Model Validation

4 MODEL VALIDATION

4.1 GENERAL CONCEPTS

From a methodological point of view, it is widely accepted that simulation is a useful technique
when it comes to providing an experimental test bed in which to compare different system
designs and replace experiments in the physical system with experiments that involve their
formal representation in a computer by means of a simulation model. The outcome of the
computer experiment thus provides the basis for quantitative support for decision-makers.
According to this conception, the simulation model can be seen as a computer laboratory where
experiments can be conducted with the model of the system, with the aim of drawing valid
conclusions for the real system. In other words, the simulation model is used to answer “What
if?” questions about the system.

Simulation may thus be seen as a sampling experiment of the real system through its model
(Pidd, 1992). In other words, assuming that the evolution over time of the model correctly
imitates the evolution over time of the system modelled, samples of the observational variables
of interest are collected, from which conclusions on the system’s behaviour can be drawn using

statistical analysis techniques. Figure 4.1 illustrates this method conceptually.
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Figure 4.1. Experimental nature of the simulation

The reliability of this decision-making process depends on the ability to produce a simulation
model that represents the system’s behaviour closely enough for the model to be used as a
substitute for the actual system for experimental purposes. This is true for any simulation
analysis in general and obviously for traffic simulation. The process of determining whether the
simulation model is close enough to the actual system is usually achieved through the validation
of the model, an iterative process that involves calibrating the model’s parameters and
comparing the model to the actual system’s behaviour. The discrepancies between the two and

the insight gained are used to improve the model until its accuracy is thought to be acceptable.
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The validation of a simulation model is a concept that should be taken into account throughout

the model-building process.

According to Law and Kelton (1991), the key methodological steps for building valid and

credible simulation models are the following:

o Verification, which consists in determining that a computer simulation program

performs as intended and is concerned with building the model properly.

o Validation, which consist in determining whether the conceptual simulation model (as
opposed to the computer program) is an accurate representation of the system under

study. Validation involves building the right model.

o A model is credible when its results are accepted by the user and are used as an aid in

making decisions. Animation is an effective way for an analyst to establish credibility.

Balci (1998) defines a successful simulation study as “(...) the one that produces a sufficiently
credible solution that is accepted and used by decision makers”. This implies the assessment of
the quality of the simulation model through the verification and validation of the simulation
models.

Verification usually implies running the simulation model under a variety of input parameter
settings and checking to see whether the output is reasonable. In some cases, certain
measures of performance may be computed exactly and used for comparison. Animation can
also be of great help for this purpose. With certain types of simulation models (traffic models are
a good example), it may be helpful to observe an animation of the simulation output to establish
whether the computer model is working as expected. In validating a simulation model the

analyst should not forget that

o A simulation model of a complex system can only be an approximation to the actual

system. There is no such thing as an absolutely valid model of a system.
o A simulation model should always be developed for a particular set of purposes.

o A simulation model should be validated relative to those measures of performance that

will actually be representative of these purposes.

o Model development and validation should be carried out alongside each other

throughout the entire simulation study.

Validation means the process of testing the model to see if it does actually represent a viable
and useful alternative means to real experimentation. This requires calibrating the model, that
is, adjusting model parameters until the resulting output data agree closely with the observed

system data. The validation of the simulation model will be established on the basis of the
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comparison analysis of the observed output data from the actual system and the output data

provided by the simulation experiments conducted with the computer model.

