Computational Results

5 COMPUTATIONAL RESULTS

The aim of the computational results is to validate the heuristic dynamic traffic assignment
based on microsimulation, and therefore to the validity of the heuristic dynamic traffic
assignment using microsimulation, which produces a rational set of OD paths that are likely

used and proposes a set of guidelines for the validation of the route choice parameters.

The first computational experiment (section 5.1) was conducted to compare the impact on the
dynamic traffic assignment results of two different approaches to determining the set of
alternative paths K; that connects the OD pair i-th at time interval t (section 3.2.2.3 gives the

details of these two approaches).

The second set of experiments (section 5.2.1) presents the validation results of dynamic traffic
assignment parameters based on GEH index, whose aim is to analyse, the cases studied,
which combination of values for dynamic traffic assignment parameters lead to a valid model
and to identify the influence of these parameters, and to establish guidelines for the calibration
process. This set of experiments presents the validation results of dynamic traffic assignment
parameters based on a standard comparison between model and system outputs for an urban
network of a medium size that models the Amara borough of the city of San Sebastian in Spain
(see Appendix I), only as a show case; complementarily, the same results from Vitoria and
Brunnsviken model are presented in Appendix Il. The forthcoming conclusions can be applied to

all models experimented.

The conclusion from the previous set of experiments has led to an analysis of the influence of
each individual parameter and all possible combinations on the global indicator index GEH.
Thus, we carried out an analysis of variance of GEH as a response variable and of the dynamic

traffic assignment parameters as factors, experiments described in section 5.2.2..

And finally, section 5.3 describes the experiments conducted to validate the heuristic dynamic
traffic assignment based on RGap function and section 5.4 presents the validation of the
reactive dynamic traffic assignment based on GEH index and RGap, which analysis was carried

out using the Amara model.

5.1 DETERMINING THE SET OF PATHS IN THE DECISION-MAKING PROCESS

The path selection process, which is based on discrete route choice models involves estimating
the path flow rates of a set of alternative paths K; that connecting the OD pair i-th. This set of
alternative paths is updated considering the shortest path trees calculated at every interval in

the dynamic traffic assignment.
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An aspect that must be studied is the impact on the dynamic traffic assignment results of two
different approaches to determining the set of alternative path K; that connects the OD pair i-th

at time interval t (section 3.2.2.3 gives the details of these two approaches).

To illustrate the impact of the different approaches, consider a network, as shown in Figure 5.1,
that has one origin centroid and one destination centroid. Between them, there are only two
alternative paths: south alternative (path S) and north alternative (path N).

Morth Alternative

Houth Altematve

Figure 5.1. Network that has two alternative paths

The traffic demand is 1000 vehicles per hour. The western junction has a pre-timed control plan
that has a total cycle of 50 seconds and gives the right of way to path S for 20 seconds (plus 5
seconds as the interphase) and the same time (plus the same 5 seconds of the interphase) to
path N.
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Figure 5.2. Pre-timed control plan definition

If we analyse the path costs in free flow conditions (these costs do not take into account the
delay caused by the control plan definition), path S has a total cost of 21.6 seconds and path N
a total cost of 28.79. If we consider these costs and take the logit function to be the route choice
model and the scale factor 6to have a value of 60 (the same analysis could be applied to other

route choice models and parameter values), it follows that, if
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1+ Ye

I#k

the expected choice probability of path S and path N will be 0.53 and 0.47 respectively.
However, in the first approach, if MaxNumberSPT is defined as 2, the simulation is run and the
flow for each alternative path is measured, the flip-flop situation shown in Figure 5.3 is

observed.
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Observed Flow

1200

1000

800

—— SouthAlter.
—&— NorthAlter.

400

200

Figure 5.3. Observed flow of paths S and N, where MaxNumberSPT = 2

Following the simulation, the shortest paths calculated for each time interval in the first

approach are as follows:

Interval | Shortest Path
1 Path S
2 Path S
3 Path N
4 Path S
5 Path S

The evolution of the composition of K; (set of alternative paths) for each interval in the first

approach is as follows:

Interval | Shortest Path K;
1 Path S Path S
2 Path S Path S, Path S
3 Path N Path N, Path S
4 Path S Path S, Path N
5 Path S Path S, Path S
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In that case the flip-flop situation is done because, for example, at interval 2 and 5 the path
selection considers only path S, so all vehicles entered in this interval select path S and no one

follows path N because is not available in K.

To minimize the flip-flop situation in this first approach, the number of shortest paths to be
considered is increased by increasing the MaxNumberSPT parameter. Figure 5.4 shows the
same experiment as Figure 5.3, although in this case the number of shortest paths to consider

has been increased to 4.

Observed Flow
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Figure 5.4. Observed flow of path S and N, where MaxNumberSPT = 4

Here, the flip-flop situation is smoother than in the experiment in which MaxNumberSPT = 2,
although on average a probability of 0.84 is given to path S and a probability of 0.16 to path N.
The difference is therefore significant with respect to the expected probabilities of each
alternative (0.53 for path S and 0.47 for path N), which is because the alternative S is the best
alternative in various intervals and thus gives a higher probability than expected.

If the second approach is applied and MaxNumberRoutes is defined as 2 and MaxNumberSPT
is defined as 10, Figure 5.5 depicts the results of running the same simulation experiment. The
flip-flop situation does not occur and the average probability assigned is 0.54 for path S and
0.46 for path N, which are acceptable values that are close to the expected theoretical
probabilities (0.53 for path S and 0.47 for path N).
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Observed Flow
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Figure 5.5. Observed flow of path S and N, where MaxNumberRoutes = 2 and MaxNumberSPT
=2

The second example used to compare the first and second approach is that of an urban
network of a medium size modelled on the Amara borough of the city of San Sebastian in
Spain. The total traffic demand is 16,803 vehicles during the afternoon peak time from
18:00 to 20:00 and is represented by the OD matrix shown in Figure 5.6.

Statements in ‘matrix_18-20"

Figure 5.6. OD matrix representing traffic demand in the Amara model
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The results were analysed using a subset of OD pairs. All the pairs that had a representative
number of trips with respect to the total number of trips were considered, such as, for example,
the OD pair defined as origin centroid 7 to destination centroid 2, for which the total number of
trips was 1126, and the OD pair defined as origin centroid 2 to destination centroid 6, for which
the total number of trips was 1526. Figure 5.7 depicts the location in the network model of

several of the OD pairs analysed.

7 —— 2: OD pair analysed: origin centroid 7
to destination centroid 2

Figure 5.7. OD pairs analysed in the Amara model

During the simulations, two different paths were calculated and used from origin centroid 7
(north) to destination centroid 2 (south): Path A and Path B, as shown in Figure 5.8.
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Figure 5.8. Paths A and B from origin 7 (north) to destination 2 (south)

Under free flow conditions, Path A has a cost of 197.1 seconds and Path B has a cost of 264.7
seconds. If these costs were considered and the route choice function (a logit function that
takes 60 as the scale factor) were applied, the expected probability of Path A would be 0.75 and
the expected probability of Path B would be 0.25. However, these costs change during the
simulation according to demand, so the theoretical percentages change. Table 5.1 (below)

shows the evolution of the observed cost for each path, in seconds.

