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Abstract 

During the construction and operation stages of many civil structures and 

infrastructures, various factors lead to irreversible degradation that could affect the 

normal use and the public safety of these structures. In recent years, it has been common 

in civil engineering to carry out condition assessment of existing structures using 

Structural System Identification (SSI) methods. These methods provide the decision-

making basis for the follow-up treatment measures (repair, rehabilitation, demolition).  

SSI is essentially the application of parameter estimation in structural system. Prior to 

the estimation, one key issue is to guarantee the observability of the parameters to be 

estimated. This was already addressed by the SSI by original Observability Method 

(OM) using static tests. However, a systematic analysis of the effect of measurement 

and simulation errors for this method is lacking. A ramification of this analysis is the 

effective strategies to use redundant measurements to tackle measurement errors. 

Meanwhile, the linearization of unknowns in the SSI by original OM might lead to the 

omission of potentially observable unknowns.  

This PhD thesis presents a unified SSI method under the framework of OM for 2D 

structures modelled by beam elements with loads in the plane. Extensive research has 

focused on the dynamic SSI methods and much less attention has been paid to the static 

case. The proposed method is based on the static information (external loads, measured 

deflections and rotations) obtained during non-destructive static tests. With this aim, 

this work gathers six methodological contributions conceived to (1) extract as much 

information as possible from measurements to ensure the observability of target 

parameters in SSI; (2) analyze the effect of measurement errors and simulation errors 

on the estimation results; (3) propose different strategies to use redundant 

measurements to alleviate the adverse effect of measurement errors regarding the 

accuracy of the SSI results.; (4) place the sensors in an optimal configuration so that 

robust estimations are obtained for the target parameters. 

Firstly, the basic procedure of the SSI by original OM is presented and validated by 

error-free measurement data in a beam-like structure. Then the effects of measurement 

errors and simulation errors on the accuracy of estimation result is analyzed for the 

minimum measurement sets that ensure the observability of all parameters. The studied 

factors include single measurement errors, random measurement errors, error levels and 

loading cases. The influence of the recursive process of SSI by OM is also discussed. 

In order to solve the problem of misjudging the minimum measurement sets caused by 

the linearization of the unknowns in the SSI by original OM, the SSI by constrained 

OM is proposed. The nonlinear constraints are reintroduced by optimizations after the 

completion of the original method when necessary. The method is validated by the 

examples of a simply supported beam and a high-rise frame.  



As demonstrated by the unsatisfactory SSI results from the SSI by OM using minimum 

measurement sets, the necessity of using redundant measurements is emphasized. Three 

ways of using redundant measurements are proposed. The SSI by compatible OM 

derives the compatibility conditions in beam-like structures. The incompatibility in the 

displacements due to measurement errors are reduced by imposing these conditions. In 

the second method, the theoretical advantage of using rotations in SSI is justified by a 

statistical analysis based on the analytical expression of the target parameters together 

with the inverse distribution theory. Then four strategies to use redundant rotation 

measurements are proposed and compared. The model averaging method using only 

rotations is proposed. As the SSI by compatible OM and the model averaging method 

are subjected to the limit of structure type or measurement type, the SSI by 

Measurement Error-Minimizing Observability Method (MEMOM) is proposed. In this 

method, the measurement error terms are separated from the coefficient matrix of the 

observability equations and the final estimations are obtained by minimizing the square 

sum of the ratios between the error terms and the measurements using optimization 

technique. The performance of the method is investigated in detail with respect to 

factors including loading cases, parameterization of FEM, measurement types and 

constraint types. The Optimal Sensor Placement (OSP) problem for static SSI is also 

addressed in this thesis. The OSP problem is formulated as maximizing the determinant 

of the Fisher Information Matrix (FIM) using genetic algorithm. Meanwhile, the 

identifiability of the structural parameters is evaluated according to the diagonal 

elements of the inversed FIM. 

  



 

Resumen de la Tesis  

Durante las etapas de construcción y operación de muchas estructuras e infraestructuras 

civiles, se puede producir una degradación de las mismas debido a diversos factores. 

Esto puede afectar a su uso normal y a la seguridad pública. En los últimos años, la 

evaluación de las condiciones de las estructuras existentes utilizando los métodos de 

Identificación de Sistemas Estructurales (SSI, por sus siglas en inglés) se ha convertido 

en un tema candente en la ingeniería civil. Estos métodos proporcionan la base de la 

toma de decisiones de mantenimiento (reparación, rehabilitación, demolición). 

La SSI es esencialmente la aplicación de la estimación de parámetros en un sistema 

estructural. Antes de esta estimación, sin embargo, una cuestión clave es garantizar si, 

dado un conjunto de medidas, unos determinados parámetros se podrán estimar. Esto 

ya fue abordado por el SSI mediante el Método de Observabilidad (MA) usando 

ensayos estáticos. Sin embargo, aún falta un análisis sistemático del efecto de los 

errores de medición y simulación para este método. Además, no hay estrategias 

efectivas para usar mediciones redundantes para disminuir los efectos de los errores de 

medición en las estimaciones. Mientras tanto, la linearización de incógnitas que se 

usaba en el SSI por OM original podría conducir a la omisión de incógnitas observables. 

Esta tesis doctoral presenta un método SSI unificado en el marco de OM para las 

estructuras 2D modeladas por elementos tipo viga con cargas contenidas en el plano. 

Una amplia investigación se ha centrado en los métodos dinámicos de SSI y se ha 

prestado mucha menos atención al caso estático. Este método se basa en la información 

estática (cargas externas y desplazamientos medidos) obtenida durante ensayos 

estáticos no destructivos. Con este objetivo, este trabajo reúne seis contribuciones 

metodológicas concebidas para (1) extraer tanta información como sea posible de las 

mediciones para garantizar la observabilidad de los parámetros objetivo en SSI; (2) 

analizar el efecto de errores de medición; (3) proponer estrategias diferentes para usar 

mediciones redundantes para aliviar el efecto adverso de los errores de medición con 

respecto a la precisión de los resultados de SSI; (4) ubicación de los sensores en una 

configuración óptima para que se obtengan estimaciones robustas para los parámetros 

objetivo. 

En primer lugar, el procedimiento básico del SSI por OM original se presenta y valida 

con datos de medición sin errores en una estructura tipo viga. A continuación, se 

analizan los efectos de los errores de medición y simulación sobre la precisión del 

resultado de la estimación para los conjuntos mínimos de medición que garantizan la 

observabilidad de todos los parámetros. Los factores estudiados incluyen errores de 

medición únicos, errores de medición aleatorios, distintos niveles de error y distintos 

casos de carga. También se discute la influencia del proceso recursivo de SSI por OM. 

Con el fin de resolver el efecto de la linearización de las incógnitas en el SSI por OM 

original, se propone el SSI por OM restringido. Las restricciones no lineales son 



reintroducidas como requisitos que ha de satisfacer la solución, pasando la resolución 

del problema a ser un proceso de optimización. El método está validado con ejemplos 

de vigas y de un pórtico de gran altura. 

 

El uso de conjuntos mínimos de medidas con errores conduce a resultados poco 

satisfactorios. Se impone el uso de conjuntos de medidas redundantes. Las formas de 

minimizar el error en la estimación usando medidas redundantes se estudian en tres 

apartados. 1) El SSI por OM compatible deriva la expresión matemática de las 

condiciones de compatibilidad de los distintos desplazamientos de los nodos en 

estructuras tipo viga. La incompatibilidad en los desplazamientos debidos a errores de 

medición se reduce al imponer estas condiciones. 2) La ventaja teórica de usar 

rotaciones en SSI se justifica mediante un análisis estadístico basado en la expresión 

analítica de los parámetros objetivo junto con la teoría de distribución inversa. Luego, 

se proponen y comparan cuatro estrategias para usar mediciones de rotación 

redundantes. Se propone el método de promediado del modelo estimado utilizando solo 

rotaciones. 3) Como el SSI por OM compatible y el método de promediado del modelo 

están sujetos al límite de tipo de estructura o tipo de medida, se propone el SSI mediante 

el Método de Observación de Minimización de Errores de Medición (MEMOM). En 

este método, los términos de error de medición se separan de la matriz de coeficientes 

de las ecuaciones de observabilidad y las estimaciones finales se obtienen minimizando 

la suma cuadrada de las relaciones entre los términos de error y las mediciones 

utilizando la técnica de optimización. El rendimiento de los distintos métodos se 

investiga en detalle con respecto a factores que incluyen casos de carga, 

parametrización de FEM, tipos de medición y tipos de restricciones. El problema de 

ubicación óptima del sensor (OSP) para SSI estático también se aborda en esta tesis. El 

problema OSP está formulado para maximizar el determinante de la Matriz de 

Información de Fisher (FIM) usando un algoritmo genético. La identificabilidad de los 

parámetros estructurales se evalúa de acuerdo con los elementos diagonales de la FIM 

inversa. 
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1. Introduction 

The expected service life of civil structures is normally more than 50 years. During the 

construction and operation stages, due to the steel corrosion, the carbonation, the 

cracking, the spalling or the freeze-thaw cycle of concrete, overloading and many other 

factors (Figure 1-1), these structures suffer from irreversible degradation and may not 

behave as anticipated regarding their serviceability and safety. 

   

   

Figure 1-1 Common causes of the degradation of structural behavior 

For instance, bridges are important components of transportation networks connecting 

different regions in the transportation system. The occurrence of interruption of the 

normal operation or even the collapse of bridges might pose serious threat on the 

regional economy or even public safety. Given the fact that modern bridges have larger 

spans and are more often crossing over rivers or even seas than those in old times, the 

consequence of potential bridge failure is even more unacceptable.  

Considering the undesirable consequence of the malfunction of structures, it is of 

primary importance to assess the current condition of these structures. Subsequently, 

the result of the condition assessment can serve as the decision-making basis for follow-

up treatments (repair, retrofit or demolition). Regarding the means of condition 
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assessment, Structural System Identification (SSI) has become one of the most popular 

methods. The process of SSI can be presented as the sequence of the preparation of a 

well-designed test, the collection of experimental data (external excitations and 

structural response), the data preprocessing, the estimation of the target parameters 

featuring the structural system. In this process, the estimation of the target parameters 

is the most important one.  

Regarding the SSI, the main methods presented in the literature are reviewed and 

classified. 

 

Based on the intrinsic property of the external excitation, the SSI methods can be 

categorized as dynamic methods and static methods. 

(1) Dynamic SSI methods 

According to the source of external excitation, dynamic SSI methods are composed of 

forced (artificial) vibration and ambient vibration. In the former case, the external 

excitation on the structural can be measured and hence is controllable. The ambient 

vibration is induced by operation loads such as traffic or wind. The external excitation 

is unknown and is commonly assumed to satisfy certain statistical property (Brincker 

& Ventura, 2015). The benefit of SSI methods using ambient vibration is the avoidance 

of interruption of the operation of structures.  

A main classification criterion for the dynamic methods is the data domain where the 

measurement data is processed. These domains include the time domain and the 

frequency-domain. The time-domain based methods try to minimize the errors between 

the simulated and measured responses (time history), including the extended Kalman 

filter (X. Liu, Escamilla-Ambrosio, & Lieven, 2009), the unscented Kalman filter 

(Mariani & Ghisi, 2007), the particle filter (Yan, 2014), and the least square estimation 

(J N Yang, Pan, & Lin, 2007). The frequency-domain methods extract the modal 

parameters (frequencies, modal shapes and damping) of the structure by analyzing the 

frequency response function or transfer function. This type of method has a long history 

and is well developed. With the acquired modal parameters, some methods locate 

damage by detecting the abnormality in the variation of some dynamic signatures (e.g. 

frequencies, modal shapes, modal curvatures, frequency response functions). 

Alternatively, other methods adopt iterative or optimization-based approaches to update 

the physical parameters (mass, stiffness or damping) of a selected model so that the 

modal parameters given by this model match those obtained from the experimental 

modal analysis.  



 

1 Introduction

 

3 

 

Despite the wide investigations on the dynamic methods, there exist some problems: 

(1) Many factors affect the dynamic response of structures, including the stiffness, the 

mass and the damping. However, it is common to assume that no damping exists in the 

structure and the damage of the structure does not lead to the loss of mass. These 

assumptions might introduce systematic errors in the SSI (Papadopoulos & Garcia, 

1998; X. Wang, Hu, Fukunaga, & Yao, 2001); (2) For stiff structures, it is difficult to 

obtain clear and accurate modes; (3) In real applications, high accuracy can be achieved 

for natural frequencies. However, the natural frequencies are not sensitive to the 

damage of structures (Farrar et al., 1994; Kim, Ryu, Cho, & Stubbs, 2003). The mode 

shapes, especially those of high orders, are sensitive indicators for structural damage. 

But mode shapes are hard to measure accurately. (4) The amplitude of the vibration of 

large structures is not significant, which imposes a basic requirement on the SSI 

methods to be insensitive to measurement errors. 

(2) Static SSI methods 

Extensive research on the dynamic SSI methods has been carried out. On the contrary, 

much less attention was paid to the static SSI methods. In fact, static tests are widely 

used in civil engineering. Before the opening of new structures or in the proof load test 

of existing structures, it is common to apply static loads on the structure within the 

serviceability limit state. In October 2013, a new bridge in Grevenmacher, Germany, 

was statically loaded by six trucks to verify its structural performance prior to its 

opening (Nguyen, Schommer, Maas, & Zürbes, 2016). In the full-scale static tests of 

two prestressed concrete bridges in Florida, the structure was tested to the ultimate live 

load (Issa & Shahawy, 1993). After twenty three years’ operation, a static test was 

conducted on the Antonio Dovali Jaime cable-stayed bridge in Mexico (Ortiz et al., 

2008). No residual deformation of the structure was detected. In the static test of a 

concrete arch bridge built in the mid-to-late 19th century, two DE24000 diesel 

locomotives were used to load the structure (Caglayan, Ozakgul, & Tezer, 2012). The 

load rating results showed that the structure was safe. (Marefat, Ghahremani-Gargary, 

& Ataei, 2004) used a combination of dynamic load tests and static load tests to assess 

the condition of a 20m+20m concrete arch. In the static load test, a total weight of 7280 

kN was used. 

For the static SSI methods, different researchers have done the following work. (Sheena, 

Unger, & Zalmanovich, 1982) proposed an analytical minimization method based on 

the deflection of structures under concentrated loads. The theoretical stiffness matrix 

was established by the Finite Element Model (FEM), and was corrected by the 

measured deflection. When all the equilibrium equations were satisfied, the structural 

parameters were estimated by minimizing the difference between the theoretical and 

the estimated stiffness matrices.  

(Masoud Sanayei, 1986) proposed a static parameter identification method using 
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incomplete measurement data. The geometrical parameters (areas and inertias) were 

identified by measuring the load and the displacements on some DOFs of the structure. 

The method was successfully applied on planar truss and frames. The effect of 

measurement errors was also investigated. 

(Hajela & Soeiro, 1990b, 1990a) classified the SSI methods into three categories: (1) 

equation error; (2) output error; and (3) minimum deviation method. They combined 

static and modal responses to evaluate the stiffness changes of all elements in the model. 

For models of many parameters, they proposed substructure methods and techniques 

for reducing the order of models. 

(Banan, Banan, & Hjelmstad, 1994a, 1994b) used an iterative algorithm to solve the 

least squares problem formulated in the static SSI. The objective function to be 

minimized was the square sum of the displacement errors and the square sum of the 

load errors, respectively. In the parameter estimation process, the parameter grouping 

technique was adopted, and the influence of the initial values for the optimization was 

studied. 

On the basis of Banan’s work, (Hjelmstad & Shin, 1997) assumed that the reference 

values of the structural parameters were known and proposed an adaptive parameter 

grouping algorithm that used static measurement data to detect and evaluate structural 

damage. Two indices for describing the bias of estimations were proposed. A criterion 

to detect the existence of damage was developed based on these indices.  

(P. Liu & Chian, 1997) used the static strains to identify the geometrical properties of 

truss members. He deduced the equilibrium equations of the trusses using the FEM and 

converted the parameter identification problem into an optimization problem. The 

objective function to be minimized was the residues of the equilibrium equations. He 

pointed out that if the axial force of a truss member was always zero in all loading cases, 

it would be very difficult to identify the axial stiffness of the member accurately. This 

method can give the global minimum unique solution when the measured data is 

sufficient and the loading cases can fully excite the mechanical behavior of the structure. 

(Abdo, 2012) carried out a parametric study on the relation between the change in 

displacement curvature and the location of the damage as well as the severity of the 

damage. The studied structure included a cantilever beam and a continuous beam. The 

results showed that structural curvature was an effective indicator of structural damage. 

However, this method cannot determine the extent of damage, and the response of the 

intact structure is required. 

(Brian J. Walsh & González, 2009) proposed a parameter estimation method using 

cross-entropy to estimate the bending stiffness of a simply supported beam subjected 

to static loads. This method used the deflections of the structure to estimate the flexural 

stiffness of the structure under vehicle loads. When analyzing the severity of the 

damage and the location of the damage, the studied factors include the assumed 
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distribution of stiffness parameters, the number of measurement points, and the number 

of samples. 

(R. S. He & Hwang, 2006) used the combination of the natural frequencies and the 

static displacements as the indices to represent the dynamic and static behavior of the 

structure. The structural parameters were obtained by minimizing these indices 

predicted by the given model and those obtained from test data. The optimization 

problem was solved by an adaptive real-coded genetic algorithm with the simulated 

annealing algorithm. The method was validated by beam-like structures of different 

boundary conditions and damage scenarios. The results showed that the accuracy of the 

estimation result with error-free measurements was high while the accuracy of the 

estimation result in the presence of measurement errors was acceptable.  

There are two main problems in static SSI methods: (1) In the case of static SSI, fewer 

data are available than the data in the case of dynamic SSI. Consequently, it is more 

difficult to obtain ideal SSI results (Chen et al. 2005); (2) Damage to the structure might 

be concealed by the load path. If the loading cases do not excite the structural behavior 

of the damaged part, the damaged part can hardly be identified. 

The advantages of the static SSI methods are: (1) The establishment of the equilibrium 

equations in the static SSI is only related to the stiffness parameters while the 

formulation of the mathematical equations in dynamic SSI is also involved with the 

mass and the damping information. Hence, the static SSI methods are much simpler 

than those dynamic SSI methods; (2) The available measurement devices can obtain 

accurate static responses of the structure cheaply and quickly. The sensors for the static 

SSI are cheaper and have higher accuracy than those for the dynamic SSI (Andreaus, 

Baragatti, Casini, & Iacoviello, 2017; Kourehli, 2017; X. Wang et al., 2001). (3) The 

static tests provide important information on the deformation (displacement, rotation 

and strain) of the structure. It is an appropriate alternative and an important supplement 

to the dynamic tests (Nguyen et al. 2016). Also, compared with the natural frequencies, 

static response is a more sensitive indicator for damage identification (Jenkins, 

Kjerengtroen, & Oestensen, 1997). The static response can better reflect the local 

information of the structure while the dynamic characteristics, especially the natural 

frequencies, usually reflect the global, distributed information of the structure. 

(Brownjohn, Fujino, Inaudi, & Wu, 2008) also pointed out that the static methods can 

be used together with the dynamic methods. The static methods have a more detailed 

examination of the local response of the structure, while the dynamic method cannot. 

Due to these reasons, this thesis will focus on static SSI methods for the purpose of 

condition assessment. 
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According to the mathematical models bridging the structure response and the structural 

parameters, the SSI methods can be divided into parametric methods (Alves, Cury, 

Roitman, Magluta, & Cremona, 2015; Au, Ni, Zhang, & Lam, 2012; Y. Chang & Huang, 

2014; Doebling, Farrar, Prime, & Shevitz, 1996; Ewins, 1984; P. Liu & Chian, 1997; 

Masoud Sanayei, 1986; Masoud Sanayei, McClain, Wadia-Fascetti, & Santini, 1999; 

Masoud Sanayei & Scampoli, 1991; Masound Sanayei, McClain, & Wadia-Fascetti, 

1999) and non-parametric methods (American Society of Civil Engineers, 2013; Catbas, 

Gokce, & Gul, 2012; Lakshmi, Rao, & Gopalakrishnan, 2017; Shahsavari, Chouinard, 

& Bastien, 2017). 

The parametric methods are parameter estimation methods based on models of clear 

physical meanings. This type of methods is usually based on the FEM of the analyzed 

structure. The target parameters include modal parameters (Alves et al., 2015; Doebling 

et al., 1996; Ewins, 1984; Masound Sanayei et al., 1999) or geometrical parameters 

(Abdo, 2012; American Society of Civil Engineers, 2013; Au et al., 2012; Marefat et 

al., 2004; Papadopoulos & Garcia, 2001; Masoud Sanayei & Scampoli, 1991). Modal 

parameter estimation is the most common parameter estimation problem in the field of 

structural dynamics. In the modal parameter estimation, it is assumed that the dynamic 

response can be described by the equation of motion (second-order differential 

equations). This system of equations contains the mass matrix, the damping matrix and 

the stiffness matrix. The modal parameters of the structure can be estimated from the 

actual dynamic response using experimental modal analysis. 

Geometrical parameter estimation is the process of reconstructing the FEM using the 

measured response together with optimization techniques. This type of methods uses 

dynamic or static measurement data to estimate structural parameters at the component 

level. In the FEM, the structure is discretized into finite number of elements and the 

parameters of the elements represent the geometrical properties (for instance, areas and 

inertias) of different regions of the structure. These geometrical parameters provide 

engineers with intuitive, quantitative and interpretable description of the condition of 

the structure, which can be easily associated with the extent of structural damage. 

The parametric SSI methods have the following advantages: (1) The physical 

parameters of the structure can be estimated directly, and changes in the condition of 

the structure can be evaluated from the changes in the physical parameters. The 

parameters in the parametric methods have a clearer physical meaning and is more 

interpretable than those in the non-parametric methods; (2) The parameters of the FEM 

can be updated by the estimated parameters, and the response of the structure under 

other scenarios can be predicted based on the updated model. 

Non-parametric methods are called model-free or data-driven SSI methods (Catbas et 

al., 2012). In the mathematical model of this type of methods, the input-output relation 
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of the structural system is linked by a series of equations with no explicit physical 

meaning and is not related to the mechanical relation of the structural system. Such 

models include neural network models (Bakhary, Hao, & Deeks, 2007; Catbas et al., 

2012; Sahin & Shenoi, 2003), autoregressive moving average (ARMA) models 

(Lakshmi et al., 2017; Yao & Pakzad, 2012), principal component analysis methods 

(Bellino, Garibaldi, Marchesiello, & Fasana, 2010; Hà & Golinval, 2010), wavelet 

analysis (Rucka, 2011; Shahsavari et al., 2017), and correlation analysis(L. Wang, Yang, 

& Waters, 2010; Muyu Zhang & Schmidt, 2015). These non-parametric methods do 

not need a traditional mechanical model and the core of these methods is to track the 

changes of some statistical features of the structure response. Based on the statistical 

comparison of the response data between the damaged and the intact structure, the 

measured structural response is analyzed and the intrinsic feature of the structure is dug 

out to make a structural diagnosis (detection and localization of damage).  

The advantages of the non-parametric methods are: (1) The computational efficiency is 

high, even in the case of large amount of data, which makes them highly suitable for 

real-time applications. (2) Suitable for the situation where only the detection and the 

localization of damage is required. The disadvantages of these methods include: (1) It 

lacks physical interpretability of the result and only the presence or absence of damage 

and the location of the damage can be known, but not the extent; (2) It cannot provide 

the prediction of the structural behavior in other scenarios. 

 

Various uncertainties exist in the SSI, such as measurement errors, modelling errors, 

external loads, and environmental factors. According to the means of treating 

uncertainties, SSI methods can be divided into deterministic methods and statistical 

methods. 

The deterministic methods (Bakhtiari-Nejad, Rahai, & Esfandiari, 2005; Eskew & Jang, 

2017; S. Li & WU, 2005; Monti, Quaranta, & Marano, 2009; Nogal, Lozano-Galant, 

Turmo, & Castillo, 2015; Masoud Sanayei, Imbaro, McClain, & Brown, 1997) attempt 

to find a set of optimal parameters to minimize the discrepancy between the response 

predicted by the parametric model and the measured response. In the deterministic 

methods, optimization techniques are often applied to minimize the user-defined 

objective functions. These objective functions can be established from the 

displacements (Nogal et al., 2015; Masoud Sanayei et al., 1997), the strains (S. Li & 

WU, 2005; Masoud Sanayei et al., 1997), the external load (Bakhtiari-Nejad et al., 

2005), and the acceleration (Monti et al., 2009) , the modes and frequencies (Eskew & 

Jang, 2017) or maximizing the sensitivity of the frequency response function (Raich & 

Liszkai, 2012). 

The SSI methods combined with probabilistic analysis are expected to be general 
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methods to make structural diagnosis of large civil structures. (Zong, 2012) pointed out 

that the basic idea of the probabilistic methods is to establish some statistical models to 

determine the distribution of the model output based on the distribution of the 

parameters of the model that represents the mechanical behavior of the structure. Then 

the uncertainty of the damage in the structure can be detected and quantified by the 

statistical model under certain confidence levels.  

In the case of statistical approach, mainly in the Bayesian method, the distributions of 

the target parameters are obtained by Bayesian inference (J. L. Beck & Katafygiotis, 

1998; James L. Beck & Au, 2002; James L Beck & Yuen, 2004; Cheung & Beck, 2010; 

Muto & Beck, 2008). This method regards all the parameters to be estimated as random 

variables, and the initial distribution of structural parameters (prior distribution) based 

on subjective experience. Assume that a statistical model is used to embed the obtained 

structural response information into the prior distribution, update the prior distribution 

of all parameters, and obtain the posterior distribution of all parameters. Then, the 

parametric uncertainty can be quantified in the form of probability distribution (Ghrib 

& Li, 2017; Jiang, Mahadevan, & Adeli, 2007).  

(Zong, 2012) pointed out that in the Bayesian-based SSI methods, it is generally 

assumed that the prediction errors satisfy Gaussian white noise with zero mean. This 

assumption does not always hold, which leads to underestimation of uncertainties in 

the model. In the case of unobservable parameters, the establishment of the posterior 

distribution for the structural parameters is often confronted with the intractable large-

scale computation. (H. Sun, Feng, Liu, & Feng, 2015; K.-V. Yuen & Kuok, 2011) 

pointed out that the main challenges of these Bayesian-based SSI methods are: (1) In 

many cases, it is impossible to obtain the explicit likelihood function to establish the 

prior distribution and the posterior distribution. (2) Even if there is an implicit 

likelihood function, the computational cost for solving the model is very large or even 

infeasible; (3) The computational cost increases exponentially with the number of 

parameters to be estimated, especially when the structural parameters are not globally 

observable. (Xin, Guoqiang, & Jing, 2005) pointed out that efficient searching 

strategies to obtain the posterior distribution of structural parameters is the key to tackle 

with the computational bottleneck occurred in Bayesian-based SSI methods. The 

application of Bayesian-based SSI methods in the dynamic case is described in detail 

by (K.-V. Yuen & Kuok, 2011). 

The parameters of the system represent the current state of the system. The condition 

assessment of the system can be converted into the estimations of the system parameters. 

The SSI problem is essentially the application of parameter estimation in structural 

systems. The majority of parameter estimation problems ultimately are involved in 

solving a large system of equations. In parameter estimations (Enrique Castillo, Conejo, 



 

1 Introduction

 

9 

 

Eva Pruneda, & Solares, 2007), two problems should be addressed: 

(1) Compatibility problem: Whether the original equations have any solution (unique 

or multiple) that can yield the same output as the observed measurements. The 

compatibility problem depends on the selection of the measurements and the 

corresponding observations. The system may not have any output that is consistent 

with the actual observations. This could happen when there are measurement errors 

in the observations. 

(2) Observability problem: This is associated with whether the unknowns in a system 

of equations can be uniquely determined or not. The focus of the observability 

problem is the guarantee of the uniqueness of the remaining variables prior to the 

parameter estimation when some variables are known. When some unknowns in the 

system of equations can be uniquely determined (despite that other variables are 

not), these unknowns are observable. In the parameter estimation, the observability 

of all parameters may not be guaranteed in the case of inappropriate measurement 

configurations (insufficient measurements or bad placement of sensors). 

Observability problem is closely related to parameter estimation problem and is 

addressed in many fields related with parameter estimation. Many researchers have 

carried out a lot of work in assessing whether the known information is sufficient to 

estimate the unknown system parameters, such as hydraulic system (Carpentier & 

Cohen, 2007; Díaz, González, & Mínguez, 2016; Nagar & Powell, 2000), 

transportation network (E. Castillo, Jimenez, Menendez, & Conejo, 2008; Enrique 

Castillo, Conejo, Menéndez, & Jiménez, 2008; Enrique Castillo, Conejo, Pruneda, & 

Solares, 2005), power system (Caro, Arévalo, García-Martos, & Conejo, 2013; Enrique 

Castillo et al., 2005). In order to ensure the reliability of the parameter estimation results, 

the measurement configuration in the system should at least ensure the observability of 

the system parameters. (Abur & Exposito, 2004) gave the definition of observability as 

the ability to uniquely determine the current state of the system under given 

measurement configuration. If there are different states of the system satisfying the 

observed measurements, the system is called non-uniquely observable system. For 

parameter estimation of non-uniquely observable systems, the final estimations of the 

system parameters depend on the chosen initial values of these parameters. Because 

there are multiple sets of system parameters that satisfy the observed measurements, 

the final solution converges to the solution nearest to the chosen initial points. Therefore, 

regarding parameter estimations in non-uniquely observable systems caused by 

improper measurement configuration, the accuracy and reliability of the obtained 

solutions are doubtful. For the fully observable system, the solution of the system state 

is unique. No matter what the initial points of the algorithm are, the solution is expected 

to converge to the exact one. The iterative least-squares method is only applicable to 

observable systems. When using this type of methods, the observability analysis of the 
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system parameters is of primary importance. When the least-squares method is used to 

estimate the system parameters in the power system, if any state variable of the system 

cannot be observed under the given measurement configuration, all system parameters 

cannot be estimated. (Díaz et al., 2016) pointed out that when using mathematical 

programming or heuristic algorithms to minimize the state estimation error, the 

observability analysis is especially important. This is because these methods always 

provide estimations of all the parameters even if the system parameters cannot be 

observed from the given measurement configuration. These parameters might be 

regarded as the true values of the parameters despite the fact that the estimations of 

these parameters are meaningless. (Díaz et al., 2016) pointed out that the key factors 

affecting the parameter estimation result include the full observability of the parameters 

to be estimated, the measurement accuracy, and the robust state estimation algorithm. 

(Pruneda, Solares, Conejo, & Castillo, 2010) pointed out that the core step before the 

estimation of the system parameters is to place a sufficient number and types of 

measurements in the system to achieve full observability of the system and thus obtain 

a unique solution to the parameter estimates. This was also agreed by (Carpentier & 

Cohen, 2007) in the hydraulic system parameter estimation. They carried out the 

observability analysis to evaluate whether there were enough algebraic relations 

between the existing information and the system state variables. Hence, the uniqueness 

of the parameters to be estimated can be determined before the parameter estimation. 

Meanwhile, their method determines the minimum number of measurements to 

estimate the status of the hydraulic system. (Pan & Wang, 2005) pointed out that the 

observability of parameters was very important in the nonlinear state space equations 

for dynamic SSI, but this problem has not received enough attention. In the continuous-

time system, they used the observable rank as a criterion to analyze the single-point or 

multi-point output system, and demonstrated that the method can determine the 

observability of the parameters before parameter estimation.  

The review of the literature shows the importance of observability analysis on system 

parameters for accurate and reliable parameter estimation results. In many fields of 

engineering, the following issues emerge regarding the observability problem: 

(1) Under a given measurement configuration, which parameters can be uniquely 

determined (observed)? 

(2) How to design a measurement configuration using a minimum number of 

measurements that ensures the observability of all system parameters? Or, how to 

determine the minimum measurement set? 

(3) Under a given measurement configuration, which parameters can be observed when 

additional measurements are provided? 

The first question is the most important one. When the first question is tackled, the other 

two can be addressed smoothly. Regarding the second question, the measurement 



 

1 Introduction

 

11 

 

configuration can be designed based on experience or generated by the enumeration of 

all possibilities. Then the minimum sets can be determined from those sets that can 

ensure the observability of all parameters with the least number of measurements. The 

effect of adding extra measurements on the observability of system parameters can be 

obtained by comparing the respective observability before and after the inclusion of 

these extra measurements while the tool to determine the observability comes from the 

answer to the first question. 

The first question can be answered by Observability Method (OM) (Enrique Castillo et 

al., 2007). OM uses null spaces as the main tool to solve the observability problem in 

linear system of equations. In the context of static SSI, the very first application of OM 

was proposed by (Jose Antonio Lozano-Galant, Nogal, Castillo, & Turmo, 2013). In 

this method, observability equations are obtained by a series of algebraic operations on 

the nodal equilibrium equations using direct stiffness method, which makes SSI by OM 

a parametric static method. The efficacy of this method was verified by its application 

in the identification of trusses, beams, frame structures (Jose Antonio Lozano-Galant, 

Nogal, et al., 2013). Also, it was applied in cable-stayed bridges (Jose Antonio Lozano-

Galant, Nogal, Paya-Zaforteza, & Turmo, 2014). At that time, the observability of the 

structural parameters was addressed symbolically. Later, (Nogal et al., 2015) proposed 

SSI by Numerical OM (NOM) that introduced a numerical approach to determine the 

values of those observable parameters. However, in all these works, noise-free 

measurements were considered. Nevertheless, this assumption is far from reality as the 

data of actual nondestructive tests is always subjected to measurement errors.  

The current gaps for the research on SSI by OM should be pointed out: 

(1) The measurement errors and simulation errors are not accounted in SSI by OM yet. 

This is indispensable for the application of this method in practical SSI. This will 

be addressed in Section 3.2.1. 

(2) Due to the algebraic techniques adopted in SSI by OM, the nonlinear problem is 

simplified by the linearization of the nonlinear unknowns appearing in the 

observability equations. A side effect of this simplification is the occasional 

omission of observable parameters. This will be demonstrated in Section 3.2.3. 

(3) When redundant measurement data are available, different strategies of using the 

measurement data might have different efficiency in acquiring the critical 

information about the condition of the structure.  

(4) Apart from addressing the observability of structural parameters, a systematic 

sensor placement method dealing with the accuracy of static SSI result is lacking. 
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2. Objective 

The general objective of this thesis is to provide a systematic SSI method for the 

condition assessment of structures under the framework of OM. To serve this purpose, 

the detailed objectives of this thesis can be presented as: 

Objective 1: To obtain a quantitative recognition of the effect of measurement 

errors and simulation errors on the estimation of structural parameters using 

minimum measurement sets.  

Objective 2: To enhance the capability of the SSI by original OM to detect 

minimum measurement sets by introducing the missing nonlinear constraints when 

necessary. 

Objective 3: To smooth the incompatible displacements due to measurement 

errors by imposing compatibility conditions. These compatible geometric conditions 

can be obtained by OM in beam-like structures. 

Objective 4: To obtain a robust SSI method using rotation measurements. 

Inclinometers have become popular in real-life applications. The theoretical advantage 

and detailed strategies of using rotations for SSI are demonstrated and justified. 

Objective 5: To propose a versatile SSI method under single loading case, which is 

applicable for both beam-like structures and frame structures and does not suffer from 

the limitation of measurement types.  

Objective 6: To generalize the method for single loading case to that for multiple 

loading cases. This generalization provides an efficient solution for the problem in 

identifying those parameters associated with null curvature zones in the one loading 

case. 

Objective 7: To provide a systematic method to determine the optimal sensor 

placement (OSP) for the static SSI. The determinant of the Fisher Information Matrix 

(FIM) is used as the criterion to assess the goodness of a sensor configuration. The OSP 

is formulated as maximizing the determinant of the FIM with genetic algorithm. 

The following chapter presents the methodologies and results associated with these 

objectives. Specifically, objectives 1~6 are addressed in Section 3.1-3.6, respectively. 

Meanwhile, objective 7 is attended to in both sections 3.5 and 3.6 for single loading 

case and multiple loading cases, respectively.  

Finally, in Chapter 4, the main conclusions and contributions of this thesis are first 

summarized. Then, some future research lines are pointed out. 
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3. Methodologies and results  

In this chapter, the six publications that constitute this thesis are presented. Note that 

three of them have already been accepted and published in the journal of Structural 

Control and Health Monitoring. For the rest, two manuscripts are currently under peer-

review in the Structural Control and Health Monitoring and one is still at draft stage. 

Relevant dates and general information about each publication are detailed in the 

corresponding section. 

 

Title: Analysis of measurement and simulation errors in structural system identification 

by observability techniques 

Authors: Jun Lei, José Antonio Lozano-Galant, María Nogal , Dong Xu, José Turmo 

Journal: Structural Control and Health Monitoring 

Publication: Technical Paper 

Submitted: 18 January, 2016 

Accepted: 15 July,2016 

DOI: http://dx.doi.org/10.1002/stc.1923 

Available at: https://onlinelibrary.wiley.com/doi/abs/10.1002/stc.1923 

 

During the process of structural system identification, errors are unavoidable. This 

paper analyzes the effects of measurement and simulation errors in structural system 

identification based on observability techniques. To illustrate the symbolic approach of 

this method a simply supported beam is analyzed step-by-step. This analysis provides, 

for the very first time in the literature, the parametric equations of the estimated 

parameters. The effects of several factors, such as errors in a particular measurement or 

in the whole measurement set, load location, measurement location or sign of the errors, 

on the accuracy of the identification results are also investigated. It is found that error 

in a particular measurement increases the errors of individual estimations, and this 

effect can be significantly mitigated by introducing random errors in the whole 

measurement set. The propagation of simulation errors when using observability 

techniques is illustrated by two structures with different measurement sets and loading 

cases. A fluctuation of the observed parameters around the real values is proved to be 

https://www.researchgate.net/profile/Maria_Nogal
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a characteristic of this method. Also, it is suggested that a sufficient combination of 

different loading cases should be utilized to avoid the inaccurate estimation at the 

location of low curvature zones.  

Keyword: structural system identification; stiffness method; observability technique; 

measurement error; simulation error; observability flow 

 

Structural System Identification (SSI) methods enable the estimation of stiffnesses 

and/or masses of actual structures from the monitored data. A large number of SSI 

methods have been presented in the literature. In fact, the state of the art of these 

methods have been reviewed in a number of works (Nogal et al., 2015; Sirca & Adeli, 

2012). According to most of these works, system identification methods can be 

classified as parametric (Garcia-Palencia et al. 2015; Mukhopadhyay, Lus, and Betti 

2015; Mukhopadhyay, Lus, and Betti 2014; Sanayei, Khaloo, et al. 2015) and non-

parametric (genetic algorithms (Chisari, Bedon, & Amadio, 2015; Jeong, Choi, & Koh, 

2013; Trinh & Koh, 2012), evolutionary strategy (Bighamian & Mirdamadi, 2013; 

Karabeliov, Cuéllar, Baeßler, & Rücker, 2015; R. Li, Mita, & Zhou, 2013; Serhat 

Erdogan, Necati Catbas, & Gundes Bakir, 2014), neural networks (Facchini, Betti, & 

Biagini, 2014; Santos, Crémona, Calado, Silveira, & Orcesi, 2015) or least-squares 

estimation (Feng, Sun, & Feng, 2015; Y. Lei, Liu, & Liu, 2014; Z. Wang & Chen, 2013).  

The major difference between these two methods refers to the equations that link the 

input and output data, as only in the parametric methods equations have a physical 

meaning. For this reason, parametric methods might be preferred over non-parametric 

ones. 

A major concern for the structural system identification in actual structures refers to the 

sensitivity of the SSI method to errors. (Masoud Sanayei, Arya, Santini, & Wadia-

Fascetti, 2001) summarized the different errors that influence the accuracy of these 

methods as follows: (1) Measurement errors: independent of the measurement device, 

error free measurements cannot be obtained in any actual nondestructive test. In this 

way, when these measurements are introduced into the SSI technique, deviations in the 

estimates appear. These unbiased errors can be reduced by technological developments 

but cannot be avoided. (2) Errors in the parameter estimation technique: Every SSI 

method is characterized by its characteristic simulation error. This error appears even 

when noise-free measurements are considered as it depends on the technique 

formulation. Examples of this error refer to the hypotheses of iterative or optimization 

processes used in the identification method or the loss of numerical accuracy in 

computer calculation. However, for the very first time in the literature, the explicit 

analytical solutions of these estimated parameters can be derived from the observability 

method in a symbolic way. Hence, those errors in parameter estimation might be 

avoided if noise-free data were used. (3) Modeling errors: These errors are due to 
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uncertainties in the parameters of the simplified Finite Element Model. Some examples 

of this error refer to the inaccuracy in material properties, the existence of elements 

which stiffness was not accounted for, or errors in the boundary conditions.  

Significant research has been carried out to study the impact of the different errors on 

parametric methods. (M Sanayei & Saletnik, 1996b) proposed an error sensitivity 

analysis to evaluate the effect of noise in measurements. (Masoud Sanayei et al., 1997) 

compared the results of different error functions to evaluate the errors in the parameter 

estimation technique in a small scale model. (Masoud Sanayei et al., 2001) studied the 

effects of modeling errors in frame structures with elastic supports. (K.-V. V. Yuen & 

Katafygiotis, 2006) studied the effects of noisy measurements in structural system 

identification. (Caddemi & Greco, 2006) studied the influence of instrumental errors 

on the static identification of damage parameters for elastic beams. (M Zhang, Beer, & 

Koh, 2012) used intervals analyses to limit the values for the identified parameters 

under the effect of modeling errors. (S. Wang, 2014) studied the effects of flexible joints 

and boundary conditions for model updating. (Masoud Sanayei, Khaloo, et al., 2015) 

presented an error sensitivity analysis to study each parameter based on the loading 

cases and measurement locations of the nondestructive tests.  

(Jose Antonio Lozano-Galant, Nogal, et al., 2013; Jose Antonio Lozano-Galant et al., 

2014) proposed the observability method for structural system identification from static 

tests. This parametric technique analyzes the stiffness matrix method as a monomial-

ratio system of equations and enables the mathematical identification of element 

stiffnesses of the whole structure or of a portion of it using a subset of deflection and/or 

rotation measurements. In all these works, noise-free measurements were considered. 

However, this assumption is far from reality as the data of actual nondestructive tests 

is always subjected to errors in measurement devices. In order to fill this gap, this paper 

analyzes the effects of measurement errors in structural identification by observability 

technique. The simulation errors inherent to this identification method are also studied 

in detail.  