Model calibration and validation is inherently a statistical process in which the uncertainty due to
data and model errors should be accounted for. Depending on the variables selected, the
system and simulated data available, their characteristics and statistical behaviour, a variety of
statistical techniques either for paired comparisons or for multiple comparisons and time series
analysis, have been proposed. The conceptual framework for this validation methodology is
described in the diagram in Figure 4.2 (adapted from Balci, 1998). According to this reasoning,
when the results of the comparison analysis are not acceptable to the degree of significance
defined by the analyst, the rejection of the simulation results implies the need for recalibrating
certain aspects of the simulation model. The process is repeated until a significant degree of

similarity, according to given statistical analysis techniques, is achieved.
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Figure 4.2. Logic diagram for model validation

4.2 SPECIFICS FOR THE VERIFICATION AND VALIDATION OF TRAFFIC
SIMULATION MODELS

In the case of traffic systems, the behaviour of the actual system is usually defined in terms of
traffic variables, that is, flows, speeds, occupancies, queue lengths and so on, which can be
measured by traffic detectors at specific locations in the road network. To validate the traffic

simulation model, the simulator should be able to emulate the traffic detection process and
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produce a series of simulated observations which, when compared to the actual measurements,
will be used to determine whether the desired accuracy has been achieved in reproducing the

system’s behaviour. Rouphail (2003) proposes the following set of guiding principles:

o The analyst must be aware that calibration and validation are conducted in particular
contexts.

o Depending on the context, the model requires specific sets of relevant data.
o Both models and field data contain uncertainties.
o Feedback is necessary for model use and development.

o Model validation must be carried out on a data set that is independent from the

calibration data set.

The analyst will have to identify which data are relevant for the planned study, collect them,
identify the uncertainties, filter out the data accordingly, and use two independent sets of data.
The first set should be used for calibrating the model parameters and the second for running the
calibrated model and then for validating the calibrated model.

The key question in Figure 4.2, “Is the model valid?”, can then be reformulated as, “Do the
model’s results faithfully represent reality? The statistical techniques provide a quantified
answer to this question. Its quantification can, according to Rouphail (2003), be formally stated
in the following terms: the probability that the difference between the “reality” and the simulated

output is less than a specified tolerable difference within a given level of significance:
P{ |'reality” - simulated output | <d} > «

where d is the tolerable difference threshold indicating how close the model is to reality, and « is

the level of significance that tells the analyst how certain the result achieved is.

This formulation immediately raises the questions of what “reality” is and how d and o should be
set. In this framework, the analyst’s perception of the reality relies on the information gathered
during the data collection and the subsequent data processing to account for the
aforementioned uncertainties. The data available and its uncertainties will determine what can
be said about d and «. To produce input data for the simulation model that is of the quality that
is required to conduct an accurate statistical analysis, a careful data collection process is
necessary to ensure that the desired correspondence is achieved at an acceptable significance
level. Detailed examples of data collection for microscopic simulation can be found in Hughes
(1998 and 2002).
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4.3 VALIDATION OF TRAFFIC SIMULATION MODELS

Statistical methods and techniques for validating simulation models are clearly explained in
most textbooks and specialised papers (Balci, 1998), (Kleijnen, 1992, 1995, 1999 and 2000),
(Law and Kelton, 1991). In the general methodology, the following three main principles are

used to establish a framework for model validation:

o The data measured in the actual system should be split in two data sets: the data set
that will be used to develop and calibrate the model, and a separate data set that will be
used for the validation test.

o Specify the data collection process in the system as well as in the simulation model:
traffic variables or MOEs (i.e. flows, occupancies, speeds, service levels, travel times,
etc.), whose values will be collected for the calibration and validation phases, and the

collection frequency (i.e. 30 seconds, 1 minute, 5 minutes, etc.)

o According to the methodological diagrams in Figure 4.2, validation should be
considered an iterative process. At each step in the iterative validation process, a
simulation experiment should be conducted. Each of these simulation experiments
should be defined by the data input to the simulation model, the set of values of the

model parameters that identify the experiment and the sampling interval.

The validation model could be approached in two different ways: in the first approach, the
validation is based on a standard statistical comparison between the model and system outputs,

and the second approach is based on time series analysis.