Interval Costs

From | To |[Path APath B

18:00 |18:06| 289.1|318.6

18:06 [18:12] 319.2|334.7
18:12 |18:18| 334.1|360.9

18:18 [18:24 | 324.5| 366.5

18:24 [18:30| 375.5|372.0

18:30 [18:36| 356.7 | 391.6

18:36 [18:42]427.1|489.9

18:42 | 18:48|407.8|457.4

18:48 [18:54 | 399.9 | 432.7

18:54 [19:00| 426.5|451.6

19:00 [{19:06|426.4 |477.4

19:06 [19:12] 452.4 | 488.7

Table 5.1. Observed path costs

129



Computational Results

The theoretical proportion of vehicles assigned to each alternative using a logit function as a

route choice model that has a scale factor of 60 should be as follows:

Interval Theoretical

proportion
From | To Path A Path B
18:00 | 18:06| 62.05% 37.95%
18:06 |18:12| 56.42% | 43.58%
18:12 | 18:18| 60.98% 39.02%
18:18 | 18:24 | 66.82% 33.18%
18:24 [18:30| 48.54% | 51.46%
18:30 [18:36| 64.15% | 35.85%
18:36 [18:42| 74.01% | 25.99%
18:42 |18:48| 69.56% | 30.44%
18:48 |18:54 | 63.34% 36.66%
18:54 [19:00| 60.31% | 39.69%
19:00 {19:06| 70.06% 29.94%
19:06 [19:12| 64.68% | 35.32%

Table 5.2. Theoretical path assignment

The percentage of vehicles assigned during the simulation to each path using the second

approach where MaxNumberRoutes = 3 and MaxNumberSPT = 10 gives the evolution of the

traffic assignment.

Interval AT 2T O G 5 % of vehicles assigned
assigned

From | To Path A Path B Path A Path B
18:00 |18:06 39 0 100.0% 0.0%

18:06 |18:12 16 23 41.0% 59.0%
18:12 |18:18 21 17 55.3% 44.7%
18:18 [18:24 28 8 77.8% 22.2%
18:24 |18:30 20 15 57.1% 42.9%
18:30 |18:36 28 9 75.7% 24.3%
18:36 [18:42 28 8 77.8% 22.2%
18:42 |18:48 20 16 55.6% 44.4%
18:48 |18:54 26 14 65.0% 35.0%
18:54 |19:00 26 11 70.3% 29.7%
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19:00 [19:06 24 13 64.9% 35.1%
19:06 [19:12 25 11 69.4% 30.6%

Table 5.3. Observed path assignment

Figure 5.9 (below) shows the comparison between the theoretical proportion of Path A with

respect to the percentage of vehicles assigned during the simulation.

100,00%
90,00%
80,00%
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60,00%
50,00%
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Figure 5.9. Comparison between the theoretical and observed path assignment in Path A

The experiments that were carried out using a logit function as a route choice model, were as

follows:

o First approach

=  Experiment 1: MaxNumberSPT = 10

=  Experiment 2: MaxNumberSPT = 5

= Experiment 3: MaxNumberSPT = 3

o Second approach

= Experiment 4: MaxNumberRoutes = 3 and MaxNumberSPT = 10

The time plots below show the number of vehicles assigned to each path during the simulation

in each experiment.
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Experiment 4
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Figure 5.10. Path assignment experiment results

If Experiment 4 is compared to Experiments 1, 2 and 3, which follow the first approach, In
experiment 4, can be observed the assignment of vehicles to the two alternative paths, at least
the first half of the simulation, but in the second half the path A becomes better in terms of cost.
But in Experiments 1, 2 and 3 path B is considered in a very few intervals assigning the greater
part of the vehicles to path A, diverging considerably from the expected percentages calculated

using the route choice function.

If the first and second approaches are compared, all the experiments carried out show that the
second approach gives better results. However, the second approach includes a new element
that is not present in the first approach to ensure that the set of alternatives contains different
alternatives, and this involves comparing a new alternative with the other paths included in the
set. Moreover, although better results are obtained with the second approach, its performance
could apparently decrease. The performance analysis was carried out using a Pentium Il 1GHz
that had 256 Mbytes of RAM. The tables below show the execution times for the simulations

carried out with different models.
Performance using the AIMSUN Dyn model

Network Size: 8 sections, 2 nodes and 2 centroids

Second Approach Second Approach First Approach First Approach
MaxNumberRoutes =2 | MaxNumberRoutes =2 | MaxNumberSPT =3 | MaxNumberSPT = 10
MaxNumberSPT = 3 MaxNumberSPT =5

Execution Time |3.92 3.97 3.79 4.186

Number of Route | 1247 1247 1247 1247

Choice

Applications

Time  Applying | 0.03s 0.03s 0.03s 0.03s

RC

Flow 995 995 996 995

Travel Time 00:01:58 00:01:58 00:02:00 00:02:01

Delay Time 00:00:44 00:00:44 00:00:48 00:00:49
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| Speed [33.2 [33.2 [32.5 [32.4
Performance using the Amara model
Network Size: 365 sections, 100 nodes and 13 centroids

Second Approach Second Approach First Approach First Approach
MaxNumberRoutes =3 | MaxNumberRoutes = 3 | MaxNumberSPT =4 | MaxNumberSPT = 10
MaxNumberSPT = 4 MaxNumberSPT = 10

Execution Time 73,145 77,91 84,181 85,85

Number of Route| 17570 17597 17594 17634

Choice

Applications

Time Applying RC |0,961s 2,123s 0.532s 1.003s

Flow 7640 7480 7663 7751

Travel Time 00:03:34 00:03:53 00:04:41 00:04:25

Delay Time 00:02:30 00:02:49 00:03:37 00:03:31

Speed 25.3 24.2 21.5 22.9

Performance using the DynamoA28 model

Network Size: 5414 sections, 2618 nodes and 81 centroids

Second Approach Second Approach First Approach First Approach
MaxNumberRoutes =3 | MaxNumberRoutes = 3 | MaxNumberSPT =4 | MaxNumberSPT = 6
MaxNumberSPT = 4 MaxNumberSPT = 6

Execution Time 529.06 547.71 531.46 629.63

Number of Route |62883 62755 62807 62873

Choice

Applications

Time Applying RC | 12.548s 17.500s 2.523s 6.49s

Flow 41428 38071 41099 41473

Travel Time 00:01:18 00:01:13 00:01:16 00:01:16

Delay Time 00:00:31 00:00:27 00:00:30 00:00:30

Speed 61.1 63.2 61.5 61.5

The tables above show that the execution time for all the experiments in which the second

approach was used are equivalent to or better than for the first approach. For instance, with

reference to the biggest network, if the second approach is used and MaxNumberSPT = 4, the

execution time is 529.06 seconds. If the first approach is used, the execution time is 531.46,

which represents an improvement of 0.45%. If MaxNumberSPT = 6, however, the execution

time for the second approach is 547.71 seconds, compared with 629.63 seconds for the first

approach, which constitutes an improvement in performance of 13.01% in the second approach.

