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1 INTRODUCTION

1.1 OBJECTIVES

The implementation of Intelligent Transport Systems (ITS) has made vast quantities of real-time
traffic data available, by making use of current road network infrastructure that enables
information to be gathered on-line. Detectors that measure traffic flow, speed and occupancy
are an example. How to use real-time traffic data, as well as historical data, to provide short-
term ftraffic prediction, remains an open problem for researchers. The problem of short-term
traffic prediction involves determining the evolution of traffic flows or, equivalently, of the
network state. The ability to predict the network state dynamically is essential in traffic
management and for traffic information centres particularly, since it enables them to apply traffic
control and traffic management policies to prevent traffic congestion rather than dealing with

traffic problems after congestion has already occurred.

Advanced traffic management systems (ATMS) and advanced traffic information systems
(ATIS) must consider, in real time, short time intervals in which neither demand nor flows are
constant and homogenous. Demand and flow behave dynamically, that is, they are both time-
dependent. The concept of traffic management, as defined by Barcelé (1991), is broader than
the classic concept of traffic control, because it takes action over time, including control over
space, such as, for instance, redistributing flows by rerouting, that is, by proposing alternatives
routes. Therefore, traffic management applications require dynamic modelling that shows flow

variation over time.

All proposals for advanced traffic management and control systems that are based on telematic
technologies agree on the importance of short-term prediction of traffic flow evolution, which is
equivalent to the short-term prediction of the network state, for correct decision-making in traffic
management, information dissemination to users, etc. Several system architectures have been
proposed and evaluated in European projects in recent years. Although the achievements of
these projects cannot be applied or extrapolated to complex urban structures, other models that
are more suited to complex networks have been developed, by Cascetta (1993) and Barcel6
(1997), for example. Unfortunately, these models do not appear to be appropriate for full
dynamic applications, and so we had to look elsewhere in our search for a suitable prediction
model. The promising features of neural networks, which make them suitable for use as
predictive tools (Baldi and Hornik, 1995), encouraged us to explore this approach. The
approach, which is based on real-time detector measurements combined with historical OD
matrices, involves determining a short-term forecast of a sliced OD matrix. The forecast OD
matrix could be used as input for a microscopic traffic simulator such as AIMSUN; thus the

evolution of traffic flows and, as a consequence, the forecast network state could be obtained.
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According to this dynamic vision of demand, we can consider each of the OD matrix’s
components as a time series. Therefore, forecasting an OD matrix consists in performing the
forecast for each component in the matrix, that is, in simultaneously forecasting many
multivariate time series. Solutions to this problem that are based on classic forecasting
methods, such as Box-Jenkins or Kalman filtering, have been proposed by several authors
(Davis, 1993; Davis et al., 1994; Van der Ziipp and Hamerslag, 1996). The approaches
proposed provide relatively good results for linear infrastructures, such as motorways, although
it remains unclear whether they would provide reliable results in the case of more complex
networks, such as urban networks. In some of the most promising cases (Davis, 1994),
however, the computational task required practically invalidates their use in real-time

applications in large-scale networks and makes it advisable to look for other methods.

Neural networks appear to be natural candidates for forecasting models, particularly if their
easily parallelisable structure is taken into account, and high computational speed is required to
achieve a system’s objectives. Further reasons to consider a neural network approach are the
results reported by Chakraborty (1992) for multivariate time series analysis using neural
networks and by Weigend (1992) in his evaluation of their predictive capabilities compared to

other classic models.

The dynamic prediction of the network state in terms of the OD matrix by means of neural
networks has one main drawback: the amount of data required for the proper training of the
neural network. This thesis proposes solving this handicap by partitioning the neural network in
terms of clusters of independent or almost independent OD pairs. This technique allows an
original neural network of a large size to be split into a set of smaller neural networks that are
easier to train. Before the clustering problem can be solved, however, the paths that are most

likely to be used between each OD pair must be identified.

