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2 TRAFFIC DEMAND ESTIMATION IN REAL-TIME APPLICATIONS

2.1 INTRODUCTION

2.1.1 MOBILITY PATTERNS. ORIGIN-DESTINATION MATRICES

Mobility patterns are essential factors in transport planning, traffic control and traffic
management systems. Mobility patterns are usually represented in terms of a trip or mobility
matrix T between origin and destination, over a fixed time period. The f; elements of the matrix
represent the number of trips made for one specific purpose (such as working, shopping,
leisure, etc.) for which the origin zone is i-th and the destination zone is j-th in the geographical

area that is the object of the transport study.

The classic method in transport studies is to begin by defining a set of zones in the
geographical area that is the object of the transport study, that is to say, the area must be
divided into different zones, and the characteristics of each zone must be homogenous, in terms

of social and economic variables.
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Figure 2.1. Scheme of generation and attraction model
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The first step is to find an explanation for the number of trips that are generated in or attracted
to one zone according to its social and economic characteristics (housing, cars, income levels,
etc). The step is based on a model called a generation-attraction- model. The schema of a

generation-attraction model is as follows:
O, =f(S/' S?....,SK... S")
Di=f(S/, S..... Sf.... S)

where S/ represents the social or economic variable k-th in zone i-th; Oi represents the number

of trips generated in zone i-th; and Dj represents the number of trips attracted to zone j-th.
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Figure 2.2. Scheme of the distribution model

The generation-attraction model is not sufficient, because as well as knowing the number of
trips generated or attracted in each zone, it is essential to know the number of trips generated in
a specific zone that has another zone as the destination. This model is known as a distribution
model (Figure 2.2 depicts the schema of a generation-attraction model). This model is

represented by the following restrictions:
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(E 2.1)

D1, =0, Viel

jeJ

dt,=Dj VjeJ

iel
t,20 Viel,VjeJ

where I = {i/generation zone i-th}; J = {j/attraction zone j-th}; and {; is the

number of trips from zone i-th to destination j-th.
This distribution model gives a mobility or OD matrix T, such that

TzltijJ

From a generation-attraction model, a matrix T that fulfils restrictions (E 2.1 must be found. A

gravity model that may be used to find the matrix T from the generation-model, such that:

t,‘j =k O, Dj f(U,']) (E 22)

where f(u;) represents a dissuasion function expressed in terms of travel time uj.

A further model is the maximum entropy model expressed by Wilson (1970):

H(T)=MAX Y "¢, (logt, 1)

J

s.a.
Ztij =0, , Viel
J

t. =Dj, VjeJ
z i )] ]

i

A

DD uyty =T
i

where

(E 2.3)

A
T =Total travel time in the network

u; = Travel time from i to j

Taking the OD or mobility matrix, the traffic flow behaviour is characterised by applying

mathematical programming models.
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2.1.2 TRANSPORT PLANNING STUDIES

Transport problems clearly constitute a domain in which mathematical programming models and
techniques based on nonlinear optimisation may be applied (Barcelé, 1997a). Mathematical

models of traffic flow behaviour are a prerequisite in transport planning studies.

The goal of a transport planning study might be to estimate the flow distribution generated by
demand in a road network according to the mobility pattern, which represents traffic demand,
and the conditions of use of the network, which represent the capacity offered by the network.

The models used are called traffic assignment models.

The conditions of use of the network are modelled using behavioural route choice models,
congestion models and the dependency of the travel time with the volume. The route choice is
modelled considering Wardrop’s principles (Wardrop, 1952), which formalise the concept of
network equilibrium. Wardrop's first principle states that “The journey times in all routes actually
used are equal and less than those which would be experienced by a single vehicle on any
unused route”. Each user non-cooperatively seeks to minimise the cost of his or her trip. The
traffic flows that satisfy this principle are usually referred to as "user equilibrium" flows, since
each user chooses the route that is best. Specifically, a “user-optimised” equilibrium is reached
when no user can lower the cost of his or her trip through unilateral action. Wardrop's second
principle, “At equilibrium the average journey time is minimum”, implies that each user behaves
cooperatively in choosing his own route to ensure the most efficient use of the whole system.

Traffic flows satisfying Wardrop's second principle are generally deemed "system optimal”.

The road network is modelled using a graph, where nodes n € N represent origins, destinations
and intersections between road segments, and arcs a € A represent the infrastructure. The
volume in arc a is represented by v,, and s,(v) represents the cost of use arc a (where v is the
vector of the volumes of all the arcs in the network). One hypothesis of modelling is that s,(v) is

monotone, that is, that

[S(V) = s(v)]T (v'—=Vv”) 20, Vfeasible v, v’

is continuous and differentiable. This hypothesis is necessary considering the properties of the

mathematical model, which is, on the other hand, consistent with the experience.

To simplify the notation, the i-th represents the origin-destination pair (r, s) and g; represents the

demand or number of trips from zone rto zone s (g; = ts).

The demand from one origin to one destination g;, iel, where I is the set of all origin-destination
pairs, can use the paths or route k, ke K;, where K; is the set of all feasible routes of OD i-th.

The flow in path k, hy satisfies the following flow conservation and non-negativity conditions:
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= (E 2.4)

h, 20, VkekK;, Viel

The flow in arc a is determined by

v, = Z Z(Sakhk, Vae A

iel kek;
where (E 2.5)
{1 if arc a belongs to path k
ak — .
0 otherwise

The cost of each path sy is the sum of all costs of all arcs that belongs to path k:

Sk =D 0us,(v), VkeK; Viel (E 2.6)
acA

and u; is the minimum cost of OD pair i-th:

u; =Min{s,, VkeK;}Viel (E2.7)

Then, the formalisation of the user equilibrium concept implied in Wardrop’s first principle is

determined by the pattern of flows (v, u) that satisfies the following constraints:

hy [sk —ui] , VkeK,Viel

. (E2.8)
sp—u; 20, VkeK;Viel

The network equilibrium model is formulated by supposing that for every O/D pair Wardrop's
user optimal principle is satisfied, or in other words, that all the used directed paths are of equal

cost, that is:

s s =0 ifh >
Sp—u; = 0 lfh,;_O keK;,iel (E2.9)

Over the feasible set (E 2.4) and (E 2.5) . This network equilibrium model may be restated in the

form of a variational inequality:

(sp —u;)h, —h;)>0 keK,iel (E 2.10)

where h, is any feasible path flow. If h*k>0, then s*k=u*,. since h, may be smaller than h*k, if

h*k=0 then the inequality is satisfied when s*k-u*,zo.

By summing over keK| and iel, and taking into account constraints (E 2.4) and (E 2.5) when
the demand gj is constant, model (E 2.10) can be reformulated as follows (Fisk and Boyce,

1983; Magnanti, 1984; Dafermos, 1980):
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s(v*)T(v—v*)ZO (E 2.11)
Which is the variational inequality formulation derived by Smith (1979).

When the user cost functions are separable, that is, they depend only on the flow in the link:
Sa(v)=sa(va) a€A, and demands g; are considered constant, independent of travel costs, the

variational inequality formulation has the following equivalent convex optimisation problem
(Patriksson, 1994; Florian and Hearn, 1995):

V

Minz jsa(x)dx

ac4

st Y by =g Viel (E 2.12)
kek;
hy 20keK;iel

and the definitional constraint of v, (E 2.5).

Although the traffic assignment problem is a special case of non-linear multi-commodity network
flow problem, and may be solved by any of the methods used for the solution of this problem,
more efficient algorithms for solving this problem, based on an adaptation of the linear
approximation method of Frank and Wolfe (1956) have been developed in the past years
(Leblanc at al., 1975 and Florian, 1976). Other efficient algorithms based on the restricted
simplicial approach have been developed more recently by Hearn et al. (1987) or on an
adaptation of the parallel tangents method (PARTAN) (Florian et al., 1987).