5.2 VALIDATION BASED ON A STANDARD STATISTICAL COMPARISON

This section presents the validation results of dynamic traffic assignment parameters based on

a standard comparison of model and system outputs for different networks.
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5.2.1 VALIDATION BASED ON GEH

This section presents the validation results of dynamic traffic assignment parameters based on
a standard comparison between model and system outputs for an urban network of a medium

size that models the Amara borough of the city of San Sebastian in Spain (see Appendix ).

The set of real traffic data available comprises the traffic counts gathered at 15 detector stations
from 4 April 1999 to 19 May 1999. The level of aggregation was 1 hour over 24 hours. From the
data, we took only the working days and the afternoon peak times (from 18:00 to 20:00) and

calculated the average traffic count for each detector. Table 5.4 shows the average traffic count

for each detector during the peak hours.

Average Traffic Counts (vehs)
Detectors | 18:00-19:00 | 19:00-20:00 TOTAL

A18 1994 2018 3962
A19 531 518 1049
A22 871 782 1653
A23 482 524 1006
A24 1551 1362 2913
A25 1136 1241 2377
A26 897 938 1836
A27 1098 1099 2197
A30 948 958 1906
A42 1838 1731 3569
A51 1469 1556 3025
A52 1446 1443 2889
A53 433 547 979

A54 429 467 896

A55 341 421 602

Table 5.4. Average traffic counts in a working day (Amara model)

Depending on the route choice model employed (proportional, logit or C-logit), the experimental

design factors for the simulations were as follows:
o Proportional route choice model:

o Alpha factor (a), for which values of 0.5, 1, 2 and 3 were considered were
considered

o Initial K-SP, for which values of 1, 2 and 3 were considered

o Maximum number of routes (MaxNumberRoutes), for which values of 3, 4 and 5

were considered
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If these three factors are combined, the total number of experiments is 36 (4 * 3 * 3),
each of which was simulated 15 times (replications). The following random seeds for
the AIMSUN random number generator were used: 9182, 1670, 6534, 8159, 8538,
5768, 1277, 1065, 1846, 8740, 1489, 3334, 6232, 6237 and 1870.

Logit route choice model:
o Scale factor (6), for which values of 10, 60, 100 and 600 were considered
o Initial K-SP, for which values of 1, 2 and 3 were considered

o Maximum number of routes (MaxNumberRoutes), for which values of 3, 4 and 5

were considered

If these three factors are combined, the total number of experiments is 36 (4 * 3 * 3),
each of which was simulated 15 times (replications). The random seeds were changed

as in the proportional route choice model.

C-logit route choice model with fixed beta and gamma:
o Scale factor (0), for which values of 10, 60, 100 and 600 were considered
o Initial K-SP, for which values of 1, 2 and 3 were considered

o Maximum number of routes (MaxNumberRoutes), for which values of 3, 4 and 5

were considered
o Beta (p) fixed to 0.15
o Gamma (y) fixed to 1

If these factors are combined, the total number of experiments is 36 (4 * 3 * 3), each of
which was simulated 15 times (replications). The random seeds were changed as in the
proportional route choice model. C-logit route choice model with varying beta and

gamma:
o Scale factor (6) fixed to 60
o Initial K-SP fixed to 2
o Maximum number of routes (MaxNumberRoutes) fixed to 3
o Beta (p), for which values of 0.10, 0.15, 0.50 and 1 were considered

o Gamma (y), for which values of 0.5, 1, 1.5 and 2 were considered
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If these factors are combined, the total number of experiments is 16 (4 * 4), each of
which was simulated 15 times (replications). The random seeds were changed as in
the proportional route choice model.

By analysing these experiments, we were able to tackle a critical aspect in the calibration of the
dynamic traffic assignment parameters. The results allowed us to determine the effect of each
parameter in terms of accepting or rejecting the model.

For each experiment, we analysed the scattergram and a global indicator as the GEH index.
Table 5.5 and Table 5.6 show the observed and simulated detector flows from 18:00 to 19:00
and from 19:00 to 20:00, using, as the dynamic traffic assignment parameters, a logit route
choice function that had a scale factor @ of 60, an Initial K-SP of 1 and MaxNumberRoutes fixed
to 4. The GEH value was 83.33% and the R? value was 94.05. The regression line of observed
versus simulated flows, with the 95% prediction interval and the R? value of 94.05, is plotted in
Figure 5.11.

Peak Period (18:00-19:00)
Detector Observed |Simulated |% Diff |GEH
A18 1944 1988 -2.2% | 0.98
A19 531 547 -3.1% | 0.71
A22 871 842 3.3% | 0.98
A23 482 441 8.5% | 1.92
A24 1551 1457 6.0% | 2.41
A25 1136 1193 -5.0% | 1.66
A26 897 528 41.2%| 13.85
A27 1098 1064 3.1% | 1.03
A30 948 896 55% | 1.72
A42 1838 1802 2.0% | 0.85
A51 1469 1473 -0.3% | 0.10
A52 1446 1164 19.5% | 7.80
A53 433 489 -13.0%| 2.63
Ab54 429 447 -4.4% | 0.90
A55 275 351 -27.8%| 4.31

Table 5.5. Simulated vs. observed traffic counts of Amara model from 18:00 to 19:00

Peak Period (19:00-20:00)
Detector Observed | Simulated | % Diff | GEH
A18 2018 1986 1..6% | 0.70
A19 518 547 -5.7% | 1.27
A22 782 804 -2.7% | 0.76
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A23
A24
A25
A26
A27
A30
A42
A51
A52
A53
A54
A55

524
1362
1241
938
1099
958
1731
1556
1443
547
467
327

371
1453
1206
509
1005
892
1766
1524
1188
484
448
390

29.1%
-6.7%
2.8%
45.8%
8.5%
6.9%
-2.0%
21%
17.6%
11.4%
4.1%
-19.2%

7.20
242
1.01
15.97
2.89
2.16
0.83
0.82
7.02
2.73
0.90
3.32

Table 5.6. Simulated vs. observed traffic counts of the Amara model from 19:00 to 20:00

Regression Plot

1Simulated = -27,45 + 0,97 * var00001

R-cuadrado = 0,94

2000,00=

1500,00=

1000,00=

Simulated

500,00=

500,00

1500,00

Observed

I
2000,00

Figure 5.11. Scattergram analysis showing the observed and the simulated flow

The GEH index and the R? value enable us to analyse which dynamic traffic assignment

parameters reproduce a valid simulation model and which reproduce a simulation model that

can be rejected. The analysis is carried out by grouping the experiments that consider the route

choice function.
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Table 5.7 shows the GEH index and R? of the average of all the replications of the experiments

for which the proportional route choice function was used.