Short-term forecasting leads, in this way, to the critical problem of dynamic traffic assignment,
which is solved in this thesis by a microsimulation-based heuristic. In the thesis, some of the
most critical aspects of the dynamic simulation of road networks are discussed, namely heuristic
dynamic assignment, implied route choice models and the validation methodology, a key issue
in determining the degree of validity and significance of the simulation results. The work is
divided into two parts: the first provides an overview of how the main features of microscopic
simulation were implemented in the microscopic simulator AIMSUN (AIMSUN 2002) and the
second is a detailed discussion of heuristic dynamic assignment and sets guidelines for
calibrating and validating dynamic traffic assignment parameters. The calibrated and validated
simulation model is then used to conduct a dynamic traffic assignment, whose output identifies
the paths that are most likely to be used, which will be clustered in subsets that connect the OD

pairs and will define the neural networks for the forecast.
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1.2 THESIS OVERVIEW

After the introductory chapter, the remaining chapters of the thesis are organised as follows. In
Chapter 2, a scheme for the architecture of decision-support systems for traffic management is
proposed and discussed, and the importance of short-term forecasting of the evolution of traffic
flows or the network state in management decisions is made explicit. The research carried out
to explore the performance of neural networks in relation to the demand prediction problem is
then described, in terms of the quality of the results provided and the computational
requirements for real-time applications. The dynamic prediction of the network state in terms of
the OD matrix by means of neural networks has two main drawbacks: the size of the neural
network, and the amount of data required for the proper training of the neural network. This
work proposes solving these handicaps by partitioning the neural network by considering
independent or almost independent OD pairs, which results in a subset of independent neural
networks of a smaller size and less data that requires training. A way of identifying independent
or almost independent OD pairs is to identify the paths that are most used between each OD
pair. ldentifying the paths requires a dynamic traffic assignment process. In Chapter 3, the
dynamic traffic assignment implemented in the microscopic AIMSUN simulator is described and
the implied route choice models and the validation methodology, a key issue in determining the
degree of validity and significance of the simulation results, is discussed in chapter 4. Figure 1.1

depicts the thesis outline in terms of requirements and proposals.

As shown in Figure 1.1, Chapter 2 proposes a scheme for the architecture of decision-support
systems for traffic management and traffic information systems in which the main aim is the
short-term forecasting of the evolution of traffic flows or the network state. The proposed
scheme has been evaluated in European projects during the drafting of the thesis; of them, we
might draw attention to ARTIS (ARTIS, 1994), PETRI (PETRI, 1996) and CAPITALS
(CAPITALS, 1998). The requirements for the short-term prediction of the network state are
formulated by determining the short-term prediction of traffic demand, expressed as an OD
matrix, to which a dynamic component is introduced, and then the network state is obtained
using the AIMSUN simulation output.

To address the problem of the OD structure we consider origins and destinations as pairs, /
being the set of all OD pairs in the network. If origin r and destination s are the i-th OD pair, g;
denotes the corresponding entry of demand matrix G, which represents the total number of trips

between origin r and destination s. Therefore,
ODysy=9gi, i=(rs)el

where | denotes the set of all OD pairs in the network. The total number of trips between an
origin r and a destination s is not a fixed value over time but a dynamic value (i.e. it is time-
dependent), as depicted in Figure 1.2. According to this dynamic vision of demand, forecasting

an OD matrix consists in simultaneously forecasting many multivariate time series.
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The research explored in this work uses neural networks as a prediction model for achieving the
system’s objectives and considers the real-time requirement and the positive results reported

when its predictive capabilities have been evaluated in comparison to other classic models.
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Figure 1.2. Dynamic demand

A neural network, as defined by Hecht-Nielsen (1989), consists of a set of interconnected
computational units or neurons, each of which performs a computational process on a weighted
sum of inputs according to a specific function, as shown in Figure 1.3. A neural network model
is generally characterised by three elements: the topology of the neural network, the neurons’
characteristics and the rules of the training or learning process.
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Figure 1.3. Neuron representation
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The topology explored in this work, according to the requirements of analysing and predicting
multivariate time series, is a multi-layer perceptron neural network. This topology corresponds to
a feed-forward network in which the neurons are arranged in layers and every neuron on each

layer is connected directly to all the neurons on the next layer.