Assignment models in transport planning are macroscopic models in which traffic flow is
considered to be an aggregation; the models do not take into account the individual parts, that

is, the vehicles.

Within macroscopic models, transport planning analyses use a static view of mobility patterns.
In this static view, mobility patterns are calculated as an average over a relatively long period,
because the aim of the analysis is to evaluate the expected use of the road infrastructure over a
long-term period. Figure 2.3 depicts this static view of demand, in which the number of trips for
each OD pair is distributed in a homogeneous way in each time interval. This view corresponds

to the objectives of an analysis of the use of a road infrastructure over a long-term period.
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Figure 2.4. Dynamic demand

The European PETRI project may be used as an example that shows how the short-term
prediction of the network state is required. This project involved the design and implementation
of a traffic management and information dissemination system in real time, using advanced

telematic technologies. Figure 2.5 depicts the conceptual scheme for the project.

For this traffic management and information system scheme, it is assumed that there is a layout
of detectors that provide detector measures in real time available in the road network. These
real-time detector measures are the input of the coordination module, which carries out the

following two basic functions:

Using the network state estimation model, it estimates and identifies the current network state

and receives as input the detector measurements in real-time.

Using the current network state, it predicts the short- or medium-term network state. The
network state forecast may be interpreted as the normal or natural evolution of the network

state without the application of further control or management policies.

The output of the coordination module is the input of the traffic pattern recognition module,
which identifies and characterises bottlenecks by identifying the main traffic patterns, assuming
there are no new preventive traffic control and management actions. The traffic pattern
recognition module characterises the bottleneck, gives its location and start time, and sends the

information to the diagnosis module.

The diagnosis module proposes a set of traffic control and management actions designed to
either prevent the negative effects of bottlenecks or find solutions to alleviate the effects of an
existing bottleneck. The actions are proposed to the operator of the traffic management and

control centre, and it is then the operator who decides whether to accept them.
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Figure 2.5. PETRI conceptual scheme

Figure 2.6 depicts a scheme that represents the functional cycle of the system. The detector

measurements, which are aggregated every At units of time, are the input of the system. To

clarify the functional cycle, the sequence of activities can be grouped into three series or chains

of events. The first sequence of events represents the current situation, whilst sequences (2)

and (3) represent the situation forecast. Sequence (1), which represents the current network

state, the detector measurements and the origin-destination matrix, which is estimated in the

previous time interval and represents traffic demand in the current time interval, are the input of

the dynamic network loading module, which forecasts traffic flow in the whole network that is

supervised by the system. These traffic flow forecasts are the input of the microscopic simulator
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that, running the simulation, produces the current traffic conditions or state. The problem
identification module of analyse this current state and present it to the operator using the

dialogue module.

| ESTIMATED) | DYNAMIC | P PROBLEM M
| OID F——> NETWORK F——>simuLATION! IDENTIFI-
f | I | LOADING )I | I CATION

DETECTOR DATA

————— —_—_———— —_—————
¥| DYNAMIC ‘I | DYNAMIC } | } PROBLEM @
HISTORICAL O/D [—*| O/D FORE- NETWORK SIMULATION IDENTIFI-
: CASTING | | LOADING | | CATION
__________ J —_——— — —
\
\ DED

(3)

| PROBLEM
SIMULATION IDENTIFI-
| ,l CATION

Figure 2.6. Schema of activities or processes in the PETRI

The sequence of events (2) concerns to forecasted traffic state for the next time intervals. The
current detector measurements and the set of historical origin-destination matrices are the input
for this chain. All this data is the input for the dynamic OD forecasting that produces, as output,
the origin-destination matrix forecast for subsequent intervals. From this point the next events
are the same as sequence (1), but instead to use the current situation, sequence (2) uses the
traffic data forecasted for the next time interval. That is, sequence (1) represents the current
situation, whereas sequence (2) is an attempt to predict the evolution of the current situation for
subsequent time intervals, assuming that the current conditions will continue without any new
traffic control and management action. When the problems are detected and identified, the
recommended actions module proposes a set of control and management policies or actions
and simulates them to determine the evolution of the traffic conditions if they were to be applied.
This belongs to sequence of events (3), and then the operator, comparing the evolution of
network state with (obtained at the end of sequence (3)) and without (obtained at the end of

sequence (2)) new policies, can reject or accept the proposed actions.

Another scheme, where the mechanism of traffic prediction is necessary, is developed in the
CAPITALS project. For historical and technical reasons, large cities usually have several traffic
control and management centres. In most cases, these control and management systems
operate locally, that is, they take into account only the traffic conditions of their own area,
regardless of the traffic conditions in adjacent areas. The absence of communication between
different control and management centres gives rise to conflicts when there is a dynamic
change in demand that generates variations in traffic flow interchanges between adjacent

Zones.
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CAPITALS attempts to avoid, or alleviate, the conflicts originated by the lack of coordination
between control and management centres. To achieve this aim, it designs and implements a

supervisor system with the following functions:
= |t enables dialogue and the exchange information between traffic control centres.

= |t coordinates the different zones’ strategies based on the information available for each

zone.

= |t recommends changes and modifications in the control and management strategies of

each zone, based on information on the variation in traffic demand and traffic flow

forecast.
A
SUPERVISOR
A
TCC
—_» Detectors Measurements and Activated Control
—

—————— > New Recommendations

Figure 2.7. Generic view of the system’s components

The functional architecture of the supervisor system is shown in Figure 2.7. Local traffic control
centres (TCCs) send detection data that is aggregated every At time unit (one of the system’s
design parameters, which is defined by the operator). The supervisor uses this information to
estimate the network state in each zone. The detector measurements for each zone, in addition
to the historical information for the current time interval, comprise the input in the short-term
prediction module that is used to evaluate the short-term traffic state in each zone. On the basis
of a comparison between the current and forecast traffic state in each zone, recommendations
are made to the TCCs, which then adapt local traffic control plans to the expected forthcoming

variation in traffic demand.
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Figure 2.8. Functional design of the supervisor in CAPITALS

The supervisor is composed of the following modules, as depicted in Figure 2.8:

» The GETRAM database is the traffic network database (Grau et al., 1993). It was
selected because it contains the model for the microscopic AIMSUN simulator (Barceld,
1994 and 1995; Ferrer, 1993) that completes this architecture. This database contains
the information required to model the scenario considered by the system, namely, the
topology of the network and traffic, and the information equipment, such as, for
instance, detectors, traffic control plans, turning movements, intersections, on and off

ramps, variable message signs and mobility patterns or traffic demand).

» The traffic evaluation module contains the models and algorithms that are needed to
estimate traffic conditions in the network by combining the real detector measurements

and the microscopic simulator’s detector emulation.

30



Traffic Demand Estimation in real-time applications

The short-term prediction module contains the module and algorithms needed to predict
the mobility pattern for the subsequent time interval, taking into account the historical
data and the current detector measurements. The mobility pattern, expressed as an
origin-destination matrix, is used to estimate the ftraffic flow interchange between
adjacent zones, as depicted in Figure 2.9.

The microscopic simulator is used to evaluate the evolution of the forecast traffic state,

assuming that no new control and management policies are applied.

The control plan recommendation module is based on the evolution of the forecast
traffic state, a decision-support model relative to the traffic state and a set of strategies.
It recommends changes to the strategies, so that these are better suited to the changes

in the traffic state that are expected.

The communication module implements the interfaces between the supervisor and the
TCCs, and it manages the exchange of information between them. Every At, a TCC
sends the supervisor information on the detector’s traffic measurements and on the
current active control plan. In the other direction, the supervisor sends the TCC the

recommended strategies.