Proportional
Experiment Max number
Number Alpha Factor |Initial K-SP of Routes
1 0,5 1 3
2 0,5 1 4
3 0,5 1 5
4 0,5 2 3
5 0,5 2 4
6 0,5 2 5
7 0,5 3 3
8 0,5 3 4
9 0,5 3 5
10 1 1 3
11 1 1 4
12 1 1 5
13 1 2 3
14 1 2 4
15 1 2 5
16 1 3 3
17 1 3 4
18 1 3 5
19 2 1 3
20 2 1 4
21 2 1 5
22 2 2 3
23 2 2 4
24 2 2 5
25 2 3 3
26 2 3 4
27 2 3 5
28 3 1 3
29 3 1 4
30 3 1 5
31 3 2 3
32 3 2 4
33 3 2 5
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Number of Routes
1 10 1 3
2 10 1 4
3 10 1 5
4 10 2 3
5 10 2 4
6 10 2 5
7 10 3 3
8 10 3 4
9 10 3 5
10 60 1 3
11 60 1 4
12 60 1 5
13 60 2 3
14 60 2 4
15 60 2 5
16 60 3 3
17 60 3 4
18 60 3 5
19 100 1 3

20 100 1 4
21 100 1 5
22 100 2 3
23 100 2 4
24 100 2 5
25 100 3 3
26 100 3 4
27 100 3 5
28 600 1 3
29 600 1 4
30 600 1 5
31 600 2 3
32 600 2 4
33 600 2 5
34 600 3 3
35 600 3 4
36 600 3 5

Table 5.8. Logit route choice model
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route choice model was used and in which beta and gamma varied, although the scale factor
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to a valid model and to identify these parameters’ influence, and to establish guidelines for the

calibration process.

Such a systematic analysis is certainly computationally heavy, due to the combinatorial nature
of the process that makes computationally inaccessible any variant of factorial design to
proceed to an analysis which could determine the influence of the parameters. Even if the
influence of these parameters were to be identified, the question of whether the results could be

transferred or generalised would still remain open.

For the specific values of the parameters to be transferable from one case to another is
obviously not to be expected, since the parameters represent behavioural aspects and
consequently their values should be context-dependent. This fact seems to be confirmed by the
computational results obtained in the experiments. Nevertheless, the computational results also
seem to confirm (within the limit of the number of cases studied) that the roles of these
parameters and their interactions tend to exhibit a degree of similarity that might induce patterns
that would provide the expected guidelines. The main results found from the computational

experiments show that

e For the proportional route choice model, the most relevant parameter, which has a
direct influence on the level of goodness of the model, is alpha. Figure 5.17 shows how,
depending on the series characterised by the alpha value, the GEH index is distributed
in layers and the best results are given when alpha is set to 2 or 3. This layered
distribution might lead one to conclude that, in the calibration process, alpha could be
calibrated independently of the other parameters and, when a certain value produces

acceptable results, the calibration could be focused on the other parameters.

e The same effect can be observed when the logit route choice model considers the scale
factor (Figure 5.18) and the C-logit route choice model considers the scale factor
(Figure 5.19).

The results shown in the subsequent section confirm this preliminary analysis.
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GEH
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Figure 5.17. Influence of the alpha factor in the proportional route choice model
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Figure 5.18. Influence of the scale factor in the logit route choice model
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Figure 5.19. Influence of the scale factor in the C-logit route choice model

The conclusions from this set of experiments has led to an analysis of the influence of each
individual parameter and all possible combinations on the global indicator GEH index, which
determines an index with which to compare the model and system outputs. Thus, we carried out
an analysis of variance of GEH as a response variable and of the dynamic traffic assignment
parameters as factors.

Appendix Il contains a complete description of the results of the experiments, in addition to

tables and graphics for all the network models and route choice models.

5.2.2 ANALYSIS OF VARIANCE OF GEH

This section presents the analysis of variance in which the GEH index was used as a response
variable and the dynamic traffic assignment parameters as factors. Initially, this analysis
followed the same experiment design as that discussed in Section 5.2.1.

The first step is to analyse the GEH response variable as a function of each dynamic traffic
assignment parameter. Figure 5.20, Figure 5.21, Figure 5.22 and Figure 5.23 depict the
descriptive statistics for GEH as a function of the different values of the scale factor 6 using the
logit function as the route choice model in the Amara model. The Anderson-Darling test's p-
value, used in this test, identifies whether there is evidence that the data follow or not a normal
distribution. This information is complemented by the values of the quartiles, the skewness as a
measure of asymmetries and the kurtosis as a measure of how different the empirical
distribution is from the normal. The descriptive analysis provides insight on the compliance of

the hypothesis for the variance analysis.

Figure 5.24 depicts the test for equal variances for GEH as a function of the scale factor ¢ using
the logit function as the route choice model, and Figure 5.25 shows the output of the analysis of
the variance. When the scale factor is 600 and logit is used as the route choice model, the GEH
generates atypical observations, and its behaviour is very different to what it is when the scale
factor takes other values. As a consequence of the results in this preliminary exploratory
analysis, the value of 600 for the scale factor of the Amara model was discarded and the
computational results were restricted to the other values in the range of possible values for the

scale factor of the Amara model.
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Descriptive Statistics

Variable: GEH
Theta_New: 10

Anderson-Darling Normality Test

A-Squared: 6,324
P-Value: 0,000
Mean 0,797037
StDev 0,040204
Variance 1,62E-03
Skewness -8,4E-01
) ) ) ) ) ) ) Kurtosis 0,596687
N 135

! ! Minimum 0,666667
_-— 1st Quartile 0,766667

Median 0,800000
3rd Quartile 0,833333
95% Confidence Interval for Mu Maximum 0866667
_ 95% Confidence Interval for Mu
) ) ) 0,790193 0,803881
°v7|90 D,7|95 0,?00 0v3|05 95% Confidence Interval for Sigma
0,035913 0,045669
) | : 95% Confidence Interval for Median
95% Confidence Interval for Median 0,800000 0,800000

Figure 5.20. Description of GEH as a function of 8= 10, using logit as the route choice model

Descriptive Statistics

Variable: GEH
Theta_New: 60

Anderson-Darling Normality Test

A-Squared: 4,737
P-Value: 0,000
Mean 0,820988
StDev 0,038578
Variance 1,49E-03
Skewness -5,6E-01
| | Kurtosis 0,530457
052 058 N 135
! ! Minimum 0,700000
1st Quartile 0,800000
Median 0,833333
3rd Quartile 0,833333
95% Confidence Interval for Mu Maximum 0.900000
_ 95% Confidence Interval for Mu
| | ] | 0,814421 0,827555
0-|80 0,|81 0,:32 0,:33 95% Confidence Interval for Sigma
0,034460 0,043822
95% Confidence Interval for Median
95% Confidence Interval for Median 0,800000 0833333

