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6 CONCLUSION

6.1 RESEARCH CONTRIBUTION

The two main contributions of this thesis are the implementation and validation of a heuristic for
dynamic traffic assignment in AIMSUN and its use in determining short-term traffic prediction
based on a set of almost independent neural networks, whose structure corresponds to the OD

path structure of the road network, which allows a time- dependent update of the OD matrices.

Another contribution of the research work undertaken in this thesis is the architecture proposed
for advanced traffic management and control systems and advanced traffic information systems
based on telematic technologies, preliminary versions of which have been evaluated in the
European PETRI (PETRI, 1996) and CAPITALS (CAPITALS, 1998) projects. In this
architecture, the short-term prediction of traffic flow evolution becomes the key component. To
support a sound decision-making process in traffic management and in the dissemination of
information to users, the critical point is to achieve a reliable short-term prediction of the network
state. The dynamic prediction mechanism of the network state proposed in this thesis is defined

in terms of the dynamic prediction of OD matrices.

Neural networks are used for the short-term prediction of the network state in this work,
because they appear to be natural candidates for forecasting models, particularly when their
easily parallelizable structure is taken into account and high computational speed is required to
achieve the system’s objectives. Certainly, the quality of the predictions obtained seems to
confirm the hypothesis that led us to propose neural networks as a forecasting mechanism and

validates the methodology used to predict OD matrices.

The short-term prediction process requires the input of the historical OD matrix and patterns
with which to train the neural network that has to produce the forecasts. Time-sliced OD
matrices are currently unavailable and their direct production is difficult and costly, although for
several telematic applications the possibility of generating such information in real time has
been considered. Our proposal in this thesis consists of generating an initial estimate using the
information that is available, that is, an initial, old OD and the link flow counts of a subset of
network links. The estimation made to adjust the initial matrix to the link volumes observed was
based on an ad hoc adaptation of the Spiess heuristic for solving the bi-level formulation of the

matrix adjustment problem as a nonlinear optimisation problem.

The dynamic prediction of an OD matrix by means of a neural network has one main drawback:
the amount of data required to properly train the neural network. The contribution of this work is
a new approach to determining independent OD pairs using a cluster analysis combined with
the identification of the K shortest path used between each OD pair. This reduces a neural

network so large that the training process would be computationally unfeasible to a set of small,
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almost independent neural networks, each one corresponding to a class of almost independent

OD pairs. The resulting network is of a size that makes the process computationally feasible.

The identification of the K shortest path used between each OD pair led to the implementation
of a heuristic of the dynamic traffic assignment in AIMSUN and its validation. The work
proposes methodological patterns for calibrating the parameters of microscopic traffic simulation
models based on simple models, with the aim of ensuring the adequacy of the car-following
parameters. The method proposed is illustrated with examples built with the AIMSUN
microsimulator. The model’s validation is discussed, a paradigm based on time series analysis
is proposed to explicitly account for the autocorrelation processes of traffic data and the
numerical results are presented. A band comparison process is also proposed for cases in
which the amount of data available allows one to take the explicit variability of traffic data into
account. The method proposed is applied to a real case. Finally, assuming that “dynamic
equilibrium” exists, the empirical results show that an appropriate, time-varying k shortest paths
calculation, in which the link costs are suitably defined; adequate stochastic route choice
functions; and the use of a microscopic network loading mechanism achieve a network state
that acceptably replicates the flows observed in the simulation horizon and a reasonable set of
used paths between OD pairs, as the oscillations within a narrow band of the empirical RGap

function indicate.

The contributions of this work can be summarised as follows:

e Feasibility of the architecture of advanced traffic management systems.

¢ Real-time estimation of OD matrices from traffic counts by neural networks.

e Validity of heuristic dynamic traffic assignment based on microsimulation, which leads to
two further contributions: firstly, the validity of heuristic dynamic traffic assignment using
microsimulation produces a rational set of OD paths that are likely to be used, which can be
used as input in the process of the real-time estimation of OD matrices from traffic counts
and also to validate the architecture proposed in this work for ATMS, secondly, a set of
guidelines for the validation of route choice parameters, and thirdly the way the cost

functions are updated and the way the reactive dynamic assignment is computed.

