in the field

	7.2 Future work
	7.2.1 Memory capacity study
	7.2.2 Memory reliability study

	7.3 Publications
	7.3.1 Conferences
	7.3.2 Journals
	7.3.3 Posters
	7.3.4 Under submission
	7.3.5 Other publications

	Back matter
	Bibliography
	Glossary