Figure 2.9. Flow interchange between adjacent zones

The diagram in Figure 2.10 illustrates the cyclic processes that are performed by the supervisor

at each time interval.

a)

b)

At the end of time intervals -1, ¢, t+1,..., the supervisor receives the aggregated

detection data and the desegregated control data for the time period.

The detector data for time interval t-1 and the historical OD matrix for this time period
are the input used by the prediction module to estimate the OD matrix forecast for time
period t.
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c)

The OD matrix forecast for time period t and the control data are the input for the
simulation model of the supervisor, which estimates the current network state at the

beginning of time period t.

The flows estimated by the simulator for the current network state are compared to the
flows measured, to determine whether the estimation of the current state is acceptable

or not.

t t+1
! | [
v v "
Detector and Detector and
Control Data for Control Data for
time period t-1 time period t
A 4
Historical O/D Supervisor Historical O/D Supervisor Alternative
Matrix for time » Prediction Matrix for time 4 Prediction Strategy
period t-1 Module period t Module
y
Forecasted O/D Forecasted O/D Supervisor
Matrix for time Matrix for time Simu lation
period t period t+1 Model
3)
A4 A4
Supervisor Alternative
Simu lation Network
Model State \
" @) Compare
A4
o X Yes S - - s /
rrent State at upervisor orecasted State
the beginning of _P< Accept? Simu lation at the end of
time period t Model time period t+1
Rejection
Analysis Recommend
Figure 2.10. Cyclic processes performed by the supervisor in CAPITALS
e) To estimate the OD matrix forecast for time period t+1, steps a and b are repeated with

the data and historical OD matrix for time period t.

Starting from the estimated current state at the beginning of time period ¢, a simulation
is performed to estimate the state forecast for the end of time period t. The simulator
communicates with two traffic control systems (MOT and SAINCO), which exploit the
the AIMSUN simulator

correspondence with the real system.

aforementioned feature of to ensure a one-to-one

By following the same process but repeating the simulation with the OD matrix forecast

for time period t and the alternative strategy, one obtains the alternative state.
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h) The comparison between the alternative state and the forecast state determines the

type of recommendation.

The Phase | and interphase process comprises tuning the system, refining the system
parameters, analysing the rejections, determining how to overcome the rejection causes
identified, etc. These tasks are carried out by the supervisor’'s logging feature, which enables

the situation leading up to the rejection to be reproduced.

2.2 SCHEMES FOR THE SHORT-TERM PREDICTION OF TRAFFIC DEMAND

All proposals for advanced traffic management systems based on telematic technologies agree
on the importance of a short-term forecast of the evolution of traffic flows or, equivalently
network state, as a proper basis for management decisions. Consequently a lot of effort has
been devoted to researching and developing proper forecasting procedures. Perhaps the most
relevant of these efforts is the EU’s DYNA project (Gunn, 1994; Ben-Akiva et al., 1994; Inaudi et
al., 1994). Although the results of the project cannot be applied or extrapolated to complex
urban structures, other models that are more suited to complex networks have been developed,
by Cascetta (1993) and Barcel6 (1997b), for example. Unfortunately, these models do not
appear to be appropriate for full dynamic applications, and so we had to look elsewhere in our
search for a suitable prediction model. The promising features of neural networks, which makes
them suitable for use as predictive tools (Baldi and Hornik, 1995), encouraged us to explore this

approach.

2.2.1 SCHEME FOR THE SHORT-TERM PREDICTION OF TRAFFIC DEMAND IN
DYNA

The methodology proposed in the EU’'s DYNA project can be applied to traffic networks whose
structure is linear, such as a motorway. The demand prediction is expressed in terms of
incoming traffic flows and it has a smoothing effect on the deviations between the observed

traffic flows and the historical traffic flows.

The methodology proposed in the DYNA project, which assumes a time interval h, is to predict
short-term traffic demand at time interval h+i, is function the traffic demand predicted at interval

h and the historical traffic demand at interval h+i, such that
o *[h+i] = @f ' [h], "' [h+i]] >0
where
d”*?Ih] is the OD matrix to be predicted at time interval h;
d*'[h] is the OD matrix estimated at time interval h; and

dh'St[h] is the historical OD matrix at time interval h.
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Let us assume that
d”*“[h+i] is the OD matrix predicted at time interval h+i, i>0;
e”®“h+i] are the incoming traffic flows predicted at time interval h+i, i>0;

s"®“[h+i] is the probability matrix that each element (k,j) represents the probability of one
vehicle that has centroid k as its origin and enters at interval h+i (i>0) having centroid j as

its destination;
edh’St[h] are the historical incoming flows at interval h of day d; and
e, ”*[h] are the observed incoming flows at interval h of day d.
The process of short-term traffic demand prediction is then defined as follows:
Step 1.

e”*[h+i] = @f &"[h], &"*[n+i], €**°[j], j<h] >0

Different filters @ were specified and verified with real data, but the most used filter

was
Aeh] = as(ed"[h] - e [h]) + (1 - az) Aeh-1]
e [h+i] = eq."™[h+i] - Aeyfh], i>0
where d represents the current day and the historical data is obtained as follows:
ed""[N] = az eq.1""[h] + (1 - az) €4"" [h]
Parameters ai o, must be calibrated and must accomplish
O<a;<1i0<a,<1
Step 2.

Once the incoming traffic flow has been predicted, the probability matrix s is

determined using the same mechanism, such that
Asqh] = By(sq" [h] = s4[h]) + (1 - ) Asqlh-1] and
sd"*[h+i] = sq.{"[h+i] - Asqfh], >0

where d represents the current day and the historical data is obtained as follows:
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sd"[h] = B2 sa.""[h] + (1 - B2) s [h]
Parameters f;i 3, must be calibrated and must accomplish
0<p<1i0<p <1
Step 3.
Finally, the result of the prediction is
d”®%h+i] = "% h+i] * S"*%[h+i], i>0

2.2.2 SCHEME FOR SHORT-TERM PREDICTION USING NEURAL NETWORKS

Ashok and Ben-Akiva (1993) propose a different framework for the real-time
estimation/prediction of time-dependent OD matrices. They formulate the problem as a Kalman
filter, in which the state vector consists of deviations of OD flows from prior estimates based on
historical data. The conceptual framework taken from the reference is depicted in Figure 2.11.

In this approach, if x;, are the number of vehicles in the r-th OD pair that leave the origin during
interval h, and x| the corresponding best historical estimate, to formulate the transition

equation we assume the hypothesis that the deviations in OD flows from a historical base at
period h can be related to the deviations in OD flows in previous time periods, written in

autoregressive form as

Nop

h
H _ r'p H
Xrhit = Xrhit = Z Zfrh (Xr‘p ~Xrp )+ Wirh

p:h_q' r'=1

where nop is the number of OD pairs, coefficients P describe the effect of the deviation

(xr.p —xﬁp) on the deviation (xr’h+1 —xtfhﬂ), W is @ random error and q’ is the number of lagged
OD flow estimations assumed to affect the OD flow deviation in interval h+1. The author
suggests computing the matrix f by means of linear regression models for each OD pair for
each interval, assuming that the autoregressive process remains constant with respect to h and
therefore the values of the matrix ff only depend on the difference (h - p) and not on individual

values of h and p. The problem can be simplified further by assuming a diagonal structure for

the matrix, thereby ignoring interdependencies across OD flows.