This article is organized as follows. In Section 3.1.3, the application of observability 

techniques to structural system identification is presented. In Section 3.1.4, a simply 

supported beam is analyzed to illustrate the different errors appearing in the 

observability technique. In Section 3.1.5 the measurement error is analyzed in an 

illustrative structure. Next, in Section 3.1.6 two structures are studied to illustrate the 

errors inherent to the observability technique. Finally, some conclusions are drawn in 

Section 3.1.7. 

 

Prior to the application of observability techniques, a FEM of the structure should be 

established based on the topology of the structure to be identified, which is a common 

preliminary step in many identification methods (Feng et al., 2016; Isidori, Concettoni, 
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Cristalli, Soria, & Lenci, 2016; Omenzetter & Butt, 2016). With this FEM and the 

stiffness matrix method, the equilibrium equations together with strength of materials 

theory might be written in terms of nodal displacements and nodal forces as presented 

in Equation (3-1).  

 [𝐾] · {𝛿} = {𝑓} (3-1) 

n which [𝐾 ] is the stiffness matrix of the structure, { 𝛿 }, is a vector of nodal 

displacements and {𝑓} is a vector of nodal forces. For 2D analysis, Matrix [𝐾] includes 

the geometrical and mechanical properties of the beam elements of the structure, such 

as length, Lj, shear modulus, Gj, Young's modulus, Ej, area, Aj, inertia, Ij, and torsional 

stiffness, Jj, associated with the j-element. 

When the SSI is introduced in the stiffness matrix method, the matrix [𝐾] is partially 

unknown. Usually, 𝐿𝑗  is assumed known while the stiffnesses are traditionally 

assumed as unknown. The determination of the unknown parameters in [𝐾] leads to a 

nonlinear problem as these parameters are multiplied by the displacements of the nodes 

(in 2D, horizontal and vertical deflection and rotation associated with the k-node uk, vk 

and wk , respectively). This implies that non-linear products of variables, such as 

𝐸𝑗𝐴𝑗𝑢𝑘, 𝐸𝑗𝐴𝑗𝑣𝑘, 𝐸𝑗𝐼𝑗𝑢𝑘, 𝐸𝑗𝐼𝑗𝑣𝑘 and 𝐸𝑗𝐼𝑗𝑤𝑘, might appear, leading to a polynomial 

system of equations. Before further discussion, one thing should be kept in mind is that 

the major interest in structural identification is to assess the structural behavior, e.g. 

axial stiffnesses, 𝐸𝐴, or flexural stiffnesses, 𝐸𝐼 . In order to reduce the number of 

parameter, these stiffnesses are, respectively, assimilated into areas, 𝐴, and inertias, 𝐼, 

by setting the modulus to an assumed value, e.g. unity or typical values from handbooks. 

When the identification by observability is completed, the axial stiffnesses and the 

flexural stiffnesses, respectively, can be recovered by the multiplication of the 

predefined modulus and the estimated area, �̂� , and the estimated inertia, 𝐼 . This 

strategy is also followed in (Abdo, 2012; Jose Antonio Lozano-Galant, Nogal, Turmo, 

& Castillo, 2015). 

To solve these equations in a linear-form, Equation (3-1) can be rewritten as:  

 [𝐾∗] · {𝛿∗} = {𝑓} (3-2) 

in which the products of variables are located in the modified vector of displacements 

{𝛿∗} and the modified stiffness matrix [𝐾∗] is a matrix of coefficients with different 

dimensions from the initial stiffness matrix [𝐾]. Depending on the known information, 

the unknown variables of vector {𝛿∗} may be the non-linear products presented above, 

as well as other factors of single variables, such as 𝐸𝑗𝐼𝑗 , 𝐸𝑗𝐴𝑗 , 𝐸𝑗 , 𝐴𝑗 , 𝐼𝑗  or node 

deflections.  

Once the boundary conditions and the applied forces at the nodes during the 

nondestructive test are introduced, it can be assumed that a subset of increments of 

deflections 𝛿1
∗ of {𝛿∗} and a subset of forces in nodes 𝑓1of {𝑓} are known and the 

remaining subset 𝛿0
∗  of {𝛿∗}  and 𝑓0  of {𝑓}  are not. By the static condensation 

procedure, the system in (3-2) can be partitioned as follows: 
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 [𝐾∗]{𝛿∗} = (
𝐾00
∗ 𝐾01

∗

𝐾10
∗ 𝐾11

∗ ) {
𝛿0
∗

𝛿1
∗} = {

𝑓0
𝑓1
} = {𝑓} (3-3) 

where 𝐾00
∗ , 𝐾01

∗ , 𝐾10
∗  and 𝐾11

∗  are partitioned matrices of [𝐾∗]and 𝛿0
∗, 𝛿1

∗, 𝑓0 and 

𝑓1 are partitioned vectors of {𝛿∗} and {𝑓}. 

In order to join the unknowns, Equation (3-3) can be written in the equivalent form, as: 

 [𝐵]{𝑧} = (
𝐾10
∗ 0

𝐾00
∗ −𝐼

) {
𝛿0
∗

𝑓0 
} = {

𝑓1  − 𝐾11
∗ × 𝛿1

∗

−𝐾01
∗ × 𝛿1

∗ } = {𝐷} (3-4) 

where 0 and 𝐼 are the null and the identity matrices, respectively. In this system the 

vector of unknown variables,  {𝑧} , appears on the left-hand side and the vector of 

observations, {𝐷}, on the right-hand side. Both vectors are related by a coefficient 

matrix[𝐵]. For the Equation (3-4) to have a solution, it is sufficient to calculate the null 

space [𝑉] of [𝐵] and checking that [𝑉][𝐷] = {0}. Examination of matrix [𝑉] and 

identification of its null rows leads to identification of the observable variables (subset 

of variables with a unique solution) of vector {z}. The number of required deflections 

can be optimized by using a recursive process that takes advantage of the connectivity 

of the beams in the stiffness matrix. This connectivity is included in partitioned matrices 

of [𝐾∗] and therefore, in Equation (3-4). In this way, when in the initial observability 

analysis any deflection, force or structural parameter is observed, this information 

might help to observe new parameters in the adjacent beam elements through a 

recursive process. In this analysis, the observed information in the previous step is 

successively introduced as input data in the observability simulation.  

A detailed step by step application of the observability techniques is presented in (Jose 

Antonio Lozano-Galant, Nogal, et al., 2013; Jose Antonio Lozano-Galant et al., 2014). 

The readers are recommended to refer to those papers for a more detailed explanation 

of the peculiarities of the proposed methodology.  

The symbolical SSI algorithm presented above cannot obtain the numerical estimations 

of the observed parameters. To solve this problem, a numerical development of the 

observability techniques was presented in (Nogal et al., 2015). This algorithm combines 

two approaches: a symbolical and a numerical one. On the one hand, the symbolic 

approach is used for the observability analysis. This analysis reduces the effects of the 

unavoidable numerical errors during the computation of the null spaces of the system 

of equations. On the other hand, the second approach enables the numerical estimation 

of the observed parameters. This mixed algorithm also includes a recursive process, in 

which the new observed parameters are successively introduced into the analysis. This 

method has been applied to some large structures, including a 13-storeys frame building 

(Lozano-Galant, Nogal, et al. 2013) and a cable stayed bridge (Lozano-Galant et al. 

2014, 2015). The main time cost of the algorithm is in the computation of the null space, 

[𝑉 ], by symbolical approach whereas the time cost by the numeric approach is 

negligible. However, the computation of the null space by symbolical approach can be 

carried out efficiently in Matlab subroutine. In the case of the 13-story building, it has 
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been checked that 396 seconds are needed, on a laptop with a 2.4 GHz i7 processor and 

a 16 GB memory, to get the null space of a matrix [B] with the dimension of 258×462. 

Note that the number of rows in the matrix [B] is three times the number of nodes, 

which is unchanging, while the number of columns in the matrix [B] equals the number 

of unknowns. Moreover, the number of unknowns decreases with the recursive steps 

since some of the unknowns have been observed in preceding steps. Thus, the 

computation of the null space of the matrix [B] will be accelerated during the recursive 

steps due to the decrease of the scale of [B].  

This method has so far been only applied in 2D structures simulated by 1D elements 

with 3 DOFs per node. Conceptually, as a mathematical tool, the observability 

technique is expected to be implementable in different formulations of the FEM, 

including but not limited to 3D structures simulated by 1D elements with 6 DOFs per 

node or 2D structures simulated by 2D elements with 3DOFs per node (Lozano Galant 

2013). However, more work associated with this part needs to be done in future. 

To illustrate the application of this process, a simple structure is analyzed in the 

following section. This example also serves to point out the errors of the observability 

technique.  

3.1.4  

To illustrate the mixed procedure presented above, the simply supported beam 

presented in Figure 3-1.a is analyzed. This structure is modeled by a simplified Finite 

Element Model (FEM) composed of 4 nodes and 3 beam elements. The Young’s 

modulus of all elements is assumed as unknown. Nevertheless, this is not the case of 

the inertias and the areas, as their values are considered different and unknown for the 

three different beam elements. To estimate the three unknown flexural stiffnesses of the 

system (𝐸𝐼1, 𝐸𝐼2 and 𝐸𝐼3), one rotation (𝑤1) and two vertical deflections (𝑣2 and 𝑣3) 

are measured.  
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Figure 3-1 (a) Geometry of FEM, (b) vertical deflections, v, throughout the beam for 

different locations of a concentrated vertical load V, (c) rotations, w, for different 

locations of 𝑉. (D) Vertical deflections, 𝑣, for different locations of a concentrated 

external moment 𝑀, and (E) rotations w for different locations of 𝑀. 

In this structure, the application of Equation (3-4) leads to the following system of 

equations: 
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=
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𝐻2
𝑉2
𝑀2

𝐻3
𝑉3
𝑀3

𝐻4
𝑀4

0
0
0 }
 
 
 
 
 

 
 
 
 
 

 (3-5) 

In this system, the unknown variables {𝑧} include the horizontal reaction, 𝐻1, and 

vertical reactions,𝑉1  and 𝑉4 , at the boundaries, the inertias, EI1, EI2 and EI3, and 

nonlinear products of coupled areas and inertias, such as EA1u2, EA2u2, EA2u3, EA3u3, 

EA3u4, EI2w1, EI2w3, EI3w3 and EI3w4. With {p1}, being a vector of coefficients, the 

general solution of Equation (3-5) can be expressed in terms of a particular solution 

{zp1} and the null space [V1] of the matrix of the preceding system as follows: 
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{𝑧1} = {𝑧𝑝1} + [𝑉1] · {𝑝1} =

{
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0
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0 0 1 0

0 0 0
−𝐿

𝑣3
0 0 0 1
0 0 0 1
0 0 0 0
0 0 0 0 ]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

· {𝑝1} (3-6) 

The analysis of [𝑉1] illustrates the importance of using a symbolic approach. Otherwise, 

numerical errors with values very close to zero might appear. This might result in 

reducing the observed parameters. Those variables whose associated rows of [𝑉1] are 

null indicate that their values have a unique solution (that is to say, that is observable 

and the particular and general solutions are equal). The variables observed in the first 

step (𝐻1, 𝐸𝐼1, 𝐸𝐼1𝑤2, 𝑉1 and 𝑉4) are highlighted in bold in {𝑧1} of Equation (3-6). 

Obviously, when the value of 𝐸𝐼1 is estimated, 𝑤2 can be deduced from 𝐸𝐼1𝑤2. The 

particular solution {𝑧𝑝1 } of these parameters can be symbolically obtained from 

Equation (3-5) by the left divide, \, in Matlab (Kroese & Chan, 2014). Similar functions 

can be found in other commercial packages, e.g. solve function in both Maple (Heal, 

Hansen, Rickard, & Incorporation, 1998) and Mathematica (Wolfram, 1999). These 

functions can be used to provide solutions for symbolic systems of equations. 

According to the authors’ knowledge, such a type of parametric equations cannot be 

found in the literature for structural system identification. The obtained parametric 

equations of the estimates 𝐸�̂�1, �̂�1 and �̂�4 are as follows: 

 𝐸𝐼1̂ = −
(8𝑀1 −𝑀2 −𝑀3 −𝑀4 + 2𝑉2𝐿 + 𝑉3𝐿)𝐿

2

18(𝑣2 −𝑤1𝐿)
 (3-7) 

 𝑉1̂ =
(𝑀1 +𝑀2 +𝑀3 +𝑀4 − 2𝑉4𝐿 − 𝑉3𝐿)

3 · 𝐿
 (3-8) 

 𝑉4̂ =
(𝑀1 +𝑀2 +𝑀3 +𝑀4 + 𝐿 · 𝑉4 + 2 · 𝐿 · 𝑉3)

3 · 𝐿
 (3-9) 

in which Mi and Vi are the bending Moments and the Vertical forces (external loads) 

applied at the ith node of the structure during the nondestructive test and L is the length 

of the beam elements in the model. In these equations, the super index ^ indicates that 

the value of the estimate is obtained by observability techniques. Obviously, a different 

equation would be obtained if either the measurement set or the geometry of the 

structure were changed. It is noted that the parametric Equation (3-7) might lead to 
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unrealistic estimation if the denominator tends to zero or is negative when errors are 

introduced. This is also discussed in detail in section 3.1.5. In order to fill this gap, the 

researchers are working on an optimization of the measurements which it will be 

presented in the near future. 

The analysis of Equation (3-5) shows that 𝐸𝐼1 depends on the nodal forces applied at 

the loading case (𝑀1 to 𝑀4, 𝑉2 and 𝑉3), the length of the beam elements L, and the 

measured deflection 𝑣2  and rotation 𝑤1 . Both 𝑣2  and 𝑤1  are only found in the 

denominator of the equation. As the structure is simply supported, 𝑉1 and 𝑉4 can be 

geometrically determined in terms of the geometry and the forces applied in the loading 

case. For this reason, these parameters do not depend on the measured deflections.  

Once the observable parameters are identified, their values can be numerically 

calculated. To illustrate the results of the method, let’s consider a concrete beam of 0.3-

m height and 0.2-m width. The inertia and the Young’s modulus are 4.5e-4 𝑚4 and 

3.5e7 𝑘𝑁/𝑚2, respectively. The total length (3𝐿) of the beam is 3m. The loading case 

is assumed as a concentrated load of -55 𝑘𝑁 at node 2. This loading case is represented 

by the following nodal forces: 𝑀1=𝑀2=𝑀3=𝑀4=𝑉3=0 and 𝑉2=-55 𝑘𝑁 . Both the 

deflections and the rotations obtained throughout the beam for this loading case by FEM 

program are presented in Figure 3-1.b and c, respectively for a loading location 𝑥=𝐿. 

In this simulation, the shear deformation is neglected.  

The numeric values of the estimated 𝐸�̂�1 , �̂�2 , �̂�1 , �̂�4  obtained by parametric 

equations are summarized in the first recursive step of Table 3-1. This table also 

includes the ratio of deviation between estimated and actual values. As showed in this 

table, the maximum deviation 0.017% in 𝐸�̂�1, which is due to the round-off error, is 

negligible.  

After introducing the parameters observed in the first recursive step, the Equation (3-5) 

can be rearranged as presented in Equation (3-10). This analysis corresponds with the 

second recursive step. It is worth noticing that in this system the previously identified 

parameters (𝑉1, 𝑉4, 𝐸𝐼1 and 𝑤2) are moved from {𝑧} to [𝐵] and {D}.  

Table 3-1 Numerical estimations of the parameters during the recursive steps and the 

deviations with the actual values obtained from the parametric equations. 

Step 1 Step 2 Step 3 

Par. Est. Dev. Par. Est. Dev. Par. Est. Dev. 

𝐸𝐼1̂ 

(kN/m2) 
15753.5 1.7‱ 𝐸𝐼2̂ 

(kN/m2) 
15750.0 -1.4‱ 𝐸𝐼3̂ 

(kN/m2) 
15753.6 2‱ 

𝑤2̂ 

(rad) 
-1.1e-3 -0.2‱ 𝑤3̂ 

(rad) 
1.3e-3  0.2‱ 𝑤4̂ 

(rad) 
2.1e-3 -0.1‱ 

𝑉1̂ (kN) 36.7 0.0‱       

𝑉4̂ (kN) 18.3 0.0‱       

Note: Par. for parameter, Est. for estimation, Dev. for deviation. 
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0 0 0 0 0 0 0 −
12𝑣3
𝐿3

−
6

𝐿2
−
6

𝐿2]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

{
 
 
 
 

 
 
 
 
𝐸𝐴1𝑢2
𝐸𝐴2𝑢2
𝐸𝐴2𝑢3
𝐸𝐴3𝑢3
𝐸𝐴3𝑢4
𝐸𝐼2
𝐸𝐼2𝑤3
𝐸𝐼3
𝐸𝐼3𝑤3
𝐸𝐼3𝑤4}

 
 
 
 

 
 
 
 

=

{
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 𝑀1 +

6𝐸𝐼1𝑣2
𝐿2

−
4𝐸𝐼1𝑤1
𝐿

−
2𝐸𝐼1𝑤2
𝐿

𝐻2

𝑉2 −
12𝐸𝐼1𝑣2
𝐿3

+
6𝐸𝐼1𝑤1
𝐿2

+
6𝐸𝐼1𝑤2
𝐿2

𝑀2 +
6𝐸𝐼1𝑣2
𝐿2

−
2𝐸𝐼1𝑤1
𝐿

−
4𝐸𝐼1𝑤2
𝐿

𝐻3
𝑉3
𝑀3

𝐻4
𝑀4

𝐻1

𝑉1 +
12𝐸𝐼1𝑣2
𝐿3

−
6𝐸𝐼1𝑤1
𝐿2

−
6𝐸𝐼1𝑤2
𝐿2

𝑉4 }
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 (3-10) 

With [𝑉2] being the null space of the matrix [𝐵] in Equation (3-10), {𝑝2} being a vector 

of coefficients, and {𝑧𝑝2} being the particular solution of the system, the general 

solution {𝑧2} of the second recursive step can be expressed as follows:  

{𝑧2} = {𝑧𝑝2} + [𝑉2] · {𝑝2} =

{
 
 
 
 

 
 
 
 
𝐸𝐴1𝑢2
𝐸𝐴2𝑢2
𝐸𝐴2𝑢3
𝐸𝐴3𝑢3
𝐸𝐴3𝑢4
𝑬𝑰𝟐
𝑬𝑰𝟐𝒘𝟑

𝐸𝐼3
𝐸𝐼3𝑤3
𝐸𝐼3𝑤4}

 
 
 
 

 
 
 
 

= {𝑧𝑝2} +

[
 
 
 
 
 
 
 
 
 
 
1 0 0
1 0 0
1 0 0
0 1 0
0 1 0
0 0 0
0 0 0

0 0 (
−𝐿

𝑣3
)

0 0 1
0 0 1 ]

 
 
 
 
 
 
 
 
 
 

· {𝑝2} (3-11) 

The analysis of [𝑉2] shows that the only observed parameters are 𝐸𝐼2  and 𝐸𝐼2𝑤3. 

From this information the calculation of 𝑤3 is a straightforward task. The observed 

parameters are highlighted in bold in {𝑧2} of Equation (3-11). The parametric equation 

of 𝐸𝐼2 is presented in Equation (3-12). This equation shows how 𝐸𝐼2 depends on the 

values of 𝐸𝐼1 and 𝑤2 estimated in the preceding recursive step. The numerical values 

of 𝐸𝐼2 and 𝑤3 are summarized in the second recursive step of Table 3-1. As showed 

in this table, the deviation between the actual value of 𝐸𝐼2 and the estimated one 𝐸�̂�2 

(-0.014%) is negligible.  

𝐸�̂�2 =
2𝑀2𝐿

2 −𝑀3𝐿
2 −𝑀4𝐿

2 − 𝑉4𝐿
3 + 12𝐸𝐼1𝑣2 − 4𝐸𝐼1𝑤1𝐿 − 8𝐸𝐼1𝑤2𝐿

6(𝑣2 − 𝑣3 + 𝐿 · 𝑤2)
 (3-12) 

Finally, in the third recursive step all the parameters observed by the first two steps (𝑉1, 

𝑉4 , 𝐸𝐼1 , 𝑤2 , 𝐸𝐼2  and 𝑤3 ) are introduced, and the system of Equation (3-10) is 

updated to: 
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[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0 0 0 0 0 0 0
1

𝐿

1

𝐿

−1

𝐿
0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0

0
−1

𝐿

1

𝐿

1

𝐿

1

𝐿
0 0

0 0 0 0 0
12𝑣3
𝐿3

+
6𝑤3
𝐿2

6

𝐿2

0 0 0 0 0
6𝑣3
𝐿2

+
4𝑤3
𝐿

2

𝐿

0 0 0
−1

𝐿

1

𝐿
0 0

0 0 0 0 0
6𝑣3
𝐿2

+
2𝑤3
𝐿

4

𝐿
−1

𝐿
0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0−
12𝑣3
𝐿3

−
6𝑤3
𝐿2
−
6

𝐿2]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

·

{
 
 

 
 
𝐸𝐴2𝑢2
𝐸𝐴2𝑢3
𝐸𝐴3𝑢3
𝐸𝐴3𝑢4
𝐸𝐼3
𝐸𝐼3𝑤3}

 
 

 
 

=

{
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 𝑀1 +

6𝐸𝐼1𝑣2
𝐿2

−
4𝐸𝐼1𝑤1
𝐿

−
2𝐸𝐼1𝑤2
𝐿

𝐻2

−
12𝐸𝐼1𝑣2
𝐿3

−
12𝐸𝐼2𝑣2
𝐿3

+
12𝐸𝐼2𝑣3
𝐿3

+ 𝑉2 +
6𝐸𝐼1𝑤1
𝐿2

+
6𝐸𝐼1𝑤2
𝐿2

−
6𝐸𝐼2𝑤2
𝐿2

−
6𝐸𝐼2𝑤3
𝐿2

𝑀2 +
6𝐸𝐼1𝑣2
𝐿2

−
6𝐸𝐼2𝑣2
𝐿2

+
6𝐸𝐼2𝑣3
𝐿2

−
2𝐸𝐼1𝑤1
𝐿

−
4𝐸𝐼1𝑤2
𝐿

−
4𝐸𝐼2𝑤2
𝐿

−
2𝐸𝐼2𝑤3
𝐿

𝐻3
12𝐸𝐼2𝑣2
𝐿3

−
12𝐸𝐼2𝑣3
𝐿3

+ 𝑉3 +
6𝐸𝐼2𝑤2
𝐿2

+
6𝐸𝐼2𝑤3
𝐿2

𝑀3 −
6𝐸𝐼2𝑣2
𝐿2

+
6𝐸𝐼2𝑣3
𝐿2

−
2𝐸𝐼2𝑤2
𝐿

−
4𝐸𝐼2𝑤3
𝐿

𝐻4
𝑀4

𝐻1
12𝐸𝐼1𝑣2
𝐿3

+ 𝑉1 −
6𝐸𝐼1𝑤1

𝐿2
−
6𝐸𝐼1𝑤2
𝐿2

𝑉4 }
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 

 

(3-13) 

With [𝑉3] being the null space of the matrix [𝐵] in Equation (3-13), {𝑝3} being a vector 

of coefficients, and {𝑧𝑝3} being the particular solution of the system, the general 

solution {𝑧3} can be expressed as follows: 

 {𝑧3} = {𝑧𝑝3} + [𝑉3] · {𝑝3} =

{
  
 

  
 
𝐸𝐴1𝑢2
𝐴𝐸2𝑢2
𝐸𝐴2𝑢3
𝐸𝐴3𝑢3
𝐸𝐴3𝑢4
𝑬𝑰𝟑
𝑬𝑰𝟑𝒘𝟒}

  
 

  
 

= {𝑧𝑝3} +

[
 
 
 
 
 
 
1 0 
1 0
1 0
0 1
0 1
0 0
0 0]

 
 
 
 
 
 

· {𝑝3} (3-14) 

The analysis of matrix [𝑉3] shows that in this step, 𝐸𝐼3 and 𝐸𝐼3𝑤4 are observed. From 

this information 𝑤4 can be directly obtained. These parameters are highlighted in bold 

in Equation (3-14). The parametric equation of EI3 obtained from the particular solution 

of Equation (3-13) is presented in Equation (3-14). As in the case of 𝐸𝐼2, this equation 

depends on the values of parameters (such as 𝐸�̂�2 and �̂�3) estimated in preceding 

recursive steps and on measured deflections (𝑣2 and 𝑣3). The numerical values of 𝐸�̂�3 

and �̂�4 are presented in the third recursive step of Table 3-1. This table shows that the 

deviation between the actual EI3 and the estimated 𝐸�̂�3 (0.02%) is negligible. 

𝐸�̂�3 =
 3𝑀3𝐿

2 − 𝑉3𝐿
3 − 30𝐸𝐼2𝑣2 + 30𝐸𝐼2𝑣3 − 12𝐸𝐼2𝑤2𝐿 − 18𝐸𝐼2𝑤3𝐿

6(𝑣3 +𝑤3𝐿)
 (3-15) 

Evidently, axial stiffness of the beam cannot be estimated due to the fact that the axial 

resistant mechanism was not excited by the external load. However, this did not impede 

the bending stiffness to be observable, and henceforth, to be estimated.  

The analysis of the parametric equations of 𝐸𝐼1 , 𝐸𝐼2  and 𝐸𝐼3  shows their 

dependence on the measurements and therefore, on their errors (measurement errors). 

These equations also show that the nature of the recursive process tends to increase the 

errors throughout the analysis (error associated with the simulation method). The 

sensitivity of the observability techniques to these two kinds of errors is analyzed in the 

following sections.  
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A flow chart of the mixed algorithm of structural identification by observability method 

is provided in Figure 3-2.  

 

Figure 3-2 Flowchart of the mixed algorithm 

All the procedures related with the symbolic approach are enclosed by dashed line 

whereas the procedures related with the numeric approach are enclosed by dotted line. 

In step 0, input the initial data containing the description of the FEM (nodes, element 

connectivity, external loads and the unknown set of areas and inertias) and the 

measurement set. In substep 1 of step i, absorb the measurements in the matrix [𝐾∗] 

and collect unknowns in the vector [𝛿∗]  by static condensation. Next, move the 

unknowns and the observation, respectively, to the left-hand side and the left-hand side 

of the system in substep 2, by which the system [𝐵] ⋅ {𝑧} = {𝐷} is generated. Then, in 

substep 3, the observability of the unknowns are determined by checking the null row 

of the symbolic null space, [𝑉] , of the matrix [𝐵] . The value of the observed 

parameters will be evaluated by numeric approach in substep 4. And, in substep 5, it 

will be examined first whether the number of the observed parameters, 𝑁𝑖, is zero or 

the same as the number of 𝑁𝑖−1 from previous step. If so, the identification process is 

terminated since no more parameter can be observed. Otherwise, the numeric value of 

the observed parameters from substep 5 will be used to update the input and regarded 

as known parameters to initiate the succeeding recursive step.  

 

This section deals with the role of measurement error in structural system identification 

by observability techniques. With this aim, two sensitivity analyses of the simply 
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supported beam in Figure 3-1 are presented. The first simulation analyzes the effects of 

individual errors in each measurement (deflection or rotation). The deviation in the 

estimation of 𝐼1 is also analyzed by means of partial derivatives. Finally, the second 

sensitivity analysis studies the effect of random errors in all measurements.  

This section analyzes the sensitivity of parametric equations of 𝐼1, 𝐼2 and 𝐼3 obtained 

from Equations (3-7), (3-12) and (3-15) to errors in one measurement 

The measurement set used here is the same as before, one rotation (𝑤1) and two 

deflections (𝑣2 and 𝑣3). The Young’s modulus of the three beam elements is assumed 

as known (2.5e7 𝑘𝑁/𝑚2). 

The ratio between each estimated inertia, 𝐼𝑖, and the actual one, I, with errors from -5% 

to 5% in 𝑣2, 𝑤1 and 𝑣3 are presented in Figure 3-3.a. This figure shows how the 

sensitivity to errors in one of the measurements is increased throughout the recursive 

process. For example, the deviation between the estimated inertia and the actual one for 

an error of -5% in 𝑣2 changes from -16.7% in 𝐼1 to 47.1% in 𝐼2, and -45.5% in 𝐼3. 

In this structure, the deviations in 𝐼1 produced by errors in 𝑣2 correspond with those 

in 𝐼2 for errors in 𝑤1. Generally, the system is more sensitive to errors in deflections 

than in rotations. This figure also illustrates the importance of the error sign. In fact, the 

estimations based on the measured deflections are asymmetric. This asymmetry 

increases throughout the recursive process and is especially significant in the 

deflections, 𝑣. 

In Figure 3-3.b, the effect of the errors in measurements on the deviation in the 

estimation throughout the recursive process is presented. This figure also shows that 𝐼1 

is not affected by errors in 𝑣3. This is because the parametric equations of these inertias 

do not depend on the deflection 𝑣3. 

 

Figure 3-3 (a) Ratio between the estimated inertias, 𝐼𝑖, and the actual, I, for errors in 

each measurements 𝑣2 , 𝑤1  and 𝑣3 . (b) Evolution of the ratio between 𝐼𝑖  and I 
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throughout the recursive process for an error of -5% or 5% in measurements 𝑣2, 𝑤1 

and 𝑣3. 

The effects of the location of two concentrated loads are analyzed in Figure 3-4.a and 

b, respectively, to clarify the influence of the loading case on the parametric equations 

of inertias. Loading case one corresponds with a concentrated vertical load 𝑉=-55 kN, 

located at an intermediate node (𝑥=𝐿 or 𝑥=2𝐿). The second loading case corresponds 

with a concentrated bending moment, M=100kN∙m, located at the beam edge (𝑥=0 or 

𝑥=3𝐿). These figures present the deviation between the actual inertia, 𝐼, and the 𝐼1 

calculated by parametric Equation (3-7) for different errors in 𝑣2  or 𝑤1  and load 

locations. It should be highlighted that deviations beyond the range of [0,2] do not have 

physical meaning and thus they are rejected. 

Figure 3-4 shows that the loading case is influential in the accuracy of estimated 

parameters. In Figure 3-4.a, the closer the load to the measurements, the smaller the 

effect of errors. For example, for an error of -5% in 𝑣2, the deviation of 𝐼1 increases 

from -16.6% to -25.9% when 𝑉 is moved from 𝑥=𝐿 to 𝑥=2𝐿. For the same error 

level in 𝑤1, moving 𝑉 from 𝑥=𝐿 to 𝑥=2𝐿 increases the deviation of 𝐼1from 33.3% 

to 66.7%. Similar conclusion can be drawn when the effect of bending moment 𝑀 is 

analyzed. In this case, for an error of -5% in 𝑣2, the deviation in 𝐼1 increases from -

5.8% to -28.6% when 𝑀 is moved from 𝑥=0 to 𝑥=3𝐿. For the same error in 𝑤1, the 

increment is from 12.7% to 81.2%. 

 

Figure 3-4 Effect of measurement errors in 𝑣2  or 𝑤1  for a loading case of a 

concentrated vertical force 𝑉 (a) or bending moment 𝑀 (b) at different locations x. 

In addition, the parametric equations are affected by the location of the measurements. 

In the observability method, the accuracy of the estimations is highly related to the 

curvature of the elements where the measurements are performed. Estimates obtained 

from deflections measured at the low curvatures zone might be more sensitive to errors. 

For example, in a simply supported beam, the null curvature zones are those adjacent 
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to the support. The influence of the curvature will be discussed in a more extensive way 

in the simulation error part.  

To clarify the effects of curvatures in the accuracy of the estimates, six FEMs, 𝐹𝐸𝑀2, 

𝐹𝐸𝑀3, 𝐹𝐸𝑀4, 𝐹𝐸𝑀6, 𝐹𝐸𝑀8 and 𝐹𝐸𝑀12, with the same length, 3𝐿, but different 

element numbers were analyzed. The number of elements in these FEMs is indicated 

by their subscripts. In all these models, only the flexural stiffness of the first element, 

𝐸𝐼1, is estimated. 

In these models, two measurements are considered, the rotation 𝑤1 at the left support 

and the deflection 𝑣2 of node 2. Note that the location of the measurement 𝑣2 is and 

{𝑥=1.5𝐿 , 𝐿 , 0.75𝐿 , 0.375𝐿  and 0.25𝐿  for 𝐹𝐸𝑀2 , 𝐹𝐸𝑀3 , 𝐹𝐸𝑀4 , 𝐹𝐸𝑀6 , 𝐹𝐸𝑀8 

and 𝐹𝐸𝑀12. That is, the measurement 𝑣2 will be located nearer to the null curvature 

zone in models of more elements. 

To analyze the effect of the location of the measurements, the parametric equation of 

𝐸�̂�1 , Equation (3-7), for 𝐹𝐸𝑀3  is analyzed. Similar equations can be obtained for 

different FEMs by substituting the length of the different elements in each model. The 

effect of errors ranging from -15% to 15% in 𝑤1  and 𝑣2  is obtained by these 

equations for each FEM is presented in Figure 3-5. It should be clarified that all these 

equations are presented as a fraction, in which the numerator indicates information of 

the loading case while the Denominator, 𝐷, indicates information of the measurements. 

 

Figure 3-5 Denominator, 𝐷, from the parametric equation of 𝐸�̂�
1
 , when errors appears 

in (a) 𝑤1 and (b) 𝑣2  

As expected, Figure 3-5 shows that the denominator of the parametric equation of 𝐸𝐼1, 

𝐷, depends linearly of the error in measurements 𝑤1 and 𝑣2. In the graph, the closer 

to the null curvature zone the measurement 𝑣2 , the higher the inclination of the 

denominator line. High inclinations of the lines might lead to estimations with no 

physical meaning as the errors in measurements lead to denominators close to zero or 

even negative. It is straightforward that the inertia obtained by this value of the 

denominator would tend to be infinite or negative. In 𝐹𝐸𝑀2, the threshold error level 

for 𝑤1  and 𝑣2  to render the denominator null is quite high. Nevertheless, the 

threshold becomes lower with the decrease of the distance between the support and 
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node 2. Considering the error of w1, a null denominator is obtained at the following 

error level: -16.1% (𝐹𝐸𝑀3), -8.7% (𝐹𝐸𝑀4), -5.2% (𝐹𝐸𝑀6), -2.3% (𝐹𝐸𝑀8) and -1.7% 

(𝐹𝐸𝑀12). It is suggested to take measurements in the non-null curvature zones to avoid 

the detrimental effect of the measurement errors on the accuracy of estimations. 

In previous discussion, estimation of 𝐼1 in 𝐹𝐸𝑀3 depends on errors in 𝑣2 and 𝑤1. 

With 휀 being the percentage error in the measurements, the error in 𝐼1, 𝑒1, due to 

these two parameters can be calculated by the partial derivatives in Equation (3-16). 

 𝑒1 = √(
𝜕𝐼1
𝜕𝑣2

휀𝑣2)

2

+ (
𝜕𝐼1
𝜕𝑤1

휀𝑤1)

2

 (3-16) 

, which can be used to get the deviation in 𝐼1. Using Equation (3-16), the deviation in 

𝐼1 against error from -5% to 5% is summarized in Figure 3-6.  

 

Figure 3-6 Deviation in 𝐼1 calculated by partial derivatives 

It can be seen the estimation of 𝐸�̂�1 is quite sensitive to errors in 𝑣2 and 𝑤1. Deviation 

will be magnified if the signs of the error in v2 and w1 are opposite. And the maximum 

deviation, 54.3%, is obtained for an error of +5% in 𝑣2 and -5% in 𝑤1. 

In practice, measurement errors are inevitable. Furthermore, the actual magnitude of 

each error is unknown since it depends on a number of parameters including the 

accuracy of the measurement device. The errors of each measurement are usually 

assumed to follow a normal distribution. To illustrate the effects of actual errors, an 
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additional analysis is performed on 𝐹𝐸𝑀3 in Figure 3-1, in which the inertias of the 

three elements are assumed as different and unknown. Three different measurement 

sets were analyzed here. The first of these sets (Set 1) is exclusively composed of nodal 

rotations, 𝑤1 , 𝑤2  and 𝑤3 . The second set (Set 2) corresponds with that used in 

preceding sections, one rotation (𝑤1) and two deflections (𝑣2 and 𝑣3). Finally, the third 

set (Set 3) only includes three deflections 𝑣2, 𝑣3 and 𝑣5. As illustrated in Figure 3-7, 

the measurement of (𝑣5) corresponds with the vertical deflection at one intermediate 

node located at the first beam element.  

 

Figure 3-7 Percentage deviations between the estimated inertias, 𝐼𝑖, and the actual ones, 

𝐼, for random errors of 5%, 10% and 20% in Set 1(a), Set 2 (b) and Set 3(c), for different 

physical restrictions on the output. Each analysis is repeated with 200 admissible 

deformed shapes. 
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Each measurement sets includes three error levels, e={5%,10% and 20%}, which 

represent a percentage maximum deviation of the actual value of the measured variable. 

Equation (3-17) was used to introduce the errors in deflections. The noisy deflection at 

the 𝑖𝑡ℎ node, 𝑣𝑒𝑖, is calculated from the error-free deflections, 𝑣𝑖, and the percentage 

error, 𝑒0, which is the product of the assumed maximum magnitude of the error, 𝑒, 

and a random number, 𝑟 . The random number 𝑟  varies between -1.0 and 1.0 

according to a truncated normal distribution of null mean and 0.5 standard deviation. A 

similar equation is used to introduce the errors into the measured rotations wei. 

 𝑣𝑒𝑖= 𝑣𝑖+𝑣𝑖·𝑒0=𝑣𝑖+𝑣𝑖⋅𝑟⋅𝑒 (3-17) 

Random errors in measurements might lead to estimations with no physical meaning 

since these noisy measurements should satisfy some geometrical constraints. In 𝐹𝐸𝑀3 

from Figure 3-1, random errors in measurements might result in deformed shapes where 

the deflection of the node where the load is applied is not the maximum. In each of 

these analyses, the physical meaning of the deformed shape is analyzed by checking 

some geometrical restrictions. For this structure, the restrictions assumed are 𝑣𝑒2>𝑣𝑒3 

and 𝑤𝑒1<𝑤𝑒2<𝑤𝑒3<𝑤𝑒4. The vertical deflection and rotation at the intermediate node 

𝑣𝑒5 and 𝑤𝑒5 are limited by those of the adjacent nodes. If any of these restrictions is 

not satisfied a new set of random measurements is obtained until the 200 admissible 

deformed shapes are obtained. 

The ratios between the estimated inertia, 𝐼i, of the ith beam and the actual one, 𝐼, for 

different random errors in measurements are presented in Figure 3-7. As presented in 

the preceding section, the errors in measurements might lead to estimations with no 

physical meaning. This lack of meaning comes from those cases where the denominator 

of the parametric equation is close to zero. This problem can be avoided by adding 

some physical restrictions to the solutions of the system of equations. For example, in 

a damaged structure, the estimated inertias cannot be significantly higher than those of 

the undamaged elements (that is, estimated inertia cannot be twice as big as the original 

one). In addition, no negative inertias should be considered. In order to fulfill these 

restrictions, the results in Figure 3-7 include the average of those analyses where the 

estimations were bounded by: the 0 and 2 times the original inertia, 0.25 and 1.75 times 

the original inertia, 0.5 and 1.5 times the original inertia and 0.75 and 1.25 times the 

original inertia. In this figure, the results are named by the ranges as follows: 0.0-2.0, 

0.25-1.75, 0.5-1.5 and 0.75-1.75, respectively. The percentages of analyzed structures 

satisfying these restrictions are presented in Figure 3-7.a (Set 1), b (Set 2) and c (Set 3). 

From Figure 3-7, it is deduced that: 1) As expected, the higher the error in 

measurements, the higher the deviations in estimated inertias. In Set 2, the maximum 

errors for an error of 5% and a physical restriction of 0.0-2.0 are increased from 4.1% 

to 26.1% when the maximum random error in measurements is increased to 20%. 2) It 

is plausible that the smaller the range of allowable estimated inertias, the more accurate 

the estimations are. For example, in Set 2 with a random error of 20%, changing the 

allowed range of estimations from 0.0-2.0 to 0.75-1.25 reduces the deviations from 26.1% 
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to 2.2%. 3) The estimated parametersis less sensitive to errors in rotations than in 

deflections. This is appreciable when the results of the different measurement sets are 

compared. For example, considering a maximum random error of 5% and the physical 

restriction 0.0-2.0, the maximum errors when only rotations are considered (Set 1 with 

a deviation of -0.2% in 𝐼3) is significantly lower than the one when 𝑤2 and 𝑤3 are 

substituted by 𝑣2 and 𝑣3 (Set 2 with a deviation of 3.1% in 𝐼3). These deviations are 

increased more when only deflections are considered (Set 3 with a deviation of 16.5% 

in 𝐼2). 4) Deviations in estimations are not increased throughout the recursive process 

as they fluctuate with the observability flow. In all analyzed sets described in Figure 

3-7, the recursive process is initiated at the first beam element, 𝐼1. This value is used 

to estimate 𝐼2 and then, this new inertia is used to estimate 𝐼3. As illustrated in the Set 

3 for an error of 5%, when 𝐼1 is underestimated, 𝐼2 is overestimated to compensate the 

effect of 𝐼1 into the system of equations. Conversely, the value of 𝐼3  is slightly 

underestimated. This fluctuation in the estimation of inertias is a peculiarity of the 

observability technique which will be analyzed in detail in the following section.  

3.1.6  

To clarify the effects of different simulation errors, two examples of increasing 

complexity are analyzed in this section. The first example corresponds with a cantilever 

beam. In this example, the errors produced throughout the recursive process are 

analyzed. To avoid the effect of the curvature, a loading case with a uniform curvature 

distribution is proposed. In addition, to show the effect of the measurement errors, two 

different measurement precisions are adopted. The second example corresponds with a 

statically redundant beam. In this structure, the errors produced by the recursive process 

for a loading case that produces a uniform distribution of curvatures are studied first. 

Finally, to illustrate the effect of the curvature, an additional loading case with a non-

uniform curvature distribution is simulated. 

Assume a cantilever beam with a concentrated bending moment, 𝑀=100 𝑘𝑁∙𝑚 at the 

free end. This loading case induces uniform bending moments and curvatures as 

depicted in Figure 3-8.a. This curvature enables to focus the analysis on the errors 

produced by the recursive process. For this loading case the maximum deflections 

(5.11mm) occurs at the beam edge. 
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Figure 3-8 Example 1. a) Geometry of the cantilever beam, applied force and curvatures 

(b) Percentage deviations between the estimated inertias, 𝐼𝑖, and the actual ones, 𝐼, for 

error free measurements (precision of 1e-9 m in 𝑣 and 1e-9 rad in 𝑤). (c) Percentage 

deviation between 𝐼𝑖 and 𝐼 for traditional measurement errors (1e-5 m in 𝑣 and 1e-

5 rad in 𝑤). The arrows represent the direction in which the system of equations is 

solved (observability flow). 