Figure 5.21. Description of GEH as a function of = 60, using logit as the route choice model
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Descriptive Statistics

Variable: GEH
Theta_New: 100

Anderson-Darling Normality Test

A-Squared: 3,627
P-Value: 0,000
Mean 0,796790
StDev 0,044400
Variance 1,97E-03
Skewness -1,9E-01
) ) ) ) ) ) ) Kurtosis -8,1E-01
N 135

! ! Minimum 0,700000
_-— 1st Quartile 0,766667

Median 0,800000
3rd Quartile 0,833333
95% Confidence Interval for Mu Maximum 0866667
_ 95% Confidence Interval for Mu
) ) ) ) 0,789232 0,804348
0,:90 0,7|95 O,SIOO 0,8|05 95% Confidence Interval for Sigma
0,039661 0,050436
) | : 95% Confidence Interval for Median
95% Confidence Interval for Median 0,800000 0,800000

Figure 5.22. Description of GEH as a function of =100, using logit as the route choice model

Descriptive Statistics

Variable: GEH

Theta_New: 600
Anderson-Darling Normality Test
A-Squared: 2,756
P-Value: 0,000
Mean 0,724938
StDev 0,094080
Variance 8,85E-03
Skewness -5,2E-01

| Kurtosis -6,8E-01

I I I I I I
052 058 064 070 076 082 0,88 N 135
I

! ! ! ! ! ! Minimum 0,500000
S — Gl 0059

Median 0,733333

3rd Quartile 0,800000

95% Confidence Interval for Mu Maximum 0,866667

_ 95% Confidence Interval for Mu

] ] ] ] | | | 0,708924 0,740953
0.71 0,72 0.73 0.74 0.75 0.76 0.7 95% Confidence Interval for Sigma

| | | | | | |
I oo ol oo
i 95% Confidence Interval for Median
5 =
95% Confidence Interval for Median 0,733333 0,766667

Figure 5.23. Description of GEH as a function of 6= 600, using logit as the route choice model
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Test for Equal Variances for GEH

95% Confidence Intervals for Sigmas Factor Levels

_— 10
Bartlett's Test

Test Statistic: 167,396
P-Value : 0,000

Levene's Test

Test Statistic: 57,539
P-Value  : 0,000

600

T T T T T T T T
0,03 004 005 006 007 008 009 010 011

Figure 5.24. Test for equal variances for GEH as a function of g, using logit as the route choice

model
Analysis of Variance for GEH
Source DF SS MS F P
Theta Ne 3 0,70016 0,23339 67,03 0,000
Error 536 1,86622 0,00348
Total 539 2,56639
Individual 95% CIs For Mean
Based on Pooled StDev
Level N Mean StDev —-——-——-——-- e e Fom—————— +
10 135 0,79704 0,04020 (==*--)
60 135 0,82099 0,03858 (==*-)
100 135 0,79679 0,04440 (==*--)
600 135 0,72494 0,09408 (-=*--)
—————— R Rttt et
Pooled StDev = 0,05901 0,735 0,770 0,805 0,840

Figure 5.25. Output of analysis of variance for GEH as a function of g, using logit as the route

choice model in Amara

Table 5.11, Table 5.12 and Table 5.13 contain the summary of the analysis of variance results
for each network model grouped by route choice model (Appendix Ill contains the results and
figures of the analysis of the variance of each particular network model). The analysis has been
conducted on basis to a General Linear Model to determine the influence of each individual
factor as well as the crossed effects. The significance level is established in terms of the

regression coefficient R?.

“ Vitoria Model H
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LOGIT

‘|

C-LOGIT

R?=0, 465

Initial K-SP
MaxNumberRoutes
6 * Initial K-SP
6 * MaxNumberRoutes
Initial K-SP * MaxNumberRoutes

0 10, 60, 100, 600
Initial K-SP 1,2,3
MaxNumberRoutes 2,3,4

0.15

R?=0, 465
0
Initial K-SP

MaxNumberRoutes
0 * Initial K-SP

0 * MaxNumberRoutes

7

0 10, 60, 100, 600
Initial K-SP 1,2,3
MaxNumberRoutes 2,3,4

60

Initial K-SP
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C-LOGIT

PROPORTIONAL

MaxNumberRoutes 4

; 0.1,0.15, 0.5, 1
Y 05,1,15,2

MaxNumberRoutes

0 10, 60, 100
Initial K-SP 2.3

; 0.1,0.15,0.5, 1

v 05,1,15,2

R%=0.5875

‘|

Initial K-SP

|‘

(04
Initial K-SP 1,2,3
MaxNumberRoutes 2,3,4

R?=0,574
(04

Initial K-SP

MaxNumberRoutes

152



Computational Results

a * Initial K-SP
Initial K-SP * MaxNumberRoutes

Table 5.11. Analysis of variance results of the Vitoria Model

LOGIT

C-LOGIT

LOGIT

AMARA Model

0 10, 60, 100
Initial K-SP 1,2,3
MaxNumberRoutes 3,4,5

R?=0,28

‘|

Initial K-SP

; 0.15

0 10, 60, 100
Initial K-SP 1,2,3
MaxNumberRoutes 3,4,5

R%=0,14

~|

Initial K-SP
6 * Initial K-SP
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C-LOGIT

PROPORTIONAL

Initial K-SP

MaxNumberRoutes

0.1,0.15,0.5,1

0.5,1,1.5,2

R?=0,206

% 10, 60, 100
Initial K-SP 2,3

B 0.1,0.15,0.5,1

Y 0.5,1,15,2

‘|

Initial K-SP

|‘

R?=0,14
(04

Initial K-SP

MaxNumberRoutes

[04
Initial K-SP 1,2,3
MaxNumberRoutes 3,4,5
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a * Initial K-SP

a *MaxNumberRoutes

Table 5.12. Analysis of variance results of the Amara Model

LOGIT

C-LOGIT

Brunnsviken Model

0 1,10, 60, 100
Initial K-SP 1,2,3
MaxNumberRoutes 3,4,5

R?=0, 966

‘|

Initial K-SP

MaxNumberRoutes

R?=0, 837

‘|

Initial K-SP
6 * Initial K-SP

B 0.15

0 10, 60, 100,
Initial K-SP 1,2,3
MaxNumberRoutes 3,4,5
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R?=0, 799

0
Initial K-SP
MaxNumberRoutes
0 * Initial K-SP
Initial K-SP
MaxNumberRoutes
- —
8 0.1,0.15,0.5, 1
3 v 05,1,15,2

MaxNumberRoutes

0 10, 60, 100
Initial K-SP 2,3

3 0.1,0.15,0.5, 1

v 05,1,15,2

C-LOGIT

R%=0,7381

‘|

Initial K-SP

B

Y
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R? = 0,454

a 2,253
Initial K-SP 1,2, 3
MaxNumberRoutes 3,4,5

(24

Initial K-SP
MaxNumberRoutes

a * Initial K-SP

a *MaxNumberRoutes

Table 5.13. Analysis of variance results of the Brunnsviken model

Table 5.14 depicts the summary of the most significant parameters for each route choice model

and network model and the results of the method explored in this work enable guidelines to be

established for the calibration process of each route choice model. In all experiments in which

the shape factor (6 in the logit and the C-logit models and « in the proportional model) is a

design factor, this factor becomes significant. Therefore, this parameter plays a relevant role

during the calibration process. Focussing on each route choice model, the logit and C-logit

function have more relevant parameters the aforementioned 6 and the Initial K-SP, but in C-logit

B must be added because it plays the same role as the scale factor.