4.3.1 VALIDATION BASED ON A STANDARD STATISTICAL COMPARISON

The validation based on a standard statistical comparison between model and system outputs
could be carried out using the comparison based on global measurements and/or the

comparison based on disaggregated measurements.
4.3.1.1 COMPARISON BASED ON GLOBAL MEASUREMENTS

A method that has been widely used in validating transport planning models, for the typical
scenario in which only aggregated values are available (i.e. flow counts at detection stations
aggregated to the hour), is to analyse the scattergram or alternatively to use a global indicator
such as the GEH index, which is widely used in the United Kingdom (Greater London Council,
1966). The GEH index for n pairs of (observed-simulated) values was calculated by the

following algorithm:

For i =1 to n calculate

113



Model Validation

ObsVal, + SimVal,
If GEH, <5 Then GEH, =1
Otherwise GEH, =0
Endif

. 2
GEH, - \/2(ObsVaIi Simval,)

Endfor

1 &
LetGEH=— )» GEH;,

If GEH >85% then ACCEPT the model
otherwise REJECT the model
Endif

It needs to be noted that the GEH statistic is an “intuitive” and “empirical engineering” measure,
not necessary a measure that a professional statistician would recognise or deign to use. The
criterion of 85% or 80% has been established by practitioners as a rule of thumb (FHWA, 2003).

Figure 4.3 depicts an example of such an analysis. The regression line of observed versus
simulated flows is plotted along with the 95% prediction interval. The R? ( regression coefficient)
value of 93.6, and the fact that only three points lie out of the confidence band would lead to the
conclusion that the model could be accepted as significantly close to reality. Examples of the
use of scatter plots and regression analysis combined with the RMSE can be found, for

example, in the validation of MITSIM models in Yang and Koutsopoulos (1997).
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Regression Plot

1Simulated Flows = -51,62 + 0,99 * obsflow
R-cuadrado = 0,94
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Figure 4.3. Scattergram that compares observed and simulated flows

Independently of the considerations of whether one criterion is better or more valid than
another, one should draw attention to the fact that this type of indicator can only be considered
a primary indicator for acceptance or rejection in the case of microscopic simulation models. As
indicators working with aggregated values, they do not capture what is considered to be the
essence of the microscopic traffic simulation: the ability to capture the time variability of traffic

phenomena. Therefore, other types of statistical comparison should be proposed.
4.3.1.2 COMPARISONS BASED ON DISAGGREGATED MEASUREMENTS

For example, assuming that in the definition of the simulation experiment the sampling interval
is five minutes, that is, that the model statistics are gathered every five minutes, and that the
sampling variable is the simulated flow w, the output of the simulation model will be
characterized by a set of values w; of the simulated flow at detector i at time j, where index i
identifies the detector (i = 1,2,...,n, n being the number of detectors) and index j identifies the
sampling interval ( j = 1,2,...,m, m being the number of sampling intervals in the simulation
horizon T). If v; are the corresponding actual model measures for detector i at sampling interval
J, a typical statistical technique to validate the model would be to compare both series of
observations to determine whether they are close enough. For detector i, the comparison could

be based on testing whether the difference

D,'j= Wi — V,'j,j=1,...,m
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has a mean di that is significantly different to zero or not. This can be determined using the ¢t

statistic:

where ¢, is the expected value of 671 and s, is the standard deviation of 67[ which is used to

test the following null hypothesis:
Hy: 6, =0 (It_m_1| >tm—l,‘a/2)

o |If for & = 0 the calculated value ¢, , of Student’s t distribution is significant to the

specified significance level o, then we have to conclude that the model is not

reproducing the system behaviour’s closely enough. Thus the model must be rejected.

o If =0 gives a non-significant ¢ then we must conclude that the simulated and the

m—1"

real means are “practically” the same, so the simulation is “valid enough”.

This process will be repeated for each of the n detectors. The model is accepted when all
detectors (or a specific subset of detectors, depending on the purposes of the model and taking
into account that the simulation is only a model and therefore an approximation, so &, will never

be exactly zero) pass the test.

However, there are certain considerations that should be taken into account in the case of the

traffic simulation analysis.