The mechanical properties of the structure correspond with those of the structure 

presented in (Abdo, 2012). The analyzed beam has a length of 30 m. The area and the 

inertia of the girder are 0.07 𝑚2 and 0.04 𝑚4, respectively and Young’s of modulus 

is 𝐸=210 𝐺𝑁/𝑚2 . The simplified FEM of this beam is composed of 31 nodes as 

presented in Figure 3-8.a. This assumption leads to a number of 30 elements 1m long. 

As mentioned previously, the flexural stiffnesses can be absorbed in inertias by 

assuming the Young’s modulus as known. Here, these inertias are assumed both 

different and unknown. As the beam is horizontal, the axial and the flexural 

mechanisms are uncoupled and can be studied separately. However, only the analysis 

of the flexural behavior is presented here.  
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The values of the unknown inertias are estimated by the observability method from two 

alternative measurement sets derived by the observability trees (Jose Antonio Lozano-

Galant et al., 2015). The first set is composed of 30 deflections, from 𝑣2 to 𝑣31, while 

the second one includes 29 deflections, from 𝑣3 to 𝑣31, and one rotation 𝑤31. Each 

of these measurement sets solves the equations of the stiffness matrix system in a 

different sequence (or in other words, by a different observability flow). In the first set 

the solution of the system of equations starts at the clamped node and flows towards 

the beam edge in 30 steps. The opposite observability flow is obtained by the second 

measurement set. The observability flows are illustrated in Figure 3-8.b and c by 

continuous and dotted arrows, respectively.  

Figure 3-8.b and c, respectively, include the percentage differences between the 

estimated inertia, 𝐼𝑖 , and the actual one, 𝐼 , based on different error levels in 

measurement. Figure 3-8.b presents the results for error free measurements (with a 

precision of 1e-9 𝑚  in 𝑣  and 1e-9 𝑟𝑎𝑑  in 𝑤 ), while Figure 3-8.c presents the 

results with the measurement errors found in (precision of 1e-5 𝑚 in 𝑣 (Lü, Liu, 

Zhang, & Zhao, 2012) and 1e-5 𝑟𝑎𝑑 in 𝑤 (Geoffrey & Mark, 2011)). 

To solve the system of equations, the recursive process uses information from preceding 

steps. In this way, the value estimated of a certain rotation or inertia is used in the 

subsequent steps. It must be emphasized that it is intuitive to think, in the recursive 

process, that errors will accumulate and propagate, and thus the parameters identified 

in the final steps will contain significant error. Conversely, this is not the case in the 

observability techniques. As depicted in Figure 3-8.b, it is shown that for the first set 

(continuous blue line) the initial error of -0.01% is increased to 0.04% at the end of the 

beam. A similar phenomenon can be observed for the second set (dotted red line), where 

the initial deviation of -0.01% is increased to -0.02% at the proximities of the clamped 

node. In fact, when an estimated inertia is slightly higher than the actual one (i.e. 

overestimation), the next estimated inertia tends to be slightly underestimated in order 

to compensate the overestimation in preceding step. This effect leads to the fluctuation 

of error. However, this fluctuation might produce even higher errors in some middle 

steps of the recursive process than the one obtained at the final step. For example, in 

the first flow, the maximum deviation (0.09% in element 26) is 2.14 times higher than 

the error obtained at the end of the recursive process. The same effect appears in Figure 

3-8.c. Nevertheless, in this case, because of the error in measurements, higher 

fluctuations are obtained. For error free measurements, the maximum deviations are 

observed at 𝐼7 for the first set (𝑣3 to 𝑣31 and 𝑤31). The obtained estimation at this 

point represents the 0.55% of 𝐼. This value is 46.1% higher than the value obtained at 

the end of the recursive process (0.38%).  

The second structure corresponds with the two-span continuous beam presented in 
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Figure 3-9.a. This beam has a 60-𝑚 length and is evenly divided into 60 elements. The 

material and mechanical properties are the same as those used in the preceding section. 

Again, the Young’s modulus and the areas are assumed as known whereas the inertias 

are assumed as different and unknown for each element. This structural system 

identification problem was presented in (Abdo, 2012). Later, Nogal et al. (Nogal et al., 

2015) used this example to illustrate the different simulation errors that might appear 

in observability techniques. The aim of this example is to extend that study, and to 

provide a better understanding of the nature and magnitude of the different simulation 

errors when observability techniques are applied.  

 

Figure 3-9 Analysis of the effects of the curvature. (a) Geometry of the two-span beam. 

(b) Loading case 1: Percentage deviations between the estimated inertias, 𝐼𝑖, and the 

actual ones, I for different measurement errors. (c) Loading case 2: Percentage 

deviation between 𝐼𝑖  and 𝐼  for different measurement errors. The solid arrows 

represent the direction in which the system of equations is solved (observability flow). 
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To estimate the 60 unknown inertias, two different loading cases are studied. The first 

case includes two concentrated bending moments, 𝑀=1000 𝑘𝑁∙𝑚, at the beam edges 

and a settlement of 5.4 𝑚𝑚  at the inner support. This loading case induces, as 

presented in Figure 3-9.b, a constant bending moment in the structure. The second 

loading case corresponds with a concentrated vertical load 𝑉=-100 𝑘𝑁  applied at 

node 16 as presented in Figure 3-9.c, which produces a linear diagram of bending 

moments with a maximum (500 𝑘𝑁∙𝑚) at node 16 and a minimum (-250 𝑘𝑁∙𝑚) at 

node 31 and null values at the vicinity of node 23.  

The measurement set in both loading cases is identical and includes 58 deflections (𝑣1 

to 𝑣30  and 𝑣32  to 𝑣60 ) and 2 rotations (𝑤29  and 𝑤30 ). This measurement set 

initiates an observability flow at the left hand side of the inner support that is propagated 

towards both beam edges. The direction of this flow is indicated by the arrows in Figure 

3-9.b and c, respectively. In the first recursive step, three inertias (𝐼28, 𝐼29 and 𝐼30) are 

observed. The rest of the inertias are successively estimated after 30 steps. The 

parameters estimated in the first recursive steps are highlighted in these figures by a 

circle. 

The deviations between the actual inertia, 𝐼, and the estimated one, 𝐼i, in each beam 

element i are summarized in Figure 3-9.b and c. In these figures, the results obtained 

by the error free measurements (precision 1e-9 𝑚 in 𝑣 and 1e-9 𝑟𝑎𝑑 in 𝑤) and the 

state of the art errors (1e-5 𝑚 in 𝑣 and 1e-5 𝑟𝑎𝑑 in 𝑤) are presented in different 

colors. 

Figure 3-9.b shows that when a uniform curvature is applied, the errors of the 

estimations are not increased monotonically throughout the recursive steps. In effect, 

the deviations from the actual stiffnesses present similar fluctuations to those observed 

in the cantilever beam. For the error free measurements, the maximum deviation error 

in the first recursive step (-0.01% in 𝐼28) is increased to 0.1% in 𝐼37 throughout the 

analysis. In the structures with measurement errors, the fluctuations are slightly more 

significant since the initial errors (-0.13% in 𝐼30) are increased to 1.1% in 𝐼40.  

Figure 3-9.c illustrates the importance of the curvature in the identification by the 

observability. In fact, the maximum errors are obtained in those areas with null 

curvatures (specifically at 𝑥=0, 𝑥=27 and 𝑥=60 𝑚). This effect can be explained by 

the fact that the bending stiffness is calculated based on the curvature of the beam 

elements imposed by the loading case. As a result, higher errors appear at those 

locations with low curvatures. As expected, the maximum deviation (1.52%) is found 

at 𝑥=27 𝑚, which is adjacent to the inflection point of the moment diagram. In this 

structure, the effects of the magnitude of the curvature are slightly higher than those of 

the recursive process. To avoid the detrimental effects of the low curvature, adequate 

loading cases are advised for structural system identification by observability 

techniques.  
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This paper analyzes the effects of two unavoidable sources of errors upon the structural 

system identification by observability techniques. The first of these sources refers to 

the measurement errors. To simulate this error, the parametric equations of the 

estimated inertias were analyzed in detail in a simply supported beam. The analysis of 

this structure shows that: (1) Estimations in subsequent recursive steps depend on the 

values estimated in preceding steps. As an academic example it is showed that 

considering an error in single measurement increases the errors in the estimations 

throughout the recursive process. This effect is significantly mitigated when errors in 

all measurements are considered. (2) Parametric equations of the estimated parameters 

can be obtained. These equations are very useful to study the sensitivity of the estimated 

parameter. In order to make the estimations less sensitive to the errors, it is 

recommended to use measurements closer to the load location. The numeric analysis 

shows that the estimations of stiffnesses are less sensitive to errors in rotation 

measurements than errors in deflection measurements. This parametric approach 

enables the use of partial derivatives in the error analysis. (3) The loading case is of 

primary importance. Usually the closer the load location of the concentrated load to the 

inertia to be estimated the lower the sensitivity of the estimation to measurement errors. 

This also corresponds to the fact that, for the same loading case, the closer the location 

of the measurement to the boundary condition, the lower the curvature. (4) The 

denominator of the parametric equations of the estimated inertia depends, to a large 

extent, on the measurement errors. Denominators with a value close to zero lead to 

solutions with no physical meaning. (5) Those estimations based on the measured 

deflections are asymmetric. Furthermore, the asymmetry in estimates is increased 

throughout the recursive process. On the other hand, the second analyzed source of 

error refers to those simulation errors inherent in the observability analysis. To illustrate 

these effects two structures of growing complexity were analyzed. The simulation of 

these structures shows that: (1) Fluctuations in the inertias estimated are obtained 

because of the recursive process. This can be explained by the fact that every time that 

a certain inertia is underestimated, the next inertia that uses this information will tend 

to be overestimated to compensate the effect of the preceding one in the system. (2) 

The curvature of the beam plays an important role in the accuracy of the estimations. 

In fact, wrong estimations are obtained near points with null curvatures. The effect of 

the curvature requires an adequate selection of the loading cases for structural system 

identification by observability techniques.  
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Identifiability of parameters in Structural System Identification (SSI) is of primary 

importance in any SSI method. It depends on the number and the location of the 

measurements, which are linked with sensor configuration. In this paper, under the 

framework of SSI by Observability Method (OM), the number of necessary 

measurements to identify all parameters of a structural system was clarified first. Then 

an example was solved step by step to show the lacking constraints among unknowns 

in SSI by OM. In a frame example, it was found that no measurement set having as 

many measurements as the number of unknowns was able to identify all parameters. 

To further understand this phenomenon, the observability of a simply supported beam 

was analyzed in an exhaustive way using 252 possible measurement sets. Three quarters 

of these sets were not able to identify all the parameters. In order to solve this issue, for 

the very first time, SSI by Constrained Observability Method (COM), which appends 

the nonlinear constraints to SSI by OM, was proposed. With SSI by COM applied, the 

observability of structural parameters with respect to the 252 sets was greatly improved. 

Finally, the efficacy of COM was verified by a 13-storey frame building. 

Keyword: structural system identification; stiffness method; observability method; 

nonlinear constraint; essential set; static 

 

Structural System Identification (SSI) has long been an intriguing topic in civil 

engineering. It can be conceptualized as the process of simulating structural behavior 

by mathematical models. Based on the type of the excitation, SSI methods are 

categorized as static (Chisari et al., 2015; Kao & Loh, 2013; Jose Antonio Lozano-

Galant et al., 2015; M Sanayei & Saletnik, 1996a; Terlaje & Truman, 2007; Brian J. 

Walsh & González, 2009) or dynamic (J.P. Amezquita-Sanchez & Adeli, 2016; Breuer, 

https://www.researchgate.net/profile/Maria_Nogal
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Chmielewski, Górski, Konopka, & Tarczyński, 2015; Dowling, Obrien, & González, 

2012; Z. Li, Park, & Adeli, 2017). The dynamic SSI requires the use of mass, stiffness 

and damping properties while the static method only requires the use of stiffness 

properties (Bakhtiari-Nejad et al., 2005). When only the estimation of stiffnesses is 

targeted, static SSI might be more interesting than dynamic SSI in some cases (Masoud 

Sanayei et al., 1997). In non-destructive tests of bridges, slow moving loads can be 

applied as quasi-static loads (Boumechra, 2017; Kim et al., 2003; C. Wang, Huang, & 

Chen, 2011). Providing that the structure behaves linearly, Maxwell law of reciprocal 

deflections can be applied to reduce the number of sensors in the structure under 

moving load (Choi, Lee, Choi, & Cho, 2004; Kim et al., 2003). The irregular variations 

in curvatures, which are obtained from the displacement influence lines between the 

damaged and undamaged structures under moving load, can be used to locate the 

damages (Z. Sun, Nagayama, & Fujino, 2016; C. Wang et al., 2011). (Boumechra, 2017) 

approximated the inverse of the global stiffness matrix by a Neumann series and used 

optimization technique to find the optimal correction coefficients of structural 

parameters such that the predicted response from these parameters are closest to the 

measured static response under moving loads. This method can accurately localize and 

quantify the damage with the displacements of selected nodes. (Choi et al., 2004) 

derived the elastic damage load theorem for statically determinate beam and applied it 

to locate the damage by checking the variation in the shape of deflection. However, this 

method is limited to statically determinate structures and cannot quantify the extent of 

damage. 

SSI methods can be also classified as physics-based (e.g. finite element models [FEMs]) 

or non-physics based models (neural networks models (Jiang et al., 2007; Santos et al., 

2015), autoregressive models (Bao, Hao, & Li, 2013; Mei, Mita, & Zhou, 2016) or 

rational polynomial models (Ku, Tamura, Yoshida, Miyake, & Chou, 2013)). The 

parameters of physics-based models represent the structural characteristics, e.g. elastic 

modulus, inertias, mass, while the parameters of the non-parametric models are weight 

factors of the adopted basis functions, which have no physical meaning and are 

determined by minimizing the discrepancy between the predicted structural response 

and the measured response. From a statistical perspective, SSI methods can be 

categorized as probabilistic methods (Dowling et al., 2012; González, Covián, Casero, 

& Cooper, 2013; B.J. Walsh, González, & Cantero, 2014; Brian J. Walsh & González, 

2009) or deterministic methods (Bakhtiari-Nejad et al., 2005; J. Lei, Lozano-Galant, 

Nogal, Xu, & Turmo, 2017; Jose Antonio Lozano-Galant, Nogal, et al., 2013). In 

probabilistic SSI (Dowling et al., 2012; González et al., 2013; B.J. Walsh et al., 2014; 

Brian J. Walsh & González, 2009), structural parameters are treated as random 

variables and their distributions can be specified using prior knowledge. Structural 

parameter sets can be generated by sampling each of these distributions. The goodness 

of any parameter set is represented by the closeness between the response predicted by 

that parameter set and the measured response. This goodness is incorporated into the 

assumed distribution to obtain the distribution of the estimated parameters. The 
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probabilistic methods not only provide the estimation of the parameters but also a 

measure of confidence in the estimates. However, their computation cost increases 

exponentially with the number of parameters due to the combinatorial consideration in 

sampling distributions. The deterministic methods try to pinpoint a best model yielding 

the closest response to the measured one. The main drawback of these methods is that 

the measure of confidence in the estimates is lacking in the theoretical formulation. 

However, this might be overcome by analyzing the estimates obtained from 

measurement data generated by Monte-Carlo method.  

A vital issue for any SSI method is whether the parameters are identifiable or not given 

a particular measurement set. This can be addressed by Observability Method (OM) 

(Enrique Castillo et al., 2007). OM provides the information whether all the unknowns 

or a subset of the unknowns can be uniquely determined or not. Its application in 

parameter estimation includes water transport network (Díaz et al., 2016), traffic 

network (Enrique Castillo, Nogal, Rivas, & Sánchez-Cambronero, 2013) or power 

systems (Abur & Exposito, 2004). SSI by OM is a deterministic static SSI method first 

introduced by (Jose Antonio Lozano-Galant, Nogal, et al., 2013), which has the 

advantage of less computation cost than statistical methods. In this method, the system 

of equations is derived by algebraic operations on the nodal equilibrium equations using 

direct stiffness method, which makes SSI by OM a physics-based method. The efficacy 

of this method was verified by its application in the identification of the structural 

parameters of trusses, beams, frames (Jose Antonio Lozano-Galant, Nogal, et al., 2013). 

Also, it was applied in cable-stayed bridges (Jose Antonio Lozano-Galant et al., 2014), 

wherein the structural audacity and lightness makes these structures sensitive to 

dynamic and static loading cases in both service and construction stage (Jose Antonio 

Lozano-Galant, Dong, Payá-Zaforteza, & Turmo, 2013; José Antonio Lozano-Galant 

& Turmo, 2014). It can also help the decision making during the maintenance of 

structures (Enrique Castillo, Lozano-Galant, Nogal, & Turmo, 2015).  

The identifiability of the structure by any method relies on a good selection of 

measurements. More measurements are generally desirable for the identifiability of 

parameters. On the converse, fewer sensors means less instrumental, operational costs 

and data processing. Considering the extended dimension of structures, the economic 

reasons and the accessibility, a practical question is how to find the optimal number of 

measurements and the location of the sensors for successful identifications. A similar 

issue was addressed in power system using OM (Abur & Exposito, 2004). In a power 

system specified by n parameters, the question is posed as how to choose measurement 

sets from m (m>n) available measurements to identify the system. If a measurement set 

of n measurements is able to identify all the n parameters and the drop of any 

measurement fails to do so, then this set is defined as essential set. Generally, such a 

set is not unique. The function of OM is twofold: (1) In the preliminary stage, find an 

essential set to ensure that all parameters can be identified; (2) In the operation stage, 

determine the observability of these parameters in case of the malfunction of any 
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measuring device. In the context of SSI, if the number of measurements was less than 

the number of unknown parameters, the system would become indeterminate 

(Bakhtiari-Nejad et al., 2005; M Sanayei & Saletnik, 1996a), i.e. only a subset of the 

parameters might be identified. Moreover, even if the number of measurements equals 

to the number of unknowns, if those are not properly chosen, the system might still be 

indeterminate. An increase in measurements or a better placement of sensors can lead 

to an increase in the number of identified parameters, which is referred as increase of 

observability in this paper. Eventually, this process will lead to the identification of all 

parameters, which is referred as full observability. 

A wide range of proposals and methods dealing with the placement of sensors in SSI 

can be found. (Masoud Sanayei, Onipede, Babu, & Babuj, 1992) used a heuristic 

method to seek near-optimal placement of sensors for structures under non-destructive 

tests. (M. Chang & Pakzad, 2014) compared several sensor placement strategy 

including effective influence method, driving point residue kinetic energy method and 

modified variance method. (H. Jin, Xia, & Wang, 2015) applied an improved harmony 

search optimization algorithm and the modal assurance criterion to find the optimal 

sensor placement to identify modal parameters. (Malings & Pozzi, 2016) proposed the 

sensor placement as an optimization problem with respect to the conditional entropy 

and the value of information. However, the majority of the existing literature on 

measurement selection focuses on dynamic SSI. In static SSI by OM, the identifiability 

of the structural parameters also relies on a proper measurement selection. (Jose 

Antonio Lozano-Galant et al., 2015) proposed the observability tree method to select 

measurement set. This method can graphically analyze the sequence of identified 

parameters during the recursive steps of SSI by OM. It was found that improper 

selection of the measurement set cuts off the observability flow and thus fails to identify 

all the unknowns even with more measurements than unknowns. However, the reason 

for this failure is not clear and the solution was not found at that time. For the 

aforementioned reasons, the aim of this paper is twofold: (1) to clarify the underlying 

reason why some measurement sets expected to be able to identify all structural 

parameters turn out to be incapable of doing so in SSI by OM and (2) to provide a 

method to alleviate or solve this problem. 

The rest of this paper is organized as follows. In section 3.2.3, the essential set is 

conceptualized first and two examples are used to illustrate the deficiency of SSI by 

OM. Then the observability of the structural parameters in a simply supported beam is 

analyzed in an exhaustive way for 252 enumerated measurement sets. From the result, 

two reasons of the unqualification of some measurement sets to be essential sets are 

revealed. In the following section, Constrained Observability Method (COM) is 

proposed as the solution to this problem. The effectiveness and robustness of COM is 

justified by the improvement of observability on the two examples proposed in section 

3.2.3 Next, in section 3.2.5, a 13-storey frame is studied to illustrate the strength of 

COM. Finally, some conclusions are drawn in section 3.2.6. 
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From direct stiffness method, the nodal equilibrium equations for 2D beam models can 

be expressed as: 

 𝐾 ⋅ 𝛿 = 𝑓 (3-18) 

where the global stiffness matrix K contains the information of flexural stiffness, 𝐸𝐼𝑗 , 

axial stiffness, 𝐸𝐴𝑗 , length 𝐿𝑗 and the element connectivity. The displacements vector 

𝛿 contains the horizontal, vertical and rotational displacements of node i, i.e. 𝑢𝑖, 𝑣𝑖 

and 𝑤𝑖. The external force vector f contains the horizontal forces, vertical forces and 

moments applied on node i, i.e. 𝐻𝑖, 𝑉𝑖 and 𝑀𝑖 . 

Once the geometry, the boundary conditions and the loading case are specified, then 

the nodal displacements δ will be uniquely determined by any parameter set. In the case 

of 𝑁𝐴 unknown axial stiffnesses and 𝑁𝐹 unknown flexural stiffnesses, this is saying 

that these 𝑁𝐴+𝑁𝐹 mechanical parameters uniquely specify a set of displacements of 

the structure. In the inverse analysis, due to the linearity of this system, 𝑁𝐴+𝑁𝐹 

measurements are expected to be sufficient to identify all parameters. For simplicity, 

the ability to identify all parameters of the structure is referred as full observability in 

this paper. If merely a subset of these parameters are identifiable, then it is referred as 

partial observability. Hence, in the essential sets (the sets containing the necessary and 

sufficient number of measurements to achieve full observability), the number of 

required measurements is 𝑁𝐴+𝑁𝐹. However, this statement has been verified elsewhere 

(Jose Antonio Lozano-Galant et al., 2015) and it was found that full observability might 

not be achieved with 𝑁𝐴 + 𝑁𝐹  measurements due to improper selection of the 

measurements, which is related with the placement and type of measuring devices. 

Previous explanation was that the recursive steps stopped too early without identifying 

all parameters. However, the underlying cause for this premature end of the recursive 

steps was not uncovered at that time. This is one of the major interests of this paper, 

which can also be employed for the sensor placement strategy. 

For practical reason, Equation (3-18) can be transformed as: 

 𝐵 ⋅ 𝑧 = 𝐷 (3-19) 

Equation (3-19) is the result of applying static condensation technique together with the 

separation of each column, with regard to different unknowns, into several columns and 

the merger (addition) of those resultant columns related with the same unknowns in the 

equilibrium equations (Equation (3-18)). After these algebraic operations, all the known 

quantities are collected in the coefficient matrix B and the vector D. Hence, B and D 

are known. The unknown vector z is always of two types: (1) monomials of degree one, 

e.g. {𝐸𝐴𝑗, 𝐸𝐼𝑗 , 𝑢𝑖, 𝑣𝑖,𝑉𝑖 and 𝑀𝑖}, or (2) monomials of degree two, e.g. {𝐸𝐼𝑗𝑢𝑖 and 

𝐸𝐴𝑗𝑣𝑖}. Note that both, 𝐸𝐴𝑗  and 𝐸𝐼𝑗  are regarded as monomials of degree one. (For 

more technical details, readers are strongly recommended to review (Jose Antonio 

Lozano-Galant, Nogal, et al., 2013; Nogal et al., 2015). The occurrence of these 
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components of the unknown 𝑧 is due to the fact that Equation (3-19) is essentially 

established by nodal force equilibrium.  

If the vertical deflection, 𝑣𝑖, or the rotation, 𝑤𝑖, appearing in these products, 𝐸𝐼𝑗𝑣𝑖 or 

𝐸𝐼𝑗𝑤𝑖, are measured, then the flexural stiffness, 𝐸𝐼𝑗 , will be uncoupled and separated 

from those and the vertical deflection 𝑣𝑖 or the rotation 𝑤𝑖 will be absorbed in 𝐵. 

Otherwise, these products will appear in 𝑧 in the form of monomials with degree of 

two and, as per requirements of OM, be regarded as linear in 𝑧. This is to say, even 

though the physical unknowns for a given problem might be 𝐸𝐼𝑗  and 𝑤𝑖 . z may 

contain three different unknowns 𝐸𝐼𝑗 , 𝑤𝑖  and 𝐸𝐼𝑗𝑤𝑖 . Due to the limit of sensor 

investment, it is not likely to measure all displacements in the structure. Consequently, 

these products, 𝐸𝐼𝑗𝑤𝑖 or 𝐸𝐼𝑗𝑣𝑖, and the flexural stiffness, 𝐸𝐼𝑗 , which is obtained by 

the uncoupling of these products, all appear in the unknown 𝑧 . Likewise, the 

simultaneous occurrence of 𝐸𝐴𝑗𝑢𝑖 and 𝐸𝐴𝑗  is ascribed to the nodal equilibrium of 

axial forces. Furthermore, it is worth mentioning that in frame structures, due to the 

coupling of the axial displacements and the vertical deflections from different members, 

the product of axial stiffness and vertical deflection, 𝐸𝐴𝑗𝑣𝑖 and the product of flexural 

stiffness and axial displacement, 𝐸𝐼𝑗𝑢𝑖, also appear in 𝑧. From a mathematical point, 

if the unknowns of a system are coupled, then they should satisfy certain constraints. 

Nevertheless, this requirement is not satisfied in SSI by OM and therefore sometimes 

leads to the failure to identify all parameters (achieve full observability). 

In order to clarify this deficiency from the lack of constraints in SSI by OM, a 4-node 

simply supported beam (Figure 3-10) is studied here. This analysis also sheds light on 

the peculiarity of this method. For brevity, it is assumed that the flexural stiffnesses of 

elements 1 and 3, 𝐸𝐼1 and 𝐸𝐼3, the length of element, 𝐿, and the external vertical load 

at node 2, 𝑉2, are known. Since the axial stiffness is not activated by this loading case, 

hence 𝑁𝐴=0 and the terms associated with axial behavior are removed from the general 

equation by OM. Thus, the target parameter is the flexural stiffness of the element 2 (in 

red), 𝐸𝐼2, i.e. 𝑁𝐹=1. Then one measurement suffices to achieve full observability since 

𝑁𝐴+𝑁𝐹=1. Assume the vertical deflection of node 2, 𝑣2, is measured. 
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Figure 3-10 (a) FEM of the 4‐node simply supported beam; (b) geometric explanation 

of the null space; (c) variation of the normalized estimates with the variation of 𝜌1 

when 𝜌2=4.12×10-4; (d) variation of the normalized estimates with the variation of 𝜌2  

when 𝜌1=-22.22. 

In the first step, the system of equations given by OM is as follows: 

𝐵1 ⋅ 𝑧1 =

(
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= 𝐷1 (3-20) 

In Equation (3-20), it is seen that the vertical deflection 𝑣2, flexural stiffnesses 𝐸𝐼1 

and 𝐸𝐼3 are absorbed in the matrix 𝐵1 and the vector 𝐷1. The solution of this system 

can be expressed as the sum of a particular solution 𝑧𝑝1 and any linear combination of 

the bases in the null space of 𝐵1 (i.e. 𝑉𝑛1),as presented in Equation (3-21).  
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𝑧1 = 𝑧𝑝1 + 𝑉𝑛1 ⋅ 𝝆𝟏 =

(
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) (3-21) 

This particular solution and the bases of the null space can be obtained by many 

commercial packages, e.g. Matlab and Maple. From Equation (3-21), it is seen in the 

null space of the matrix 𝐵1 i.e. 𝑉𝑛1, the rows associated with {𝑉1, 𝑉4, 𝑤1 and 𝑤2}, 

are all null and their values are not affected by the coefficients 𝜌1,1 , 𝜌1,2  and 𝜌1,3 . 

Hence they are constant, unique, known and observable. Note that 𝑧1 contains {𝐸𝐼3, 

𝑤2 , 𝑣3 , 𝐸𝐼2𝑤2  and 𝐸𝐼2𝑤3}, and these unknowns should satisfy certain nonlinear 

constraints, e.g. {𝐸𝐼2𝑣3=𝐸𝐼2 ⋅ 𝑣3}. However, as linearity is assumed, these constraints 

are not considered in SSI by OM yet, which leads to the failure of the identification of 

𝐸𝐼2. 

In the next recursive step, the unknowns observed previously are incorporated into the 

input of SSI by OM. This is, the new input for this recursive step {𝑤1, 𝑤2, 𝑣2, 𝑉1 and 

𝑉4} are regarded as known. Note that this new input will update Equation (3-19) and 

thus new parameters might be observed. The updated system of equations obtained in 

the next recursive step is as follows: 

𝐵2 ⋅ 𝑧2 =

(
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= 𝐷2 (3-22) 

The null space, 𝑉𝑛2, of the matrix 𝐵2 and the general solution of Equation (3-22), 𝑧2, 

are given as: 

𝑧2 = 𝑧𝑝2 + 𝑉𝑛2 ⋅ 𝝆𝟐 =

(
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) (3-23) 

Again, 𝑧2 is the sum of a particular solution, 𝑧𝑝2, and any linear combination of the 
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two bases in the null space, 𝑉𝑛2, in which the coefficients are given as 𝜌2,1 and 𝜌2,2. 

As shown in Equation (3-23), no variable is observable since no null row exists in the 

null space 𝑉𝑛2. In other words, the recursive steps end as per the criterion of null row 

in the null space. However, the main reason of the premature end of the recursive steps 

is that the nonlinear constraints, e.g. 𝐸𝐼2𝑣3=𝐸𝐼2 · 𝑣3 , are not incorporated into the 

process. 

Figure 3-10.b-d illustrates the effect of the lacking of nonlinear constraints. Providing 

determined values of 𝜌2,1 and 𝜌2,2, Equation (3-23) specifies a set of solution for 𝑧. 

To present the values of all unknowns in the same range, these values are normalized 

by their actual values obtained from SAP 2000. The solution of this problem is 

represented by a point in Figure 3-10.b, where the values of all normalized unknowns 

are one. If infinite sets of 𝜌2,1 and 𝜌2,2 are provided, all possible normalized values 

will yield six planes, as shown in Figure 3-10.b. For a given set, the equations {𝜌1=𝜌2,1 

and 𝜌2=𝜌2,2} specifies a vertical line and the intersections of this vertical line with the 

six planes indicate a specific solution of Equation (3-22). For illustration, when 𝜌2,1=-

22, 𝜌2,2=4.20E-4, as indicated by the vertical line in Figure 3-10.b, the six solutions 

are deviated from the solution of the problem. When the parameters are chosen as 

𝜌2,1=-22.22, 𝜌2,2=4.12E-4, the six intersections of the vertical line and the six planes 

will occur at the solution of the problem.  

Figure 3-10.c and d illustrate the variation of the normalized solution against 𝜌2,1 with 

fixed 𝜌2,2 of 4.12E-4 and the variation of the normalized solution against 𝜌2,2 with 

fixed 𝜌2,1 of -22.22. Evidently, the solution of the problem comes from a particular 

solution in the general solution. However, SSI by OM is incapable of detecting this 

solution in the general solution. The reason is that observability treats the coupled 

unknowns, 𝐸𝐼2𝑣3, as independent of the corresponding single variables, 𝐸𝐼2 and 𝑣3, 

though they should satisfy the constraint that 𝐸𝐼2𝑣3 = 𝐸𝐼2 ⋅ 𝑣3 In Figure 3-10.c and d, 

these constraints are satisfied gradually by adjusting 𝜌2,1 and 𝜌2,2.  

Consider the FEM of a one-story, one-bay frame depicted in Figure 3-11. In this frame, 

each column and each beam are divided into two elements. The end nodes of the 

columns are clamped. The possible measurements within this structure include 5 

horizontal deflections, 5 vertical deflections and 5 rotations. For simplicity, it is 

assumed that the areas of the columns and the beam are known, and the flexural inertias 

of the columns are identical. Hence, the two unknowns here are the flexural stiffnesses 

of the columns and the beam. Due to the requirement of essential set, two measurements 

should be used and sufficient to identify the two unknown flexural stiffnesses. However, 

it is found that measuring any two displacements out of the 15 possible measurements 

(C
2 

15=105 possible combinations) cannot ensure the identifiability of the two parameters. 

Half of the possible measurement sets can only identify one flexural stiffnesses and the 

other half cannot identify any parameter. This means that no essential set exists in this 

structure. A closer inspection of the general solution for this structure shows that the 

constraints between the variables are also missing. 
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Figure 3-11 A one‐story, one‐bay frame with two columns and one beam (unit: m) 

From the simply supported beam example, an explanation for the observability method 

being incapable of ensuring identifiability is provided algebraically. The algebraic 

analysis shows that the nonlinear constraints between the unknowns are neglected in 

OM. In the graphical illustration of the general solution (Equation (3-23)), it is shown 

that the exact solution is obtained when the constraints are satisfied. Moreover, the 

frame example shows that essential set may not exist in some structures due to the same 

reason. 

In order to get more knowledge of this phenomenon, an exhaustive examination of 

observability of the structural parameters is carried out in the structure depicted in 

Figure 3-12.a. This is a 15-𝑚 simply supported beam with 5 evenly divided elements. 

A vertical concentrated force is applied at node 3 with a magnitude of 100 𝑘𝑁. The 

flexural stiffnesses of the five elements are deliberately chosen as different values of 

1.5E6 𝑘𝑁·𝑚2
, 1.2E6 𝑘𝑁·𝑚2, 1.1E6 𝑘𝑁·𝑚2, 1.4E6 𝑘𝑁·𝑚2

 and 1.0E6 𝑘𝑁·𝑚2. In 

this structure, potential measurements include six rotations, 𝑤1-𝑤6, and four vertical 

deflections, v2-v5, i.e. ten in total. All the exact displacements are calculated in 

SAP2000 and used as the input in SSI by OM. In the identification problem, the five 

flexural stiffnesses (𝐸𝐼1-𝐸𝐼5) are assumed as unknown, i.e. 𝑁𝐹=5, whereas the axial 

stiffnesses are disregarded due to the loading case, i.e. 𝑁𝐴=0. Therefore, essential set 

capable of identifying the 5 flexural stiffnesses should have 5 measurements. In order 

to check the number of essential sets, an exhaustive investigation is carried out on all 

sets having 5 measurements. Hence SSI by OM is carried out on C
5 

10=252 combinations 

of 5 measurements from {𝑤1-𝑤6 and 𝑣2-𝑣5}. Figure 3-12.b illustrates the number of 

identified flexural stiffnesses by OM, 𝑁𝐹,𝑂𝑀, for these 252 sets. 
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Figure 3-12 (a) FEM of the 6‐node simply supported beam; (b) frequency of the 

occurrence of the number of identified flexural stiffnesses by OM, 𝑁𝐹,𝑂𝑀 

It can be seen that the occurrence of full observability, 𝑁𝐹,𝑂𝑀=5, occupies 25.4% of 

the 252 sets whereas the occurrence of partial observability, 𝑁𝐹,𝑂𝑀 ≤4, occupies 74.6% 

of the 252 sets. To distinguish among the sets achieving different levels of observability, 

they are classified into different patterns with regard to the location of the 

measurements. For instance, in the case of three measurement sets: {𝑤1, 𝑣2, 𝑤2, 𝑣3, 𝑤3}, 

{ 𝑤1, 𝑣2, 𝑣3, 𝑣4, 𝑤4 } and { 𝑤1, 𝑤2, 𝑤3, 𝑣4, 𝑤4 }, they are classified as {1,2,2,3,3}, 

{1,2,3,4,4} and {1,2,3,4,4}, respectively. In these patterns, the subscript of the 

measurements (i.e. node number), which indicates the associated locations, will be kept. 

Also, no distinction is made between measurements of deflections and rotations. If the 

same node number shows twice in a pattern, it means both the deflection and the 

rotation of this node are measured. Since the vertical deflection of node 1 and node 6 

are null (boundary conditions), 𝑣1  and 𝑣6  will be included to each pattern 

automatically. Table 3-2 provides the most representative patterns to illustrate the 

connection between the location of measurements and the number of identified 

parameters. 

All the patterns related with 𝑁𝐹,𝑂𝑀=5, i.e. full observability, are listed in the first 

column of Table 3-2. As indicated by the indices of these patterns, the measurements 

yielding full observability are taken at physically dispersed locations. These patterns, 

or the distributed placement of sensors, maintain the observability flow and thus the 

full observability is achieved. If the measurements are taken intensively at local areas, 

redundancy of measurements will emerge. For instance, in the case of 

{𝑣3, 𝑤3, 𝑣4, 𝑤4, 𝑤6 } (the first pattern related with 𝑁𝐹,𝑂𝑀 =1), all displacements of 

element 3 are measured and hence 𝐸𝐼3 is identified. Note that the recursive process in 
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SSI by OM is maintained by continuously providing the displacements of the nodes 

that are adjacent to the previously identified elements (Jose Antonio Lozano-Galant et 

al., 2015). The elements adjacent to element 3 are elements 2 and 4. To identify the 

parameter of element 2 (i.e. 𝐸𝐼2), at least one of 𝑣2 or 𝑤2 is required. However, due 

to the lack of any information about 𝑣2 or 𝑤2, 𝐸𝐼2 cannot be identified. Similarly, 

𝐸𝐼4  cannot be identified due to the lack of any information about 𝑣5  or 𝑤5 . The 

identification of 𝐸𝐼5, which should follow the identification of 𝐸𝐼4, is not executed 

neither. This renders the measurements 𝑣6 and 𝑤6 unutilized and ineffective. Hence, 

it can be seen that the effectiveness of a measurement is defined in the context of a 

particular measurement set and might be different for another set. These unutilized 

measurements are referred as ineffective measurements and all of them are given in 

bold in Table 3-2. From this analysis, it can be deduced that one reason for partial 

observability is that the number of effective measurements is less than the number of 

unknowns.  

Table 3-2. Examples of patterns identifying different number of parameters by OM, 

and corresponding identified flexural stiffnesses.  

Full observability Partial Observability 

𝑁𝐹,𝑂𝑀=5 𝑁𝐹,𝑂𝑀=3 𝑁𝐹,𝑂𝑀=2 𝑁𝐹,𝑂𝑀=1 

Pattern Observed Pattern Identified Pattern Identified Pattern Identified 

1,1,2,3,4,5,6 𝐸𝐼1~𝐸𝐼5 1,1,2,3,4,6,6 𝐸𝐼1~𝐸𝐼3 1,1,2,2,3,3,6 𝐸𝐼1, 𝐸𝐼2 1,3,3,4,4,6,6 𝐸𝐼3 

1,2,2,3,4,5,6 𝐸𝐼1~𝐸𝐼5 1,1,3,4,5,6,6 𝐸𝐼3~𝐸𝐼5 1,1,2,2,3,5,6 𝐸𝐼1, 𝐸𝐼2 1,1,2,4,4,6,6 𝐸𝐼1 

1,2,3,3,4,5,6 𝐸𝐼1~𝐸𝐼5 1,1,2,2,3,4,6 𝐸𝐼1~𝐸𝐼3 1,1,2,3,3,5,6 𝐸𝐼1, 𝐸𝐼2 1,1,3,3,4,4,6 𝐸𝐼3 

1,2,3,4,4,5,6 𝐸𝐼1~𝐸𝐼5 1,1,2,3,3,4,6 𝐸𝐼1~𝐸𝐼3 1,1,4,5,5,6,6 𝐸𝐼4, 𝐸𝐼5 1,1,3,5,5,6,6 𝐸𝐼5 

1,2,3,4,5,5,6 𝐸𝐼1~𝐸𝐼5 1,1,2,3,5,6,6 𝐸𝐼1, 𝐸𝐼2, 𝐸𝐼5 1,2,4,4,5,5,6 𝐸𝐼4, 𝐸𝐼5 1,1,2,2,4,6,6 𝐸𝐼1 

1,2,3,4,5,6,6 𝐸𝐼1~𝐸𝐼5 1,1,2,4,5,6,6 𝐸𝐼1, 𝐸𝐼4, 𝐸𝐼5 1,1,2,2,5,6,6 𝐸𝐼1, 𝐸𝐼5 1,3,3,5,5,6,6 𝐸𝐼5 

 

However, in the last 2 patterns in the column of 𝑁𝐹,𝑂𝑀=3, all measurements are 

involved in the identification but they still lead to partial observability. In fact, the 

defect of these patterns is not as intuitive as that revealed by ineffective measurements. 

For the measurement set {𝑣1,𝑤1,𝑣2,𝑣3,𝑣5,𝑣6 and 𝑤6} (the 5th pattern related with 

𝑁𝐹,𝑂𝑀=3), the identifications of {𝐸𝐼1, 𝑤2} and {𝐸𝐼5, 𝑤5} are, respectively, enabled by 

the measurements {𝑣1, 𝑤1, 𝑣2} and {𝑣5, 𝑣6, 𝑤6}. Likewise, the identification {𝐸𝐼2, 𝑤3} 

is enabled by the measurements {𝑣2, 𝑣3, 𝑤2}. Hence, all known displacements, either 

measured or estimated, are {𝑣1, 𝑤1, 𝑣2, 𝑤2, 𝑣3, 𝑤3, 𝑣5, 𝑤5, 𝑣6 and 𝑤6}. However, the 

lack of any information about 𝑣4  or 𝑤4  terminates the observability flow, and 

thereby fails the identification of 𝐸𝐼3  and 𝐸𝐼4 , despite {𝑣3, 𝑤3, 𝑣5  and 𝑤5 } are 

known.  
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With respect to 𝑁𝐹,𝑂𝑀=1 and 2, all the patterns yielding partial observability can be 

categorized as the cases of the ineffective measurements or of the premature end of the 

recursive steps. Note that the case of 𝑁𝐹,𝑂𝑀=4 does not exist. The reason is that if 

𝑁𝐹,𝑂𝑀=4, the measured displacements and the displacements which are estimated 

during the recursive steps, will certainly yield full observability. 

 

From the first two examples, it is found that the nonlinear constraints among the 

unknowns are lacking, and the two reasons for the partial observability are: (1) the 

premature end of the recursive steps and (2) the ineffective measurements due to 

redundancy in the measurement sets. Since adding nonlinear constraints to SSI by OM 

is likely to improve the performance of the original method in dealing with partial 

observability, COM is proposed, which incorporates these constraints into OM. The 

required nonlinear constraints are imposed through an optimization routine. The 

following points have to be taken into account when implementing the optimization: 

Whenever possible, appropriate measurement sets have to be chosen in order to avoid 

optimization. It is less desirable to employ COM than just OM due to the fact that the 

computation cost is normally higher for the first option. When optimization is required, 

SSI by OM will be carried out first and then Equation (3-19) from the last recursive 

step of SSI by OM will be used in COM. 

