11 APPENDIX III

This section presents the analysis of variance of GEH as a response variable and the dynamic traffic assignment parameters as factors for all network models.

11.1 VITORIA MODEL

11.1.1 EXPERIMENT DESCRIPTION

This section presents the validation results of dynamic traffic assignment parameters based on a standard comparison between model and system outputs for a medium-sized urban network of medium size that models a part of the city of Vitoria in Spain.

The set of real traffic data comprises traffic counts gathered at 10 detector stations from 4 April 1999 to 19 May 1999. The level of aggregation was 15 minutes over 24 hours. From the data, we considered only working days and the afternoon peak hour (from 18:00 to 19:00) and calculated the average traffic count for each detector.

Depending on the route choice model employed (proportional, logit or C-logit), the experimental design factors for the simulations were as follows:

- Proportional route choice model:
 - \circ Alpha factor (α), for which values of 0.5, 1, 2 and 3 were considered
 - o Initial K-SP, for which values of 1, 2 and 3 were considered
 - Maximum number of routes (*MaxNumberRoutes*), for which values of 2, 3 and 4 were considered

If these three factors are combined, the total number of experiments is 36 (4 * 3 * 3), each of which was simulated 15 times (replications). The following random seeds were changed: 9182, 1670, 6534, 8159, 8538, 5768, 1277, 1065, 1846, 8740, 1489, 3334, 6232, 6237 and 1870.

- Logit route choice model:
 - \circ Scale factor (θ), for which values of 10, 60, 100 and 600 were considered
 - o Initial K-SP, for which values of 1, 2 and 3 were considered
 - Maximum number of routes (*MaxNumberRoutes*), for which values of 2, 3 and
 4 were considered

If these three factors are combined, the total number of experiments is 36 (4 * 3 * 3), each of which was simulated 15 times (replications). The random seeds were changed as in the proportional route choice model.

- o C-logit route choice model with fixed beta and gamma:
 - \circ Scale factor (θ), for which values of 10, 60, 100 and 600 were considered
 - o Initial K-SP, for which values of 1, 2 and 3 were considered
 - Maximum number of routes (MaxNumberRoutes), for which values of 2, 3 and 4 were considered
 - o Beta (β) fixed to 0.15
 - Gamma (γ) fixed to 1

If these factors are combined, the total number of experiments is 36 (4 * 3 * 3), each of which was simulated 15 times (replications). The random seeds were changed as in the proportional route choice model.

- C-logit route choice model with varying beta and gamma:
 - Scale factor (θ) fixed to 60
 - o Initial K-SP fixed to 2
 - o Maximum number of routes (MaxNumberRoutes) fixed to 4
 - \circ Beta (β), for which values of 0.10, 0.15, 0.50 and 1 were considered
 - \circ Gamma (γ), for which values of 0.5, 1, 1.5 and 2 were considered

If these factors are combined, the total number of experiments is 16 (4 * 4), each of which was simulated 15 times (replications). The random seeds were changed as in the proportional route choice model.

- o C-logit route choice model changing the scale factor, *Initial K-SP*, beta and gamma:
 - \circ Scale factor (θ), for which values of 10, 60 and 100 were considered
 - o Initial K-SP, for which of 2 and 3 were considered
 - o Maximum number of routes (MaxNumberRoutes) fixed to 4
 - o Beta (β), for which values of 0.10, 0.15, 0.50 and 1 were considered

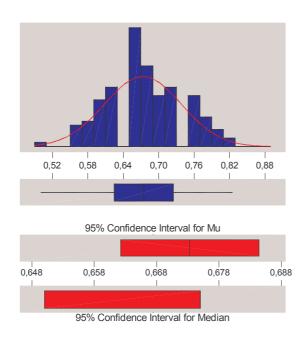
Gamma (γ), for which values of 0.5, 1, 1.5 and 2 were considered

If these factors are combined, the total number of experiments is 144 (3 * 2 * 4 * 4), each of which was simulated 15 times (replications). The random seeds were changed as in the proportional route choice model.

11.1.2 EXPERIMENT RESULTS

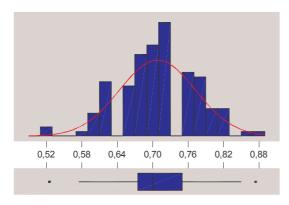
11.1.2.1 PROPORTIONAL ROUTE CHOICE

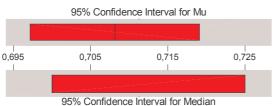
ROUTE CHOICE: PROPORTIONAL


DESIGN FACTOR α , LEVELS 0.5, 1.0, 2.0, 3.0

DESIGN FACTOR INITIAL K-SP (Kinitial), LEVELS 1, 2, 3

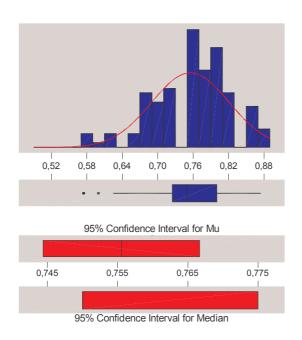
DESIGN FACTOR MAXNUMBERROUTES (Number of Alternatives), LEVELS 2, 3, 4


11.1.2.1.1 GEH AS A FUNCTION OF α

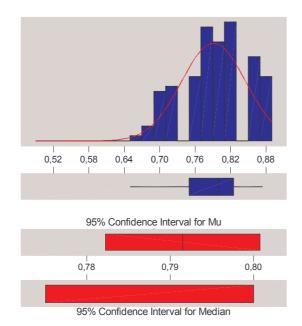

Descriptive Statistics

Alpha Factor: 0,5						
Anderson-Darling Normality Test						
A-Squared: P-Value:	1,223 0,003					
Mean StDev Variance Skewness Kurtosis N	0,673333 0,065235 4,26E-03 9,44E-02 -3,2E-01 135					
Minimum 1st Quartile Median 3rd Quartile Maximum	0,500000 0,625000 0,675000 0,725000 0,825000					
95% Confidence Interval for Mu						
0,662229	0,684438					
95% Confidence Interval for Sigma						
0,058272	0,074103					
5% Confidence Interval for Median						
0,650000 0,675000						

Variable: GEH



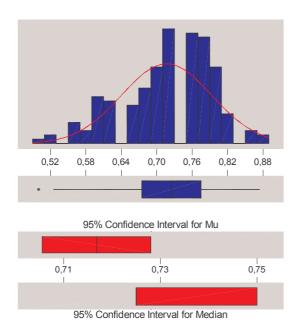
Variable: GEH Alpha Factor: 1,0


Anderson-Darling Normality Test				
A-Squared: P-Value:	0,963 0,015			
Mean StDev Variance Skewness Kurtosis N	0,708148 0,064344 4,14E-03 -1,1E-01 0,118766 135			
Minimum 1st Quartile Median 3rd Quartile Maximum	0,525000 0,675000 0,700000 0,750000 0,875000			
95% Confidence Interval for Mu				
0,697195	0,719101			
95% Confidence Int	erval for Sigma			
0,057477	0,073091			
95% Confidence Interval for Median				
0,700000	0,725000			

Descriptive Statistics

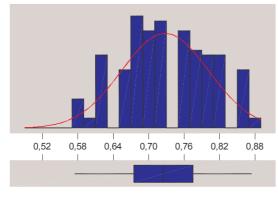
Variable: GEH Alpha Factor: 2,0

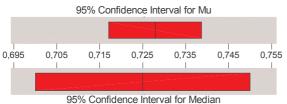
Anderson-Darling I	Normality Test
A-Squared:	1,492
P-Value:	0,001
Mean	0,755556
StDev Variance	0,065411 4,28E-03
Skewness	-5,3E-01
Kurtosis	0,140738
N	135
Minimum	0,575000
1st Quartile	0,725000
Median 3rd Quartile	0,750000 0,800000
Maximum	0,800000
95% Confidence I	*
0,744421	0,766690
95% Confidence Int	erval for Sigma
0,058429	0,074303
95% Confidence Inte	erval for Median
0,750000	0,775000



Variable: GEH Alpha Factor: 3,0

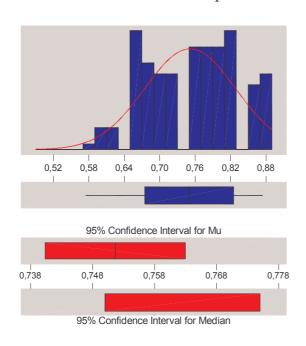
Anderson-Darling A-Squared: P-Value:	Normality Test 1,920 0,000
Mean StDev Variance Skewness Kurtosis N	0,791481 0,054564 2,98E-03 -3,5E-01 -6,3E-01 135
	0,650000 0,750000 0,800000 0,825000 0,875000
95% Confidence I	nterval for Mu
0,782193	0,800770
95% Confidence Int	erval for Sigma
0,048740	0,061981
95% Confidence Inte	erval for Median
0,775000	0,800000


11.1.2.1.2 GEH AS A FUNCTION OF INITIAL K-SP


Descriptive Statistics

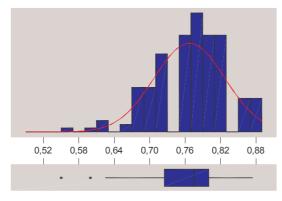
Variable: GEH Kinitial: 1

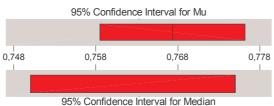
Anderson-Darling	Normality Test
A-Squared: P-Value:	2,706 0,000
Mean StDev Variance Skewness Kurtosis N	0,716806 0,076490 5,85E-03 -5,7E-01 -1,3E-01 180
Minimum 1st Quartile Median 3rd Quartile Maximum	0,500000 0,675000 0,725000 0,775000 0,875000
95% Confidence I	nterval for Mu
0,705555	0,728056
95% Confidence Int	erval for Sigma
0,069321	0,085327
5% Confidence Inte	erval for Mediar
0,725000	0,750000



Variable: GEH Kinitial: 2

Anderson-Darling A-Squared: P-Value:	Normality Test 1,467 0,001
Mean StDev Variance Skewness Kurtosis N	0,727917 0,073674 5,43E-03 -2,9E-02 -7,8E-01 180
Minimum 1st Quartile Median 3rd Quartile Maximum	0,575000 0,675000 0,725000 0,775000 0,875000
95% Confidence I	nterval for Mu
0,717081	0,738753
95% Confidence Int	erval for Sigma
0,066769	0,082186
95% Confidence Inte	erval for Median
0,700000	0,750000

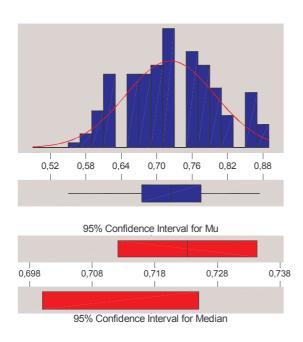

Descriptive Statistics



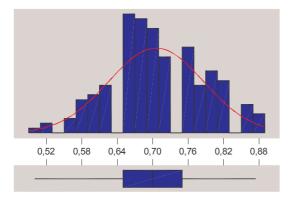
Variable: GEH

Anderson-Darling Normality Test				
A-Squared: P-Value:	2,484 0,000			
Mean StDev Variance Skewness Kurtosis N	0,751667 0,076890 5,91E-03 -1,4E-01 -1,02832 180			
Minimum 1st Quartile Median 3rd Quartile Maximum	0,575000 0,675000 0,750000 0,825000 0,875000			
95% Confidence I	nterval for Mu			
0,740358	0,762976			
95% Confidence Int	erval for Sigma			
0,069683	0,085772			
95% Confidence Inte	erval for Median			
0,750000	0,775000			

11.1.2.1.3 GEH AS A FUNCTION OF THE NUMBER OF ALTERNATIVES



Variable: GEH Numalternati: 2


Anderson-Darling Normality Test					
A-Squared: P-Value:	1,809 0,000				
Mean StDev Variance Skewness Kurtosis N	0,767361 0,060150 3,62E-03 -5,1E-01 0,375198 180				
Minimum 1st Quartile Median 3rd Quartile Maximum	0,550000 0,725000 0,775000 0,800000 0,875000				
95% Confidence	Interval for Mu				
0,758514	0,776208				
95% Confidence In	terval for Sigma				
0,054512	0,067099				
95% Confidence Int	erval for Median				
0,750000	0,775000				

Descriptive Statistics

Variable: GEH Numalternati: 3

Anderson-Darling Normality Test				
A-Squared: P-Value:	1,245 0,003			
Mean StDev Variance Skewness Kurtosis N	0,723194 0,075673 5,73E-03 6,24E-02 -7,0E-01 180			
Minimum 1st Quartile Median 3rd Quartile Maximum	0,550000 0,675000 0,725000 0,775000 0,875000			
95% Confidence I	nterval for Mu			
0,712064	0,734325			
95% Confidence Int	erval for Sigma			
0,068581	0,084416			
95% Confidence Inte	erval for Median			
0,700000	0,725000			

Variable: GEH Numalternati: 4

Anderson-Darling N A-Squared: P-Value:	1,217 0,003
Mean StDev Variance Skewness Kurtosis N	0,705833 0,080375 6,46E-03 4,77E-02 -4,4E-01 180
Minimum 1st Quartile Median 3rd Quartile Maximum	0,500000 0,650000 0,700000 0,750000 0,875000
95% Confidence In	terval for Mu
0,694012	0,717655
95% Confidence Inte	erval for Sigma
0,072842	0,089661
95% Confidence Inte	rval for Median
0,675000	0,725000

11.1.2.1.4 GENERAL LINEAR MODEL: GEH VERSUS ALPHA FACTOR; KINITIAL; NUMALTERNATIVES

Factor Type Levels Values
Alpha Fa fixed 4 0,5 1,0 2,0 3,0
Kinitial fixed 3 1 2 3
Numalter fixed 3 2 3 4

Analysis of Variance for GEH, using Adjusted SS for Tests

Source	DF	Seq SS	Adj SS	Adj MS	F	P
Alpha Fa	3	1.093977	1.093977	0.364659	135.10	0.000
Kinitial	2	0.114169	0.114169	0.057084	21.15	0.000
Numalter	2	0.362266	0.362266	0.181133	67.11	0.000
Alpha Fa*Kinitial	6	0.034072	0.034072	0.005679	2.10	0.051
Alpha Fa*Numalter	6	0.112141	0.112141	0.018690	6.92	0.000
Kinitial*Numalter	4	0.075116	0.075116	0.018779	6.96	0.000
Alpha Fa*Kinitial*						
Numalter	12	0.039144	0.039144	0.003262	1.21	0.274
Error	504	1.360417	1.360417	0.002699		
Total	539	3.191301				

Unusual Observations for GEH

Obs	GEH	Fit	SE Fit	Residual	St Resid
8	0.550000	0.691667	0.013415	-0.141667	-2.82R
16	0.800000	0.650000	0.013415	0.150000	2.99R
38	0.500000	0.638333	0.013415	-0.138333	-2.76R
42	0.750000	0.638333	0.013415	0.111667	2.22R
45	0.800000	0.638333	0.013415	0.161667	3.22R
65	0.775000	0.665000	0.013415	0.110000	2.19R
136	0.600000	0.716667	0.013415	-0.116667	-2.32R
168	0.750000	0.648333	0.013415	0.101667	2.03R
172	0.525000	0.648333	0.013415	-0.123333	-2.46R
173	0.525000	0.648333	0.013415	-0.123333	-2.46R
180	0.750000	0.648333	0.013415	0.101667	2.03R
316	0.675000	0.783333	0.013415	-0.108333	-2.16R
330	0.675000	0.783333	0.013415	-0.108333	-2.16R
337	0.575000	0.715000	0.013415	-0.140000	-2.79R
339	0.600000	0.715000	0.013415	-0.115000	-2.29R

340	0.825000	0.715000	0.013415 0.110000	2.19R
342	0.850000	0.715000	0.013415 0.135000	2.69R
359	0.575000	0.706667	0.013415 -0.131667	-2.62R
395	0.575000	0.718333	0.013415 -0.143333	-2.86R
403	0.850000	0.718333	0.013415 0.131667	2.62R
447	0.650000	0.776667	0.013415 -0.126667	-2.52R
492	0.675000	0.790000	0.013415 -0.115000	-2.29R
530	0.700000	0.805000	0.013415 -0.105000	-2.09R

R denotes an observation with a large standardised residual.

11.1.2.1.5 COEFFICIENTS OF THE GENERAL LINEAR MODEL: GEH VERSUS ALPHA FACTOR; KINITIAL; NUMALTERNATIVES

0.732130 -0.058796 -0.023981 0.023426 -0.015324 -0.004213 0.035231 -0.008935 0.001991 0.001435 -0.007824 0.011620 0.013102 -0.016343 0.013102 -0.007731 0.017176 -0.000880 0.000880 0.002824 -0.022037

0.005370 -0.002130 -0.014907

0.008796 0.006019 -0.006065

0.017176

0.001296

0.006019 -0.002315

0.002313

-0.005741

-0.009352

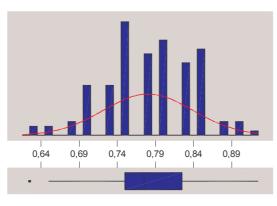
0.006204

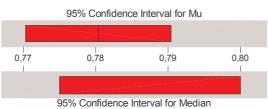
-0.007824

11.1.2.2 LOGIT ROUTE CHOICE

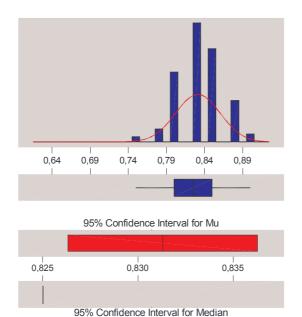
ROUTE CHOICE: CLOGIT

DESIGN FACTOR θ , LEVELS 10, 60, 100, 600

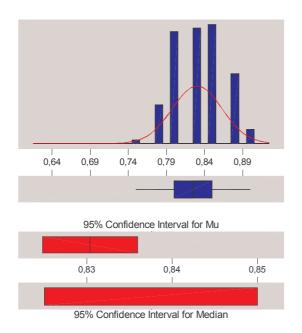

DESIGN FACTOR INITIAL K-SP (Kinitial), LEVELS 1, 2, 3


DESIGN FACTOR MAXIMUM NUMBER OF ROUTES (NUMBER OF ALTERNATIVES),

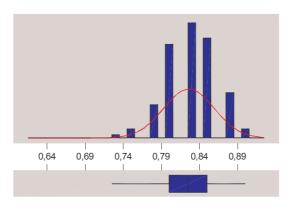
LEVELS 2, 3, 4


11.1.2.2.1 GEH AS A FUNCTION OF θ

Descriptive Statistics


Variable: GEH Scale Factor: 10					
Anderson-Darling Normality Test					
A-Squared: P-Value:	1,301 0,002				
Mean StDev Variance Skewness Kurtosis N	0,780370 0,059018 3,48E-03 -1,9E-01 -1,7E-01 135				
Minimum 1st Quartile Median 3rd Quartile Maximum	0,625000 0,750000 0,775000 0,825000 0,925000				
95% Confidence I	nterval for Mu				
0,770324	0,790417				
95% Confidence Int	erval for Sigma				
0,052718	0,067040				
95% Confidence Inte	erval for Median				
0,775000	0,800000				

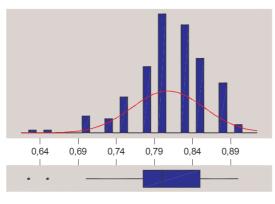
Variable: GEH Scale Factor: 60

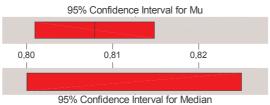

Anderson-Darling I A-Squared:	Normality Test 4,098
P-Value:	0,000
Mean StDev Variance Skewness Kurtosis N	0,831296 0,029250 8,56E-04 -7,9E-02 5,73E-02 135
Minimum 1st Quartile Median 3rd Quartile Maximum	0,750000 0,800000 0,825000 0,850000 0,900000
95% Confidence I	nterval for Mu
0,826317	0,836275
95% Confidence Int	erval for Sigma
0,026128	0,033226
95% Confidence Inte	erval for Mediar
0,825000	0,825000

Descriptive Statistics

Variable: GEH Scale Factor: 100

Anderson-Darling	Normality Test
A-Squared: P-Value:	3,511 0,000
Mean StDev Variance Skewness Kurtosis N	0,830370 0,032665 1,07E-03 2,12E-02 -6,6E-01 135
Minimum 1st Quartile Median 3rd Quartile Maximum	0,750000 0,800000 0,825000 0,850000 0,900000
95% Confidence I	nterval for Mu
0,824810	0,835931
95% Confidence Int	terval for Sigma
0,029179	0,037106
95% Confidence Int	erval for Median
0,825000	0,850000

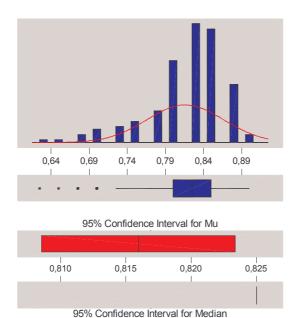



Variable: GEH Scale Factor: 600

Anderson-Darling I	Normality Test
A-Squared: P-Value:	3,158 0,000
Mean StDev Variance Skewness Kurtosis N	0,826111 0,033299 1,11E-03 -2,0E-01 -1,8E-02 135
Minimum 1st Quartile Median 3rd Quartile Maximum	0,725000 0,800000 0,825000 0,850000 0,900000
95% Confidence In	nterval for Mu
0,820443	0,831779
95% Confidence Into	erval for Sigma
0,029745	0,037826
95% Confidence Inte	erval for Mediar
0,825000	0,825000

11.1.2.2.2 GEH AS A FUNCTION OF INITIAL K-SP

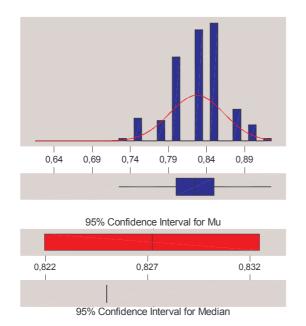
Descriptive Statistics



Variable: GEH

Anderson-Darling Normality Test A-Squared: 3,113 P-Value: 0,000 Mean 0,807917 StDev 0,047307 Variance 2,24E-03 Skewness -7,4E-01 1,14110 Kurtosis 180 0,625000 Minimum 1st Quartile 0,775000 Median 0,800000 3rd Quartile 0,850000 0,900000 Maximum 95% Confidence Interval for Mu 0,800959 0,814875 95% Confidence Interval for Sigma 0,042873 0,052772 95% Confidence Interval for Median 0,800000 0,825000

Descriptive Statistics

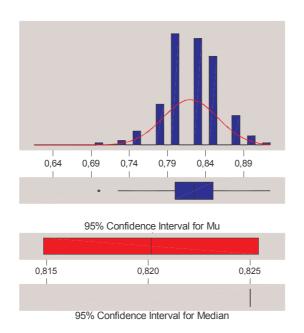


Kinitial: 2 Anderson-Darling Normality Test A-Squared: 6,369 P-Value: 0,000 0.815972 Mean StDev 0.050401 Variance 2,54E-03 -1,21231 Skewness 1,65020 Kurtosis 180 Minimum 0,625000 1st Quartile 0,800000 Median 0,825000 3rd Quartile 0,850000 Maximum 0,900000 95% Confidence Interval for Mu 0,808559 0,823385 95% Confidence Interval for Sigma 0,056223 0,045677 95% Confidence Interval for Median

0,825000

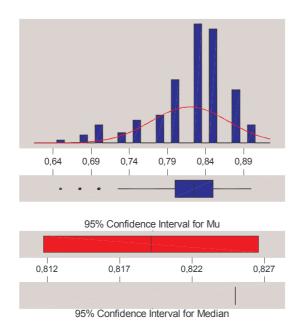
0,825000

Variable: GEH



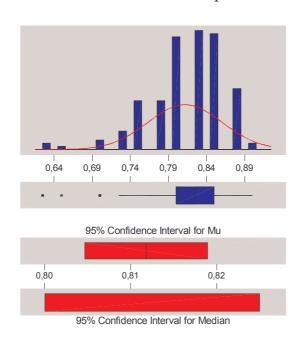
Variable: GEH Kinitial: 3

Anderson-Darling N	Normality Test
A-Squared:	4,490
P-Value:	0,000
Mean StDev Variance Skewness Kurtosis N	0,827222 0,035679 1,27E-03 -2,4E-01 0,253118 180
Minimum 1st Quartile Median 3rd Quartile Maximum	0,725000 0,800000 0,825000 0,850000 0,925000
95% Confidence Ir	nterval for Mu
0,821975	0,832470
95% Confidence Inte	erval for Sigma
0,032334	0,039800
95% Confidence Inte	rval for Median
0,825000	0,825000


11.1.2.2.3 GEH AS A FUNCTION OF THE NUMBER OF ALTERNATIVES

Descriptive Statistics

Variable: GEH Numalternati: 2


Anderson-Darling	Normality Test
A-Squared: P-Value:	3,899 0,000
Mean StDev Variance Skewness Kurtosis N	0,820139 0,035855 1,29E-03 -1,5E-01 0,558338 180
Minimum 1st Quartile Median 3rd Quartile Maximum	0,700000 0,800000 0,825000 0,850000 0,925000
95% Confidence	Interval for Mu
0,814865	0,825413
95% Confidence In	iterval for Sigma
0,032494	0,039997
95% Confidence In	terval for Media
0,825000	0,825000

Variable: GEH Numalternati: 3

Anderson-Darling I	Normality Test
A-Squared: P-Value:	6,364 0,000
Mean StDev Variance Skewness Kurtosis N	0,819167 0,050424 2,54E-03 -1,07679 1,09175 180
Minimum 1st Quartile Median 3rd Quartile Maximum	0,650000 0,800000 0,825000 0,850000 0,900000
95% Confidence I	nterval for Mu
0,811750	0,826583
95% Confidence Int	erval for Sigma
0,045698	0,056249
95% Confidence Inte	erval for Median
0,825000	0,825000

Descriptive Statistics

Variable: GEH Numalternati: 4

Anderson-Darling Normality Test					
A-Squared: P-Value:	4,088 0,000				
Mean StDev Variance Skewness Kurtosis N	0,811806 0,048686 2,37E-03 -1,04767 1,79816 180				
Minimum 1st Quartile Median 3rd Quartile Maximum	0,625000 0,800000 0,825000 0,850000 0,900000				
95% Confidence	Interval for Mu				
0,804645	0,818966				
95% Confidence Interval for Sigma					
0,044123	0,054310				
95% Confidence Int	erval for Median				
0,800000	0,825000				

11.1.2.2.4 GENERAL LINEAR MODEL: GEH VERSUS SCALE FACTOR; KINITIAL; NUMALTERNATIVES

Factor Type Levels Values
Scale Fa fixed 4 10 60 100 600
Kinitial fixed 3 1 2 3
Numalter fixed 3 2 3 4

Analysis of Variance for GEH, using Adjusted SS for Tests

Source	DF	Seq SS	Adj SS	Adj MS	F	P
Scale Fa	3	0.244065	0.244065	0.081355	68.56	0.000
Kinitial	2	0.033850	0.033850	0.016925	14.26	0.000
Numalter	2	0.007475	0.007475	0.003737	3.15	0.044
Scale Fa*Kinitial	6	0.080706	0.080706	0.013451	11.34	0.000
Scale Fa*Numalter	6	0.095692	0.095692	0.015949	13.44	0.000
Kinitial*Numalter	4	0.026810	0.026810	0.006703	5.65	0.000
Scale Fa*Kinitial*						
Numalter	12	0.030329	0.030329	0.002527	2.13	0.014
Error	504	0.598083	0.598083	0.001187		
Total	539	1.117009				

Unusual Observations for GEH

Obs	GEH	Fit	SE Fit	Residual	St Resid
10	0.700000	0.776667	0.008894	-0.076667	-2.30R
16	0.825000	0.741667	0.008894	0.083333	2.50R
17	0.650000	0.741667	0.008894	-0.091667	-2.75R
39	0.850000	0.760000	0.008894	0.090000	2.70R
41	0.625000	0.760000	0.008894	-0.135000	-4.06R
61	0.800000	0.731667	0.008894	0.068333	2.05R
70	0.800000	0.731667	0.008894	0.068333	2.05R
73	0.800000	0.731667	0.008894	0.068333	2.05R
75	0.800000	0.731667	0.008894	0.068333	2.05R
78	0.800000	0.730000	0.008894	0.070000	2.10R
80	0.625000	0.730000	0.008894	-0.105000	-3.16R
85	0.650000	0.730000	0.008894	-0.080000	-2.40R
91	0.750000	0.846667	0.008894	-0.096667	-2.90R
105	0.925000	0.846667	0.008894	0.078333	2.35R
110	0.750000	0.835000	0.008894	-0.085000	-2.55R
126	0.850000	0.778333	0.008894	0.071667	2.15R
133	0.850000	0.778333	0.008894	0.071667	2.15R
152	0.750000	0.828333	0.008894	-0.078333	-2.35R
183	0.900000	0.833333	0.008894	0.066667	2.00R
228	0.750000	0.830000	0.008894	-0.080000	-2.40R
244	0.900000	0.833333	0.008894	0.066667	2.00R
392	0.750000	0.825000	0.008894	-0.075000	-2.25R
395	0.900000	0.825000	0.008894	0.075000	2.25R
410	0.875000	0.803333	0.008894	0.071667	2.15R
411	0.725000	0.803333	0.008894	-0.078333	-2.35R
418	0.875000	0.803333	0.008894	0.071667	2.15R
425	0.900000	0.831667	0.008894	0.068333	2.05R
434	0.900000	0.831667	0.008894	0.068333	2.05R
444	0.750000	0.833333	0.008894	-0.083333	-2.50R
503	0.750000	0.820000	0.008894	-0.070000	-2.10R
529	0.900000	0.828333	0.008894	0.071667	2.15R

 $\ensuremath{\mathsf{R}}$ denotes an observation with a large standardised residual.