1. The statistical procedure assumes identically and independently distributed (i.i.d.)
observations whereas the actual system measures and the corresponding simulated output
are time series. Therefore, it would be desirable that at least the m paired (correlated)
differences d; = w; — v, j=1,...,m were i.i.d. This can be achieved when w; and the v; are
average values of independently replicated experiments.

2. The bigger the sample is, the smaller the critical value ¢

m-1./2» @nd this implies that a
simulation model has a higher chance of being rejected as the sample grows bigger.
Therefore, the t statistic may be significant and yet unimportant if the sample is very large

and the simulation model may be good enough for practical purposes.

These considerations mean that it is unadvisable to rely on one type of statistical test for
validating the simulation model. Other authors (Rao et al., 1998) have proposed other, less

stringent validation tests for traffic simulation based on the classic comparison of two means.
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4.3.2 AN ALTERNATIVE APPROACH BASED ON TIME SERIES ANALYSIS

Time series are a family of statistical tests for the validation of traffic simulation models that are
rooted in the observation that the measured series and the simulated series, v; and wj;
respectively, are time series. In this case, the series measured could be interpreted as the
original series and the simulated series the “prediction” of the observed series. The quality of
the simulation model could therefore be established in terms of the quality of the prediction, and
that would mean resorting to time series forecasting techniques for that purpose. If one
considers that what is observed as the output of the system and the output of the model that
represents the system are dependent on two types of components—the functional relationships
governing the system (the pattern) and the randomness (the error)—and that the measured and

the observed data are related to these components by the relationship
Data = pattern + error

then the critical task in forecasting can be interpreted in terms of separating the pattern from the
error component so that the former can be used for forecasting. The general procedure for
estimating the pattern of a relationship is through fitting some functional form so as to minimize

the error component. This could be achieved by regression analysis.

If for detector i-th the error of the j-th “prediction” is d; = w; — v, j = 1,...,m, then a typical way of
estimating the error of the predictions for the detector i-th is the root mean square error , rms;

which is defined as

rms; =

This has perhaps been the most frequently used error estimate in traffic simulation, and
although obviously the smaller rms; is, the better the model is, it has a quite significant drawback
in the fact that, because it squares the error, it emphasises large errors. Therefore, it would be
helpful to have a measure that both considers the disproportionate weight of large errors and
provides a basis for comparison with other methods. It is quite common, in traffic simulation, for
neither the observed values nor the simulated ones to be independent, namely when only single
sets of traffic observations are available (i.e. flows, speeds and occupancies for one day of the
week during the rush hour). A good example of the autocorrelation analysis of observed and
simulated flows is the simulation study of the [-35W freeway in Minneapolis (Hourdakis and
Michalopoulos, 2002).

Theil's U statistic (Theil, 1996) is the measure that achieves the aforementioned objective of
overcoming the drawback of the rms; index, if we explicitly consider the fact that we are
comparing two autocorrelated time series, and therefore the objective of the comparison is to

determine how close both time series are.
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In general, if X; is the observed and Y, the forecasted series, j = 1,...m, then if

j o . Xj+l _Xj .
—is the forecasted relative change, and ARC,,, =X—' is the

J J

_ Yj+1 -
J+H =

FRC

actual relative change, Theil’s U statistic is defined as

m—1
Z(FRCjH - ARC_/‘H)2
j=1

(m=1)

U= m—1
D (ARC;)?
j=l
(m=1)

then taking expression of FRC;.; and ARC;.4, Theil's U statistic is

m—1 2
z Yj+1 _Xj+1
X

j=1 j

2
m—1
Z[X_m - X, J
Jj=1 Xj

An immediate interpretation of Theil’s U statistic is the following:
U =0 < FRCjs = ARCji, and then the forecast is perfect.
U =1 < FRCj; = 0, and the forecast is as bad as is possible.