In the optimization, variables will be classified in one of three categories: (1) Coupled 

variables 𝑉𝑐 ; (2) Single variables 𝑉𝑠1 , which already exist in the unknowns 𝑧; (3) 

Single variables Vs2, which do not exist in the unknowns 𝑧. The final unknown vector 

𝑧∗  will be composed of 𝑧 and the new single variable Vs2, i.e. 𝑧∗={𝑧 𝑉𝑠2}T. For 

instance, if the unknown 𝑧  includes {𝐸𝐼2𝑤2 , 𝐸𝐼2𝑤3 , 𝐸𝐼2𝑣3  and 𝐸𝐼2 }, coupled 

unknowns 𝑉𝑐  will include {𝐸𝐼2𝑤2 , 𝐸𝐼2𝑤3  and 𝐸𝐼2𝑣3}. The single variables from 

{𝐸𝐼2𝑤2, 𝐸𝐼2𝑤3 and 𝐸𝐼2𝑣3} are {𝐸𝐼2, 𝑤2, 𝑤3 and 𝑣3}. Since 𝐸𝐼2 exists in 𝑧, it is 

categorized as 𝑉𝑠1  whereas 𝑤2 ,𝑤3  and 𝑣3  are categorized as 𝑉𝑠2 . The new 

unknown 𝑧∗ is {𝐸𝐼2𝑤2, 𝐸𝐼2𝑤3, 𝐸𝐼2𝑣3, 𝐸𝐼2, 𝑤2, 𝑤3 and 𝑣3}.  

After the classification of variables, the variables involved in the constraints are 

detected. These constraints are ensured by imposing the equality between the coupled 

unknowns 𝑉𝑐  and the product of corresponding single unknowns 𝑉𝑠  during the 

optimization process. 

3.3 Objective function  
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In order to consider the new unknowns 𝑉𝑠2, Equation (3-19) is rearranged as: 

 𝜖 = 𝐵∗ ⋅ 𝑧∗ − 𝐷 (3-24) 

where 𝐵∗ = [𝐵𝑁𝑒𝑞×𝑁𝑧  | Ω𝑁𝑒𝑞×𝑁𝑠2]. The matrix B, and vectors z and D are obtained from 

Equation (3-19) in the last recursive step of SSI by OM. 𝐵∗ is obtained by adding a 

null matrix 𝛺 to the matrix 𝐵. The dimension of this null matrix 𝛺 is 𝑁𝑒𝑞 times 𝑁𝑠2. 

𝜖 is the residual of the equations, which is a column vector having 𝑁𝑒𝑞 elements. Here, 

𝑁𝑒𝑞 and 𝑁𝑧, respectively, denote the number of equations and the number of unknowns 

in 𝑧. 𝑁𝑠2 denotes the number of new single unknowns in 𝑉𝑠2. The objective function 

is defined as minimizing the square sum of the residuals in Equation (3-24). 

In the optimization, the active-set algorithm (Nocedal & Wright, 2006) is adopted to 

find the optimal solution to minimize the square sum of the residuals in Equation (3-24) 

and the optimization toolbox of Matlab is used to implement this program. For better 

convergence and computational efficiency, the element in row i and column k of the 

coefficient matrix 𝐵∗ in Equation (3-24), 𝐵𝑖,𝑘
∗ , will be multiplied by the numerical 

value of the kth unknown obtained from direct stiffness method, 𝑧𝑘
∗̅̅̅, as presented in 

Equation (3-25): 

 𝐵𝑖,𝑘
∗̅̅ ̅̅ ̅̅̅ ̅̅ ̅  = 𝐵𝑖,𝑘

∗ ⋅ 𝑧𝑘
∗̅̅̅, ∀𝑖, 𝑘 = 1,2,⋯ , (𝑁𝑧 + 𝑁𝑠2) (3-25) 

The vector 𝐷 in Equation (3-24) will remain the same. Consequently, in Equation 

(3-26), the corresponding value of the solution minimizing the objective function, will 

be normalized by 𝑧𝑘
∗̅̅̅ , and thus the values of the normalized unknowns, 𝑧𝑘

∗̅̅̅̅̅̅ , are 

supposed to be around 1.  

 𝑧𝑘
∗̅̅̅̅̅̅ = 𝑧𝑘

∗/𝑧𝑘
∗̅̅̅, 𝑘 = 1,2,⋯ , (𝑁𝑧 + 𝑁𝑠2) (3-26) 

However, in order to avoid the instability of the solution due to very small or zero values 

of 𝑧𝑘
∗̅̅̅̅̅̅, a threshold 𝑧𝑡ℎ of 10-6 is chosen for 𝑧𝑘

∗̅̅̅̅̅̅. If 𝑧𝑘
∗̅̅̅̅̅̅ is larger than 𝑧𝑡ℎ, the original 

value will be used in Equation (3-26); otherwise, the threshold 𝑧𝑡ℎ will be used in 

Equation (3-26). 

After the normalization, the initial values for all 𝑧 ∗̅̅ are ones. If this normalization is 

not carried out, the same solution might be attained at a higher cost of time and 

computation capacity, which is verified later. The lower bound and the upper bound for 

each element in 𝑧 ∗̅̅ are 0.1 and 10, respectively. 

This proposed method combines SSI by OM with optimization and thereby includes 
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the nonlinear constraints in the identification process. The algorithm for SSI by COM 

is summarized as follows: 

Step1: Apply SSI by OM and check whether the full observability is achieved or 

not. Initiate SSI by OM with the given measurement set. Form the general equation 

(3-19), and check the null space of coefficient matrix 𝐵 to see if any parameters are 

observed. If so, update the input by incorporating observed variables and reinitiate the 

previous procedure until the end of the recursive process, i.e. no new variable is 

observable. If not, the OM is ended without estimating any unknown. If full 

observability is achieved at the end of the recursive process, it is not necessary to 

perform optimization; otherwise, go to step 2. It is highlighted that several recursive 

steps can be done in step 1 until no further unknowns are observable by OM; 

Step2: Obtain the equation 𝑩 ⋅ 𝒛 = 𝑫 (Jose Antonio Lozano-Galant, Nogal, et al., 2013; 

Nogal et al., 2015). Extract the updated general equation 𝐵 ⋅ 𝑧 = 𝐷 from the last step 

of SSI by OM. 

Step3: Analyze the unknowns z and generate the new unknowns 𝒛∗. Divide 𝑧 into 

𝑉𝑐 and 𝑉𝑠1. Then compare every component of the coupled unknowns 𝑉𝑐 with the 

existing single unknowns 𝑉𝑠1 and collect the single unknowns 𝑉𝑠2, which were not 

present in 𝑧. Generate the new unknowns 𝑧∗={𝑧 𝑉𝑠2}T. 

Step4: Form the new matrix 𝑩∗. Analyze the dimension of matrix 𝐵 and append the 

null matrix Ω to contain 𝑉𝑠2 in the 𝑧∗ without violating the equations. 

Step5: Obtain the normalized unknown 𝒛∗̅̅. Multiply the column of the matrix 𝐵∗ 

with the expected value 𝑧∗̅ so as to obtain the 𝐵∗̅̅ ̅̅̅ ̅ and the normalized unknown 𝑧 ∗̅̅. 

Step6: Store the constraint information. Detect the variables 𝑉𝑐 and 𝑉𝑠 involved in 

the nonlinear constraints, and establish the nonlinear constraints. 

Step7: Optimization. Choose the initial values of 𝑧 ∗̅̅  and set the bounds for the 

solution. The objective is to minimize the square sum of the residual vector, 𝜖. In the 

optimization process, the nonlinear constraints are imposed by ensuring the equality 

between the coupled unknowns Vc and the product of corresponding single unknowns 

Vs. 

A summary of the procedure is shown in the flow chart in Figure 3-13. 
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Figure 3-13 Flow chart of structural system identification by constrained observability 

method 

First, both structures depicted in Figure 3-10.a and Figure 3-11 are re-analyzed by COM. 

As expected, the first example becomes identifiable with the given measurement set. 

Also, 45 out of the 105 measurement sets becomes capable of identifying all parameters 

for the frame. However, these structures are far from proving the strength and 
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robustness of COM. In order to do this, the observability of the structure depicted in 

Figure 3-12.a is re-analyzed by COM. In this structure, the influence of the 

normalization and the choice of initial values on the accuracy of the result of the 

optimization are checked here. Note that the flexural stiffnesses of the five elements are 

1.5E6 𝑘𝑁·𝑚2,1.2E6 𝑘𝑁·𝑚2,1.1E6 𝑘𝑁·𝑚2,1.4E6 𝑘𝑁·𝑚2
 and 1E6 𝑘𝑁·𝑚2. Instead 

of normalizing the columns of the matrix B with the real inertias, these columns are 

normalized by 1E6 𝑘𝑁·𝑚2. Therefore, the normalized estimate of these inertias should 

be {1.5, 1.2, 1.1, 1.4 and 1}. Meanwhile, instead of using ones as initial values, random 

numbers generated by uniform distribution on [0.8, 1.2] are used. Note that some of the 

normalized estimates do not lie in the sampling interval of this distribution. According 

to the result, the optimization still converges to the same solution as that obtained by 

using the recommended normalization and initial values but with more iterations. In the 

following comparison, the normalization factors and the initial values are taken as 

recommended. The frequency of occurrence of the number of observed flexural 

stiffnesses by COM, NF,COM, is presented in Figure 5.a. 

 

Figure 3-14 (a) Frequency of the occurrence of the number of identified flexural 

stiffnesses by COM, 𝑁𝐹,𝐶𝑂𝑀 ; (b) number of observed flexural stiffnesses, 𝑁𝐹 , by 

observability method (OM) and constrained observability method (COM) for the 188 

sets with partial observability. 

Comparing Figure 3-12.b and Figure 3-14.a, a drastic increase, in the number of the 

measurement sets yielding full observability, from 64 for SSI by OM to 162 for SSI by 

COM is seen. In fact, all of the previous 64 sets by OM are contained in the new 162 

sets by COM due to the equivalence of the step 1 (recursive process) in SSI by COM 

and SSI by OM. In other words, the improvement of the observability level occurs in 

the remaining 188 (=252-64) sets. The numbers of observed flexural stiffness by OM, 

𝑁𝐹,𝑂𝑀, and by COM, 𝑁𝐹,𝐶𝑂𝑀, are plotted in Figure 3-14.b. For better visualization, the 
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measurement sets are sorted so as to cluster those sets with the same value of 𝑁𝐹,𝑂𝑀 in 

an ascending order. In this figure, the number of identified flexural stiffnesses, 𝑁𝐹, for 

different measurement sets by COM and OM are represented by circles and points, 

respectively. The abscissa of the markers is the numbering of the sets whereas the 

ordinate is the number of identified flexural stiffnesses. If an increase in the number of 

identified parameters is attained by COM, then a position of the circle higher than the 

one of the dot for that measurement set should be expected. It can be seen that the 

majority of the sets yielding 𝑁𝐹,𝑂𝑀=3 by OM, alter to yield 𝑁𝐹,𝐶𝑂𝑀=5 by COM. In 

these sets, it is found that the discontinuity of the observability flow can be overcome 

by applying the nonlinear constraints. For instance, in the final step of the observability 

analysis on the measurement set {𝑣1, 𝑤1, 𝑣2, 𝑣3, 𝑣5, 𝑣6, 𝑤6}, the up-to-date information, 

apart from the original measurements, contains the estimated displacement {𝑤2, 𝑤3, 𝑤5} 

and flexural stiffnesses {𝐸𝐼1, 𝐸𝐼2, 𝐸𝐼5}. Despite the information of {𝑣3, 𝑤3, 𝑣5, 𝑤5}, 

𝐸𝐼3 and 𝐸𝐼4 cannot be identified due to the lack of any of {𝑣4, 𝑤4}. However, these 

parameters can be identified with the imposition of associated nonlinear constraints. An 

explanation is that the compatibility requirement of the displacements at the mutual 

node of elements 3 and 4, i.e. the displacements of the node 4, and the nonlinear 

constraints force the solution. This deduction can be justified by another case. For 

measurement set {𝑣1, 𝑤1, 𝑣3, 𝑤3, 𝑣5, 𝑤6, 𝑣6}, only the identification of {𝑤5, 𝐸𝐼5} is 

attainable using OM. Note that the condition of the previous deduction is satisfied here 

for both pairs of elements 1, 2 and elements 3, 4 since all the displacements of nodes 1, 

3, 5 are known. As expected, this set yields the full observability by COM, which 

further verifies the deduction. In effect, each measurement set shifting from partial 

observability towards full observability, due to the adoption of COM, has been checked 

in an exhaustive way. It is found that the observability flow of each of these sets are 

maintained by the same mechanism. Moreover, for the same reason, three measurement 

sets, though not yielding the full observability, identify more inertias, switching from 

the case of 𝑁𝐹,𝑂𝑀=1 to the case of 𝑁𝐹,𝐶𝑂𝑀=3. 

For this example, it is seen that if some of the sensors are placed too intensively at a 

local area, then other sensors will be placed sparsely in the remaining areas in the case 

of essential sets. This leads to the loss of information in these remaining areas, or leads 

to the partial observability. A reexamination has been performed on those patterns 

where no improvement is obtained with COM. For instance, if the information obtained 

by measurement is considered as a geometric constraint on the deflection shape of the 

structure, the estimation of the parameters {𝐸𝐼1, 𝐸𝐼2, 𝐸𝐼3} is not fixed in the pattern 

{1, 1, 4, 4, 5, 6, 6}. That is, a relation can be established among them but it is impossible 

to get a unique estimate of these parameters. 

From the comparison of the results obtained by OM and by COM, it can be seen that 

COM, as an extended version of OM, enhances the performance of the original method. 

The number of essential sets soars from 64 to 162. Nevertheless, if the sensors are 

placed too intensively, there still exists possibility of partial observability. Hence, 
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distributed placement of sensors is strongly recommended. 

In the preliminary stage of condition assessment of any structure, the location of the 

possible measurements can be determined according to the accessibility of the location. 

The final location of the measurements will be a specific combination of some possible 

measurements. Prior to instrumentation, the capability of a given measurement set to 

identify all parameters in the structural system will be examined using the COM. 

Among all possible measurements sets, the ones more likely to produce full 

observability are the ones that include at least one measurement for every mechanical 

property at the location of the element with the unknown parameter to be identified.  

 

To test the performance of the proposed method, a large structure (Jose Antonio 

Lozano-Galant, Nogal, et al., 2013) previously analyzed by OM is re-analyzed by COM. 

This structure is a 13-storey frame with a height of 39 m and a width of 32 m. This 

structure is modelled by beam elements with three DOFs per node in SAP2000. The 

FEM of the structure, sensor and load locations are described in Figure 3-15.a.  

 

Figure 3-15 (a) FEM of the frame building, sensor locations (indicated by cross), and 

load locations (indicated by arrows); (b) the ratio between the normalized estimates and 

the perturbation factors for all parameters (𝐴1–𝐴8 and 𝐼1– 𝐼8) 

The geometric and material properties are also provided in this figure. In this study, all 

these 16 mechanical parameters are perturbed by random numbers. In previous study 

(Jose Antonio Lozano-Galant, Nogal, et al., 2013), 156 vertical deflections were 

measured while the number of measurements is the same as the number of unknowns 

in the current analysis. Also, the suggestion of distributed placement of sensors is 

followed here and the locations of these sensors are indicated by crosses in Figure 

3-15.a. To illustrate the robustness of COM, 4 sets of the 16 mechanical parameters are 
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synthesized by the product of the intact values and random numbers evenly distributed 

on [0.8,1.2], referred as perturbation factors later. The nodal displacements calculated 

by SAP2000 using these 4 generated parameter sets are used as the input of SSI by 

COM. Initial values of all ones are used here. Regarding the results from COM, the 

estimates of axial stiffnesses (flexural stiffnesses) are normalized by the product of 

Young’s modulus and the intact areas (inertias). In other words, an accurate estimation 

is characterized by the closeness between these normalized estimates and the 

perturbation factors. The ratios of the perturbed values and estimated values of the 

parameters are provided in Figure 3-15.b. In this figure, for each of these parameters, 

the deviation of the ratio between the estimate and the true value is within 2 percent, 

which is acceptable. It should be also noted that by OM, no inertia or area can be 

identified whereas all these parameters are obtainable by COM using this measurement 

set. 

This example shows the applicability of SSI by COM presented in this paper and its 

ability to identify the mechanical parameters of a large structure using essential sets. In 

this example, the structural system is defined by 16 structural parameters. One concern 

is that this assumption will lead to an average estimate of the structural parameters, 

which might not identify some localized damage appropriately. However, the 

assumption that the flexural stiffness and the axial stiffness of each element being 

different in such a structure could be a formidable task for the proposed method to solve. 

In order to deal with the trade-off between the issue of the number of parameters and 

the computation cost, it is advisable to use some engineering techniques, e.g. visual 

inspections, acoustic emission or impact method (hammering), before making 

modelling assumption with the aim of reducing the unknowns in the model. 

 

One crucial step in SSI is using the adequate number of measurements to achieve full 

observability of the whole structure. From the formulation of the identification problem 

by OM, the number of the measurements should be equal to the number of parameters 

in the structure. However, measurement sets with this number of measurements do not 

necessarily lead to the identification of all parameters. This is illustrated with a simply 

supported beam and a frame structure. By the analysis of this structure, the lack of 

nonlinear constraints, which is essentially induced by the linearity of OM, is presented 

for the first time. 

A thorough examination of the observability of structural parameters in a simply 

supported beam with more unknowns is carried out using 252 numerated measurement 

sets. In this analysis, the 252 sets are categorized into 70 patterns by the physical 

location of the measurements and corresponding identification results are discussed 

with respect to these patterns. It is found that the reasons of partial observability are: 

(1) the premature end of the recursive steps and (2) the redundant information due to 

intensive placement of sensors.  
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To address the issue of partial observability, SSI by COM, where the lacking nonlinear 

constraints are appended to SSI by OM through an optimization routine, is proposed 

with the aim of fully exploiting the information in measurements. In the first step of the 

proposed method, SSI by OM is performed until no more parameters are observed. If 

full observability is achieved, then the algorithm returns. Otherwise, the general 

equation (Equation (3-19)) from the last recursive step will be extracted. The structure 

of the unknowns in this equation is analyzed first and the relation between variables is 

identified for the nonlinear constraints used in the optimization. In the last step of the 

SSI by COM, an optimization is performed on the observability equation with the 

acquired nonlinear constraints and all the parameters observed in the first step. The 

efficacy of the proposed method to improve identifiability is justified by reanalyzing 

the same structure with the 252 enumerated sets. The number of sets achieving full 

observability via SSI by COM roughly doubles that number via SSI by OM. 

Nevertheless, it is strongly recommended to place the sensor in a dispersed way since 

the structure is still not fully observable in case of intensive placement of sensors. The 

strength and robustness of this method is further testified in a 13-storey building where 

the real mechanical parameters are perturbed by random numbers. It is seen that the 

axial stiffnesses and the flexural stiffnesses of all structural members can be estimated 

accurately.  

This method is able to identify mechanical properties for linear systems. For non-linear 

systems, the load test will induce a deformation increment that will provide the 

information of secant mechanical properties of different elements. It is highlighted that 

COM is not suitable to identify structures with geometrical non-linear behavior. As the 

use of an essential set provides the only possible solution that satisfies the equations, 

measurement or modelling errors will affect the estimates. These effects are not studied 

in this paper but it will be addressed in the near future. The importance of this research 

is that the supplement of the nonlinear constraints to the OM fully exploits the 

information provided by measurements. In contrast with SSI by OM, the range of the 

measurement sets qualified to be essential sets are greatly enlarged by adding nonlinear 

constraints via optimization. Besides, in some other sets, even though full observability 

is not achieved, number of identified parameters are also increased. Furthermore, the 

sharp decrease in the number of measurements used in the identification of the 

mechanical parameters in a 13-storey building also justifies the efficacy of SSI by COM. 
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Due to the inevitable noise existing in the measured responses, Structural System 

Identification is often a challenging task in terms of the accuracy of the estimations. 

Structural System Identification by the observability method, which is characterized by 

the analysis of null spaces, is a powerful tool to determine the observability of structural 

parameters. However, it did not cope well with measurement errors so far. In this paper, 

for the first time, functional relations among displacements, denoted by the term 

compatibility conditions, in beam-like structures are derived by the observability 

method. Then compatibility conditions are imposed in an optimization procedure to 

minimize the discrepancy between the measured response and the compatible one. The 

compatible response obtained by the optimization is used to obtain the final estimations 

of the parameters. In a simply supported bridge example, the proposed method is 

thoroughly evaluated with respect to the number of measurements, error levels and 

loading cases. In an example of a continuous bridge, different loading cases are used to 

estimate the bending stiffnesses of different zones. The accuracy and the efficacy of the 

proposed method are verified by the numerical results. 

Keyword: beam-like; compatibility conditions; measurement errors; null space; 

observability; redundant set; static; 

 

Research interest in Structural System Identification (SSI) has been increasing over the 

years due to the growing computation power and the rapid development of various 

algorithms. Any SSI can be defined as structural parameter estimation using discrete 

measurements of real-life structural response. A comprehensive description and the 

associated categories of SSI are provided in the technical report of (American Society 
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of Civil Engineers, 2013). These categories include static (Bakhtiari-Nejad et al., 2005; 

S. Li & WU, 2005; Jose Antonio Lozano-Galant, Nogal, et al., 2013; Nogal et al., 2015; 

Masoud Sanayei et al., 1997; Z. Sun et al., 2016) and dynamic excitations (Juan P 

Amezquita-Sanchez & Adeli, 2015; Behmanesh & Moaveni, 2015; Brincker & Ventura, 

2015; Eskew & Jang, 2017; Habtour et al., 2016; Jiang & Adeli, 2007; Z. Li et al., 

2017), parametric (Jose Antonio Lozano-Galant, Nogal, et al., 2013; Masoud Sanayei 

et al., 1997) and non-parametric models (Jiang & Adeli, 2007; Jiang et al., 2007; Mei 

et al., 2016; Okada, Nakata, SPENCER Jr, Kasai, & Kim, 2006), deterministic 

(Bakhtiari-Nejad et al., 2005; Eskew & Jang, 2017; S. Li & WU, 2005; Marano, 

Quaranta, & Monti, 2011; Nogal et al., 2015; Raich & Liszkai, 2012; Masoud Sanayei 

et al., 1997) and probabilistic approaches (J. L. Beck & Katafygiotis, 1998; James L. 

Beck & Au, 2002; Behmanesh & Moaveni, 2015; Ni, Lu, & Lu, 2016; H. Sun & Betti, 

2015; F. L. Zhang, Xiong, Shi, & Ou, 2016). For both static and dynamic SSI methods, 

structural responses have to be measured to provide the necessary information. 

However, in dynamic methods, the knowledge of the mass and the damping is also 

required unless full sets of modes are known or the mass scaling factor can be 

determined by experimental means (Brincker & Ventura, 2015), which is not necessary 

for static SSI. In addition, dynamic methods require an adequate control of excitation 

including the elimination of spurious excitation which was essential for precise model-

shape measurement, and the resolution of measurements for dynamic response was 

lower than that for static response (Bakhtiari-Nejad et al., 2005). In certain 

circumstances, static loading might be more economical than dynamic loading (Masoud 

Sanayei et al., 1997). Hence, when only stiffness identification is required, static SSI 

might be more attractive than dynamic SSI. Based on the physical interpretability, SSI 

methods can be classified as parametric or non-parametric. In parametric methods, 

parameters correspond with the physical parameters (e.g. elastic moduli, areas, 

bending/torsional inertias), as they are used in finite element models (FEM). Non-

parametric methods use basis functions to regress the response of the structure, e.g. 

autoregressive models (Mei et al., 2016; W. C. Su et al., 2014) or rational fractional 

polynomials (Okada et al., 2006). 

Concerning probabilistic SSI methods, mainly the Bayesian approach, posterior 

distributions of parameters are obtained by updating the assumed distributions of those 

parameters with the measured response. The estimations of the parameters can be 

obtained by point estimation (e.g. mean, median) or interval estimation (confidence 

interval) based on these posterior distributions. On the contrary, certainty is assumed 

for the parameters in deterministic SSI. Generally, deterministic methods try to pinpoint 

a unique solution of the problem. In both probabilistic and deterministic methods, 

optimization technique is closely involved. The objective of the optimization might be 

minimizing the discrepancy between the measured response and the predicted response, 

e.g. displacements (Nogal et al., 2015; Masoud Sanayei et al., 1997), strains (S. Li & 

WU, 2005; Masoud Sanayei et al., 1997), loads vector (Bakhtiari-Nejad et al., 2005; 

Masoud Sanayei et al., 1997), acceleration (Marano et al., 2011), mode shapes and 
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frequencies (Eskew & Jang, 2017), or maximizing the sensitivity of the frequency 

response functions (Raich & Liszkai, 2012). 

Observability Method (OM) is a mathematical tool dealing with the observability, i.e. 

the existence and the uniqueness, of the solution of a system of equations (or a subset 

of it) (Enrique Castillo et al., 2007). It has been applied to many engineering fields, e.g. 

water distribution systems (Díaz et al., 2016), power systems (Abur & Exposito, 2004), 

traffic networks(Agarwal, Kachroo, & Contreras, 2016). An algebraic technique to 

analyze the observability of the solution of a linear system is checking the null space of 

the coefficient matrix(Enrique Castillo et al., 2007). This technique can be applied to 

the identification of parameters in physical and engineering problems in which the final 

systems are in the form of monomial ratio equations (Enrique Castillo, Nogal, Lozano-

Galant, & Turmo, 2016). The application of OM has to be tailor-made due to the 

different characteristics of problems in different fields. The applicability of OM in SSI 

was verified in a cable-stayed bridge when investigating the measurement set to identify 

its mechanical properties (Jose Antonio Lozano-Galant et al., 2014). At that time, the 

method was carried out in a symbolical approach to determine the observability of the 

parameters and estimations of those observable parameters were lacking. Later, a 

numerical development of this method was provided to determine the values of those 

observable parameters (Nogal et al., 2015). 

The observability problem in power system (Abur & Exposito, 2004) considers a 

system with n parameters and m potential measurements. For the sake of economy and 

identifiability of the system, it is always desirable to know the least number of sensors 

required to identify these n parameters. In this context, the term essential sets relates to 

the measurement sets that ensure the identifiability of all n parameters while the drop 

of any measurement fails to do so. In the essential sets, the number of measurements is 

always the same as the number of parameters in the system. To address the issue of 

essential set in SSI by OM, observability tree method was proposed to analyze the 

identification sequence of the parameters (Jose Antonio Lozano-Galant et al., 2015). It 

was shown that not all measurement sets could lead to global identifiability. 

In SSI, there exist three sources of errors (Masoud Sanayei et al., 2001): (1) Errors in 

measurements. (2) Errors in modeling. (3) Errors in parameter estimation. In most cases, 

measurement errors are assumed to follow the normal distribution with zero mean 

(Abdo, 2012; Bakhtiari-Nejad et al., 2005). One way to mitigate the adverse effect of 

measurement errors is to use weight factors (Masoud Sanayei et al., 1997). Each 

displacement was measured repeatedly and the variance in those measured values was 

calculated. Lower weight factors were assigned to displacements having high variances. 

This idea is similar to the weighted least square method (Abur & Exposito, 2004). 

Another way to deal with measurement errors is to implement SSI under a Bayesian 

probabilistic framework. In these methods, many sets of parameters are sampled from 

prior (assumed) distributions. For each set of sampled parameters, the posterior 

probability of obtaining the measured response with this parameter set being real is 
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obtained. The final estimations of the parameters are determined by their posterior 

(updated) distributions using point or interval estimations. The main drawback of this 

method is that the intensity of the storage and the computation increase exponentially 

with the number of parameters. The effect of errors from measurements and parameter 

estimations was also investigated in SSI by OM for essential sets (J. Lei et al., 2017). 

In the analytical expression of the identified bending stiffness, which is a quotient, it 

was found that measurement errors might render the sign of the denominator wrong. 

As a result, the estimations of the parameters might have no physical meaning and their 

variances are quite high. To deal with measurement errors, an intuitive idea is to 

measure more displacements. The term redundant sets is related with the case when 

redundant measurements are used in addition to essential sets (Abur & Exposito, 2004). 

These redundant measurements not only maintain the identifiability of the parameters 

in case of malfunction of sensors but also improve the accuracy of the estimations. 

However, using redundant measurements can be ineffective for SSI by OM because the 

denominator of the estimations might still remain close to zero or have a wrong sign. 

In order to fill this gap, the functional relations among the measured displacements, 

which are referred to the compatibility conditions, are derived algebraically in beam-

like structures using OM for the first time. Then the incompatibility in measured 

displacements, which is caused by measurement errors, is reduced by an optimization 

routine with the compatibility conditions imposed. SSI is carried out using the 

compatible displacements eventually.  

In the remaining part of this paper, section 3.3.3 introduces the general idea of SSI by 

OM. In section 3.3.4, the algorithm of SSI using compatibility conditions is proposed. 

Each step is detailed by the analysis on a simply supported beam bridge. In section 

3.3.5, the accuracy of SSI by OM using redundant sets is provided first to emphasize 

the necessity of compatibility conditions. Then the performance of the proposed method 

is investigated regarding the effects of the number of measurements, error levels and 

loading cases. In addition, the applicability of this method is verified by a continuous 

bridge example. Finally, some conclusions are drawn. 

 

In SSI by OM (Jose Antonio Lozano-Galant, Nogal, et al., 2013), the FEM of the 

structure has to be defined first. Subsequently, the nodal equilibrium equations are 

obtained by direct analysis and then transformed into a system of monomial ratio 

equations. For illustration, assume that we have the following system of equations 

 𝐾 ⋅ 𝛿 = 𝑓 (3-27) 

In Equation (3-27), K, δ and f, respectively, represent the global stiffness matrix, the 

nodal displacements and the nodal forces. For 2D models with beam elements, the 

global stiffness matrix K is composed of the characteristics of the beam elements (i.e. 

length 𝐿, elastic moduli 𝐸, area 𝐴 and inertia 𝐼). Displacement vector δ includes 
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horizontal displacements 𝑢 , vertical deflection 𝑣  and rotation 𝑤  whereas force 

vector 𝑓 includes horizontal forces 𝐻, vertical forces 𝑉 and moments 𝑀.  

In direct analysis, every element in the matrix K and in the force vector f is assumed as 

known. The displacement vector δ is solved by Equation (3-27). In SSI by OM, which 

is an inverse analysis, the matrix K is partially known. Parameters appearing in the 

matrix K are {E, A, I, L}. It is generally assumed that the length 𝐿 is known while 

elastic moduli, 𝐸, areas, 𝐴, inertias, 𝐼 are unknown. Since the main objective of SSI 

is to assess the condition of the structure, the estimations of axial stiffnesses EA and 

bending stiffnesses EI are of primary importance. To reduce unknowns, EA and EI, 

instead of being regarded as the product of two unknowns, are treated as one unknown 

each.  

Once the unknowns in the matrix K, boundary conditions and measurements are 

determined, to solve Equation (3-27) in a linearized form, it can be rearranged as: 

 𝐾∗ ⋅ 𝛿∗ = 𝑓 (3-28) 

The operations to linearize Equation (3-27) include: (1) the separation of the columns 

of matrix K, where some entries are the sum of different variables, into several single 

columns related with different variables, (2) the elimination of duplicated variables, (3) 

the merge of associated columns and (4) the extraction of the measured displacements 

from associated products and (5) the multiplication of them with the associated columns 

in the matrix K* (Jose Antonio Lozano-Galant, Nogal, et al., 2013). The modified matrix 

K*
 has different dimensions from the matrix K. The linearized variables in the modified 

displacement vector δ∗ might be non-linear products of the bending or axial stiffnesses 

and displacements, e.g. EAu, EIu, EIw and EIv, as well as single variables, e.g. EA, EI 

or nodal displacements. The variables in 𝛿∗  and f can be clustered into groups of 

known quantities, indicated by subscript 1, and unknown quantities, indicated by 

subscript 0, as shown in Equation (3-29). 𝛿0
∗  includes variables associated with 

measured displacements or boundary conditions while 𝛿1
∗  includes variables 

containing the unknown displacements. Meanwhile, f1 includes the external loads from 

the controlled static test while f0 includes the reactions at the boundary conditions. The 

modified matrix K* is partitioned accordingly. 

 (
𝐾00
∗ 𝐾01

∗

𝐾10
∗ 𝐾11

∗ ) {
𝛿0
∗

𝛿1
∗} = {

𝑓0
𝑓1
} (3-29) 

In order to join the unknowns, Equation (3-29) is transformed into Equation (3-30).  

 𝐵 ⋅ 𝑧 = [
𝐾10 0
𝐾00 −𝐼

] {
𝛿0
∗

𝑓0
 } = {

𝑓1 −𝐾11𝛿1
∗

−𝐾01𝛿1
∗ } = 𝐷 (3-30) 

In Equation (3-30), unknown variables are of two types: (1) Variables containing 

displacements (u, v or w), or stiffnesses (EA or EI), or the products of both, (EAu, EAv, 

EAw, EIu, EIv or EIw); or (2) Reactions at the boundaries, H, V and M. The coefficient 

matrix B is composed of the measured displacements and the length of elements. 
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Meanwhile, the right-hand side vector D is composed of the external loads f1 and the 

equivalent nodal forces (K11δ1 or K01δ1). In short, the transformation from Equation 

(3-29) to Equation (3-30) collects all unknowns in 𝑧, and renders both B and D known. 

As the observability of the solution of Equation (3-30) are closely related with the 

concept of null space, its definition is given first. For a matrix 𝒫, its null space is the 

vector space whose vectors v always satisfy Equation (3-31). 

 𝒫 ⋅ 𝑣 = 0 (3-31) 

From linear algebra, vector v is always a linear combination of basis vectors of the null 

space of the matrix 𝒫. Then the null space matrix N is defined as the matrix whose 

columns are these basis vectors, this is to say, the columns of the null space matrix N 

form the basis of the null space. For Equation (3-30) to have a solution, it is sufficient 

to check that the product of the transpose of the right-hand side vector, DT, and the null 

space matrix N* of the transpose of the matrix B, is a null (zero) vector, i.e. DT∙N*=0. If 

this holds, the solution of Equation (3-30) has the structure: 

 𝑧𝑔 = 𝑧𝑝 + 𝑧ℎ = {
𝛿0
∗

𝑓0
}
𝑝

+ 𝑁 ⋅ 𝜌 (3-32) 

where zp is a particular solution of Equation (3-30). It can be obtained by Moore-

Penrose pseudoinverse or least squares methods. zh is a vector from the null space of 

matrix B, which is a linear combination of basis vectors of this null space. The columns 

of the null space matrix N correspond with these basis vectors while the vector ρ is 

composed of the coefficients of the linear combination. 

Null rows in the matrix N render associated elements of N∙ ρ null. As a result, in the 

general solution, the variables related to these null rows are equal to their values in the 

particular solution. In this case, these variables are determined and unique, i.e. 

observable. This is to say, the inspection of the matrix N and the identification of its 

null rows lead to the identification of the observable variables. When the product of the 

transpose of the right-hand side vector, DT, and the null space matrix N* of the transpose 

of the matrix B, is not null , i.e. DT∙N*≠0, then Equation (3-30) is not compatible and 

no solution exists (Enrique Castillo et al., 2007).  

When the observability of unknown variables is determined, the values of those 

observable variables are determined by the particular solution zp of Equation (3-30). It 

is to highlight that in SSI by OM, if any deflection, force or structural parameter is 

observed, this information might help to observe new parameters in the adjacent beam 

elements through a recursive process. In this analysis, the observed information is 

successively introduced as new input data in the observability analysis. The peculiarity 

of this method was illustrated by a detailed step-by-step example in previous studies 

(Jose Antonio Lozano-Galant, Nogal, et al., 2013; Jose Antonio Lozano-Galant et al., 

2014). 
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Measurement errors always arise due to uncontrollable factors, e.g. the change in 

temperature, ambient vibration due to wind. Measured displacements might not be 

compatible due to these errors. In this section, in order to smooth away the 

incompatibility among measured displacements, SSI for beam-like structures using 

compatibility conditions is proposed. The derivation of compatibility conditions among 

displacements and the procedures for incorporating these conditions into an 

optimization are illustrated by a simply supported bridge example. A summary of the 

proposed method is presented at the end. 

In this section, a simply supported bridge is analyzed. The nine steps required to carry 

out SSI for beam-like structures using compatibility conditions are exemplified by this 

structure. 

Multi-span simply supported bridge (Figure 3-16.a) is one of the most popular bridge 

types in practice. Example 1 (Figure 3-16.b) corresponds with an 18-𝑚 span of this 

arrangement. The cross section of the structure is constant and the bending stiffness is 

2.3×109 𝑁∙𝑚2. A 350 𝑘𝑁 vertical load is applied at one-third point of the span. In this 

example, the targeted parameters are the bending stiffnesses, since the axial behavior is 

not activated by this loading case. 

 

Figure 3-16 (a) Engineering practice of a multi‐span simply supported beam; (b) 

elevation of 18‐m span of a simply supported bridge; (c) 19‐node beam model for the 

structure in (b) 

Step 1: Introduce the geometry, as well as the known mechanical and geometrical 

properties and measured node forces to establish a FEM for the beam-like structure.  
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The FEM associated with Example 1 is shown in Figure 3-16.c. It is composed of 18 

one-meter long elements. The bending stiffnesses for elements 1-6, 7-12 and 13-18 are 

assumed as EI1, EI2 and EI3, respectively. Their real values are 2.3×109 𝑁∙𝑚2, that is, 

EI1,r=EI2,r=EI3,r=2.3×109 𝑁∙𝑚2. An external load is applied at node 7, i.e. V7=-350 𝑘𝑁. 

Step 2: Choose three nodal displacements belonging to elements with the same 

structural parameter and build Equation (3-30) using these displacements. 

Relations among nodal displacements that belong to the elements of the same bending 

stiffness can be found using OM. For instance, some relations among v7-v13 and w7-w13 

exist since elements 7 to 12 have the same bending stiffness EI2. Without loss of 

generality, the derivation of these relations is exemplified by the measurement set {w7, 

v10, w13}. It is to highlight that a different set (e.g. {v7, w8, v11} or {v9, v12, v13}) does not 

affect the result. The general equations (Equation (3-30) ) corresponding with this FEM 

and {w7, v10, w13} is obtained first (not shown here for the sake of brevity). In this 

equation, the coefficient matrix, the unknown vector and the right-hand side vector are 

denoted by B1, z1 and D1, respectively.  

Step 3: Check the null space matrix N of coefficient matrix B of Equation (3-30) to 

obtain the observable unknowns. 

The null space matrix N1 of the coefficient matrix B1 is provided in Equation (3-33).  

 𝑁1 =  

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1 𝑤7⁄ 0
1 0
2 0
3 0
4 0
5 0
6 0
1 0
1 0
1 0
1 0
1 0
1 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
⋅ ⋅
⋅ ⋅
⋅ ⋅
0 0
0 0)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

⋯ 𝐸𝐼1
⋯ 𝐸𝐼1𝑣2
⋯ 𝐸𝐼1𝑣3
⋯ 𝐸𝐼1𝑣4
⋯ 𝐸𝐼1𝑣5
⋯ 𝐸𝐼1𝑣6
⋯ 𝐸𝐼1𝑣7
⋯ 𝐸𝐼1𝑤1
⋯ 𝐸𝐼1𝑤2
⋯ 𝐸𝐼1𝑤3
⋯ 𝐸𝐼1𝑤4
⋯ 𝐸𝐼1𝑤5
⋯ 𝐸𝐼1𝑤6
⋯ 𝐸𝐼2
⋯ 𝐸𝐼2𝑣7
⋯ 𝐸𝐼2𝑣8
⋯ 𝐸𝐼2𝑣9
⋯ 𝐸𝐼2𝑣11
⋯ 𝐸𝐼2𝑣12
⋯ 𝐸𝐼2𝑣13
⋯ 𝐸𝐼2𝑤8
⋯ 𝐸𝐼2𝑤9
⋯ 𝐸𝐼2𝑤10
⋯ 𝐸𝐼2𝑤11
⋯ 𝐸𝐼2𝑤12
⋯ ⋅
⋯ ⋅
⋯ ⋅
⋯ 𝑉1
⋯ 𝑉19

 (3-33) 

It is seen that all the rows related with EI2, EI2v7-EI2v13 and EI2w8-EI2w12 are zeros. 
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Hence, EI2, EI2v7-EI2v13 and EI2w8-EI2w12 are observable. Also, reactions, V1 and V19 are 

observable since this is a statically determinate structure. However, for any row related 

with EI1 or associated products (e.g. EI1v2, EI1w1), at least one element of that row is 

nonzero. Hence, these unknowns are not observable. Specifically, due to insufficient 

information of the displacements of nodes 1-7, the first column of N1 implies a rigid 

body motion of rotation. That is, the rotations indicated by EI1w1-EI1w6 are the same 

while the deflections of these nodes can be calculated by the product of this rotation 

and the distance between the current node and node 1.  

Step 4: Derive the compatibility conditions and analytical expression for the ith 

structural parameter from those observable unknowns. 

Once the observable unknowns are detected, their estimations are specified by the 

associated values of the particular solution. For instance, the particular solutions for EI2 

and EI2v7 are provided in Equations (3-34) and (3-35). 

 𝐸𝐼2̂ =
18𝑉7𝐿

(𝑤7 −𝑤13)
𝐿

 (3-34) 

 𝐸𝐼2𝑣7̂ = −
3𝑉7𝐿

3(25𝑤7 − 12𝑣10 + 11𝑤13)

2(𝑤7 −𝑤13)
 (3-35) 

The hat, ^, denotes an estimation of the unknown. The physical meaning of the 

analytical expression of EI2, Equation (3-34), can be interpreted as the ratio of a moment 

expressed by the product of force and length and a curvature expressed by the 

displacements within elements of EI2.  

Rearranging the quotient between Equations (3-35) and (3-34) leads to the 

compatibility condition among {v7,v10,w7,w13}, as presented in Equation (3-36).  

 12𝑣7 − 12𝑣10 + 25𝑤7  +  11𝑤13 = 0 (3-36) 

The compatibility conditions linking {w7, v10 and w13} and each of {v7-v13 and w8-w12} 

are found in the same way for elements of EI2. It should be pointed out that regardless 

of the selected measurement set, the derivation of compatibility conditions always leads 

to identical mathematical equations.  

Step 5: Repeat steps 2-4, until compatibility conditions and analytical expressions have 

been obtained for all parameters  

Similarly, compatibility conditions among {v2-v7,w1-w7} for EI1 and those among {v13-

v18,w13-w19} for EI2 as well as the analytical expressions for EI1 and EI2 are obtained. 