11.1.2.2.5 COEFFICIENTS OF THE GENERAL LINEAR MODEL: GEH VERSUS SCALE FACTOR; KINITIAL; NUMALTERNATIVES

0.817037 -0.036667 0.014259 0.013333 -0.009120 0.003102 0.002130 -0.011806 -0.017639 0.001157 0.009769 0.004861 0.004028 0.032083 -0.013056 -0.008843 0.002685 -0.008472 0.004722 -0.010602 -0.000463 0.009259 -0.005185 -0.007361

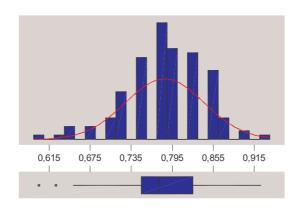
-0.006389 0.017222 -0.013889 0.006343 0.000648 -0.010185 0.007037 -0.001806 0.004167 -0.000556 0.000000

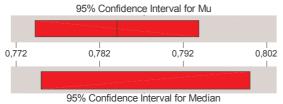
-0.001065

11.1.2.3 C-LOGIT ROUTE CHOICE MODEL WITH FIXED BETA AND GAMMA

ROUTE CHOICE: CLOGIT (β =0.15 AND γ =1.0 FIXED)

DESIGN FACTOR θ , LEVELS 10, 60, 100, 600


DESIGN FACTOR INITIAL K-SP (KINITIAL), LEVELS 1, 2, 3

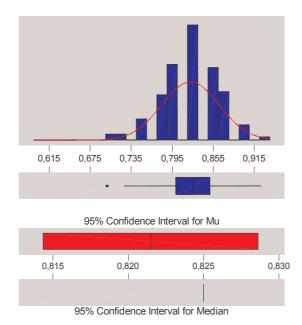

DESIGN FACTOR MAXIMUM NUMBER OF ROUTES (NUMBER OF ALTERNATIVES),

LEVELS 2, 3, 4

11.1.2.3.1 GEH AS A FUNCTION OF θ

Descriptive Statistics

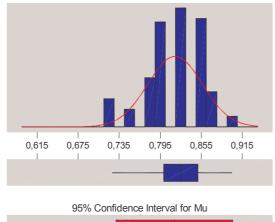
Anderson-Darling Normality Test 1.510 A-Squared: P-Value: 0,001 0.784074 Mean StDev 0.057514 Variance 3,31E-03 -4,7E-01 Skewness Kurtosis 0,532852 Minimum 0,600000 1st Quartile 0,750000 0,775000 Median 3rd Quartile 0.825000 Maximum 0,925000


Variable: GEH
Scale: 10

95% Confidence Interval for Mu 0,774284 0,793864 95% Confidence Interval for Sigma 0,051376 0,065333

95% Confidence Interval for Median 0,775000 0,800000

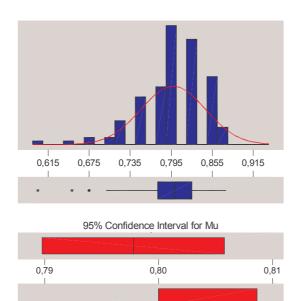
Variable: GEH


Descriptive Statistics

Scale: 60 Anderson-Darling Normality Test 2,255 A-Squared: P-Value: 0,000 Mean 0,821481 StDev 0,041896 Variance 1,76E-03 Skewness -3,2E-01 0,272907 Kurtosis 135 0,700000 Minimum 0.800000 1st Quartile Median 0,825000 3rd Quartile 0,850000 Maximum 0,925000 95% Confidence Interval for Mu 0,814350 0,828613 95% Confidence Interval for Sigma 0,037424 0,047591 95% Confidence Interval for Median

0.825000

0.825000

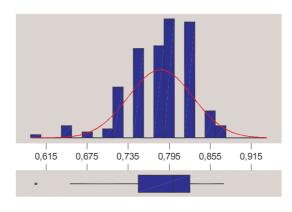


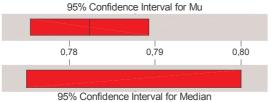
95% Confidence Interval for Mu 0,80 0,81 0,82 95% Confidence Interval for Median

Variable: GEH Scale: 100

Anderson-Darling A-Squared: P-Value:	Normality Test 3,034 0,000
Mean StDev Variance Skewness Kurtosis N	0,816667 0,039939 1,60E-03 -4,6E-01 2,04E-02 135
Minimum 1st Quartile Median 3rd Quartile Maximum	0,725000 0,800000 0,825000 0,850000 0,900000
95% Confidence I	nterval for Mu
0,809868	0,823465
95% Confidence In	terval for Sigma
0,035676	0,045368
95% Confidence Int	erval for Median
0,800000	0,825000

Descriptive Statistics

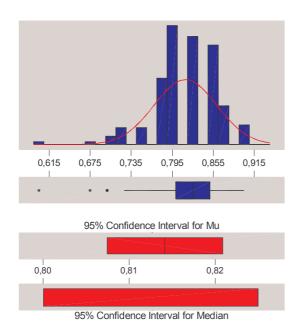

95% Confidence Interval for Median


Variable: GEH Scale: 600

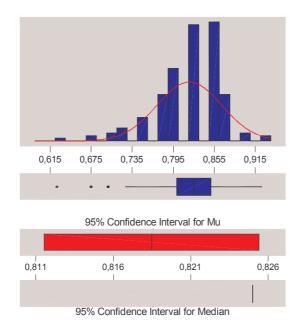
Anderson-Darling	Normality Test
A-Squared: P-Value:	3,361 0,000
Mean StDev Variance Skewness Kurtosis N	0,797778 0,046966 2,21E-03 -1,11021 2,16332 135
Minimum 1st Quartile Median 3rd Quartile Maximum	0,600000 0,775000 0,800000 0,825000 0,875000
95% Confidence I	nterval for Mu
0,789783	0,805773
95% Confidence In	terval for Sigma
0,041953	0,053351
95% Confidence Int	erval for Mediar
0,800000	0,808642

11.1.2.3.2 GEH AS A FUNCTION OF INITIAL K-SP

Descriptive Statistics



Variable: GEH


Anderson-Darling Normality Test A-Squared: 3,616 P-Value: 0,000 0,782361 Mean StDev 0,046953 Variance 2,20E-03 -7,9E-01 Skewness 1,19275 Kurtosis 180 0,600000 Minimum 1st Quartile 0,750000 Median 0,800000 3rd Quartile 0,825000 Maximum 0,875000 95% Confidence Interval for Mu 0,775455 0,789267 95% Confidence Interval for Sigma 0,042552 0,052377 95% Confidence Interval for Median 0,775000 0,800000

Descriptive Statistics

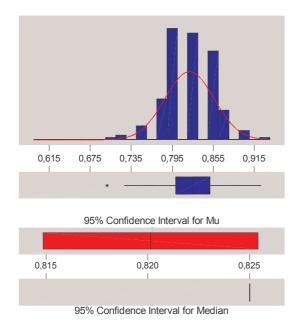
Variable: GEH Kinitial: 2

Anderson-Darling N A-Squared:	lormality Test 3,388
P-Value:	0,000
Mean StDev Variance Skewness Kurtosis N	0,814167 0,045855 2,10E-03 -8,8E-01 2,38399 180
Minimum 1st Quartile Median 3rd Quartile Maximum	0,600000 0,800000 0,825000 0,850000 0,900000
95% Confidence In	terval for Mu
0,807422	0,820911
95% Confidence Inte	erval for Sigma
0,041557	0,051152
95% Confidence Inte	rval for Mediar
0,800000	0,825000

Anderson-Darling Normality Test A-Squared: P-Value: 0,000 Mean 0,818472 StDev 0,047151 2,22E-03 Variance Skewness -9,7E-01 1,74821 Kurtosis 180 Minimum 0,625000 1st Quartile 0,800000 0,825000 Median 3rd Quartile 0,850000 0,925000 Maximum 95% Confidence Interval for Mu

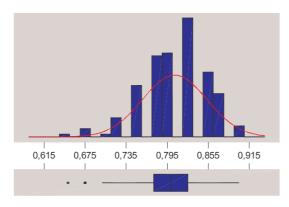
Variable: GEH Kinitial: 3

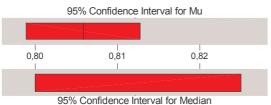
0,811537 0,825407 95% Confidence Interval for Sigma


95% Confidence Interval for Sigma 0,042731 0,052598 95% Confidence Interval for Median

0,825000

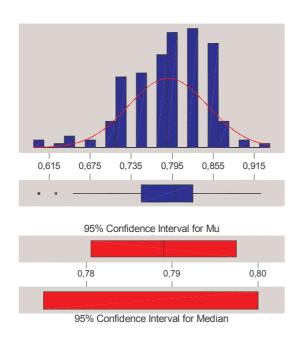
0,825000


11.1.2.3.3 GEH AS A FUNCTION OF THE NUMBER OF ALTERNATIVES


Descriptive Statistics

Variable: GEH Numalternati: 2

Anderson-Darling N	Normality Test
A-Squared: P-Value:	3,899 0,000
Mean StDev Variance Skewness Kurtosis N	0,820139 0,035855 1,29E-03 -1,5E-01 0,558338 180
Minimum 1st Quartile Median 3rd Quartile Maximum	0,700000 0,800000 0,825000 0,850000 0,925000
95% Confidence Ir	nterval for Mu
0,814865	0,825413
95% Confidence Inte	erval for Sigma
0,032494	0,039997
95% Confidence Inte	erval for Mediar
0.825000	0.825000



Variable: GEH Numalternati: 3

Anderson-Darling	Normality Test
A-Squared:	2,599
P-Value:	0,000
Mean StDev Variance Skewness Kurtosis N	0,805833 0,047057 2,21E-03 -4,6E-01 0,345413 180
Minimum 1st Quartile Median 3rd Quartile Maximum	0,650000 0,775000 0,800000 0,825000 0,900000
95% Confidence I	nterval for Mu
0,798912	0,812755
95% Confidence Int	erval for Sigma
0,042647	0,052494
95% Confidence Inte	erval for Median
0,800000	0,825000

Descriptive Statistics

Variable: GEH Numalternati: 4

Anderson-Darling I	Normality Test
A-Squared: P-Value:	2,680 0,000
Mean StDev Variance Skewness Kurtosis N	0,789028 0,057664 3,33E-03 -6,6E-01 0,612376 180
Minimum 1st Quartile Median 3rd Quartile Maximum	0,600000 0,750000 0,800000 0,825000 0,925000
95% Confidence I	nterval for Mu
0,780546	0,797509
95% Confidence Int	erval for Sigma
0,052259	0,064326
95% Confidence Inte	erval for Median
0,775000	0,800000

11.1.2.3.4 GENERAL LINEAR MODEL: GEH VERSUS SCALE; KINITIAL; NUMALTERNATIVES

Factor Type Levels Values

Scale fixed 4 10 60 100 600

Kinitial fixed 3 1 2 3 Numalter fixed 3 2 3 4

Analysis of Variance for GEH, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F

Scal Scal			3 0.121204 0.1212 2 0.140049 0.1400 2 0.087299 0.0872 6 0.022609 0.0226 6 0.062775 0.0627 4 0.002653 0.0026	0.070024 199 0.043649 109 0.003768 175 0.010463	23.91 41.43 25.83 2.23 6.19 0.39	0.000 0.000 0.000 0.039 0.000 0.814
Scal	e*Kinitial	*Numalter	12 0.020662 0.0206	0.001722	1.02	0.430
Erro			0.851750 0.8517	0.001690		
Tota	1		1.309000			
Unus	ual Observ	ations for	EH			
Obs	GEH	Fit		St Resid		
17	0.675000	0.761667	0.010614 -0.086667	-2.18R		
35	0.825000	0.731667	0.010614 0.093333	2.35R		
36	0.650000	0.731667	0.010614 -0.081667	-2.06R		
37	0.650000	0.731667	0.010614 -0.081667	-2.06R		
42	0.650000	0.731667	0.010614 -0.081667	-2.06R		
79	0.600000	0.741667	0.010614 -0.141667			
91	0.750000 0.625000	0.846667 0.761667	0.010614 -0.096667 0.010614 -0.136667	-2.43R		
125 132	0.625000	0.761667	0.010614 -0.136667	-3.44R		
228	0.750000	0.830000	0.010614 -0.080000	-2.18R -2.01R		
245	0.750000	0.830000	0.010614 -0.080000	-2.01R -2.01R		
260	0.730000	0.828333	0.010614 0.096667	2.43R		
266	0.700000	0.828333	0.010614 -0.128333	-3.23R		
354	0.725000	0.821667	0.010614 -0.096667	-2.43R		
378	0.725000	0.823333	0.010614 -0.098333	-2.48R		
386	0.725000	0.823333	0.010614 -0.098333	-2.48R		
426	0.650000	0.771667	0.010614 -0.121667			
445	0.600000	0.768333	0.010614 -0.168333	-4.24R		
449	0.850000	0.768333	0.010614 0.081667	2.06R		
477	0.675000	0.790000	0.010614 -0.115000	-2.90R		
524	0.675000	0.796667	0.010614 -0.121667	-3.06R		
536	0.700000	0.811667	0.010614 -0.111667	-2.81R		

R denotes an observation with a large standardised residual.

11.1.2.3.5 COEFFICIENTS OF THE GENERAL LINEAR MODEL: GEH VERSUS SCALE; KINITIAL; NUMALTERNATIVES

0.805000 -0.020926 0.016481 0.011667 -0.022639 0.009167 0.015139 0.000833 -0.004769 -0.008796 -0.002176 0.007685 0.000972 0.005278 0.016343 0.006759 -0.011065 0.002685 -0.006806 0.003056 0.002917

```
0.001389
-0.000972
-0.000833
-0.014398
-0.003981
0.008380
-0.002870
0.009676
0.000093
-0.008102
0.002315
0.002083
0.003056
-0.001806
```

0.000833

11.1.2.3.6 GENERAL LINEAR MODEL: GEH VERSUS SCALE; KINITIAL; NUMALTERNATIVES, WHEN THE KINITIAL * NUMALTER, SCALE*KINITIAL*NUMALTER INTERACTION IS REMOVED

Factor Type Levels Values
Scale fixed 4 10 60 100 600
Kinitial fixed 3 1 2 3
Numalter fixed 3 2 3 4

Analysis of Variance for GEH, using Adjusted SS for Tests

Source	DF	Seq SS	Adj SS	Adj MS	F	P
Scale	3	0.121204	0.121204	0.040401	24.01	0.000
Kinitial	2	0.140049	0.140049	0.070024	41.61	0.000
Numalter	2	0.087299	0.087299	0.043649	25.94	0.000
Scale*Kinitial	6	0.022609	0.022609	0.003768	2.24	0.038
Scale*Numalter	6	0.062775	0.062775	0.010463	6.22	0.000
Error	520	0.875065	0.875065	0.001683		
Total	539	1.309000				

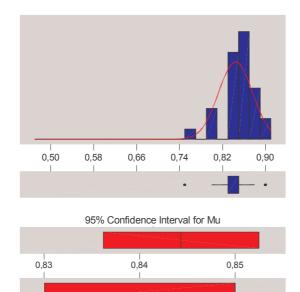
Unusual Observations for GEH

Obs	GEH	Fit	SE Fit	Residual	St Resid
10	0.700000	0.788148	0.007895	-0.088148	-2.19R
17	0.675000	0.764259	0.007895	-0.089259	-2.22R
31	0.800000	0.717593	0.007895	0.082407	2.05R
35	0.825000	0.717593	0.007895	0.107407	2.67R
79	0.600000	0.745370	0.007895	-0.145370	-3.61R
91	0.750000	0.842593	0.007895	-0.092593	-2.30R
105	0.925000	0.842593	0.007895	0.082407	2.05R
125	0.625000	0.772037	0.007895	-0.147037	-3.65R
132	0.675000	0.772037	0.007895	-0.097037	-2.41R
175	0.700000	0.789074	0.007895	-0.089074	-2.21R
228	0.750000	0.833519	0.007895	-0.083519	-2.07R
245	0.750000	0.832963	0.007895	-0.082963	-2.06R
260	0.925000	0.821852	0.007895	0.103148	2.56R
266	0.700000	0.821852	0.007895	-0.121852	-3.03R
349	0.900000	0.818889	0.007895	0.081111	2.01R
354	0.725000	0.818889	0.007895	-0.093889	-2.33R
378	0.725000	0.827778	0.007895	-0.102778	-2.55R
386	0.725000	0.827778	0.007895	-0.102778	-2.55R
426	0.650000	0.769444	0.007895	-0.119444	-2.97R
445	0.600000	0.776111	0.007895	-0.176111	-4.37R
477	0.675000	0.791111	0.007895	-0.116111	-2.88R
524	0.675000	0.797778	0.007895	-0.122778	-3.05R
536	0.700000	0.804444	0.007895	-0.104444	-2.59R

 $\ensuremath{\mathsf{R}}$ denotes an observation with a large standardised residual.

11.1.2.3.7 COEFFICIENTS OF THE GENERAL LINEAR MODEL: GEH VERSUS SCALE; KINITIAL;

NUMALTERNATIVES, WHEN THE INTERACTION KINITIAL * NUMALTER,

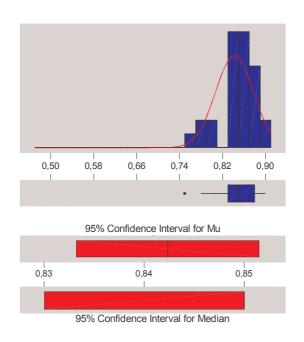

SCALE*KINITIAL*NUMALTER IS REMOVED

```
0.805000
-0.020926
0.016481
0.011667
-0.022639
0.009167
0.015139
0.000833
-0.004769
-0.008796
-0.002176
0.007685
0.000972
0.005278
0.016343
0.006759
-0.011065
0.002685
-0.006806
0.003056
```

11.1.2.4 C-LOGIT ROUTE CHOICE VARYING BETA AND GAMMA

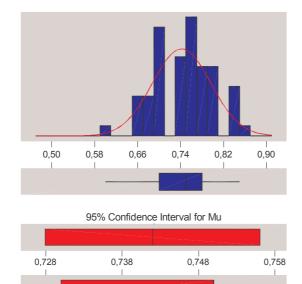
ROUTE CHOICE: CLOGIT (θ =60, INITIAL K-SP=2, AND MAXIMUM NUMBER OF ROUTES =4 FIXED) DESIGN FACTOR β , LEVELS 0.10, 0.15, 0.5, 1.0 DESIGN FACTOR γ , LEVELS 0.5, 1.0, 1.5, 2.0

11.1.2.4.1 GEH AS A FUNCTION OF β



95% Confidence Interval for Median

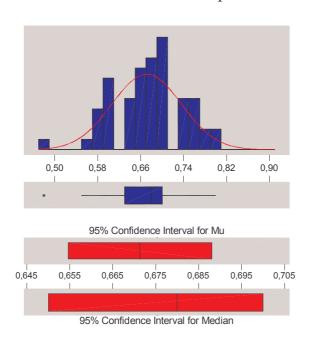
Variable: GEH Beta: 0,10


Anderson-Darling N	•
A-Squared: P-Value:	2,185 0,000
Mean StDev Variance Skewness Kurtosis N	0,844333 0,031589 9,98E-04 -6,1E-01 1,30528 60
Minimum 1st Quartile Median 3rd Quartile Maximum	0,750000 0,830000 0,850000 0,850000 0,900000
95% Confidence Ir	nterval for Mu
0,836173	0,852494
95% Confidence Inte	erval for Sigma
0,026776	0,038528
95% Confidence Inte	erval for Median
0,830000	0,850000

Descriptive Statistics

Variable: GEH Beta: 0,15

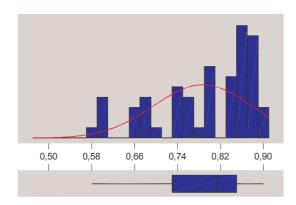
Anderson-Darling I	Normality Test
A-Squared: P-Value:	1,852 0,000
Mean StDev Variance Skewness Kurtosis N	0,842333 0,035337 1,25E-03 -5,8E-01 0,300264 60
Minimum 1st Quartile Median 3rd Quartile Maximum	0,750000 0,830000 0,850000 0,880000 0,900000
95% Confidence I	nterval for Mu
0,833205	0,851462
95% Confidence Int	erval for Sigma
0,029953	0,043099
95% Confidence Inte	erval for Median
0,830000	0,850000

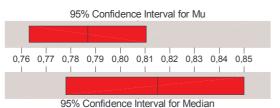


95% Confidence Interval for Median

Variable: GEH Beta: 0,50

Anderson-Darling I	Normality Test
A-Squared: P-Value:	0,707 0,062
Mean StDev Variance Skewness Kurtosis N	0,742000 0,054425 2,96E-03 -1,5E-01 -3,4E-01 60
Minimum 1st Quartile Median 3rd Quartile Maximum	0,600000 0,700000 0,750000 0,780000 0,850000
95% Confidence I	nterval for Mu
0,727941	0,756059
95% Confidence Int	erval for Sigma
0,046132	0,066380
95% Confidence Inte	erval for Median
0,730000	0,750000

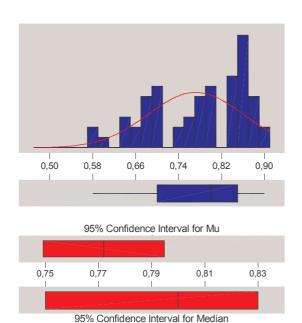

Descriptive Statistics



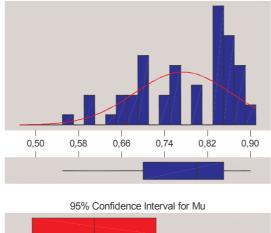
Variable: GEH Beta: 1,00

Anderson-Darling	Normality Test
A-Squared: P-Value:	0,569 0,135
Mean StDev Variance Skewness Kurtosis N	0,671333 0,064715 4,19E-03 -2,8E-01 0,176836 60
Minimum 1st Quartile Median 3rd Quartile Maximum	0,480000 0,630000 0,680000 0,700000 0,800000
95% Confidence I	nterval for Mu
0,654616	0,688051
95% Confidence Int	erval for Sigma
0,054855	0,078930
95% Confidence Inte	erval for Median
0.650000	0,700000

11.1.2.4.2 GEH AS A FUNCTION OF γ



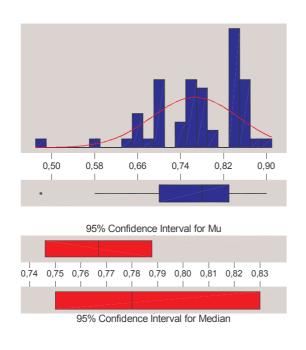
Variable: GEH Gamma: 0,5


Anderson-Darling Normality Test 2,209 A-Squared: P-Value: 0,000 Mean 0,786833 StDev 0,091587 8,39E-03 Variance Skewness -7,7E-01 -5,4E-01 Kurtosis Minimum 0,580000 1st Quartile 0,730000 Median 0,815000 3rd Quartile 0,850000 Maximum 0,900000 95% Confidence Interval for Mu 0.763174 0.810493 95% Confidence Interval for Sigma 0,077632 0,111705 95% Confidence Interval for Median 0,777920 0,850000

Descriptive Statistics

Variable: GEH

Anderson-Darling Normality Test 1,589 A-Squared: P-Value: 0,000 Mean 0,772000 StDev 0,088160 Variance 7,77E-03 Skewness -5,3E-01 Kurtosis -8,3E-01 60 0,580000 0,700000 0,800000 Minimum 1st Quartile Median 3rd Quartile 0,850000 Maximum 0,900000 95% Confidence Interval for Mu 0,749226 0,794774 95% Confidence Interval for Sigma 0,074728 0,107526 95% Confidence Interval for Median 0,750000 0,830000



Variable: GEH Gamma: 1,5

Anderson-Darling A-Squared: P-Value:	Normality Test 1,877 0,000			
Mean StDev Variance Skewness Kurtosis N	0,774167 0,089581 8,02E-03 -5,9E-01 -6,6E-01			
Minimum 1st Quartile Median 3rd Quartile Maximum	0,550000 0,700000 0,800000 0,850000 0,900000			
95% Confidence				
0,751025 95% Confidence In:	0,797308 terval for Sigma			
0,075932	0,109258			
95% Confidence Interval for Median				
0,750000	0,830000			

95% Confidence Interval for Mu 0,75 0,77 0,79 0,81 0,83 95% Confidence Interval for Median

Descriptive Statistics

Variable: GEH Gamma: 2,0

Anderson-Darling	Normality Test			
A-Squared: P-Value:	1,532 0,001			
Mean StDev Variance Skewness Kurtosis N	0,767000 0,080807 6,53E-03 -1,01199 1,42358 60			
Minimum 1st Quartile Median 3rd Quartile Maximum	0,480000 0,700000 0,780000 0,830000 0,900000			
95% Confidence I	nterval for Mu			
0,746125	0,787875			
95% Confidence Interval for Sigma				
0,068495	0,098558			
95% Confidence Inte	erval for Median			
0,750000	0,830000			

11.1.2.4.3 GENERAL LINEAR MODEL: GEH VERSUS BETA; GAMMA

Factor Type Levels Values

Beta fixed 4 0.10 0.15 0.50 1.00 Gamma fixed 4 0.5 1.0 1.5 2.0

Analysis of Variance for GEH. using Adjusted SS for Tests

Source	DF	Seq SS	Adj SS	Adj MS	F	P
Beta	3	1.270600	1.270600	0.423533	195.47	0.000
Gamma	3	0.012823	0.012823	0.004274	1.97	0.119
Beta*Gamma	9	0.056230	0.056230	0.006248	2.88	0.003
Error	224	0.485347	0.485347	0.002167		
Total	239	1.825000				

Unusual Observations for GEH

CFH	Fi+	SE Fi+	Rocidual	St Resid
		02 110		
0.750000	0.840000	0.012019	-0.090000	-2.00R
0.600000	0.708000	0.012019	-0.108000	-2.40R
0.830000	0.708000	0.012019	0.122000	2.71R
0.750000	0.656000	0.012019	0.094000	2.09R
0.600000	0.691333	0.012019	-0.091333	-2.03R
0.800000	0.691333	0.012019	0.108667	2.42R
0.600000	0.691333	0.012019	-0.091333	-2.03R
0.800000	0.691333	0.012019	0.108667	2.42R
0.550000	0.691333	0.012019	-0.141333	-3.14R
0.580000	0.682000	0.012019	-0.102000	-2.27R
0.780000	0.682000	0.012019	0.098000	2.18R
0.480000	0.682000	0.012019	-0.202000	-4.49R
0.780000	0.682000	0.012019	0.098000	2.18R
	0.830000 0.750000 0.600000 0.800000 0.600000 0.800000 0.550000 0.580000 0.780000 0.480000	0.750000 0.840000 0.600000 0.708000 0.830000 0.708000 0.750000 0.656000 0.600000 0.691333 0.800000 0.691333 0.800000 0.691333 0.800000 0.691333 0.550000 0.691333 0.580000 0.691333 0.780000 0.682000 0.480000 0.682000 0.480000 0.682000	0.750000 0.840000 0.012019 0.600000 0.708000 0.012019 0.830000 0.708000 0.012019 0.750000 0.656000 0.012019 0.600000 0.691333 0.012019 0.800000 0.691333 0.012019 0.800000 0.691333 0.012019 0.800000 0.691333 0.012019 0.550000 0.691333 0.012019 0.550000 0.691333 0.012019 0.580000 0.682000 0.012019 0.780000 0.682000 0.012019 0.480000 0.682000 0.012019	0.750000 0.840000 0.012019 -0.090000 0.600000 0.708000 0.012019 -0.108000 0.830000 0.708000 0.012019 0.122000 0.750000 0.656000 0.012019 0.094000 0.600000 0.691333 0.012019 -0.091333 0.800000 0.691333 0.012019 0.108667 0.600000 0.691333 0.012019 -0.091333 0.800000 0.691333 0.012019 0.108667 0.550000 0.691333 0.012019 -0.141333 0.580000 0.682000 0.012019 -0.102000 0.780000 0.682000 0.012019 0.098000 0.480000 0.682000 0.012019 -0.202000

R denotes an observation with a large standardised residual.