The relationships between the traffic counts observed on link / during interval h, y,, and OD

flows x., are defined in terms of the following measurement equation:

(s}

D
p
A Xrp TVin

Yih = Z

h n
p=h-p'r

Il
N
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where a|f’ is the fraction of the r-th OD flow that departed from its origin during interval p and is

on link / during interval h, vy, is the measurement error, and p’ is the maximum number of time
intervals taken to travel between any OD pair in the network.

l A priori Information

OFFLINE Historical
I » DYNAMIC OD MATRIX [¢ Assignment
L ESTIMATION Matrix
Historical
Counts
I —— Estimated Flows
A 4
Historical Counts ASSIGNMENT
SURVEILLANCE and OD Matrices MATRIX
SYSTEM by departure time COMPUTATION
A
l —» Estimated Flows
Real-Time
Counts
L REAL-TIME ON-LINE Assi .
DYNAMIC OD MATRIX ssignmen
. — .
ESTIMATION/ Matrix
PREDICTION

l

Rolling Horizon OD
Matrix Prediction

Figure 2.11. Conceptual framework for real-time estimation/prediction of OD matrices

This approach has been further developed and computationally tested by Ashok (2000) and
Ben-Akiva (2002), and integrated in a dynamic traffic assignment context by Ben-Akiva et al.
(2002). Nevertheless, when work began on this thesis only primary results were available, and
the computational performance of the approach proposed remained unclear; therefore, we
decided to take a different approach. The promising features of neural networks, which makes
them suitable for use as predictive tools (Baldi and Hornik, 1995), encouraged us to explore
them further, within a conceptual framework that shares certain concepts with that of Ashok and
Ben-Akiva (1993), depicted in Figure 2.11.

To address the problem, we consider origins and destinations as pairs, / being the set of all OD

pairs in the network, so if origin r and destination s are the i-th OD pair, g; denotes the

36



Traffic Demand Estimation in real-time applications

corresponding entry of demand matrix G, which represents the total number of trips between

origin r and destination s. Therefore,
ODg=gi, i=(rs)el

The total number of trips between an origin r and a destination s is not a fixed value over time; it
is a dynamic value (i.e. it is time-dependent), as depicted in Figure 2.4. According to this
dynamic vision of demand, we can consider each of the OD matrix's components as a time
series. Therefore, forecasting an OD matrix consists in performing the forecast for each
component in the matrix, that is, in simultaneously forecasting many multivariate time series.
Solutions to this problem that are based on classic forecasting methods, such as Box-Jenkins or
Kalman filtering, have been proposed by several authors (Davis, 1993; Davis et al., 1994; Van
der Ziipp and Hamerslag, 1996). The approaches proposed provide relatively good results for
linear infrastructures, such as motorways, although it remains unclear whether they would
provide reliable results in the case of more complex road networks. In several of the most
promising cases (Davis, 1994), however, the computational task required practically invalidates
their use in real-time applications in large-scale networks and makes it advisable to look for

other methods.

Recently, when most of the research for this thesis had been completed, an alternative
computational approach to the Ashok and Ben-Akiva (1993) approach was proposed by
Bierlaire and Crittin (2004), who reformulated the model in terms of least squares. Their

computational results seem to show that the drawbacks mentioned have been overcome.

Neural networks appear to be natural candidates for forecasting models, particularly if their
easily parallelisable structure is taken into account and high computational speed is required to
achieve the system’s objectives. Further reasons to consider a neural network approach are the
results reported by Chakraborty (1992) for multivariate time series analysis using neural
networks and by Weigend (1992) in his evaluation of their predictive capabilities compared to

other classic models.

A neural network model is generally characterised by the following three elements:
= The neuron’s characteristics
* The topology of the neural network

= The rules of the training or learning process
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2.2.2.1 NEURON CHARACTERISTICS

A neuron receives n values (X, where i=1...n) as input and produces one value Y as output. A
neuron is characterised by n weights (W; where i=1...n), a nonlinear activation function f(x) and

a bias or offset 6, as shown in Figure 2.12.

Input

X1 Wi

XZN

X3 Q‘

’ f(x) Y >
Output
X
Combutational
Unit

Figure 2.12. Neuron representation

The neuron output is determined by the following expression:

Y:f(zn:mx+.9)

i=1

where f(x) is the nonlinear activation function of the neuron. Figure 2.13 depicts several generic

|/ |~

a) Hard Limiter b) Threshold Logic c) Sigmoid

examples of this activation function.

—

-1

Figure 2.13. Activation function shapes

In our case, the activation function selected is the sigmoid function f(x)z1 (logistic

+e
function) or f(x) =tanh(x) . The main difference between them is that the tanh output ranges

from [-1,1], whereas the logistic output ranges from [0,1]. It is often said that when predicting a

target around a zero mean, tanh is likely to be more suitable.
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The sigmoid function, as defined by Hecht-Nielsen (1989), is a bounded differentiable real
function that is defined for all real input values. It rapidly approaches asymptotically fixed finite
upper and lower limits as its argument gets larger or smaller respectively, and this limited
dynamic range effectively implements noise suppression and cut-off, as Masson (1990) shows.
The sigmoid function makes use of the sigmoid rule—one of the most frequently used nonlinear
activation rules—and as such is particularly suited to our problem, in which there are continuous
inputs and outputs.

Although in certain cases there might be a relationship between the physical system modelled
in terms of a neural network and the topology of the neural network, in such way that a physical
interpretation of the neurons could be provided, in the most typical applications of neural
networks this relationship does not exist and no physical interpretation of what a neuron or a
layer of neurons means or captures in terms of the physical system can be provided. Our
interest in a neural network approach lies in its ability to provide a computational mechanism
when no specific structures can be identified, thus providing the basis for a model that
represents the system. This is precisely the case in the OD estimation and the reason why we
took this approach. In fact, the approach is perhaps similar to a regression approach, in which
no specific structural relationship between predictors and response variables is assumed and
coefficients only provide a de facto relationship. In fact, our case can be said to exploit the well-

known relationships between multilayered neural networks and multiple regression models.
2.2.2.2 NEURAL NETWORK TOPOLOGY

The neural network topology determines the connection between the various computational
units. The neural network that we used was a multilayer perceptron (Hecht-Nielsen, 1989),
whose topology corresponds to a feed-forward network in which the neurons (i.e. the
processing units) are arranged in layers. All the neurons in a layer are connected directly to all
the neurons in the next layer, as shown in Figure 2.14. The input layer, denoted by layer 0O,
contains no real neurons and its purpose is to spread the input to the neurons in the first hidden

layer.

The hidden layers are numbered from 1 to L-1, and the output layer is L. In general, the k-th
layer contains N, neurons, and therefore the input layer has N, elements and the output layer
has N, neurons. A neuron n in layer k is connected to all the neurons in layer k-1 through
several connections (exactly Ni.), each of which is associated with a weight. If we organise this
weight in a vector W)(k), the neuron has the corresponding bias or offset b™(k). In a multilayer
perceptron, these elements are static; they determine the topology of the neural network, and
there is a dynamic element that determines the state of each layer when the input is propagated
through the neural network. If we apply the input, represented by a vector IN with exactly Ny
components, the neural network propagates from input to output through every layer. Each k-th
layer takes on a precise state, represented by a vector S(k) with N, components, which

represents the output of each Ny neuron in this layer.
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Figure 2.14. A multilayer neural network

As shown above, layer 0 contains no real neurons, its sole function being to spread the input to
layer 1, so S(1) is exactly IN and the output of the network will be S(L), which corresponds to
vector O. The state of the n-th neuron of the k-th layer is computed with the feed-forward rule,
such that

Su(k) = f( S(k-1)" W™ (k) + b™(k)) in vectorial form
or S,(k) = f ( 3(Si(k-1) W (k) + b™(k))) in scalar form

where f is the activation function of the neuron. The procedure to determine the output of the
neural network for a given input is called the feed-forward procedure and is described by the

following algorithm:

Feed-Forward Procedure
for each neuronn=1... N,
S,(0) = IN, {state of n-th neuron in layer 0}
end for
foreachlayerk=1..L
for each neuronn =1 ... Ny
Sn(k) = ( S(k-1)" W™ (k) + b™(k)) {state of n-th neuron in layer f}
end for
end for

end procedure
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2.2.2.3 TRAINING PROCESS

The training algorithm used is an ad hoc version of the back propagation algorithm described by
Hecht-Nielsen (1989). It is a supervised learning process, given that the weights of the different
neuron connections are iteratively changed with reference to a set of predefined patterns

specified as a set of input-output pairs. At each step, the computational error is estimated to be

» 2
E= > ;/L ;Ht(ﬂ —_s» (L)”

2

1 P NL
E=—— tn” —Su” (L
SN (L)

p=1 n=1

where P is the number of desired outputs, t* is the p-th desired output and S(p)(L) is the p-th
output produced by the neural network. Back propagation tries to minimise the total squared

error E using the gradient algorithm shown below.