Further contributions made by this thesis are the following ad hoc developments implemented in
AIMSUN, necessary to make the microscopic simulator the software platform to implement the
methods and approaches proposed in the research. These new developments, once tested
have become standard procedures in a new commercial version of the simulation software,
available to AIMSUN customers. The main developments, described in detail in Chapter 3 and

in the appendices to this thesis, are the following:
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All the algorithms of the heuristic dynamic traffic assignment procedure are explained in
Chapter 3.

The path analysis tool, which allows to the user to gain insight into what occurs in a
heuristic dynamic assignment. For the proper calibration and validation of the simulation
model, the user should have access to the analysis of the routes used. The path

information that is available is as follows:

o Shortest path information. The user can view all the shortest path information

that is being used by vehicles during the simulation.

o User-defined path information. The user can view all the user-defined path

information.

o Shortest path display. The user can simultaneously view different shortest
paths and their links in the network.

o Initial path assignment. The user can view all the probabilities considered when

a vehicle enters the system.

o Dynamic path assignment. The user can view all the probabilities considered

when a vehicle carries out path reassignment during the trip.

The simulation output used in the validation of the dynamic traffic assignment is the
path information output. The link cost information is generated and all the vehicles are

coloured per origin, per destination and both (per origin and destination simultaneously).

The function editor, which allows the user to define new link cost functions and new
route choice models.

6.2 FUTURE RESEARCH

The research presented in this dissertation could be extended in the following directions:

6.2.1 REAL-TIME ESTIMATION OF OD MATRICES

Short-term prediction by means of neural networks could be complemented by other, recently

proposed methodologies without invalidating the architecture proposed in this work. These other

methodologies use methods such as fuzzy logic or fuzzy neural networks, which combine the

complementary capabilities of neural networks and fuzzy logic.

Another possibility would be to explore the method recently proposed by Bierlaire and Crittin

(2004), which exploits the path analysis capabilities of the new AIMSUN functions that have

been developed.

175



Conclusion

6.2.2 VALIDATION OF HEURISTIC DYNAMIC TRAFFIC ASSIGNMENT

In the methodology proposed in this work, the estimation of the historical OD matrix becomes a
key point, because it is an input requirement in the architecture proposed in this work.
Therefore, it will be necessary to implement and test other, alternative heuristics. A proposal
that has already been the object of a preliminary exploration is to generate sound estimates of
the input target matrix, a process which is based on an iterative, embedded, bi-level

optimisation adjustment and is inspired by the adjustment proposed by Spiess (1990).

The planned line of research consists in replacing the lower level static traffic assignment
problem, which produces as its result v(g), as the flow on link a, with a dynamic traffic

assignment problem that is implemented using the AIMSUN microscopic simulator.

Preliminary results have been obtained for a medium-sized urban network modelled on the
Amara borough of the city of San Sebastian in Spain (see Appendix ). The new approach
consists in comparing the matrix adjustment when static traffic assignment in the lower level
problem, which was solved using EMME2 (INRO, 1996), is used or dynamic traffic assignment
is used. The experiment involves calculating a matrix adjustment from two different OD

matrices: the original historical OD matrix from 18:00 to 20:00, “Matrix 18-20", and an OD matrix

“Matrix 01", where the demand of j-th OD pair g, is calculated as

=1 g2.>0 )
g = { 0 gA’ 0’ where g, is the original historical demand of i-th OD pair
= gi =

The matrix adjustment of “Matrix 18-20”, using dynamic traffic assignment, uses 3 iterations to
reach an R percentage (calculated by comparing the simulated and observed detector counts)
of 89.42%, and the adjustment of “Matrix 01" uses 8 iterations and results in an R* percentage
of 92.79%. Table 6.1 depicts the evolution of R? according to the number of iterations. If static
traffic assignment is used, the same adjustments require 17 iterations with an R? percentage of
91.98% for the adjustment of “Matrix 18-20” and 20 iterations with an R? percentage of 96.84%

for the adjustment of “Matrix 01”.
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Matrix 18-20 Matrix 01

lteration Number R® lteration Number R?

1 83.06 14.84
83.46 53.99
89.42 71.63
83.80
87.90
91.16
92.71
92.79

O N[ O Of | W N =~

Table 6.1. Results of matrix adjustment using dynamic traffic simulation

These preliminary results show the validity of the method and introduce the idea of a framework

for a semi-automatic calibration process.