The neuron is characterised by a nonlinear activation function and in our case the activation

function selected is the following sigmoid function:

1

l+e
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The sigmoid function (Hecht-Nielsen, 1989) is a bounded differentiable real function that is
defined for all real input values. It rapidly approaches asymptotically fixed finite upper and lower
limits as its argument gets larger or smaller respectively, and this limited dynamic range
effectively implements noise suppression and cut-off as Masson (1990) shows. Given the
nature of our problem, in which there are continuous inputs and outputs, the main reason for
selecting the above function is the fact that it makes use of the sigmoid rule, one of the most
frequently used nonlinear activation rules. The training or learning algorithm used is an ad hoc
version of the back propagation algorithm described by Hecht-Nielsen (1989). It is a supervised
learning process, given that the weights of the different neuron connections are iteratively
changed with reference to a set of predefined patterns specified as a set of input-output pairs.

At each step, the computational error is estimated to be
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where t” is the p-th desired output and S(”)(L) is the p-th output produced by the neural

network. Back propagation tries to minimise the total squared error E using a gradient algorithm.

The training process gauges the neural network, i.e. determines the different weights of the link
connections, and this depends on a set of desired input and output pairs. The experiments were
conducted with AIMSUN, a microscopic simulator that provides the detector measurements that
correspond to the simulation of traffic flows obtained from an OD matrix as output. Then, from
the historical OD matrix, small perturbations in this historical OD matrix, expressed as
percentage variations, and the detector measurements generated by simulation, the necessary

inputs for the training module can be simulated.

The training process requires the input of a historical time-sliced OD matrix, as well as the

patterns to train the neural network that has to produce the forecast. Time-sliced OD matrices
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are currently unavailable and their production is difficult and costly. Our proposal, evaluated in
the European CAPITALS project, consists in generating the sliced OD matrix that is receiving

information from detector flows and applying a matrix adjustment.

The prediction process forecasts the OD matrix in the next interval from the detector measures
collected and the historical OD matrix using a multilayer perceptron neural network and applying

a feed-forward algorithm.

The dynamic prediction of the network state in terms of the OD matrix using neural networks
has the disadvantage of the amount of data required to properly train the neural network. Our
proposal consists in reducing the size of the neural network whilst not diminishing its capacity
for representing the road network. This reduction is based on determining, for each OD pair, the
k current paths most likely to be used and partitioning them considering the sharing of links. The
partitioning condition may be very strict in most cases; it would thus be desirable to admit a
certain degree of overlapping if no significant errors are induced. Our proposal considers a
cluster analysis, in which the degree of overlapping can be controlled as a function of the

similarity level between clusters.

The microsimulation using traffic demand defined in terms of the OD matrix becomes the
principal point due to its use in several steps in the scheme proposed, such as the simulation to
determine the forecast network state, the generation of the input patterns in the training process
and the path identification process to determine the OD pair clusters. Chapter 3 discusses some
of the most critical aspects of the dynamic simulation of road networks, namely heuristic
dynamic assignment; the implied route choice models; the implementation in AIMSUN and the
validation methodology, an issue that is key in determining the degree of validity and

significance of the simulation data, is presented in chapter 4.

The assessment by simulation of ITS applications requires a substantial change of traditional
paradigms in microscopic simulation, in which vehicles are generated at the input sections in
the model and perform turnings at intersections according to probability distributions. In such a
model, vehicles have neither origins nor destinations and move randomly on the network. The
required simulation approach must be based on a route-based microscopic simulation
paradigm. In this approach, vehicles are input into the network according to the demand data
defined as an OD matrix (that is preferably time-dependent) and they drive along the network
following specific paths in order to reach their destination. In route-based simulation, new routes
are to be calculated periodically during the simulation, and a route choice model is needed, if

alternative routes are available, to determine how the trips are assigned to these routes.

The key question that this approach raises is whether this simulation can be interpreted in terms
of heuristic dynamic traffic assignment or not. We therefore propose investigating the answer to
this question for the case of the microscopic route-based simulator AIMSUN (Barcel6 et al.,
1995, 1998) used in the thesis.
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The route-based simulation process in AIMSUN can be interpreted in terms of a heuristic
approach to dynamic traffic assignment similar to the one proposed by Florian et al. (2001),

which consisted of the following:

1. A method to determine the path-dependent flow rates on the paths in the network,

based on a route choice function.