11.1.2.4.4 COEFFICIENTS OF THE GENERAL LINEAR MODEL: GEH VERSUS BETA; GAMMA

0.775000 0.069333 0.067333 -0.033000 0.011833 -0.003000 -0.000833 -0.001333 0.007167 0.003833 0.005167 0.024167 0.012333

-0.033167

11.1.2.5 C-LOGIT ROUTE CHOICE MODEL WITH VARYING SCALE FACTOR, INITIAL K-SP, BETA AND GAMMA

ROUTE CHOICE: CLOGIT (MAXIMUM NUMBER OF ROUTES = 4 FIXED) DESIGN FACTOR θ , LEVELS 10, 60, 100

DESIGN FACTOR INITIAL K-SP (KINITIAL), LEVELS 2, 3 DESIGN FACTOR β , LEVELS 0.10, 0.15, 0.5, 1.0 DESIGN FACTOR γ , LEVELS 0.5, 1.0, 1.5, 2.0

Type Levels Values

Factor

11.1.2.5.1 GENERAL LINEAR MODEL: GEH VERSUS SCALE; KINITIAL; BETA; GAMMA

3 10 60 100 Scale Fa fixed 2 2 3 Kinitial fixed fixed 4 0,10 0,15 0,50 1,00 4 0.5 1.0 1.5 2.0 Gamma fixed Analysis of Variance for GEH. using Adjusted SS for Tests DF Seq SS Adj SS Source Adj MS F 2 7.97 0.000 Scale Fa 0.06329 0.06329 0.03165 Kinitial 1 0.61628 0.61628 0.61628 155.19 0.000 Beta 3 6.79386 6.79386 2.26462 570.26 0.000 2.03 0.108 0.00807 3 0.02420 0.02420 Gamma 5.67886 5.67886 Error 1430 0.00397 Total 1439 13.17650 Unusual Observations for GEH Obs GEH Fit SE Fit Residual St Resid 6 0.650000 0.815167 0.005251 -0.165167 -2.63R 10 0.850000 0.717056 0.005251 0.132944 2.12R 0.005251 0.168583 0.005251 -0.128160 0.830000 0.661417 15 2.68R 53 0.650000 0.778160 -2.04R0.005251 -0.139993 0.530000 0.669993 -2.23R 59 0.005251 -0.159743 90 0.500000 0.659743 -2.54R111 0.850000 0.661417 0.005251 0.188583 3.00R 0.800000 0.663083 0.005251 0.136917 112 2.18R 0.005251 -0.174806 197 0.650000 0.824806 0.800000 0.661417 0.005251 0.138583 207 2.21R 208 0.880000 0.663083 0.005251 0.216917 3.45R 280 0.600000 0.759104 0.005251 -0.159104 -2.53R 285 0.450000 0.614160 0.005251 -0.164160 -2.61R 289 0.700000 0.836278 0.005251 -0.136278 -2.17R 383 0.730000 0.604104 0.005251 0.125896 2.00R 0.700000 0.836278 0.005251 -0.136278 385 -2.17R416 0.480000 0.621708 0.005251 -0.141708 -2.26R 442 0.530000 0.670410 0.005251 -0.140410 -2.24R 474 0.530000 0.659743 0.005251 -0.129743 -2.07R483 0.700000 0.826222 0.005251 -0.126222 -2.01R0.500000 0.656146 0.005251 -0.156146 527 -2.49R 0.005251 -0.219771 632 0.550000 0.769771 -3.50R 658 0.580000 0.769326 0.005251 -0.189326 -3.01R 666 0.480000 0.659743 0.005251 -0.179743 -2.86R 674 0.680000 0.826639 0.005251 -0.146639 -2.34R 680 0.630000 0.816417 0.005251 -0.186417 -2.97R 687 0.800000 0.661417 0.005251 0.138583 2.21R 0.005251 0.136917 688 0.800000 0.663083 2.18R 731 0.530000 0.669993 0.005251 -0.139993 -2.23R 0.005251 -0.141660 0.005251 0.131090 0.530000 0.671660 732 -2.26R755 0.900000 0.768910 2.09R 0.450000 0.659743 0.005251 -0.209743 762 -3.34R0.005251 -0.159326 763 0.500000 0.659326 -2.54R 771 0.700000 0.826222 0.005251 -0.126222 -2.01R 776 0.650000 0.816417 0.005251 -0.166417 -2.65R0.005251 0.136917 0.800000 0.663083 2.18R 0.480000 0.624826 0.005251 -0.144826 829 -2.31R0.780000 0.645479 0.005251 0.134521 847 2.14R 911 0.530000 0.656146 0.005251 -0.126146 -2.01R

0.005251 -0.135188

-2.15R

926 0.480000 0.615188

932	0.580000	0.811951	0.005251	-0.231951	-3.69R
954	0.500000	0.659743	0.005251	-0.159743	-2.54R
955	0.530000	0.659326	0.005251	-0.129326	-2.06R
961	0.700000	0.836278	0.005251	-0.136278	-2.17R
963	0.700000	0.826222	0.005251	-0.126222	-2.01R
1017	0.500000	0.680049	0.005251	-0.180049	-2.87R
1018	0.530000	0.670410	0.005251	-0.140410	-2.24R
1052	0.530000	0.660993	0.005251	-0.130993	-2.09R
1068	0.850000	0.718306	0.005251	0.131694	2.10R
1114	0.530000	0.670410	0.005251	-0.140410	-2.24R
1120	0.480000	0.616438	0.005251	-0.136438	-2.17R
1133	0.500000	0.655535	0.005251	-0.155535	-2.48R
1168	0.800000	0.663083	0.005251	0.136917	2.18R
1199	0.530000	0.656146	0.005251	-0.126146	-2.01R
1219	0.650000	0.810285	0.005251	-0.160285	-2.55R
1284	0.650000	0.822618	0.005251	-0.172618	-2.75R
1341	0.480000	0.614160	0.005251	-0.134160	-2.14R
1355	0.850000	0.716639	0.005251	0.133361	2.12R
1360	0.830000	0.663083	0.005251	0.166917	2.66R
1402	0.480000	0.670410	0.005251	-0.190410	-3.03R
1436	0.530000	0.660993	0.005251	-0.130993	-2.09R

 $\ensuremath{\text{R}}$ denotes an observation with a large standardised residual.

11.2 AMARA MODEL

11.2.1 EXPERIMENT DESCRIPTION

The set of real traffic data comprises traffic counts gathered at 15 detector stations from 4 April 1999 to 19 May 1999. The level of aggregation was of 1 hour over 24 hours. From the data, we considered only working days and the afternoon peak time (from 18:00 to 20:00) and calculated the average traffic count for each detector. The experiment was carried out to analyse the influence of each dynamic traffic assignment parameter on the model and system outputs.

Depending on the route choice model employed (proportional, logit or C-logit), the experimental design factors for the simulations were as follows:

- Proportional route choice model:
 - \circ Alpha factor (α), for which values of 0.5, 1, 2 and 3 were considered
 - o Initial K-SP, for which values of 1, 2 and 3 were considered
 - Maximum number of routes (MaxNumberRoutes), for which values of 3, 4 and 5 were considered

If these three factors are combined, the total number of experiments is 36 (4 * 3 * 3), each of which was simulated 15 times (replications). The following random seeds were changed: 9182, 1670, 6534, 8159, 8538, 5768, 1277, 1065, 1846, 8740, 1489, 3334, 6232, 6237 and 1870.

- Logit route choice model:
 - \circ Scale factor (θ), for which values of 10, 60, 100 and 600 were considered
 - o Initial K-SP, for which values of 1, 2 and 3 were considered
 - Maximum number of routes (MaxNumberRoutes), for which values of 3, 4 and 5 were considered

If these three factors are combined, the total number of experiments is 36 (4 * 3 * 3), each of which was simulated 15 times (replications). The random seeds were changed as in the proportional route choice model.

- C-logit route choice model with fixed beta and gamma:
 - \circ Scale factor (θ), for which values of 10, 60, 100 and 600 were considered
 - o Initial K-SP, for which values of 1, 2 and 3 were considered

- Maximum number of routes (MaxNumberRoutes), for which values of 3, 4 and 5 were considered
- o Beta (β) fixed to 0.15
- Gamma (γ) fixed to 1

If these factors are combined, the total number of experiments is 36 (4 * 3 * 3), each of which was simulated 15 times (replications). The random seeds were changed as in the proportional route choice model.

- o C-logit route choice model with varying beta and gamma:
 - Scale factor (θ) fixed to 60
 - Initial K-SP fixed to 2
 - o Maximum number of routes (MaxNumberRoutes) fixed to 3 were considered
 - \circ Beta (β), for which values of 0.10, 0.15, 0.50 and 1 were considered
 - Gamma (γ), for which values of 0.5, 1, 1.5 and 2 were considered

If these factors are combined, the total number of experiments is 16 (4 * 4), each of which was simulated 15 times (replications). The random seeds were changed as in the proportional route choice model.

- o C-logit route choice model changing the scale factor, *Initial K-SP*, beta and gamma:
 - \circ Scale factor (θ), for which values of 10, 60 and 100 were considered
 - Initial K-SP, for which values of 2 and 3 were considered
 - Maximum number of routes (MaxNumberRoutes) fixed to 4
 - \circ Beta (β), for which values of 0.10, 0.15, 0.50 and 1 were considered
 - Gamma (γ), for which values of 0.5, 1, 1.5 and 2 were considered

If these factors are combined, the total number of experiments is 144 (3 * 2 * 4 * 4), each of which was simulated 15 times (replications). The random seeds were changed as in the proportional route choice model.

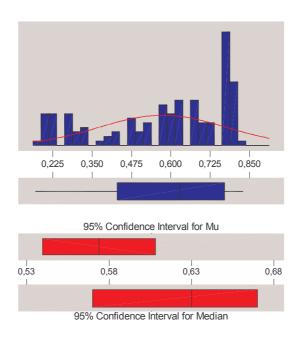
11.2.2 EXPERIMENT RESULTS

In the following sections, we analyse the experiments, which have been grouped by route choice function.

11.2.2.1 PROPORTIONAL ROUTE CHOICE

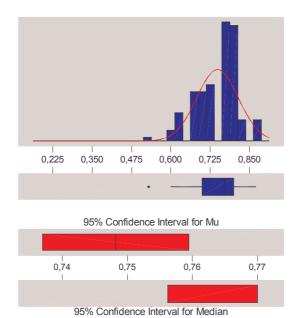
ROUTE CHOICE: PROPORTIONAL

DESIGN FACTOR α , LEVELS 0.5, 1.0, 2.0, 3.0


DESIGN FACTOR INITIAL K-SP (KINITIAL), LEVELS 1, 2, 3

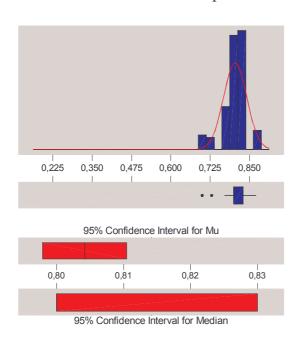
DESIGN FACTOR, MAXIMUM NUMBER OF ROUTES (NUMBER OF ALTERNATIVES),

LEVELS 2, 3, 4

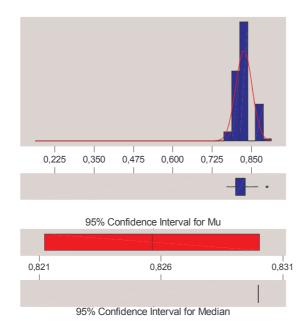

11.2.2.1.1 GEH AS A FUNCTION OF α

Descriptive Statistics

Alpha Fact	or: 0,5			
Anderson-Darling Normality Test				
A-Squared: P-Value:	5,185 0,000			
Mean StDev Variance Skewness Kurtosis N	0,573926 0,200872 4,03E-02 -6,2E-01 -9,6E-01 135			
Minimum 1st Quartile Median 3rd Quartile Maximum	0,170000 0,430000 0,630000 0,770000 0,830000			
95% Confidence Interval for Mu				
0,539733	0,608119			
95% Confidence Interval for Sigma				
0,179431	0,228177			
95% Confidence Interval for Median				
0,570000	0,670000			

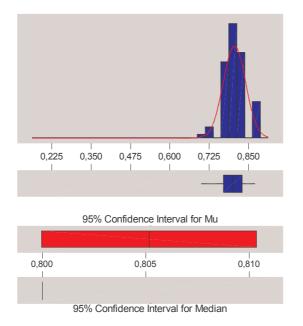

Variable: GEH

Variable: GEH Alpha Factor: 1,0


Anderson-Darling I	Normality Test
A-Squared: P-Value:	3,664 0,000
Mean StDev Variance Skewness Kurtosis N	0,748222 0,065936 4,35E-03 -6,0E-01 0,116322 135
Minimum 1st Quartile Median 3rd Quartile Maximum	0,530000 0,700000 0,770000 0,800000 0,870000
95% Confidence I	nterval for Mu
0,736998	0,759446
95% Confidence Int	erval for Sigma
0,058898	0,074899
95% Confidence Inte	erval for Median
0,756173	0,770000

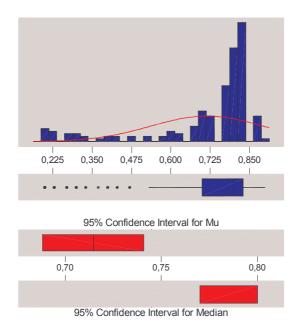
Descriptive Statistics

Variable: GEH Alpha Factor: 2,0

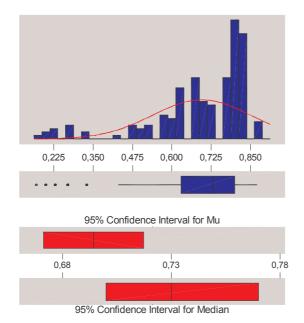

Anderson-Darling Normality Test				
A-Squared: P-Value:	7,281 0,000			
Mean StDev Variance Skewness Kurtosis N	0,804222 0,036904 1,36E-03 -9,7E-01 1,37604 135			
Minimum 1st Quartile Median 3rd Quartile Maximum	0,700000 0,800000 0,800000 0,830000 0,870000			
95% Confidence Interval for Mu				
0,797940	0,810504			
95% Confidence Interval for Sigma				
0,032965	0,041920			
95% Confidence Interval for Median				
0,800000	0,830000			

Variable: Alpha Fact	
Anderson-Darling I	Normality Test
A-Squared: P-Value:	9,778 0,000
Mean StDev Variance Skewness Kurtosis N	0,825630 0,025905 6,71E-04 0,312539 1,91E-03 135
Minimum 1st Quartile Median 3rd Quartile Maximum	0,770000 0,800000 0,830000 0,830000 0,900000
95% Confidence II	nterval for Mu
0,821220	0,830039
95% Confidence Int	erval for Sigma
0,023140	0,029426
95% Confidence Inte	erval for Median
0,830000	0,830000

11.2.2.1.2 GEH AS A FUNCTION OF INITIAL K-SP


Descriptive Statistics

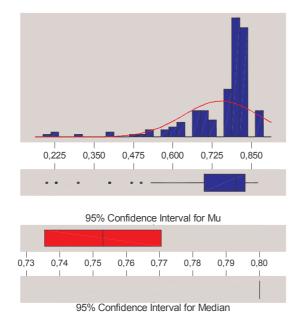
Variable: GEH Kinitial: 1


Anderson-Darling Normality Test 6,435 A-Squared: P-Value: 0,000 Mean 0,805167 StDev 0,035272 Variance 1,24E-03 -6,9E-02 Skewness Kurtosis 0,202622 180 0,700000 0,770000 Minimum 1st Quartile Median 0,800000 3rd Quartile 0,830000 0,870000 Maximum 95% Confidence Interval for Mu 0,799979 0,810355 95% Confidence Interval for Sigma 0,031966 0,039347 95% Confidence Interval for Median 0,800000 0.800000

Descriptive Statistics

Variable: GEH Kinitial: 2

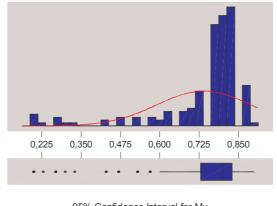
Anderson-Darling Normality Test A-Squared: 20,200 P-Value: 0,000 0,714556 Mean StDev 0.178546 3,19E-02 Variance -1,77635 Skewness 2,04304 Kurtosis 180 Minimum 0,200000 1st Quartile 0,700000 Median 0,800000 3rd Quartile 0,830000 Maximum 0,900000 95% Confidence Interval for Mu 0,688295 0,740816 95% Confidence Interval for Sigma 0,199172 0,161811 95% Confidence Interval for Median 0,770000 0,800000



Variable: GEH Kinitial: 3

Anderson-Darling A-Squared: P-Value:	Normality Test 9,582 0,000
Mean StDev Variance Skewness Kurtosis N	0,694278 0,155976 2,43E-02 -1,57777 2,25889 180
Minimum 1st Quartile Median 3rd Quartile Maximum	0,170000 0,630000 0,730000 0,800000 0,870000
95% Confidence I	nterval for Mu
0,671337	0,717219
95% Confidence Int	erval for Sigma
0,141356	0,173995
95% Confidence Inte	erval for Median
0,700000	0,770000

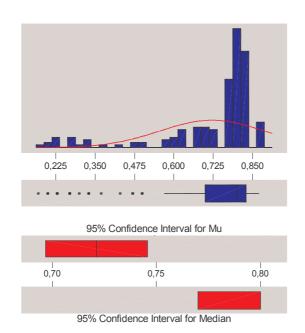
11.2.2.1.3 GEH AS A FUNCTION OF THE NUMBER OF ALTERNATIVES


Descriptive Statistics

Variable: GEH Numalternati: 3

Anderson-Darling Normality Test

A-Squared: P-Value:	15,088 0,000
Mean StDev Variance Skewness Kurtosis N	0,753000 0,119013 1,42E-02 -2,40043 6,90412 180
Minimum 1st Quartile Median 3rd Quartile Maximum	0,200000 0,700000 0,800000 0,830000 0,870000
95% Confidence In	nterval for Mu
0,735495	0,770505
95% Confidence Inte	erval for Sigma
0,107858	0,132762
95% Confidence Inte	erval for Mediar
0,800000	0,800000



95% Confidence Interval for Mu 0,71 0,72 0,73 0,74 0,75 0,76 0,77 0,78 0,79 0,80 95% Confidence Interval for Median

Variable: GEH Numalternati: 4

Anderson-Darling	Normality Test
A-Squared: P-Value:	19,376 0,000
Mean StDev Variance Skewness Kurtosis N	0,739778 0,149083 2,22E-02 -2,26240 4,79605 180
Median	0,200000 0,730000 0,800000 0,830000 0,900000
95% Confidence I	nterval for Mu
0,717850	0,761705
95% Confidence Int	terval for Sigma
0,135109	0,166306
5% Confidence Int	erval for Median
0,770000	0,800000

Descriptive Statistics

Variable: GEH Numalternati: 5

Anderson-Darling N	Normality Test
A-Squared: P-Value:	20,061 0,000
Mean StDev Variance Skewness Kurtosis N	0,721222 0,166014 2,76E-02 -1,95587 2,96300 180
Minimum 1st Quartile Median 3rd Quartile Maximum	0,170000 0,700000 0,800000 0,830000 0,870000
95% Confidence In	nterval for Mu
0,696805	0,745640
95% Confidence Into	erval for Sigma
0,150453	0,185192
95% Confidence Inte	erval for Mediar
0,770000	0,800000

11.2.2.1.4 GENERAL LINEAR MODEL: GEH VERSUS ALPHA FACTOR; KINITIAL; NUMALTERNATIVES

Factor Type Levels Values

Alpha Fa fixed 4 0,5 1,0 2,0 3,0

Kinitial fixed 3 1 2 3 Numalter fixed 3 3 4 5

Analysis of Variance for GEH, using Adjusted SS for Tests

Source	DF	Seq SS	Adj SS	Adj MS	F	P
Alpha Fa	3	5.27703	5.27703	1.75901	313.32	0.000
Kinitial	2	1.25507	1.25507	0.62754	111.78	0.000
Numalter	2	0.09174	0.09174	0.04587	8.17	0.000
Alpha Fa*Kinitial	6	1.80051	1.80051	0.30009	53.45	0.000
Alpha Fa*Numalter	6	0.14283	0.14283	0.02380	4.24	0.000
Kinitial*Numalter	4	0.03647	0.03647	0.00912	1.62	0.167
Alpha Fa*Kinitial*						
Numalter	12	0.10566	0.10566	0.00881	1.57	0.097
Error	504	2.82952	2.82952	0.00561		
Total	539	11.53884				

Unusual Observations for GEH

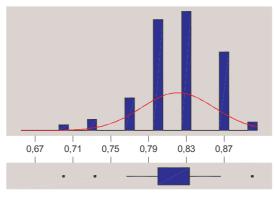
Obs	GEH	Fit	SE Fit	Residual	St Resid
46	0.700000	0.506667	0.019346	0.193333	2.67R
47	0.670000	0.506667	0.019346	0.163333	2.26R
53	0.670000	0.506667	0.019346	0.163333	2.26R
54	0.200000	0.506667	0.019346	-0.306667	-4.24R
56	0.670000	0.506667	0.019346	0.163333	2.26R
57	0.230000	0.506667	0.019346	-0.276667	-3.82R
59	0.300000	0.506667	0.019346	-0.206667	-2.86R
61	0.700000	0.480000	0.019346	0.220000	3.04R
63	0.300000	0.480000	0.019346	-0.180000	-2.49R
64	0.270000	0.480000	0.019346	-0.210000	-2.90R
66	0.770000	0.480000	0.019346	0.290000	4.01R
67	0.670000	0.480000	0.019346	0.190000	2.62R
69	0.230000	0.480000	0.019346	-0.250000	-3.45R
70	0.330000	0.480000	0.019346	-0.150000	-2.07R
71	0.630000	0.480000	0.019346	0.150000	2.07R
72	0.200000	0.480000	0.019346	-0.280000	-3.87R
73	0.200000	0.480000	0.019346	-0.280000	-3.87R
75	0.730000	0.480000	0.019346	0.250000	3.45R
76	0.670000	0.391333	0.019346	0.278667	3.85R
77	0.630000	0.391333	0.019346	0.238667	3.30R
78	0.230000	0.391333	0.019346	-0.161333	-2.23R
83	0.670000	0.391333	0.019346	0.278667	3.85R
84	0.200000	0.391333	0.019346	-0.191333	-2.64R
85	0.200000	0.391333	0.019346	-0.191333	-2.64R
86	0.600000	0.391333	0.019346	0.208667	2.88R
87	0.230000	0.391333	0.019346	-0.161333	-2.23R
97	0.230000	0.584667	0.019346	-0.354667	-4.90R
106	0.630000	0.460000	0.019346	0.170000	2.35R
111	0.630000	0.460000	0.019346	0.170000	2.35R
114	0.270000	0.460000	0.019346	-0.190000	-2.62R
115	0.200000	0.460000	0.019346	-0.260000	-3.59R
116	0.630000	0.460000	0.019346	0.170000	2.35R
117	0.200000	0.460000	0.019346	-0.260000	-3.59R
119	0.270000	0.460000	0.019346	-0.190000	-2.62R
122	0.270000	0.420667	0.019346	-0.150667	-2.08R
124	0.630000	0.420667	0.019346	0.209333	2.89R
126	0.670000	0.420667	0.019346	0.249333	3.44R
128	0.570000	0.420667	0.019346	0.149333	2.06R
129	0.270000	0.420667	0.019346	-0.150667	-2.08R
130	0.170000	0.420667	0.019346	-0.250667	-3.46R
131	0.570000	0.420667	0.019346	0.149333	2.06R
131	0.230000	0.420667	0.019346	-0.190667	-2.63R
132	0.230000	0.420667	0.019346	-0.190667	-2.63R -2.63R
133	0.230000	0.420667	0.019346	0.149333	-2.63R 2.06R
252	0.570000	0.420667	0.019346		-2.41R
252	0.530000	0./0400/	0.019346	-0.1/406/	-Z.41K

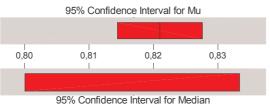
 $\ensuremath{\mathsf{R}}$ denotes an observation with a large standardised residual.