Future research on the semi-automatic calibration process would involve determining a heuristic
adaptive algorithm for estimating an origin-destination-dependent scale factor for the route

choice models.

The preliminary results were obtained using the logit route choice function and so it will be

necessary to extend the experiments to the remaining route choice models.

Taking into account the role of the scale factor in smoothing out the shape of the logit function,
the right value of parameter 6 should be different for each OD pair, depending on the travel time
variability. From a practical point of view, the easy way to define 6 is as a global simulation
parameter that has the same value for all OD pairs, and this works for road networks in which
path travel times are of the same order of magnitude but is probably unrealistic for large
networks in which long path travel times coexist with shorter ones. The question is how to input
the 6; values for each OD pair icl, the set of all OD pairs, when |l| is a large number, and how to

define the right value for each OD pair. To cope with this problem, the following adaptive

heuristics is proposed. Let tti1 yeeeny ttL be the ordered set of travel times for the n paths of the r-th

OD pair at time interval i, that is, tt; < .... < tt. When the variability of the travel times for the r-
th OD pair between successive time intervals changes beyond a predefined threshold, the

estimation by a maximum likelihood procedure of the scale factor 6, for the route choice function

of the r-th OD pair is as follows:

n
1. Estimation of target probabilities: Let s = Ztt} be the sum of the current travel times

=1

for the n paths between the r-th OD pair.
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On the basis of the computational experiments conducted with network models of various sizes,
the recommended value for B is 2.5 < B < 3, although the determination of the right value in

each case will be the outcome of the validation process.

Another line to explore is the possibility of determining the response surface for the dynamic
traffic assignment parameters. The objective of this research is to determine the possible
relationship between dynamic traffic assignment parameters and a characterisation of the road
network, in order to establish guidelines for its validation. The preliminary experiments start by

defining the characterisation of the networks using:

= NbSections: The total number of sections in the AIMSUN model.

= NbNodes: The total number of nodes in the AIMSUN model.

= NbCentroids: The total number of centroids or zones in the AIMSUN model.

= Kms: The total number of kilometres in the model, obtained as the sum of the length of

all the sections of which the AIMSUN model is that composed.
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» Kms x lane: The total number of kilometres of all lanes, obtained as the sum of the
length of all lanes that compose the AIMSUN model.

= NbLinks: The total number of links of AIMSUN model. A link is generated since either
one section or a polysection (a group of sections that share the same characteristics).

= InternalNodes: The total number of internal nodes. All the nodes (either junctions or
joins) that have more that one entrance and/or more than one exit are considered when
an internal node is generated. All nodes that represent a direct connection between two
different sections are excluded.

= InternalArcs: The total number of internal arcs. An internal arc is a link between two
internal nodes.

= Connectivitylndex: The connectivity index Cl is calculated as

ExitArcs,

Cl = nelnternalNodes N-1
N

o Wwhere Nis the number of internal nodes,

ExitArcs, is the number of exit internal arcs from node n, that is, the
number of connections to other internal nodes.

= AvgDistance: The average distance in meters between all OD pairs, considering the
paths calculated in free flow conditions.

= DevDistance: The distance deviation in meters between all OD pairs, considering the
paths calculated in free flow conditions.

= MinDistance: The minimum distance in meters between all OD pairs, considering the
paths calculated in free flow conditions.

= MaxDistance: The maximum distance in meters between all OD pairs, considering the
paths calculated in free flow conditions.

= AvgTime: The average travel time in seconds between all OD pairs, considering the
paths calculated during one simulation.

= DevTime: The distance travel time in seconds between all OD pairs, considering the
paths calculated during one simulation.

=  MinTime: The minimum travel time in seconds between all OD pairs, considering the
paths calculated during one simulation.

= MaxTime: The maximum travel time in seconds between all OD pairs, considering the
paths calculated during one simulation.

Further research may also do well to explore more sophisticated neural network architectures

that can be used for prediction, including ones which may comprise fuzzy neural networks or

gating techniques. Other techniques, such as those proposed by Bierlaire and Crittin (2004),

should also be taken into account.
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