2. A dynamic network loading method, which determines how these path flows give rise to
time-dependent arc volumes, arc travel times and path travel times, heuristically

implemented by microscopic simulation.

The simulation process implemented, which is based on time-dependent routes, consists of the

procedure described below, a conceptual diagram of which is depicted in Figure 1.4.
Heuristic dynamic assignment procedure
Step 0  Calculate the initial shortest path(s) for each OD pair using the defined initial costs.

Step1  Simulate for a time interval Af, having assigned to the available path K; the fraction of
the trips between each OD pair i for that time interval according to the probabilities Py

k e K estimated by the selected route choice model.

Step2 Update the link cost functions and recalculate the shortest paths, with the updated

link costs.

Step 3 If there are guided vehicles or variable message panels that propose rerouting,
provide the information calculated in Step 2 to the drivers that are dynamically

allowed to reroute during trips.
Step4 Case A (Preventive dynamic assignment)
If all the demand has been assigned, then stop. Otherwise, go to Step 1.
Case B (Reactive dynamic assignment)

If all the demand has been assigned and the convergence criteria hold, then

stop.
Otherwise,
Go to Step 1 if all of the demand has not been assigned yet
Or

Go to step 0 and start a new major iteration.
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Figure 1.4. Conceptual diagram of the heuristic dynamic traffic assignment

Depending on how the link cost functions are defined, and whether the procedure is applied as
one pass method completed when all the demand has been loaded or applied as part of an
iterative scheme that is repeated until a given convergence criterion is satisfied, it corresponds
either to a “preventive” or en-route dynamic traffic assignment, or to a “reactive” or heuristic
equilibrium assignment. In the first case, route choice decisions are made for drivers entering
the network at a time interval based on the travel times experienced, i.e. the travel times of the
previous time interval, and the link cost function is defined in terms of the average link travel
times in the previous interval. Alternatively, a heuristic approach to equilibrium can be based on
repeating the simulation scheme a number of times and defining a link cost function including
predictive terms, as proposed by Friesz et al. (1993) and Xu et al. (1999). This could be

interpreted in terms of a day-to-day learning mechanism.

The simulation experiments carried out as part of this thesis were implemented in AIMSUN. The
logit, C-logit and proportional route choice functions were selected from the default route choice

functions available. The multinomial logit route choice model defines the choice probability Py of
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alternative path k, ke K;, as a function of the difference between the measured utilities of that

path and all other alternative paths, such that

ov,

P - e’k 1
k= Zeem B 1+260(V,—m

Iek, I#k

where Vi, is the perceived utility for alternative path i (i.e. the opposite of the path cost or path
travel time), and 6 is a scale factor that fulfils two roles: it makes the decision based on
differences between utilities independent of measurement units, and it influences the standard
error of the distribution of expected utilities, in that way determining a trend towards using many
alternative routes or concentrating on only a very few. It is thus a critical parameter in calibrating

whether the logit route choice model leads to a meaningful selection of routes or not.

One of the drawbacks of using the logit function is a tendency towards route oscillations in the
routes used, whereby the corresponding instability leads to a kind of flip-flop process. Our
experience shows that there are two main reasons for this behaviour: the properties of the logit
function and the logit function’s inability to distinguish between two alternative routes when
there is a high degree of overlapping.

The instability of the routes used can be substantially improved when the network topology
allows for alternative routes with little or no overlapping at all by playing with the shape factor of
the logit function and frequently recomputing the routes. However, in large networks, where
there are many alternative routes between origin and destination, some of which exhibit a
certain degree of overlapping, the use of the logit function may still exhibit some weaknesses.
To counter this drawback, the C-logit model (Cascetta et al., 1996 and Ben-Akiva and Bierlaire,

1999) was implemented.