AMARA VITORIA BRUNNSVIKEN
0
Initial K-SP
MaxNumberRoutes 0
0
LOGIT 0 * Initial K-SP Initial K-SP
Initial K-SP
0 * MaxNumberRoutes 0 * Initial K-SP
Initial K-SP *
MaxNumberRoutes

0

0
0 Initial K-SP
C-LOGIT with fixed g Initial K-SP
Initial K-SP MaxNumberRoutes
and vy MaxNumberRoutes
0* Initial K-SP 0 * Initial K-SP
0 * Initial K-SP
0 * MaxNumberRoutes

C-LOGIT with @, fixed B

KlnitialSP and B . B
MaxNumberRoutes P
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0 0 0
C-LOGIT with fixed
Initial K-SP Initial K-SP Initial K-SP
MaxNumberRoutes
B B B
o o o
Initial K-SP Initial K-SP Initial K-SP
MaxNumberRoutes MaxNumberRoutes MaxNumberRoutes
PROPORTIONAL
ao* Initial K-SP o* Initial K-SP o* Initial K-SP
o* KlnitialSP * o
MaxNumberRoutes MaxNumberRoutes MaxNumberRoutes

Table 5.14. Significant parameters

5.3 VALIDATION BASED ON RGAP

No formal convergence proof can be given for the proposed heuristic dynamic assignment
algorithm, since the heuristic network loading process based on microscopic simulation does
not have an analytical form. In the case of the analytical user equilibrium approaches, static as
well as dynamic, an assignment’s progress towards equilibrium, and therefore the quality of the
solution, may be measured using the relative gap function, RGap. Janson (1991) proposes a
generalisation for the dynamic assignment, which was adapted by Florian et al. (2001) to the
heuristic case in which network loading is based on simulation. The RGap(t) function proposed

by Florian et al. is defined as

2 2 Wi (0)-u; (0]

iel kek;

Zgl-(t)u[(l)

iel

RGap(t) =

The function estimates, at time {, the relative difference between the total travel time actually
experienced and the total travel time that would have been experienced if the travel times of all
vehicles were equal to the current shortest path. In this function, u;(t) are the travel times on the
shortest paths for the i-th OD pair at time interval f, s(f) is the travel time on path k that
connects the j-th OD pair at time interval ¢, hy(t) is the flow on path k at time ¢, g,(t) is the demand
for the j-th OD pair at time interval t, K}, is the set of paths for the i-th OD pair, and / is the set of
all OD pairs.

In the heuristic network loading approach based on microscopic simulation that we propose,
paths are selected on the basis of logit or C-logit route choice models and discrete choice
theory, when the discrete choice set is defined at each time step in terms of K shortest paths.
The resulting network loading can then be interpreted in terms of heuristic stochastic user

equilibrium (Sheffi, 1985), namely in the case of congested networks in which the difference
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between user equilibrium and stochastic user equilibrium tends to disappear (Sheffi and Powell,
1982), and therefore we propose using Florian’s RGap(t) function to measure whether the K
shortest paths that constitute the discrete choice set for each OD pair at each time step tend to

be equivalent, and therefore in equilibrium, or otherwise.

This section presents an analysis of the RGap function for the various route choice models and
dynamic traffic assignment parameters. Initially, this analysis was carried out following the same
experiment design as in Section 5.2.1, for a medium-sized urban network that models the
Amara borough of the city of San Sebastian in Spain (see Appendix I).

Figure 5.26 depicts the time evolution of the RGap(f) function using the proportional route
choice model and varying the dynamic traffic assignment parameters. The nomenclature used
to identify the experiment with the parameters used is as follows: the first digit (3) is the
proportional route choice model, the second and third digits divided by 10 denote the alpha
factor, the fourth digit is the number of Initial K-SP and the fifth denotes the maximum number of
routes. For example, Experiment 32023 is an experiment in which the proportional route choice
was used, 2.0 is the alpha factor, the Initial K-SP is 2 and the maximum number of routes is 3.

RGAP: Proportional

31013 3104 3101 —»<—31023 ——31024 —e—31025 31033 —=—31034 —=—31035
——32018 — - 320¥ —4—32015 —¢—32023 —%—32024 —e—32025 +—32033 32034 32035
——33013 —=—330¥ —A—33015 —¢—33023 —k—33024 33025 +—33033 33034 33035

80,00%

70,00%

60,00%

50,00%

40,00%

30,00%

20,00%

10,00%

Figure 5.26. RGap function evolution using a proportional route choice model

In the figure above, the expected role of the alpha factor in terms of the RGap function becomes
evident in the combination of the proportional route choice model with the assignment
procedure. Improper choices of the parameter values (« = 1,0) tend to produce a bang-bang

effect, which is a consequence of the tendency to move most of the flow to the current shortest
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path, as the oscillations of the RGap function show, while a more appropriate o not only
smoothes the RGap oscillations out significantly but also shows that a path selection has

acceptable path cost differences (10% in this model).

Figure 5.27 depicts the time evolution of the RGap(t) function using the logit route choice model
and varying the dynamic traffic assignment parameters. The nomenclature used to identify the
experiment with the parameters used is as follows: the first digit (4) is the logit route choice
model, the second digit denotes the scale factor, where 0 is 4= 10, 1is =60, 2 is = 100 and
3 is 6 = 600, the third digit is the number of initial K-SP and the fourth denotes the maximum
number of routes. For example, Experiment 4123 uses the logit route choice, 60.0 as the scale
factor, 2 is the Initial K-SP and 3 is the maximum number of routes.