It is pointed out that for one given bending stiffness, the functional relations among the 

nodal displacements belonging to elements with this stiffness are obtained by the 

repetition of steps 2-4. 

Step 6: Form an underdetermined system by combining all compatibility conditions 
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It is seen that displacements for beam elements with the same stiffness (EI1, EI2 or EI3) 

are dependent on three displacements within these elements (being aware that boundary 

conditions can reduce this number). In a more general case, a set of 7(=2+3+2) adequate 

displacements is needed to specify every displacement in this structure. Assume {w1, 

w3}, {w8, v9, w11} and {w15, w19} are chosen for EI1-EI3, respectively. Note that the 

displacements of joint nodes for elements with different parameters, e.g. v7 for EI1 and 

EI2, determined by different compatibility conditions should be equal to each other. 

Hence, 4 more equations can be imposed, i.e. v7(w1, w3) =v7(w8, v9, w11), w7(w1, w3) 

=w7(w8, w11), v13(w8, v9, w11) =v13(w15, w19) and w13(w8, w11) =w13(w15, w19). This forms 

an underdetermined system with 4 equations and 7 unknowns ({w1, w3, w8, v9, w11, w15 

and w19}). Hence, 3 out of the 7 adequate displacements are independent due to the 4 

additional equations.  

It is pointed out that all the compatibility conditions are related together by the 

displacements of those joint nodes between elements with different stiffnesses. From 

the resulting underdetermined system, a set of independent displacements can be 

obtained 

Step 7: Choose a set of independent displacements in Step 6 as a condensed set 𝛿𝑐. 

Express all compatible displacements 𝛿 and structural parameters θ as functions of 𝛿𝑐. 

That is, derive the functional relations 𝛿𝑖 = 𝑓𝑖(�̂�𝑐) and 𝜃𝑗 = 𝑔𝑗(𝛿𝑐). 

After steps 5 and 6, the relations among the nodal displacements belonging to elements 

with same stiffnesses as well as those associated with different stiffnesses are obtained. 

The displacements satisfy all these relations are referred as the compatible ones, 𝛿. 

Note that all these displacements 𝛿  are functions of a condensed set 𝛿𝒄  (the 

independent displacements obtained in step 6). Specifically, 𝑓𝑖(𝛿𝑐) is the functional 

form of the ith compatible displacement 𝛿𝑖 while 𝑔𝑗(𝛿𝑐) is the functional form of the 

jth parameter 𝜃𝑗 . 

Without loss of generality, 𝛿𝑐 is selected as {w1, v9 and w19} since three displacements 

among {w1, w3, w8, v9, w11, w15 and w19} are independent (step 6). In this case, the 

functional relations 𝑓𝑖(�̂�𝑐) for {w3,w8,w11 and w15} are presented in Equations (3-37)-

(3-40). 

 𝑤3 = 2(54𝑣9 +  1189𝑤1𝐿 +  17𝑤19𝐿) 3123𝐿⁄  (3-37) 

 𝑤8 = −(2356𝑤1𝐿 −  519𝑣9 +  280𝑤19𝐿) 2776𝐿⁄  (3-38) 

 𝑤11 = −2(21𝑣9  +  19𝑤1𝐿 +  103𝑤19𝐿)/347𝐿 (3-39) 

 𝑤15 = (352𝑤1𝐿 −  378𝑣9 + 575𝑤19𝐿)/3123𝐿 (3-40) 

Regarding the functional form for bending stiffness, for instance, 𝐸�̂�2  can be 

determined by w7 and w13 from Equation (3-34). As these two rotations are functions 

of 𝛿�̂�, the functional form for 𝐸�̂�2 in terms of 𝛿𝑐 is also available. 

Step 8: Find the optimal 𝛿𝑐  by minimizing the square sum of the proportional 

deviation of the compatible displacements, 𝛿, from the measured displacements, 𝛿, as 
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indicated by Equation (3-41). 

To smooth away the incompatibility in the measured displacements, the square sum of 

the proportional deviation of the ith compatible displacement, 𝛿𝑖, from the ith measured 

displacement, 𝛿𝑖, is minimized, as indicated by Equation (3-41). 

 𝐹(𝛿𝑐) =∑(
�̂�𝑖

𝛿𝑖
− 1)

2𝑁𝑚

𝑖=1

=∑(
𝑓𝑖(𝛿�̂�)

𝛿𝑖
− 1)

2𝑁𝑚

𝑖=1

 (3-41) 

in which Nm is the number of measured displacements.  

Step 9: Evaluate the structural parameters by providing the optimal 𝛿𝑐 to SSI by OM. 

The best estimations of the bending stiffnesses are determined by providing the optimal 

𝛿𝑐 to SSI by OM.  

All the necessary procedures to implement SSI for beam-like structures using 

compatibility conditions are presented in Figure 3-17 and summarized as follows. 

Step 1: Introduce the geometry, as well as the known mechanical and geometrical 

properties and measured node forces to establish a FEM for the beam-like structure.  

Step 2: Choose three nodal displacements belonging to elements with the same 

structural parameter and build Equation (3-30) using these displacements. 

Step 3: Check the null space matrix N of coefficient matrix B of Equation (3-30) to 

obtain the observable unknowns. 

Step 4: Derive the compatibility conditions and analytical expression for the ith 

structural parameter from those observable unknowns. 

Step 5: Repeat steps 2-4, until compatibility conditions and analytical expressions have 

been obtained for all parameters  

Step 6: Form an underdetermined system by combining all compatibility conditions 

Step 7: Choose a set of independent displacements in Step 6 as a condensed set 𝛿𝑐. 

Express all compatible displacements 𝛿 and structural parameters θ as functions of 𝛿𝑐. 

That is, derive the functional relations 𝛿𝑖 = 𝑓𝑖(�̂�𝑐) and 𝜃𝑗 = 𝑔𝑗(𝛿𝑐). 

Step 8: Find the optimal 𝛿𝑐  by minimizing the square sum of the proportional 

deviation of the compatible displacements, 𝛿, from the measured displacements, 𝛿, as 

indicated by Equation (3-41). 

Step 9: Evaluate the structural parameters by providing the optimal 𝛿𝑐 to SSI by OM. 
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Figure 3-17 Flowchart for structural system identification for beam‐like structures 

using compatibility conditions. 

 

In this section, the accuracy of SSI by OM using redundant measurements without 

imposing compatibility conditions is presented first. Then the performance of the 

proposed method is investigated in a simply supported beam with respect to the number 

of measurements, Nm, error levels, Elevel, and loading cases. At the end of this section, 

the applicability of this method is verified in a continuous beam. 

The redundant set {v3, v5, v7, v9, v11, v13, v15, v17}(Nm=8) is studied first. The measured 

displacements, 𝛿, are simulated by adding proportional noise to the real displacements, 

𝛿𝑟, as presented in Equation (3-42). This proportional noise is the product of a specified 

error level, Elevel, and a random number, χ. This random number 𝜒 follows a normal 

distribution with zero mean and standard deviation of 0.5, and it is truncated by the 

interval [-1,1]. 

 𝛿 = 𝛿𝑟 ⋅ (1 + 𝐸𝑙𝑒𝑣𝑒𝑙 ⋅ χ) (3-42) 

2000 numerical simulations of the identification of bending stiffnesses using error 

levels from 1% to 8% were carried out without imposing compatibility conditions 

(Nogal et al., 2015). As the number of equations exceeds the number of unknowns, the 

ill-posed problem was solved using the Penrose inverse subroutine provided by Matlab. 
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To normalize the estimations, all the estimations are divided by their real values, which 

are denoted by a hat and the subscript r, i.e. ^r. This normalization is followed in the 

rest of the paper. Unless otherwise stated, estimations always refer to those normalized 

ones.  

Without imposing some restrictions to the estimations, the method is useless due to the 

existence of extreme values (J. Lei et al., 2017). Thus, the average is taken for those 

estimations falling into the range of [0.5, 1.5]. Table 3-3 presents the mean of the 

estimations of associated parameters under different error levels using 8 measurements.   

Table 3-3 Mean of the estimations for different bending stiffnesses by SSI by OM 

without compatibility conditions 

Error level 𝐸�̂�1,𝑟 𝐸�̂�2,𝑟 𝐸�̂�3,𝑟 

1% 0.85 0.79 0.88 

2% 0.76 0.70 0.80 

3% 0.73 0.68 0.76 

4% 0.72 0.67 0.72 

5% 0.72 0.68 0.71 

6% 0.74 0.65 0.68 

7% 0.70 0.62 0.64 

8% 0.70 0.62 0.66 

 

From this table, it can be concluded that, when compatibility conditions are not imposed: 

(1) Regardless of the error level, great bias exists despite redundant measurements are 

used; (2) The bias is sensitive to the error levels; (3) Using redundant measurements 

fails to improve the accuracy of the estimation via SSI by OM. 

To investigate the effect of the number of measurements, three measurement sets are 

studied here. Apart from the set Nm=8, the other two sets are {v3-v5, v7, v9-v11, v13, v15-

v17} (Nm=11) and {v2-v18} (Nm=17). Note that the locations of measurements in both 

sets, set Nm=8 and set Nm=11, are included in the locations of measurements in set 

Nm=17. 2000 samples of measured displacements associated with set Nm=17 are 

generated with an error level of 4%. Then the samples for sets Nm=8 and Nm=11 are 

generated by taking the corresponding measurements in set Nm=17. 
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Figure 3-18 compares the accuracy of the estimations using these three sets. The 

accuracy of the proposed method is evaluated by the mean of the estimations while the 

robustness and confidence of the method are evaluated by the coefficient of variation 

(COV) in the estimations. Small COV of the estimations indicates a low dispersion. 

 

Figure 3-18 Using Nm = 8, 11, 17 measurements under error level of 4%: (a) mean of 

the estimations; (b) the coefficient of variation (COV) of the estimations 

In Figure 3-18.a and b, it is seen that 8 measurements are sufficient to estimate 𝐸�̂�1,𝑟 

and 𝐸�̂�2,𝑟 accurately with a low dispersion of the estimations. In the case of 𝐸�̂�3,𝑟, a 

slight overestimation of 1.3% is observed, which is acceptable. However, the COV of 

the estimations in 𝐸�̂�3,𝑟 is 0.112, which might not be negligible. When the number of 

measurements increases, the mean and the COVs of the estimations of the stiffnesses 

get closer to one and decrease, respectively. In addition, the improvement in 𝐸�̂�3,𝑟 is 

relatively large when compared with the improvements in 𝐸�̂�1,𝑟 and 𝐸�̂�2,𝑟. In Figure 

3-18.b, the drop of COV for 𝐸�̂�3,𝑟  is roughly twice the drop of COV in 𝐸�̂�1,𝑟  and 

𝐸�̂�2,𝑟 when the number of measurements increases. However, despite the fact that using 

more measurements reduces the extent of dispersion, the COV of the estimations of 

𝐸�̂�3,𝑟 using 17 measurements is still higher than the COV of the estimations of 𝐸�̂�1,𝑟 

or 𝐸�̂�2,𝑟 using 8 measurements. The improvements of the results can be noticed when 

compared with those in Table 3-3, where for 8 measurements and a 4% error the results 

were far from acceptable. The worse accuracy observed in 𝐸�̂�3,𝑟 compared with those 

results of 𝐸�̂�1,𝑟 and 𝐸�̂�2,𝑟 are in accordance with a previous study (J. Lei et al., 2017). 

In fact, for a given load test, the lowest the curvature in a given area of the structure, 

the worst the accuracy of the estimated parameters in that zone.  

The analysis of the effect of the number of measurements shows that: (1) For zones 

where curvature is excited, small number of measurements is sufficient to achieve 

reasonable accuracy. (2) The more the measurements, the less the deviation and the 

dispersion of the estimations. (3) Greater improvement in the accuracy of the 

estimations is seen for parameters in low curvature zones than those in high curvature 

zones. (4) The curvature level is more important than the number of measurements. 
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The effect of error levels is investigated here using the set Nm=8. The studied error 

levels range from 1% to 8%. For each error level, 2000 samples are generated by 

Equation (3-42). The mean and COV of the estimations under different error levels are 

summarized in Figure 3-19. In Figure 3-19.a, the mean of the estimations increases 

slightly with the error level. However, the sensitivity of the structural parameters to the 

error levels is quite different. When Elevel increases from 1% to 8%, the changes in the 

mean of 𝐸�̂�2,𝑟  and 𝐸�̂�1,𝑟  are 1.06% and 1.96% respectively, which are negligible. 

However, in the case of 𝐸�̂�3,𝑟, the associated change is 5.26%, which is comparatively 

large. The order of sensitivity to error levels for these parameters is 𝐸�̂�3,𝑟 >

𝐸�̂�1,𝑟> 𝐸�̂�2,𝑟. In addition, overestimation can be observed for all parameters. The extent 

of the overestimation follows the same order. In Figure 3-19.b, COV for all parameters 

grows linearly with the error levels. Again, the COV of 𝐸�̂�3,𝑟 is much higher than those 

of 𝐸�̂�1,𝑟 and 𝐸�̂�2,𝑟.  

 

Figure 3-19 Using Nm = 8 measurements under error levels of 1%–8%: (a) mean of the 

estimations; (b) the coefficients of variation (COV) of the estimations 

Hence, it can be concluded that: (1) For zones where curvature is excited, the deviation 

in the mean of the estimation is not sensitive to the error levels; (2) The level of 

dispersion (COV) increases linearly with the error levels; (3) The increase of deviation 

and dispersion is much faster in low curvature zones. 

In previous analyses, slight overestimation and large dispersion are observed in low 

curvature zones. To investigate the influence of curvature, the external load is moved 

gradually from the left support (node 2) to the center of the structure (node 10), which 

adds up to 9 loading cases, as indicated in Figure 3-20.a. The measurement set Nm=8 

(indicated by double arrows) is used here. 2000 samples are generated for both error 

levels of 4% and 8% by Equation (3-42). Mean and COV of the estimations of bending 
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stiffnesses under different loading cases and different error levels are summarized in 

Figure 3-20.b and c.  

 

Figure 3-20 (a) Different loading cases (V2–V10) and measurements (indicated by 

double arrows); (b) mean of the estimations under different loading cases with Errors 

of 4% and 8%; (c) the coefficient of variation (COV) of the estimations under different 

loading cases with Errors of 4% and 8% 

When the load is applied at node 2, the bending behavior of elements of EI1, i.e. 

elements 1-6, is quite activated. The associated mean for 𝐸�̂�1,𝑟 is 1.003 (Elevel=4%) and 

1.009 (Elevel=8%), which is insensitive to errors. However, in the case of EI3, a higher 

overestimation can be observed when higher errors exist in the measurements. The 

associated mean for 𝐸�̂�3,𝑟 is 1.017 (Elevel=4%) and 1.069 (Elevel=8%).  

When the load moves from node 2 to node 10, the curvature of the elements of EI1 

decreases while the curvature of the elements of EI3 increases. Correspondingly, an 

overestimation of 𝐸�̂�1,𝑟  arises and escalates while the overestimation of 𝐸�̂�3,𝑟  becomes 

less severe. Similar variation is found in the COV of 𝐸�̂�1,𝑟 and 𝐸�̂�3,𝑟. In a symmetric 

loading case (V10), the mean of 𝐸�̂�1,𝑟  and 𝐸�̂�3,𝑟  are the same, marked by the 

intersection P1 and P2 (Figure 3-20.b). This is the same case for associated COV, 

marked by the intersection P3 and P4 (Figure 3-20.c). Note that the bending behavior 

for elements of EI2 is quite activated under each loading case. When the load moves 

from node 2 to node 10, the curvature of these elements becomes even higher. As a 

result, a small but perceptible improvement is seen in both the mean and the COV of 

𝐸�̂�2,𝑟.  

The analysis of Figure 3-20 implies that: (1) In the same loading case, the deviation and 

the dispersion of the estimations are much higher in zones of lower curvature. (2) When 

the curvature increases due to the change of loading case, the deviation and dispersion 

of the estimations decrease correspondingly.(3) it is advisable to apply different loading 
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cases to study different zones of the beam. For instance, to identify EI1, the location of 

the load at node 2 is the best choice. 

This section illustrates the application of SSI using compatibility conditions to a 30 

𝑚+30 𝑚 continuous bridge and the applicability of using different loading cases to 

study different zones of this structure.  

The variation of the sectional properties is simulated by different values of the bending 

stiffnesses in different zones. The FEM for this structure and the structural parameters 

are depicted in Figure 3-21.a. It is assumed that EI1,r=EI8,r=1.5×106 𝑘𝑁 ∙𝑚2 , 

EI2,r=EI7,r=1.8×106 𝑘𝑁∙𝑚2, EI3,r=EI6,r=2.1×106 𝑘𝑁∙𝑚2, EI4,r=EI5,r=2.5×106 𝑘𝑁∙𝑚2. 

In this study, {v2-v12 and v14-v24} are measured and a point load is positioned along the 

deck to provide different static loading cases. For each loading case, measurements are 

generated 2000 times by Equation (3-42) using an error level of 4%. The mean and 

COV of the estimations are summarized in Figure 3-21.b and c. Due to the symmetry 

of the structure, only the results for half of the structure is provided.  

 

Figure 3-21 (a) Different loading cases (V2–V12) and measured deflections (v2-v12,v14-

v24); (b) mean of the estimations under different loading cases with Error = 4%; (c) the 

coefficient of variation (COV) of the estimations under different loading cases with 

Error = 4% 

In Figure 3-21.b, the bias in the mean of the estimations is generally within 2%. The 

largest bias is seen in 𝐸�̂�3,𝑟  and 𝐸�̂�4,𝑟  with a magnitude of around 5% when the 
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loading case is V5. When the load is applied at zones associated with EI3 and EI4, i.e. 

from V7 to V12, associated bias decreases greatly, In Figure 3-21.c, when the load is 

moved from V2 to V10, the curvatures of zones related with EI1 and EI2 always decrease. 

Consequently, the COVs for 𝐸�̂�1,𝑟and 𝐸�̂�2,𝑟 generally increase. In the case of 𝐸�̂�3,𝑟 

and 𝐸�̂�4,𝑟, their COVs decrease first due to the increase of curvatures in associated 

zones. However, when the load is quite close to the middle support, a high proportion 

of the load is borne by the middle support and insignificant bending behavior is induced 

in the structure. As a result, a sharp increase of COV is observed in Figure 3-21.c when 

the loading cases vary from V10 to V12. 

Since the mean of the estimations is generally around one, the best loading case for a 

targeted bending stiffness is selected as the loading case leading to the lowest dispersion 

of associated estimations. Figure 3-21.c shows that the variation of COV largely 

depends on the loading cases. The lowest COVs for EI1 and EI2 are 0.044 (V2) and 0.058 

(V5), respectively. They increases to 0.182 and 0.154, respectively, when the load is 

positioned at V12. The best loading case for estimating EI3 seems to be V11. However, 

note that the COV curve for 𝐸�̂�6,𝑟 is always lower than the COV curve for 𝐸�̂�3,𝑟 in all 

loading cases. Due to the symmetry of the structure, the estimation of EI6 using a load 

in the first span is the same as the estimation of EI3 using the associated symmetric load 

in the second span. Hence, the optimal loading case for estimating EI3 is symmetric to 

the loading case having the lowest COV of 𝐸�̂�6,𝑟  (i.e. V10). Due to the symmetry 

between V10 and V16, the loading case V16 yields the best estimation of EI3. The 

associated COVs for EI3 are 0.070 (V11) and 0.095 (V16), indicating a decrease of 26.3%. 

Similarly, the lowest COV of 𝐸�̂�5,𝑟 occurs at V9. Concerning the symmetry between 

EI4 and EI5 as well as the symmetry between V9 and V17, the loading case V17 yields the 

best estimation of EI4. The best mean, COVs and the load locations for 𝐸�̂�1,𝑟-𝐸�̂�4,𝑟  are 

listed in Table 3-4. Due to the symmetry, the results for 𝐸�̂�5,𝑟-𝐸�̂�8,𝑟  are not included. 

Table 3-4 The best mean, COVs and the associated loading cases for the estimations, 

𝐸�̂�1,𝑟-𝐸�̂�4,𝑟.  

 𝐸�̂�1,𝑟 𝐸�̂�2,𝑟 𝐸�̂�3,𝑟 𝐸�̂�4,𝑟 

Mean 0.996 1.006 0.998 1.005 

COV 0.044 0.058 0.070 0.104 

Best loading case  V2 V5 V16 V17 

 

It should be mentioned that, Maxwell-Betti reciprocal theorem can be exploited to 

reduce the number of sensors while still getting dense measurements (Z. Sun et al., 

2016; C. Wang et al., 2011), providing that the response induced by the excitation is 

still in elastic range. When one sensor is fixed and a point load is positioned at different 

locations, the readings of the sensor represent the deflections of the structure at the 

various locations of the load when applying the load at the location of the sensor. This 
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is to say, when the load is positioned at different locations, the placement of one sensor 

is the same as adding one loading case. This can be achieved by positioning a truck 

with calibrated weight at various locations along the bridges (Bell, Lefebvre, & Sanayei, 

2013). Hence, in order to get accurate and robust estimations of EI1-EI8, it is 

recommended to place sensors at nodes 2, 5, 16, 17, 9, 10, 21 and 24 together with a 

load positioned at various locations on the structure. 

This example shows the applicability of using different loading cases to obtain reliable 

estimations of the bending stiffnesses for different zones in a continuous beam. The 

best loading case for a targeted bending stiffness is selected as the one leading to the 

lowest dispersion of associated estimations.  

 

This paper proposes a novel approach for identifying compatibility conditions, the 

relations among displacements, in beam-like structure using observability method. By 

solving an underdetermined system of equations formulated by compatibility 

conditions, it is shown that all displacements in a beam-like structure are functions of 

a subset of these displacements. Then an optimization procedure is introduced to reduce 

the measurement errors by minimizing the square sum of the proportional deviation of 

the measured displacements and those compatible displacements. In the numerical 

simulation, it is shown that when compatibility conditions are not imposed: (1) 

Regardless of the error level, great bias exists in the estimations though redundant 

measurements are used. (2) The bias is sensitive to the error levels. (3) Using redundant 

measurements fails to improve the accuracy of the estimation via SSI by OM. After the 

imposition of compatibility conditions by optimization, the performance of the 

proposed method is investigated regarding the number of measurements, error levels 

and loading cases. It is concluded that: (1) The accuracy and robustness of the 

estimations are significantly improved when compatibility conditions are imposed. (2) 

The curvature of the zones where parameters are estimated is of vital importance: In 

the same loading case, the deviation and dispersion of the estimations are much higher 

in zones of lower curvature. Also, the deviation and dispersion of the estimations 

increase faster with error levels in these zones than in zones of higher curvature. (3) 

The improvement of the estimation due to the increase of measurements is more 

significant in low curvature zone. (4) For zones where curvature is excited, small 

number of measurements is sufficient to achieve reasonable accuracy. In addition, the 

deviation in the mean of the estimation is not sensitive to the error levels in these zones. 

(5) Different loading cases can be applied to achieve reliable estimations of parameters 

for different zones. 

The overall performance of the proposed algorithm illustrates its potential application 

in the SSI for beam-like structures. A possible direction of the future research could be 

the optimal sensor placement for various types of structures and the experimental 

verification for the proposed method.  
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Deflections are commonly measured in the static structural system identification of 

structures. Comparatively less attention has been paid to the possibility of measuring 

rotations. In addition to the advantages of using inclinometers, such as high-resolution 

and reference-free; although some works using rotations can be found in the literature, 

this paper, for the very first time, proposes a statistical analysis that justifies the 

theoretical advantage of measuring rotations. To do so, the analytical expressions for 

the target parameters are obtained via static structural system identification by 

constrained observability method first. Combined with the inverse distribution theory, 

the probability density function of the estimations of the target parameters are obtained. 

The comparative studies on a simply supported bridge and a frame structure 

demonstrate the strength of measuring rotations regarding the unbiasedness and the 

extent of variation in the estimations. In order to tackle with redundant measurements 

and achieve robust estimations of the parameters, four strategies are proposed and 

compared. Numerical verifications on a bridge structure and a high-rise building have 

shown promising results. 

 

Potential catastrophic events due to the failure of civil infrastructure (e.g. bridges, high-

rise buildings, dams) might claim people’s lives and cause substantial economic losses. 

It is vital to know the current condition of structures. For this reason, structural health 

monitoring and structural system identification (SSI) have attracted much attention in 

the past decades (Khuc & Catbas, 2017; H. Sun & Büyüköztürk, 2015; Z. Sun, Zou, & 

https://www.researchgate.net/profile/Maria_Nogal
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Zhang, 2017). A basic assumption in SSI is that the deterioration or the damage of 

structures is reflected in the change of structural parameters (such as bending stiffnesses, 

axial stiffnesses). These parameters can be estimated by various SSI methods using 

measured response from structures under external excitations. These methods not only 

validate the accuracy of computational models for the design but also help engineers to 

better understand the condition of the structures. 

SSI methods can be categorized as static or dynamic. The vast majority of these 

methods are dynamic ones. Depending on the source of excitation, dynamic SSI 

methods are categorized as input-output methods and output-only methods. The input-

output methods were developed in early periods. In these methods, both the external 

excitation and the response are measured (Atamturktur, Hemez, & Laman, 2012; 

Cheung & Beck, 2010; Jiang & Adeli, 2005; H. Sun & Betti, 2015). Atamturktur 

applied model calibration and validation to historic masonry monuments excited by an 

impact hammer at multiple locations (Atamturktur et al., 2012). (Cheung & Beck, 2010) 

applied Bayesian model class assessment and averaging to a dynamic system. (Jiang & 

Adeli, 2005) proposed Levenberg-Marquardt least-square method to train the dynamic 

fuzzy wavelet neural network model using the seismic records and measured data. (H. 

Sun & Betti, 2015) applied the Bayesian inference and a hybrid optimization algorithm 

to model updating. On the other hand, many studies are devoted to the output-only 

methods, where only ambient (e.g. wind-induced, traffic-induced) vibrations are 

measured (Juan P Amezquita-Sanchez & Adeli, 2015; Foti, Gattulli, & Potenza, 2014; 

H. Sun et al., 2015; F.-L. Zhang, Ni, & Lam, 2017). These methods are desirable 

because there is no need for measuring excitation and interrupting the operation of the 

structure. (F.-L. Zhang et al., 2017) develops a Bayesian model updating method 

incorporating modal identification information in multiple setups for structures under 

ambient excitations. (Foti et al., 2014) implemented the output-only identification for a 

seismically damaged structure. (Juan P Amezquita-Sanchez & Adeli, 2015) detected, 

located and quantified damages in a high-rise building without knowing the input. (H. 

Sun et al., 2015) applied a damped Gauss-Newton method to identify structural 

parameters with incomplete measurements. 

Compared with dynamic methods, static SSI methods are much less developed. 

(Masoud Sanayei & Scampoli, 1991) identified the plate-bending stiffness of a 

reinforced concrete pier deck using incomplete static test data. However, this method 

requires accurate force and displacement measurements. Later, (M Sanayei & Saletnik, 

1996a) used optimization techniques to minimize the discrepancy between the 

measured and the predicted static strains to identify the structural parameters for trusses 

and frames. A good selection of noise-tolerant measurements and forces was necessary 

and was achieved by pretest simulations. (Banan et al., 1994a) posed SSI as a 

constrained nonlinear least-squares problem by minimizing the discrepancies between 

the measured and the predicted displacements or forces. (Hjelmstad & Shin, 1997) 

incorporated an adaptive parameter grouping strategy with the work from Banan. The 
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proposed method can locate and assess damage even under sparse and noisy 

measurements. (Choi et al., 2004) derived elastic damage load theorem for statically 

determinate structure and validated the proposed method with a simply supported beam 

with single damage using deflections. (Z. Sun et al., 2016) approximated the curvatures 

of the studied beams by the second-order difference of deflections. The damages were 

located by the abnormality in the curvature curves. However, many deflections were 

required and the magnitude of damage was not quantifiable. (Q. Yang & Sun, 2010) 

applied flexibility disassembly technique in stiffness equilibrium equations to locate 

and quantify damages in structures. The efficacy of this method was validated by a 

cantilever beam and two trusses. However, an existing model of the healthy structure 

and measurements of all displacements are required. (Jose Antonio Lozano-Galant, 

Nogal, et al., 2013) applied the observability method (OM) to determine the 

identifiability of structural parameters in 2D beam models symbolically with any given 

static measurements. In this method, the nonlinearity due to the coupling of unknown 

variables was avoided by treating the products of several unknowns as single linearized 

variables. Later, the numerical development of this method, SSI by numerical OM 

(NOM), was proposed by (Nogal et al., 2015). The effects of measurement errors and 

simulation errors on the estimation accuracy were studied by (J. Lei et al., 2017). Later, 

(J. Lei, Xu, & Turmo, 2018) derived the compatibility conditions that the displacements 

of beam-like structures should satisfy using OM. These conditions were exploited to 

reduce the adverse effect of measurement errors on the estimation accuracy. However, 

this method is only applicable in beam-like structures. 

Existing static SSI methods largely measure deflections rather than rotations (Choi et 

al., 2004; Z. Sun et al., 2016; Q. Yang & Sun, 2010). However, inclinometers have been 

well developed and widely applied in many industries, e.g. automotive, electronics and 

aviation industries (Ha, Park, Choi, & Kim, 2013). In the context of civil engineering, 

they have been applied in the long term monitoring of structures. For instance, stadiums 

Design Plaza Building (Park, Shin, Choi, & Kim, 2013), high-rise buildings, Tianjin 

117 (597 m) (T. Liu, Yang, & Zhang, 2017), Shanghai Tower (632 m) (J. Z. Su et al., 

2013) and bridges, Lutrive Bridge (Robert-Nicoud, Raphael, Burdet, & Smith, 2005). 

Specially, the main application of inclinometers in bridges is to reconstruct the 

deflected shape due to the difficulty in measuring deflection directly. However, 

systematic errors might be introduced into the approximated deflections due to the 

assumption made in the basis functions (e.g. precalculated deflected shapes (Robert-

Nicoud et al., 2005), polynomials (X. He, Yang, & Zhao, 2014)). Hence, the direct use 

of rotations might be preferred. Zhang estimated the deflections accurately via partial 

least square method from an Finite Element Model (FEM) without using basis functions 

(W. Zhang, Sun, & Sun, 2017). In this work, the possibility of locating damage using 

inclinometers was also investigated. In fact, inclinometers have some merits that make 

them advantageous for SSI: (1) Reference-free. No need for reference points from 

which relative movements are measured for contact-based deflection measurement 

methods. On the other hand, inclinometers do not suffer from those limitations in 
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noncontact-based deflection measurement methods, like the illumination condition, the 

background disturbance and the movement of the cameras (Feng et al., 2016). (2) High 

resolution. The reported resolution of inclinometers is 9.7×10−7 𝑟𝑎𝑑 (Lee, Ho, & Lee, 

2012). A table of the technical specifications of several commercial inclinometers is 

also provided. Due to this high accuracy, it is easy for inclinometers to detect small 

deformations of the structure. (3) Compactness and lightweight. This makes the 

installation convenient, even in hard-to-reach locations. (4) Robustness. Each 

inclinometer is independent of others, and thus the malfunction of any does not affect 

the rest. (5) Recyclable and economical. Inclinometers are inexpensive and easy to 

operate (Robert-Nicoud et al., 2005; W. Zhang et al., 2017). They can be dissembled 

and reused easily. (6) Inclinometers can be incorporated into wireless sensor network 

to achieve remote and real-time monitoring (Ha et al., 2013).  

In previous study, it was demonstrated that the estimations of bending stiffnesses were 

more sensitive to the measurement errors in deflections than those in rotations for beam-

like structures (J. Lei et al., 2017). However, among all those work related to use 

inclinometers, no theoretical advantage of using rotations can be found. In addition, the 

comparison between the accuracy of estimations using rotations and using deflections 

is lacking for SSI in frame structures. Furthermore, when more displacements are 

measured, the estimations should be improved. However, the result of using more 

measurements was still biased (J. Lei, Xu, et al., 2018). 

To have a better understanding of the static SSI problem, the contributions of this paper 

are: 

(1) To provide an original and systematic methodology to obtain the analytical 

expressions for structural parameters θ in static SSI. 

(2) To provide statistical analysis of the distribution of the estimations using the 

analytical expressions and inverse distribution theory (Johnson, Kotz, & 

Balakrishnan, 1994). 

(3) To justify the theoretical advantage of using rotations than using deflections 

regarding the unbiasedness and the extent of variation in the estimations. 

(4) To provide several strategies to use redundant measurements in order to improve 

the accuracy of the estimations. 

The remainder of this paper is organized as follows. Section 3.4.3 describes the 

algorithm for SSI by constrained OM, which obtains the analytical expressions as well 

as the numerical estimations for the parameters. In addition, the procedure to carry out 
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statistical analysis with the resulting expression is also presented in this section. Section 

3.4.4 provides two illustrative examples to justify the theoretical advantages of using 

rotations over using deflections. Section 3.4.5 investigates the effectiveness of four 

strategies to make use of available measurements in a high-rise building. Finally, some 

conclusions are presented in section 3.4.6. 

 

In the first application of OM in SSI, the identifiability of structural parameters was 

determined symbolically by checking the null space (see Definition 1) of the coefficient 

matrix of a system of equations that was adapted from equilibrium equations in stiffness 

matrix method (Jose Antonio Lozano-Galant, Nogal, et al., 2013). This technique was 

also applied in the identification of structural parameters for cable-stayed bridges (Jose 

Antonio Lozano-Galant et al., 2014). (Nogal et al., 2015) proposed the SSI by 

Numerical OM (NOM) where a symbolical approach, which determined the 

observability of parameters, and a numerical approach, which evaluated the estimations, 

were combined. 

Definition 1(Null space and Null space matrix): The null space for a m×n matrix [A] 

is the vector space whose vectors satisfy Equation (3-43), which is a homogeneous 

equation. 

 [𝐴]{𝑥} = {0} (3-43) 

Hence, the null space for matrix [𝐴] is defined in Equation (3-44). 

 𝑁𝑢𝑙𝑙([𝐴]) = {{𝑥} ∈ 𝑅𝑛|[𝐴]{𝑥} = 0} (3-44) 

The null space matrix [N] for the matrix [A] is a matrix whose columns form a basis of 

the null space Null([A]), which can be computed by Gaussian elimination. In fact, any 

vector in the null space is a linear combination of the basis vectors for Null([A]), i.e. 

columns of the matrix [N]. 

In both SSI by OM and by NOM, it is pointed out that:(1) The identification of 

structural parameters is a recursive process in which the parameters identified in the 

last recursive step are incorporated into the input of the current recursive step to enable 

the identification of other parameters. (2) In each recursive step, the coupled variables 

appearing in the system of equations are treated as linearized ones.  

However, it was found that the assumption of linearity might reduce the number of 

observable parameters with given measurement sets(J. Lei, Nogal, Lozano-Galant, Xu, 

& Turmo, 2018). Then, a two-stage SSI by constrained OM (COM) was proposed: (1) 

Stage 1: SSI by NOM is implemented until no more parameters are observable. (2) 

Stage 2: The system of equations from the last recursive step in Stage 1 is reformulated 



3.4 Robust Static Structural System Identification Using Rotations

 

84 

 

as a constrained optimization problem minimizing the square sum of the residuals of 

this system.  

The 7 steps to carry out SSI by COM are described below. The Stage 1 is related to 

Steps 2-5 while the Stage 2 is related to Step 7. 

Step 1: Define an initial FEM using 2D beam elements for the structure to be analyzed. 

Generate the system of equilibrium equations at all nodes for this FEM, as shown by 

Equation (3-45). 

 [𝐾]{𝛿} = {𝑓} (3-45) 

The matrix [K] is the global stiffness matrix that includes the information of length Lj, 

elastic moduli Ej, area Aj and inertia Ij of element j (j=1, 2… Ne). The displacement 

vector {δ} comprises horizontal deflection ui, vertical deflection vi, rotation wi of node 

i (i=1, 2… Nn). The force vector {f} comprises horizontal force Hi, vertical force Vi and 

moment Mi applied on node i (i=1, 2… Nn). The numbers of elements and nodes in the 

FEM are denoted by Ne and Nn. 

Step 2: Introduce the boundary conditions and values of the increments of 

displacements and forces during the static test to obtain the observability equations. 

The entries in the matrix [K] are sums of monomial ratios, which are the ratios between 

axial or bending stiffnesses and the square (or cubic) of the length, i.e. 
𝐸𝑗𝐴𝑗

𝐿𝑗
, 
𝐸𝑗𝐼𝑗

𝐿𝑗
2  or 

𝐸𝑗𝐼𝑗

𝐿𝑗
3 . 

In direct analysis, the mechanical properties, Ej, Aj, Ij and the geometrical properties, Lj, 

are known and hence the matrix [K] is known. This is not true when the SSI is 

introduced. Generally, it is assumed that Lj is still known and Ej, Aj, Ij are unknown 

parameters to be estimated. Note that Ej, Aj, Ij and Lj from different elements might 

appear in the same entry due to the element connectivity. To separate these parameters, 

each column of matrix [K] is divided into multiple columns such that any resulting 

column is uniquely related to one monomial (stiffness) EjAj or EjIj. Meanwhile, the 

displacement vector {δ} is expanded correspondingly. Then, these stiffnesses are 

extracted from the matrix [K] and the expanded displacement vector is multiplied by 

them. Hence, a (constant) modified matrix [K*] and a modified vector {δ*} composed 

of nonlinear products, e.g. EjAjui, EjIjwi, EjIjvi, are obtained, as shown in Equation (3-46). 

 [𝐾∗] ⋅ {𝛿∗} = {𝑓} (3-46) 

Once the boundary conditions and the forces applied in the non-destructive static test 

have been defined, it is assumed that a subset of increments of deflections {𝛿1
∗} of {𝛿∗} 

is known and a subset of forces {f1} are known while the remaining part {𝛿0
∗} and {f0} 

are unknown. By static condensation procedure, Equation (3-46) can be partitioned as 

Equation (3-47). 
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 [𝐾∗]{𝛿∗} = [
𝐾00
∗ 𝐾01

∗

𝐾10
∗ 𝐾11

∗ ] {
𝛿0
∗

𝛿1
∗} = {

𝑓0
𝑓1
} = {𝑓} (3-47) 

To cluster the unknowns {𝛿0
∗} and {f0}, Equation (3-47) can be rewritten equivalently 

as the observability equations, Equation (3-48). 

 [𝐵]{𝑧} = [
𝐾10
∗ 0

𝐾00
∗ −𝐼

] {
𝛿0
∗

𝑓0
} = {

𝑓1 − 𝐾11
∗ 𝛿1

∗

−𝐾01
∗ 𝛿1

∗ } = {𝐷} (3-48) 

in which 0 and I are the null and the identity matrices, respectively. 

Step 3: Check the null space matrix [N] of the coefficient matrix [B] to determine the 

observability of unknowns in {z} and obtain the numerical estimations for observable 

variables. For Equation (3-48) to have at least one solution, the product of the transpose 

of the right-hand side vector, {DT} and the null space of the transpose of the matrix [B], 

Null([BT]), should satisfy that [DT]·Null([BT])=0. If this holds, the structure of the 

general solution {zg} to Equation (3-48) is given by Equation (3-49) 

 {𝑧𝑔} = {𝑧𝑝} + {𝑧ℎ} = {
𝛿0
∗

𝑓0
}
𝑝

+ [𝑁] ⋅ {𝜌} (3-49) 

where {zp} is a particular solution to Equation (3-48) and {zh} is a solution to the 

homogeneous version of Equation (3-48) (i.e. the vector [D] is replaced by zeros). From 

Definition 1, {zh} is a vector in Null([B]), as well as a linear combination of the columns 

of the matrix [N]. The coefficients of the linear combination are denoted by the vector 

{ρ}. The observability of unknowns in the vector {z} is determined by checking null 

rows in the matrix [N]. If any row in the matrix [N] is null, then the same row of {zh} 

is also null. Then the associated variable in {zg} is determined by its particular solution 

{zp}. This means that this variable is uniquely determined and observable. The 

calculation of the null space matrix [N] should be carried out symbolically to avoid 

omitting observable variables because close to zero values from numerical calculations 

might appear in those null rows. The numerical values of the observable variables are 

obtained from the particular solution of Equation (3-48) using least squares or Moore-

Penrose pseudo-inverse methods. All of these algorithms are available in many 

packages, e.g. Matlab or Mathematica. 

Step 4: Check whether new variables in the unknown vector {z} were identified or not. 

If identified, go to Step 5. Otherwise, go to Step 6. 

Step 5: Any identified variables will be incorporated into the preceding input to form 

the subsequent input and initiate a new recursive step. This may enable the 

identification of other unknowns in {z}. Steps 2-4 are repeated until no more variables 

can be identified.  

Step 6: Check whether all variables are identified or not. If all the parameters are 

identified, then SSI by COM is finished. Otherwise, go to Step 7. 

Step 7: Obtain the estimations of parameters by solving the constrained optimization 
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problem that is adapted from the observability equations in the last recursive step. Since 

the linearization of the unknowns leads to the reduction of observable unknowns, the 

nonlinearity in SSI is regained by means of solving an optimization problem with the 

constraints that the linearized products are equal to the product of associated single 

variables, e.g. EI2v2=EI2·v2.  

  

Figure 3-22 Flowchart of the algorithm for SSI by COM 

However, some single variables {zs} may not appear in the unknown vector {z} of 

Equation (3-48). A new unknown vector {z*} is obtained by adding {zs} in {z}. A null 

matrix [Ω] is introduced into the coefficient matrix so that the equations are not violated, 

as shown in Equation (3-50). 

 [𝐵∗] ⋅ {𝑧∗} = [𝐵 𝛺] {
𝑧
𝑧𝑠
} = {𝐷} (3-50) 

The objective function of the optimization is to minimize the square sum of the 

residuals of Equation (3-50), as shown in Equation (3-51). 

 𝑓(𝑧∗) = ∑𝜖𝑖
2

3𝑁𝑛

i=1

 (3-51) 

where ϵi is the residual of the ith equation in Equation (3-50). 

Remark 1: In Step 2, the observability equations (Equation (3-48)) are adapted from 

equilibrium equations. Each equation is related to the equilibrium at one node. In 

addition, the residuals appearing in Equation (3-51) are those unbalanced nodal forces. 

The objective function (Equation (3-51)) is essentially the square sum of all unbalanced 

nodal forces. 
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Remark 2: In Step 3, instead of obtaining numerical estimations, the analytical 

expressions of the variables can be obtained symbolically using Gaussian elimination, 

which is essential for the statistical analysis presented in following section. 

Remark 3: In stage 1 (Steps 2-5), the observability equations are treated linearly such 

that the computation is much reduced when compared with nonlinear methods. All the 

steps in stage 1 are the same as those in SSI by NOM.  