The gradient is computed as

i:—ign(m(L)'S'(m(L—l)

Of)VVl_(H) (L) =l

where :

51(!))(L)= (tn(p) —S,® (L)Xl_[Sn(p) (L)]2)

P-NL

Weights in the output layer are modified according to the delta rule

P
AW (L) =Y & (L) S (L -1)
p=1
where 77 is a parameter

For other layers k=1 ... L-1, the rule is defined as

E ZP:
——=— &(P)(k).Si(P)(k_l)
MW" (k)
where :

Nk
§n(p)(k _ 1) — (1 _ [Sn(ﬂ)(k _ l)]2 ) z [é;.(p) (k) . Wn(l)(k)]

J=1

and weights are modified by
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P

AW (k)= 1) 3% (k) - S (ke =1)
p=1

where 7 is a parameter

The back propagation algorithm is therefore

Back Propagation Procedure

{Feed-Forward Phase}
foreachlayerk=1..L
for each neuronn=1 ... Ny

for eachinputp=1..P
S kY= £ (8P (k-1 W™ (k) + by, (k)

end for
end for
end for
{Error Computation Phase}
for each neuronn=1 ... N,

foreachinputp=1..P

5, (L) = PLNL(W A (L))(l —[sn® (L)]Z)

end for
end for
{Error back-propagation Phase}
for each layer k= L-1 ... 1
foreachneuronn=1..N,
foreachinputp=1..P

Nk
dl(m(k) _ (1 _ [Sn“])(k)]z ) z [é}(p)(k + 1) . an(k + 1)]

Jj=1
end for
end for
end for
{Step Phase}
foreachlayerk=1..L

foreach neuronn=1..N,

P
Ab, (k) =1 8" (k)
p=1
for each weighti=1 ... Ny

P
Am(n)(k) — 7725”(1»(]() . Si(p)(k _1)
p=1
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end for
end for
end for
{Weight-updating Phase}
foreachlayerk=1..L
foreachneuronn=1..N,
b, (k) = b, (k) + Ab, (k)
for each weighti=1 ... Ny
Wi (k) = Wi (k) + AW (k)
end for
end for
end for

end procedure
2.2.2.4 PREDICTION

The prediction process forecasts the OD matrix in the next interval from the detector
measurements collected and the historical OD matrix, using a multilayer perceptron neural
network, as displayed in Figure 2.15. The predictor process receives, as input, the detector
measurements V, (a being the set of arcs) of where the detectors are located, together with the
historical demand OD;"*®"*® which represents the demand between the i-th origin-destination
pair. To run the neural network optimally, this input must be normalised, which can be done by
following these rules: 1) the detector measurements can be divided by the maximum capacity of

max

each arc, i.e. V,/ V77" and 2) the different demands of the historical OD matrix can be divided

frsterieal | 5 p™ Consequently, the neural network input will be

by the maximum demand, i.e. OD
defined in the interval [0...1]. The output will not give the demand values of each OD matrix
component directly, but rather the percentage of variation of each component with respect to
the historical OD matrix, i.e. if «; is the result of the i-th forecast OD matrix component, then

each component will be:

O/D_predicted _ O/Dhistorical(l + 0(~)
i 1 !

where o; € [— 1...1]
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Figure 2.15. A scheme for a predictor module

The expected output of the prediction process for each OD pair is shown in Figure 2.16, as well

as the expected prediction for the i-th OD pair at times t; and t ( ai'and aof respectively).

1
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«—> > t
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t1 t;

Figure 2.16. Relation of the neural network output to the historical and predicted OD matrices

The training process gauges the neural network, i.e. determines the different weights of the link
connections, and this depends on a set of desired input and output pairs. This training or
learning process is performed by means of a back propagation procedure using simulated input
data. The simulator used to generate these input data was AIMSUN, as described by Barcelo
and Ferrer (1997Db).

The experiment was conducted with the microscopic simulator, which provided, as output, the
detector measurements that corresponded to the simulation of traffic flows obtained from an OD

matrix. Then, from the historical OD matrix, small perturbations of this matrix expressed as
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percentage variations and the detector measurements generated by simulation, the necessary

inputs (patterns) for the training module were simulated, as displayed in Figure 2.17.

r N

- ‘r ik S .,‘-“"'"'""u..‘
s A-r &
N i historical
) 4 Y
~ N

L ] v V | 4 »
AIMSUN
microscopic simulator
Weights
Vt Vt+1 \/t+2 Vt+3 Vt+4
Detector
measurements

Figure 2.17. Scheme of the experiment

2.2.2.5 TRAINING METHOD: GENERATION OF THE NEURAL NETWORK PATTERNS

The short-term prediction process requires the input of a historical time-sliced OD matrix, as
well as the patterns to train the neural network that has to produce the forecasts. Time-sliced
OD matrices are currently unavailable and their direct production is difficult and costly, although
for several telematic applications the possibility of generating such information in real time has
been considered (see, for instance, the report on floating car data in the SOCRATES DRIVE |
V1007 project). Our proposal, used in CAPITALS, consists in generating an initial estimate
using the information that is available. This initial estimate could later be improved upon and

refined with the experience gained during the testing and evaluation of the system. The
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generation of the neural network patterns for the training process involved the steps displayed

in the logic diagram in Figure 2.18.

OBSERVED LINK
TRAVERSAL FLOW
OD MATRIX MEASUREMENTS

HEURISTIC
MATRIX
ADJUSTMENT

ADJUSTED TIME
OD DISTRIBUTION
MATRIX OF TRIPS

TIME-
SLICED OD
MATRIX

AIMSUN
SIMULATION
MODEL

SIMULATED LINK
FLOW
MEASUREMENTS

NEURAL
NETWORK
PATTERNS

Figure 2.18. Logic diagram of the production of the neural network patterns

1. The traversal matrix for the site and the link flow measurements provided by the data
collection were the input to the heuristic matrix adjustment whose output was the adjusted
OD matrix. In practice, it was proved that the process is able to adjust trip matrices to flow
variations in the time horizon considered; for each time slice, reflecting, in this way, the
time variability of the traffic demand is reflected.