11.2.2.2 LOGIT ROUTE CHOICE

ROUTE CHOICE: LOGIT

DESIGN FACTOR SCALE PARAMETER θ , LEVELS 10, 60,100

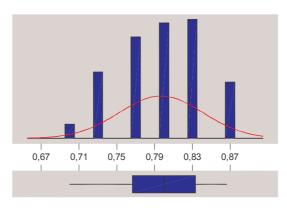

DESIGN FACTOR INITIAL K-SP (KINITIAL), LEVELS 1, 2, 3

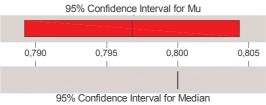

DESIGN FACTOR MAXIMUM NUMBER OF ROUTES (NUMBER OF ALTERNATIVES),

LEVELS 3, 4, 5

11.2.2.2.1 GEH AS A FUNCTION OF θ

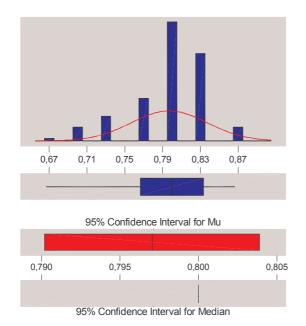
Descriptive Statistics





Variable: GEH Theta_New: 60

Anderson-Darling Normality Test 4,737 0,000 A-Squared: P-Value: 0,820988 Mean StDev 0,038578 1,49E-03 -5,6E-01 Variance Skewness Kurtosis 0,530457 Minimum 0,700000 1st Quartile 0,800000 Median 3rd Quartile 0,833333 0,833333 0,900000 Maximum 95% Confidence Interval for Mu 0,814421 0,827555 95% Confidence Interval for Sigma 0,034460 0,043822 95% Confidence Interval for Median 0,800000 0,833333


Descriptive Statistics

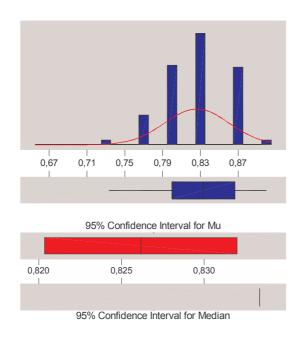
Variable: GEH Theta_New: 100

Anderson-Darling	Normality Test
A-Squared:	3,627
P-Value:	0,000
Mean	0,796790
StDev	0,044400
Variance Skewness	1,97E-03 -1,9E-01
Kurtosis	-8,1E-01
N	135
Minimum	0,700000
1st Quartile Median	0,766667 0,800000
3rd Quartile	0.833333
Maximum	0,866667
95% Confidence I	nterval for Mu
0,789232	0,804348
95% Confidence Int	erval for Sigma
0,039661	0,050436
95% Confidence Into	erval for Mediar
0,800000	0,800000

Theta_New: 10 Anderson-Darling Normality Test A-Squared: 6,324 P-Value: 0,000 0,797037 Mean StDev 0,040204 1,62E-03 Variance Skewness -8,4E-01 Kurtosis 0,596687 135 Minimum 0,666667 1st Quartile 0,766667 Median 0,800000 3rd Quartile 0,833333 Maximum 0,866667 95% Confidence Interval for Mu

Variable: GEH

0.790193 0,803881

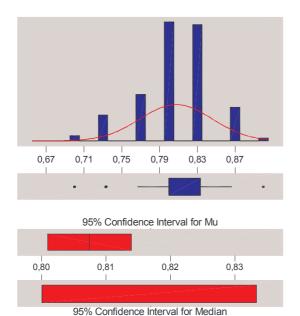

95% Confidence Interval for Sigma 0,035913 0,045669

95% Confidence Interval for Median 0,800000 0,800000

> Variable: GEH Kinit_new: 1

11.2.2.2.2 GEH AS A FUNCTION OF INITIAL K-SP

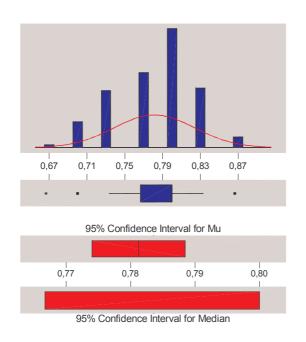
Descriptive Statistics



Anderson-Darling Normality Test A-Squared: P-Value: 0,000 0,826173 0,034165 Mean StDev 1,17E-03 Variance -3,6E-01 Skewness -3,2E-01 Kurtosis Minimum 0,733333 1st Quartile 0,800000 Median 0,833333 3rd Quartile 0,866667 Maximum 0,900000 95% Confidence Interval for Mu 0,820357 0,831989 95% Confidence Interval for Sigma 0,030518 0,038809

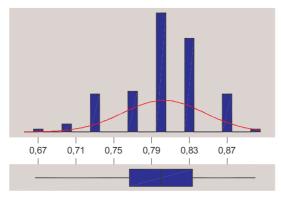
95% Confidence Interval for Median

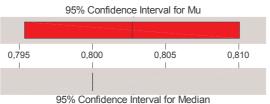
0,833333


0,833333

Variable: GEH Kinit_new: 2

_	
Anderson-Darling	Normality Test
A-Squared: P-Value:	5,138 0,000
Mean StDev Variance Skewness Kurtosis N	0,807407 0,038129 1,45E-03 -4,8E-01 0,148155 135
Minimum 1st Quartile Median 3rd Quartile Maximum	0,700000 0,800000 0,800000 0,833333 0,900000
95% Confidence I	nterval for Mu
0,800917	0,813898
95% Confidence Int	erval for Sigma
0,034060	0,043312
95% Confidence Inte	erval for Median
0,800000	0,833333

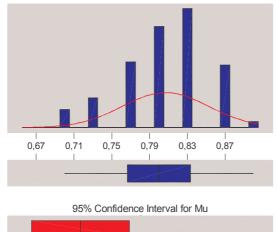

Descriptive Statistics



Variable: GEH Kinit_new: 3

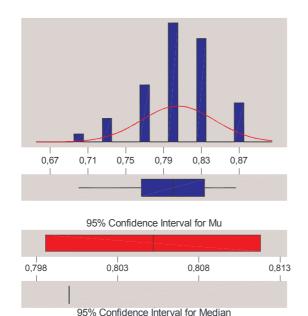
Anderson-Darling	Normality Test
A-Squared: P-Value:	4,166 0,000
Mean StDev Variance Skewness Kurtosis N	0,781235 0,042635 1,82E-03 -3,2E-01 -4,4E-01 135
Minimum 1st Quartile Median 3rd Quartile Maximum	0,666667 0,766667 0,800000 0,800000 0,866667
95% Confidence I	nterval for Mu
0,773977	0,788492
95% Confidence Int	erval for Sigma
0,038084	0,048430
95% Confidence Inte	erval for Median
0,766667	0,800000

11.2.2.2.3 GEH AS A FUNCTION OF THE NUMBER OF ALTERNATIVES



Variable: GEH Alter_new: 3

Anderson-Darling I	Normality Test
A-Squared: P-Value:	4,510 0,000
Mean StDev Variance Skewness Kurtosis N	0,802716 0,043107 1,86E-03 -5,3E-01 0,150447 135
Minimum 1st Quartile Median 3rd Quartile Maximum	0,666667 0,766667 0,800000 0,833333 0,900000
95% Confidence I	nterval for Mu
0,795378	0,810054
95% Confidence Int	erval for Sigma
0,038506	0,048967
95% Confidence Inte	erval for Median
0,800000	0,800000


Descriptive Statistics

Variable: GEH Alter_new: 4

Anderson-Darling	Normality Test
A-Squared: P-Value:	3,749 0,000
Mean StDev Variance Skewness Kurtosis N	0,806914 0,045729 2,09E-03 -4,7E-01 -2,6E-01 135
Minimum 1st Quartile Median 3rd Quartile Maximum	0,700000 0,766667 0,800000 0,833333 0,900000
95% Confidence I	nterval for Mu
0,799129	0,814698
95% Confidence Int	terval for Sigma
0,040848	0,051945
95% Confidence Int	erval for Median
0,800000	0,833333

Alter_new: 5 Anderson-Darling Normality Test A-Squared: 4,616 P-Value: 0,000 0,805185 0,038819 1,51E-03 Mean StDev Variance Skewness -4,8E-01 7,70E-03 Kurtosis 135 Minimum 0,700000 1st Quartile 0,766667 0,800000 Median 3rd Quartile 0,833333 0,866667 Maximum 95% Confidence Interval for Mu 0.798577 0,811793 95% Confidence Interval for Sigma 0,034676 0,044096 95% Confidence Interval for Median

0,800000

0,800000

Variable: GEH

11.2.2.2.4 GENERAL LINEAR MODEL: GEH VERSUS THETA; KINIT; ALTER

Factor	Type	Levels	Valı	ıes		
Theta Ne	fixed	3	10	60	100	
Kinit ne	fixed	3	1 2	3		
Alter ne	fixed	3	3 4	5		

Analysis of Variance for GEH, using Adjusted SS for Tests

Source	DF	Seq SS	Adj SS	Adj MS	F	P
Theta Ne	2	0.052165	0.052165	0.026082	18.70	0.000
Kinit ne	2	0.137547	0.137547	0.068774	49.32	0.000
Alter ne	2	0.001202	0.001202	0.000601	0.43	0.650
Theta_Ne*Kinit_ne	4	0.007967	0.007967	0.001992	1.43	0.224
Theta_Ne*Alter_ne	4	0.001152	0.001152	0.000288	0.21	0.935
Kinit_ne*Alter_ne	4	0.001103	0.001103	0.000276	0.20	0.939
Theta_Ne*Kinit_ne*						
Alter_ne	8	0.004099	0.004099	0.000512	0.37	0.937
Error	378	0.527111	0.527111	0.001394		
Total	404	0.732346				

Unusual Observations for GEH

- 1			~		
Obs	GEH	Fit	SE Fit	Residual	St Resid
74	0.700000	0.806667	0.009642	-0.106667	-2.96R
97	0.666667	0.762222	0.009642	-0.095556	-2.65R
130	0.700000	0.773333	0.009642	-0.073333	-2.03R
163	0.766667	0.840000	0.009642	-0.073333	-2.03R
179	0.766667	0.842222	0.009642	-0.075556	-2.09R
181	0.900000	0.824444	0.009642	0.075556	2.09R
185	0.733333	0.824444	0.009642	-0.091111	-2.53R
217	0.733333	0.817778	0.009642	-0.084444	-2.34R
229	0.700000	0.795556	0.009642	-0.095556	-2.65R
267	0.700000	0.797778	0.009642	-0.097778	-2.71R
275	0.733333	0.817778	0.009642	-0.084444	-2.34R
312	0.733333	0.820000	0.009642	-0.086667	-2.40R
324	0.866667	0.791111	0.009642	0.075556	2.09R
329	0.866667	0.791111	0.009642	0.075556	2.09R
344	0.866667	0.791111	0.009642	0.075556	2.09R

345	0.700000	0.791111	0.009642	-0.091111	-2.53R
359	0.866667	0.793333	0.009642	0.073333	2.03R
394	0.700000	0.780000	0.009642	-0.080000	-2.22R
395	0.866667	0.780000	0.009642	0.086667	2.40R

R denotes an observation with a large standardised residual.

11.2.2.2.5 COEFFICIENTS OF THE GENERAL LINEAR MODEL: GEH VERSUS THETA; KINIT; ALTER

0.804938 -0.007901 0.016049 0.021235 0.002469 -0.0022220.001975 -0.0012350.006420 -0.003704 0.000988 -0.000741-0.000494 -0.000988 0.002963 -0.001728 0.002222 0.001481 0.000247 0.003210 -0.000741-0.000000 -0.000988 -0.000247 -0.005679

0.001728 0.001481

11.2.2.2.6 GENERAL LINEAR MODEL: GEH VERSUS THETA; KINIT

Factor Type Levels Values 3 10 60 100 3 1 2 3 Theta_Ne fixed Kinit_ne fixed Analysis of Variance for GEH, using Adjusted SS for Tests Source DF Seq SS Adj SS Adj MS F 0.026082 0.052165 19.32 0.000 Theta Ne 2 0.052165 Kinit ne 2 0.137547 0.137547 0.068774 50.94 0.000 Theta Ne*Kinit_ne 0.001992 4 0.007967 0.007967 1.48 0.209 0.534667 Error 396 0.534667 0.001350 Total 404 0.732346 Unusual Observations for GEH GEH Fit SE Fit Residual St Resid Obs 74 0.700000 0.805926 97 0.666667 0.768148 0.005478 -0.105926 -2.92R 0.005478 -0.101481 -2.79R

181	0.900000	0.824444	0.005478	0.075556	2.08R
185	0.733333	0.824444	0.005478	-0.091111	-2.51R
217	0.733333	0.824444	0.005478	-0.091111	-2.51R
229	0.700000	0.800000	0.005478	-0.100000	-2.75R
267	0.700000	0.800000	0.005478	-0.100000	-2.75R
275	0.733333	0.822963	0.005478	-0.089630	-2.47R
312	0.733333	0.822963	0.005478	-0.089630	-2.47R
324	0.866667	0.791852	0.005478	0.074815	2.06R
329	0.866667	0.791852	0.005478	0.074815	2.06R
344	0.866667	0.791852	0.005478	0.074815	2.06R
345	0.700000	0.791852	0.005478	-0.091852	-2.53R
359	0.866667	0.791852	0.005478	0.074815	2.06R
379	0.700000	0.775556	0.005478	-0.075556	-2.08R
386	0.700000	0.775556	0.005478	-0.075556	-2.08R
394	0.700000	0.775556	0.005478	-0.075556	-2.08R
395	0.866667	0.775556	0.005478	0.091111	2.51R

R denotes an observation with a large standardised residual.

11.2.2.2.7 COEFFICIENTS OF THE GENERAL LINEAR MODEL: GEH VERSUS THETA; KINIT

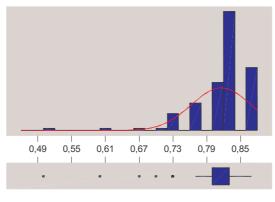
0.804938 -0.007901 0.016049 0.021235 0.002469 -0.001235 0.006420 -0.003704

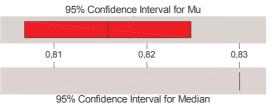
0.000988

11.2.2.3 C-LOGIT ROUTE CHOICE MODEL WITH FIXED BETA AND GAMMA

ROUTE CHOICE: CLOGIT (β =0.15 AND γ =1.0 FIXED)

DESIGN FACTOR θ, LEVELS 10, 60, 100

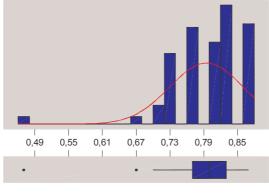

DESIGN FACTOR INITIAL K-SP (KINITIAL), LEVELS 1, 2, 3

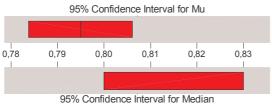

DESIGN FACTOR MAXIMUM NUMBER OF ROUTES (NUMBER OF ALTERNATIVES),

LEVELS 2, 3, 4

11.2.2.3.1 GEH AS A FUNCTION OF θ

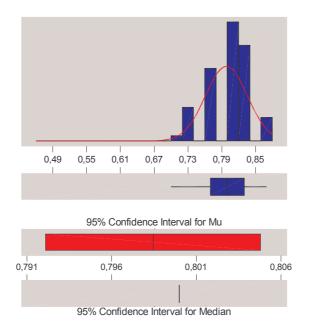
Descriptive Statistics





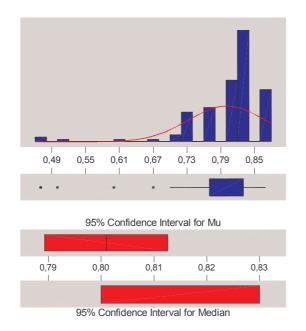
Variable: GEH Scale Factor: 60

Anderson-Darling Normality Test 7,994 0,000 A-Squared: P-Value: Mean 0,815778 StDev 0,052724 Variance 2,78E-03 Skewness -2,46143 Kurtosis 10,5620 Minimum 0,500000 0,800000 1st Quartile 0,830000 0,830000 0,870000 Median 3rd Quartile Maximum 95% Confidence Interval for Mu 0,806803 0,824753 95% Confidence Interval for Sigma 0,047096 0,059891 95% Confidence Interval for Median 0,830000 0,830000


Descriptive Statistics

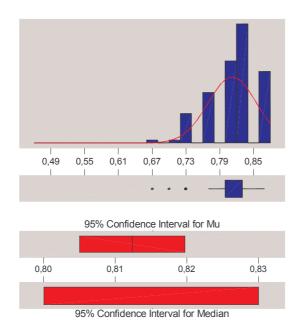
Variable: GEH Scale Factor: 100

Anderson-Darling	Normality Test
A-Squared: P-Value:	3,850 0,000
Mean StDev Variance Skewness Kurtosis N	0,794963 0,065550 4,30E-03 -1,87301 7,26706 135
Minimum 1st Quartile Median 3rd Quartile Maximum	0,470000 0,770000 0,800000 0,830000 0,870000
95% Confidence	Interval for Mu
0,783805	0,806121
95% Confidence In	terval for Sigma
0,058554	0,074461
95% Confidence In	terval for Mediar
0,800000	0,830000



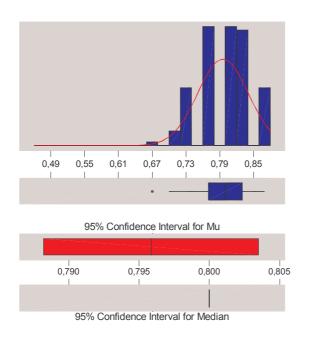
Variable: GEH Scale Factor: 10

Anderson-Darling	Normality Test
A-Squared:	4,667
P-Value:	0,000
Mean StDev Variance	0,798444 0,037254 1,39E-03
Skewness	-3,3E-01
Kurtosis	2,77E-02
N	135
Minimum	0,700000
1st Quartile	0,770000
Median 3rd Quartile	0,800000 0,830000
Maximum	0,870000
95% Confidence I	*
0.792103	0.804786
0,792103	0,004700
95% Confidence Int	terval for Sigma
0,033278	0,042318
95% Confidence Int	erval for Median
0,800000	0,800000


11.2.2.3.2 GEH AS A FUNCTION OF INITIAL K-SP

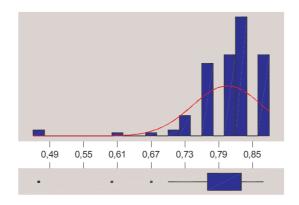
Descriptive Statistics

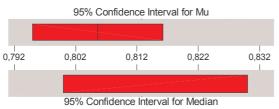
Variable: GEH Kinitial: 1


Anderson-Darling	Normality Test
A-Squared: P-Value:	8,505 0,000
Mean StDev Variance Skewness Kurtosis N	0,800963 0,068490 4,69E-03 -2,58266 9,46560 135
Median	0,470000 0,770000 0,830000 0,830000 0,870000
95% Confidence	Interval for Mu
0,789304	0,812622
95% Confidence In	terval for Sigma
0,061180	0,077800
95% Confidence In	terval for Mediar
0,800000	0,830000

Variable: GEH Kinitial: 2

Anderson-Darling N A-Squared: P-Value:	lormality Test 4,490 0,000
Mean StDev Variance Skewness Kurtosis N	0,812370 0,043197 1,87E-03 -6,1E-01 0,161103 135
Minimum 1st Quartile Median 3rd Quartile Maximum	0,670000 0,800000 0,830000 0,830000 0,870000
95% Confidence In	terval for Mu
0,805017	0,819724
95% Confidence Inte	erval for Sigma
0,038586	0,049069
95% Confidence Inte	rval for Median
0,800000	0,830000

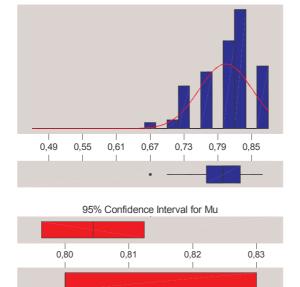

Descriptive Statistics



Variable: GEH

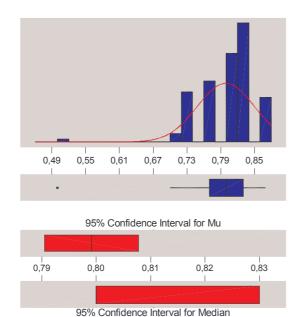
Anderson-Darling I	Normality Test
A-Squared: P-Value:	3,211 0,000
Mean StDev Variance Skewness Kurtosis N	0,795852 0,044878 2,01E-03 -2,4E-01 -3,1E-01 135
Minimum 1st Quartile Median 3rd Quartile Maximum	0,670000 0,770000 0,800000 0,830000 0,870000
95% Confidence I	nterval for Mu
0,788213	0,803491
95% Confidence Int	erval for Sigma
0,040088	0,050978
95% Confidence Inte	erval for Median
0,800000	0,800000

11.2.2.3.3 GEH AS A FUNCTION OF THE NUMBER OF ALTERNATIVES



Variable: GEH Numalternati: 3

Anderson-Darling	Normality Test
A-Squared: P-Value:	6,615 0,000
Mean StDev Variance Skewness Kurtosis N	0,805630 0,062374 3,89E-03 -2,66161 11,6368 135
Minimum 1st Quartile Median 3rd Quartile Maximum	0,470000 0,770000 0,830000 0,830000 0,870000
95% Confidence I	nterval for Mu
0,795012	0,816247
95% Confidence Int	terval for Sigma
0,055716	0,070852
95% Confidence Int	erval for Median
0,800000	0,830000


Descriptive Statistics

95% Confidence Interval for Median

Variable: GEH Numalternati: 4

Anderson-Darling	Normality Test
A-Squared: P-Value:	4,128 0,000
Mean StDev Variance Skewness Kurtosis N	0,804370 0,047183 2,23E-03 -6,0E-01 -4,3E-02 135
Minimum 1st Quartile Median 3rd Quartile Maximum	0,670000 0,770000 0,800000 0,830000 0,870000
95% Confidence I	nterval for Mu
0,796339	0,812402
95% Confidence Int	erval for Sigma
0,042147	0,053597
95% Confidence Inte	erval for Mediar
0.800000	0.830000

Variable: GEH Numalternati: 5 Anderson-Darling Normality Test A-Squared: 4,361 P-Value: 0,000 Mean StDev 0,799185 0,050742 2.57E-03 Variance Skewness -1,69743 7,73009 Kurtosis 135 Minimum 0,500000 1st Quartile 0,770000 Median 0,800000 3rd Quartile 0,830000 Maximum 0,870000 95% Confidence Interval for Mu 0.790548 0,807823 95% Confidence Interval for Sigma 0,045326 0,057639 95% Confidence Interval for Median 0,800000 0,830000

11.2.2.3.4 GENERAL LINEAR MODEL: GEH VERSUS SCALE FACTOR; KINITIAL; NUMALTERNATIVES

Factor Type Levels Values
Scale Fa fixed 3 10 60 100
Kinitial fixed 3 1 2 3
Numalter fixed 3 3 4 5

Analysis of Variance for GEH, using Adjusted SS for Tests

Source	DF	Seq SS	Adj SS	Adj MS	F	P
Scale Fa	2	0.033562	0.033562	0.016781	6.16	0.002
Kinitial	2	0.019310	0.019310	0.009655	3.55	0.030
Numalter	2	0.003150	0.003150	0.001575	0.58	0.561
Scale Fa*Kinitial	4	0.033678	0.033678	0.008420	3.09	0.016
Scale Fa*Numalter	4	0.022531	0.022531	0.005633	2.07	0.084
Kinitial*Numalter	4	0.005041	0.005041	0.001260	0.46	0.763
Scale Fa*Kinitial*						
Numalter	8	0.021158	0.021158	0.002645	0.97	0.458
Error	378	1.029373	1.029373	0.002723		
Total	404	1.167803				

Unusual Observations for GEH

01	0711		QT T'	D ' 1 1	C
Obs	GEH	Fit	SE Fit	Residual	St Resid
136	0.600000	0.813333	0.013474	-0.213333	-4.23R
158	0.670000	0.806000	0.013474	-0.136000	-2.70R
166	0.500000	0.793333	0.013474	-0.293333	-5.82R
200	0.700000	0.821333	0.013474	-0.121333	-2.41R
271	0.470000	0.768000	0.013474	-0.298000	-5.91R
274	0.870000	0.768000	0.013474	0.102000	2.02R
276	0.870000	0.768000	0.013474	0.102000	2.02R
277	0.870000	0.768000	0.013474	0.102000	2.02R
278	0.470000	0.768000	0.013474	-0.298000	-5.91R
280	0.870000	0.768000	0.013474	0.102000	2.02R
281	0.870000	0.768000	0.013474	0.102000	2.02R
284	0.870000	0.768000	0.013474	0.102000	2.02R
312	0.700000	0.804000	0.013474	-0.104000	-2.06R
344	0.670000	0.796000	0.013474	-0.126000	-2.50R
366	0.670000	0.774000	0.013474	-0.104000	-2.06R

R denotes an observation with a large standardised residual.