Remark 4: In stage 2 (Step 7), the ignored nonlinearity is resolved by imposing 

constraints via optimization with the aim of identifying more parameters. Since some 

parameters have been identified in stage 1, the solution space for the optimization 

algorithm to explore in stage 2 is much reduced, which eases the computation and 

convergence issues. In addition, the magnitudes of the variables in {z∗} might be wildly 

different. Hence, numerical scaling is recommended prior to solve the optimization for 

faster convergence and better computation efficiency.  

The definition of inverse distribution is given here. 

Definition 2 (Inverse distribution): Let X be a random variable and the random variable 

Y is the inverse of X, i.e. Y=1/X. Then the distribution of Y is called the inverse 

distribution of X. In this paper, it is assumed that measurement errors follow a normal 

distribution. Random errors are added to theoretical displacements in a proportional 

manner, as indicated by Equation (3-52). 

 𝛿 = 𝛿𝑟 ⋅ (1 + 𝐸𝑙𝑒𝑣𝑒𝑙 ⋅ 𝜉) (3-52) 

δr is the displacement obtained from finite element analysis and Elevel is the error level. 

ξ is a random number that follows the normal distribution with zero mean and standard 

deviation 0.5, i.e. N(0, 0.52). Some important properties about the inverse distribution 

of normal random variables (Johnson et al., 1994) are provided here. If a random 

variable X follows the normal distribution with the mean µ and the standard deviation 

σ, i.e. X∼N(µ,σ2), the probability density function of the random variable Y=1/X (or the 

inverse distribution of X) is given by: 

 𝑝𝑌(𝑦|𝜇, 𝜎) =
1

√2𝜋𝜎𝑦2
𝑒
−
[(
1
𝑦
)−𝜇]

2

2𝜎2  (3-53) 

The distribution of Y is bimodal and it has a negative mode at y1 and a positive mode at 

y2. 

 𝑦1 = −
𝜇 + √𝜇2 + 8𝜎2 

4𝜎2
 (3-54) 



3.4 Robust Static Structural System Identification Using Rotations

 

88 

 

 𝑦2 =
−𝜇 + √𝜇2 + 8𝜎2 

4𝜎2
 (3-55) 

The mean and the standard deviation for the distribution of Y on a specified interval can 

be calculated by associated integrations of the probability density function pY. These 

formulas can be found in classic statistic books (Johnson et al., 1994). 

Step 1: Define a FEM for the structure to be analyzed according to the aimed accuracy 

of estimations. 

Step 2: Choose a measurement set to obtain the analytical expression for the target 

parameter θ using SSI by COM. Instead of obtaining the particular solution numerically 

(see Step 3 in Figure 3-22), the solution is obtained symbolically. Rewrite this 

expression for θ as the reciprocal of an expression denoted by Ddenom, i.e. θ=1/Ddenom. 

Step 3: Calculate the theoretical displacements of the structure using the finite element 

method. 

Step 4: Analyze the distribution of Ddenom using Equation (3-52) and the theoretical 

values obtained in Step 3. 

Step 5: Analyze the distribution of θ=1/Ddenom using Equations (3-53)-(3-55). 

Remark 1: The availability of analytical expressions depends on the number and the 

type of the measurements in Step 2. When less than required measurements are used, 

the target parameter is not observable (Jose Antonio Lozano-Galant et al., 2015). Hence, 

neither analytical expressions nor numerical estimations can be obtained. When more 

than required measurements are used, the target parameters are observable and can be 

numerically evaluated. However, the analytical expressions are not obtainable. The 

required measurements can be determined by trial and error methods, i.e. adding one 

measurement each time until the analytical expressions are obtained. For ease of 

discussion, the measurement sets that are capable of deriving the analytical expressions 

for the target parameters θ are referred as minimum sets of parameters θ. 

Remark 2: Ddenom is a linear transformation of the chosen measurements in Step 2. 

Since the measurements follow normal distribution, the distribution of Ddenom can be 

obtained from linear transformation of these normal distributions. 

 

Advantages of using rotations are not limited to the practical issues mentioned in 

section 3.4.1. In this section, two illustrative examples using statistical analysis are 

provided to emphasize the theoretical motivation of measuring rotations rather than 

deflections. Example 1 corresponds to a simply supported bridge while example 2 

corresponds with a two-story one-bay frame. 
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In this section, statistical analysis is carried out for a simply supported bridge using 

different measurement sets. The statistical analysis is validated by a Monte-Carlo 

simulation first and then a comparative study between different measurement sets is 

carried out to justify the advantage of using rotations. Example 1 is a simply supported 

bridge 3L long. Its FEM is discretized into 12 elements and is parameterized by three 

bending stiffnesses (EI1−EI3) (Figure 3-23). Assume the target parameter is EI2. OM 

indicates that any two rotations or one rotation plus two deflections, or three deflections 

in nodes 5-9 are qualified to identify EI2. Without loss of generality, three sets, set 1 

(v5, v7, v9), set 2 (v5, v7, w9) and set 3 (w5, w9), are studied. 

 

Figure 3-23 FEM for a simply supported bridge 

The analytical expression of EI2 in terms of set 3 (w5, w9) is given by Equation (3-56). 

𝐸𝐼 2
𝑠𝑒𝑡3 =

{16∑ (𝑀𝑖 −𝑀14−𝑖)
5
𝑖=1 + 8𝑀6 − 8𝑀8 + 4𝐿∑ [(𝑖 − 1)𝑉𝑖

5
𝑖=2 + (𝑖 − 1)𝑉14−𝑖] + 19𝑉6𝐿 + 20𝑉7𝐿 + 19𝑉8𝐿}

32(𝑤5 − 𝑤9)
𝐿

 (3-56) 

In Equation (3-56), the external loads are collected in the numerator while the 

measurements (w5, w9) are collected in the denominator. The estimation of EI2 only 

depends on the loading case and the measured displacements, not related with EI1 or 

EI3. Assume L=3 m, the depth and width of the cross section are 0.5 m and 0.3 m. The 

inertia and the elastic modulus are 3.125×10−3 m4 and 3.5×107 kN/m2. A static test is 

considered as a vertical concentrated load V5=100 kN applied at the one-third point. The 

ratio of the maximum deflection to the span is 1/760. The increments of the measured 

displacements are listed in Table 3-5. Since V5=-100 kN and all the other loads are null, 

Equation (3-56) can be simplified as Equation (3-57). 

 
𝐸𝐼2

set3 =
𝑉5𝐿

2

2(𝑤5 − 𝑤9)
=

1

2(𝑤5 − 𝑤9)
𝑉5𝐿2

 
(3-57) 
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Table 3-5 Increments of deformations for example 1 due to the concentrated load V5=-

100 kN 

Deformations Values Unit 

v5 -0.010971 m 

v7 -0.011829 m 

v9 -0.009600 m 

w5 -0.001829 rad 

w9  0.002286 rad 

 

With Table 3-5 and Equations (3-53)-(3-55), the distributions of w5−w9 and 
2(𝑤5−𝑤9)

𝑉5𝐿2
 

as well as 𝐸𝐼2
𝑠𝑒𝑡3  can be obtained. The distributions for 𝐸𝐼2

𝑠𝑒𝑡1(v5, v7 and v9) and 

𝐸𝐼2
𝑠𝑒𝑡2(v5, v7 and w9) are obtained in the same way. To validate the statistical analysis, 

2000 samples of measurement set (v5, v7 and v9) are generated by Equation (3-52) with 

an error level of 5%. 2000 estimations of EI2 are obtained from these samples. In this 

paper, unless otherwise stated, all estimations are normalized by their nominal values. 

The probability density of the 2000 estimations is obtained using kernel density 

estimation, which is done by the ksdensity command in Matlab. In Figure 3-24.a, the 

validity of the proposed statistical analysis is justified by the complete agreement 

between the estimated probability density curve (red dashed line) and the theoretical 

one (green solid line) using Equation (3-53). Note that the distribution of EI2 using set 

1 (v5, v7 and v9) is severely right skewed, characterized by the fact that the right tail is 

much longer than the left one. With low error levels, for all sets, the positive mode 

occurs close to one and its associated probability density is high. When error levels 

increase, this is no longer true. Figure 3-24.b and c provide the probability density 

curves for the estimations of EI2 using set 1 and set 3 with 20% error. For set 1, the 

biased positive mode x=0.535 is related with a small density of 0.971. In addition, the 

negative mode x=-1.152 is not negligible. On the contrary, for set 3, the positive mode 

x=0.990 is related with a much higher probability density of 5.664 while the negative 

mode x=-99.771 is negligible and hence not shown. This implies that for high error 

levels the estimation using deflections leads to underestimations, in fact, even negative 

estimations, which is not the case for the estimations using rotations. In addition, from 

the severe right skewness of the probability density curve for set 1, it is expected that 

the variation in the estimation for set 1 is much higher than that for set 3. 
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Figure 3-24 Probability density curves for the estimations of EI2 using (a) set 1 (v5, v7 

and v9) with 5% measurement error (theoretical distribution and inferred from data) (b) 

set 1 (v5, v7 and v9) with 20% measurement error (c) set 3 (w5, w9) with 20% 

measurement error (shaded area for 2.5% and 97.5% percentiles) 

Figure 3-25 presents the 95% confidence intervals of the estimations of EI2 using set 3 

under error levels ranging from 0% to 20%. The lower and upper bounds of the 

confidence interval are the cutting points of the 2.5% regions on the left and right sides 

of the probability density curve (shaded in Figure 3-24.c). From this figure, it is seen 

that the bounds of these confidence intervals satisfy a linear relation with the error level. 

In addition, these intervals are bounded by [1-Elevel, 1+Elevel] for each error level. 

 

Figure 3-25 Confidence interval of the estimation for EI2 under different error levels 

Figure 3-26 provides the variations of the positive mode, the mean and the Coefficient 

Of Variation (COV) for the estimations of EI2 using different sets against different error 

levels. The median is always one for set 3 at any error level. The mean and the COV 

are analyzed with the interval [0, 2]. The remarkable consistency between the mode and 

the mean for set 3 justifies the unbiasedness of the estimations using rotations (Figure 
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3-26.a). With 20% error, the deviation in the mean is 0.24% and the related COV is 

0.046. On the contrary, the deviations in the mean increase rapidly with errors for set 1 

and set 2. The positive mode for set 1 is close to zero when the error level is high. This 

indicates a large COV, as seen in Figure 3-26.b, and a right skewness. When more 

deflections are used, the positions of the COV curves also become higher.  

 

Figure 3-26 For the estimations of EI2 using different sets (3v for (v5, v7 and v9), 2v+1w 

for (v5, v7, w9), 2w for (w5 and w9)) under error levels of 1%-20%: (a) Mean and mode 

(b) COV  

This analysis shows that: (1) The statistical analysis is capable of analyzing the 

distribution of the estimations. (2) When the error level is high, the estimations using 

deflections might be negative and the distribution is severely right-skewed. (3) Unlike 

the case of using deflections, the estimations using rotations are robust and insensitive 

to error levels since the confidence intervals of the estimations are well bounded. (4) 

The higher the number of deflections used in the minimum set, the higher the sensitivity 

of the estimations to errors. 

Similar analysis is carried out in a two-story one-bay frame. The elastic modulus is 

3.5×107 𝑘𝑁/𝑚2. The area and inertia of the columns are 0.24 𝑚2 and 7.2×10-3 𝑚4 

while the area and inertias of the beams are 0.15 𝑚2 and 3.125×10-3 𝑚4. The FEM 

for example 2 is parameterized by bending stiffnesses EI1-EI10 and axial stiffnesses 

EA1-EA10, as shown in Figure 3-27.a. A load test of a uniform load of 45 𝑘𝑁/𝑚 is 

carried out on the second story. Assume the target parameter is the bending stiffness 

EI9 in the middle part of this story. To identify EI9, 4 rotations or 5 deflections are 

required. Without loss of generality, two sets are used for SSI. Set 1 comprises 4 

rotations (green) and set 2 comprises 5 deflections (red), see Figure 3-27.a. However, 

as the analytical expression for EI9 is not concise, it is not provided. The probability 

density curves for the estimations of EI9 for these sets under different error levels 
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(indicated in the brackets) are presented in Figure 3-27.b. For set 1 (dashed lines), the 

positive modes always center around 1 and the negative ones are negligible. As the 

errors increase, the probability density curve for EI9 estimated from rotations becomes 

wider and flatter. For 5% error, the mean and the positive mode are 1.025 and 0.957, 

respectively. However, the estimations using deflections (solid lines) are delicate. The 

bimodality is observed with a minor 0.2% error. In addition, the positive modes are 

greatly deviated from 1. The positive modes related to 0.2% error and 1% error are 

0.695 and 0.222, respectively. 

 

Figure 3-27 (a) FEM for a two-story one-bay frame (arrows denote deflections, arcs 

denote rotations) (b) The distributions of the estimations using rotations (w) or 

deflections (v) under different error levels (indicated in the brackets) 

This analysis shows that: (1) the estimations using deflections are extremely sensitive 

to measurement errors in frame structures. (2) Measuring rotations outperforms 

measuring deflections regarding both the unbiasedness and the extent of variation in 

the estimations of the target parameter. It should be also pointed out that in frames, 

measuring rotations might be more practical since finding a reference point to measure 

deflections is non-trivial. 

 

The statistical analysis applies when the analytical expressions for the target parameters 

θ are available, i.e. the minimum set for θ is used. It is observed that when the error 

levels increase, the accuracy of the estimations may not be satisfactory. In order to 

tackle this issue, a logical solution is to include redundant measurements. In the case of 

redundant measurements, the system of equations from the observability method is not 

compatible, (i.e. does not have a solution). In the numerical case, least square method 

or pseudo inverse can be applied, but no solution satisfies the system rigorously. Four 

strategies are proposed to use redundant measurements: 

(1) Strategy 1: Using the traditional observability method (Nogal et al., 2015) to solve 

Equation (3-48) that is formulated by redundant measurements. In this case, the 
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equations cannot be satisfied stringently. 

(2) Strategy 2: Derive the compatibility conditions , i.e. the geometrical relations that 

the nodal displacements should satisfy (J. Lei, Xu, et al., 2018). The deformation 

shape satisfying these conditions is regarded compatible. Using optimization to 

minimize the discrepancy between the measured shape and the compatible one. The 

estimations of the parameters are obtained by providing the compatible 

displacements in Equation (3-48). In this case, Equation (3-48) is stringently 

satisfied. However, the acquirement of compatibility conditions in frame structures 

is non-trivial due to the coupling of axial and bending behaviors. 

(3) Strategy 3: Divide the redundant measurement set into several minimum sets. 

Obtain the estimation of the target parameter by averaging those valid estimations 

from each minimum set. By valid, it means that the outliers in estimations are 

detected and removed. Boxplot is a powerful and popular tool in analyzing the 

distribution and the outliers of data (Tukey 1977). To do so, the first quantile Q1 

and the third quantile Q3 of the estimations are obtained first. If the estimations are 

normally distributed, valid estimations should fall into the interval [Q1-2.7(Q3-Q1), 

Q3+2.7(Q3-Q1)] with a coverage of 99.7%. Hence, values out of this range are 

invalid and ruled out in this strategy.  

(4) Strategy 4: same procedure as strategy 3 but without removing outliers. 

These strategies are applied in the same structure described in section 3.4.4 (Figure 

3-23). Assume EI2 is the target parameter and five rotations (w5-w9) are measured. Two 

error levels, Elevel=5% and 10%, are studied. For each error level, 2000 samples of 

measurements are generated by Equation (3-52).  

To identify EI2, two rotations are sufficient. Hence, there are 𝐶5
2=10 minimum sets that 

are able to identify EI2. For strategy 4, the final estimation is the average of the 10 

estimations from these sets. Table 3-6 presents the statistical summary of the 

estimations. The first 4 rows are the results for the proposed strategies while the last 10 

rows are the results for respective minimum sets. 

Great bias in the mean and a large variation is seen for estimations obtained using 

strategy 1. In the case of strategies 2, 3 and 4, the estimations are unbiased and robust. 

Note that these estimations are always better than any minimum set. For the minimum 

sets, the numbers of invalid sets agree well with the COV. Regarding the dispersion in 

the estimations, the best strategy (strategy 2) is to impose compatibility conditions. 

Nevertheless, the extents of dispersion related to strategies 3 and 4 are also well 

controlled. Note that after the outliers are ruled out, the decrease in COV is -12.5% and 

-17.6% from strategy 4 to strategy 3, respectively, for the error levels of 5% and 10%. 

A comparison of the probability density curve of strategies 2 and 3 is provided in Figure 
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3-28. 

Table 3-6 Statistical summary of the estimations using different strategies. 

Measurements 
Elevel=5% Elevel=10% 

Mean COV Invalid sets Mean COV Invalid sets 

w5-w9 (strategy 1) 0.884 0.154 - 0.703 0.239 - 

w5-w9 (strategy 2) 1.002 0.011 - 1.004 0.023 - 

w5-w9 (strategy 3) 0.999 0.014 - 0.999 0.028 - 

w5-w9 (strategy 4) 1.002 0.016 - 1.006 0.034 - 

w5,w6 1.002 0.037 13 1.006 0.075 39 

w5,w7 1.000 0.020 0 1.002 0.040 0 

w5,w8 1.000 0.017 0 1.001 0.035 0 

w5,w9 1.001 0.018 0 1.002 0.035 0 

w6,w7 1.000 0.018 0 1.001 0.036 0 

w6,w8 1.000 0.019 0 1.001 0.039 0 

w6,w9 1.001 0.020 0 1.002 0.041 0 

w7,w8 1.001 0.042 36 1.006 0.086 61 

w7,w9 1.002 0.034 7 1.006 0.069 22 

w8,w9 1.009 0.090 370 1.036 0.200 412 

 

 

Figure 3-28 The probability density curve of the estimations using strategies 2 

(compatibility conditions) and 3 (averaging with outliers ruled out) 

As shown by the COV, the dispersion of estimations in strategy 2 is lower than that in 
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strategy 3. This figure also visualizes the distribution of the estimations. It is seen that 

for both strategies, the deviations in the estimations are well bounded by the error levels. 

From this section, it is concluded that in the bridge example: (1) Using redundant 

measurements without any treatment leads to greatly biased estimations. (2) Using 

strategies 2-4 leads to result better than only using one minimum set. (3) Imposing 

compatibility conditions is the best strategy regarding the unbiasedness and the 

dispersion of the estimations. (4) Averaging the estimations from minimum sets also 

lead to satisfactory estimations. The estimations can be further improved by ruling out 

the outliers in the estimations. 

As the compatibility method cannot be used for reducing error in frame structures when 

redundant information is available, the averaging method is going to be tested in a high-

rise building studied previously, see Figure 3-29.a (adapted from Figure 12 in (Lozano-

Galant et al. 2013)). In that study, the observability of the parameters was studied 

symbolically while the numerical analysis and the effect of measurement errors were 

not included. In this paper, the focus is the identification of the bending stiffness of the 

concrete slab in the middle right of 3th floor. Figure 3-29.b shows the FEM for this part. 

It is parameterized by three bending stiffnesses EI9-EI11.The parameterization of the 

remaining part is the same as that in (Lozano-Galant et al. 2013). The bending stiffness 

of zones associated with EI9 and EI10 is 1.75×108
 𝑁·𝑚2. A damage in the right part of 

the target floor slab is simulated by a 30% reduction in bending stiffness EI11, i.e. 

EI11=1.225×108 𝑁·𝑚2 . An overload of 40 𝑘𝑁 /𝑚  is applied on this floor slab to 

simulate a static load test. Due to the unsatisfactory result of using deflections (as 

discussed in section 3.4.4), 10 rotations, (w32, w72, w74, w76, w78, w80, w82, w84, w86 and 

w46), are measured to identify EI9-EI11. The increments of the displacements due to this 

load are calculated by direct analysis. Five error levels (1%, 2%, 3%, 4% and 5%) are 

studied here. For each level, 100 noisy measurement sets are generated using Equation 

(3-52). To identify EI9-EI11, two rotations are required for each zone that is related to 

one bending stiffness, 6 in total. Taking two rotations from (w32, w72, w74, w76), (w76, 

w78, w80, w82), and (w82, w84, w86, w46), respectively, for EI9-EI11, (duplicated rotations 

do not count), leads to 117 minimum sets of 6 rotations. Thus, for each measurement 

set, 117 estimations are obtained and the outliers in these estimations are ruled out. 

Figure 3-29.c presents the error bar plot of the final estimations of EI9-EI11 under 

different error levels. The centerlines indicate the mean of associated estimations for 

each set. The vertical error bars represent one standard deviation of uncertainty in the 

estimations. Hence, the length of these bars indicates the amount of variation in the 

estimations. 

From this figure, it can be concluded that: (1) the estimations are unbiased since the 

centerline locates at 1. (2) The estimations of EI10 always have the least amount of 
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variation. (3) The increase of variations in the estimations follows a linear relationship 

with error levels. (4) The sensitivity of the increase of variation with error levels is the 

lowest for EI10. In fact, the better estimations in EI10 is due to the higher curvature of 

the zones parameterized by EI10 than the remaining zones, which agrees with the result 

in the previous study (J. Lei et al., 2017).  

 

Figure 3-29 (a) The FEM of the high-rise building (adapted from (Jose Antonio Lozano-

Galant, Nogal, et al., 2013)) (b) The FEM for the floor slab to be identified. (c) Error 

bar plot of the estimations of EI9-EI11. 

 

In this paper, the theoretical advantage of using rotations than deflections is justified 

with a statistical analysis. To do so, SSI by constrained observability method is used to 

derive the analytical expressions for the target parameters first. These expressions are 

obtainable when a minimum set is used. With these expressions and the inverse 

distribution theory, a procedure for obtaining the distributions of the estimations is 

proposed for the very first time, which is verified by the comparison with a Monte-

Carlo analysis.  

The statistical analyses were carried out in a simply supported bridge and a two-story 

one-bay frame with different measurement sets. In both structures, the distributions of 

the estimations obtained for those sets only comprised of deflections are very sensitive 

to the errors. These distributions explain the reason for the biased or even negative 

estimations when only measuring deflections. In the comparative study of using 

deflections or rotations for estimating bending stiffnesses, it is justified that using 

rotations is always less sensitive to measurement errors than using deflections regarding 

the unbiasedness and the extent of variation in the estimations.  
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Redundant measurements are expected to improve the accuracy of estimations. Taking 

account of the theoretical and practical advantages of using rotations, this study 

proposed four strategies to use redundant rotations in static SSI. In the simply supported 

bridge example where the compatibility conditions are available, the strategy of using 

compatibility conditions outperforms the rest. Nevertheless, the performance of 

strategy 3 (averaging with outliers ruled out) is entirely satisfactory. Furthermore, the 

strategy 3 can be applied in frame structures where compatibility conditions are not 

available. In the numerical analysis of the high-rise frame, the satisfactory accuracy and 

the robust performance achieved by using rotations along with the strategy 3 justify the 

effectiveness and versatility of the proposed method.
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This paper proposes a method for the finite element model updating using static load 

tests under the framework of observability analysis. Previous works included 

measurement errors in the coefficient matrix of equations. This impeded the obtainment 

of accurate estimations. To deal with this issue, the proposed method relocates the 

errors and incorporates an optimization procedure to minimize the square sum of these 

errors. The main advantage of this method is its ability to identify the structural 

parameters of complex structures where the axial and the bending behavior are coupled, 

such as inclined beams or frame structures. To illustrate the application of this method, 

several structures are analyzed. First, the method is validated in a beam-like structure 

by comparing it with other methods in the literature and then applied to a multi-story 

frame. The effects of curvatures, of the inclusion of rotation measurements and of the 

constraints on the range of unidentifiable parameters are investigated. 

Keyword: structural system identification; stiffness method; observability method; 

measurement errors; single loading case; 

 

Structural health monitoring has become a powerful tool to help decision making during 

life cycle of civil and infrastructure systems (Enrique Castillo et al., 2015). As a key 

component of structural health monitoring, Structural System Identification (SSI) aims 

to identify the parameters of a mathematical model that links the measured response 

and the external excitation of a structure. It is commonly assumed that the degradation 

of structures is reflected in the change of these parameters (Shahsavari et al., 2017). 
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Regarding the type of excitation, SSI can be classified as static SSI (Bakhtiari-Nejad et 

al., 2005; Evan C. Bentz & Hoult, 2016; Ghrib, Li, & Wilbur, 2012; Hjelmstad & Shin, 

1997; J. Lei, Nogal, et al., 2018; Jose Antonio Lozano-Galant, Nogal, et al., 2013; 

Masoud Sanayei & Scampoli, 1991; Tomàs, Lozano-Galant, Ramos, & Turmo, 2018; 

E. Viola & Bocchini, 2007; Erasmo Viola & Bocchini, 2011; Q. Yang & Sun, 2010) or 

dynamic SSI (Astroza, Nguyen, & Nestorović, 2016; Ghrib & Li, 2017; Huang, Hung, 

Su, & Wu, 2009; S. S. Jin & Jung, 2016; Z. Li et al., 2017; Marano et al., 2011; Osornio-

Rios, Amezquita-Sanchez, Romero-Troncoso, & Garcia-Perez, 2012; Jann N. Yang, 

Pan, & Lin, 2007; Y. Yang & Yu, 2016; K.-V. Yuen & Kuok, 2011). Numerous 

algorithms have been developed, e.g. response surface model (S. S. Jin & Jung, 2016), 

simulated annealing (Astroza et al., 2016), least square estimation (Huang et al., 2009; 

Jann N. Yang et al., 2007), artificial neural network (Osornio-Rios et al., 2012), genetic 

algorithm (Marano et al., 2011; E. Viola & Bocchini, 2007). Most of these algorithms 

are developed for dynamic SSI methods. Compared with static SSI, dynamic SSI has 

been developed more extensively in the past decades. However, this research is going 

to focus on static SSI for the following reasons: (1) the physical equations involved 

with static SSI are only related to the structural stiffness while those involved with 

dynamic SSI are also related to the mass and the damping of the structure. Hence static 

SSI are simpler than dynamic SSI. Also, in the majority of dynamic methods, it is 

common to assume that the damage of structure does not lead to the loss of mass and 

also the damping of the structure is zero (Q. Yang & Sun, 2010). This might introduce 

modelling errors in the identification. (2) The solution for measuring static 

displacements is easier, cheaper and has higher accuracy than those for dynamic SSI 

(Andreaus et al., 2017). (3) Static method might be significantly more sensitive to local 

damages while dynamic methods reflect the global and distributed phenomenon of the 

structure like frequency response (Jenkins et al., 1997). 

Regarding the uncertainty of the parameters, SSI methods are of two types: (1) 

Deterministic methods, which pinpoint a best set of parameters that minimize the 

discrepancy between the measured response and the one predicted by the parameterized 

model (Erasmo Viola & Bocchini, 2011), and (2) probabilistic methods, which aim at 

obtaining the distribution of the parameters. The process of finding the best parameters 

is mostly done by optimization techniques. The objective of these techniques can be 

minimizing the discrepancies in the structural response, e.g. forces (Erasmo Viola & 

Bocchini, 2011), displacements (Masoud Sanayei & Scampoli, 1991), acceleration 

(Marano et al., 2011), mode shapes and frequencies (Eskew & Jang, 2017). In the case 

of probabilistic approach, mainly in the Bayesian method, the distributions of the target 

parameters are obtained by Bayesian inference. Then, the parametric uncertainty can 

be quantified in the form of probability distribution (Ghrib & Li, 2017; Jiang et al., 

2007). Compared to deterministic methods, probabilistic methods are more robust to 

measurement errors. However, major challenges of these methods (H. Sun & Betti, 

2015; K.-V. Yuen & Kuok, 2011) are: (1) the explicit likelihood function is not 
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available in some cases; (2) the computation burden might be expensive or even 

impossible despite the existence of an implicit likelihood function; (3) the computation 

burden increases exponentially with the number of parameters, especially when the 

model is not globally identifiable. A detailed review of Bayesian methods in dynamic 

SSI can be found in (K.-V. Yuen & Kuok, 2011). 

Observability method (OM) can determine the existence and uniqueness of the solution 

of linear system of equations when some unknowns in the direct analysis are known in 

the inverse analysis. This method has been applied in several engineering fields 

(Enrique Castillo et al., 2007, 2016; Díaz et al., 2016). The SSI by OM under static 

loads was proposed to identify plane beam element models loaded in its plane (e.g. 

frames) (Jose Antonio Lozano-Galant, Nogal, et al., 2013). The SSI by OM is a 

deterministic model-based SSI under controlled static load. With a given measurement 

set, it is able to determine whether the parameters can be estimated from the measured 

response, i.e. the observability of the parameters. Hence it is able to prove the existence 

and uniqueness of the solution (e.g. bending stiffnesses, axial stiffnesses) symbolically. 

However, the numerical estimations of the unknowns were lacking. Later, the 

numerical application of this method was developed by (Nogal et al., 2015). In (J. Lei 

et al., 2017), the parametric equations of the structural parameters were derived 

explicitly and thus sensitivity analysis on measurement errors was developed. The 

effect of shear parameter on the SSI of thin-walled structures modelled by Timoshenko 

beam element was also investigated (Tomàs et al., 2018). 

The observability of the structural system depends both on the number and the location 

of measurements. When the number of measurements is less than the number of 

parameters, the structural system is not observable. When the number of measurements 

is greater than or equal to the number of parameters, the system is potentially observable 

(Hjelmstad & Shin, 1997; J. Lei, Nogal, et al., 2018; Masoud Sanayei & Scampoli, 

1991). Specially, measurement sets are defined as essential sets (J. Lei, Nogal, et al., 

2018) when: (1) they have exactly as many measurements as the number of structural 

parameters to be estimated; (2) they are able to identify all targeted parameters and the 

drop of any measurement fails to do so. A systematic approach to find essential sets 

was proposed in (Jose Antonio Lozano-Galant et al., 2015). This method provides a 

deep understanding of the physical meaning and the necessity of each measurement. 

An improvement in finding essential sets is made by retrieving the missing constraints 

among unknowns in the observability equations (J. Lei, Nogal, et al., 2018). When noise 

affects measurements, the accuracy of the numerical estimations of parameters based 

on essential sets may not be satisfactory. Hence, additional measurements should be 

used to reduce estimation errors and thus redundant sets are formed. However, it is 

verified that the solution for the observability equations with redundant sets given by 

ordinary least square method is greatly biased (J. Lei, Xu, et al., 2018). To solve this 

issue, the geometrical relations among the displacements in beam-like structures, 

referred to compatibility conditions, were obtained analytically by OM via symbolical 
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approach (J. Lei, Xu, et al., 2018). Then the incompatibility among the displacements 

due to errors was reduced by imposing these compatibility conditions. Subsequently 

the parameters are estimated with those compatible displacements. However, when 

bending behaviors and axial behaviors are coupled, obtaining the compatibility 

conditions in frames and inclined elements is challenging. Hence, the current solution 

of static SSI by OM for measurement errors is only available for beam-like structures 

but not for frame structures. This limits the application of the method in buildings. In 

this paper, a different formulation of the observability equations is proposed to deal 

with measurement errors in the static SSI of frame structures. To do so, the 

measurement errors are separated from the coefficient matrix and moved to the 

unknowns, forming a new system of observability equations. Then the square sum of 

all error terms is minimized by an optimization procedure while some nonlinear 

relations among the unknowns are imposed (J. Lei, Nogal, et al., 2018). 

Apart from ensuring the observability of targeted parameters, an additional issue in SSI 

is the sensor placement that addresses the observability as well as the accuracy of the 

estimations. In structures of simple geometry or small number of Degrees Of Freedom 

(DOF), experience or trial and error might be able to handle the task of placing sensors. 

However, in a complicated structure having many DOFs, determining the optimal 

sensor placement is a very challenging task. One of the most known and commonly 

adopted approach for the optimal sensor placement was developed by Kammer 

(Kammer, 1991). This approach maximizes the information that can be extracted from 

the measurement by maximizing the norm of the Fisher Information matrix [F] that was 

constructed from the modal and measurement covariance matrix. Since then, many 

variants of this method dealing with the sensor placement in SSI were proposed. A 

Fisher Information matrix for the sensor placement in static SSI can be constructed 

from the noise variance and the gradient of structural displacements with respect to 

different structural parameters (Bakhtiari-Nejad et al., 2005). The sensor placement 

strategy used in this paper is developed based on this Fisher Information matrix. 

The major contributions of this study are: (1) a new method is proposed to deal with 

the static structural system identification of complicated structure where axial and 

bending behaviors are coupled under the framework of observability method; (2) the 

difficulty of identifying parameters associated with null curvature zones despite the 

increase of measurements or inclusion of rotations is illustrated; (3) When only one 

loading case is available, the effect of imposing different constraints on parameters 

associated with null curvature zones is investigated regarding the accuracy and 

dispersion of the estimations of the identifiable parameters. 

In the remainder of this paper, section 3.5.3 briefly introduces the static SSI by 

constrained OM. Then the procedure for the proposed measurement error-minimizing 

observability method (MEMOM) is illustrated by an academic example. The sensor 

placement is determined by the Fisher Information matrix together with a genetic 
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algorithm. In section 3.5.4, the performance of the proposed method is validated in a 

beam-like structure. The estimations obtained from essential sets and redundant sets 

are compared with those obtained by the original method (Nogal et al., 2015) and the 

compatible OM (J. Lei, Xu, et al., 2018), respectively. In addition, a table summarizing 

the characteristics of these methods is provided at the end of this section. In section 

3.5.5, the effectiveness of the proposed method is verified by the identification of a 

floor beam in a large frame. Section 3.5.6 summarizes the key findings and concludes 

the paper. 

 

Static SSI by Constrained OM imposes constraints on variables when no more 

parameters can be observed using SSI by OM. The identical part between these two 

methods is introduced first and their difference is pointed out at the end of this section. 

In static SSI by OM, a finite element model (FEM) has to be defined first. The 

equilibrium equations (3-58) are then established. For 2D beam element models, due to 

the equilibrium of forces on each node in horizontal, vertical and rotational directions, 

the number of equations Neq is three times the number of nodes Nn, i.e. Neq=3Nn,.  

 [𝐾] ⋅ {𝛿} = {𝑓} (3-58) 

In this system, the global stiffness matrix [K] includes both the geometrical and the 

mechanical properties of element j (i.e. length Lj, elastic moduli Ej, area Aj and inertia 

Ij, j=1, 2, …, Ne; where Ne is the number of elements). The displacement vector {δ} 

includes horizontal displacements ui, vertical deflections vi, rotations wi of node i (i=1, 

2, …, Nn; where Nn is the number of nodes). The right-hand side vector {f} includes 

horizontal forces Hi, vertical forces Vi, and moments Mi on node i. Hence, all the 

variables appearing in the equations are (Ej, Aj, Ij, Lj, ui, vi, wi, Hi, Vi and Mi). The 

objective of SSI is to identify structural parameters θ (such as axial stiffness EjAj or 

bending stiffness EjIj) so as to assess the condition of the structure by the values of θ. 

To reduce unknowns, these stiffnesses, EjAj and EjIj are treated as linearized unknowns, 

EAj and EIj, and Lj is usually assumed as known. In addition, during the static test, the 

controlled static loads are known and some resulting increments of the displacements 

𝛿 have to be measured. 

These parameters appear in matrix [K] as monomial ratios, such as 
𝐸𝐴𝑗

𝐿𝑗
, 
𝐸𝐼𝑗

𝐿𝑗
2  or 

𝐸𝐼𝑗

𝐿𝑗
3 . As 

some elements of vector {f} are also unknowns, nonlinearity arises in the system of 

equations. Hence, the system is linearized by a series of algebraic operations (Jose 

Antonio Lozano-Galant, Nogal, et al., 2013), as shown in Equation (3-59). 
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 [𝐾∗] ⋅ {𝛿∗} = [
𝐾10
∗ 𝐾11

∗

𝐾00
∗ 𝐾01

∗ ] {
𝛿0
∗

𝛿1
∗} = {

𝑓1
𝑓0
} = {𝑓} (3-59) 

The remaining coefficient matrix [K*] are composed of constants that are either zero or 

the powers of the inverse of Lj. Once the loads and the measurements from the static 

test as well as the boundary conditions of the structure have been defined, it is assumed 

that a subset {𝛿1
∗} of {𝛿∗} and a subset {f1} of {f} are known while remaining subset 

{𝛿0
∗} of {𝛿∗} and {f0} of {f} are not. To cluster the unknowns together, Equation (3-59) 

is transformed to Equation (3-60) by static condensation. 

 [𝐵] ⋅ {𝑧} = [
𝐾10
∗ 0

𝐾00
∗ −𝐼

] {
𝛿0
∗

𝑓0
} = {

𝑓1 − 𝐾11
∗ 𝛿1

∗

−𝐾01
∗ 𝛿1

∗ } = {𝐷} (3-60) 

In Equation (3-60), both the coefficient matrix [B] and the right-hand side vector {D} 

are completely known. The coefficient matrix [B] is composed of either zero or 

monomial ratios of knowns (measured displacements, known stiffnesses and element 

lengths). Meanwhile, the right-hand side vector {D} is composed of the external loads 

{f1} and the equivalent nodal forces (𝐾11
∗ 𝛿1

∗  or 𝐾01
∗ 𝛿1

∗ ). On the other hand, the 

unknowns z are of two types: (1) node displacements, (ui, vi or wi), or parameters θ, (EAj 

or EIj), or the products of both, (EAjui, EAjvi, EAjwi, EIjui, EIjvi or EIjwi); (2) unknown 

reactions, (Hi, Vi and Mi), at the boundary conditions. When Equation (3-60) has at least 

one solution, the solution is the sum of a particular solution {zp}, and the product of a 

vector of arbitrary values, {ρ}, and the null space [N] of the coefficient matrix [B] in 

Equation (3-60). 

 {𝑧𝑔} = {𝑧𝑝} + [𝑁] ⋅ {𝜌} = {
𝛿0
∗

𝑓0
}
𝑝

+ [𝑁] ⋅ {𝜌} (3-61) 

The particular solution {zp} is the pseudo inverse solution of Equation (3-60). [N]∙{ρ} 

is the set of all solutions of the associated homogeneous system of equations (a linear 

space of solutions, wherein the columns of N are vectorial bases, and the entries of the 

vector {ρ} are arbitrary values functioning as the coefficients of all possible linear 

combinations). If any row of the null space [N] is composed of only zeros, then the 

scalar in the same row of the product [N]∙{ρ}will be zero, and thereby the particular 

solution specifies the unique solution for that parameter. Namely, any unknown 

associated with a zero row in the null space [N] is observable, i.e. it exists and it is 

determined and unique. All these observable unknowns are introduced as known in the 

next step to obtain updated observability equations and thus new parameters might be 

observed. A step-by-step example is presented in (Jose Antonio Lozano-Galant, Nogal, 

et al., 2013). 

However, treating algebraic relations among variables inappropriately might arise since 

the products of structural parameters and displacements are regarded as linearized 

variables (J. Lei, Nogal, et al., 2018). This is to say, the equality between coupled 

unknowns and the product of the associated components, for instance, EI2w2=EI2∙w2, is 



 

3 Methodologies and results

 

105 

 

missing due to the linearization of the variable EI2w2. This linearization enables the 

application of algebraic techniques that is essential for observability analysis but leads 

to the loss of information. To deal with this issue, the lacking constraints are imposed 

by an optimization procedure if some parameters are not observed by the linearized 

procedure in SSI by OM. In the numerical optimization, the objective function is to 

minimize the square sum of the residuals (equilibrium forces) of the observability 

equations from the last recursive step in SSI by OM while forcing the equality between 

the coupled variable and the product of its components (J. Lei, Nogal, et al., 2018). 

The coefficient matrix of the observability equations (Equation (3-60)) takes in the 

measurements together with the errors, which is a perturbation to the accurate matrix. 

Previous study shows that the least square solution of Equation (3-60) is greatly biased 

even with redundant sets (J. Lei, Xu, et al., 2018). This section proposes a measurement 

error-minimizing observability method (MEMOM). Measurement errors are separated 

from the coefficient matrix and then included in the unknown vector so as to eliminate 

the adverse effect of errors in the coefficient matrix. For illustrative purpose, the 

necessary procedures to implement the proposed method are demonstrated below by an 

academic example.  

Consider a 10-m simply supported beam. Its FEM has two elements of length L=5m. 

The boundary conditions are that u1=v1=v3=0. The FEM is parameterized by two 

bending stiffnesses, EI1 and EI2, and two axial stiffnesses, EA1 and EA2, as depicted in 

Figure 3-30.  

  

Figure 3-30 A 3-node simply supported beam with measurement set (w1, v2 and w3).  

Without loss of generality, it is assumed that a vertical load V2 is applied at midspan 

(Node 2) and the increments of displacements (w1, v2, and w3) are measured. The 

necessary steps to implement the MEMOM are presented below. 

Step 1. Introduce the geometry, as well as the known mechanical and geometrical 

properties and external forces to establish an FEM for the structure. Build the 

equilibrium equations for this FEM. 

The equilibrium equations for this FEM are given in Equation (3-62). 
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 (3-62) 

Step 2: Obtain the observability equations [𝑩] ⋅ {𝒛} = {𝑫}. 

Introduce the boundary conditions into Equation (3-62) and rearrange the equations 

such that all the unknowns are collected in the new unknown vector {z}, and both the 

coefficient matrix [B] and right-hand side vector {D} are known, as shown in Equation 

(3-60). 

Without loss of generality, the observability equations related with the measurement 

set (w1, v2 and w3) are obtained from Equation (3-62) by a series of algebraic operations. 

In this system of equations, the measurements are absorbed in the coefficient matrix. 

Provided that error-free measurements are used, this system of equations holds 

stringently. Denote the error-free displacements by a hat, ^. This relation is 

demonstrated by Equation (3-63). 
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Step 3: Include the error terms in the coefficient matrix [B]. 

In real life, the measurements are always contaminated by errors. These measurements 

𝛿 comprise of the error-free displacements 𝛿 and the errors 𝜖𝛿. This relation can be 

rearranged as Equation (3-64). 

 𝛿 = 𝛿 − 𝜖𝛿 (3-64) 
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Replace the error-free displacements 𝛿 in the coefficient matrix [B] of Equation (3-63) 

by the difference of the measured displacements 𝛿 and the measurement errors 𝜖𝛿, 

Equation (3-64). The resulting system of equations is given in Equation (3-65). 
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Step 4: Obtain the new system of equations including error terms, 𝑩𝐞 ⋅ 𝒛𝒆 = 𝑫 

(Equation (3-66)). 