In the latter case, the forecast is the same as that that would be obtained if no changes in the
actual values were forecast. When forecasts Yj.; are in the opposite direction to Xj.4, then the U
statistic will be greater that unity. Therefore, the closer to zero Theil’s U statistic is, the better the
forecast series is, or, in other words, the better the simulation model. When Theil’s U statistic is
close to or greater than 1, the forecast series and therefore the simulation model should be

rejected. Taking into account that the average squared forecast error
1 m
Dy ==>"(Y,-X,)
m
can be decomposed (Theil) in the following way:

1 m _ —
Dy =3 (Y= X)) = (Y =X)" +(Sy = 5,)" +2(1= p)Sy S
j=1
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where Y and X are the sample means of the forecast and the observed series respectively,

Syand S, are the sample standard deviations and p is the sample correlation coefficient

between the two series, the following indices can be defined:

v
U =
Sy —Sy)?
US=—(Y ZX) =>Uy +Ug+Uc =1
Dm
2(1-
Up = ( p)zSYSX
Dm

U is the “bias proportion” index, which can be interpreted in terms of a measure of systematic
error, Us is the “variance proportion” index, which provides an indication of the forecast series’
ability to replicate the degree of variability of the original series or, in other words, the simulation
model’s ability to replicate the variable of interest of the actual system. Finally, Uc or the
“covariance proportion” index is a measure of unsystematic error. The best forecasts, and
hence the best simulation model, are those for which Uy and Us do not differ significantly from
zero and U is close to unity. It can be shown that this happens when, in a regression, S,and S,

do not differ significantly from zero and unity respectively.

The example of this detector demonstrates how these statistical techniques can reveal hidden
information that is critical in certain aspects of validation, which traditional techniques cannot do.
The results for the plot of the observed and simulated series are shown in Figure 4.4. Visual
inspection reveals a very good agreement between both series confirmed by the value 0.9999
of R% The analysis of Theil’s coefficients corroborates the quality of the simulation model. There
are very low values of U ( 0.015348), U, (0,000362) and Us (0.055073)), although the presence
of a very high value of Uy (0.920005) reveals the presence of a systematic bias. There is an
almost constant difference of four units between the observed and the simulated series, that is,
the simulated series is shifted 4 units with respect to the observed one. The discrepancy could
be explained in this case (see Hourdakis and Michalopoulos, 2002 for details) by the

misplacement of the detector.
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Dectector 426: Observed and Simulated Series
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Figure 4.4. Observed and simulated time Series

4.4 DyNAMIC TRAFFIC ASSIGNMENT VALIDATION PARAMETERS

The statistical methods and techniques for validating traffic simulation models presented in the
previous section give a validation of the simulation model, but a critical aspect in the
calibration/validation of the dynamic traffic assignment model is determining the values of the
dynamic traffic assignment parameters that enable a meaningful selection of paths. No formal
convergence proof can be given for the dynamic traffic assignment proposed, since the heuristic
network loading process based on microscopic simulation does not have an analytical form. The
method proposed is based on the assumption that, insofar as the assignment described may be
associated with a heuristic approach to a preventive dynamic equilibrium assignment (Xu et al.,
1999), properly selecting the path should lead to such equilibrium. An assignment’s progress
towards equilibrium, and therefore the quality of the solution, may be measured using the
relative gap function, RGap(t) (Florian et al., 2001 and Janson, 1991), which estimates, at time
interval {, the relative difference between the total travel time actually experienced and the total
travel time that would have been experienced if the travel time for all vehicles had been equal to

the current shortest path, such that

PIIAG AGEAG)

iel kekK;

zgi(t)ui(t)

iel

RGap(1) =

where

tis the time interval used in the dynamic traffic assignment algorithm;

I is the set of all OD pairs;
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k € K, is the set of paths for i~th OD pair;

g; is the traffic demand of OD pair i;
h, (t)is the path flow assigned to path k& € K, that connects OD pair i at interval t;
s, (t)is the total travel time experienced of all vehicles assigned to path k € K, that
connects OD pair i at interval t; and

u, (t)is the total travel time experienced by all vehicles assigned to the shortest path that

connects OD pair i at interval t.
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