11.2.2.3.5 COEFFICIENTS OF THE GENERAL LINEAR MODEL: GEH VERSUS SCALE FACTOR; KINITIAL; NUMALTERNATIVES

0.803062 -0.004617 0.012716 -0.002099 0.009309 0.002568

0.001309

0.016988

-0.002864 -0.009457

0.001358

0.009877

-0.002864

0.004321

-0.001531

-0.001753

-0.000049

0.002617

-0.005679

-0.000075

0.004938

-0.007284

0.009012

0.003975

0.002049

-0.003951

0.000790

11.2.2.3.6 GENERAL LINEAR MODEL: GEH VERSUS SCALE FACTOR; KINITIAL

Factor Type Levels Values
Scale Fa fixed 3 10 60 100
Kinitial fixed 3 1 2 3

Analysis of Variance for GEH, using Adjusted SS for Tests

Source	DF	Seq SS	Adj SS	Adj MS	F	P
Scale Fa	2	0.033562	0.033562	0.016781	6.15	0.002
Kinitial	2	0.019310	0.019310	0.009655	3.54	0.030
Scale Fa*Kinitial	4	0.033678	0.033678	0.008420	3.08	0.016
Error	396	1.081253	1.081253	0.002730		
Total	404	1.167803				

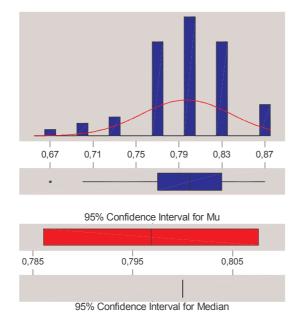
Unusual Observations for GEH

Obs	GEH	Fit	SE Fit	Residual	St Resid
136	0.600000	0.804222	0.007790	-0.204222	-3.95R
158	0.670000	0.804222	0.007790	-0.134222	-2.60R
166	0.500000	0.804222	0.007790	-0.304222	-5.89R

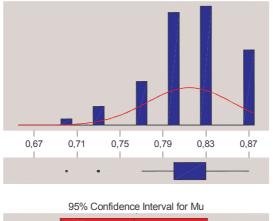
200	0.700000	0.826444	0.007790 -0.126444	-2.45R
271	0.470000	0.785333	0.007790 -0.315333	-6.10R
278	0.470000	0.785333	0.007790 -0.315333	-6.10R
344	0.670000	0.805778	0.007790 -0.135778	-2.63R
366	0.670000	0.793778	0.007790 -0.123778	-2.40R

R denotes an observation with a large standardised residual.

11.2.2.3.7 COEFFICIENTS OF THE GENERAL LINEAR MODEL: GEH VERSUS SCALE FACTOR; KINITIAL


0.004938 -0.007284 0.009012 0.003975 0.002049 -0.003951 0.000790

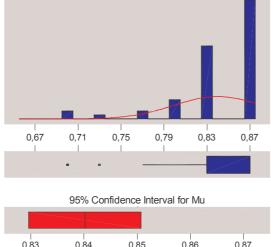
11.2.2.4 C-LOGIT ROUTE CHOICE WITH VARYING BETA AND GAMMA


ROUTE CHOICE: CLOGIT (θ =60, INITIAL K-SP=2, AND MAXIMUM NUMBER OF ROUTES =3 FIXED) DESIGN FACTOR β , LEVELS 0.10, 0.15, 0.5, 1.0 DESIGN FACTOR γ , LEVELS 0.5, 1.0, 1.5, 2.0

11.2.2.4.1 GEH AS A FUNCTION OF β

Descriptive Statistics

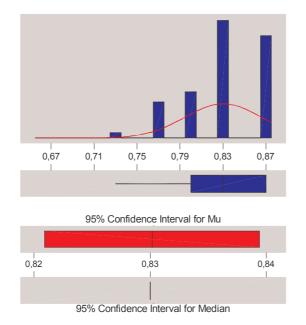
Variable: GEH Beta: 0,10 Anderson-Darling Normality Test A-Squared: 1,938 0,000 P-Value: 0,796833 Mean StDev 0,041680 1,74E-03 Variance -6,1E-01 Skewness Kurtosis 0,967586 0,670000 Minimum 1st Quartile 0,770000 0,800000 Median 3rd Quartile 0,830000 Maximum 0,870000 95% Confidence Interval for Mu 0,786066 0,807601 95% Confidence Interval for Sigma 0,035330 0,050836 95% Confidence Interval for Median 0,800000 0,800000



0,80 0,81 0,82 0,83 95% Confidence Interval for Median

Variable: GEH Beta: 0,15

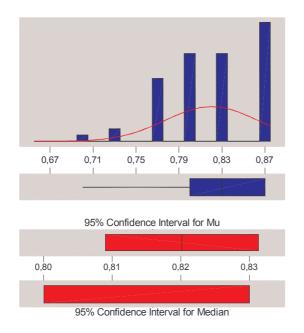
Anderson-Darling Normality Test					
A-Squared: P-Value:	2,097 0,000				
Mean StDev Variance Skewness Kurtosis N	0,814833 0,039851 1,59E-03 -5,4E-01 0,342179 60				
Minimum 1st Quartile Median 3rd Quartile Maximum	0,700000 0,800000 0,830000 0,830000 0,870000				
95% Confidence I	nterval for Mu				
0,804539	0,825128				
95% Confidence Into	erval for Sigma				
0,033779	0,048605				
95% Confidence Inte	erval for Median				
0,800000	0,830000				


Descriptive Statistics

0,83 0,86 0,84 0,85 0,87 95% Confidence Interval for Median

Variable: GEH Beta: 0,50

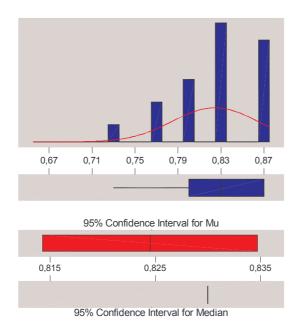
Anderson-Darling	Normality Test
A-Squared: P-Value:	5,815 0,000
Mean StDev Variance Skewness Kurtosis N	0,840167 0,040942 1,68E-03 -1,80282 3,55627 60
Minimum 1st Quartile Median 3rd Quartile Maximum	0,700000 0,830000 0,870000 0,870000 0,870000
95% Confidence I	nterval for Mu
0,829590	0,850743
95% Confidence Int	erval for Sigma
0,034704	0,049935
95% Confidence Into	erval for Mediar
0,830000	0,870000



Variable: GEH Beta: 1,00

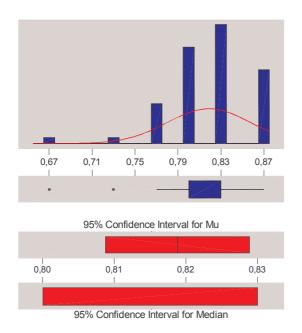
Anderson-Darling I	Normality Test
A-Squared: P-Value:	3,253 0,000
Mean StDev Variance Skewness Kurtosis N	0,830167 0,035725 1,28E-03 -5,8E-01 -2,8E-01
Minimum 1st Quartile Median 3rd Quartile Maximum	0,730000 0,800000 0,830000 0,870000 0,870000
95% Confidence I	nterval for Mu
0,820938	0,839395
95% Confidence Int	erval for Sigma
0,030281	0,043572
95% Confidence Inte	erval for Median
0,830000	0,830000

11.2.2.4.2 GEH AS A FUNCTION OF γ

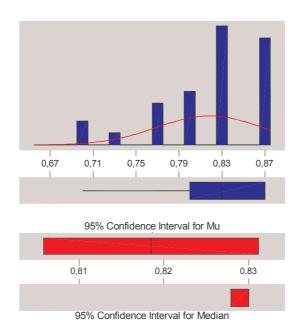

Descriptive Statistics

Variable: GEH Gamma: 0,5

Anderson-Darling Normality Test


A-Squared P-Value:	2,385 0,000
Mean StDev Variance Skewness Kurtosis N	0,820167 0,043198 1,87E-03 -4,8E-01 -3,4E-01
Minimum 1st Quartil Median 3rd Quartil Maximum	0,830000
95% Confiden	ce Interval for Mu
0,809007	0,831326
95% Confidence	e Interval for Sigma
0,036616	0,052687
95% Confidence	e Interval for Mediar
0,800000	0,830000

Variable: GEH Gamma: 1,0


Anderson-Darling N	lormality Test					
A-Squared: P-Value:	2,648 0,000					
Mean StDev Variance Skewness Kurtosis N	0,824500 0,039506 1,56E-03 -6,1E-01 -2,2E-01 60					
Minimum 1st Quartile Median 3rd Quartile Maximum	0,730000 0,800000 0,830000 0,870000 0,870000					
95% Confidence In	iterval for Mu					
0,814294	0,834706					
95% Confidence Inte	erval for Sigma					
0,033487	0,048185					
95% Confidence Inte	95% Confidence Interval for Median					
0,830000	0,830000					

Descriptive Statistics

Variable: GEH Gamma: 1,5

Anderson-Darling Normality Test						
A-Squared: P-Value:	2,341 0,000					
Mean StDev Variance Skewness Kurtosis N	0,818833 0,038930 1,52E-03 -9,4E-01 2,43161 60					
Minimum 1st Quartile Median 3rd Quartile Maximum	0,670000 0,800000 0,830000 0,830000 0,870000					
95% Confidence II	nterval for Mu					
0,808777	0,828890					
95% Confidence Interval for Sigma						
0,032999	0,047482					
95% Confidence Inte	erval for Median					
0.800000	0.830000					

Variable: GEH Gamma: 2,0 Anderson-Darling Normality Test A-Squared: 2,879 P-Value: 0,000 Mean 0,818500 StDev 0,049018 2,40E-03 Variance Skewness -9,5E-01 Kurtosis 0,345363 Minimum 0,700000 1st Quartile 0,800000 Median 0,830000 3rd Quartile 0,870000 Maximum 0,870000 95% Confidence Interval for Mu 0.805837 0.831163 95% Confidence Interval for Sigma 0,041550 0,059786

95% Confidence Interval for Median

0,830000

0,827920

11.2.2.4.3 GENERAL LINEAR MODEL: GEH VERSUS BETA; GAMMA

Beta f	Type I ixed ixed		s 0.15 0.50 1 .0 1.5 2.0	.00		
Analysis of Variance for GEH. using Adjusted SS for Tests						
Source	DF	Seq SS	Adj SS	Adj MS	F	P
Beta	3	0.064347	0.064347	0.021449	13.50	0.000
Gamma	3	0.001373	0.001373	0.000458	0.29	0.834
Beta*Gamma	9	0.013033	0.013033	0.001448	0.91	0.516
Error	224	0.355987	0.355987	0.001589		
Total	239	0.434740				

Unusual Observations for GEH

Obs	GEH	Fit	SE Fit	Residual	St. Resid
ODS	GEII	ric	02 110	11001000	
42	0.670000	0.796000	0.010293	-0.126000	-3.27R
52	0.700000	0.795333	0.010293	-0.095333	-2.48R
58	0.700000	0.795333	0.010293	-0.095333	-2.48R
62	0.730000	0.820667	0.010293	-0.090667	-2.35R
78	0.730000	0.808000	0.010293	-0.078000	-2.03R
115	0.700000	0.804000	0.010293	-0.104000	-2.70R
132	0.700000	0.833333	0.010293	-0.133333	-3.46R
138	0.730000	0.851333	0.010293	-0.121333	-3.15R
180	0.700000	0.836667	0.010293	-0.136667	-3.55R
222	0.730000	0.813333	0.010293	-0.083333	-2.16R

11.2.2.5 C-LOGIT ROUTE CHOICE MODEL WITH VARYING SCALE FACTOR, INITIAL K-SP **BETA AND GAMMA**

ROUTE CHOICE: CLOGIT (MAXIMUM NUMBER OF ROUTES = 4 FIXED) DESIGN FACTOR θ, LEVELS 10, 60, 100

DESIGN FACTOR INITIAL K-SP (KINITIAL), LEVELS 2, 3 DESIGN FACTOR β , LEVELS 0.10, 0.15, 0.5, 1.0 DESIGN FACTOR γ , LEVELS 0.5, 1.0, 1.5, 2.0

Type Levels Values

Factor

11.2.2.5.1 GENERAL LINEAR MODEL: GEH VERSUS SCALE; KINITIAL; BETA; GAMMA

3 10 60 100 Scale Fa fixed 2 2 3 fixed Kinitial fixed 4 0.10 0.15 0.50 1.00 4 0.5 1.0 1.5 2.0 Gamma fixed Analysis of Variance for GEH. using Adjusted SS for Tests Adj SS Source DF Seq SS Adj MS F Scale Fa 2 0.20435 0.20435 0.10217 11.19 0.000 Kinitial 1 2.30400 2.30400 2.30400 252.26 0.000 Beta 3 0.85401 0.85401 0.28467 31.17 0.000 0.87 0.456 0.00795 3 0.02386 0.02386 Gamma Error 1430 13.06090 13.06090 0.00913 Total 1439 16.44711 Unusual Observations for GEH St Resid Obs GEH Fit SE Fit Residual 40 0.600000 0.806181 0.007964 -0.206181 -2.16R 0.007964 -0.433958 44 0.333333 0.767292 -4.56R 47 0.533333 0.769329 0.007964 -0.235995 -2.48R 48 0.533333 0.758310 0.007964 -0.224977 -2.36R 0.007964 -0.259514 -2.72R 56 0.466667 0.726181 0.007964 -0.231644 59 0.466667 0.698310 -2.43R 72 0.466667 0.777847 0.007964 -0.311181 -3.27R 0.007964 -0.336644 91 0.333333 0.669977 -3.53R 0.007964 -0.449977 96 0.200000 0.649977 -4.72R0.200000 0.687292 0.007964 -0.487292 -5.12R 156 158 0.400000 0.686458 0.007964 -0.286458 -3.01R 159 0.333333 0.689329 0.007964 -0.355995 -3.74R190 0.333333 0.658125 0.007964 -0.324792 -3.41R225 0.500000 0.822662 0.007964 -0.322662 -3.39R 251 0.433333 0.698310 0.007964 -0.264977 -2.78R 0.007964 -0.278310 256 0.400000 0.678310 -2.92R 269 0.466667 0.737477 0.007964 -0.270810 -2.84R 281 0.300000 0.666458 0.007964 -0.366458 -3.85R 0.200000 0.658958 0.007964 -0.458958 284 -4.82R 0.333333 0.657477 0.007964 -0.324144 285 -3.40R0.433333 0.660995 0.007964 -0.227662 287 -2.39R 347 0.366667 0.698310 0.007964 -0.331644 -3.48R 374 0.333333 0.705995 0.007964 -0.372662 -3.91R 0.166667 0.666458 0.007964 -0.499792 377 -5.25R 380 0.200000 0.658958 0.007964 -0.458958 -4.82R 473 0.400000 0.666458 0.007964 -0.266458 -2.80R 0.007964 -0.344977 544 0.333333 0.678310 -3.62R0.007964 -0.267662 630 0.466667 0.734329 -2.81R 645 0.366667 0.785347 0.007964 -0.418681 -4.40R0.714329 0.007964 -0.247662 657 0.466667 -2.60R0.333333 0.708866 0.007964 -0.375532 663 -3.94R0.007964 -0.199792 0.466667 -2.10R 665 0.666458 0.007964 -0.425625 668 0.233333 0.658958 -4.47R732 0.466667 0.687292 0.007964 -0.220625 -2.32R 0.366667 0.658125 0.007964 -0.291458 766 -3.06R0.533333 0.747083 0.007964 -0.213750 -2.24R 826 0.233333 0.695440 0.007964 -0.462106 -4.85R 0.007964 -0.231644 827 0.466667 0.698310 -2.43R899 0.633333 0.826181 0.007964 -0.192847 -2.02R

0.007964 -0.298310

-3.13R

923 0.400000 0.698310

925	0.300000	0.685810	0.007964	-0.385810	-4.05R
950	0.433333	0.705995	0.007964	-0.272662	-2.86R
951	0.500000	0.708866	0.007964	-0.208866	-2.19R
1048	0.433333	0.697847	0.007964	-0.264514	-2.78R
1117	0.366667	0.685810	0.007964	-0.319144	-3.35R
1120	0.466667	0.678310	0.007964	-0.211644	-2.22R
1146	0.266667	0.667106	0.007964	-0.400440	-4.20R
1150	0.233333	0.658125	0.007964	-0.424792	-4.46R
1191	0.566667	0.817199	0.007964	-0.250532	-2.63R
1209	0.400000	0.694792	0.007964	-0.294792	-3.10R
1219	0.600000	0.797847	0.007964	-0.197847	-2.08R
1220	0.566667	0.786829	0.007964	-0.220162	-2.31R
1233	0.466667	0.714329	0.007964	-0.247662	-2.60R
1238	0.466667	0.705995	0.007964	-0.239329	-2.51R
1245	0.300000	0.657477	0.007964	-0.357477	-3.75R
1306	0.466667	0.695440	0.007964	-0.228773	-2.40R
1342	0.266667	0.658125	0.007964	-0.391458	-4.11R
1395	0.400000	0.746181	0.007964	-0.346181	-3.63R
1438	0.400000	0.658125	0.007964	-0.258125	-2.71R
1440	0.300000	0.649977	0.007964	-0.349977	-3.67R

R denotes an observation with a large standardised residual.

11.3 BRUNNSVIKEN MODEL

11.3.1 EXPERIMENT DESCRIPTION

This section presents the validation results of dynamic traffic assignment parameters based on a standard comparison between model and system outputs for a medium-sized urban network that models a part of the city of Stockholm in Sweden.

The set of real traffic data comprises traffic counts gathered at 23 detector stations from 3 May 2001 to 4 May 2001. The level of aggregation was 30 minutes over 24 hours. From the data, we considered only the morning peak time (from 07:00 to 08:30) and calculated the average traffic count for each detector.

Depending on the route choice model employed (proportional, logit or C-logit), the experimental design factors for the simulations were as follows:

- o Proportional route choice model:
 - \circ Alpha factor (α), for which values of 2, 2.5 and 3 were considered
 - o Initial K-SP, for which values of 1, 2 and 3 were considered
 - Maximum number of routes (MaxNumberRoutes), for which values of 3, 4 and
 were considered

If these three factors are combined, the total number of experiments is 27 (3 * 3 * 3), each of which was simulated 15 times (replications). The following random seeds were changed: 9182, 1670, 6534, 8159, 8538, 5768, 1277, 1065, 1846, 8740, 1489, 3334, 6232, 6237 and 1870.

- o Logit route choice model:
 - \circ Scale factor (θ), for which values of 1, 10, 60 and 100 were considered
 - o Initial K-SP, for which values of 1, 2 and 3 were considered
 - Maximum number of routes (MaxNumberRoutes), for which values of 3, 4 and
 were considered

If these three factors are combined, the total number of experiments is 36 (4 * 3 * 3), each of which was simulated 15 times (replications). The random seeds were changed as in the proportional route choice model.

- o C-logit route choice model with fixed beta and gamma:
 - \circ Scale factor (θ), for which values of 1, 10, 60 and 100 were considered
 - o Initial K-SP, for which values of 1, 2 and 3 were considered
 - Maximum number of routes (MaxNumberRoutes), for which values of 3, 4 and
 were considered
 - o Beta (β) fixed to 0.15
 - Gamma (γ) fixed to 1

If these factors are combined, the total number of experiments is 36 (4 * 3 * 3), each of which was simulated 15 times (replications). The random seeds were changed as in the proportional route choice model.

- C-logit route choice model with varying beta and gamma:
 - Scale factor (θ) fixed to 10
 - Initial K-SP fixed to 1
 - Maximum number of routes (MaxNumberRoutes) fixed to 3
 - \circ Beta (β), for which values of 0.10, 0.15, 0.50 and 1 were considered
 - Gamma (γ), for which values of 0.5, 1, 1.5 and 2 were considered

If these factors are combined, the total number of experiments is 16 (4 * 4), each of which was simulated 15 times (replications). The random seeds were changed as in the proportional route choice model.

- o C-logit route choice model with varying scale factor, *Initial K-SP*, beta and gamma:
 - \circ Scale factor (θ), for which values of 10, 60 and 100 were considered
 - o Initial K-SP, for which values of 2 and 3 were considered
 - Maximum number of routes (MaxNumberRoutes) fixed to 4
 - \circ Beta (β), for which values of 0.10, 0.15, 0.50 and 1 were considered
 - Gamma (γ), for which values of 0.5, 1, 1.5 and 2 were considered

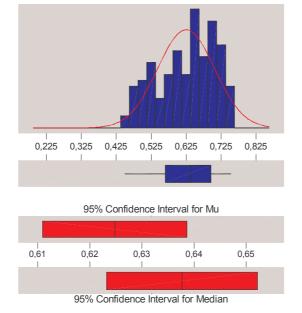
If these factors are combined, the total number of experiments is 144 (3 * 2 * 4 * 4), each of which was simulated 15 times (replications). The random seeds were changed as in the proportional route choice model. Experiment Results

In the following sections, we analyse the experiments, which have been grouped by route choice function.

11.3.1.1 PROPORTIONAL ROUTE CHOICE

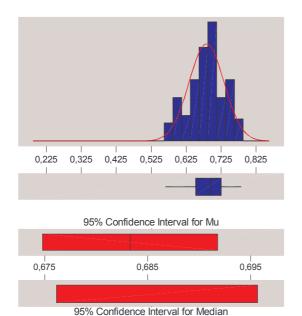
ROUTE CHOICE: PROPORTIONAL

DESIGN FACTOR α, LEVELS 2.0, 2.5, 3.0


DESIGN FACTOR INITIAL K-SP (KINITIAL), LEVELS 1, 2, 3

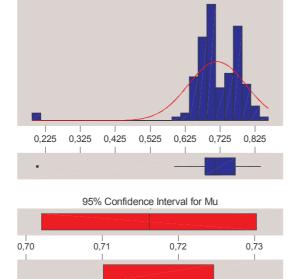
DESIGN FACTOR MAXIMUM NUMBER OF ROUTES (NUMBER OF ALTERNATIVES),

LEVELS 3, 4, 5


11.3.1.1.1 GEH AS A FUNCTION OF α

Descriptive Statistics

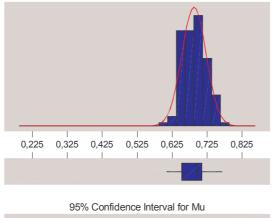
Alpha: 2					
Anderson-Darling Normality Test					
A-Squared: P-Value:	2,066 0,000				
Mean StDev Variance Skewness Kurtosis N	0,624799 0,081305 6,61E-03 -4,1E-01 -9,0E-01 135				
Minimum 1st Quartile Median 3rd Quartile Maximum	0,449275 0,565217 0,637681 0,695652 0,753623				
95% Confidence Ir	nterval for Mu				
0,610959	0,638639				
95% Confidence Inte	erval for Sigma				
0,072627	0,092357				
95% Confidence Inte	erval for Median				
0,623188	0,652174				

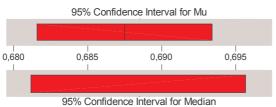

Variable: GEH

Variable: GEH Alpha: 2,5

Anderson-Darling Normality Test					
A-Squared: P-Value:	1,130 0,006				
Mean StDev Variance Skewness Kurtosis N	0,683306 0,049939 2,49E-03 -2,8E-01 -5,8E-01 135				
Minimum 1st Quartile Median 3rd Quartile Maximum	0,565217 0,652174 0,695652 0,724638 0,782609				
95% Confidence Interval for Mu					
0,674806	0,691807				
95% Confidence Interval for Sigma					
0,044609	0,056727				
95% Confidence Interval for Median					
0,676150	0,695652				

Descriptive Statistics

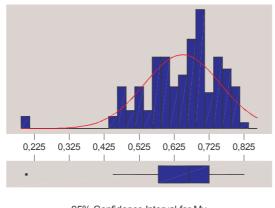

95% Confidence Interval for Median

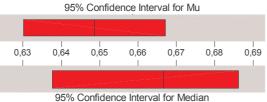

Variable: GEH Alpha: 3,0

Anderson-Darling Normality Test					
A-Squared: P-Value:	5,251 0,000				
Mean StDev Variance Skewness Kurtosis N	0,716157 0,082733 6,84E-03 -3,47631 20,4935 135				
Minimum 1st Quartile Median 3rd Quartile Maximum	0,202899 0,681159 0,710145 0,768116 0,840580				
95% Confidence Interval for Mu					
0,702074	0,730240				
95% Confidence Interval for Sigma					
0,073902	0,093979				
95% Confidence Interval for Median					
0,710145 0,724638					

11.3.1.1.2 GEH AS A FUNCTION OF INITIAL K-SP

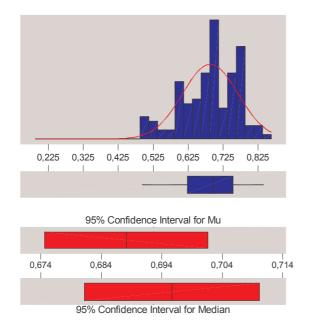
Descriptive Statistics





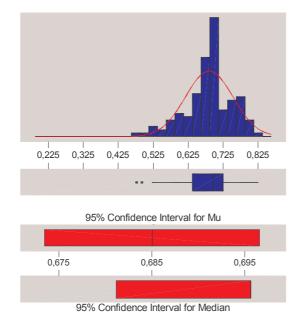
Variable: GEH

Anderson-Darling Normality Test A-Squared: 2,104 P-Value: 0,000 Mean 0,687493 StDev 0,034769 1,21E-03 Variance -1,0E-01 Skewness -9,2E-01 Kurtosis 135 Minimum 1st Quartile 0,608696 0,652174 Median 0,695652 3rd Quartile 0,710145 Maximum 0,768116 95% Confidence Interval for Mu 0,681575 0,693412 95% Confidence Interval for Sigma 0,031057 0,039495 95% Confidence Interval for Median 0,681159 0,695652


Descriptive Statistics

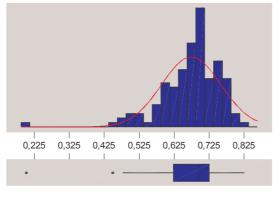
Variable: GEH Kinitial: 2

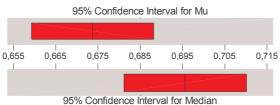
Anderson-Darling	Normality Test
A-Squared: P-Value:	1,424 0,001
Mean StDev Variance Skewness Kurtosis N	0,648631 0,108273 1,17E-02 -1,13797 2,70137
Minimum 1st Quartile Median 3rd Quartile Maximum	0,202899 0,579710 0,666667 0,724638 0,826087
95% Confidence	Interval for Mu
0,630201	0,667062
95% Confidence In	terval for Sigma
0,096716	0,122990
95% Confidence Int	terval for Median
0,637681	0,686169



Variable: GEH Kinitial: 3

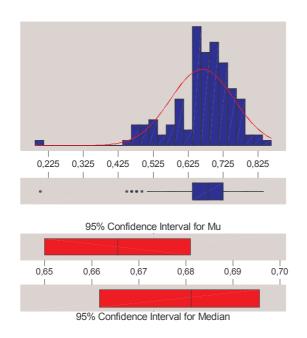
Anderson-Darling N A-Squared: P-Value:	Normality Test 1,319 0,002			
Mean StDev Variance Skewness Kurtosis N	0,688137 0,079377 6,30E-03 -5,3E-01 -2,0E-01 135			
Minimum 1st Quartile Median 3rd Quartile Maximum	0,492754 0,623188 0,695652 0,753623 0,840580			
95% Confidence Interval for Mu				
0,674626	0,701649			
95% Confidence Into	erval for Sigma			
0,070905	0,090167			
95% Confidence Inte	erval for Median			
0,681159	0,710145			