This step is similar to the algebraic techniques used for the linearization of the 

observability equations. Each column containing 𝛿 − 𝜖𝛿  is separated into two 

columns, where one is related to the error-free displacement 𝛿 and the other is related 

to the error term 𝜖𝛿. Subsequently, all the error terms are extracted from the respective 

columns and are included in the unknown vector. Duplication of unknowns might occur 

due to these extractions. In the case of duplicated unknowns, the associated columns 

are merged to compact the system. The final system of equations is presented in 

Equation (3-66). 
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Step 5: Generate all single unknowns and establish the constraints among coupled 

unknowns. Identify all single unknowns in the new unknowns {ze}, and the nonlinear 

constraints among them. 
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In the unknown vector {ze}, there exist three types of unknowns: (1) coupled unknowns: 

products of structural parameters and unknown displacements or error terms (e.g. EA1u2, 

EI2w2 and 𝐸𝐼1𝜖𝑣2); (2) existing single unknowns, including reactions (e.g. H1,V1,V3) 

and structural parameters θ (e.g. bending stiffnesses EI1, EI2 and axial stiffness EA1); 

(3) additional single unknowns that are obtained by the decoupling of those coupled 

unknowns. These new single unknowns include the unmeasured displacements, (e.g. u2, 

u3 and w2) and the measurement errors, (e.g. ϵw1
, ϵv2 and ϵw3

). Once different types 

of unknowns are determined in Equation (3-66), the constraints among these unknowns 

will be established and used in the optimization in Step 6.  

Step 6: Obtain the final estimation by minimizing Equation (3-67). Solve the 

optimization problem with the objective function Equation (3-67) and the nonlinear 

constraints obtained in step 5.  

Despite the inclusion of the constraints (e.g. EI2w2=EI2∙w2) among unknowns, the 

system of equations to be solved is always underdetermined. As a result, infinite 

solutions satisfy Equation (3-66). To find the one with physical meaning from these 

solutions, it is always desirable to select the model minimizing the discrepancy between 

the measured and the predicted response. Hence, the objective function is to minimize 

the square sum of the ratios between the error term 𝜖𝛿𝑖  and the associated 

measurements 𝛿𝑖 , as presented in Equation (3-67). Nm is the number of measured 

displacements. 

 𝑓(𝑧𝑒) =∑(
𝜖𝛿𝑖
𝛿𝑖
)

2𝑁𝑚

𝑖=1

 (3-67) 

In order to let the optimization problem have some desirable properties regarding the 

convergence, numerical scaling is applied such that the unknowns having widely 

varying orders of magnitude due to the physical nature are converted to be of similar 

orders (Gill, Murray, & Wright, 1982). To do so, each column of the coefficient matrix 

Be is scaled by the associated nominal values of the unknowns. This scaling does not 

affect the solution but improve the efficiency of solving the optimization. The initial 

values for the error terms are zeros while those for the others are ones. No bound is 

applied to the estimated parameters, unless otherwise stated. Final estimations are 

obtained by multiplying the scaling factors with the solution from the optimization. All 

the aforementioned steps to implement the algorithm are summarized in Figure 3-31. 
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Figure 3-31 Flow chart of the proposed algorithm 

The accuracy of the estimations of structural parameters θ depends on the location of 

the measurements. In this paper, the Fisher Information matrix [F] is used to select the 

location of sensors (Bakhtiari-Nejad et al., 2005). For an efficient unbiased estimation 

of 𝜃, the lower bound of the covariance of estimations is given by the inversed Fisher 

Information matrix [F-1]: 

 𝐸 [(𝜃 − 𝜃)(𝜃 − 𝜃)
𝑇
] ≥ 𝐹−1 (3-68) 

The Fisher Information matrix [𝐹(𝛩)] contains the information about the values of 

the parameters θ based on the data from all measured locations (Guo, Ni, & Chen, 2017). 

Its formulation depends on the sensor location vector {𝛩}. The calculation of the matrix 

[𝐹(𝛩)] is shown by Equation (3-69) 

 𝐹(𝛩) = 𝑆(𝛩)𝑇[𝛹0
2]−1𝑆(𝛩) (3-69) 

To calculate the Fisher Information matrix [F(𝛩)], the sensitivity matrix [S(𝛩)] for 

measured DOFs and the noise variance [𝛹0
2] are required. The matrix [𝑆(𝛩)] is the 

sensitivity matrix with respect to the sensor location vector {𝛩}. The vector {𝛩} is a 

3Nn×1 Boolean vector {𝛩}. If the ith DOF of the FEM is measured, the associated entry 

in {𝛩} is one, otherwise zero.  

Prior to obtain the sensitivity matrix [S(𝛩)] for the measured DOFs, the sensitivity 

matrix [Sa] for all DOFs is calculated by Equation (3-70). 

[𝑆𝑎] =
𝜕𝛿

𝜕𝜃
=
𝜕[𝐾(𝜃)−1𝑓]

𝜕𝜃
=
𝜕𝐾(𝜃)−1

𝜕𝜃
𝑓 = −𝐾(𝜃)−1

𝜕𝐾(𝜃)

𝜕𝜃
𝐾(𝜃)−1𝑓 (3-70) 
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The dimension of the sensitivity matrix [Sa] is 3Nn×Np. The element 𝑆𝑖,𝑗
𝑎 , in the ith row 

and jth column of the matrix [Sa], is the derivative of the ith DOF with respect to the jth 

parameter. The sensitivity matrix [S(𝛩)] for the measured DOF is the collection of all 

those rows of [Sa] where 𝛩𝑖 equals one. 

In estimation theory, the minimum variance in the estimations is desired, which means 

the minimization or maximization of some measures of [F]. Different norms of the 

matrix [F] have been used as the criteria for measuring the goodness of a measurement 

set regarding the accuracy of the estimations. These norms include the determinant, the 

trace and the minimum singular value of the matrix [F]. In this paper, the problem of 

sensor placement is formulated as the maximization of the determinant, det([F]), of the 

Fisher information matrix [F]. It should be also mentioned that the ith diagonal terms of 

the inversed matrix [F-1] gives the lower bound of the variance of the estimations of the 

ith
 parameter θi (Masoud Sanayei, Dicarlo, Rohela, Miller, & Kilmer, 2015). High 

values in the diagonal elements indicate that the estimations for the associated 

parameters have a high variation. Parameters of zones that are out of the load path 

cannot be identified accurately. This is manifested by the large diagonal elements 

related to these parameters in the inversed matrix [F-1]. In this study, the threshold of 

0.1 is used to differentiate between the identifiable and the unidentifiable parameters. 

The parameters associated with diagonal elements of [F-1] that are less than 0.1 might 

be regarded as identifiable.  

The sensor placement is a combinatorial problem whose dimension increases 

exponentially with the number of possible sensor locations. It is intractable to find the 

optimal solution by global search. However, some classic metaheuristic algorithms are 

capable of finding a near-optimal solution of such a problem (Marano et al., 2011). One 

is the genetic algorithm that is featured by bio-inspired operators such as mutation and 

crossover and selection. Its application in SSI can be found in (Marano et al., 2011; E. 

Viola & Bocchini, 2007) . The discrete optimization problem arising from the sensor 

placement problem here is solved by the Matlab function ga with the objective function 

(3-71) and constraints (3-72) and (3-73). 

 Θopt = max
Θ
det (𝐹) (3-71) 

Subjected to  

∑Θ𝑖
𝑖∈𝑣

= 𝑁𝑚,𝑣 for any i related to vertical 

deflections v 
(3-72) 

And 

 

∑Θ𝑖
𝑖∈𝑤

= 𝑁𝑚,𝑤 for any i related to rotations w (3-73) 
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Nm,v and Nm,w are the numbers of measured deflections and of measured rotations, 

respectively.  

 

The observability and the accuracy of estimations for all parameters are always of 

primary importance. On the one hand, a necessary condition for the observability of all 

parameters is that the number of measured displacements, Nm, should be no less than 

the number of parameters, Np (Jose Antonio Lozano-Galant et al., 2015). With Np 

measurements, the observability for all parameters might not be achieved and the 

accuracy of the estimations might not be satisfactory. Hence, it is intuitive and 

reasonable to introduce redundant measurements, which is known as redundant sets. 

To verify the effectiveness of the proposed method, a simply supported bridge example 

is analyzed here. Two cases are considered depending on the relation between the 

number of measured displacements, Nm, and the number of unknown parameters, Np. 

Firstly, the performance of the MEMOM and the SSI by OM are compared when 

essential sets are used. Then, regarding the same structure, the performance of 

MEMOM and SSI by compatible OM (J. Lei, Xu, et al., 2018) are compared when 

redundant sets are used. The considered factors include error levels, number of 

measurements, loading cases. 

Assume an 18-𝑚 simply supported bridge with a concentrated load applied at one-third 

point, as shown in Figure 3-32. The area and inertia of the girder are 0.1 𝑚2 and 0.015 

𝑚4, respectively and the Young’s modulus E is 210 𝐺𝑃𝑎. This structure is discretized 

into 18 elements each with the length of 1 𝑚 . Because the axial behavior of this 

structure is not excited under this loading case, the identification of axial stiffness is not 

feasible. The parameterization of this model is shown in Figure 3-32.  

 

Figure 3-32 A 19-node simply supported beam with three target parameters (bending 

stiffnesses EI1-EI3). 

Since the number of parameters, Np, is three, the essential sets should have three 

distributed measurements. For each bending stiffness, one displacement from the 
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elements of that parameter is measured. Specifically, one from {v2-v7, w1-w7}, {v7-v13, 

w7-w13} and {v13-v18, w13-w19} for EI1, EI2 and EI3, respectively. All potential essential 

sets are enumerated by taking one measurement from these sets. If duplicated 

measurements, e.g.w7 or v7, are detected, then that set is rejected. This leads to 2314 

essential sets. 50 samples are generated for each set with an error level of 5%. One 

sample for a given measurement set is the collection of associated measurements 

generated by Equation (3-74). 

 𝛿 = 𝛿 ⋅ (1 + 𝐸𝑙𝑒𝑣𝑒𝑙 ⋅ 𝜉) (3-74) 

Here, the measurements, 𝛿 , are simulated by adding proportional errors to the 

theoretical values, 𝛿, that are obtained by direct analysis. Elevel is the error level in 

measurement and ξ is a random number following normal distribution with mean of 

zero and standard deviation of 0.5, same as in (J. Lei, Xu, et al., 2018).  

Regarding essential sets, it is always possible to find a set of parameters that exactly 

replicates any value of the measurement, either accurate or noisy measurements. In 

other words, the objective function (Equation (3-67)) should be exactly zero. With 

respect to this simply supported bridge, 2314×50=115700 estimations are carried out. 

For all these estimations, it is found that the estimations from the proposed method are 

capable of replicating the provided noisy measurements. Hence, it is concluded that the 

proposed method and SSI by OM lead to the same estimation when essential sets are 

used. However, as pointed out in (J. Lei et al., 2017), estimations from essential sets 

might be far from satisfactory. 

In order to improve the unsatisfactory estimations from essential sets, redundant sets 

are used. However, it was observed that the estimations could still be greatly biased. In 

addition, imposing the compatibility conditions among the displacements can lead to 

accurate estimations (J. Lei, Xu, et al., 2018). In this section, the performance of the 

SSI by compatible OM and the MEMOM is compared by a further investigation on the 

structure depicted in Figure 3-32. The parameterization is still the same with the studied 

factors being the number of measurements, Nm, and the error levels, Elevel, and the 

loading cases. 

In the first comparison, the loading case is a vertical load applied at node 7. Three 

measurement sets are used, including (1) Set 1 (v3, v5, v7, v9, v11, v13, v15 and v17); (2) 

Set 2 (v3-v5, v7, v9-v11, v13 and v15-v17) and (3) Set 3 (v2-v17). These sets are not 

determined by the Fisher Information matrix and are the same as those in (J. Lei, Xu, 

et al., 2018). The error levels range from 1% to 5%. 2000 samples are generated for 

each measurement set at all error levels using Equation (3-74). In this paper, all the 
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estimations are normalized by their real values, unless otherwise stated. To evaluate the 

performance of different algorithms, Equations (3-75)-(3-77) are used. 

 𝜃𝑚 =
∑ 𝜃𝑖,𝑟
𝑁𝑠
𝑖=1  

𝑁𝑠
 (3-75) 

 

𝜃𝑠𝑑 = √
1

𝑁𝑠 − 1 
Σ𝑖=1
𝑁𝑠 (𝜃𝑖,𝑟 − 𝜃𝑚)

2
 

(3-76) 

 
𝜃𝐶𝑂𝑉 =

𝜃𝑠𝑑

𝜃𝑚
 

(3-77) 

Here, 𝜃𝑖,𝑟 is the estimation (normalized by the real value) of parameter 𝜃 using the 

ith sample. Ns is the number of samples. 𝜃𝑚 is the mean of all the Ns estimations of 𝜃, 

which measures the accuracy of the estimations. The closer the mean, 𝜃𝑚, to one, the 

lower the bias. In addition, 𝜃𝐶𝑂𝑉 describes the variability among all the Ns estimations 

of 𝜃, which is the ratio of the standard deviation, 𝜃𝑠𝑑, and the mean, 𝜃𝑚.The smaller 

the 𝜃𝐶𝑂𝑉, the less variation in the estimations of 𝜃. 

In this example (Figure 3-32), the target parameters are EI1-EI3. A careful examination 

shows that both methods lead to the same estimations for each measurement set and 

each error level. The results are presented as the bar graph with error bar in Figure 

3-33.a. The bar graph shows the mean of the estimations while the error bar indicates 

one standard deviation of the estimations. 

 

Figure 3-33 Bar graph with error bar for the estimations of EI1-EI3: (a) under the loading 

case of V7 with different error levels; (2) under different loading cases (V2-V10) with an 

error level of 5%. 

It should be pointed out that as the load is applied at node 7, the elements associated 

with EI1 and EI2 are more excited than those associated with EI3. From Figure 3-33.a, 

it is seen that the standard deviation, which is the length of the error bar, increases much 
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faster in zones of less excited zones (EI3). The bias of the estimations of EI1-EI3 is small. 

The worst case is an overestimation of 1.45% in EI3 with an error level of 5%. However, 

it should be pointed out that the bias also increases faster in less excited zones. 

The performance of the two methods is also compared using different loading cases 

with set 1 (v3, v5, v7, v9, v11, v13, v15 and v17) and an error level of 5%. The load moves 

from V2 through V10, leading to 9 loading cases. Under each loading case, the 

estimations produced by the proposed method are the same as those obtained via SSI 

by compatible OM. The results are presented in Figure 3-33.b. When load changes from 

V2 to V10, the curvatures for areas associated with EI1 decreases and the standard 

deviation of the estimations of EI1 increase correspondingly. An opposite trend is 

observed for the parameter EI3. In addition, the estimations of EI1 and EI3 have the same 

mean and standard deviation when identical curvatures are excited in areas associated 

with these two parameters in the loading case of V10. 

The same performance of the two methods might be due to the fact that the inclusion 

of the nonlinear constraints among the unknowns in the proposed method implicitly 

contains the compatibility conditions (the geometrical relations that the displacements 

should satisfy). Hence, it is concluded that: (1) the proposed method is applicable in 

beam-like structures and (2) its accuracy is as good as the SSI by compatible OM. For 

clarity, the difference of the mentioned methods is summarized in Table 3-7. 

Table 3-7 Characteristic of different observability method 

Method Applicability Optimization 

involved 

Nonlinear  

constraints 

Objective 

function 

Sensitive  

to errors 

SSI by OM Beam-like/ 

frame 

No - - Yes 

SSI by constrained 

OM 

Beam-like/ 

frame 

Yes Yes  Force 

Residues 

Yes 

SSI by compatible 

OM  

Beam-like Yes No Displacement 

Residues 

No 

SSI by MEMOM Beam-like/ 

frame 

Yes Yes  Displacement 

Residues 

No 

 

Due to the coupling of the bending and the axial behavior in frames, obtaining 

compatibility conditions in such structures is nontrivial. However, the proposed method 

does not suffer from this limitation. In this section, the effectiveness of the proposed 

method is verified by the identification of a floor beam (see dashed ellipse in Figure 
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3-34.a) in a 13-story frame building adapted from (Jose Antonio Lozano-Galant, Nogal, 

et al., 2013). 

 

Figure 3-34 (a) Finite element model for the 13-story frame (b) Four scenarios for the 

identification of the floor beam (different loading cases, parameterizations and moment 

diagrams) 

Damage in structural members that have insignificant contribution to the structural 

response under the given loading case cannot be accurately identified (Bakhtiari-Nejad 

et al., 2005). On the one hand, simultaneous identification of all parameters requires a 

well-designed loading scheme capable of exciting all structural members sufficiently. 

On the other hand, many sensors are required for data collection. These might not be 

very feasible in real life for technical and economic reasons. Hence, it is more 

interesting to identify the parameters of a local area because only a small zone needs to 

be excited and the number of sensors is significantly reduced. In the following study, 

the focus is to identify the parameters of a floor beam on 3rd floor using noisy 

measurements.  

The elastic moduli is 3.5×104
 𝑀𝑃𝑎. Geometrical properties for different elements are 

provided in Table 3-8. In previous study, measurement errors were not taken into 

account and the floor beams were assumed to have constant stiffness (the same 

parameter to be estimated) (Jose Antonio Lozano-Galant, Nogal, et al., 2013). In this 

study, the real values of the parameters for the target floor beam are the same as those 

in element type VIII. However, different parameterizations are applied for this beam 

(Figure 3-34.b) and these parameters are assumed different and are to be estimated. 

Measurement errors are also included in the numerical analysis. 

Parametric studies have been performed trying to evaluate the influence of different 

factors in the accuracy of the estimations. Firstly, the effect of curvatures in different 

zones of the floor beam is investigated. Then, the benefit of including rotations in the 

measurement set is illustrated. Finally, with the aim of identifying the parameters using 



3.5 Structural system identification by Measurement Error-Minimizing Observability 

Method

 

116 

 

only one loading case, different constraints limiting the feasible values of the 

unidentifiable parameters are compared. 

 

Table 3-8 Geometrical properties for different elements 

Element type Area (m2) Inertia (m4) 

I 0.563 0.026 

II 0.360 0.011 

III 0.250 0.005 

IV 0.360 0.011 

V 0.250 0.011 

VI 0.160 0.002 

VII 1.800 5.400 

VIII 0.180 0.005 

The analyzed floor beam is evenly discretized into 42 elements. To show the effect of 

curvatures, four scenarios are studied regarding two loading cases and two 

parameterizations of this floor beam, as presented in Table 3-9 and Figure 3-34.b. The 

coarse parameterization models the structure with three bending stiffnesses, EI1c-EI3c. 

Each parameter is related to fourteen elements. The fine parameterization models the 

structure with seven bending stiffnesses, EI1f-EI7f. Each parameter is related to six 

elements. The loading case 1 (LC1) is a uniform load of 25kN/m applied along the 

entire span while the loading case 2 (LC2) is of the same magnitude but only applied 

on the left four elements (2.667 m). The configuration and the associated moment 

diagrams are depicted in Figure 3-34.b. Note that the bending behaviors for the zones 

of EI2f and EI6f under LC1 (scenario 3) are not quite excited. Similar situation is 

observed for the zones of EI4f-EI7f under LC2 (scenario 4). In scenarios 1 and 2, though 

the inflection points are included in zones related to EI1c and EI3c, the bending behavior 

for these zones is still sufficiently excited due to the wide coverage of the zones 

associated with EI1c and EI3c. It should be noted that the number, the location and the 

type of measurements affect the result of the estimations. Providing that the number of 

measurements is three times the number of parameters, Nm=3Np, and at least half of 

these measurements are composed of deflections, the near-optimal measurement set for 

each scenario is determined by Fisher Information matrix.  
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Table 3-9 Description of different scenarios of the continuous beam 

Scenarios Parameterization Loading case 

1 Coarse, three parameters Uniform load over whole span 

2 Coarse, three parameters Uniform load on the left 

3 Fine, seven parameters Uniform load over whole span 

4 Fine, seven parameters Uniform load on the left 

 

According to the diagonal terms in the associated inversed Fisher Information matrix, 

EI2f and EI6f in scenario 3 and EI5f -EI7f in scenario 4 cannot be accurately identified. 

Hence, the absolute constraints of [0, 10] are applied to limit the feasible range of these 

unidentifiable parameters. 500 samples are generated for each scenario with an error 

level of 5% using Equation (3-74). The mean and standard deviation are summarized 

as the bar graph with error bar in Figure 3-35. 

 

Figure 3-35 The bar graph with error bar for the estimations of parameters in (a) 

scenarios 1 and 2; (b) scenarios 3 and 4. (The legend indicates the loading case and the 

number of measurements, respectively. Subscript f and c indicate fine and coarse 

parameterization, respectively. Np, number of parameters). 

When the number of measurements, Nm, is three times the number of parameters, Np: 

(1) Nm=9 measurements are sufficient to provide unbiased and robust estimations of 

EI1c-EI3c in both loading cases. However, larger variations in EI2c and EI3c are observed 

for LC2 than those for LC1. This is due to the fact that the curvature in zones of EI2c 

and EI3c is much less excited in LC2 than that in LC1. A slight underestimation of EI3c 

is also observed in LC2. (2) This phenomenon is more noticeable in Figure 3-35.b. 

Nm=21 measurements are used to estimate 7 parameters in the fine parameterization. 

As expected, the estimations of EI2f and EI6f from LC1 have large bias and variations. 

Note that the bending behavior for zones of EI2f in LC2 are well excited. Comparing 
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the estimations of EI2f from LC1 and LC2, the latter one is more consistent and less 

variable. As expected, the estimations of EI5f-EI7f from LC2 are not reliable. (3) 

Comparing Figure 3-35.a and b, it is seen that the estimations of bending stiffnesses for 

the coarse parameterization is much better than those for the fine parameterization 

regarding the unbiasedness and variation under the same loading case. 

In order to reduce the large variation and bias in the estimations of the parameters 

associated with null curvature zones in the case of fine parameterization, other two sets 

having more measurements are investigated. The first set is to measure the deflection 

and the rotation every 2 nodes, leading to 42(=6Np) measurements with the deflections 

at the joint excluded. The second one is to measure the deflection and the rotation of 

each node, leading to 84(=12Np) measurements with the deflection at the joint excluded. 

The results are also summarized in Figure 3-35.b. Despite the improvement in all 

estimations, the standard deviations in the estimations of parameters associated with 

null curvature zones are still large and thus unreliable.  

It was shown that using rotations had theoretical advantages when estimating the 

parameters. Wide applications of inclinometers in real engineering practice are also 

provided (J. Lei, Lozano-Galant, Xu, & Turmo, 2018). The effect of including different 

number of rotations with a fixed number of measurements on the estimations is studied 

here. The loading case is LC1 and the parameterization is the fine one, as seen in the 

scenario 3 in Figure 3-34.b. The number of measurements Nm is 25. The number of 

rotations varies from 0 to 25, adding up to 26 measurement sets. For each set, the near-

optimal measurement set is found by Fisher Information matrix. 500 estimations are 

obtained for each set using the same setting in previous analysis (Figure 3-35). The 

result is summarized in Figure 3-36. It is found that using rotations cannot improve the 

estimations of parameters associated with null curvature zones in this structure. Hence, 

the results for EI2f and EI6f are not presented.  

 

Figure 3-36. Estimation result using different number of rotations: (a) Mean (b) 

Coefficient Of Variation (COV) 
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When no rotation is used, the bias in EI3f and EI5f is 32.0% and 64.3%, respectively. 

The extent of the bias in EI3f and EI5f decreases with the number of rotations. It should 

be noted that the inclusion of one rotation in the measurements reduces the bias 

significantly. In addition, the deviations of the mean of the estimations for all 

parameters are always within 1.0% when the number of rotations exceeds 8. Regarding 

the COV of the estimations, a gradual decrease is observed when the number of 

rotations increases from 0 to 17. However, the COVs of the estimations for all 

parameters do not improve noticeably when more rotations are used. 

From this analysis, it is seen that: (1) Compared with using only deflections, the 

inclusion of rotations in the measurements improves the estimations remarkably with 

respect to the unbiasedness and the extent of variation; (2) The rate of improvement 

due to the inclusion of rotations is drastic initially. When the number of rotations reach 

a certain number, this rate becomes slow, as indicated by the plateau in Figure 3-36b. 

The load path by one loading case can hardly cover each part of a local region, as 

depicted by the moment diagrams in Figure 3-34.b. The parameters for unexcited 

members may not be accurately identified without using multiple loading cases. This is 

justified by the observation that either increasing the number of measurements or 

including rotations cannot improve the estimations for parameters associated with null 

curvature zones using only one loading case. However, multiple loading cases might 

be costly, cumbersome and hence not desirable for engineers. Providing that only one 

loading case is used, it is interesting to limit the feasible ranges of those unidentifiable 

parameters by imposing different types of constraints during the estimation process. In 

this section, the effect of these constraints on the unbiasedness and the variation of the 

estimations for those identifiable parameters are investigated.  

In previous study, the absolute constraint that 𝐸𝐼𝑖 ∈[0, 10] is imposed on unidentifiable 

parameters, for instance, EI2f and EI6f in LC1. Two types of constraints are studied here. 

The first type is related to a tight absolute constraint of [0.5, 1.5] on those unidentifiable 

parameters. The second type is a relative constraint that the parameters for the null 

curvature zones are between those for adjacent zones. This is to say, (EI2f-EI1f) (EI2f-

EI3f)≤0 and (EI6f-EI5f) (EI6f-EI7f)≤0. The loading case, the parameterization and the 

measurement sets are the same as scenario 3 in Figure 3-34.b. It should be pointed out 

that the following discussions will focus on the results of those identifiable parameters 

(EI1f, EI3f- EI5f, EI7f) in this scenario.  

Under both types of constraints, 500 estimations are carried out for each measurement 

set using the identical data for the analysis in Figure 3-36. For both types of constraints, 

the mean and the COVs are summarized in Figure 3-37.a and b, respectively. 
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Figure 3-37. Estimations using different number of rotations with the absolute 

constraint of [0.5, 1.5] (triangle) and the relative constraint (dot): (a) Mean (b) 

Coefficient Of Variation (COV) 

Regarding the tight absolute constraint, the bias and the COVs for EI3f and EI5f are not 

always satisfactory when the number of rotations used is less than 5. For instance, when 

4 rotations are used, the bias in EI3f is 3.5% and the COVs is 0.11. Hence, the results of 

using less than 5 rotations are not included in this figure. When the number of rotations 

is equal to or greater than 5: (1) the bias in all identifiable parameters is always less 

than 1.0%. (2) The bias decreases with the number of rotations. (3) The bias in EI3f is 

the lowest among the bias for all parameters because the bending behavior of the local 

zone associated with EI3f is fully excited. 

In the case of relative constraints, the bias in EI3f is also the lowest one. However, bias 

of around 1-2% exists in those estimations for parameters associated with regions 

adjacent to null curvature zones. In Figure 3-37.a, it is observed that the bias in EI1f and 

EI3f are very close in magnitude but different in sign. This might be due to the fact that 

introducing the relative constraints averages the estimations of EI1f, EI2f and EI3f. 

Similar phenomenon is observed for parameters EI5f and EI7f. 

Regarding the variation of the estimations, the COVs for those identifiable parameters 

can be reduced by both types of constraints. The COVs for EI1f, EI3f-EI5f, EI7f obtained 

from the tight absolute constraint [0.5, 1.5] are always lower than those respective ones 

obtained from the constraint [0, 10] for all measurement sets. These COVs drop more 

significantly when the relative constraint is imposed. The comparison of COVs 

obtained from the tight absolute constraint and the relative one is depicted in Figure 

3-37.b. 

The analysis of the comparison between the results obtained from the absolute 

constraint and the relative constraint shows that: (1) when insufficient rotations are 

introduced in the measurement set, biased estimations can be obtained despite of the 
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constraints imposed on the parameters of insufficiently excited zones. (2) When 

sufficient rotations are introduced, both the tight and the relative constraints can reduce 

the variations of the estimations for those identifiable parameters where the bending 

behavior are sufficiently excited. (3) The relative constraint reduces the variations more 

than the tight absolute constraint at the cost of slight bias. 

 

This paper proposes a Measurement Error-Minimizing Observability Method 

(MEMOM) for the static structure system identification. For the first time in the 

literature, to deal with the biasedness in the estimations, those error terms in the 

coefficient matrix of the observability equations are separated and moved into the 

unknowns. The resulting equations are solved by minimizing the square sum of the 

ratios between the error terms and the associated measurements subjected to the 

nonlinear constraints among the unknowns. 

The proposed method is first validated in a beam-like structure with previous methods. 

In the case of essential sets, the method is capable of exactly replicating any given 

values of the measurements. In the case of redundant measurements, the proposed 

method is compared with the SSI by compatible OM regarding different factors, such 

as the number of measurements, the loading cases and the error levels. The same 

estimations validate the performance of the proposed method in beam-like structures. 

The identical estimations of these two methods for beam-like structures might be due 

to the fact that the geometrical relations among displacements are implicitly imposed 

by the nonlinear constraints in the proposed method.  

In addition, the proposed MEMOM is applicable in frame structures where the SSI by 

compatible OM is not. In the frame structure, the identification of a local floor beam is 

investigated regarding the effect of curvatures, the measurement types and the 

constraint on those unidentifiable parameters. The results indicate that the accuracy of 

the estimation of a given parameter θ highly depends on the curvature of the zones of 

parameter θ, which is related to the parameterization and the loading case of the 

structure. In the case of coarse parameterization, the bending behavior for all zones are 

sufficiently excited in both loading cases, hence the estimations for all parameters are 

satisfactory. For the same loading case, the parameters for more excited zones are 

estimated more accurately than those for less excited zones. In the case of fine 

parameterization, this situation is even severe. The estimations of the parameters for 

null curvature zones are greatly biased and variable. The possibility of improving the 

estimations by including more measurements is investigated. It is found that this means 

is not efficient in the sense that the estimations for parameters associated with null 

curvature zones are still unsatisfactory despite plentiful measurements. 

To investigate the effect of measurement type, the estimations from 26 measurement 

sets are evaluated regarding different number of rotations. The analysis of these 
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simulations shows that the inclusion of rotations in measurements is critical for accurate 

estimations. As the number of rotations increases, the improvement in the estimations 

is significant initially but reaches a plateau at a given moment. The inclusion of 

rotations cannot solve the issue of bad estimations of parameters associated with null 

curvature zones in frame structures. In addition, providing only one loading case is used, 

the effect of limiting the feasible range of the estimations for parameters of null 

curvature zones is studied. It is found that: (1) To obtain unbiased and robust 

estimations, the inclusion of rotations in the measurement set is necessary despite 

different types of constraints. (2) The variations for parameters for zones whose 

curvatures are well excited can be reduced when tight absolute constraints or relative 

constraints are imposed on the estimations of parameters associated with null curvature 

zones. (3) The relative constraint reduces the variations more than the tight absolute 

constraint at the cost of slight bias.
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Evaluating the current condition of existing structures is of primary importance for the 

safety and due to economic reasons. This can be addressed by Structural System 

Identification (SSI). A reliable SSI depends on well-designed loading cases and sensor 

configurations as well as efficient parameter estimation algorithms. Static SSI by 

Measurement Error-Minimizing Observability Method (MEMOM) is a model-based 

deterministic static SSI method to estimate structural parameters from static responses. 

However, this method did not incorporate multiple loading cases. As a result, bending 

stiffnesses in null curvature zones cannot be satisfactorily identified under one loading 

case. To solve this issue, the SSI by MEMOM using multiple loading cases is proposed. 

Observability equations obtained from different loading cases are concatenated 

simultaneously and an optimization procedure is introduced to obtained the estimations 

by minimizing the discrepancy between the predicted response and the measured one. 

Meanwhile, a Genetic-Algorithm (GA)-based Optimal Sensor Placement (OSP) 

method using the Fisher Information Matrix (FIM)’s determinant as the metric of the 

goodness of measurement configurations is proposed to handle the OSP problem under 

multiple loading cases. Two numerical examples, including a 3-span continuous bridge 

and a 13-story frame, are investigated to validate the applicability of the extended SSI 

by MEMOM and the GA-based OSP method. Results indicate that the proposed 

methods are efficient and can be potentially used in practical SSI.  

Keyword: structural system identification; stiffness method; observability method; 

measurement errors; multiple loading case; 
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During the construction and operation stages, infrastructures and civil structure suffer 

from irreversible deterioration due to various factors such as overloading, concrete 

cracking, concrete carbonation and corrosion of reinforcement. Consequently, these 

structures might fail to meet the public requirements regarding the normal use and even 

safety. It is of primary importance to obtain their current condition to provide the 

decision-making basis for the follow-up treatment. During the past decades, Structural 

System Identification (SSI) has emerged as a powerful tool to serve this purpose. The 

basic principle of SSI is that the change of structural condition is reflected by the change 

of structural parameters; and can be revealed by the change of structural response. 

Regarding the types of external excitation, SSI can be categorized as dynamic SSI 

(Brownjohn et al., 2008; Papadopoulos & Garcia, 1998; X. Wang et al., 2001) and static 

SSI (Abdo, 2012; Bakhtiari-Nejad et al., 2005; Banan et al., 1994b, 1994a; J. Lei, 

Lozano-Galant, et al., 2018; Sheena et al., 1982). As shown by their long history in civil 

engineering, static load tests provide important information on displacement, rotation 

and strain, serving as an appropriate alternative and an amendment to visual and 

dynamic inspections as deflection or strain measurements are relatively easy (Nguyen 

et al., 2016). However, the majority of SSI research focuses on the dynamic SSI. In 

dynamic SSI, it is common to assume no damping in the system and that the damage of 

the structure does not lead to loss of mass (Papadopoulos & Garcia, 1998; X. Wang et 

al., 2001). These assumptions might introduce modelling error in the parameter 

estimation. Meanwhile, the modal shapes are sensitive to structural damage but are hard 

to obtain accurately, especially in stiff structures. On the contrary, the acquisition of 

accurate frequency is less challenging but frequency is not very sensitive to structural 

damages (Farrar et al., 1994; Kim et al., 2003). Static response might be more sensitive 

to local damage while dynamic response provides the overall and distributed 

information about the structure (Brownjohn et al., 2008). In the static SSI, the basic 

equations are established on the equilibrium of nodal forces. Neither damping or mass 

is involved (X. Wang et al., 2001), which makes the static SSI easier than the dynamic 

SSI. Also, current measurement devices for static tests are cheaper and more accurate 

than those for dynamic testing (Andreaus et al., 2017; Kourehli, 2017).  

Static SSI have been investigated for the purpose of condition assessment. (Sheena et 

al., 1982) presented a method for improving the analytical stiffness matrix. After 

measuring a set of Degrees Of Freedom (DOFs), spline functions were used to predict 

the remaining unmeasured DOFs. Then the difference between the theoretical stiffness 

matrix and the real one was minimized by adjusting the element properties. (Hajela & 

Soeiro, 1990a) classified the SSI into three types: equation error approach, output error 

approach and minimum deviation approach. Both static and eigenmodes of the structure 

were combined in the damage detection. (Banan et al., 1994a, 1994b) used the iterative 

optimization method to estimate element properties based on two indices of discrepancy 

including the Force Error Estimation and the Displacement Error Estimation. 

(Hjelmstad & Shin, 1997) assumed the baseline values of structure parameters were 
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known and proposed adaptive parameter grouping algorithm to detect and evaluate 

structural damage. (Brian J. Walsh & González, 2009) used the cross-entropy method 

to estimate the structural parameters of a plate structure, given data from a simulated 

non-destructive static loading test. This method simulated the stiffness of each element 

with a statistical distribution that was updated by the measurement data. The effect of 

initial distribution values, structural model, number of readings and sample size was 

investigated. (Abdo, 2012) studied the relation between the change in static 

displacement curvature and the damage characteristics (location and severity). This 

method successfully detected and located damage in beam-like structures. However, 

mechanical properties of the intact structure were required. 

SSI is essentially the application of parameter estimation in structural system. In 

parameter estimation, the classical observability problem is involved with the 

observability (existence and uniqueness) of the estimated parameters. The 

Observability Method (OM) has been applied in static SSI to determine the 

observability of the structural parameters by checking the null space of the coefficient 

matrix of observability equations (Jose Antonio Lozano-Galant, Nogal, et al., 2013). 

These equations are obtained by reconstructing the static equilibrium equations via a 

series of algebraic operations. (Nogal et al., 2015) proposed SSI by Numerical OM that 

incorporated a numerical evaluation procedure in the original SSI by OM. In order to 

identify the minimum measurement sets that are capable of ensuring the observability 

of all parameters with the least and necessary number of measurements, (Jose Antonio 

Lozano-Galant et al., 2015) proposed the observability tree method according to the 

mechanical connection between structural parameters and measurements. (J. Lei, Nogal, 

et al., 2018) revealed the lacking nonlinear constraints in the observability equations in 

SSI by NOM and reintroduced these constraints by an optimization procedure. The 

effect of measurement errors and simulation errors on the accuracy of the estimated 

parameters using SSI by NOM with minimum sets were investigated in (J. Lei et al., 

2017). In order to improve the estimation by using redundant measurements, the SSI 

by Measurement Error Minimizing Observability Method (MEMOM) was proposed. 

This method decomposed the measurements 𝛿 contained in the coefficients matrix of 

observability equations into error-free terms 𝛿 and error terms 𝜖𝛿. The error terms 

were then transferred to the unknown vector. The final estimations were obtained by 

minimizing the square sum of all the ratios between the error terms 𝜖𝛿  and the 

measurements 𝛿.  

The quality of the static SSI result depends on three factors: (1) loading cases that 

activate the mechanical behavior of the structures to be identified; (2) the number and 

the spatial location of sensors that ensures the quality of the measurement raw data; and 

(3) efficient parameter estimation algorithms that exploit the essential information of 

the structure from the loading cases and the measured response. The damage of 

structures might be concealed due to the limitation of the load paths (Chen, Zhu, & 

Chen, 2005; Q. Yang & Sun, 2010). This situation is very significant when only one 

loading case is used to identify the structure. This agrees with the observation that 
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accurate estimation of bending structural parameters in null curvature zones is 

intractable (J. Lei et al., 2017; J. Lei, Xu, et al., 2018). Such zones include those 

adjacent to the support or near the inflection point of the moment diagram. However, it 

is inevitable to have null curvature zones in the structure when only one static load test 

is applied. Alternatively, test data from multiple loading cases can be used in the static 

SSI. 

Apart from the importance of loading cases in the static SSI, the Optimal Sensor 

Placement (OSP) is also a vital issue. The OSP problem can be formulated as a 

combinatorial optimization problem aiming at minimizing or maximizing some user-

defined objective functions with the sensor location vector being the decision variable. 

Such objective functions include some norms of the Fisher information matrix. 

Regarding the formidable dimension of real structures, seeking the OSP is an intractable 

task by ordinary global search method due to the fact that the solution space is huge 

and the searching efficiency is low. For a model with 𝑛 DOFs and 𝑁𝑚 sensors, there 

are C
Nm 

n possible sensor placement configuration. For instance, the case of 70 DOFs and 

20 sensors means 2.0237×1063
 possible sensor placement configurations. Typically, the 

combinatorial optimization problem is a non-convex optimization problem. Traditional 

optimization methods tend to be trapped in the local minimal (maximal) points. Instead 

of finding the OSP from a global sense, current work for the OSP in static SSI (Masoud 

Sanayei & Chitra, 2002; Masoud Sanayei, Dicarlo, et al., 2015) adopted the idea of 

greedy algorithm. This leads to the problem that these methods might make certain 

choices too early, preventing them from finding the best overall solution later. This is 

typical for OSP method using greedy algorithm (Bertola, Papadopoulou, Vernay, & 

Smith, 2017). Another limitation is that these methods cannot specify the number of 

different types of sensors to be used. They can guarantee the total number of sensors 

but cannot control the number of inclinometers, strain gauges or deflection gauges.  

The objective of this research includes (1) develop the static SSI using multiple loading 

cases under the framework of OM; (2) propose a systematic method to determine the 

OSP configuration for static SSI under multiple loading cases. 

The organization of the paper is as follows: firstly, the procedure to implement SSI by 

MEMOM under Multiple loading cases is presented. This starts with the previous 

method aimed for single loading case. Then a detailed description of how to combine 

the equations for different loading cases is provided. In section 3.6.4, the property of 

the FIM and the formulation of the FIM under multiple loading cases are presented. 

Section 3.6.5 provides some numerical examples to validate the proposed methods. 

Finally, in section 3.6.6, some conclusions are drawn. 
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Firstly, a Finite Element Model (FEM) for the target structure is required and its static 

equilibrium equations should be established. 

 [𝐾]{𝛿} = {𝑓} (3-78) 

For 2D analysis, the stiffness matrix [K]  includes the element length 𝐿𝑗 , elastic 

modulus 𝐸𝑗, area 𝐴𝑗, inertia 𝐼𝑗, shear modulus 𝐺𝑗, torsional stiffness 𝐽𝑗 of element j 

(j=1,2, …, 𝑁𝑒, where 𝑁𝑒 is the number of elements). The displacement vector {𝛿} 

includes the horizontal deflection 𝑢𝑖, vertical deflection 𝑣𝑖 and rotation 𝑤𝑖 of node i 

(i=1,2, …, 𝑁𝑛, where 𝑁𝑛 is the number of nodes). 

For the sake of simplicity, this paper will focus on the structural mechanism involved 

with 𝐸𝑗𝐴𝑗 ,  𝐸𝑗𝐼𝑗 . Since the main objective of SSI is to assess the condition of the 

structure, the estimations of axial stiffnesses EA and bending stiffnesses EI are of 

primary importance. These parameters, 𝐸𝐴𝑗and 𝐸𝐼𝑗 , are treated as one unknown each 

to reduce unknowns. 

Different unknowns may appear in the same column in the matrix [𝐾]. Meanwhile, in 

controlled static load tests, the magnitude of the external force and the measured 

responses are known to experimenters. Hence, some elements of the force vector and 

the displacement vector are known. To distinct the knowns from the unknowns, those 

known elements are indicated by subscript 1 while those unknown elements are 

indicated by 0. In order to solve the inverse problem formulated from Equation (3-78), 

the equilibrium equations are reconstructed as the observability Equation (3-79) using 

a series of algebraic operations. 

 𝐵 ⋅ 𝑧 = [
𝐾10
∗ 0

𝐾00
∗ −𝐼

] {
𝛿0
∗

𝑓0
 } = {

𝑓1 − 𝐾11
∗ 𝛿1

∗

−𝐾01
∗ 𝛿1

∗ } = 𝐷 (3-79) 

In the observability equations, the coefficient matrix [𝐵]  contains the measured 

displacements δ̃ and the known element length. The unknown vector z is composed 

of three types of unknowns, including (1) single unknowns, such as bending stiffnesses 

𝐸𝐼𝑗 , axial stiffnesses 𝐸𝐴𝑗; (2) coupled unknowns, such as 𝐸𝐼𝑗𝑤𝑖, 𝐸𝐼𝑗𝑣𝑖; (3) reactions 

(𝐻𝑖, 𝑉𝑖, 𝑀𝑖). 