RGAP: Logit
—— 4013 —m—4014 4015 4113 4114 4115 ——4123 4124 —0—4125 4133
—=— 4134 —m— 4135 ——4213 4214 —A——4215 —¢—4223 —H¥—4224 —@— 4225 —+—4233 —=— 4234
—m— 4235 ——4313 —l—4314 —A—4315 ——4323 —%—4324 4325 + 4333 4334 4335

i W [
-E-?.-E-g.'i" w IE- IE- IE- L2 *+*#*ﬂ***@*¢@§ef@+@ e IE' IE' [ -!'+£'*-E'.P-E'.E.IE'4|E'¢ ¢

Figure 5.27. RGap function evolution using a logit route choice
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Figure 5.28. RGap function using a logit route choice model with the Initial K-SP fixed to 2 and
the maximum number of routes fixed to 3

Figure 5.29 depicts the time evolution of the RGap(t) function using the C-logit route choice
model and varying the dynamic traffic assignment parameters. The nomenclature used to
identify the experiment with the parameters used is as follows: the first digit (5) is the C-logit
route choice model, the second digit denotes the scale factor, where 0is 6 = 10, 1is 6 =60, 2 is
6 =100 and 3 is 6 = 600, the third digit is the number of Initial K-SP and the fourth denotes the
maximum number of routes. For example, Experiment 5123 uses the C-logit route choice, 60.0

as the scale factor, 2 is the Initial K-SP and 3 is the maximum number of routes.

RGap: C-Logit
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Figure 5.29. RGap function evolution using a C-logit route choice with fixed beta and gamma
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Figure 5.30. RGap function using a C-logit route choice model with the Initial K-SP fixed to 2

and the Max number of routes fixed to 3

In Figure 5.27, 3-54, 3-55 and 3-56, the expected role of the scale factor in terms of the RGap
function becomes evident in the combination of the logit and C-logit route choice models with
the assignment procedure. Inappropriate choices of the parameter values (6 = 10) tend to
produce a bang-bang effect, which is a consequence of the tendency to move most of the flow
to the current shortest path, as the oscillations of the RGap function show, while a more
appropriate 6 not only smoothes the RGap oscillations out significantly but also shows an

acceptable path has been selected.

Figure 5.31 depicts the time evolution of the RGap(t) function using the C-logit route choice
model, where the 0 is fixed to 60, the Initial K-SP is fixed to 2, the maximum number of routes is
fixed to 3 and the beta and gamma factors vary. The nomenclature used to identify the
experiment with the parameters used is as follows: the first digit (6) is the C-logit route choice
model, the second digit denotes the beta factor, where 0 is B = 0.10, 1is p = 0.15, 2 is p = 0.50
and 3 is B = 1, the third digit denotes the beta factor. where 0 isy=0.5,1isy=1,2isy=1.5
and 3 is y = 2. For example, Experiment 612 is an experiment that uses the C-logit route choice
model, 0 is fixed to 60, the Initial K-SP is fixed to 2, the maximum number of routes is fixed to 3
and 3 =0.15and y=1.5.

RGap: C-Logit varying Beta and Gamma

—— 600 ——601 602 —>—603 —%—610 —@—611 + 612 613 620 621 622
623 —>—630 — 631 —&—632 633
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18:04 18:08 18:12 18:16 18:20 18:24 18:28 18:32 18:36 18:40 18:44 18:48 18:52 18:56 19:00 19:04 19:08 19:12 19:16 19:20 19:24 19:28 19:32 19:36 19:40

Figure 5.31. RGap function evolution using a C-logit route choice varying beta and gamma
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Rgap
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Figure 5.32. RGap function using a C-logit route choice model where 6 = 60, the Initial K-SP is

fixed to 2, the maximum number of routes is fixed to 3 and y is fixed to 1.

Figure 5.32 depicts the effect of the beta factor when the other parameters considered are fixed.
In this case, all the values of the beta factor produce an acceptable evolution of the RGap
function but if the beta factor is fixed to 1, there is an increase of the RGap and a bang-bang
effect during the interval from 18:24 to 18:28.

5.4 VALIDATION OF THE REACTIVE VERSION BASED ON RGAP AND GEH
The reactive version of the assignment procedure that uses the cost function (see Section
3.3.2.1 for details) C*'(1)= 2 CF(t)+(1-1) Ck(r), where 0<4<1 and CF(r) is the input cost
of link i at iteration k at time interval t and C‘f(t) is the output cost of link i at iteration k at time
interval . The input cost C,.k (t) could be interpreted as the expected cost considered at interval

t, while the output cost é,-k (¢) could be interpreted as the experimented or experienced link cost

at the end of interval .

This section presents the validation results of the reactive dynamic traffic assignment
parameters based on a standard comparison between model and system outputs, using the
GEH index and the validation based on the RGap(t) function for Amara model, (Appendix IV
contains all the results of these experiments). In order to limit the number of experiments, due to
the exponential growing of the number of combinations, we have fixed some parameters and

taken into account only those values that fit better in the previous experiments.

Depending on the route choice model employed (proportional, logit or C-logit), the experimental

design factors for the simulations were as follows:
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o Proportional route choice model:

O

Alpha factor (a), for which values of 0.5, 1, 2, 2.5 and 3 were considered

Initial K-SP, for which values of 1, 2 and 3

Maximum number of routes (MaxNumberRoutes) fixed to 3

Lambda factor of the cost function (A), for which values of 0.25, 0.50 and 0.75

were considered

If these three factors are combined, the total number of experiments is 45 (5 * 3 * 3),

each of which was simulated 15 times (replications). The following random seeds were
changed: 9182, 1670, 6534, 8159, 8538, 5768, 1277, 1065, 1846, 8740, 1489, 3334,
6232, 6237 and 1870.

o Logit route choice model:

Scale factor (6), for which values of 10, 60 and 100 were considered

Initial K-SP, for which values of 1, 2 and 3 were considered

Maximum number of routes (MaxNumberRoutes) fixed to 3

Lambda factor of the cost function (A), for which values of 0.25, 0.50 and 0.75

were considered

If these three factors are combined, the total number of experiments is 27 (3 * 3 * 3),

each of which was simulated 15 times (replications). The same random seeds were

changed as in the proportional route choice model.

o C-logit route choice model:

O

Scale factor (6), for which values of 10, 60 and 100 were considered

Initial K-SP, for which values of 1, 2 and 3 were considered

Maximum number of routes (MaxNumberRoutes) fixed to 3 were considered

Beta (p), for which values of 0.10, 0.15, 0.50 and 1 were considered

Gamma (y) fixed to 1

Lambda factor of the cost function (A), for which values 0.25, 0.50 and 0.75

were considered
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If these three factors are combined, the total number of experiments is 108 (3 *3 * 4 *
3), each of which was simulated 15 times (replications). The same random seeds were

changed as in the proportional route choice model.

Figure 5.33 plots the RGap(t) function and the GEH for all the experiments in which the
proportional route choice model was used. In this plot, the experiments can be considered valid
when the RGap function is less than or equal to 10% and the GEH is greater than or equal to
80% or 85% (values based on purely empirical grounds as a rule of thumb). Therefore, the
experiments accepted are located in the top, left-hand corner. If we consider this criterion in
order to accept or reject the experiments, we can distinguish two separate clouds of points: one
that shows an acceptable GEH and RGap (to different degrees) and another that shows an
unacceptable GEH and acceptable RGap. Acceptable GEH and RGap are observed in the

experiments represented below.