11.3.1.1.3 GEH AS A FUNCTION OF THE NUMBER OF ALTERNATIVES


Descriptive Statistics

Variable: GEH Numalternati: 3

Anderson-Darling	Normality Test			
A-Squared: P-Value:	1,323 0,002			
Mean StDev Variance Skewness Kurtosis N	0,685024 0,067820 4,60E-03 -5,3E-01 0,501858 135			
Minimum 1st Quartile Median 3rd Quartile Maximum	0,478261 0,637681 0,695652 0,724638 0,826087			
95% Confidence Interval for Mu				
0,673480	0,696569			
95% Confidence In	terval for Sigma			
0,060581	0,077039			
95% Confidence Int	terval for Median			
0,681159	0,695652			



Variable: GEH Numalternati: 4

Anderson-Darling A-Squared: P-Value:	Normality Test 2,536 0,000		
Mean StDev Variance Skewness Kurtosis N	0,673752 0,084800 7,19E-03 -1,71293 6,41583 135		
Median	0,202899 0,623188 0,695652 0,724638 0,826087		
95% Confidence I	nterval for Mu		
0,659317	0,688187		
95% Confidence Int	erval for Sigma		
0,075749	0,096328		
95% Confidence Inte	erval for Mediar		
0.681159	0.710145		

Descriptive Statistics

Variable: GEH Numalternati: 5

Anderson-Darling Normality Test					
A-Squared: P-Value:	2,480 0,000				
Mean StDev Variance Skewness Kurtosis N	0,665486 0,090992 8,28E-03 -1,37230 4,21913 135				
Minimum 1st Quartile Median 3rd Quartile Maximum	0,202899 0,637681 0,681159 0,724638 0,840580				
95% Confidence Interval for Mu					
0,649997	0,680975				
95% Confidence Int	erval for Sigma				
0,081280	0,103361				
95% Confidence Interval for Median					
0,661657	0,695652				

11.3.1.1.4 GENERAL LINEAR MODEL: GEH VERSUS ALPHA; KINITIAL; NUMALTERNATIVES

Factor Type Levels Values
Alpha fixed 3 2,0 2,5 3,0
Kinitial fixed 3 1 2 3
Numalter fixed 3 3 4 5

Analysis of Variance for GEH, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F

Alpha	2	0.578186	0.578186	0.289093	73.64	0.000
Kinitial	2	0.138214	0.138214	0.069107	17.60	0.000
Numalter	2	0.025971	0.025971	0.012986	3.31	0.038
Alpha*Kinitial	4	0.424354	0.424354	0.106089	27.02	0.000
Alpha*Numalter	4	0.009620	0.009620	0.002405	0.61	0.654
Kinitial*Numalter	4	0.034246	0.034246	0.008562	2.18	0.071
Alpha*Kinitial*Numalter	8	0.020834	0.020834	0.002604	0.66	0.724
Error	378	1.483946	1.483946	0.003926		
Total	404	2.715372				
Unusual Observations for Obs GEH Fit		SE Fit Resi	dual St 1	Resid		
69 0.724638 0.569082	0.0	016178 0.15	5556 2	2.57R		
72 0.724638 0.569082	0.0	016178 0.15	5556	2.57R		
100 0.492754 0.646377	0.0	016178 -0.15	3623 -2	2.54R		
119 0.739130 0.612560				2.09R		
230 0.565217 0.701449		016178 -0.13		2.25R		
338 0.202899 0.705314		016178 -0.50		3.30R		
353 0.202899 0.698551		016178 -0.49		8.19R		
354 0.826087 0.698551				2.11R		
373 0.594203 0.744928	0.0	016178 -0.15	0/25 -2	2.49R		

11.3.1.1.5 COEFFICIENTS GENERAL LINEAR MODEL: GEH VERSUS ALPHA; KINITIAL; NUMALTERNATIVES

0.674754

-0.049955

0.008553

0.012739

-0.026123

0.010270

-0.001002

0.059080

-0.036679

-0.007801

0.006262

-0.014028

0.002398

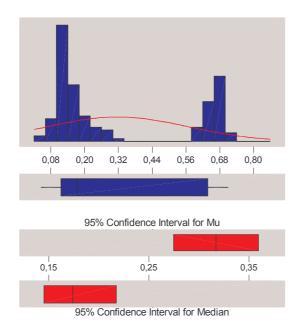
0.014851

-0.000930

11.3.1.2 LOGIT ROUTE CHOICE

ROUTE CHOICE: CLOGIT

DESIGN FACTOR θ , LEVELS 1, 10, 60, 100,

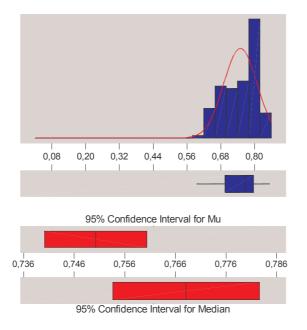

DESIGN FACTOR INITIAL K-SP (KINITIAL), LEVELS 1, 2, 3

DESIGN FACTOR MAXIMUM NUMBER OF ROUTES (NUMBER OF ALTERNATIVES),

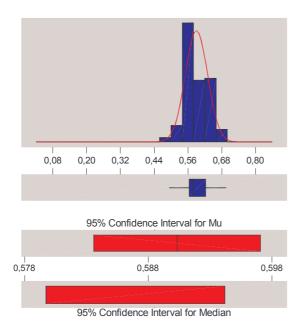
LEVELS 3, 4, 5

11.3.1.2.1 GEH AS A FUNCTION OF θ

Descriptive Statistics

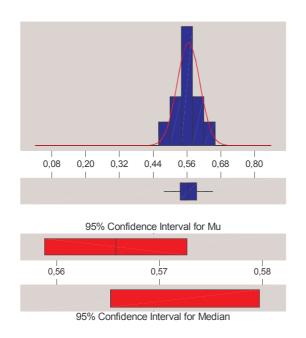

Scale: 1 Anderson-Darling Normality Test A-Squared: P-Value: 15,802 0,000 Mean 0,317230 StDev 0,248636 Variance 6,18E-02 Skewness 0,637016 Kurtosis -1,48616 Minimum 0,043478 0,115942 0,173913 1st Quartile Median 3rd Quartile 0,637681 Maximum 0,710145 95% Confidence Interval for Mu 0,274906 0,359554 95% Confidence Interval for Sigma

Variable: GEH


0,222097 0,282434 95% Confidence Interval for Median

95% Confidence Interval for Median 0,144928 0,217391

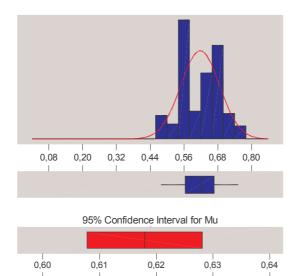
Descriptive Statistics


Variable: GEH Scale: 10				
Anderson-Darling N	Normality Test			
A-Squared: P-Value:	2,768 0,000			
Mean StDev Variance Skewness Kurtosis N	0,750295 0,059412 3,53E-03 -5,7E-01 -6,3E-01 135			
Minimum 1st Quartile Median 3rd Quartile Maximum	0,594203 0,695652 0,768116 0,797101 0,855072			
95% Confidence Interval for Mu				
0,740182	0,760409			
95% Confidence Interval for Sigma				
0,053070	0,067488			
95% Confidence Interval for Median				
0,753623 0,782609				

Variable: GEH Scale: 60

Anderson-Darling I A-Squared:	1,167
P-Value:	0,005
Mean StDev Variance Skewness Kurtosis N	0,590338 0,039560 1,56E-03 0,119663 0,142079 135
Minimum 1st Quartile Median 3rd Quartile Maximum	0,492754 0,565217 0,579710 0,623188 0,695652
95% Confidence II	nterval for Mu
0,583604	0,597072
5% Confidence Int	erval for Sigma
0,035337	0,044937
5% Confidence Inte	erval for Median
0,579710	0,594203

Descriptive Statistics

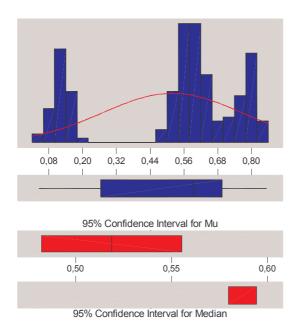


Variable: GEH

Anderson-Darling Normality Test	
1,230 0,003	
0,565754 0,040623 1,65E-03 -8,2E-02 -2,8E-01 135	
0,478261 0,536232 0,565217 0,594203 0,652174	
95% Confidence Interval for Mu	
0,572669	
95% Confidence Interval for Sigma	
0,046145	
95% Confidence Interval for Median	
0,579710	

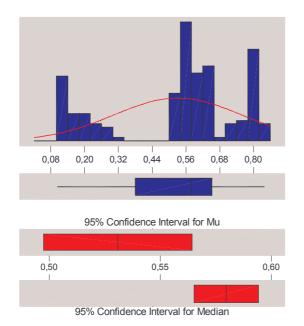
11.3.1.2.2 GEH AS A FUNCTION OF INITIAL K-SP

Descriptive Statistics



95% Confidence Interval for Median

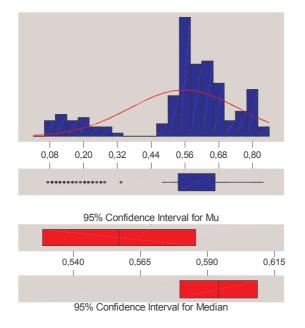
Variable: GEH Kinitial: 1


Anderson-Darling Normality Test		
A-Squared: P-Value:	2,072 0,000	
Mean StDev Variance Skewness Kurtosis N	0,617955 0,069052 4,77E-03 -7,4E-02 -8,3E-01 180	
Minimum 1st Quartile Median 3rd Quartile Maximum	0,478261 0,565217 0,623188 0,666667 0,753623	
95% Confidence In	iterval for Mu	
0,607799	0,628111	
95% Confidence Inte	erval for Sigma	
0,062580	0,077029	
95% Confidence Inte	rval for Median	
0,599796	0,637681	

Descriptive Statistics

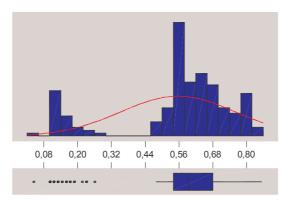
Variable: GEH Kinitial: 2

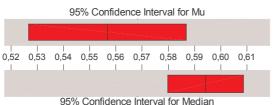
Anderson-Darling N	lormality Test
A-Squared: P-Value:	13,122 0,000
Mean StDev Variance Skewness Kurtosis N	0,518841 0,247735 6,14E-02 -7,6E-01 -8,3E-01 180
Minimum 1st Quartile Median 3rd Quartile Maximum	0,043478 0,264493 0,594203 0,695652 0,855072
95% Confidence In	nterval for Mu
0,482403	0,555278
95% Confidence Inte	erval for Sigma
0,224514	0,276354
5% Confidence Inte	rval for Media
0,579710	0,594203



Variable: GEH Kinitial: 3

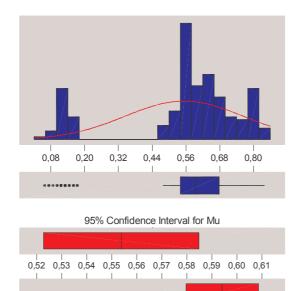
Anderson-Darling N A-Squared:	9,472
P-Value:	0,000
Mean StDev Variance Skewness Kurtosis N	0,530918 0,227454 5,17E-02 -6,7E-01 -7,7E-01 180
Minimum 1st Quartile Median 3rd Quartile Maximum	0,101449 0,380435 0,579710 0,652174 0,840580
95% Confidence Ir	nterval for Mu
0,497464	0,564372
95% Confidence Inte	erval for Sigma
0,206135	0,253731
95% Confidence Inte	rval for Median
0,565217	0,594203


11.3.1.2.3 GEH AS A FUNCTION OF THE NUMBER OF ALTERNATIVES


Descriptive Statistics

Variable: GEH Numalternati: 3

Anderson-Darling	Normality Test
A-Squared: P-Value:	10,900 0,000
Mean StDev Variance Skewness Kurtosis N	0,557085 0,193855 3,76E-02 -1,15195 0,576835 180
Minimum 1st Quartile Median 3rd Quartile Maximum	0,072464 0,536232 0,594203 0,666667 0,840580
95% Confidence I	nterval for Mu
0,528573	0,585598
95% Confidence Int	erval for Sigma
0,175685	0,216251
95% Confidence Inte	erval for Median
0,579710	0,608696



Variable: GEH Numalternati: 4

Anderson-Darling N A-Squared: P-Value:	Normality Test 12,106 0,000
Mean StDev Variance Skewness Kurtosis N	0,556763 0,204212 4,17E-02 -1,17473 0,437135 180
	0,043478 0,539855 0,594203 0,681159 0,855072
95% Confidence Ir	nterval for Mu
0,526727	0,586799
5% Confidence Inte	erval for Sigma
0,185071	0,227804
5% Confidence Inte	erval for Median
0.579710	0.608696

Descriptive Statistics

95% Confidence Interval for Median

Variable: GEH Numalternati: 5

Anderson-Darling Normality Test 13,156 A-Squared: P-Value: 0,000 Mean 0,553865 StDev 0,210875 Variance 4,45E-02 Skewness -1,16057 Kurtosis 0,355513 Ν 180 Minimum 0,057971 0,539855 0,594203 1st Quartile Median 3rd Quartile 0,677536 Maximum 0,840580 95% Confidence Interval for Mu 95% Confidence Interval for Sigma 0,191109 0,235236 95% Confidence Interval for Median 0,579710 0,608696

11.3.1.2.4 GENERAL LINEAR MODEL: GEH VERSUS SCALE; KINITIAL; NUMALTERNATIVES

Factor Type Levels Values

Scale fixed 4 1 10 60 100

Kinitial fixed 3 1 2 3 Numalter fixed 3 3 4 5

Analysis of Variance for GEH, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F

Scale Kinitial Numalter Scale*Kinitia Scale*Numalte Kinitial*Numa Scale*Kinitia Error Total Unusual Observ	r lter l*Numalter	2 1.0 2 0.0 6 7.3 6 0.0 4 0.0 12 0.0 504 0.7 539 22.1	5270 1. 0113 0. 0915 7. 2482 0. 1094 0. 4435 0.	96484 4.3216 05270 0.5263 00113 0.0005 30915 1.2181 02482 0.0041 01094 0.0027 04435 0.0037 74458 0.0014	7 0.38 9 824.59 4 2.80 3 1.85 0 2.50	0.000 0.000 0.682 0.000 0.011 0.118 0.003
Obs GEH 69 0.043478 98 0.333333 103 0.115942 112 0.260870 139 0.753623 141 0.594203 145 0.753623 181 0.695652 201 0.695652 205 0.855072 227 0.623188 229 0.666667 258 0.710145 274 0.666667 289 0.666667 290 0.492754 304 0.666667 305 0.492754 304 0.695652 314 0.695652 315 0.695652 417 0.478261 432 0.478261 447 0.478261 447 0.492754 460 0.652174 472 0.492754 475 0.652174 487 0.492754 490 0.652174	0.224155 0.224155 0.167150 0.676329 0.676329 0.676329 0.77778 0.778744 0.778744 0.771981 0.771981 0.795169 0.571981 0.570048 0.570048 0.570048 0.570048 0.570048 0.601932 0.607729 0.606763	0.009924 0.009924 0.009924 0.009924 0.009924 0.009924 0.009924 0.009924 0.009924 0.009924 0.009924 0.009924 0.009924 0.009924 0.009924 0.009924 0.009924 0.009924 0.009924 0.009924	-0.074396 0.109179 -0.108213 0.093720 0.077295 -0.082126 0.077295 -0.082126 -0.083092 0.076329 -0.148792 -0.105314 -0.085024 0.094686 0.096618 -0.077295 0.079227 0.087923 0.088889 -0.074396 -0.074396 -0.074396 -0.077295 0.082126 -0.080193 0.079227 -0.080193	-2.00R 2.94R -2.91R 2.52R 2.08R -2.21R 2.08R -2.21R -2.24R 2.06R -4.01R -2.84R -2.29R 2.55R 2.60R -2.08R 2.13R 2.37R 2.37R 2.39R -2.00R -2.00R -2.00R -2.00R -2.00R -2.00R -2.00R -2.13R -2.16R 2.13R		

11.3.1.2.5 COEFFICIENTS GENERAL LINEAR MODEL: GEH VERSUS SCALE; KINITIAL; NUMALTERNATIVES

0.062050 -0.037064 0.001181 0.000859 0.281911 -0.162292 -0.125067 0.066801 -0.081696 0.052201 0.013634 -0.000215 -0.009447 0.000859 -0.001503

-0.000537

-0.004643

0.002442

-0.003838

-0.000376

-0.014359

0.004321

-0.013875

-0.000268

0.001959

0.002281

0.009850

-0.002630

0.006253

-0.003408

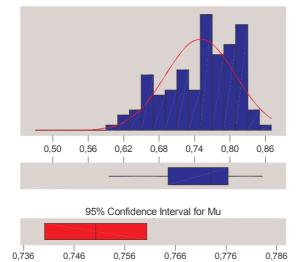
0.000617

0.002308

11.3.1.3 C-LOGIT ROUTE CHOICE MODEL WITH FIXED BETA AND GAMMA

ROUTE CHOICE: CLOGIT (β =0.15 AND γ =1.0 FIXED)

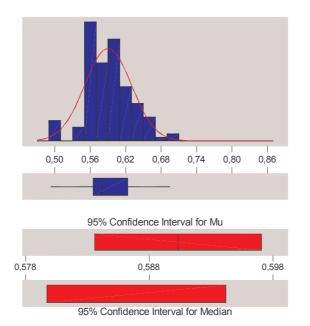
DESIGN FACTOR θ, LEVELS 10, 60, 100,


DESIGN FACTOR INITIAL K-SP (KINITIAL), LEVELS 1, 2, 3

DESIGN FACTOR MAXIMUM NUMBER OF ROUTES (NUMBER OF ALTERNATIVES),

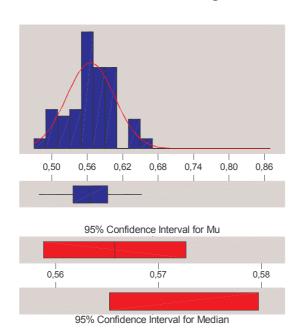
LEVELS 3, 4, 5

11.3.1.3.1 GEH AS A FUNCTION OF θ


Descriptive Statistics

95% Confidence Interval for Median

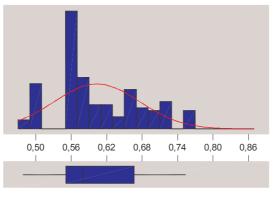
Scale:	10		
Anderson-Darling Normality Test			
A-Squared: P-Value:	2,768 0,000		
Mean StDev Variance Skewness Kurtosis N	0,750295 0,059412 3,53E-03 -5,7E-01 -6,3E-01 135		
Minimum 1st Quartile Median 3rd Quartile Maximum	0,594203 0,695652 0,768116 0,797101 0,855072		
95% Confidence Interval for Mu			
0,740182	0,760409		
95% Confidence Interval for Sigma			
0,053070	0,067488		
95% Confidence Interval for Median			
0,753623	0,782609		

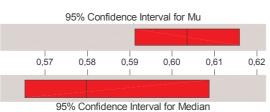

Variable: GEH

Variable: GEH Scale: 60

Anderson-Darling N A-Squared: P-Value:	lormality Test 1,167 0,005	
Mean StDev Variance Skewness Kurtosis N	0,590338 0,039560 1,56E-03 0,119663 0,142079 135	
Minimum 1st Quartile Median 3rd Quartile Maximum	0,492754 0,565217 0,579710 0,623188 0,695652	
95% Confidence Interval for Mu		
0,583604	0,597072	
95% Confidence Interval for Sigma		
0,035337	0,044937	
95% Confidence Interval for Median		
0,579710	0,594203	

Descriptive Statistics

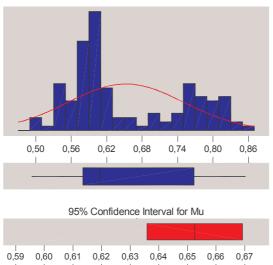



Variable: GEH Scale: 100

Anderson-Darling A-Squared:	1,230	
P-Value:	0,003	
Mean StDev Variance Skewness Kurtosis N	0,565754 0,040623 1,65E-03 -8,2E-02 -2,8E-01 135	
Minimum 1st Quartile Median 3rd Quartile Maximum	0,478261 0,536232 0,565217 0,594203 0,652174	
95% Confidence Interval for Mu		
0,558839	0,572669	
95% Confidence Interval for Sigma		
0,036287	0,046145	
95% Confidence Interval for Median		
0,565217	0,579710	

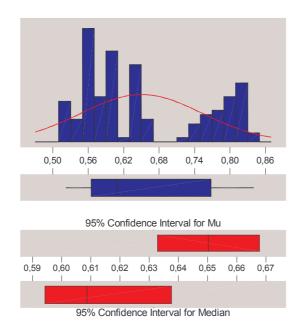
11.3.1.3.2 GEH AS A FUNCTION OF INITIAL K-SP

Descriptive Statistics



Variable: GEH Kinitial: 1

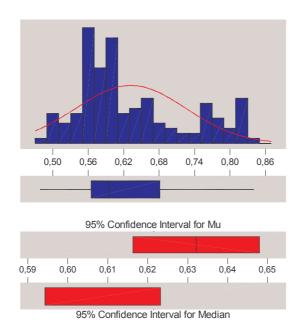
Anderson-Darling Normality Test A-Squared: 2,580 P-Value: 0,000 Mean 0,603543 0,072431 5,25E-03 StDev Variance 0,363739 Skewness -7,1E-01 Kurtosis Minimum 1st Quartile 0,478261 0,550725 Median 0,579710 3rd Quartile 0,666667 Maximum 0,753623 95% Confidence Interval for Mu 0,591213 0,615872 95% Confidence Interval for Sigma 0,082276 0,064700 95% Confidence Interval for Median 0,565217 0,608696


Descriptive Statistics

95% Confidence Interval for Median

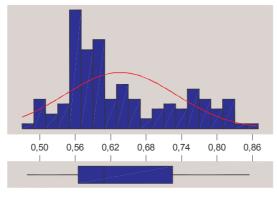
Variable: GEH Kinitial: 2

Anderson-Darling Normality Test		
A-Squared: P-Value:	6,914 0,000	
Mean StDev Variance Skewness Kurtosis N	0,652496 0,098111 9,63E-03 0,519378 -1,14927 135	
Minimum 1st Quartile Median 3rd Quartile Maximum	0,492754 0,579710 0,608696 0,768116 0,855072	
95% Confidence Ir	nterval for Mu	
0,635795	0,669197	
95% Confidence Inte	erval for Sigma	
0,087639	0,111447	
95% Confidence Inte	erval for Median	
0,594203	0,623188	



Variable: GEH Kinitial: 3

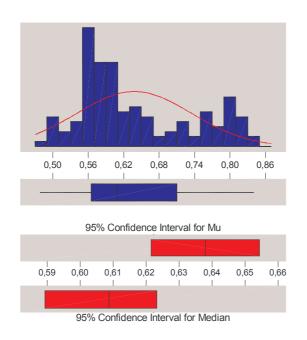
Anderson-Darling Normality Test			
A-Squared: P-Value:	7,173 0,000		
Mean StDev Variance Skewness Kurtosis N	0,650349 0,102776 1,06E-02 0,541940 -1,25073 135		
Minimum 1st Quartile Median 3rd Quartile Maximum	0,521739 0,565217 0,608696 0,768116 0,840580		
95% Confidence Interval for Mu			
0,632854	0,667844		
95% Confidence Interval for Sigma			
0,091806	0,116747		
95% Confidence Interval for Median			
0,594203	0,637681		


11.3.1.3.3 GEH AS A FUNCTION OF THE NUMBER OF ALTERNATIVES

Descriptive Statistics

Variable: GEH Numalternati: 3

Anderson-Darling	Normality Test
A-Squared: P-Value:	4,743 0,000
Mean StDev Variance Skewness Kurtosis N	0,632099 0,093203 8,69E-03 0,716832 -6,0E-01 135
Minimum 1st Quartile Median 3rd Quartile Maximum	0,478261 0,565217 0,594203 0,681159 0,840580
95% Confidence	Interval for Mu
0,616233	0,647964
95% Confidence In	terval for Sigma
0,083255	0,105873
95% Confidence In	terval for Media
0,594203	0,623188



Variable: GEH Numalternati: 4

Anderson-Darling Normality Test A-Squared: 4,290 P-Value: 0,000 Mean 0,636393 StDev 0.094381 8.91E-03 Variance 0,608808 Skewness -7,7E-01 Kurtosis 135 Minimum 0,478261 1st Quartile 0,565217 Median 0,608696 3rd Quartile 0,724638 Maximum 0,855072 95% Confidence Interval for Mu 0.620327 0.652459 95% Confidence Interval for Sigma 0,084307 0,107211 95% Confidence Interval for Median 0,594203 0,628198

Descriptive Statistics

Variable: GEH Numalternati: 5

Anderson-Darling Normality Test A-Squared: 5,016 P-Value: 0,000 Mean 0,637896 StDev 0,096768 Variance 9,36E-03 Skewness 0,620822 Kurtosis -8,4E-01 Ν 135 Minimum 0,478261 0,565217 0,608696 1st Quartile Median 0,710145 3rd Quartile Maximum 0,840580 95% Confidence Interval for Mu 0,621424 0,654368 95% Confidence Interval for Sigma 0,086439 0,109922 95% Confidence Interval for Median 0,589193 0,623188

11.3.1.3.4 GENERAL LINEAR MODEL: GEH VERSUS SCALE; KINITIAL; NUMALTERNATIVES

Factor Type Levels Values
Scale fixed 3 10 60 100
Kinitial fixed 3 1 2 3
Numalter fixed 3 3 4 5

Analysis of Variance for GEH, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F