46



Traffic Demand Estimation in real-time applications

We adopted the following bi-level formulation of the matrix adjustment problem as a

nonlinear optimisation problem:

Min F(v(g).%) =% D @y =)

aed

v(g) = arg min Z _[ S (x)dx

acA

s.1. th =g, Viel
kek;

h, 20, VkeK,; Viel

v, =Z Zéakhk, Vae A

iel kek;

where v,(g) is the flow on link a estimated by the lower level traffic assignment problem
with the adjusted trip matrix g, hy is the flow on the k-th path for the i-th OD pair, v, is the
flow measured on link a, A is the set of with observed flows, / is the set of all origin-
destination pairs in the network, and K;is the set of paths that connect the i-th OD pair. The
volume-delay function for link a A is s,(v,). The algorithm used to solve the problem, which
is based on a proposal by Spiess (1990), is heuristic in nature, of the steepest descent
type, and does not guarantee that a overall optimum to the problem formulated will be

found. The iterative heuristic works as follows:

At iteration m:

=  Given a solution g, an equilibrium assignment was solved, which gave link

m
a

flows v!' and proportions (p,-’;’) that satisfied the relationship

vi = phgl', Vaed

iel
Note: the target or observed matrix was used in the first iteration

(ie. g/ =g, Viel )

=  The gradient of the objective function F(v(g)) was computed. The gradient was

based on the relative change in the demand, such that

g,; form=0

m+l1

= for m=1,23,...

gl glm 1_}~m|:0’)F(v(g)):| orm
78
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(A change in the demand is therefore proportional to the demand in the initial

matrix, and zeroes are preserved in the process).

=  The gradient was approximated by

TEC@)_ 5, S5 00 0, viel

a gi kEK; ae/]

(where A< A was the subset of links with flow counts and Py = I ).

i

=  The step length was approximated as follows:

sz’z(‘;a - va)

acA

2
2%

aed

*

/'{ =

where

Vo = —Zgi[ 2 P D Sulva —@)J[ Zéakka

iel kekK; acA kekK;
To ensure convergence, the step length must satisfy the condition

0@ |
0g;

Vi

There were two main reasons for selecting this heuristic: the quality of the results it
provides, in terms of the regression analysis between the observed and the estimated
flows, and the easy implementation using the EMME/2 transport planning package’s macro
language. This, however, is not the only way of solving the problem; there are alternative
heuristics, such as those proposed by Florian and Chen (1995) and Chen (1994), which

can also be implemented in EMME/2 by means of the utilities that are available.

The adjusted OD matrix was combined with the information collected on the time
distribution of the total number of trips on the network, based on observed data, to
generate an adjusted time-sliced OD matrix that was consistent with the time variation in

the link flows in the time horizon and the time distribution of the total number of trips.

The adjusted time-sliced OD matrix was the input to a route-based variant of the AIMSUN
microscopic simulation model described by Barceld et al. (1995), in which vehicles follow
time-dependent routes from origins to destinations. In this way, a heuristic dynamic

assignment was performed. The simulation model emulated the detector measurements
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and thus generated a set of link flow measurements similar to those produced by the real

detection system.

The adjusted time-sliced OD matrix, the simulated link flow measurements and the

adjusted OD matrix defined the neural network patterns used in the training process.

Observed Traversal demand for the i-th OD pair

Nb Trips

1 5 9 1317 212529 33 3741 4549 53 57 61 6569 73 77 81
Time

Figure 2.19. Observed traversal demand for the i-th OD pair

1 6 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81

Time

Figure 2.20. Adjusted time-sliced demand for the j-th OD pair
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Figure 2.19 illustrates the graphic output for the i-th entry of the observed traversal OD matrix
(historical) corresponding to one origin-destination pair. The values on the x-axis in Figure 2.19
and Figure 2.20 were divided into 84 intervals of 5 minutes each, assuming that the simulated
data collection process aggregates the detector measurements every 5 minutes. The y-axis

represents the number of trips.

Figure 2.20 shows the same entry for the adjusted time-sliced OD matrix.

Detector measures

: Historical OD
d, at interval ¢

Matrix adjustment
4-.-Il"" process

O/D;, adjusted
at interval ¢

Apply:
<" [0D](1+e)
where e~N(0,1)

v

ODP®, modified
at interval ¢
where p = 1..Number of perturbations

, Simulation
*"""""  process

A 4

Simulated detector measurements ds”,
at interval ¢
where p =1..Number of perturbations

Figure 2.21. Scheme to obtain new patterns

2.2.2.6 RANDOM PERTURBATION OF ADJUSTED OD MATRIX

Training and validating a neural network requires a large number of patterns. To obtain the
number of patterns required, we applied a perturbation of the adjusted OD matrices, which were

adjusted using the real detector data, by applying a random noise. Figure 2.21 depicts the
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scheme used to obtain new patterns from the adjusted OD matrices. Each element j of the

adjusted OD matrix was multiplied by a factor (1+¢;) where ¢; follows a normal distribution
(&, ~N(0,1)). Each perturbed OD matrix is the input for the simulation process to obtain

simulated detector measurements, and then the new patterns are composed by the perturbed

OD matrices and the simulated detector measurements.

2.2.3 ADDRESSING THE PROBLEM OF NEURAL NETWORK SIZE

The dynamic prediction of an OD matrix by means of neural networks has one main drawback:
the amount of data required to properly train the neural network. If N is the total number of
centroids (origins and/or destinations) in the road network representation, the maximum number
of entries in the matrix is N*(N-1), if we take into account the fact that there are no trips from a
centroid to itself. Therefore, if the total number of links in the road network with detectors is M,
according to the selected topology displayed in Figure 2.14, the total number of entries in the
neural network will be N*(N-1)+M, and N*(N-1) will be the number of exits. According to this
topology, the total number of parameters that must be estimated during the neural network’s

training is as follows:

Let /; be the number of links between layers j and j-1.
;= (N*N-1)+M)*N*(N-1)
I2= (N*(N-1))*(N*(N-1))

Let / be the total number of links / = [,+/,.

Let b; the number of biases in layer j.
b;= N*(N-1)
b,= N*(N-1)

Let b the total number of biases b = bs+b,.

Then, the total number of parameters to be estimated is p = I+b, which means that,

for example,
for N = 25, the total number of parameters to be estimated is p = 721,200,
for N = 50, p = 12,009,900, and
for N =100, p = 196,039,800.

The large number of parameters to be estimated and the fact that the number of patterns

required for proper training must be greater than the number of parameters renders the training
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process impossible. The solution proposed consists in reducing the size of the neural

network without undermining its capacity to represent the road network.

The large number of parameters in neural networks might lead to a significant risk of overfitting;
therefore, before applying a model, a careful study of the most appropriate number of
parameters is necessary. Nevertheless, in our case, the extraordinary number of parameters
involved raised the aforementioned question of the computational impossibility of training the
network; therefore, before addressing the risk of overfitting, we had to address the
computational issue. Once this issue was addressed, the number of parameters was reduced
so drastically that no evidence of a risk of overfitting was found in subsequent computational

experiments.

We started at each time period by a preprocessing of the road network, in which we analysed
the connectivity of the network and identified the k current paths most likely to be used between
each OD pair, as suggested by Jayakrishnan et al. (1994), which can be computed using the
algorithms proposed by Epstein (1994). The number k was fixed empirically (3 or 4 in most
cases) and the current travel times estimated by simulation were the cost criterion. Then, if we

take into account that volume v, on link a is given by

1if arc a belongs to path k
vazz thcsak, where §ak={ . gstop
iel keK. 0 otherwise

and where [ is the set of all OD pairs, K;is the set of all paths connecting the i-th OD pair and hy

is the flow on the k-th path. Then, if we define

I, = {Set of OD pairs using link a in a k shortest path}
wherea e A = {Subset of links with detectors}

and we define the auxiliary graph G=(N,E), whose set of nodes N and set of links E is given by

N:{ia IVaE;l}
Ez{(a,b)jaﬁib ;t@,Va,be/Al}’

then the number of different neural networks will be the number of unconnected components of
G. Consequently, the number n of OD pairs to be considered in each neural network (which

therefore determines the number of neurons in the input and output layers) is given by
n= card{ia UI_,,,Va,b 2(a,b) e E}
2.2.3.1 CLUSTER ANALYSIS

In many cases, the partitioning condition can be very strict, which means that, if no significant

errors are induced, a certain degree of overlapping should be allowed. In our case, the method
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proposed could be replaced by a clustering analysis, because the degree of overlapping could

be controlled as a function of the similarity level between clusters.