Alpha factor | Initial K-SP | Lambda

0,5 1 0.25
1 1 0.25
2 1 0.25
25 1 0.25

1 0.25

1 0.50
25 1 0.50
3 1 0.50
3 3 0.50
25 1 0.75

1 0.75
3 3 0.75
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Figure 5.33. RGap and GEH of all replications using the reactive assignment procedure and the

proportional route choice model

Proportional Route Choice
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Figure 5.34. RGap and GEH of the average of each experiment using the reactive assignment
procedure and the proportional route choice model

Figure 5.34 depicts the plot of the RGap and GEH average from all replications of the same
experiment and it allows us to identify the set of experiments that produces acceptable RGap
and GEH using the proportional route choice model. Table 5.15 identifies the experiments that
show an acceptable average of RGap and GEH. It is important to highlight the fact that a
combination of the alpha Factor fixed to 3 and the Initial K-SP fixed to 1 generates an

acceptable RGap and GEH, regardless of the lambda value.
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Alpha Factor | Initial K-SP | Lambda
2 1 0.25
25 0.25
0.25
0.50
0.50
0.75
0.25
0.75

2.5

W = A A A A -

Table 5.15. Acceptable RGap and GEH using a proportional route choice model

Figure 5.35 depicts the plot of the RGap versus GEH index of all replications using the logit
route choice model. The cloud of points that are in the area of the acceptable RGap and GEH

index represent 70% of the experiments in which the logit route choice was used.

Figure 5.36 depicts the plot of the RGap and GEH average from all replications of the same
experiment and it allows us to identify the set of experiments that produces acceptable RGap

and GEH using the logit route choice model (see Appendix IV for numerical data).

Logit Route Choice
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Figure 5.35. RGap and GEH of all replications using reactive assignment procedure and the

logit route choice model
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Figure 5.36. RGap and GEH of the average of each experiment using reactive assignment

procedure and the logit route choice model

Table 5.16 identifies the experiments that have an acceptable average of RGap and GEH. It is

important to highlight the fact that the scale factor fixed to 60 or 100 generates acceptable

RGap and GEH, regardless of the lambda value and the initial K-SP parameter.

Scale Factor | Initial K-SP | Lambda
10 1 0.25
60 1 0.25
60 2 0.25
60 3 0.25
100 1 0.25
100 2 0.25
100 3 0.25
10 1 0.50
60 1 0.50
60 2 0.50
60 3 0.50
100 1 0.50
100 2 0.50
100 3 0.50
60 1 0.75
60 2 0.75
60 3 0.75
100 1 0.75
100 2 0.75
100 3 0.75
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Table 5.16. Acceptable RGap and GEH using a logit route choice model

Figure 5.37 depicts the plot of the RGap versus GEH index of all replications using the C-logit

route choice. The cloud of points that are in the area of the acceptable RGap and GEH index

represents 56% of the experiments in which C-logit is the route choice model used.

Figure 5.38 depicts the plot of the average RGap versus the GEH index of all replications of the

same experiment.
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Figure 5.37. RGap and GEH of all replications using reactive assignment procedure and the

logit route choice model
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Figure 5.38. RGap and GEH of the average of each experiment using reactive assignment

procedure and the C-logit route choice model
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Table 5.17 identifies the experiments that have an acceptable average of RGap and GEH using
a C-logit route choice model. It is important to highlight the fact that a scale factor fixed to 10
generates unacceptable RGap and GEH, regardless of the values of the other parameters (the
only combination that produces an acceptable RGap and GEH is a scale factor fixed to 10, an
initial K-SP of 1, a beta factor of 0.50 and a lambda value of 0.5). Another fact to highlight is the
scale factor fixed to 60 and the Initial K-SP fixed to 1 and 2 generates an acceptable situation,
regardless of the values of the beta and lambda parameters (except the combination of a scale
factor of 60, an Initial K-SP of 2, a beta factor of 0.50 and a lambda value of 0.25). The same
effect would be observed if the scale factor took 100 as its value, the beta factor was irrelevant,
the initial K-SP was either 1 or 2 and the lambda was either 0.50 or 0.75.

Scale Factor | Initial K-SP | Beta Factor | Lambda
60 1 0.10 0.25
60 1 0.15 0.25
60 1 0.50 0.25
60 1 1.00 0.25
60 2 0.10 0.25
60 2 0.15 0.25
60 2 1.00 0.25
60 3 0.15 0.25
100 1 0.10 0.25
100 1 0.50 0.25
100 1 1.00 0.25
100 2 0.50 0.25
100 3 0.10 0.25
100 3 0.50 0.25
10 1 0.50 0.50
60 1 0.10 0.50
60 1 0.15 0.50
60 1 0.50 0.50
60 1 1.00 0.50
60 2 0.10 0.50
60 2 0.15 0.50
60 2 0.50 0.50
60 2 1.00 0.50
60 3 0.10 0.50
60 3 0.15 0.50
100 1 0.10 0.50
100 1 0.15 0.50
100 1 0.50 0.50
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100 1 1.00 0.50
100 2 0.10 0.50
100 2 0.15 0.50
100 2 0.50 0.50
100 2 1.00 0.50
100 3 0.10 0.50
100 3 0.15 0.50
60 1 0.10 0.75
60 1 0.15 0.75
60 1 0.50 0.75
60 1 1.00 0.75
60 2 0.10 0.75
60 2 0.15 0.75
60 2 0.50 0.75
60 2 1.00 0.75
60 3 0.10 0.75
60 3 0.15 0.75
100 1 0.10 0.75
100 1 0.15 0.75
100 1 0.50 0.75
100 1 1.00 0.75
100 2 0.10 0.75
100 2 0.15 0.75
100 2 0.50 0.75
100 2 1.00 0.75
100 3 0.10 0.75
100 3 0.15 0.75

Table 5.17. Acceptable RGap and GEH using a C-logit route choice model

An additional result of the method explored in this section is the guidance that the computational
results provide for the calibration of the dynamic traffic assignment parameters, depending on
the route choice function selected. This is based on the assumption that, as far as the
assignment process described is concerned, and depending on how it is implemented, it can be
associated with a heuristic carrying out of a preventive or reactive dynamic assignment. A
proper route selection should lead to some degree of equilibrium, and the progress towards

such equilibrium is measured in terms of the RGap function.

Assuming that “dynamic equilibrium” exists, the empirical results show that an appropriate time-

varying k shortest paths calculation, in which the link costs are suitably defined; adequate
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stochastic route choice functions; and the use of a microscopic network loading mechanism
achieve a network state that acceptably replicates the flows observed in the simulation horizon
and a reasonable set of used paths between OD pairs, as the oscillations within a narrow band

of the empirical RGap function indicate.
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