C1-		2	2 7	1107	2 7	1107	1 25554	071 01	0 000
Scale Kinitial		2 2		1107 0663		1107 0663	1.35554		
Numalter		2)244		0244	0.10332		
Numarter Scale*Kinitial		4		0188		0188	0.02547		
Scale*Numalter		4		0286	0.1	0286			
Kinitial*Numal		4		0033		0033			
Scale*Kinitial		8				0201	0.00025		0.996
Error		378		3766		8766			0.550
Total		404		1489	0.0	0700	0.00133		
10001			0.0	_ 103					
Unusual Observ	ations for	GEH							
Obs GEH	Fit			Resid			Resid		
	0.676329			0.077			2.03R		
6 0.594203				-0.082			2.16R		
10 0.753623				0.077			2.03R		
46 0.695652				-0.082			2.16R		
66 0.695652				-0.083			2.18R		
70 0.855072				0.076			2.00R		
92 0.623188		0.0	10181	-0.148	792		3.91R		
94 0.666667				-0.105			2.76R		
123 0.710145	0.795169			-0.085			2.23R		
139 0.666667				0.094			2.49R		
154 0.666667				0.096			2.54R		
155 0.492754				-0.077			2.03R		
169 0.666667				0.096			2.54R		
170 0.492754				-0.077			2.03R		
191 0.681159				0.079			2.08R		
206 0.695652				0.087			2.31R		
221 0.695652				0.088			2.33R		
322 0.492754				-0.077			2.03R		
						2	2.16R		
				0.082					
337 0.492754	0.572947	0.0	10181	-0.080	193	-2	2.11R		
337 0.492754 340 0.652174	0.572947 0.572947	0.0	10181 10181	-0.080 0.079	193 227	-2 2	2.11R 2.08R		
337 0.492754 340 0.652174 352 0.492754	0.572947 0.572947 0.572947	0.0 0.0 0.0	10181 10181 10181	-0.080 0.079 -0.080	193 227 193	-2 2 -2	2.11R 2.08R 2.11R		
337 0.492754 340 0.652174 352 0.492754	0.572947 0.572947 0.572947	0.0 0.0 0.0	10181 10181 10181	-0.080 0.079	193 227 193	-2 2 -2	2.11R 2.08R		
337 0.492754 340 0.652174 352 0.492754 355 0.652174	0.572947 0.572947 0.572947 0.572947	0.0	10181 10181 10181 10181	-0.080 0.079 -0.080 0.079	193 227 193 227	-2 2 -2 2	2.11R 2.08R 2.11R 2.08R		
337 0.492754 340 0.652174 352 0.492754 355 0.652174	0.572947 0.572947 0.572947 0.572947	0.0	10181 10181 10181 10181	-0.080 0.079 -0.080 0.079	193 227 193 227	-2 2 -2 2	2.11R 2.08R 2.11R 2.08R		
337 0.492754 340 0.652174 352 0.492754 355 0.652174 11.3.1.3.5 GENE	0.572947 0.572947 0.572947 0.572947 RAL LINEAR M	0.0 0.0 0.0 0.0	10181 10181 10181 10181	-0.080 0.079 -0.080 0.079	193 227 193 227	-2 2 -2 2	2.11R 2.08R 2.11R 2.08R		
337 0.492754 340 0.652174 352 0.492754 355 0.652174 11.3.1.3.5 GENE	0.572947 0.572947 0.572947 0.572947 RAL LINEAR M	0.0 0.0 0.0 0.0	10181 10181 10181 10181 GEH	-0.080 0.079 -0.080 0.079	193 227 193 227	-2 2 -2 2	2.11R 2.08R 2.11R 2.08R		
337 0.492754 340 0.652174 352 0.492754 355 0.652174 11.3.1.3.5 GENE Factor Typ Scale fixe	0.572947 0.572947 0.572947 0.572947 RAL LINEAR M e Levels Va d 3 1	0.0 0.0 0.0 0.0	10181 10181 10181 10181 GEH	-0.080 0.079 -0.080 0.079	193 227 193 227	-2 2 -2 2	2.11R 2.08R 2.11R 2.08R		
337 0.492754 340 0.652174 352 0.492754 355 0.652174 11.3.1.3.5 GENE Factor Typ Scale fixe Kinitial fixe	0.572947 0.572947 0.572947 0.572947 RAL LINEAR M e Levels Va d 3 1 d 3 1	0.0 0.0 0.0 0.0 10DEL:	10181 10181 10181 10181 GEH	-0.080 0.079 -0.080 0.079 VERSUS S	193 227 193 227	-22 -22 2 2; KINIT	2.11R 2.08R 2.11R 2.08R		
337 0.492754 340 0.652174 352 0.492754 355 0.652174 11.3.1.3.5 GENE Factor Typ Scale fixe Kinitial fixe	0.572947 0.572947 0.572947 0.572947 RAL LINEAR M e Levels Va d 3 1 d 3 1	0.0 0.0 0.0 0.0 10DEL:	10181 10181 10181 10181 10181 10181	-0.080 0.079 -0.080 0.079 VERSUS S	193 227 193 227	-22 -22 2 2; KINIT	2.11R 2.08R 2.11R 2.08R		
337 0.492754 340 0.652174 352 0.492754 355 0.652174 11.3.1.3.5 GENE Factor Typ Scale fixe Kinitial fixe Analysis of Va Source	0.572947 0.572947 0.572947 0.572947 RAL LINEAR M e Levels Va d 3 1 d 3 1 riance for	0.0 0.0 0.0 0.0 IODEL: lues 0 60 2 3 GEH,	10181 10181 10181 10181 10181 GEH	-0.080 0.079 -0.080 0.079 VERSUS S	193 227 193 227 SCALI	-2 2 -2 2 2; KINIT S for	2.11R 2.08R 2.11R 2.08R TIAL	P	
337 0.492754 340 0.652174 352 0.492754 355 0.652174 11.3.1.3.5 GENE Factor Typ Scale fixe Kinitial fixe Analysis of Va Source Scale	0.572947 0.572947 0.572947 0.572947 RAL LINEAR M e Levels Va d 3 1 d 3 1 riance for DF S 2 2.	0.0 0.0 0.0 0.0 10DEL: lues 0 60 2 3 GEH, eq SS 71107	10181 10181 10181 10181 10181 10181	-0.080 0.079 -0.080 0.079 VERSUS S Adjust Adj SS .71107	193 227 193 227 SCALE ed S	-2 2 -2 2 2; KINIT S for Adj MS	2.11R 2.08R 2.11R 2.08R FIAL Tests 5 F 901.70	0.000	
337 0.492754 340 0.652174 352 0.492754 355 0.652174 11.3.1.3.5 GENE Factor Typ Scale fixe Kinitial fixe Analysis of Va Source Scale Kinitial	0.572947 0.572947 0.572947 0.572947 RAL LINEAR M e Levels Va d 3 1 d 3 1 riance for DF S 2 2. 2 0.	0.0 0.0 0.0 0.0 10DEL: lues 0 60 2 3 GEH, eq SS 71107 20663	10181 10181 10181 10181 10181 100 using	-0.080 0.079 -0.080 0.079 VERSUS S Adjust Adj SS .71107 .20663	193 227 193 227 SCALE ed S	-2 2 -2 2 2; KINIT S for Adj MS .35554 .10332	7.11R 2.08R 2.11R 2.08R 7.1AL Tests 3 F 4 901.70 2 68.73	0.000	
337 0.492754 340 0.652174 352 0.492754 355 0.652174 11.3.1.3.5 GENE Factor Typ Scale fixe Kinitial fixe Analysis of Va Source Scale Kinitial	0.572947 0.572947 0.572947 0.572947 RAL LINEAR M e Levels Va d 3 1 d 3 1 riance for DF S 2 2. 2 0. 4 0.	0.0 0.0 0.0 0.0 10DEL: lues 0 60 2 3 GEH, eq SS 71107 20663 10188	10181 10181 10181 10181 10181 100 using	-0.080 0.079 -0.080 0.079 VERSUS S Adjust Adj SS .71107 .20663 .10188	193 227 193 227 SCALE ed S	-2 2 -2 2 2; KINIT S for Adj MS .35554 .10332 .02547	Tests 901.70 2.68.73 16.94	0.000	
337 0.492754 340 0.652174 352 0.492754 355 0.652174 11.3.1.3.5 GENE Factor Typ Scale fixe Kinitial fixe Analysis of Va Source Scale Kinitial Scale*Kinitial Error	0.572947 0.572947 0.572947 0.572947 RAL LINEAR M e Levels Va d 3 1 d 3 1 riance for DF S 2 2. 2 0. 4 0. 396 0.	0.0 0.0 0.0 0.0 0.0 IODEL: lues 0 60 2 3 GEH, eq SS 71107 20663 10188 59531	10181 10181 10181 10181 10181 100 using	-0.080 0.079 -0.080 0.079 VERSUS S Adjust Adj SS .71107 .20663	193 227 193 227 SCALE ed S	-2 2 -2 2 2; KINIT S for Adj MS .35554 .10332	Tests 901.70 2.68.73 16.94	0.000	
337 0.492754 340 0.652174 352 0.492754 355 0.652174 11.3.1.3.5 GENE Factor Typ Scale fixe Kinitial fixe Analysis of Va Source Scale Kinitial Scale*Kinitial Error	0.572947 0.572947 0.572947 0.572947 RAL LINEAR M e Levels Va d 3 1 d 3 1 riance for DF S 2 2. 2 0. 4 0. 396 0.	0.0 0.0 0.0 0.0 10DEL: lues 0 60 2 3 GEH, eq SS 71107 20663 10188	10181 10181 10181 10181 10181 100 using	-0.080 0.079 -0.080 0.079 VERSUS S Adjust Adj SS .71107 .20663 .10188	193 227 193 227 SCALE ed S	-2 2 -2 2 2; KINIT S for Adj MS .35554 .10332 .02547	Tests 901.70 2.68.73 16.94	0.000	
337 0.492754 340 0.652174 352 0.492754 355 0.652174 11.3.1.3.5 GENE Factor Typ Scale fixe Kinitial fixe Analysis of Va Source Scale Kinitial Scale*Kinitial Error Total	0.572947 0.572947 0.572947 0.572947 RAL LINEAR M e Levels Va d 3 1 d 3 1 riance for DF S 2 2. 2 0. 4 0. 396 0. 404 3.	0.0 0.0 0.0 0.0 0.0 10DEL: lues 0 60 2 3 GEH, eq SS 71107 20663 10188 59531 61489	10181 10181 10181 10181 10181 100 using	-0.080 0.079 -0.080 0.079 VERSUS S Adjust Adj SS .71107 .20663 .10188	193 227 193 227 SCALE ed S	-2 2 -2 2 2; KINIT S for Adj MS .35554 .10332 .02547	Tests 901.70 2.68.73 16.94	0.000	
337 0.492754 340 0.652174 352 0.492754 355 0.652174 11.3.1.3.5 GENE Factor Typ Scale fixe Kinitial fixe Analysis of Va Source Scale Kinitial Scale*Kinitial Error Total Unusual Observ	0.572947 0.572947 0.572947 0.572947 RAL LINEAR M e Levels Va d 3 1 d 3 1 riance for DF S 2 2. 2 0. 4 0. 396 0. 404 3. ations for	0.0 0.0 0.0 0.0 0.0 10DEL: lues 0 60 2 3 GEH, eq SS 71107 20663 10188 59531 61489 GEH	10181 10181 10181 10181 10181 100 using	-0.080 0.079 -0.080 0.079 VERSUS S Adjust Adj SS .71107 .20663 .10188 .59531	193 227 193 227 SCALE	-2 2 -2 2 2; KINIT S for Adj MS .35554 .10332 .02547	Tests 901.70 2.68.73 16.94	0.000	
337 0.492754 340 0.652174 352 0.492754 355 0.652174 11.3.1.3.5 GENE Factor Typ Scale fixe Kinitial fixe Analysis of Va Source Scale Kinitial Scale*Kinitial Error Total Unusual Observ Obs GEH	0.572947 0.572947 0.572947 0.572947 RAL LINEAR M e Levels Va d 3 1 d 3 1 riance for DF S 2 2. 2 0. 4 0. 396 0. 404 3. ations for	0.0 0.0 0.0 0.0 0.0 10DEL: lues 0 60 2 3 GEH, eq SS 71107 20663 10188 59531 61489 GEH	10181 10181 10181 10181 10181 100 using 2 0 0 0	-0.080 0.079 -0.080 0.079 VERSUS S Adjust Adj SS .71107 .20663 .10188 .59531	193 227 193 227 SCALE ed S 1 0 0	-2 2 2 2 2 2 2 3 5 5 5 4 10332 .02547 .00150	7:11R 7:08R 7:11R 7:08R 7:14L Tests 8:901.70 8:68.73 7:16.94	0.000	
337 0.492754 340 0.652174 352 0.492754 355 0.652174 11.3.1.3.5 GENE Factor Typ Scale fixe Kinitial fixe Analysis of Va Source Scale Kinitial Scale*Kinitial Error Total Unusual Observ Obs GEH 6 0.594203	0.572947 0.572947 0.572947 0.572947 RAL LINEAR M e Levels Va d 3 1 d 3 1 riance for DF S 2 2. 2 0. 4 0. 396 0. 404 3. ations for	0.0 0.0 0.0 0.0 0.0 10DEL: lues 0 60 2 3 GEH, eq SS 71107 20663 10188 59531 61489 GEH	10181 10181 10181 10181 10181 100 using 2 0 0 0 0	-0.080 0.079 -0.080 0.079 VERSUS S Adjust Adj SS .71107 .20663 .10188 .59531	193 227 193 227 SCALE ed S 1 0 0	-2 2 2 2 2 2 2 2 3 5 5 5 4 10332 .02547 .00150	7:11R 7:08R 7:11R 7:08R 7:14L Tests 8:901.70 9:68.73 1:6.94 1:088	0.000	
337 0.492754 340 0.652174 352 0.492754 355 0.652174 11.3.1.3.5 GENE Factor Typ Scale fixe Kinitial fixe Analysis of Va Source Scale Kinitial Scale*Kinitial Error Total Unusual Observ Obs GEH 6 0.594203 46 0.695652	0.572947 0.572947 0.572947 0.572947 0.572947 RAL LINEAR M e Levels Va d 3 1 d 3 1 riance for DF S 2 2. 2 0. 4 0. 396 0. 404 3. ations for Fit 0.687279 0.780032	0.0 0.0 0.0 0.0 0.0 0.0 IODEL: lues 0 60 2 3 GEH, eq SS 71107 20663 10188 59531 61489 GEH	10181 10181 10181 10181 10181 100 using 2 0 0 0 0	-0.080 0.079 -0.080 0.079 VERSUS S Adjust Adj SS .71107 .20663 .10188 .59531	193 227 193 227 SCALE ed S 1 0 0 0	-2 2 2 2 2 2 2 2 3 5 5 5 4 10332 .02547 .00150	Tests S F 901.70 C 68.73 C 16.94 Resid C 43R C 20R	0.000	
337 0.492754 340 0.652174 352 0.492754 355 0.652174 11.3.1.3.5 GENE Factor Typ Scale fixe Kinitial fixe Analysis of Va Source Scale Kinitial Scale*Kinitial Error Total Unusual Observ Obs GEH 6 0.594203 46 0.695652 66 0.695652	0.572947 0.572947 0.572947 0.572947 0.572947 RAL LINEAR M e Levels Va d 3 1 d 3 1 riance for DF S 2 2. 2 0. 4 0. 396 0. 404 3. ations for Fit 0.687279 0.780032 0.780032	0.0 0.0 0.0 0.0 0.0 0.0 10DEL: lues 0 60 2 3 GEH, eq SS 71107 20663 10188 59531 61489 GEH	10181 10181 10181 10181 10181 100 using 2 0 0 0 0 0 0 0 5780 05780 05780	-0.080 0.079 -0.080 0.079 VERSUS S Adjust Adj SS .71107 .20663 .10188 .59531 Resid -0.093 -0.084 -0.084	193 227 193 227 SCALE ed S 1 0 0 0	-2 2 2 2 2 2 2 2 3 5 5 5 4 10332 .02547 .00150	Tests FIAL Tests Fial Fial Tests Fig. 901.70 Fial Fi	0.000	
337 0.492754 340 0.652174 352 0.492754 355 0.652174 11.3.1.3.5 GENE Factor Typ Scale fixe Kinitial fixe Analysis of Va Source Scale Kinitial Scale*Kinitial Error Total Unusual Observ Obs GEH 6 0.594203 46 0.695652 66 0.695652 92 0.623188	0.572947 0.572947 0.572947 0.572947 0.572947 RAL LINEAR M e Levels Va d 3 1 d 3 1 riance for DF S 2 2. 2 0. 4 0. 396 0. 404 3. rations for Fit 0.687279 0.780032 0.780032 0.783575	0.0 0.0 0.0 0.0 0.0 0.0 0.0 60 2 3 GEH, eq SS 71107 20663 10188 59531 61489 GEH	10181 10181 10181 10181 10181 100 4 100 4 100 4 100 0 0 0 0 0 0 0 0	-0.080 0.079 -0.080 0.079 VERSUS S Adjust Adj SS .71107 .20663 .10188 .59531 Resid -0.093 -0.084 -0.084 -0.084 -0.160	193 227 193 227 SCALE ed S 1 0 0 0 0	-2 2 2 2 2 2 2 2 2 3 5 5 5 4 10332 .02547 .00150	Tests FIAL Tests Fig. 901.70 2.68.73 1.6.94 Resid 4.43R 2.20R 2.20R 2.18R	0.000	
337 0.492754 340 0.652174 352 0.492754 355 0.652174 11.3.1.3.5 GENE Factor Typ Scale fixe Kinitial fixe Analysis of Va Source Scale Kinitial Scale*Kinitial Error Total Unusual Observ Obs GEH 6 0.594203 46 0.695652 92 0.623188 94 0.666667	0.572947 0.572947 0.572947 0.572947 0.572947 RAL LINEAR M e Levels Va d 3 1 d 3 1 riance for DF S 2 2. 2 0. 4 0. 396 0. 404 3. ations for Fit 0.687279 0.780032 0.78032 0.783575 0.783575	0.0 0.0 0.0 0.0 0.0 0.0 0.0 60 2 3 GEH, eq SS 71107 20663 10188 59531 61489 GEH	10181 10181 10181 10181 10181 10181 100 using 2 0 0 0 0 0 0 0 0 05780 05780 05780 05780	-0.080 0.079 -0.080 0.079 VERSUS S Adjust Adj SS .71107 .20663 .10188 .59531 Resid -0.093 -0.084 -0.084 -0.160 -0.116	193 227 193 227 SCALE ed S 1 0 0 0 0 0 0 0 0 380 380 386 908	-2 2 2 2 2 2 2 2 2 3 5 5 5 4 10332 .02547 .00150	Tests Fial Tests Fig. 901.70 6.68.73 16.94 Resid 4.43R 2.20R 2.20R 1.18R 3.05R	0.000	
337 0.492754 340 0.652174 352 0.492754 355 0.652174 11.3.1.3.5 GENE Factor Typ Scale fixe Kinitial fixe Analysis of Va Source Scale Kinitial Scale*Kinitial Error Total Unusual Observ Obs GEH 6 0.594203 46 0.695652 92 0.623188 94 0.666667 139 0.666667	0.572947 0.572947 0.572947 0.572947 0.572947 RAL LINEAR M e Levels Va d 3 1 d 3 1 riance for DF S 2 2. 2 0. 4 0. 396 0. 404 3. ations for Fit 0.687279 0.780032 0.78032 0.783575 0.783575 0.570692	0.0 0.0 0.0 0.0 0.0 0.0 0.0 60 2 3 GEH, eq SS 71107 20663 10188 59531 61489 GEH	10181 10181 10181 10181 10181 10181 100 using 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-0.080 0.079 -0.080 0.079 VERSUS S Adjust Adj SS .71107 .20663 .10188 .59531 Resid -0.093 -0.084 -0.084 -0.160 -0.116 0.095	193 227 193 227 SCALE ed S 1 0 0 0 0 ual 076 380 380 386 908 974	-2 2 2 2 2 2 2 2 3 5 5 5 4 10332 .02547 .00150	Tests Fial Tests Fig. 901.70 68.73 16.94 Resid 4.43R 2.20R 2.18R 3.05R 3.50R	0.000	
337 0.492754 340 0.652174 352 0.492754 355 0.652174 11.3.1.3.5 GENE Factor Typ Scale fixe Kinitial fixe Analysis of Va Source Scale Kinitial Scale*Kinitial Error Total Unusual Observ Obs GEH 6 0.594203 46 0.695652 92 0.623188 94 0.666667 139 0.666667 154 0.666667	0.572947 0.572947 0.572947 0.572947 0.572947 RAL LINEAR M e Levels Va d 3 1 d 3 1 riance for DF S 2 2. 2 0. 4 0. 396 0. 404 3. ations for Fit 0.687279 0.780032 0.780032 0.78032 0.783575 0.783575 0.570692 0.570692	0.0 0.0 0.0 0.0 0.0 0.0 0.0 60 2 3 GEH, eq SS 71107 20663 10188 59531 61489 GEH	10181 10181 10181 10181 10181 10181 100 using 2 0 0 0 0 5780 05780 05780 05780 05780 05780	-0.080 0.079 -0.080 0.079 VERSUS S Adjust Adj SS .71107 .20663 .10188 .59531 Resid -0.093 -0.084 -0.084 -0.160 -0.116 0.095 0.095	193 227 193 227 227 CALF ed S 1 0 0 0 0 0 ual 076 380 380 386 908 974 974	-2 2 2 2 2 2 2 2 2 2 3 5 5 5 4 10332 .02547 .00150 St R -2 -2 -4 -3 2 2	Tests Fial Tests Fig. 901.70 68.73 16.94 Resid 4.43R 2.20R 2.20R 1.18R 3.05R 2.50R	0.000	
337 0.492754 340 0.652174 352 0.492754 355 0.652174 11.3.1.3.5 GENE Factor Typ Scale fixe Kinitial fixe Analysis of Va Source Scale Kinitial Scale*Kinitial Error Total Unusual Observ Obs GEH 6 0.594203 46 0.695652 92 0.623188 94 0.666667 139 0.666667 154 0.666667 155 0.492754	0.572947 0.572947 0.572947 0.572947 0.572947 RAL LINEAR M e Levels Va d 3 1 d 3 1 riance for DF S 2 2. 2 0. 4 0. 396 0. 404 3. ations for Fit 0.687279 0.780032 0.78032 0.78032 0.783575 0.570692 0.570692 0.570692 0.570692	0.0 0.0 0.0 0.0 0.0 0.0 0.0 60 2 3 GEH, eq SS 71107 20663 10188 59531 61489 GEH	10181 10181 10181 10181 10181 10181 100 using 2 0 0 0 0 5780 05780 05780 05780 05780 05780 05780	-0.080 0.079 -0.080 0.079 VERSUS S Adjust Adj SS .71107 .20663 .10188 .59531 Resid -0.093 -0.084 -0.084 -0.160 -0.116 0.095 0.095 -0.077	193 227 193 227 227 CCALF ed S 1 0 0 0 0 0 ual 076 380 380 386 908 974 974 939	-2 2 2 2 2 2 2 2 2 3 5 5 5 4 10332 .02547 .00150 St R -2 -2 -4 -3 2 2 -2 -2	Tests Fig. 901.70 6.68.73 16.94 Resid 4.43R 2.20R 2.20R 1.18R 3.05R 2.50R 2.50R 2.50R	0.000	
337 0.492754 340 0.652174 352 0.492754 355 0.652174 11.3.1.3.5 GENE Factor Typ Scale fixe Kinitial fixe Analysis of Va Source Scale Kinitial Scale*Kinitial Error Total Unusual Observ Obs GEH 6 0.594203 46 0.695652 92 0.623188 94 0.666667 139 0.666667 154 0.666667 155 0.492754 169 0.666667	0.572947 0.572947 0.572947 0.572947 0.572947 RAL LINEAR M e Levels Va d 3 1 d 3 1 riance for DF S 2 2. 2 0. 4 0. 396 0. 404 3. ations for Fit 0.687279 0.780032 0.78032 0.78032 0.78032 0.783575 0.570692 0.570692 0.570692 0.570692 0.570692 0.570692	0.0 0.0 0.0 0.0 0.0 0.0 0.0 60 2 3 GEH, eq SS 71107 20663 10188 59531 61489 GEH	10181 10181 10181 10181 10181 10181 100 using 2 0 0 0 0 5780 05780 05780 05780 05780 05780 05780 05780	-0.080 0.079 -0.080 0.079 VERSUS S Adjust Adj SS .71107 .20663 .10188 .59531 Resid -0.093 -0.084 -0.084 -0.160 -0.116 0.095 0.095 -0.077 0.095	193 227 193 227 227 CALF ed S 100 00 ual 076 380 380 386 908 974 939 974	-2 2 2 2 2 2 2 2 3 5 5 5 4 10332 .02547 .00150 St F -2 -2 -4 -3 2 2 2 2	Tests F 901.70 6.68.73 16.94 Resid 4.43R 2.20R 2.20R 1.18R 3.05R 3.50R 3.50R	0.000	
337 0.492754 340 0.652174 352 0.492754 355 0.652174 11.3.1.3.5 GENE Factor Typ Scale fixe Kinitial fixe Analysis of Va Source Scale Kinitial Scale*Kinitial Error Total Unusual Observ Obs GEH 6 0.594203 46 0.695652 92 0.623188 94 0.666667 139 0.666667 154 0.666667 155 0.492754 169 0.666667	0.572947 0.572947 0.572947 0.572947 0.572947 RAL LINEAR M e Levels Va d 3 1 d 3 1 riance for DF S 2 2. 2 0. 4 0. 396 0. 404 3. ations for Fit 0.687279 0.780032 0.78032 0.78032 0.78032 0.783575 0.570692 0.570692 0.570692 0.570692 0.570692 0.570692 0.570692 0.570692 0.570692	0.0 0.0 0.0 0.0 0.0 0.0 0.0 2 3 GEH, eq SS 71107 20663 10188 59531 61489 GEH S: 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	10181 10181 10181 10181 10181 10181 100 using 2 0 0 0 0 0 5780 05780 05780 05780 05780 05780 05780 05780	-0.080 0.079 -0.080 0.079 VERSUS S Adjust Adj SS .71107 .20663 .10188 .59531 Resid -0.093 -0.084 -0.084 -0.160 -0.116 0.095 0.095 -0.077	193 227 193 227 227 SCALE ed S 1 0 0 0 0 ual 076 380 386 908 974 939 974 939 974 939	-2 2 2 2 2 2 2 3 5 5 5 4 10332 .02547 .00150	Tests Fig. 901.70 6.68.73 16.94 Resid 4.43R 2.20R 2.20R 1.18R 3.05R 2.50R 2.50R 2.50R	0.000	

221	0.695652	0.605475	0.005780	0.090177	2.35R
322	0.492754	0.571981	0.005780	-0.079227	-2.07R
325	0.652174	0.571981	0.005780	0.080193	2.09R
337	0.492754	0.571981	0.005780	-0.079227	-2.07R
340	0.652174	0.571981	0.005780	0.080193	2.09R
352	0.492754	0.571981	0.005780	-0.079227	-2.07R
355	0.652174	0.571981	0.005780	0.080193	2.09R

11.3.1.3.6 COEFFICIENTS GENERAL LINEAR MODEL: GEH VERSUS SCALE; KINITIAL

0.635463

0.114833

-0.045124

-0.031920

0.017033

-0.031097

0.012704

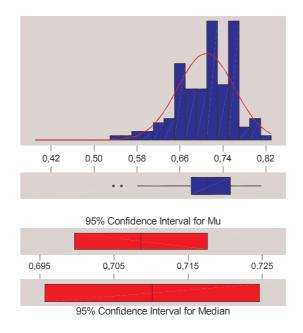
0.012274

-0.001897

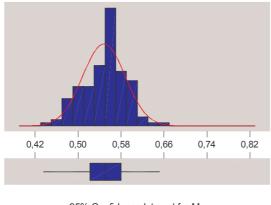
11.3.1.4 C-LOGIT ROUTE CHOICE MODEL WITH FIXED BETA AND GAMMA

ROUTE CHOICE: CLOGIT (β =0.15 AND γ =1.0 FIXED)