In this model, the choice probability Py, of each alternative path k belonging to the set K; of

available paths that connect the i-th OD pair is defined as

oV —CFy )
P, =<
k Zee(Vl_CFl)
leK,;

where V; is the perceived utility for alternative path i, i.e. the opposite of the path cost, and @is
the scale factor, as in the case of the logit model. The ‘commonality factor’ of path k, denoted as
CF,, is directly proportional to the degree of overlapping of path k with other alternative paths.
Thus, highly overlapped paths have a larger CF factor and their utility is therefore less than that

of similar paths. CFy is calculated as follows:
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y
Ly
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where Ly is the length of the arcs common to paths i and k, while L, and Ly are the length of
paths | and k respectively. Depending on the two factor parameters g and y, the ‘commonality
factor’ is more or less weighted. Larger values of § mean that the overlapping factor is of greater
significance with respect to the utility V;; y is a positive parameter, whose influence is smaller
than B, and it has the opposite effect. The utility V; used in this model for path i is the opposite of

the path travel time ff; (or path cost if it has been thus defined by the user).

Another option is the estimation of the choice probability P, of path k , ke K, in terms of a

generalisation of Kirchoff’s laws given by the function

Ccp,“
p =_——K
k> cpe

leK;

where CP, is the cost of path / and « is, in this case, the parameter whose value has to be

calibrated.

This option has been included in the study for the sake of completeness, although its
foundations are unclear from the point of view of discrete choice theory in the context of
modelling road users’ route choice behaviours, at least insofar as it has been proposed by other
authors and used in other studies (Fellendorf and Vortisch, 2000). It could be interpreted as an
aggregated flow behaviour resulting from individual decisions in which the intensities of the
flows are distributed among the available routes, similarly to the way in which electrical flows
are distributed in electrical networks, assuming that link travel times or travel time-related cost

functions may be taken to be similar to electrical resistance.

The statistical methods and techniques for validating a traffic simulation model that are based
on the standard statistical comparison of the model’s and system’s outputs can consider global
measurements and/or disaggregated measurements, but a critical aspect in the
calibration/validation of a dynamic traffic assignment model is determining the values of the
dynamic traffic assignment parameters that lead to a meaningful selection of paths. No formal
convergence proof can be given for the dynamic traffic assignment proposed, since the heuristic
network loading process based on microscopic simulation does not have an analytical form. The
method proposed is based on the assumption that, insofar as the assignment described may be
associated with a heuristic approach to a preventive dynamic equilibrium assignment (Xu et al.,
1999), properly selecting the path should lead to such equilibrium. An assignment’s progress
towards equilibrium, and therefore the quality of the solution, may be measured using the

relative gap function RGap(t) (Florian et al., 2001) and (Janson, 1991), which estimates, at time
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interval ¢, the relative difference between the total travel time actually experienced and the total
travel time that would have been experienced if the travel times for all vehicles had been equal

to the current shortest path, such that

Z th (t)[sk(t)_ui(t)]

iel kek;

R =
gap(t) Zgi(t)ui(t)

iel

where
tis the time interval used in the dynamic traffic assignment algorithm;

l'is the set of all OD pairs;
ke K, is the set of paths for i-th OD pair;
g; is the traffic demand of OD pair i

h, (t) is the path flow assigned to path k € K, that connects OD pair i at interval ¢,

s, () is the total travel time experienced by all vehicles assigned to path k € K, that

connects OD pair i at interval t; and

u, (t) is the total travel time experienced by all vehicles assigned to the shortest path

that connects OD pair i at interval t.

1.3 THESIS OUTLINE

The remaining chapters of this dissertation are organized as follows. Chapter 2 discusses the
architecture for advanced traffic management and control system using the microscopic
simulation models to support sound decision-making processes, proposing neural networks as
dynamic mechanism for the short-term prediction of the network state and highlighting the
problem of pattern generation for the neural network training process and the drawback related
to the size of the neural network. Chapter 3 presents a heuristic for the dynamic traffic
assignment implemented in the scope of this research with the microscopic simulator AIMSUN.
Chapter 4 describes the methodology for validation of microscopic models. Chapter 5 presents
the computations results for validating the heuristic dynamic assignment based on
microsimulation. Finally, Chapter 6 concludes this dissertation by highlighting the main

contributions and discussing directions for future research.
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