Cluster analysis requires a preprocessing of the road network, for which the number of vehicles
detected at each detector point must be known and grouped according to the origin and
destination centroids of each vehicle. In order to do so, a new functionality was added to
AIMSUN and, at the end of each simulation, a table was run, in which the rows represented
detectors and the columns represented OD pairs. In light of this definition of the rows and
columns, the element (i,j) denotes the number of vehicles that crossed the j-th detector and

whose origin-destination pair was i-th.

The table used in cluster analysis allows OD pairs to be grouped according to their similarity.
The cluster analysis proposed by Dillon (1984) is a process that classifies or partitions groups of

items. The process can be divided into the following three steps:

= Step 1. Build a matrix that has a dimension n x p, where n is the number of items and p

the number of variables.

= Step 2. Obtain a matrix n x n in which the elements represent a measure of similarity or

the distances between the different items.

= Step 3. Obtain the clusters, which can be classified either by exclusive classification,

that is, if a partition is being represented, or hierarchical classification.
To carry out this cluster analysis process, the following must be defined:
= the measure of similarity between individuals, and
= the algorithm of clustering using the similarity measure.

The cluster analysis chosen was the Ward method (Dillon, 1984). This process uses error sum

of squares (ESS) as a measure of similarity, such that

) n; 2
wosf50-1f5)
=1 i=l nj

i=1

where Xij represents the value of the j-th item in the j-th cluster, k is the number of clusters in

each algorithm step and n, represents the total number of items in the j-th cluster.

The algorithm, which was developed by Ward (1963), uses a hierarchical process. Hierarchical

methods produce “trees”, which are formally referred to as dendograms. Hierarchical methods
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fall into two categories: build-up (agglomerative) methods and split-down (divisive) methods.

Agglomerative methods generally follow this procedure:
Step 1. Initially, consider each item (customer) to be its own cluster.
Step 2. Join the two items that are closest in terms of a given measure of distance.

Step 3. Join the next two closest objects (individual items or clusters), either by joining

two items to form a group or by attaching an item to an existing cluster.
Step 4. Return to step 3 until all the items are clustered.

Agglomerative methods differ in the way in which they join clusters to one another. In Ward's
method, clusters are formed on the basis of the change in the error sum of squares (ESS)

associated with joining any pair of clusters.

The number of neural networks is determined by the number of clusters and the number of OD

pairs to be considered in each neural network is determined by the cardinality of each cluster.

2.3 COMPUTATIONAL RESULTS

The aim of the computational results is to validate the hypothesis of proposing the neural
networks as a forecasting mechanism and the methodology used to predict OD matrices. After
describing the data preprocessing conducted to generate valid patterns for the training process,
two groups of neural network topologies have been computationally tested to determine the one
most suited to the OD prediction problem, in terms of R® (regression coefficient). These results
confirm the initial hypothesis on the use of neural networks as a forecasting mechanism. Finally,
the computational results illustrate how the independent OD pairs are determined using a

cluster analysis (explained in section 2.2.3.1)

Data from the Madrid site of the EU’s CAPITALS project reported in CAPITALS (1998) was
used in the computational experiments conducted. The OD matrix for the site area was
extracted from the OD matrix for Madrid that had most recently been updated after the 1997
mobility study of Madrid commissioned by the Consorcio de Transportes de Madrid (Madrid
Transport Consortium). The reference submatrix was obtained as a traversal matrix of the
overall matrix using the traversal matrix procedures provided by the EMME/2 transport planning
software INRO (1996).

The traversal matrix that is, the local OD matrix for the selected site, was adjusted to a time
horizon from 7:00 a.m. till 14:00 p.m. using the traffic counts collected. The employed has been
the Spiess (1990) heuristics were employed as the adjustment procedure for a bi-level matrix

adjustment model, implemented as a macro of the EMME/2 package.

The result is a historical, adjusted OD matrix sliced into 84 intervals of 5 minutes each.

54



Traffic Demand Estimation in real-time applications

2.3.1 DATA PREPROCESSING

Patterns are defined by the following:

= |nput

a) Adjusted OD matrix for the k-th time interval. The number of entries depends on
the relationships that are defined in Section 2.2.3. An initial analysis was
conducted for each OD pair to determine the most suitable topology and to
validate the method. For the sake of completeness, we will present the results

for OD pair 5/36. Therefore, in this exercise, there is only one input value.

b) Simulated detection for the k-th time interval. The number of entries depends
on the number of links with detection on the corresponding subnetwork. There
are 23 values for the links with detection on the best routes that connect the OD

pair selected.

= Output

a) Adjusted time-sliced OD matrix for the (k+1)-th time interval. There are the

same number of values as for the input, so one in the case of OD pair 5/36.

In our example, the values available lie in the interval from 7:00 a.m. till 14:00 p.m., which is
divided into time intervals of 5 minutes, meaning a total of 84 data sets. Because we want to
make the prediction for the next time interval, 83 different patterns are available to us for
training the neural network. To avoid the influence of the scale measurements of the various
types of input data, the input values in the interval [-1...1] were normalised for all entries. Table
2.1 shows an example of the statistical description of several input data, used as criterion to

determine the normalization process.

Statistical description of the input data that corresponds to OD pair 5/36 of historical, adjusted

OD matrix
Variable N Mean Median TrMean StDev SEMean
Parell o 83 52.52 59.00 52.31 10.56 1.16
Variable Min Max 01 03

Parell o 41.00 68.00 41.00 59.00

Statistical description of the input data that corresponds to detector measurements

Variable N Mean Median TrMean StDev SEMean
detectl 83 30.51 0.00 25.28 44.16 4.85
detect2 83 607.7 600.0 586.4 444 .6 48.8
detect3 83 249.1 192.0 233.3 182.5 20.0
detect4 83 2.313 0.000 1.120 7.830 0.859
detectb 83 248.8 192.0 234.2 178.1 19.5
detect6 83 165.83 168.00 164.80 54.09 5.94
detect? 83 90.65 72.00 83.04 77.80 8.54
detect8 83 21.11 12.00 19.04 21.09 2.31
detect?9 83 201.7 192.0 193.4 154.7 17.0
detectl0 83 503.6 528.0 512.5 186.8 20.5
detectll 83 28.34 12.00 23.20 40.39 4.43
detectl2 83 3.181 0.000 2.880 5.329 0.585
detectl3 83 1205.6 1416.0 1218.9 472.6 51.9
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detectl4 83 915.6 1008.0 929.6 309.3 33.9
detectl5 83 179.3 192.0 178.9 95.7 10.5
detectl6 83 47.57 48.00 45.76 34.43 3.78
detectl? 83 446.3 492.0 448.8 172.8 19.0
detectl8 83 1121.6 1212.0 1132.2 460.9 50.6
detectl9 83 584.8 648.0 589.4 203.9 22.4
detect20 83 542.0 564.0 540.6 252.9 27.8
detect2l 83 354.4 408.0 360.6 99.4 10.9
detect22 83 2.313 0.000 1.120 7.830 0.859
detect23 83 126.4 96.0 118.9 112.8 12.4
Variable Min Max Q1 Q3
detectl 0.00 192.00 0.00 48.00
detect2 48.0 1608.0 192.0 912.0
detect3 0.0 1020.0 132.0 348.0
detect4 0.000 60.000 0.000 0.000
detectb 0.0 936.0 132.0 360.0
detect6 60.00 288.00 120.00 192.00
detect? 0.00 372.00 36.00 144.00
detect8 0.00 84.00 0.00 36.00
detect? 0.0 576.0 60.0 276.0
detectl0 48.0 792.0 396.0 660.0
detectll 0.00 156.00 0.00 36.00
detectl?2 0.000 12.000 0.000 12.000
detectl3 312.0 1860.0 780.0 1584.0
detectl4 168.0 1392.0 780.0 1140.0
detectl5 0.0 372.0 108.0 240.0
detectl6 0.00 180.00 24.00 72.00
detectl? 120.0 732.0 300.0 576.0
detectl8 216.0 1848.0 732.0 1488.0
detectl9 168.0 948.0 468.0 732.0
detect20 120.0 1056.0 324.0 756.0
detect2l 120.0 480.0 312.0 420.0
detect22 0.000 60.000 0.000 0.000
detect23 0.0 420.0 36.0 180.0