Based on the observability equations, the observability (existence and uniqueness) of 

any unknown in the vector {𝑧} can be determined symbolically from the structure of 

the null space of the coefficient matrix [𝐵]. Meanwhile, a particular solution of the 

observability equation is obtained by least-square methods. The particular solution for 

those observable unknowns is regarded as the final estimations.  

Despite its efficiency in determining the observability of the target parameters, the 
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overall accuracy of this method is far from satisfactory when measurement errors exist. 

Some improvements are made to alleviate the adverse effect of measurement errors. 

For instance, the compatibility conditions (geometrical relations among nodal 

displacements) in beam-like structures can be obtained from the observability equations 

and can be used to smooth away the incompatibility induced by measurement errors (J. 

Lei, Xu, et al., 2018). Also, averaging the estimations from different combinations of 

rotation measurements is capable of acquiring robust estimations of the target 

parameters. However, both methods suffer from the limitation in either the structure 

type or the measurement type. In order to have a more general method, the SSI by 

MEMOM is proposed. In the observability equations, the measured displacement 𝛿 

contained in the coefficient matrix [𝐵] are separated into an error-free term 𝛿 and an 

error term ϵδ. Then the error terms ϵδ for all measured displacements are transferred 

to the unknown vector. A new observability equation with measurement errors being 

included in the unknowns is formulated, as shown by Equation (3-80). 

 [𝐵𝑒] ⋅ {𝑧𝑒} = {𝐷} (3-80) 

In this new observability equation, those measured displacements 𝛿 are included in 

the matrix [𝐵𝑒]. Compared to the previous unknown {𝑧}, the new unknown {𝑧𝑒} also 

contains the error terms ϵδ. The Equation (3-80) usually has more unknowns than the 

number of equations. To solve this underdetermined system, other conditions have to 

be imposed. The discrepancy between the measured response and the predicted 

response is minimized by numerical optimization. The objective function is the square 

sum of the ratios between the error terms and the measured displacements. 

To make use of multiple loading cases, the observability equations for different loading 

cases are obtained first. Then the observability equations for different loading cases 

have to be stacked. The procedure to combine the observability equations in different 

loading cases is demonstrated in Figure 3-38. In one loading case, the number of 

equations equals the number of equilibrium 𝑁𝑒𝑞 on all nodes. As a result, the number 

of equations in the observability equations for multiple loading cases equals 𝑁𝐿𝐶 × 𝑁𝑒𝑞.  

 

Figure 3-38 Formulation of observability equations for multiple loading cases by 

stacking (mLC means multiple loading cases, NLC is the number of loading cases) 
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It is assumed that structural parameters do not change due to the static tests and they 

remain constant along time. In each loading case, the unknowns always include the 

structural parameters to be estimated. Hence, the concatenated equations contain 

duplicated variables (structural parameters). This system of equations can be simplified 

by merging columns that are related with these duplicated variables. In the final 

observability equations, the unknowns are composed of three types: (1) single 

unknowns, including structural parameters (bending/axial stiffness), reactions from 

different loading cases, (2) coupled unknowns, products of structural parameters and 

unknown displacements or error terms from different loading cases; (3) additional 

single unknowns that are obtained by the decoupling of those coupled unknowns and 

are not included in the first type, such as the unmeasured displacements and the error 

terms. 

After obtaining the final observability equations, the structural parameters are estimated 

by minimizing the square sum of the ratios between the error terms and the measured 

displacements in all loading cases, as shown in Equation (3-81). 

 𝑓(𝑧𝑒
𝑚𝐿𝐶) =∑∑(

𝜖𝛿𝑖,𝑗
𝛿𝑖,𝑗

)

2𝑁𝑚

𝑗=1

𝑁𝐿𝐶

𝑖=1

 (3-81) 

Here, NLC is the number of loading cases. Nm is the number measurements in each 

loading case. 𝛿𝑖,𝑗 is the jth measurement in the ith loading case and 𝜖𝛿𝑖,𝑗 is the corresponding 

error term. 

The procedure to carry out SSI by MEMOM for multiple loading cases is summarized 

in Figure 3-39. 

 

Figure 3-39 Flowchart of the structural system identification by measurement-error 

minimizing observability method under multiple loading cases. 
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The majority of research dealing with sensor placement focuses on the dynamic SSI. 

Little attention has been paid to the static case. Existing research on the OSP for static 

SSI is based on the FIM [𝐹] (Masoud Sanayei & Chitra, 2002; Masoud Sanayei, 

Dicarlo, et al., 2015). The rationale of this sensor placement method is that FIM 

provides a lower bound estimation of the covariance of the estimated parameters θ, as 

stated by the Cramer-Rao lower bound (Udwadia, 1994).  

 E [(θ̂ − θ)(θ̂ − θ)
T
] ≥ [𝐹]−1 (3-82) 

Firstly, the computation of FIM [𝐹𝑠] under single loading case is given below. 

 [𝐹𝑠(𝛩)] = [𝑆(𝛩)
𝑇][𝛹0

2]−1[𝑆(𝛩)] (3-83) 

The FIM [𝐹𝑠] is comprised of a sensitivity matrix [𝑆(Θ)] and a noise variance matrix 

[𝛹0
2]. The sensitivity matrix [𝑆(Θ)] describes the effects of the variation of structural 

parameters on the selected measurements. It has 𝑁𝑚 rows and 𝑁𝑝 columns, where 

𝑁𝑚 is the number of measurements and 𝑁𝑝 is the number of parameters. The noise 

variance matrix [𝛹0
2] of the measurements are typically available to experimenters 

through instrument calibration, sensor-supplier information and engineering judgement 

(Bertola et al., 2017; Masoud Sanayei, Dicarlo, et al., 2015). The sensor location vector 

𝛩 is a binary vector with the length of 𝑁𝑑, where 𝑁𝑑 is the number of DOFs in the 

model. Each element of the sensor location vector 𝛩 is associated with one DOF. 

When 𝑖𝑡ℎ  DOF is measured, then 𝛩𝑖=1. Otherwise, 𝛩𝑖=0. Clearly, the sum of all 

elements of Θ equals 𝑁𝑑. 

To obtain the sensitivity matrix [𝑆(𝛩)] for measured DOF, the sensitivity matrix [𝑆𝑎] 

for all DOFs is obtained first, as shown below. 

 [𝑆𝑎] =
𝜕𝛿

𝜕𝜃
=
𝜕[𝐾(𝜃)−1𝑓]

𝜕𝜃
 (3-84) 

Here, [K] is the stiffness matrix and {f} is the load vector. 

The matrix form of Equation (3-84) is given in Equation (3-85). 

 [𝑆𝑎] = 𝛻𝜃𝛿 = [
𝜕𝛿

𝜕𝜃1
…

𝜕𝛿

𝜕𝜃𝑁𝑝
] =

[
 
 
 
 
 
𝜕𝛿1
𝜕𝜃1

…
𝜕𝛿1
𝜕𝜃𝑁𝑝

⋮ ⋱ ⋮
𝜕𝛿𝑁𝑑
𝜕𝜃1

…
𝜕𝛿𝑁𝑑
𝜕𝜃𝑁𝑝]

 
 
 
 
 

 (3-85) 

Since [𝐾][𝐾−1]=[𝐼], the following equation holds. 
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 𝟎 =
𝜕[𝐾 ⋅ 𝐾−1]

𝜕𝜃
= [𝐾] ⋅

𝜕[𝐾(𝜃)−1]

𝜕𝜃
+
𝜕[𝐾(𝜃)]

𝜕𝜃
⋅ [𝐾−1] (3-86) 

Combining Equation (3-84) and Equation (3-86). 

 [𝑆𝑎] =
𝜕[𝐾(𝜃)−1]

𝜕𝜃
⋅ 𝑓 = −[𝐾(𝜃)−1]

𝜕[𝐾(𝜃)]

𝜕𝜃
[𝐾(𝜃)−1]{𝑓} (3-87) 

The sensitivity matrix S(Θ) for the selected measurements is obtained by extracting 

the associated rows of the matrix [𝑆𝑎] where the corresponding elements of 𝛩 are 1. 

(Masoud Sanayei, Dicarlo, et al., 2015) pointed out that the noise variance matrix is 

semi-definite and thus the Cholesky decomposition can be applied. 

 𝛹0
2 = [𝐿] ⋅ [𝐿𝑇] (3-88) 

Substituting Equation (3-88) into Equation (3-83), then: 

𝐹𝑠(𝛩) = 𝑆(𝛩)
𝑇(𝐿 ⋅ 𝐿𝑇)−1𝑆(𝛩) = (𝐿−1𝑆(𝛩))

𝑇
𝐿−1𝑆(𝛩) = �̃�(Θ)𝑇�̃�(Θ) (3-89) 

The modified sensitivity matrix �̃�(Θ) incorporates measurement uncertainty into the 

sensitivity matrix.  

With the formulation of FIM under one loading case, the procedure to obtain the FIM 

for a static load test comprised of 𝑁𝐿𝐶 loading cases is presented below. 

Step 1:For the 𝑖𝑡ℎ loading case, obtain the sensitivity matrix [𝑆𝑖
𝑎] (𝑁𝑑 by 𝑁𝑝 matrix) 

for all DOFs according to Equation (3-87) and the lower triangular matrix [𝐿𝑖] from 

the noise variance matrix [𝛹0,𝑖
2 ]. Then the modified sensitivity matrix [�̃�𝑖

𝑎] for the 𝑖𝑡ℎ 

loading case is given by: 

 [�̃�𝑖
𝑎] = 𝐿𝑖

−1𝑆𝑖
𝑎 (3-90) 

Step 2: Formulate the modified sensitivity matrix [�̃�𝑚
𝑎 ] for all DOFs under multiple 

loading cases by combining the modified sensitivity matrix [�̃�𝑖
𝑎] for different loading 

cases. 

 [�̃�𝑚
𝑎 ] = [

�̃�1
𝑎

⋮
�̃�𝑁𝐿𝐶
𝑎
] (3-91) 

Note that the modified sensitivity matrix [�̃�𝑎] for all loading cases has 𝑁𝐿𝐶 × 𝑁𝑑 

rows and 𝑁𝑝 columns. 

Step 3: Extracting those rows of the matrix [�̃�𝑚
𝑎 ] where the corresponding DOFs are 

measured so as to formulate the modified sensitivity matrix [�̃�𝑚(𝛩𝑚)] for the selected 

DOFs under multiple loading cases.  

The sensor placement vector 𝛩𝑚 for multiple loading cases has 𝑁𝐿𝐶 × 𝑁𝑑 elements. 

From a practical point of view, it is rational to keep the sensor configuration the same 

in each loading case so that the cumbersome disassembly and installation of sensors 
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due to the difference of sensor configurations can be avoided. When the sensor 

configuration for each loading case is the same, the sensor placement vector 𝛩𝑚 for 

multiple loading cases is the 𝑁𝐿𝐶 times repetition of the sensor placement vector 𝛩𝑠 

for one loading case. Thus the number of unknowns to be optimized is the same as the 

number of elements in the vector 𝛩𝑠, which is 𝑁𝑑. Regarding the computation aspect, 

this is also beneficial due to the reduction of the search space in the optimization. 

Step 4: Calculate the FIM for multiple loading cases, as shown by Equation (3-92). 

 𝐹𝑚(𝛩𝑠) = �̃�𝑚(𝛩𝑠)
𝑇�̃�m(𝛩𝑠) (3-92) 

The objective of OSP is to find the best sensor locations to extract as much information 

from the structural response as possible with a given number of sensors. The OSP for 

static SSI can be stated as maximizing or minimizing an objective function associated 

with the static characteristic of the structure, where the optimization variable is the 

sensor location vector 𝛩 and the constraint is the number of available sensors.  

According to the Cramer-Rao lower bound, maximization of some norms of the matrix 

[𝐹] would yield possible minimum lower bound of the covariance of the estimation 𝜃. 

Common norms of the matrix [𝐹] include trace, determinant and minimum singular 

values. (D.-S. Li, Li, & Fritzen, 2012) pointed out that different matrix norms are 

equivalent in the sense that one norm can be always bounded in a range by another 

norm with appropriate constant scaling factors. Hence, the determinant of the FIM, 

det( [𝐹] ) is adopted as the objective function to judge the goodness of a sensor 

placement configuration, which is the same as the criterion in current static OSP 

methods (Bakhtiari-Nejad et al., 2005; Masoud Sanayei & Chitra, 2002; Masoud 

Sanayei, Dicarlo, et al., 2015). In Sanayei’s method, an initial sensor set containing all 

possible sensor locations (namely DOFs for the FEM) is created first. The determinant 

of the FIM associated with this initial set is used as a reference value, det([𝐹0]). Based 

on the algebraic property of the determinant of matrices, the ratio 𝑅𝐷𝑖 between the 

determinant of the FIM, 𝑑𝑒𝑡([𝐹−𝑖]), after the removal of the 𝑖𝑡ℎ DOF in the initial 

sensor set and the reference value 𝑑𝑒𝑡([𝐹0]), can be determined quantitatively. This 

ratio 𝑅𝐷𝑖  is always between [0, 1]. The higher 𝑅𝐷𝑖 , the less important the 

measurement of the 𝑖𝑡ℎ  DOF. After getting 𝑅𝐷𝑖  for all DOFs, the DOF with the 

highest 𝑅𝐷𝑖 (lowest importance) is removed from the initial sensor set. Thus a new 

sensor set is formed. The process of forming new sensor sets and deleting sensor 

candidates (DOFs) is repeated until the remaining number of sensors in the current set 

is the same as the number of available sensors. In (Bakhtiari-Nejad et al., 2005), the 

importance of DOFs is determined in a similar way. However, the best sensor locations 

are simply chosen as those DOFs with the lowest 𝑅𝐷𝑖 in the initial sensor set without 

the process of updating sensor sets. Another difference is that the sensor configurations 

for different loading cases are selected independently in (Bakhtiari-Nejad et al., 2005). 
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Consequently, the physical locations of the sensors are not invariant, which leads to 

additional costs in the disassembly and the installation of sensors. However, the sensor 

configuration in each loading case is kept constant in (Masoud Sanayei & Chitra, 2002; 

Masoud Sanayei, Khaloo, et al., 2015). Both methods evaluate the importance of 

potential sensor locations by checking the decrease in the determinant of FIM after 

removing one DOF. This kind of evaluation cannot reconsider the previous choices on 

sensor locations. This is to say, due to the limitation of evaluating the importance of 

different DOFs in a sequential manner, the joint effect of two or more DOFs on the 

determinant of FIM cannot be accounted. Also, the number of deflectometers and 

inclinometers cannot be specified in these methods, only the sum of them. This issue 

can be solved by biology-inspired algorithms, such as Genetic Algorithm (GA) or 

particle swarm optimization, artificial bee colony algorithm. In this paper, the GA 

proposed by (Deep, Singh, Kansal, & Mohan, 2009) is used to solve the combinatorial 

optimization problem for the OSP. The mathematical formulation of the 

aforementioned OSP problem for multiple loading cases is given below. 

 𝛩𝑜𝑝𝑡 = max
Θ
𝑑𝑒𝑡 (𝐹𝑚(𝛩𝑠)) (3-93) 

Subjected to 

 𝑁𝐿𝐶 ⋅∑𝛩𝑠,𝑖
𝑖∈𝑣

= 𝑁𝑣 𝛩𝑠,𝑖 ∈ {0,1}  (3-94) 

 𝑁𝐿𝐶 ⋅∑𝛩𝑠,𝑖
𝑖∈𝑤

= 𝑁𝑤 𝛩𝑠,𝑖 ∈ {0,1} 
(3-95) 

The GA proposed by (Deep et al., 2009) includes following stages: (1) initialization 

stage; (2) evaluation stage; (3) selection stage; (4) crossover stage; (5) mutation stage; 

(6) truncation stage. In GA, a batch of initial solutions is generated randomly at the 

initialization stage. The batch and each solution are called population and individual, 

respectively. The evaluation stage assesses the fitness of each individual in the current 

population and also checks whether the termination criterion is reached or not. 

Regarding the fitness of individuals, the judging criteria correspond with three cases: 

(a) feasible solutions always overmatch infeasible ones; (b) among feasible solutions, 

the one with the best objective function overmatches the others; (c) among infeasible 

solutions, the one with the lowest constraint violation overmatches the others. The 

selection, crossover, mutation and truncation stages are carried out repeatedly. The first 

three stages aim at updating and diversifying the population while the truncation stage 

aims at satisfying the restriction that each element of the individual should be integer. 

When one round of these four stages is finished, a new generation of the population is 

obtained. Subsequently, the evaluation stage is carried out based on this new population. 

The best individual in this population and its fitness value are recorded and compared 

with those of the previous population. If the number of generations exceeds the 

predefined number or the improvement of the fitness value does not exceed a threshold, 

the algorithm will terminate and the best individual in the last population is determined 
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as the best solution. For more technical details, please refer to (Deep et al., 2009). 

 

The first example is a 36𝑚 +54𝑚 +36𝑚  continuous beam. The FEM and its 

parameterization are depicted in Figure 3-40. It is assumed that the bending stiffnesses 

for the first span (𝐸𝐼1-𝐸𝐼4), those for the second span (𝐸𝐼5-𝐸𝐼10) and those for the third 

span (𝐸𝐼11-𝐸𝐼14) equal to 1.5×107 𝑘𝑁⋅𝑚2 , 2.5×107 𝑘𝑁⋅𝑚2  and 1.5×107 𝑘𝑁⋅𝑚2
, 

respectively.  

 

Figure 3-40 Finite element model for the 36m+54m+36m continuous beam 

(1) Advantages of using multiple loading cases 

Four loading cases are studied here, as shown in Figure 3-41 and  

 

 

Table 3-10.  

 

Figure 3-41 Different loading cases:(a) LC1 (b) LC2 (3) LC3 (4) LC4 
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Table 3-10 Description of the loading cases of the continuous beam 

Loading Case  Range Magnitude Type 

LC1 Span 1+ Span 2 20 kN/m Uniform 

LC2 Span 2+ Span 3 20 kN/m Uniform 

LC3 Span 1+ Span 2+ Span 3 20 kN/m Uniform 

LC4 Span 1+ Span 3 20 kN/m Uniform 

In order to demonstrate the advantage and effectiveness of using multiple loading cases, 

five scenarios are considered. 

Scenario 1: Using 28 deflections and 14 rotations under LC1. 

Scenario 2: Using 28 deflections and 14 rotations under LC2. 

Scenario 3: Using 28 deflections and 14 rotations under LC3. 

Scenario 4: Using 14 deflections and 7 rotations for both LC1 and LC2. 

Scenario 5: Using 14 deflections and 7 rotations for both LC3 and LC4. 

Due to the existence of null curvature zones, some parameters are not identifiable using 

only one loading case. This can be judged by the value of the diagonal elements in the 

inversed FIM, [𝐹−1]. For instance, in scenario 1, the bending stiffnesses 𝐸𝐼10 and 

𝐸𝐼14 cannot be identified. In scenario 2, the bending stiffnesses 𝐸𝐼1 and 𝐸𝐼5 cannot 

be identified. In scenario 3, all parameters can be identified as all diagonal elements of 

the associated inversed FIM, [𝐹−1] , are smaller than 0.1. However, the extent of 

variation of 𝐸𝐼3, 𝐸𝐼6, 𝐸𝐼9 and 𝐸𝐼12 is much higher than that of other parameters. 

Regarding scenarios 4 and 5, all diagonal elements of the associated inversed FIM are 

smaller than 0.1. In the optimization, an absolute bound of [0.5, 1.5] is applied on the 

normalized estimation of all unidentifiable parameters. 

For scenarios 1-3, the OSP is determined by the GA-based optimization using one 

loading case. For scenarios 4 and 5, the OSP is determined by the GA-based 

optimization using multiple loading cases. For each OSP configuration of the associated 

scenario, 200 measurement sets are simulated with proportional measurement errors 

using Equation (3-96). 

 δ̃ = 𝛿𝑟 ⋅ (1 + 𝐸𝑙𝑒𝑣𝑒𝑙 ⋅ 𝜉) (3-96) 

The result of the estimations in each scenario is summarized as the box plots in Figure 

3-42. 
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Figure 3-42 boxplot of the 200 estimations for 𝐸𝐼1-𝐸𝐼14 in scenarios 1-5 

The box plot is a statistical diagram that describes the dispersion of the data without 

making any assumption of the underlying distribution. The box is composed of three 

horizontal lines. From the bottom to the top, these lines are associated with the first 

quartile Q1, the median Q2 and the third quartile Q3 of the data. The longer the box, the 

larger the dispersion in the data. For the sake of easy comparison between different 

scenarios, the range of y-axis in Figure 3-42 is set between 0.6 and 1.4. In scenario 1 

(Figure 3-42.a), it is seen that the length of the box for 𝐸𝐼10 and 𝐸𝐼14 is significantly 

larger than those of other parameters. This is to say, despite of the absolute bound of 

[0.5, 1.5] on the normalized values of the estimation of the parameters (𝐸𝐼10 and 𝐸𝐼14) 

for null curvature zones, the dispersion of these estimations cannot be reduced. Similar 

phenomenon is observed for the bending stiffnesses 𝐸𝐼1  and 𝐸𝐼5  in scenario 2 

(Figure 3-42.b). In scenario 3, the load is applied the whole structure and the bending 

behavior of the structure is more excited than the scenarios 1 and 2. Even so, the 

curvature of the zones adjacent to the inflection points in the moment diagram for LC3 



 

3 Methodologies and results

 

137 

 

(Figure 3-42.c) is not well excited. As a result, the dispersion in 𝐸𝐼3, 𝐸𝐼6, 𝐸𝐼9 and 𝐸𝐼12 

is comparatively high. The corresponding COVs for these parameters are 0.080, 0.074, 

0.071, 0.088, while the highest and the lowest values of the COVs for the remaining 

parameters are 0.031 and 0.017. Regarding the scenarios using one loading case, the 

overall accuracy of the estimations for scenario 3 surpass those for scenarios 1 and 2, 

whereas the dispersion is lower. Hence, the accuracy and the dispersion of the 

estimations in scenario 3 are set as the reference for further comparison with the results 

using multiple loading cases. 

When multiple loading cases are used, all parameters are identifiable. This is also 

manifested by the fact that all the diagonal elements of the inversed FIM are always 

less than 0.1. Hence, no constraint is applied on any parameter during the optimization. 

A comparison of the COVs for the estimations of all parameters obtained from 

scenarios 3-5 is depicted in Figure 3-43. The COVs for 𝐸𝐼3, 𝐸𝐼6 and 𝐸𝐼12 reduce 

from 0.080, 0.074, 0.088 in scenario 3 (LC3) to 0.031, 0.052, 0.048 in scenario 4 

(LC1+LC2), corresponding to reductions of 61%, 30%, 45%. The COVs of 𝐸𝐼9 in 

scenarios 3 (0.071) and 4 (0.072) does not change much. Regarding the other 

parameters, the COVs for 𝐸𝐼1, 𝐸𝐼13, 𝐸𝐼14 decrease drastically. On the contrary, the 

COVs in 𝐸𝐼5, 𝐸𝐼7, 𝐸𝐼8 and 𝐸𝐼10 increase from 0.026, 0.017, 0.020, 0.031 to 0.038, 

0.040, 0.029, 0.038, respectively. 

 

Figure 3-43 comparison of the COVs for the estimations of 𝐸𝐼1-𝐸𝐼14. 

In scenario 5, the improvement of the dispersion in the estimations is more significant 

when compared with scenario 3. The dispersion of all parameters is controlled to an 

acceptable level. The COVs for the bending stiffnesses associated with null curvature 

zones, namely 𝐸𝐼3, 𝐸𝐼6, 𝐸𝐼9 and 𝐸𝐼12 decreased from 0.080, 0.074, 0.071, 0.088 to 

0.025, 0.057, 0.042, 0.022, corresponding with reductions of 68%, 23%, 41%, 75%. 

Despite the increase of COVs in 𝐸𝐼1(38%), 𝐸𝐼7(28%) and 𝐸𝐼14(13%), the reductions 

of the COVs in other parameters are at least 20%. 

From the analysis above, it is seen that applying multiple loading cases: (1) the bending 

stiffnesses associated with null curvature zones in some load cases can be effectively 

identified by the proposed method; (2) the dispersion in the estimations of bending 
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stiffnesses in zones where bending behaviors are well excited can be further reduced. 

(3) The combination of different loading cases has different impact on the accuracy of 

the estimations. 

(2) Effect of the measurement type 

In this part, the effect of the number of rotations used in the measurement set is studied. 

The combination of loading cases 3 and 4 is used here. The total number of 

measurements is fixed as 21 and the number of rotations varies from 0 to 21, leading to 

22 cases. The measurement set for each case is determined by the GA-based OSP. 200 

samples for each measurement set are simulated by Equation (3-96). The mean and the 

COVs of the estimation are summarized in Figure 3-44. 

 

Figure 3-44 The estimations of EI1-EI14 under loading cases 3+4 using different 

number of rotations : a) Mean b) Coefficient of Variation (COV). 

Figure 3-44.a analyzes the effect of the number of rotations on the mean of the 

estimations of all bending stiffnesses. It is seen that when no rotation is used, 

overestimation is observed in 𝐸𝐼2(4.4%) and 𝐸𝐼6(2.9%). As the number of rotations 

starts to increase, the bias in the estimations decreases sharply. The decrease rate is 

significant initially. When the number of rotations is more than 5, the deviation of the 

mean of all parameters is within 1%. However, increasing the number of rotations in 

the measurement set is no longer effective in reducing the bias.  

Figure 3-44.b analyzes the effect of the number of rotations on the COVs of the 

estimations of all bending stiffnesses. When no rotation is used, the COVs for the 

majority of the bending stiffnesses are very high. Half of these COVs exceed 0.1. As 

the number of rotations increase, the COVs for all parameters reduces gradually and 

reach a steady level finally. The reduction is most significant when the number of 

rotations is less than 4. Take 𝐸𝐼9 for instance, the COV for the estimations is 0.234, 

0.136, 0.129, 0.064, 0.059, 0.059 when the number of rotations varies from 0 to 5. When 

the number of rotations exceeds 7, the reduction of COVs in the estimations by 

increasing the number of rotations is not significant. 
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From the analysis above, it is seen that: (1) the measurement type has a great impact on 

the accuracy of static SSI using multiple loading cases; (2) When no rotation is 

introduced, non-negligible bias and significant dispersion exist in the estimations of 

bending stiffnesses; (3) The accuracy and the dispersion of the estimation can be 

improved by including more rotations. 

In a previous study on the identification of a floor beam in a 13-story frame, it was 

found that the bending stiffnesses of null curvature zones cannot be identified. In this 

example, those unidentifiable parameters are identified by the SSI by MEMOM using 

multiple loading cases. Also, the effect of using different number of rotations is studied. 

(1) Advantages of using multiple loading cases 

Three loading cases are studied here. The magnitude and range of these loading cases 

are shown in Figure 3-45 and Table 3-11. 

Table 3-11 Description of the loading cases of the frame 

Loading Case  Range Magnitude Type 

LC1 Left 3m 20 kN/m Uniform 

LC2 Right 3.8m 20 kN/m Uniform 

LC3 Over the whole span 20 kN/m Uniform 

 

 

Figure 3-45 (a) Finite element model of the 13-story frame structure with the targeted 

beam to be identified; (b) loading case 1; (c) loading case 2; (d) loading case 3; 

To demonstrate the advantage of using multiple loading cases, four scenarios are 
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studied. 

Scenario 1:Using 34 deflections and 16 rotations under LC1. 

Scenario 2: Using 34 deflections and 16 rotations under LC2. 

Scenario 3: Using 34 deflections and 16 rotations under LC3. 

Scenario 4: Using 17 deflections and 8 rotations for both LC1 and LC2. 

The objective is to identify the selected beam depicted in Figure 3-45. During the 

optimization, the absolute constraints of [0.5, 1.5] are applied on those bending 

stiffnesses for the null curvature zones. Namely, LC1 (𝐸𝐼2𝑓, 𝐸𝐼5𝑓, 𝐸𝐼6𝑓), LC2 (𝐸𝐼2𝑓, 

𝐸𝐼3𝑓 𝐸𝐼6𝑓) and LC3 (𝐸𝐼2𝑓, 𝐸𝐼6𝑓). When LC1 and LC2 are used jointly, all the diagonal 

elements of the inversed FIM are lower than 0.1. Hence, all parameters are identifiable 

and no constraint is applied on them in scenario 4. For scenarios 1-3, the OSP is 

determined by the GA-based optimization using one loading case. For scenarios 4, the 

OSP is determined by the GA-based optimization using multiple loading cases. For 

each OSP configuration of the associated scenario, 200 measurement sets are simulated 

with an error level of 5%. All the results are summarized in Figure 3-46. 

 

Figure 3-46 Box plots of the estimations of different scenarios:(a) Scenario 1; (b) 

Scenario 2; (3) Scenario 3; (d) Scenario 4 

All the y axes are scaled to [0.4, 1.6] for the sake of an easy comparison between 

different scenarios. In scenario 1-3 (Figure 3-46.a-c), single loading case is used to 

obtain the estimations of the bending stiffnesses. The estimations of bending stiffnesses 

associated with null curvature zones have much larger dispersion (indicated by the 

length of the box) than other bending stiffnesses. In scenario 4 (Figure 3-46.d), it is 

seen that the dispersion of all parameters is well controlled when compared with those 

for scenarios 1-3. In the meanwhile, the dispersion of the estimations of bending 
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stiffnesses associated with zones of high curvatures is reduced. Regarding the bending 

stiffnesses 𝐸𝐼1𝑓-𝐸𝐼7𝑓, three COVs can be obtained from the estimations in scenarios 

1-3. The lowest COVs for 𝐸𝐼1𝑓-𝐸𝐼7𝑓 in these scenarios are 0.031, 0.098, 0.026, 0.022, 

0.042, 0.201, 0.041 while the associated COVs in scenario 4 are 0.024, 0.031, 0.021, 

0.023, 0.031, 0.035, 0.039, which means decreases of 22.6%, 68.4%, 19.2%, -4.5%, 

26.2%, 82.6%, 4.9%. Despite of the slight increase of COV for 𝐸𝐼4𝑓, the overall results 

are improved.  

(2) Effect of the measurement type 

Assuming that 25 measurements are used in each loading case, the cases of using 0, 2, 

4, 5, 8, 10 rotations are considered. The sensor location for each case is determined by 

the GA-based OSP and 200 samples are simulated with an error level of 5%. The result 

is described by Figure 3-47.  

 

Figure 3-47 Box plot of the estimations of 𝐸𝐼1𝑓 -𝐸𝐼7𝑓  using: (a) 0 rotation; (b) 2 

rotations (c) 4 rotations (d) 6 rotations (e) 8 rotations (f) 10 rotations 

All the y axes are scaled to [0.8, 1.2]. When only deflections are measured, the upper 

limit or the lower limit of the box plot for 𝐸𝐼3𝑓-𝐸𝐼6𝑓 exceeds the range of [0.8, 1.2]. 

This indicates large dispersions of these estimations. As the number of rotations 

increases, the dispersions of all parameters reduce gradually. When the number of 
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rotations is more than 6, the improvement is no longer significant. In the case of using 

10 rotations, the bias of the estimations for 𝐸𝐼1𝑓-𝐸𝐼7𝑓  is always within 0.5%. The 

associated COVs are 0.020, 0.028, 0.020, 0.020, 0.027, 0.31, 0.034 for the estimations 

of 𝐸𝐼1𝑓-𝐸𝐼7𝑓, which is satisfactory. 

The analysis of the effect of measurement type on the frame leads to conclusions similar 

to those for beam-like structures. In summary: (1) the measurement type has a great 

impact on the accuracy of static SSI using multiple loading cases; (2) When only 

deflections are measured, the bias and the dispersion in the estimations are far from 

acceptable. This can be improved by including rotations in the measurements. (3) The 

improvement in the bias and the dispersion of estimations is very considerable when 

rotations are introduced at the beginning. When the number of rotations exceeds a 

certain level, this improvement becomes no longer significant. 

 

In this paper, the static Structure System Identification (SSI) by Measurement Error-

Minimizing Observability Method (MEMOM) under multiple loading cases is 

presented. For each loading case, the observability equations are obtained first using 

the OM. Then these equations are concatenated so that the information from multiple 

loading cases can be addresses by the algorithm simultaneously. The estimations of the 

parameters are determined by minimizing the square sum of the ratios between the error 

terms and the measured displacements. The method presented here is an improvement 

on the SSI by MEMOM under single loading case regarding its ability to identify those 

parameters in null curvature zones.  

In the meanwhile, the OSP problem for the static SSI is formulated as a combinatorial 

optimization problem with the determinant of the Fisher Information Matrix as the 

objective function and the sensor location vector as the decision variable. The location 

of the sensors in each loading case are kept constant to avoid the cumbersome work of 

the disassembly and the installation of sensors. 

To justify the effectiveness of the proposed methods, the numerical examples of a 3-

span continuous bridge and a 13-storey frame are investigated using noisy 

measurements with respect to the loading cases, measurement types. It is seen that: (1) 

the SSI by MEMOM under multiple loading cases can effectively identify the 

parameters for regions where structural behaviors may not be sufficiently excited in 

one loading case. (2) Also, the estimation accuracy and dispersion can be significantly 

improved in regions where structural behaviors are moderately activated. (3) 

Measurement type has a great impact on the estimation results. When only deflections 

are used, the estimations are greatly biased even when multiple loading cases are used. 

(4) A drastic improvement is observed when rotations are included in the measurements 

initially. When the number of rotations increases to a certain level, the improvement in 

the estimations will be no longer noticeable regarding the bias and the dispersion of the 

estimations.
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4 Closure 

This work presents the study of the Structural System Identification (SSI) using static 

tests under the framework of Observability Methods (OM).  

In the pioneering work of SSI by original OM, a systematic analysis of the effect of 

measurement errors on the estimation result was lacking. Also, the assumption of 

linearization of unknowns simplified the process of determining the observability of 

unknowns. However, this assumption might lead to the omission of some observable 

unknowns. To this end, different aspects of this topic are addressed to advance the SSI 

by original OM, which include: (1) the investigation of the effects of measurement 

errors and simulation errors on the estimations of target parameters using minimum 

measurement sets (Chapter 3.1); (2) the incorporation of nonlinear constraints to 

enhance the ability of the original OM to observe unknowns (Chapter 3.2);(3) different 

strategies to reduce the adverse effect of measurement errors on the estimation accuracy 

using redundant measurement sets (Chapter 3.3-3.6). Specifically, Chapter 3.3 focuses 

on imposing compatibility conditions (derived by OM) on the displacements in beam-

like structures to remove the incompatible components in the measurements due to 

errors. Chapter 3.4 investigates the advantages of using rotations as measurements in 

SSI and proposes a practical and effective way of using rotations for SSI with the aim 

of obtaining low bias and dispersion in the estimations. Chapter 3.5 formulates the 

observability equations in a different way so that the measurement errors are separated 

from the coefficient matrix. The best estimations of parameters are determined as the 

set of solution that minimizes the discrepancy between the predicted response and the 

measured one. In the meanwhile, the combinatorial optimization problem arising from 

the optimal sensor placement problem for static SSI is solved by a genetic-algorithm, 

with the determinant of Fisher Information Matrix (FIM) being the objective function. 

The main conclusions are summarized below: 

(1) In the SSI by original OM, the observability equations are obtained by transforming 

the equilibrium equations. Then, the observability of unknowns is determined by 

inspecting the structure of the null space of the coefficient matrix of the 

observability equations. The application of this linear algebraic operation implicitly 

admits that the unknowns are linear, which might not be true because nonlinear 

constraints exist among the unknowns. The proposed SSI by Constrained OM 

(COM) appends the nonlinear constraints among the unknowns to the SSI by 

original OM via optimization technique. The analysis of numerical examples shows 

that the SSI by COM achieves a significant improvement by observing parameters 

that are omitted by the SSI by original OM. The SSI by COM exploits the 

information in the measurements more effectively than the original method. 
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(2) When the minimum set is used, the loading cases are of primary importance for the 

accurate estimation of the target parameters. The estimations of parameters 

representing the regions near null curvature zones (supports or inflection points of 

the moment diagram) are much worse than those representing other regions 

regarding the accuracy and the dispersion of the estimations. The higher the extent 

of curvature excitation in the zones to be identified, the lower the sensitivity of the 

parameter estimations to the measurement errors. In order to tackle the adverse 

effect of null curvature, it is recommended to use sufficient loading cases for SSI. 

Meanwhile, the numerical simulations with random errors in all measurements and 

the analytical results show that using rotations for SSI is much better than the case 

of using deflections in respect of the sensitivity of the parameter estimations to the 

measurement errors.  

(3) Redundant measurement sets are used to improve estimation accuracy when 

measurement errors exists. However, the result given by the SSI by original OM 

leads to underestimated and dispersed estimations. To alleviate the adverse effect 

of measurement errors, the compatibility conditions among all displacements in 

beam-like structures are derived through OM. By imposing the compatibility 

conditions in the measurement with optimization techniques, the adverse effect of 

measurement errors are mitigated and the final parameter estimations are obtained. 

The numerical analysis shows that when the curvature of the zones increases, the 

bias and the dispersion of the corresponding parameter estimations will decrease 

and that the selected loading case should excite the curvature of the region of 

interest. The dispersion of the parameter estimations varies linearly with the error 

level. For the curvature-excited region, the parameter estimation accuracy is 

insensitive to changes in the error level. With respect to the bias and dispersion of 

parameter estimations, the accuracy of parameters representing zones of null 

curvature decreases faster with the increase of error levels than the accuracy of 

parameters representing zones of high curvature. 

(4) The theoretical distribution of the target parameters can be acquired by the 

analytical expressions of these parameters and the inverse distribution theory. 

Based on the numerical analysis of a beam-like structure and a frame structure, the 

statistical properties of the distribution of the target parameters using different types 

of measurements (rotations, deflections) are obtained and compared. The result 

justifies the advantages of using rotations by comparing the sensitivity of the 

estimations to measurement errors. Four different strategies to use rotations as 

measurements are proposed and studied. It is recommended to divide the redundant 

rotation measurements into multiple minimum sets and obtain the respective 

estimations from each of these minimum sets. The final estimations are determined 

as the average of these estimations with the outliers being removed by the box-plot 

technique. 

(5) Using SSI by Measurement Error-Minimizing Observability Method (MEMOM), 

adopting more measurements or including rotation measurements can improve the 

estimations result of all parameters. However, the accuracy and the dispersion of 
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those parameters in null curvatures are still unsatisfactory. Combining multiple 

loading cases with SSI by MEMOM can accurately identify the parameters of such 

regions. Meanwhile, the estimations of those parameters that belong to regions 

where curvatures are excited are also improved.  

(6) In the case of using single loading case, the effect of using relative or absolute 

constraints on the unidentifiable parameters is investigated regarding the 

unbiasedness and dispersion of the estimations. When the number of rotations is 

insufficient, the estimations are always biased despite the type of constraints applied 

on those unidentifiable parameters. When the number of rotations is sufficient, both 

type of constraints can reduce the dispersion of the estimations; The relative 

constraints reduces dispersion more effectively than the absolute constraint, but at 

the cost of slightly higher biases. 

(7) In either single or multiple loading cases, the inclusion of rotation measurements 

can significantly reduce the biases and the dispersion of the parameter estimations. 

The extent of improvement by including rotations is very significant initially. After 

the number of rotations increases to a certain level, further increase of rotations will 

no longer improve the estimation results. 

(8) Under single or multiple loading cases, the optimal sensor placement method using 

Fisher Information Matrix and genetic algorithm can be efficiently adopted to 

design reliable sensor configurations. This establishes a sound foundation for the 

subsequent estimations of the target parameters and provides the guideline for non-

destructive static test set-up. 

This work has led to the following published papers: 

1. Jun Lei, José Antonio Lozano-Galant, María Nogal, Dong Xu, José Turmo, 

Analysis of measurement and simulation errors in structural system identification 

by observability techniques, Structural Control and Health Monitoring,  

2. Jun Lei, María Nogal, José Antonio Lozano-Galant, Dong Xu, José Turmo, 

Constrained observability method in static structural system identification, 

Structural Control and Health Monitoring 

3. Jun Lei, Dong Xu, José Turmo, Static structural system identification for beam-like 

structures using compatibility conditions, Structural Control and Health Monitoring 

And the following under review or under preparation papers: 

1. Jun Lei, José Antonio Lozano-Galant, María Nogal, Dong Xu, José Turmo, Robust 

Static Structural System Identification Using Rotations, Structural Control and 

Health Monitoring 

2. Jun Lei, José Antonio Lozano-Galant, Dong Xu, José Turmo, Structural system 

identification by Measurement Error-Minimizing Observability Method, Structural 
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Control and Health Monitoring 

3. Jun Lei, José Antonio Lozano-Galant, Dong Xu, José Turmo, Structural system 

identification by Measurement Error-Minimization Observability Method Using 

Multiple Loading Cases, Structural Control and Health Monitoring 

The future research line of this work might be summarized as follows: 

(1) Experimental verification 

The proposed methods in this work are verified by numerical simulations. The 

measurement errors are simulated by adding proportional errors that follow normal 

distributions. However, measurement errors might not be proportional in real life. 

Meanwhile, modelling errors, such as inaccurate description of boundary conditions, 

linearization of nonlinear structural behavior, are not incorporated in current methods. 

To assure the application of the proposed methods, experimental verification is 

indispensable.  

(2) Improving the computational efficiency using substructure technique. 

The number of target parameters controls the scale of the SSI problem. As the number 

of parameters increases, the search space of the optimization or the sampling algorithm 

increases exponentially, which is directly linked with the computational difficulty. In 

large structures, it usually contains a large number of parameters. The SSI of such 

structures could be formidable. Substructure techniques can isolate the interested 

regions to be identified and thus reduce the number of unknown parameters. For this 

reason, the incorporation of substructure techniques will be studied in the future. 

(3) Incorporate dynamic test information. 

Static SSI methods are better at reflecting local damages of structures than dynamic SSI 

methods. However, it is not as effective as dynamic methods in reflecting the global 

features of structures. Static and dynamic information from non-destructive tests should 

be combined regarding the acquisition of both global and local features of structures. 

(4) A systematic method to design the loading cases 

Sufficient excitation of the structural behavior is one of most important factors for the 

accurate estimation of corresponding parameters. As shown by the current work, 

loading case combinations also affect the estimation accuracy and dispersion. However, 

this work only explores the optimal sensor placement problem for static case. The 

loading cases are selected in an empirical way. Quantitative metric for evaluating the 

goodness of single or multiple loading cases is lacking. Further research on the 

systematic method for designing loading cases is needed.
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