DESIGN FACTOR θ, LEVELS 10, 60, 100


DESIGN FACTOR INITIAL K-SP (KINITIAL), LEVELS 1, 2, 3

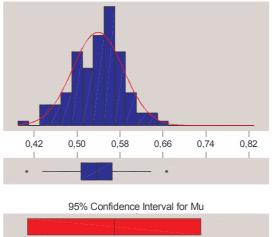
DESIGN FACTOR MAXIMUM NUMBER OF ROUTES (NUMBER OF ALTERNATIVES),


LEVELS 3, 4, 5

11.3.1.4.1 GEH AS A FUNCTION OF θ

Descriptive Statistics

Variable: Scale:				
Anderson-Darling Normality Test				
A-Squared: P-Value:	1,188 0,004			
Mean StDev Variance Skewness Kurtosis N	0,708642 0,052800 2,79E-03 -6,2E-01 0,398363 135			
Minimum 1st Quartile Median 3rd Quartile Maximum	0,536232 0,681159 0,710145 0,753623 0,811594			
95% Confidence I	nterval for Mu			
0,699654	0,717630			
95% Confidence Int	erval for Sigma			
0,047164	0,059977			
95% Confidence Into	erval for Median			
0,695652	0,724638			

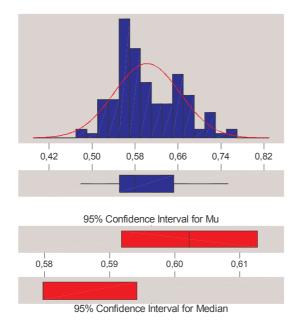


95% Confidence Interval for Mu 0,535 0,545 0,555 0,565 95% Confidence Interval for Median

Variable: GEH Scale: 60

Anderson-Darling	•
A-Squared: P-Value:	1,285 0,002
Mean StDev Variance Skewness Kurtosis N	0,548148 0,039665 1,57E-03 -2,4E-01 -3,8E-02 135
Minimum 1st Quartile Median 3rd Quartile Maximum	0,434783 0,521739 0,550725 0,579710 0,652174
95% Confidence I	nterval for Mu
0,541396	0,554900
95% Confidence Int	terval for Sigma
0,035431	0,045057
95% Confidence Int	erval for Median
0,536232	0,565217

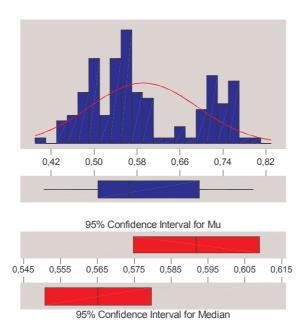
Descriptive Statistics



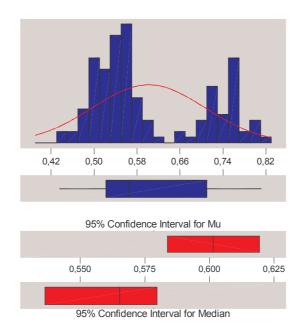
Variable: GEH Scale: 100

Anderson-Darling No	ormality Test
A-Squared: P-Value:	0,892 0,022
Mean StDev Variance Skewness Kurtosis N	0,538808 0,047240 2,23E-03 -1,4E-01 8,23E-02 135
Minimum 1st Quartile Median 3rd Quartile Maximum	0,405797 0,507246 0,536232 0,565217 0,666667
95% Confidence Inte	erval for Mu
0,530767	0,546850
95% Confidence Inter	val for Sigma
0,042198	0,053662
95% Confidence Interv	al for Media
0,536232	0,550725

11.3.1.4.2 GEH AS A FUNCTION OF INITIAL K-SP


Descriptive Statistics

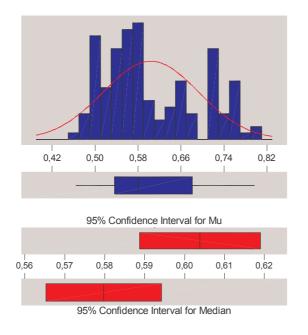
Variable: GEH Kinitial: 1


Anderson-Darling Normality Test A-Squared: 2,345 P-Value: 0,000 0,602254 Mean StDev 0,061454 3,78E-03 Variance 0,478920 Skewness Kurtosis -4,9E-01 Minimum 1st Quartile 0,478261 0,550725 Median 0,579710 3rd Quartile 0,652174 Maximum 0,753623 95% Confidence Interval for Mu 0,591794 0,612715 95% Confidence Interval for Sigma 0,069807 0,054894 95% Confidence Interval for Median 0,579710 0,594203

Descriptive Statistics

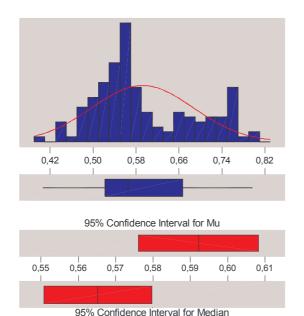
Variable: GEH Kinitial: 2

Anderson-Darling Normality Test				
A-Squared: P-Value:	4,382 0,000			
Mean StDev Variance Skewness Kurtosis N	0,591841 0,100630 1,01E-02 0,429002 -1,09449 135			
Minimum 1st Quartile Median 3rd Quartile Maximum	0,405797 0,507246 0,565217 0,695652 0,797101			
95% Confidence Interval for Mu				
0,574711	0,608971			
95% Confidence Interval for Sigma				
0,089889	0,114309			
95% Confidence Inte	erval for Median			
0,550725	0,579710			



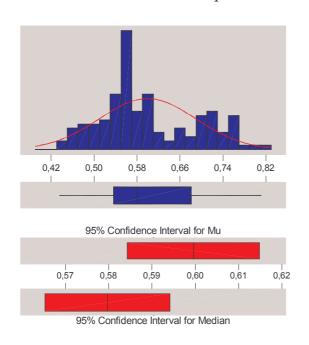
Variable: GEH Kinitial: 3

Anderson-Darling A-Squared:	Normality Test 7,667			
P-Value:	0,000			
Mean StDev Variance Skewness Kurtosis N	0,601503 0,104821 1,10E-02 0,606274 -1,11121			
Minimum 1st Quartile Median 3rd Quartile Maximum	0,434783 0,521739 0,565217 0,710145 0,811594			
95% Confidence	Interval for Mu			
0,583660	0,619346			
95% Confidence In	terval for Sigma			
0,093633	0,119070			
95% Confidence Interval for Median				
0,536232	0,579710			


11.3.1.4.3 GEH AS A FUNCTION OF THE NUMBER OF ALTERNATIVES

Descriptive Statistics

Variable: GEH Numalternati: 3


Anderson-Darling	Normality Test
A-Squared: P-Value:	3,758 0,000
Mean StDev Variance Skewness Kurtosis N	0,603865 0,089023 7,93E-03 0,527702 -9,3E-01 135
Minimum 1st Quartile Median 3rd Quartile Maximum	0,463768 0,536232 0,579710 0,681159 0,797101
95% Confidence	Interval for Mu
0,588711	0,619019
95% Confidence In	terval for Sigma
0,079521	0,101124
95% Confidence In	terval for Media
0,565217	0,594203

Variable: GEH Numalternati: 4

Anderson-Darling	Normality Test
A-Squared: P-Value:	4,139 0,000
Mean StDev Variance Skewness Kurtosis N	0,592163 0,094492 8,93E-03 0,572252 -6,7E-01 135
Minimum 1st Quartile Median 3rd Quartile Maximum	0,405797 0,521739 0,565217 0,666667 0,797101
95% Confidence I	nterval for Mu
0,576078	0,608248
95% Confidence Int	terval for Sigma
0,084407	0,107337
95% Confidence Int	erval for Median
0,550725	0,579710

Descriptive Statistics

Variable: GEH Numalternati: 5

Anderson-Darling Normality Test A-Squared: 3,037 P-Value: 0,000 Mean 0,599571 StDev 0,089633 Variance 8,03E-03 Skewness 0,480894 Kurtosis -7,2E-01 Ν 135 Minimum 0,434783 0,536232 0,579710 1st Quartile Median 3rd Quartile 0,681159 Maximum 0,811594 95% Confidence Interval for Mu 0,584313 95% Confidence Interval for Sigma 0,080066 0,101817 95% Confidence Interval for Median 0,565217 0,594203

11.3.1.4.4 GENERAL LINEAR MODEL: GEH VERSUS SCALE; KINITIAL; NUMALTERNATIVES

Factor Type Levels Values
Scale fixed 3 10 60 100
Kinitial fixed 3 1 2 3
Numalter fixed 3 3 4 5

Analysis of Variance for GEH, using Adjusted SS for Tests

Source DF Seq SS Adj SS Adj MS F

```
2.46100 2.46100 1.23050 691.42 0.000
Scale
                               0.00911 0.00911 0.00455 2.56 0.079
Kinitial
                           2
                                                    0.00473
                           2 0.00946
4 0.17505
4 0.00092
                                           0.00946
                                                                  2.66 0.071
Numalter
Scale*Kinitial
                                           0.17505
                                                      0.04376
                                                                 24.59 0.000
                                                    0.00023
                                         0.00092
                                                                0.13 0.972
Scale*Numalter
                          4 0.00653 0.00653 0.00163 0.92 0.454
Kinitial*Numalter
Scale*Kinitial*Numalter
                         8 0.00965 0.00965 0.00121
                                                                 0.68 0.711
                         378 0.67272 0.67272 0.00178
Error
Total
                         404
                                3.34443
Unusual Observations for GEH
Obs
         GEH
                  Fit
                           SE Fit Residual St Resid

      24
      0.753623
      0.668599
      0.010892
      0.085024

      27
      0.579710
      0.668599
      0.010892
      -0.088889

                                               2.09R
                                                   -2.18R
 42 0.579710 0.668599 0.010892 -0.088889
                                                  -2.18R
 51 0.608696 0.722705 0.010892 -0.114010
                                                  -2.80R
 73 0.550725 0.714976 0.010892 -0.164251
                                                  -4.03R
79  0.608696  0.712077  0.010892 -0.103382
106  0.536232  0.730435  0.010892 -0.194203
198  0.434783  0.524638  0.010892 -0.089855
                                                  -2.54R
                        0.010892 -0.089855
                                                  -2.20R
217 0.463768 0.551691
                          0.010892 -0.087923
                                                  -2.16R
219 0.652174 0.551691
                         0.010892 0.100483
                                                  2.47R
284 0.666667 0.578744 0.010892 0.087923
                                                   2.16R
                        0.010892 -0.085024
312  0.478261  0.563285
323  0.623188  0.528502
                                                  -2.09R
                           0.010892 0.094686
                                                  2.32R
335 0.405797 0.501449 0.010892 -0.095652
                                                  -2.35R
384 0.623188 0.535266 0.010892 0.087923
                                                  2.16R
390 0.434783 0.535266 0.010892 -0.100483
                                                 -2.47R
400 0.434783 0.532367
                         0.010892 -0.097585
                                                  -2.39R
11.3.1.4.5 GENERAL LINEAR MODEL: GEH VERSUS SCALE; KINITIAL; NUMALTERNATIVES;
         SCALE*KINITIAL
          Type Levels Values
Factor
         fixed 3 10 60 100
Scale
Kinitial fixed
                     3 1 2 3
Numalter fixed
                    3 3 4 5
Analysis of Variance for GEH, using Adjusted SS for Tests
                 DF
                       Seq SS
                                   Adj SS
                                              Adj MS
                                2.46100 1.23050 702.82 0.000
                     2.46100
                 2
Scale
Kinitial
                  2 0.00911
                                0.00911
                                           0.00455 2.60 0.076
                2 0.00946
4 0.17505
394 0.68981
                                0.00946 0.00473
                                                        2.70 0.068
Numalter
                                0.17505
0.68981
                                           0.04376
0.00175
Scale*Kinitial
                                                       25.00 0.000
Error
                      3.34443
Total
                404
Unusual Observations for GEH
                         SE Fit Residual 0.006896 0.088173
Obs
         GEH
                    Fit
                                               St Resid
 24 0.753623 0.665450
                                                 2.14R
 27 0.579710 0.665450
                        0.006896 -0.085740
                                                  -2.08R
 42 0.579710 0.672857
                         0.006896 -0.093147
                                                  -2.26R
 51 0.608696 0.721918
                         0.006896 -0.113222
                                                  -2.74R
                         0.006896 -0.159492
 73 0.550725
              0.710216
                                                  -3.86R
 79 0.608696
              0.717624
                           0.006896 -0.108928
                                                  -2.64R
                         0.006896 -0.194919
```

-4.72R

-2.38R 2.71R

2.28R -2.18R 2.38R

-2.60R

106 0.536232 0.731150

198 0.434783 0.533083 0.006896 -0.098300

219 0.652174 0.540490 0.006896 0.111684

335 0.405797 0.513115 0.006896 -0.107318

348	0.608696	0.520522	0.006896	0.088173	2.14R
354	0.608696	0.520522	0.006896	0.088173	2.14R
384	0.623188	0.523421	0.006896	0.099767	2.42R
388	0.608696	0.523421	0.006896	0.085275	2.07R
390	0.434783	0.523421	0.006896	-0.088638	-2.15R
400	0.434783	0.530828	0.006896	-0.096046	-2.33R

11.3.1.4.6 COEFFICIENTS OF GENERAL LINEAR MODEL: GEH VERSUS SCALE; KINITIAL; NUMALTERNATIVES

0,598533 0,110109 -0,050385

0,003722

-0,006692

0,005332

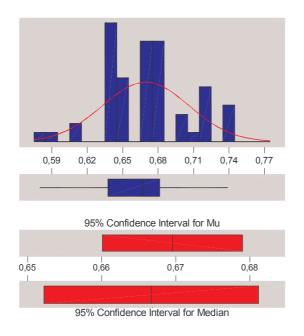
-0,006370 -0,040544

0,014636

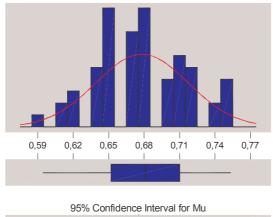
0,015924

-0,002004

11.3.1.5 C-LOGIT ROUTE CHOICE WITH VARYING BETA AND GAMMA


ROUTE CHOICE: CLOGIT (θ =60, INITIAL K-SP=2, AND MAXIMUM NUMBER OF ROUTES =3 FIXED)

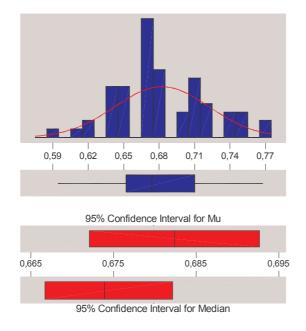
DESIGN FACTOR β , LEVELS 0.10, 0.15, 0.5, 1.0


DESIGN FACTOR γ , LEVELS 0.5, 1.0, 1.5, 2.0

11.3.1.5.1 GEH AS A FUNCTION OF β

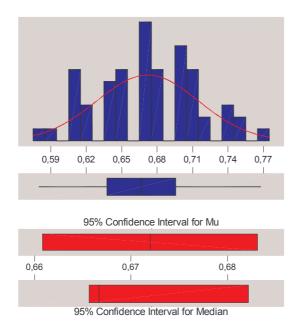
Descriptive Statistics

Variable: GEH Beta: 0,10 Anderson-Darling Normality Test A-Squared: 1,205 P-Value: 0,004 0,669565 0,036664 Mean StDev Variance 1.34E-03 0,150484 Skewness -1,3E-01 Kurtosis Minimum 0,579710 1st Quartile 0,637681 Median 0,666667 3rd Quartile 0,681159 Maximum 0,739130 95% Confidence Interval for Mu 0,679037 0,660094 95% Confidence Interval for Sigma 0,031078 0,044718 95% Confidence Interval for Median 0,652174 0,681159



95% Confidence Interval for Mu 0,67 0,68 0,69 95% Confidence Interval for Median

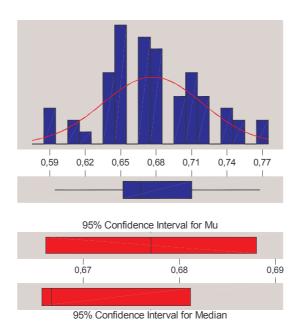
Variable: GEH Beta: 0,15


Anderson-Darling	Normality Test
A-Squared: P-Value:	0,607 0,110
Mean StDev Variance Skewness Kurtosis N	0,678261 0,039107 1,53E-03 0,171552 -5,2E-01 60
Minimum 1st Quartile Median 3rd Quartile Maximum	0,594203 0,652174 0,681159 0,710145 0,753623
95% Confidence I	nterval for Mu
0,668158	0,688363
95% Confidence Int	terval for Sigma
0,033149	0,047698
95% Confidence Int	erval for Median
0,666667	0,681159

Descriptive Statistics

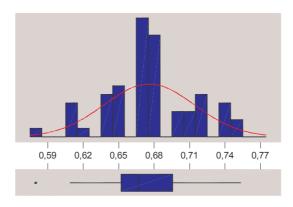
Variable: GEH Beta: 0,50

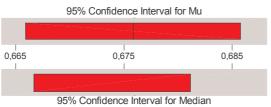
Anderson-Darling	Normality Test
A-Squared: P-Value:	0,906 0,020
Mean StDev Variance Skewness Kurtosis N	0,682367 0,039873 1,59E-03 0,304219 -3,5E-01 60
Minimum 1st Quartile Median 3rd Quartile Maximum	0,594203 0,652174 0,673913 0,710145 0,768116
95% Confidence	Interval for Mu
0,672067	0,692667
95% Confidence In	terval for Sigma
0,033797	0,048631
95% Confidence Int	erval for Median
0,666667	0,682164



Variable: GEH Beta: 1,00

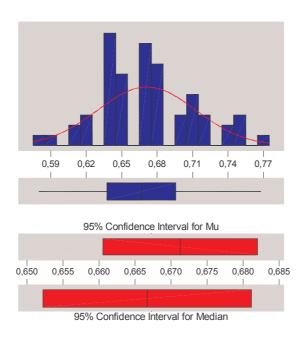
Anderson-Darling N A-Squared: P-Value:	Normality Test 0,409 0,335
Mean StDev Variance Skewness Kurtosis N	0,671981 0,043105 1,86E-03 5,39E-02 -4,6E-01 60
Minimum 1st Quartile Median 3rd Quartile Maximum	0,579710 0,637681 0,666667 0,695652 0,768116
95% Confidence In	nterval for Mu
0,660845	0,683116
95% Confidence Into	erval for Sigma
0,036538	0,052574
95% Confidence Inte	erval for Median
0,665662	0,682164


11.3.1.5.2 GEH AS A FUNCTION OF γ

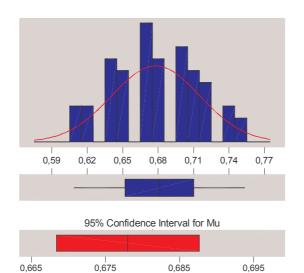

Descriptive Statistics

Variable: GEH Gamma: 0,5

Normality Test
0,586 0,122
0,677053 0,042450 1,80E-03 0,176261 -3,2E-01 60
0,594203 0,652174 0,666667 0,710145 0,768116
Interval for Mu
0,688019
terval for Sigma
0,051775
erval for Media
0,681159



Variable: GEH Gamma: 1,0


·	
Anderson-Darling No	rmality Test
A-Squared: P-Value:	0,987 0,012
Mean StDev Variance Skewness Kurtosis N	0,675845 0,038388 1,47E-03 2,10E-02 -7,1E-02
Minimum 1st Quartile Median 3rd Quartile Maximum	0,579710 0,652174 0,666667 0,695652 0,753623
95% Confidence Inte	erval for Mu
0,665929	0,685762
95% Confidence Interv	al for Sigma
0,032539	0,046820
95% Confidence Interv	al for Median
0,666667	0,681159

Descriptive Statistics

Variable: GEH Gamma: 1,5

Anderson-Darling	•
A-Squared: P-Value:	0,808 0,034
Mean StDev Variance Skewness Kurtosis N	0,671256 0,041552 1,73E-03 0,366305 -1,8E-01 60
Minimum 1st Quartile Median 3rd Quartile Maximum	0,579710 0,637681 0,666667 0,695652 0,768116
95% Confidence	Interval for Mu
0,660522	0,681990
95% Confidence In	terval for Sigma
0,035221	0,050679
95% Confidence Int	erval for Mediar
0,652174	0,681159

Variable: GEH Gamma: 2,0

Anderson-Darling N	ormality Test
A-Squared: P-Value:	0,494 0,208
Mean StDev Variance Skewness Kurtosis N	0,678019 0,037365 1,40E-03 7,63E-02 -7,0E-01 60
Minimum 1st Quartile Median 3rd Quartile Maximum	0,608696 0,652174 0,681159 0,710145 0,753623
95% Confidence In	terval for Mu
0,668367	0,687672
95% Confidence Inte	rval for Sigma
0,031672	0,045573
95% Confidence Inter	val for Median
0,666667	0,695652

11.3.1.5.3 GENERAL LINEAR MODEL: GEH VERSUS BETA; GAMMA

95% Confidence Interval for Median

Factor Type Levels Values
Beta fixed 4 0,10 0,15 0,50 1,00
Gamma fixed 4 0,5 1,0 1,5 2,0

Analysis of Variance for GEH, using Adjusted SS for Tests

Source	DF	Seq SS	Adj SS	Adj MS	F	P
Beta	3	0,006143	0,006143	0,002048	1,26	0,291
Gamma	3	0,001613	0,001613	0,000538	0,33	0,804
Beta*Gamma	9	0,006001	0,006001	0,000667	0,41	0,930
Error	224	0,365357	0,365357	0,001631		
Total	239	0,379114				

Unusual Observations for GEH

Obs	GEH	Fit	SE Fit	Residual	St Resid
21	0,579710	0,672464		-0,092754	-2,38R
72	0,594203	0,677295	0,010428	•	-2,13R
122	0,768116	0,683092	0,010428	•	2,18R
127	0,594203	0,683092	0,010428	-0,088889	-2,28R
161	0,768116	0,687923	0,010428	0,080193	2,06R
184	0,768116	0,672464	0,010428	0,095652	2,45R
186	0,594203	0,672464	0,010428	-0,078261	-2,01R
199	0,753623	0,673430	0,010428	0,080193	2,06R
215	0,579710	0,658937	0,010428	-0,079227	-2,03R
220	0,739130	0,658937	0,010428	0,080193	2,06R

11.3.1.6 C-LOGIT ROUTE CHOICE MODEL WITH VARYING SCALE FACTOR, INITIAL K-SP, BETA AND GAMMA

ROUTE CHOICE: CLOGIT (MAXIMUM NUMBER OF ROUTES = 4 FIXED) DESIGN FACTOR θ , LEVELS 10, 60, 100

DESIGN FACTOR INITIAL K-SP (KINITIAL), LEVELS 2, 3

DESIGN FACTOR β , LEVELS 0.10, 0.15, 0.5, 1.0 DESIGN FACTOR γ , LEVELS 0.5, 1.0, 1.5, 2.0

11.3.1.6.1 GENERAL LINEAR MODEL; GEH VERSUS SCALE; KINITIAL; BETA; GAMMA

Factor Type Scale Fa fixed Kinitial fixed Beta fixed Gamma fixed	2 2 3 4 0.1	60 100		
Analysis of Var	iance for G	GEH. using A	Adjusted SS	for Tests
Source DF Scale Fa 2 Kinitial 1 Beta 3 Gamma 3 Error 1430 Total 1439	Seq SS 3.9745 0.0303 9.5248 0.0785 4.8282 18.4363	Adj SS 3.9745 0.0303 9.5248 0.0785 4.8282	Adj MS 1.9873 0.0303 3.1749 0.0262 0.0034	F P 588.59 0.000 8.98 0.003 940.34 0.000 7.75 0.000
Obs GEH 2 0.811594 26 0.405797 28 0.405797 44 0.565217 67 0.405797 70 0.405797 72 0.405797 84 0.434783 96 0.507246 97 0.550725 100 0.811594 120 0.811594 120 0.811594 120 0.362319 207 0.362319 216 0.521739 217 0.420290 218 0.376812 221 0.391304 222 0.347826 224 0.362319 286 0.507246 288 0.521739 315 0.405797 317 0.376812 346 0.565217 383 0.507246 399 0.347826 401 0.840580 449 0.434783 496 0.362319 522 0.565217 542 0.536232 554 0.550725 556 0.565217 586 0.376812 590 0.333333 607 0.362319 669 0.521739	Fit 0.674849 0.544334 0.554197 0.443871 0.556180 0.540721 0.550584 0.574416 0.383112 0.692925 0.684712 0.679237 0.383112 0.678271 0.501620 0.484350 0.679237 0.562409 0.544334 0.510799 0.492723	SE Fit 0.004842	Residual 0.136745 -0.138537 -0.148400 0.121347 -0.150382 -0.134924 -0.144787 -0.139634 0.124134 -0.142200 0.126882 0.132357 0.167613 -0.200010 -0.139302 -0.122031 -0.157498 -0.142120 -0.167522 -0.119495 -0.144897 -0.144897 -0.144897 -0.140268 0.133998	St Resid 2.36R -2.39R -2.56R 2.10R -2.60R -2.33R -2.50R -2.41R 2.14R -2.46R 2.19R 2.29R 2.89R -3.45R -2.41R -2.11R -2.72R -2.45R -2.31R -2.31R 2.39R -2.31R 2.31R 2.33R 2.41R -2.31R 2.30R -2.36R 2.39R -2.36R 2.39R -2.39R -2.39R

691	0.811594	0.684833	0.004842	0.126761	2.19R
696	0.797101	0.679237	0.004842	0.117864	2.04R
714	0.550725	0.434008	0.004842	0.116717	2.02R
767	0.507246	0.374054	0.004842	0.133192	2.30R
768	0.507246	0.383112	0.004842	0.124134	2.14R
775	0.782609	0.661000	0.004842	0.121608	2.10R
843	0.565217	0.416486	0.004842	0.148732	2.57R
844	0.565217	0.425543	0.004842	0.139674	2.41R
893	0.376812	0.510799	0.004842	-0.133988	-2.31R
895	0.347826	0.493529	0.004842	-0.145702	-2.52R
960	0.521739	0.383112	0.004842	0.138627	2.39R
991	0.362319	0.493529	0.004842	-0.131210	-2.27R
1030	0.420290	0.540721	0.004842	-0.120431	-2.08R
1062	0.782609	0.660195	0.004842	0.122413	2.11R
1087	0.362319	0.493529	0.004842	-0.131210	-2.27R
1117	0.550725	0.409652	0.004842	0.141073	2.44R
1180	0.434783	0.554197	0.004842	-0.119414	-2.06R
1209	0.579710	0.461262	0.004842	0.118448	2.05R
1210	0.565217	0.443186	0.004842	0.122031	2.11R
1246	0.536232	0.373249	0.004842	0.162983	2.81R
1259	0.405797	0.535960	0.004842	-0.130163	-2.25R
1274	0.376812	0.544334	0.004842	-0.167522	-2.89R
1331	0.420290	0.565358	0.004842	-0.145068	-2.51R
1437	0.507246	0.391324	0.004842	0.115922	2.00R
1438	0.492754	0.373249	0.004842	0.119505	2.06R

 $\ensuremath{\mathsf{R}}$ denotes an observation with a large standardised residual