Table 2.1. Statistical description of input data

2.3.2 NETWORK TOPOLOGY

To illustrate the computational results and the network topology, subsequent sections consider
the traffic demand estimation of one OD pair as a subnetwork of the global network to consider
all OD pairs. As described in Section 2.2.2.2, the topology used for the neural network was

“feed-forward” and the composition of the (5/36) OD pair was the following:

Input Layer

The input layer, which is composed of 24 neurons, performs the transfer of the input

value. Therefore, the functions for each neuron are

= Activation function: identity function

y=x

= Qutput function: identity function

y=x

Hidden Layer
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= Activation function:

y = tanh(x)

= Qutput function: identity function
y=x

We tested neural networks that had one or two hidden layers and a variable number of neurons

in each layer.
Output Layer
Only one neuron for the case of one OD pair, defined by
= Activation function:
y = tanh(x)

= Qutput function: identity function
y=x

In the results of the experiment, the activation function used is the tanh function. The reasons
for this are as follows:

= The use of the tanh as an activation function is due to the output range is defined in
the interval -1 to 1 and this interval matches with the output desired in the prediction
process (see Section 2.2.2.4)

= The tanh values are centred around 0. There is reason to believe that using tanh will
result in faster training (Brown et al., 1993) and (Kalman and Kwasny 1993). For
instance, when using a sigmoid, an input value of 0 results in no weight change;
however, using a tanh function, an input value of 0, when mapped to -1, results in a
weight change. This speeding up of the convergence tends to be even more
pronounced the more premapped input values of 0 there are. Suggested theoretical
underpinnings for this speeding up have been postulated in the literature. Further
discussion of this issue and closely related topics can be found in Gallant (1993) and
Stornetta and Huberman (1987).

2.3.3 NEURAL NETWORK TRAINING

The neural network was modelled using the SNNS simulator (University of Stuttgart, 1995). The
training was conducted with a back propagation algorithm that had the parameters shown
below, the values of which were determined empirically.
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= The 7 (learning) parameter determines the step length in the gradient descent

direction. The value used in our experiments was n = 0.2.

= The dmax parameter determines the tolerance between the output and the input

values of the neural network. The value used in our experiments was dmax = 0.01

The number of iterations depends on the behaviour of the SSE curve (Sum of Squared Errors).
On one hand, the SSE resulting from the training patterns has to be reduced, and on the other,
the SSE resulting from testing the validation patterns must also be reduced. The corresponding
curves for our training phase are displayed in Figure 2.22, where the y-axis corresponds to the

SSE values and the x-axis to the number of iterations.

In a typical neural network training process, an initialisation phase that assigns random weights
to the connections takes place first. In our case, we initialised the weights randomly in the
interval [-2, 2].
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Figure 2.22. Plot of the SSE for the training and validation patterns

2.3.4 RESULTS AND PREDICTION

Two groups of neural network topologies were computationally tested to determine the one
most suited to the OD prediction problem. The first group was composed of neural networks
that had only one hidden layer and the second group comprised networks that had two hidden

layers.
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2.3.41 NEURAL NETWORKS WITH ONE HIDDEN LAYER

The nomenclature used to describe the neural network topology is n-m-p, where the neural

network has n neurons in the input layer, m neurons in the hidden layer and p neurons in the

output layer.

= Topology 24-4-1
SSE =26.71
R*=0.9983
SSE,, = 101.80

= Topology 24-3-1
SSE = 48.27
R2 =0.9963
SSEval = 80.14

= Topology 24-2-1
SSE =50.74
R2 =0.9978

SSEval = 38.46

By way of example, Figure 2.23 and Figure 2.24 display the results obtained for topology 24-4-

1.
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Figure 2.23. Output and target for training pattern 24-4-1

—e—Target
—#— Output

Figure 2.24. Output and target for validation pattern 24-4-1
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2.3.4.2 NEURAL NETWORKS WITH TWO HIDDEN LAYERS

The nomenclature used to describe the neural network topology is n-m-p, where the neural

network has n neurons in the input layer, m neurons in the hidden layer and p neurons in the

output layer.

= Topology 24-3-2-1:

SSE =6.12

R2 =0.9996

SSEval = 122.07

=  Topology 24-2-4-1

SSE =12.35

R2 =0.9991

SSEval = 70.94

Figure 2.25 and Figure 2.26 display, in this case, the results obtained for topology 24-3-2-1.
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Figure 2.25. Output and target considering the training pattern 24-3-2-1
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—o— Target
—=— Output

1 2 3 4 5 6 7 8 9 10

Figure 2.26. Output and target considering the validation pattern 24-3-2-1

The experimental results confirm the validity of both configurations and given the tiny

differences between them the decision was to use the simpler one.

2.3.5 NEURAL NETWORK SIZE

The traversal matrix for the CAPITALS site had 98 centroids and thus, in theory, 9506 OD pairs
and 377 detectors. This implies a theoretical total of 184,330,846 parameters to be estimated.
Having calibrated the AIMSUN model of the site, our analysis revealed that only 1112 OD pairs
involved a significant number of trips (at least 5% of the highest entry). If, at most, 10% of
overlapping among clusters were accepted, these OD pairs would be clusters according to
Ward’s method, as implemented in the MINITAB statistical package (1998), which considers the
distance between two clusters as the sum of the squared deviations from points to cluster
centroids and minimises the within-cluster sum of squares. The distances used were Pearson
distances. The method was selected because it tends to produce clusters of a similar number of
observations, although it is sensitive to outliers (see details in section 2.2.3.1). The final partition
leads to the following 9 clusters:
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Nb of Within cluster Average distance from Maximum distance from

observations sum of squares centroid centroid
Cluster1 106 128913.117 33.053 64.682
Cluster2 372 16698.529 5.964 19.210
Cluster3 315 964.750 1.467 5.925
Cluster4 169 38485.558 13.812 40.860
Clusterb 93 47907.066 21.019 49.551
Cluster6 20 82398.261 62.351 95.052
Cluster7 20 4636.483 14.560 23.397
Cluster8 5 5864.195 33.311 47.550
Cluster9 12 25708.829 45.043 68.794

The route-based AIMSUN model enables the paths that are used between origins and
destinations to be analysed and the detectors located on the links that make up these paths to
be identified. A neural network can be associated with each cluster. lts parameters are
determined by the number of OD pairs and the number of detectors on the links of the paths
that connect these OD pairs. In this case, the number of parameters to be estimated for the

largest neural network, the one associated with cluster number 2, is as follows:

Number of OD pairs = N*(N-1) = 372

Number of detectors = M = 237

Total number of parameters to be estimated = 365,676

For the neural network associated with cluster number 6, N*(N-1) = 20, M = 51 and the number

of parameters is 1860, which are more reasonable numbers.
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